import torch from torchmetrics.wrappers import ClasswiseWrapper from torchmetrics.classification import MulticlassAccuracy metric = ClasswiseWrapper(MulticlassAccuracy(num_classes=3, average=None)) values = [ ] for _ in range(3): values.append(metric(torch.randint(3, (20,)), torch.randint(3, (20,)))) fig_, ax_ = metric.plot(values)