Table of Contents
0.2.5.dev0

Home

  • Welcome to ⚡ Lightning Thunder
  • Install
  • Hello World
  • Using examine

Basic

  • Overview
  • Zero to Thunder
  • Thunder step by step
  • The sharp edges
  • Train a MLP on MNIST
  • Thunder Concepts - Trace, BoundSymbol, Symbol and Proxy
  • Hello world ThunderFX
  • FAQ

Intermediate

  • Additional executors
  • Distributed Data Parallel
  • What's next
  • FSDP Under the Hood Tutorial
  • Benchmarking Thunder
  • Introduction
  • Transforms
  • Thunder bindings for Liger operators
  • RoPE
  • Test
  • End to end example

Advanced

  • Inside Thunder
  • Extending Thunder
  • Extend Thunder with CUDA-Python
  • Running our kernel in Thunder
  • Inspect
  • Comparing implementations
  • Summary
  • Defining new Thunder operators
  • Defining custom forward and backward for existing operators
  • Contributing to Thunder

Experimental dev tutorials

  • Extending Thunder

API reference

  • thunder
  • thunder.common
  • thunder.core
  • thunder.clang
  • thunder.examine
  • thunder.distributed
  • thunder.executors
  • thunder.torch
  • thunder.extend
  • thunder.transforms
  • thunder.dynamo
  • thunder.recipes
  • thunder.plugins
  • Overview
  • Team management
  • Production
  • Security
  • Open source
    • Overview
    • PyTorch Lightning
    • Fabric
    • Lit-GPT
    • Torchmetrics
    • Litdata
    • Lit LLaMA
    • Litserve
  • Examples
  • Glossary
  • FAQ
  • Docs >
  • thunder.clang >
  • thunder.clang.full
Shortcuts

thunder.clang.full¶

thunder.clang.full(shape, fill_value, *, device, dtype=None)[source]¶
Return type:

TensorProxy

Parameters:
  • shape (Sequence[int]) –

  • fill_value (numbers.Number | thunder.core.proxies.NumberProxy) –

  • device (Union[str, Device]) –

  • dtype (None | thunder.core.dtypes.dtype) –

  • thunder.clang.full
    • full()

To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.