Optimization¶
Lightning offers two modes for managing the optimization process:
Manual Optimization
Automatic Optimization
For the majority of research cases, automatic optimization will do the right thing for you and it is what most users should use.
For more advanced use cases like multiple optimizers, esoteric optimization schedules or techniques, use manual optimization.
Manual Optimization¶
For advanced research topics like reinforcement learning, sparse coding, or GAN research, it may be desirable to manually manage the optimization process, especially when dealing with multiple optimizers at the same time.
In this mode, Lightning will handle only accelerator, precision and strategy logic.
The users are left with optimizer.zero_grad()
, gradient accumulation, optimizer toggling, etc..
To manually optimize, do the following:
Set
self.automatic_optimization=False
in yourLightningModule
’s__init__
.Use the following functions and call them manually:
self.optimizers()
to access your optimizers (one or multiple)optimizer.zero_grad()
to clear the gradients from the previous training stepself.manual_backward(loss)
instead ofloss.backward()
optimizer.step()
to update your model parametersself.toggle_optimizer()
andself.untoggle_optimizer()
if needed
Here is a minimal example of manual optimization.
from lightning.pytorch import LightningModule
class MyModel(LightningModule):
def __init__(self):
super().__init__()
# Important: This property activates manual optimization.
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt = self.optimizers()
opt.zero_grad()
loss = self.compute_loss(batch)
self.manual_backward(loss)
opt.step()
Tip
Be careful where you call optimizer.zero_grad()
, or your model won’t converge.
It is good practice to call optimizer.zero_grad()
before self.manual_backward(loss)
.
Access your Own Optimizer¶
The provided optimizer
is a LightningOptimizer
object wrapping your own optimizer
configured in your configure_optimizers()
. You can access your own optimizer
with optimizer.optimizer
. However, if you use your own optimizer to perform a step, Lightning won’t be able to
support accelerators, precision and profiling for you.
class Model(LightningModule):
def __init__(self):
super().__init__()
self.automatic_optimization = False
...
def training_step(self, batch, batch_idx):
optimizer = self.optimizers()
# `optimizer` is a `LightningOptimizer` wrapping the optimizer.
# To access it, do the following.
# However, it won't work on TPU, AMP, etc...
optimizer = optimizer.optimizer
...
Gradient Accumulation¶
You can accumulate gradients over batches similarly to accumulate_grad_batches
argument in
Trainer for automatic optimization. To perform gradient accumulation with one optimizer
after every N
steps, you can do as such.
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt = self.optimizers()
# scale losses by 1/N (for N batches of gradient accumulation)
loss = self.compute_loss(batch) / N
self.manual_backward(loss)
# accumulate gradients of N batches
if (batch_idx + 1) % N == 0:
opt.step()
opt.zero_grad()
Gradient Clipping¶
You can clip optimizer gradients during manual optimization similar to passing the gradient_clip_val
and
gradient_clip_algorithm
argument in Trainer during automatic optimization.
To perform gradient clipping with one optimizer with manual optimization, you can do as such.
from lightning.pytorch import LightningModule
class SimpleModel(LightningModule):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt = self.optimizers()
# compute loss
loss = self.compute_loss(batch)
opt.zero_grad()
self.manual_backward(loss)
# clip gradients
self.clip_gradients(opt, gradient_clip_val=0.5, gradient_clip_algorithm="norm")
opt.step()
Warning
Note that
configure_gradient_clipping()
won’t be called in Manual Optimization. Instead consider usingself. clip_gradients()
manually like in the example above.
Use Multiple Optimizers (like GANs)¶
Here is an example training a simple GAN with multiple optimizers using manual optimization.
import torch
from torch import Tensor
from lightning.pytorch import LightningModule
class SimpleGAN(LightningModule):
def __init__(self):
super().__init__()
self.G = Generator()
self.D = Discriminator()
# Important: This property activates manual optimization.
self.automatic_optimization = False
def sample_z(self, n) -> Tensor:
sample = self._Z.sample((n,))
return sample
def sample_G(self, n) -> Tensor:
z = self.sample_z(n)
return self.G(z)
def training_step(self, batch, batch_idx):
# Implementation follows the PyTorch tutorial:
# https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
g_opt, d_opt = self.optimizers()
X, _ = batch
batch_size = X.shape[0]
real_label = torch.ones((batch_size, 1), device=self.device)
fake_label = torch.zeros((batch_size, 1), device=self.device)
g_X = self.sample_G(batch_size)
##########################
# Optimize Discriminator #
##########################
d_x = self.D(X)
errD_real = self.criterion(d_x, real_label)
d_z = self.D(g_X.detach())
errD_fake = self.criterion(d_z, fake_label)
errD = errD_real + errD_fake
d_opt.zero_grad()
self.manual_backward(errD)
d_opt.step()
######################
# Optimize Generator #
######################
d_z = self.D(g_X)
errG = self.criterion(d_z, real_label)
g_opt.zero_grad()
self.manual_backward(errG)
g_opt.step()
self.log_dict({"g_loss": errG, "d_loss": errD}, prog_bar=True)
def configure_optimizers(self):
g_opt = torch.optim.Adam(self.G.parameters(), lr=1e-5)
d_opt = torch.optim.Adam(self.D.parameters(), lr=1e-5)
return g_opt, d_opt
Learning Rate Scheduling¶
Every optimizer you use can be paired with any
Learning Rate Scheduler. Please see the
documentation of configure_optimizers()
for all the available options
You can call lr_scheduler.step()
at arbitrary intervals.
Use self.lr_schedulers()
in your LightningModule
to access any learning rate schedulers
defined in your configure_optimizers()
.
Warning
lr_scheduler.step()
can be called at arbitrary intervals by the user in case of manual optimization, or by Lightning if"interval"
is defined inconfigure_optimizers()
in case of automatic optimization.Note that the
lr_scheduler_config
keys, such as"frequency"
and"interval"
, will be ignored even if they are provided in yourconfigure_optimizers()
during manual optimization.
Here is an example calling lr_scheduler.step()
every step.
# step every batch
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
# do forward, backward, and optimization
...
# single scheduler
sch = self.lr_schedulers()
sch.step()
# multiple schedulers
sch1, sch2 = self.lr_schedulers()
sch1.step()
sch2.step()
If you want to call lr_scheduler.step()
every N
steps/epochs, do the following.
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
# do forward, backward, and optimization
...
sch = self.lr_schedulers()
# step every N batches
if (batch_idx + 1) % N == 0:
sch.step()
# step every N epochs
if self.trainer.is_last_batch and (self.trainer.current_epoch + 1) % N == 0:
sch.step()
If you want to call schedulers that require a metric value after each epoch, consider doing the following:
def __init__(self):
super().__init__()
self.automatic_optimization = False
def on_train_epoch_end(self):
sch = self.lr_schedulers()
# If the selected scheduler is a ReduceLROnPlateau scheduler.
if isinstance(sch, torch.optim.lr_scheduler.ReduceLROnPlateau):
sch.step(self.trainer.callback_metrics["loss"])
Optimizer Steps at Different Frequencies¶
In manual optimization, you are free to step()
one optimizer more often than another one.
For example, here we step the optimizer for the discriminator weights twice as often as the optimizer for the generator.
# Alternating schedule for optimizer steps (e.g. GANs)
def training_step(self, batch, batch_idx):
g_opt, d_opt = self.optimizers()
...
# update discriminator every other step
d_opt.zero_grad()
self.manual_backward(errD)
if (batch_idx + 1) % 2 == 0:
d_opt.step()
...
# update generator every step
g_opt.zero_grad()
self.manual_backward(errG)
g_opt.step()
Use Closure for LBFGS-like Optimizers¶
It is a good practice to provide the optimizer with a closure function that performs a forward
, zero_grad
and
backward
of your model. It is optional for most optimizers, but makes your code compatible if you switch to an
optimizer which requires a closure, such as LBFGS
.
See the PyTorch docs for more about the closure.
Here is an example using a closure function.
def __init__(self):
super().__init__()
self.automatic_optimization = False
def configure_optimizers(self):
return torch.optim.LBFGS(...)
def training_step(self, batch, batch_idx):
opt = self.optimizers()
def closure():
loss = self.compute_loss(batch)
opt.zero_grad()
self.manual_backward(loss)
return loss
opt.step(closure=closure)
Warning
The LBFGS
optimizer is not supported for AMP or DeepSpeed.
Automatic Optimization¶
With Lightning, most users don’t have to think about when to call .zero_grad()
, .backward()
and .step()
since Lightning automates that for you.
Under the hood, Lightning does the following:
for epoch in epochs:
for batch in data:
def closure():
loss = model.training_step(batch, batch_idx)
optimizer.zero_grad()
loss.backward()
return loss
optimizer.step(closure)
lr_scheduler.step()
As can be seen in the code snippet above, Lightning defines a closure with training_step()
, optimizer.zero_grad()
and loss.backward()
for the optimization. This mechanism is in place to support optimizers which operate on the
output of the closure (e.g. the loss) or need to call the closure several times (e.g. LBFGS
).
Should you still require the flexibility of calling .zero_grad()
, .backward()
, or .step()
yourself, you can
always switch to manual optimization.
Manual optimization is required if you wish to work with multiple optimizers.
Gradient Accumulation¶
Accumulated gradients run K small batches of size N
before doing a backward pass. The effect is a large effective batch size of size KxN
, where N
is the batch size.
Internally it doesn’t stack up the batches and do a forward pass rather it accumulates the gradients for K batches and then do an optimizer.step
to make sure the
effective batch size is increased but there is no memory overhead.
Warning
When using distributed training for eg. DDP, with let’s say with P
devices, each device accumulates independently i.e. it stores the gradients
after each loss.backward()
and doesn’t sync the gradients across the devices until we call optimizer.step()
. So for each accumulation
step, the effective batch size on each device will remain N*K
but right before the optimizer.step()
, the gradient sync will make the effective
batch size as P*N*K
. For DP, since the batch is split across devices, the final effective batch size will be N*K
.
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
# Accumulate gradients for 7 batches
trainer = Trainer(accumulate_grad_batches=7)
Optionally, you can make the accumulate_grad_batches
value change over time by using the GradientAccumulationScheduler
.
Pass in a scheduling dictionary, where the key represents the epoch at which the value for gradient accumulation should be updated.
from lightning.pytorch.callbacks import GradientAccumulationScheduler
# till 5th epoch, it will accumulate every 8 batches. From 5th epoch
# till 9th epoch it will accumulate every 4 batches and after that no accumulation
# will happen. Note that you need to use zero-indexed epoch keys here
accumulator = GradientAccumulationScheduler(scheduling={0: 8, 4: 4, 8: 1})
trainer = Trainer(callbacks=accumulator)
Note: Not all strategies and accelerators support variable gradient accumulation windows.
Access your Own Optimizer¶
The provided optimizer
is a LightningOptimizer
object wrapping your own optimizer
configured in your configure_optimizers()
.
You can access your own optimizer with optimizer.optimizer
. However, if you use your own optimizer
to perform a step, Lightning won’t be able to support accelerators, precision and profiling for you.
# function hook in LightningModule
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_closure,
):
optimizer.step(closure=optimizer_closure)
# `optimizer` is a `LightningOptimizer` wrapping the optimizer.
# To access it, do the following.
# However, it won't work on TPU, AMP, etc...
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_closure,
):
optimizer = optimizer.optimizer
optimizer.step(closure=optimizer_closure)
Bring your own Custom Learning Rate Schedulers¶
Lightning allows using custom learning rate schedulers that aren’t available in PyTorch natively.
One good example is Timm Schedulers. When using custom learning rate schedulers
relying on a different API from Native PyTorch ones, you should override the lr_scheduler_step()
with your desired logic.
If you are using native PyTorch schedulers, there is no need to override this hook since Lightning will handle it automatically by default.
from timm.scheduler import TanhLRScheduler
def configure_optimizers(self):
optimizer = ...
scheduler = TanhLRScheduler(optimizer, ...)
return [optimizer], [{"scheduler": scheduler, "interval": "epoch"}]
def lr_scheduler_step(self, scheduler, metric):
scheduler.step(epoch=self.current_epoch) # timm's scheduler need the epoch value
Configure Gradient Clipping¶
To configure custom gradient clipping, consider overriding
the configure_gradient_clipping()
method.
The attributes gradient_clip_val
and gradient_clip_algorithm
from Trainer will be passed in the
respective arguments here and Lightning will handle gradient clipping for you. In case you want to set
different values for your arguments of your choice and let Lightning handle the gradient clipping, you can
use the inbuilt clip_gradients()
method and pass
the arguments along with your optimizer.
Warning
Make sure to not override clip_gradients()
method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.
For example, here we will apply a stronger gradient clipping after a certain number of epochs:
def configure_gradient_clipping(self, optimizer, gradient_clip_val, gradient_clip_algorithm):
if self.current_epoch > 5:
gradient_clip_val = gradient_clip_val * 2
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm)
Total Stepping Batches¶
You can use built-in trainer property estimated_stepping_batches
to compute
total number of stepping batches for the complete training. The property is computed considering gradient accumulation factor and
distributed setting into consideration so you don’t have to derive it manually. One good example where this can be helpful is while using
OneCycleLR
scheduler, which requires pre-computed total_steps
during initialization.
def configure_optimizers(self):
optimizer = ...
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, max_lr=1e-3, total_steps=self.trainer.estimated_stepping_batches
)
return optimizer, scheduler