Source code for lightning.pytorch.plugins.precision.xla

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import partial
from typing import Any, Callable

import torch
from typing_extensions import get_args, override

import lightning.pytorch as pl
from lightning.fabric.accelerators.xla import _XLA_AVAILABLE
from lightning.fabric.plugins.precision.xla import _PRECISION_INPUT
from lightning.fabric.utilities.types import Optimizable
from lightning.pytorch.plugins.precision.precision import Precision
from lightning.pytorch.utilities.exceptions import MisconfigurationException


[docs]class XLAPrecision(Precision): """Plugin for training with XLA. Args: precision: Full precision (32-true) or half precision (16-true, bf16-true). Raises: ValueError: If unsupported ``precision`` is provided. """ def __init__(self, precision: _PRECISION_INPUT = "32-true") -> None: if not _XLA_AVAILABLE: raise ModuleNotFoundError(str(_XLA_AVAILABLE)) supported_precision = get_args(_PRECISION_INPUT) if precision not in supported_precision: raise ValueError( f"`precision={precision!r})` is not supported in XLA." f" `precision` must be one of: {supported_precision}." ) self.precision = precision if precision == "16-true": os.environ["XLA_USE_F16"] = "1" self._desired_dtype = torch.float16 elif precision == "bf16-true": os.environ["XLA_USE_BF16"] = "1" self._desired_dtype = torch.bfloat16 else: self._desired_dtype = torch.float32
[docs] @override def optimizer_step( # type: ignore[override] self, optimizer: Optimizable, model: "pl.LightningModule", closure: Callable[[], Any], **kwargs: Any, ) -> Any: import torch_xla.core.xla_model as xm closure = partial(self._xla_wrap_closure, optimizer, closure) closure = partial(self._wrap_closure, model, optimizer, closure) closure_result = optimizer.step(closure=closure, **kwargs) xm.mark_step() skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if model.automatic_optimization and skipped_backward: # we lack coverage here so disable this - something to explore if there's demand raise MisconfigurationException( "Skipping backward by returning `None` from your `training_step` is not implemented with XLA." " Please, open an issue in `https://github.com/Lightning-AI/lightning/issues`" " requesting this feature." ) return closure_result
[docs] @override def teardown(self) -> None: os.environ.pop("XLA_USE_BF16", None) os.environ.pop("XLA_USE_F16", None)
def _xla_wrap_closure(self, optimizer: Optimizable, closure: Callable[[], Any]) -> Any: import torch_xla.core.xla_model as xm closure_result = closure() xm.reduce_gradients(optimizer) return closure_result