Source code for lightning.pytorch.plugins.precision.xla
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import partial
from typing import Any, Callable
import torch
from typing_extensions import get_args, override
import lightning.pytorch as pl
from lightning.fabric.accelerators.xla import _XLA_AVAILABLE
from lightning.fabric.plugins.precision.xla import _PRECISION_INPUT
from lightning.fabric.utilities.types import Optimizable
from lightning.pytorch.plugins.precision.precision import Precision
from lightning.pytorch.utilities.exceptions import MisconfigurationException
[docs]class XLAPrecision(Precision):
"""Plugin for training with XLA.
Args:
precision: Full precision (32-true) or half precision (16-true, bf16-true).
Raises:
ValueError:
If unsupported ``precision`` is provided.
"""
def __init__(self, precision: _PRECISION_INPUT = "32-true") -> None:
if not _XLA_AVAILABLE:
raise ModuleNotFoundError(str(_XLA_AVAILABLE))
supported_precision = get_args(_PRECISION_INPUT)
if precision not in supported_precision:
raise ValueError(
f"`precision={precision!r})` is not supported in XLA."
f" `precision` must be one of: {supported_precision}."
)
self.precision = precision
if precision == "16-true":
os.environ["XLA_USE_F16"] = "1"
self._desired_dtype = torch.float16
elif precision == "bf16-true":
os.environ["XLA_USE_BF16"] = "1"
self._desired_dtype = torch.bfloat16
else:
self._desired_dtype = torch.float32
[docs] @override
def optimizer_step( # type: ignore[override]
self,
optimizer: Optimizable,
model: "pl.LightningModule",
closure: Callable[[], Any],
**kwargs: Any,
) -> Any:
import torch_xla.core.xla_model as xm
closure = partial(self._xla_wrap_closure, optimizer, closure)
closure = partial(self._wrap_closure, model, optimizer, closure)
closure_result = optimizer.step(closure=closure, **kwargs)
xm.mark_step()
skipped_backward = closure_result is None
# in manual optimization, the closure does not return a value
if model.automatic_optimization and skipped_backward:
# we lack coverage here so disable this - something to explore if there's demand
raise MisconfigurationException(
"Skipping backward by returning `None` from your `training_step` is not implemented with XLA."
" Please, open an issue in `https://github.com/Lightning-AI/lightning/issues`"
" requesting this feature."
)
return closure_result
[docs] @override
def teardown(self) -> None:
os.environ.pop("XLA_USE_BF16", None)
os.environ.pop("XLA_USE_F16", None)
def _xla_wrap_closure(self, optimizer: Optimizable, closure: Callable[[], Any]) -> Any:
import torch_xla.core.xla_model as xm
closure_result = closure()
xm.reduce_gradients(optimizer)
return closure_result