Source code for lightning.pytorch.plugins.precision.xla
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable
import torch
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.plugins.precision.xla import _PRECISION_INPUT, _PRECISION_INPUT_STR
from lightning.fabric.utilities.imports import _raise_enterprise_not_available
from lightning.fabric.utilities.types import Optimizable
from lightning.pytorch.plugins.precision.precision import Precision
[docs]class XLAPrecision(Precision):
"""Plugin for training with XLA.
Args:
precision: Full precision (32-true) or half precision (16-true, bf16-true).
Raises:
ValueError:
If unsupported ``precision`` is provided.
"""
def __init__(self, precision: _PRECISION_INPUT = "32-true") -> None:
super().__init__()
_raise_enterprise_not_available()
from pytorch_lightning_enterprise.plugins.precision.xla import XLAPrecision as EnterpriseXLAPrecision
self.xla_impl = EnterpriseXLAPrecision(precision)
[docs] @override
def optimizer_step( # type: ignore[override]
self,
optimizer: Optimizable,
model: "pl.LightningModule",
closure: Callable[[], Any],
**kwargs: Any,
) -> Any:
return self.xla_impl.optimizer_step(optimizer, model, closure, **kwargs)
@property
def precision(self) -> _PRECISION_INPUT_STR:
return self.xla_impl.precision
@precision.setter
def precision(self, precision: _PRECISION_INPUT_STR) -> None:
self.xla_impl.precision = precision
@property
def _desired_dtype(self) -> torch.dtype:
return self.xla_impl._desired_dtype
@_desired_dtype.setter
def _desired_dtype(self, dtype: torch.dtype) -> None:
self.xla_impl._desired_dtype = dtype
[docs] @override
def teardown(self) -> None:
return self.xla_impl.teardown()