Source code for lightning.pytorch.callbacks.gradient_accumulation_scheduler
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Gradient Accumulator
====================
Change gradient accumulation factor according to scheduling.
Trainer also calls ``optimizer.step()`` for the last indivisible step number.
"""
from typing import Any, Dict
from typing_extensions import override
import lightning.pytorch as pl
from lightning.pytorch.callbacks.callback import Callback
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from lightning.pytorch.utilities.model_helpers import is_overridden
from lightning.pytorch.utilities.rank_zero import rank_zero_warn
[docs]class GradientAccumulationScheduler(Callback):
r"""Change gradient accumulation factor according to scheduling.
Args:
scheduling: scheduling in format {epoch: accumulation_factor}
Note:
The argument scheduling is a dictionary. Each key represent an epoch and
its associated accumulation factor value.
Warning: Epoch are zero-indexed c.f it means if you want to change
the accumulation factor after 4 epochs, set ``Trainer(accumulate_grad_batches={4: factor})``
or ``GradientAccumulationScheduler(scheduling={4: factor})``.
For more info check the example below.
Raises:
TypeError:
If ``scheduling`` is an empty ``dict``,
or not all keys and values of ``scheduling`` are integers.
IndexError:
If ``minimal_epoch`` is less than 0.
Example::
>>> from lightning.pytorch import Trainer
>>> from lightning.pytorch.callbacks import GradientAccumulationScheduler
# from epoch 5, it starts accumulating every 2 batches. Here we have 4 instead of 5
# because epoch (key) should be zero-indexed.
>>> accumulator = GradientAccumulationScheduler(scheduling={4: 2})
>>> trainer = Trainer(callbacks=[accumulator])
"""
def __init__(self, scheduling: Dict[int, int]):
super().__init__()
if not scheduling: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
if any(not isinstance(key, int) or key < 0 for key in scheduling):
raise MisconfigurationException(
f"Epoch should be an int greater than or equal to 0. Got {list(scheduling.keys())}."
)
if any(not isinstance(value, int) or value < 1 for value in scheduling.values()):
raise MisconfigurationException(
f"Accumulation factor should be an int greater than 0. Got {list(scheduling.values())}."
)
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 0:
raise IndexError(f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct")
if minimal_epoch != 0: # if user didn't define first epoch accumulation factor
scheduling.update({0: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def going_to_accumulate_grad_batches(self) -> bool:
return any(v > 1 for v in self.scheduling.values())
def get_accumulate_grad_batches(self, epoch: int) -> int:
accumulate_grad_batches = 1
for iter_epoch in reversed(self.epochs):
if epoch >= iter_epoch:
accumulate_grad_batches = self.scheduling[iter_epoch]
break
return accumulate_grad_batches
[docs] @override
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Performns a configuration validation before training starts and raises errors for incompatible settings."""
if not pl_module.automatic_optimization:
raise RuntimeError(
"""Automatic gradient accumulation and the `GradientAccumulationScheduler` is not supported for
manual optimization. Please remove the callback or switch to automatic optimization."""
)
overridden_optimizer_step = is_overridden("optimizer_step", pl_module)
overridden_optimizer_zero_grad = is_overridden("optimizer_zero_grad", pl_module)
going_to_accumulate_grad_batches = self.going_to_accumulate_grad_batches()
has_overridden_optimization_functions = overridden_optimizer_step or overridden_optimizer_zero_grad
if has_overridden_optimization_functions and going_to_accumulate_grad_batches:
rank_zero_warn(
"When using `Trainer(accumulate_grad_batches != 1)` and overriding"
" `LightningModule.optimizer_{step,zero_grad}`, the hooks will not be called on every batch"
" (rather, they are called on every optimization step)."
)
# local import to avoid circular import
from lightning.pytorch.strategies import DeepSpeedStrategy
if isinstance(trainer.strategy, DeepSpeedStrategy):
raise RuntimeError(
f"The `{type(trainer.strategy).__name__}` does not support `accumulate_grad_batches` changing"
" between epochs."
)
if trainer.accumulate_grad_batches != 1:
raise ValueError(
"You have set `accumulate_grad_batches` and are using the `GradientAccumulationScheduler`"
" callback. Either remove `accumulate_grad_batches` from the Trainer or remove the callback."
)
[docs] @override
def on_train_epoch_start(self, trainer: "pl.Trainer", *_: Any) -> None:
trainer.accumulate_grad_batches = self.get_accumulate_grad_batches(trainer.current_epoch)