LightningDataModule¶
- class lightning.pytorch.core.LightningDataModule[source]¶
Bases:
DataHooks
,HyperparametersMixin
A DataModule standardizes the training, val, test splits, data preparation and transforms. The main advantage is consistent data splits, data preparation and transforms across models.
Example:
import lightning as L import torch.utils.data as data from lightning.pytorch.demos.boring_classes import RandomDataset class MyDataModule(L.LightningDataModule): def prepare_data(self): # download, IO, etc. Useful with shared filesystems # only called on 1 GPU/TPU in distributed ... def setup(self, stage): # make assignments here (val/train/test split) # called on every process in DDP dataset = RandomDataset(1, 100) self.train, self.val, self.test = data.random_split( dataset, [80, 10, 10], generator=torch.Generator().manual_seed(42) ) def train_dataloader(self): return data.DataLoader(self.train) def val_dataloader(self): return data.DataLoader(self.val) def test_dataloader(self): return data.DataLoader(self.test) def on_exception(self, exception): # clean up state after the trainer faced an exception ... def teardown(self): # clean up state after the trainer stops, delete files... # called on every process in DDP ...
- prepare_data_per_node¶
If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data.
- allow_zero_length_dataloader_with_multiple_devices¶
If True, dataloader with zero length within local rank is allowed. Default value is False.
- classmethod from_datasets(train_dataset=None, val_dataset=None, test_dataset=None, predict_dataset=None, batch_size=1, num_workers=0, **datamodule_kwargs)[source]¶
Create an instance from torch.utils.data.Dataset.
- Parameters:
train_dataset¶ (
Union
[Dataset
,Iterable
[Dataset
],None
]) – Optional dataset or iterable of datasets to be used for train_dataloader()val_dataset¶ (
Union
[Dataset
,Iterable
[Dataset
],None
]) – Optional dataset or iterable of datasets to be used for val_dataloader()test_dataset¶ (
Union
[Dataset
,Iterable
[Dataset
],None
]) – Optional dataset or iterable of datasets to be used for test_dataloader()predict_dataset¶ (
Union
[Dataset
,Iterable
[Dataset
],None
]) – Optional dataset or iterable of datasets to be used for predict_dataloader()batch_size¶ (
int
) – Batch size to use for each dataloader. Default is 1. This parameter gets forwarded to the__init__
if the datamodule has such a name defined in its signature.num_workers¶ (
int
) – Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. Number of CPUs available. This parameter gets forwarded to the__init__
if the datamodule has such a name defined in its signature.**datamodule_kwargs¶ (
Any
) – Additional parameters that get passed down to the datamodule’s__init__
.
- Return type:
- load_from_checkpoint(checkpoint_path, map_location=None, hparams_file=None, **kwargs)[source]¶
Primary way of loading a datamodule from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"datamodule_hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"datamodule_hyper_parameters"
.- Parameters:
checkpoint_path¶ (
Union
[str
,Path
,IO
]) – Path to checkpoint. This can also be a URL, or file-like objectmap_location¶ (
Union
[device
,str
,int
,Callable
[[UntypedStorage
,str
],Optional
[UntypedStorage
]],dict
[Union
[device
,str
,int
],Union
[device
,str
,int
]],None
]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.hparams_file¶ (
Union
[str
,Path
,None
]) –Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningDataModule
for use.If your datamodule’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your datamodule to treathparams
asdict
.**kwargs¶ (
Any
) – Any extra keyword args needed to init the datamodule. Can also be used to override saved hyperparameter values.
- Return type:
Self
- Returns:
LightningDataModule
instance with loaded weights and hyperparameters (if available).
Note
load_from_checkpoint
is a class method. You must use yourLightningDataModule
class to call it instead of theLightningDataModule
instance, or aTypeError
will be raised.Example:
# load weights without mapping ... datamodule = MyLightningDataModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights and hyperparameters from separate files. datamodule = MyLightningDataModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values datamodule = MyLightningDataModule.load_from_checkpoint( PATH, batch_size=32, num_workers=10, )
- load_state_dict(state_dict)[source]¶
Called when loading a checkpoint, implement to reload datamodule state given datamodule state_dict.