Source code for lightning.pytorch.callbacks.prediction_writer

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
BasePredictionWriter
====================

Aids in saving predictions
"""

from collections.abc import Sequence
from typing import Any, Literal, Optional

from typing_extensions import override

import lightning.pytorch as pl
from lightning.pytorch.callbacks.callback import Callback
from lightning.pytorch.utilities import LightningEnum
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from lightning.pytorch.utilities.signature_utils import is_param_in_hook_signature


class WriteInterval(LightningEnum):
    BATCH = "batch"
    EPOCH = "epoch"
    BATCH_AND_EPOCH = "batch_and_epoch"

    @property
    def on_batch(self) -> bool:
        return self in (self.BATCH, self.BATCH_AND_EPOCH)

    @property
    def on_epoch(self) -> bool:
        return self in (self.EPOCH, self.BATCH_AND_EPOCH)


[docs]class BasePredictionWriter(Callback): """Base class to implement how the predictions should be stored. Args: write_interval: When to write. Example:: import torch from lightning.pytorch.callbacks import BasePredictionWriter class CustomWriter(BasePredictionWriter): def __init__(self, output_dir, write_interval): super().__init__(write_interval) self.output_dir = output_dir def write_on_batch_end( self, trainer, pl_module, prediction, batch_indices, batch, batch_idx, dataloader_idx ): torch.save(prediction, os.path.join(self.output_dir, dataloader_idx, f"{batch_idx}.pt")) def write_on_epoch_end(self, trainer, pl_module, predictions, batch_indices): torch.save(predictions, os.path.join(self.output_dir, "predictions.pt")) pred_writer = CustomWriter(output_dir="pred_path", write_interval="epoch") trainer = Trainer(callbacks=[pred_writer]) model = BoringModel() trainer.predict(model, return_predictions=False) Example:: # multi-device inference example import torch from lightning.pytorch.callbacks import BasePredictionWriter class CustomWriter(BasePredictionWriter): def __init__(self, output_dir, write_interval): super().__init__(write_interval) self.output_dir = output_dir def write_on_epoch_end(self, trainer, pl_module, predictions, batch_indices): # this will create N (num processes) files in `output_dir` each containing # the predictions of it's respective rank torch.save(predictions, os.path.join(self.output_dir, f"predictions_{trainer.global_rank}.pt")) # optionally, you can also save `batch_indices` to get the information about the data index # from your prediction data torch.save(batch_indices, os.path.join(self.output_dir, f"batch_indices_{trainer.global_rank}.pt")) # or you can set `write_interval="batch"` and override `write_on_batch_end` to save # predictions at batch level pred_writer = CustomWriter(output_dir="pred_path", write_interval="epoch") trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, callbacks=[pred_writer]) model = BoringModel() trainer.predict(model, return_predictions=False) """ def __init__(self, write_interval: Literal["batch", "epoch", "batch_and_epoch"] = "batch") -> None: if write_interval not in list(WriteInterval): raise MisconfigurationException(f"`write_interval` should be one of {[i.value for i in WriteInterval]}.") self.interval = WriteInterval(write_interval)
[docs] @override def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: if is_param_in_hook_signature(pl_module.predict_step, "dataloader_iter", explicit=True): raise NotImplementedError("The `PredictionWriterCallback` does not support using `dataloader_iter`.")
[docs] def write_on_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", prediction: Any, batch_indices: Optional[Sequence[int]], batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: """Override with the logic to write a single batch.""" raise NotImplementedError()
[docs] def write_on_epoch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", predictions: Sequence[Any], batch_indices: Sequence[Any], ) -> None: """Override with the logic to write all batches.""" raise NotImplementedError()
[docs] @override def on_predict_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if not self.interval.on_batch: return batch_indices = trainer.predict_loop.current_batch_indices self.write_on_batch_end(trainer, pl_module, outputs, batch_indices, batch, batch_idx, dataloader_idx)
[docs] @override def on_predict_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if not self.interval.on_epoch: return epoch_batch_indices = trainer.predict_loop.epoch_batch_indices self.write_on_epoch_end(trainer, pl_module, trainer.predict_loop.predictions, epoch_batch_indices)