Source code for lightning.pytorch.callbacks.model_summary
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model Summary
=============
Generates a summary of all layers in a :class:`~lightning.pytorch.core.LightningModule`.
The string representation of this summary prints a table with columns containing
the name, type and number of parameters for each layer.
"""
import logging
from typing import Any, Union
from typing_extensions import override
import lightning.pytorch as pl
from lightning.pytorch.callbacks.callback import Callback
from lightning.pytorch.utilities.model_summary import DeepSpeedSummary, summarize
from lightning.pytorch.utilities.model_summary import ModelSummary as Summary
from lightning.pytorch.utilities.model_summary.model_summary import _format_summary_table
log = logging.getLogger(__name__)
[docs]class ModelSummary(Callback):
r"""Generates a summary of all layers in a :class:`~lightning.pytorch.core.LightningModule`.
Args:
max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the
layer summary off.
**summarize_kwargs: Additional arguments to pass to the `summarize` method.
Example::
>>> from lightning.pytorch import Trainer
>>> from lightning.pytorch.callbacks import ModelSummary
>>> trainer = Trainer(callbacks=[ModelSummary(max_depth=1)])
"""
def __init__(self, max_depth: int = 1, **summarize_kwargs: Any) -> None:
self._max_depth: int = max_depth
self._summarize_kwargs: dict[str, Any] = summarize_kwargs
[docs] @override
def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
if not self._max_depth:
return
model_summary = self._summary(trainer, pl_module)
summary_data = model_summary._get_summary_data()
total_parameters = model_summary.total_parameters
trainable_parameters = model_summary.trainable_parameters
model_size = model_summary.model_size
total_training_modes = model_summary.total_training_modes
if trainer.is_global_zero:
self.summarize(
summary_data,
total_parameters,
trainable_parameters,
model_size,
total_training_modes,
**self._summarize_kwargs,
)
def _summary(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> Union[DeepSpeedSummary, Summary]:
from lightning.pytorch.strategies.deepspeed import DeepSpeedStrategy
if isinstance(trainer.strategy, DeepSpeedStrategy) and trainer.strategy.zero_stage_3:
return DeepSpeedSummary(pl_module, max_depth=self._max_depth)
return summarize(pl_module, max_depth=self._max_depth)
@staticmethod
def summarize(
summary_data: list[tuple[str, list[str]]],
total_parameters: int,
trainable_parameters: int,
model_size: float,
total_training_modes: dict[str, int],
**summarize_kwargs: Any,
) -> None:
summary_table = _format_summary_table(
total_parameters,
trainable_parameters,
model_size,
total_training_modes,
*summary_data,
)
log.info("\n" + summary_table)