# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from contextlib import nullcontext
from datetime import timedelta
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Optional, Union
import torch
import torch.distributed
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only
from torch import Tensor
from torch.nn import Module
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.optim.optimizer import Optimizer
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.plugins import CheckpointIO, ClusterEnvironment
from lightning.fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.distributed import (
_distributed_is_initialized,
_get_default_process_group_backend_for_device,
_init_dist_connection,
_sync_ddp_if_available,
)
from lightning.fabric.utilities.distributed import group as _group
from lightning.fabric.utilities.imports import _IS_WINDOWS
from lightning.fabric.utilities.optimizer import _optimizers_to_device
from lightning.fabric.utilities.seed import reset_seed
from lightning.fabric.utilities.types import ReduceOp
from lightning.pytorch.core.optimizer import LightningOptimizer
from lightning.pytorch.overrides.distributed import _register_ddp_comm_hook, _sync_module_states, prepare_for_backward
from lightning.pytorch.plugins.precision import Precision
from lightning.pytorch.strategies.launchers import _MultiProcessingLauncher, _SubprocessScriptLauncher
from lightning.pytorch.strategies.parallel import ParallelStrategy
from lightning.pytorch.strategies.strategy import TBroadcast, _ForwardRedirection
from lightning.pytorch.trainer.states import TrainerFn
from lightning.pytorch.utilities.exceptions import _augment_message
from lightning.pytorch.utilities.rank_zero import rank_zero_deprecation, rank_zero_info, rank_zero_only
if TYPE_CHECKING:
from torch.distributed.algorithms.model_averaging.averagers import ModelAverager
log = logging.getLogger(__name__)
_DDP_FORK_ALIASES = (
"ddp_fork",
"ddp_fork_find_unused_parameters_false",
"ddp_fork_find_unused_parameters_true",
"ddp_notebook",
"ddp_notebook_find_unused_parameters_false",
"ddp_notebook_find_unused_parameters_true",
)
[docs]class DDPStrategy(ParallelStrategy):
"""Strategy for multi-process single-device training on one or multiple nodes."""
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[Precision] = None,
ddp_comm_state: Optional[object] = None,
ddp_comm_hook: Optional[Callable] = None,
ddp_comm_wrapper: Optional[Callable] = None,
model_averaging_period: Optional[int] = None,
process_group_backend: Optional[str] = None,
timeout: Optional[timedelta] = default_pg_timeout,
start_method: Literal["popen", "spawn", "fork", "forkserver"] = "popen",
**kwargs: Any,
) -> None:
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=cluster_environment,
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
log.debug(f"{self.__class__.__name__}: initializing DDP strategy")
self._forward_redirection = _DDPForwardRedirection()
self._num_nodes = 1
self._ddp_kwargs = kwargs
self._ddp_comm_state = ddp_comm_state
self._ddp_comm_hook = ddp_comm_hook
self._ddp_comm_wrapper = ddp_comm_wrapper
self._model_averaging_period = model_averaging_period
self._model_averager: Optional[ModelAverager] = None
self._process_group_backend: Optional[str] = process_group_backend
self._timeout: Optional[timedelta] = timeout
self._start_method = start_method
@property
def is_distributed(self) -> bool: # pragma: no-cover
"""Legacy property kept for backwards compatibility."""
rank_zero_deprecation(
f"`{type(self).__name__}.is_distributed` is deprecated. Use is discouraged.", stacklevel=6
)
return True
@property
@override
def root_device(self) -> torch.device:
assert self.parallel_devices is not None
return self.parallel_devices[self.local_rank]
@property
def num_nodes(self) -> int:
return self._num_nodes
@num_nodes.setter
def num_nodes(self, num_nodes: int) -> None:
# note that world ranks is related to num_nodes, when resetting it, need to reset world ranks
self._num_nodes = num_nodes
@property
def num_processes(self) -> int:
return len(self.parallel_devices) if self.parallel_devices is not None else 0
@property
@override
def distributed_sampler_kwargs(self) -> Dict[str, Any]:
return {"num_replicas": (self.num_nodes * self.num_processes), "rank": self.global_rank}
@property
def process_group_backend(self) -> Optional[str]:
return self._process_group_backend
@override
def _configure_launcher(self) -> None:
assert self.cluster_environment is not None
if self._start_method == "popen":
self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes)
else:
self._launcher = _MultiProcessingLauncher(self, start_method=self._start_method)
[docs] @override
def setup_environment(self) -> None:
super().setup_environment()
self.setup_distributed()
[docs] @override
def setup(self, trainer: "pl.Trainer") -> None:
assert self.accelerator is not None
self.accelerator.setup(trainer)
trainer_fn = trainer.state.fn
assert self.model is not None
if trainer_fn == TrainerFn.FITTING and self._layer_sync:
self.model = self._layer_sync.apply(self.model)
self.precision_plugin.convert_module(self.model)
self.model_to_device()
if trainer_fn == TrainerFn.FITTING:
# do not wrap with DDP if not fitting as there's no gradients to reduce
self.configure_ddp()
# set up optimizers after the wrapped module has been moved to the device
self.setup_optimizers(trainer)
else:
# we need to manually synchronize the module's states since we aren't using the DDP wrapper
_sync_module_states(self.model)
self.setup_precision_plugin()
if trainer_fn == TrainerFn.FITTING:
_optimizers_to_device(self.optimizers, self.root_device)
import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD
if isinstance(self._ddp_comm_state, post_localSGD.PostLocalSGDState):
self._enable_model_averaging()
@override
def _setup_model(self, model: Module) -> DistributedDataParallel:
"""Wraps the model into a :class:`~torch.nn.parallel.distributed.DistributedDataParallel` module."""
device_ids = self.determine_ddp_device_ids()
log.debug(f"setting up DDP model with device ids: {device_ids}, kwargs: {self._ddp_kwargs}")
# https://pytorch.org/docs/stable/notes/cuda.html#id5
ctx = torch.cuda.stream(torch.cuda.Stream()) if device_ids is not None else nullcontext()
with ctx:
return DistributedDataParallel(module=model, device_ids=device_ids, **self._ddp_kwargs)
def setup_distributed(self) -> None:
log.debug(f"{self.__class__.__name__}: setting up distributed...")
reset_seed()
self.set_world_ranks()
self._process_group_backend = self._get_process_group_backend()
assert self.cluster_environment is not None
_init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout)
def _get_process_group_backend(self) -> str:
return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device)
def set_world_ranks(self) -> None:
if self.cluster_environment is not None:
self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank)
self.cluster_environment.set_world_size(self.num_nodes * self.num_processes)
# `LightningEnvironment.set_global_rank` will do this too, but we cannot rely on that implementation detail
# additionally, for some implementations, the setter is a no-op, so it's safer to access the getter
rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank
def _register_ddp_hooks(self) -> None:
log.debug(f"{self.__class__.__name__}: registering ddp hooks")
# currently, DDP communication hooks only work with NCCL backend and SPSD (single process single device) mode
# https://github.com/pytorch/pytorch/blob/v1.8.0/torch/nn/parallel/distributed.py#L1080-L1084
if self.root_device.type == "cuda":
assert isinstance(self.model, DistributedDataParallel)
_register_ddp_comm_hook(
model=self.model,
ddp_comm_state=self._ddp_comm_state,
ddp_comm_hook=self._ddp_comm_hook,
ddp_comm_wrapper=self._ddp_comm_wrapper,
)
def _enable_model_averaging(self) -> None:
log.debug(f"{self.__class__.__name__}: reinitializing optimizers with post localSGD")
if self._model_averaging_period is None:
raise ValueError(
"Post-localSGD algorithm is used, but model averaging period is not provided to DDP strategy."
)
from torch.distributed.optim import DistributedOptimizer, PostLocalSGDOptimizer, ZeroRedundancyOptimizer
for optimizer in self.optimizers:
if isinstance(optimizer, LightningOptimizer):
optimizer = optimizer._optimizer
is_distributed_optimizer = isinstance(optimizer, DistributedOptimizer) if not _IS_WINDOWS else False
if isinstance(optimizer, (ZeroRedundancyOptimizer, PostLocalSGDOptimizer)) or is_distributed_optimizer:
raise ValueError(
f"Currently model averaging cannot work with a distributed optimizer of type "
f"{optimizer.__class__.__name__}."
)
assert self._ddp_comm_state is not None
self._model_averager = torch.distributed.algorithms.model_averaging.averagers.PeriodicModelAverager(
period=self._model_averaging_period, warmup_steps=self._ddp_comm_state.start_localSGD_iter
)
[docs] @override
def optimizer_step(
self,
optimizer: Optimizer,
closure: Callable[[], Any],
model: Optional[Union["pl.LightningModule", Module]] = None,
**kwargs: Any,
) -> Any:
"""Performs the actual optimizer step.
Args:
optimizer: the optimizer performing the step
closure: closure calculating the loss value
model: reference to the model, optionally defining optimizer step related hooks
**kwargs: Any extra arguments to ``optimizer.step``
"""
optimizer_output = super().optimizer_step(optimizer, closure, model, **kwargs)
if self._model_averager is None:
return optimizer_output
params = [param for group in optimizer.param_groups for param in group["params"] if param.grad is not None]
self._model_averager.average_parameters(iter(params))
return optimizer_output
def configure_ddp(self) -> None:
log.debug(f"{self.__class__.__name__}: configuring DistributedDataParallel")
assert isinstance(self.model, pl.LightningModule)
self.model = self._setup_model(self.model)
self._register_ddp_hooks()
def determine_ddp_device_ids(self) -> Optional[List[int]]:
if self.root_device.type == "cpu":
return None
return [self.root_device.index]
[docs] @override
def barrier(self, *args: Any, **kwargs: Any) -> None:
if not _distributed_is_initialized():
return
if torch.distributed.get_backend() == "nccl":
torch.distributed.barrier(device_ids=self.determine_ddp_device_ids())
else:
torch.distributed.barrier()
[docs] @override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
if not _distributed_is_initialized():
return obj
obj = [obj]
torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD)
return obj[0]
[docs] @override
def pre_backward(self, closure_loss: Tensor) -> None:
"""Run before precision plugin executes backward."""
if not isinstance(self.model, DistributedDataParallel):
return
assert self.lightning_module is not None
if not self.lightning_module.automatic_optimization:
prepare_for_backward(self.model, closure_loss)
[docs] @override
def model_to_device(self) -> None:
log.debug(f"{self.__class__.__name__}: moving model to device [{self.root_device}]...")
assert self.model is not None
self.model.to(self.root_device)
[docs] @override
def reduce(
self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
) -> Tensor:
"""Reduces a tensor from several distributed processes to one aggregated tensor.
Args:
tensor: the tensor to sync and reduce
group: the process group to gather results from. Defaults to all processes (world)
reduce_op: the reduction operation. Defaults to 'mean'/'avg'.
Can also be a string 'sum' to calculate the sum during reduction.
Return:
reduced value, except when the input was not a tensor the output remains is unchanged
"""
if isinstance(tensor, Tensor):
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
return tensor
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
entries = (
("ddp", "popen"),
("ddp_spawn", "spawn"),
("ddp_fork", "fork"),
("ddp_notebook", "fork"),
)
for name, start_method in entries:
strategy_registry.register(
name,
cls,
description=f"DDP strategy with `start_method` '{start_method}'",
start_method=start_method,
)
entries = (
("ddp_find_unused_parameters_false", False, "popen"),
("ddp_find_unused_parameters_true", True, "popen"),
("ddp_spawn_find_unused_parameters_false", False, "spawn"),
("ddp_spawn_find_unused_parameters_true", True, "spawn"),
("ddp_fork_find_unused_parameters_false", False, "fork"),
("ddp_fork_find_unused_parameters_true", True, "fork"),
("ddp_notebook_find_unused_parameters_false", False, "fork"),
("ddp_notebook_find_unused_parameters_true", True, "fork"),
)
for name, fup, start_method in entries:
strategy_registry.register(
name,
cls,
description=f"DDP strategy with `find_unused_parameters` as {fup} and `start_method` '{start_method}'",
find_unused_parameters=fup,
start_method=start_method,
)
[docs] @override
def on_exception(self, exception: BaseException) -> None:
_augment_message(
exception,
pattern=".*Expected to have finished reduction in the prior iteration.*",
new_message=(
"It looks like your LightningModule has parameters that were not used in producing the loss returned"
" by training_step. If this is intentional, you must enable the detection of unused parameters in DDP,"
" either by setting the string value `strategy='ddp_find_unused_parameters_true'`"
" or by setting the flag in the strategy with `strategy=DDPStrategy(find_unused_parameters=True)`."
),
)
[docs] @override
def teardown(self) -> None:
log.debug(f"{self.__class__.__name__}: tearing down strategy")
pl_module = self.lightning_module
if isinstance(self.model, DistributedDataParallel):
if not self.model.static_graph and self.model._get_ddp_logging_data().get("can_set_static_graph"):
rank_zero_info(
"Your model can run with static graph optimizations. For future training runs, we suggest you"
f" pass `Trainer(..., strategy={self.__class__.__name__}(static_graph=True))` to enable them."
)
# unwrap model
self.model = pl_module
if (
pl_module is not None
# `self.lightning_module._trainer` can be None if teardown gets called on an exception before
# the trainer gets set on the LightningModule
and pl_module._trainer is not None
and pl_module._trainer.state.fn == TrainerFn.FITTING
and self._layer_sync
):
assert self.model is not None
self.model = self._layer_sync.revert(self.model)
super().teardown()
class _DDPForwardRedirection(_ForwardRedirection):
@override
def on_after_inner_forward(self, wrapper_module: Module, original_module: "pl.LightningModule") -> None:
# In manual_optimization, we need to prevent DDP reducer as
# it is done manually in `LightningModule.manual_backward`
if isinstance(wrapper_module, DistributedDataParallel) and not original_module.automatic_optimization:
wrapper_module.require_backward_grad_sync = False
@override
def on_after_outer_forward(self, wrapper_module: Module, original_module: "pl.LightningModule") -> None:
if isinstance(wrapper_module, DistributedDataParallel) and not original_module.automatic_optimization:
wrapper_module.require_backward_grad_sync = True