DeepSpeedPrecision
- class lightning.pytorch.plugins.precision.DeepSpeedPrecision(precision)[source]
Bases:
Precision
Precision plugin for DeepSpeed integration.
Warning
This is an experimental feature.
- Parameters:
precision (
Literal
['32-true'
,'16-true'
,'bf16-true'
,'16-mixed'
,'bf16-mixed'
]) – Full precision (32-true), half precision (16-true, bf16-true) or mixed precision (16-mixed, bf16-mixed).- Raises:
ValueError – If unsupported
precision
is provided.
- backward(tensor, model, optimizer, *args, **kwargs)[source]
Performs back-propagation using DeepSpeed’s engine.
- Parameters:
tensor (
Tensor
) – the loss tensormodel (
LightningModule
) – the model to be optimizedoptimizer (
Optional
[Steppable
]) – ignored for DeepSpeed*args (
Any
) – additional positional arguments for thedeepspeed.DeepSpeedEngine.backward()
call**kwargs (
Any
) – additional keyword arguments for thedeepspeed.DeepSpeedEngine.backward()
call
- Return type:
- clip_gradients(optimizer, clip_val=0.0, gradient_clip_algorithm=GradClipAlgorithmType.NORM)[source]
DeepSpeed handles gradient clipping internally.
- Return type:
- convert_input(data)[source]
Convert model inputs (forward) to the floating point precision type of this plugin.
This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is torch.float32).
- Return type:
- convert_module(module)[source]
Convert the module parameters to the precision type this plugin handles.
This is optional and depends on the precision limitations during optimization.
- Return type:
- module_init_context()[source]
Instantiate module parameters or tensors in the precision type this plugin handles.
This is optional and depends on the precision limitations during optimization.
- Return type:
- optimizer_step(optimizer, model, closure, **kwargs)[source]
Hook to run the optimizer step.
- Return type:
- tensor_init_context()[source]
Controls how tensors get created (device, dtype).
- Return type: