• Docs >
  • Find bottlenecks in your code (basic)
Shortcuts

Find bottlenecks in your code (basic)

Audience: Users who want to learn the basics of removing bottlenecks from their code


Why do I need profiling?

Profiling helps you find bottlenecks in your code by capturing analytics such as how long a function takes or how much memory is used.


Find training loop bottlenecks

The most basic profile measures all the key methods across Callbacks, DataModules and the LightningModule in the training loop.

trainer = Trainer(profiler="simple")

Once the .fit() function has completed, you’ll see an output like this:

FIT Profiler Report

-----------------------------------------------------------------------------------------------
|  Action                                          |  Mean duration (s)     |  Total time (s) |
-----------------------------------------------------------------------------------------------
|  [LightningModule]BoringModel.prepare_data       |  10.0001               |  20.00          |
|  run_training_epoch                              |  6.1558                |  6.1558         |
|  run_training_batch                              |  0.0022506             |  0.015754       |
|  [LightningModule]BoringModel.optimizer_step     |  0.0017477             |  0.012234       |
|  [LightningModule]BoringModel.val_dataloader     |  0.00024388            |  0.00024388     |
|  on_train_batch_start                            |  0.00014637            |  0.0010246      |
|  [LightningModule]BoringModel.teardown           |  2.15e-06              |  2.15e-06       |
|  [LightningModule]BoringModel.on_train_start     |  1.644e-06             |  1.644e-06      |
|  [LightningModule]BoringModel.on_train_end       |  1.516e-06             |  1.516e-06      |
|  [LightningModule]BoringModel.on_fit_end         |  1.426e-06             |  1.426e-06      |
|  [LightningModule]BoringModel.setup              |  1.403e-06             |  1.403e-06      |
|  [LightningModule]BoringModel.on_fit_start       |  1.226e-06             |  1.226e-06      |
-----------------------------------------------------------------------------------------------

In this report we can see that the slowest function is prepare_data. Now you can figure out why data preparation is slowing down your training.

The simple profiler measures all the standard methods used in the training loop automatically, including:

  • on_train_epoch_start

  • on_train_epoch_end

  • on_train_batch_start

  • model_backward

  • on_after_backward

  • optimizer_step

  • on_train_batch_end

  • on_training_end

  • etc…


Profile the time within every function

To profile the time within every function, use the AdvancedProfiler built on top of Python’s cProfiler.

trainer = Trainer(profiler="advanced")

Once the .fit() function has completed, you’ll see an output like this:

Profiler Report

Profile stats for: get_train_batch
        4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
3752/1876    0.011    0.000   18.887    0.010 {built-in method builtins.next}
    1876     0.008    0.000   18.877    0.010 dataloader.py:344(__next__)
    1876     0.074    0.000   18.869    0.010 dataloader.py:383(_next_data)
    1875     0.012    0.000   18.721    0.010 fetch.py:42(fetch)
    1875     0.084    0.000   18.290    0.010 fetch.py:44(<listcomp>)
    60000    1.759    0.000   18.206    0.000 mnist.py:80(__getitem__)
    60000    0.267    0.000   13.022    0.000 transforms.py:68(__call__)
    60000    0.182    0.000    7.020    0.000 transforms.py:93(__call__)
    60000    1.651    0.000    6.839    0.000 functional.py:42(to_tensor)
    60000    0.260    0.000    5.734    0.000 transforms.py:167(__call__)

If the profiler report becomes too long, you can stream the report to a file:

from lightning.pytorch.profilers import AdvancedProfiler

profiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
trainer = Trainer(profiler=profiler)

Measure accelerator usage

Another helpful technique to detect bottlenecks is to ensure that you’re using the full capacity of your accelerator (GPU/TPU/IPU/HPU). This can be measured with the DeviceStatsMonitor:

from lightning.pytorch.callbacks import DeviceStatsMonitor

trainer = Trainer(callbacks=[DeviceStatsMonitor()])

CPU metrics will be tracked by default on the CPU accelerator. To enable it for other accelerators set DeviceStatsMonitor(cpu_stats=True). To disable logging CPU metrics, you can specify DeviceStatsMonitor(cpu_stats=False).