Shortcuts

Source code for lightning.fabric.plugins.environments.torchelastic

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os

import torch.distributed

from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.utilities.rank_zero import rank_zero_warn

log = logging.getLogger(__name__)


[docs]class TorchElasticEnvironment(ClusterEnvironment): """Environment for fault-tolerant and elastic training with `torchelastic <https://pytorch.org/elastic/>`_""" @property def creates_processes_externally(self) -> bool: return True @property def main_address(self) -> str: if "MASTER_ADDR" not in os.environ: rank_zero_warn("MASTER_ADDR environment variable is not defined. Set as localhost") os.environ["MASTER_ADDR"] = "127.0.0.1" log.debug(f"MASTER_ADDR: {os.environ['MASTER_ADDR']}") return os.environ["MASTER_ADDR"] @property def main_port(self) -> int: if "MASTER_PORT" not in os.environ: rank_zero_warn("MASTER_PORT environment variable is not defined. Set as 12910") os.environ["MASTER_PORT"] = "12910" log.debug(f"MASTER_PORT: {os.environ['MASTER_PORT']}") return int(os.environ["MASTER_PORT"])
[docs] @staticmethod def detect() -> bool: """Returns ``True`` if the current process was launched using the torchelastic command.""" # if not available (for example on MacOS), `is_torchelastic_launched` is not defined return torch.distributed.is_available() and torch.distributed.is_torchelastic_launched()
[docs] def world_size(self) -> int: return int(os.environ["WORLD_SIZE"])
def set_world_size(self, size: int) -> None: log.debug("TorchElasticEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.")
[docs] def global_rank(self) -> int: return int(os.environ["RANK"])
def set_global_rank(self, rank: int) -> None: log.debug( "TorchElasticEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored." )
[docs] def local_rank(self) -> int: return int(os.environ["LOCAL_RANK"])
[docs] def node_rank(self) -> int: return int(os.environ.get("GROUP_RANK", 0))
[docs] def validate_settings(self, num_devices: int, num_nodes: int) -> None: if num_devices * num_nodes != self.world_size(): raise ValueError( f"You set `devices={num_devices}` and `num_nodes={num_nodes}` in Lightning, but the product" f" ({num_devices} * {num_nodes}) does not match the world size ({self.world_size()})." )