:orphan:

.. _profiler_basic:

#####################################
Find bottlenecks in your code (basic)
#####################################
**Audience**: Users who want to learn the basics of removing bottlenecks from their code

----

************************
Why do I need profiling?
************************
Profiling helps you find bottlenecks in your code by capturing analytics such as how long a function takes or how much memory is used.

------------

******************************
Find training loop bottlenecks
******************************
The most basic profile measures all the key methods across **Callbacks**, **DataModules** and the **LightningModule** in the training loop.

.. code-block:: python

    trainer = Trainer(profiler="simple")

Once the **.fit()** function has completed, you'll see an output like this:

.. code-block::

    FIT Profiler Report

    -----------------------------------------------------------------------------------------------
    |  Action                                          |  Mean duration (s)	|  Total time (s) |
    -----------------------------------------------------------------------------------------------
    |  [LightningModule]BoringModel.prepare_data       |  10.0001       	|  20.00          |
    |  run_training_epoch                              |  6.1558         	|  6.1558         |
    |  run_training_batch                              |  0.0022506      	|  0.015754       |
    |  [LightningModule]BoringModel.optimizer_step     |  0.0017477      	|  0.012234       |
    |  [LightningModule]BoringModel.val_dataloader     |  0.00024388     	|  0.00024388     |
    |  on_train_batch_start                            |  0.00014637     	|  0.0010246      |
    |  [LightningModule]BoringModel.teardown           |  2.15e-06       	|  2.15e-06       |
    |  [LightningModule]BoringModel.on_train_start     |  1.644e-06      	|  1.644e-06      |
    |  [LightningModule]BoringModel.on_train_end       |  1.516e-06      	|  1.516e-06      |
    |  [LightningModule]BoringModel.on_fit_end         |  1.426e-06      	|  1.426e-06      |
    |  [LightningModule]BoringModel.setup              |  1.403e-06      	|  1.403e-06      |
    |  [LightningModule]BoringModel.on_fit_start       |  1.226e-06      	|  1.226e-06      |
    -----------------------------------------------------------------------------------------------

In this report we can see that the slowest function is **prepare_data**. Now you can figure out why data preparation is slowing down your training.

The simple profiler measures all the standard methods used in the training loop automatically, including:

- on_train_epoch_start
- on_train_epoch_end
- on_train_batch_start
- model_backward
- on_after_backward
- optimizer_step
- on_train_batch_end
- on_training_end
- etc...

----

**************************************
Profile the time within every function
**************************************
To profile the time within every function, use the :class:`~lightning.pytorch.profilers.advanced.AdvancedProfiler` built on top of Python's `cProfiler <https://docs.python.org/3/library/profile.html#module-cProfile>`_.


.. code-block:: python

    trainer = Trainer(profiler="advanced")

Once the **.fit()** function has completed, you'll see an output like this:

.. code-block::

    Profiler Report

    Profile stats for: get_train_batch
            4869394 function calls (4863767 primitive calls) in 18.893 seconds
    Ordered by: cumulative time
    List reduced from 76 to 10 due to restriction <10>
    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    3752/1876    0.011    0.000   18.887    0.010 {built-in method builtins.next}
        1876     0.008    0.000   18.877    0.010 dataloader.py:344(__next__)
        1876     0.074    0.000   18.869    0.010 dataloader.py:383(_next_data)
        1875     0.012    0.000   18.721    0.010 fetch.py:42(fetch)
        1875     0.084    0.000   18.290    0.010 fetch.py:44(<listcomp>)
        60000    1.759    0.000   18.206    0.000 mnist.py:80(__getitem__)
        60000    0.267    0.000   13.022    0.000 transforms.py:68(__call__)
        60000    0.182    0.000    7.020    0.000 transforms.py:93(__call__)
        60000    1.651    0.000    6.839    0.000 functional.py:42(to_tensor)
        60000    0.260    0.000    5.734    0.000 transforms.py:167(__call__)

If the profiler report becomes too long, you can stream the report to a file:

.. code-block:: python

    from lightning.pytorch.profilers import AdvancedProfiler

    profiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
    trainer = Trainer(profiler=profiler)

----

*************************
Measure accelerator usage
*************************
Another helpful technique to detect bottlenecks is to ensure that you're using the full capacity of your accelerator (GPU/TPU/IPU/HPU).
This can be measured with the :class:`~lightning.pytorch.callbacks.device_stats_monitor.DeviceStatsMonitor`:

.. testcode::

    from lightning.pytorch.callbacks import DeviceStatsMonitor

    trainer = Trainer(callbacks=[DeviceStatsMonitor()])

CPU metrics will be tracked by default on the CPU accelerator. To enable it for other accelerators set ``DeviceStatsMonitor(cpu_stats=True)``. To disable logging
CPU metrics, you can specify ``DeviceStatsMonitor(cpu_stats=False)``.