{"cells": [{"cell_type": "markdown", "id": "c4d158e7", "metadata": {"papermill": {"duration": 0.018088, "end_time": "2023-03-14T15:51:01.906854", "exception": false, "start_time": "2023-03-14T15:51:01.888766", "status": "completed"}, "tags": []}, "source": ["\n", "# Tutorial 5: Transformers and Multi-Head Attention\n", "\n", "* **Author:** Phillip Lippe\n", "* **License:** CC BY-SA\n", "* **Generated:** 2023-03-14T15:49:26.017592\n", "\n", "In this tutorial, we will discuss one of the most impactful architectures of the last 2 years: the Transformer model.\n", "Since the paper Attention Is All You Need by Vaswani et al. had been published in 2017,\n", "the Transformer architecture has continued to beat benchmarks in many domains, most importantly in Natural Language Processing.\n", "Transformers with an incredible amount of parameters can generate long, convincing essays, and opened up new application fields of AI.\n", "As the hype of the Transformer architecture seems not to come to an end in the next years,\n", "it is important to understand how it works, and have implemented it yourself, which we will do in this notebook.\n", "This notebook is part of a lecture series on Deep Learning at the University of Amsterdam.\n", "The full list of tutorials can be found at https://uvadlc-notebooks.rtfd.io.\n", "\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/course_UvA-DL/05-transformers-and-MH-attention.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/Lightning-AI/lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/stable/)\n", "| Join us [on Slack](https://www.pytorchlightning.ai/community)"]}, {"cell_type": "markdown", "id": "b14f9e07", "metadata": {"papermill": {"duration": 0.011947, "end_time": "2023-03-14T15:51:01.983027", "exception": false, "start_time": "2023-03-14T15:51:01.971080", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "450ed63f", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2023-03-14T15:51:02.006856Z", "iopub.status.busy": "2023-03-14T15:51:02.006354Z", "iopub.status.idle": "2023-03-14T15:51:05.450209Z", "shell.execute_reply": "2023-03-14T15:51:05.449320Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 3.458717, "end_time": "2023-03-14T15:51:05.452749", "exception": false, "start_time": "2023-03-14T15:51:01.994032", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\r\n", "\u001b[0m"]}], "source": ["! pip install --quiet \"torch>=1.8.1, <1.14.0\" \"torchmetrics>=0.7, <0.12\" \"ipython[notebook]>=8.0.0, <8.12.0\" \"setuptools==67.4.0\" \"torchvision\" \"seaborn\" \"lightning>=2.0.0rc0\" \"matplotlib\" \"pytorch-lightning>=1.4, <2.0.0\""]}, {"cell_type": "markdown", "id": "ab0b059c", "metadata": {"papermill": {"duration": 0.012818, "end_time": "2023-03-14T15:51:05.479831", "exception": false, "start_time": "2023-03-14T15:51:05.467013", "status": "completed"}, "tags": []}, "source": ["<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/hGZ6wa07Vak\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "Despite the huge success of Transformers in NLP, we will _not_ include the NLP domain in our notebook here.\n", "There are many courses at the University of Amsterdam that focus on Natural Language Processing\n", "and take a closer look at the application of the Transformer architecture in NLP\n", "([NLP2](https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79628),\n", "[Advanced Topics in Computational Semantics](https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/80162)).\n", "Furthermore, and most importantly, there is so much more to the Transformer architecture.\n", "NLP is the domain the Transformer architecture has been originally proposed for and had the greatest impact on,\n", "but it also accelerated research in other domains, recently even [Computer Vision](https://arxiv.org/abs/2010.11929).\n", "Thus, we focus here on what makes the Transformer and self-attention so powerful in general.\n", "In a second notebook, we will look at Vision Transformers, i.e. Transformers for image classification\n", "([link to notebook](https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html)).\n", "\n", "Below, we import our standard libraries."]}, {"cell_type": "code", "execution_count": 2, "id": "bcd42042", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:05.506611Z", "iopub.status.busy": "2023-03-14T15:51:05.506366Z", "iopub.status.idle": "2023-03-14T15:51:08.879908Z", "shell.execute_reply": "2023-03-14T15:51:08.878818Z"}, "papermill": {"duration": 3.38976, "end_time": "2023-03-14T15:51:08.882400", "exception": false, "start_time": "2023-03-14T15:51:05.492640", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Device: cuda:0\n"]}, {"data": {"text/plain": ["<Figure size 640x480 with 0 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Standard libraries\n", "import math\n", "import os\n", "import urllib.request\n", "from functools import partial\n", "from urllib.error import HTTPError\n", "\n", "# PyTorch Lightning\n", "import lightning as L\n", "\n", "# Plotting\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import matplotlib_inline.backend_inline\n", "import numpy as np\n", "import seaborn as sns\n", "\n", "# PyTorch\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torch.utils.data as data\n", "\n", "# Torchvision\n", "import torchvision\n", "from lightning.pytorch.callbacks import ModelCheckpoint\n", "from torchvision import transforms\n", "from torchvision.datasets import CIFAR100\n", "from tqdm.notebook import tqdm\n", "\n", "plt.set_cmap(\"cividis\")\n", "%matplotlib inline\n", "matplotlib_inline.backend_inline.set_matplotlib_formats(\"svg\", \"pdf\")  # For export\n", "matplotlib.rcParams[\"lines.linewidth\"] = 2.0\n", "sns.reset_orig()\n", "\n", "# Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)\n", "DATASET_PATH = os.environ.get(\"PATH_DATASETS\", \"data/\")\n", "# Path to the folder where the pretrained models are saved\n", "CHECKPOINT_PATH = os.environ.get(\"PATH_CHECKPOINT\", \"saved_models/Transformers/\")\n", "\n", "# Setting the seed\n", "L.seed_everything(42)\n", "\n", "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n", "torch.backends.cudnn.deterministic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n", "print(\"Device:\", device)"]}, {"cell_type": "markdown", "id": "ed57efa5", "metadata": {"papermill": {"duration": 0.010928, "end_time": "2023-03-14T15:51:08.908173", "exception": false, "start_time": "2023-03-14T15:51:08.897245", "status": "completed"}, "tags": []}, "source": ["Two pre-trained models are downloaded below.\n", "Make sure to have adjusted your `CHECKPOINT_PATH` before running this code if not already done."]}, {"cell_type": "code", "execution_count": 3, "id": "69caa512", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:08.932299Z", "iopub.status.busy": "2023-03-14T15:51:08.931438Z", "iopub.status.idle": "2023-03-14T15:51:09.465866Z", "shell.execute_reply": "2023-03-14T15:51:09.464689Z"}, "papermill": {"duration": 0.549363, "end_time": "2023-03-14T15:51:09.468432", "exception": false, "start_time": "2023-03-14T15:51:08.919069", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/ReverseTask.ckpt...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/SetAnomalyTask.ckpt...\n"]}], "source": ["# Github URL where saved models are stored for this tutorial\n", "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/\"\n", "# Files to download\n", "pretrained_files = [\"ReverseTask.ckpt\", \"SetAnomalyTask.ckpt\"]\n", "\n", "# Create checkpoint path if it doesn't exist yet\n", "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n", "\n", "# For each file, check whether it already exists. If not, try downloading it.\n", "for file_name in pretrained_files:\n", "    file_path = os.path.join(CHECKPOINT_PATH, file_name)\n", "    if \"/\" in file_name:\n", "        os.makedirs(file_path.rsplit(\"/\", 1)[0], exist_ok=True)\n", "    if not os.path.isfile(file_path):\n", "        file_url = base_url + file_name\n", "        print(\"Downloading %s...\" % file_url)\n", "        try:\n", "            urllib.request.urlretrieve(file_url, file_path)\n", "        except HTTPError as e:\n", "            print(\n", "                \"Something went wrong. Please try to download the file manually,\"\n", "                \" or contact the author with the full output including the following error:\\n\",\n", "                e,\n", "            )"]}, {"cell_type": "markdown", "id": "dde4a0a9", "metadata": {"papermill": {"duration": 0.011677, "end_time": "2023-03-14T15:51:09.494142", "exception": false, "start_time": "2023-03-14T15:51:09.482465", "status": "completed"}, "tags": []}, "source": ["## The Transformer architecture\n", "\n", "In the first part of this notebook, we will implement the Transformer architecture by hand.\n", "As the architecture is so popular, there already exists a Pytorch module `nn.Transformer`\n", "([documentation](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html))\n", "and a [tutorial](https://pytorch.org/tutorials/beginner/transformer_tutorial.html)\n", "on how to use it for next token prediction.\n", "However, we will implement it here ourselves, to get through to the smallest details.\n", "\n", "There are of course many more tutorials out there about attention and Transformers.\n", "Below, we list a few that are worth exploring if you are interested in the topic\n", "and might want yet another perspective on the topic after this one:\n", "\n", "* [Transformer: A Novel Neural Network Architecture for Language Understanding\n", "(Jakob Uszkoreit, 2017)](https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html) - The original Google blog post about the Transformer paper, focusing on the application in machine translation.\n", "* [The Illustrated Transformer (Jay Alammar, 2018)](http://jalammar.github.io/illustrated-transformer/) - A very popular and great blog post intuitively explaining the Transformer architecture with many nice visualizations.\n", "The focus is on NLP.\n", "* [Attention?\n", "Attention!\n", "(Lilian Weng, 2018)](https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html) - A nice blog post summarizing attention mechanisms in many domains including vision.\n", "* [Illustrated: Self-Attention (Raimi Karim, 2019)](https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a) - A nice visualization of the steps of self-attention.\n", "Recommended going through if the explanation below is too abstract for you.\n", "* [The Transformer family (Lilian Weng, 2020)](https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html) - A very detailed blog post reviewing more variants of Transformers besides the original one."]}, {"cell_type": "markdown", "id": "a393ebee", "metadata": {"papermill": {"duration": 0.011022, "end_time": "2023-03-14T15:51:09.517670", "exception": false, "start_time": "2023-03-14T15:51:09.506648", "status": "completed"}, "tags": []}, "source": ["### What is Attention?\n", "\n", "The attention mechanism describes a recent new group of layers in neural networks that has attracted\n", "a lot of interest in the past few years, especially in sequence tasks.\n", "There are a lot of different possible definitions of \"attention\" in the literature,\n", "but the one we will use here is the following: _the attention mechanism describes a weighted average\n", "of (sequence) elements with the weights dynamically computed based on an input query and elements' keys_.\n", "So what does this exactly mean?\n", "The goal is to take an average over the features of multiple elements.\n", "However, instead of weighting each element equally, we want to weight them depending on their actual values.\n", "In other words, we want to dynamically decide on which inputs we want to \"attend\" more than others.\n", "In particular, an attention mechanism has usually four parts we need to specify:\n", "\n", "* **Query**: The query is a feature vector that describes what we are looking for in the sequence, i.e. what would we maybe want to pay attention to.\n", "* **Keys**: For each input element, we have a key which is again a feature vector.\n", "This feature vector roughly describes what the element is \"offering\", or when it might be important.\n", "The keys should be designed such that we can identify the elements we want to pay attention to based on the query.\n", "* **Values**: For each input element, we also have a value vector.\n", "This feature vector is the one we want to average over.\n", "* **Score function**: To rate which elements we want to pay attention to, we need to specify a score function $f_{attn}$.\n", "The score function takes the query and a key as input, and output the score/attention weight of the query-key pair.\n", "It is usually implemented by simple similarity metrics like a dot product, or a small MLP.\n", "\n", "\n", "The weights of the average are calculated by a softmax over all score function outputs.\n", "Hence, we assign those value vectors a higher weight whose corresponding key is most similar to the query.\n", "If we try to describe it with pseudo-math, we can write:\n", "\n", "$$\n", "\\alpha_i = \\frac{\\exp\\left(f_{attn}\\left(\\text{key}_i, \\text{query}\\right)\\right)}{\\sum_j \\exp\\left(f_{attn}\\left(\\text{key}_j, \\text{query}\\right)\\right)}, \\hspace{5mm} \\text{out} = \\sum_i \\alpha_i \\cdot \\text{value}_i\n", "$$\n", "\n", "Visually, we can show the attention over a sequence of words as follows:\n", "\n", "<center width=\"100%\" style=\"padding:25px\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/attention_example.svg\" width=\"750px\"></center>\n", "\n", "For every word, we have one key and one value vector.\n", "The query is compared to all keys with a score function (in this case the dot product) to determine the weights.\n", "The softmax is not visualized for simplicity.\n", "Finally, the value vectors of all words are averaged using the attention weights.\n", "\n", "Most attention mechanisms differ in terms of what queries they use, how the key and value vectors are defined,\n", "and what score function is used.\n", "The attention applied inside the Transformer architecture is called **self-attention**.\n", "In self-attention, each sequence element provides a key, value, and query.\n", "For each element, we perform an attention layer where based on its query,\n", "we check the similarity of the all sequence elements' keys, and returned a different,\n", "averaged value vector for each element.\n", "We will now go into a bit more detail by first looking at the specific implementation of the attention mechanism\n", "which is in the Transformer case the scaled dot product attention."]}, {"cell_type": "markdown", "id": "bebae18e", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.014322, "end_time": "2023-03-14T15:51:09.547574", "exception": false, "start_time": "2023-03-14T15:51:09.533252", "status": "completed"}, "tags": []}, "source": ["### Scaled Dot Product Attention\n", "\n", "The core concept behind self-attention is the scaled dot product attention.\n", "Our goal is to have an attention mechanism with which any element in a sequence can attend to any other while\n", "still being efficient to compute.\n", "The dot product attention takes as input a set of queries\n", "$Q\\in\\mathbb{R}^{T\\times d_k}$, keys $K\\in\\mathbb{R}^{T\\times d_k}$\n", "and values $V\\in\\mathbb{R}^{T\\times d_v}$ where $T$ is the sequence length,\n", "and $d_k$ and $d_v$ are the hidden dimensionality for queries/keys and values respectively.\n", "For simplicity, we neglect the batch dimension for now.\n", "The attention value from element $i$ to $j$ is based on its similarity of the query $Q_i$ and key $K_j$,\n", "using the dot product as the similarity metric.\n", "In math, we calculate the dot product attention as follows:\n", "\n", "$$\\text{Attention}(Q,K,V)=\\text{softmax}\\left(\\frac{QK^T}{\\sqrt{d_k}}\\right)V$$\n", "\n", "The matrix multiplication $QK^T$ performs the dot product for every possible pair of queries and keys,\n", "resulting in a matrix of the shape $T\\times T$.\n", "Each row represents the attention logits for a specific element $i$ to all other elements in the sequence.\n", "On these, we apply a softmax and multiply with the value vector to obtain a weighted mean\n", "(the weights being determined by the attention).\n", "Another perspective on this attention mechanism offers the computation graph which is visualized below\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/scaled_dot_product_attn.svg\" width=\"210px\"></center>\n", "\n", "One aspect we haven't discussed yet is the scaling factor of $1/\\sqrt{d_k}$.\n", "This scaling factor is crucial to maintain an appropriate variance of attention values after initialization.\n", "Remember that we intialize our layers with the intention of having equal variance throughout the model, and hence,\n", "$Q$ and $K$ might also have a variance close to $1$.\n", "However, performing a dot product over two vectors with a variance $\\sigma$ results\n", "in a scalar having $d_k$-times higher variance:\n", "\n", "$$q_i \\sim \\mathcal{N}(0,\\sigma), k_i \\sim \\mathcal{N}(0,\\sigma) \\to \\text{Var}\\left(\\sum_{i=1}^{d_k} q_i\\cdot k_i\\right) = \\sigma\\cdot d_k$$\n", "\n", "\n", "If we do not scale down the variance back to $\\sigma$, the softmax over the logits will already saturate\n", "to $1$ for one random element and $0$ for all others.\n", "The gradients through the softmax will be close to zero so that we can't learn the parameters appropriately.\n", "\n", "The block `Mask (opt.\n", ")` in the diagram above represents the optional masking of specific entries in the attention matrix.\n", "This is for instance used if we stack multiple sequences with different lengths into a batch.\n", "To still benefit from parallelization in PyTorch, we pad the sentences to the same length and mask out the padding\n", "tokens during the calculation of the attention values.\n", "This is usually done by setting the respective attention logits to a very low value.\n", "\n", "After we have discussed the details of the scaled dot product attention block, we can write a function below\n", "which computes the output features given the triple of queries, keys, and values:"]}, {"cell_type": "code", "execution_count": 4, "id": "b0403645", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.573412Z", "iopub.status.busy": "2023-03-14T15:51:09.572861Z", "iopub.status.idle": "2023-03-14T15:51:09.580671Z", "shell.execute_reply": "2023-03-14T15:51:09.579781Z"}, "papermill": {"duration": 0.023171, "end_time": "2023-03-14T15:51:09.582192", "exception": false, "start_time": "2023-03-14T15:51:09.559021", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def scaled_dot_product(q, k, v, mask=None):\n", "    d_k = q.size()[-1]\n", "    attn_logits = torch.matmul(q, k.transpose(-2, -1))\n", "    attn_logits = attn_logits / math.sqrt(d_k)\n", "    if mask is not None:\n", "        attn_logits = attn_logits.masked_fill(mask == 0, -9e15)\n", "    attention = F.softmax(attn_logits, dim=-1)\n", "    values = torch.matmul(attention, v)\n", "    return values, attention"]}, {"cell_type": "markdown", "id": "1bd130c3", "metadata": {"papermill": {"duration": 0.011207, "end_time": "2023-03-14T15:51:09.607198", "exception": false, "start_time": "2023-03-14T15:51:09.595991", "status": "completed"}, "tags": []}, "source": ["Note that our code above supports any additional dimensionality in front of the sequence length\n", "so that we can also use it for batches.\n", "However, for a better understanding, let's generate a few random queries, keys, and value vectors,\n", "and calculate the attention outputs:"]}, {"cell_type": "code", "execution_count": 5, "id": "aaa95606", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.631094Z", "iopub.status.busy": "2023-03-14T15:51:09.630586Z", "iopub.status.idle": "2023-03-14T15:51:09.645119Z", "shell.execute_reply": "2023-03-14T15:51:09.644290Z"}, "papermill": {"duration": 0.029335, "end_time": "2023-03-14T15:51:09.647632", "exception": false, "start_time": "2023-03-14T15:51:09.618297", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Q\n", " tensor([[ 0.3367,  0.1288],\n", "        [ 0.2345,  0.2303],\n", "        [-1.1229, -0.1863]])\n", "K\n", " tensor([[ 2.2082, -0.6380],\n", "        [ 0.4617,  0.2674],\n", "        [ 0.5349,  0.8094]])\n", "V\n", " tensor([[ 1.1103, -1.6898],\n", "        [-0.9890,  0.9580],\n", "        [ 1.3221,  0.8172]])\n", "Values\n", " tensor([[ 0.5698, -0.1520],\n", "        [ 0.5379, -0.0265],\n", "        [ 0.2246,  0.5556]])\n", "Attention\n", " tensor([[0.4028, 0.2886, 0.3086],\n", "        [0.3538, 0.3069, 0.3393],\n", "        [0.1303, 0.4630, 0.4067]])\n"]}], "source": ["seq_len, d_k = 3, 2\n", "L.seed_everything(42)\n", "q = torch.randn(seq_len, d_k)\n", "k = torch.randn(seq_len, d_k)\n", "v = torch.randn(seq_len, d_k)\n", "values, attention = scaled_dot_product(q, k, v)\n", "print(\"Q\\n\", q)\n", "print(\"K\\n\", k)\n", "print(\"V\\n\", v)\n", "print(\"Values\\n\", values)\n", "print(\"Attention\\n\", attention)"]}, {"cell_type": "markdown", "id": "0c6a63af", "metadata": {"papermill": {"duration": 0.01121, "end_time": "2023-03-14T15:51:09.670445", "exception": false, "start_time": "2023-03-14T15:51:09.659235", "status": "completed"}, "tags": []}, "source": ["Before continuing, make sure you can follow the calculation of the specific values here, and also check it by hand.\n", "It is important to fully understand how the scaled dot product attention is calculated."]}, {"cell_type": "markdown", "id": "712a0cc4", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011311, "end_time": "2023-03-14T15:51:09.693035", "exception": false, "start_time": "2023-03-14T15:51:09.681724", "status": "completed"}, "tags": []}, "source": ["### Multi-Head Attention\n", "\n", "The scaled dot product attention allows a network to attend over a sequence.\n", "However, often there are multiple different aspects a sequence element wants to attend to,\n", "and a single weighted average is not a good option for it.\n", "This is why we extend the attention mechanisms to multiple heads,\n", "i.e. multiple different query-key-value triplets on the same features.\n", "Specifically, given a query, key, and value matrix, we transform those into $h$ sub-queries, sub-keys,\n", "and sub-values, which we pass through the scaled dot product attention independently.\n", "Afterward, we concatenate the heads and combine them with a final weight matrix.\n", "Mathematically, we can express this operation as:\n", "\n", "$$\n", "\\begin{split}\n", "    \\text{Multihead}(Q,K,V) & = \\text{Concat}(\\text{head}_1,...,\\text{head}_h)W^{O}\\\\\n", "    \\text{where } \\text{head}_i & = \\text{Attention}(QW_i^Q,KW_i^K, VW_i^V)\n", "\\end{split}\n", "$$\n", "\n", "We refer to this as Multi-Head Attention layer with the learnable parameters\n", "$W_{1...h}^{Q}\\in\\mathbb{R}^{D\\times d_k}$,\n", "$W_{1...h}^{K}\\in\\mathbb{R}^{D\\times d_k}$,\n", "$W_{1...h}^{V}\\in\\mathbb{R}^{D\\times d_v}$,\n", "and $W^{O}\\in\\mathbb{R}^{h\\cdot d_k\\times d_{out}}$ ($D$ being the input dimensionality).\n", "Expressed in a computational graph, we can visualize it as below\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/multihead_attention.svg\" width=\"230px\"></center>\n", "\n", "How are we applying a Multi-Head Attention layer in a neural network,\n", "where we don't have an arbitrary query, key, and value vector as input?\n", "Looking at the computation graph above, a simple but effective implementation is to set the current\n", "feature map in a NN, $X\\in\\mathbb{R}^{B\\times T\\times d_{\\text{model}}}$, as $Q$, $K$ and $V$\n", "($B$ being the batch size, $T$ the sequence length, $d_{\\text{model}}$ the hidden dimensionality of $X$).\n", "The consecutive weight matrices $W^{Q}$, $W^{K}$, and $W^{V}$ can transform $X$ to the corresponding\n", "feature vectors that represent the queries, keys, and values of the input.\n", "Using this approach, we can implement the Multi-Head Attention module below."]}, {"cell_type": "code", "execution_count": 6, "id": "4240f9a4", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.717882Z", "iopub.status.busy": "2023-03-14T15:51:09.717050Z", "iopub.status.idle": "2023-03-14T15:51:09.729658Z", "shell.execute_reply": "2023-03-14T15:51:09.728777Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.027637, "end_time": "2023-03-14T15:51:09.732024", "exception": false, "start_time": "2023-03-14T15:51:09.704387", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class MultiheadAttention(nn.Module):\n", "    def __init__(self, input_dim, embed_dim, num_heads):\n", "        super().__init__()\n", "        assert embed_dim % num_heads == 0, \"Embedding dimension must be 0 modulo number of heads.\"\n", "\n", "        self.embed_dim = embed_dim\n", "        self.num_heads = num_heads\n", "        self.head_dim = embed_dim // num_heads\n", "\n", "        # Stack all weight matrices 1...h together for efficiency\n", "        # Note that in many implementations you see \"bias=False\" which is optional\n", "        self.qkv_proj = nn.Linear(input_dim, 3 * embed_dim)\n", "        self.o_proj = nn.Linear(embed_dim, embed_dim)\n", "\n", "        self._reset_parameters()\n", "\n", "    def _reset_parameters(self):\n", "        # Original Transformer initialization, see PyTorch documentation\n", "        nn.init.xavier_uniform_(self.qkv_proj.weight)\n", "        self.qkv_proj.bias.data.fill_(0)\n", "        nn.init.xavier_uniform_(self.o_proj.weight)\n", "        self.o_proj.bias.data.fill_(0)\n", "\n", "    def forward(self, x, mask=None, return_attention=False):\n", "        batch_size, seq_length, embed_dim = x.size()\n", "        qkv = self.qkv_proj(x)\n", "\n", "        # Separate Q, K, V from linear output\n", "        qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)\n", "        qkv = qkv.permute(0, 2, 1, 3)  # [Batch, Head, SeqLen, Dims]\n", "        q, k, v = qkv.chunk(3, dim=-1)\n", "\n", "        # Determine value outputs\n", "        values, attention = scaled_dot_product(q, k, v, mask=mask)\n", "        values = values.permute(0, 2, 1, 3)  # [Batch, SeqLen, Head, Dims]\n", "        values = values.reshape(batch_size, seq_length, embed_dim)\n", "        o = self.o_proj(values)\n", "\n", "        if return_attention:\n", "            return o, attention\n", "        else:\n", "            return o"]}, {"cell_type": "markdown", "id": "2a237603", "metadata": {"papermill": {"duration": 0.011542, "end_time": "2023-03-14T15:51:09.758195", "exception": false, "start_time": "2023-03-14T15:51:09.746653", "status": "completed"}, "tags": []}, "source": ["One crucial characteristic of the multi-head attention is that it is permutation-equivariant with respect to its inputs.\n", "This means that if we switch two input elements in the sequence, e.g. $X_1\\leftrightarrow X_2$\n", "(neglecting the batch dimension for now), the output is exactly the same besides the elements 1 and 2 switched.\n", "Hence, the multi-head attention is actually looking at the input not as a sequence, but as a set of elements.\n", "This property makes the multi-head attention block and the Transformer architecture so powerful and widely applicable!\n", "But what if the order of the input is actually important for solving the task, like language modeling?\n", "The answer is to encode the position in the input features, which we will take a closer look at later\n", "(topic _Positional encodings_ below).\n", "\n", "Before moving on to creating the Transformer architecture, we can compare the self-attention operation\n", "with our other common layer competitors for sequence data: convolutions and recurrent neural networks.\n", "Below you can find a table by [Vaswani et al.\n", "(2017)](https://arxiv.org/abs/1706.03762) on the complexity per layer, the number of sequential operations,\n", "and maximum path length.\n", "The complexity is measured by the upper bound of the number of operations to perform, while the maximum path\n", "length represents the maximum number of steps a forward or backward signal has to traverse to reach any other position.\n", "The lower this length, the better gradient signals can backpropagate for long-range dependencies.\n", "Let's take a look at the table below:\n", "\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/comparison_conv_rnn.svg\" width=\"600px\"></center>\n", "\n", "$n$ is the sequence length, $d$ is the representation dimension and $k$ is the kernel size of convolutions.\n", "In contrast to recurrent networks, the self-attention layer can parallelize all its operations making it much faster\n", "to execute for smaller sequence lengths.\n", "However, when the sequence length exceeds the hidden dimensionality, self-attention becomes more expensive than RNNs.\n", "One way of reducing the computational cost for long sequences is by restricting the self-attention to a neighborhood\n", "of inputs to attend over, denoted by $r$.\n", "Nevertheless, there has been recently a lot of work on more efficient Transformer architectures that still allow long\n", "dependencies, of which you can find an overview in the paper by [Tay et al.\n", "(2020)](https://arxiv.org/abs/2009.06732) if interested."]}, {"cell_type": "markdown", "id": "f075ea07", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011234, "end_time": "2023-03-14T15:51:09.780644", "exception": false, "start_time": "2023-03-14T15:51:09.769410", "status": "completed"}, "tags": []}, "source": ["### Transformer Encoder\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/QdTgJ85E6YA\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "\n", "Next, we will look at how to apply the multi-head attention blog inside the Transformer architecture.\n", "Originally, the Transformer model was designed for machine translation.\n", "Hence, it got an encoder-decoder structure where the encoder takes as input the sentence in the original language\n", "and generates an attention-based representation.\n", "On the other hand, the decoder attends over the encoded information and generates the translated sentence\n", "in an autoregressive manner, as in a standard RNN.\n", "While this structure is extremely useful for Sequence-to-Sequence tasks with the necessity of autoregressive decoding,\n", "we will focus here on the encoder part.\n", "Many advances in NLP have been made using pure encoder-based Transformer models (if interested, models include the\n", "[BERT](https://arxiv.org/abs/1810.04805)-family,\n", "the [Vision Transformer](https://arxiv.org/abs/2010.11929), and more),\n", "and in our tutorial, we will also mainly focus on the encoder part.\n", "If you have understood the encoder architecture, the decoder is a very small step to implement as well.\n", "The full Transformer architecture looks as follows\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", ":\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/transformer_architecture.svg\" width=\"400px\"></center>\n", "\n", "The encoder consists of $N$ identical blocks that are applied in sequence.\n", "Taking as input $x$, it is first passed through a Multi-Head Attention block as we have implemented above.\n", "The output is added to the original input using a residual connection,\n", "and we apply a consecutive Layer Normalization on the sum.\n", "Overall, it calculates $\\text{LayerNorm}(x+\\text{Multihead}(x,x,x))$\n", "($x$ being $Q$, $K$ and $V$ input to the attention layer).\n", "The residual connection is crucial in the Transformer architecture for two reasons:\n", "\n", "1.\n", "Similar to ResNets, Transformers are designed to be very deep.\n", "Some models contain more than 24 blocks in the encoder.\n", "Hence, the residual connections are crucial for enabling a smooth gradient flow through the model.\n", "2.\n", "Without the residual connection, the information about the original sequence is lost.\n", "Remember that the Multi-Head Attention layer ignores the position of elements in a sequence,\n", "and can only learn it based on the input features.\n", "Removing the residual connections would mean that this information is lost after the first attention layer\n", "(after initialization), and with a randomly initialized query and key vector,\n", "the output vectors for position $i$ has no relation to its original input.\n", "All outputs of the attention are likely to represent similar/same information,\n", "and there is no chance for the model to distinguish which information came from which input element.\n", "An alternative option to residual connection would be to fix at least one head to focus on its original input,\n", "but this is very inefficient and does not have the benefit of the improved gradient flow.\n", "\n", "The Layer Normalization also plays an important role in the Transformer architecture as it enables faster\n", "training and provides small regularization.\n", "Additionally, it ensures that the features are in a similar magnitude among the elements in the sequence.\n", "We are not using Batch Normalization because it depends on the batch size which is often small with Transformers\n", "(they require a lot of GPU memory), and BatchNorm has shown to perform particularly bad in language\n", "as the features of words tend to have a much higher variance (there are many, very rare words\n", "which need to be considered for a good distribution estimate).\n", "\n", "Additionally to the Multi-Head Attention, a small fully connected feed-forward network is added to the model,\n", "which is applied to each position separately and identically.\n", "Specifically, the model uses a Linear$\\to$ReLU$\\to$Linear MLP.\n", "The full transformation including the residual connection can be expressed as:\n", "\n", "$$\n", "\\begin{split}\n", "    \\text{FFN}(x) & = \\max(0, xW_1+b_1)W_2 + b_2\\\\\n", "    x & = \\text{LayerNorm}(x + \\text{FFN}(x))\n", "\\end{split}\n", "$$\n", "\n", "This MLP adds extra complexity to the model and allows transformations on each sequence element separately.\n", "You can imagine as this allows the model to \"post-process\" the new information added\n", "by the previous Multi-Head Attention, and prepare it for the next attention block.\n", "Usually, the inner dimensionality of the MLP is 2-8$\\times$ larger than $d_{\\text{model}}$,\n", "i.e. the dimensionality of the original input $x$.\n", "The general advantage of a wider layer instead of a narrow, multi-layer MLP is the faster, parallelizable execution.\n", "\n", "Finally, after looking at all parts of the encoder architecture, we can start implementing it below.\n", "We first start by implementing a single encoder block.\n", "Additionally to the layers described above, we will add dropout layers in the MLP and on the output\n", "of the MLP and Multi-Head Attention for regularization."]}, {"cell_type": "code", "execution_count": 7, "id": "71a85db2", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.805403Z", "iopub.status.busy": "2023-03-14T15:51:09.804772Z", "iopub.status.idle": "2023-03-14T15:51:09.814257Z", "shell.execute_reply": "2023-03-14T15:51:09.813512Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.024207, "end_time": "2023-03-14T15:51:09.816172", "exception": false, "start_time": "2023-03-14T15:51:09.791965", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class EncoderBlock(nn.Module):\n", "    def __init__(self, input_dim, num_heads, dim_feedforward, dropout=0.0):\n", "        \"\"\"\n", "        Args:\n", "            input_dim: Dimensionality of the input\n", "            num_heads: Number of heads to use in the attention block\n", "            dim_feedforward: Dimensionality of the hidden layer in the MLP\n", "            dropout: Dropout probability to use in the dropout layers\n", "        \"\"\"\n", "        super().__init__()\n", "\n", "        # Attention layer\n", "        self.self_attn = MultiheadAttention(input_dim, input_dim, num_heads)\n", "\n", "        # Two-layer MLP\n", "        self.linear_net = nn.Sequential(\n", "            nn.Linear(input_dim, dim_feedforward),\n", "            nn.Dropout(dropout),\n", "            nn.ReLU(inplace=True),\n", "            nn.Linear(dim_feedforward, input_dim),\n", "        )\n", "\n", "        # Layers to apply in between the main layers\n", "        self.norm1 = nn.LayerNorm(input_dim)\n", "        self.norm2 = nn.LayerNorm(input_dim)\n", "        self.dropout = nn.Dropout(dropout)\n", "\n", "    def forward(self, x, mask=None):\n", "        # Attention part\n", "        attn_out = self.self_attn(x, mask=mask)\n", "        x = x + self.dropout(attn_out)\n", "        x = self.norm1(x)\n", "\n", "        # MLP part\n", "        linear_out = self.linear_net(x)\n", "        x = x + self.dropout(linear_out)\n", "        x = self.norm2(x)\n", "\n", "        return x"]}, {"cell_type": "markdown", "id": "7fce7456", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011828, "end_time": "2023-03-14T15:51:09.844049", "exception": false, "start_time": "2023-03-14T15:51:09.832221", "status": "completed"}, "tags": []}, "source": ["Based on this block, we can implement a module for the full Transformer encoder.\n", "Additionally to a forward function that iterates through the sequence of encoder blocks,\n", "we also provide a function called `get_attention_maps`.\n", "The idea of this function is to return the attention probabilities for all Multi-Head Attention blocks in the encoder.\n", "This helps us in understanding, and in a sense, explaining the model.\n", "However, the attention probabilities should be interpreted with a grain of salt as it does not necessarily\n", "reflect the true interpretation of the model (there is a series of papers about this,\n", "including [Attention is not Explanation](https://arxiv.org/abs/1902.10186)\n", "and [Attention is not not Explanation](https://arxiv.org/abs/1908.04626))."]}, {"cell_type": "code", "execution_count": 8, "id": "4e558437", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.868749Z", "iopub.status.busy": "2023-03-14T15:51:09.868159Z", "iopub.status.idle": "2023-03-14T15:51:09.878028Z", "shell.execute_reply": "2023-03-14T15:51:09.877306Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.024345, "end_time": "2023-03-14T15:51:09.879671", "exception": false, "start_time": "2023-03-14T15:51:09.855326", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TransformerEncoder(nn.Module):\n", "    def __init__(self, num_layers, **block_args):\n", "        super().__init__()\n", "        self.layers = nn.ModuleList([EncoderBlock(**block_args) for _ in range(num_layers)])\n", "\n", "    def forward(self, x, mask=None):\n", "        for layer in self.layers:\n", "            x = layer(x, mask=mask)\n", "        return x\n", "\n", "    def get_attention_maps(self, x, mask=None):\n", "        attention_maps = []\n", "        for layer in self.layers:\n", "            _, attn_map = layer.self_attn(x, mask=mask, return_attention=True)\n", "            attention_maps.append(attn_map)\n", "            x = layer(x)\n", "        return attention_maps"]}, {"cell_type": "markdown", "id": "f521d265", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011391, "end_time": "2023-03-14T15:51:09.906307", "exception": false, "start_time": "2023-03-14T15:51:09.894916", "status": "completed"}, "tags": []}, "source": ["### Positional encoding\n", "\n", "We have discussed before that the Multi-Head Attention block is permutation-equivariant,\n", "and cannot distinguish whether an input comes before another one in the sequence or not.\n", "In tasks like language understanding, however, the position is important for interpreting the input words.\n", "The position information can therefore be added via the input features.\n", "We could learn a embedding for every possible position, but this would not generalize to a dynamical\n", "input sequence length.\n", "Hence, the better option is to use feature patterns that the network can identify from the features\n", "and potentially generalize to larger sequences.\n", "The specific pattern chosen by Vaswani et al.\n", "are sine and cosine functions of different frequencies, as follows:\n", "\n", "$$\n", "PE_{(pos,i)} = \\begin{cases}\n", "    \\sin\\left(\\frac{pos}{10000^{i/d_{\\text{model}}}}\\right) & \\text{if}\\hspace{3mm} i \\text{ mod } 2=0\\\\\n", "    \\cos\\left(\\frac{pos}{10000^{(i-1)/d_{\\text{model}}}}\\right) & \\text{otherwise}\\\\\n", "\\end{cases}\n", "$$\n", "\n", "$PE_{(pos,i)}$ represents the position encoding at position $pos$ in the sequence, and hidden dimensionality $i$.\n", "These values, concatenated for all hidden dimensions, are added to the original input features\n", "(in the Transformer visualization above, see \"Positional encoding\"), and constitute the position information.\n", "We distinguish between even ($i \\text{ mod } 2=0$) and uneven ($i \\text{ mod } 2=1$)\n", "hidden dimensionalities where we apply a sine/cosine respectively.\n", "The intuition behind this encoding is that you can represent $PE_{(pos+k,:)}$ as a linear function\n", "of $PE_{(pos,:)}$, which might allow the model to easily attend to relative positions.\n", "The wavelengths in different dimensions range from $2\\pi$ to $10000\\cdot 2\\pi$.\n", "\n", "The positional encoding is implemented below.\n", "The code is taken from the [PyTorch tutorial](https://pytorch.org/tutorials/beginner/transformer_tutorial.html#define-the-model)\n", "about Transformers on NLP and adjusted for our purposes."]}, {"cell_type": "code", "execution_count": 9, "id": "985cd2d6", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:09.932968Z", "iopub.status.busy": "2023-03-14T15:51:09.932104Z", "iopub.status.idle": "2023-03-14T15:51:09.942882Z", "shell.execute_reply": "2023-03-14T15:51:09.942198Z"}, "papermill": {"duration": 0.026395, "end_time": "2023-03-14T15:51:09.944188", "exception": false, "start_time": "2023-03-14T15:51:09.917793", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class PositionalEncoding(nn.Module):\n", "    def __init__(self, d_model, max_len=5000):\n", "        \"\"\"\n", "        Args\n", "            d_model: Hidden dimensionality of the input.\n", "            max_len: Maximum length of a sequence to expect.\n", "        \"\"\"\n", "        super().__init__()\n", "\n", "        # Create matrix of [SeqLen, HiddenDim] representing the positional encoding for max_len inputs\n", "        pe = torch.zeros(max_len, d_model)\n", "        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)\n", "        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n", "        pe[:, 0::2] = torch.sin(position * div_term)\n", "        pe[:, 1::2] = torch.cos(position * div_term)\n", "        pe = pe.unsqueeze(0)\n", "\n", "        # register_buffer => Tensor which is not a parameter, but should be part of the modules state.\n", "        # Used for tensors that need to be on the same device as the module.\n", "        # persistent=False tells PyTorch to not add the buffer to the state dict (e.g. when we save the model)\n", "        self.register_buffer(\"pe\", pe, persistent=False)\n", "\n", "    def forward(self, x):\n", "        x = x + self.pe[:, : x.size(1)]\n", "        return x"]}, {"cell_type": "markdown", "id": "de428911", "metadata": {"papermill": {"duration": 0.011324, "end_time": "2023-03-14T15:51:09.972641", "exception": false, "start_time": "2023-03-14T15:51:09.961317", "status": "completed"}, "tags": []}, "source": ["To understand the positional encoding, we can visualize it below.\n", "We will generate an image of the positional encoding over hidden dimensionality and position in a sequence.\n", "Each pixel, therefore, represents the change of the input feature we perform to encode the specific position.\n", "Let's do it below."]}, {"cell_type": "code", "execution_count": 10, "id": "75f336cf", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:10.000523Z", "iopub.status.busy": "2023-03-14T15:51:09.999831Z", "iopub.status.idle": "2023-03-14T15:51:10.443702Z", "shell.execute_reply": "2023-03-14T15:51:10.443034Z"}, "papermill": {"duration": 0.464261, "end_time": "2023-03-14T15:51:10.448275", "exception": false, "start_time": "2023-03-14T15:51:09.984014", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDQ4LjcwNzI1IDIyNi4xODg3NSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJytV01z2zYQveNX4JgcvML3Akc7jt3mVNea5NDpwWMxsjwWNYrq+O93QUkkSMIgM5MDPeaS3PfeArt4WlxXPzeP1d+3V/zTPVt0d48HJvkzXWsu+DNdb1zyW7rWTNDdlhnjAQUqS3cvyZ1SDqT3aCkqendPjH1ni0tKcaBvbhkzAmwQjj7SCNZoemvLNGpQuh99SaNKaPDuGO4ypNEGaM8z6bVW4AyXzoFW/EfFv/GaLy5VpERy6XqL1Hi/EHv6ToN2PCo/fZtJ/rjliz8lv97xO3bH9+e8gkoYcwvwp+wUyWtPggbESTq7olV4Y3v6K/gFEYhfGClCfKwUhIjMrpZscSO5FHz5vVmh5Yr9wz/Ij/xfvvzCPi/ZHWsYMJSAaAfISbCE7CwhN+WewhVjYCkcGDVETqMlaCkECDcHW+WwjQQxUp1Gi9j0FGfp1jlstIBj3Um0iO0Cbb052CaDraQAPdKdRkvYStDTWbptDttYECPdabSIrT24WbpdDhsDuLHuJFrEpmmjZ+nGDLaWhibEEDuNFptbIIRZun0Om+ZwGOlOo0VsQ+Nxlu7Qw063q7Vg0bg48gMo9FKV8vz1MTKKfD7sDpv/Nruab2p+qPavVf1YjfXlBn48M0CMj4HcutIhIpvXmmHi8RdnZwcvkUqFfgDfRfPtBB5lfCqdB+/lBH5mfRMC1B9CjQi00QkCVHUqRZlAbpAmBKjUelyBNlomEALYqQLkhmmHTyXEkf42WEZ3BsKUejPY4jHDRcxFjYzN4UsT3BgbdDHNH5vVqqr5arOt6gPt7zSp4l+O7qqxBn3TMWEQehv9Puuatu+5Jnr/F6xX7+1+172XXTS61omlWqfrgAa8OLZhOH2W1E+NJ4QF2Qyv84x4eOE0HnarTb3mu5/VD/40KPIhrfLJcqZWVpysLNOBxpUdlznKcYNCJNFUb5JiZEJnWEsfDWliLGM65Y+4/uwq1dFVJo7y7CbXKS3rgZyq0KHRgNE39MO5riAr2X5vwGo6ADQKF0Z72sfGPm6D8+IIQNuVek+shGzEtP9E+jfy4rp6fvj6ev9QHy62m/r1cHLJbVO3EuiEljSYTF9BG50QQB2plVPOaiXUPAGpc/kdAmiwBamVUX0FXXhCQqAfTLQCzgWtx3MlK0H95jWQNChRaG0Gq5DEJ0SQAiCWZAMsXYXpSByzQ77jQhbdBIK0Ay5dfIoLtZILziI5WSpIiUtayBwXp6g1tTU44NLFp7hQKxr6HyWiNkUuOUedcvGafrpoZ/yASxef4oLRnzkior3DIhcs1yU9FBIqZS+WMJnnxgY7pXR2vjPWNTUhCv/+WJ8z7NsUM86AHI3mZLgnAf8DboyWgQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEwMjEKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCA3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNzVSMFCwtAASZqYmCuZGlgophlxAPoiVy2VoaQ5m5YBZJsYGQJapqSkSCyIL0wthweRgtLGJOdQEBAskB7Y2B2ZbDlcGVxoA1pQcDAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9MZW5ndGggMTcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCRwD/gPO00+mC3H9by5l0gxRjyy9EV3TslYfHxpSN92hjT4QtXOV0Gk5TGY+Lu2ZdoMthMtNvvJq5wFRhkdXsovoYvKHzrGaHr1UzMYQ3mRIaYCp3cg/19ac47duSkGxXYdCdGqSzMMyR/D0QU3PQc4iR/CNfcmth0JnmFxctqxmtZUzR7GGqbC0M6o1Bd8r11Hqu8zAR7/MD30E+ZAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMjQzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1Ru60DMQzrPYUWOMD62b55Lnh4xWX/NqScBKlEQxRJycNTumTKYX1KRkiOLg9tGktsujw3QlOHioKpa4nqlKuZpsxTLE3Q895ZruYY4HtVN9Tf9IheApFRglVhgQ6QO7hg+NlrJmxRCyIxhlAzgGnCCnO4EjEEGYy1ZxiUKgxO1c8qV/svp2XYKrB4MJ0iP7KaaKdfuhx46ykHQtjclbt6IU0I7o0GY8wsXHepsp0AHEx0mYmMWLwNx9MhDA1emgascNaNmCCxGyOlD14HGdOwd0UedbcY8b5bxpS71c99UX3mXe0fCMEbJ/h7AcobXV4KZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvTGVuZ3RoIDE3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCA3NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztTRSMFAwNgASpmZGCqYm5gophlxAPoiVy2VoZApm5XAZWZopWFgAGSZm5lAhmIYcLmNTc6ABQEXGpmAaqj+HK4MrDQCVkBLvCmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTYgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE4IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcyIC9IIDgwIC9QIDk3IC9hIDk5IC9jIC9kIC9lIDEwMyAvZyAvaCAvaSAxMDggL2wgL20gL24gL28gMTEzCi9xIC9yIC9zIC90IC91IC92IF0KPj4KL1dpZHRocyAxNSAwIFIgPj4KZW5kb2JqCjE2IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjE1IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9IIDE5IDAgUiAvUCAyMCAwIFIgL2EgMjEgMCBSIC9jIDIyIDAgUiAvZCAyMyAwIFIgL2UgMjQgMCBSCi9laWdodCAyNSAwIFIgL2ZpdmUgMjYgMCBSIC9mb3VyIDI3IDAgUiAvZyAyOCAwIFIgL2ggMjkgMCBSIC9pIDMwIDAgUgovbCAzMSAwIFIgL20gMzIgMCBSIC9uIDM0IDAgUiAvbmluZSAzNSAwIFIgL28gMzYgMCBSIC9vbmUgMzcgMCBSCi9wZXJpb2QgMzggMCBSIC9xIDM5IDAgUiAvciA0MCAwIFIgL3MgNDEgMCBSIC9zZXZlbiA0MiAwIFIgL3NpeCA0MyAwIFIKL3NwYWNlIDQ0IDAgUiAvdCA0NSAwIFIgL3RocmVlIDQ2IDAgUiAvdHdvIDQ3IDAgUiAvdSA0OCAwIFIgL3YgNDkgMCBSCi96ZXJvIDUwIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTcgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgL0kyIDE0IDAgUiAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggNDYzIC9IZWlnaHQgMjMxCi9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDI1NSAo/v7+/v79/f39/vz7/vv5+/v7/vr3+vr6+fn5/vj1/vfy/vXw+Pj49/f39fX1/vTu/vPs/vHq9PT08/Pz8vLy8fHx/vDn/u7l/u3j7+/v7u7u7e3t7Ozs/evh/erf/enc/efa/ebY/eTW/ePU6urq6enp6Ojo5+fn5ubm5OTk4+Pj/eLR/eDP/d/N4uLi4eHh4ODg3t7e/d3L/dzJ/dvH/NjE/NbB+9S++9K8+9C5+s62+sy03d3d29vb2tra2NjY19fX1dXV1NTU0tLS0dHRz8/Pzs7OzMzMy8vL+sqx+ceu+cWr+cOp+MGmycnJ+L+j+L2h97ue97mb97aY9rSW9rKT9bCQ9a6OyMjIxsbGxcXFw8PDwsLCwMDAv7+/vb29vLy8urq6ubm5t7e3tbW1s7OzsbGxr6+vra2t9ayL9KqI9KiG9KaD86OA8qB+8Z5875t67ph47ZZ27JN065By6o1w6Ituq6urqampp6enpaWl54hs5oVqo6OjoaGhn5+fnZ2dm5ubmZmZl5eXlZWVk5OTkZGRj4+PjY2Ni4uLiYmJh4eHhISE5YNo5IBl4n1j4Xth4Hhf33Vd3nJb3XBZ221X2mpV2WhT2GVR12JP1mBN1F1LgoKCgICAfX19e3t7eXl5d3d3dHR0cnJycHBwbW1ta2traWlpZ2dnZGRkYmJiYGBgXl5e01pK0VdJ0FRHzlFGzU9EzExDyklCyUZBx0M/xkA+W1tbWVlZV1dXVFRUUlJSUFBQTk5OxT48wzs7wjg6wDU4vzI3vjA2vC00uyozuScyuCQxtiEvtR8utBwtshkrsBcqrRYqqhVcKacUXCmkE1wooRJcKJ4RJ5sQJ5kQJ5YPJpMOJpBcciWNDCWKCySHXG4khAkjgQgjfgciewYieAUhdQQhcgMgbwIgbAEfaQAfZwAfTExMSUlJSEhIRUVFREREQUFBQEBAPT09PDw8OTk5ODg4NTU1NDQ0MTExMDAwLi4uLCwsKioqXChcKFwoJiYmJCQkIiIiICAgHh4eHBwcGhoaKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgNDYzID4+IC9MZW5ndGggNTEgMCBSID4+CnN0cmVhbQp4nO3dd5RsWVXH8WfAQWEwYQBFAR0GEIURs6OCShAVAwYMoKPigAqYMWNGBkEwYADBiJgwYAIEFcUso5hFgvBAUUDECTryZry/T68+p+/tW9Xd9/XrGmrt3x+z5nVXV52zf7tWf3vvfU6depPoP6IrBt0m+sPopdHHRj8RXTvo86Pvi14RfW/0BVG++ePRx0X/EnmOCwflWa/w/G8WvSD6x+iWg54RXRN9VPT06HT04EHfEV0XfWv0pVG+9yvR3aP/i34zeq/ohYP+MrpB9Orov6N3HfTHkT19TPSTUZZ97SWDfiCyp8dGXxh54ScP+sTInv4gul105aBXRW8R/XX0D9G7Rc8a9L/RXaNfj+zpi6NHDPLU3xx9eeSFf2nQvSN7+vnovaN/ji4fdMPotdHro5tHfxK9ZNCHRD8dnSo/y8/ys/wsP8vP8vPofnryb48eOsgL/2p0t0iofyu69aB/iv4qOhUJGLsuGPRH0aok+P6oJ8EDonzzx6KPjwTseVGS4MIE7N+jg5Pg16KWBN8Z9ST4siiv+8vRPSIB+4VoJgleE7UkkAWJ10skwU9Fq5Lg0ujAJLjywCS4S/Qb0aok+IqoJYEseEMkCcrP8rP8LD/Lz/Kz/FzgJ759UnRm0H9FnxfZwV9EfjSreo/o4dHVkZf/tigL+r3IQ0XnE6L7D/rPSBBYDNN+JHrZIBkC8j4s+u3IwmPZHaOvjhLzF8qVxw96+wjMeVoWfEZ0n0HCJBJi8rZRwsH/q6Kvjd43koJZ8Z9FHxhxRY4K0aMGvWXUyftvowcNkhxyzop/NnqXKBkrCV4UPSaSo3IoD/3X6COjZOCD/z56+SD2jP04A2ZX+NEN6X6Un+Vn+Vl+lp8n5KfF5Lfxsy4a9JWR8Pll/kPRTaKGAkoUnx19UgSP8gK/E71zpK7T4veN0R0iJSOL+fMoJQ3VJUsWvidGbx6lBJQtvvzvIlDw0VFwwor98n/PCI28eFf+5es/F3lsfshPex7P6LkVmvJqXtcKoBBcU3LJOq3Y2u3CfrIxO7TXd4rs32MDb2LzWZF4iRycSixFVXxFWswTfC6M/dgxJFnv8T8c8aMXuMZ+lJ/lZ/lZfpaf5Wf5ucBPPPXA6JWDMJWVCpgV3SJKl+xvIkvWxVFGsu2LB0EyZGhFr4sCljpwXup3I+AHFNME+voIQHLWNiwhNRx1qc+JUOr3RLvZ8wrsCGGVo94nCo1KDivwf/nSo24/SCfP49nuOeRi8PNtos+N1J7e0JT1KHC9VWS1WfblWb+d2JNikH1+V5SdW4Fo/GjEmg+NwsmiZwVoXMksMeYKCuaAQMSUVwa6+aQ05N0ghJD/9wd9agSuy8/ys/wsP8vP8rP8XODneO+3H+9d1NreRVRs7V28bTsvzAuu8Kft/fR475xte3/deO9ywt6TJU9fsfdbtL3LufHeL12x97b1PXvXJQweWoFioCkoLasPiFKAU5O0AmSciuPjbzXItM9TI4U2rPlvUeqJypppQD70TyM43eaqvihStdT/0nfMClTtUDAaV5N8QpSumhXor6mWGi7S00zh838iuyg/y8/ys/wsP8vP8nOBn/Z+z+iyQRYkQr5rpRAr0TfDrByXTuN9vBTcS6y8Hna0A9M19xp04wgnIz2T1UZ42g5kgtgaQH7rKA1GIz9Gh9IqfVkDa21Ldb0Pim4aSbB4oRsqyWzAzE4GrrVtw+EXS4eHRCaP0s4Ubs/PPLZ/Q3TnQQaJlAD1XKVgsoeB6oMqi18TmRPKqJWerhKg7ubpphgisaWbBqYfyk9roXprXdvk5Z4yyJC3QiafvV8stKWbXZSf5Wf5WX6Wn+Vn+bnAz+5bppQeGZl0Msj8yRGeev6gl459M0UF98LD50WfGekmGpTatW3HN9NeGoZmoW406NMjY1Bqbwiw+eZI2OOiD44AYap/hrDnfAtvI0bDZbqSXxKFk9UqJ76ZqXr0oPeLIC9Ah5jm2OKb5+cbnP66KNXFMO6tzGs/Jxr7BkSNyGlgmtw2FPawQaB44lvm8H4mAugZUL8AwpqHe+4g4+Seu/eF/Q2SY3fvHpmfKz/Lz/Kz/Cw/T8hPPAQUspXvjjSN/CJu4HJdXpMrjPLKDvwYZM5vaeEzRZ0IPRprJAmMyPRAQhu7DTWxEhnou6ksKVEFbzSftI/M4Mi563alIsJUNOIYUsa3bxtBqsDYvb4qypiQ5BOTDldWFWNVkZSjYIb6mDpY6lgqUXANr6jm5MXZYC34kf/OiocrjaQLMH4Ebrx/2iCJyv+ewDGqncW+nFHKceppITgHstWkpCw2c0Q8Za2+lvKz/Cw/y8/ys/wsPxf46b/aTelYqQVpGjmGpW/zdlEKGWjUUWvkpnSDdLMYq0LATmBhx8wNI0wlDQT8ERGGS7VIaQjp9cyxlixSrQprKu6oYd1skPPMyFuRCF0605bm3um2FrEStdSTFLNceeMcGXrXmct0kCkj7T9Z3OtjLYuVtWSxA3XBeAz6jpED5upJsjhnwOayWDYlixW+cK+RIrNJqRGZlcrM1SOQtGwdZ7F/+bpHeGyyWInJ85Sf5Wf5WX6Wn+Vn+bnAT3xroCfdMH0hNTkHmJ4Z+fkEuJfXeuBxZopVDpEjQIysLJYumaA5EoWAkV66YQ/KIHNo72m6PrAO97aJ68Z9p1nTbstx1sswt2KgM+tOo6foJWkgMhY0KB5OTsvpKSqOQJRJ4/34l697xLOj/JASaMp0D/OMnjsvIq28rpS1FifWsjzlSyuW4qdH+/El7tq1/Qf0Hc0XGwVO8RK5Ow1SShVV2admKOYJPhf4UX6Wn+Vn+Vl+lp/l5wI/G8ddG6rT51PSU7rKVXRP/pYoBThzxupOUCrDNXc2SZSimqPgJmZUz/Tnwr4d8jrpKWylIelCXsUtfVRTN2qG6RdiUBMzMNs5r5Td3GOkJqn2pvXZ8bhtBwti53CyqqDO7DdF94u0SdNVVdszQP1pEVT9xSiNxxQtn98zbbyffmoe7RttSt3Qrc/mqR1/0yt90yjlSP1ljA9QIXxAX1nzqhXvHJbBb3+D8DOVxcsyeaTquqefXX6Wn+Vn+Vl+lp/l55H8xLcpo90sFGVk2nAylPJ65q8CrvBQ5UuYsKBAtu5bj6YVJaIOjlkpGpMmdhBK08rD1FakGIi1M4Sti2mSSlnMubAYjiSFW6kP7gp66oxiOxN48iV0KaMUA1Mo1JA05awhq6SpcxrWZIiCpeKea48zOqZnrAip2SlNsHDSTTkOIvePmeDIbrjm4uUBHupPCr7p/+YZPbXCp8TG2hIy496oXlaWn+Vn+Vl+lp/lZ/m5wM8xRWn9IUYoZeAISqb154CYySjlL4zoIxbSfTO+7pML8hkMt1TXS48S5KlkIWAdQs3RULAz9Cpf+qjgt9fGol7vc/Y/mIkkzXcFP5+r8veDUbBU9c+FQO8fKcqFk98hckuRQ+pajY6EpbYJ4xGjhiy+d1N3u3fxTJuUH4XrDIgWL0VCLdv0UY1rKXyamgOzDtnlBJ1B+fMjfyfkPNqtMw73KZGpMY1dLVsfl5WPvXA1tSl/ZUQp20fbmsrP8rP8LD/LzxPyEw8ZEco8TJjoTjwCKPkcoEuYlxqRAWd3yliu3/kCkF34FS4Ittd++Z9pZ5nH4YABvgmpPN5Peo48meB4flDgNRN4ZCBMDEEjukmpImnPQSoJ5oOcwlWSzDkyLS7jR643zjC3yWUVKg08MZQr4SSBlEP4STSTfLgKYY0zcIJfclH0MVgSkitaZY6yy+6QnW6brHeln6NlDpKHBA15q2E51I3NVNCSF86Q76kPlZ/lZ/lZfpaf5Wf5eSQ/FwWYlQLM3gRYV20S4OSFAJs97gF2f/A4wPpuBnEMGifAmFXBRoCN2STAakE9wCpC8DiRWxVgX+oB9ng/mQDD7JkAPyeDzz6NQU1qHGB1IwEGqD3AmfjpAXa3wH0jZbfMM6mKKb35i0G1LO0801qqaIpK/sJQXkshDmarus29ORpwl5/lZ/lZfpaf5Wf5ucBPfOuSvVTEBF5Z7MMjgztaM6ntMcqEsg99gpiWlbqWrpqlKZxB0qxP10fdEAFbpHZbUkXLTc1MDlluA+KZJbe820k8j7dR2ZfqnP17fgU4gUka6l2pXMpFR8WMjCcfzeE4si8rHa1zX17wXplOX4w12mQpcLJMjrq8mJVafDkdj0Flq4sEwKmUzVXGSqDSVh3UrFGSRg9Q+dJIFcLWDcyUFcx2jA4eS2WV0lDzixtwl5/lZ/lZfpaf5Wf5ucDPtbESZfFO4OdixanECpxxkZ9ileqc01A9VsaStAOTHO72ESs1RvMwDnBlitpFxWIl53J/443y+aJw0jC3Y1hipX6XaR/4KVauQVI4CyeLlYKaWLkwIG3F541jhXTNgotVAFjfVcEOGbce7UyBbw6nPV6oBT3RVzJkCGucRQuzg2sGYnmE7VakFCHVAU02qU5ibfcHpGipc2oQvfwsP8vP8rP8LD/LzwV+ipWopQdqsNqZLhcbqliJcuaY0K7oq+bl4pv7Y94MROuS4l7lLNf0hH2xo4NdCJjPDr/Hdazp4h9lRBCqqpiJLPliErtDcTLqykbGqBbfNjw+07SqLLaKmOdSOU/d0vnqqxpAZ+ZZGVRiA3dz5tYeoLcdOC3F3UOAqfMHgPudlPoku7ZyxtIkvLlsdVNZb3g6w2swW93QzDvW9jdIOtbuH/K3SflZfpaf5Wf5eUJ+HmF717TttXLMVYK7anthJf0fJ5kQk/NIDkvHTy03562NNBtANh4UflJ/cgJHwUZhKncu6zsZ5jbj5LQznMppJu05SGWIyIc2hKuMLztLpJBjkNkBnlRzHJ++Q6SkYxZcFy8X80Eth6F8ziPgyrEoB5ZAl+lnqKLFl4/DMIek1KPX59w6BksrziluR9MdZdf/CxOBMbcf9uoPdgpEdSwDV53NWoOQys/ys/wsP8vP8rP8XOAnvrXR9MwMVjuL5V4apOs4VAAK7eoXOUh918a8iaiuGu5V9HGAK+0mnyCl+YSAWYPhGgW7LlDfjZVMDfyxGAuCYt4HEcEiMpYcKFKuJGm05+SQypW0apws3TosOwrdiFl6dmyWtw2dJ+28xs9dhyPple+c8btnTNiT91Fnbeve5e2dd1T5WX6Wn+Vn+Vl+lp8L/Dzq600qYuOy2MzrXTF+PdFsGKyk53j7qxoLc6TxsGIg3zjY6mbc5TPHed8qaPJChsiVcLIipDySUXJLliXdHKOTgXJRVsrPVNZkrNxVXpPPSWw1NhAt6+W/Fl/eEgayvEu8X9xDgKkzSe6iYjcBOPVm1iif9akHaEJbI9AtPaa20wjzwVf6Yj5mA2u7XCDDSC4+1CUsP8vP8rP8LD/Lz/JzgZ9ez1W7uQPOOnymgEnhTrqpm1m3HWiOqqph3tTY7NOOXXusP5dI6NbdoxGwEp1eXiKnhap+p4+q2ec6v7T+FPh0Ag0d6a2m+qdNqBjoLqQxHmu3QmQ9V8ff4rXmq8pih2Vt2EbMipAdmyVSQ+fenm0ArdcpDSVkI+lXJ1EnOC2VX7+rxtV7wHoM152wV2F21xi4y8/ys/wsP8vP8rP8XODnWr5dR7sT5p28yoh9r+lL68ttFDwuXe2wcNv7BIoTptc0MhbDjscJcEdk0edDDFEVnMAyBxsxc7djM++TBNBZXsgQuZKkmUC03JJlSTdtWxkoF2Wl/Eyiyli5K4vlcxIbXMt1WS//vRMaZnuXeL901s6bybvK+6v8LD/Lz/Kz/DwhPzsPpZpxXoMiAzfISA8thQ90ZOLaWI4Dyhgpg7y6ajhJ4aTBkhsBLxoTk3ZbVqXsYvbHcl01DKAytG0/Johtr/XijA4hKSWdMU5pzwmY6s+lu2AlokpDHa6UixJ4xaM5zMoYE8vMPD+yAVeKUB26jEY38oJeilYdv5xbbwwmfZ7a1GhMkpm/HhPZM8ZYZhjr2U2tQQjQys/ys/wsP8vP8rP8XODnEfj2sMw77q2tIuARBe9h4QkQ74fiq2fIuONxQ+RVnNxheUzME2xu7NzQeUcNoHtEBbiR9DObBR2nmdSYmoHdz0bXDGd9J2yJMcZs6dNZO7l1WQPu8rP8LD/Lz/Kz/Cw/F/iJb90yvMu4O5DrCH4n3THtaqbddMS8N28aw69T4JpsFzY1DEbBrgu8Y2PhBsR42GH/MRTfpZGx8tcEjxsiq5TdcxeU79vUYbm17e7XNMHmS3bV23kdoPdD9I4ymjTB6TFTP7xpAtaREfNO2GPMnmPtXd7eAe7ys/wsP8vP8rP8LD8X+HmWfLsIftdR8FoenoPiOTw+kJNniHmCzRN2HvHzKojeg9JjnB4z9WubJmDdNCbs3uGdY+3W8KXys/wsP8vP8rP8LD8X+Dnm29YIvcGEdBvtTpqjnXnH3NvhtzVNJwTcKHjcR72gA3GD4ts23W5XnYw7Hu9H5B1Gbpw8geUZYp5gc0PnMT/frfFzh+hG0vdehdOdqXe5ekczcN0JewazJ6w94u0HlJ/lZ/lZfpaf5Wf5ucDPc8m3x0TBy/D4YFA+JDavQOdVEL0ep/cj9Uq4niHsGcyeAHf5WX6Wn+Vn+XlCfnYeGjHRHijqZDSiowkjnT/WflbaQ0wTbBqh0w47Nc1A1BxJNc0g1VyzbhVhde1HrQlwXTTWxTPo1fBrwmAjDtsDYg3GumawbIbNusrP8rP8LD/Lz/Kz/Fzg56bp9qy1HI+XE/PZkfRRwPoImE3lZ/l5/VL5WX6Wn9dflZ8jP8d8O4HcVbh73n7dcEY3Hun8/brJjFbx8Aow3kPGKxB5wskzsDwh5oPZeQVET1F6BqdHSL1HK+B6piM4x9oduMvP8rP8LD/Lz/Kz/Fzg56bx9HqtY2XnEyHs8nOdys/tUvm5XSo/t0tvhH7O8O160p1pjq7j3vUEvJ+C1/LwejKeabeu4+SVxLyWnVcB9EqUXsfU6+l6P2GvZW0qP8vP8rP8LD9PyM9NI0dprY6KU+Xn9Vvl53ap/NwulZ/bpSP7uZZvDybdw3HvUTD4QB4+JB4fEpQPJOZDAvQRcPoQYH04zJ7h7fKz/Cw/y8/ys/wsPxf4uWmAKx2rys/tUvm5XSo/t0vl53bpsHy7GHmXEfBiKF7GyIuweTFJnwVdH8ja5Wf5WX6Wn+Vn+Vl+LvBz00BWOlaVn9ul8nO7VH5ul86Ch46Vk84RRB0rXJ0j8jpWIis/y8/ys/wsP8vP8nOBn5sGstKxqvzcLpWf26Xyc7tUfm6XzgHfbgyDNwXLG2PqGZWf5Wf5WX6Wn+Vn+bnAz00DWelYVX5ul8rP7VL5uV0qP7dLm+PbxdoUGC/TCUN0+XmOVX4epE07dDSVnwdp0w4dTeXnQdq0Q0fTSfu5aSArHavKz+1S+bldKj+3S2+EPHT82jQzHaPKz1Pl57Zp0yYco8rPU+XntmnTJhyjim+3S+Xndqn83C6Vn9ul8nO79P8xNVtzCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKNTYwOAplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxMiAvSGVpZ2h0IDIzMQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyMzAgKP/+/v7+/v/9/Pz8/P/7+vv7+//69//59fr6+v/38/728fj4+P707/f39/b29vX19f7y6v7w6P7v5vPz8/Ly8v7t5P7s4f7r3/Dw8O/v7+3t7ezs7Ovr6+rq6v7p3f7o2/7m2f7l1v3i0v3h0P3fzunp6efn5+bm5uTk5OLi4uHh4eDg4N/f3/3ey/3cyf3bx/3ZxPzXwvzVv93d3dzc3Nra2tnZ2dfX19TU1NPT09HR0fvQufvOt/vMtPrKsfrIr/nGrPnEqdDQ0M7OzvnCp/i/pPi7nve5nPe3mfe1lvazlM3NzcvLy8rKysjIyMXFxcTExMLCwsHBwb+/v76+vry8vLu7u7m5ubW1tbOzs/axkfavjvWsi/WqifSmg/OkgfKhf/GeffCce++Zee6Wd+yTdLGxsa+vr62traurq6mpqaenp6WlpaGhoZ+fn52dnZubm5mZmZeXl5WVlZOTk+uRcumLbuiJbOaGauWDaOSAZuN+ZOJ7YuF4YN92Xt5zXFzcbleRkZGPj4+Li4uJiYnba1XaaFPYZVHXY0/WYE3VXUzTWkrSWEnPUkbOT0XMTETLSULJR0HIRECHh4eFhYWCgoKAgIB+fn58fHx5eXl1dXVzc3NwcHBubm5sbGxpaWlnZ2dlZWVjY2NeXl5cXFxcXFxaWlpXV1dVVVVTU1NQUFBOTk5MTExISEhGRkZERETGQT7FPj3EOzzBNjm/Mzi+MDa9LTW7KjS6XCgyuCUxtyIwth8usxkssRgrrhcqqxYqqBVcKaUUXCmiE1wonxJcKJwRJ5kQJ5MOJpBcciaNDCWKCyWHXG4khAkkgQgjQkJCQEBAPj4+PDw8Ojo6ODg4NjY2MjIyMDAwLi4uLCwsKioqXChcKFwoJiYmfwgjfAcidgUhcwQhcAMgbQIgagEfJCQkIiIiZwAfHh4eHBwcGhoaKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTIgPj4gL0xlbmd0aCA1MiAwIFIgPj4Kc3RyZWFtCnicVcHVYggAAEDRq6ZnpntmprtjYmwY0zbd3d2xidl0D9Pd3d3d3TV8h9frHP4Kf4Tfwi/hp/BR+CC8F94Jb4U3wmvhlfBSeCE8F54JT4UnwjHhqHBEOCwcEg4KB4T9wj5hr7BH2C3sEnYKO4TtwjZhq7BFSBM2C5uEjUKqsEFYL6wT1goLhQXCfCFRmCxMEiYKE4TxwjhhrDBGGC2MEkYKI4ThwjBhqNBD6C7EC3FCN6Gr0EXoLHQSOgodhPZCrNBOaCu0ECKFhkIDob5QT6gr1BFqC7WEykIloaJQQSgvlBPChbJCCaG4UEwoKhQRCgv5hXxCHiFQyC3kFLIJWYRMQgbhPxmFzEKAkFXILuQQcglBQl4hWCggFBQKCSWFUkKIUFoIFcoIYUIVoapQTagu1BBqCo2ExkKE0ERoKjQTmgsthSghWmgltBbaCDFCT6GX0FvoI/QV+gn9hQHCQGGQMFgYIkwRpgrThOnCDGGmMEuYLcwR5grzhARhkZAkLBaShRRhibBUWCYsF1YIK4VVwmphjXBcOCGcFE4Jp4UzwlnhnHBeuCBcFC4Jl4UrwlXhmnBduCHcFG4Jt4U7wl3hnnBfeCA8FB4Jj4VPwmfhi/BV+CZ8F34I6fIPtR/deQplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjQ4MAplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNTMgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNy4xKSAvQ3JlYXRpb25EYXRlIChEOjIwMjMwMzE0MTU1MTEwWikKPj4KZW5kb2JqCnhyZWYKMCA1NAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyMDQxNSAwMDAwMCBuIAowMDAwMDEyMDY2IDAwMDAwIG4gCjAwMDAwMTIwOTggMDAwMDAgbiAKMDAwMDAxMjE5NyAwMDAwMCBuIAowMDAwMDEyMjE4IDAwMDAwIG4gCjAwMDAwMTIyMzkgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQyIDAwMDAwIG4gCjAwMDAwMDE0NTkgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxNDM4IDAwMDAwIG4gCjAwMDAwMTIzMTAgMDAwMDAgbiAKMDAwMDAxODk2MyAwMDAwMCBuIAowMDAwMDEwNjQyIDAwMDAwIG4gCjAwMDAwMTA0MzUgMDAwMDAgbiAKMDAwMDAwOTk2MyAwMDAwMCBuIAowMDAwMDExNjk1IDAwMDAwIG4gCjAwMDAwMDE0NzkgMDAwMDAgbiAKMDAwMDAwMTYzMCAwMDAwMCBuIAowMDAwMDAxODczIDAwMDAwIG4gCjAwMDAwMDIyNTMgMDAwMDAgbiAKMDAwMDAwMjU1OCAwMDAwMCBuIAowMDAwMDAyODYyIDAwMDAwIG4gCjAwMDAwMDMxODQgMDAwMDAgbiAKMDAwMDAwMzY1MiAwMDAwMCBuIAowMDAwMDAzOTc0IDAwMDAwIG4gCjAwMDAwMDQxNDAgMDAwMDAgbiAKMDAwMDAwNDU1NCAwMDAwMCBuIAowMDAwMDA0NzkxIDAwMDAwIG4gCjAwMDAwMDQ5MzUgMDAwMDAgbiAKMDAwMDAwNTA1NCAwMDAwMCBuIAowMDAwMDA1Mzg1IDAwMDAwIG4gCjAwMDAwMDU1NTcgMDAwMDAgbiAKMDAwMDAwNTc5MyAwMDAwMCBuIAowMDAwMDA2MTg4IDAwMDAwIG4gCjAwMDAwMDY0NzkgMDAwMDAgbiAKMDAwMDAwNjYzNCAwMDAwMCBuIAowMDAwMDA2NzU3IDAwMDAwIG4gCjAwMDAwMDcwNzMgMDAwMDAgbiAKMDAwMDAwNzMwNiAwMDAwMCBuIAowMDAwMDA3NzEzIDAwMDAwIG4gCjAwMDAwMDc4NTUgMDAwMDAgbiAKMDAwMDAwODI0OCAwMDAwMCBuIAowMDAwMDA4MzM4IDAwMDAwIG4gCjAwMDAwMDg1NDQgMDAwMDAgbiAKMDAwMDAwODk1NyAwMDAwMCBuIAowMDAwMDA5MjgxIDAwMDAwIG4gCjAwMDAwMDk1MjggMDAwMDAgbiAKMDAwMDAwOTY3NSAwMDAwMCBuIAowMDAwMDE4OTQyIDAwMDAwIG4gCjAwMDAwMjAzOTUgMDAwMDAgbiAKMDAwMDAyMDQ3NSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDU0IC9Sb290IDEgMCBSIC9JbmZvIDUzIDAgUiA+PgpzdGFydHhyZWYKMjA2MjYKJSVFT0YK", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"448.724438pt\" height=\"226.194375pt\" viewBox=\"0 0 448.724438 226.194375\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:51:10.157724</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 226.194375 \n", "L 448.724438 226.194375 \n", "L 448.724438 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 40.603125 188.638125 \n", "L 373.243125 188.638125 \n", "L 373.243125 22.318125 \n", "L 40.603125 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p3c68e96b48)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAc4AAADnCAYAAACXMrb6AAAjl0lEQVR4nO3dd5xV1bn/8T1MoQ8DQx2GFhCQJopEsSCKStAUY1dMYk00N0VjvBZelqjojZpcTK7JNYqSqNFrjXotiF2BWJAmUgRBQOrAFMr04fdH/vi91vo+XNY6cwbO4Of9335ea6/ZZ5+99+Kwnv2srKKiot0JAAAI0mJ/HwAAAM0JAycAABEYOAEAiMDACQBAhKyGhnojOShr3x8JgP1u925yBYG94RcnAAARGDgBAIjAwAkAQAQGTgAAImRROQgAgHD84gQAIAIDJwAAERg4AQCIQAEEHBB4cR/NTUNDw/4+BKSIX5wAAERg4AQAIAIDJwAAERg4AQCIQAEEAAAi8IsTAIAIDJwAAERg4AQAIAIDJwAAEagcdICjos6Bjwo0Bzbu4czDL04AACIwcAIAEIGBEwCACAycAABEoHIQAAAR+MUJAEAEBk4AACIwcAIAEIGBEwCACFQOShOqe6QHVXAaj2sxPTiP6XEgnkd+cQIAEIGBEwCACAycAABEYOAEACAClYMAAIjAL04AACIwcAIAEIGBEwCACF+bAggH4ku4X4diAQfi93YgfibLgfg5D8TPZDkQny3p/O74xQkAQAQGTgAAIjBwAgAQgYETAIAIFEAAACACvzgBAIjAwAkAQAQGTgAAIjBwAgAQIWMrB2VyhY5MraqRyecsU48tU44rU47DwvUeL1OPLVOPK0ky49hCr3V+cQIAEIGBEwCACAycAABEYOAEACAClYMAAPtUixbN+zdb8z56AAD2MQZOAAAiMHACABCBgRMAgAj7pXJQU1eIaOpKJ/ujwkVT/83m3r+luV8HXGfx9keVo+Z+zvbH32zu9ya/OAEAiMDACQBABAZOAAAiUAABwD7T3F98x//3df4uv76fHACAFDBwAgAQgYETAIAIDJwAAERIawGEdL502pgXZNN5HJnSV6acW1+mfKZU+0r3i9KZcG7T/Zky4drL5M+UKd/TgXbtZcp3bp1XfnECABCBgRMAgAgMnAAARGDgBAAgApWD8LX2da5+kqqv8zk7ED97c/pMmXKsmXEUAAA0EwycAABEYOAEACACAycAABFSrhwUWoWhqSuFNHXlmsb0H/LZM/n4Q/Zt6gpPzf34Y9rt6/5DP3umHn+mPIPoP15TPxub+trmFycAABEYOAEAiMDACQBABAZOAAAiUDkISZJkTkWOppapnzNTjytJ9s+x7eu/2dR/b198nub0GTK1L0tWlibLZu7dCgBABmLgBAAgAgMnAAARggsgpPNlcquvdL4Mb7VL5wu3TX381rE29fnJlONo7teZxT/edL+Y7veX7pe/U7130nkcjekrnfd+U3+mpv5OUu3L6i9TrrPQvkL6D/1M/OIEACACAycAABEYOAEAiMDACQBABAog7EOZ8pL7gfhCe3PqvzF9ZcJx7I/jb8zftF5g92VnZzfr/kP/Rjr7aur+032s6fyeMuNJDgBAM8HACQBABAZOAAAiMHACABAh5cpBoVUvGhPzNfXfbEwlj3T2n86KN5n8PYW0S3d1lVT7T2flmsZ8T5Z09p/OKkHpPI+hlWBC+/fbpbOv/dF/aH+Z2pfVLlPOT319vcT4xQkAQAQGTgAAIjBwAgAQgYETAIAIX+vKQV+XajPp7Ctk30zpf1/3lSTprU5i9dXUFVdSPf50/81UP6e1X6rXQWgs5Fgb01eqxxZcBSeN/afzc+6Lc+bvG3wuJAIAAPaIgRMAgAgMnAAARGDgBAAgglk5yCpY0tTVSdJZ0SXVfTP5M1nt/IoWjenfqo6R6jmz+krnd5Ip/acaC92vrq6uSftP5/GneqyN+ZuhsZDvM9X9QmON6SvVfUMr76Sz/8Z8znT2lWrVodDnIL84AQCIwMAJAEAEBk4AACIwcAIAEKFZVQ5Kd6WfTK2C09SVcRrTvx9LtepL6L6h/afaLp197amdf85ycnL22ia0LyuWm5ub0n6h+6a6X2OOLd39+99B6HeSarvG9N/Uf9O6zkJiodd/aCykMlG6YyHPAyoHAQDQSAycAABEYOAEACBCcAGEkJft0/mSb7pfTA/ZN/TlV6tdSCx0v9DjD+k/ncdvHZv14nvoy/Ah+6a6X+i+6e6/trZ2r+1C2mRy/6nut6dYqtdZYwp5pPq8SbVdOvvak5DPlM5iAanut7/6T3Vfqw2/OAEAiMDACQBABAZOAAAiMHACABBhvxRASLWoQDpf3G/MfqnGQvezXiy2XmYOeSE5ZL89tQvpL7QvKxbysrrVJrSvkHaN6b9ly5ZB+4a8mJ6Xl5dSX9a+jenf+pz+dxzSpjH9W/s25m+GtGvqYgT2C/nGM6muRmP1mnhltqutdjZ3N6avumqN1bsJWrtrqqSJGavTv7m7unKv+9r7hf5N/UzWvg217meqq9L9Gmo0MY1fnAAARGDgBAAgAgMnAAARGDgBAIhgVg6qr997RQ6rkkdo9ZmQfRvTl1XFJGTfVPfbUzu/v5A2e+q/pkYnrf12IW1i2oXEqqs1iSD0Owlpl+p+oe1Cv8vQ8xOyr7WfVeUltH9/31T3S5KwyjKh1WcaE0vXfjHt0rVfJkvnak/NPVnTioUmWPKLEwCACAycAABEYOAEACACAycAABHSWjkonZPF6Z4EDqn40ZgqOKlWjLFioRVp/HbWflbFFauKjLWvFWvduvVe21j9t2rVKqV2oX2FnjO/P6v/xsSs8x1SrSg0ZlbG8fMZarUqS2JWeTHamft6sVqjAkvlTu2/SmOh7fwqLw1WX7t2Sax2lx5bfaUmw/nt6qqMJLed2pdVWabeiNVWeomHO/fe5l/9G4ldNUbCmdGurtJLsKw1khGN/WoadAio1JxRaVdrJJdZfVkxo3tpVx/Yv9WXtW9IO6uNhV+cAABEYOAEACACAycAABEYOAEAiGBWDqqtTa2iS2OqvPjVbBpTBSfVmNWmqkoTBKxYSP+h+1nVeCorNWnDbxdaxcdqFxpLtVpRqrHQ/awqLyHtQvtKZ+WaTK5IkykVXVJd9iu08ktTJ+75iWOhy9KFJpyFJPP5iXwxfzOdiXuptgs9F+lM8Ate/lAiAABgjxg4AQCIwMAJAECElAsgNPWcRsi8wZ7ahc4J+O2sOQHrb7Zp00Zi1r5t27bda5t27doF9R8SC93POo7Q+RC/XWgxgtB2ubne91m5XdokVRrbHdiuYUeZu729TNvsqtCY0a5+h/ZfXbZDYjXb3Rf1ayr0ZX6/zb/a6bx2jfEifXV5zV7b1O408gqMWJXxUn6lt1qS9XJ8lfkSvc7lhr4g78dSfYk+SZJkf8wo+084KVKRJEm2MR+b1yJ9sdbGH22drc/eVkZf1r5tWrr3Zm5bo2hHa2NeON+Yq2xrFGHJd58HeUabvHx9nuW211hefluJtSzQZ21uezfWol2BtGnRtr3GJAIAAPaIgRMAgAgMnAAARGDgBAAgglkAoaZGkwb8l+Gtl/mtF+atdtbL/H67kBf+kyRJduzQZIxdxqoJIbGdOzVpw4pZxxYSs46hMefRLyQRWiCiMQUKQl7mb0yxgFSlmpiWztVv9hTzk9BCk6esxLSQxK7Q5C8/eS1J7GQ1/9ishLPQJLfQY/P/ZmMS2kIS08yX7Y1EmpQT04z96reXal87jYQ2o129l+T2r5j7LKyp0OdNdZn2b7WzktVqd3oFVyr0OVWzwxg7rHZGYpq/4ktIolqSJMlOI0ssNDHNT3QLTV7jFycAABEYOAEAiMDACQBABAZOAAAi5BQX9wpq6CdVhK5WEFql3p+styb0rWQGKwEhPz9fYu3ba/WHgoKCve7XrVu3oP79vpJEEyasY7CSKkI/p7TbuU3a7N6hsWTHVgnVl27WWMkGjZVtcbYrN2viQuXWco1tKdNYiSZ2VZZ6SWJbjUSycitJTJOgdtRpgkCFF7PaVNZrX5X1xso2gdVsUk2Lsv5Va1Wg0YoxumdoFZn8HI2182LtW+l93qqjUWWqo97DrQuN6lad9XpvVZjvbXfQ/boUSCynUxeJZRd211jHrs52Vr7ul7TraMQ6S6gqSz97ZZb7mXY26L2/PU9jO2r0ntiRVyix8my9x8p2lznbFbu1AlZ5YuzXUCaxinrdt6LGjZlJOUm9xKry9NqrMpIFa7K9lZdyU09sTGcyojWu8YsTAIAIDJwAAERg4AQAIAIDJwAAEczKQbt2aUKGX0HHqpRTUaETylZlHytWXu5OWpeVlQX1b7WzYtu3a8UMvz+rso9VOSi02o9ftSe0ik86K++kuqxbkoQldoVWaglNePKTpTp00KSQ0OSskHYhSV17ilnJXiFJXNa5SHaVSWj39hJtF5DYZSZ6lW6RWNUWTRzbZSR7VW1175PKrUa1rhKjKlapUTXMihlVZMpr3SQTP6krSezlzaxkL7tijNsunUldltyApK49xawkLj9hy4pZiV6NSexq5cXaFO49qStJkqR1V02yCkns8hO4ksRO9Mpqr8lTVsxK7KqudZ+/odXj+MUJAEAEBk4AACIwcAIAEIGBEwCACMGVg/zkEStxxEqMsGJWUkWnTp3+z+0ksav4dO+uk8UjRoyQWJcuWhkk5G9aySltW+oE++6tayXWsGWNs123YZW0qfnqS4ltX7PJiGnCR8U6N2lj+wZNgNqxWZM2tlRrdY/SWo2V11rVeNzkDivxIjSpwvpXm1/hxkqC6JCbLbGOudqus5EI0b6HV82pyEj6KS7QWC+99tr31uSF3KJ+Esvp2d/Z3t2pp7TJ6lQssR31+jnLazVpY2uuG9uWo5+pJEuTNjYneh9ubNBEkZJ69zxuMa6ViiwjwSdbr73KtkZlmWy9zvxEOiuJLpSV+OYnsIUmtFnPg44dNfmlc2c3EcV6dlnPpK5d9Zry+0oS+1nlx6zEt5aJfk+7t66TWP3m1RKrW+/GqtatkTbb1+qzq2ThSm233kga3eDGKko0AbWkRq+fbUbMTy5LEjuZrMp4foXgFycAABEYOAEAiMDACQBABLMAQnm5UVXfK1CwbZu+PG3FNm3S//PevFnn6/zYli36wnZJib4Q7h9XktjFDqziBn4hA6tAQWjhgZCiAqHzwqEv2/tzGtaciTW3Ys2jWLHCQn2JOGQexYrl1en5371N54XrN7uxuvU6L1y5Tvez54X1GvLnhXds0uMq35b63Ir1Ar4fq01tWiVJEvtFev8FeXte2JgDztM51E75OsfZrps715dfrNdi+2Kdc7Pmhdv20fndnB59NdbdjWUV6hxwfVud+wstkuI/q6xn18aNGyVmPbusZ5z/rLL6t47Vep5ZxWasZ5UfS+ezK0l0Hrh169bSxnp2WfPC1hyt/wyynl3WfK+V5xIyB5wkOj9tFU3JqSyTGL84AQCIwMAJAEAEBk4AACIwcAIAECGrqKhIUhWsyWJ/YthKVrGSSawJ3r59++411q+fvkjes6cmFlj9F7Q2ChR8tURiNcvnOdvblyyVNlsXa3JKyTJNUtq6QleVWFvpvrS9sUpf4rZe1A1NHmnlraTQyUj26G4UASjuoAkgHfsVSKzzED23hcPc76XtwcOlTW5/LUCRVTREYiXb9Jxt2LDB2V6/fr20+eKLLyS2apV+T2vXahKRn8hhJW1Yq/dYK+JYrHvHTwCzEhCspIeioiKJWfdOnz59/s/tJLHvHSupom2DJqI0ePdOtXffJEmSlC9eLrGti1dLrGSpru6yZa0myfj3zpZqvXesRKzQe6dt9t7vnSLj3ikq1GS+TgcZBRAO7uFs+/dNkiRJq0GHSCynn95PSbeDJGQlJPn3inX9r169WmJffqlFWNas0eIGfmKUlXRl3TtWIpPFT0iyEietxEPr3rGu92984xsS8++nXr20IJDVF784AQCIwMAJAEAEBk4AACIwcAIAEMGsHLR5s1Zc8Seev/rqK2ljTTxbSRvWxLM/2V1aqokj6Zx4ThKdfLYSnkInnq2kDT/BqXfv3kF9WQlPravLJFa/zk3a8JOdkiRJSj81kjaW6GoIW5dp0samdVqBaX3V3pM2yms1acOqYRKyOkoXYyUaK2mjexdNJCi0kjaGuRVoCodq0kbLQYdKLLvPUInVd9TvMyRpY906Pf/WvWMlQVn3nf83reozVuWs0HvHr3hlJW1Y1WGsSlZW8kVIsqB171jJU9a9k12m56x+9UJnu2bFQmlTsnCFxLYu0b5KlhpVh7a459u/b5IkvPJU6L3jV4zq0lITnnq1zpVYN6MSVKcB1r3jfgcdhw2UNnkDNDEwu/cwiVW2LJCYXy0udIyxxpPQdn6Fp9Cqc/ziBAAgAgMnAAARGDgBAIjAwAkAQASzcpCVSOMvyVJcrMv8DB2qCRQjR46U2JAhWkWmf//+znbr0tXSpuqj1yS28d2PJLZ2liYkfWFU9lm5s9bZtibrrYn5fGPZpn5tddJ9YG+3QkzxkZoYUXz8YRJrfcS3JFbfS6uM+MkjS5ZodaQFCxZIbOFCTYSwJs6tqjp+BR3rWrEq41jXy+DBgyV2yCHu5xw2TBMLBgwYoH+ztkxiNfNel9jmd2c72+ve+1zarFqslaGW79BEmi3VYdeLX6Wmdxu9VgZ30+WYisdo8kvPsXodtBtzorOdPfhYabN6jVaRWbZsmcTmz58vMf96sRL+rCX/zKQKo7KSdb34ST7WtTJihCaiWDHreunS0v2maha8JW22vf++xNa+o/fYuvmaELZke7WzbVUNs6oc+dXAkiRJehqV0IZ01CW9ika71Yp6Haf3TodjTpBYztCxElu/Vas5+deL9RyxnjcrV66UmJVEZyV/+qxly6yEMH88SRJ9tiSJjk8HHaRVmooK9frkFycAABEYOAEAiMDACQBABAZOAAAimJWDVq1aLQ2XLnWX3Jo3T6vULFq0SGLWkjX+8jRJokknoUkEVvUQa4LXSlIaPtxdwsdKIuicUyuxmgVvSmzr+7Mktu49dzL9y3kbpY2VdJJqIoGVdDKooJXEio/Uc1Z8nC5nlH+0kUgw5Dhn+6stmkBkJZ1YSQNWzE94sq6VkCSCJLGvF7+ajXWtWEkEVtLJoEGDJNY9X8937aK3ne3y2e9Km7Xvfiqxrz7cILGlFdXazluCq6pBL5ZczTlJehpVZA5unyexosPc5cd6HafJfZ2O1oSk3BHHS2xzpaZPLV+u1a38Z4n1vFmxQiv7bNyo95h1vTQ0uMdhVUOyKh9ZS1NZ14b/vLGSm3oV6bJu9Uvek9j22ZrktvYtvXe++tCtULW8RJOz1uzS59lOHQLMX1T+EoUD2+m10meYnrPiY/Ue6zL2aInljRzvbJdna0Wjzz/XZL5PP9V7x0py88ewJNFlDK2l0vxrJUn4xQkAQBQGTgAAIjBwAgAQgYETAIAIZuUgqzqDX4nhhBM0ceT44zUZ4LCRmmhR/cZ0ia16/AVn+9OXdOL/o9IqiVUYy/B0ztPldI4o1Eobg7/vJjn0Oe9MaZN1xPf1OD7SakVvvPGGxN59100CsZaJ8pOikiRJCgoKJDZwoC7hM368O5lunf8h/bRiT+WMhyT2+d9nSGzBm5rYtaDcPV4rscBa9mt0D72mhpwzUmI9zz3f2a7qf5S0+fDDDyX2+uuaQPG+VfllrVtBx1pay1pKzqqKdeKJJ0ps7FitwtK/0E082fWqnv/PHtHKNfPm6LJKi8r1evETx/oaSWKj+xdI7OCzD5dY93N/JLGyTu61989//lPazJw5U2IffPCBxKylourqNBnOrwZjJWyddNJJEjv2WE1S6pmjSTLlL0x3tpf8Xa+Vj+ZpdZtl28OWYhvgJc6MOrhQ2gydpNd2p9P1/G/O7Sox69r274G5c+dKGyt5ytKjRw+JHX64e72cfPLJ0uaoo/Qzdd6ly+htefqvElvyuHu9fGQsdbhqpyY3ZRuJb4Pat5TYqMM0GevgScc42/nfvVjarKvS+4lfnAAARGDgBAAgAgMnAAARzAIIc+d+Ig3ffNN96f+tt3ROxnoh2VohwZpD9efwrPk6KzZyuM49Vc98WGIrH39RYotececcPylLfQ51TNe2EhvkzaH2Pv8cabP70FMkFjqH+s477zjbVrGJ0DlU6wVtfw41SZJk3LhxzvbBfXQupPLVaRJb9pjOgc1/25pDdV/wt17mt+ZQjyjWYgcHG3OoRedMco+17zeljTWHas3hzZ49W2L+HGqS6DyqNYfqF+NIkvA51L757vnY+ZKe/yV/1xfr536g842fGQUWQuZQjxjYSWKDz9I51G7n6BxeaYGuZDFnzhxn+7XXdGUk6z5Zv369xKwX2P3iBoceeqi0mTBhgsSOPlpf3O+R6EoiZd4c6mePaYGUuQu1uEeqc6hJkiSjveIDQ4w51I6nXSixDVkFEps1S4/XvwesIgOhc6jWakmjRo1ytq051DFjxkiscLtRZOcpYw71Cb2vP1juFnBZbRSIsIqH8IsTAIAIDJwAAERg4AQAIAIDJwAAEXKKi3tJ0Fpx5IwzznC2H3jgAWnTdbUmS8y98T6JvTpHX4jdtNxdDaHzbE006lz2mcSS/ndKaFaernIyrU6TR+a0q3S2G9poEoH/0m+SJMl3L7lEYhPHj5PYpqnXOtvPfmeytHm35CqJdcjVf8+cMkqTcK697VJnu3y4Jho99thjEnvqqackZr3UbhVs8Cf/L7roImlT/A1N2KqrekViayv1xXc/GehwY3WXEy/ThJ7e/367xGYt0aSBm3/vFh94//3LpY1VFMFaAeNXv/qVxL73ve9KbNt97nXw/u0vS5sZC/WF9s/+R+8na/WJHrf+wNmu/c4vpc3HO7tJ7PFdj0vM+s47dXITfwpOPVWP4cILJdZ1tya/LLruJom98vJKiflJGsPy9YX2n1+gRRH6PztdYh+vLZfYQw+514GV7GglJA0bNkxiP/qRJjydfsltzvaIVrdJm/KbnpfYCmO1pLwWmp0yrKeuHHLYr9xrb/fEf5M20598UmKPPPKIxKwVa/ykQit5x3oeDGunn2nJLbdIbMZf3fP98n3/K21WGElRE8/UxMZBN2v/Gyfoc3u9dx28YyQBVlRo8he/OAEAiMDACQBABAZOAAAiMHACABDBrBz03HP/kIYPP+xW41m4cKG0ycvTidtjjjlGYpcYyTVHDe7tbH955w3SZuZDH0vMqvZjVZY59cS+Ehtx69XO9toOg6TN9OnTJfbii1qFaPNmTYTo3dv9TOeco5WDzjvvPIl1WKTJIx/d+KDEXp67wdkur9XkprGd20hs3K+1IlC3K38rsVfeeFti06a5VWk+/li/k5wco7LPEUdI7NJLL5XY8Ye7FXTW3XO9tHnrPq1qMntbpcS6tdQKT98a41YsGTXl59JmUy89VivJ6plnnpGYVbnGT7bzE+2SJEkuuOACiYUm27002022K6mplzZHddLVgcb/QlcSKbpak+3e/GC+s20lBloroVgOO+wwiV122WUSmzDOrdCz6V59Hrx9j7EiUYlWKgtJtvvmlJ9Im7KhWjkoNNluzZo1znbXrrrCyWmnnSaxH/7whxIr3qZJkfNv/L3EXnnLTYZbX6XJd+lMtnvwQX0mWdW0QpPt/HEhJNEuSfaQbLdpp8Ta5eh1MNFLtjvSS7RLkiSpPPp8ifGLEwCACAycAABEYOAEACACAycAABHMykFHHnmkxP7whz842+1f+C9pc//1Wglj2yNvS6xLrlbyqJr6qPv3GrRCytPtdMK377C+Ept0xx0SG1qtlYgeP9Gt/GIlmFxwtC5/85s3NDnovr//Q2L33nuvs+0n1iSJvcTU+cfqEkeVpZoEVeolA03spkubnfLKPRKbuUGX6rr5mOMkVlJSIrGLL77Y2X76f7T6zLwztbLMw09o0sBnL82V2BF/udDZLj3zF9Lm0X+ukdjixYsldvLJugzdgLvucrY33qvJBn+5W2OWZ67Rc9b6l5qocN111znbf/zjH6WNv2xfkiTJPffodzfi8m9JbO4n053t8lpNDhp2rF7HRZP1Hr79Tk0S86vsdOzYUdpYn2lCT03OenniryX2j2e1elOLQYXO9okz9N6p66lJXO/9Vo/fWlqv5yQ3Ke+YQ3UJt8+/o0lcy2dp1bMfd9SEm/OedJNrPm51kLS5/npNfLMSbs4880yJTXlan0H5V7oJZn95aJ602VStCUPteuqz9svteg1NnTrV2baqjVljh3UdW+PHg5Oucbbfq9aqapf9SKtFnfSFLi/37o03Suxxo2rSHK8S0R0F2v/oT3Rc4xcnAAARGDgBAIjAwAkAQAQGTgAAIuSsW7dWgjcbS7KMGzfO2e7WTZcpuv0ff5LY8R11Yv7Fb+uk+H8+MMTZPmu4Tlj/bs6rEvvb6zoxfPnlmmxQV6eT4ldNcSef/3SGJl68d6pW9rmiUKshHVuolVk+ffpmZ3tOogkaN9ygFVGuv16/k3PPPVdif1g4xdle+RNNIrjm8J9KrLtRWWnGPadLbNtJWtHlmmvcCfziPv2kzbHHakWau1ZrckfLJ38nsakXue3Ka7VKzX0/1qXeejy7TGLWufUr1/Trp8f/27cfldihZVop69Hz/1Nin0wZLbFLx/Vxth9cMl/a3PuQVqSxKgy1aqWJKJPv/42z/dNv6rJ6Myf8WGJX5A6U2Kk92kns85luctD/fq7JfTcayRg/LyuT2E+u1Ao9f75KE8A+/v53nO2f9T1N2gzvoEuNfTBNr9klfTVJzE/YuvNOrZh0yim6TN9vX3hBYhX/caXEfnOKu4yYtTTYE9drBa/sn2gVomuv1WS1gw7SZKNDDnETW+5eoMty9Zn3tMSm/VSvvRVXaVWsm85wl+8akeLYkSR2JaUpz7lVsULHjqkPDZGYNX7cHTB+hI4d/OIEACACAycAABEYOAEAiGAWQJg8ebLEFt3iVu2/7uJHpE3hH++S2OLb9OXXa/O1Wv7o8Uc528ffrXMmdw3UavnWSiifluhqAieccILE7r//fmf79NN1nq+qtFpi+UaV/bNeuE1ik59zV4x44gn9/3lrpYmBM/4msbvu0bmP9VmbnO2VZ+g81jOvXyGxH/xA523bDh0usSmDT5LYv3kvpv95rhYxmDBBV5WwVsR57dVXJFZ0xwxnO6+Fvojd/8YpEjvfWGllrnFsL7/sFiio/PUvpc30o/T8DH/kIont+o3OHz9vvIA/8rxJzvbgx3Vli6VXaSGJJ7+vq/U0TNbiHmeffbaz/YqxItHDb06X2MeD9HqvMFZWSQa5c9a/v0LvpawsncOzVs75cLTO691w018kduusqc52y0FvSZs7ntb5ugH5+gJ7v7/eLbH+r3/ubE+brNfsJ4drIY/hw/U+uegivTZuefUWZ/uGk2+WNkuf0QIFgy/V8z9//nyJDR06VGIvPf+ssz2t60hpM6NOV1C68ovXJHbW5VdL7OyFnzrbzy9bLm0mvveOxErW6LVx91167T3wmfvcvuhu/d5uu1Ofs1N2LZHY5J/r87LzVfqZhlxzq7O9a5eurmPN0fKLEwCACAycAABEYOAEACACAycAABHMAgjjx+tKAQ+Uljrbr278QNosOE5fGH59tE4CL35Hk4j8RJo+R56sx/CMJtIMmqkvq1/RQl9qf/iasRL7bJz7Mv+oUaOkzaRJkyR2+7cPk9j1Y6+R2IQBnZztqz/SYg0TJ06UmLX6xBt1urrL9C7DnO2SP82RNl+u0FU3zr9SE6+GXaKT6c/O05e9q6690tm+tYeuhjDLSKSZXlYoseLefSR283+4SRSXtfhS2vyshyYt/fv39IXwLGM1hNNOO83ZHjNmjLT525qpErvTSKTp2yZXYl9u1OM96ST3eP+7XAsIzCzRRCYrkeatI8+S2NLZU53t657QBI0+R2miy0PPPySxfi9qoYqf5boFFR6drMlB8795msRGjBghMTOR5gQtxHDdGDdp69tDdBWhXxurc1hFC6xiLTNqljrbViJNRd37Elv7xSyJWYk0I55y76fnFr6k/f9Ck8umFB8tsdlPaNGIBzZowZXivv2d7dt+p4k0F1ZroZCfdh0nsZvOHCyx6kfchNBTT9VrauxYfc5OW6WFQm4/+GyJDfRWKln11SppM3683hN/Nla/eW2bJl7NOXScxN47xi0ss/wDLeJz9cOaxMgvTgAAIjBwAgAQgYETAIAIDJwAAET4fz/02Wbu7/mcAAAAAElFTkSuQmCC\" id=\"image37428f5580\" transform=\"scale(1 -1) translate(0 -166.32)\" x=\"40.603125\" y=\"-22.318125\" width=\"332.64\" height=\"166.32\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"m7e826f98c8\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"40.603125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(37.421875 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"71.788125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 10 -->\n", "      <g transform=\"translate(65.425625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"106.438125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 20 -->\n", "      <g transform=\"translate(100.075625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"141.088125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 30 -->\n", "      <g transform=\"translate(134.725625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"175.738125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 40 -->\n", "      <g transform=\"translate(169.375625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"210.388125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 50 -->\n", "      <g transform=\"translate(204.025625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"245.038125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 60 -->\n", "      <g transform=\"translate(238.675625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"279.688125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 70 -->\n", "      <g transform=\"translate(273.325625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"314.338125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 80 -->\n", "      <g transform=\"translate(307.975625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#m7e826f98c8\" x=\"348.988125\" y=\"188.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 90 -->\n", "      <g transform=\"translate(342.625625 203.236563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_11\">\n", "     <!-- Position in sequence -->\n", "     <g transform=\"translate(155.627813 216.914688) scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-71\" d=\"M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "M 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 -1331 \n", "L 2906 -1331 \n", "L 2906 525 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"m0694528001\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m0694528001\" x=\"40.603125\" y=\"22.318125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(27.240625 26.117344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#m0694528001\" x=\"40.603125\" y=\"53.503125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 10 -->\n", "      <g transform=\"translate(20.878125 57.302344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#m0694528001\" x=\"40.603125\" y=\"88.153125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 20 -->\n", "      <g transform=\"translate(20.878125 91.952344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#m0694528001\" x=\"40.603125\" y=\"122.803125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 30 -->\n", "      <g transform=\"translate(20.878125 126.602344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#m0694528001\" x=\"40.603125\" y=\"157.453125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 40 -->\n", "      <g transform=\"translate(20.878125 161.252344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Hidden dimension -->\n", "     <g transform=\"translate(14.798438 150.710938) rotate(-90) scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-48\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"75.195312\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"102.978516\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"166.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"229.931641\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"291.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"354.833984\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"386.621094\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"450.097656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6d\" x=\"477.880859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"575.292969\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"636.816406\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"700.195312\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"752.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"780.078125\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"841.259766\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 40.603125 188.638125 \n", "L 40.603125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 373.243125 188.638125 \n", "L 373.243125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 40.603125 188.638125 \n", "L 373.243125 188.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 40.603125 22.318125 \n", "L 373.243125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_18\">\n", "    <!-- Positional encoding over hidden dimensions -->\n", "    <g transform=\"translate(74.873437 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-76\" d=\"M 191 3500 \n", "L 800 3500 \n", "L 1894 563 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2284 0 \n", "L 1503 0 \n", "L 191 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-50\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"969.324219\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1001.111328\"/>\n", "     <use xlink:href=\"#DejaVuSans-76\" x=\"1062.292969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1121.472656\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"1182.996094\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1224.109375\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1255.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1319.275391\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1347.058594\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1410.535156\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1474.011719\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1535.535156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1598.914062\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1630.701172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1694.177734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1721.960938\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1819.373047\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1880.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1944.275391\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1996.375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"2024.158203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"2085.339844\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"2148.71875\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 395.563125 188.638125 \n", "L 403.879125 188.638125 \n", "L 403.879125 22.318125 \n", "L 395.563125 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAAwAAADnCAYAAAAq9remAAABLElEQVR4nO2YSw6DMBBDZ5KQa/R4vf+aX6/Qh2RkQrrGsj1vElDzG58zwK/VJI9HtJpM4ejQC3aAgoIeH2Sshg4dgnDsMIJDwZEguZYVC2gHKsgCI3EHLlBHqktlggsdMDj5atAXip4D7lA7BUdL6znwS4AfUf29RCMti9qBTklfGoO7gYN++XpTO1R8e7+QNI/UOhMELw3BRVEL8JQcI1FwFziop5R8rPg86JePRlrwifNb78QOVJDybcUdqCAr/Py5ocMNU/IDx8+DGlxOcH8I0B/GEdGO44AOJ/PgAsNIhh1GcDAUGJbe913sMMJYDR304AxLj+AwwT3UYds2scMUeAgm6YcKRgCH3w8jdNCDMxyrYSQsWNdV7DDCWA0jvfJufaVggnuowA/cD++JW/ZYqqiKAAAAAElFTkSuQmCC\" id=\"image11eafd38bf\" transform=\"scale(1 -1) translate(0 -166.32)\" x=\"395.28\" y=\"-22.32\" width=\"8.64\" height=\"166.32\"/>\n", "   <g id=\"matplotlib.axis_3\"/>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <defs>\n", "       <path id=\"m3842230215\" d=\"M 0 0 \n", "L 3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"167.848836\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- \u22120.75 -->\n", "      <g transform=\"translate(410.879125 171.648055) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2212\" d=\"M 678 2272 \n", "L 4684 2272 \n", "L 4684 1741 \n", "L 678 1741 \n", "L 678 2272 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"147.058735\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- \u22120.50 -->\n", "      <g transform=\"translate(410.879125 150.857953) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"126.268633\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_21\">\n", "      <!-- \u22120.25 -->\n", "      <g transform=\"translate(410.879125 130.067852) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"105.478531\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0.00 -->\n", "      <g transform=\"translate(410.879125 109.27775) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"84.68843\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 0.25 -->\n", "      <g transform=\"translate(410.879125 88.487649) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"63.898328\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 0.50 -->\n", "      <g transform=\"translate(410.879125 67.697547) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"43.108227\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 0.75 -->\n", "      <g transform=\"translate(410.879125 46.907445) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#m3842230215\" x=\"403.879125\" y=\"22.318125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 1.00 -->\n", "      <g transform=\"translate(410.879125 26.117344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"LineCollection_1\"/>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 395.563125 188.638125 \n", "L 399.721125 188.638125 \n", "L 403.879125 188.638125 \n", "L 403.879125 22.318125 \n", "L 399.721125 22.318125 \n", "L 395.563125 22.318125 \n", "L 395.563125 188.638125 \n", "z\n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p3c68e96b48\">\n", "   <rect x=\"40.603125\" y=\"22.318125\" width=\"332.64\" height=\"166.32\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 800x300 with 2 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["encod_block = PositionalEncoding(d_model=48, max_len=96)\n", "pe = encod_block.pe.squeeze().T.cpu().numpy()\n", "\n", "fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 3))\n", "pos = ax.imshow(pe, cmap=\"RdGy\", extent=(1, pe.shape[1] + 1, pe.shape[0] + 1, 1))\n", "fig.colorbar(pos, ax=ax)\n", "ax.set_xlabel(\"Position in sequence\")\n", "ax.set_ylabel(\"Hidden dimension\")\n", "ax.set_title(\"Positional encoding over hidden dimensions\")\n", "ax.set_xticks([1] + [i * 10 for i in range(1, 1 + pe.shape[1] // 10)])\n", "ax.set_yticks([1] + [i * 10 for i in range(1, 1 + pe.shape[0] // 10)])\n", "plt.show()"]}, {"cell_type": "markdown", "id": "b41d9627", "metadata": {"papermill": {"duration": 0.015196, "end_time": "2023-03-14T15:51:10.488551", "exception": false, "start_time": "2023-03-14T15:51:10.473355", "status": "completed"}, "tags": []}, "source": ["You can clearly see the sine and cosine waves with different wavelengths that encode the position\n", "in the hidden dimensions.\n", "Specifically, we can look at the sine/cosine wave for each hidden dimension separately,\n", "to get a better intuition of the pattern.\n", "Below we visualize the positional encoding for the hidden dimensions $1$, $2$, $3$ and $4$."]}, {"cell_type": "code", "execution_count": 11, "id": "2f15ac51", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:10.521021Z", "iopub.status.busy": "2023-03-14T15:51:10.520071Z", "iopub.status.idle": "2023-03-14T15:51:12.016726Z", "shell.execute_reply": "2023-03-14T15:51:12.015922Z"}, "papermill": {"duration": 1.516018, "end_time": "2023-03-14T15:51:12.019655", "exception": false, "start_time": "2023-03-14T15:51:10.503637", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNzIxLjkwNjI1IDI4NC4xMjg3NSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzFXE2PHLcRvfev6KN9WIpV/D7asSPAQIDIFpxDkIMhreUVdleQN47/fl61ZobF+eqe6e6xjRV2atlsvuJXsR7fvPru/n8P7+5/fP1t/7efulf107uXjvqP+PnQ2/4jfv7sqX+Nnw/dncXHpy4xmWIjB3x6VJ84e0OcU4AVRfXH37ru1+7VN6jkpbemUIo+2ZDzwQdfLJVoU+5/l/e/bgp050p3nQ+GhoZQZhOtw5ufOueL8bHkHJX5UZs5kskb864KbRwa/7k/Ur2z3ri4/b9PxXD/+33/r/65f/UNC1jqf8DPR/wMbtxzdMjAYEukpsnVqlvR/dS96T9v67WGAnpoW/Xw8fXG2n1G79keXUB9CCZF4uTYu9xTDCZQ/+6p+/Zt9+rveK3t3/7aSbe+fd/9u/+Kvu7/07/9ofv+bfdmeN0KoFMyLif23ICu1vmgkzdsUwieXQjjoPkGoEsw2bnArgFdrfNBF1QbXEZt6O1x0O4GoInQEalk6xvUyjwfNhGh3ZYoMpVx2P4WsB2bxNHmdiVS5gVgczHBR1ew/No0jjvcAndAVyR2Mba4q3kB3D6ZUjimzJYnzO14C9yxmEgZ+1KLu5oXwB2jwQpeQqEiK+cY7nQL3DkbG33h3OKu5gVwI4jIObC3JDv4GOx8A9hsIxpBbEsDW5nnw2brjHMUmCilCdO73AI3e1NC8nuwd9YFUFM2oWTsDzEWPyFasbeA7Z3xqCm1QZoyLwDcJWO9dyVEBGsTgN8iThtgBWtDG6gp8wLAEZ8iiI8pxsATtm+6RazG2Rou0bk2WFPmBYAnZ4qLmDnR+wkLG90iXuOSTfIA18ZryrwAcMSpiFLZZTRxyhy/RcTmKBlsW9he27NjNc8H7siazCXgwMqZJgC/RciGw4eJLuBQ3QKv5gWAI1TlFLK1kcqUM2gTszWxX8BWw+RszISKEFdmlwkOOV3ZP7/uHVyE5n/16eXhvw+fnvuH5/7l/vMf98/v7m/gYVUlHj2WlNiar48VTE4keRbKWE3hnHTokQwf5G3S5uCs/xnVWqnQ1l/ePfV4/O67+4+//PzHT788v9w9PTz/8dJ/96l/cwN3MfMxd1Xz9QuQYT/4SMKNE+6qA+gWIUYFje3wGOideQHQmDWjoKmdgVLDndSFg3sq0g7C9pWIQrxw8v3y2GPefXr/8PxhWb+a0P/ZATejTTliuYETEEV++S/hw5AzZCdRxo+v+9b/OuOmhp1KSaEvcNLG3oUeUEmbgMJkA/axxyarwdHkaBEaPjbJgJKM1BGz2NVhuVgTQmE/2NWpkdiU7KwrYlenKoSeOXtnpbw+dgSclQKHJK1UcTkWc6zgeNFjE7XCuRgMNjix61hPFiRv02BXMQ/K+xLxXrGrkMBFNAyo5K16x5TWYLAUcY7eUNCEGB1vBrNFD07st98/fBnkX0b47onu3BObSTCkQjedbJOkQmtHy0L3D4t1bVdS1gWPXdqWQuiGZFLMwRO8OaG0QWjDibMPabTwHQeDeY7KXRyv+g6zODrynoOjMl48mpispYKx4cfbzcbjGFIsUNJoaWdNsYSRnDD+Rksj8sHA4egDWx5vNxUchnIhEsN4cYfJHzDDUihhQnEKqB3rqiWM3/GmY+UtnBJWJj/edGkKFgxsxr648bozAkKPvsQ0yhMaThhaFkOlYOVVxd/oDYFlQcS83rA2J2ORGusdpTwwMY8SJ0+niBM8cAn9oovXas7VvlknpiWNLBnr8hAmkmSh0qYmtVVxu1V9v9mVJDr87eH9+/vn/v3D0/3zi0SMzXZ4BYv1hUW7lM3CrHGHh7Eke/Cemx+VtWGzahUHfNaw5W7/7r6cxa4LaLojAw2bDyUhndqhVs3zjxUecW8pCe3L2U7JmRwEHKuh96gJ26Ldm2jVvAB6h4mCfygh9p+QODnMm6yGHtjs4bqhzAugD5jRMluyZBGuIbtWQ48nAhb02HIByrwA+hSNQ7MRbIYwIYVymEFZDT0i3IKd0reMgDIvgL5gqUOEhZDapwl5lMM0ylro0cEIrhEStRlyZV6AzycnZwiLGMPlCcmUQ/5rNfROTh/B7t1l2FkXwI7wKqbgmHEomjDrDzmw1bAHZxzi4bIHvpqXuMkxHHpQd2aeQPAfUmGroU+Ew2CSc2eDvpoXQB+zCTHh2JtpwpJ3yIetBh6Hdyouh5YsUOYFwGcc+J33CeM+TMmgHiat1oKPVdhEb8m1kZ4yz4cfLQ7VWc53XNIEzv8IO7YafE7G5uipDfWUeQH4CHQTJ+st5zJh4h/hyFaDj0Mc1uNY2lhPmReAj0iXknNM02iT28V6MTpTUi6pjfWUeQH0iHSjnAqZMQauostWg58lZRQ4tMGeMi8AP0lyEedjJ9mjq0izteAnO/AuwbXRnjIvAB+xbpBNHw6NU864p6izILfksHkW79DYVaiz1c4UOg9SKTSdB5nLoLkcDdm846RvTaPdwHUNr1GTRbPZNIcR6iudfyWldgsHKGpNOWA2s7bvgDn0mssYNjgwbP2wAsm2gKdN6CS5bI0vWN0KUxDWxYZN+jIf4dd04k/1g86IeYHuZI97bHJFCCR9sjjwil0nV/Crc6UIB6bzC1h+o3NY72DXJ29JzUcPsGKvh9IgVJpcxBGzOq55CeCwi8lr9UGGEmpk9kN5FfoXNvCpD0KC6Zh4WMD9wODpoBDzzqHVQ+t1tBTEkbZII3UYEVA71u6BStP7K0cMkCFj/NjsR/AH3m6HVm5y5+c6TBFr54spNq12qZP0a+3WgZig8wQMobFDFqOMFx86jnHmLTj+Tag9D/eqbIxbYupMaeyK+CXAV5hmo6WF9HJkC8UYebS0dDGGEYri2Dbe7miEr/Dek5tQWphAuD2FkMt4U4RmZESSJWGX8+Mtx2qSMK6dsxNgJkQSwVs8MO5voVJleWPn3HhfMjonY9LaPMWBwOgdOjLChTTJg0HukOfkKKniF7BpxwmaE6QLpuEx6ubpBHUjBNklBFBbXlNqJ+u/hFHzMRpOXqJHiR9nM2r8lzBqW8ZR9hp/QDjurI06jEiuzmz4tB3DqYyVTTuofjl5mGqx0oypViyhDsOKVSaHLesgrlduFGIlGJuNuJWGjSE+fdt4McT1NpFCrNRisxG3urAxxKevGS+GWF2UUpC1Vmw25lYUNob59A3j5TDXW2Aas7obNh9zqwgbA336dvFyoOsVNw1aXXybD7qVg42BPq0GWw50vb+nQSuJ2HzQrRZsDPRpKdhyoOvlRA1a6cPmg26EYGOYT+vAFsOsLl4qzFocNhvzngpsDPRpEdhyoHe3SjXmKgybD7mVgI2GJKevZy+Hud6Z1aCVLGw+6lb/NYr6BpGYuhGsUat7wvNRt+KvUdQ3iMbUfWeNWgnC5qNulV+jqG8Qkanb3Bq1UoPNR93KvkZR3yAmU3fV9YFQScFmo97TfI2ivkFQpm7ia9RKBzYfdSv4GkU9Ue8lla6j9lrMubXGaOKRDMPWOl/q5dlk/xcovZZ3FZ484qqddb7iKYVTrpqi8loeMKLDY4ireT5ksnkc86jIy+GgFtbReF3j1a3EK/GGkoALIicf7JA1aP5yTuKlBpzKLFlrPCcbYqPwkkSC5PwptQovsgWzpzgXW4kXdjkcRy23Aq9ExlpfYivvCpjCCJqDb9VdskgUBL974i7hVziLwklru5I3iBhDq+wq0ThUSPvCLmxGAVj2dF1ixiobv6jG6p5f4Bs0rqRW1oXZVIh9Lq2qK0RjUZoU4zSxq1pV187enXvipKpr17dDQp/PcAvWJCE4orNbnuhMaYyCYB1e4jAGRkvfYRAQRXxyMY+XJrgOQSGFsFWMna0bAzInG62dUBgfsXsCoduxSueKR3g5Iyp34uWx0tkM5XIMjscdiGXO8eDwCe4GxhjgEY4+jnelzEpixsxKE0DKNJf7NJgSE3qSnEGvEMYWjzdE+sZn+DtHdjSh8mIyJZvQQUk3/ApBlwrljpIUrZ7rOP+xV346W9Jov3aVnKt7hpiLhMv0M6gn95dQT5Wb08TGjppT3lT8nqaeFBl4lHxqL3ZcF7WcV3LpMab0XbOPC3tCrstZqLWg19spGroSd82H3qq4Lqej1oJeL+Bo6ErZNR96K+G6nJdaC3q9Y6Shq5tH86G3+q3L6am1oNdrVBq60nTNh96Kty4nqVaCrm6KaapdCbrmc+2tcutyqmot6LvLcBp5FXPNB97Kti6nq9YCXq/7aeRKyrXA/QqrNVuXs1ZrQa83GjV0peOaD70RbF1OXa2FvN7Z1MjVTc75yFu11hUU1krY1b1UhV3fVp2NfU+qdQWRtRb2evlWY1fyrfnYW53WFXTWWtjrBWONXWm35mNvRFpXcFprQa+XqDV0JdyaD71VaF3BbK2FvV4U19iVams+9laedQW/tRJ2dRlen7fVFfn52Ftt1tUs1540a3mWa63TgkppVLZLpTTmkl17qqxbM17ru00TETu3zSa+9gRJ17Ff64PXLJhOec0lwfbgz2LC9vRYK/Bh8/08qLGwrA2CnQjQg0+4eKIUw/Bh+Jo8H+i8MEt3iE5y2YAVaSDgG2EWJqePgQfuSWVHojfRJvkitkaWNWSC5cpiq8ryyaTiQ2hFWVGcEjiGVpOVSdZbl0oryZL8cAa67PckWcCDOvxQXge5+JXYbrRXNQAshOIi7WklWRG+x44x8IIqbhABLYtwqFVkYdEDBjd8d6LabUI0+LMdRGm79PekLmvYsfpEd+6J0yqt2scD2+DOkBMJAzAWzCO8cry0fJUd4ZwrR/wyXpyFlEwc0F1hQnFRjHlv0YFuSmkjDfd4Yhwm/IEhl4hy2mqdzpRGszHGsRxgQRl3Co4DCIizfD3oVnR1riVCTFkWkZ+d0D1ePIJWODcBpVCMORRyzM66Cd3D8hWJ6EkcaaZ0vjDFCH/ZWzsOFE0vsaSICIzzaOkinYmVAz2qG36VSksnNY/TKY1I6yhRs0+STed19hRdiic7WfsMhdZsmqw9pnT/Bw5FrJQKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagozNzY0CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggODEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTc27DcAgDATQnik8AuD/PlGUItm/jQ0RobGfdCedYIcKbnFYDLQ7HK341FOYfegeEpJQc91EWDMl2oSkX/rLMMOYWMi2rzdXrnK+FtwciwplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMTcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCRwD/gPO00+mC3H9by5l0gxRjyy9EV3TslYfHxpSN92hjT4QtXOV0Gk5TGY+Lu2ZdoMthMtNvvJq5wFRhkdXsovoYvKHzrGaHr1UzMYQ3mRIaYCp3cg/19ac47duSkGxXYdCdGqSzMMyR/D0QU3PQc4iR/CNfcmth0JnmFxctqxmtZUzR7GGqbC0M6o1Bd8r11Hqu8zAR7/MD30E+ZAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMjQzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1Ru60DMQzrPYUWOMD62b55Lnh4xWX/NqScBKlEQxRJycNTumTKYX1KRkiOLg9tGktsujw3QlOHioKpa4nqlKuZpsxTLE3Q895ZruYY4HtVN9Tf9IheApFRglVhgQ6QO7hg+NlrJmxRCyIxhlAzgGnCCnO4EjEEGYy1ZxiUKgxO1c8qV/svp2XYKrB4MJ0iP7KaaKdfuhx46ykHQtjclbt6IU0I7o0GY8wsXHepsp0AHEx0mYmMWLwNx9MhDA1emgascNaNmCCxGyOlD14HGdOwd0UedbcY8b5bxpS71c99UX3mXe0fCMEbJ/h7AcobXV4KZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC6MrjSAJiaEwMKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE4IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyMCAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbiAvZWlnaHQgL25pbmUKNjkgL0UgODAgL1AgOTcgL2EgOTkgL2MgL2QgL2UgMTAzIC9nIC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAxMTMgL3EgMTE1IC9zIC90Ci91IF0KPj4KL1dpZHRocyAxNyAwIFIgPj4KZW5kb2JqCjE4IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjE3IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIwIDAgb2JqCjw8IC9FIDIxIDAgUiAvUCAyMiAwIFIgL2EgMjMgMCBSIC9jIDI0IDAgUiAvZCAyNSAwIFIgL2UgMjYgMCBSCi9laWdodCAyNyAwIFIgL2ZpdmUgMjggMCBSIC9mb3VyIDI5IDAgUiAvZyAzMCAwIFIgL2ggMzEgMCBSIC9pIDMyIDAgUgovbCAzMyAwIFIgL20gMzQgMCBSIC9uIDM2IDAgUiAvbmluZSAzNyAwIFIgL28gMzggMCBSIC9vbmUgMzkgMCBSIC9xIDQwIDAgUgovcyA0MSAwIFIgL3NldmVuIDQyIDAgUiAvc2l4IDQzIDAgUiAvc3BhY2UgNDQgMCBSIC90IDQ1IDAgUiAvdGhyZWUgNDYgMCBSCi90d28gNDcgMCBSIC91IDQ4IDAgUiAvemVybyA0OSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE5IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvTTAgMTMgMCBSIC9NMSAxNCAwIFIgL00yIDE1IDAgUiAvTTMgMTYgMCBSIC9GMS1EZWphVnVTYW5zLW1pbnVzIDM1IDAgUgo+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC04IC04IDggOCBdIC9MZW5ndGggMTMxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTggLTggOCA4IF0gL0xlbmd0aCAxMzEKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago1MCAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNTUxMTFaKQo+PgplbmRvYmoKeHJlZgowIDUxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE1NTQyIDAwMDAwIG4gCjAwMDAwMTQyNjAgMDAwMDAgbiAKMDAwMDAxNDI5MiAwMDAwMCBuIAowMDAwMDE0MzkxIDAwMDAwIG4gCjAwMDAwMTQ0MTIgMDAwMDAgbiAKMDAwMDAxNDQzMyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDIgMDAwMDAgbiAKMDAwMDAwNDIwMiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDQxODEgMDAwMDAgbiAKMDAwMDAxNDUyNiAwMDAwMCBuIAowMDAwMDE0NzgwIDAwMDAwIG4gCjAwMDAwMTUwMzQgMDAwMDAgbiAKMDAwMDAxNTI4OCAwMDAwMCBuIAowMDAwMDEyODcxIDAwMDAwIG4gCjAwMDAwMTI2NjQgMDAwMDAgbiAKMDAwMDAxMjIwNSAwMDAwMCBuIAowMDAwMDEzOTI0IDAwMDAwIG4gCjAwMDAwMDQyMjIgMDAwMDAgbiAKMDAwMDAwNDM3NSAwMDAwMCBuIAowMDAwMDA0NjE4IDAwMDAwIG4gCjAwMDAwMDQ5OTggMDAwMDAgbiAKMDAwMDAwNTMwMyAwMDAwMCBuIAowMDAwMDA1NjA3IDAwMDAwIG4gCjAwMDAwMDU5MjkgMDAwMDAgbiAKMDAwMDAwNjM5NyAwMDAwMCBuIAowMDAwMDA2NzE5IDAwMDAwIG4gCjAwMDAwMDY4ODUgMDAwMDAgbiAKMDAwMDAwNzI5OSAwMDAwMCBuIAowMDAwMDA3NTM2IDAwMDAwIG4gCjAwMDAwMDc2ODAgMDAwMDAgbiAKMDAwMDAwNzc5OSAwMDAwMCBuIAowMDAwMDA4MTMwIDAwMDAwIG4gCjAwMDAwMDgzMDIgMDAwMDAgbiAKMDAwMDAwODUzOCAwMDAwMCBuIAowMDAwMDA4OTMzIDAwMDAwIG4gCjAwMDAwMDkyMjQgMDAwMDAgbiAKMDAwMDAwOTM3OSAwMDAwMCBuIAowMDAwMDA5Njk1IDAwMDAwIG4gCjAwMDAwMTAxMDIgMDAwMDAgbiAKMDAwMDAxMDI0NCAwMDAwMCBuIAowMDAwMDEwNjM3IDAwMDAwIG4gCjAwMDAwMTA3MjcgMDAwMDAgbiAKMDAwMDAxMDkzMyAwMDAwMCBuIAowMDAwMDExMzQ2IDAwMDAwIG4gCjAwMDAwMTE2NzAgMDAwMDAgbiAKMDAwMDAxMTkxNyAwMDAwMCBuIAowMDAwMDE1NjAyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNTEgL1Jvb3QgMSAwIFIgL0luZm8gNTAgMCBSID4+CnN0YXJ0eHJlZgoxNTc1MwolJUVPRgo=", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"721.920312pt\" height=\"284.134375pt\" viewBox=\"0 0 721.920312 284.134375\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:51:11.114527</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 284.134375 \n", "L 721.920312 284.134375 \n", "L 721.920312 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 45.120313 101.518125 \n", "L 349.483949 101.518125 \n", "L 349.483949 22.318125 \n", "L 45.120313 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 58.955023 101.518125 \n", "L 58.955023 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(55.773773 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 77.401304 101.518125 \n", "L 77.401304 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(74.220054 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 95.847585 101.518125 \n", "L 95.847585 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(92.666335 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 114.293866 101.518125 \n", "L 114.293866 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(111.112616 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 132.740147 101.518125 \n", "L 132.740147 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(129.558897 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 151.186428 101.518125 \n", "L 151.186428 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(148.005178 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 169.632709 101.518125 \n", "L 169.632709 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(166.451459 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 188.07899 101.518125 \n", "L 188.07899 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(184.89774 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 206.525271 101.518125 \n", "L 206.525271 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(203.344021 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 224.971552 101.518125 \n", "L 224.971552 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(218.609052 118.616563) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 243.417833 101.518125 \n", "L 243.417833 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(237.055333 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_12\">\n", "      <path d=\"M 261.864114 101.518125 \n", "L 261.864114 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(255.501614 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_13\">\n", "      <path d=\"M 280.310395 101.518125 \n", "L 280.310395 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(273.947895 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_14\">\n", "      <path d=\"M 298.756676 101.518125 \n", "L 298.756676 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(292.394176 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_15\">\n", "      <path d=\"M 317.202957 101.518125 \n", "L 317.202957 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(310.840457 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_16\">\n", "      <path d=\"M 335.649238 101.518125 \n", "L 335.649238 22.318125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(329.286738 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(146.006818 132.294688) scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-71\" d=\"M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "M 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 -1331 \n", "L 2906 -1331 \n", "L 2906 525 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_17\">\n", "      <path d=\"M 45.120313 94.918125 \n", "L 349.483949 94.918125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(20.878125 98.717344) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2212\" d=\"M 678 2272 \n", "L 4684 2272 \n", "L 4684 1741 \n", "L 678 1741 \n", "L 678 2272 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_18\">\n", "      <path d=\"M 45.120313 61.918125 \n", "L 349.483949 61.918125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 65.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_19\">\n", "      <path d=\"M 45.120313 28.918125 \n", "L 349.483949 28.918125 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 32.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_21\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(14.798438 110.384531) rotate(-90) scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_20\">\n", "    <path d=\"M 58.955023 61.918125 \n", "L 77.401304 34.149583 \n", "L 95.847585 31.911311 \n", "L 114.293866 57.261165 \n", "L 132.740147 86.892607 \n", "L 151.186428 93.562627 \n", "L 169.632709 71.138836 \n", "L 188.07899 40.237567 \n", "L 206.525271 29.269303 \n", "L 224.971552 48.318215 \n", "L 243.417833 79.870822 \n", "L 261.864114 94.917802 \n", "L 280.310395 79.625032 \n", "L 298.756676 48.052613 \n", "L 317.202957 29.228081 \n", "L 335.649238 40.458625 \n", "\" clip-path=\"url(#p886d9ea0c8)\" style=\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"m0117397b6b\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p886d9ea0c8)\">\n", "     <use xlink:href=\"#m0117397b6b\" x=\"58.955023\" y=\"61.918125\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"77.401304\" y=\"34.149583\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"95.847585\" y=\"31.911311\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"114.293866\" y=\"57.261165\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"132.740147\" y=\"86.892607\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"151.186428\" y=\"93.562627\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"169.632709\" y=\"71.138836\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"188.07899\" y=\"40.237567\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"206.525271\" y=\"29.269303\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"224.971552\" y=\"48.318215\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"243.417833\" y=\"79.870822\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"261.864114\" y=\"94.917802\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"280.310395\" y=\"79.625032\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"298.756676\" y=\"48.052613\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"317.202957\" y=\"29.228081\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m0117397b6b\" x=\"335.649238\" y=\"40.458625\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 45.120313 101.518125 \n", "L 45.120313 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 349.483949 101.518125 \n", "L 349.483949 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 45.120313 101.518125 \n", "L 349.483949 101.518125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 45.120313 22.318125 \n", "L 349.483949 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_22\">\n", "    <!-- Encoding in hidden dimension 1 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(101.073381 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-45\" d=\"M 628 4666 \n", "L 3578 4666 \n", "L 3578 4134 \n", "L 1259 4134 \n", "L 1259 2753 \n", "L 3481 2753 \n", "L 3481 2222 \n", "L 1259 2222 \n", "L 1259 531 \n", "L 3634 531 \n", "L 3634 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 410.356676 101.518125 \n", "L 714.720312 101.518125 \n", "L 714.720312 22.318125 \n", "L 410.356676 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_21\">\n", "      <path d=\"M 424.191387 101.518125 \n", "L 424.191387 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(421.010137 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_22\">\n", "      <path d=\"M 442.637668 101.518125 \n", "L 442.637668 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(439.456418 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_23\">\n", "      <path d=\"M 461.083949 101.518125 \n", "L 461.083949 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(457.902699 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_24\">\n", "      <path d=\"M 479.53023 101.518125 \n", "L 479.53023 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(476.34898 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_25\">\n", "      <path d=\"M 497.976511 101.518125 \n", "L 497.976511 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(494.795261 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_26\">\n", "      <path d=\"M 516.422792 101.518125 \n", "L 516.422792 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(513.241542 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_27\">\n", "      <path d=\"M 534.869073 101.518125 \n", "L 534.869073 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(531.687823 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_28\">\n", "      <path d=\"M 553.315354 101.518125 \n", "L 553.315354 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(550.134104 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_29\">\n", "      <path d=\"M 571.761635 101.518125 \n", "L 571.761635 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(568.580385 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_30\">\n", "      <path d=\"M 590.207916 101.518125 \n", "L 590.207916 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(583.845416 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_31\">\n", "      <path d=\"M 608.654197 101.518125 \n", "L 608.654197 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(602.291697 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_32\">\n", "      <path d=\"M 627.100478 101.518125 \n", "L 627.100478 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(620.737978 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_33\">\n", "      <path d=\"M 645.546759 101.518125 \n", "L 645.546759 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(639.184259 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_34\">\n", "      <path d=\"M 663.99304 101.518125 \n", "L 663.99304 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(657.63054 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_35\">\n", "      <path d=\"M 682.439321 101.518125 \n", "L 682.439321 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(676.076821 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_36\">\n", "      <path d=\"M 700.885602 101.518125 \n", "L 700.885602 22.318125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(694.523102 118.616563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_39\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(511.243182 132.294688) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_37\">\n", "      <path d=\"M 410.356676 94.918125 \n", "L 714.720312 94.918125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(386.114489 98.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_38\">\n", "      <path d=\"M 410.356676 61.918125 \n", "L 714.720312 61.918125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 65.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_39\">\n", "      <path d=\"M 410.356676 28.918125 \n", "L 714.720312 28.918125 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_42\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 32.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_43\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(380.034801 110.384531) rotate(-90) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_40\">\n", "    <path d=\"M 424.191387 28.918125 \n", "L 442.637668 44.088148 \n", "L 461.083949 75.650971 \n", "L 479.53023 94.587877 \n", "L 497.976511 83.488364 \n", "L 516.422792 52.557272 \n", "L 534.869073 30.232506 \n", "L 553.315354 37.039351 \n", "L 571.761635 66.719626 \n", "L 590.207916 91.985423 \n", "L 608.654197 89.607485 \n", "L 627.100478 61.772077 \n", "L 645.546759 34.070945 \n", "L 663.99304 31.972381 \n", "L 682.439321 57.405797 \n", "L 700.885602 86.987826 \n", "\" clip-path=\"url(#p54f9646474)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mad57255b74\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p54f9646474)\">\n", "     <use xlink:href=\"#mad57255b74\" x=\"424.191387\" y=\"28.918125\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"442.637668\" y=\"44.088148\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"461.083949\" y=\"75.650971\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"479.53023\" y=\"94.587877\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"497.976511\" y=\"83.488364\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"516.422792\" y=\"52.557272\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"534.869073\" y=\"30.232506\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"553.315354\" y=\"37.039351\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"571.761635\" y=\"66.719626\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"590.207916\" y=\"91.985423\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"608.654197\" y=\"89.607485\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"627.100478\" y=\"61.772077\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"645.546759\" y=\"34.070945\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"663.99304\" y=\"31.972381\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"682.439321\" y=\"57.405797\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mad57255b74\" x=\"700.885602\" y=\"86.987826\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 410.356676 101.518125 \n", "L 410.356676 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 714.720312 101.518125 \n", "L 714.720312 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 410.356676 101.518125 \n", "L 714.720312 101.518125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 410.356676 22.318125 \n", "L 714.720312 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_44\">\n", "    <!-- Encoding in hidden dimension 2 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(466.309744 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 45.120313 244.078125 \n", "L 349.483949 244.078125 \n", "L 349.483949 164.878125 \n", "L 45.120313 164.878125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_41\">\n", "      <path d=\"M 58.955023 244.078125 \n", "L 58.955023 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(55.773773 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_42\">\n", "      <path d=\"M 77.401304 244.078125 \n", "L 77.401304 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(74.220054 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_43\">\n", "      <path d=\"M 95.847585 244.078125 \n", "L 95.847585 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(92.666335 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_44\">\n", "      <path d=\"M 114.293866 244.078125 \n", "L 114.293866 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(111.112616 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_45\">\n", "      <path d=\"M 132.740147 244.078125 \n", "L 132.740147 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(129.558897 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_46\">\n", "      <path d=\"M 151.186428 244.078125 \n", "L 151.186428 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(148.005178 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_47\">\n", "      <path d=\"M 169.632709 244.078125 \n", "L 169.632709 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(166.451459 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_48\">\n", "      <path d=\"M 188.07899 244.078125 \n", "L 188.07899 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(184.89774 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_49\">\n", "      <path d=\"M 206.525271 244.078125 \n", "L 206.525271 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(203.344021 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_50\">\n", "      <path d=\"M 224.971552 244.078125 \n", "L 224.971552 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(218.609052 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_51\">\n", "      <path d=\"M 243.417833 244.078125 \n", "L 243.417833 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(237.055333 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_52\">\n", "      <path d=\"M 261.864114 244.078125 \n", "L 261.864114 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(255.501614 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_53\">\n", "      <path d=\"M 280.310395 244.078125 \n", "L 280.310395 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(273.947895 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_54\">\n", "      <path d=\"M 298.756676 244.078125 \n", "L 298.756676 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(292.394176 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_55\">\n", "      <path d=\"M 317.202957 244.078125 \n", "L 317.202957 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(310.840457 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_56\">\n", "      <path d=\"M 335.649238 244.078125 \n", "L 335.649238 164.878125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(329.286738 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_61\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(146.006818 274.854688) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_57\">\n", "      <path d=\"M 45.120313 237.478125 \n", "L 349.483949 237.478125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(20.878125 241.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_58\">\n", "      <path d=\"M 45.120313 204.478125 \n", "L 349.483949 204.478125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_63\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 208.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_59\">\n", "      <path d=\"M 45.120313 171.478125 \n", "L 349.483949 171.478125 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 175.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_65\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(14.798438 252.944531) rotate(-90) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_60\">\n", "    <path d=\"M 58.955023 204.478125 \n", "L 77.401304 183.694819 \n", "L 95.847585 172.190858 \n", "L 114.293866 175.102539 \n", "L 132.740147 191.129855 \n", "L 151.186428 213.116915 \n", "L 169.632709 231.246921 \n", "L 188.07899 237.425177 \n", "L 206.525271 228.893208 \n", "L 224.971552 209.460375 \n", "L 243.417833 187.803062 \n", "L 261.864114 173.590845 \n", "L 280.310395 173.169203 \n", "L 298.756676 186.726378 \n", "L 317.202957 208.209386 \n", "L 335.649238 228.026456 \n", "\" clip-path=\"url(#pe7fdd09443)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mcc6f785f0b\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pe7fdd09443)\">\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"58.955023\" y=\"204.478125\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"77.401304\" y=\"183.694819\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"95.847585\" y=\"172.190858\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"114.293866\" y=\"175.102539\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"132.740147\" y=\"191.129855\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"151.186428\" y=\"213.116915\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"169.632709\" y=\"231.246921\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"188.07899\" y=\"237.425177\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"206.525271\" y=\"228.893208\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"224.971552\" y=\"209.460375\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"243.417833\" y=\"187.803062\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"261.864114\" y=\"173.590845\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"280.310395\" y=\"173.169203\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"298.756676\" y=\"186.726378\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"317.202957\" y=\"208.209386\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mcc6f785f0b\" x=\"335.649238\" y=\"228.026456\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 45.120313 244.078125 \n", "L 45.120313 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 349.483949 244.078125 \n", "L 349.483949 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 45.120313 244.078125 \n", "L 349.483949 244.078125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 45.120313 164.878125 \n", "L 349.483949 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_66\">\n", "    <!-- Encoding in hidden dimension 3 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(101.073381 158.878125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 410.356676 244.078125 \n", "L 714.720312 244.078125 \n", "L 714.720312 164.878125 \n", "L 410.356676 164.878125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_61\">\n", "      <path d=\"M 424.191387 244.078125 \n", "L 424.191387 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(421.010137 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_62\">\n", "      <path d=\"M 442.637668 244.078125 \n", "L 442.637668 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(439.456418 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_63\">\n", "      <path d=\"M 461.083949 244.078125 \n", "L 461.083949 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(457.902699 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_64\">\n", "      <path d=\"M 479.53023 244.078125 \n", "L 479.53023 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(476.34898 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_65\">\n", "      <path d=\"M 497.976511 244.078125 \n", "L 497.976511 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(494.795261 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_66\">\n", "      <path d=\"M 516.422792 244.078125 \n", "L 516.422792 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(513.241542 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_67\">\n", "      <path d=\"M 534.869073 244.078125 \n", "L 534.869073 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(531.687823 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_68\">\n", "      <path d=\"M 553.315354 244.078125 \n", "L 553.315354 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(550.134104 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_69\">\n", "      <path d=\"M 571.761635 244.078125 \n", "L 571.761635 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(568.580385 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_70\">\n", "      <path d=\"M 590.207916 244.078125 \n", "L 590.207916 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(583.845416 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_71\">\n", "      <path d=\"M 608.654197 244.078125 \n", "L 608.654197 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(602.291697 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_72\">\n", "      <path d=\"M 627.100478 244.078125 \n", "L 627.100478 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(620.737978 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_73\">\n", "      <path d=\"M 645.546759 244.078125 \n", "L 645.546759 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(639.184259 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_74\">\n", "      <path d=\"M 663.99304 244.078125 \n", "L 663.99304 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(657.63054 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_75\">\n", "      <path d=\"M 682.439321 244.078125 \n", "L 682.439321 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(676.076821 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_76\">\n", "      <path d=\"M 700.885602 244.078125 \n", "L 700.885602 164.878125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(694.523102 261.176563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_83\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(511.243182 274.854688) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_77\">\n", "      <path d=\"M 410.356676 237.478125 \n", "L 714.720312 237.478125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_84\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(386.114489 241.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_78\">\n", "      <path d=\"M 410.356676 204.478125 \n", "L 714.720312 204.478125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 208.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_79\">\n", "      <path d=\"M 410.356676 171.478125 \n", "L 714.720312 171.478125 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 175.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_87\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(380.034801 252.944531) rotate(-90) scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_80\">\n", "    <path d=\"M 424.191387 171.478125 \n", "L 442.637668 178.845057 \n", "L 461.083949 197.65666 \n", "L 479.53023 219.513916 \n", "L 497.976511 234.65798 \n", "L 516.422792 236.327322 \n", "L 534.869073 223.77661 \n", "L 553.315354 202.609496 \n", "L 571.761635 182.276691 \n", "L 590.207916 171.856396 \n", "L 608.654197 176.001077 \n", "L 627.100478 192.860209 \n", "L 645.546759 214.906519 \n", "L 663.99304 232.296741 \n", "L 682.439321 237.266502 \n", "L 700.885602 227.596864 \n", "\" clip-path=\"url(#pf80c82ac4f)\" style=\"fill: none; stroke: #d62728; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"m20719f5b45\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pf80c82ac4f)\">\n", "     <use xlink:href=\"#m20719f5b45\" x=\"424.191387\" y=\"171.478125\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"442.637668\" y=\"178.845057\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"461.083949\" y=\"197.65666\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"479.53023\" y=\"219.513916\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"497.976511\" y=\"234.65798\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"516.422792\" y=\"236.327322\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"534.869073\" y=\"223.77661\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"553.315354\" y=\"202.609496\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"571.761635\" y=\"182.276691\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"590.207916\" y=\"171.856396\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"608.654197\" y=\"176.001077\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"627.100478\" y=\"192.860209\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"645.546759\" y=\"214.906519\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"663.99304\" y=\"232.296741\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"682.439321\" y=\"237.266502\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#m20719f5b45\" x=\"700.885602\" y=\"227.596864\" style=\"fill: #d62728; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 410.356676 244.078125 \n", "L 410.356676 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 714.720312 244.078125 \n", "L 714.720312 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 410.356676 244.078125 \n", "L 714.720312 244.078125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 410.356676 164.878125 \n", "L 714.720312 164.878125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_88\">\n", "    <!-- Encoding in hidden dimension 4 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(466.309744 158.878125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p886d9ea0c8\">\n", "   <rect x=\"45.120313\" y=\"22.318125\" width=\"304.363636\" height=\"79.2\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p54f9646474\">\n", "   <rect x=\"410.356676\" y=\"22.318125\" width=\"304.363636\" height=\"79.2\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe7fdd09443\">\n", "   <rect x=\"45.120313\" y=\"164.878125\" width=\"304.363636\" height=\"79.2\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pf80c82ac4f\">\n", "   <rect x=\"410.356676\" y=\"164.878125\" width=\"304.363636\" height=\"79.2\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x400 with 4 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.set_theme()\n", "fig, ax = plt.subplots(2, 2, figsize=(12, 4))\n", "ax = [a for a_list in ax for a in a_list]\n", "for i in range(len(ax)):\n", "    ax[i].plot(np.arange(1, 17), pe[i, :16], color=\"C%i\" % i, marker=\"o\", markersize=6, markeredgecolor=\"black\")\n", "    ax[i].set_title(\"Encoding in hidden dimension %i\" % (i + 1))\n", "    ax[i].set_xlabel(\"Position in sequence\", fontsize=10)\n", "    ax[i].set_ylabel(\"Positional encoding\", fontsize=10)\n", "    ax[i].set_xticks(np.arange(1, 17))\n", "    ax[i].tick_params(axis=\"both\", which=\"major\", labelsize=10)\n", "    ax[i].tick_params(axis=\"both\", which=\"minor\", labelsize=8)\n", "    ax[i].set_ylim(-1.2, 1.2)\n", "fig.subplots_adjust(hspace=0.8)\n", "sns.reset_orig()\n", "plt.show()"]}, {"cell_type": "markdown", "id": "4aeb9ab6", "metadata": {"papermill": {"duration": 0.017774, "end_time": "2023-03-14T15:51:12.056684", "exception": false, "start_time": "2023-03-14T15:51:12.038910", "status": "completed"}, "tags": []}, "source": ["As we can see, the patterns between the hidden dimension $1$ and $2$ only differ in the starting angle.\n", "The wavelength is $2\\pi$, hence the repetition after position $6$.\n", "The hidden dimensions $2$ and $3$ have about twice the wavelength."]}, {"cell_type": "markdown", "id": "2b07f573", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017445, "end_time": "2023-03-14T15:51:12.091608", "exception": false, "start_time": "2023-03-14T15:51:12.074163", "status": "completed"}, "tags": []}, "source": ["### Learning rate warm-up\n", "\n", "One commonly used technique for training a Transformer is learning rate warm-up.\n", "This means that we gradually increase the learning rate from 0 on to our originally specified\n", "learning rate in the first few iterations.\n", "Thus, we slowly start learning instead of taking very large steps from the beginning.\n", "In fact, training a deep Transformer without learning rate warm-up can make the model diverge\n", "and achieve a much worse performance on training and testing.\n", "Take for instance the following plot by [Liu et al.\n", "(2019)](https://arxiv.org/pdf/1908.03265.pdf) comparing Adam-vanilla (i.e. Adam without warm-up)\n", "vs Adam with a warm-up:\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/warmup_loss_plot.svg\" width=\"350px\"></center>\n", "\n", "Clearly, the warm-up is a crucial hyperparameter in the Transformer architecture.\n", "Why is it so important?\n", "There are currently two common explanations.\n", "Firstly, Adam uses the bias correction factors which however can lead to a higher variance in the adaptive\n", "learning rate during the first iterations.\n", "Improved optimizers like [RAdam](https://arxiv.org/abs/1908.03265) have been shown to overcome this issue,\n", "not requiring warm-up for training Transformers.\n", "Secondly, the iteratively applied Layer Normalization across layers can lead to very high gradients during\n", "the first iterations, which can be solved by using Pre-Layer Normalization\n", "(similar to Pre-Activation ResNet), or replacing Layer Normalization by other techniques\n", "(Adaptive Normalization,\n", "[Power Normalization](https://arxiv.org/abs/2003.07845)).\n", "\n", "Nevertheless, many applications and papers still use the original Transformer architecture with Adam,\n", "because warm-up is a simple, yet effective way of solving the gradient problem in the first iterations.\n", "There are many different schedulers we could use.\n", "For instance, the original Transformer paper used an exponential decay scheduler with a warm-up.\n", "However, the currently most popular scheduler is the cosine warm-up scheduler,\n", "which combines warm-up with a cosine-shaped learning rate decay.\n", "We can implement it below, and visualize the learning rate factor over epochs."]}, {"cell_type": "code", "execution_count": 12, "id": "38b2349b", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.129050Z", "iopub.status.busy": "2023-03-14T15:51:12.128423Z", "iopub.status.idle": "2023-03-14T15:51:12.136308Z", "shell.execute_reply": "2023-03-14T15:51:12.135663Z"}, "papermill": {"duration": 0.028231, "end_time": "2023-03-14T15:51:12.137497", "exception": false, "start_time": "2023-03-14T15:51:12.109266", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class CosineWarmupScheduler(optim.lr_scheduler._LRScheduler):\n", "    def __init__(self, optimizer, warmup, max_iters):\n", "        self.warmup = warmup\n", "        self.max_num_iters = max_iters\n", "        super().__init__(optimizer)\n", "\n", "    def get_lr(self):\n", "        lr_factor = self.get_lr_factor(epoch=self.last_epoch)\n", "        return [base_lr * lr_factor for base_lr in self.base_lrs]\n", "\n", "    def get_lr_factor(self, epoch):\n", "        lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))\n", "        if epoch <= self.warmup:\n", "            lr_factor *= epoch * 1.0 / self.warmup\n", "        return lr_factor"]}, {"cell_type": "code", "execution_count": 13, "id": "d27c8bbe", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.173576Z", "iopub.status.busy": "2023-03-14T15:51:12.173243Z", "iopub.status.idle": "2023-03-14T15:51:12.566118Z", "shell.execute_reply": "2023-03-14T15:51:12.565574Z"}, "papermill": {"duration": 0.413791, "end_time": "2023-03-14T15:51:12.568780", "exception": false, "start_time": "2023-03-14T15:51:12.154989", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNTAzLjQyNSAyMzEuNjEwNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nLVYTW8cNwy9z6/QMT5EJilKFI9J2hoNeklioIemB9fZJA5sp7Gd9u/3SWPvztjOYlHvGBhgh9Y88ZEUP3T40+qfs9PV26OX4dW74XDzdno9cPiC51Og8AXPv4HDEZ5PA+HtYsiUokrG7/P1b0kcC1PBz3Msm71+HoaPw+ELAFwHis5W1CjX+uBFndgLWQ1Xbe+j2YJh2+phUI8Vu6lEL7ntewFRiTKTna9lQh6lroX925msK/0tPIBVLVEDlxKThKtV+D1chsMX0rhxeI3nC57RYhubDrCpUWTOTj7TcSOd7T68G96Eb3fAWJPhjTvs/np0Kx2+wVMUnhP+BaVKB6MOmOPogdOL4eXxcPgLB+Zw/LF78fjD8Ed4Rgfhz3D8evj5eHjTN9wfXRaKtdSc64zvRLwHwswUU0djFduFseQlORuiXkDR5pw34n1wLhy5o7Fr3oVzpgU5i0hMlsBpxnki3gNnYY61o4mWtAtnW9LPYgkuKJnm+WYi3gfn7Ldo4pV34cy0pKOTJPjAOeuM9ES8B9IJECNaUt8phfGiJzqZxpK4UpqT3oj3QbrQLZoS75TFeNEjjXoeU1XNMi+nG/EeSCuO9IimOe2UxnjRM61WIidjukd6I94H6SIjGhyYd8pjcu9MTxMElWikpVoOHm0KInOQX29WVyc3Z18vr8P7Z2eX4a+Tm9PPq+v3Bwuac0TKFLPca8c2sv+dGmVUE1pp9mRbW5y4ZNCMSBXdKLJ0mpBci57IEeFnlkSlktetNGVxmtyPLEkqE6IT4ROpMllEuGetjL5+K1ddnqui4yDLylOuG+FTuSZDS2g1JxXXrVzL8lxNoiStOvPrRvhUrqVGypkzOjiXrVzr4lyFJBY04yhiF5NhcC18KlevUSuaVCX1bbUs3svqDeN5Q+PGLLdRLvO90nAvq/920Ba7GNXU/sKz1cnVA9nl2eWngOy/Ch9PTm++Xu3FwjF3W6AxJbiUs2E413EyFxRzBO3dbK7h7dQT7XJhMvNOy0P1WGA0KTBijqbmmOzPBwcyFy9tQOZod4XDDV8iPiFtmbYKt8VM2o6VwVjuIFTIW/i2HGUpUeXuIMOXuS9nj6TcRgoGoFgRtyaXVlkc3UnXJZsma6HBCb1u4Zbr2FPMjja1y5EXsuWSHHKkQ8Fv7nJ0DE6kErhW2NmZuz65ZTrTjICpJaLvy315wV7QsgKmIp4A2DMNo9ukDAJQxzwmWNm7HIu8wgegZRkOqD6q45i9pEqtoY2ejGmxZ+cW5mQCw47uTQ6fNTkj/FGrFOtLu2VBc9LMA/tGd3MogYY8Vka68iZPKErVYFxkREMPwlr7+oyUwQUGRX4DXUXD1gogzAFf1IIRgUURnbB782GCQ5Nq83Mb5GEb63wTQhgwcBNqQvN5JcQR5NJ8x4p9Herk3J0CGlC5OEyCECJy0g6O2MIxyLBIhdfQdNW+GgRb96UBlhTo0TVMBbMWWKP7hq4MpVLf0KxNI24pwI6Ib6t9NXymBJ41ILVhtVOHhlJZSoW34UgM59wwFEZXRe+MMy0xFxpDQBvhDJsAA4q2sVa6GHXBUARDBrJZ6R1E67y5MlBCht8KW21+QPAh2TiOXGjuQVBn62J0g5A2EAQpI6z7apxrp5StBPgJ+yXpO+JTouqIhMwYQ6x2O2m7ZWBN3MWUsKCzAWFYrcDfsG8pNXHHblYTaTmvH2mEGN+KEVYE14wn3darHxHPE6+0XBMlP0jmYZPM55d9D+/wgPjwDvDi8TvAvnanK8TNygnAj1EJRHa+21F43XtHj6x6B/ODEtBqwKuv12eXyNEHoSDISdZp/5FKcPH8+9/h8aIxPFY03h6EdlmX7v4AiiryDpPDh+/nq1ZIhnUhGf4DKtaqvQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjE0MTUKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XBlcaAL+MDVYKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDkyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2NwQ3AMAgD/0zBCBACxPtUVR/p/t8mEeoHHwbZGGBhszXgwdnAl9LaN72kRZPaCFa1Rd1QnrsUpVhdR6VMwk+ZO39SdBztcA7b39blOE3j6F/30P0BD0oeCwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFNcgUhCIT3nqIv8KrkVz3PpFJZTO6/Dc28JCtaheYD0wITR/ASQ+yJlRMfMnwv6DJ8tzI78DrZmXBPuG5cw2XDM2Fb4DsqyzteQ3e2Uj+doarvGjneLlI1dGVkn3qhmgvMkIiuEVl0K5d1QNOU7lLhGmxbghT1SqwnnaA06BHK8HeUa3x1E0+vseRUzSFaza0TGoqwbHhB1MkkEbUNiyeWcyFR+aobqzouYJMl4vSA3KCVZnx6UkkRMIN8rMlozAI20JO7ZxfGmkseRY5XNJiwO0k18ID34ra+9zZxj/MX+IV33/8rDn3XAj5/AEv+XQYKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDIzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzYzVDBQMLFUMDI2UTA2NAJiE4UUQy6gCIiVywUTywGzQKpyuKDKc2CqcrgyuNIABRgOMgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAyNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDIzOSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDE1MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9TzkOwzAM2/0KfiCAdVi23pMi6JD+f63ooB0EEaB4yLKjYwUOMYFJxxyJl7Qf/DSNQCyDmiN6QsUwLHA2SYGHQVZJVz5bnEwhtQVeSPjWFDwbTWSCnseIHbiTyegD71JbsXXoAe0QVSRdswxjsa26cD1hBDXFehXm9TBjiZJHn1VL6wEFE/jS+X/ubu92fQFgxTBdCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCAxNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNY/LDcMwDEPvmoILBNDPsjxPiqCHdP9rJacFDJgwySfZFoORjENMYOyYY+ElVE+tPiQjt7pJORCpUDcET2hMDDOcpEvglem+ZTy3eDmt1AWdkMjdWW00RBnNPIajp+wVTvovc5OolRllDsisU91OyMqCFZgX1HLfz7itcqETHrYrw6I7xYhymxlp+P3vpDddX9x4MNUKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE0IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NSAvaHlwaGVuIC9wZXJpb2QgNDggL3plcm8gL29uZQovdHdvIDUyIC9mb3VyIC9maXZlIC9zaXggL3NldmVuIC9laWdodCA2NyAvQyA3MyAvSSA3NiAvTCA4MiAvUiAvUyA4NyAvVyA5NwovYSAvYiAvYyAvZCAvZSAvZiAvZyAvaCAvaSAxMDggL2wgL20gL24gL28gL3AgMTE0IC9yIC9zIC90IC91IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9DIDE3IDAgUiAvSSAxOCAwIFIgL0wgMTkgMCBSIC9SIDIwIDAgUiAvUyAyMSAwIFIgL1cgMjIgMCBSIC9hIDIzIDAgUgovYiAyNCAwIFIgL2MgMjUgMCBSIC9kIDI2IDAgUiAvZSAyNyAwIFIgL2VpZ2h0IDI4IDAgUiAvZiAyOSAwIFIKL2ZpdmUgMzAgMCBSIC9mb3VyIDMxIDAgUiAvZyAzMiAwIFIgL2ggMzMgMCBSIC9oeXBoZW4gMzQgMCBSIC9pIDM1IDAgUgovbCAzNiAwIFIgL20gMzcgMCBSIC9uIDM4IDAgUiAvbyAzOSAwIFIgL29uZSA0MCAwIFIgL3AgNDEgMCBSCi9wYXJlbmxlZnQgNDIgMCBSIC9wYXJlbnJpZ2h0IDQzIDAgUiAvcGVyaW9kIDQ0IDAgUiAvciA0NSAwIFIgL3MgNDYgMCBSCi9zZXZlbiA0NyAwIFIgL3NpeCA0OCAwIFIgL3NwYWNlIDQ5IDAgUiAvdCA1MCAwIFIgL3R3byA1MSAwIFIgL3UgNTIgMCBSCi96ZXJvIDUzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago1NCAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNTUxMTJaKQo+PgplbmRvYmoKeHJlZgowIDU1CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNzkwIDAwMDAwIG4gCjAwMDAwMTM1OTYgMDAwMDAgbiAKMDAwMDAxMzYyOCAwMDAwMCBuIAowMDAwMDEzNzI3IDAwMDAwIG4gCjAwMDAwMTM3NDggMDAwMDAgbiAKMDAwMDAxMzc2OSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAwMTg1MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE4MzEgMDAwMDAgbiAKMDAwMDAxMjA5NyAwMDAwMCBuIAowMDAwMDExODkwIDAwMDAwIG4gCjAwMDAwMTEzNzcgMDAwMDAgbiAKMDAwMDAxMzE1MCAwMDAwMCBuIAowMDAwMDAxODcyIDAwMDAwIG4gCjAwMDAwMDIxODAgMDAwMDAgbiAKMDAwMDAwMjMwMyAwMDAwMCBuIAowMDAwMDAyNDM2IDAwMDAwIG4gCjAwMDAwMDI3NDEgMDAwMDAgbiAKMDAwMDAwMzE1NSAwMDAwMCBuIAowMDAwMDAzMzE5IDAwMDAwIG4gCjAwMDAwMDM2OTkgMDAwMDAgbiAKMDAwMDAwNDAxNiAwMDAwMCBuIAowMDAwMDA0MzIxIDAwMDAwIG4gCjAwMDAwMDQ2MjUgMDAwMDAgbiAKMDAwMDAwNDk0NyAwMDAwMCBuIAowMDAwMDA1NDE1IDAwMDAwIG4gCjAwMDAwMDU2MjQgMDAwMDAgbiAKMDAwMDAwNTk0NiAwMDAwMCBuIAowMDAwMDA2MTEyIDAwMDAwIG4gCjAwMDAwMDY1MjYgMDAwMDAgbiAKMDAwMDAwNjc2MyAwMDAwMCBuIAowMDAwMDA2ODg5IDAwMDAwIG4gCjAwMDAwMDcwMzMgMDAwMDAgbiAKMDAwMDAwNzE1MiAwMDAwMCBuIAowMDAwMDA3NDgzIDAwMDAwIG4gCjAwMDAwMDc3MTkgMDAwMDAgbiAKMDAwMDAwODAxMCAwMDAwMCBuIAowMDAwMDA4MTY1IDAwMDAwIG4gCjAwMDAwMDg0NzcgMDAwMDAgbiAKMDAwMDAwODcwMCAwMDAwMCBuIAowMDAwMDA4OTI0IDAwMDAwIG4gCjAwMDAwMDkwNDcgMDAwMDAgbiAKMDAwMDAwOTI4MCAwMDAwMCBuIAowMDAwMDA5Njg3IDAwMDAwIG4gCjAwMDAwMDk4MjkgMDAwMDAgbiAKMDAwMDAxMDIyMiAwMDAwMCBuIAowMDAwMDEwMzEyIDAwMDAwIG4gCjAwMDAwMTA1MTggMDAwMDAgbiAKMDAwMDAxMDg0MiAwMDAwMCBuIAowMDAwMDExMDg5IDAwMDAwIG4gCjAwMDAwMTM4NTAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA1NSAvUm9vdCAxIDAgUiAvSW5mbyA1NCAwIFIgPj4Kc3RhcnR4cmVmCjE0MDAxCiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"503.407187pt\" height=\"231.597813pt\" viewBox=\"0 0 503.407187 231.597813\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:51:12.332028</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 231.597813 \n", "L 503.407187 231.597813 \n", "L 503.407187 -0 \n", "L 0 -0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 49.807188 188.638125 \n", "L 496.207187 188.638125 \n", "L 496.207187 22.318125 \n", "L 49.807188 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 70.098097 188.638125 \n", "L 70.098097 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(66.598722 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 120.850746 188.638125 \n", "L 120.850746 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 250 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(110.352621 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 171.603395 188.638125 \n", "L 171.603395 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 500 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(161.10527 206.496406) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 222.356044 188.638125 \n", "L 222.356044 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 750 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(211.857919 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 273.108693 188.638125 \n", "L 273.108693 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 1000 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(259.111193 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 323.861342 188.638125 \n", "L 323.861342 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 1250 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(309.863842 206.496406) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 374.613991 188.638125 \n", "L 374.613991 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 1500 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(360.616491 206.496406) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 425.36664 188.638125 \n", "L 425.36664 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 1750 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(411.36914 206.496406) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 476.119289 188.638125 \n", "L 476.119289 22.318125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 2000 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(462.121789 206.496406) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_10\">\n", "     <!-- Iterations (in batches) -->\n", "     <g style=\"fill: #262626\" transform=\"translate(206.709062 221.902188) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-28\" d=\"M 1984 4856 \n", "Q 1566 4138 1362 3434 \n", "Q 1159 2731 1159 2009 \n", "Q 1159 1288 1364 580 \n", "Q 1569 -128 1984 -844 \n", "L 1484 -844 \n", "Q 1016 -109 783 600 \n", "Q 550 1309 550 2009 \n", "Q 550 2706 781 3412 \n", "Q 1013 4119 1484 4856 \n", "L 1984 4856 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-62\" d=\"M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "M 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2969 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-29\" d=\"M 513 4856 \n", "L 1013 4856 \n", "Q 1481 4119 1714 3412 \n", "Q 1947 2706 1947 2009 \n", "Q 1947 1309 1714 600 \n", "Q 1481 -109 1013 -844 \n", "L 513 -844 \n", "Q 928 -128 1133 580 \n", "Q 1338 1288 1338 2009 \n", "Q 1338 2731 1133 3434 \n", "Q 928 4138 513 4856 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-49\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"29.492188\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"68.701172\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"130.224609\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"171.337891\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"232.617188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"271.826172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"299.609375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"360.791016\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"424.169922\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"476.269531\"/>\n", "      <use xlink:href=\"#DejaVuSans-28\" x=\"508.056641\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"547.070312\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"574.853516\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"638.232422\"/>\n", "      <use xlink:href=\"#DejaVuSans-62\" x=\"670.019531\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"733.496094\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"794.775391\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"833.984375\"/>\n", "      <use xlink:href=\"#DejaVuSans-68\" x=\"888.964844\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"952.34375\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"1013.867188\"/>\n", "      <use xlink:href=\"#DejaVuSans-29\" x=\"1065.966797\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 49.807188 181.078125 \n", "L 496.207187 181.078125 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0.0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 185.257266) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 49.807188 150.65082 \n", "L 496.207187 150.65082 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 0.2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 154.82996) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_12\">\n", "      <path d=\"M 49.807188 120.223514 \n", "L 496.207187 120.223514 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 0.4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 124.402655) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_13\">\n", "      <path d=\"M 49.807188 89.796209 \n", "L 496.207187 89.796209 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 0.6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 93.97535) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_14\">\n", "      <path d=\"M 49.807188 59.368904 \n", "L 496.207187 59.368904 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 0.8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 63.548044) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-38\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_15\">\n", "      <path d=\"M 49.807188 28.941598 \n", "L 496.207187 28.941598 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 1.0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 33.120739) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Learning rate factor -->\n", "     <g style=\"fill: #262626\" transform=\"translate(16.318125 165.106875) rotate(-90) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n", "L 2375 4384 \n", "L 1825 4384 \n", "Q 1516 4384 1395 4259 \n", "Q 1275 4134 1275 3809 \n", "L 1275 3500 \n", "L 2222 3500 \n", "L 2222 3053 \n", "L 1275 3053 \n", "L 1275 0 \n", "L 697 0 \n", "L 697 3053 \n", "L 147 3053 \n", "L 147 3500 \n", "L 697 3500 \n", "L 697 3744 \n", "Q 697 4328 969 4595 \n", "Q 1241 4863 1831 4863 \n", "L 2375 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-4c\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"53.962891\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"115.486328\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"176.765625\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"216.128906\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"279.507812\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"307.291016\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"370.669922\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"434.146484\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"465.933594\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"507.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"568.326172\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"607.535156\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"669.058594\"/>\n", "      <use xlink:href=\"#DejaVuSans-66\" x=\"700.845703\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"736.050781\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"797.330078\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"852.310547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"891.519531\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"952.701172\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_16\">\n", "    <path d=\"M 70.098097 181.078125 \n", "L 89.587114 35.855772 \n", "L 90.399156 29.878125 \n", "L 97.504527 30.645532 \n", "L 104.609898 31.637654 \n", "L 111.715269 32.851492 \n", "L 119.02365 34.327453 \n", "L 126.332032 36.029378 \n", "L 133.843424 38.008318 \n", "L 141.557826 40.276189 \n", "L 149.272229 42.774634 \n", "L 157.189642 45.56924 \n", "L 165.513077 48.747409 \n", "L 174.039522 52.244859 \n", "L 182.971988 56.154818 \n", "L 192.310476 60.491614 \n", "L 202.054984 65.264303 \n", "L 212.611535 70.688692 \n", "L 223.980129 76.785211 \n", "L 236.769796 83.902262 \n", "L 252.198601 92.756247 \n", "L 275.950841 106.682555 \n", "L 301.327166 121.487009 \n", "L 316.146939 129.875666 \n", "L 328.733596 136.74803 \n", "L 339.899179 142.594705 \n", "L 350.252719 147.766568 \n", "L 359.997228 152.384247 \n", "L 369.132705 156.469316 \n", "L 377.86216 160.132967 \n", "L 386.388605 163.468848 \n", "L 394.509029 166.40961 \n", "L 402.426443 169.043634 \n", "L 410.140845 171.379118 \n", "L 417.652237 173.426057 \n", "L 425.163629 175.241961 \n", "L 432.472011 176.781193 \n", "L 439.780392 178.090981 \n", "L 446.885763 179.140428 \n", "L 453.991134 179.965868 \n", "L 461.096505 180.564806 \n", "L 468.201876 180.935431 \n", "L 475.104236 181.075779 \n", "L 475.916278 181.078031 \n", "L 475.916278 181.078031 \n", "\" clip-path=\"url(#p13faf363e2)\" style=\"fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round\"/>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 49.807188 188.638125 \n", "L 49.807188 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 496.207187 188.638125 \n", "L 496.207187 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 49.807187 188.638125 \n", "L 496.207188 188.638125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 49.807187 22.318125 \n", "L 496.207188 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_18\">\n", "    <!-- Cosine Warm-up Learning Rate Scheduler -->\n", "    <g style=\"fill: #262626\" transform=\"translate(148.179062 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-57\" d=\"M 213 4666 \n", "L 850 4666 \n", "L 1831 722 \n", "L 2809 4666 \n", "L 3519 4666 \n", "L 4500 722 \n", "L 5478 4666 \n", "L 6119 4666 \n", "L 4947 0 \n", "L 4153 0 \n", "L 3169 4050 \n", "L 2175 0 \n", "L 1381 0 \n", "L 213 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n", "L 1997 2009 \n", "L 1997 1497 \n", "L 313 1497 \n", "L 313 2009 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-53\" d=\"M 3425 4513 \n", "L 3425 3897 \n", "Q 3066 4069 2747 4153 \n", "Q 2428 4238 2131 4238 \n", "Q 1616 4238 1336 4038 \n", "Q 1056 3838 1056 3469 \n", "Q 1056 3159 1242 3001 \n", "Q 1428 2844 1947 2747 \n", "L 2328 2669 \n", "Q 3034 2534 3370 2195 \n", "Q 3706 1856 3706 1288 \n", "Q 3706 609 3251 259 \n", "Q 2797 -91 1919 -91 \n", "Q 1588 -91 1214 -16 \n", "Q 841 59 441 206 \n", "L 441 856 \n", "Q 825 641 1194 531 \n", "Q 1563 422 1919 422 \n", "Q 2459 422 2753 634 \n", "Q 3047 847 3047 1241 \n", "Q 3047 1584 2836 1778 \n", "Q 2625 1972 2144 2069 \n", "L 1759 2144 \n", "Q 1053 2284 737 2584 \n", "Q 422 2884 422 3419 \n", "Q 422 4038 858 4394 \n", "Q 1294 4750 2059 4750 \n", "Q 2388 4750 2728 4690 \n", "Q 3069 4631 3425 4513 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-43\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"69.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"131.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"183.105469\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"210.888672\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"274.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"335.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-57\" x=\"367.578125\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"460.080078\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"521.359375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"560.722656\"/>\n", "     <use xlink:href=\"#DejaVuSans-2d\" x=\"658.134766\"/>\n", "     <use xlink:href=\"#DejaVuSans-75\" x=\"694.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"757.597656\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"821.074219\"/>\n", "     <use xlink:href=\"#DejaVuSans-4c\" x=\"852.861328\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"906.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"968.347656\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"1029.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1068.990234\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1132.369141\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1160.152344\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"1223.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1287.007812\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1318.794922\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1386.027344\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"1447.306641\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1486.515625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1548.039062\"/>\n", "     <use xlink:href=\"#DejaVuSans-53\" x=\"1579.826172\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"1643.302734\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1698.283203\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1761.662109\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1823.185547\"/>\n", "     <use xlink:href=\"#DejaVuSans-75\" x=\"1886.662109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"1950.041016\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1977.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"2039.347656\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p13faf363e2\">\n", "   <rect x=\"49.807188\" y=\"22.318125\" width=\"446.4\" height=\"166.32\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 800x300 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Needed for initializing the lr scheduler\n", "p = nn.Parameter(torch.empty(4, 4))\n", "optimizer = optim.Adam([p], lr=1e-3)\n", "lr_scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup=100, max_iters=2000)\n", "\n", "# Plotting\n", "epochs = list(range(2000))\n", "sns.set()\n", "plt.figure(figsize=(8, 3))\n", "plt.plot(epochs, [lr_scheduler.get_lr_factor(e) for e in epochs])\n", "plt.ylabel(\"Learning rate factor\")\n", "plt.xlabel(\"Iterations (in batches)\")\n", "plt.title(\"Cosine Warm-up Learning Rate Scheduler\")\n", "plt.show()\n", "sns.reset_orig()"]}, {"cell_type": "markdown", "id": "5e50aadd", "metadata": {"papermill": {"duration": 0.017008, "end_time": "2023-03-14T15:51:12.606969", "exception": false, "start_time": "2023-03-14T15:51:12.589961", "status": "completed"}, "tags": []}, "source": ["In the first 100 iterations, we increase the learning rate factor from 0 to 1,\n", "whereas for all later iterations, we decay it using the cosine wave.\n", "Pre-implementations of this scheduler can be found in the popular NLP Transformer library\n", "[huggingface](https://huggingface.co/transformers/main_classes/optimizer_schedules.html?highlight=cosine#transformers.get_cosine_schedule_with_warmup)."]}, {"cell_type": "markdown", "id": "02029c9f", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.01664, "end_time": "2023-03-14T15:51:12.639906", "exception": false, "start_time": "2023-03-14T15:51:12.623266", "status": "completed"}, "tags": []}, "source": ["### PyTorch Lightning Module\n", "\n", "Finally, we can embed the Transformer architecture into a PyTorch lightning module.\n", "From Tutorial 5, you know that PyTorch Lightning simplifies our training and test code,\n", "as well as structures the code nicely in separate functions.\n", "We will implement a template for a classifier based on the Transformer encoder.\n", "Thereby, we have a prediction output per sequence element.\n", "If we would need a classifier over the whole sequence, the common approach is to add an additional\n", "`[CLS]` token to the sequence, representing the classifier token.\n", "However, here we focus on tasks where we have an output per element.\n", "\n", "Additionally to the Transformer architecture, we add a small input network (maps input dimensions to model dimensions),\n", "the positional encoding, and an output network (transforms output encodings to predictions).\n", "We also add the learning rate scheduler, which takes a step each iteration instead of once per epoch.\n", "This is needed for the warmup and the smooth cosine decay.\n", "The training, validation, and test step is left empty for now and will be filled for our task-specific models."]}, {"cell_type": "code", "execution_count": 14, "id": "8dad860a", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.682020Z", "iopub.status.busy": "2023-03-14T15:51:12.681715Z", "iopub.status.idle": "2023-03-14T15:51:12.693912Z", "shell.execute_reply": "2023-03-14T15:51:12.693265Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.039652, "end_time": "2023-03-14T15:51:12.696259", "exception": false, "start_time": "2023-03-14T15:51:12.656607", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TransformerPredictor(L.LightningModule):\n", "    def __init__(\n", "        self,\n", "        input_dim,\n", "        model_dim,\n", "        num_classes,\n", "        num_heads,\n", "        num_layers,\n", "        lr,\n", "        warmup,\n", "        max_iters,\n", "        dropout=0.0,\n", "        input_dropout=0.0,\n", "    ):\n", "        \"\"\"\n", "        Args:\n", "            input_dim: Hidden dimensionality of the input\n", "            model_dim: Hidden dimensionality to use inside the Transformer\n", "            num_classes: Number of classes to predict per sequence element\n", "            num_heads: Number of heads to use in the Multi-Head Attention blocks\n", "            num_layers: Number of encoder blocks to use.\n", "            lr: Learning rate in the optimizer\n", "            warmup: Number of warmup steps. Usually between 50 and 500\n", "            max_iters: Number of maximum iterations the model is trained for. This is needed for the CosineWarmup scheduler\n", "            dropout: Dropout to apply inside the model\n", "            input_dropout: Dropout to apply on the input features\n", "        \"\"\"\n", "        super().__init__()\n", "        self.save_hyperparameters()\n", "        self._create_model()\n", "\n", "    def _create_model(self):\n", "        # Input dim -> Model dim\n", "        self.input_net = nn.Sequential(\n", "            nn.Dropout(self.hparams.input_dropout), nn.Linear(self.hparams.input_dim, self.hparams.model_dim)\n", "        )\n", "        # Positional encoding for sequences\n", "        self.positional_encoding = PositionalEncoding(d_model=self.hparams.model_dim)\n", "        # Transformer\n", "        self.transformer = TransformerEncoder(\n", "            num_layers=self.hparams.num_layers,\n", "            input_dim=self.hparams.model_dim,\n", "            dim_feedforward=2 * self.hparams.model_dim,\n", "            num_heads=self.hparams.num_heads,\n", "            dropout=self.hparams.dropout,\n", "        )\n", "        # Output classifier per sequence lement\n", "        self.output_net = nn.Sequential(\n", "            nn.Linear(self.hparams.model_dim, self.hparams.model_dim),\n", "            nn.LayerNorm(self.hparams.model_dim),\n", "            nn.ReLU(inplace=True),\n", "            nn.Dropout(self.hparams.dropout),\n", "            nn.Linear(self.hparams.model_dim, self.hparams.num_classes),\n", "        )\n", "\n", "    def forward(self, x, mask=None, add_positional_encoding=True):\n", "        \"\"\"\n", "        Args:\n", "            x: Input features of shape [Batch, SeqLen, input_dim]\n", "            mask: Mask to apply on the attention outputs (optional)\n", "            add_positional_encoding: If True, we add the positional encoding to the input.\n", "                                      Might not be desired for some tasks.\n", "        \"\"\"\n", "        x = self.input_net(x)\n", "        if add_positional_encoding:\n", "            x = self.positional_encoding(x)\n", "        x = self.transformer(x, mask=mask)\n", "        x = self.output_net(x)\n", "        return x\n", "\n", "    @torch.no_grad()\n", "    def get_attention_maps(self, x, mask=None, add_positional_encoding=True):\n", "        \"\"\"Function for extracting the attention matrices of the whole Transformer for a single batch.\n", "\n", "        Input arguments same as the forward pass.\n", "        \"\"\"\n", "        x = self.input_net(x)\n", "        if add_positional_encoding:\n", "            x = self.positional_encoding(x)\n", "        attention_maps = self.transformer.get_attention_maps(x, mask=mask)\n", "        return attention_maps\n", "\n", "    def configure_optimizers(self):\n", "        optimizer = optim.Adam(self.parameters(), lr=self.hparams.lr)\n", "\n", "        # We don't return the lr scheduler because we need to apply it per iteration, not per epoch\n", "        self.lr_scheduler = CosineWarmupScheduler(\n", "            optimizer, warmup=self.hparams.warmup, max_iters=self.hparams.max_iters\n", "        )\n", "        return optimizer\n", "\n", "    def optimizer_step(self, *args, **kwargs):\n", "        super().optimizer_step(*args, **kwargs)\n", "        self.lr_scheduler.step()  # Step per iteration\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        raise NotImplementedError\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        raise NotImplementedError\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        raise NotImplementedError"]}, {"cell_type": "markdown", "id": "3c45be84", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.016463, "end_time": "2023-03-14T15:51:12.732640", "exception": false, "start_time": "2023-03-14T15:51:12.716177", "status": "completed"}, "tags": []}, "source": ["## Experiments\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/e7xvF2yS4Dg\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "\n", "After having finished the implementation of the Transformer architecture, we can start experimenting\n", "and apply it to various tasks.\n", "In this notebook, we will focus on two tasks: parallel Sequence-to-Sequence, and set anomaly detection.\n", "The two tasks focus on different properties of the Transformer architecture, and we go through them below.\n", "\n", "### Sequence to Sequence\n", "\n", "A Sequence-to-Sequence task represents a task where the input _and_ the output is a sequence,\n", "not necessarily of the same length.\n", "Popular tasks in this domain include machine translation and summarization.\n", "For this, we usually have a Transformer encoder for interpreting the input sequence,\n", "and a decoder for generating the output in an autoregressive manner.\n", "Here, however, we will go back to a much simpler example task and use only the encoder.\n", "Given a sequence of $N$ numbers between $0$ and $M$, the task is to reverse the input sequence.\n", "In Numpy notation, if our input is $x$, the output should be $x$[::-1].\n", "Although this task sounds very simple, RNNs can have issues with such because the task requires long-term dependencies.\n", "Transformers are built to support such, and hence, we expect it to perform very well.\n", "\n", "First, let's create a dataset class below."]}, {"cell_type": "code", "execution_count": 15, "id": "85f72ed6", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.774061Z", "iopub.status.busy": "2023-03-14T15:51:12.773410Z", "iopub.status.idle": "2023-03-14T15:51:12.780394Z", "shell.execute_reply": "2023-03-14T15:51:12.779664Z"}, "papermill": {"duration": 0.029534, "end_time": "2023-03-14T15:51:12.781751", "exception": false, "start_time": "2023-03-14T15:51:12.752217", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ReverseDataset(data.Dataset):\n", "    def __init__(self, num_categories, seq_len, size):\n", "        super().__init__()\n", "        self.num_categories = num_categories\n", "        self.seq_len = seq_len\n", "        self.size = size\n", "\n", "        self.data = torch.randint(self.num_categories, size=(self.size, self.seq_len))\n", "\n", "    def __len__(self):\n", "        return self.size\n", "\n", "    def __getitem__(self, idx):\n", "        inp_data = self.data[idx]\n", "        labels = torch.flip(inp_data, dims=(0,))\n", "        return inp_data, labels"]}, {"cell_type": "markdown", "id": "f74fab91", "metadata": {"papermill": {"duration": 0.017753, "end_time": "2023-03-14T15:51:12.821720", "exception": false, "start_time": "2023-03-14T15:51:12.803967", "status": "completed"}, "tags": []}, "source": ["We create an arbitrary number of random sequences of numbers between 0 and `num_categories-1`.\n", "The label is simply the tensor flipped over the sequence dimension.\n", "We can create the corresponding data loaders below."]}, {"cell_type": "code", "execution_count": 16, "id": "ef0681a5", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.861853Z", "iopub.status.busy": "2023-03-14T15:51:12.861460Z", "iopub.status.idle": "2023-03-14T15:51:12.880908Z", "shell.execute_reply": "2023-03-14T15:51:12.880102Z"}, "papermill": {"duration": 0.040263, "end_time": "2023-03-14T15:51:12.882285", "exception": false, "start_time": "2023-03-14T15:51:12.842022", "status": "completed"}, "tags": []}, "outputs": [], "source": ["dataset = partial(ReverseDataset, 10, 16)\n", "train_loader = data.DataLoader(dataset(50000), batch_size=128, shuffle=True, drop_last=True, pin_memory=True)\n", "val_loader = data.DataLoader(dataset(1000), batch_size=128)\n", "test_loader = data.DataLoader(dataset(10000), batch_size=128)"]}, {"cell_type": "markdown", "id": "9dc55774", "metadata": {"papermill": {"duration": 0.020117, "end_time": "2023-03-14T15:51:12.924160", "exception": false, "start_time": "2023-03-14T15:51:12.904043", "status": "completed"}, "tags": []}, "source": ["Let's look at an arbitrary sample of the dataset:"]}, {"cell_type": "code", "execution_count": 17, "id": "1c71490f", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:12.963544Z", "iopub.status.busy": "2023-03-14T15:51:12.963171Z", "iopub.status.idle": "2023-03-14T15:51:12.967680Z", "shell.execute_reply": "2023-03-14T15:51:12.967130Z"}, "papermill": {"duration": 0.02535, "end_time": "2023-03-14T15:51:12.968986", "exception": false, "start_time": "2023-03-14T15:51:12.943636", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Input data: tensor([9, 6, 2, 0, 6, 2, 7, 9, 7, 3, 3, 4, 3, 7, 0, 9])\n", "Labels:     tensor([9, 0, 7, 3, 4, 3, 3, 7, 9, 7, 2, 6, 0, 2, 6, 9])\n"]}], "source": ["inp_data, labels = train_loader.dataset[0]\n", "print(\"Input data:\", inp_data)\n", "print(\"Labels:    \", labels)"]}, {"cell_type": "markdown", "id": "be4e46bc", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.024204, "end_time": "2023-03-14T15:51:13.016400", "exception": false, "start_time": "2023-03-14T15:51:12.992196", "status": "completed"}, "tags": []}, "source": ["During training, we pass the input sequence through the Transformer encoder and predict the output for each input token.\n", "We use the standard Cross-Entropy loss to perform this.\n", "Every number is represented as a one-hot vector.\n", "Remember that representing the categories as single scalars decreases the expressiveness of the model extremely\n", "as $0$ and $1$ are not closer related than $0$ and $9$ in our example.\n", "An alternative to a one-hot vector is using a learned embedding vector as it is provided by the PyTorch module `nn.Embedding`.\n", "However, using a one-hot vector with an additional linear layer as in our case has the same effect\n", "as an embedding layer (`self.input_net` maps one-hot vector to a dense vector,\n", "where each row of the weight matrix represents the embedding for a specific category).\n", "\n", "To implement the training dynamic, we create a new class inheriting from `TransformerPredictor`\n", "and overwriting the training, validation and test step functions."]}, {"cell_type": "code", "execution_count": 18, "id": "89b563fa", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:13.058146Z", "iopub.status.busy": "2023-03-14T15:51:13.057380Z", "iopub.status.idle": "2023-03-14T15:51:13.065319Z", "shell.execute_reply": "2023-03-14T15:51:13.064827Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.031209, "end_time": "2023-03-14T15:51:13.066589", "exception": false, "start_time": "2023-03-14T15:51:13.035380", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ReversePredictor(TransformerPredictor):\n", "    def _calculate_loss(self, batch, mode=\"train\"):\n", "        # Fetch data and transform categories to one-hot vectors\n", "        inp_data, labels = batch\n", "        inp_data = F.one_hot(inp_data, num_classes=self.hparams.num_classes).float()\n", "\n", "        # Perform prediction and calculate loss and accuracy\n", "        preds = self.forward(inp_data, add_positional_encoding=True)\n", "        loss = F.cross_entropy(preds.view(-1, preds.size(-1)), labels.view(-1))\n", "        acc = (preds.argmax(dim=-1) == labels).float().mean()\n", "\n", "        # Logging\n", "        self.log(\"%s_loss\" % mode, loss)\n", "        self.log(\"%s_acc\" % mode, acc)\n", "        return loss, acc\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        loss, _ = self._calculate_loss(batch, mode=\"train\")\n", "        return loss\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"val\")\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"test\")"]}, {"cell_type": "markdown", "id": "ba013213", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.018871, "end_time": "2023-03-14T15:51:13.103975", "exception": false, "start_time": "2023-03-14T15:51:13.085104", "status": "completed"}, "tags": []}, "source": ["Finally, we can create a training function similar to the one we have seen in Tutorial 5 for PyTorch Lightning.\n", "We create a `L.Trainer` object, running for $N$ epochs, logging in TensorBoard, and saving our best model based on the validation.\n", "Afterward, we test our models on the test set.\n", "An additional parameter we pass to the trainer here is `gradient_clip_val`.\n", "This clips the norm of the gradients for all parameters before taking an optimizer step and prevents the model\n", "from diverging if we obtain very high gradients at, for instance, sharp loss surfaces (see many good blog posts\n", "on gradient clipping, like [DeepAI glossary](https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping)).\n", "For Transformers, gradient clipping can help to further stabilize the training during the first few iterations, and also afterward.\n", "In plain PyTorch, you can apply gradient clipping via `torch.nn.utils.clip_grad_norm_(...)`\n", "(see [documentation](https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html#torch.nn.utils.clip_grad_norm_)).\n", "The clip value is usually between 0.5 and 10, depending on how harsh you want to clip large gradients.\n", "After having explained this, let's implement the training function:"]}, {"cell_type": "code", "execution_count": 19, "id": "a9a1f5c7", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:13.144291Z", "iopub.status.busy": "2023-03-14T15:51:13.143577Z", "iopub.status.idle": "2023-03-14T15:51:13.150171Z", "shell.execute_reply": "2023-03-14T15:51:13.149698Z"}, "papermill": {"duration": 0.028602, "end_time": "2023-03-14T15:51:13.151421", "exception": false, "start_time": "2023-03-14T15:51:13.122819", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_reverse(**kwargs):\n", "    # Create a PyTorch Lightning trainer with the generation callback\n", "    root_dir = os.path.join(CHECKPOINT_PATH, \"ReverseTask\")\n", "    os.makedirs(root_dir, exist_ok=True)\n", "    trainer = L.Trainer(\n", "        default_root_dir=root_dir,\n", "        callbacks=[ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\")],\n", "        accelerator=\"auto\",\n", "        devices=1,\n", "        max_epochs=10,\n", "        gradient_clip_val=5,\n", "    )\n", "    trainer.logger._default_hp_metric = None  # Optional logging argument that we don't need\n", "\n", "    # Check whether pretrained model exists. If yes, load it and skip training\n", "    pretrained_filename = os.path.join(CHECKPOINT_PATH, \"ReverseTask.ckpt\")\n", "    if os.path.isfile(pretrained_filename):\n", "        print(\"Found pretrained model, loading...\")\n", "        model = ReversePredictor.load_from_checkpoint(pretrained_filename)\n", "    else:\n", "        model = ReversePredictor(max_iters=trainer.max_epochs * len(train_loader), **kwargs)\n", "        trainer.fit(model, train_loader, val_loader)\n", "\n", "    # Test best model on validation and test set\n", "    val_result = trainer.test(model, dataloaders=val_loader, verbose=False)\n", "    test_result = trainer.test(model, dataloaders=test_loader, verbose=False)\n", "    result = {\"test_acc\": test_result[0][\"test_acc\"], \"val_acc\": val_result[0][\"test_acc\"]}\n", "\n", "    model = model.to(device)\n", "    return model, result"]}, {"cell_type": "markdown", "id": "bd51d7ab", "metadata": {"papermill": {"duration": 0.018885, "end_time": "2023-03-14T15:51:13.189210", "exception": false, "start_time": "2023-03-14T15:51:13.170325", "status": "completed"}, "tags": []}, "source": ["Finally, we can train the model.\n", "In this setup, we will use a single encoder block and a single head in the Multi-Head Attention.\n", "This is chosen because of the simplicity of the task, and in this case, the attention can actually be interpreted\n", "as an \"explanation\" of the predictions (compared to the other papers above dealing with deep Transformers)."]}, {"cell_type": "code", "execution_count": 20, "id": "e3817462", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:13.228270Z", "iopub.status.busy": "2023-03-14T15:51:13.227546Z", "iopub.status.idle": "2023-03-14T15:51:16.336053Z", "shell.execute_reply": "2023-03-14T15:51:16.335216Z"}, "papermill": {"duration": 3.129583, "end_time": "2023-03-14T15:51:16.337459", "exception": false, "start_time": "2023-03-14T15:51:13.207876", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True (cuda), used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Lightning automatically upgraded your loaded checkpoint from v1.0.2 to v2.0.0rc0. To apply the upgrade to your files permanently, run `python -m lightning.pytorch.utilities.upgrade_checkpoint --file saved_models/Transformers/ReverseTask.ckpt`\n"]}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Missing logger folder: saved_models/Transformers/ReverseTask/lightning_logs\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model, loading...\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [4,5]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/usr/local/lib/python3.9/dist-packages/lightning/pytorch/trainer/connectors/data_connector.py:208: PossibleUserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 64 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "b28b350c950a47bf8f0405347d90cf8a", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [4,5]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "11c26f833dd14e5dbdc6d50dcb6ad826", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["reverse_model, reverse_result = train_reverse(\n", "    input_dim=train_loader.dataset.num_categories,\n", "    model_dim=32,\n", "    num_heads=1,\n", "    num_classes=train_loader.dataset.num_categories,\n", "    num_layers=1,\n", "    dropout=0.0,\n", "    lr=5e-4,\n", "    warmup=50,\n", ")"]}, {"cell_type": "markdown", "id": "07b0d95b", "metadata": {"papermill": {"duration": 0.017408, "end_time": "2023-03-14T15:51:16.375543", "exception": false, "start_time": "2023-03-14T15:51:16.358135", "status": "completed"}, "tags": []}, "source": ["The warning of PyTorch Lightning regarding the number of workers can be ignored for now.\n", "As the data set is so simple and the `__getitem__` finishes a neglectable time, we don't need subprocesses\n", "to provide us the data (in fact, more workers can slow down the training as we have communication overhead among processes/threads).\n", "First, let's print the results:"]}, {"cell_type": "code", "execution_count": 21, "id": "6e6bd3c9", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:16.412400Z", "iopub.status.busy": "2023-03-14T15:51:16.411885Z", "iopub.status.idle": "2023-03-14T15:51:16.423879Z", "shell.execute_reply": "2023-03-14T15:51:16.423101Z"}, "papermill": {"duration": 0.032536, "end_time": "2023-03-14T15:51:16.425269", "exception": false, "start_time": "2023-03-14T15:51:16.392733", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Val accuracy:  100.00%\n", "Test accuracy: 100.00%\n"]}], "source": ["print(\"Val accuracy:  %4.2f%%\" % (100.0 * reverse_result[\"val_acc\"]))\n", "print(\"Test accuracy: %4.2f%%\" % (100.0 * reverse_result[\"test_acc\"]))"]}, {"cell_type": "markdown", "id": "87c24b1d", "metadata": {"papermill": {"duration": 0.017318, "end_time": "2023-03-14T15:51:16.463895", "exception": false, "start_time": "2023-03-14T15:51:16.446577", "status": "completed"}, "tags": []}, "source": ["As we would have expected, the Transformer can correctly solve the task.\n", "However, how does the attention in the Multi-Head Attention block looks like for an arbitrary input?\n", "Let's try to visualize it below."]}, {"cell_type": "code", "execution_count": 22, "id": "71bbe3c4", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:16.499691Z", "iopub.status.busy": "2023-03-14T15:51:16.499046Z", "iopub.status.idle": "2023-03-14T15:51:16.510058Z", "shell.execute_reply": "2023-03-14T15:51:16.508985Z"}, "papermill": {"duration": 0.030861, "end_time": "2023-03-14T15:51:16.511727", "exception": false, "start_time": "2023-03-14T15:51:16.480866", "status": "completed"}, "tags": []}, "outputs": [], "source": ["data_input, labels = next(iter(val_loader))\n", "inp_data = F.one_hot(data_input, num_classes=reverse_model.hparams.num_classes).float()\n", "inp_data = inp_data.to(device)\n", "attention_maps = reverse_model.get_attention_maps(inp_data)"]}, {"cell_type": "markdown", "id": "581765bb", "metadata": {"papermill": {"duration": 0.017551, "end_time": "2023-03-14T15:51:16.553581", "exception": false, "start_time": "2023-03-14T15:51:16.536030", "status": "completed"}, "tags": []}, "source": ["The object `attention_maps` is a list of length $N$ where $N$ is the number of layers.\n", "Each element is a tensor of shape [Batch, Heads, SeqLen, SeqLen], which we can verify below."]}, {"cell_type": "code", "execution_count": 23, "id": "daf27dab", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:16.590327Z", "iopub.status.busy": "2023-03-14T15:51:16.589850Z", "iopub.status.idle": "2023-03-14T15:51:16.597166Z", "shell.execute_reply": "2023-03-14T15:51:16.596078Z"}, "papermill": {"duration": 0.027644, "end_time": "2023-03-14T15:51:16.598929", "exception": false, "start_time": "2023-03-14T15:51:16.571285", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/plain": ["torch.Size([128, 1, 16, 16])"]}, "execution_count": 23, "metadata": {}, "output_type": "execute_result"}], "source": ["attention_maps[0].shape"]}, {"cell_type": "markdown", "id": "4e43a94a", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017183, "end_time": "2023-03-14T15:51:16.636185", "exception": false, "start_time": "2023-03-14T15:51:16.619002", "status": "completed"}, "tags": []}, "source": ["Next, we will write a plotting function that takes as input the sequences, attention maps, and an index\n", "indicating for which batch element we want to visualize the attention map.\n", "We will create a plot where over rows, we have different layers, while over columns, we show the different heads.\n", "Remember that the softmax has been applied for each row separately."]}, {"cell_type": "code", "execution_count": 24, "id": "c983eac0", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:16.673443Z", "iopub.status.busy": "2023-03-14T15:51:16.672984Z", "iopub.status.idle": "2023-03-14T15:51:16.683477Z", "shell.execute_reply": "2023-03-14T15:51:16.682869Z"}, "papermill": {"duration": 0.031111, "end_time": "2023-03-14T15:51:16.684857", "exception": false, "start_time": "2023-03-14T15:51:16.653746", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def plot_attention_maps(input_data, attn_maps, idx=0):\n", "    if input_data is not None:\n", "        input_data = input_data[idx].detach().cpu().numpy()\n", "    else:\n", "        input_data = np.arange(attn_maps[0][idx].shape[-1])\n", "    attn_maps = [m[idx].detach().cpu().numpy() for m in attn_maps]\n", "\n", "    num_heads = attn_maps[0].shape[0]\n", "    num_layers = len(attn_maps)\n", "    seq_len = input_data.shape[0]\n", "    fig_size = 4 if num_heads == 1 else 3\n", "    fig, ax = plt.subplots(num_layers, num_heads, figsize=(num_heads * fig_size, num_layers * fig_size))\n", "    if num_layers == 1:\n", "        ax = [ax]\n", "    if num_heads == 1:\n", "        ax = [[a] for a in ax]\n", "    for row in range(num_layers):\n", "        for column in range(num_heads):\n", "            ax[row][column].imshow(attn_maps[row][column], origin=\"lower\", vmin=0)\n", "            ax[row][column].set_xticks(list(range(seq_len)))\n", "            ax[row][column].set_xticklabels(input_data.tolist())\n", "            ax[row][column].set_yticks(list(range(seq_len)))\n", "            ax[row][column].set_yticklabels(input_data.tolist())\n", "            ax[row][column].set_title(\"Layer %i, Head %i\" % (row + 1, column + 1))\n", "    fig.subplots_adjust(hspace=0.5)\n", "    plt.show()"]}, {"cell_type": "markdown", "id": "99d77bd1", "metadata": {"papermill": {"duration": 0.019319, "end_time": "2023-03-14T15:51:16.724086", "exception": false, "start_time": "2023-03-14T15:51:16.704767", "status": "completed"}, "tags": []}, "source": ["Finally, we can plot the attention map of our trained Transformer on the reverse task:"]}, {"cell_type": "code", "execution_count": 25, "id": "edee00a2", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:16.760360Z", "iopub.status.busy": "2023-03-14T15:51:16.759715Z", "iopub.status.idle": "2023-03-14T15:51:17.084066Z", "shell.execute_reply": "2023-03-14T15:51:17.083204Z"}, "papermill": {"duration": 0.34546, "end_time": "2023-03-14T15:51:17.086788", "exception": false, "start_time": "2023-03-14T15:51:16.741328", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjQ5LjUxOTM3NSAyNjcuOTU2ODc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nKWYTW8TMRCG7/4VPoIEE39/HFsKhYpLaCQOiEOVpoGqBbWVqPj3zKZNPOnY1i45bJt9tTvPrPcdj9ezk9Wfn8vVl9Nj+e5czMrZ8kFoeY3HWip5jcej1PIUj7VQeHYrjMvgdbbR4+kNPTUhQvYh4c8bvHjv9IcQV2J2hGEe8LZTIYwC759us5CiHi4bghuw+oV8syc7D8Fu9RKEyhvYnawhjNEQw/bf/Up+lb/k7MgMeeFz4/E45CfLiAgcEYxlDLgkhyHYhqhEX97K2SctT37LuZjLu21ghYM5BFeQnsOjIkzEiHwEiqrAbgdAHOMbeRR3+FfJtwqjGQdW5c3oZjAxaTPgxfFCzD5oqZVcXG1e2OJSfJOv8mv5XS7OxPuFmItNGsJpsI7hidrF2wQ6jMY7jvcejGJ4onbx3oAyo/GR40MGFRieqF188JDSaLzi+GQgG4YnahcfM0Q3Gm85PgeI3HpE7eKzhTDeepWn11pB4N6jcjcBrbBIxrtPVzLA8vHcflTuZ4BzgB1vwMor0FhBljuQyv0MrAc93oOhkgEWkeEmpHI/A5z51XgbVuYAHQIo7kMq9zMIWDCHORFLKVecSOR+BhFrZrwTTSUDrKZUcSKR+xlkLJrxTvQ8A4PVFLgTqdzvRMoNLeuAtzB0VM+dSOV+BjoNXWtsBqmSAVaTrTRjIvczsGZoXIdksFtOWBTUzoigXqrVjgBG4spBqYmLgEJ1Dt82oxa1RXUYKEys+0L1Cd8woxa1RfUO4tSWX6gRV5OJUYvaogbMK0319o6aAhjHqEVtUXFV4NzE7lKoWinQ3E5EbnFxOWC7fuo+rdYWMjcUkVvcYRmgu5aqNHQCxjpI3FNEboKx+6upfZyAce0cuK2I3ARbzK1rrEr7JmBcNXvuLCI3wR4/Zbre6lYvfgGAq3iryE0wrqDDAeZKFkzFXEVugrGzu665Kj2agHMEXTFXkZtgbOh2emvefWNiUWRuLiI32wL2cf3/s5bBokjcXERugrF9q665um3Q4Eo4cnMRuQm2DpeFo8FGnj1tdWy+zve3Qhq7FPVtB3Fe37+4be5fDHdM2QfZv75E6hLU5vnWZHtjTUcMayaa5DZ34nTwfCcZO7M/dp8v/q7upX4jP64uLuXeVDwX/wByIqg6CmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKODY4CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggNzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzc1UjBQsLQAEmamJgrmRpYKKYZcQD6IlctlaGkOZuWAWSbGBkCWqakpEgsiC9MLYcHkYLSxiTnUBAQLJAe2NgdmWw5XBlcaANaUHAwKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDY4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA3V9A1NDRVMDIyUDA0MlFIMeQyNDQHM3O5YII5YJaJAZBhCCTBGnK4YFpzwDogslCtOVwZXGkAcaISZwplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTUgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE3IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NCAvY29tbWEgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbgovZWlnaHQgL25pbmUgNzIgL0ggNzYgL0wgOTcgL2EgMTAwIC9kIC9lIDExNCAvciAxMjEgL3kgXQo+PgovV2lkdGhzIDE0IDAgUiA+PgplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0ggMTggMCBSIC9MIDE5IDAgUiAvYSAyMCAwIFIgL2NvbW1hIDIxIDAgUiAvZCAyMiAwIFIgL2UgMjMgMCBSCi9laWdodCAyNCAwIFIgL2ZpdmUgMjUgMCBSIC9mb3VyIDI2IDAgUiAvbmluZSAyNyAwIFIgL29uZSAyOCAwIFIgL3IgMjkgMCBSCi9zZXZlbiAzMCAwIFIgL3NpeCAzMSAwIFIgL3NwYWNlIDMyIDAgUiAvdGhyZWUgMzMgMCBSIC90d28gMzQgMCBSIC95IDM1IDAgUgovemVybyAzNiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE2IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTMgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDMwOSAvSGVpZ2h0IDMwOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA0NCAo/eck6eQZtd0rn9k4l9g+ldc/kNZDjdZEiNVHg9NLftJOacxbU8VnT8NpXCh7jlwpeI4vaY0waI0xZI0yYo0zYI00X401XYw1XFyMNluMNlqMN1mMN1iMOFeMOFaLOVWLOVSLOlKLO1GKPE6KPkiIP0WHRgxfRgteRglcXEUIW0UGWkUFWEQCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDMwOSA+PiAvTGVuZ3RoIDM3IDAgUiA+PgpzdHJlYW0KeJzt3cuSFVUQQNHLQ14qKCCIIIrYPP3/72PCLDOw3VbTRrvWsAYV5+xpRmWdTtODxbvpr/+vJZpqf0u1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrXi9MN0Y/Hn9GG67Nt8LaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVp7fTb4u70+NpmclcyaGMaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWrFaXm2DAQ+vJ6uT88WVzGkaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWrFVm2zhPx1urW4iiFVK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCvOW22x3P3lYgn5YnozHXfJw6lWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhW/Itqi2V9z9sfp++nn6btZYeetlOtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrTi22uZs+nn6dlp22m9L7S/8AgvVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1YqLr/ZxWkL+Pt1e/DJdxnRBtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrXi4qstlpDL7piHi++mR9MyXTh2vKBaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFacSnVzmeZyZw9n25MfyyWn+32o6lWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVvyHq22WgcCz6c5i6f1+OucxVFNNtZVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqB1k27jxdfDO9mpaQW0nVVFPtvFQrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1Q7yDJdeLfMDe5NTxbLy1RT7TPVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1Y6y3P3FdHOxfNCgmmpfoFqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqhWqFaoVqh2kGWnfb3F9cm1VT7Z1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrVCtUK1QrerVPS9qKtwplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjg3NwplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKMzggMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNy4xKSAvQ3JlYXRpb25EYXRlIChEOjIwMjMwMzE0MTU1MTE3WikKPj4KZW5kb2JqCnhyZWYKMCAzOQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwOTc4OSAwMDAwMCBuIAowMDAwMDA4MzAyIDAwMDAwIG4gCjAwMDAwMDgzMzQgMDAwMDAgbiAKMDAwMDAwODQzMyAwMDAwMCBuIAowMDAwMDA4NDU0IDAwMDAwIG4gCjAwMDAwMDg0NzUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ0IDAwMDAwIG4gCjAwMDAwMDEzMDcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxMjg3IDAwMDAwIG4gCjAwMDAwMDg1MDcgMDAwMDAgbiAKMDAwMDAwNjk5OSAwMDAwMCBuIAowMDAwMDA2NzkyIDAwMDAwIG4gCjAwMDAwMDYzNjAgMDAwMDAgbiAKMDAwMDAwODA1MiAwMDAwMCBuIAowMDAwMDAxMzI3IDAwMDAwIG4gCjAwMDAwMDE0NzggMDAwMDAgbiAKMDAwMDAwMTYxMSAwMDAwMCBuIAowMDAwMDAxOTkxIDAwMDAwIG4gCjAwMDAwMDIxMzEgMDAwMDAgbiAKMDAwMDAwMjQzNSAwMDAwMCBuIAowMDAwMDAyNzU3IDAwMDAwIG4gCjAwMDAwMDMyMjUgMDAwMDAgbiAKMDAwMDAwMzU0NyAwMDAwMCBuIAowMDAwMDAzNzEzIDAwMDAwIG4gCjAwMDAwMDQxMDggMDAwMDAgbiAKMDAwMDAwNDI2MyAwMDAwMCBuIAowMDAwMDA0NDk2IDAwMDAwIG4gCjAwMDAwMDQ2MzggMDAwMDAgbiAKMDAwMDAwNTAzMSAwMDAwMCBuIAowMDAwMDA1MTIxIDAwMDAwIG4gCjAwMDAwMDU1MzQgMDAwMDAgbiAKMDAwMDAwNTg1OCAwMDAwMCBuIAowMDAwMDA2MDcyIDAwMDAwIG4gCjAwMDAwMDk3NjkgMDAwMDAgbiAKMDAwMDAwOTg0OSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDM5IC9Sb290IDEgMCBSIC9JbmZvIDM4IDAgUiA+PgpzdGFydHhyZWYKMTAwMDAKJSVFT0YK", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"249.5225pt\" height=\"267.95625pt\" viewBox=\"0 0 249.5225 267.95625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:51:16.896061</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 267.95625 \n", "L 249.5225 267.95625 \n", "L 249.5225 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 244.078125 \n", "L 242.3225 244.078125 \n", "L 242.3225 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pf72df4f35a)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAATQAAAE0CAYAAACigc+fAAAGdUlEQVR4nO3dy6vndR3H8c/vMHCODqiMLYNAWjrOWH+CYtp4TQMhg9GdEV4pUPEyWIS6SVwX4mIIjcnootjG2moztA1XbsJaeJkWnhrn9A/kwnjbjM95PP6AF9/Vk8/q/d1cu7ljbwFpW/v3j229e/+hsa211vrjvc+NbW2NLQGcY4IGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmTsO9cfAPx3m+3tsa2Pjhwc27r/u6+Oba211k0/fHhsywsNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCDDCW4YNHo2+9arx7a+8eifxrZ+/uObx7bWWuuyE6fGtrzQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3I8E8BLmhbOzuje+/ffnhs6+hjvxnbOv7okbGty353cmxrrbX2/v2vsS0vNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADCe4+cLZbG+PbX1w2+GxrbXWuv2RP4xtvXTsprGtSwbPZk+ezJ7mhQZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakOEEN/8XW/v3j219eOPBsa17n/zl2NZaa/3sB98a27rktbfHtvbOnBnbOp95oQEZggZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZDjBXbLZjM5tXXTR2NY/7rxqbOuKu/86tvXCM98e21prrcvfODm2daGczZ7khQZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakCFoQIZ/Cpxrg/8B2Lr44rGttdb653VXjm3d9dBrY1svP3392NaXXj01trXWWmd3d0f3+Gy80IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMpzgPscmz2Z/cMvBsa211vr6g3PnqY8/e8PY1oFfnRzbcjK7xQsNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCDDCe7/wdbOztjW3++6amzrK995Z2xrrbXeeuFrY1uXvzx3ztvZbD6NFxqQIWhAhqABGYIGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakCFoQMYFc4J7s709tnX6xkNjW0fv+/3Y1i+O3TC2tdZaB377l7Gtsx9/PLYFn8YLDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CAjPP2nwKbfbOfdvrmw2Nbdz71+tjW8R/N/Qfg0l+fGttaa62zu7uje/B580IDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgYvXM9eTZ795rDY1trrfX4T14c2zr2+N1jW5eemDubvedkNhc4LzQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgIx9Wzs7Y2Onjxwa2/rmk2+Oba211hNP3zO2deDEybEtZ7NhjhcakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmQIGpAhaEDGvveOXj029sADr4xtvfj9W8a21lrrwJtvjW3tnTkztgXM8UIDMgQNyBA0IEPQgAxBAzIEDcgQNCBD0IAMQQMyBA3IEDQgQ9CADEEDMgQNyBA0IEPQgAxBAzIEDcgQNCBj88nfvro3NXbl89+bmlpf/umfx7bWWmtvd3d0Dzj/eKEBGYIGZAgakCFoQIagARmCBmQIGpAhaECGoAEZggZkCBqQIWhAhqABGYIGZAgakCFoQIagARmCBmT8B0ANha4YZfXWAAAAAElFTkSuQmCC\" id=\"imaged6c5106038\" transform=\"scale(1 -1) translate(0 -221.76)\" x=\"20.5625\" y=\"-22.318125\" width=\"221.76\" height=\"221.76\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"m1e98913d0e\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"27.4925\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(24.31125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"41.3525\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(38.17125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"55.2125\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(52.03125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"69.0725\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(65.89125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"82.9325\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(79.75125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"96.7925\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(93.61125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"110.6525\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(107.47125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"124.5125\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(121.33125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"138.3725\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(135.19125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"152.2325\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(149.05125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_11\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"166.0925\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(162.91125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"179.9525\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(176.77125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"193.8125\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(190.63125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"207.6725\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(204.49125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"221.5325\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(218.35125 258.676562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#m1e98913d0e\" x=\"235.3925\" y=\"244.078125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(232.21125 258.676562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_17\">\n", "      <defs>\n", "       <path id=\"m1a659f2402\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"237.148125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 240.947344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"223.288125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 227.087344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"209.428125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 213.227344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"195.568125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 199.367344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"181.708125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_21\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 185.507344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"167.848125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 171.647344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"153.988125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 157.787344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"140.128125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 143.927344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"126.268125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 130.067344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"112.408125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 116.207344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"98.548125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 102.347344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"84.688125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 88.487344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"70.828125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 74.627344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"56.968125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 60.767344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"43.108125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 46.907344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#m1a659f2402\" x=\"20.5625\" y=\"29.248125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 33.047344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 244.078125 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 242.3225 244.078125 \n", "L 242.3225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 244.078125 \n", "L 242.3225 244.078125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 242.3225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_33\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(83.760312 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pf72df4f35a\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"221.76\" height=\"221.76\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 400x400 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["plot_attention_maps(data_input, attention_maps, idx=0)"]}, {"cell_type": "markdown", "id": "d740b65b", "metadata": {"papermill": {"duration": 0.018479, "end_time": "2023-03-14T15:51:17.127540", "exception": false, "start_time": "2023-03-14T15:51:17.109061", "status": "completed"}, "tags": []}, "source": ["The model has learned to attend to the token that is on the flipped index of itself.\n", "Hence, it actually does what we intended it to do.\n", "We see that it however also pays some attention to values close to the flipped index.\n", "This is because the model doesn't need the perfect, hard attention to solve this problem,\n", "but is fine with this approximate, noisy attention map.\n", "The close-by indices are caused by the similarity of the positional encoding,\n", "which we also intended with the positional encoding."]}, {"cell_type": "markdown", "id": "6c3f9ddf", "metadata": {"papermill": {"duration": 0.018455, "end_time": "2023-03-14T15:51:17.164275", "exception": false, "start_time": "2023-03-14T15:51:17.145820", "status": "completed"}, "tags": []}, "source": ["### Set Anomaly Detection\n", "\n", "Besides sequences, sets are another data structure that is relevant for many applications.\n", "In contrast to sequences, elements are unordered in a set.\n", "RNNs can only be applied on sets by assuming an order in the data, which however biases the model towards\n", "a non-existing order in the data.\n", "[Vinyals et al.\n", "(2015)](https://arxiv.org/abs/1511.06391) and other papers have shown that the assumed order can have a significant\n", "impact on the model's performance, and hence, we should try to not use RNNs on sets.\n", "Ideally, our model should be permutation-equivariant/invariant such that the output is the same no matter how we sort the elements in a set.\n", "\n", "Transformers offer the perfect architecture for this as the Multi-Head Attention is permutation-equivariant, and thus,\n", "outputs the same values no matter in what order we enter the inputs (inputs and outputs are permuted equally).\n", "The task we are looking at for sets is _Set Anomaly Detection_ which means that we try to find the element(s)\n", "in a set that does not fit the others.\n", "In the research community, the common application of anomaly detection is performed on a set of images,\n", "where $N-1$ images belong to the same category/have the same high-level features while one belongs to another category.\n", "Note that category does not necessarily have to relate to a class in a standard classification problem,\n", "but could be the combination of multiple features.\n", "For instance, on a face dataset, this could be people with glasses, male, beard, etc.\n", "An example of distinguishing different animals can be seen below.\n", "The first four images show foxes, while the last represents a different animal.\n", "We want to recognize that the last image shows a different animal, but it is not relevant which class of animal it is.\n", "\n", "<center width=\"100%\" style=\"padding:20px\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/cifar100_example_anomaly.png\" width=\"600px\"></center>\n", "\n", "In this tutorial, we will use the CIFAR100 dataset.\n", "CIFAR100 has 600 images for 100 classes each with a resolution of 32x32, similar to CIFAR10.\n", "The larger amount of classes requires the model to attend to specific features in the images instead\n", "of coarse features as in CIFAR10, therefore making the task harder.\n", "We will show the model a set of 9 images of one class, and 1 image from another class.\n", "The task is to find the image that is from a different class than the other images.\n", "Using the raw images directly as input to the Transformer is not a good idea, because it is not translation\n", "invariant as a CNN, and would need to learn to detect image features from high-dimensional input first of all.\n", "Instead, we will use a pre-trained ResNet34 model from the torchvision package to obtain high-level,\n", "low-dimensional features of the images.\n", "The ResNet model has been pre-trained on the [ImageNet](http://image-net.org/) dataset which contains\n", "1 million images of 1k classes and varying resolutions.\n", "However, during training and testing, the images are usually scaled to a resolution of 224x224,\n", "and hence we rescale our CIFAR images to this resolution as well.\n", "Below, we will load the dataset, and prepare the data for being processed by the ResNet model."]}, {"cell_type": "code", "execution_count": 26, "id": "9da42c20", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:17.202993Z", "iopub.status.busy": "2023-03-14T15:51:17.202621Z", "iopub.status.idle": "2023-03-14T15:51:42.060200Z", "shell.execute_reply": "2023-03-14T15:51:42.059322Z"}, "papermill": {"duration": 24.880774, "end_time": "2023-03-14T15:51:42.063411", "exception": false, "start_time": "2023-03-14T15:51:17.182637", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz to /__w/14/s/.datasets/cifar-100-python.tar.gz\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "a0a3886d69004098b309b801c2529ad7", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/169001437 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Extracting /__w/14/s/.datasets/cifar-100-python.tar.gz to /__w/14/s/.datasets\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Files already downloaded and verified\n"]}], "source": ["# ImageNet statistics\n", "DATA_MEANS = np.array([0.485, 0.456, 0.406])\n", "DATA_STD = np.array([0.229, 0.224, 0.225])\n", "# As torch tensors for later preprocessing\n", "TORCH_DATA_MEANS = torch.from_numpy(DATA_MEANS).view(1, 3, 1, 1)\n", "TORCH_DATA_STD = torch.from_numpy(DATA_STD).view(1, 3, 1, 1)\n", "\n", "# Resize to 224x224, and normalize to ImageNet statistic\n", "transform = transforms.Compose(\n", "    [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(DATA_MEANS, DATA_STD)]\n", ")\n", "# Loading the training dataset.\n", "train_set = CIFAR100(root=DATASET_PATH, train=True, transform=transform, download=True)\n", "\n", "# Loading the test set\n", "test_set = CIFAR100(root=DATASET_PATH, train=False, transform=transform, download=True)"]}, {"cell_type": "markdown", "id": "a62d2db0", "metadata": {"papermill": {"duration": 0.018539, "end_time": "2023-03-14T15:51:42.106561", "exception": false, "start_time": "2023-03-14T15:51:42.088022", "status": "completed"}, "tags": []}, "source": ["Next, we want to run the pre-trained ResNet model on the images, and extract the features before the classification layer.\n", "These are the most high-level features, and should sufficiently describe the images.\n", "CIFAR100 has some similarity to ImageNet, and thus we are not retraining the ResNet model in any form.\n", "However, if you would want to get the best performance and have a very large dataset,\n", "it would be better to add the ResNet to the computation graph during training and finetune its parameters as well.\n", "As we don't have a large enough dataset and want to train our model efficiently, we will extract the features beforehand.\n", "Let's load and prepare the model below."]}, {"cell_type": "code", "execution_count": 27, "id": "788b2c5a", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:42.146109Z", "iopub.status.busy": "2023-03-14T15:51:42.145483Z", "iopub.status.idle": "2023-03-14T15:51:44.768977Z", "shell.execute_reply": "2023-03-14T15:51:44.768054Z"}, "papermill": {"duration": 2.646395, "end_time": "2023-03-14T15:51:44.771576", "exception": false, "start_time": "2023-03-14T15:51:42.125181", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/usr/local/lib/python3.9/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n", "  warnings.warn(\n", "/usr/local/lib/python3.9/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet34_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet34_Weights.DEFAULT` to get the most up-to-date weights.\n", "  warnings.warn(msg)\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Downloading: \"https://download.pytorch.org/models/resnet34-b627a593.pth\" to saved_models/Transformers/hub/checkpoints/resnet34-b627a593.pth\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "1104fe6c323f454da93b22083101d69e", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0.00/83.3M [00:00<?, ?B/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["os.environ[\"TORCH_HOME\"] = CHECKPOINT_PATH\n", "pretrained_model = torchvision.models.resnet34(pretrained=True)\n", "# Remove classification layer\n", "# In some models, it is called \"fc\", others have \"classifier\"\n", "# Setting both to an empty sequential represents an identity map of the final features.\n", "pretrained_model.fc = nn.Sequential()\n", "pretrained_model.classifier = nn.Sequential()\n", "# To GPU\n", "pretrained_model = pretrained_model.to(device)\n", "\n", "# Only eval, no gradient required\n", "pretrained_model.eval()\n", "for p in pretrained_model.parameters():\n", "    p.requires_grad = False"]}, {"cell_type": "markdown", "id": "9d1011cb", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.021387, "end_time": "2023-03-14T15:51:44.819831", "exception": false, "start_time": "2023-03-14T15:51:44.798444", "status": "completed"}, "tags": []}, "source": ["We will now write a extraction function for the features below.\n", "This cell requires access to a GPU, as the model is rather deep and the images relatively large.\n", "The GPUs on GoogleColab are sufficient, but running this cell can take 2-3 minutes.\n", "Once it is run, the features are exported on disk so they don't have to be recalculated every time you run the notebook.\n", "However, this requires >150MB free disk space.\n", "So it is recommended to run this only on a local computer if you have enough free disk and a GPU (GoogleColab is fine for this).\n", "If you do not have a GPU, you can download the features from the\n", "[GoogleDrive folder](https://drive.google.com/drive/folders/1DF7POc6j03pRiWQPWSl5QJX5iY-xK0sV?usp=sharing)."]}, {"cell_type": "code", "execution_count": 28, "id": "ed9d3ff2", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:51:44.866818Z", "iopub.status.busy": "2023-03-14T15:51:44.866427Z", "iopub.status.idle": "2023-03-14T15:52:13.991882Z", "shell.execute_reply": "2023-03-14T15:52:13.991087Z"}, "papermill": {"duration": 29.153083, "end_time": "2023-03-14T15:52:13.994672", "exception": false, "start_time": "2023-03-14T15:51:44.841589", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "2482699ce4c5493f90e5469f3466e1ad", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/391 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "c2e80955803c4435b2a947121e427f69", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/79 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["@torch.no_grad()\n", "def extract_features(dataset, save_file):\n", "    if not os.path.isfile(save_file):\n", "        data_loader = data.DataLoader(dataset, batch_size=128, shuffle=False, drop_last=False, num_workers=4)\n", "        extracted_features = []\n", "        for imgs, _ in tqdm(data_loader):\n", "            imgs = imgs.to(device)\n", "            feats = pretrained_model(imgs)\n", "            extracted_features.append(feats)\n", "        extracted_features = torch.cat(extracted_features, dim=0)\n", "        extracted_features = extracted_features.detach().cpu()\n", "        torch.save(extracted_features, save_file)\n", "    else:\n", "        extracted_features = torch.load(save_file)\n", "    return extracted_features\n", "\n", "\n", "train_feat_file = os.path.join(CHECKPOINT_PATH, \"train_set_features.tar\")\n", "train_set_feats = extract_features(train_set, train_feat_file)\n", "\n", "test_feat_file = os.path.join(CHECKPOINT_PATH, \"test_set_features.tar\")\n", "test_feats = extract_features(test_set, test_feat_file)"]}, {"cell_type": "markdown", "id": "4452218b", "metadata": {"papermill": {"duration": 0.01912, "end_time": "2023-03-14T15:52:14.039806", "exception": false, "start_time": "2023-03-14T15:52:14.020686", "status": "completed"}, "tags": []}, "source": ["Let's verify the feature shapes below.\n", "The training should have 50k elements, and the test 10k images.\n", "The feature dimension is 512 for the ResNet34.\n", "If you experiment with other models, you likely see a different feature dimension."]}, {"cell_type": "code", "execution_count": 29, "id": "4bf9d07a", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:14.080334Z", "iopub.status.busy": "2023-03-14T15:52:14.079669Z", "iopub.status.idle": "2023-03-14T15:52:14.086321Z", "shell.execute_reply": "2023-03-14T15:52:14.085314Z"}, "papermill": {"duration": 0.028934, "end_time": "2023-03-14T15:52:14.087924", "exception": false, "start_time": "2023-03-14T15:52:14.058990", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Train: torch.Size([50000, 512])\n", "Test:  torch.Size([10000, 512])\n"]}], "source": ["print(\"Train:\", train_set_feats.shape)\n", "print(\"Test: \", test_feats.shape)"]}, {"cell_type": "markdown", "id": "89664482", "metadata": {"papermill": {"duration": 0.019024, "end_time": "2023-03-14T15:52:14.130297", "exception": false, "start_time": "2023-03-14T15:52:14.111273", "status": "completed"}, "tags": []}, "source": ["As usual, we want to create a validation set to detect when we should stop training.\n", "In this case, we will split the training set into 90% training, 10% validation.\n", "However, the difficulty is here that we need to ensure that the validation set has the same number of images for all 100 labels.\n", "Otherwise, we have a class imbalance which is not good for creating the image sets.\n", "Hence, we take 10% of the images for each class, and move them into the validation set.\n", "The code below does exactly this."]}, {"cell_type": "code", "execution_count": 30, "id": "ef537b3f", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:14.169389Z", "iopub.status.busy": "2023-03-14T15:52:14.169081Z", "iopub.status.idle": "2023-03-14T15:52:14.205425Z", "shell.execute_reply": "2023-03-14T15:52:14.204639Z"}, "papermill": {"duration": 0.057558, "end_time": "2023-03-14T15:52:14.206902", "exception": false, "start_time": "2023-03-14T15:52:14.149344", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Split train into train+val\n", "# Get labels from train set\n", "labels = train_set.targets\n", "\n", "# Get indices of images per class\n", "labels = torch.LongTensor(labels)\n", "num_labels = labels.max() + 1\n", "sorted_indices = torch.argsort(labels).reshape(num_labels, -1)  # [classes, num_imgs per class]\n", "\n", "# Determine number of validation images per class\n", "num_val_exmps = sorted_indices.shape[1] // 10\n", "\n", "# Get image indices for validation and training\n", "val_indices = sorted_indices[:, :num_val_exmps].reshape(-1)\n", "train_indices = sorted_indices[:, num_val_exmps:].reshape(-1)\n", "\n", "# Group corresponding image features and labels\n", "train_feats, train_labels = train_set_feats[train_indices], labels[train_indices]\n", "val_feats, val_labels = train_set_feats[val_indices], labels[val_indices]"]}, {"cell_type": "markdown", "id": "d75e79d4", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.019292, "end_time": "2023-03-14T15:52:14.246499", "exception": false, "start_time": "2023-03-14T15:52:14.227207", "status": "completed"}, "tags": []}, "source": ["Now we can prepare a dataset class for the set anomaly task.\n", "We define an epoch to be the sequence in which each image has been exactly once as an \"anomaly\".\n", "Hence, the length of the dataset is the number of images in it.\n", "For the training set, each time we access an item with `__getitem__`, we sample a random,\n", "different class than the image at the corresponding index `idx` has.\n", "In a second step, we sample $N-1$ images of this sampled class.\n", "The set of 10 images is finally returned.\n", "The randomness in the `__getitem__` allows us to see a slightly different set during each iteration.\n", "However, we can't use the same strategy for the test set as we want the test dataset to be the same every time we iterate over it.\n", "Hence, we sample the sets in the `__init__` method, and return those in `__getitem__`.\n", "The code below implements exactly this dynamic."]}, {"cell_type": "code", "execution_count": 31, "id": "dd0d2ccb", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:14.287341Z", "iopub.status.busy": "2023-03-14T15:52:14.287037Z", "iopub.status.idle": "2023-03-14T15:52:14.296135Z", "shell.execute_reply": "2023-03-14T15:52:14.295645Z"}, "papermill": {"duration": 0.032355, "end_time": "2023-03-14T15:52:14.298303", "exception": false, "start_time": "2023-03-14T15:52:14.265948", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class SetAnomalyDataset(data.Dataset):\n", "    def __init__(self, img_feats, labels, set_size=10, train=True):\n", "        \"\"\"\n", "        Args:\n", "            img_feats: Tensor of shape [num_imgs, img_dim]. Represents the high-level features.\n", "            labels: Tensor of shape [num_imgs], containing the class labels for the images\n", "            set_size: Number of elements in a set. N-1 are sampled from one class, and one from another one.\n", "            train: If True, a new set will be sampled every time __getitem__ is called.\n", "        \"\"\"\n", "        super().__init__()\n", "        self.img_feats = img_feats\n", "        self.labels = labels\n", "        self.set_size = set_size - 1  # The set size is here the size of correct images\n", "        self.train = train\n", "\n", "        # Tensors with indices of the images per class\n", "        self.num_labels = labels.max() + 1\n", "        self.img_idx_by_label = torch.argsort(self.labels).reshape(self.num_labels, -1)\n", "\n", "        if not train:\n", "            self.test_sets = self._create_test_sets()\n", "\n", "    def _create_test_sets(self):\n", "        # Pre-generates the sets for each image for the test set\n", "        test_sets = []\n", "        num_imgs = self.img_feats.shape[0]\n", "        np.random.seed(42)\n", "        test_sets = [self.sample_img_set(self.labels[idx]) for idx in range(num_imgs)]\n", "        test_sets = torch.stack(test_sets, dim=0)\n", "        return test_sets\n", "\n", "    def sample_img_set(self, anomaly_label):\n", "        \"\"\"Samples a new set of images, given the label of the anomaly.\n", "\n", "        The sampled images come from a different class than anomaly_label\n", "        \"\"\"\n", "        # Sample class from 0,...,num_classes-1 while skipping anomaly_label as class\n", "        set_label = np.random.randint(self.num_labels - 1)\n", "        if set_label >= anomaly_label:\n", "            set_label += 1\n", "\n", "        # Sample images from the class determined above\n", "        img_indices = np.random.choice(self.img_idx_by_label.shape[1], size=self.set_size, replace=False)\n", "        img_indices = self.img_idx_by_label[set_label, img_indices]\n", "        return img_indices\n", "\n", "    def __len__(self):\n", "        return self.img_feats.shape[0]\n", "\n", "    def __getitem__(self, idx):\n", "        anomaly = self.img_feats[idx]\n", "        if self.train:  # If train => sample\n", "            img_indices = self.sample_img_set(self.labels[idx])\n", "        else:  # If test => use pre-generated ones\n", "            img_indices = self.test_sets[idx]\n", "\n", "        # Concatenate images. The anomaly is always the last image for simplicity\n", "        img_set = torch.cat([self.img_feats[img_indices], anomaly[None]], dim=0)\n", "        indices = torch.cat([img_indices, torch.LongTensor([idx])], dim=0)\n", "        label = img_set.shape[0] - 1\n", "\n", "        # We return the indices of the images for visualization purpose. \"Label\" is the index of the anomaly\n", "        return img_set, indices, label"]}, {"cell_type": "markdown", "id": "bf3673ff", "metadata": {"papermill": {"duration": 0.019468, "end_time": "2023-03-14T15:52:14.342754", "exception": false, "start_time": "2023-03-14T15:52:14.323286", "status": "completed"}, "tags": []}, "source": ["Next, we can setup our datasets and data loaders below.\n", "Here, we will use a set size of 10, i.e. 9 images from one category + 1 anomaly.\n", "Feel free to change it if you want to experiment with the sizes."]}, {"cell_type": "code", "execution_count": 32, "id": "3f9b0d50", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:14.386960Z", "iopub.status.busy": "2023-03-14T15:52:14.386695Z", "iopub.status.idle": "2023-03-14T15:52:15.284221Z", "shell.execute_reply": "2023-03-14T15:52:15.283263Z"}, "papermill": {"duration": 0.925182, "end_time": "2023-03-14T15:52:15.287351", "exception": false, "start_time": "2023-03-14T15:52:14.362169", "status": "completed"}, "tags": []}, "outputs": [], "source": ["SET_SIZE = 10\n", "test_labels = torch.LongTensor(test_set.targets)\n", "\n", "train_anom_dataset = SetAnomalyDataset(train_feats, train_labels, set_size=SET_SIZE, train=True)\n", "val_anom_dataset = SetAnomalyDataset(val_feats, val_labels, set_size=SET_SIZE, train=False)\n", "test_anom_dataset = SetAnomalyDataset(test_feats, test_labels, set_size=SET_SIZE, train=False)\n", "\n", "train_anom_loader = data.DataLoader(\n", "    train_anom_dataset, batch_size=64, shuffle=True, drop_last=True, num_workers=4, pin_memory=True\n", ")\n", "val_anom_loader = data.DataLoader(val_anom_dataset, batch_size=64, shuffle=False, drop_last=False, num_workers=4)\n", "test_anom_loader = data.DataLoader(test_anom_dataset, batch_size=64, shuffle=False, drop_last=False, num_workers=4)"]}, {"cell_type": "markdown", "id": "a4df7450", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.019289, "end_time": "2023-03-14T15:52:15.335189", "exception": false, "start_time": "2023-03-14T15:52:15.315900", "status": "completed"}, "tags": []}, "source": ["To understand the dataset a little better, we can plot below a few sets from the test dataset.\n", "Each row shows a different input set, where the first 9 are from the same class."]}, {"cell_type": "code", "execution_count": 33, "id": "97ad9f7e", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:15.375674Z", "iopub.status.busy": "2023-03-14T15:52:15.375452Z", "iopub.status.idle": "2023-03-14T15:52:17.293672Z", "shell.execute_reply": "2023-03-14T15:52:17.292838Z"}, "papermill": {"duration": 1.950192, "end_time": "2023-03-14T15:52:17.305022", "exception": false, "start_time": "2023-03-14T15:52:15.354830", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjg0IDMwMC4wMjU2NjIyNTE3IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nFVPTU+DQBC9z694x3JwmV3YBY60taTeWkk8NB4apCjhQySx+u8d0NgwycvkzcebN/62/HwrymO2xuaR/BsrRtKoBRUYteAKjUxQEQtrycWh5GbOAbNiY50zUuAlfSW60IBImRnOJcrBRKwss0wYqyN8lHhCBz8V+VFu1IKrqGdYOhr+1icHk0Rk/nWLFv5eY9vjQAcMMlAthITTIO8w7liKJgxVYgNtLEwcqOjmpWhpnZO/09AG+WX+Nn+hE1Zp17fn5hulB+1UIgbiYAqsvs7te1OO6Dts9jsPiVY6tL9daadHzezhGfkD3eckBukH+WhTvQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI0NQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDE2MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAyMzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDg5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVNuRGAMAzrPYVHwI9IvA/HUYT9W+yENJZOnxHKB2vkAYLhjS8h+KIvGYS1Cw8q+0h02EQNZxUkE8OvLPCqnBVtcyUT2VlMo7NBy/St7W+DHro/3Y4cCgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNSAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ4IC96ZXJvIC9vbmUgNjUgL0EgNjcgL0MgNzAgL0YgNzMgL0kgODIgL1IgOTcgL2EgMTAxIC9lIDEwOAovbCAvbSAvbiAvbyAvcCAxMTUgL3MgMTIwIC94IC95IF0KPj4KL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9BIDE4IDAgUiAvQyAxOSAwIFIgL0YgMjAgMCBSIC9JIDIxIDAgUiAvUiAyMiAwIFIgL2EgMjMgMCBSIC9lIDI0IDAgUgovbCAyNSAwIFIgL20gMjYgMCBSIC9uIDI3IDAgUiAvbyAyOCAwIFIgL29uZSAyOSAwIFIgL3AgMzAgMCBSIC9zIDMxIDAgUgovc3BhY2UgMzIgMCBSIC94IDMzIDAgUiAveSAzNCAwIFIgL3plcm8gMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCA5MzAgL0hlaWdodCAzNzYKL0NvbG9yU3BhY2UgL0RldmljZVJHQiAvQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMyAvQ29sdW1ucyA5MzAgPj4gL0xlbmd0aCAzNiAwIFIgPj4Kc3RyZWFtCnic7P3NkixLkh6I6Y+Zu0dknp9b1V3VwLDZIyQoXHAegAtSKFyQAi64wgKPg/cBIHwAbihckTMipAw3MwsSAwHQXXXvPedkZmREuLuZ6Q8Xah4Z+XPOvVU9gxnpOVan8mZGeHi4m5upfqr6qSr+i3/xL+D7+D6+j+/j+/g+vo/v4/v4Pv5hDfrv+wK+j+/j+/g+vo/v4/v4Pr6P7+O//fEd5n4f38f38X18H9/H9/F9fB//AMd3mPt9fB/fx/fxfXwf38f38X38AxzfYe738X18H9/H9/F9fB/fx/fxD3Ck1y8h/o8d+zo4uL94zb927LOB/f9ffc1ffuIbZ/Snz+Gz/7zxJV8b+I2/rr7Tt6+7+sL+GrhvF/Ly40T/Y18qZvbiFUTCX/tw/mEOd/fn2wUR8T/2pPzSNnu2mP35R/DVAf8tjDeWyje3z/9wFtEvTuWff2Z/KWljqfjXxO1/xPFnX8E3Htyzc273iNdiF/H19oH/riTtlaq5CHq4fLlvVwSIGL+8fRYH/NMV05863pS0/zE2ScxJ/NanpH/tpiBfjU1b4/VL+CZY+Ptd2lvbB/57Uj//A5FXDuCvlspLmItI/8v/7P+w233sk/X1KcOva4OXCgSfqRHc3kAA9OfHI4Sg2/Y+PtuAr9ZU7Dx8+uSbl/NyvF6dcZe+reN/8//7f3z6+d9cH3Dwv7v3f4uAhIiAbuZqZhrDAYARGfMwjMM05JE5EabEQ8pDTkPOacjMjGVdl3lutSEgOgEAOIKDm7u7ipSlrMtam4i5mnPmPPEwpd1N3t3maZfHcRiHIWEmT2Rsgt7AFQEJgRxc3cwMHNGBMY3Dbhh2iQciQmRAB3AiGvNuzDtpejwej8djk6pegXx/s7+5vUmZm2qTdv94//nu0/3hLsH0F/yfXs/J7e3tP//n/zznfHk+/9GhTN/jqmpmrUkpaymlSRNRU00p5ZxzzsOQcx6I6CLI3RzAEQkJmYhTYqY/9frN7F//6399d3d3/eL/5n//f/xP/vo/jQfq9mTWXK9379fuEM8eDAAAQ8mhe+ytyz4AQHc3M3M3dwdw7HgaEQgAwTFW9WU/YQcM227b7vvpqLioGBjb9CKe/17P8f/7X/9//qv/8r+4fuVv/uZv/uk//ad/1sl+JQA1AANQ09V0qfV4mr+c5i/ukjJz4pzGlCZEFjEVTenmZvfbafxgXkXn2g5z+XlZfzITpj3zfjf+5X73u2n8LcKAmAD4z7r4p3E8Hv/lv/yXrbXLK5T4f/V/+t8NN/uAEYQhUZ0QEyJv/2LTUgjDbWX0xfRMAALEsgBwAAOPtWLbIwcP/YdXFqy7d5P+SSR2CQyAaOAGYOC+LdavW/t9XETxtw+7vPtf/d/+8y9/+8frt/7n/+R/9jd/8zfneX64f3w8nhAopczE3oXM5cpDxccui6va9gtesKJt13uleWLDeQACQMQ4qUOXCd53z+Vavd//L4x+tovC26YbY68CxmWbu4ObmUprIo0Rd9O4m6aP79//8MOH9+/e/fjTz//5/+v/fX3q3/zmN//sn/2zbyLdPjNdtEBfClfPNW7f3NVcap1LnVsr7uIm59Ph/v7z3d3nu7svnz/f3d/fHx6Oh8fjOAy//6vf/v6v/vKv//pv/uZ/+je//6t/zJwIycxVW2uttlrKKtJS4pzzOO530w+78YecRiQkIgd0p23VYbdi+vQ+Q9PfxoCttX/1r/7V8Xi8fvGf/K//z7e/+UfPPnMlHggBEQiBEQgBHeyyHGL/gAOYu5mpmdoG74mYkBHBWlOp63I4P346Hz9LPanMYCUzDykhmEoTqeYWwt6RHRgoUxopTXm4Gad3w3Q7DjfDuE9pcEBwNAcDNEDmTHkgTkiESAD49PS6btj+4bM/L8/5x//6//n53/yX1zPwl//4f/FP/rP/7eZqsMvmvpqil0L+SdpfGysbnsInMfP0d1zBdrQ/gbBX3rgXp4Vtb7wS7K8+deXai3mJhfP83SfpRwiEiIjHw93//f/6f3lhFL3hzd3tP+5v/+ICG98c+Ownvn7r+W093ZBfffai868mp0vYDewCvLIxn058ZQE//+XbSvrJOntxnsu35Dy9+IxCLXBEQAKk2DKuZqqmYuIASIhADhOTEItzZsyYlJJ5dhgMh4RMYA1aca/gHZ2E/AN1MHdrikvzpVprYmKeOLknwqxp8EFwMpqAR2CE5EiGVtEYXLq+M3dwAzN0AAMmSiMMI+fERIzEsVOIaBrylIdWtdSUV+rykD2POO44D4kEQJRXN6oVFveXs8rMv/vd74ZhuMzbr4RHfvX/P2M88zY4uLuqqUqtbVmXdVlqayKiqjnncRiGcRyHYRgGItrAXqg0ICIiTok4pZT4xZKL8Y2bMrOUXu6g9+8//sVf/t7N7aLU+qrHbX9vMBcN3N3V3RwstrEZgMeRHabGPwug6xaKGgAIQzgGQCLfTrpd9UsPalfXz/wSF1T8BHO3Dfjnj/3N7YtXxnH8/e9/fwFYvzSeIMb289pAfmlEA4CDgot7Uzmr8Lo2SgkJDCAPkDLmTDkxYRIxERzyeHtzs999MK8iXJqO88OwkCokxsTpZjfe3rzb734gnABHfEtOvrqYb41pml4sJETc//Bhen8TD4rCXkFgACZKiAkxITECAcbSxOcwl57k3UXmd42o7gZubmbesZvjpigwdKg/QTgPvXq1djrM1Q3mXkDAN/ys1yrjItS/HQVLY37x+jiO796/A8RlqXmtRDzkMaX8DJFvhmr8x8yh41YABKJAeOaxWV6o0nh5A1wXdf20WaFP4+VCr17++rgoLw+DZIPcEDIeHcHhYvuaqiIQuBMCMyfmaRxub24+vn9/PJ5enDul9Pvf/57oa7bWFf7Bqwt1vDzbfqeg7qJa1zLOC9dKps21ged5hpQVsJrNtZ3W9TCfD6ZjkxHg3TDozW36+HGXOCGxm7XGrXEpsGat4jmnccjTNN7sbm72H4a8IyZmBiAH9r606TnMhedq4Fswt9b6CuXj7t1vbn74q8sHn/nlEAiAqMNcRoCAuQbujuiAYdaou5k2NbVYRghMiSkhgLWqrSB7a+dSs4eta5AS5PRkIqkZxUMFdCQkoIScKQ85T+O4243TzTTd5jy5gwOaozkaEOeBh5HTgMhA1O0if3qQtikLew1zAcAhTzcvlkIepncff9c3hvu1zI+PbdYYbOv1GubC9SbelA9c64SnZX2116/w6BuP7xX2dewa59WmegmI4zW/+kZ8dTheYC6HFH1LeX1FfMfOeB6NePb+prLw6a+vnunqzas/Qvk/tzT6Tw/PhT+d4ZtixuMDT2DrG8e+fYW4SbqvHYMYmAIJiZAA0QCckJjYGBApMydOQxpyThkJ4xBVq7U5gCLknNlBKVGGBIAIyERMTMSmpipS0dmcjQpxkyaWpzTth+lm3N/k3X4YxkQE5mogjgzEyMhG5uRO7mjuoq5mYCHkgFVYqyOSG1lH5+Bea1t4VbHzci5tbVrUBdxKXXPhZtykVam1re4SOvitqdschG+ZjBfvuF8d7A6qZuGa3JxNl/30tC3dEZGZiZ6crHo1QiqFFSWqqlprXZZlWRZRjUUzjIOZq3lrkkpBpHidkGKklHJGMwTRp1voEsJgQ4u0jeu7++pyutzoU0jJn/TzhiihQw1TbaJNrZmphu2kYh6eZmJOOQ2JMyCHD9dNzQys+6OIEmEiipPiJkQsHgxuLjDvIg5jxvwZ4nxD4vx5OHd70N9+/02T9Q3wevU7Xl1sgA5z1+4WcRNZWjvXeirr/brczfPd8fzpNH9ylDRwHjilMfFIlM3AHcf8vrZDKX9JRIgmOtf1vJzPKitzy6mgM9GISCl9SPyOaMSOKq+v81ei9q8ON3Oz7svdZKEDuJkhKmJsAwJwwGc+MQACsAtUu1zOBnMxgK1fn/TpkOcXsf13C6tetvQGEp9U5dODe2t9vIlZfmGCXr1dSjkej6fT+Xyel2Xd7W7yME27HTj6JlF8c1X49R8bzA1hsrl+n8w53GJ23X+LnZ23GZ8O4dyLsMnTjumWZv8WuBZpL8amz31zP4Uig+7KCGMC3QBcpc2n41mtlvWxHI+Hg7ZGiOR+Pp+/PWffmr43HoxvSwbcXFSarKfzw+Hx59P5vpW1leV4PNzffbm//3I4PKzryaxQ0nHCcQcpKWAp7fh4/PT5jpkYAc1dWm3SWqu1NlVhppR4HG/Wm1ZKm8abYRjyMKQ0Eo9EGYEAGBER+MoH1+frrXu5QAX82hpCALpa1t3Zh/1R4uZagA3sb05bQzAHMxPVqtpUm6pEfNYBmFPmTMQuzbRJOWo7myyuxV3ARVWrK4GrNjMB3zwTuFld6gYm6IgKVl1mbyfJgzu6gwGYkwHzMOVxl/KExICMGKqOABEg/GnkFLEcQkK7wk7bXb+eGgfXJ/0DfdFeY1ncfj43DF4A080mfvH+M4y76e74XrwGyX75sudQOjaUb6d0uH73hTDDKzjXv9evQXO/EgAAIAAmIMT8ljH4Fsx9UozYVdYb0hGuVCVer8Q3gOuzN317PohhaF5sO78yB64A0pNofb6FLweg47W57e5/atT1CuG8vaUQgSkwLjMQEDmhmyd3cyCmNOQ0JOIeggCI2FgTVRFxawCDe3ZwzkQphUmbEg/jkHNW0dZaK4SD0wi8Ehfi1oYp39xO+5tpusnTPqdM7qreCNAwJ3JkAmcEFgUTUMOAuW4G7kxOWlGyARIxIos2kaoqDEzIJl5rq7WZiYEAealIi1PDpq1pq202EybgtybmazB3e0BPaskB3FzVTL2JtKYqqqZmigDI0F0wAX3N3J2Zg3IQ+NLd62W01lrbVBuqmqjWWudlXubF3ZmJU5pkUrWmEjZeGE8AkHMecs55AAAiRnQzRdXLvaiqmgIAETFTXAlc4Pu2wN6+6+6x6Sh+U43eY6zQ+QXYr0bE1lKX2tYmtbW16dp0VRMiRkpDnqbx3TTeMI+EA0JSURVxs1jyiXLKY2LsnOAufewCBN0dDByQkAkTIPm1qypW/5Om+UW79Vvj2jB9+4CL8P36uN68T8c+wTUHN/Pm0AwagDi0tRzm+fP59Pn4+OPj4x9Px5/P69283jtJHikNxDwwDUSZkInSNH5c1s+3+9+Nw+047MBtnY/L8dTamfmUU3YzJALyaVDInBIRMgBvouoiX3/tNL29VEzBDAjdqUuz7tW/ICo0AAa08NtDMFSAHD30YQdhfu3Qvei/LXxw8Z74ph1ec8AQrvy7sXGt+5PArvHlk/566zYvS+ArSvj5N4K/OmRd18PhMM/L6XSa52UY98M43d5+6Gu0W2hxAoTNu/2kNi5a/Ooo6B7V7op6uvyLXttec7em0kQ8hAsiETExEsEzUfdMMV0v/HAOX/90AIvpjd2PQOAiFR3rWs6n0+nxYT6f6rIwArodj4/fmrZvzudb47Ky0MxEainz8fTl05f/cH//43w+LafT6XR8fDyejo/rupZS1Aonm/Y07TANCriu5f7hMACusTZNTbSJtO5vMEcEQhyG3XxzXm7O+5v3+/3Nbn8zjbfjeMvsAAnBARgQAfi5HfTMGnl1R/S1WyN0uoY+1zDXYWMBdXvI1UxFpbkruDpIa2urS2tFtKpWVTFTM8sp5zwmTugOpm09Sj2qzKarewVvqmASi0U7xg1migM6OIq5uFWw6rJqOdkw6bhjzrEGDFCBHTiPe53epXGHmJESIYczBZGREiAjZ+ABOSFyoDgPMw1f75vLdJqbbHLyhZsSr3fHFsx4EfO7WIv9t/7vSrA831lP1sXTARd7D7fvfPofIPjlKzeI/My7DM/PD5upCNfC9+pjfZWE2x7gV8PcgNHY1bHjV8XVJjb9Wuhd2/PPZPuVYHEHBHPfPMYeFszFa3B9nquve7Hen5Syv5C6z9z0v+RQeCtU/fIjW1zx4r1HIgYCRAJETimPOQ8Z2REN0MwjZKgmaioNjQWYgRk5IVJCBCRMOY1jzkNWIawO2Z0NkuMAuAJWH8c07nnc8zByHggJRFRUkJAgKXEEyMxR1Zt4E2naRMXdENxcURiIFYwpEbFIq62otGAzmpqKaTPrvjEHUseGCdWamLS2ugleBfFezPMm+v1qqvoDhi3KGOwlVRNRaVZqq0VqC4UiAE7sXY9E8Mjc3RKnaZrGcQyYa2bhrF1LqaXUC8xFChdobW1d1nVdADGnnIfcgrrQat/2YSYjjsOo02gbpao12vB1v5sQ34iQc0opBeHhV3pzoQeAvQMD3NxN4btzNVeLABeampQyr2Uu5bys57Wc1nau7dS0EjFhGsebm/0P+93HId8k3jMNElaCaMz6kKZxuhmHHTMHZAdUBzET82om1qO0nZ9KmBEZehgR4grd+y7vG/IX98w3bv4t7PJ6gt743IWy5y/e6IKo6whTsyY6i57VF/NqXub5y/Hxp8fHHx/u//Bw94fH46elHJbyCKzDhGlkpkSUiBJzTpzH4eN8fjzt7va739zsPjLm4+P96fHQ6pkZOJEZIGfijDAxv2ffOQAC+pND96tOpj9lstzNEPHCc3Ps0fNwHWwQwAk2mItA3UeAjkDefYb9mjzm6eoRRHi2P1K8GF3XV/HycbsHtH0K+T+PrG1fdL0Lnp/g16+fV8e11pZlXpa1lCIiiDSOu/3tewC0jhovOhE34iBdvvYJw+KmwTf/7kba2DKsn6Bxt8MRQd1rLaVWc48NlVJKKTFzbOCrqMwrmOvgvvlvvZN0fSOIXHQbkTNCq6Us6/nxERzmebm/v2OE9+9u97tpWZZfOXlvTKK/fiibZjVv0pZ1Pp3v7x5+/vT57z5//rvz8Xg+Hefzsi7rupbgepkpkuXBU3LAKjbPy+HhAE3O/S43xQZdcsTXeEpTq62UclM+rOX2pr6/vf3oaEhGNDAOG4KiZw/gGca9XhAOl3X71kAM58jFknmi/HqnAwKA99QNaa0VacVMEMRdaplLObe2iNTu1jVx08Y55zGlHJuu1Vnq0WRxK+jNQa0nU0QWhVNgXOp2ooGBG5q6i1p1WUCytYGI4whDdE9O2WTvukjbB/ufOHEEdykhZaRMeaI0UR6JB8QB0BHIXuG8Z3MCwGAbl7c/nA3QXn7ddsS2QV6d6WIR4uVpvYU+t811efcKd+IF5j6HpIgYPnjazr+d6gJ6r1DlJXnrFa59OnMsKQQGIITEb6yWtyotwBMGv7q7Z9LwAsYvVwUvD8OXb2zDQQHVXUO/ErBjivSpnovTTxMinWCL+TiYgW0XEbgzvSD6wBa8enFDv2bgU4bvy4+4g1sQaE3dmCgIVSnllHLKKQ0pDQxkgALYsYWoI3hzJzJKzsk4MWdkJur/mBIYqZIaqbPhAAnJmJ0TDsYMwNqsoIiXhASqYiqGZgQKBpJAWCvWarWaqCqouRECESiwCxh4spZSZk7u5qwA5uLuJq5NpFVRV3AHcgFuzpwAyB3VvJmLx85+vak2k/Dy58sDAMOhqKq1tnVtpdRSWilSSm211lZCqiJEKoD0iLzDMAz7/X6327m7mbXW5nmez/Na1tZEpIXSiKfmAKom0kQEERtzaqm1UuqSU+67izgxZ04hasy1lPV0QndXDan9JAwQMec0jtM0TUFv+JWrqJvJhGibEqBAGuYuTZa1zrWtas28mbYma5N1Xk7H4/3pfJjXx7U81rYCECJP483t7Q+3+x+m8d043CYeW5PWmopE0GU3vbu9/eFm/2EchjxkJFBdRdcmS2tLbaupmyLhsN9/vNkHXB6ZRwS6yKeuk68CW3/2+DUf/baZcP1uxHw2opqBF/NV9Hyefz4vP6/lQXQWnc/nw+l4fzreHx/vj4f78/lxXuelVE4+7WmYgBmQjFARGyETyQOvmR/2u4+3+49DGtflcV0eVAqCMaO2ROl2GD8MuQR/BhGf2fN/Srzoa/5rwk3WX4DqxXTfgFGYSiEWHbuIRHACpyD0OdI1vHMM9RYfNwC4Rr3b5TzBoY4FLlIbLriYILR5v7BnoON62wPAZszhxfdxdfK3Bn77fSJKOQ9G07Sb9je7/Y0Dhfa+JHddeYgu//ft0i6epCeP9xXSffp6M7NuW7uHIDBvooCYMudxHIc85JxSCiP1aTJfPdOXtKQLj7qDog3mojNCS2m/3+120ziOOTMiALq5BUn0a7P24guvfr45l31WIvXNTJfleHf/0+cvf/fjz3/7049/uLv/qaylrUVEEXnIO4BqVuMqVLU1X1c6nQAA3LSUFRAcwn8JiN6nFjHUmRqcl4dS6mk+TI/7/f7m48e//EGKvvvtNNyOww0zbjD3QoJ7jXG/cUfPBiFSoIOwuja0tD2iSFNR1aK1SF3X5VzWs5kQKrhIW2udRVbTZtbMxFzctSFrCd3MhKRStZ5cV3RBdETqCNohNhsRYMR33a3HP6jvaQregrVS+65BBGKkAcG0QTHFdXYHc0TElCiMK6BMPPBwk8bbPN7mcZ/whigDMiJf7vU1k5AJdwPHYtaehoibdKCn/dK9uduWeL6XoW+fp83yXMn75Va2I2HTHhcNCs9OfvWT+sboxj3C1QU8Q7H9i15g3Mt5nr4CAB2CU8oI/Ba98k3lfQHor1HLi8OubvCtce2ZDQPBwQDUvQKKR4YDZoQBIDmou24SmRATQO60NXQHcxd38c1UQxhiKV3IVlciFp/D8m+Nq6v3r37K0Rw9ElXNh5SZiCkPwzSOUxpSyswDAQkAhZvOzEjcXdWc2DkZZ08ZUsaUiVPinADRwMxUUZTUWGEAYsqJITO15G6OTUxAWIERwUzdjcAUXEC9kVeSCqVIKWIBrAiYkZkYkomLS7Ixw5BjxsgR3V3dgrZa11rVOt+dHJMRZ+CEnECtmombOvjb/FzcxPqzP6+M8E6DklLrvKzzvK5rK2tb11rKsq6ranVQBzFtKtJpDI7jON7e3t7c3JhZrbWWejqfTqdTKSXkcN9tBFEwYdtofuHSlsK8pMQ9GJRTHofBhgHAAF20qYo0aRJIXwAAgULFppSmaTJzZso5/WKo/Xo+iDCYwxfMDACA5t6azPNyf5oPTZYmq0o1aGbtfD7c3X96OHw5ne/n5VDqHOzKabx5/+43725/2O8/7KZ3Oe1EWq1NRM0AAG9vfviN/E79L/a2m2BH5KWdSj2u62ktx3U9i4AKJt798OGvALuKIk6bEItHdI3fcLuPP3N8xbx9Ov833L0vI2gdkDm6AYr56n4UuTvP/+7u/t8ezz/Wdir1OM+n82k+n87LucznssxlXuq6Sh5QG6o4kyIZgEL4W2xWPbil/e797f7jbtyZVJfiFmEQcBiH/Yfdu/N+V31zFOEz2fJiil7Ijctb31o2ESJ6BrzgGaB0gGCgE4ChQ8e4oRuA3Lm/hQRXOHNT9E95Y/3Mz/7cRDdev7UpuMhH23KofXOr+EXBbCd4uk2Eq03/an6+NgWv5wQQgYhyzgBpnHa7ab/b3TqQGngnYtDlGrbsdL8EA/Dy88mE2JDupts2yQQRyQYRMFNVcxezKkLEI1LKwzCO0zgMOZmC6VbUAa6m4UrNPZ/u0Hd44QC6AbgTAaPnRLvdftrtxmlIKTETIHjUyfnVouaXZ7MHacxN1OqyHO/ufv7jH//9T5/+9qef/3g4fDFVUEdMicdhTObUqplVUxcxB1kWRxJ3VZFlXRDdwYkhJc6JiCKDgDIm4mxu89qkPhINOeVx2pe6AjoRIHhOiSghEkC6XoNf3yOv/bvPRrhytmX8RM7ekhIM3MxF29LquczH+XSYz49mjdERVaWIrCZRbqKBq4ECqDqEaE2cmZKbSltdV0QPPeJGgNhLcjggARMQOWBQuq1LhxAabiLSmpoZEhEhpYHZQ5VLXc0wcksQPTHlhEgJMGMah937YffBrSJqSoTgQEMn4G3x5ReDGXcDBU7RLf3UARzpCa9tl3cNQZ+vnqswyAs4eO0AfeapvRCirtQewtUXPKFTBEDYCnA8g6xXA5+ud9NIlxTZ6++B/hQ2b+5bztyveHOfpPgrrfPq2Gf/317tHpjr4x0cQM2b2Un9ZL66N3BByOQDAAOYY6RVMGEi3DHtEcYe//equoitAAaAhMQ4MewQ4xZ8S7MjhBRs9z8B6cZFO27y/eUIb+7GrQocxT2glXMOmJspyHsOEDlWSGqAAMpMFA5rMiB0RHVxdQNQNzUTUVWJQDkxArIjA/XEegiIie4AQTEC82aG1kAJhLRBqVKqAAAmYiIixgTI6tAUDMHJncEp8ugQiBGNlAjAozKaRb6/QxXnBpyRE7baamuiyqjfnMJNbPk2Xd6pfmomaqrWmqxrned1Wcq61HUt67qs6yJSzbs9rSLeq6PRWKuZi6i7i0ip5Xw6n8/ndS1bYqzHFgzDm4ijpAhR3wdRcQuRAugOKY/DEFUXhnUgImmttSYioqKqhJH0lcZhHMYBEFLiXpEq55wTEf9yAcueZuBI4Arm6mqitba5tvNxvjs8fno8flnW07qemxQkQ9JlOT0c7h4f707nw/n8uK6ziqn6OEzn4/F4+3Czf7fb347DpKpNmmqkCNG6PqieSn3Y73bTNG0w91TKqdRzqbMImHBON4CKBGaqZntg5oEoETI8OfM2pHIBdM9SRK+g2xu76k+Axa9w8OvThSPS3MVczIppMV1ae2ztYZk/3939289f/pvH00+1nko7r+u6LnVdW5ltXWxdtRWVCm7ABAhA7EQGGGxYV3URN8W6traWOU9giqZu6uaIlKd3tx+XuhZp1a2BiztozFP3QUReLyPyW+Vvn93R19wA13TbN2Zxizn7lT/Yt4eCgOam3mtnQTeruvaLlb/BhEv4duPNeHcZEhETYaR5voxbbt99WRQ9JP/sUi84BZ8u+O2b/YW3LocgMjFzFJnxlBKlxJwMCAjdn3gj2/VuMPdK8z0V9OoyoGvNS4z76UIM0A0IRbS0uq7rPM+neWYiZOTEiXHIDJCIEAHZO45+9qBeuHe3sOI2KxvSdQAHQmdy8NzZEEGGwrBo3OFClP/G+PYBFzpN9z231ubl8Xw+/PTzH3788W//+Me//Xz30/3d4XyeI4s9M+GAlLKrmrIqOySiTKhu2KoVbohFzQHMwJhwGFmHRIREQEQOGdARtKxWFncnRM55BABidDdp4ga7yVK6TYkREvRcq+dX/qtusI8N03j/F0zUbS2aikmVutb1WOfDej7Mp8N8enRrzE5o4GJW3ZqbgKuDAkTthfDqoGhySmbWahGpSGBMRORObgQejBQnBGIgAkQPV2+vZRZ8BgQAdxczQycABlVCBRNwc0NVV2mqAm7A4Iw9I40Ht2ba3BpYQ2uUJqQRaCBKxAmJTduLOUkIU0YzVDMxMI/I6FbVrs9y3ylX4PXiqdo2NG4RE3x+JMBlN22/XzOFrvfg059PHwS4hDku/+D5AdfLARHhiY7ydAfXmz2eePjPo7zG6/HVUGy3gi9f+Cv1WD+I4NmsgQO4V7cidm76WfSz+tFtcS9g7JbAU6QyI+WURuYp8weEjwS3amYmYkuVhyoHAEECIk60T3bLOEaAjygzjcwj4YgwIOTtNn71VW8ktjdxrptHkVVGSjmlnCkxJkIGZMAEmBCJkQGQotYYEDlbTzgjNDR1REMVt/DKukeq2lZ2AJiYI2MQiYiACBFoY6ebuYirqDSxKi5AkMiTG1RVcUGixEgJ00DDQJyC8Srh0HcEwAwIGDWLEgJTJWVs6ubmYuqqTgbkyI7kqtaqqCjTN2CuX0eazN0MnioLm6mbGoh4rW1dyzIv87yu61rKWsoqUvUSNjIDtzB63QGR1D1KhFj4cjAsaVC1oLxsuw4dzJAQYQtAPlXgCnWeEueUclDtOCGiWTyHjts4LBfLREhMTdpaCy0cKWgpp5wcMfUah6+RQV8pat42vQpSWqnrup7WcljKw/H0+eHw8+Hx0/F0OJ0Ota6cMWVUqctyLuvc1kWWWpdWi5QiM5eyyHye9/uH3X43TgN0GjG6ITjVcqjr/ePhdhyHYchILrqIrqqrWlFrZuyeEt8gBvdDRB0gDcM+pykxXm/Si9gJoOBf2/Wv7MdfCXLxFyr/d5eku7o386o2q85NjrU81PKwrg/rcnc+f7m/++Pd3R/P832TtcoqqqIm6rpFlhGRkdFRG1VAYuNkgKbqqlE+nBDApJX1LLW4iqm4Ajgypd2prHNri2oVl2q6uIuZumusLqSBcCQamQeGsdND8Rro/fKUBEzGDYfBJoAuUfknp2SHTRf8AgAd3ar0kAT0fClKOeWcmHlzY8bzwkDxoq3UVlsF6KWsUixtZnytaC4qDrbaO9fvXt75lcDk1Xg9R0ScOAk7J1U3IHDoctI3YPFyMvqsRxQZENCDudzX8VMmjl1UY1e57o6GoG6l1tP5dDqfT+fT+XwmQrEqWlXfhYeDKTFynBGe3+/LfJKLGYiXvy6eKMDNw+y9uJl5L3JmiE7fDoW8HE9S9831FsW213X5/Pmnnz/97R9//Pd/+OO//fHnvzseH86nUkoADjd2cHDFVrAV1EbEY8qJkjI7gJuyCrZeok6J3cxNnRgIjRjN1B0QuBQrVVXQHRAXRHK3WktZq1R9/072N7Df5XBIPOnblz6xy9N9+75iEDoFJWQrPX5NOTSpdZ3Lcqrnh/V8v54f1vlY5qO7JIZAuoiGYADioBheHnDacgzRohqDtlpLXaFT5Mgd3ckN1NzcCQEJKHK6I4hKyEzMkBIlDqdNQrdOwnRyA1MHdAJMFAy3IGc5hCWKCqYAYCrWipa5LY/EI9IINKZhTHkiTlJf0riJYGQwcjXgTrOErda6Azyhum0fXLs14GIlxOvUl+sGki9WIm5sgReQF65+eQleN0P0Qq7ve+nqeq4edVzEJSbzJAKfTvz0RZu/a0ufejXegrkXd3b/4+qLn4/tgv3qiMtRTx/sAtJEbBE9VPm5yh9U783PbrMpurI7IzEic5qy3eR8g1CZwNDNTVSKHEv7eW2fABoxMFHid5neE04R3mWecroFvAECRgZIvwhxnx0Q6fMvkxOfbhXMgYA52Lgp+OIUVBnqBUCIiRiA4rrRCTM7JY9C5eYGDqBg6rW1WqvGl2Iv70+IkLeGN91rfNk5TEQiiqBq2KrVRaRaopTSgE7iqiCMDMSUkDOmiXMiNTM1QseoIogY5G/GxMTAmKgyMkKLomYKqiAG6riZtgZuntKbMHfzUVwcgtC9ZaretowGADf3JlqrrGtZlnWe52VZWi21FpEq0lQrgFmQ+omZe1apmofXo58fERDNQ8QYuCMBGiJGhnroQ4jGHaIiUs2MGYkonljqbSCeAj7hz2LmlPIwZAdjJmZqjaMGJzOFNxcRiEMTbUUpXw21KloQGIkdoGld1vP5fDjPn07z58PjTw8PPz4cfn443B0e7ktZhikNY0Z0UxGRuq5tbW2WZSnLXACxrGU+n+abYXeTxykTRayK0Aic12WYz2NOA2dOTEhu3twbkCAZogMkh5zSrbs3UVUHTMyjRWyvsz0u5aoiLhISprsRN6R1jbG2/25i6quA+PmGe3WgP/8dQ8WYiXlRnUUemjys5fM8/zzPP8/nu/Ppy+l4d3i4P9zfz8tZtImJIwKRI4mBeXc7EhIYakUTYHbOBmThIwfAKFVnqtUWcBcRFXFFdGYabs7rOtcyt7qsUmdJWa2qVrOoPWREO+ablPY53yIk4pfQf5OgT/6H19NBW9uJTYw+ye1rpLud7ykkHv/UTKI8x7qua0EEZs45jTZOOA4I3Usb1fHRxa2plFbndZmXxd1zTjmlcRynyQfMhFv1vksEsls9r60af7qpq6Wx/Rrn+HWL4sWcIDIzs0XJfLw0z7kUyXvCRRucvPzE65/+ar31Fb+tcgCAMFya6lrL8Xx6fDwcT6fzfELEJqW21VQIgYjGPGDqiUQv78ufXcU2f1ck3vjrYjJs7bsi6BWZBQCGTwVSf814fdhzdRzV3VWXZf7y5ed//x/+mz/+8d/9/OnvPn/5sZTSalPpl2bsYG4ZasFW0STybpGTITZEBWdTEgA1NzVEh7AIyQGEyM0MABG5FKtVWzVRd0Mza1JLLdIi54KQxjHfYIqSArQ9r8vUwPOn+K2BYIQaxuelbw4ARM0ZbaWu83o+rudDOd2v54eynupyAlBLmBg4YeoVftQjNQU6GqTIITQzN5HWaq2l9mAGYhQlNHUxU3WgqH2JKXHOnBIHOhgyIjphEEe5lyQFdCcziLJziM7h3qTOaXHVTaeiSZO6SDm39VjyRDwCjchjHm+G6Ybz+BrmMsKQ3AwUgRHUQQ2CCbqlo11b4QE/tiDNU1Cm40tCwI0h+oRlqQPciwn+bZj79Ly2MMVG7t2e+vOPX8nM/jThenVcDsBnyx3x6qpeja+koG1m5wVIP/uW7ewX6bx9awfdUY6mRwHcHMBcqhxqu6vtS7OfRH9yPwGs4M0d3MmdwBMgmxe1AjojNoTV+MEM1d18Mbh3eHSvKtYACGaCE8GIiICc0417A3JEIhwAh00Of1XUXiHxXvWue5teTZV31gJCb1jV61IaqLqguYmoM5IjOaCpaVMxj/8BgKNHEyMFEDMrtZZSzR2JsFe7IiIUcWmGCKZqrrTZhTlRyojInPIwgCu5Ergkjr4GRIqsRISckJJTRk7EmcEcKRarIYZEEDcMg3KL2ItpFBWM/C8wADNTN9v6HAjK16YxPC2d9m6g6iom6iLaRDXKTpgtay211hpCo9RaWquttajkEhosnNiJQ1QkIFRTFw8mrqgC9GrDZATWJYMZhM8bkZhSdIFzNzMwjQqzQFHaw0x6OTC7BD7MkXorm+1RA6p5Ey2l5Ly2FoXh2v7m5ma/H4YRu4PZXiPdL3c/pT0NeTeON4mHtaytlbUuj8eH+4cfHw4/Hg4/PT5+Op4ez6djk6qWzTJFCp6qVNHgJxuhMyAypnQpIIzubqrmjqDoRtpEW62cuuufeq0PIMP+MyFmTgqeVMHMRXUt8+3Nb25uPuymd4kycybKRBkxE3EvDt13ObyACzFJLyTBVd2BX7Qt33it1+YInotZa+dSH0q5W9af1+XTun5ay+e1fD6fHk6nh/PxeD7O59O8rlVMRc0ZkN3RtKIKqoI21IqmGNQ0TpgyUkJ3sjCNHHpgAMNf5W5g5q6uoOfz8vDlfsx/cGUpstvdqlXTplbVmoOlvM/5Ztr9cHvz+9vb32fYY2+/8ie446IHxFNo8Ikwdcm+6D4UgisU7OgIqlpKmef1NM9RZhYJh3EYx2G/3+1lPw5DWGuhldyx1rqWsqzraT6f5rOZhcm+2+1udvtpmjKnnBgBwysezCwi3qBYx9+9yh4RQC/G7hvw3eCJX+mgt6bj61PUXbYGGiW+o/VfD2Hg5mi7gpQbtrm8sCHZK21++YC7WhMVc42ZldbWsq7rcng8HB4fDoeHx+PxeDqaysM4TOP4F7/5bS1Vmry/fY+3NDJ11nKYIbiVOfMtO82fFCJcjBRwwAsZ4frmI61kSzWEaOPxK2Hu863UJ+OqxoabSF3Lejw+fPny6acf/+7Ll0/LPLsBekT7yUxMRbFII2Z3MwAehmm3491N5N1Vhxp2PjOJikoF9JwpMam1WlW1qaBbIvJWtVYTcVMAp9bqspyZKdEIkMBT4mkcbqYRUkLmzYLqmOdyP9cY96trRdus5Si9/K24u1+1hyzrUuZjWY5tPWlb3Cq4EMUx5u6mEGm80QWtewTxgmAAQm0icKLBc8Rx4oeqiVgTbaI9VYhwGkfsgR1zAwB1wKD5OhAy9ABfBB5VkHArEmII6mDm4qZPOZFBOsXMaeA0Ig2AA/A4TO/G/buUp1peFeUIEO1X/icE6JU/okaeP2WibW7ZK1dmR4uxg+ginK7B62aF4+UDly5l8IRb30Be3cC8Dmw88yW/FJ3PT3j9xvW5L8rpaxgXvpGCtvmlnyHdt7/K3Z99swGog7hXgBrZi2qlts/z+nNpn8zvHe4RVkKPtFMjcg+HHCOKeQU9N5jBD2J7gAzAjoJ4Yp5FiqmImOvZ9ACemZkTj+MHJCcmwiHR7Wa1vHXlrybj6pWnom7Ph4MbRN0AMItfENWVDFwFreuiSO+McrnqvYI7IhIQQmcZq0gptdTiW9kaREQiJGLSyow9XdSijl5K5iMiMhHnhDgliggJS8TZESnAaFwrERBD1FBCI0MDiHRsc1U3dAEVAyEprdYi0kV/lFOIZ++K5p144GbyFdLCBeMGuVgk/nn8HhVtzU1Ml6WspdbWqrQmNZy4olECNkjDEGyBYRhyzsSh3EEiISJ6OgH0nhxBljTt7lsDNyROiQdFi4APeJRgin4Q4cXdbD8kvNrf5hF2Awcwg41JXGJ647pLqR+bAIBtUYxoc/FiQn769LezHW73Hz68/4v9/kMogdbK6fz4+cvPDw8/HY+fjqfPwdkwMyYQQkRQVRWTqiYOjgTMPHDi3klnx+PEacDAdaZmgqZmZKZK3DAsb4Ko7dyd8aBEgtQ4qStJ09bqsp4fj3fv3/3244ff3t58jHbQOe1T2qU0MY4Ig2PacOcmnb+ifS9+gD/Hd/ekzy6iRM1aLY/n80/H0x+Pj397PP7dWj41fRA5zOfT+Xiaz0uZtSxWq4lBUzRyYHMCF/QGJiiVpaC0SC7ylDEPxBmJjdhjaShaVESNDYqIiK6Opjaf57svn818Oc+nhy/juDMT7TXaKqAN037c3d6+/53+tuY8EmHPE/ilCNL1nSfA1KESdlV05e/AbVKePO3eOR+OoOplKYfj493D4f7wcP/4yEzTfrff727rzTupu3FMibbkJnLzZSnzspzm+fF8fDyf1DVKxdzc7G9vb2/2+2kYp2EkABVRkcSc8sCcwueIkdserLJhwJwYCUIHeQd6F4W1LQZ8sWx+0QjwXngvavmbmquBdgrSxd/mjltrAO/k5Ut23MWL3BWXY7zoDgpWalnWuUkFBERvrc7Luizz4/HxcDg8Ph4Oh4fD4VBrAQAiOh2P0gTACWmapmEYNt8SbnZnCP1oaXh5tteepqvaE1v3jq13B14j3e48+ZUL6O3pe/qPgdVWluV4fLy/u/v0888/Ph4f3CSnwS25qmET1dbUNXzJdRiGcRym3XB7M9y8G1Iy0VWtcKKcMxOLVpEEaDlTyriu1qota1UlgJwYWjNpZlFoC0jVai3zGQnuVIAgTeO7m/2HnrlGBL0mHgBuZfWe8MszQ+X1rWo9tfWhSWttbVovjorQp7WUdT7X5Sx1Nm3oxgSQe76Lg6upqJmZqqhqBEO2FnoO4EhMSMg4jCllFo1tIf0zJk1aqdK7pxERUs45OZoGHFYzUAVmDjdFFzFbRbZeqaKDCnfQoCD1OKR23QtAxJkoO2bHhDQO+2UqNY/7UtYXk4Jg4NrXlvfig4CXUiwe8Z2OXJ8ALW7e2adQ/sZ4QuwM48sD2RBh//nMKXt5XK8eG15U7/WLL5/29tHnf20/XsaUAK4s6e3q3lgwb3lztzu8TMLVVz19D/ZL9y1oGa9FSYRmvprParN5Uasi67L+fFp+rO0z4onoxGxI0bAdicwdAQ1Q3cHUVM0sqw5MI9FENAIAUCEvgNWsiTRpKA3BOeWcPBPjoHv1d+7NQTcz36/nCeBKk7yYzyfumb9+RITAUdkazFzMQD3anJmjbq1yo4m8RRSsiZg7EsYGSMiIqKIq2prUWmptAM68ueqIegOKrnGjTAkxk6ojMrPnDEQ8ZI6FF2lXzIxEXf9twIsTcSJO7O7EGws9ck/dzBXMQVG0masHS4milcu2JeziKOker9dLJXRL9AUX0VKl1NaaNjFpwYMMd4Gq6TLPy7Ku3ZVbo25uUO8ROxuZmThxyjkNAxFG/dogH6jqFh93ICSONpIQ8bIoSJscsTdGJQ+MixwaiYijtGF46xEBkC4+Hr/00jVXtiZKtRFzCONaWxNprbk7Eqn2qbC3YO6nL3+4X+j9u9/Oy/L+/RLlimsr83I6ng6Px/vj48P5fBARFUMEFRIScBc1FZVqKgCGRJwTpZyGYRiHcciUMyaGZqaOvYCsgKM7OxlGW1ZEYCZlCt+AgTIrJeaocCet1mWeH/PwZV3vpN2X8sNuvJ3G22F8N47vhuF2GG4B95mmrUUnXoOVLhCu1sK28/8MlHuxw58cUG6itpZyOJ1+enj4D/f3/+7w8O/X8tnhbH5a5mU+rvNZpJJWakJqIIZG4GZOEUBCU1JxadhWqNVVIA1ggnnElAGzI/cIADhgJOgahblmBqq+LuuRHkxaOZ9Oh885Z+sbpxlUQJtu9vvb21KPY97d3vyQUgYk5Oj29GvnISHm0HOIEFUwntfjgov3BCPIGV4aN7da23leHg6Pn+/uPt/ffXl44MT7m/3N7X5ppUjdT2NOnMNjpqDi87yc5vl4Pj+eT8f5JG6UOOV0s+7flfV2vdlPu/00EWCrRVtLnIZhTDlHTA6D0U88jYP6bgdTYk5MW3fNa19lsBcQXq2KF+vkTYdCFM6O1NVm2lSb2OYYA8Se2ePRHeDiAH0yl3BbWw725HB2dDMrtZzm07Ke40tqLfOyLMtyOh2Px+Pj8fHw8HA4HJZlERE3M9Ehj7tpt9/dfPj4catAgXGdXSl6B7ubLu+3dcUgfnKv9cfoPSNgUx2+/fxGGZJfOULEuZnUOp/Ph8fj/fF4fzw+rsuSUiLKjCqA4BqTEmgPTFKilHe73Tjtxt1uYLbAwMyUcmYiNmQmAI2mvwAk4mVVQs2sljhCg0FYRXRo0rOslWrRlKb37/5i+fgXKQ2RuA3QGwJ36wSvFsgLrPFqtHIsS26tlLqKFNsqhCMxIkptZV1bWawV0xLkCndEj0qPFmiy/1AlopSBmQF6Rge7OzMhU2JGBCEHUDNHiNJvqqIq0VAbkVQ1ev7aZpUG2daBkJCQHAExQptRWgEuSCs8YGqiJk1C3YiINBEzIExRfgFoQB4nJ4Oc1VVepqB1P82W/9hJaWFCY49qdm27SXboLtutWFGkSG2hzgsmhg2Jds/H9li6Q/4F6wS2bi5XcMr7OV6u7xcQ863xckHAEwPiLSnzanyl0sIVxn2Bvp9d8MU67yImsEIVPYseq9zXdtdkblJaW0s7lHqvdky8ptTcjRIbOnYsAg49SKUm5tprGfCQ8y6lHREjCrMmM2NLHH5VcMCUKOchpYnTlGgiTAAQtckQfMu13RLwnt/UtcT1jnTfmLE8pBveBcJVbY5qqGosDBGrDKKRWfgvn2AubMg1WhyqSCzeSPBHwJSVOQXMjRBGoLCgK6TMQ85EHP5Fd+hdm8nSgMQMAIDW20pieDoIAPOY0pBTTggMnqPauysYshM7EySCjJQYUsZBU0NWatrEtLm6OQMCUQKM9oxTWBqv1kpsKxEvVc7zOs/LutYo+xAdcjavjJZ1nZdlXeZ1XUutTVoUeAgCU3ewMiGTQ+8hplExV7Vtbc/6LkMAQGJGYnAQNRG1pogCIO7eK6shEXG4f4kIMHy2hhbJa9q1zwZzEYnMWHWraRy/xHOJzARUsdPuFCXM3D14FNfj8PhFz+vh8f7L58/73cf373/48OGjalWT4FgDghsgUEq9u0erZuYiIm1jmgGE7ZMyMyG4uro1VHdvBgZgFIozCAYcjfeClmwuGv4EcwTPmAnBQFUAFnc1q2bLCRbQwzLfjnk/5P04fdjvf9jtfrO/+c3N7W92uw/BYUBMhAEWLn6OZ1vn7+V8upwKo9agqC3SDsv65XT68fHxD6fjp/PpodQj4OpQy6qtgjbUBq2BRk9kRmSARFsfVQAAIEcyRzTzpggCsVio55h4fKkDGiAamqqqWy/nDQAGLibrOpvUlZC3qIUaCJLtazOTPIzn84/n+T0nAxRiIhoQ8taa9xcGbTGFMEIpWqD5k2K4KID4JWpPlFqXWk7z/OXh/sv9/d3h4XA8nuYTMlWta1tLK7Wuu2mKrhimpsValXlZzvMyL+vSyioVEKJ3o5o3sWUtUx7GYUAHaU2ldW9u4gvMTZxy4v1ud3tzc7vfT8M4DsOQEhOlzgPeHmfXic8n4QrBfH12unvbDJp6qTqXlpfintzDFnbmaOwJ3KfvoogBujaPeqbhLLVNCbuDNanLcj4c7+flPM/ntay1llLLsizLPJ/n+Xw6n5dzKUXFwGGtZVmXeV1KLU2amEZqcBMJMkOI6s7tT+mix91DIUJ3JTt4d9cbIIULIJJzbcuw66mzfz7O9W7H9+haWdbHx8efT6cv7rLf7SE8HGotksJaQbJpl8DBnNDTfj/c3KZpR0hSm6CqQ3MXcEQ1dwIwYncAtd7gE5FzDj9UNqM4f9RoVPVhoGnHqtmUVeF8fpyXx2V5HKdp0slhQPdL1fyYtQ3pvkY2L8d8viOuqk06aSEYkh5xVRWV1kzEtJjWKI7rLubBxw49XFW08wMIo/RI9ACJbDsQI7JQB6quhuZohmbojsxpHIJIA4iUU4pr77keKRiFiQjNsYlir6ZqT12+O8z18NcEblbVwAi1Sq1NLcKzmIYxp3GYbsfpZpz2edzV+Vxf7x+AEKdbV8woKNa7yBD1clQbzMUN5kaxCAj/GsBGTvglN+3GLPAXh10ff0G7V0bgNbXnjfFKcLwAsxfPSFi6X/ncNt5OQbvgQMRNxl4j8qfzYf/2XgsztGwRmdd2v6w/LuWPazmudS11US1qK0IdB3EXRFB0IiNM4b8MiCsirTXRRhRGZHJoSII0EAJE/I3BGGGL0Q9Dynka8i7znnmHmNHBXcM6RoDwGW/zshVW7Le33di1N/fVGIZ0u9/X2pZ1ra1qQ3UlDSkLnKKwM0ZpsLaxdiLEHhsIAcBcpDUJaalqSkRJUs5OW8JFeDIQkROlxKMPTJwcVLyhuHm0UiOCRAiZwpMK7kiXZq+EyGmIzhVDlKCPjGwVIyIwgsxgiIapJRoGHqE24obcoDS3pqbOBOhMhImJCEcY4aXjMhYAmruEQprXw+PpPC/LXJZSw9lp7lHEqrZWS6m1tFprrSoSlAi6GJIUmeIMgFEV1q2DtlJbrWGvOyLmlFLOkZSNgLZWU1ETcHZvELlsDoiEnAAhOilG1Rg1B4DoEO7b2M5spBFMMyYjIiZjZoCo7aDSdF3KMAwcjGkHlZeU5cfj3az3YMltGPLtP/5Hf/2f/E/+Zhqzu/YCHUgO2FuDAImqNhPR1rQ1DZoTIYafPiUkigibaQXXIL1H9kKIKGJKgYU7Kby2JmLmGxkLUyJ3dBXxZlZUF5VkcqjrkHlIaco8TdPH23e/u333uw+yIDoTp7SPPiaRknHZFm+Ten7tePlZ3/YeIriL2dzkYV0/nU4/Ph7+eDp9Ps8HaTNgBWhtNaloQtIwGvlRRsqIjMAOCGIRsQNEBwr2vKsCIjEDMzi5x77ELbLnBIgqJm3LpImGyC5gWJY6q5tGQwYM1igxqCmSjtNwPv94Pu/ygJxT9h06ADI6X+q4fmNQz0WKhwnBe3rmsojDEBF6JEbMllofT+e7x8OXh4cvDw8Ph8PxdDwvMyCutQzrUmqpZR3HkQkJUaqUpZWlzMs6L6XUqugGTpmHcRhkaM3WUs95Tsy5r+pmqsTEnIgpdkjsuyHndzf79+v7tby72e9vd/vdOI7DQEQ9nW4rtrt5oq+eND7dXteJr2VtINneys/Xpuel0lAA1J0JMSVICRNjYuzRMqCLiwif+B7W2dcWPPPuRW3S5nV+eLy/u/t8d/95WeZw6ZVSa22llLKWtVRpYgYIVGpba1nWsrZatan3JjK11eP5tMwrI6eUhzyM446Qiel54YXO2nWAcPU5gEMQulwvfSk6tupVYr69bH5xREBVdF3Ww+Hx5+P5C4De3Ny647rUWtZWdV1X0TLtcLdLHB3jMe12w36fhhHdW23VQYkM2VzRnSiSoRndrbVguwkRD3lKPAAkNzI1FahFl6XW2qZdcsjupgKt+Xl/mufjsh739Ub0xn2CiLyBRbdVv0JNv0iDWk534Cd3M5Cokvskz72HVl0t4gGm4gFwu/NERVqrTUS35LDosstoAOAa/l4zRI2giJuLghrGPwcixsS9WUNUW+/hxuhElHLKQ0rZ3UzF3MCae3PXcA0+8RkvMNc23p+KiNbW1tLEkJg48ZRpytO0fzft3027mzzsNB3empjNEesb2wzDm7u5zy6+277huk+5w9wOdp8KIsDlMcR1v1qeV5SG62DG9ZGby/WKUXR9CPZo+jfHi7f/lF3yi97cjanx8mscLnfduyaIeRNbSz2U8rCsn87Lz+fl56U8hsUcyaSJDcEJjbayTEzgaAAQRZJD34sYkVtSQAtmC0BkgIGquyuhAYcV7yk5syOqQ1GbwcGsEg4AjMhEmX0gGhAZt66Z+NTs9NdNU07pZkyJLFyHkZUl3YIxRTczJjOPGrGmAIYXD5BvhULCl6sqIc6YkUOBAmJP4dcw6NkJYvMkzlE/vHvLHREodbJDb5Rg3kOb4TNAcHAxQ7Wcoq6nAzlSNOWKDDokQB6IhsQTcEOuyBVgNV3FG5ghOaTEkY6ddYBXfPd48E2sVFnWep7X4ym4CaXUGvLa3EREVGtrrZbWohm66Jb1A9QDSWiuZq6AZqBdBoRfR7v3IGI9ZAM4kHsnG6m5RCU0MlaLmi9AjEAbmOn8XQ3GSbh8nmBurONt+3mEm0JhEyK5gTR1q27eRIbcSyUjQrSBeL4xzF3WdT2fmusXIhin/O52P6+PqsVdAYECx3IGQJXo3watgTSPHRFO2mCjRC6JOoIiEUZenSiqgqpz6n1logxl511EZXBERO4NswwUDFQ04qaIpRefZuYx0TDtTrXUVgWcE0+Jd+NE4zgQ5Se58N/NcAi1oqJzrfdl/VTKl1Iean1sdZZWWm3hBWkFpKJUbtVrcUfICTIjJkBGQDcBCdGZnEdPBslAARMBJwAEM5fmJIGwMGqOIEBrLs3NgRmIQMW1WUNR8Us+DThFuBMZONc80LI/zfPdeZnG3TSM78fxI6TMOCDmXzlf+Fxc+0aGvjRkePJSAqh7U5tLeTid7h4e7g+Hw+Pj8XxeytpaCwxXWw3u4DCsREQIrUiZ67qUUupaWxN1AiBgS90zYR7+BYqvdoucVGbilImpVwEHSCnlxGstRaS2VluzLQ2TgkwOG59v80E/pxJc//m2Mwe3KKI6VLG16rw2HGpPSyfKwe6IKCwTE/rW0K9ry4t5EDbxFumK1PmAQqJ6Xub7h4fT6bFJbVKliahK09akNTU1dyLi2tpa61rXeZ3PyzkPQzTHOp/nx8NxPs1BaYAJmLPlED7ddeW95LFtISN06/SvjnGfOowHL7f7iv4+o8cctIks63o8zXfLcnDQaZpa1bKKNBUVc0HUnNO042HIhIko5czD6MzSpIqsgAoEDOgAok4eZTDS5vzDlBLikBMxJabkwW9zFAEAUUUVl+bC0d6yLOv5dH44PH4Zx2EYc86ckjLvw5MKW82pq80B34AzZT0CsLmaRaupPnnei8gQURcK7s1czMRMNqe5bcUZgtOWCDnMZdz8mO4QPYjA3FShn50CKyYGjkL5FPHi6LpkTcQMzUANRZETmIqouDWAhi5EHknU3o28ntQeDqHO+uysCIimpuqubizexJt4VlNVjrSWtwb20DQSXjButzqj3tLmzcWLv3Z7pt4ZC5dd9HqHfluwvfSsXtVE6TUq4RnQ/RPGGzbxZig/nfbN8SY39wJwcZNIFwf0tVhGBDA396JWRE9VjlWO6/K4LMd5uT8vX+blcS1zlSbSiIzYwZ0ZhJEwISTwLGE6gITrTxVNkxt5p0CgiCPKVpHEYAPixMiMiIpYHFiMsbnZCpAQoqB3IsrMU+KbzDdEE8FENBJkxIyQYKOdOMBXSiz0kROn3cCJgIyYStUm2mQr82loAmjggOjMwMiQGMITuZHJO0fV1MEQHQkgYYDYIafEORNhWHJImHPKQ9rtpt1uN01Dr/SD4K7hqWTOOWdPG6fUOrFxK6WFTSAnG3IehkRBKnJDAMToE5YSEzixJhZKgqlRKgTJFcUp3M3OCYchDUNmyS9grjuImoOW2pa1LEuZ57LMpVYxh96SgTAq0Xsn1OtWZGwjw7q5IRggurk3Vdz2HHPKOTMzIjuwGYlqawZg5qgKKVlqhkS1imj3XkJY5N2sDI6guUvb4kG6JdW+WPBBjObeWoOZKHHKecgpXUKeqkaigpQSRGX91wvm/e2HCekBH8+nu3l9fHj8tPuU52Uncm7tVNsCbimlkMJuCGgIHPNgFsZOb2sBGCQyM3EjMmYEUAURaFHLQj1n1SkNgxIbkjmouiLZpYgqp+iHDFHq0rRXtiBHQmKizJqSaE2go8pAeJP4PfM7gDGnW0wETwLha2LkzxybKDHTYrbWcr+sP5/nP5RyZ7pgkNycwNhMVVEKSMG2el19LQ7sOEKKzEUK88TN3dApI2fAjDRQYCRGRHATl2pBYwYPlqcBgIiLOICnjClFhUA3AcSMyIko/EPRCNHVtWFddZ3LOh/X5X4tH6f6OLYz4A5xh/yrhLh3716POsX1bzogOEgXzIPmJmZF5Lyuh+Px7nA4PB5P81xKCZ6fG5iKmxYiIhRVRiJCbVpaE1VHSjkjs5qKWeTgCAozY0aKeJp2b4OpppQyEiOqmqqGCi9EugWmNYofOYADI2EeIof0sli2m3myH7eQ/sXT/XKeIpkhguRVbG0yl4alcQQ3AIKr1t1OZgAEdKlsiV2MQ+R4bXvbu0JUd0TOwzSO+5RGQGqi53me55Nop8yJuEp0ImOmVKVWqUtbT/Pp/vGhqcYiW+f1dJxrqbf7d0w85EnVVINXEr6GK5jbB7p1L5uphXP3yZu29XH8e+yybqC7imipbSn1vJZjbScAyjmlxGbWpLlbSkBM046nXZqmFK3gAcC9qpl5A2yIHs8zIvhmQJQ5ETPlIafMbuTGphzdUtxhHAbRlriCJ8KSkhOCGSK4gpZ1eXy8//z5j5Ekjei73Q/ThOmptZNflv8vDqkVAZvUJqtoe/ocEgDmlIdhSJyIwkhTs9akbi7jqALGiEHtycyJILlGQVBOqNGkycxMwVRDIhNgYsZhcFdC4MgjIwQAEWsiouJQzQkpITFiCpcygGa2nDxnHnNmCi9YVMl9CuhTN9w0cvgIEwKYobiva3U8N8XatDUdxsnqyxS0CzzdCAt9JjtFF7fWcR3dXhiA/YOdLdIDYlvE5RcCUxvEfO59f45xn6pTblyIJ/EQXqavf4G//fsTFr1cwIuDn8bXSAvXDl24Nr8vdwAQ4lnMVtVjbXdr/byUu3k+nc/nZT6el8OyHGsrTdXMUvaUgBBVUIgIGDy7DoACIBcvphuYJjdwcnd1cxUHb+4YKYjEmDPlHI58IlS1au6ial6aHjyqmQESD5yGxDdD+mj+IdG7RO8AbpF2AATIl0VxwbjubytzTjRNAydCAkpES/O5igpshpIraFhWkVhHhETqBrWqGhho6BYNdnu3/5hSopx5GPKQx8xMTVvTitTB5W4ap904TUM3VbeOYu5IlKLNjIO7mqiICIiISquC6FgtJdXRHIAR3RVcCQDRkAgzUmZCJONkJIqpcRpRUaoVdcFmDZwS5IHGMUe7rOerz5uIGpTSlqWe53JeyrwUUQUEIk6JU07hWHBwdRMzeQrUuYdOAEcDAXDQ3moOEZByBqKcUvTe4Oj2KeKbWzy8+EZEUeQBkeOxInV/Q8Bcc21NmqiomGqvtttlQYeTjNGBgzn4s8iMlFIa8jAMg5sHPo6ubFFiiXqm8MvV8u72vQ9TrYp4t5bz4fFzyjavO4SG2KStDs6cEAgxGTgiAxg4u6tbpCngxmHpuRKmpsBMiMCteW3QxJqYqOaBVE2VOBmxIlsY8OGn5RTdm9zNrbmIt6p1FSkatZ4Tcc6akkglkywtMd3m9DEPH3K63e30Ij9ejV8IKX7lI2/84W5qReVU6v2y/Dwvf6wXmOuATm6kQtpQCrQV2opltXV1zJBk8531mJmrm6GnjDlRMsgTaiNXAAVrsIqX4tZ6RXnsifogAqJAhHlAH4JD4DrAkNOQJyZGNwN1VwQyV23QVitLXdfzut6X9YdSTq0tRJXZeAOs356gyy6If0FYCu9SaI3rOH+vcNfaaV4fHo93D4fD8Xie51KKdTrRxr2pFQFENJxGKtaaqhr0THAvranXKEiugJ4zAhCgmgWlKgxCc0BmQFK16C4dpb2qSJVWWg1qNAEx0pASI1HKl2fRka5vcb9LUBOh+yrgzRUUYVwU8ypKVecqUGTIKYM7RaIyEDpqdCFyNAsiLuImxX1bn75RKNDRUN0BKQ/TOO5SygAd5h4eD6oSF2sGEe9BTImtSC2tLHV5PB/Hh3FZVxUz0bK2shQVI+DdtO84UB3A3EKduBNs1X6t16KwDjCiswD4FljCLSno72tKxjoS0VLrXOppXR9LPRPscpqYOVz1AJoz5pHHiacdTTseh5Rzrq2VtbbWzBVAkQCJiUjdzJoZcEL3RMicB2YCT+DJLZl2QxpAHTRxdU8Ig3tDDDKQA2gpy+PjPTNygpSBE4S/higjEWF6fiO/MKRVBy9lWdZzrSWqfQf9j4l9mhIjcDTD3kpESoHuvqVgMhETY+bOfCIwwihySw7UnEgtms9EshATU4aUiACYQtIiRJ5GZKWVIk28SaTEkgMFoYLZp4Gmkfa7nIhzRvdw/tjFmXhFY4h+XomJ1NwMVd28NjmvRVtTFR3HKbf61YqwG6DsToonNkIHu92Pe+HI4hPSvTrHs/9cSaMX3/eKa38pGuawJVx6kOQJqW/Wbz5cf/XXq+OvFMjTu2+f9e0uaNfOm6vriV4j5q4A5tbMRXVucqjtYSlflvJlWe/neVnmdS2L6ozUUjbO4EDMQIyJARDVsFaQ5lHA2L05CFPkiAQVHJkhJeQE0DsOWISTOMViZiYEIAdXrbU19wq4IKaLE56MyVjS3vzR7H3iD5nfJ3rPdMN0w7QjnJim6E1yLSNf6/UwgtUMeh6GD8lN0RSCwhU5+b7xgzaDpacnOKMZOdlGUEDq/YdyzkPmHHViidFc1TAQrYq0WonQLdg8YK4SHkkBggQehA52IItqtc2lei3hNK5EXGuttSYmIqcekkFmVBdxISQ3dEfvjU4tojIYZVybNIOCDIZJ8/RilZkfT2dEOp3m43F+PJ5Pp/O8rGISXOE8pMGyubdWRUQ3lImInDJA8tAM5u4qYuoe9XORmAhSIqKc8m7CBMBEmWh2O4sodadRb7XKQIiJOOVhzHlAos6IC/KBo0e7cQcAAki9utvVpt1KZ/slCNLdVGGNJEwpXQCJu4vIWlZCvBRxu4xx2vNu3O9P024ahowIrdVSgFAQxFTdEDETMlGK2F+UWw5vVUqQM6Ww4cPBJKbNwXQrg0NqJIbxD8ABxQzHCYYpVBBS2loDIIKDCZp5q9CqtxXqCrU4OaBDIsvZclYTcWvuZRjXaTqP03EcTtN0Zsopc+KEXTht4vDimHuumX+Fln4hKNHd1VqTpbZzradSTrXNrZVIOa5VWzERkEZltWX2dba1QqlADrliLmgGSAbo0vpTA0BHxISJMGUwAWve3AygNWgFXAHUEZF6CXeOxH0EAEcRcgMR9xEQyVNPQXPwaEYSRjZzAicREkG3nv253eO1Snh7VqKEtRsYuLo3kSYKW8WR3hQmCNfqy7oeTvPD8fTp8+cvd/cPD4fzfC7L2rSFAmOM2pwRyafgEdslLSdcQ8wOQaMKxqW5irYqldHdTAmce+NFYCJ0gGgFFWzByJ9Qi4IAiRgBoiwOuvuN4W6fQ2RfBQDD7dDDElGecAsYt1fU9o01GZ3dNGl8ANWJHMlQzJGArDuIkoMTcdRCflLW/UG6bRnxUY5Uda1LqVXEVMEMTF2attJUZXO7ontP9AXHdV0fj8dxHMFRVHfjLmqQMqZEabrZ3dze3Nzsp2mXc8bNh72t9GdLHbuLrDdjpguquWyoLYb8y3voW8NF6jyfj8eH4/HhdH5cllNiS+SIbZzo9t1gZo7ISXKGqKQeLZZR1KGZhbhWtqCiYCfVETBlpsw8JCZmcidXUnARqVXMPWdMCYcx3d7cJJpqWUqdVSomBEJTWZYTs6UESKJWSxVReHfr0/hhGjO+nbv5NuSNeKD1hK5u6xEaEjsDVylY3YI00vVOSgnAo0ZfL3lsrhgy2ZlSzw5hhuj4wCQJRUAViCn6Z0KXBOau4amOWJIZiIIqitTOro0acQhE4IBqkePhIlabgIP2XJy4536bqo6YUuqsWkCzJiZiVkFNpBEak5muCJTwRXNbxM3/uhlQfUvg9vPiANoA3rY68boTBMLb/OgnH+fLR4SX/8TeA3BvLVjvVZqICLgP4xAFQ3PmlNLWpumZx/jV88ZXL18DaweHb7ucv94e4mIHdDPZogOngzioW1ObVZfWDqV9KfXLsj6c14dlfVzXupYmrSHJMGlUg8Xe66NDBVNXg2hJpCZmDUCHgcaB8+A5OSdMCVIOakuUizIRb9XckAmYUcmZAdxq1WU1jQaeSJwoSk9HNY9kg9lB+San92rvE79P9I7pXaIPiT8AvmcaIzSJju5vT5Y00WX14IQBMnFO7kaCLuIIlHJKKTyXLXodokFkTqdEUZwEzA3QnAApnnPKORqqJWbeWAkAbqriakIm0mpLibs7xD1CY20wE5QK4ziOIyGSVpDqUryuVtZeJQUQ1pyXnIeBc05D4mi9TYSUiCsjoHv00wJwDLdlrzEpWktroCZecxucX8BcM3t4OCDi43E+Pp5P52httsZXO/gw5nEcAGEtpQbSNQ1f5pAyM4eUkiallCZVtPeMTIyQGCAzj+O4G8fdOO2m3Z44qwGWQkwdB0Q9AkBAYk5DHvMwAoCquKp34dFzYcOY2RonE2EHklvtk4vZGelvbkiR3sc55ZSYWTSqIXiTqirQy5k9G+Mw5h3udzc3N+9u9udhyIRkGiaiuroboRNxSimbAbMjKbFxyoCUM44DMbu01sSkqjbf/qkrImUgAqQA7iIaD42Yx4mHTClDHgCAzLCzgASlYV2xFKwrtIJSKerIEcIwwJDB1B0MUMddnc/ztDuN0+M43RLhNI04jgwJkByjCGAIpw1ObHLj12HcPtsXYeNgZq3JWmWpElXpSm211LqudVlqWcUErPG6wHKWebYm3hQJsCxEA3EyREO0jZIMDqiKzEEvQW2mGOxbb4K1ggmC4KXLYGJKmZiR2RHcFKQ5VgcH4u4uiF4Szk4EaaBxHIZxYBpdR7cRYCQciBJeMaG+PReRZ69mzayJrKWstQAAc04pT8MwjhMTRcfEx8fTp7v7T3f3P3/+/Pnzl4eHx9rW1oq7USJORMS5hyOiFDdt4gRj6TPh1mSVwU2jwbeKNqgrgMnW9yG5R68vIkBQd1Froi2cwupmgdKOgNKkleZiaI4OOeX9tAvA1s0g94jKiVltrUgrrYlpMzWz8qoikqnWWlu9cPjNnXrzDyd1JEMyb32rgrOZQWKgHl/pcf/4cnOrdS1lDU0bW6ppW9faqpj2+jOuHjVU3aOoSLeV3HGZl8PDARxqqcuy7Hf7zDnz8OHdh/c/vP/hw28+vv/44f3H/bQnZIJIqICNQHVZ84F/e2FrRrQuhC5gd5uzTef+mQPd3Vor5/Pj/cPd4+PD6XSc52NOmpM6+n5PzDs1UmP3ClhFWm2WB0qO7s28qdXWpDVhJiRMzNEpEokTjzlNKeVoIWPqat6aLMtyPq9mtr8Z9jdjSsPNzTCNfDxSa61pY0aKxr9lPnpxENFlWc+lqiiaIbxPw7DnHmL9VSOkeq90gSk6GSkCAxhga+peWhPisJCAmZjHWDYXdKzambDMaUhARMQpmpmpoSmqQhMMmJtzJMkAAJipCKoIAm4FgKPGJTUx9GZq0YGMOZ5zf9ru0ESvPJBb+v5WMTo6aA7jwAycEKg1W9ybqhg0IWb2RGY6DMMNvPQ+bY5J3LLMLtD1AnO31BS4hFi296+W69ab95f86p1XtYGnOEGIeDNf1/J4OB4fj+u6rMsK4Le3N7e3tzc3+/1+h/sd9X7nv+Zx47UxcFkC/vTi9c9n403SwmXLXQKWDqDmxby4V3cxW0WPTR5rvVvLp6V8ntfH83JclrlWadUcfEiQB8wD50yJuRPSg5OuJs1aBWkuIqoNwaYdB3WJyRGtd3VCAOwtGUzBFBSj5aBb8qgXHt2qRC284sPIAFFaQcDUjNSOypPaQdO7ZO8TvU/0XvnsIIiI6IwYRc3AsRePfT5EVOY1KK1ITECZEyQP1hIgRVqli4Ba+GigO36cmNjJjCCxhq4ESinnPKacuHM8o7fEVvHFxMTdoRES1ejvFTsk3CBS3QSkuu4AlJm5Vi1FS9GySl2jBUMzsMScEo9DGqdhGgei6Ir6VAECncg4hAA4RvAOwFWtFXEHbcqcdjTC8GxOzO3hcACA43F+fDzP81pqraVV6UkcQ8l1GpCwhYIJ3pI55bj9DA7uvkIptTVx1QCYUQYsEQ3EA6eRmUachmFqTZelmIWznzrJIIQxpcSc05Bz3hpJWHjm+y6Ezk0gwADJiADSzGv0NN5IdbCFGFGRgqsw4JByHoaMDc2iIE9UA/LXMJcS50zjOO53u/3+Jsy8nvPg5pG2b8ieEBIREgtxouQJgBINCYcBiVxFTEyqtQZSvBVrRU2AM6YhEfVQnDlE5Gu3o2ggN2TP2c1RBUzdjUxZK7VibdFWWCq0Ci5uYgigzXUAdwcyZF3mej6vw3QaxkPOI7hK25lOKY/MiXggTkQZkENUbFzLX6me/FoYbQIp/DK6Newkd4o4XWtWipRFTVgbrjPMs8+zmaM6MWEtiDMyQzT525pvkwoqgveUMndyIwMyADBHVTRFV2CP9YZEaciZGQANwEQ0MDGScTZHJTaKJE4EyjhMeXcz7fc3ebghukHYI3RreVMNvzAdDiCmGwFA1lLmZTkvMwBEVdGb/W4PMKS0lrIsy/3j4efPn//406cvd3f3D4fj8ajWzJQIkjNC4kwJOTH38Ktjp4Wqe+9pg0iGiIyQmRBQxNVVxRu4mwzDQDQwd3EEDq6gqq4GkUQUrH+ARi2Mt1qKtMaImXnMw+3NjboRMIATYFTKutzmXNa5rEspRVqRpmYB659JFYtsBtlqkobfhhzIDDWcuOhubmSKnowSghgwY2InBwrShwOiNZWlrOfzcV3XtZRaSxAv5nkua4ku4xa5Sc2ijXO4LTGaFZiu60qIKtJqK6Xe3tzud/ub3e2Hdx/2u90PP3x8f/v+Zr8f8+ghvvqaxjAvfPOuQWR+hujd6hQ+U/B+ceX+2TC3W+m1ldP5eDjcPR4P8/m8LIsObm6EPE40jIMotAYiHpl30ly1mZG5RO85NRGJGvbg3svtICamkXBEZ3e33gNIo9fa+Xwyt5T3056HNKZhBB9bbUfg6OlISOFpVlOHKjKXNgMkpIF5HIb9zf4DRb8U4Odg5SsT0lkeERmN/FqFXrgNREzFkFrKGBSmaMLr7tpRZrfCIo0bwI0Z0JkgZ8o5Ajigiklc1albwhyPzBRr8QoKgIQMQCnj4CQChCUEmmnUDWPoFR/du7hugoLdLKMAuVEETlVTwkxDSgMRsaEDlyZMq6iZqmutxRKp2yCUXsJcxK0bL1y4EBeM+9ZUXvEBtn4Vby6tgOOXGA08uSrg4k990gXRaFpsXcrD/eHLp8+n0+l8OoHbx48fPv7wsX38EH0W85AjIebCkL10goQeDtn+3kq3vQKy/ovS9m2Y++TiBndQd1VbRE+iJ/PVfTVbRALmHub1YVkPyzqXtdYqquaoUdAHCaIuGCd29aYu1Vv1Wl3FVZ+8Z+7emjMbIjiqATYFbsQJgqcCSJxoAGJ2jn4MDoGKIsyHthHlI78kOrkDuaG6mq6mrtoSz0yPhPucHs2KQ3X4LeAPBMHsfKqkcT1EdFkaEjE5saETODKhMbB1F7C6qau6ihuAgflFvgEiMQUkBrKgMYkagBiTOaojKgBouLLMdPOnE5Lh1mANLvaYIhp6c6smRQipu79qba1VaWqqrg7eHRWB15oSY8BcYCd2QkqQkudEjJQQCN0IPVongbuJNwVB56QvYa7Zw+EBHHu53FJba7VJba3VKiK1rsvCiKBBL42IIGLiZClmLSqysTu7Y+93wWkYpnGcUh7cqVVRJkQXFdWOg2DLIYiqsdGuJkrbBvW31+WJPBAAROTE7OHlijpLBO6K7i7uYmgAGm1AECJHmkCkYo1NbG6iWUVqq9JakyYiYX6/WCrLcmwkpZ2JYLebwEMImqGDiaq2oiIuAqJOROaQcgZCTaRmiZ0Y0NUVVUCatwKtulRvDUzB0YAU2aOPEiVnpmHAKIhBRCrNVMzRNJkiWGKYgFl5VUrGDbICSPNmralEGrgBOWbjrLW0WsqynO/vP5e6Phw+7cZhmobd/ma3fzft34/TzTjeDnlEvGQl/6njigDmgMCJ9+P4Q3TjzGkgvHUbRfB8UvC51lYWLQuURZfFWvOeSQFkirKicTgsHDnyTyywWUrUBhwyem9hAsy42yMjSgNtwIgpUU5pmtI0JgBotbVqIhb1AJuUUt2JB3RMwAmIYRj59v273/7uLz/+5ofd7c3+5na3/5DyAKhbxvevmBP387I2hPMyH8/n8zzP83JeF3dnzinn29ubd7fvp3GstZZS7x7uP9/ffb778vBwOB6P53k2E7fo3kQpcc55yDnlxBR8mHA7oYhEp0OOOp68ZYYDJmYiNLdejF4ktxZogKOvhKG7I0Fi9gFQsPdzihrUAqDWUgoKgLgWbYsUcYv0zAiPlLoe5/NpPp/m+bTM87qsrZVaxXRclheU/4vtGrVkoqI4OLiBuJm5ktVmTBETcd7KECbWaJWTOISCE1qt6+F0OhweSllamN8ionI+nx7u74+Hw3w6l3mV0lQic8KJ0Jmcej9Iba0gEuI0jLbfJaZ3N7e//c1vf/jh426/IyKRtqyzNOHoQh58BOqodbOxwX0LFF+caxfvmfcSEHZhan9z4LP/+uWv8JurSinrfD4dj8dlXrsHXpsoMnUHv0irNTC+u7E7qWATU3VwZErjkBJBSnmapjFPAOxG7qTC62IIptbUWoS5PZopRD5XIqLODwYlVdEw7IGZhiEDJ+dknAjJReq8Hg+PX4bhdppu97vbabLEu8Tj8yjR24MJU0JwBghuGIY3O3gHDpGR4Bad7bv7isxM1aWpO6TExBwJIUwp55QzUgIgc1AkQwj0wRTtURg7wzWioIzIZOqiYgatWm1aWxWpKs1MHEKNB7qVWtAU+hLpTN/UL3WzUSLTxkDEkCgRJc487Ucny2Vdy9paA2/S0F10evdKqsBWzyBw7lU3Bn+KMjm8mTvQe3O8AJJXOQK4fejZGvUtbNRPguAGIlrXdjqe7788/PTjp+Pj4XR8NJPj4eHwcH/8zQ/L/Be1/Ga33w/jmMchKFpR8OxSZO3pUp+D2aucPbh+92tr5Wtd0LbPoLuJeRE7Vbmr8mB2Mp/NziInkWMpp2Wd53leS1uLtOaOBujIhuSA0X2UGb05aIO2eq1Wq5l1sAKdQ4YiXkp0lXcxp0Yc7qkURfIpZc/JiBRJMTgBvblH+EtdIDAObY+UydndxcxdlUV1FmbEgXDI6dGhAgmiM2eHHWACeDto0potJkRE7ImNOSVKjGQEnCKbxcxFAr27xs4H9LBSIAhZTGRg6uYgZi5iRuTIhigOZO7apDSp5t6rOKNFj2xTN3VASMSJGbS5mLC0Vcq5AGCpIbkC5qkjQFRTUQNwFRWxVqV3N2XAZJgsE4+YEZ0oRyMFBGMKBOzBmlQDd8/Dyz4IQVoAgFJaWWvtilJabbWUKDbUC0KCAURMkTkl5axmZh4QNYpeufUaWzkP47ibpinn7A6lNCQg8ig6bq59xSBvNLceDIJeLte2MrhwaXkX7mFEZB6iWi0YqiqCgKMZIKq7ADyxM8F780i17t5oknthZ5XWamstOjC8mJbz8uA2r6Uh+TRNbgSGbqquAqyqpUpZJWUbxFJOyBjxDjFmFUYjNO9lFlEqRPEsaRBswggiR5VcZCeAlGgcaRxyTokCwEo1I+jt8FKmfUqDcZaU3QqTMDUTKK5NtPMkyTgrD8EYWNf1XOpyOHwmpiHjkPndh998/M3vPv7wu3fvf9u3ZSzrC83pKyLm9bjqwILgiMA53TDlzMM07vfTB6Ybd25VH+4WgPta4Xyy89FaVWlq5pSRiRDIFFrxqJKDiBE5NMPaXASYsGbMGaNMGDgk5v0N5wyteKvABJkpZ57GtBuzqklrvag8uKOL1rU1SEg5iHucMo/T+O7j+7/4/T/67V/+bhh3eZym3cc8ZAAF0E34/HKOxXldV9eHw+HL/d3h8XFe1nldzD22ybt37z98OO92u+DF3j88fL67+/zly/F4WpZlXdcgfUWZLSYKDtSQc/QpCKIhItValmUpdSWmKOU5DMMwDMS9eUptrUgVUWrMHHGpIQ+JkaPIJhFiTsjEzNp7kYGpg6kjSoT7ERSsaFtaEVMmpoC54Kd1/nK4+/JwfzwFuWlZallLEdW/LjfvIF9PCxGlKPmdUk4p2MnonVQjAI4CYeWjY+/nRESUohI1Uw7RTE5kZV3vj8e7h7ta12CI1FLqup6Px4e7L4eHh/PjscyLBDc32rYmNDCMog1kKlLdCVD2DczHnD98eP9Xf/X7D+8+7HYTogfBgimNwzgNI6YheFGR++bg7tTjQ4b+lBDU8W7383SS6QZ1/oTxtMpCWIm0Wtbz+Xw8npalRIUiVSE1NwQAc69V1tKkCRIQJnBURWm9PjRRSjzQlDMPeRhzyoGDVUHFa7FopljbmjJOU8qZETEPCdFTJu51z5sKNGkqkdLCTDnnNE4wjODYezSs6/nxeJfz/mb/7vbmHSHRRMCpF4V8tl1eDmZMCRAYMV/kv5lzwFw3jfVnYN4DOm5kZiLWRIM3NlBvycQUxhUx91QOQCByClqy8xPuilh31CsiUpGm2qrWqrXputZai2i1yNqJZk5uoqBiuGroOSbmqP4eddkvPANEdRNrJJYHyMQp847HPFJeEFHBG4CKrKr4ugua9xa/lznDKMeNG0b1Z7F/v8q8fxVIuDi8N4zb2cyXNH3fjru4coO3DuRu0mRdy+nxfPfl/ucffz483B0fDyL14WZ3e3tzOvy2lqJN3n14f3N7u7vZ5TyknDglQgbevjuSbK68xrHknwgXGwQP3+9Vv/Rn480UtCcXt4ObN9G1tdNaH9b6s+jR/WR2VjubzrWtpYUPMfikERx2h23vGoFbT0iMCM5WujkigIBBVo6+uYYSRCxAAQQk9mGA0REyJurZ5t1L6mQBvaI3QjczumlsZoQESJH8oGbu4qBqEO22zBt1l8GU7Z35+w3b8+uq5apWpBFxSgAJ0d1yJ5VQVAaJTrpgUQI8guARqaJLX7qtgp1BIDFRIgbUCFyYgveaYwDul7ghODhEYTIEcA7JSabGpCraqLljuFC3MpaOTAQEjJ0u7+YuphbhekpIYExmgE4etec9igS6AhoRRAM6cFNBNaCXVHcw89Pp5MHoaHYpE9YD01FeW8WiwSL1hRWdDqUJYWNyIt5YcVGQkLn3+h1S4siEg15sQCyS23AzkOBqRbn3Loc92GHQvb6R83xJKAvqXFyQhzwziyt0jkLFnC7t5dVUa+8opirY6+924Otm/kr+lnoWf2zNOyBwdyfvuX2AvTWyqoKIA3mi1MvoIiMCuZKDeU+2dY+K6x7RQwCIXpNkRsmRIGUaJ97t0jAm5gRg0qCsrmpghmCWHBgRyJRcyZ2DgOhA5mAKAg5gSMKlYSp5nvM4RqKSmrprSpAS/HD+XTMBYkrDON0M487p19XNej6uxFCnyHnsTVcwdyW3bJpdk1lyY7fkSlFR28yQPaVgblAkaF3kMwLGDhR1KV6KE6AwZMY8YM6UMhFjzpgz1OypeuRLJ4Y8QBocmvcQInbSkbqjehNIymbsCJQ4RW2UaRx3+2m6GcbbYXw/5D3TgJh+bUqe++P5jJXvDocv9/eHx8d5WZZ1FTUHJKLj6Xw8nafdFML0eDw9PB7O87nUVUS2YlSIAOG0EtDo3casQsLRChyp1hKtB5GRE+ch66SunofEKWFEmcSkNRBBwiS5k33S1qfk0n2ML6ESiyB852iCN5Wlrnw+qmtOKVHkAQCgH8+nL4e7T3efj6fTcT7Py7yWWmoVtb9KA9BLmJtzTqml8DwT4RbS7Q0AIKpq9/4ooXKRnMlZLTElhUQYDRHX+XT3+Pj54b6WJUp4t7WUZZ1Px8fHx/l8KsvSaok6wd0y1kuxbUeHyICrALWstSy1FjcBcFFZlrmVGmHDnLLf3HJicqYeNd64K52/8GQOdmYkbuvAL3HIblr/0njyA1+95qqyrst8Pjw83N/d3d3d3Z9Oc6tmCgJqLhRhXweRwDcMDuYgDQBcNRoqRVHYIfGYUk48EGVwxkQIsNQyz2Vd11KW2pZpl4go5USUhoxIwNHMRkWlSJXWqkT9V0MzJhqnabi5yWqlyGKqrdV5Pg7D3ePx3X6/j2ljIqKMkOBVeZ8XWwgAIl8y8jSYOVrbMLNab+oLIRYEBKw7fJqqGA+cEkX5cwDfutwGcVcAkDq4i7obsLlPwlKJPtCmZlESvlZpLarf9HxHc+1ALBqnqZuKiSJiCnNyyGrO0VRi45WHnjUL34syKyZIiVLO7lkkq6ZACbplkbwYZk/shB432MrrQe+S/eTqxc0o96sgQ2hY3KKm3uf50u+tN/e7PIJOx0CHrbppLe34eH48nO7uHh7uD4+H4/k0l2VVreTmqplpmsYhpd4PrNVhGodxyuMwjEPCDIjgaN1Kice4XXUnsT9jv2PvwA2v46vw1YJiuBEX3NWkaVnr6Tzfn+bPqo/mJ/cZsCLUKMIJZEhADFHy2DTSEN3UyX0gdzJGGoeoEeTmpup9BtEQHbr1G340MEcQVAVwMHEztcEtO2Rn9o5fnU3Jw9D3qKMU6QOuTQV6hLHvBIw6+2juiAbkZFX0XPUx62PTY+IzI2CwVl/vJ3MR5YTM7oDWe1ujgffA+5Pf/hKCgM72BoSos2IenHT1Hught4TMSByFzJmIUuZOxEDshf/NN2PF3EDVHfz/z9ifbbmRJNmioEyqZgDcGRGZWees7nXuQ/dH9P//xn3pdbpvVWVGRgR9AmCmqjL0g6iBDJJZXUjPGEiGO2CmpiqyZQ8M6SAQjscSIMYAhCmsnq3hfFozwNSDCIhYmKSAVChMFUoJ4bzZboEe4CS4nCq6jBHZx694/vaaROzbBjhrCwxgOsBiJGGZJlxZ5h7wFiK6e2+7qRIxIY+hqg1CAbI1FyJnDpFpIJvibjeFcGLkSNHZI8k+PG09A2bmHU7mLkD60rmq9dER0SNKSb8Lzno7Pd6SnC1S1+W81CXjs8x8jD5GHw8O91T4sIeUSCbD+OZcChgebajubeybghMFIwaiIqtUXywS0KGZkQ4wPJlHRwdHMGXxRRiI9Nj9EYBgCuFRBGSB9cTni5wvUhcmJDcwFe11DHcN98G0C31AtISgzYbN+GR1n9lQ5j5UsW0GHgTuum1XB/cwgLwXGEBlPa+n59Pp0/jU3S1TXR5N9Rei7X81dsUJckGSRruNZrqPcR/jtm9vt/vn2+3z28uvry//ePn8+f7eXIm5LNXtrAHTIpcYSQAPr9zMi0bIgCKIyMiyMA1r0CGWlWJlBJYVSgkpwSXKEmEOrgQQBBbuECRWV0BFdfAgIs+prKn1HiIMgUQ4Rvv4+FzXiiTr6ZdSLrX8VOsvwmdC+RMr41+8IuD17Q2EPq7Xbd9b762P1vrQrOf9dru/vryKFCJCot777XaLcBEmQl8EYSafwNxKj5mnqs2nCRBw6Gi9jzFgABD2PkbXtvdlqXVdai1uDgbo6BEGBg5C7CSAgZzeoojZiRN9FdMVnLz/pQbAfd887Hq/zvhFKSKChMh43+6f317ebu/3bdv7PnR4HEDXd1eImUudMmxKznWEuccBsB3b+URJjgaa0gBZ3Tyih5nuqvvt9vbHy+fPr6/7fgsbGf9gffTtvu131e6e/N9Hcw6ZqQzHY5ZN6Rh2v3+8vVEpUkuJ8NN6YRbhstR1WdbL+YmY67qylAQ6HksgDjws3y4CAv2Ju/C4e9NaJb6dm+Xzhcey+RrafJw0ENH7/vb6+fff//4f//7v//Hv//n3//jVdEuzYFWPXQE9K4Qiy3ldIai11lrXMfbdkbwULpVLYXfUsAgK1xAUliIrE96u/XZt19tNtasps0CI0CkwCD0PxtEtvI8xRoO9pfIYeod9j9O51PLLp0/PQ++0vbW+QWDv7X57e3v7tRQMHxCGELU8iZxpQq3ww9pfTWFMSGu6wiMwIzMLC7kjgpkBgFsM16HTX9LdEn9iplIotWsR6o4RkNHNRLPbQTziG8y+8v/CI559jGG96xg2RfAswBSEQOCQPMVAh0hP6uGE6CIiAUhIhsxpWozE+FCO5lf40O6RGwASYi3F17X30dsI8+93GA9QO7gSc7U9qrlZpcLRHz4KR3gUfXCMxaYE7fCgxqOhPDDdr370scAhIqK33ppe329//Pby+z9f/vjtj4/3q1ssda3ChC5CRbiwaO8fb+/Zm63X83o+LafT6eny9PR0IkKi2dEaWKoL5gAEp2prarcwPfsAJppl+oPH57sy98tVAUCI9PoZ+75fr7fX9+vvam/uV8CN2YVzqguA8Chzc7QaDohgAAy+FofiRFQrYWbDOsFIDMIA/bjuB4UJMAJNcXQMzXiQhOoiI28ICYHByQIzHTqDZpKskMG2uSGU6W2f6tcMocmS2s27+n3o+5CP4lfzO1JBXH5Q5KapjhoAupTs7yDCzYNgmnAEHD17HJvRrOIjK8fkOEekg5offMggyDI1p4OMAJnae1Cy87NjIE7f8SxzYYZUZ7gCEBAk98phLgkApGOyH5BAgUNmX7EUoVqpMhVncZrNR5ijOzkSLGstxKaQZW7xM/zZ/Cci2t4mQJo63Dn38Uy/TPshn/jrIWw19/DR24CWYJCZ6RgRioAAiqCIGYYwY43HAFNzGwjOBMD4AG3z0TLP8ExPEIpZEEv2xumFoGq9daA8xxyRITh82hDHRHpnmXs6nZMWMUZ3t9Yis6kBolbISjdranc31G+qOg91b2ptb9v93o6Nl4qACEj1GkCM7jDJeO5mqQdMThLOkBEUkRCBQ5FJCKmtnEJZZqwV1xOfL+V8yTkHmYYOHk16szFMbWBsCIEhntnKrmbDLPNWIgUQ7q5jOKRrnva+11tNYAMxiJ0FgXg5PZ0uPz8930ayjmjud3++Av+NkWsEgEGo2abj2tvbvr1u988fH3+8vv729vb7++vr+9vb9f3jfttCSagsywCETF0hQUKYjM2ZLzI3YtWURQdCoLsN0O5uEI6MUgojuFQnCkk5xwBLxjOEhTkAiZcFgAAU1RPUQDfXAURm1QGIiMbYPz5eylJP51+Iyyxzyy9E8tUU8L+8BhCvb+/OcN8yNTAzsEf67/QxMq8AAEoppRRAzKGHyKTeMhETI0SCR9rHGEP7SNPBdFJIhc0ws5SUQwBiky5F1nW9mINDQIQBOqYEBg2M1MkysZiZ8DgDMQ1q864jllJqTSve2Lb7tt3cHcBLkVqWWoSFSXhv7f3j7f360XrrY+ic8AA/8ka/erFIqVXK4ElYgLT3RXKgmLb12cKnzBgn8B6YbpeZXdHbftu368fH588vL3+8vO7bh/amo4EbmPvo+3ZP64ip0ZvIH0RQRKTHJBG6R5gO8/v9elTA0XtblpNwKWV5fv70/PzJI5bTejEtM+vMkwEFc1AM87mebfgkW8BhYfiFuXDocL95PVCrrx6weDQ4eWy2tr++/PH3v//7f/z7//Uf//4f//jPX0ul80mIqGuMMabzD7M8ybo8C4vbdbvb3nqmzZzO9YmKsFiWgwYgCE6yYik1Qszfb7f+/rY5KICvK0IU5hUAiFJ7vad9ZG/em+8thSHYexDF8yi1/PTp+d/auHqAGQwb2vc7wtsbIg4EE6IiEgEIBUWmoOpHm4rqSEuuyHFbeFrnihAzo88izmd9ag9fHWZMg0RhYiFMqZh7Wv0gMlMhosgBLQYSIsTU5aml3CNHcqY61FRtqAMyIAPlFx3EN4OwZE2P4dYdkeZNzvC4SOlOhp9ML//j6M8QFky2PCKUUgAgAm1Emjx8u6s4qAEkBnTEeOIsZA8y65+/0jr3AErnZcOjh84S9uuC5Ou/fvm2AAjg7q31j/f75z9e/vM///n3//jnx9t7u+9usdRlXS6lEIIjuDDZ0NvHe+/77Xar63q6XE6Xy7MqMZd1IRb3ME+XgpgCWgTk9MaZia5Ix6h26m1D7b9T5h6FbjIg3dvQbW8f9+3jdvu4Xq9qN4gdsbOECACAKaiCKqqCKphDWrHmdTJF0zD19G0lBpiAv6nqUDd11Qx0CEQgBneimPBVSJa2EQ46HCDcyJyFIQIn4SkOK4aAiDALNaLhrDrUKUl8dBTvSF/I3h4Zcg3gcKS7/gBhmI7bGoCkioM5ZztEBIT0EDbmlZ4Cyy/AfqB5arfNbMbJHFbrAJh/m/U4iYjgfI+Q+x8gAlbJWO3ZYQLmJCI9N3PKQJNHF2E+XRncjqwuBKYEwyaFwSEMc/rtxjCHxzAgBpoHoE2jrrx0jPRNmYsA6RGRlP8iZVmWZVkiIovOFI2ZWzbQY+gYPVwxZ/KJdKAROrNHpApPI7rZPgYSGoAg8tdUPKZMjvKDq6953dMlLVddynFKKe5mNiZSg0iEUrhUQWAIdnMzZiUzfCAp6bEwwXRkfHSp6fGbNAxHy/zGHxHpVK2npMeGxWB0QEfKISsEAJEnSJHklOQSJ0ciAjNZJ28RIRATp12U03zb2cbAfIvhqMN7y38BHdG22DfoLfpwHZYUGYi02Znsi7TvjVlYB2S9ODQnbqq97ZJyLhYUYanS9nG73t/fPj79dNu2vfcuWELiEAnEo97913VuuI8I1bGNce3t2va3/f623V/vtz9u9z+uHy/vby8fH6/X99vt477dmqqrprk6LDW9xQEQ3MJHmCUyE5k9iJhlLowdRoPRQAeGU840pQBLALqpK3havozuo7uriXBhJsQUfyLPkXgml9oBW7sxkRSppdQipUgVWYRPIifihakeo87//2yOiHh7f1OE3ntrbfRhapHPyjBrmo7Xbp6LmSSHsUTM6WkrQsKMgBkS5+6gY0bduR3OFTHnSkSQmQThmqzaQEbOBiEHRfPmm48j9fNheDXRIZ9svmQxOKEbKXhvKRNXNXW3WsuyLLWWLHPHGNf77b5tKdy01G0+IKHvr9QxHkt81SI4d/njwiImlpOhEPMc/1IamJtDD3cb2lvft3273q4fvW2jbeCJWqv2pjpi4so07YXn+vV5uhNgIBKEherY9zszSamI9Pz809PleVnPdVnO58vpcil1AeKEXMyP0dIcuuUpcoyBHwjI1+O/HP3+F4/PxNCP358D8TwiPNxb219eP//97//xz3/++v72vm0NomgRZhg9WvMIJyKXsBUhmLAIL0VMFYduqjEaNsnaTN1MmNbF1xVKVYBgxlK4LrKsNYABvdaVaAmvOkZrOrQBtsDmbjo8kwXN3Zxa66pwPrd91zHQlVL6psNb66YqDEjGJBhsGpdzv1x8XT5JqSI19/lvXmbp8vugR4b7VIAg0mO7HjpG7+aWwDrLbGEiwtxQwY6ATB1uFkRiCIhopub5wYkJNdUhOo93P9oSNVcLTYNeDFXvCgFCDIgFwd3UTc0HZr0bkLn0j9pbVQFIkz34hVmb/tZTY8rMCa66H2YYc4L5zRoJPyY5c34QeBS6fy5e83iHODzjZ5n7YNQcBVNMYGV+UzyKmiO77SiFc1vetvb69v7b7y+//vP3f/z62/16dzP08JDsywun7yEKIgVoH2Povrc+tA8F4vV0Ol0uLOAOdtR1PrknQDEDpYkxgNADZjhyErHB7AcP0L8O+w2NUPO99+u2vd3ub7fb9Xbd3DuiEQVzqEDWNENDFU3JDOfAHRDA0r1SNXQ4ixN5IKa/zL5ra9q7zUQAmOwOJCD2zBOXBQmRGZgBJ9ZgyiRDhJN8yRAZ9YjuMFeeQgJ7KE4CUrAWKgVTgZz5QgGOwcl9nIPy1FsQITxWxZdXorkZ+uOYzyMTMwETAgUdm05MQxz38EBEd2YGM9Ouc0zsmDGPHjAnrEm7DCLkIiRciMDcs/VM3+MiklGIU2E1/X3cIS0LgpCRiRwJA2Ylbx6AwQExpx50JJ7awJ74M4WBG2XOgUW0GC3MIjiQggiCklP63ROFiOuy0FHmLsv6/Px0uTwBoKqlP/YYY+joo/fRCZqbKWpqKlOhAuFqMRsrNERwj9EDQs366gtCjQgE5/SlzGywaQieh1IAEDExUwZGlFLXZSml9N7MR4QjYSlFCp/WdT2tCByOpnk2jwB1026jjNH7qDIIM7tyErEep4qZtRZp+5BnJMW36P/o3sB0+KS5MYh4ImI5eTj4vDn9wYjMTA+bm2w2D2DmkVpywVrJjSIIfN5ayCmBYe+BoaNrdrmmcb/ZdreJ5h6O/mn1jUlFtjzw0umdIwLCPI5zwYdqk5LEdaq1MDFhccP7fby93X56v93u2/PeCi9rPeCkSc8C+J7YfhzQHmbeVe/b7fePj1+v77/ePj5fP15u15f77fPt9nm7X/ftvm/bdmv3W+/NIBiAAJzQSSDJxGbQ92jNege1MHfikAos4Aam0Dvs99jugJAHM65nXC9eVw/wffcxYt+j7dEbjBbhuFRfFi+F0owDjrmyagzN/TD5M8JYa11P69Onp58/Pf1yXn+S8sS0IspB4PhvvSLi7e19QB5Ylv5x6QdPgeQA6tDNVVUjukkRrgJ1xpQIpCXKF0Zd1jz26PfzQ6QfCeR4zcHMzCDAzXVo21vY5AABxAS9EMHCRjIMw90TfYQp8QzMvYYpTMIUEMYYMwLGNcKXpS7rUpfCwshsNi2BdSpkHY5qLjDgz/TLgNwdJxN3Jr7HVDTgnMKmJUpuCJgD5uzGwcEZDNU7KYOgg3Xbt3G/7tut7Vu4ZeZFuGXAJiFm6ROa27GnaGy65VPy6TDC+xi07+V2Eymn02U9nf76t7/99a//9pe//O3Tp5+XZeVSA9kCwydfDfKBSIX6fOxnXkfEUR3AF74h/gDghsf+M6/bY2aYVW7OXN32fXt5+fz3v//nH3/8vt23bJvD0QB0wOgREUQBqVIduaOup1UiijmpoSls92h7196076Xw8ycnwroO98HMyyqffjpLyeGgn9ezyMm13K772+ttbzeWQTKQAoEico91D+/dTPtS17fXj/dfrgGtN9XhvY19a9SBCRAdg0fz+7V/et4+ferPT+18eT5fnr9qjL68zM1BPfEUzVFHEDIEQAn36fXc9n3bt3AvVUqR1CwzY4SP0c3QPAOup9k6oTNHBPa+994CvJbCwm4++txUp+zSHSLMQx3U0ZwUdIZERGGutXJhNO2jtRHNtducyaClafYx3+zdjmRWngMWn1brD6llsu0RMbVQqur+LXIZk2kGM7j3yxMDcwUek3O0OKqLB7L7AHKPXfvA7w4CLxx/xYe72AHmQZbv27a/vLz/9tvn335/+efvn/etEQAj9SF96Hktl1ORtRaWpZQi3HRsrem+p60f13p5fj63URwdcEKZs9zO+gop0B05KGkqU0Idc1f5EZj7YzR3Mufcm+q99et9e73f3+7323bfwweREwUxEEeAD/WhZkqm4ZajayRGyu/leTL59PUGcncd1rptu7XdshzMSoowmCEEI5wYaqLTGEgQPhejEqoGc0D6QGfDnFcjErWG3sEskALY64IRlGJcgbQaCQACYADJQTChIEqG/P1wn4lMMkQHNcNBEgSR83NBIIiEdDMU9kAsAgCZY47RhumwCISgBKEhY2d9KpUIwIlgIeFCCOHqc8YYRFREpArN3HkfQ3t0Sye2sBlTg5TkhQBMoDo8cshIlHT7DFC2CDcj7LkuJi02gBy8O+zmFs7Igs6IgsGTAPjndYK4lErTz4fP6/p8efrp558RydRUrY8xRt9b3/aNNnK1TpQ2RqUKEyWUTuqHUNITgR7DzEb4IDTmfI6c0AkznihBJcsJQEAwSVbO6SxUqyxLERGzkV6EACDMtZb1tF7OZwB2Ax3mrqbdvbuBmY0xRu+Nu7AwcXpMzBHNXAaRU85HmVupfrNgTEEd3QkxFe+RPJdURpqDO+XxfRzm6AY2fHTVYalzJkqafxCHCFhBJwKncE6nPkxb7QDrtg3dNxd2IXCD/e5tj9FjOgYYmHkqPikzJdwDoMiMFAi3CMi+SnWABlGMAaWUWoQRYUHG6kZt14+P7Xrdrtdte96WstpqGf43kaZ/DWLGBNqa6u2+/fH68v/5/Nv/fnv97e3194/3l9vt9X577W23oTqs7942U0WiwlyZkcWZMBzDQlvs97hffW+gGmrOBcqKkxVpMXq0DfoGUnBdaVl5PcV68lK9tegttnvcrnG/RWsxeoTD6RSnU5xWrhVqSVIKBaCZj44AxERFCLwgFuG6LpfL+efL+Zd1+VTkQrwSPfZS/PPn/hfXJOD946O5Zo0aDukmjxMPDFD3Yd41yJ0opjF4sEyZKxExGx5IZNKO8rTPZMMDhiUAgkBAy909LVC0G0b34UlLyAPD3RHB1a2n3JMiEvjBYzyeNqrMwmFiyhG+7/u+74l0AfiyLutYl15RCIk8fLqwJHyVNpABAODl2wF97rRZRVk4RqK5j8ndVODncUyIQih8VLqI4OFOGlQZBYGTVT3aaFvb7tv95m7g028yBwOImCm4GTByTHLnmk2GLgR6eKi1Rtv9zlx+/nmwlKfn5+dPP/3081+enj4BEgBZgAcgOB4ij0PQdohHIAymR0ukB83Xq+aH8Pb312hWusfR75Ycx7e3l3/+89eXl9fWWpa5bgAOpjAGQCQNDHWADlcOxFLLYkp7MwSdGc9hbWtt35aFpPDpVMy6eweUuuDzp7VUTA6c0MJUdeD9qi+f7/ftoyxel5CCGRgWkWi76xjb3d6X5ePj4/39g1mHDh3Wm25bQzIiBzTV2G79+rHd72Nv1rtaDJYsd74rc1UDk3+VLr/hDsz8gJzS+Kf1fd/vEQ64iGB6HiFihKs6ABxlrutI0oITRQRs27ZtdwBfllpKMYvRcyZpo6u7JdDpgRpoTsOxGzkQERPXymWpda08+o7OrkiUhEcLD8cwCzPHoR5gSclEAeA47ipMm0uHcIDIKSUzj67ae0q3v18bEQowSbVZzxx+uJNT+WDKwGPOMLt4iKkY+fMSPKTcxy8jfr2vJboRieb6tvX394/PL69/vLz98fLW2xDiIty7tN7HqAynUxEEFOYqMnRoH/sYSeys62nfW28DgOc8KZEmSlJlfA2o5Oh90o2Ocvh77yP4YZnr4R7adW/94769XG+fb7eXbXsfbbNhqXzHtMqSCEBzVMv0BwY/qJoQIihMywKlIhdEAgefWd6zqAUi8NyeEczAFJSRDNjC0BUMAIImKYsIMEkPAWO46VCLCCI2IiM2pkDKG4ZpN4RMNMdbkV9MSVohpiJURVbhlbAyVspKF36QN1hLebo8BaLnBomQGFxoqOlDSNCnq9cscyPQLSw57ubJjAh/6PxTFxaADoZAEQYwIAYYgHbrY0R6IRBEDXBgYXjQ04gwqWNpW2Guqo8ef+7RBMhBFCK4rLIsNevIiMgpOVi4h3nwhHuleFE2ihCsgvVL3NaPhmnJi4fZFdnQ0dsupSBSKRzgEcyKkMWmz6qRmYowC8/4eDB3zAbX3OL4ae40OiJ4AiBJdIHwXPuRVHpwAI0J/HjOLiN06G5O23673T5a24lRhJiWpS6XyxMEmcXomvFMyRON0IjooyPcRYoQR0AyE/IIJaIiLEUAYozeB4d7fEvNhVqeHMzLWEpz6xF7RHMfcxKoGBamoN11mI3c8HB6+MfhET0ZDsmfcCTnzP6jpSynsqxE7KAe2vrW9puOvQgsJcsaFg4oiEjMbgpmqWI0QI0IJ4KATOgQKW5oFu7ZlgJActgxuwkEZKzCZ+Ez4Qoh+6Zvr+/r8krIVcq6nh7+3jlU/tHU9UGesgA1bb3dtvv79ePl7fX39/eXtt/3fdehruYjVMEdw9EcTIMIRIIYzEEVRgfLPOk0Ok4lU4Q7hoEbhmHy+IWxFKhLlBoiSITgMQb0Bq1ljQumCIBmZMqjT0krZMloFEGIyISllGUpzIs79e46KPxE+ET8LPLMfALkKUn+dvf48RQ6IPb7tqcl0GNu7aBj6D6sD+vqQ20Ygjmiq5GbqpIwC0sRG2pd04sAALQnHjzlvxGp3iZmYRJCHmP0TgioNv2SJ7k88HDkg8eMEwkjQvsAyPSuQJgkBmCyCZ94BId7b61tm6pFmtgxu5qxhRsAWiSFKQcLE8QKc4jw6t8cQR4znFfNzRxTW+SRhz0GeJJnA7KGc2ajQ/OD6DbM2mj7tvWkgURgbuwekImBMGEGIIjZOQMwEZQSITMWjzgCzA4ZxbxBmMZDrbXr9fb55eV0+s2c1Ol56yKVuQoX4SIkCBPQTU0RIqTVijEbhWlmU0xrHXtYff/XtIXHysJjuUAEmGoyX7bW9t6bmaarOASZJksQMTh1GYjigWM4kYGDG/QevVlrzky1VsIwDiUnBHpUhD5IW8RANCmAzIjoiqP3vrf7/d5aV/W6kAjVjONjLIVOQaM7xD7G7j7u2/X97TMXD2iq+7bv230H9CzH3NAKpK34fds/Pt4/7q8ft3cEytTJr1/bdre4m9pQNfWs5EopTOR5UGIwgxSslc0CwMZogMlRdBFGFMzRDXjGPveuEQOgucXe9rZvATG6ShH30BGqyT/MPhOJyAMzuMQczTCQkQpiIaqUeTFhbuxGbhSerjtJg7TW+jBLlRUgEVXmOrOPmMM1VeeepDqzMZQQk7Pg8YAXvtlXsvadxFMEmj4EB8Cb499I869km02QFvBQGX0F0R7ZJl9MyXKTmD97VpqQSGqYenqr6bCknAWl04WNDtobh84JMqEwJ1L3J4ORfLYh/Y+naiXn744xWToJD1ruffNNzlnIjyZqPyhzk/LY+na7v33c/vi4/nG9/bFtb6PvYWZZG0QQTcK0B3mAO5kSBKYMihCKwLLQusKyYqnkcEgcwQGAJpUYIDDFEe5gisaT7AuQ+rJgBuKkjTMxueEYoAP21vfW3YALSIFSfKkuyXFl5PSpZZg6Hob8PsiBwAHEXCavjlehlXBBLFME+92Fqsvy6fSTmmVxksYBHpPOFu7JPEjIYla56bqKnl7h6U/9OMxyiHCAMDDjcabHekRE38feursCBBH4EmBRSplumIHHjGtisz5REkgXSSRkwiMMIqTgupbzeYX0U3DX7qNPrl6EATALU0nUMRyi0CJYkykYqj/ce3NdJUEihYpMtK7rsiwiwsmLRohw1WGqeeakY40IH/pFdqekzMHhh4ZA7jpGuGnAPANyI8saNxBjmgp5EjQgDBGCsmgbHnG9fVyvb621Za2ICyEsdbmcLwBkGp07hIErhEaMiAEOvXdTEy4iBQFituyp26NlWdbTiZla21vbzW2/bqkTeryW+omlQIyIHr619taadutursPNMBRNYd91v/fRFALRkZHSEj9Vvkx5IyA5vRkKWESWun766ZdPP/+VWba237ft/e31fh33W1sqUlARIppSuSKQZaJ7MhVGKgET7qulllqFiyEEOPqU2eGD4pI4AJBQLXIpfBE+ISz7ri8vH0x/CMlaFwBcloVqhccW8yM4KvnzMG15ho7W2327f3xcXz8+3tLixxRDyRXCAoEJQJVMAzCUU7eH5qgabkiAzMdMmWbjGIHhFAGEIeylYKlQakgBFkDCDIcbI3qP1t2Nst0OFzfRgW6hlDzqKUhi5CJlqetpXUTYFfZNe0fTNeKJ8EnkmeUEQIEPah0ecOC/uBwAELDf9y1nyZaWLURApjZaG61b13TFyLMIh6IqdqIMNhQupXTpydfFTOxTn76GFgGQXLgqpZQqLJ3lEaXomNk87jlKcUA8lMuExMjMADBdHyCFpFCERQSDEAKDMY5Mp9b63jJdHIlcPezAY9PLYOofkwLsqmpDw90/fQtH+TERM1U1wyyKc4CbLv8USJkVD0yoFJw+GwSEoaOPvo++ZdiaKgQwpysWUHiYH8yOcAhnhCJf8hQniZk4IFORDpVFpBoxtdHe2nh//yj//M2cbtu43cenn+7r6bKul3U5LXVdSs0DmNJR8gsfgYRdyE21qfY8L8zngQE/ZPt/WUm5mmL+gscETkytt3bf93uqZvMUYKIIVA2ACENExmkiIBCk6ggj3ZDarvuu+2an0yJ8roXD0DWKGHMhSl+1PhTUu8MgiVqLFNlvvt22j/d+v9/H6BHBLOtSy0J5+iStXDXMY28dcOz7+9sblorI5j62+3a/7wBOFIjuDlZBze9bw5eXdf3954+Xn99ekIp+5xG73e9d31VdVc2njxhAiEhxI5rRWktlgDJG5Gfw4AgDMMRVpGQ/4xAROobtezd1tTCz0Xvq9jp3Yj6YBuAWbql1SxIguucXRXAAIxSiBbECFAh2G6akA9wmrxRgejdZGPTEdwKRi2ApVAsziQi7ollY6mbMdOQ8x2csEtL3I9apWALI0hMBI2cyyU04mOFwzE8nZSEOvPcLETeO0hcCjyo34ODnToT3yz9CPtoJ5USaUKf4PiUB6gphbUewEdohrFZZlprwzqErPXJvI5KkwSIHzXiaIh9UkSx1E4+B4+nCHzJO4QdlbkAbG+3ldn99+/j9/eO36/Xz/f6277cxupm7gim4I1JkmXsI6TEVz48sF0RgDsrgSYrwqfYHdGYQBhNIcOs4/ZJfi+mkDxGBToSSQhciQRQRBYAOicbtu6m6KBRFd0inIQBIii0XEAmpIBnUmVtD+JS5ZmDDF/g2Nw6DH81HaqlP6/NQ5dFQu0VYOsCqjXlEWxxBX9OgBg6YM5ymWnESMcMD4SAJP5iNHqauzXuou7d99JZ7VhBlu0thyIWlcG77SaWhB8vEHAKSU5oZ78m2QQpk4EKlMhEGgFk6XYZDAEVQQDYABBQZlIxMyIQBhOZO0+78u2fqC2XeXPd9C1fVbnYqtapq76P3vfe9jzasm2uEeZCZpgYg4gAyjumbuxNgEGekggEmmoJZibNgqkHx2OsPhpoH51DQjDzC1Lbtum3X3juSiaBn9uKcr08jWyYSkVqq+xLmuTUQkwinjB3AKZ3nhZdlPZ/OUjidfd2s39s3Ze7l/DOsn8JbxF1VINroH2HhmR2iGAamqB16i77nZBGZoRYmnJLKP2M6Kc1EqbSc5PJ8+vnnZ+bKV3aPuxRE9hy9Cs+MSg93MENziDJ9LiyynciRNYiUIkLMHoqGX+0zQBTMmPEBwlLr6bQ+L6dPvJzLckaQtvfr9X5/3rZ9r8siRcpBWPghbyHCPJr5Puw2xnvvH71d23bdt9u+3dp+z3MiHOOwb8h9OqPgIsA5kCD7oixRAFJXGmmzhgKAkaclARIGEZQKLCl6hpzeuuEcKuTAZw6lmZAhcrzgjxoXIA6JpQiXIpWJIB2uvSCcmC7MJ+aFSGKeLD7zFw/oY6Ii318UABumXd3U1CLPaSQz19a1j4lt29SSAwKYgSIzc1FmMdGjMyIiiimTdDUzNUA8mK8zROVRbuEhPcHMkkPI6SYxpUeYlCJS8g9lFKq5AuJBmmUAT6PwIPJkQaqaGQAihQ3VoURk+ZYiR3YAPm3DQTF0+m59v1ay1DuKvoN/6jmEh5RqRgQ4OCIRGOLDt0DVxtDetScgbmY2qcrH1zwhs1qJ/OCAxDjDaogA0XI+9VD5xFTkBLiOAYDX2xVI1GAYaFBTeHqOZxcPcWBPqeT0UsTpiIoI4OIkHI8yd7g9HGmOc+dfwP8Hb+T4/QBMFrCZ9tb3fU80N5PTaV4nt8huPVLayu6kw3bsgwJcw7jtfXRzC6KyLpfTWsPCuhJ3RHGHMRRgo9a7ah+dmOpCUgqRq/XW76o9wEVwWeR8XkslAEeKusi6VDO/38rpxBA+dLveYDEulQAPWm3YvnVAnz6p7kOvowfLy22/vd8+mOr3PlF9tL01Mxtq7iFSJIJZUth1PMXpMpa+VG6mx37OIjkJ5QlIWaha2u2NYUNn6DQAKDuRBaSoBs2yxUoMh+PLU0XwWKsWrq5k6D66juFZ6/ucjAQCmidQmk95ttYDUZjTmYwC80Oksj3MbNgwVxERKcT/Yqnk5jiXEh7lKP75Tyd2m3+PSDIFAszddxrQf2GPQ6Rzavq2Y7L+8ztQMjfC9GB0DE21/Xxy0wbYLGwYuqAxaCl8eTqfzieLQOaSti2lVhFhSpg91U9JTPT4spcC5BB41pnw5Tf+FZj7AzQ33t5+u7frx/X317d/fNz+2fa3tt9GH8m8SueuZEFk4Z2WhZFXM+9MhGmMkVxAcEe1Y3gTKBzLEomjKYHhITKf3QaEkym44gggguoIGOyY04EIPsjSBD7C1MAwlBAH5YlFAElKgOWERYKIMDKP0nKQQYxElhMus13tpnYlV8SOIBHfNo7Cheq5iEkpRUfT3rT7sLkEZxPjiJh5h7ldBsB0lDZPbMgPp4W8K9l9EGJgTFbU8Lb38BjaVWeNC4Gqjk3DgdXHsKyKYyr1uHCouXGiD5MEAgaAQRSZgJAPCQfDTCeCFKlQQRIINAULi66j24jA4AiKFH0JC8G3Tt0BYW5Is40O8L3d7pvxjWstzJKUsd7HfW977r86zGxo2xsRp+FwJClWtevQoQoRUInZIfDIe5gVGBMLH8NEd4/p8ntYeVIKayZsY9bbbtYjhimNjvf79f3tcz76ZmFqo7cxmtlg5vP5iRCZuIic1vPpdKqlpL7bTFXV3Zel1lJLKbUscImIeP3jRcefpmk///K39dPS2tu+/3G/7QjsitrRB4USKIURKFHUggxkCaeFxxgpjLFiwELZruXcPMCRkARIPKAPvau31q993AL3evJn5KeLfHqqVVh7jK46fGigYabtIKI7m8t0dDNI6+VwTY87wCAmQUEM5gxwL6WU5XS+PH369NPPp6dfynqR5cKlSq2lVCQyD5sMMfzCK/yuI4oYY7zouN23f9xvf3//+L+u11/v29sYG7gR4tRwIiASUEbLgFnEdH6Eh2lATMAi988gduTgErIAFwrDcLSBo8PomMY+qrFvMBQQYSgS07JSADG75+2ImX+U+35AugZ4eIhEKegh4equGJWpVDkty2U9PdXlIlIAHKbsAwFoFrt44CT56z/C6ApxIR5mM60e3BET7FQ7eKwRXz45eCYqQWCwZQOtqMdFPhCOcPfAad0DoWFDhWiM0UYbY6hpgD+MR5gZjwJ3BgKLMEt2zumnDwpZ943kyoIAhDBgwhEZFGWRopreBuGuw4hT0UcMyJhpNRAIBsVQw13o2wMIMUVlzJQC9y9WD5E844gZLgYAiClBnpZIiMQidQGMobtBdNW9t7QldrMJ+3wBwSYeDR5kROgz1A/T9dInzwoQj74HaXpY4JZkOKyn8/n55/MYpwDgGlwUGD2LhIPj5pOZCxAcIRGmo5l2n0q/yS08KvvvX49fQ8BD5DlpW5gIyeit7ff7dr3eb7cNgzEY6QvrOiAIIf0EelPiRsgEQihDHdDrUs7n06dPz6fTGq6j7+5hCvvme9siNo9QG2qjLgXAWdDDiUxq1BUcSISfPy2ffl5FQHWoDyLNkKS6wNNzNQsk77qTllIrM9Yiy1pHlhfXxIOZhfrQfR8OW1e93jaiwvZ//6Zcyd5tpqmmeh0pDjH6YRGmqmNoN9PENRO2J+KI6F2JDmn7yBM4UoQ7RjJsMt2XiAnSiBQhDx9I3rEUQSJBdoDuUxDnwzspUyMiAtM+elNt7prJP7meiTEt85Ac0ZMwqz5YSRkRzHW4dreR8ps5wsxdlr5st99stekLE7m8JzDrCBhzagwIX+I+H3u1J208phMZ5Eb4cNgFPHRQB2vzaJKJkQlNrfe+3dt23/et9TZMHWIS8BAQiZIB4BF96N77fW/n1km41pWEz5fz+enydLmclqWmFWHGwOag/Hg28KBKftkUIdyT9h4Q+AO+8vdlbgC8vv+T7uX947fXt79fb3+47e67q5omhQgdEi3P7CiHLHMBgQM8W85wi9HTXSvMQC3TrgkAmaFWcIXRYUKpk40x8eZwNMXUruUKJkEpaQWTMU6S4yBIQY2qmiKgUOG0jicUwVLwdCLhcIsw9KkyVilYCjGZzTJ3U7upfhAOxI7A7t+WucxSl7OFl1iqDd5vZtqTW+oxsbrhRCyFmEsO5QFBXc3UFV2zGHML86mdAiISZuI0NwlXCx8w0348IIgQmQLRNKvKIHaSGQWXqvxShJDM3NiH2ug6MioWABCIgR0sXE2HjuAgoi+FAgESEEK4Dx+WW0LXCAzykKhUhEthoR8B/2rKwCzEgmq+9/v9dk1CSzoVR5KQzIf6zAI+zm9AkMODVlWndk8VAZg4pAQm8DY5OkcYo3g4jmTrmqN52GGGRqpKKDHDHWz03W24qymOHtud3xB77wh0sEos3Jmp1FLzq9R1WZ+fnp6fn5dac4W1fb/dbvu+56S4zv8XBPzf/P/+5qr8/PPffvofP10/6utr6/srANlA6+CDQjGUwQmMOKQQgoRr5GjXUklh4IYicxnnIAzQiZEkSNyhdb1CYOu3Pq6Aez1ZWemnZ/n5Uy1M+3XsN2g4jUvKgqe1cGF3NpMpKNZQjdFj+ATUA4KYkCUZ88woZSm1Luv58vT808+/nJ//UtcnWS+ADISlLkQ8KegBU+T0Lwb07mOMl97f7/f/+Pj43x8f/3m9/fO+vY2+QVKFHWeGBiE46shRiYMjZQwRwDSNgUdBkFZQweJ1xeWMdZ39sg7sO7QdMx/bBqgG7IHTbFaWBYislrCBruxGCIwgkx7jbha9DVVfFkQkdzUfbgxQhKSW01LP63pZ1hMzZf5yjgFSjhEwRczHVO/HAF3K63wQergagHtMUxc7spQe3NAAQM/ZYEJeGJpm2tPb6Kv6CHNvAQPQMDFuSASqIyHi+Q5ZpFJdaynlSNfNVAcmEmL2NATtgzoCxFDPrdadYEb6ZYQy5jPr6BbgaiN6WMiwWmupJIIp8E0iDDA6edAEsL+5JphBhDQr3ZkNhZN6F9NVIqaPQWAAIVDymQADWYQROWgXixiqrfdt33vrbnnE4KG2STaom6bRuB9u8wBzChceMb0WAJJACATk5K6RSjKA09NPz+1gbHANroZ0wLJpJjYFIznqYAgGdxu7abfp9+0PqvMPn5+53T44lPN9TgYlhpsOfZS5t9t1IyyEJeGWo9CIrz6cBxgCMBfhklD2spTL5fT86elyOmvft9uttWFq26Yj3e1GT++s83mRQqdTjQhkKzU8EIlrpedP9aefVyTfd2stANXDHKBUeP5UezdVG6OVCoAiUmotacy4tzHGhoTrWkvlMfatbWPA7b4TvSPV/9tf/qfwn86gSe/K8Q1E2hTEJBO6h5kO1a42VEdWrDSpYZLyuDEUQpNRM0bSpGO6f6plI8Uw6Y+Y3biDDrPEJoCJS9J7zMG9925Jt+7mB2E0p7V+bGA+C0dCIhFhJEIyRLVp+zoIQTggJExdR7jCUeASQlDW8/9CLR8Rh/1h5KrLq5PKrIklAEY+WDNpNb+NZ7hs7jIQUx6JkwsQB9U8VdmIM6BBglHIVNs+tvu2bfu2tda6JbSZwxECAI7DJ6irtj723rc+TiLruq6n0/lyvjydny6X07LWZJPQwfs9uJUegTB9U93d5sQnWw7wfLr/mxK0ff8Apvv99XZ7u98/wnMpeA55Hjjx8ZjRpDcfkMU8kDDQQzWyhjXP8CEgxPQGiQDXmNpGCGYoJZYFJR86IncwDEQQwVqgFGJBYbBAYXShUmSpkbF7EDoh5B4swRzOAJE9D4aDKSXsFADE2QeYezffur4T/h4OBCeIBUFUt283X2CCBSkYXdggKAXHe9t3aOAdHMGRRbIAIkbkdLZNmCH1MoAMGEDpWIqYCAoRuYfrPMRygk+MOU+XwjLT6ZGOKeMUtXlk8yAiRMHkAWiaU4KEWYBt2iCOodwpBFgEAX0SBAIAgjwJ2XmyzkXvpmMgBZgHGXv5vs41V8BgpwD20D7att+H6gwmyT0YYIrWk0Xvk3cXkX6EFAE2jT7NXREx49PwgMCIuBSupWRajKlhIqymDuqQxDY/4C572BDlT5nTxghTbW2HrKXiCL6EQCxEVEpd6rIsy7qutdZs+XMzcTORwjwg0NT6xJEQ8Qf8llJKXRbeGDAs1C3cyL0gFKECwgAMwiZsNZPiw9Tdh0V3H8QgXyJgPBCRXShYkNiBuvm99QgH1S1iIx4rGzEsa0gxAkPSgAFTDRosITWkgBn8SVoL03pKDUHnekTktGYTkXVZl/V0Pn8q9UQkzKUuy3I6kRRmWdb1fL7UZeEZQH9wFg7y4Ncvs7Hd/tjb6/vrP15e/v3z77++/PHH28v7dru3TbXDtFAHBCdw6C1a89GC8UjlSSpN5DIJ1TALJCRO/G8qcmN6hM+NSB1MI0+sQCCCZcEMqWEE4KAgz6BYJ3gMyh9DNnNTN3Ed2nfcCGrh01q122itbR/36x/urfePspylrFJOzAvzSlRmwYT/svSHyWVGJmLh3CnyI0hyD8YYQ3XMxhDy3qQnIExr5XyKLT3j4LEsZx0Uw8011JQCIczTtMyRcN7lIstaaq1Si5QyOarTo4smmw8he9UAU6ew7LiQJMOWJ0ls0upiYhyGhkgHd+q4jQkVATAQMgH/IEJ8XhRCZmTJtcYiFEA+9ZkP6HZOYgMccrblqUw3s6Y2HmY3UqrUJdPCVWMe+YfcPGbnBD6VNbNvi+QaJNw1uwlLKAwgSNRNLdTSqN112GjaoFPCTdn20dSJCM0SHRzDKbGRmLlG+bFhsiL+dak7f8MzmdS72TDrrW2vby8vLy9vb2/3+9a7qjpPM7EZVIsTpJ7Vt9lQ7QBR87UstSzreVlPpVZmBkTw8DGs9e7R1Yam411YgIvY6Np7hyDmqCsSsQgkFR7JAA3JSALS0YIQT1yK7E23+956NhEagcRRKpuLGqtS+tOP0dU0B0U2wHwglvjlW5SOSIgr+PCYMEpD70NHt1b7HDdmIlPE3CYm8xOmqHH+88RJYpItkYiJDp3IhBE9FzkhqgSzI2JywWbzERBhCAaRy2wk2Xo2hEcHNZuOKQ7NQjNReczi3GPagDgb+KRvEgMSCotUDgwR4VKZOdMi/rREAh4aHQB0yAIsO5tcaNP1+kvM6kRskR5P6bRiyIp8nqDT7OT4Sgs/Fsr/ytSTFT/aGH2YKkRwTnlmi4AQyChFoAidL+fz5XJ+enp+frpcLufzeT2vp3U9X861Fnpk/4CZuaaA1cMspvQ+s1G/AAEZ+U6A2Hr//sn5vnSJYVtE+kU3HQ/u0CEDAsxJOiXhKb/7HF65eyBGUHJQATOzK3L+6ADpZoLWYTRvu7ct52tpBYDnC5Y610B4rkVYz3A647IQCzC7kWEk25cQS+mo5pZYiEPvJg4hIIym5BrgoB3GyLclSA6QnBcNaObUx2d3a/0GfkJfIUoft28vi3NoQQISYEY81VLPp1P7uH3Q/Uq4CWsRZaFSRQqnQ/uUC5sl8gSMBMQUEJjI5OT3EJm6DgUDlEALROQHH3AppQgeDXwa7uoYYww3FWfAyAeYiMyjkUbAnOpZuKGbm/roSjnHBCRkTVaxuuaqiQBwBCBGwpIh4GZqw3p0DKiIp28dLsFdAdwsk0F0JsJoT/VwHDpOzEoIcMJSSaNwDzfFLEkfNoROROZqPo5mgKTQutZ1WXMG2lsAutoYozs8jLpnF4eTrTu54Igo03GIATB7fIqsYPHYwiJFZvkCwNa7qpZs/IV1mhSGWUY6xhSswAyT/PplNobuY+yt31vfuqo6AawsZ8YzYyViwhIu4eLOh9m4eqjHiFAAMx99bL1vAcFcBFAKEGlEqBrEBpG7/yjiJBm7M8bwYbHvrfU2NDwIiAE1QCPCrKt2NZ/hzEgijMBmlk/H4bpXkpVxvuRW9BNTHSMN1IKZz+fz6XI5ny/n03o5n5Zl4YxDnIqGH5zSqu3j/fft/vLy+6+///br77/+9sevLy+/faSHmlkYhAGkX5gb9rvtN9ceVaIUYCYkIOJDGZJa7CAGZi5B7mAjf1D0YWOADhwDevPWtDdL9ESEw2ainFm4RZ47wATp4KZmYOHqUw+E7uAavRuG2xiIUITXZXl/+f3laQm/cS1c6nr59PT018vTX9fzL+uJmAoeJw1OCOUHr0TxULBiLVBYmDnTPiMCehu9td6HDtVhiJTVaD4uqjbGGGOABxBiUA7tAQ6iICCmlTgGoEPGf4UFRtIzUp62rLUsSynCIu6R/HX0IEq6NxKJgxpIkFOgO4lwrbXUwkiIlM67+KD/znIt31Ie5pynaeavQERmnhyCkz+9EGKWxoIiJIXqwnURB/Zgn0TZmD8DHn3JPA3dexo/t/3uriy8ns5Pn37O2gUAoYGbThnQRFshj1WEP1E+Mr0QUjqd4zbzSLEjIyEK81KKCBGBh7axXW/v+2h5B4RJiIWlcJUHfWAStcK//OSj4Jg8zPiBruirLRcg1HTf722/7e3W2v1+u37+/Pr588vvv/9xu21hkJ7CiBxTw56VvWfFCQhjjNYagKVx50plPcnT87KsDKBdo/Wtte1+33pvozdgECGUQsiITiim2Jrmgj2dxAqpGlEE6LZfEyXPJ02StOIcISIj8RQkVxukHkBSaAnxqIguwmbeW3d3YfaStCgF+AGgQFIZltAYNrampqZmCFiYhbgUqsIixAJS+AAVyTMkNb50x19RUDHpjrUWItZhh0+ZmTnijNcsThESgQDWR0NFAPCA5Dmkm1KecYnzBMDccIkRUfJoZ04qVuI+Nj3NzCIgQw2ZMQLBKdcSUylcqpTCpRYplZlP6/rdEpm+JAkwHZzKVL3EHAQczkEwO098LMQUTTHDXJWJNPn8S5ZkZhERSQ+N4PyDrmZqOS4yVTdHABEOImESIsYgNGFYF1lX+eWXn/7n//wf//Zvf8s6dz2fikipkpxASFV9RABmMzcScTDPhuX4oBbhKXeFY/fb7u37B+cHaK7a7h6qu2q3MfJEyTF7RMy4KZje4zHHRvFAlSlSAQcziDYQwBETJURmtI7asbdoe7TmRCAMUmJZspzNHYGygwKMdaXTGUvNWxOGAdPUjIhlFBojTZuHmdnIBgaMwRVcIYg0XQNhCgEONMA8mlm4W9cN4w3sDHYGr+M7NDeCwgqmBFm4cgB5t05YwhGCRIbaYKG6CAn10ayre6rUbHZLuXqECDFLCaY0+UNVpZ7PSbinUS6XItNovZZJWk5TquER1oerqYcDADJSYBCSOs6Q9Oze0mcXTE1TPg/MLIDhFhlUhh4AibcgIzIXFgnH7upzfXmoO1e4fHtRVAfNfLnQMXR01cNSzXROWwlZCrMA0THAndDIbIyOv8JkokDaQBLO9GMiKIWXtaTfoSoGeI74s/l6qNgAAqYOIBt4mMUr83TG8TDzo5tOPdZRF8xTiACgt66qBLDUWmuJAwVStdZalrb5Wb4vc9VG73sbex97H83MIwSpFvlU5VORRaQIF4TU4UrM5ewO6j7Umlpr/R436qYQmiYhzEZkEEO1mWZXGTT5PMyM6XKm3famrQ9zABAkANCI3CW6WpuRyICAJTm7PGZXma7DwkuVdV3O5/X56fJpPT0RljF0DI0IET6fTz/99PPT09Oy1KUWziI0S7NJ7Pr2QNLRP17/ebu9fP7t199//fX3Xz9//vXj7fPdLTVnmORWt3BDG9A3b3d3hVim7eDclyNUsffITYkZasFwdoWBoeatx777GOBOZtRb2t0bIhFGKYCBAsSMue5oOlvQXIboyUed1IAgj1S7mg/vexDhUmVd6/vLH+savb0AQRBcPv31L3/5X6YjAousRU7TxAceo+If1C65UxITFSImqaVUIRIiBMDe+r61tre+994HI631tNbFzXofo3WEcNM4oBgEnO5qKQyBw7orzNEDLBXhmIwDwuzJy1LrUkopRDRGun4FuXvyqaogsoFYaLBEEIAwc621iOQsxMJgHor5YPGUdR2YbA79IcLNp92KAEwftO8uS+JJkzZDpXCtUis7sAWlC1p+t8Mx08BjendoG30f2kYyAmwgYq31fHmavbCp21DaLLE8D5gBMJhcxHlL3KdRDQtAWHrhzo0mgjCcEGCWK4SAbt73dgsS2ktuKLXUKmUpaw5yWAIoZiQxTazsGP9OfTkcpMgfv2KCj6pj224fHy/X2/v1+v7x8f7y+fXl89vvf3y+3zZ3SFd4BD4yX9LuQhFRhBChtbFve4AxQ10J+bSs8vS0Lgs59NG9tXtr+3bf7/d931pZ5XxeFi5pVUTEHjiGZdHGhbxQVXKwgLHtmkUCT1MdFCHCgliQoCv3nmBcV2XmIoUQBXAhwmz9eldkZOGCMIZ5TO77Ny/mwrAAmvnWu+2t99bNnAAZaV3L5bSeT3XBrAlpUiLTHSSUSeZo5CAV5dlEaUCHEZ6O4+4eYMEMgMwMpVCqO2YMNEAOgrL+ywJ3TtIJcuyeawvSqY5ZRERkWvVOrVuWue7hiokMpskaiBAhInOt9Xxe19NSa8l540L1uzUypxGZV6ge2fypWYZ/E8/OasrHAtGPQR6iSGZpEQvIfEAP84BZ43qeusQUTABhREyYQW+Z7BzuaddThCGgFinCQsHotdDlvFwu61//+su//du//Y//+W/Pz8+Xy2VZ10NFOmcaph7oFjDMvkwT1OJLKNSj5JxT6URz9619Pw/5UZmr6uBHftI0hnhIQBCPMUt6jQe65zgRzFL9CkizA8C0fLMICB1hFiJog0yp9zD3QEcGqVAXKhVKQRF6IG1JreN0AKBZJkYAqxsrA1UiligF1UrvsO/Qu+bulbZlgIg0h5tJQkn7gSS6+uhDFUERB2EnQMbl+zEaADBKYRGRWmtZK3AAWbHW27iXvacICYEFSxEu6MDipDbnIwiRo8BM2y6lrOu6rgsxZ3+Qc3xVS8MGAGBJB6u6npal5mr+UuYihXkPMEr05yAB4iTuACgcfntx5HITTyMvES6JYKoZwqMBDQTIUWFmA7G4Z5lrUeHbJ8rDr9d3RGRhYVaz+/12v2/ZbzzEM4Bp1aBpzJuchEj59WyOJtXlMST1cE0t2lGnMnFkwg1i791U81RwB7VjzHhM3CHSgmVKYGmqp+fbRsRlWS6Xy7IsyQfG6Q8/xXARYUNH7wiQHp7pny9S8p2qHmzgH80X7/cW77RvFl6kPC2nctGzLVzkU5UnkSVXEmNFrEQFgREowtWGat/263Z/H9YAp40/IiSxJQ/H8EM3kGQtS+sMSB3kSMat5lPpEIBjIAIxJtYeAZn2B4EwaUxZnoJZuBmBMblqblYMs9Sbfqi11mVZ1tO6rGsRpkQfcxgwkdwfXJO2X//+93/ebx9//PMfn//5/v55u1+1b+iOj3sf4WqgA7TjaNE7uCba4GqA7EjQh+3Ne09n9QBAMzQj7x7N1bV123d3JxYRWURgPbmIjTZ6H65WyCp7FJrKkqPjcTPVGCNGj9FBB7pnZwn50DmYoW/3/vG+iTASeOj5fQmKoHj6dNt3a0P7sAhQbQk2ILKUhbm2/eP7K5Mj4Lno55NLXEhYEvjxacBlaOOocuIAzr98t0mPOM6JYzyD4elhczwfMykRhcs8eoi/6u9wQnVzkO4O6DEhQClTEkKT8CBEaMN0pGQjgIiLLMSl5FJAZiHGtFHEpPBSsmFdswYFtMvzN9fkIFDOV+5WUtiBKcQDIiZpMp103dBTjQrdxrZvH/f7x3a/jtFs9DG69jF6dx3gTgAUAZapYRZqUz8AX6HKCUHzbJAPNsgDEz3K4UmnH/t+v328A/Jt20u5IklCGqf1fD5dzqfL+QSIwoCADBTqIBGu1ocNdbVjuH1wNuGHJxDkaese3vv+9v76+++/vr+/Xq/vH+/vr68fb6/Xl89vt+vWu4UhIyIxIcZ04MgQVE8jkd5HHwrgqmaqgFGrnE5rRFw/Pu73/e3t/X5LK9yIYHBOa3MirhVPp3Jal3VZiMDNbFhujGkWZ74jBjOxYDXJWoQZmCBj25knU8DciZGIqTJxLaWYm9tw8AwYN8cAC7AcgH9zPZiLoJWitS51sQBEJFPLYTuTTKpVKctSRShJ7HnHwwNh6styGDiG9j56G572Q54C6MzuPjgrpgCByFKIhZLX9CDcqYZpJvIkIQVyHvLA12hGp06XzUM0OjUNueoAkGao92wOc8qGyJDx64DhoUNdvVSHPy+WiNB5p8EDhs30rmE+1DwA6eGuAnPqkvgjACGWQuvC68J1YQARwXlI2/xcWWu6hwiHMEAQIoS7GQIUkXVdns7n7bnNFE3EpUoVQTR0rQWfLqfn59OnT5fnp/PT5XRal1pEmPLkiDy7Dz6Pewz3Ya7qQ01H2mhPSOUg4STPZzKLf8j5+UGZa2oOhwHxPIK++LDE4WXPAREzHHdWjjEbUpz2MREwx4tmPiqoQeGcA84uDcm5QlmwrlEWZCGWOfnyyA+blCYCSlcBighlQzJGJCaJ9EuSfQ/3rH88U2fS7JQ5RCbhKdAJ5wAkfUzCA2kgdSavcilCTJV4/+aaEErlWko9raflfALyIBW93+tW5Vq4ebiDM6MIs1BxVSNWRJxlbnr4JUC7rsvT09PlciGmR+KfZgaNmqbyFgIRlrWu63qgueCeWjcDdLXuYSz8GLzkFpxPlOVEBCJJh8l2y+OtyiKlEIuU6uGADuiupjrCTIiZhIClYBgc1BcXPcOfqRzh/n59DZj2bGaeIYTJgJ7/yzeWGmciponJzZMa/ICeH6QoRMIINx1umss3m8jWeyKyZj6GTsjfM1AiZ03THABgplGkwvOxPz64SafT6Zdffnl6elLVR3Bi1rgAKUYeaYyf3MelLnVZShFhKVJmP2LmmYP659ft2jrEUAtY6vITuDGamxS+CF9YhAuJEHMVXqafPBVzH6O3tuObD93wPnuacENI8XnOvgMCDzM0wsiYp4BwM1AFVeiDTOegCdAC3N2I82R2Sm8O5jC0Bx0tm3bThFcBCpGlCY5rpqk4AorIsix1WWpdaq309cWFg7PwI27utl///d//z/2+v/3x+vb7x+29txtYZ/MpL8sCThV6i95AB+iAcMQO4UZsAZB58UOzBE/ZELqhG9qIvWnrfW/emiOW85MIr7WW00ru8fH+0fa33kcRKWIIKBVYkIWEKYA8XHu0Fr3h6Kgah7PbYS0bjuH7Nj54y8Fxb205F2ALjqfrtndrY6gZEpjeVIdqJy7r6XlZn/d9+74pmnOvSOOpA/VBJGER8XAxYWVsGLOLUVJKo6tEJx9qCMAvsQ7pjBXpbGgAkNyypOVgAmg5UpiW3vm+CJCQJIfqWdKhZxAjgRQBwlJERNJZyCPMc3CgAQGEXEqphECP/paE0qURMa3YAB3BI01Vwn388m/f7rQZsXbUuEnMFeEAceRpCgYY4BgWADmVcg9ow2zbt7eP1z/e3l76vve+m2q6KtoYoQMOSCpd/t0U3P3wFKXjyMgyezKPjztzfKhEzNIQY/S2329XltqGEr8RL0ACSMTy9PTpp08/uzuAEC0SFBSBlLh0mLZufaiqp6MIAADONPPvD+U5gg53171tr6+f//Hr399eXz6uH9f3j/f3+8f7/eXl/XrbelcCKdM3flLdVBUg5lA8vHfVYYCR+xgAlFKWdbnftre399eXt/fX6+12713DibkgcQS5AzMti5zPy+VyvlxWVb33e9tyVEoe3scY2gCDGUVIF3UX81IkRLLxU+Ic35kZijCQJfEfQcYYvTXzUZayrDWAEJ3QPBjp+zJXgmottizDPERkqelCHGFRa1mWWspSl+W0LlJQvyIH5M1M8NXM00qst95ad889MG2d6BjGhFkEDA8rUkuRACJzUPDI1TTG8NHNZgLWI5wl9dOTUYpJ3E7iaYovDuaMpCStCHNhZiQ2dzdLbi4gRuBsuc0RBgAU/LT+mZ0bMSOW1MEchno7omb6MPPJlDkA0TyBEWa4YCyF+7moyTkqERJxjmTzzE0/DNMcfcmx+YCHuQcTLUu9nM+ffnoeZmmZTIjrUpci4d11F4Knp/XT8/n56Xw5L+tSS5mRnxOb9YjH4MTDItTDPNTChqu66/RtnebuydVChqlYQIAfdIk/SkHLVA6fIt8/G2Eeu2q+rfSwjIftxHHofeVjlU7spunfB5rBfQ6qYeHp604MxICHnmHKEGbjPL+POwTnbwWiEz9MjPNRloDYd2UmREe0LJUBU28BkpX6nIhl/TcfckInCRQBDBYuUpC+vVLpIlRlWcvTWk9BptAsTLgyV2ZhFwslBhaWghZcQ9SLDBO2CM+bknjwaV3Pp9PlcmbmWS+ZmYdOswFN4VJAZFlaDtJCOASHsZhp74uZliLpzBXzYmSSAaH6PDbtaBamFIEQiYmRmEsERHqw6Bijo6kyFkZhEgRGYMhl4E6tflPmesTtfv3CBHLPME+Ew+b5oCa5m4UjUToWAhyc/cf84ThsH+5RlkHIOX/xNO5Qmkg1TDVhRopYzEAMYhEuhQGDFGiyEWb7m6I8AEBEETmfz58+fcpdddv3+/3ee8/SgZmz4cBABaRA4YKAIhU4RKYnxBjqbvgd9LJvo2WsFJ2WyoxRJNyYsCIuiEDsxEk9RBEswsLi7sgeKHIjBAsbYcO1RwxwxuDjwcKHBWk4JVaTpA+zUAt1UEM18qSDo4eCh1OWOwh5a4jIDHKGbPlkQriFqiMYoTKP3sfooxdlxGB299QGpyKfRebQ+QC4/gUvFwCgt+2fv/1/+6bXl3Z9be0e1slNZiOb0qSEgzRMwRTNMNOCIgBGpLmAWQyLR3VHGGagA4ZB2+K+R2abEce6MtNyWk7LWojQ1a7v1+a75xmISIxSUCSBfOpoGaVhBm4EAEQZkYXHoxcRoeqj276pyGBqQzXIgs0MINgsCKgwafvofe9tk7I8Pf/1fPnLfes/0BZlPtExF0RTGEiZ4QSMCMzEQiSIjInkmamnH75+QYzy3ExZPfPMvU4rErQpscIICspZTX4x8sPmPCarioTEeRq5IoLD9JnGB2+7pp/uDI/3B7g6/f5EUDwPI3eAUNeIYPSUWiMFUJiPPlr6qH1zSRBwejIcKNYDpqbc+gMgDZHyxMbMpDD3ruPetvfr+x9vn3/bt3vbNjcvLEVKmKsO783HmALGfGD8iAklDCKCLz80F/eED/L0TG37oWUws9473W6AuO07oAQyoCAxl2qq6Tlda1ezoGyXghyYPNS62hiu9jDJwK++vn9N3oe79rZ/fLz/8cdvLy8v1+v1+n79eN8+PraPt+v9tms3JjJx8cNpLfE7yOmUZzquWSBNg8s5yQvsXW+3+/v79Xbb9r3biJyxExGksBxBhGqVupR1XfYdwqF3AwDCcLc+tA1FdGYyIZjny2zxzKdrPuakAQPJiZwFhJmoAsAYwxURiFkQuRSvC7vz97YCMQFZKiLLUpPXO0fn6oWl1lKmc0iSeaYl1px1HPIySxOirqNr7+oOEZyOBggMSJF6aLD0txQRYshrYo55vBxGQWY2TxmYYlBICQ4TpzcVACSXNOwLE5sgUzallJpYMRKrmoJGyhZmrWkpfAvzCD9XhfOfrolHDNMISEfnod66tWF9eBuqNgd3D25DxgGhQxq2L4U11KMCBvExnotIr43WxoONeEBViS3OhpCZs9LtXWfbSLguy1LZBvbdCK0ULiXzbWbl4p7w81HpBXhEOoarewR6oFromKZv2dZOx0H+IkA+XNb+e2VuhEYohEJahyX9YKZAIHFhrkRZwpt7Ru0ZwFQRJluXGXymgzziKzLbbNJ41WeKizr0DshB7MQeYJnK6xY6UrKEHmgGWqOUiACfrfdRv2fOa2SwWZ7lgeQAyUmCJFhTrqapuMydjSJHCViIqnAtpZZS+fsyl3kpa5Ga9Z/qGDZaazpm8jsRks/vTITLUriQlCJSS+mmGm4QjkHo4BqjjUaNmGGSwfISmU2fdXU3D5vtpPt0qjvuIjGVWlZfpLBUYWYICEeTEBGecRhZoYKr6/BOg3Aaips6F8nUUGRAilwqJkKQZoqZDsHh7jaSnPT9SjEdHrl3zC0DZr4dZ44DICYDIWYaT9LG4UCuJiUqGcZx+JsckMY0FHMD1SPdGzCSPnkMUCKAEYU5aWcZgIkUfDAWANAMIHXTablg1lrb982OOHNVTSh34khIpVSeevTJC4EjPVXmy9ydvsMYbDBQYeGyLCwu5C6h6tp19N1GM9vcmkgpZREuqReB9DZWvb29tI8/xv3N94/oW8RwEiNGAcpAXQMfYGlRp5N8mc6BAWgB6qAegEAPIXs8RsYIwO5o6r37tmnbLWs7OKiUgFmF7Nt+E2EDq3ZeEEYqMmwqGQ6m24Mw81+9PMKG9mFjJKECIw35GYUCKQAQA0ZqHDNoOMAGBvDUvyMiUICZm47Dw5Sid0+DEea6VAkfaoNZSuGlyvlcLpelFNa+3G4CSKcLrE9+OtuSEyQuzBIuptF2k+KIwAUgVaoIkFaZAWAAweu6XC6n50+Xn39++vmX5+VUPYaFEiN0vL9cX+CfpP5x/mcfe+97Wc7PP31cPn20/p1bFAKLcLp2pqCyDSRqta3rWpclt8qc5tq62DByipSi9z66RmLzX0rBbPaISVg43HNCr901wM2RkIKO+UxattlQY3OJAMRSJCvmg8nqbnBQ1xwIVI1bn2ZGAKkiEJFplDSdq5J0NLL2h2QBMPHhgZQT7URxvn98DpPvNFMyHDaG4tAA8Nlza4ARAQtkjGiAeYwxtn372O7v++293d7adu/bZqo9ECEhcDVTbbv2FmqYvmiPjSseBkGObpD52G7hERjIKQRCJOQiLEn7AVPt++YRJHsGdSMXLktdT/b0iQikSDoXJEXIAihLh/yMc9uf/Xw2FD96gBLqAp8q/t77tu/bvm37tt+3/Xq9v71erx+31lp6v/bW3IJoSuYRo1SG4Y+0zEMAz+Hcdnt7vRG9tr27SZGzkCMoojEjMyJlUjLoHIKTRwXMdp1YWIf1kRVQsgWCprx6prgTheLUD7EwBQIEEZQiLIjk5sMU9n2/Xrd9b2OYWRCXvUPrARFx+fYAul/vXbdUkBAECVWhqGSD3YyRiiCRj9Gu155smRxnsUgpkqPGJBuMYarZl+FByc0OAQEcwAIGS0giqzEtkOdx5jOonTCzA5PhMGnReT+DyMkJ6BEhMf9Qtlgwixn3yIyVHKVMX0E3REdwG6RDG1M+m+H+09O3zqdmvvfhDmowHIZ6H56p4ar2kNb6Q6R+7G84cSULejx8uiwyCwPz3sboQ9O7Yl6UGDo1Aen5meUpznkhzWeeZoM1Rg8fwkgQImVZ1lLXUo1FaOqWKAITDZ9v2DxbgIwDO8au7hHJjHentB9Gz1OCvh+awb8qc3MrmVmCcyiWZhMkRUopxKTT8KbpGL0PgMA5WmUkDkjIFGe3HJHstoNfBmZp7o+q0RACgylyOikczBOn8VRPOJihGpgFMSJgpp3BfIqSL8xEUQoAZI8YASnhB4BMbACcbjyzYyYkICAqTIvQIrKUUmst9F2ZKyRLXVmEUcAz77HvWeZOv+ekcgESMKFwWbgu61qKLnW0vfV919Epskyxvg20PUmfgHAA9aYz5TLprRlKCW6Wf246BRITUU7nJ8F/flpkcxZhcaIgtOwoTEO74dzIZ/pPPS1VCDM/WyCIiDHUIAjSOJWEiXP3CXXg70euYKbpZvAAIfI6pFo/L0ruqjaZ/PGwbjnq3NkvQs5Wj8E3PsbfgUdSgOWfTpm5mbmDxYSz0t+fCLL3zRv4KHPz/SZGE+Gqo7X9fpd53mSRO6aTgIhwXWqpRWS6G81Io0Cc0aruUUoSZ79dKqYSWBiJgasgYADY6O023rXv2+213V/7/iEsNa1nDdwmIRAB9/vHfn3V+5u1a4wtwoxMUdCZCiMT2DTO02baLKZlgBMzCntGNqT8ThCRc30l7S+7sHDUiNbGdm/7rgCEwAD88A011xj7thNgWNgaAcJjzHSP6cCIh5n4w47zuM7fbynu0ZM3rJlRB4BIglyAKhDPxCKWudtE5J/MKGdMjC3Hx2Y6Zg4LqMYYTugizFxODBE8DIi4Fl4WPp/k09OynKS15f1aHOl0gdOzrydYFlyWKBKF2LX0ZuXOas4CZRYBARiu4APdIIww8LSuT09PP//001//9svf/vaX03kdo48xet9bu2/bHbvp/VYrd219tLJefvrL7ennmxpHfOuIJMwSbGY2tI9UrHoppZ/6sq6Zp8pEpZSIUFLvicbZGGP0MUnrB5OViA5eqYjItDJxTQlqZL3mczg4yyw1HWq1hM+9XQojzQN8dG3bmCCKWg7fAHNgJczs4UQsgm4R4A9c2fMbj56VBSYYjCSlLKUyswhBFGH/fqdNSYZNmqOh2lDFMTz8KAvVQ0WoALMkVTf9N7Z9+9jv7/v9rd3e+n4f+z5at+FfeRBP3flDioBpupSaHXJwcMdMiQRHMMywIRSi9I4gZBEuTEy5lTSP3gfM2HHkUut6jnC3wYSlFBIBSkO03JGnAN483A4TqWNL/OE4JJHQCAhXt6HaRm9t3/Z937d9v7fr9f7+9nG/baY95TjN2xiDGYiBGYmoFIbw3OUQcYbnoUBw3/3t9TYGEVKE1HIRVoSGAMQkBSLbZzdNEFrJfQVUohBmERnde1dVlQLMwpIMa0z/EjcwdATLk4JZEIEQiCGBSwQ3G9rtft9u1/vt3sYwtUj3yKH0uApfv+6327ZfM42VGIRJCiOwF3NFyIEI+OjjrsPDsppcllWk1rLYPEeypnNLNQKQu5uGWU5yMNuuCBUHJBR5IAc+DQxmuOb0R0LEBGWSlpEQvOWxnYY/AQmi53dBhCRl5kTUVN2D0AGzAc4myCCMCHtDQjR3Uw+P9jf95pqY+96GBwyLYTAs1GKoD0svhIfaCg7NdhqWJLLt5mhB3XToaDqWyoVJmNw9zQ2TGpvLUT0N+BwgmEiKIKGm9aHk3Qeakzo309GbjpYfkuag41QXS9V7upIAYkLVY2hSenKMZBY6tLc+T/5wkaR9c4KiSXgmyjHBt68flrkx5zgTI3CkGR2cko20noiwI8o5I9SdAhHS0H42KIHIhMHTWvdL1QtJ5scMDZqTRwVVYJ4NdtZ46angTm7oBqrAkefelMgGBECai6EIRZXcFIgDMk/PHWep/1Bq5c/OHMas9LLSLcxFqHxfuzDzuizpc5vlyLEiMz4KCjGVIhVKQZZjUSdFGxgCQs3VACgMRje3rs2ICGlO6vOhScTMwRAzXW+azYSBZ/oOOZIFhLAwpdESzPLR5tdUtgSCo2soGISboQ1N1cgYtroZeLEiQpSiSg98OPxnt4qeLno0VW7frpSUoX5V5s7egwiZKeNizY30W+egedjCMfmY7MDJEiKHx7Q4XzPcz+MQe5rOAUKe9TM0KX3K4HBXyv8km+OYRBVwwDH6vm1HWYdjTM1c1sj5c4lZpGQDk+YvD1OFCJqlwo+cqE3NXIlEBrEwcSAhgLp5722/3+5vr/vtRYSXpRJyRqgzcq1VWKzdQ2/oO0VnMAdDx1BEkcK11DIAKALdYIzAMTxGH2ZKBTkI+EAHaKY8MFEaUc/bNOdBtrext967Mi9FmKUyFeLiFqoaAYgeMcybeTVrqruOffT76Nvo2+iFjrGIfzUEg3RT/vOrlNP5/L/6ruw7WRtt+FA3I3FiR4Q88k3jsXUQATLORElGLsRCQOHgKQtBoMJcCk+PY2YA7F2FKBk0OvYx2JwASq369IzIUldazlCqcwGkeVY9qgzCIAFiYnGWDI5GH+SGPiCMak5OAFJAY+bhiEGgaLv31lENdJRK81l0Jv5QZw+BOP356YExRu+97xnR2mcJK8OGa1ddlrIUETmCeZK1cPD4VSUbXJrQAzMjIVGa37N7UtrSwsnC7UiJisi920yNUade9EHSnQbEaQo1tO89Hc0s4WEMKexWSilIqZyhTFgiQCZCIEuQNl0R5kg+hcqgiWalvu9HJNSsv/2YUsA8MExV+/A+xhhNraX1Sinkru7j+v7y/vrH6+ffP14/36/vfbtp27U1az11aFm4Zi2CM+39MR6jyGBkmBx1d0DwmR/ByaDgQ7Q4pTW5vRxA93icmSWchcFPCJ7bYGLAQDNILXemOcY66ov5X89f+cFVgbCAyLCL3nYdzW2M0fd9v93v99v9drvv9x3RKQeoZgDADhwIyCy1VEaIoWzKZuhOROAOY8T93i3u++6lrrVUcDSb8lBEYA4SBCYWqCuJAHGS/ufZJ4wZZmmmzEAl95xsvVJ9kSjZFw+cnGdPG45ZZbkfXE8EVPV970iuRmaU6cvfXJSP9+v1+sYFuWIpVJeCUI5CJ425zCNab3tr5s6URIhSSphCVh06QhXy8yIwYTCnryVkKkQEmpMHi4DwY5QniKQa9CDFmcekBR5IbwQEegRRELoTOQVTAMDEfyc3ZlqG5EzTwwndKXPLADL0dTrsQtrYJFZlh+3916+hdr13m2VuWBrLm2c1n//JgysxV1vW2xEAoQEKVNzUvZstlYtwSUeFLJNn6YasweyQZW76i/EAhG3f7tt23/b7tt23O0b0tjPhvt3ut7uNNlT7UEBmrgFU6yKlSKnLstZlZRYACMD5bs3RISiTOw+T3NSghUegOXo4pl0bGRHnVPab1w/K3CzwpzcMUVAEefhUd4ebKgL6Az+GQERJgzecQqMv3vomwCNSSPenmMXJXaHjUZ+Z4zkySvYXIjCjMBahkjY7EW4BFoYzIQxyJSATc6mYj667QYbPW1ZpntJGRwA/DKuPXTbbBabKVBkL4Y/KXOFlrchMLMDE2Twc4YIswFJQhCW44GGfEG6OEUkCSPpoxFxzEAoPVGx2Fsm5dgujQuupLlXW07qe1ipltNG3MXryVXz6ui/LvCNm2q03bfvoW+bXesb4eHiY2whi6Ay9j9JGXVrTvfZFapmCD5rF+fFyF6NMoc0N70cw3VcQRBwbOD3qHUxHPZyilgdMm4ejz50tHkNDyHzsuTLwoDc9UNgEQcAd3MAtkIiRMkpNiJIkZW4AeYoe3KjAPG0RiSggord938oEZ5DMzE3puBkzRjGCEFIDAwDu3nvLBY74+OCzKf/6pWMbOAAZUDwk0bYxem9j7KPtbd+27X6rwuBDiNJbA0WAjbgyjVoslkgPAbVIfXoROa2n0+msC+oSvVkrvZV2u92H6miDwB2BAHNqyAIiST8VkUIkSWUeY/S+7a3v2+hdzVyEpNT1dFnXp2U5q2prTccoQrVwqSBsCM3t3vvHvr1t93W7LcIoUoVLYPqhpnmVB3gf3zoXXi4//x//6//Vtv31+eX1/HL9eN+uH227uWtYqEF6C44RpqiGpkRIwnP4wwWXE9WFq2JZcQxOPE5Yzqd6XitEChONyQnd3Pft/oYasAEuw4rFfnmKeirEgByIoBamxjAIdh++b3304WZSolYoBbgEM0AwOIexdrCBhND7/v7uHqP127ouBExIPnT0bhrGYAOTw7rWQlIhZLs3DwtYvx5JB8TH68dt3xKaPUTEERIwwJuNOqRK+mx7eEYyh4If/nmJ/gYEEZVp2yPCc1Loaawe+iC8zQkiZdHk6I5mZJKzTLOAruZGqQr12O/7dt22W5uEPAhkSF5aouvEaUc6X0yU4/xwMylgboAONukaAWGhMXzYsZvg90VdVgxukVaUhFgYhWLXfb9vt+v1dv/YtlutcjovtYrbMBvX95ff/vGfv//6n7e3z/eP9952G2M6fB4N9RQCHMqPJK9B0nwT4J2avjzs0kobIzAIA2NGjR/qtMf19y8bWF6G4OkVOo1HJzU209IDCCP1KTyjrQJwbmwZXX7kCn99UQBAw330bbt/7PvVrCO469i37Xq93u63fd/76CKAfPj/RgBCGBAXpBzBFo8gpN5nmq0ODxtjRB+x7bZUXeoJEfd9aMb0ohPTcuL1VOqJSgWpuK7CDOEaAcmsJXoUvvO68XG5iEIIsvdKKszo6kwlFTzHSZGTt1rL09NFZDnU2E2N1BBRvi9z396uLy+vUrAsVCsva1mWkjHp+JgQevQx2ujuIVIkgrsTaVh3B1M3BVMKEwoEUGQS8VjyrjEhR7gamrMIlop1Kaf1dFpPABjOpjiapfUBBCULeT6eEQ4IDoRORE7hFI/6NSJwjtFyiU6IFaa5kGXJUJhZ0lOvAECSgHvX1tTMWL6t3/rw1/fmEcNhhnk8DJcs4tgLYkacHfVtjk0jMJKNgAZmAWpQJEqi4l/ITlmbOaIdBGRICZWZ3u632+16vV2vHx/Xjw/PrRxCR9fRIGLp2rqZoxretlGXWqQuy3J5ejpfntZlkVJYJCISWo2A6RgWccgqIWA6o0H+pnr2rIjY+v59qfKjMvfQkx3Z4h50eGHmx1QLsEMrlSYVDJCyAZjRrEwsyITOQECEcJg4fi1ZwS+AbEAEuWOkJVmOmHN8LlgEhTETKTxxSwjinGZiTMZCocIimLLHHDRMbQg7pWFFABweH3Tw4ucnxUJQCASBMfCbK8JMy1JSHRGENADp0M2gE0NZuSyMPLlQZpoSwZzpUuIHgO6hkUYCaqrhfgxpc/GFhTvGcqp1kVJlWZfTaa1SQaGb6d5b76OP02Vda11kyUhUMLfufRttH33Xsaupu6ayxQMMwAAdMUahItI7l1Gk5VRUmKRmtKtULjO8N4OcE2/PKJAfrJS5KB7zD8pDAiCbFDiq1WNh5b9iEMx0Fphis3zsc34yQwUn1nLAqwcX6jG8BD68NNKDLlv+lObgn3lux5NJRAbuve07M6RtKlIAmBnmOTWZEvMjMVMp4u5jjDE0BzaPEvfHZa7uwyGCPMhMpFSWYjp662l32va9bVsUIhghyX4OAoECBCE8oFhEqIIqoc4rKcKn9fR0eXYjHTCqbrIXFlW73fauQRBCIQgJWgijCIhQKUupK2MxA1Xvafx+0951DM2GVqSup8vz889Pzz+NPu73a287kwsDF2QxxO6+6Sxzl/ttYcZlOUU9AaB60mzUQt2tj2+NSs7nn/6f/4//Y7tffz/951r//vrHr28M79HHHqpuDdsNrjcfGgEMQEm3LkK5J3PFutLpzB60KOkQM3eFInw5L5fTYsP2vYcZozGGurV9U9s8BKk4SF3wdIkLi07rnxxTAvrAaD687UPHAAhGqAVrDS4hBRmRUNx4NNSGY/gYbW976/fr7XVZ6lJOS1kICdwwIBRDEVyqPK2XSyDtQ/s2LOzbvTfi9n79uN/ScjIOWxtn9+HalaRTkuRx7pUUjIHpgZNk7BmblC4qtZRaM2McEE2xRnWwOXUFA4Dp6YUR06eM59w2o/gsUCNjYsK93dt227brPl0OEUiICiEAoRIiBoDA9JlHnMmnyMFmLCFGgBaY8o6ACAvTYQGHgdkPkjmTu5VnKQIIYWEsHGCtb+/X98+vr58/3t9qlfPltNSSoScf76+//+M/f//1H+1+1b77aOEOX+CfCPiyf01dxiytKLdmcwMDyC37URMHTflHmrFlWgwnDHAUDPkzANLsiRCEIGMrMaZcFBBo5kAjAwhCEOS0deLrmAZQWen8CE/wYW693e+39/1+1dEh3Gzs+3a73bb7fW+7qVKy3eewwQOBESIAyUuhEIx58Xt4uA0zH27QjZtRGctipyWYuO9D1ZkDwJFhWcvzT+vlqRA7kJVKzOGu7gHoifVAOn8BT7/oKWz4UvcicoSaRu9ahJk4OPfpmGYyjMtSiGqpfrtt19u9tTEU1JDoB2ju+9v18+fXUqguVFdZ17KuqdynOU5IEbzq0BGAHgQgHR1huBIEpRWJO83ojCxhOEiCGNMjISJU0YyJUSTNQJdlXcDRFFVipw4OPiyzTmctc6yMCCDKQBCPmWmVhSFOOuhhY+VzqQQgQeQ8FAvjspTTeT2dVkRMktG+d6IxhuZk6etXH/b20TxAI3RixHMt42G2FYGP+L0HbXCim4EOToEWaA5DozAVmi4XSeBIxXO+ptyc0GwM7b3vt9v1ev3Ir9v1Y4yenWui1ky01LoOHxqt28d1q3Wppayn9ae9fep2eXo6reuyTpA7t4ijnY/09SLggJiUiHAzGzoish7D1r49feBfoLkzk+hYrzCzUZNF6YmaQ3iKeOfgZ8qYpltCeDg5OqJZsnITZE2C45yA4+Fim3tOOJniSCCXgWhyXhMEjBQYhgdkqFiEcxiiYZpyQBqZZVqNZV8EEcEMwnGY0AHkEIGcyHOUEqUTdqK9j5u0qxuYf4t7j9E+bm9AhMyBeN3fr9vHbb/u/d7Hbti9kQFFGgemdYLPoysCWjsAmwcTyz3zgSEickNWOwKqgpmsm3fHExTgSmWgcgxQ0F33rSHgstRaSqQeq7s2G7uNTcc+Rle3ucNifqWSk4OZaApdTUe4G4ESsom6mIpmee3BlCa8gbmVof1IwXiM347NeGbLx8SDAh94B0zo+lFJPlquY/ui+TDG5G9MA/nDsG7+sPiK0jtdQqceMSJMrbeeZp94lMjHQD3SmjDMk3eMGNOPMI3DJtxLEdJaTnbT6ToPfZt+zB4RYRlyN2uTP71Mb8OGOQ6D3qksp7qcwsO9EwUXKksxXWoBWUQYs+sXQa5BYuCGYciOHEhBh3VGphKcTms4uWKXAeDhKoWJEy8/fCeSA8iPTQ3CwBB0+Biuw1TTE2Oep+4+VFUNiUqttZa6sOmKoYgjZTRSZakaft3vv32Ihm/79nJaL8t6QUL1g0jiw123++s316SU5Ze//K2Wst3ePt55WcvpfNL+tMcWSuBhOkbHrrOgY+HCQkKAjmRlwfUUy+IBYepWktGEQrieoCxO6Kau4qVEKREAyJjaSnMbGiTEjoGQbhJp1JaW8wiGCEhGlCnk5AO7B/RAMmGUnNkNdEebRutO5BnUHayIRYSYRJhKLbIIF5FapC6ApIHmAUHfgHQR0Pfe9w6TkZ50yVRvMjF51oU2smQBAA5GIFOzoXO2bqED9x0BfIzCpYgcuo8IcyOmulQEqEUO5k7kUs5Hxs012Z6ICAeaGADufevWLSzAHDzSp0yOxAcwMDdLy3AgRHQWrBWk+ByLZp9LU2ATkJwjT1vExNq+J9LlFgjOCEJYhc6L1KXs/z/G/mxJjmPJFgV1MjP3iEwA5GYN55yH+wX3/3/kvrW09BHprmlzkwQyI8LdzXToBzUPkACOSAWzKFtQSWSkhw2qS9dQaRFoHAWdQUN1bOoHHn0/9sft7cv759+329s4dtARrugA0wOIGNhPzWQCrnMs87yucqY377qJg+b99PWbPNwMEZMyc57hmSpJJ32Ki0yNgPb9/v65thWARWqFEC7IIoQFKQC7UGUQSlhlUhjhyR3508vdbu9/qI7ff/vHP/7x66//+Pv7lz+O/TF6T7FyjnEhTVAJIJzIAL0WLpWXpZRKSA6ORJkgchZhMPlp5mYjcn4rLBaKGJgyeE1Pva8LJnoAdNXQYcem+zYSTXaPWhhQIsg03BTpqQgHRFCz4zjG0FokjXinQ0fa/AqdbDlorbivCIyHediP6C3Q+7Fve4QQl2J0TkIjCRsJy7tlmasB6EbgRCFCRRimqJBxzsBj6pBSDT+t+pOnngptBABMlipRByB3I0rrCW5L2kpzAJ45CZYK4XSqZcaSdmE0ZRg+KTkBQZEQ2gz1ZTmtcwm5iLRKIkhEUmrxIGJAZlaRb8tcM9h65B6faRUJ7gEmKydOuZXPcjxODifM1iDLXc/clTB3IORTK3OSeHP5T/G8ufV+7H0/jm3ft/3Yt/3Y+tiH6Zjsrbz6CwMHWqA6dDXsQ82P49iPQ9V7H9u2XS6XdV2lZPAQx5mDEOdBM99usq+yCLYUVgZEpB3CN68fcXNBPc0WTn4yTbjtrHQn4pWY2dcR85m8AB7mhhpITmoxeowRX7FxmpVurt3ZQyGFo46Z7oyRhsWzIkrHuGkcgI5JJ/E510qHS4iIUAhQywIunIM1WMIYmQMCEy1GCEAlBBJngeqEIYBM0CAqyzH026nrdmy/fflHrsFAfBxvt+3zbf9yjNs+Hg6DFKnDUO39GOdvi9O3lXRY33s/0mHZIUCYhQR50rsi9Mma8XDvSYbsvjo5VZQeIsHk6N36diBAq0WI8/4wdT18HDq6alc99AzZ8TxfWEgKieBpwAFBOaWLlHzEcCdVEfcaUQsWBgKkCAoDdKQR3+ZDzA7nzycQ/plvmzPA8xSe34dJg3tKLubQatrfnbSmFK4EPk8XREwf6yyL8SxxU2gOOd1wHXoch7unuTvOEJqva5eQnJU4VdMwqSfToSxoEhvNzfrRtfcIQwDi9PwEAoyZdT69S7+/k8weOrZQi+7E0PQl/JWIAwYXaGtxW1muIlELMUeeAswsBUgi1DEc1IE8MJAzDoprk9bKutQICkMmMOMxUApkiGkAuAd6WE5wKIgpB3PgChBj+Ojej5HY4fwsAlXt2I/WDnMjwtbq9aURWtjutiG6FC5VpAT4bX+o2317/P7+5bpeXtbLCzFlXLHaSJHU4/5tiCAzX69Xt6NURFYuUZd2ubyGsm5AoBGixpr8NkQm5EbJVaYSpUZtXmoEuHMifRnbFrUaC4YbF5PipUZrgEwkRMy1IhK4o+rcC2qejPoIBkjeUwRaKabVTdENx44WMNQ9tAhICWbOfv/0uInUKQhTKVQrtSatSi2SlshShQuLSCDVcMRQQ/iWsQw6VIdSRrGxlFqlZOSvEKGa9tFNbfTeew93ipkuNqcbEAYO3c31ODYWenq+zpwl4XQwrCIRa/rOmCVF3yLhGTMd2vcOHgGefp5pjqPDXB2nn7UTciEpMnPv0FGTtDtFZlhLDfOocSpEY47yT4ZYNrgOkZ5WU4r+7cshFMEZozIuha+ttLUeez3W0tcyVrGd1Qbo0XVsj/fb7XZ7/7K9fxn7w0efsuW8YYIIYY5sYPL18RSWpkHYxKWIWKZNRKSMBeGcINMUY4wIcyjCEU9Q62uchTCLlFpEGMD7/nj74zcAJKRaqjA1xipSGCuhI3ehQ6gyME0B24n+flfmmr59+a0fx69//4//+I///P33f3x5+/x43MbY3e3EpQM9kNLi2iOMINpSLteW4QiI7qm4y3h1N3dL9nAkJcJdbZgxYUBY3ubmMTTSZGWoR5i5Ano/lHhMGevj6IePbsxsrSJIOPUM4IBsqSbuk/9ERGs1CSJIRWQahCAyRLg5My6tMkspFe+7xQHxPcYSpqraiyNiyS2UmbKz7DF3DzUfQ7sOAAwjcGSsrQYRJh+AZ95qTMpIJNaZ+PS8pZJ5l/BGXteqlhRERCgFl4UBaso/IXBMJTmOzB+esmxaqrRWJW0IkFQtA0NTJCIyNaCllCpFmLOEhJkYqEhFpFRiRA4gYZPvSAseMHRWsdNAIFdTnPASIuDsZc+5ehp353075yxT8JuGE2n9BudVf17wHqGq+7Hvx77t22O778duphauw4aFAzlyIm3nRIqd5BQecgDo0O627/sYWePertfr5XJd1zUNZ06HoEzCTL74GYs9CbtPdem8l79bKj/0zXWN6AAKYBlMPoVJOMGA+EozeNJtE4FP7MzdQiHICTHUIBXWE7JAoOnVlodInJ44aX4TkA5hAMmSfGJUEZhc01REEUYEpr+dO50N2fw9Td09IeVwB2dwBgAMx/Bpfk4YXFw8MAbiASjgN7NC1PW7huDo++e3PZsyQHyM98f+9jjeuj2GbhYDKQKg977vW+89B+QznoLJLUZmM6upGgIKCosgYoChm4On33mOGaJ7an78MFQgY3IiQ9Dw7uNQRDy249SgoKrZcB/hw03dLStTn2A8oXDyLIUZkDARe4+ZlAkeCuGkboYENJEwSWKHK7gGD/++zIVpuXIi5V+XUBaqEQDq/hU5fB5RX3fKNIc6RzmQ1CaI9ADLKQ88TZOeaMefyRBx/sQxtB/D3VhIOC058sfNySUikhETHpTbejbsmWfDzKUUZhmACKQ6iJCJS61zlRLmjNPczvf77StiD7+liS0gILowiFQElwIRArCUdiUy5iDyXJMZ/A7kEA7mQD5zVhByWMYyHbgwMAjNiAXohHuTuuMRYB4IGXjNFOnV6IgRlu7lvQ83O4EuBAA363H03k2Hg5W6XNbSKtkg7Q4wpLBUDlA33bf7sX0GZCltvbxcLi8sEgSBYabq3cz8UQDan58JM6+XyxhbW2tt3JYKTuTFOh5FiQaxsRi5mYEHZthHLVSqSyWpJhKcGVh0+vAEITpgSpEtQJGMOaQAECIzCjMjhJsFjPz4z/i0HP4ABgeAIQKxswQGElC4jCO2PfrwUq02qA1qkVIoY7QCQ1JxWkotkljOspTWKjIDEksprUqtqcIULsMA928Telzd1XEannCSlERK+lX1Y3e3McJVx36YWZa50wyEKQV6Hmp99BT5UkI+RUqptS5tIaIiwlWIyMzYdEwd+FS1QYQevSOG2pOhmmZIObbLPZQm1JneSkBg6ODj0OPYM0eQEL1aAp9m8fT9CQ/MkO7c4akEttD+td36Zv8gOEEwQiFswmst61L6Uvql6t7sWLwv+x6976r72O777cv2/qU/7nbsrkqTr0SAOUam6ZiI07gJKZ6EqElWjGCY1gAU7k/gZHLn5rXmkXrbmMdQ9luI6STF0wyUECJM9+2eD7LVdl0vSy0kXKk24cYUwEehjbEQTpLuj3DcfJnZH3/8euz7r3//z//6z3/7/PmP/di27TF6T0vXiWUwsECpCIAJgKwXvr7U1qp7cl1g8ol9ipSz/PIzFxpCPYYHTH8nJADXYb1b7ya7uufExhE1EI6tb49937obuGEp2CqMhgDT/gnAkTwgrURGPj+aBA4CIOasc0Gm0WckMY2FpTSiMtR7V49vRcwAs49hxlokp1BVKiCka3OGUumw5CEDIoEysldHQCYqlVOZckpYclNwMuIyiR6+UtSefU2YGvbBp9ZTBNsixIFIyBQB1VCNVGkoqk48RYSXVpellVLSp7L3se8wxnSxLFVqLbWVWkqVwsxpbqCaO8kAKE36rUTRgMDvjUo8YlgAwMnbewJuEx6a3zb9rub0AOdEHgRRENMnOb8ySSLOlIK5ayLMXU33vt/ut/v9dn887vvj6EfyCCPCgIIEGDDhlkSmhKk0qYvUmQU6fAw1Mx2q275v22Pf933fX15ezF7CjTIPlpiIgWZKSC6USTp+Qmaz0P3BJvq+zA2Pw/zwUABFPBknkWE9cZJOzqjWeSQ6TvY+mAe7p7UWIqSbjXuWuZ6DKqSgkxKL+DQCz9YhVBGSOs1kjuogHshfmbXpDgbIgBwhhOzA4aHh4YphKfDMczkx+vA5FUDOMpcQHSnzE9mVFMCHdtwRfPTyjcmwmlofUzKAsI3747hv/dH1MXQzH/mM05lK1QAxlbZGTjxjyogpPIg866tMQzd3PF+EBBEAhA5xuD1UF9VVFcZ49L4deozwSPJRBGSaizu4pdqRmKUUAMBwC9AzCQ3PloARchZCkmXujBeA87AmOoWvFCQoHmBmNgx/NAvII/OJ6AMCAuWfq2puiXRJc9MAwHD3afv39L6FRPSfg5F59wR4JoQCwAw8NPYzd2J24KbWEcx8MLpr79miBHkEn83q86QCCIdA7/0ACDWdukDAZJIQser4E9c3jl5qL4AhXLCISAY90WJLAlZvX35V/QvFpUim8HEaiZZGRZzIHBzASkGm6n6BGAAjortFGqM5GARajFMkkGPdMLUOsG/77XYDRwSOwNHH/X7f921oh1xpFhmOToao6EEBbMFMxuwAlJCM24hQhGwXM4IhINy0H8d9e3xpNdZ2ISqOBqAZQ2PJO9X81EI1EPlxW95rk1qkChfycPUR4Tw+8V/LXERiWmq9vr7+7Zdf/lfl6+N23PmhA7at164fuMh62faxbUc/RinIHAgGkYaCWZfSJLVFjBF95hkNN3RLNz4fYxKbXC3UzdAczEEKqABxIhcQjm7hbhlPCBGhhMC1Si1NuMpGadVWSqmtXq/rh48vr68XU3s8HqP3tbXLuq5p+9UKsgSiRgiSlFaXy3L9cH39iaXoUDXrw+HLA/5a505sNhEDzIhSoJJ2POzBYlxMbLCJWN6ikyA63dWZCQimSv0ce6QGGALG6Gb2HH+au6VboepQmzsXAdRCTYVn8+luZmGZ5ZIWSJHEndGHmWEWZRFj9DG6uaXPSaqGaLCq9THGsKweCFHSfxoAEZmFaPyfusQ08kmuiDBVxsrYmK9L0+sVTRm8Mj4et2173AW9730rXagToBtM2VkWejzHQQQzWU6EhbkQAvQxxuhmCpM6DHA6qWe6UVKEwT0oADAvuufEKa0KGTFxghHDzFSHqMowLZpmbQR4v77c1ksVboRQmbnVUqngQzAlz5m5PC0j4QdPRU1/+8c/jn3/448/3r58ud3uql2HnqGyjhjEgUyXS3v9UBHDfSD4ui7XayPi/VDtfe/Wdzt2UwtiqC2N+skhSJ0dRVxEpWArpUqN8N5D1Y7dbu+HqnkaBs2SP8zClcKqjdDh2t1t3x4GAUPVzZZFlmuplbGQiEzAEBERbfgWPX9rM6g1So1j7/f7cRzKXIs0c0TEUjN8/pungp8+vph9vF4vHz5cry+XUkoRMY99O3Y4MEa4IjjB5F8X4sJSRWqRpUn++jzVhOEOaAiGPsLSP0vNTCOeKfTP4WIAhFOuGkeM2lgK+inVEOEFJaYmJM4Kh0W4iEx5PpEUbI3cg4WFJUPgRfhcY8YMABQQPmykZa0Dkh677nv6A/3gUgbMpIAnwXz+6aQFRiQdOPkLlKzoNG8nKDSZFZmNka+YRFNEzJCaULdxbI9tu98nD7f3PtwdUEhYKiICCXEBgPRPTlirML9eltfrutayCBWm49j3bevHkZe1mfZ+JK8GwlR7KTWvXZYiIgQTqDv1M5GWVIic+1S+4yvD/yEF7fDYk92BaNkDwxlImZaDzxo6W8OMvEcHMiAG4/T8gllzOyajd87FwAGDCURokqTSJzyJt5bsAmBDZzRFsmBzkuQcIwGBZK/JSAwxaYyqmUKtAEbsT/YvYtIbQARzpgdwQomQIDCbUTiGW9gRYToQ4C/YpZla3zyZ9hD7uG/jvvdHH4+um+pIIZGf5OyTKYVEgTOjmpkYGKaYg85ZGKHnAH6mARJikGP0sIdqG2MZPXq/H8fjGHt6uwoRA0DCMQiZWJkeh9kVs9pQjRnBHunIRu4MUJhqcnq+6idS4EnJPUYAAAcCKlg0bNiwoWjfzVxjlrkTucZJZ4Msc01h/u0ZYJxlLgLgeUS65UwHIEA4K3wkQDhpY47I6bd2WvNkNe5ZDOdP8fD0OzOzntfwjPyJs5d9MpRiDmbDzY1HT7nkybUAIhKVr+xIxN5r7zVJwll8LEsrpSag7B7/9v/7dlNVIWIG5NyP06oBzcAQnAmwVQQ0281cNR1iLB1EPMA9FfX+HJgkZ/vx2BDfxmEAhIGqlq6ZY/QIpzSGSkVoOpw4mZNaJrs6IqULm/mIUEQngkz2yGXg1vtxe9zLuoBe84QbEeres8p0N1Mfqn0mvHrOyGury2WpawUIB4vwRmXFn/9y8AIRtVpePrz+U5i28vpW3wm/7Puot0cbWi70Evh47J8/v93e7pLbYqZbpqQRw5PdhB5gffTNt0OP7scImL909t7gEZkJzANNyYyKIhdgQaYpPlWN0e20p4GM5qm1XC5taSsxHmOoW211WZbXDx/+6Z9/+ad//tvox9uXz/fbfal1XS8tR4hESGAA4M5JcF4v6/XDy4efpbQc4O/HwP/v9g1cN42tMIN+PMiRABnSPa0Em7Ebeyles5iUxJBOUyPmwkQ453Zf9yUCoEeMPlT31PcQ4RxUz5jq3GKICM5qMpgJZjXraUqfAbBcZsPv7kPtT8YCycAygIhCAJwbmpT6yGtY3Tyl/cKlJI8j58TPp/bdiygPaiyMhagQCWEVvrQGL1fBqIJrk/u93m6lcljfju1+3MtOiOGpdE4DbhDC07xFhEtrtbXWal0qQNzv9/sjh04J3uRHkrJmcDc3T7PaJFUnSymREfBgERImIo8w1adUgLlLGSLdxpA+COD+dr0t61LKpYqvlStVEiFqQlWoEAoip21PIl7fPRNT+8ev/+j9+PzHH29v74/HIw17EpEHdEQnCmG6XNvHj1fm8FAEq7UuS3GD3vvQvh/Hvo1jV8QiXLhKKSRCAc5G6kEUzCaF1ku7XpprvL9ZP/qxa0Dsx0iPNzVP8g8RVxam6qr9UFN/3A7EzSN5zPDxp0tti1wqsRM5JF8xoPfRjzFGR8BwdANf3d0f2/F+u22PXuu6tEgpdC0C8IMUtE8/vbKMLHMvlzXB1d6VcWaguIahMWAgEVLWuK2UVqW10ppIZSbM0bcZwIAAHAPMfHQ9jn4ch8fElWQamcgsfKaWBIW5VCYSHaN3j4gyDf4yFGXS6p5K6rNiRlgEoSI+/+Z0p0JTG6OrGhIKYQT2EWrqw6BbxEinBVXT8d2lnMrxs/6GOEcPKSaHOfdMAiAiCFOhedsJYhWshaok/IiQrtSZtkgECB5pmehdt9v985e3t/fb+/vt5oHIhaWSVKkLEZMoF2PmWms6f7sHM324tNdLu9SyFKqE2/YQkY1ZddgY7q597PNKGqP31pbamjcrzSfZlRiAssGDmGgmzCEOsf73ylxzNR859T/PzBP2zhbheSpMeVAe1VnRTl4zEjhOR9U8T6cwPZL+FcEpqgfDgHDmvKIcIiyRRQIjYA7y4HAJLAIZw46Q/nEQFpHeOAZuFj4iBqIRx/RynIdX8lOhVCplYkKepFQDhAJR3EUH2Ji5jN9sqSSGO6IHIDhZPg7PK8FUv5q6nbVV/tys7AinaxlgZH4m59kWAATAgI7EJMHhFAaEAIZ2+HiMvR2kvN32/bH3PgKDC0tlLkwz9yvIidMuDREpkBgGALoZnC5vhMgQBBPTLRN7xQhw4Mj7dfpRAIRjGIZCKIIi6A9cbr4+nLl/c6HkaAfMLJfK1J1kcmsyx59zhhya5BwQnzQGPInlk0hnSko0Cz5XP3V8+aFP/Bcj3NSGu9OspNOyMVLpDACz8J1zWTOjGTaOGKdcxt3YWFidhQiPQ5I7lnTJZDq2tmQXkyX+N09DR++6IaVDG5t3NwvArCyIQgSI0TMRAQzBEKfdy3M4NnndKY8zUzWI3Y32ogScJNHek7Q50hM0IlIWl8pm97AxxbNJAgBwRKfkQqQ4nuW0kUHmcO/HcXs8aF2AoNvY+nGHUK7IBT3D34fue9+2Y3TN7Mq61Etflt6mqS04tp/W5ZsVwkxrrXh9+YWIha9MnxGbKpjjcn1N/6Hb260trRb2caDn+nM3Sz1v2uVCopcKo8exxWP37fCAEM6BOhKjR0YeTV8cssCpYUXnIAI36EeMDpPhAxC1cEsZGNdKrfGykBm3ljdiXZfluq5DWEeHiKUtl/UipYSHhU+qdrhY8nZZpNS6tOWSS6vuHfHfvt04efPE7BdP1x+PSPg6CCIZwFUkCE5pymzEMgn8TGTwKc3MgzFQ1YZr73NSPM+r52jvCTJNvsu0R5lgrqqZIUJRdsq5JfhMIz8r3XPqMlHahJAz7stddfRjTOdLpMLmIl4sJBgx8xrc/MdT+vNaSeI8QboTkNB0nZ+WfvZ0zdDMRczBYmTIHiA6IUHA1MAR4TShT7uiZy5W4hMGnnV30hs8Y2kS5YNzYj0N8S35RAgJ5Dx7jDhbdHdLTkM9ytgfY7+P/T62y9hWq4yLsJAgyBnTcOpsTwbzD55Jeo8sa7tApI+SqeK2DaZ0AKD0El7WygIRDGEixIwRBugBCmCAimzMXNKGRUgEgbgCRnBe16XA9YVfX6uO6P3YHqRq+zZgh2ekaTaTtXCQIJYIMPVj1yy+snVkocsa4czYioRUxzObXEe4jqO76xhHjMPHKOvF9733XUdXhIHQRQKISmFC+f6pXNcGsa5rW5faakmI1J2meRCTMTkzIyaGelmXOYBJrvLJRMmCRzVvckvm276PfT+O4/CZK8u1lghKg9wIAwBzMMcoglQQycxVR0QIE0IRpiIswlnjnrt8tpezPhbh0/0apyluuKmqjj4AmZDnZN7CDALPo8a/tmZ/3ToZrJ1ShBmAAtPzI9xDXcMVwAmRCStKZRIGpmCESpFfU2c1LUByagwOkWrVbd/fb2/vty+3+/u2b310pFKEmQtxISrEDMTIUUppy1JriwgzZ8K21ra01qQVbEkDN3N3PE7TMvAZgTOlWXFe3A4Q7MIkyDyriqwlfFKHMX48JPohmptR1/O/h6TLnkqeLHbz1KAJQTri02IiZqJREkO+8nafn7Kf4jgMwzBXUiKbODRmBtds9hmRJASioOcJ3xoKIxP4DB7sbiOcIjixYEATNuZggnMUAURIjK1CW6DW1MSm4o10kBmHFzeBIHd0e2YkfH0tdVk+rIAZ1gvvm9DNInq4uvU0cc344wQwcnERcykiUqjw/H2YsUASGCDFNEmOAWAkEkpfhEx+0xH7pnfZ7Yj7Y3tsR7cBlbhxuZR6rcul5v3lFtgVugIjDAcGICH2sOSnZgToSYA2R7AZB50gLAEJckFknGNpQ91jHwoeMZC9cHy3VBCYJ+kuP+QnkO0ZEPAsQKcAbRIIYM4uIQ95+Hqjhc8dlSAxzg1u3scg5HmjaUzrXJ9EwjydkzIUJzhp6oCB080n3TyACDK5K54zDzgH2QFElNd9/m1j0L5vhCTCl8ullFJrSR9+TZWB/cBp4fPvn99vv7KIFOGS9/JkFAWACEhBYfDY3Y/wAeCU7yeXzsyXZ8rOKieFaq6jHxuTEgpjiYgxTIcdh48eGduTty0LlSLEJyErAjKkhKkImcEYhooJb9D8PiQR4XA7HvcvbvvbZ3YbNg4WaJda14qEbqEK+wH7DuNAjDTlQQBXG0DTuKp8UPi+zOUVsQAQ84p4AViRWqmX1w9/O/qRV9Tblz9eXl9eXtr97ct+ezs2ffJa0o81jRJTVu5O7pxN0ZS7oBfhkmM4IaKMWUpmFEGgG+jIQi5M0Qx0YFKkKEAAVWJ0G2UAaC0QF6qVakEK6/vj7fPnCDcdzFRqqcsqpY4xrHePdA/0QVpkaB3RB+ooCKUupbYixw+O3+kcAwARaq5qfSgAujmzDtU+Qo0CCwswZueENGXTkytEyeegp/gzd1Mg0lBMY32buV8wh5eI6cSX979IbuQT64UnXc90jJnmPYVLU+px6ieIkIWllbq22mqtlYXHUIh4usxBgBMr82AZ0glxHBmHMR0k/vJIpjHVBA3Sjt4146eP99vtt9//+P2Pf7y/fXl/+/L+9vmPP37//Mfn97fbvh16pjwBALiGArJlnYxBHDwMo7v5CPd9u/djH/3wmTeJ4JpKEZ6aBA3V2bWfGDYSBqDD2V57xMRgEU+noZSnmDuHx2QHAYSNvu2P96Nyb4WjRM7BkE/qygkZfbdMROq//uv/pUOvl58/vv7Tvm9qOvQov/796Ha/31tlM5lF7fN0g9AU/JtGWCm4XJhLbeqInOJL5mSZcylchFO/TYzXV7m+8OixP2R/lG2HnjRRVzMjgrqU1mottRRhJMgry8KG63BIFy0idEEXDCEE5kC0M8QKwtm6j91urq2N16ON7gBBUFphANKhEVhqKTUrgu9YCznaMzv2zV0Ts1C1oUeEIoYUJBQiYuJSyrIsy7q0Vguzu/XD4kh+09AcLJqr2rb3x2Pb96P3MboGRDiHAwBFDONIyh1A0EBm7MVKN2bqvffjgAgbmTxaazERhlMDbamtTnsJwdYaIzH5pN+6T2u/bCY9AAgxA8AighGJqAAxUjC7e5Ty7aVMCEIZdBFMwadjgxmYwRh6mLl2zOsAWRAKYTrjEnjO6z1Tb84a1DxpTtpVH9t2f2z3x+P2uN8ej+PoHljbwlylrEmnjkC35D8jUUUskEUPeiBYsDqohTEaps0nC4tLCXMIYyJhTC98RoRwtQEdMq6URVgKsyQ6k0TZHEcDACL8t5wWAhLjjPjq6Pq8Lb9G5eDpIUA+cfJkW3o8dXURpyPD02Uq4mtSlyMEu+ukksw6fEIyWeYSI7JGoCNTdWCmWpGJMgWkd9t3HSNxecxbjTkQ0kQMfFrAAAuzRF2gLdEWSDF0uIxd+sE6WDsNyzwJsBkF/pfH0lr76cMFmJA4COQd3A8dm2k3FXDLSl7VptYFkZBEqJZSWyUhJwgCAmIgmCBvgJ8ccEJmBkd0JmcfbtZN9dj0DlsX3Y5923cjl1ZqK2Ut7VrbpSW2beaxozMEGzLCQOKQURJ9IPzTxCQH9mHp7Y4wmagsxJWQQcdQH2GuGhGaamUJ5h90REgp8s/7yWe/mFztRPQRE5BBPKnscUaFJ8Z8/uc4ibsTkvH07gk3dx44nnpQDwxHCIogUxsJOyWrLi1BKWugs+PCpDTkY88yCfxc2XHCnU8keS7z+dFM6/hlaREhJefEjEju2vtQ/YGb45c/3v7x269SSqmllJpzZuLZFIpQqVQEEDvAgTiInSkPQQfzMARnCEIk5pywq2l0G+EG0ZkqkyGQqat57zF6qHr610HKDZsQgduk5RAEYwKmaAYICmFFZGlNpMyyKW1k/Hjc9/v7yU5yK02uer0CEEsEmuLR8ThoHIFOGOxODjFMA9VBA+ylfXfQIDOvRM7canslWgAKc315/Vn/OWkniBif//j1sta1wW//hb/HYeNxmA9TBvAWyAB4aqI9wjCck11uZuoziSozToSRyhxQzKBBJwsYQ8fwNImJIB0xuoeHAA6kUWB07QIBVgoQUREUQQw7Ho83N2ICCE5bhGURqR4wuqYCAcyUhvKh9bDjgNHZfS3lcrkSyPcwQ2IJmHInNR9qPDAC1IzIzKyrmxEgybQrQuKU/T5Rjq9qK4gZ3UVEJJEQfhrtmYXZWeBiRgQXkVZmYcrMgDhMh46hkeKeBJaGKZ5kpOemyW2bRRoXKa1mmVtKISLiDjnbzkrdwfLHMg1kREzWY9bM3zyTaRiZWfOJP3uYeR+678ft/f7H75///uuvb18+v7+/vb99ef/y+e3Ll8ftduxH9p0nKJ0ERERkoMBAdUID89E7uem2bX3fVOfcMhBC0QmZKJgSLYavgWzxBFsnihMQ6fQuDEwkE0zIQGVz47Tjh8wIjnAdx/64v19qGWsrGOFOc85GydNOQPd7dq6U8q//+n+5+acPt/tPt33bxji2/eGOb29vn7/8riYBQozMOLGp5I26gam5BVgpRCJLsEO4Tzc9JiTCZSkvl+WyVvPRxw7o1xe5vHDfYVmlNenD7Ih9tzHG0FEq11aXVmorTAKRI4EwBdXQHghAQiic6SrgggAJaFiGFBiGsQ3ftmN7HFJINdygNREptaCqjW7uo1QRIRH+gQItp7Kmx6FjHEkMdA9ThTCmIEEQqaW22pa6tKW1pRGhQ7hlqldO/sc4JZNmtu/98diO3qde/CQ9ZlFFFBlcARDIs80rokSYZS5C6AgbodW0lLTlmETvXEiEnL8RQBFmxn6M4zh616GmIyfCicMywgxyhWBCIapIIpDRUiBSvnkmBCEYTCEMwlAFS2FmUY2hsYfZ4d0GAjAVASpZ5hLONjgs/0FKR6Sw9LMYx2PfH9v+9n77/OX9/X4/+rRpK7XVupSyiKzMLacgkeEaxIQFsQAIQAR6ALiTGqiBeTgBABITi5RMvXdkSv1wXpsA4abD3VSZqEspLJWlYA6gg57z80Tb7Ht25Q/R3Ll64HTPcPezbgBIKTKe34UBwAEQNKtfnzB5RAD4lCpCAOR8cLKJIiaxdFoje+bHITGyEHCgMGIgA0mkfrNWSCjHzHWEahy7HYenhgkBiYEDHAAVAMBkUjeIsw/CVJyn1QaiIaMUShVBBCSGkVhAqtD//CpSLuuFmEgEGM3347gcx+p2uO7k03wkaa2YkTnMkhygpSLhpFtOx4DU0IObjQGUGadBEAhKYAgQrggaHjaGusUYahYBUwRHgWkMmbI8SMuwYCR0CRHzAcYR9tS3UY7YKO84JM6yAeC8MwmDGQgZqVCgozko0LRqYI4fUF6eI9C8jU5Pj0mnxJgOIE97wPyGGZsJk2p5gsHT6ccxi9H8AMLd/lQKE6UN0HT5wPRKmOZ0Z72da27+lecYwt3zW/H0JYG0KKAzrnYu29yKAUhggAMA4LHdb/e3WqX347E9mGSMTBFy8+97x5g9ZhoTOSHNre8G6hYGJsCszMZ8OnQGxhTnoWm2gnCOUib7KFN+I70DIsJmLQBp+ZiFG1IpsrRGDGYWbiJSpGRClhRyZyaohVory9JqzTIXLGKYqfkYox9mIyePDgxm4QFMzCjClPeWkIUTGJLMmVhGUgJO4vhfjhQIgPSf2cbYdGwIISWbcgBEmRno0e/v/fHWt/v9y+fsgtxO7jSGu+uI0eE4oGu4AzG39DMwNDek6bPPCMQEGOZTRg3u7pihR5OdQISSwvmojUslROiHhTvgnC0SAEJ00PBdu0phKVxbhYnKJBNCUTscm49uOob2broRvIfG49Yvn7f1Zet2mor8aaH4PPoS/coUZkcwjyB083DLyQ+TJGCWjaJDtnMxiVPTA2uOU9LmWtXGGOnenUgH5TmZ82+kQlyI000fEWH63qRGVbzQJGCqRSCEAU5AIvcgMmU4+mQ7FslRMROWKm2pPrQTEYCd5IRwV/BwsK9V7o+4UGeles5cAqZ5RhpItFbXVo9eR2/HJpVJiHICbI6ZuZOHY+7GOTE2N0y1qCcRaJykqa+lO+L0GQOE7EDy+JsFc9o0AISDo4eCR1AEBkMWdpwa3EDEmQJG5KbHvm1S0YECjvWiw6LOA+2Ecv+0V757MfGHj58gYl3W6/WlH3sfx749tuP+++df395/R4hwNTcdY3sAS+Y0TUISE4lIbvMsNQCmU2jyYpZar+tyWaraQQQemq3IGG6m0x087w4RIKhNlrUua5UiCGg2rasAJ2NqTm/Vj73f3h9cwJGpMstTsnL6VgVFkCrsD2U67ALrSrUKRF48aVeU7K1vXxl87R5oQYyEyKUIIyMWYZ9DRCqlZjtXa621ICbh38N8WIxu+963Yx9Dzd10ksHGGFN5QjgHCx5mTpSMOAsIMkRCUlNmRBh9jD4gwhVtxCFapAunm77PYgiBOdO52T3GcGHOH6hDzcDMn6siC9wktxNJrSIstS5PTEb4R+z2CA4QgIJnpus8f53SmgrnOUAnlymLn7xTfeZKR9a4R9/349j27f7YH9t2e2y3+7btPWMKSRipMi9Ejagg8gloJsOVEpaKrzFZGIDT8cPIaFr/UcrnRSBIGIUwWfxpXZgNIM6rT8PBzAkJSE5aU3IwI7ft98/k2zIXIV2KZo2bg1l/HjYpByLEk1QWMFmbND0TKMICnmSzU5M1eaxZ2c5NETaZDKbu4MRMwhFAgMzBHFJwWXBdcb1SW5ApxnC36N3HiN5jjDDLjIlzqBThBp0gJzIsLgg8tVhorqbJ0zMiJ4nCASBuojw/H9cI+vZJCfFSKwmXWlBo6GXbL/uxuu42FnLPVIpcTsiQks5SS1tqWysA6FdnVqYTxjQbR4c+Ys4SA32A9UAP1EBL+FuTIoZBCEBOpAgDvJux5sgrEBChVBIhcAhjPWDsZuqIp/fjbI+mDicUkvoYAaHg5MGMRIKlVAExHxqo6EjO6ELA31GBwuLPopZc3c+FhH+edZ44b+RQlTCFeYh8MvJT9glACEEY9FQT+VRLT7KJJPUiHENCXOIkfsRs0ednfZLGMfFds6AAYMhBQWIvX7ETm5OKBHLhZFnnnXN/vCPhMY5aqkhlkpNlgf6d1nWp9XJZT3+hjNqVcyI87SPHsFoDaxAnkEznMcpmYAo6bGgMjTTi4CIcCMAQFAauAOaAMUWZSbJ0JAQmKEXWtTGjmXoY0/NdJFHMWyWA0ha5XGttBRACUS360GPYsSEE9BQN+5QvEUmRUsvCXFrRVnV0cw3XcHAkBXYSFCZiKqXBty+HOFy37f774/HH6N0tlagEQExcSymVdX15fXl9fPjw9vullIooiZdBLv+IYbHvsG+x73B0NCcRKotUl6GiZuEW4ekNBwQe0dWGmhlExtYHIZCwMEkpjDXZmFELVyEE6N0fj9TIOjOaRClmAwcbU69N2lIJ0XSEDWQk72Qd+4b7HffdGXWXfX97P27x/tt9eRFZWdYeFN858rmbTawU3dHdQz0wQQ/MgxMRhaWUGgF9qJpGHpFAk9sToKaqmkCmQ2S8Z8pobGh4UDrUBGAAIzAQI8rM0JgT+sk4jBBG5IKE4xg93FV9KtxmwzsHVYVLraUVaYXrM90dkKm2cn1ZhejYji6SFrluPgE0s68nxnd30pw9Jh45OQtJxSnLulzH66fePTzt0mopYKF95PAHESx7xDhJt+lFSADTs2TS/vP/kJGAwNwhfzMWmtOXxHQC/FT4YzbFWS4k7pMTD4ogT6EaMaWuHJCocqlShFjHuN9u4BDqCHgc3SwgCILgzzXuD2nKMO/Wy2VFxFbr5bIMHTr6cWy37cvvf/zt7f03d+vHse167MdxHKVwbZwGvkRchGsrZSlIEJPExcwMwDZABzLxWkopOafCYV0HDO37Y2z7MUb3MCIoTQoyUFsWvr4sl2tDBHP3MKCZskmMIJIkS1V9PDYg19gNF16WBgwZX8qUMWOlSK3h7mPE7TbcCYIBZtqKlLwkAn/0dNLyGTEAQYJo4aW1UiQ/3ueCSmmasBSRIkSTvxRgMcBC49jH7bYdRx8p0rUcTE8YCQloevEaWZphJLoEiIgOhKhqEJD+X+Ggox+H5wyPCRPei4i8d6RIbbVU2XZFegCATfXFxKGyzI3Aod67B2SSZSNq60WWpQVEuEYiFt9snywtEQlQIOGwQHBQD1VQQweZYVGEQO6g6kaTpDR5bhPEHb0f99vtdn9/3B/3bX/sex8+1NWRWJALc0NqSBWxBHAAzUMIJuE/qQGYTPbE2iZLGMxPkAwAcrQrTEBFaDqu8XQUJybI3gkwAsw0zBAZyTLPhCiPscmP/X6p/ADNJQLiSOO48152mPmIhDRN9SPC/UQXp2svPvvvbA08oenn3MdPRtnkN0dEJH/L3FGAHACm6h4RRKBUqA2XhlIwDHT46H4c3oerghmlyRkxJEUaY8JrRFGqVwDiyL3t81bBaXWGwQRM4IbU8yz0JxPr22eCWIg4OeOV1loutW6t6dG0VDR1V3NEAKAgJK4sTWqrba1tKQDA3c18SiDSSwxxaJYnnhSVCBzkAe4OaECOaKfEJX3z82Ebwgg/3FBREHjiM8InLOMxyCl0kKfbREYMiEghFhYKtCP0cBvh+QMykNyoVJRCBKaEhgGGZIzO6Px9jJNamM3Zz3myTOwRnyO4lD/YycyGKaxhRkRnoucsNYCAILN3cs6XHPPpDUfATCKTYRwREBjAJ/AT5jbGNOidtHHKbCPIU8Y9puseYTqPZh3r7gCUdcXEkc6EFQAIiMcGHr7tG1HehlxKK6US8feWLuu6qr4kEYSZpbBIAYQxtA9Vm+BoCGbs9MwsREYwPP35n7xEIGDJmKB0gSM9LPueqZx9UjLB3RNik1oKC3lQhBIykzBzYc6ITSIiLutFLq+lLZJ3yFDfD+LdEPK5p8smpgqXCEW41lJLK1JqcR2mw0xdbTiAg5YiGTZby7ejtAgL30Z/f7z/1x9//LubM12YVwABFEhcIkSIv4ZOEyMgBIVj+v17gGrs3R979I59ECIW4bqIB4jxGD56H6PbGZ1rDn34fpim7iJIuBYWkiIsrTALEgezCbEwaYfHw+53JcQiWApFQQhwtrRgC69E1FrNgRSGoStaJ93p2GK7A4Yz6s6P7c3eFqLqUTzEZPH/8X/DX1Cpsymc8Br8iTrjeZYkcS3lbO6RLmBzjpFSADOAGGOM0ZNW7jFB4awj3QJh8l9mEw5IAHz6YtL5E7O7Q3Ak4sIsghE2SCfeY7lvEDhVcVzyfGvSCjAgT3QIEaQwXpY86IRpHJoX+Ti6+bwQMirg+zsJI+X4OMns2TojSpEGy8vV3ZyIW21rXaoU62N/bDqmqZ/bOMUfmipYnADMc1iTmrMAAkZCnNy6OeeSebHmaYE+uXnTCAHJI8JO27JTMegeEMDIwZGyfgZmZCFGAB1je9wxkLHUsqomhP20Jf0rS+G7qyeP1FaFEF3ITcxUtR4Hf/jw8uH15fV6vb/fmMjNVYeaWisETYiBiIGKlGVZ1ksjwQAHjFpLbRVBRsdxAASVNJbBPe0Cj96P0bfH8dj2PrpHIJMwSyEptCzlci2tSYCD2lBDciBHCiYiBgcwdTXdNlM/NIosL+sHIKnCE6DNjomFa00qkR6HRhBTZY7SKOcMZ+X1A9T/JKcEwHRhqaUuS81J8gnOYzpYEFGhZOwzAgWCkjEQGGi3/dEf295novucVgMCUqQuzMPR8WnaipO1CQhouZM9VE2HhUEnJ8zYjsC8fdwA0jiMSy1qUDRFhJp5GRGRoLukOB0oAvZDt30E0LL4EtgWBQQpAmHuGI7f2eY+dxBQqiRzjGXhw2yom2EEpdFeAsYeAQYOT2JjWsX2fuzHvm339y9f3r58vt3u235sxwhgpEJSBVmkEjeihlgnMyFSJpwX02kLa+EYaeScAP6sRSPBi4l4EXhQEEIVLqdyiAmJU2qfwDaoOYSZpR28OWe6ecoUYI6Ov3v9qMzlIIBUzqAmCA3ugRHppx4zYeCk7MJXMDWhu4xCzY7dTlw3oWnEeR7ChHzPO/38vd0w3D04bfLNQAf0AyyZGwZj4Bg0Bkw8/Iy5Si11GlJlOALlfO40lk6EA0ATsI+gTPgZO/QDRg93QEKWP1nGna/e99vbZxGua5PKY7uDDokogAXIkY0mTEhAis6FmamwVOJKjIClQBBMCaPn2QkIEliRIXOTDYIFz+A9ZnJQAAXQOX4iRA5iQxwQ5B6AczKRaDAwIzMTI5lDNQxIIjQAMFERaVIqCwM7hXOM7r1HH86BHCiAFaUJM4sLesMwRGMI9sHH52+XymQ0ZW/wlR1x8hBmWnQQpAVv6vPyqcPXBRTJBcxOD88oa4ignB1kGefhGGo+u6z8iJ6XAgJxYEYvxlQn5CSEk69jZgA+s3OfFTAgABChRyTL0893dN5+MdOjTZEIDdPZc6hJH0jY+Fxe5+vnn395/dBOk7XpbB0BOQRUVXN111KjVJfiyUEJD61hGqpmwzIgZ4wZAB0RhJwRO3roOLoPB48MAnSHYf5+f7zf7qli60cXI2KnFOG5RYBGuBsLSHEUQHbiYJn+gIhO6IxeBWMV4TBzd2PhKoChPvYeHnbkLLEUYHITE5sleSmUnt/lO4zBbezb5/v777/9+r//69//Xzpc5Cp8RRQkYU4ec3nc3377+3/+9ut//P6Pfzzud1WNSdulCFRFU3DniMj3gJgxxykyoiAwQjwL4jhCNbYDjo5uEA6MJCLrUtdWlsqtpnjGkIIZiBySnx8emCGFQkkMZMrrjGury3VZX9ryUttFmDpu4IEeEiEQQlAYhYBs2GbdH8egoej1Ev/6DRUKl2VRt+TcJsepFE7jHgQ4TRUkQ5HMopQyB6aJmZjp4R6hOpLTl63ZnBvMAUpgoGUwxXTPRpKgyKB0VAAkOOUcEeDhAZpCFAMEEjafjIiJX0J25SRM6WuW/zlGomhJkQ4SlMYOhYSSX3sUzunTOODPDmh/eSgTvqEZa0XJtoIcKCzrCgCllnVp13VdWh3j2LeHagcIc4conChCvmGYmUQ+L6YprHafDMu0Fg7Q50kye43TIIYIWES4JNKWyiBLZkw+VAsIs4Ae4ObMQkIkcsquIxwQGNZotb5cXy7rpZbGLHgmBqemMp636XfPxU0fv/0XYkY8WB99P/bH4/77f/3Hlz/+uL8/Hvd9f/RxKAAwiKAUkkqSFRN4WB8HBgsBBTEFCwbUWta28seFUCgwLD5/+fJ49MdDb4/9vj327Ujfg4jk4YlUagvXRpQ+9WCAhmyZlY0UwMkKjAnDm4NaH9H16KNUAyRBIkAL1EAlDpJAB9fow/nwvTqLHaq0W2l0hQIiEh71Wybhy8uFqauqZnoqQAr0s2okJmbBs5eYLlEOkJMCB4RgxMLURNZWUxZiqnEWYVOejScOiedVk1+BHoEQXwfXGmbZR2Ag+EylTQo9YvKbENQCupmjxSxzAQAxnGKWzhgJ5bhrhAagO5vxGNu2v4s4ExAGYkRcv1kqhJjBMWZ+eHSYv01anquFuWc0Tub4AsY0e4UJFWXxve3b9rg/Hvfb7Xa/3Y79GJauvYxckGsaNAIKEM8vTq1nEJ3EmD/ZhxCiMBbGKtgECkPqskWkFIKobiN8EEBhLEmsJDy5LRgZnZTtKCJx5Aeamx7CpxsCocd/LwWNGQLBHMiQmMA8/sTNDQ4OAD6PBJj1JcTZ33r6d1rCwBPD80gLbOGpPIdIh8aTUaaRdW94ujbMGncMoA5AwRRu6IaqqBlJPwllSTWAoCB0IkRSxGCOdMqcUnLA8LCwcM937zbXYd/x2OE4wByJkWckwV9efd/eft+kSNtrbaWPLfrO7hIhQI7M+W90RjFyEiRBIa7IFYhRkBmIwtIGI7NzgIIRCxEq2AgL8GldQMTEXsKPiB6OkfpeBKBADsKRtFUno9MhGOfdQygi6A4a4BA6TB0iGKlwqVIXKYUYBKNi3/UBPXTkEFOAKvNSysyYCIaIcIzAsdE3ZW4qeWczCqd4m2ZyCgLAqUFmYQZOTGj6sUwec16cWRjPQ2Ee8nnEAOfhlTRTn8UxEyU7fV4JyWYAACnkLs/DKMdVCKA6RtrcgMFUT56MVwQA5Nmj5aXj03cpa+55W3mk43G4AqIa4IFA8nr9xo/6b7/8s8gvJ2HiyTAG1TCds5FwQx7EA8kQHDDC07kFLNNYNc3CuppnLGP2vBA4jmMchw9N+i8iExcLaL9/DvDHtofZvu2lUKvIhfJUV3Q0AER2CAIMdEQgR8oiODnpQRilIJN4IzP3UAAsEuRdu9rYxsG11FJrEQ7OasASzRLBKvTDMtds7Pc/bl/+67f//P/82//+f/rRC7+KXJELkVBaRSE/7vfff//98++/f/n8+fb+Pi2Bk1vmZAPNMJKGQyQpFgdK4IbmOB4RwD1Gh6HRFfaOx8DMCOPCpcr1Ui9LrYWKpL/RSPtzyrQ48tlQilBpnG7yggGG4KWty+V1ffm4XF7rcmUIIokA9BAAJqqCtTJzamh67/bYfese7Wh/BeoQYblcLKNoJXuyOXxIFm8SUUupM8WUPLxCoKmaqZv6MM1izM3Mnix5n6BlklQTDrXUb0KEI6I7RcnwDwhPSXNkQQTmDqYINsIDEFlYVZNiFu7sxiGQ6ZU5WWZ28FymYWpp34cIDFS5YOE6Szo+y1yAMLcA//6kZUShjMBIX9q5jYgptbK1lMvler1cXq/XtdVjf9xv78exqVnvnZiWZWmtPinHua/Vxhg6xsi3ZubHvu/7HhGjj7O3TQojpG9WguKUIGatk2mVg0fVp/1T5Alp7mrWByVEWWTqm9QgULgQ0rquHz9+fHl5bcsiVBIb/hPZa16w3yPcruP2X/8OKXu3se37++P2dnv/z//4j9/+6+9f/ni7vd0ft713LUVK4Sq1cq1cGIMgwHzsXUcnJi6Y9hpRqiz8+vr6+vKzcA0L7dq7/Wqf77f+5e3x5e396EeagRAzc7CAFKmNSkv7rJFDACIjMRIndvdTvZiEzPDwTELtXfehwBIBEqCAGqjIwCXIwiNUofc4jiA2j25wlAWCF6pLnR/OX16vry9Lg+PYt21THRChQ59ESSlSKhXiOcbGmTifWBxYoAcjVOal1astkzVmI22mIP5ECWMkongK6mFarSeWbNPNwhN0gMg1CzlBh0m3m7LrHHEPcM1QXHOPFCkCSLCbOxBFyjAADTHN64YFHYPuj4jYW+FSSBjdP37zTBAxZxGavvQnPWhO/J9HD0BEjlMgi7sMaxo6+ujH0e+P++32fn/c923f990skAqSEGcD1VAqkMSscWm6WRFDXi/Ji4451MXMnhBsBRfBpWBhYAICEMlUOHAb5p3AC5LQFKJRTmDgHFSlJQ6zB3y9TM01BtKMOo//ZthvXv1zpsDITOlrBl9bznA/JUJZsqS665y6eZwgn0/HpcTWUqiexocYEI50OunlXDPvWvAJ3KoCMWAHACCCSEDX0QzCM9smfyaeoy3MrFqiII5MLKSzn4AJS4NnfIuBa5h6323foO9x2gJD4Lc7ykbvj+6FwUtoURugnd0FsBEjiaUuHYKQnGMSj5gblYaFpmctqoF2B59SD4QkhUNEaEawIhClrW1y7z0ywNkzPi+LYyxADCTJcSIhmruXAyVTeqVgAzqbUWZuXBfJr1K5oCA6dVBQjA5EUkkqckNpJJWnPitO3S75dyqADEib19oZb0Ocu9+nLmo6KhAThBOhc1K0M/wMnhSS2S4H/OnIn39lwi+eXdDXMhgm/vt1g2dCHj8b7rRKegrt3L+6vcdcuEET7c/l4QDugJRaRniW0SmOZACEIE9zdnUI+x56eXn9cLnwnKGkB3AWHwam+KQGAvbAHjAm7SAg1Swe5j7UR+/HGN3U5hwFiYghQPuhx2460tuCqUipHujgW0aKm/ejo3NlSW//vI9z/IeEJMyVeLbMuYMcwylJ0YwghMAe7j5z2yccZu4AQk6AnMp7SmTM3b2gFwz+AbMd3MZ2/+P+/tvn3/791//838fWi7yIvJRSuRQicQMzuN/3z5/f3r+8b9t27Hv2NSKMhOBoiqYpLpprKglLpnlYz6MnMRsHCEM1MCP3p/8VCFEtVAWFkSiR22ytPBCAgji4QCLFmNjIzM0iJKjL0tZ1Wa9tvbblyuC9LqU0EyEkBmAAQWQANbMx+jGOTbdDwek7NArXdQmEFMjn2YV4Zj1EZJJotnNPzGCyGtKu21VNJyHnFFD4PJ8hImDaiHnmjuQHDUgG6IQzmReCgGY5FK5gfs6T5sYVITFkRbAZ0vW8/s8qFU87lynezU2aY3lGZjqtJ89Lw8PMcjV+e/sgMmMakySwnUdC8s+JEUttELVIKwURvnz5/OnTH9v2GGpjqAhfLuuyrCzJtcmj01V16NCheW6o6e39FplCS3xK6ohwSjTmQsrmXURKzTfq5Od1gvwnqeUcZkNy+kiIhYtwqaWty+Xl5fXD68ePHz5+/Pjpen1pdSGeDlnPGnfenj9QoEGY9c+/IYSaqo7Hdv/y5fNvXz7//utvX/744/Z23277sXVVLwRcRUAEhYEZgykCTMewQ4mpLIIAPizn17Xw9boUaT7ioCEs4dG79UOPQ4eaMEmhxO+kQl2gNJBp9m9EWedQrVQqjRqaQqdThHuOWOcXSWQcsSmWilVRKZBADZAwAs2gD8MdLbr6XiOWA1dlom+DsgGgLVWkAYZOnRz0oTggS4+i7sFxLtVAZALFyPCyZAyEOQK0Ir4uEJHsghkv5zNcPb0OM8U3EppPUnU8p4zgmkSv1EDlvPJc6BCcvDxCcIiMsDEDnNZEAcmGR2YuwrVO4VUkfZTAA6QwFyRy9z40mEVAYCLn3+wfSB/OqUBV1XSSRkwvwnPX5njfLZIzr733PvrRj+M49mO/3x+3x23bNh061AC5EAoXksrSpDQqhaVwqSyFpXy1tIbImz9ShjP5HUAIwlAYW+WlsqR4F0JEaqulkEdxLxT+jGTjOYdJUdfXKWs27IqKCKCR3kxhGODupja+v5R/UObGebWLUEy8loXpLDKSqHRWJF/LDMhBMvpMxIUnYoaIhEJJ8Z/+9DABFuAgAEEAckObbCm3UANQzPSTAGCaZMXI3xYnjy3P5BS4YpoFcBaR2VWdkb95bMLpiA5oCvtmx6Pvm+4b9YNOLil8WD9+49TBCBWdAtgAumMomUp4IwwRhlB3dRuhmUlRRRaurZQkCbjFGNb7sGOMNGwvhUtBBJjGTWFqGgoCWJ63ByAjVkQgCAd3NEhu0VLa9bpeLk0ac2NgP6IffgACOaCFIJfGLnWpQ4cS0tIy4LBWkkJCQURUqmBDMUYgkSIiDbk4siJxYEgSVQHAf5gkYm5T/IGRniQUkZzur2SmxF4xjfSeI0OIKaTllH3QdCyCr+LxyRY6uRCTeBN5slii+VmjBoI9y+K8nglpzmUAEjd6QkfJlTGz1GYlEowz4uQrkHvqLakUWZa2tJW5EIk7HPs4juEeX//S5yuVrvn5TfJlUORBRjE9Oc6zYGZKJ7qdzJQItIyOU1U/nUBnmQtg2n0cbgqhyc9iErXYju39djn6sW19jO4MjLVySUYREJAwFS6rrC9luUpbqLbsPkbKYRg9+HRRyQEI8OmgOsOE3YMRGIG+GnSmS7+ZkaoEAS7Kf90+quN+/3K/f7nfbvf3x7EdRaDUWNfLyhgQ+9Yfj/32vr2/PW63LX9xBBJOoQBGhPZIUzWYY14Ph2F+8rTRA8YwHeGR4xCpmGUkhVuEUTi4ug6lcAMmdB/mI8DSHI8Y6wIXpPAgMPPhTjk9yOHastZaRQrXVpZ1FaI4DtRxmPZtH+pJuyGGPiyT2MzBPQ/Ev7wQYFlbEDxnc3lOemQJa4BoqumpmXCRDbeRAI26mWVUSpoVnGbQfh7L83DO9eY2eXAATkmZS0m1hwMMAw3HsHALy9QyLhn5JAhUAyLAzHJwf7K1wd20d0CnwixMZYpubKiOMWyY+VBFAOGCjCy8rAtRvgNPicm32yfdDP7k8ZfMN/g6G8ldRiRS23J9ef346efj6JnKAQiZujTxMwjKnqHUZS5qQIDeexiMY3TpIlXEhLlIKczubqbp8VgYRSZXMJ/76FkDBRGVIiKSozfKFUfMpXCppbX1el1fX14+fPj5559/+unnv/38y9/+9s+fPv10vVxLqfTkd01C86Ri5zv89pFElH4gAIaiKfXdHrf97fP2/r7fH8fe+6Ha0xAL0BEcUx5amItQgI2hxz6kkJS8UMPUeu/Hft8en1Waa/Tdhj4CTATXtTpeI5ZWuVRCiqAABikoJZAcIwCwFK5NiDFcdFDY2Fy1a0w7o2DBuvByKZdre3lpL6/LurZWa61aRFrr2677rhZRDx4dAWgM9xjEhgLEeSqbh32P5maSpmcQKKJ5eFf3UFVVL8WHYhshXISFU3CFAKfat4/Rx8jI93Vdpj5MuPcxxnCzpLfhtOWBHMTOJN2U4ANFeNa8k2buAF/dgSaHJ4jCfVZHAElKgJMPwYJFpDW5LPV6qZe1lcLMjAhH1+MY5oEyfTtERAq3KksVYco00z+/ws3GMDfTbtrzuAZhTrATz8SF85LV0Y/Rj+O4Px73x/04jqMfR1qj9T5UI3JKW7k0yYqmVilVast/l1qk1Kf/+iQ+nfXoaUSYVs0gQq3K5VIZwFTDLC2ppDCiIDbCoARcEheE9G3i82rOwwwSZs0pbpq+ZTaHeaj179lQP6hdntAPc5JEgRCNPZw8Zsj85CbNljcgL8NE+S0AkwAeiEiMKXRMwhUCzmgZwPkPMKYIyRDAACDDflVPM0GAgGAChOddkYiBRzh60DnqRkRKV2QJIuCZJZxgAxOmpSYRAgSqwv7w21t/PGDfsB9ThYAIa9Hl2zI3GgWikweoYRi5SUTLUpHwUEXDUHdHhFhAXni9SKsilbir3vrmj6F7H8cREdywhCAiGoSHD1c1DaWW/N7s7ONMZUdwDXXEmc+9lPrx+vrp44e6CFcy1Ntxu3UYoDl4K8xFCiH5MFMjoMqlsJQkGyaYhVQluFJ1AcBkfwpiMeJU6J3x2oCo38VDREBqB+nsEYMSPcrjx+h5iEMkIDojrNzdaMoGMrKZmU8SQkSAQdh5ZgQAUFqsp1NHyu4RnSZCRGd2VHohMREJ8+x1I7K9zWXskLx4V09T/nhW0gBn3kSGkOVkgJCIapW2tHW91NKKLO5w5w1izxL/28eCERSTYXwuVgigIBTGdIJz8Il48PkdT8P96Rvmp5Qmh2gT3Qdw17AOoQADw3IT9W73x/36ZbnfW+/qZuHEQFUEER0CGMtSZKntWi+vbXmpwsDkGEYWBE4QTIEBGdNN6fmW++fpUjzC3CU9XqbsNTx5l0MNCKkHBsu3YyMzfdy/PO5v9/vtfnsc21EK1AHMvK4VIo79/vb57f398bgdj0eH02KGuZIUcxzdtKd1xNdSzt1UTbPVR4xANVcDAMIMsSRg9EJoGmrKs8ztioYZ7RdqrkhOAgJIDG1BEtQB2tU9IjIfG2uVZakzQqlQqbW2tRXB0cmU9l3/+GMMD3egIIOu1ocPCwsMyD7iry/EZWkwr9LTTh/R3ZU1X0NVh/Y++ug63M0TNzp1VHnHzzyzRJKeF8wEIJK3YB5mMc2u5nf5+em5uYalKlrdSai0mlodTstxwAA01WSp8al1DbcxuqM3WUi41Cq1snA/DnOPGM8wIwRiSoSzlFISSzv58d88FphHxlmIJ5CNRIiBqQ0FAEQWKa1drq8ff/p5qAISs5gZTbr8SYebgJlktkseMvu+ja7bYz/2Y5RmakWk1crEOrony4sQCYvUIkVYTqcIdQ8AFOEl05xEMlktDU1KaaUtdVmvHz++fvr06eef/va3X3755W8fXj9dLq+X9WUpS6kl1E/mVF5RZxmPX0mgXx9JlrkIFIahNHbb3vf3z/v7+/HYjr2PrpObbQieZizhGtiocHVQCOh9RPCyOiV/T7X3Y9/uW6XB1Q3G4WM8ALQUXC9VKpPAusiysKMN7xoKOW9IsDKwVFmvrRRxY+1oA7X7QUmwC6SQQunocn1pL6/LLHNb1aatyNaYbwdQqEZt2A8eI4baMK/NawURQoJMnP12nQCYm7p6eAACkp5Q7Oiqw6T4GDg6tAqtcBFwCMtk34khjKEjMEqrrZVSCjGJyHEcx9HHUCSg6WIV7o5xapSDYPohREBQ4Dy7Z/P99TXpmkR51QNM+sRpz0YiRCBFeG3t5bp+fL28vq6tJvgCR9ejD7WnCntCdq2kudjEhv5y+7ib9tmQ6SBEohwLsbAgTVtlmwpjG2Ps+3673798+fL29paRZmOmUwQAkhROsldtpS6ltITvSmu1LaU2mYAdfuXv/xnNnS7fARBIIEKtlcu6EEQ/UPtTgVCyOmGMHOVjGIYjuGfy14k/uYehm6WKPXiS9yP9BXofauP7juiHYb9JH4VwAAgRYmY4rTnH8DFsaKbyAkzIbeqCAFLWy1osBz95BBNneZb2ujSP2sA5MoNpVYiR0LGQlPT/KKmG/ircR/jT/0gMLuf3pcTMrKMclznOzPj0VZbU7aWJRgSMHv3wY/d98+3h/QgkZCFEsJdvZwFV6GUt6dsVmFE96EHmYu5d9dCxj34MOgZZ2KW0S22r1ELEQO7KHil956R/mXvXQNBpVWCh2fn5zJZyt/Cc9uR7SJIiAyYzoXG5pFicUAEG8JHz9AhzFWRCrCyIggwEKCn+RSYQjvRVJIYALlIol/RUFAeQZejH15OX7XtV5xPNQyJIEBcAfSpgPA1y3XDiMelinzsdEYAmvYkCPWsTnBd2YsJBMRFbQCR3N3hqm7OCDQLMEAmbXgrEFMnHhZwZTfZt/PX8mXelp3P+WZGeVJvEp+fsLQKmlbgNZwmYnfpJJv72JZXKcipyswlMDn7QNMpIh6ygcPYzcXy2NQFAp/IbAoA8wM3dJ8kZEZIqnb1uxMiNxBEkwIIscw5MRLXWdb2wYCCQYFlqWWu91OVa26UQBoKFKTqgIyGZqfHU7vF0vmNEjsBwVFViUdVSEujjc1kygQg5QWGoBIXoB04Lc3/0Pg7t+zDtrqW1oerElIBlwrBSBCJnwsylSmnsCKHhBpC+RRmVFzpd/GfSISCSZC4C1SK1yjzNjGyEDofwkv75DonwWBAYJiG1D89YmtrmgQOO66W8fri8vr5cL+vlsnARIlYd98cNiIRp3N767bZvj/04ho4IIAECVAv1hHJ/PIrOaSmg05TmTn2DeqaQayr656HvGWiepNsp7k1SwvPzeqKCHl+zPR39/JNZTSXgSoSYKg9ODSSEJ78ZabrBCFPqYJ5K4ZPekTmzCGgETBLOVYrXr5dLnKmbAZg8CzQDQgYkYsyIwAIOPyhz4+k28mS9uUdqcAPjVLcAAJJIWa/XT59+hgCRWtsyRp+d6mnPkg+nTKKzpOfD9njkLdDa+rpvox8iXEpFiPvtdru96xiJf10u19eX17Ys+35s+zbGyP5gacvLy/VyuUgpUs7kGJYJcbXl+vp6/fjxw8ePn3769OnTp8t6LWUp0goXJjHSieY+GXX/55eq/vbbPwDB0BTs8/397X57HNvejyOjyXS6ViS/X4ft6TAKBmiAPoaGRTCkyBWH5rlUhJlCuLihDt/3h9oBaKXQaaogdaFAq4AGMmUzBjbcLWIub2Ci1srlEmDEWPoxbKi7LRe5vNYPP7UPH5fry7osmR8SLFgaurO6GLga9u7H4ebpE++loWTpIxmG9QNPAbUY6mqhFmYw1HX4VPqOvBE0yeSuY/Ccl6VYLKsiMwWCIANis1ADc/RgQDmh3MyEiJzBCSc6gnlMJzkIwekZ7ZHsnyleBkIKesId8FViiBAQk5jIXKUsta1tuSzLtV1qZWZCBAIm4JHdfWLXYZCSOsAQ4HKOA7+etOHJWk3Mk2h6KOLpBp3TVtWjTxD39rjfbrf32+12v/fESMwm15BlGqPWpdaltkVKfrVSmkjl+engObY8z4AcVyZHMHzeSBm9VqUtlc6iNblnp+UKpu3yhJhy0m2qmhd2lgeBQjTdFGP2hJg8lGTTOoxvl8oPytwxQmfkaiBSKVJKEeZEd/Z9PLYj9n4OdyObDCZKjUBrEIHu4VM5FGc1f34hAp1JzZGBhxhZIQMiotT06Cx1KVKzQD77R0gb/8SceLKfGSdXgY0w1xxjBAXQhGhLRscBkAele8NxeB+a/fnoehxKRKyERG7flblVXl8JsrpBeALZSYEbpsc4tt73fuzjULOltUurVQQzFTqCEIQwCiPWVL/p6ObRzbpb+qYjAIys1kxDNQwDCYMcT1AIZ9SXIxmgBlIS6x2HkwZ6OKphGFIII3GlUkg4iDN1MgjzC9ITDmqkTglOSCFbcQA/kU5ACMTx/UGDz6+YIkWnZBGbxeRoonuY2kDM4OH58cFky0YEgjMRkQtPz/5cTwABQVki5LMeYBEKYJ7hC5mIRkm29vzbJvdq9tnkaIgYaRefZTV4zNIdIWLq255akGy/8EmAmOI2QAr3xNgAqPeudrh7gHxzSdWV19fyJzZPHmuQOWPokNIxDwxPo8Gvrf9EcCNt0RARc9B8iu/zSpzConDzlMaGDe8WfaoOMc0ya1vX6+trqUwCXKi0UpZamkgjaaci2oSJmMW0qw2zgbPGnWnFWea6gw4l6aqDKTnPT40PRoNwohCKgiDB67fddETEiNBc6TrC1FxHW+04olQMEOJWFyL22lwzuxgwYYMIIjJmlzHGUDPNU3GoPb2PuTAJZLPAjLVJqwUxPeRJO+hAUwen1JfVtqytmWsfx7Burvs+SKI1rAUZUQiZ+Kefrr/88rdPn356fX15eXnpvb+/v98fj8e+//b7b24W28O3u79/8dtbaEdKU0RyCAu0SG95+J6vDABVCJCZmIUhYIzedVjvehyj94ggxEJIhQVDiVRjkI+RtX0QJqhJIpyJ8lntpqtrIlZjZE9EwF/L3DnvFMkE9ci2a9pZBjGl8UUg+VOW0rubQTJvzdNXE5mQ0cOliWnVwYFgxjYUPCgw9SkRHupqHbigJHsQijB+HXj8ZaVknWru6l91dHmQnuXObJWJ5XK5ImAtdVkv1+vLvm9H72MMERKRWktbWtqpMjMSHvux7dvjfpdSlvVyHHvWBNnX6Rj/+Mfff/3734/jKCKllI8fP/3tb3+7vrwe+/7YNlPLavZ6uXz48OH6cq2lZjk2sTYW4sqltHVt62W5rJfLul4upVTGU3BJFE9Hmq8P4M935F9eXcf/+9/+DuhOYej3vv9xf3/Xvrl2zwnHbKXcwSyOQ/ddkfzosneRgmaa17eZ5xyclcycAMCdicNR1bftPvoersQ8xaRMgGlGScipsoLRbfdx9DG64aNnKBgLXV+Wpa4fX0GH6RjPMvf6Kq8/lctVpECAD51eciRQmwSiOfdj7PsY6l3NwpBaqa3WMp1ORL6nhz2984dGHzFG6DBVNwNzBMAxIrFbHUiokewdSABvDjKAYNiQw9X9sR9HT/IHRkgCtnnRIeUMHdLsNE5Vckx+AiZUF1MPniPjeXM9W7WA83sRkyAhIrnMaqlNauFaWBgIDVI4Ss5gYUOPoV3HGGZurdV1aaUIvVr9awWXJazHTEg5oVSPQA8FQ3NX86Pvj8d2fzzeb/f32+3xeGz71scwD0SSaeiVRiqVs8xta62rlOW0ayrEjEDuEWoxyQpT6nbe7TNOkTAimOjplFwIwVMgRegRqpnOFcLIBEyY7ThCxr2bfeWQZAJAymMMOADlNHfnUoro8ceG3+g4fxD2a+qn13im5vJlabWm4JdENs9OMadB0zmJz+XIMzoSwDIoWn2kUmKWJjGpfh5qDoYITgEQRGjJKaitpiNjW2ttkkffyTKbyTRIcCbCZY2LmYUOYMmloSQyIwilT6YAcmQ2qYNZmHrEABgZeuU2k7BmLsFfX0X4ei2QY/D8QnhWS2q699L6sR3cunQbtZSWfauqJzsPkgTCRGjq2lMTYeM8zQHyyUSYO7qFGRimTw8QOlLqG1LZ6IAWMBwgwABAcQQpoGez7U4cxZFDmFYuHEwAoJCFI3pSL4MCOOWQ8VSABUDGWeaCyB4QYPwQcXhuZvT0JkZ8FoyA2fCGmgMa2qyin2oUt3A3CHRyQoKSJwDDhHsRkWDq07LeHe4QjoHuadjylKiktOtPDWWcktevSo+8peGZ2/lEqmaxe1ak8OS65PQcZq0/DT+JeIxhpu4Ocfl2qTRervIsqufRdkaiwFdtEELws7J2N7WJPYJpTCPItJc5+dEQGBDJ7524toWrhWp0jwE5wSAkolLrclmvry9tES4o6VbfhIQwE/CysSdLeoApk7EZI+aoupTSammIktDp6AOljDFm7U+UXCREJhAEwSgYAsFDl+OvgYsRbpYuu+4aNiIg3Hx0UCMOQaqlrUg1FnCH3vU4zB1qa21ZAagUG8VH770fqpNoMpI0gogUUokrIAWys1BrXCshYBiG0eigHUb33rEfRFxaXS/rZVgHJO84uu8j2KJUZkYSCsEi/Pph+fTz6y+//PTxw6fX149vb2+PbTuO475t27Fr36Ef1A8+trI/qqk4exAGJrfiaTz1vYAGEFoVtrTUKRHxALMR4Bo2XAcRFRYiNiYXUbVjGJFlFNDzg5bCrZbaSimlFCHidL8YQ/f9QHRTBEfwcz0zscyOMkFbpAkP5UQ1AXVmHmqqo48xeh8ZwQCIgG5mmpx6QiFA1N5sKBEHBLGFBQUW4iAOkum84wEMaJHyDEYGBvq+zE2Hpgg/Uetzj5w+K3OeBwBIxMtyqaUtbW3Lerm8PB73++Pej6PUsrS2XpaXl+v1ehURRPCIx/3+frsty60t6/X1g+WKT6wFcN83LqUP27ZHLWVZln/6p3/6l3/5n58+fdqPY3ts7lFrba29vLx8/Pjh9eU1M72TczVHYpnKVoRLTYM9Fj5VyNP36NwX51xpUv/+DIh9ffWh//vXfwdwY3COHraNftexuXXzMQfMCJFOGaGqYxwevRt347akcwUTknuMoepOmqEG4arMHIFmsW3bGIe7ps1FkjkDMvKDpGZ+FRCOvrnZMFcPV+XE6coqfKmMJcxHlrmrrC+yXLldoS2AqGpqNsABgFiwIlMRd963aJvuHXC3CENEllpKK5KSxB/gcR7oTu4phoiJuAYCBCak5agAs32DyNyHgEgnSQQAJHT0AUNtmG2HHT1Z4JyeJ0BnXQrIASAwAWwLd1czAAxyYAPgLG0QITcXTsFmWklqDp3OxK7cuVKlLK2ubVnbstSllVa5Ut6h7kn9QA8b2nfbj7EffaiNxW1gqbE2h7/ePxHhnmyrlC3lU8FwSL+CoTbUtm273W5vt9v77fb+ftv2faiqGUIyCGcxR6V8LXPrWtsq0kTarHFJAE5R9bO8PV0W/lzm5tZFBJHpv04IOoZmFmKEa0Kx5EK1TACFmRA8gMxC1TAt6xmEMzTE8kJHJ+bIy0irU6enKOb5+pFvLjKT5NYXkXVdL2nAw2mQkFbhUauNkf4XTJiDLiqFW6utVeY5d+/JLet6Mupm3zmG7sfoYzBhYSKA3nUcSsTruqyX5XJdry9rW2pMqd3Ef3MgkDYfPH82Ik2qnrk90wSy8pZCtYiUaYjuQVZRFUeL14sdr3a7bbfr/fE4iIhZ0vnlux3lU9AdZ6V7lrlJp0OfJ7tLSa6dq3mYq9pQnaLO1CNTYCSdBDLLD8BjmvvF/F9AJwUkncc4kBErS0WpxITgQ/u+hyIzGJiZhuebQ0BARVRExokmpTeUnZnEKduLDCfJQcoZyHlWuvHXg1h/kBQNgHzKjs+hDcIUzUZayNHpoTBr6CnOmrqmvFyy+ERTjwhCO2eSmBi8iIjUrHTHsIDpb5AqkJmVQqimcyg003BxvjWYpXiSYs5aNs5xx1cAKSJllE/uRABguHtm0sIsLXK+bNmefHcpkRCXNCg7WR1z4wMmJ2FSdhACnwGt7gAGZoHmaAiBPGPiEkQ4NQuQjmNqno4qYQSI4Zrsqdpa6y3Ggm1d1uu6vq61EQmwADEAJaXFQ5+tXN6rqahHFiGeLuYiVbgi8TRNQSqIwDzVNpyMRCEqTIWwEBSEgsC3Gxxvf3kmZva43/fHPrqaAngSNeuyvLy+/u3y+rJc9nXbVEcu1TEy0R7bsrRlAYDR++h9f2ynWhQQSc2XVfbeAwzZkB05iAHZCSciDgCIweIIQEylyXIpTJUrGXgftu1j23tXH46IGE6THcqBnMZT9/ttYWIIety30dUdmaTWRZi5FK4ViUAVxsgoS5jckmR0TVOdb7cO4t9+/hQwyyYIuN1v99vtsW37th29F5Faa/JN1Ww/+v1xPB47EyFGJi/XKm0pl3VZL0trrbVairi7mu/7/v7+/vZ2O7ZjHKojiS/T8yAV35nDm54qqRBmmRd8QFL3et9nRx6eUa44E3lSpZW/XUSoozgLCzJXkkpgcZTjkP3YjuM4una1bn1Atpf2IzhhcvHB3ScYnR+8HsQFiU+JayAiz6E/ELPUutgSEUQoRcYYtZbWWktjjGVh5hksDxBEUutyvb72IyFzJsp9sD1u27a9v99aa8u6Xi6Xf/6Xf/0f//N//fzz33rXox/uUURESm11XZb8gGYEXDLkmDNdA5mIpmcEPKnSkymd2vb0NNtHIoj+dMv49qmY+2/3R4AbhXEYxoDoEbvFPk76ZioYYIb5AiECSyltKW0VSSyKp9+4qtnw4xjavT+sSCEWJBodVMEs7BhjBAlxQS60AJMICUOeWoba/dgUMNwmcQbRBElKiGRwH0SwFCAGdx3DY3ckS59hRi61ErIamIM7v/SkXpgqezgSZFCFO03M6jtmx8fXn+16tfNANDVV12GjjzE0EhMDKlJraUQpY8phFyVbnCexMyK8D92O4zjG1D4j0jPpPudqFm5m6pl2ZjZj0jzUfETo9J2g5NlP/MU9S6Bu5pnYhee8srW2Lm1dlsu6XOe/62WpcFoG4DAHRe14TjQREVDNS+/oHqo/GBL9eflMOZiZqob7UN2PYzuO++Pxfn/cH49t3/cjpWaBKQhnJhZKS1QUksKlcWlcG5fGUonLTHjP+vlcsTHVZuf9FicdLyA5TDS9TFKW9rRySrAbYtpOBCEwYTABYj57mEikm1qpVViISASJMBths+Ru5bzhv2EohgDCgljSmLzWcr0sl8tSak6T84Mz4qTCWExqNAuTCNXCl+tyva61lpxl967bdhzHeD5+93CL/ej3+7btRxValsJE+6Nvj4NZXl4uLy/X1w8vHz68XC7L0//NYzra4czOPkltiIho7qrD1PJiIcYictIIkZimA1lkjjaHo1qYxu32ePvyfn/sSQYkIhs1/lrVmdpxaEDC8ifDeg75ISDMFMzJqaAQoXlqovXMeLM02DrJvfBEeAiRIcsmQDtrLyQiYKKnFEqAClEFaSyVhBFV+76BMjJjoBvokxKHgKhISpQETDAIRwV0AEc4Ce3Zt544QjxL2rMqm3+ebIBhP8CjEAUmTJTMlfSHTk6HJ85PJ3hxtjgRDp6+m4gk9JyrpENShGd5yixFsBQmktYas6ga4n4+eyDmWmupooOJkJQyBiLcLemWc4YCf64z/oSyTnJCnModRHSf/mKRmqH8bgcEYirMhaWk6Cu5Ut9PGOfAOyHYiHAH88nnOstVOLFdOr3rLC19LdycjSCgJDct05CzvAaCAFUdSqpoFqqgA4kwzFtty7Ks6xgdTWm9rMvLurwuUoEyTy9Ok7/EyABh0qDSOkeEhGiqjvisXwExGX+MlNrp7JtTbiNShCtzIaqMhakSivrx/rb9+Zmo2v398bg9+j4yD4ip1Lq8XD9++vlfXn/66ejbvj9Ux5ksE6oBQW1Z2tIgvPdHPx73d769wfbIDUIe0XV0LWqHxmGhxMHiAaCjD0UwwEhGTrAAF2KuJAtEiYGj67Yft9t2f+xBAYRSZgQrIiQD/+iPt/c/POLout17H3rsA4FrXZsQARQfxYa9fd7GGMcegR4EPnskTDc6+kHiDCL+8y+/EGOWUwDw/v7+/vb2eDy2beuj11rXZRWRPsbo4/bYPn95Z74hIaCz4LK0ZW3X6/r6en19va6X9bIutbXMvL7f7//4RyGMN4zw0KFxEphzM5q7hoFNFYgQFi61VUTSqdHR0Xs/jjx/ISJdwyjIIdIHME2P8ZwhMWBjWWpbamPE/bHvUu94D/O+HaMP01TpznFJfB9ZhACprjft2vs4et97P1iCpURg5qsQZWIzT6SDiKXU5khUanO3WkuppZYi6YdAM2C+tgVZ2rraFJtCav+S+XR/v76/vX/+/Lkty/V6fXl9/ed//Z//8j/+1y+//JN7DNXw7OTxeWImlRojBIiFgUrGyj7b+7TfP+F0dLRwHDr2Y78/7tv26H34MyVyTvb+evtEfN57gCu5TsslcqTdYxt69K7mAVM3GgCQtwfjsi4vr+uyyunDN0uRZMq7RX/4TtaK15VKFR3oiqqhNsw6Mkrl0jiwcAWWVE2AjTgO3x6KBHlOEjoCBBOThSgzsSAiAbr76N1GKA1lCRYSRq7S6iJSMz40gNL32cz6kZd46LDRzWza1353+8BPP/3CjHM6B2kUHb2P7bFtj32MYcMjYGnrulxKqXndpYiIKKk+BRGyRj6O8dj3/Tj0tKBOCRoRChFhOmGPcfR9P/btMHMWYiZEBzBELxVLpXxLKVwzM1Xfez/2bu6lllKFmFNhe1kv15frZV2blCqlFmlFauG8ccfQ2LtGp8G5VxKGkzAIVCUzNPs/jVizwDwfC8QYffSx7dv7/f5+uz227X7s+37oHGcmT3AmASIxYmarMlJhrlKaSMrpC5FkPEM8BXdP5GgOn+McqMITO5sz2cyEeFr9IwBAsvTIp9aLmcpkeFAmZSBSpHupGyJGrZn7FMHurjoQFR2DWQLUfwDI/QDNXdoSQVJLLa0u9XJp10uTQnk8MheRsrSu6joRE0YgZhLGWvj6sry8XlqriISAWebue89fDGASBvb9WJe2bXspfFkrEd7eNxFh4g8fXj9+fP306cOnTx+u18vkiic4mjLXJzcrKwckAExXfVOD59y2lEnJysU9BwbZnmXiH0bA+/v9sr7cbw9iYSlE/Mc/Ho/3/peDxv04dMJzp4If4Fk8xem2FoQIwGbuMw01C/SpWzyT2qaZcn43BYBDZhW7g08NJ8c5oUtbvUJcSSpLZWGCcNNxhKETAYGjAwICcXAgijFpVmzhYeCIBjTLXAAgwkiDqrMY/FrmpnA9AV+PyHha9R/sKEQh9AlXJU7EGODonnHw52s6i8zydApgEjVkDPTwMB+jD3XVieaGJH8JESn5S8x71uWJABeRZVmWtY3eWYgO6h3cbQqUYvqJwnmTnWguwAmxnj3BZAXgeQ4mbzn//IkcM5dWl8vlBRHNY4yRGVLfPBMzVc30GYCAUAs1iOATPM7b78l+AZxJZQ7qoA4jQBF9OnBm5z/fm0NkBrITuUfQJLIgJ0651vW6mlEAry9Lu5SyMksid26qZkOHurppAtEUSCxEhUVYhKAQBcf55ZFhH0lAQSRmwdQPSZHMLmOuzIW5MFfhRsTy9p3Tgtr9dt8eez/UBoQjBjFKWy4vrz9/+vmf+tj72M6m0CIwnBC5tVJqCev79nl7BGMPLwgDcNKL2Fwsuo5jAFogO/OkhemIMET3vCEJgRlYoK7sCsewY9jR+zF0qBMjIWGwO9rII9YDY983N+yH7Y/xaJs79q5DTWotzLXwSmUF6zq8NSNO20wHgMhPbZq9fD+dR4B1XUvly+VyfXmZg1KEUqS20ntvrS3LWkT6GMfRkbkP248xbKgNJFzX5fqyvrxeP7y+fPjwcrleLpelteZuqipC+/643W7bthP1mBMcfC70vKUcZg8HCMxcakVE7wGmHjPtPa9BBJxONfQ0hj2FXcSZLypAhXgp5bIsQsxBHGjDtseOgG7ee1fVtEai70r/P523doxj2+4oUpYlEKQ0Ls0dRlcdSiSpGSkiRSTcez96P76qQSAC3Nx8uNoAmOhCiummWR2VpxIv1MNs9F6XVpfFI9br9fLycnm5LtdLu1wAcJmhG25u02L0OHIUlLkVpdba0qwN5uN9IgeYADTn/+fYHm+3t7f3t9v9dhy7ZT6Vn9fIdy9FsohdfXd1AiqCxMewMUzNAUAkteKcQ1cU4ALLuqzXdVnYzcIUCUnSEofGHI6yGTsW8ILQEA3xIGRCdHSIdK/30e04FAkQOJyO3Y5N902JEIEzBxvBXUCYTEh4DtnUk7jYwRRYS8FamVvJgBfhiuRE7g52MXfrR9m2MoYjkKr1Q0dnHfEj21y4Xl5rLZTF2BRYwdGP29vt1u7HfoxD3f16eXm5vi7L/5+9P2mSJGmyBDFeRETVzHyJLSPz26q6eurQ1MANRBiiWS5DGPyt/m3AZY5DBAIGmBmi7q7tWzIzFnc3M1VZmBkHFlEzd49qqhmc0BT6xRfp4W5uposIy5PHzO/NLjnAQ1zLHxchesdFzmVZ13XNnr6X3ogM7FIFRLXUdV3XZT0+nQlPrYmraREBkhLbNFGamBnNRE1blVpbKS2uJXAWkTSnafK2LWIONzc3t3d3h/0hjJbf6OIJnnxtiiEjZ+AZeKIwp+oAp1cFG0AI6cU98YI4UxcS8AYiUdV1Xdd1OZ1Pj09PD8endV3XWkvzPkh3n/GmjDDkgv22MnFw0EEhIgc3ie3pUd2ktjZ6bpvR43Ghm0UZQCdVDMxMfM+5tTmJ9L0dAoSGLXiXMZh7azATUWvWqjTuTjjUTbmp016j9jm2VwL/34K5+O7tO2JLKaY0pSm5jE4IvU2+Vqm11eb2E563d+10ZAJmmqY4zTEGZ6GwJZlTq4cG5mWGIOqlY5LvSy2NGGMgUWF81MaIvN/dHvb3N/v728Obm8PecwWeIN5iwLir2MtDEa2zVNJzjkS9yWL4cGwVXX7CDnDMgCxZI7LoT5SIj18bwDOY6y5WXli9JduuNivWW5h8dwKgzUAQhVCNFMwQzTEmsgtbBWRg7fpIFrARYLXW1ES1jbaLXs3qjSZAkSgGjoF69+lAkZ4BCNitoCJCshAak3lHo5q67vzogIbevuX8PHRyuZfK64jL/sAURq3ti4GCmDgJqI3uKCJg6pyywpa6cAVKZnLtXAe4vds6hEguEqS6LMvpfF5hHRbRdFEVcKcLILeh8Ea13W53e3N7uHGx2ER0NrNSqtnmCNWrhrYhgIjb4oqDsL7Qu+AFCZsMYk+Oe7nSlKb7+zc//PBjjNPXL1++fPlSShk5wsvx9PhFXDfXPd1EoSmZBaRA2z1xU9TelmaIYtq62n8zbQCaYgcQ2AW+yHsBnWcT6abBoqoqTQWDTYd4ozOlEPdpf5jDDGLZRAGqam2ltlJaFW0mzWrV2kzEkPuew/vFKQRnDWJMMU7MZL3YxYutAAjQiAzRWtdHQy+XUQMBC2AvO11VZD0v63kta21Va1WEVks1xcDTPN3EaZpsL7130Qgjc2QKzMaseXlUOa7HBtbAmoHnR7SJlCa1et9W9TQiIphSq9QaanMtLVUVEyGmeY9zMVVcz5oXFYN5N6UpGZiZMlkrdrIaglEwZiy0MmkI9RjXFB6lWa3SmoYYwzTdzOn9YZoPkUECQQzUR5QiArjCi6Dg63JLADP4+vTEjLlJVWPm07Kccznnsqwl55yrrKUxc2vSWjst61prdTUTZgajGIgDIDbVtVSgpYmENTshfjqdTueci+9rPDh5Ryf64wUEUUHQ0OFqiimGEBFBVERDDCGm1GV5XTE3cODgyz4HDinGGEMKIQSO7HW+5Bvr1oC8Itc9yoljoMrYGNSA2ZiMXieiwdf4Wsrx6enTp18ejk9Pp6f5cJPSFNIsYutaSq6BQ0rTlJJXapjqeTkvy9khipmlFNOUYgy4bXFdeNsxCAIxdzGPEAIxiIK09Xj69dMvT09fS6kYEALGr8kYjsvJZYJEtdZaalnO6/l8ch81APDqvt1uN8/zNM8xJZHWalPpEpketi4wNy+//Pkff/71z1+/fl7OZ+n7ToNvDRUO4f2Hj6WWz8eH09Pj2ipQM8T1lE009WtIgdn1Vd0dKUTY7VIMnXBUxGmabu9u5v0u13pecyvKklhT5BR3iSIfzxHAOFJKU5omQ8i15FqM6rrUnDMYgYX11M7Hks/ChOhZREAACEF6/6PGaYqIwVsYRQWDopkgCIGQWxIJSANCT4oyY4ww7/j2ZjKhvFrJtiw1niAETUns/qWqQKnNvOTGHbKJEKE2d7srpZZai4npPBFrTJimkFLqihjMMcWUEhN7o2OtbS0l51Jbq1Vaf3DGzK4ol3NZzsvpdELg1oRq8/pMIgAUJA0RiBGpdxKpqdcxlaKlOGndTDEmCDH26lMXax69Dg7Efb1BoH3TVqXUlkvNpbSeoR/VsGYA9GK8iGpuTU3dGMLrflw1bF2XZVmXvORSm6oBErN3pQ4dK1dg9RsaejMle7dZQOTNEHzoA+HIZoNLNHlVJnRtQ2d3nfvr2MtMRFqthQDc2qavKx11QLXehRYQA6FvQlNMXVqziZm11nLOrsKBCK5TpuqVD98gFOAbRQsI796+TxMlH+lT8tSP6/t7ZfGoIuouV9DhlhdbDrVz5wu8RGGnHTnBBX24EIkpuPxtzlkar4uB4by72+/uD/s3h/2bm8Nh3AQbhZZbbOw3D3vdo28MvDQVnOQi6oaznQC8FGR2VsPAUIMUQ3EL+4TMITy+uC2m1poXcbpzugdkv5orrSrw/Qp4bQUpu+u1qXgKexT9MIdgHHv9tWqB6i6+pbnboKfDepUDETJhCK7aTjFSQAx9ZDll24V5ECBQNIBgFGpA6S5AQ2TIE9Uw2qsMLpbf/Ux8znf+ZmT67Kon7TJUoMPcPuMQGI27eTh0WSQzN3OJFGMIrrOfvL00JF9avSVFVZ/CkzvKVKsKMmpLaBTT9wJfBPRm591ud3N7e393t+SFOQJAKQVg2fp+RHo8EASHHZ5SugjC9t7Qy+rS92KI2g1gCb1WPYSU0v3929/89Lvd7rCfbiLvcs5fv/zS2jNU9/T4ZZGlb6gMsSmIBbNIHInAPRZVex8sdt0LMW0qtSPXhmjefsvI3STO0MVqhrOrGIiC+oMwQww2HQIwhZ3MWWOkMIFYVmlmTaXUUmouUlUFpdm6tGWpOYtPBArs5JhX6ZEz5fMuJiZUGuwyMxoBMKEiKkJXHxajptbIqrOpL4aKiCznJS8551artaJgLZZqCsxpmm4sqrEYgCgZUArzPO1iCGDZdH160OWJTatKMWumUlsurZTactZSpbUuouPlOaBoFkyDNGm1tupymhXQdjdaalPDvEqpluJudzjEkNwjS1pppda1crAwIQcEy2YFYWE8EnDzyrymIaQQ05ub/fTD/dtwSyqhR1uftYZeukLWUBHhNdI1sK8Pj0CwNimiMYblvJ6XdVnysqzrujp7Tu5EqLrmsuZSxcswmRGJAzIZYG2y5FxFeMlE5NVqy7KezutaHGuZKrhXIjhBFQOg64BrB7lpijGFGACAVYL49wUBnU7xVrkYk+uNdY6LiZh9QnkKlwxdk0QJRZqOGTsEuwOaATOEi4DO89sCYFZqOR4fP336RQnT11/j7I3ecxM9ndZlKTHE3TzP8263m3e7WVWenp6Oxydni800pTTNKcXoKZFRn9VZLkWk4GIC0S+bVLFJPi+//PqXh8evImIMSiCg57LMXz8zESJJkyWv67qejsen43E5nX0nnKZ0e3Nzc3u73+/neY4p1VrymlttHUcgYWBi8nWqlPzl5798+fUvy8NXXc/Q2pBs+wbQDRzefPh4Xpdzqa0+LOfi5EjLCmJT4JSmed6H4NltIIYQMCSYZ47uo4cIALt5evf23dv376rImkurRi1RS4QBIxoZB2paudCbt2/evn2jAF8eHh8en47nh/OyrOUMxmihLLocS1lalyjW3uLAgUzVy3WZMATU5qZijcAYwQi1QQOrpmRirbkGEhoSQYgwz3xzO4PGB83LOdfaQlBESZPoK0KhlNqkIYFXiLtjWa11rcXVsmrOpiY6I0qMME8070JK0ZsKUoopReYuaSuqpTbnXz2kePk4U0hpCjHmtZyOpxinWvV8zgA5TfM0T+jN3ShEiujLJ6qhCNRmOUvOkldp0kSgNZsUZuAQPa/JxKEXTTNhDBhCTGlKc4qpi1C56eZFr6Fr7ZnZX/786ddfvlzfE1XNtYqqa26vboW8ru7ZW2puIk2b86QMbhHaq4l7ZYHnPil47Q07lcsRkB21aq80N+jJZkS0wRuSi1tdOC5TMB0Y19S0SSsd5g4sOfquXJ+tVCDUQBiDjy+KMYF5Y2U18zwqmEVECIEdDPcCeIXXWsLwTTb3zf27/WGKnpKMKbq/ONIGyDcWs+Ol3jd/Cd8jXvUijUtT04Z0TWGUGzaR1uqJz49TiWExgxR3KR1SupnSzZQONkoCBnN5HRHRLp9qMBrD/NzwombX4Qvg2If0V6CBEQZCp0d51DO82hAgIREoAirC0MG0CxvoejzQU2M9xYtk6K3LRmTEyluj5WiW6oyjtzAwVoQG2tyEg8DRozFgojCFOMeYQkiRAzI7MWy9UL5LsvYKrC6vS9JbLS+JhU7tg5kCjuY3z/B1NlfdFBcRQMf9RvxG9AVgIABwQ1swYDBXSXCeUgzRkIgTx8RTDD6UQorRC+dSTB5ovGKHMaARc8yllFoR0cma3TRHTgikAq2JNPU1M8bJK/gNUJqVXFKcY1hUvNuUDMmgmamPUSJk5sDUazF6Q5ptRbob1+ugH8GMx5WjIVtMuNvHu5u55kMrJef8+PDpxT1Zzydsjz7oUYEU2CwYNuJGXkvUmsiF/R4wt6s9mig0IAgh1BCJGIeIHSh22VTfWqEZ9NwNAjUFIOBkk7PdBGC15grQzERbraW20hzmaoNaWsm15KYKbt5F1FkRQ0QK0zTN8xwjMymhccAQOAZKrqaeXAondDkIHBWexOfjDM8bgEVkWU/Lct66bZywB0CiENMu7AJNDMRqDMAppXmamaDmh7JWAG2tlryWda3rWspSask1lyqlYK2ghgYRzZqYFAUl5sCUAEXMVKRVLNnMRLFUM0BsYmq4P/Dd/c1hf8hrcb4jL7DW3v9LAdB8I2FCSkAiWqonxkEVcuSScy0pakXQEEiaeVJxWJt1s1F4jefMfv3yRUyO63Jc1xhj99lc12U5rzlD51B7jG2tLaXkblFqBtZU1loFdG0lZO4GEz2qQK31vBZR77wLYTJfVCkypcAxICEBm2lIMaYUUsBAgKBg3eKEkSObl1w67+QEWODgrfgjneT8DaC3jlWr2qwhojRtKoKGkcIuJTQLFFqjXlELm/ryJdB2Olxrq7ksRdu5nPAcYppCTE30fM7rWmKI0+R9YvM8T6pyPB1Pp1MtpUkz1ei4PQwB1NFs4Ak0Q4TAFDjEOIUYQyQxalKX9cuXzw9Pn9WskVSsS1ue8mNKky9zIrKua87r+XQ+nc/rsgAhI6UpLfXmXJ/mZZemKcRQS805i8NcIKTuRW5oYNpqOX79cjx+ruuJao1ORkFnYF7eE8SUUmlNBfJal2MWl/s0YKMQwn6a9ruZQxCtIoJkROb3ODClgH69+zTPKc0xTmnazTtTYp1YJhEtWtaWQ8QpBQrp/m7//sO9K1iqYpO6lkUqtNqktLJqXpo0Q0ATAmWvUiUGbbqcs6moaqvRzVcN1DuvFFEMoKmWms/A3GLiMAUgqa1qa2beOwKgpt5n0cCEQL6Rif7y9UFU3E/HNe+ZWVo7n87Laak5t1LAYF7SaZlCBLHStKTS/f1i9Ham0LuKrW+BSpPi2n5VWm2IlOIUYqqlrWvOpTbx3jZWgKZeFVDVGqK4YKSHuFLaurQ1y1o0VxNxl0EwFCDBIEupac0YAnFPPUeToGJEFCWgxUgpJO5W4LjV3KqZl+Y9PZ5e3JPaJC+LiHhB/7IujnJLqaUU6bK/BF5GhWPe9mRwoBA5pBBi1+VJKaYpBK/HpQvcuuC/MVp7Dn0wvDg6UBRhOK+pujohZjYmVIHuSQ4DR6mJWatQwSq3GriruYQAYKlXbIgjXS/V28oOkTrIDq9CCnyzNvfN3fvbux13at/1MXmUB8ClfQd6LUanS4G2q76ugLzCxb1ccatq9R6kWmsppRaMtGOa1CzQFMIcwsw8EU1mZiBuCI3b+5vZ2FRcuNTxCSM8SD/n8RPolKrT7OBs5VpqLrWUiqSoQkgqL6uYiSmlqKYkKkrjQrxOC1EUVVU9ZbnlxMkc9nm5zKWza9yarR5WlQN5iyNCRSNGFQDpl6VEMMe0T9Nuism9C5F8E+vpYx+pNvCl6yf0mgxAoA3PbZUWOB7FYBC20tyxrpsB9Hvuo1fh1TYJLzpZ3oJrg8wFQGQiQ2IKU5hSmCNFlypJrgoQkruyRfYa6hA4eQP0mvNaVg/uMSav82qtadOy1pwrU6QpBIxMiSkxCWEJlFKc5+lAGLycG2sFqwjiidYQ+s5ZzaUvxB8CYrcNvKp219YUANkI0MRErKitqmfVE0BMSQ4HTjHxq/rClovVxUcGiAbEAG7ozoIsTXKutTUOgWOkwAPmSm2talMUQ0M2FKtiXuxsil6X7qSlVyc5Mz8ql6jnRhTBgMkNvkxcQNFURaWpVJCGKiYNVACNCMhzRq1JbZ4Xc7FuGn6vRGSMFgKm7oYTJnd8jCFE3iQpmEbdG/3I/BzmtnY+Pq3ntdaqYCNUmBeEhTjtdjfTzYFCMmBDV+1Ez/G4R89yOi6n03I6LefTejqXVou0JqgtggXGEEIARLQiJQNACDxPqTXxEjIRwdpatTVb1uYSLTHy7rB/9+HNm/s3y2k5Hc/Hp3gElKbSiXUbov8cIofAahabihpRZEppSoawlmJaDJQZ3Ya61+n3VgDgb3WKm9lfPn/KLe+O+/3hMYbokbCUsq5r7jCXiH3oBjXw2rxmvZCzlra0tWPNbgjY/wWAptZElImnaULi2DzqMjNPTBOT6+kQdInkwMBWoan6jqsJqpFBcGc+8MyKkCKRkiKibCsaIiI0qybarGIj5B5+zKCR4sSJZpriJE3UkNzHFUP6Bs/iKVA3s4GqTZvWXHTBwqJaSqsqrXGFuGo8txjWYKq55FKKSHPKq8laC1PravPb0jAKZxGYgJmZvEwHm2LTtpanh4en41cFyJBXW1KZUplC7I4nKl6zV2upRUqjhohGhCBLU13yuUVamIiaSKvVJdI720Jo5JwyqLR8PuZ6NM3BlJ2LQvsWygUzc3pyWdbzcT0fF4+wiUIIvAvhkOLNPCHRkptoUxNQIyTUKVCcUwxIAXmeEtS2Hk9xntI0p3kKMEeY1jWX4zGvj00WCjIRTTueZwYMN4ddrdqkVsm11KNvwc5NC5JhQA6UUph2u2nezYB6Pj+dz095Lcu5pMQcMDCGiBwCGoNiE6smWqXV1QynXUy7wBEAq0HNi66LrIuUXFsVBA6cdulmmqbXXWh//Msv5/PZ0MD7RwOHwGbWSm25qjTz/jVGA12WU5fccz2q3kMbmXkgM0IkMCq15VzzWpZlXZZV1UJIzAEBVUFU1yUvpYmolFqkidTa1ibFa5SHdIC1Zl6gVYuVhqqkCIoApMZNqRifm8F5zRyZA4fIMYaUwi6v+7rmeTdP826apzSFyC4v0OeaKpKRGb6S466tPh6Lp/V9zOSca61etOTuQUjeDWRmG4JjpIAUOE4xTWmaQ5xiShx7VW536MCXTKc5zBgwqyfX+64XABCw+xcqQGtScllJCSRw94wfEx4HQjQVbWA1UA0SmCiy27vM04wAtdbmNm+tNUYEY/aWQi9l5Bj5NSf3jaKF+9s39/e3WykjDqh8NemcNx39DB3ddge8fvX9buiGCJ9HMkRCN5PNWEDXyMo0E0QAI0pMiSghJsRkJmBgSltLkMsdm/XdwIX7NtXxBLZLtVF8uZ0WALhHDhIBQnY98VYBGykhkm96rg8iCgnNDEVIR+E1mIiiihKKuJbppe6Tuv+WD6Rxk66wf6dAwcxglOyzKyMwqAAooCupIdkc0n6adimG/jokILbuYOQiEo5I1SugtwriXtZhzk4CwmZoZwPnjtdebUjwSuS472O+weYOWy83JQBU8E6UPiaIEANzSmFKPAWOTCEwR06Jp+TkLnEKaU5TSmlO8263zyUveVnyCgYxpRijirbm7Uma11pKnSfo5nbQ/7B/UNztZmEKbuUIlk1JoEXmGEOIFAJygFpBpXZrFTPvrAkhILoIvZlBa6qAEZXYxEStqq1iZ9En1Ri47Xck32qjaWsVW7WJtGoiidiYgIIgE1AtbVlLKS2mlOY5xuAeNaJSpDWpRgbBkBEETAyxuWqLuB10k9rEvRg9EXop6EIAgKFsQaraikgRGNsplf5HmomoDCsJcGyS23nJ5yXX5m5AAOadb51xjpFSCmniaQopcZo4Ro7J+4pdi40CExK9fTt9+OF31/dEpOXjMa+51tJTPGg+YJGQOUzzze3NO047QzYkJCGSWsAeLZfzcj4uy2ld1nVZ1vN5Xc5N3eUzgDHhHOIUpwmZQU81m4LEGKY5hkamIhJrbUTBQEuxWiREmHc87dL+5vD+w7sfPrw/PZ0fpyMTa5Ocq64grZopI3GMKcVpDmmOhihqol6SEGdmClBbJa0Mxowqo6AdPJcHzuK9Lhkzs18fvp7zMs+n+bTjENwNsdRaci619KfJnFJMMRGT134pakNVFBUXtfMFy1UU6eJh55RpiDHEMMVRaaZEGGLiFPp6H/prkcjA1LSBNBQh9SwSd581QkaMAAwQzAIY+2baAKB324E1a9DMCE1sNH4yBOIQeI4efZxi8CRnCC8N8zx4erEmM2JT0VKtSfUdhDt0mtf6UGPM6PXAXTmht7IYSqee+so8Qm5vOfA/vinwIqamWFVyPT8dT+cnAHSYG+sUS+IYPNG11XX1QjXqzbyATaWUfIbie/8h5K3q0XQE1kHrq+qatRZSAYAANALvFWU2DjXrTP+ynk/Lcl59ezslThF3IRymdDNPBtDqmqUpNCVVJrI0BT5M8xTiFCISWWvr8cREabffz9PEU6IZsX45lpwfW1uIGk+cEqZESGG3m0uBXMqalyXlo+V8ruupMETGFNg9rfa3+5vb+xszqWvOSy21EGEItNvF/T7uMZkgWDABd5Ncz/V8Lq3qfIi7m5Qm4qgUNC+yLpKXVotIk8AcKE1xP8f5dYr1Lz//+vnrVwNz5ySXfukoQc3LJAIRIpi25Ry63DchopdluwRHL+IjYqcta2m51GXJx6fj09OpNfHerBhSjCmEOOg8q9IMpNY1l6WUta+bZo5MwNDbS3oTsqIiCoI2ldIaYDNba52WhVPHuDGFlMK+rGvNueTD/uAAYMZEARC5NyODG2nq66FSa308PrXWltWrFFprTUWI+36dmInZfAT2kjdXQAhEkdMUp12a9ylNcZo4REQG2hjMQXR20nAgLLyCB95ZNugv7A7FCgYiUqsWUjbVGALDUAeAzToJ1AQMDWqlEsSTRhiJiWEGZs55XRb1khJpLqdJGAC72WGI5RvU7T+jm+syRo6QrIunuDj9hlk3UzvsKHIT2rrE8UtS/0KnjlgmoKwAWFzzPedSfNuhOffMXYoBQKW12kqv5R8J5VEOCyPT7jTkFba7yrNf/WcQwmSD+4Aqq2Gm0AC3quJXMjdgo7h1qIIZAICLqQARMKDidT0HdJ4boDPHfSPfzxtG7ygCmBF5tyhps1bNzAuBjZkZOTDO0zRPc0qhu2Mgdg0vIzIg8+pv36WhmSleeoZGtLcLAw9g43GZbvDbCzsG4O0/7kj3m6m0MM0oiiLoBhAsgOJJR4TeYTI2SzyKW5CQutgtd0NFp4U50BxiiBQST1NUM+ZARHnNpUgppeRSe0+NmFgrbTkvgbm2qiJMtJvmQFRK9jZoRACzhtD9oQDN3O5S3RlyaGbodWJ5c5DZvoGgCGJWSz4+Pn0iaFJBiqnYa7P15ZhzPpuoSUNTYRbmQhUU1aBkWddaSouppKm68BDQWBfBKIDrEhqJ+J5RQQ1KabWnHVouTaQbszCT+9ayu+6S9wmxNC1rLbm5JrqK7wa9+VxV3BrRnCFuoqVIydqqtarVLfi8x9TAn1EMHKKkSCFRDBSSF44MfUgwIgrMRBjj+uGHZ/dERfK65NVNzDqfq2DNcpWn1r6IsCqRFYCEEEeJWECKQAnDxNM+7A5hLVw0KAYgICaaiA/M+93+dn97F6f09cuXL58/nc8nr2UGEwzCUUKC2KgZewceYJz3t/dv33z48Te/+f0ffvrp4+l4fHp42v+ywwDVCh5lXURE0wFvbvlwOx1ud/ubfYg7xBlp9tkXTWZdZ1lwPempaAMmNKLu9eWz35Uqnu/zff7cvL8NLcXkjSysqiKSWit1as3J125U6x6pOro1/BluTRJ9QcFhBkTsSuqBA4eAgDDCpa9svuT5oOFOhjj56iNCZTOwdJTm+3aXFffCxuD9H4NFvpSTmcccRfP4NAQFEUeDdqdGEABgeozPe323e9NjgmF3PFBQ2WTGzQwJkAR1W2Gtq11dSvivs2d9hXLyiDaYiwZEgAqIIGYqWpoW0WYAbKFZ9BfZUG33LgcAM/aFDXtnLPn8Vhgxpafr3BJ8S9x5AVQvXayepeyvu+7weH6otMevn07nJS9nk8aAkThyuJnS/W5/f9jv53mfoqgUxsIIxCHF3T59ePvmp4/v7m8OAZENpbVcSxOh1qBVaBWRickst3bO+VhaFhBFXtbz8fiEmJZzK6WqCGOYwhQpMTJjSJxSmO/v7t6/f//2/bubm8PN7X7Ny/HpaPJLXdXcCQNojtELG0AYCEHJBKVJzVCyASqgqFoQDIGkmolLDan706IiKJnS6xUo53Y+F0cogMDBQnA9SEODKYaQ4jSl/W5/c9ilGFxRoVbpcgWwEZFoHeYGYnYxvVzq+byez0ur4utXDDEE15YJzAEQzMSslbqOfalh3/R7OwsZUFdP2ug3A1cOdYXOplpEQuUQOUQOhWPkNdfTUo7zsjst+2k3z3P3Igg0FHmdmLLTsr64J03ktJxFpJRS3A6NkCh606h7m0HvBYfuqotd9wgpuJ6JiyoAcU8Y27OSq40S88hD0AUKAdRLFAahO6ISgkvAB8bA1OvUx+IFxsbIBM3LJAUQVNRak1IqM8bA5ul0mlKMLlEdQkC0XhmualXRlXDh2aluxzdg7sCPnvq2rXZzTNwO4bFD4AtDOuo8tujiK832v54g104jupSkrTkvy3I6H5flnPNZ1JbldD7HEABRa11KK6XkJs0uwbrHX+1M1eAzYNC0Y4XpOBMHVMNLxa4vCUgg0oBrmNoI18Ow8zrQgIkLVHliHqBXdjKgIROQkRlt0Wzcqh6xENErHp1nxk3bZxR9OAODQK2o19+h++USxsBpikP8nbsSA/aEqPv3spfXABkA9dvyXNIO+tn0rAeMJ6NA3jAHF+x+KfBwPWoCGxTw9YGIabcf6tzNrCFWQNNebSGe8e9xffPz8sWBun4SkvOnIlo5UCD3UsdpCl67qWol51Zrt3CvbtCsIlpKOR2PqoJoZsaEcTfhfiolnc/MXm6gDVG7CrhqM3Ml8FqkVnVfYzbX51PvufNchevnkRfe+1bT2roeH77+IuWMrr6sqK9g7umxnI4LmpEpgTWWFgkB3Wy9FFlzq0U4hJhKYC+H9UmPHDhGgsQQ/Hk1JwZENZe6rmVd87LWZa2tKQAjUmR28Y3IXodHKXFKQZoua1lzzaXVrFXEHYzEPbJsmJUAmoLpxu+yKZiISJcUEPM+PCqsXICD+ilzcJNt9K0RgjnCZqK3714rLWhe1lJaqa02RUQyE7CmS2lfcv25lFpKNjwA7ZB2bDuIewBGmigewnwbD3fz/ZtVLCk1mmKcUpyntE/pME03d2/fvXn/cd4ffvnlz3/60z99/vTz+fR0Pj4KFKBCsURVM1II1QCahZgON2/e//CbH3/zh9/+1d/87nc/Lufj8elhdzs1zEt9EMqCFQrMt3T7gd++T/fvbt+8eTPv3k/pfYxvvP8O62LHr/b0pXyFRZa8ABGEiCSuDYI6NHNew1wi/OGvPhZrroxFhCKqou4dKdK2avHAIQRGwC46ZRu69Rh7Sbz5k9o0eFw+aexrQbuGZp+Pndra6hzGJrwvAn2l6lrvAD0/42A3Ru5Wapvo3YC529oA25pzKXhDGBHQb0L6DwLlxZ3ZdgXOKXg/jxpemjbHW/avPbBgzzFuCbUtl3VZnPpVOU/RS8q9rsTDgyoD0OW9vNrIGx0AzGVVNuDqIR4RgMyFtnGEu+0TwVytXK/SiYNjwI1W6J6soxHn5VARkc+ff1nXNS8nMp2YphDmON3v9u9vDm9uDmmaYgxVrASqgTiG+TDd3u1/8/GHP/zup/vbg+WmuazLclRbRamJ5tJ4ETNBlXau5ZTLKdcqoCR8fDoSEGJaVl0WrbkgYAxTClMKk0WcwrRLu/dv3/3h97//zW9/s9vvpnl6fHj45S+fEGIrqGaI1hKoEBiDMlhAJVRFYFCz1qRZK1iDF+MSRNS2qfGoF+aZglYT+sZGUQVE8GqkoSkguoYQpEApzjeHm7f3d+/e3KUQzufz6XxelrWVdc21K5CoGpC5HxMjMfkaJaql1I6HQbw/qDYttblAEBKqNtXWWim11tr6sHRtqz4PFIw6+UdOGKIaNFVroGBNlUVCY27M1SlXCqFwWNwdZopTmlKKMaaO8C4pdoByfBlpW2vLclY1b/BCouhXRYRuNtQREneVXBcOY5cPCxwChQjE5gvzhuTMCxKshwYYpg4AQEBACorjrWFsvH2iIiExhMix/+nN9C7PjsgIbAEqNUJsiCLNdSIKARFMic3S4FD6nn+eikhVaV6dqNIALIZo34q08E2Yu675fAoOETtPa0NTyq7J6qvAaJdvAWzRzZ6VctiWS++bEUcnzt0+Pj2dzsecF1FblhQjA4poWdZUas4lV6nDK6OfCA7ufKsL6boDOFo//C6P7qJRrYzuU0KGpL1ng908qZ+wIb+8U2bqssNDsW4L3b0excsCOm3dcxYb2nX1bOphz895rC19wDIRoEVwNwuips1Uxc3ler9WjBxQfR+KQDjKuxE7pezuHQBonXGASxnF86fTuV28jODBfdt4rF7Ri+ApvQ7Nnx2InCKqQiMQz/U3A1BVM1FonljUTgsKGJqAuQGCsiiAw0xoBk2Mo4UYvbUFAqKqa4ZLayXndV3PJWeprRsItJbXFcBaK16VFVMIMbkNet8MSBUJW5Gz5xrdYFgVwXrVHgIBMII3IJLXbDMZIsRIIfIUQwqBCVstx+Njq2ugyBgRUF+pCpye1i+fzowQAQKjK2OYWS51zTUXKUVqNWbmULxuBxFdqzylmFKYJnOFFPFWDrWmtuayLvm85mUp56XUqggMyJE4BhetxRRxijzPYZ5iEzmteVnLsrY1t1pVDIffthgYE24qb+6HB4qMHAiVgBEEO2hwFVvo3jBQSRG2kgNANAJFtMAcAxNRKS9L21W15FyquNEoIpFaFcn1vCyfTqc5pCPHh1RvKNwQ38b0JgJ05Jx28+H+8GZpKsaThX3cr3Pc7ab9vDvs58Nud/vuw8f3P/72cHt/9/bNtN/Nh/nTr382qIZFDdg0qJmiKIVGXHlK0/2b+48fP3788eOHj+8/fHy3LGF/gwrHh+Pu62OqymrIGfb3cPsO3vzA7z5M794fbm/eHfa/200/IDazVZfH9bPlkE/1qEeuBIHRgJTA8+cDxxjAy3GCiD/89ofG5q0ziDga8/pf2Gu7vHGMDDaNjs7gdhS8AdaOc3vxgu+cyRt9x0zfFFxs4ONLHIIx/XtSyzuWh6WRaU9OIgZidwMewaqvveMN7AJzL/ETxk+fHcsfH9o36dz+4kGMepxA29YUX1G3T8HL22PHvhcwPa7sits1BCQzMpdeJ3BfzUEhdyzuVXi9NBk8EjqMtVFhYAbYFe9xTCMY/++5vK62BxtRhL1+bKwjMJjeS9ndi+kj+fRYS0UpE2GMcZ+mfdq92e3e7Hf3ux2HgISomBATYQzhZp7ubw5v7+4+vHl7f3sjy9rO61FBc9FaSc1qlUyNIJBKW0XyMO81NTifs+kRIZQCpZqIoaHXjsaQcOLDfLjd3/74ww9/+P3v/+qv/ipNiUNIYbrZ/0OgGfSkImZqyowphjmF3RQmALTWTKoKq7B6A0VGRI8irKogQABMGqI6JSXtmx1oYNbNXPpi3PGtD2GLYb453L17+/aH9+8+vn+bAj8+PKXwyHhUwVqsamlFalNzTUwUGqJYWyUaMyNaF6tSFXMvwD4zXdKxiXQ1/zHYsOfBfXoNIEIIPL5BAIQGKK5v551rZs2d0mpDqkQUQg5hjSG4xclIunihLBFiaiHCs1sjKrmUDtvAnV8ih+ik2Lb5c60n5kjkVbleesud7kVyOI4dp7247b6Y6mXtIyAgl1F0smiwuej3hbz6irtVS2B086MQvPU/QMfHvtkEM22CWI0IWkveEc8hpBg1xhBCS7GUUksuxVxgExEkNdXwekWG1zDXDP7hn/40z9P2DbVLyss2TDvYyj7fPY74c97S9Fsh8sYPjncZ4iBmZrW1Wtq6rg8Pj0te1IDPqNDWejqdp5iCaGva1D3NHRgS+k4k8LDAoS5VMEIubUUXA+KO38VRM3Y5nt0BBGB65uEEw/cSRjYKRskqXMWpcYFXlPPAudJLdUeCd+Ngxu/7othpStMqUmpZSplgiikA9sZTQ2wiVQQRFJWV1FSBuF8TjSoOExFpYipDbeIqgWqKWzCGIUY4CPd+SltGZ7vdyvACvZiJnFXVXMMJitlquppmNRevFQQRsVxRVBHZ37C081JiiuwiKszkONWN15G6n6eoF5LK8XR+ejydTsdai29FVGrJK5GpVdEYInOg2EKTqUlUEdWKZBwwJFYLriAIAF7yR5FjmAzUbYM8dcvMruEVOPhzJjQOEJh2u3Rzs9vv5xjYGlWLxtE4ARLASyO0x4f866+nSJQIp0AphZTYwJa1LjnnorVqa0asgZUG08bMMQbXa4qRmUlUxx9roqW50k0tVUpVUQMTAK0ooXIgSoFSpBalibamVdr5nJe1lqa1WpNh4LeVvDCSV2b2DlPywCSqtWf1eprWFDv68Q1kX+J7MEBwaTFjpsBEhFN4uSiZmev8ermTKOZquNSHh6+//vqP0+58Ps3Hx2ne3aTpLk1vdoef9je/DfEucbk9zAF/2E27N/c/HD88Hp8e1mXxuZ/CPE+Heb65e/PD/bufdod7xURpf7h7+/bd+0/v3n7+5U+//vynr5+qlEagDDYz28Tv7va//Xj313+4e//GyH45H4/r8rScH1v9eQpf72+zNU2MpdDtne13NYWF4Qklou4D3ESKqlnaUeqj1i/avoKeGGsMIIBev2tmAl3L8VtpNEDEd2/fWAJv20Pf9F9Ug2wLXtQre8DnxPjphcfdSg63GoLekIYvVR42qsJGNumy2b46sRGcBrE6mMjLx21E7oXKxREGbUOfdvW5L77woyB/y0R8W1NgkKNbMm4jNuiCc3GweZ0+9csAfPb51isyDKDDGuylXl5M3VSqSlVpttX3ovGQiO4TpN85GgvaFabx9WWDrv371qWmFRTMqQnYulkM2Z05B5c+sl3Pj0D0w81NLTUJJSET3MXdPu1upnlPIZiBiJlprVKr1qqM1kRbK8tyeniMqsEgIE4hTCFWjuaKD2KtyGq1NmNK83zLotJVTzEvala9Hs28CQSD9yjtIv/44eOPH378wx/+8Iff/+7Hn35kZkAqpd3evrk53J9PJeeiKofd3bu37z98fHO42e8O+3XNv/7y+eG8lFVMkTCAoSlJo9bNWaBV1YZMYTeTm4AMfuTlbUlpmqZ9NyXqQiOu0QyB8eMP7//w2x9/99PHHz+8+/H9mxTD8Xh6Oh6fno4PT8enp9PZBU1K9Rg7ouNY+ZxuHi2/XddYAQCZmDgAgiqqkSqrpVGOf5mULjIdgneh+4w1HeNzs0IdqRWk4OXC7Mpo5NVoXiHEzMTQVVMNPPW4beiuDkREZEQAICBkl78lHrCst1p1VRwncXGz9BMARFQQQSQix2l2FRXARoWoPR+phjbEG5S0l7+D148YmFKvbDcgJO+0SynGGBAZkbcmK9EGrfNSpCidMJcmGrRPN2JiC8HU5Wq9wa42zbkAgGvUvJxBLwOM2d//45/6YjZy8OoBom9GNyjX2756c/8lT+UXOGobEUbJ6oDGm4mHP2c1VW2iLhEEgAYt1zUu3orPgOZVJD4a/LlH34sE77Cg3s3kZWkXMwC6xB8YMHdbPHoFyfOoDo45nl7cFlEttW5R+gqj4gAqV+D2Mgy20YAX0uG6QnbccwA0xda0iTTVqpJrXfIKhLNNCiamVZoANm1NG3iDB1AEEQzBxiLnFQsK2rpappcdwSbQDGibfkKP8F3de+PG8bIjGCsmEctLmGugrZ7UQRAYWDVdVRbVbFbBxCAqaDMV1UJ1SycumfiMgYkIGJGDSzD4uokIeNVZaCq2rmVd8vm8tloAjAhEWs6LgYgFUeZKFDgGri1NNQGCqgIqMcbIZqzZuRRXxN6Ur2hzEUNEJprmeb/bz9NMZIRKpMzGBGmK8zSnNIlbOAhBSGATApmtL4i6p6f86ddzYpqZ5xSmSec5Gep5qae1lOpPBoiUWRC7hAL7wI7RvYyIoamKqKs3NtWm6pI0HTqZuZYxASIIIybmqVFrXFWbSG0Oc4soup+Z18EheW4OQ6DIFBkjc3R3d3Q9KXBVRgc0ZuASc2PAwJaa6d04pgjiHa9MiIRz/EZUkSYqDiBIFdxq9OvD119/UeZPxwd43MP+cNgf3uwP7/Xtv2IofPObxDEcpsNuL28+tmbrelrWx5yPKsWkEnGMhxQPh8OH/e0P0+5NmG/3d+/fvP/x/YcP7z+9+8f93Ep++vqFUBCU0abAAcP7u/3vfrz969/f3d030L88PZR1PS7nY12/Bvpyf7MyyDxBLTTvdT+XyEhGVgFqQtmRotZzy1/r8tjWJylPJkfCGgMSoCDCMLrwdQKvcNt2IOK7N3c0c+ddkXp8hAFDR5gYWBSGNc1lgRmz9Bm6HYHugr86ONyWpfG22ythfBz0v53F38oMHeNC/5Dx1xW49HJT2PoBRrTbsO+zvy+ThejVorTl9bdFZWBZvDBLnTvtnz/kJS6fCSPPNi5bVMHU0HcKzr4CASEaoQJoVanSqmhTFUMk1K5jg0qjzIx6hBwExfiMS1YROp+8rQ62/VxVaXRuIwIggzdum3ri5JsYFwAC8493t7W02XhWVoFd3M1xnkLwmm5RU1QpVUptpTKjtqalrcfz4+cvXOvNvJvSNDFPIdYQhdCMQKBVEbXWjHk+7O6qgQE3hXXNec1uSImIAAxIhBQ5pJR20/43P/30r//V3/zud7/76be/ff/hgxOTyznf3ry5Obw57jLYIlIPh/t37z7+9PHD7d3t/vbw5cvDl8/n5Vzz2kyQMKCBCWhDMUJlEasNVIAppJ0jvQhKKs+zAwAAkKZ5txMkRu7NF0QYGFOgKYXffPzxr3//h3/1V7/78cPbj+/fzCkuy3Jelqfj6fHx+Ph0PJ7OT+fzsuZud2UK2Fs1AMwNI7oZVm21Numsgzl/bGCqrKbYQUQfhdQr3imluJunlKKHSjFx0KaDNhQXhxyRgULPyHMgJuRAMYTk6kREhCRiIl1lp2/1XosfATmo7VHei+GIxtLuuSEeCnDBJ5hdF54jBaQNy15hHkIEHcc21Hsj21b9o+ozclCd3eFzU+RH7+ab0pTiNEUABiPfvjdRbGQIYmoKRChqvgi2puKVZwhIyIENAgCIKCKroTZZSxHTdV1fz6FvFC08PD1al5vYcJraM5h62RobjDIjgNFy1GW/B03+7FFcVa8CAJjhCKoQEnJM6GUjjMwGNGzWupEsuUtCTBQjp8hz4hQd9V7BXEQY3U7XKiTbHtub+wDQtrW7o1zYSJQX90REaik2CoQu0HiDx2Mz0Bc3D+lbjhAuvMTGegOOLJZ5pQC2psvi5ey11SpudtVcmgYZjQjECwA640EOTXqb0KW0FFxXFXp5fncc9VHnz+Hq9PtpoGJXtBnmsiMBiohUX88os1qOItKXGGtNVpVVrYI18AphAkE1EMPqa5R5kVJvMgJEZEbfrm5rs9nwXlNQteomV6WVWhw5lJrVtEopQrFyL2mKIZW0pjgALIohUKSAQUmNTQExkDefxxgD4+iB86c5z/N+3s/zHILLDRmTMUOM0R3Ya5ECTQQII0ICQICHV3fFe2EIgIcTVgAEZo2sABbIdEjuA4C01mrzrYQrSYOBKaF5zOypWyIzBgMAAuDOziP2PSYZBcbAOAVyJYTYGiHHGAEYMSAGLzJw+0aOG8bFSOS3DLlnqp1j8N2An6GKgPn+kbYJ7DyHgXP5NkqG4P5u/3qodN8EBGIEBRWrVc6n8+NXjeFxfZLT1G5udre393L/QFJZK9RHTrcUbzjcxHjAaTelNKWUS3BZS7DqbAfxSrQiLikKHph5DnQ3xffl/OnrXw6fpwRLNWjuW0GIiXUKJYWT1nosJ5HjupzXZVmXc1vOpEuiZrE10hggmEFVWSCbLEpBUJdjreecH8v5JI9rO66Si0ojAmO/gUisKKPg51Ix+uw47Ha8CwPmXhbyK6x2AZ8bLXBZeS6R7dmxRbANbWJXn+s/GbD5+pV9PI3Q1/cx3SkGth+OOLLBu0tdQO9gG6viFuPGyQ+y4/rMX+lPjOEyiANRExcJ61p5zrTaIFXo+uKvP+3qCwMAdbv41kxURf0ZuSo+IxOSlCa5VlfQb0pE6pYtRQxBlYesjDsPkZNwDr9Hxto2+aGNAxlAv98SA0BDcj1yNOgikJeb+U2kiwApBDSYU9rPIs0SMSOoSi4tFxCEBphbrSKOArzFAYBasyoGxDzNieNsqJyUCWKAENxdkUV4d7+vVYEMuTV9fHx6enyqtXg2uzWrRXxjyRRSTPvD4f7+/v7N/e397c3djQGKws3xfLg57A+Hadrl0kTV1W+m6RDTLoQZ4VSznE5rXos726AgKbJAY+JuEwQAnp71IvAUw8wcX48U198ib9JmZkImnFI4zPFmP//48f1vfvzw2x9/+PDu/t397ZRCPuxyLre3N3e3t6fzcjqfj+fF3X1rE2dGegW7qYrUKrW15jB3WE9K63ZIaiZuSTPoWO6V6xwDhxjmKe3maZqSgTpfUZtUaTKwkw6nH+emiCjGMEzRkJli5BS6tx0R68B8YABGAHB+Oi+nZ11oiEhueMGMrk3d6yQ6m8uj+9spJevX0iMLbhAHTFWxawI6KDIHte7FhpdYcVX3iJ6WMDD1Xan3TwtIrVYYa0CRAIA03LoBUARcH7PvB1RF1QgYgss4iTdM2yhKIkIENjYDDgGJAbCJatZSyvlfwuYCAEfdHAWeYVIYG2vfm46YCxtQANigSm+oo2ECsQVWvN769phJcOElEIlpqy7DS/7N34eQmFwWI/ZM98aGbBHev3LvlytwdhG+GOUU1qFtX4rGlb6IxQCgTctSrPcS2Chp82frt0m9t6f7El9qGC5v2omFLX03XtFr5RREbM0151pyNREGIFWtra25iEDzQsou9WREjmKNXJuREO0SYAdk6c+tp+d6vhk2pVgAVVFF28pscJTm+cPwYQWuZfL8npgu5wdVHcyGmlWzZtbz+IgKWMFhLtSNYxKHsV31ou9htgW67wdGRbhKV7F1A6oqTdVaa4CFM8WMHEebave3j27f4skawkic4mQcrFciAMYQuoAibcWJgIgMURvXDKBMkYcJNxFMRHPgiSaIwStuyJvy8NVtub3dv39/F5nmwFPg3Zx2cyLEm7ortWrP/XZ3dQMra3aR1GeVjr7+DtDZSTwAD6nIw+KPR+Jk5EsC4zTFOQVTqbW21pgCc2QO3vNO3WqZmCAQdithNJe/GLtE7KcYGAxERJvAIPN8wPtS4MUTfc0eE6eFty/LW/zkEIkx2CYCAlJ1OdfjA7YoNYgtyJVjM25i+XF9/PuQbjjdxPk+ze/idFfKuiwP6/pYyrHWkylwuAnhpu7fS/t13r8VFWmttcK27Od8t4c3h/DuMNM5AxTXoBGFdTl+/fKnX/6cYywqp9bOZa15rSXXWnIt1ZcfL/ARoVoVVm0x58dySo+B59ZKrVlKhVVwVSyAbYt9SAAcKBiLQhN7We0zjm5IQ6Oo9gp3Dkw04N7ArDbw48apX7Gfvll2SxrzBP+gHb0gcFNF2FJcgzXeKFP0xQ8ATInMunrAYH+3KL5RlwPnIhj4h/YICxtZPM55jIXLf75FR/XRol5f31ppLUsRU+m9tXbF9I4P2daWLQcJY3324eo4t4nJ8AL3ayIkYPSkSnM91yZNgKGVWtcsrWH2cNqttrxg7iIec/mz7SFodIYAABiiKSogeFC2blwJpF7B4DWlNjoqXtOWavaYszRZVCphA801g+QutQHuI0+ubsO7XTocpsP9dHOXbm/izU28uQk3N+H2hhV2uxuuLUxznPeUEjIDUwOrIk3VDbFqbV+/fv365UspmRkQ7eHh+PnT15If/Lmraq11KTm3KqAYKXCIyLvb3Xwzp13iiexszSTXel7r8ZSrwOlcfv3169eH4/G4rMuqYgbAkcPkhGVjCsTIAZkJFKApEaTdfLO/i3EifOUkwoixPwUg8E6qaQ7394cPb29/+HD/7u3N3e00RQIQEQAwZpqnhABTCof9dFduaq066oS8pk/VaxRcb0RVvW5BW2utShs4tw8WaWbmfsVedxcjxxBiCrO7Ucdg4HC2+etlJMZtazq0S/asx38ARAwcYudkUowJgMzDKPjgw3//7//uH0//dH1PiIg5jkWbYEidbH/7Ad5oYV2hcFBm/Qw2YKPPK8VtlOSq6lat1A9CN0WEKx8xMAcHCmrZBFUIZEpUa1SLCMCMIqCqtUkpdc15Ld3FKAZXlmRzstbArnba1nWGrJ8wsbqSdWtr/ZfB3Jigz7fBQtrosxpIBDvAAvd4GxoRsF3yJm0zjMX6dsfXgREv+3b66vXsIGswstt+vccyZ4zApdz6r4xwskXngW4JBpk5UBcMjzLncbfXj4di9mzluDqkSVlr38Zp131HzzMCdCLXJ0YTFblsyzeA0iH19p0LM97ZcTUVa1VqczUfDYCkZq22TCBNm29YgRHNZRXQZdu9Cch8+Pb1aDwOn04Du16KeXzfabBpko80hLtqjerm3mhkyK+Cr5muy5OI4GXZs95z0//tg1OsF4f0KeQAads7bdv0bQeEPZPiMNdUwQxVrDUVVWkuiaXIyAVDpBBDSCGEyBSJQwhTTFOMU0yUUgzeGZUIDEAN1UJwdRi+bjP3Zj4TbGYEpBSNIhCDBcSZcGaeY/AaSvDAZ6b4ap2+u9tLvY+EyWFuSrs5MZGPDN/HUnCxJza183I+n8+m5jDXJwZh55yJts4eMOfg2Ut3vKCZerWsgTRp0ghxmuKUIqGZNFPpBce9GMK13Mhbz6iDEzUTGri2by69ZSB0NldEoG9I+pjXEfM8xAOhmpe46c8P8x8/v5xBjn2IKDCogjRsqq3qeq5HwkbSSDFbUkuSoTzW4x/PuxSmG06H+fBuf/vTvH+f63o+PZ6Xh1KOpRxVgcJN4Jty817ar7W+dSsIM2CiOdLtrPd7frufJMWGWMRKExVbzk8PX+Tnv3wJlLUtraw1W8vQqnvMqTtnIKE2bpWNqFIhNIQHAoI+AAwUWDkoJ0sJpwgJvUsEgZSDgYjVqoCvoQtAp9l7T8EWQMfeH7f4oX05si4J4HPFwLpO0dabP/qfcADkHgyA0P1Q8fJB0MsMesDsCLfHXgM3KVfvjB9vAxs/i1cM8/ZPQ3BiaNRI9Kk1enAut+AShV7tEg3AcGR11ZpIrjXX3FSly511MAsXsHv1zht88JzaiOldI00GzFXbblYH/j0yO7MGiCi11ZyhIgCY+1kQUUDq9eyEPPRGgxeF+urk3c0wKB00MwU0JFQABNdAIzMX3OoqDXhFG70mWcyW0lSkGAhTRclS61paa47EvHQ2TGl3OOz2+/n2fnf3Zn/3Zr47TLc36e4m3t6E2wMiYdNZcdrf7G/u0rzHECAwuO7OKOautX769ZdPv/5S8soBAPTPf/o5r/XL5ycfeF7Ct6xrLqWpGBklDiHN+2nap7SPYWIgaCalyVrq8ZyX3BDh108PDw/H42lZl7U1MbM4xSiRQ0BgIk4pzrtEzJ6tDgwhTLeHu5QmeqVQThE5US/I9QJdxnkX3rzZ//jxzccPd2/f7G8PKUU0E68OYEakGAPrflLR5iKLIw/gY9qdB1TkagkHU2vNOV23SNTaZG0l17pVfMfeoxdTilMMKbmPLDtB6aLnVZrvTMZwhavRevVNNTBgjoFTiu5HOTNFQEZ0PjYi0uOXx3/8x2cwF5E4BOitml13xaN5z4Z3mDjcBgyctUFy5LhB7U7BwXZjxvzaWLwO9i7rBRFzb9rY9pmqaqLgQp6VQA67WNvUWXBEwLGbrTXnknPJtVYRYjYgoGBIXX569NwCABoouca6T0JWhbzWNa+5lUFIX45XMBfh/m7HXcl7u7TrDfll/wyw+elu0Rk2prML2yASAl843cGeb7kz2vDuuGG9d7IXQfQ2V8DO/6F5f/cFdQ/Aiht/sQULHAPH/+rKM9/YMcMIkXBV+rYdIlqkDRLL33dkzzr2VTOV1oPpwCWXkLXxCteEwxXhC2CGCgwIRAHQdUgiu7yHsQGrMSIbMiAbsXU2gXtaoj+JrUzvcrOvBuWG4mmQ6FuoVwKw8VZjffL7/Xyob/cLWhORwWLhZTtxhXt7uCdAZu8UIFEVaApDOMfGpmYT/fFP7IsDIIJ5pTqZKljsm2/0rX8gp3GZA6BvKIMJVGumpA1D0C6VDwhqvdPK0AyYzKinmobAHZgrhQkqoQAiYC3djpdI/LZtMPf1UPn44fZ+l0PgKXAKwcEuAYqKS2d47b2XcKnquu7XdVUzz3mNPRuGGGOMA+6MUdLlS4nduMo7rAHNwFUhASDFEFNgRAAlsF7xG8KW9OisuuehOsxVhC4y1eEO9fwWAKgGER1DuW8px9HdbA3RrBuvP+VvYBcxUAMxE+2mmiomVWsGCUCTTQFmshklKeq5nhc9EVI8Ytyl3dO0f0q7n3Mp59NpySeRRWQBBOI9h/28fzg9fpn2t54IBMMQUqB4/PVBTw9Jyg40ExSG0hRNW7XTk375tDIWrVlqaxlacdVGAHCVPmfeFBCIlFiZAaELUqtAE0OjhDEhIhkzsJOTuLksdv6PA1l4eU8QMFGMGF35ayNRNrh7iS7a9W5hi7pbvFK93peP4AobMYy4UZDXU3s8whEKcQvcNNhcAxdP9I6SqwCwRYNxileL4CDFbKDIy7Vcv25IF16xwuPwXDUxO8uhqlJbK7VtIsE6kpc2kLdt3PYWT3WYBfUo68kHEAfwl4UDrwuax9pG4NJ+IQS23r5wuZlezH/VLXKNca+yK+M+9Y8bNVvYf7fXgjhWp60cZSPsr+9JCG8+fhSRda3rWlNpe8/sNs+GqxkqYprmm7u72/v7N+/evX3//v7tm8PNfDjM+8O830373TR6fWiaD/P+Nk4zMgMPjXwE1wxf14WIXSaSx97bc2jSWhPFUp9Op89fP+9+3YV9VBK3//785etpfUSWtAuH2xnJDre7aZ6IubZaalnWxcCmqbdPGECIISRGYg/7Y6R2gNSklbIu60m0zfb2BZ17f3sIKXZ2nSgGSkxv7/Yf3t2/f3d3f7vfTYHJwETEdEs5gYNAI8RoNJ7PQDQAoqRCwzsBBsAwkb68+whrKrlJcdhqZgBOPUQOMbIXUrpslpkjamkSm2tajnmAvUzAtmmMAMPeFZljoBhimtKU0sQc+zJIzBQQKaX5xVABRET2MLLJdnoNqHeiOATQzlEIALlkP1Fw/NyXwUE4Xeb2BalcWNXBDveCZGI213o1r8YVMEMTRVAgRROx1qTWVkorpcbArZl/7Zr4ubRSpBQl1JasCYhYU2ujmAEJ/DrISFW97IiIDagplCJVXgnyfcMFDeD9+9tpR3iZnnYVR9wswC/V6842ptRvxtUG2RfNDle7L8M1YtoEvGDgZBzx5kId4CWWXU6SrviFl6d/2RBfndOAuZdt1CUI9yu7olpfHyKWRWCUsKjClhmDkRUzNRHx2pVBKo8lx+9TT+n138ENCXeynIDRGEYvgpp3rwcORMGVJUYcYO/L7PUaoyTZVynYiNPOdV9fUKc6umfdQPzY5XAADYGod38OVhWcBv3GbenustihqA3GfFsE0XEzEBNGjJFiiKFJK0ZNtK9Tbk7tCM8fgZpJXycNYBhNXLxY+qUyciQOnoVnIva62CZaamtFSs0FmxOYXrlNgIwYmFtvYB1/G2AYoxYRoGv5jsdtIkJUtp1D11uEgT+ujp9+uA0/QAphSjGFwAAEYObVLBJinOY5TZO/larWVlttarbVKfoQdON1ABBtKt14CbpGjPu/xhjClmV2EgLMiNnFZ+jKCnhrjAcABwHQbS98Mmzp4CudKQCA3j7MTNo9hnWb29yL6BGRjLCDCzB+rccH0MxXSq3NarXWHOaCZsAJ5z3c7/DtgW5n3gfKpZ3OslRVUuOM4czpgULKRc7nkktBasTCjBROxCnNX6fdzyHNpqqtoaH315Wnsnw+Uz5PVvfBWsQsemoqRZeTPnytZGrNpIBUaAXBkAm4J4sMCNSsmRBDSpgmz+AQqEkzqQZGGJg5KF41+W1Bx9CcvQ9ggV/r3MyYEsXNJPl5FnAbDH3JBxhhtkOSQbdsN/sSOAG2rSdeMJknLbY33iLD2KNu4XAjksFoBES81ElcY97LZ/f9u14xOf1jcFQyXPEm14m0Z4cX7XnywUe2ikhto2/ZejcYeJcLwSiV0HGzho1PPwv/GIJu0IPj7gx0Q5fNHULns/rSycQMcKXfNlhDdHWS4O091w4Z2IkfA1S3fUHq607H9r3EFww8YQWGXnaMw5Hm1boWU/rd3/zr1trT8Xw8nlUthZhiMDNXUhYDUUvTfHf/9u7N2zfv37/78MP92zdpCjFRiOT9ptCTnMxhinEmTkOIsmPcJlWq5Jyfjk+fPn/O6/nmZjdNyd2nSyml1taaiD4+PsQUgKxYfjx9iSlx4OPp/OXrLwpl3od7O+xv5jfv7m7u9tMc6zGv61JrCZFv7w973fXnwEhM1hkTDcGxHJiYoTapp+UJDWNM97/9DT+HKx/e3r5RBSSkQC41E+j+Zv/xw/37t7c3hykGUpWxw9hG7dgPXQYv4kiBYB/iSmQvIAYysYKah1BQsNm02cbB+70kwi4fRD2DCgDA6CATWK8VgH3JG8J9AwT54oxAzJEcMIcQOI5aW/biTc+ufWMKPduCBb74MBFgTw2pqEgztYFOI7LLR1AHff3PtgGCrSkNR3JmEERMROzurETaMxNe/dHAjNB6HQMiGIlYKVLWuobMCE0gZ8m5ldxKbaVILpJrQ+LYNDWrzZu21TWmiF3hmFStQ3lipADIpigKIt8IK9+wFL+/Pxxu4hZtt0GxsY4+YK5foGPwwIBNsLG6AJ4BGxhzO4ntVvZ4eDWoBtk0brG/fPz2i0CAVzxTx+HmorxX6Nh/W3uk3uiFaxNjtMvm/+Wd8kaobgjnmNbbBv2FvYRbezZdtaPwLZRedGa2SL9daUdune+mTrO6tAUREHd1AC9Ep21D9xrmXpX19NRDj+y4URq9NW0ITNhoElXyLbSNYN23Hv6wDb65JGHgqTvbj0ABdlFbQwA0ZMSAHIlSStM0hRhqa5FrleZQy30Xibk/CzNtPdExxoDXXvX1xNPp3Y2eaeQQnXIAVVhzOZ3XpWVRU22GYhSMlJkDEhIpYu+cQ1UlpzN8xjqkI/KKlP6sPed1HfS2nZ++Gio/vL+5ncMU4zRNKQRvotl4/jSl3X4/zZMPqpECelnMDQD+XM1sZMqcPEZmZnJ1/sQhOHAx6GnZ/gS9XzN0dwDcyq4QzcxPxUds30Ngh/KjbbZvXEaSxIcKwuhLcARCRCEwucIwgpoRoZkx6Qv1CTNoCqpQBWqz6sZszaSaZoMKEfCQ6JBwx5gQ1gLrkz6dWoNauxE8GFoutq5am6UJUsIQHWVycJOMQN6UC4qMgSFCRj0jrBZEdmgt4rFAREW1lnU9EgFYA2skBaQhgjcNIrABmaFV0aqKDObrHCIZgoIUbVXRMAApuTWMV/zjSNt1hEdEIaAxvZSHRZgoTpTck5cuE3iDub7qgpo7z9imHbCB0UGuwOBXL5QrdmA33uuy0m+BGq4iJ+LgNMb47j++NM/hVWTcfu/ZlAAzsk0JpINd6wzlGODjlb4SvoopTBfjCUQ0gCZa24CKl52u78OtR30DlwyHblnk67+Oe9I3r70kjsacGPPixTFyY76B7NHdcUhvhn7+rAaDi9q35p06NEAAdf/z7q0IaOZDCIZlxFgmerviN7ioGH/6w4fa2vT1kb8+AuDtzeFmv0fsvFwTbaIpzXf37+7evH37/oe3Hz7cvXmL7O4UotpMXS6KAQNCUAgKCIbQCQU101pKXs+Pj0+fP3/++eefc15yvjkcdk9Px/N5WdacSym1mMHD05OhNatLO319+hRioEC1tK+Pj4Z13ocQD2D45v52f7OLMdhJc12blpBof7vzHQV2axkTkVJarY2ZOCIPxgNAalvPC4QaX4+VH97eU3DOh4g5MqXAt4f5/Zvbt/c3+93MAV2L9npndr3E90kxoMe2xRjrnw3MBwCue8/b/DPsuuK2zbyxsbtKgDpeIfNMqdIoMMKxU+vKzFcLnF8Ro1O2LiLh3/FMQP/FPpxfDRYcyV3qumGboBj6p2/lCn25Z9fx5EAcvAlto7TGbcGrm2avZw33njZG6kVOvj1VaQjmdgY+eQDQjYdyrikyE4pAqVqKDM+mVquUokxaqtYmtXFt/oW01kLAbobl869XWXifN5uRvSojhG/W5iI+/wNXmij9sO1lAIYI3B1/t0C0UQuI42b1Xf018uzcqfZ6ArsMxTFErjHx9SkMEur54311KVd49RKgzUUAtqEOjsOdC/CabHs5oxCRu5UujODd5YIGEvTiEZc84FE3TBvWx4uu0Os41kfO2A3idvk0Kmp6PzBtleSXevKLguXoOdsG4vbFizti1pNnduks1ZHiG0QO+MrRi231FXnOzL/56fdmulFFl+VzXAM6e4q9ZjalxIE92yZmHiOQXACZe4w3AFWTkcKBrcAae0oRu78TEXb/w07UdpibS13WnHORoXjHnZzZ9gTeb/rs8LT+ZYeA5CWTz7LIL4YX2Dnji/A7x3iYIIaQQowcDM1IlYKyiEqMroDHqmYgYC42yGPbuG0mO9bUobS44SbCHlOIXLNiJNfQgMfkQiO86Fj5MxfxJETHS33Po2qEND73Kvr37e2gBMnMmBkAxqjrY1XV3J2r80pqtRI8Fy1Xg1pdsMbDAblCoQpKI8nYFswnXACxak22rFoVFUlgGwiGiCkiMxpgnGCa0B3puT8kBTAxaWLaFJpJU11RFtQFdFUoEkR3CLdMMeHbme/3HAMyEirUoi2rqREZE2AgCgiMVa2IAVmIwAHBTCuomgx5LgRwl6G+LREYUwlc0YURYBS4PpvzAACMEADILfNsyFWPADD29Zt+JV5jU9gg49Uivn2EMzFywbc9WXU1uQd3ARd+6UVo8n35ZTD4ABlsjr/k6qLGq4agIuh2itvG0M+6VyCAl9m8+MgOAQzZMBgGoAS0rQ648V6DDfF37xSE58s8r+Pbg3G2eImzOMglJ7p716dXHbgeL2ivPDAHqWN5QQNQIwVAdZH/sdyOd78s6J0u4C0XqgBmpIiAKEZZuCoIEoTElNilpAKZATxztyKi+bAPta2lzaUi4G6/3x12COhZIm5CTUOMwCCmpebzckYmAxGtIqW10qr3lpAZqaL/cQDfiSmzvJ6X5fzw5fPf/d1/+Pu/+4+lrLe3+91ufvj6+JefPz0+PhyPp/NyBgAO6NVhiiXXU0gxRDaDUguxTbswzUTE8y5gEAFRLMANWDAI+7qJagA9+6lioEjmNpAxeqljjBRSmCaeA0fil/Dlpw/vdvsZu2gNMVNgnKd4s5938xQDI4I4uQiXJ9iX1u1rgCulPefJBmrFKySD28s9MPchZQMa97k68t1X89E5N/JyWTMYY4UAicCL5Xio+V/D3C134AOWrk5rQ1kvVyX0FjRCuqiJefXVxerLDDxtAQTMAYkNe78B4LOU6TatverHTAFwa4vC5wdcvXq83no/1ZhyfW0XFTERE3GtMTQFV1zzPy4u1qqU0gpjYSgRa+VaefPd9BwnGDBzmtI8z6XsRZQrP5SRPhrHa5jbz3CLNwPw9LMfQK2rr/pW1qsPRvWRASAodDnt3vB7NcTGBmkwxLjF8x6yRoZsVDXAeNftVuK2d7oereMVl7D67GovBIZ7jtgIy+jnoKOh/XUm2ht01PVGXKjLubXt431f2tOC2PlGHlEQbIgs9CXlMmv8Hbbwi1vgBET3U6XRmATb7mWbb8x8DXO3jZf/eMNtL8ci9O2GjjEsnhcfSqh+txTM2QC4svq4DJ0Qfv/7v4ZBDG/3fZuALmPkNoLRt5YhcGB/ABfs6v0c7gfmIbfzJ5fn5uoGQ9wAeyH3aN7x+ACuB6PgbZu19wpAn9OjiXSzJ72+adf7AaKOa7ensF3h1WDqQ/3Lw8vgmzjuonuEBwYenZDedqfeTAxGpr1Ma/toJ+sv+V7/W5E7S9hrdUYpod9x6WMRAMwpg3HPfM3XIWo94o+v7URkqt5QTNqbhHSoR9mWDRnv5yPtekSN/Zg7p9TaXPlOVLSWCWB3fU9UoTTr22AkwEEqCGolyVTOsAYIDdqqMUExq4oWuMu2IlCAwOhtcRzJSwhiMDcSNQETswZVoCJW1VagLiJnaGdrZ5MG0CyI7QCUaU7hwz68u4u7HadIjFDWVpYmTQAUQDASTQyBq0FVVDM/51a1mJY2UKt1yYuh0EOOckXUMzFO7Cj6VuI1VeB9xAS61W+NG7/tNvvWYyNYOpjchsk3ds3PWYEOZ8E2ADqGx6WNcGsruRrgF8S9bYG8R3xQqVfI/dmKCFeYeDTPXc4GAHxXJGZWy0u3UjQk601cbBiMklG1MKg1gA23XgBJJ816TZi/qrdKbq8e227ArXLWtvV8LGHoxnXbrTDbJMc9jA/IdAmHl2L37Y5sCBzGDRrNBrDJb4pRbVANDSNR4jiFFDkGDqov/cMRcZpnDm3KZc4FAKZ5StOEYCKEIoao2IDcBGs9nY+KuOaltVJbrmXNZc15laaqIGKtWm3WxIvMBXulFqzL+Xw6Pnz98sc//tOf/vhPpeT9fprmtC756el8fDqfz8t5WRDcHw4Ua9VlKSlNMaXIgQ2JAkU3IA8xBAJqTZrDXAoNVdADn5mqK1tUE+2bDo4hhmnGlGL0VuKwm8LEFF+3oP30w/u393eDwSAnDV1yNLiGN4J6kdWLxeuSbbz+7tgDPv9mzxgM6DqI3r5toi26jj9Xr90wzRiol5ztyMhiB7jueYuIXTmCsCNOJLx6ExgJgG4vAS8PRHLPs9Ha6uUNvgW0IaHlcJicMEKkoSRmgErOlo6J7YvQFgHGjnCsmheC+TLle2GEw8UrTAOe+TdoYp6v3TywAcDUSym6vK6I1tZKqZkhkqWAZeLaAjcvA9KuIQ9GzCmleZbWmgFQJnh6eWu+weYO/Pf8O7DFx+2BbuNgSwoMjNNx5oblcHAA2zZq+3Uc6/n1KvD6ZZe4fYlrsGFquBq5Vz+4+i88G416jXTNQJXGirKh+ReHP12w60t88Z8rwsBrapm7Kx+AdegGwxXp6mwdKNJlPHiVmL9Ph7mjHronzbazekHobo9vQ7TXoOQa6Y6dZ99owCVdZqp49Zht6Ca8jDJE9PbNu22ZgOuNBwL0yiNkwO4n6DtuJhdr3Bo2sKvzMG4xxIbjkE+yYf20Le0XoprHx5OPfVAFnyFDEgrGJmLUPODLnej1Mx6vHqcCI6iNn16zWdf3eTsCUeIwoDf6tsfYEAlN+iba76xzqf2BkxcawNV068WISL7GX2ILXG7O81wejuYeT0zQ2LDCADRKhMz+fLs4SFct2Sb+5ZL66W07ex9g24gaLzIRadVrK5qKSvuGt6IIjHvbb64BmqIpakMpUFfIACbWmgmDMBgjKJpX3xEwU5xCmmKcwjRBmiCwsQqZWFWt1rwjARGMtCkUtdVktbZ6gAcyiIA7on2g2xTu57jf827HzFjOmCO00oViMSHtCCJXo6bYtNdArgZCV1kkf8AEI82CAuCtT2SbLRCS7xVfHr50EQDacIm9bG/Att3ddTQefL++3sVf3e1n+3zv7LbeyWY2clnbtrbLJl0NpMs8uIK5Pd2joyrGB8MWffGaEfFW8V4l9eIkzT0aRfyLb1yA3xdD7x9goHCNHK/ALsCLqP8czzyfuVe/3fFM39ANZEqD1/GzHHyEkuu/4/Z+dhWcYMO4z8DTC5gLl0weGqAhqJEoiBEgE0UK4VJD+fKhImKIARBcVxW9cyuEbfkRNVRPZ2mTmksG4ia1ljWXJedlXZd1XWptIibNvMvH/yUm4PlHgPNyPj0dHx6+/PznP//886+15nmOaUqtSs41r2Vd11IyIoYaQwne+SOQpxZrS2lKIaaYphjd6SoiIJgoNAMXyDUkBVJQ10ET1dJaMdO+NhBzsBAxTbyb0pzmKU5TmIkCvoK59zeH928uMHcsYT74eo3IVb7jamjDmHwDt2zZjCsAAdgx78Ax+OwXcQyIi2DJ+MXny+U27DqEJa/p3mAuDpP5AXmH3bAHyfG227BE207u9aLsi+JY7npZvu//7DJwPXHMxF1Y199YzRBhK6Td3vwaGsEWF/qoH/Prio/cNrl+nghjV+DYy0UKO8Yde3pH4TpIYDPp7kgiDZuACA+tFBIRQjPtehREGEKIMaZpaqJi3wgp34C5f/yHc0y0hYfLxnY8TLt6lNtVXuO9Tatl2/9cP/ENe9pVGu1qkDyLSS8f49XHwuXcAC8/8pByYTKe//oYLBtoGg++n4YBgJ1PL++U0L7ARwBQNlOAqKSGesXmwtWgQ1SiStj6JnlwzP0Gjuj47LJwXPDYDfa/ABXJLjcYtyEz/vWsSGw8ofEB12Py2fOw/pj6Q1BvNrFg1yO6vwYNsOmrR2FQpcA2Ka7h/+UR+kq+VcLR2J1eEx7YGZHtXa531APcjkc17tY29q42ODamq47mdLMr9PoMx16+f3kI189ifBsvX1zbSPUvWntJR/3pITwsG8W93WwfY14pC4SmhqpsduleITSkPvDGrDAzNGW9MofeJsUlNvsj377fIzuig6hnk805E0NUU7icgI8Eb/gen2SdGvMslY4T8qsaLD+AqjVh1Uk1OhI65ZdRZX/37m/+j/8tjJggAtLUxBLTFHAOFBOUCBZsZSAyJVBEBRCvp0dQxErgmjVsyBVZgcj56p5PMzQJpjuQYG02uTOpoNWgXRDGZMCAcaJ8y5/39BQpAJKiBJFZNfXcHDJB6JettGlMmrBpUrq1JMaiCEgh1BCMQkZiJOchuswa0LCLVONo9Iz4N9U//i9/5MjjuY2nevWSqyF/CS929aqX4e3qdy+jCMajG6Pg+QAbooZXaPQSTq9QoY3f6RPumlsdv7OdF9j2EeMKrk5Nxx5Oy8tI+8vPv5RSno6PJvjh7Y83u7tc8nDqvjq7Z8fr74wfXE/usWhcbiPAM5rkeVDuswq2YLy9xXOKY4uAeAkg3z6vjWmBng10yoOQA9PhcGMUHo/r607xtbT/6X/9RVXXnPNaAeDL0zmG4k9l1AsZABJV4oXDKYRAxKLdYKhJldZcG0bNtOeLSQHNCBAFAQHNdnHi2/uZw93929+JiusQdu3Ypl3OBTHGGENwl/UQvY2JKWwVYYHZpS8BAJDl9nCXYmmtDh+vDp1ERNQ7CghdejaEEN0UgQMHV8lHJISXurn/67//+3/6888Dbvn93zZ49ux2j8j5/LH0R3bBHjZ+er1d2paZ639dfXWZTuM9thfb1VuMrc9YBxFh+KbBZQ+1Lfvb2SJcT6tnf8Hf/8N/fHFP9jv67Y8Jx+dcQLaBC9epoRkj9BTnq1XDEBsgIrbLmYzl18zIW3E647L9Rdu5G5qxalBNYqrYk7X9SpkQlMvKTxryGr7GAL3DW3OptVY0iawESkyo3AqflGrB8zl8eQhpCqPVrfPTZuC0bmtSam21VamvUB/gv/t3/w6+H9+P78f34/vx/fh+fD++H9+P/7yObwlSfD++H9+P78f34/vx/fh+fD++H/9/fnyHud+P78f34/vx/fh+fD++H9+P/wyP7zD3+/H9+H58P74f34/vx/fj+/Gf4fEd5n4/vh/fj+/H9+P78f34fnw//jM8vqG0kCEYALYV6xoJDrfvbm7fpd0BU8KYXilYXP1/fOdV7/o3/3XpxAeArSsRn0st/Euu4SK6cRF5efm79uyL697KSyeyipoKqH355S+np4frX//48eNvf/vbF+/nRh+qrWmVVprU3oMI1NtbpWv2tNZKraXUUkrORVS7wye7fgi4kY2ZEjJiAABvbi2lrnktpbrSAjF0vzBw/xvvUjQRrbXV2tyCrQuqbHoFV6o/IXBKHCKHRCESUff+aE1r01alVW3Nm1+HJggYGOz3h7/9m7+9viettT/+8e9tGB9fbs3oy7xuT+6P1ftLiZA4hDDPu91uxxy837W1WktpraqqqVw1zF61a19/ztV/7NKOii9O5VpR42pYbM2wNn7n6kNGj/pVF6031l5EI7yV9eOPv4kxXt+W9+/u5l3aGrqvH0Hva91EEy7iGvhCMuLF1V4N5ec93//cDHkm43Hdbn6ZGDY67WXzMzAY2nYXYxO8VlsB2ITOfL5o1yV+pk3x9eH06fPx+nSm/f7tjz/i1QFw6Tp+3tJ/ffnbnfv2lV2f2YvB0M90KARsOgHPA9Vl2L4QBLhIY3VZgCF5Y1dqHsMGdsihDoGQrcG5t8E3lQbawunz9TRBpN/88PvAcRuer9qD4WoAPPPo+fbrr3/v+r+b1+4murF9dblevHx5/U4v1Be2m7O9w4uO9FevxueD1z9q+9bXL3/J+Xx98r/5zW8+fvwIV+3q//yFvjhevv55v3UXJdz8n2Breh/qeJdu+ivVCLs+wBDwxTCGZ2PyX7RgvTqenfDj48N/+A//8frHaZr++m/+tYgux+V8WmquHh0PN7ub+8P+MPnZNZFaWq0NwAX8McYQY+TAm1j4P/Px2xwxVzQuRXOW1qw1ELFScs5rybnWUktRVSJiRtdxYg6ttVZaKTWvS86rNHHB2v3hcHt3u98f4pRiioRkF6U2MAMZfgCbRoE35V8ZRGo3IqfHF96K3AqaAnpYhq4BJ2LSQBqCdgkDP1cKxBFDImJkduPcTSLA55cqqFqutmat1a4UrwzR5jnsD2HehRAoBMJhQQebqAN19WsXtMglL8s555UIuo0RACAgMYXQDSSZAVCGFGMPGeIKslYBm5ESuxtHq6Wu55oXt0FCsMO8283z9T1RaIJZ1aW42mbb4yqHAEYEiMCBAgfXtYghdotVZAAyxX5NfTg4GvA/3ddFVGuppTRVvVhsMo3AflGKiDFOU0opun0OgLnypLS+7DBz4BBiiCmlFBFRmrYmeV2X87q6z9OaWxNfJFNK836e5slPGRC6v4iIuF80hw93H1/MxG/A3CMkMeP8yMdfbgO+/fH3f/03/+b+x78K9/fh9h6JwPRahuX5An3RmXku4nGtsuLLqS/8/qdr2KMbibnA1LMTfTU/7eq/6MuM6cBl/V0RYBjV2jWiHZG6y0mCqppok1IlFxP5f/wP/7cXMPdv//Zv//v//v96DT7MVE1KPed6XvLTefm6rA9EnMJEFJbzej4teVlba7W04/H08Pj08FByPZ+Wr2su0zTP8xyZAwNFk7as5dSsRtpF3plikVpy/fz16y+fPj08PhoqkoWE8z7M+wBmWk2q1qIly3IuT8fz09M5r7VVk2LWzARAgbqFJAIgEh1u5rv73c397nAbD7eBJzIENTify/GYj0/5fCznYylLU1WVvjIAwB9++4f/4l/9F9eBspT8P/6P/0OrFUzRbZrsEipNdchIE8F4rK6lH2KI6XC4+fjxpx8+/rjb7YEIDJbj09Pj1/PxqdbcWlZpANIdScYqcxFEMnCo70uWumGbudVqf8wdkvVZrmOk9IE6XOb91boZkHUQs8GaiywTIQfiiBx9VhPRf/3f/ncvYO5f/fXHjz+8QXSLMrdsMtdcIcDxi5cAS0SboV2XaR9jFkA3W7MNEl+BbOhSMS8Of9abis2VIM7132ompiJSay3Vt2RgBsM8N4TAgbe18bLme0xprZXSaq1mEAL3KI6ACP/P//c/vIC5t2/f/pv/83/pAs8h8KapQ0ThuRrwxeerAxEYyj2wXcYIpXb9G0Mks6NSNTDoRsttxOcOVHqA6Jc1ll0z27Y73ThB/GJ9J6nQxET7F9WsmVW1BtAMBFBc+g/QrvTStZa2Hut6xrLw+SteaToy0f/hb/9P+/mweYd3kfbL9uiiWD0U3/pp+vZi24deRdqrZWbbW3UgbtdTdITECzq/yAs+H0wDk2x0xNX0689qjLRx4tu+bYyIqysiuH67/+n/9X9/AXP/7b/9t//Vf/1fbaP39e72nz/w9esvwmtmrYmP9taaiGyK4y6NdaWlfXlHM6cb5CItjOCaV996/dVd+t922OWEAf7n/8///ALmHm5u/pv/7v9S1vKnv/vzH//uz09fjnUREPjdTz/+63/zh9/84Qcf5st5fXw4PT6dwSBGSine3O5vbw+H/S5NKaVEz2GuXfSirDkdI9JaW9f25Uv58qU8PbV1geWsX75+/vz5l/Xp16eHr08P0qqkhCmFw83N3e19DPuW19Pj6eHL10+/fP306y/Lcm5NkPD3f/1X//pvf3Nz+P3N4c3d/V2IUUVM3WEJTTWveV3W1pqJmRkHDiEQk0hrrdXamjbRpiaGpxfy0yGfWCoyYWAkAmkgYnm15QzriaExWmAIKYU0h7Tn3V2gEKYpTHOIE4UYOBIzUUBkVWjNStVPD+2XY12fpDWSRqoGJkR29+Pu4+3hx5/2h5u028dAqLVJaTaszY0JmAWhaSutffn66c9/+afP+Wtg2s0xJvapwROlwy7uDmma07RDpOV0Pp/ONRfTpiK11LK0tciifNRQwkzzHqfd+enr49eH46dPWApJRZE//PSbFzC3YV7wU9W6rMuyLDmXWkspVUSaNEBlthBhntNhv9vvdzfphubDNB+muEtxB0qtolSSDrZbrUup59ZW0apSWpNWJefy8PX48PVYauXIIXKMIaQYgku/+VwgRLq9Pbyd3sb9XZhTSMFMy/G0Pp1WWUuprbZpmvf7w2G+md+EuzcTUVjP63JuTz8fPz395ec///L518+ff/28nBdAJMY3797+8NPH9x/fTftpmiMS5pJzycuS12XNuezTzfvbjy82dK+E3AF8FwCtkYoZ+aKm2q606IbDLW40V/fx7ZK1+DIu9Vde8QzPMa5/016Fs+03vh3mxkf5Yt/dTS82a4BwpZLofNGg6QbT0xkZAwC3FrDa/hk5yo0kcqa11laW9XjOx/P6uKxf1/xExFOYiMK6lHVdc861tFrrWs6lrk2raNcMHMweqJq5GqE0UQGrZmyCpbZSqxO0Zu4O0I0UhlMEIDCCE4zKGANHCxRc6bO5QrYbiFr3BuYwTZE5gIKKtibGioRGgGQUIEQMEUNACWgNwAAVkAkBXnstIuJuf9NaBWeVVfsaLE2kmYiPi01NDzcEZ2Yq0uq6LqfjU2vVtQOX5ZzXtdYirWoTNQHT4dQG/XFd81EXLm4bP+Op979Nx36HCAe9bWMtBti8voadDQ4nE+pCg9snECISB+TEYUg6MiO9vC2u2QtoCoBoY9JbN0XfnCcNDRCx6xXa1dXgBj+ekZV4xVNfXeJlZI6nAv/p1bYzN91uRkS7eCe6nGJXLR/mFhteviI+O2ZEd7N1L/a+MTX71odbJxMUEEHwAnMNzKD/NsLmUmJXD9fn9hYiBmAf/ohmFx/L5xhXXZFRzT2fL17WBgBAjpmf3TkYEQMBwcitHGmYTdv2RQeYqkb9c83QNln/Id+O5j5v2s1VX9wTALUmVgfGNQAyoO5x4AHLzCWzr8dBh6eXsHUJg3CJxJdhYdcYd9s/gQGg/3395i8f3H9iHP2Lj0ssHl/T+M6/+PhPv/b1aT67ATa8UTYLjA3jurHOK4L28oY2zCz815HQ6PLTf44f/d9+vPzcF8cwthnItF9UT6wgIhOFwN02wszNia4vcLugq0+8upDth/2P7/Mk53I+l3U5lbyqVCbczUkTx9DBDRH2eN5vk5gpIjpgjTESB0QyA1GFJgPmIgKYWhPPoZoTuiAKKGRdoLe5uWJrZkIvZXOBiRgI3W+o0wl9vQFEBCI3eOyMQvdL6BxaJ39wxDnfj10998072mHKMMHVKwtPQwQkRDNPBhBZp2y3dwW1bgOkap3XGMFqM7ccfxCQkLTHUedNAQUIMABHAW4KrQm0SjWjispLr2zrVmJO4epwOTS9SnP3LwzhssB1egdhGJCSESAgBSMzRgiE2oBNQUmHCyISUuCQYkxTDCnGEAwAFPQSv53N6C4YBq5/jGZo2ulzEVXxAaTXXOVmlkU05Pb7qfpremqtP5AegF9jSIBvsrklL7WJlZVaVWJtpdUsrZg2Ny7tVAAOSGC2bWOvJ/02c56hYXiGhq/BLlxxumDd/Qk2LuPZw3w2STe3EkLbUq/X+2MAcBTjVrhdDt0nl6+SBAgGIparlQrt29480OGB5LrkfD6vx4fjl4enL6flIZenUo9MPMWZKdYieS0l11pKKWVdy7LmteQqWazZyKQAQGu11Vwl55bFquviq0DJreS65rW0qqYRKYYQAwVyyX/0ldpXrIicGOaAEY2AERjE13kPhsJEIcQQIzEQm5nVKrC0aMiROBGRpAS6I2kslVUV0MwUhqtuiPziKTDz+w8/NmkqTbVtFn+tllZzqxXcN9j9bpwq7IhHpFlel8eHz1JLjBGIEKi1UkuRWlSb6eBxx+o8oO03norfC+tPu6/c3ZMeTAnRcOjfby/oRAZsWLyjHBzst7vRbLwrIRKHHt1jSjElZg7h5QxSEWnVeVxCh8cAhIAKRODkOaC79pj6qum2WbTZOTgkR4St9uMyERAA9YJ0cRvjfgGbS9s2Ba+XOCe43WzVXcHHMhm6o/pmgbw5rPfbNh7DZp0FYMyMCC7/3V80rOCf3ROz2hogsRqJbUGS0JiMSDfnH0K/c4NwvMa6gyWAvkaNS7pg3J60UUe61meAqNnITPgN6FTDhhw2e+cOXIwctpKxghGImhKImKCJWkMLaoUUnZfq8bZnEvwsUBVNTGqQalJA6+vNc2krNfQZaoBIkTACUF//nF9+eTMHwPVI2bd94JAdhyn31S91gHuVE7naOMKmbv8ifvcR1feP1+/3orpkfPf5t16e9BV8AkRQ6Nunb8K6vkrgi1P6546rTdDV661vuKxv5kSdxDUzL1FgfgYEr+oWfIB03tvBW63VkS4xEbJP+uvcyP9vx7Zj20bg8x8jUkCq3dbKI7OIDfhtIRIxmcE0yTwLGITgPmQpxsghdIPMlyBgfFDfqBmOTZuj3FLW4+Pjp09Px6fH8/mplWWKtJ9uCQkJiJBD5EBm0sRrFkprtYkg4RTSvNvN8z7FRMSqVooQmYiYyIYBS6m1NmnSSwSERBQAWnMHcbezbAa6m14GlhhDNDQEJd/oKqgDSQQiAvP4TcTD6b3/3TNJThwBIxCA244R9Z2uGagRqY35ROCe3IpmCIaoREDmmM0JDOt2koZgaG70jWrQ1Kootm5Nr4Zi2GkUJEQGZEAC4sHCVFTHs1wBCzBzorCvdMwKa6mwnKEs2EqtP7wYKiqaW26tVd8ieCZfmlelIQD0LCMbkNnYs3ewKNpxGKJbciITB+bYmkmDykBYzYxJuus78zTN+5vdNKeUUohBfVg2dR4eMRBF4sScmKOZEgYANiMRaE2JNEQptZUipbTA0ES183q+VwocODCP6hAvBG2qbOYeForobkKK3Vbo5fEtmLuupVWsa5CiGlrLtSy1rEkagqJvxQ1gWCvitvxc2LJn0+hqB9FfsNEOfVfVOddBiAzwAVuy1Sf786j4grRAMAVP8+EF6Rpipy7G7+PYCYvXtWoHM2ioCrVaLibf8uYca7xozfl8PD88HD9/+vLLr19+eTp/re3Y2jlwmOIceJKqrWotteScs9tzSKlSJHt6BgCIGEBrk1JL0Vy1NCtgatakOsxtS15rraaKxDFwChzICAyACdmIiREDYFRLASUBYIwpcgRF38uJNNXKzCnNMcamtda1WVbRWpqRJWIyJoaYEIBFVBo71dcaIGAIHIhjfDlUiPjth48qrUmTVkXFP7HmXPJSy6qtqTQTMW0mauagSn3xMFtV2nI6EvVKqQ3R4sgDbU/crutN4ALktrWwlwdcw1xA7WgITQHtRXXjNlQNOllCY4Pq+0cmZuLAFPp3iL2UKaQ0zbs0z9+GudpUqpMLHjKJ0Bl1h1hm6muKTwgzBSBzUEa6jexOy+FlosElAfzNiqA+IZ7/qG/vOppxfzgRL9wSFVVzVxnq6z3TVpU7Zt9lg+hhZtjDEiEzDebi4iP4et03syoCaGK+7SYgRFTa7iwi+8rgjtobxr1kxzeY2wfAdm4D4Nr2hV6h3sHvjvo056EBOr1AzEQMNq56sNfY0brhYDkQlEzQRKyBEan7AWGvHIS+oQNQ54BUUAWkmVSQavLSLQ/Acj0DOfkvAMi8C17fZp2sHpuLy7j1Zzr+4Zdig3DA7d5f/c6lVuGCdA302Y4RX3xll5n3DQw3gmnHwLiNsW++Ei7TcpzVGPr/DMy9Qnr//EuuXvyfeI2N1JtjXBFBJ5eYffJuu7oXbziQXq/PcZgroiGEGLQjgRclDv13/3ccfQUbk+wbB/eRSsQICArWtLNgpkrIMTACzlOrRczAiz9TTDHGENi90C/x83LTxo0euxDsvJ6aaS3leHz88umXZTnVsoK13f5we3OTYnQG1o21mjSR2mqtrTbvMCGa5/lwOOz2u5gmIlaFUhsAOjxH6xuKWlprKiK9UAwUG5pZbaXU2moVaa0JgM539uLmxhASoAAIOp/jW1MA7HCTyK3UyV12ty08dq/5nrWCkSLFC21gHdF2X0iwDnOHiTA6f0gjKwQAiISKG8xlQDJAVQO0JoqEAQkIfBOuimpOsPkJMCIDOSVCaAoqCtYQKwSlicJcKRaFXKrl1dYT1LXV8mKciErJpUnz3YNz4c1pO3O2Dx3WgztI9rGuCmIgg5ECphgijzUv1WatAhGAgjQjbs7+MIdpmvaHw243T1OKMbbqmLUCVNWGbmVNiXkKHFUVMQIEM1QFadpIWm3+KyVXiyCi5lu7jnN7/RxsDUMqKk2VVBAQvTrTIzQMtv3FTHwFc82W5ZxLQV2TNiE7Hx+//PJnTDvc7ePtfYwIsOUoexEWjN15nzkXZ9oxk/D6715jABfsAuCEF2wv8F/cqngvdM5G5W6RFqAnn2nLaXduCQHNuofpyKeak3+OqQl8z4cIQOrIxF5OJ/BwaSJSS11zPj88ffry+MuXh19+/fLrp6+fjudH0UUlO8yNPLnhsjSptdZacmmlSi7tvJY1ZxUgCg4pxNpGM6paKaWWXIq10kppJZfa6ra5iSGlRFMKMUyJdwFnhIQWTbFVra0RcowphugpU1MVbSoVsG9ql/V8PD+t+QhcLBQMjYJiEFFpopXFO2sAwBNRoBuh+YpjILy9uVNTkSrSehuBWaul5rWW3EZHm9tEdvZQxd2s/ZkoOPnWLtuQXoHbU0PbA/D/bGSe/03b4LMenvDCcXbQwkDmRCH14lhAQjeQHBWiHeGxV86ylyWEEN16kjwAIXHwytUQYoopIZLZy1zauFtejrwFVHAmhqh/B7u7L4wXj0LeC2m7bSM76NzQ/bj8azQAY950ovQFxWXYDZBlZLQAkTmEgP3C2etwaXvU2BN1faIhYu9U88skdIdPRLyk6+2Cs18MFvSg7wXRpib+Oh2EOfF4MFuVBGz06/W7e6qwA+sNX3asOQhd/zOqtP1HAwubGuEWCpSuts94fdc2qLjt3jsvOuDyVlI72BDHCk63BbRAamzCJmymsDy/I6b255//IYSgpmoNKczz3TzfpbiPcQ5xguFEf30bL+c03macGW5VtHD5cb8Bl9pc6/tInyr47N0Nrr/R132z/s5X0d13H1dP+fUTv9zGqzkMVzbs/8ljQ2D/8hfD87VtrIeijpNGmc0F424k7ovIZpekk/fv+B+FDWt+Kxi+Opn/fce3LxkRA7PGkFKc5ilNKS/NQHpmWg0AmRkAY4rT5Iw1dsNc5guIH2fdc0QvPurqRvYNsQmYIGgMlHgiSlNKgclUHZaIggGKQKnVEEKMu91eRZj5sL+5ub29ubmbpplDQCRVX1RUxRDM590Yyj51tinvdfGmqq1JrRVQXu8AOivh09ZzZURAbJFBnWU1Y9QYMLAEokDMTuASEimjEAITARqSGQAbKBihDuJWR6/AqFjCDl4N1QunBlQhRCBkQoNOqag3BYqwGTESAbOvO+zbFK3SqAIDCgRkjikQEdqqCGstWQIEBiYKhBExISXiRHGymEwigiC/XH1UNZcsIqUW33e02qQ1v0lsaEQjseoX5m7tQq16drFVkwYGxgxIjKhExowq4HPFYDiw90WRebNoDsEMWY3JkBTRkAJRYI7+B1FCiIEDETs7oqalNcp5ySsvIcnU6UnGMMV5N827ed5N0moppTaV1vKaz8ezWmvSOFDT1pqUXEtptbbG30jFf4PNXc7ndV2Z8o5aI316+GL2j8ITH97Mb35whM1McGGbtnzfNpc6IQJXLxjLdK9M2OiljVHbFvRtie7c3vgZDBCwIV1n6MY7AtI1jTEi1vUs1n6CCESogEQwzJ1NFcnLeV7vyX0w1JbP69Pp/PD5619++fynXz//5fPDl8+PX5b1ZFrNWuSYQo2cffF2pNikValLKctSlzWfl6INTEHFYgohGgYiYDQ2pZzz6VjyWlvTnrGR5qdDRCGk3TTv97ub3d3t/s1hd7dLhykdIie/bYNvDH1Zc5jb2y61Nnl4/Pr16+fj+VExK5dma9VzlaW2XFspXMF6rYiKtCrSgC6blWcHIe0Ph06Mixh4NQ+Kt93V0nymtSqtNnEdB/GyXVUxz7d5WZaamlf39vIGs8Hmds7Ix5IXQQGOLK12JHgZaQPYQI9JCICGGJCJOHKINP5013Sm6BM0xsD/X9b+dDFyY8kShG1xdwBBMpUp6VbXTM/7v9V883VV30VSbmREAPDFzOaHuSMiSepWTXVDKSaTCwIB+HLs2LFjgTj45zEm/5hiGgJcJMae++q0I3z7fmnyw7zyiggHf4QwpABDGkYHuIaRuh+tze80YrfJgHD8NebZgLt44FoYE+89mOszRUFFa2s6GE3mEGJgDl5Ld7dz2zjlANv9biIA+H5PRGbIzCE4Ku2leget+HqsICIz9pw+uFhW1EbGpt+YfmeB+hJycI+3JeKOzR1Vp0Ms01Py1lM4t/t4qGU6eB0yNPT8I/nrDC70pniyzr73UWkqJiMlJ6pNpamJ4wHr8BvMEI0BJtSJAQFNUBUFYMcfQKua/ttf/29wVswkxOnp6ZcPT788Pv788PBxCYzIdqDCvsAdlQZjnfMVtTN1iD3vDTcS1z8fEP0gVv+EdnyFQo9XeQ2/jiH3A3v8KrS6f5E7THVc/H8ECQ/YevwgvvkBsNvYuGUUAGAoa6RnvQ0Q4U6P+0qzevtFOPgtPSS5LkMnRAohMB+FmX92Yf/l4/1bggAxBFOb5mk5LdOyr5diUNXAhXfgFCBjDDElVVXEDsoPyvnuEY3s0KvXGBu3jxBXczLTNIUpUQwUGE1MxHLJ67au+6oKQGxArRohzfOMACmlGMLp4fHh4eHx6WmaZ+aI5NN/5D6g87l93nu0OvRRdhfmqEvc4D0Z4W0ZBDRyzQAwQ2CzoKhIJozGbIEhMAbCQBqQA1pAZ3KBUIEIUT2qVDAmQxzcYGdeyCVJg5BQQLW7u9bXGwQmNmsEANaHX63KQAFY0QB71YOiNZW9ijKwgmgC5hjnFGMIV0XZ8p5b0BgsBGfEMDCnkOawLAYFSaExvUmxqkitWURqaa30/bdV6fCLmQgtdJEVIrptQmsNDETMFL2sxrDDXAAF1CGG6uGPdLrjtrcBIfhONsTQ43tMGJgSUSQKCL5rcIjMTMigpk1qLshbQMImEmMIzBQpzXF+mOd9Xral1SqqtdZaZFs3Iixtmkrh2DPPtday11pao/8czM3btm3bFFuLUlDt5XlbVXk5/fKvH9ZrCIEmMB4zx+6nh42V56aDPPgoOBCJHapsURU0AFPstS/keWImxs5pdVTrL3BD0jYm7A/I9s9WThcQdxxEjpaRfFPyxwJ494zerALWqdztur58f/ny9fn3P77+448v/3g+P3+/nHPZQRVMA8fELYUpMMXASKAqopJb2fJ+3fK2lW0v2lAVVGCWNGGITApghiKW93q5rPvmUrBe5RNimKZ5mR8eH54+PD59eHr6+OHnTx9++fj0y+PDh8flaZ6WGGJwip/dpqRL8FRFtdVa91zWLX/79vXLlz9ezs9CxagWWbf8vOaXXNZct5z3QDsRimjeG4dqPbHxKmQAf6rLfPItwVQBwekRVZVeP+ABZa2tSv/TpFUnWLS1HgI0EanSxFRMmyn2lXvkrsHcSMMF1iOo7rACb1nm28Pu4waAgICQAnNIU0hznOYwLSElilOIKYbonjsxphhT6LVlA9/G5NS4ZxOdwSI8mB41s+8v11crMBEFJnCyFs0HFd/U9COWc/x61ETc/YEbfPX/CX/4xoHfDi77hisGMHYpXh/wnUYRc1rLcSwRhRBTSu71AAB2yP87uujz7y70t+M9IoBHCX3Cdy6VsO9fr4cKEXc2UcHMmpqI0/+IoGMW3vuYHbVed5zP2HV80fbSiqO8zGXG/VbcQgQY21D/3SOERgRBRS9TAVUE0LGmHKZpHiEoNPdbcN+9JkW1qlS1ZiBm0gW6PelEaJFhZmAzC2ACVV4zdWb6t7/9P60VX6ZTmj59Ou95q9KAKEwTUzT09OLxAH6AZTeAiz+cdyyFHenC3eJ4AxDQA5lb3dyPx48I7gaM7inTG8OLr792H3LefuGuRqTrLd5fse9/58+W9FcY9/bOh95A7g7FoTp3tcI9/rtdyzjhvWLBxS4AMGwZ7n931Kv+eFf+q8ftKb36BiIGZgs2TWk5zfM8cdi8DFGsYw5fJ0LgGIOqQtfhHEvH+xqVP70I82jRQqBpiowwxcCE7vG0XtfrermuVwWkEIkTgsfMMaUk7ZRiXE4Py3I6PT6mNDGzz4xjNuFdJqFTAj1I9NXVnEkXkVpLzhngHTa3r/JjrpOZkhmzGStwTyAxGrMyOzGKjMAIjMgo1KvRPKo28owwGqL22NYNTbB7SwGAEQCZoQsPev4E+/50q4Lqw6fvgwwggqYMXvuIBGZQRbRVyUqdaE4UT3Gep8lKvU5TiHtoIVkQJE+sRQ5pXuaHJ2DDxCg5TvOrO+KAT0Sa+3bVJrVJU79DCGjsbO4tovOaNdMmomDYGpgiEbaAxAHBk3Ddkmygtj4nDo3HIRAb3kdjTAK6HqOrMhC6205gCoSEqtakqRkyGZqYzDAjTUgQEqclTcs0L1PeUskFDKW1vGUwqK3VmjgGX+iatFaa44u3s/EdmAsqIKIklTSD7Xk1azh//vD184dvX8ykLkucEozyPeeCPNXgHrHSqoj4Wz7oqGOBHuJ5L6Rsrj0HAMdop3l+enx8fHycU0oxcWAYK9DY6vsI90zakCOMBQo8UgTsX7rxAWNdB0Ag8/MNFchBlQ1E/upore75vG4vL5fP355/ez5/Wbfn0laxgtQQVVS0GaiSGoEyoqfdm7ba6p7367ae133faskNlAJHUWlaIbeq0LSUlrdc962VrdUsjsDneT4ty+Pj46+//vKXX3799PHj08Pj0+PT4+np8fThtDxNcZriFDh4xSnCyPeMaAKsp38QIBDNaXp8fGImnjBMpFByXXO9bvtl28/n68vnL19FvlygAqAHI6A2LIzeLDPY+S9zuNZzenQoAUKIknohpW88duw8LhqS2tzip1V3GFVpKi6+ce209ori8fGgpRzv0njSPRw6eEgEIENj5DifHk9PP50ePywPT8vpMaREIXGIXd0eQmAm4sEMIKG7AJKqlloPUyFTAescUWtNVaW9vi2ER1Z91DnRAWfxDtwO3vX40Efe2EIHhh/fuTEHP6BgGOMVHd3ejWBDM3M9ShORpqaIwEheaR4QyAxQ7bbjeLQ35spd5HpwqkajYIu7qNFUCUDdOOEei/04Vvr5icEAuI/PDijBAEAA0AsI8DbJx8S9kVEOeM1hsJqqgg6g7UvsMTJh0No/nM4dFNytTUlVhcRlejg0zGpOB5oaiIIqiDo0tybWRKtqdcMyA+nsFxqAVwghdTIMUA3chew1x2Bm377+kcvuhGGIad/Lum45VwAKMU3TQ4wTcYBejQZ43BgDeKfU7x713YblQMTHU7j7pG8IB/S/6YRufg0/nOaHrx/UxTHhbuc+zNAGFuhPEUeg8k845R+OV9HB26//8APDalWP8qzOYQ3+1sncW3nz3bs7thD/q4OtvkUgEQ8ql48J+OM9/V88DvLm3emDziVP05SmKcboKgUzUOlTCPFImfZktIxy0bv998cXvL378VRuQSUQU0xxmpLUmnOWWs/n6/ll3fZdrAFADDFMU4gzYyKKYORLfQghpSlNc4iRORDSLbgx1aGp9EgVerwwqgaatNpyzjlv+76t27rvK4D8dz29vjNI6NJYdtWon4YUoZk6amVET9cqoRFql5H3jcsvZtj/4AiYPbfoIa6Cobqo1Vm7bqCiikBm1KtA3RVBQZuYSWsm4m8IVLvVpdeWWk99KSpoq82ExJiNAyEWJgSotYqaATFiMlBQkwp1nxH04THCv2D9QJLR2pLSOw91BDYdcIKvszTKU44pbrdDDajrBAnAANFARVrzQeHSkVZLK7XV0moVcQ0KoDPWhdBUK1epWqvU0qt1HHCX0qhbToo7EKHL5AKbiA/UXMrw/TREkyai4ruJ6yI8+WJqrQpiAUIgCj0j6ELI4YXz5ngH5qIpmqhqE91FS64lr5AeP379/NO3zwZSysM0Ty5cQgBfP7pav9ac924LpaKiI93TSVJTlVZbrbWWknMpRXq4jDGEGOLHnz7867/8C+hf6OlDCiEwWSfJrasJ7LYJ3jbhu4zlAAROUN1N6AMO+I0EA6NenNmXaUQEfK8xXJO85Zfr+v3l5fO377+9nL9s+VzbplCJjRhatSYKqmymBBY8sFPVllvZ8nbd1vN1LVlaNoKQYlWTJtBUrHpk0PZc81bLLq0IE3GgJZ4+fvj0669/+b/+z//z//rv//3XX355PD08nh5SWmKcIsfOj3hGVZs1075He8mJuSeX79MIFmN4WE5TSsvjdHqcKaJqbZKv68v5+v3b9y8m8Xze0c6mKGrSvCgK34e5AMfdxu4dgtC9WzgEjRo7QrJOFo7Nw8ugqrsjuoJZb6RvlVpFmgzSV3v1pqg15wP9YVEn4KCHlGjH1XSwSIgc54cPH3/5l58+/fLTx09PHz5yTETuCtsVen79ctsdfc3VWpvXWddSaq3SqkptbkVYipk+fvoXDvHVbTnY2Z7SucHY7icwUK4XMNzVPg0864CQBuI9cO8duoX7b/V/D44Yez7ezECa1tJqk07Q0NAiI/dIxqlxuMPj/QwG3VS/hxb+JKlHMz6pwcyIQBUGEfU+s9V3UkIENEMmBHPBnZm6KKCnDG5z1gC9PsOn8wHgcPw52N6DQLBOvBxLgMfCt3+Ou+sBgaCwEPVsG0A/oyNTE7XmljcKbcDV1kGrNb9muNPEOkwmA4Sx6qpaE2tq8mr+mNn371/W7SKqIkYcrpf1/HJuVWKcl9MjIDBTiNz3KhjP/HZH340nXrFe+OofHekf0+SODBjODe/RZvevevvyWIhHDObnOL6DcHP+uNHBvojbjdn9k+MeNr87qO6RbsenQ4/rU7nXijmNGwJ3s+vu1P/DnRrotn+0HueM7KxvyiF4RDxQ4/8ugPv2Hb33PUQOnOY0TSnEQMyI5K7vLtvp9xP73TADJ0SJsKdH3xxHCHRICfsE9KWFKKY4zdPa6rZv1/Pl+/fz8/dLay3NcZpiSnGaT9N8IkpEEwKpqJp2jiNGDpGY3XRLfUkaauIeD3c7HQCXBUnzWpZ1va7r9Xq9rtt1266Iqjq9gitIBARITEzdV8cMpCpAMyPT4dKFrvlXQPW1YPC4ajoGvB3aJDf5MVVzG8Ce/qV+pYqqoK1HtX0GmY4En4qZiJoIaANVUEEjMse4hmqoZqiAKGZmDYEsBAvqVjsmknNtYu7aldAzE0XLjgTh8fHhFAiEQNFsWV9gv74dJ9hn3lgUhyvaCDNvFYeDPzcAwF6ghogELtNsDcwMtDUppWWvF3ITB+mLtYrUUgCstUZIItqKSlMVMAVt0mqrpTITISCZWE8mYiAKPOSKqr7DSnN3NS8rMlC3oPBEPyKqmrQGAEiMHAAYGJ0fN/P38A6Ae5fNVRNpJrtKM8lby7vQy8vXL18efvvbvm/T6ZSm5AsJ9mHGah6H1bxv+77VUtxFr5Nj2BkgMG21intHlVJKERE1NQB3/Tv/9FFbA9VWq4qYKY1qoYNoH4/sPhl32+zuVotb7URf10b2sn8NDUcMPE5lau8sNKXsLy9fzpfvz+cvz5cvl/X7ul9y3VuXDQ1/MrJDbiqqAJJr3vO+5bzlfcu5FdUGgcBMEc1MmpSmpdRWaytFtGGkaVqWZZqWZfn06dOvP//6l1//8n/88i//+tOvnx4+TDFNEKmqlb3a3lpt7uPQtNUbC3rnY9uRhxuI1NZqbR5AE1GcIhISTJFOc5A51sQPjAtCAmUTkG4HhjosJ+/mE3Qyd8DcewSGaGbEbHDwkiMmcSVuB7riJuBdwuvChh4w1tpakVq9FtdTMP452H3sZgfXe6Mdu+sLkIIBUogxLfPyMC+Pp9MTB+66orFfWS/PctV+d2vsl1Wrx2O15FartNJciVGrmS0ffnkFc0d5mQNYLzg7vAtocK1OvR487XEl468DqOPtN25oFu7T8Thu8DifwytRv4X7nvNeam10n7cNJiSHk6RLO0Ytt+OAnvC8LYYDSLuuiG/hoFdI3kDJW+LISfEDlKuC61yH45xzJzq4BR+3nhEeOxL0aT3msQIOIO+Pe3zSQ92+7B3J2rGbDZzVB3DfqfrZ1TG3L/EGXn6sBqIoAGooBmooXtB7lATY7eH1V0RrTaqJ1K1tq2zXVssr/Glm63q9Xs/OEANS2eu2bcTx9PBhOT35khhiOKbVjVLF+7dxd87xXfsRAx4g8Ue0OFbD23ftFfw7iB9459eP7+PdJ69f4vZa1l+sP8H/AOO+OvDu4w/v1T8/joFxj+zTvVahE7E/js/XuL7TW50W7hgXEY/CtdcZgv/V4/bi7+Xl+094QS71+lcXNvqeaH36gDEc8WCX8bg0uVcO4a3nko0rxzcvdA9+zEBEm8iey/W6nc/XbdtrrdA1u2mel3lZOszFBEA9MEAcdyx4uXp/+IcoAcDUM+kGaKKtOiLIJe85b/l6vVwul3W97vu65w3xnZujQynUMSSgAgq4gVcjteGHoKCGY33xN+qcGzoR2wNtUAUT38h9i7ltMr0y28AdIR0Ee+Kr/9t7a0gTVQFQNVBlsEAYCAMi+9MScdcf31FVDYw8MnM1QK1hz3sTBaCAMCEQSJPcKoZIaUoQJ6/9JUL+3V7BXEQkCsbgq7kSKymTHVtlH2hgXpxZe2ESGJm6whZ57IlHxXG/JSogAuP29LDIKSusIE0IUURbVRUwATCspez7vq6rmohEYii1NBUD8JJuVSVFU/G+aKZCBE5ha5OaW61VRccGBGa+cVTXYRsAsbdDs5v9yZsZ9A7M1SbSJEMTaGTSqjY1zuXz18/478vy5UtIE8fgCwr0voIE4HJxrW6e17yvio67DyM560vIkQdW75ig6lw25n0XkW3bnl/Ov/5y+fnTp4eHh4eHh5hSd4E/NrtXb+c2C+4IMP+ncwrHz7sGaLA/o+S4j1VtzYUn98d1u/z2+W/r9vJ8+bpuL+t+Wbd12/fmw7PpYXZh5v0eDLKK1m3L121ftz2XWqX5tATsWnlEU221lrzXfWvSLIXl6ePy9Pj086ePnz5+/Onpw0+PHz6cHh+nFPda8pdcKpSb6jXXspfi8M97/TZz11k3LhlFJ0iAZEA+Q5EwLVNapjSlGDjE4PmeXPbtYloj2QwWVbFnxMxE5J1dri+VhwK7Qweze85o7P8DFBMjKg6PLg4hiCTtXR9FO/BtA+NWaTLIXxkw130WfXlXcca39V/3Z2Jm2IxBa5Wc677ndd2Yr14pp4e1utkhBBt2gy4sltaaD2Wv4ay1aqtOLQ9SDFVfJ6MRgcjJQq8/u2HGO6rUGQY4lAsjTrgpEg5se0DfsUvR8WMjuPAf6W0W1EwE9r1er/v1um5b3rfcqgSmcJSXMxF6h7whm3CKt7e9CCFwiDGmQEwDdiISMyIzMTEdkE5psLljsr9ZUlqT6/kCvZDBISiqOp1N4Ib7Xdh24yDQzOU3t9T4sI0jMLcgvsO16uxz71x3y+7owLpmDmRhgFfrfXp7ghJMuqO6mfWyCwMypB8/ogK5WyeMVQbNeiBuAGbSZC87asb93C7Psr6ovNN05rZ5NDPQ3YqIff/27bfTPzhMahZCjCkGDu5ocSx0t4n14wmPqN7vJQHqnxGxcCO54QZ2e5neTZmAd7/8+um6Acdxa/EHisH6lR7A/9VvH/0M/9eOgb+HXH6oaW+GX3cqhR9ongM2vcJPx6nGItZnh0eA/ztw7euLvzHR/eM7t0W8yyOO9JAnHzoGOSg5POo/XUNZWag15zR7bshgPJNbTNJpAei8rpmzkFBKu1zWb9+eL88v18t1z4UDf/jpKYQwL2mepzQvaZ5jmhAjQARDvOO/h30X9oX/gFgjq2duLwjWWt33bd/3fd32Le/rdl2v63Xd896kqigFfHtXqrhvi3pzFm2qorWn1yvh4YiCpgQQOMiwYjGveMOx8/tOot4QVRuYIAjaETdgJ3LtcFzXAWoAwMDEtEkrpWRRdcCNKpFpSYkDpsABAU21FVU1YEXydhkAKMIiobVSSmCmKlpFADEQIlmwVgywNaUEMUGYYppCmpijxc+vkAoRxRAJ0Y4Ro9BGHS2O96MqrZaMqtqkxRBiDDFwi5xCSIHJx0C3sfC/0QiVusr2BzRpvfmFGuLo9WAmZoo55+v1AoS5TNOcOKB477jWDICIQwAE7fdGWpEGpjUXM/B/79d933Kt1Y3GrGNFgIKAoCocA8fAwcvCCd/0sYJ3Ya6jvWySu0s/giHV8uXb16oWUiIKQOSOrODrO3mEiwiDg+6xwNhsBhoeJTg3EqVHMdI/rut1z/nlcjlfLtdt3Uv+9ddfQ4ohRh1rJ8CBCLrr9d0UuMufAdwxNgdr8QO/Y7fVegQmrdmbBP26XX773Pa8ntev1/1l3a/rtu373nfNZqrH9qyqUlvzCHXd8rru255zrU3FdJQeETCDt1ytrZW97tcKSk+fll8+/uVf/9t/++//x7/+67/+t6f5tIRpQtb9autazi/bt+/78/N+vazrtu3bmvNa815rFWuizawaNLBmpgbirBc5zGVzMsP9AmKgwMmbDs/zPC/zMiPT9SxSI+gMGkxJBQ6RwZuRciR6RxHRD5we+P29g7hwfOISIDO+QZKhhzKV4fZXWy1eKa06NKZtoFhvRqhNpdVSu6tDqQrFrIqCqiGANuOmpbR9z9frBsatiqrUVlxB3qOtVmW8qLgxhMv35WjE06Q1Vce4EEMIIRDzW5J74MaD0B2FZ7dmSz+St/0Hb5h3cLU4CNwbYTvI3B8COTy2YiRfwJvIutXvz5fv317Wdd+2LFWmEJKLkMc58EC6rn/y4oAYQwgxpfk0z6c5puBiUwNEIgKHuUOOb+C6XCI3mXzHsxAARNrlcgGAsU2gt8MhjsyRRm+PbnfsezaYWXfFO9CUrxmMxmZkxqauletsrucvOhfX/+uNe8dKBGYKIGpVrag1hWrYDNwzQdRUVFTdrd2zZUgBKPjnhozEgGyENm48DukeIvQAWiXnXfczrM/y8k2uL2Bq8/LqzpgeBAmIqrRcSiX+RmE2II7p8fHp8fEBpzkEJGQYUulBb78ume9w4u5r49beXvMuv3VYTQPerYk+4F49xnti+HamA9IiHi/7Ixw5pCY4ToI/fvV/Feke2LCr58cueIvc6LC9w9st6G+q7wU/qhduMNfM7g3IblmZ/02H3ajkYxl8h7Y0gNZxFo59dEx+67+qd0kK34Rak57wJe+RZo7+7zbCTvwfF3MLM9XdLdv1sn379nK9nPO6aavLsjycTvM8xRhCCiFNHGcOCSCABTMk57Z6PelrlIudJVZtItpMFUARrZS8rdd1va7Xdbtu67pu27ZtW23NF7h3zI8AmrpcAMwcLKs2bfWAuQoaQNUEVQgxxiowKQw/n7E8jwVDrKsRtIIJmriAcYRqjCZgRsNaGNUvCwFErZm2VnPNWxNBYkDqMHdKRNALF1WlVkMxZEEWtdbUDIRZpJe1uExLgBApEiYwMSFpICCsBgFDSGmelscQpxynV8a5iBQ4IhDE/oxREQ1FnH+G7pmq0przcVxDDSHEMKUgmsC9EBwWGcBdZT4QAaPcumT2tkvHoDVT9Dy2eymZGJQdrtRMp5KmMoXEAAKoagIAzAGBCIwApVYbLZ4R0RTcy8aZvFqaivo80e6k1/Fa0BQBAEPX79I7Q+UdmDvPy0hVi7lyDzClKaYIoKAyeHoxETMzBBLsbvpERBE9RnOFU5e5GDN2rp1xxMaIhOKWV01Ka7UKIFXV8/XKIRiimnEIj4+P0zRRbwIDPeVBRPepux/W4BG33BgQONLmPwyLuzluqipNq0+/H451u/7+5bm2fc3nLV+v+7bted+rs1ymYOJrhIrUCkKqSC6m78bk2mt2FQUbSG2t1BIImfg0LQmXh4SBpr98+vVffvnLr58+/TKfnhTSdYN2LbnK9dwu53p+yeeXcj6XbS37XvJWSs7dotaqWgWoAA2gAShAAxAkcQ9tQLXOBwzKkTiGKU0pTZ5+CjFe9vWyrdt1b1UJkImk56T/dHE/6PV3vnUH7AYmgw4M8IBu4HOkJxxbI+nmtSkl0xHdmE8hLy2WQcE2kVr2knMuec97KXmvtUgtrVW/LqTUmq7rZkB522NMriFvrXYpbtd6SBcBa1MFBz0d+qj2rIOqmSKQAoIDoDe3pWPHgXeH48qPRO7t0x4d9i/SDf3ef4IHk9tZ3dc/A4Aq1kxyqZfL/nLZvn19+ePL929fn/Neam5odpqnh2lOkYfMycZz63XaXbAQepvO5bQsD8s0TzFxSCHGbkTBh7fuj103Rjj5Dg5Q1ZqzGox0sg8AjnFKcQohEiJ3WfchFLx97PStK0AACIHN2AYVDKPdph1pGjSl0RgCrfswqDtZiure2prdyxlMURTEsBmKjY5m4N6QPUkJoN4OeTCdzjX3VYbAFBDAvHGOa/XQG/yKQs+JWHuD/0WHV7wdJFdbt42fvwHy6fT404eflmV5evzAhCkgANBhKfbnBw6UerACr1Ar3s7wFuP+kzO/M8kPRhTu8DQO4NgZBHgFJP+D63/vsB/fxKA9j2TMHTA9gr4D5tKt+0PnLl+/sX6Nt7Mdp7oTPND9wO6Q8T2W+72L/yffsvFq/XXlnQ6uVkVAYeB3DxQPegBEQVQ9vm0itbZcWqtNwcDblTFHl36+4oBuFKsBuGRPvPZempgIgBFRiik8IJgu0+QY1wBEREshRWrAYQ4ckBi8LuzWnRjHCn+wSF7nUFqtTZppU5Vc9vV6Xdfrvm15yznn1gQRU4zdGiPeuf+Oo4p1EgZBAUwaSG/8ZTIUtTDcu0qT0FqujAUBwaz3eTTsMnwxVfDkLGOLrAQoCC5wCKSMDTRLDY3MzCCAMimhiWhrUkvJe9m3Js27dreyM9gcA5IF7xM5poI6hnRsCMZofJ+h6to2JgRCExVQMbAGLFqh1aCSTCJoewfPoDdiMyZVjiGAqKkhiBgi2RA8jKdu5pXeTJ1R8Mty8ISIzJE5BIXeGydBKRKCBG7MZEPSM168j6oxS01VWqtYdrdrCMo0GhsDDrlBQGmh53Fdm9qJ0QBsGjAmFAEuDYkRpTfdEBUUIEIWDqJCSERqbzlKeBfmfnj6kNKEw9n+0Nmk5I54kUMioiZapZfwe23TFGNKva82MpuhAqioSlPTQBS90XbwBagXsoiKs9i5tL24fWuroud1E7Om8vBw+vWXnx8fTwFjOGyJwIMHw2EmiYaHD6cfBoB3i++I3KGny3xlHhSEmZk6I/qOaGHd1/Xrd9FaZCtt37aybjXvbaw6HaioaW1FBJmNyGu0R7DjkF9Bm4LKnssWtmWaUkqPpxR5iXQ6TY+/PH385enDQ4yhivz2+XK9tpeLnC+wrbCtkLO1Aq2ylCTVpGir2io2YQNS84IdQmRARWCEBlA9empSmjuBeJoLDRC6iRt5Y2ri0EyLam657pkQAzMCCAK9yQXgsT2MkX2wj3DjcR3V/UBkerjSdyCmI3FUS62lVAM1b2BDTJEJD1/v2wPrbk/iPdj2bd+2fV23bdu3bSslt7K3VkzEVBBRBNbrVnL2GNQFt9KamQyyz1GQu1DaIPMIesNDBiLycmEDJHSvsR9SyeMYEoUO5ahbT9AAsrfxeaNvh+jg/q8ht73RuMcd/wEKo5OhWKTuuT6f13/8/u3vv337/fO3Pz5/+/r1RVtDtcTh4+PDx6fHZZpSoMheC6aevOklLOOsnkxalnk+LafT6fS4nB5Pp4fl4bRwjB5ronvIua2RMxxwxzX/eJiaq5jctNzUvExRpxmnE6VEISCGQOTe7UxGaIwWyM1/nEjoMBeHOpKd2QUl7DuEY+KRw+0yhVF872tuq61dVvluDeoGYqokigYBMCAFT3oYkLrgD527JSByXD3eJ3gyE+841YHpAA0C0ESBOWiIFqKZnfEVsQpiKIpdczGWtZLL+fzSRB8fHz98+LDMMwHMKQUKfEuKwHidV6fE+xUO3iCsGwV4/PRrjHtgYzvemL2mhI8c9+sH/fq5j/8H79jB8A2u/qfg7js/9ArgvioXuz/wLpv0H77cLRnwo2LhHuYe3xpI9794HDz0ndxC1E1M37z/0gQNxLp10RHQHbr2pkrNapNS6l7avpda3JPSkDDG2Gm3G+/Tbwj2CaNHXG/W3C4PzGLg0zIvKRIaj8STiuRaSq0KjJwxzMsMyymlQEDY+yu5TGIgu84htVZKydteyp5zKTXXmmvNOe/ret22rZUirakYM8/T5F6PHGKI9BbmNjUwG8WgCtJAxJqoKJoxcqKQOKmhimmRFmrlDAYiUlsZwT6CHIlE1y0YoaVgRqjssSUwWaQGstVsqsZVW4BAWJFMxVqV1krJteTampqJQquVVKbAnfigvuIbkCIykJAxGAB4Fo2xbxcADBAQyS0pFRVMALVAzW3XPfQOvKb8prfibd9BZO+lzmxsLsBAhBA4hoAMw5bRr8z3KO+WhwpGbsTMIcYphgSGgZS5qUAt2oq22EINasLHRAMwAEJQAiJwHQOMysLWENEMRqtNphCoGygQW+cUtGTWbk+KAAQKtbSaKyJLlZxLq81FqA7Q8ejfIoqkiu/Xyr+Fufj04WluJ2aKrnMmgIOUYoohxjQRc2taWlPtTZ5TCicP9dIUp4k4dEl4t1OX3qvWTXEDM5G/xSZSWiu1brmtuV7W/eV8KZd1K6WJgNn5Xy657CKNOQxKxdSGirw/XSdYflgRh/L9oBzgWOhGvHLfZ0tVRVvT90QLe97X8tVMBKpo23Pbs5TsiQ+g7o8BYuYC9KAUmDvzCHZsvB6YNdVapZQ2p2lJy4fHp8fl4+Py09P84eOyfJwWKiVfvu5fv26fv2yfv5Tv3ylnKiWYhkgxEJMmVPBacG0j2IADHymSEgTEYmYATUVbKaU1kWaiqk5cKXS/MIDeoAVDgBCNTKy546xvUHwUAr0dMe9tRB34A4yGCoRDtTLs2W+z24OBjGRq0pSJjQ0BUgophhhiiLF7jLtA3hDcAV5aa80x7rxu13VL65bL3kpuNWtr2qpKAxMRbbWINJHW6YRWbdgI+LwZZlXAHsvFSJEpsENJGHQ0EcWYQkz+zt68cewpxcP4YHSTGLj0IGJhgN0RO4/HB70D2fihI4wYP3dDlAZqJqLbVp4v62+fn/////O3/+ff/vGP375+/vr87fuZzSLRw5TKXrXZ49KWFKYYqFs8durmALvm8IZomuZ5mR8eHp5+eqpFwDDF6bSMLhZuVDmQk92NvfcGSk8qt5xL3m34ZAcQYwBWohhMQ++Zg4EgkEWyyBDZAhqRhUNo0d85EkIkCO6GScC9VNjXAfSeu13RMEBurViLTQhaall3Ma2KQcgwGbl9ewCOCihGaqhIhoRIo+NRR/E9Jhipeu+dS50ZNTIIiMmnDweIUVTOb26K64PtlkT2Nqe1XqWU+uXxj5+ePjwspylOTw+PKSZCJnKDxT5QbwvbD/fav2hDH3Kbp29Ix4NZfUPodtIahjRhMMR3tME9TL4/87HeHl+6+60bu/z/8bBXvzeqxNS1Cn68InGPifbmXD9e9T3XPA7oc/kHuHxcgmPc95DuP3tnr3B2Zz9GS+HWmlsNvPktayLodjcOmvz5Wme+etLJtDbnieqeWylVMSJjiKHpKOK5u5k2LKLBd1TX84pvEU1FECzF8HBaCGGKITC2UkrJ+95aq9u2iaJRoNCIpmk2ILq3rBqrQZeUtFZLyXnbtvW679ue933fc97cOGzPe953U0UzQorxtMzTtCwpTTFOHAjxtWquukBLrZmKCqqgNGzq5akBKVJMHJtYbWqmkmvDbGpNGjfu67IhaO/T7WuFNgxAEyMQWu8Xj4wWsVjFulYJSqzUVx70tLb2uo7SWqui0tTMCHUmpyoMenlQL5VT6NJZAAi93z2NiltfSJBAEZqYKIiZmkAzMiFmioEn1PUN8d/3MrQhb0FiCoHdx48QvGEZsmMg66Lz3gS0J+p8jA2f6DSlBYEaK1OTYiW2EmoIJYQgBmOqUZ8ejOxFE2SmvkD0KjVCA1RTZvNNnIg4hBhiQuiVf8zspckERBTAsJZaYwOgvBfigIMK9qbqvZ5dTEWJVLuVw+tl7jXMRYTHD0+qFmOYQgiBYWzMTH2DjykRRZ9RIoKmPh+WlNIUvccFclBAA1IVaU1VUgze5ANHs6O+SBIpoAAGo4Q8GS5iCkQAkfnx8TQvpxCShxruzdmZDwXXhJI/Ur96O8qex0O/rbpd8OeZOhvfHt+8zXR7P+pHA1RFFTQlRPNJ7dlGFaneEEmbmcUQYvQn7A/fG6cACqAic5zT6enxw88fP/zy4adPT08zTslo2ja8rEUVtq2+nNv5xS4XzCtCE7YWSQLjMoVT5IBIhib5uutlk+y+XzcFADPFQEqI7sZfgIVIkJCCgRoxgBpCzwXb6LJthuIuK4jKCIZAiHq7oW9uynF/e8B47LKO/jlwSCnG6F3HvM6pU/q+CZlZl79yG9Qnod5V+wOoKICAAnQbGkcwDnTNgEJIy4IhTqeHR5GmUlVqL0FwoZBKbaXknHN2qxrbNpFqrTrxN+qjkIgoJvY/aeKYyLVWQ13bG32H0Ds3/nh0+4Ij84TDRrhDM7jLNwxgS31A6iAhzcRvOGHPe3RwPHKB4IVTqnmv61au1/3zt+ffv3z/xx/f/vr3L3/9x5dv3y+X67ZuOSIqc0DY9v26RjYjSwwpeBUaGiASsyKa0V3KB1G07mVVUNVai4kwUQo8TZFiIGIAIyAXwmBvoDtI6DeDhL3XUWSyQKBMGAMvc1gWnhIyK1EhBLddEDBFbWgFjdAI3QXo5otIgIwQGaeAc4DIEBmAgcD6tkJEwJ4eG1yiKjfWEjhXygvuC2zVWm5WKiIkhSQ0Q1wgqmFQIAU6pCmjKqtXuoEpKNpNk9vJSrPuVeg8cAAaCpN3CiN8veiQFYGQbp3aTPJ2/f7182leHpeHTz99nNKEIdGRsPY1cLz0ccbjn+OzV9MWbx9/MDs4sHb/7aF4wAPZ/nBCO/TSt9d+5w3CHdj9zzG3/+HxlseFH2fUf4hxAeB1JIY30HxgXBoGC//8VPeX9h9e/C3ZNX7cX85txHvPqjds7u3cI9Q6SJpDe+50SnUDdnd9qhqiOeSxW2eOYzfUEbb31pMj995cB8kIKfIyR2sTEaTAhLBLLaaH7aMaAzAe762jWhzv1MxAVLS1bbuu6/V6uV7O5+v54gi3lL3W4n/cQR8RmTiGOE/zspzm0ynGFONEARHXo8jVD3daELMqKqpsyjYopxASxxRi5Aiqgk3VtLYKRZtQZQkD0JnrQA3MzSkBhaIwKdlAjARESHEvgJsUUjYgIzRBZBwCTi+80gaipGpi4Lq2vgB41GRdfObh+Kh/J1Hm3pjCzbTMmhmCVbUC2kAEVREiYaVQGDDGlGKgN2lnMOc9jj+OUHpzLCT3oA0UsDPunW0KKU4ppdCbTHmjqRhDimFKMYERWjOGQ8DTdyXzfko9sAREaSqkrdvjCCAO/x7f7KFnYVGJlJqxy5+JKcSYZuToI4mIGQMA5i3nkKVJjKmbbnXLMDzyVndbz/vz9B3RwtOHRyCeRuu5zj+5jJ0oximkiTjkUnOpB8yNgaYYQvASDTQkBXJJukgz1TnFZUopujQazVyo3FCth8whMFBSXAwxpMg0xfjh4fT4+MHpYSRn/sB6K0K3nyNkdlnfUIT9kDc1gNuucMDcO4IXYVjf9TT4OzAXkZiiG8rr6HfKoa+K3hzC9UyqAmaSzAyRUPrwBjQniMiUQ0yn+enjT7/8+unTf/v006+Pj7Q1fcn2cpHz+XI+w7ZZzpYLWGPQGKnEWCzKFONPC3w4UaLAQCr89SIYKmV3UvYlE8w4UkyMhO553ciCBBIJhgZ87HZEEAMGRhGtVWvTptYcOiJAl9C+uqO3W3tXvzKadziHbv13A/GU4mlZlmVJMXFkb6hLgRHI95XWWi7FDIZznLO/TJ5SARQx1WZN3TgGgBztdG9bN/3hMIdwcg+A/oC1X7iBmqhozvt13a7r9fn7d/z+Hfi55K2WXbVCN58hZGJiTimkFNPEaQopMUcn0twaj4bN/Mgx/XB4tmgw691Mz5XxfSrB3bZMvWrarch7ZfBhI2Hgbp3eh9ibryMQEvv+UZs+X/cvX5//+OP7X//x+7//7bd//P7189fLl6+XPTdRMzUMFMCkYcl5XSmCRrKJMWAgdkq1o28nc335M4Om2krdayslb9eLicTE8xQRTikE9MoBJUI3MfaAk+A9NhcRA7EhMISJNBKkiFPkZZ6WOcbIpup5iVHrJ3rTifUElc9jNECwgBYA5kgPE7WJp4hTwBTAaV0iQgrIEd1PAhFAEZVQCAtTnmlfaD/hlrXGKpwNNKhFocVSs6bG0TAABWQgwK53g2FFDWa9w0Rfb8c605MCYIAKbMjWUxrwHoU5PKt+GBEOfBCsbOv3r58Th08fPq6//OVhOTFi8Mpkvx3Yt69bTdUPXOuQcx2XePfJQfQesi0YMPcVcL793j3he/v3PwV/P5K47wDBf4Z9X5My/u4OPNpaO97vQbsi/qCD/2fX9vpCflDl+jkPxOzT/E/oj7eX/fb40ysx74ugDnNLKeUtm3t3llsax+gwCbi5xrQmpUopbtopoq4dI9+CfLTS7UGOlJtHDmKtSMm17FVVmSBF1imR9dZCYFoQVJpUbwYohsgBDgzTPecRb1aPKtKklHy5Xl6ev5+fX84v5/P5nPc9l9JqUXWlhG/RHeNOaZqX0+l0mpdTiCnESIxI25sbjQogXj8qCmCuaArMEWIKnaswkQamalJFWxZGZmL2lJmTKGNhsU77RAsRqNfFdv6cWQ2LNQboqR3sLXR7RZoTwka9IMCQiAMxUw80ALycC4YWtA+L3ixTBzmHvcuamkjWllWqu+IDBMANY2aO6fEhycRvBqSBdWbfRjGQ31xPbpGrBQIHhs71stdipBRjTIFDoMDUMW4I0yFaAAMV4+E4yUSBWQC6mXTohn3C2kgIWo/FCdkrOsYocRUZgBIqongVNxISx5BmNgshhhCYmCmAwRY3prXkGmJ0hOBRwh2Cg2Oz7Sb1bybOOzDXT8PjDwCgGRnxkD05H6cBDMA0uIR3aBJoGMyhIhmQqDrFGmNM0zSl6DmSnqBpUt0aq4lLOZg5pQkoTjEs0/T08LCcTjEmZ9Q9g9YTfYcAwZ2nj2VogN1BbRzJnQPm4lF1cV+WNsKdd9LzCITAYGZKIujag9HpwFNO3QRAREBNFVWJCUVFxUA5UjpNAUJETafp4ZfHD788fvjl4fHTtPwUolqtea+Xl/r9W/3+ra2ruosWo0SujBvACsAMukT6aZ7nSJGCKjRrl1Ky9oVP1RBNhQLHFImxSeNm2Fy96H4y4w0iBMYpcYrYRBAF0KyZgpJ1kgrv5Fx/dtzFDda7Coyhx0yRQ4ppmaaYJg7MrsBkNkNRgSaIemwDd+hvUPa+hmu3y1HroxyADjsPdqusEKaUYorMBG6a65XygH6Ofc9hXnm6KEzVolrkeKF8leaepko+75mjw9yYQkohpsDR7eGRqcPcYZ/wjmjBkxXQRQudBD4S7YfStu/DBwzqdq21qbjUQkSahsDL0osvERGA1BCalSbrvl/X/ffP3/729y9//cfnv/7tt//5t9/++PK8rmXdKgDFEKcYlxSWxA8ppMiMgA5OwQgsEMfBE0OHuU5ooKlh7TY5IrUWnJdpu255z/OcfPf04q3WVJq4EYe/o1ZfpxcJMQVCAAqRDFOwOeKcaEqUkiG2UkqupZW855xLlhviOCyAbv8gs4iW0EokXdjmIAklYgvoWl4iQg5ODACgmSt3jUxQG2pD2YLmaDlqiVJDU5ZAGpCaj2KKMwYjJCbj4Eo3RCIBrAYOr1R/UKgebmoICKZ9Wxlpo/fnkMfqPmiwQzVfVQFMpW3r9XJ+2dZrrdmFJd5RWQ/AjXcE3e1TGwpYuMOsx4X43Mdenw63DQPHz+NBN/pye8zq/wIhe5z9bl/6r5xmcJ+vaFc8btx7Ytz+Bn54vbePon/7XuB7f84DLvdp8p+4/PtXHL893rhXfli3eTgKxlV7BflbcSHe/8FxKUOh27GMmlrvVuUu7K2q+7jKECT1q7ijgHwrrbWt17xe18tlvV629ZpLMWnGYJERoudtQMXzKkZogSiFABRCjDHFFILnq0ZAhwevaCK1lPV6ff7+/fn798vL+XK5uoZVREaG3IkNiiGmlFKapjRNaZ6miUMKISK/+9g8A+YdCpXARzQgYkBiQNDeA9R/SM3MhHwfJI9SB0g1d8d1pSoHb0TbBTaeqmJsiihOrdlQThHiiBTtcJvzCyMyBuBh1g93T/CozTsG6b3jRce4KqVkKTu0Ao45jNEyxorLgvtPNE/4rp0lIyCpkct6u3m7Hpk2ohAoug8A8oC53MFqCL0RSgwhRdcMhghqKkrYRnWEb3PYaywYQ6DgOzt6uyFQUSIBQiL384GuX+kTAAQbIgmLBEXv0ESBCVOaUkrMIRC7j440daZ5sLl4d8+OfXXkWv+TbO7LH59VhIniXeYHiThGDiFNS5qXmCZDUEBmTjGkGM33e/RY0TvBmboJsbd41djXWVM1q62u27at15z3XEprApwwJAD2xYs4xJjiNIUY2dmjI3jVnq/zdWekrnyW3WBS54JG/aDeltxj4e8Tw0cqB07zBGocXt8WMzBFE5QGrVjObc+1ltozaKbeEqLbuQqYtFYUfC9UjSE+nR7nj9NMy0zzY1o+Pi6f5ulJNV0usl7tssPlimVFarhgA75kuWbdTHOtW9FLbZfSpjz/HydsH+MHxMeQGLkFLGhFBRDR0BfL3nnFvTqaNdHSJFfZS/M9C7u2wCQgoblCukqrIgpDrD5smQC062HeLjTH5uPJA6BOZpmNKY1IYGBihtLEDJuv4uhKj27n1cQNKdSfkpuemDYBkW5lqgoGZF5qjwhAncewHlYBGTYFsiZuGWyIiqgIpIaqWBtXm4yAZzs9BeAl75eSr9KymYDKQdbymPIcIofAzIzhYHOHUU5fqV7dE0dEMEoBusT/7udG2cfIMKOZgFctiECrVquW3PZ9z/seY1D7wCESIwMbcClSanu5XP/48u2Pz1//9tuXv/39899/+/rt+8v35/O+ZQJ6muc5TQ/Lclrmhzk9zGlJITEmpjmGJcUlhRRDChxdleQ+8yhj2TQjCIEmBFZyO85AhNDpcwVoiqVKyTXve865ltI9MczO59eNeZjwITEhJcJIPAWdo6ZgiA1QSpX9en25XK/rerlu275rhy9EHHoEPxoXoBmbGRmiUUUWxkotYI6YGHuVDPhQwSrqnaS9gCYwLpHnSCXnsmdtQioRZCLv0S4NQSGoUSRMU4gzxxhiTMQRMBhyUdzEdrFqnvcY4m4AgJ4GVkQXAqs2VfEqcHsvXET2cuq+941FHNyokkMkDsiMHJACEBmi3IAowFgAb0PrwGBD1zAy4/0FATrfBu4VYaBDjXF3EueYxr+Or/lwHcLLu4/Hj71+f//0u//J4+AybrTCPeF6T+I65/ojifunL33TD9hr9HxA51eKheNF7Z9JchHgvT7MbjrUOWPTYV9zYFwAYCawEPi1Dgo674gKw5BvbMvWybvRW9J765RaS2lVS6a805S4TdFUzUZ9QA+swfsSnF/WP/74+uWPby/fLy8vl7zXlOYpzYikrYI1UxU1bQ1VE7PNcwrx4aRIgeJMcQ7TzMzopMjw13CiQlRKret1fX5+fn5+3tc177uqgIF3+gzdiJuInAaJ7tVINCxq3jeJgkOJ0SuI3bOkN+aWKmrVCpUm1pqp+jxEN9g07E1nfatxLrkDHVRidfUo9B6RNFpBGFEHtwjuMDcEZfdTYuTvuoBtCJccX6M7vLn7LP0weBxDirmVthqAKogANzeCqaZVSmvrpW3XOiV9Q/wTc5pnVaXGVKkSATYbSQMggFHki0RuMqDDflxNAY2YYwhuNTC6W/uA6Z4z1o2lvEGPKzHMqXwitPGuO/Z3fGRiat5x9ujk45i0NQqNEbtvvhn5g+SRY0Ti7q4ffCs+Crz9NTu09T2W3kxLP97iOXv+44+yZ3RPHOvoEQNTjJTSNJ/m02maF46RY5zmyU4nRrTAOsJFb9rcpTMi0lrv8zHQkJnWWrd9fbm87Oua902bxPkxLo/ACYy6KCDGlFKIycWJAHBvx3usPjJcXbuaihjBhW5d6Hi3LvYlfowtrxDvYzRwSPOMgBTeLDRuUSQoFWrVPddt3XMucCMy3cGzP9MmojLspwx/enr48PHjX37+9HF6/JBOTzEtqDMatwpbaaXAlmHNWDJSwxNXDs9YP4u+lHqpcq71vOaXdT+VuX2KoZ0IYwxxZm4MxTSr+JNWERNvh8sEvUiiiuQquba9NC+cICQzAdMoyGTM3EQd5lr3CTAT884dgEYjH/XjKnMMGevGc7ed9RZneTQh6iaBYgDqZ+40g2eswMxExLTXDnnVkFsqq2jzNG33kOhSfS+MtV4lQyPbI4AgKqqGQIACwGpsxqLcJAlxmHjBOUwPpTjM3U2raUOAvq4eiZnxGfvC5NJYus2st9PKN0jo8//2czZACB79/PrIBHfXVgNVqNVK0W2vl/N6uVymKYaYluUUIgYgNc65ntf998/P/+Pf/v4//v2v//633//6j8+//fG9ltqqBOTH5fR0Wn56fPj49PTT08PTw/x4mucUUBVMGS0gRsIYQorc91Q0VRVA6cpTnw6IxAxdA8pMYODCHFFAtT3L9Vq2dVuv675uKs133PdgLpwmCgRLoDmGJcoUaqRWpeUiuW779fn52/P35/P38/Vy3RCR3dUsTjFNTNyDdQOnogGByJCRKlrGyhgCRHLdlpmZtxbbc7lu+54zIwSmZQo/PS4/PS6gWnI1h7koMzYkJGgVTIzMYOZwmk7LA80ppBiZkwKr0SZwrnKpujfNIOArs6kZ6C2jTAZq2tymCFVxuD68OoiQ2fcIX/FowF5EwsDeK9VFPgGJbSQ+DhJ4vOaINnFE92beCsOOHFYfjAY9ZiCDoToaDXIG3rX7BhH3M7pX+faCh+Pjj+vBmAd3RO4NLf9/OQYLaga9jOXmqDCyIT9wrm8n43+kMhjg3WwA0E7Kv6WH4TWA7lf46iV+jDuOy+jn962qiaiawzhzewWHucQUkd/uPocF0/hIQ/7UUcRRhCBNapXq7WykZMw75inUmlTUZVwDIoCZStOc6/Pz5R9/+/zv//aPb1+fX76da20/f/r088+f5jmB9wPzi26Cpok5zHMHFRQgJOBkNAmy3zu1Y3yYV8fWWtdtfXl+eXl5qTm3WtxpJzDHGFOM3oj5WGwdXY0sGN0h83ceoI5H52aAjvu1SVOrWh1L9LSKjapbUAT1NXrEgUaAbqiChAwSCAHEwbAZgVEvGzEkCIjMo/LEzVqHVs4Quxx1oDAYzjsIhs7OOcztJAiOVBX0RGtTaWBkqEgC2BSpAVXF2qw2pV2uT3VdeZrkjYybA09hURVqldgtD8CRP3i+3NcY7tlI5+cVPPLqsVaMITrW5eitabRngrX7zOroQupfdKfFboF7qIZgrEWoCoDqFIQzjgimCIIogVojcFc3MQAcMgswGN4TvZ7HjRn4YI36CuA/Ntikd4HuO2zudn7ZLiuIWGugigOoQ4wQQprmNC/TPIeUYkrTsjw8nE6n07LM0zKllAxH5oAZiVW1tuaKKl+V1ABBAaGp5Fpz3vN2tSZEIcYZICiAAIxUCxw5GV/a5fhyX2Ws1VpqNTOPCt32ExnvvLz6MAI4OAkYf3VkZqrEGFIEhLcwV5qWVkutOdecW97rvpecc1enIyHwCPaGn0dE8L4hwD8/fPjL06d//fDppzR/CNOCyG2nlq3mVrLsBaUhC0xgRIJhx/r9Kn/f9+e9XJpcS7tu+3XLNeHaWoNO2ApaMVlbvZTiJCf0DswWlb0ZoUIX6ecqW2lmDtY8jaGAVNWCQlMrTXNTYmBmQCK2gEBoRmwIMfE7a7x/gj9sdSOzhmbWVEurmqGIQPctt9pEWhVv9oje5Dly75YhtdVaavEev66VVhOfg56A6QbNDEBqAIaqrRFTLSEwcQBwmKvQtbwMEA0DAHmqV931PcZoE4BoQLAIJjjYmpt4ArsqvX/wveXwSnh/4T1yKscPWAcPQ3MD4OXV5r00m4hbqIrgnuu+lX3P27bue0ZEEVPDXFouWpp8/f7y5dvzP377/O9//du//8+///Hl+/P3c94yAc4hzjF9WOYPp/njw/Lpcf74uDws07JMKbCX4oGpRxAi0txLCP16xPvqect56x3C4Eh1lVzWdeOXS1G45gpE5/P1crls61b2veaM3XQF1utrFZ1qK/kZGBWZIhMoQ2NoVYqUWvc1b5d8Pe/Xc75c83UDRKYQQqjsuargOTYCZIKIQIzMaGjZBEwIjQldlev7TRVponvO67qXkiPTFMPjaSKkKSYmNCCkgNTAXJao1hSwsiqApBYmmWaJk9hEylYVyIxBQMRMlaRhrdhaFQe7oyk2ICILWLNStVpZIV+srGIG8+Orrdr3ml7pclB05JwSUYgcU0hTSKlntJgGP3KUniCYV9YeTXlEe9vA5t0BvS+YqnkXePYsWZw4Bne1uFfO/OA9A0evsoFSb1TuPdLtP3733u6/3pcKe/vlsWL8yWFdmjZI0HsS9xXApaEd+hM25/1k1CCJb8c9gL4//uwKX71gF5MDHmc+UlatSW/L3sSt+QNzCKHDATNCL7bn8CaX6GscAFrzKFNMh3mmQytPHDHGwFMKklTFELDbtd7ZZqpoFWi1ldLyns/n7XK+/vaPL//+b3//2//87fxyXa8bGAQKyzQRqHv5uc8WmjEicDByMENGDEyG2LD7RdsYNQaKdlBMAJ6gJVJmsEBETtym6H3+eFC35CW+PYeDPR+N7z1Bux1qpuYduB2Xq/bGSIBub23DP9sQkJEosHv+jCCRvGEeUSAIDIGAXMSACMYIPNhZz3NHJi+qZuwZd0daA4P5ED3SM27ON3BC3yQPoheOaAvBIKAF0KiC62bXSda97TttGWi3/iRErIoWszfyMOIYk3pXASQwNDERI5FxYd2K/MgJqRkauXdwj4ZHhRkfJXTuCuOVdua5r2Hu1N+BjWDr+GMDWCmIAXVdAgI6fxS4s0fkFzOw2jFhe5TDXSwcYvduJx/Ux307RlmP995ZUt6BuWXb8nq11qxWE3H8r0RC1DzU8heMMcQ4TfNympdlmZdlXuY0TxQCxRBSTNOcpgkRxdRpRTe3IFM1oEBAqGBioq1YbdaaI3kVqaYleJfrUl1qVKvDi74euQjVvFlL3bbNRseaaZpcDznW5zEBb5H3sYCaa+r8HgEix+Dy3Ff3pNW2Xrcqbfda/b3kXEqpzBRD6I2MgXvTJOJ5mudpiSGRBoLw8WH5bz89/rqcFoBJa5CqdWtl01pbUwXFiDwFI27QKsi17V9q+dvL+WWrWWxvWlurqh7fhF7Kb6Ky13rJ+Xnbej7SzMyYgCXMZgGhATSDplqa7KWZAhH3ekUCYhODBljEctNcG0OIxMTIFJgACIARGJZlehtP9yaAXpLnsK53k0QPy2qrTcS2vasQetl+LaWAaUoppXSaFx9NtRURyTl7D5xa69CC2FCW+VrpRVnx8F7p2pG+yhC4jsXFYa4doIgUibo3gql6+zTTiqBMSMgE2CuWB0Xls7dPQDzCIzz4rSH+fmcXPH63/z1+9qjwqVVrabnUUmsutRf/Ndu2vF5zyQXQk93kUo3rVi7X7fvz+e+//fG3v//x2x9fPn/9/vXrc86FDT8+nKYY55jmNC0xnlJ6mtPjFE4RIxp6wGAqPWBUU2VCrtxtyz3mzKWU0rxidFiE9CqFEBVJkdci+PUMgUuTl5fL8/ncSkVVMotME3MgXOvr+t9W9+fnv00hwCmxTSSE0Yws73lf9/26tm3XkrEWbjVINUNE1dIEcjbAboxDkTkGtsAUiQMXbeu6b9suoh5a+8qEROIK51pLriJ1meLDNGGIjw2qMSFjoJAYq6rlWlsuZS9VgEKsQSsGgoiAqmUSnoCiAZsRAU9GoEi1YClUC9VqrYG2rvEBNCIFKFY3a1x32VfJmyHa9PhqpPjGefRucyzQywERMYSQpjQvrlSMMRAhdSsKOSQiA6ZJkyqtVc9Yl94uZd+3WmttKqLEkUOc5uXx6aenpw/Lw2laloknxLFhORR1NcNgjXty+GBmb1QuvDvy+48NArT/c0R/r3Dtn4HcsUC7IE06X+7FpoO4fUXi/jkY/WeHjfZpvfW86nHO48w3iuQ/e05VM2/fWGstJbvDy573nHOt1YvnUkqTe9DE2AWunLy94pszgoqCWW/8UKqJdq7QgAwY3QmbTvMMzQKGGEIp0gOlwIGYgEA989nOL9fn75dvX18+//Htjz++ff7j6x+/f/325XurYmYpxrzv+7ZGBm+kCmYueVdCZDP1mhYxMTNTNLci8LV3wBt/eGJgTDRN08PpwURqdDYXwrCUdOTSMS75Cn/UK/0ZPdefXa/ccFyLgqhHFpqJmBNTVEVVENGqDUQxEscYuydvDF6MBkiEwY1O0RCVCGKkEIk5IAZEHr6QRJSYkuupiNiDBzDzlgGI6MElEcUUQgjeR94MQoiBEyCKmrjtOLkeBYnIzLSpiIZAaQpISJcNXlY9X+v5Cuer7QEymjadSdkU5K1MHIlCTO4W7wlPadZYmQSxQXc5V3Xyepgwo6s4ena0kxtE3U3ALStVpWkTbd7fzPUfR8Wxeesfa9KsNfV8hctw3VTVVQhAwIGZXBUxegzHbsOjajccjkgETBQChejlhCHGGCJzICQcsNjzGGpNlBAJ7J12rW9hrlnZ97yuVqvWAk0RCYEbUgErAAeR7BV2MaVpnuZ5muZlPs3zvIQ5hWmaTvPp4fHh4UQxuLZYWjv2Ts/KGYCAqYq2Cq2CNByX3RS8W0rJ2XffUqL3T4PRNob8Nnqpfs6q6k4ihBRDNGYbhdo9VhhRNoxEmCfZzQysOxJyZApEb+qKRLSWVqUW98UutZRaawWLTN7OnggpUEgUp5g+PH74+OGnZTqRMVv4MMVflvQxcagZW7W8SbnWcm1NxFCBOTFOwRKKUYO2X/FZ6h+X9bzWaigKNqxDCNGNQsFATHNr11LO+368QQQITEnkAQy9/5laFStNc22qwKiMFAIGQDUSQzFsCkU0N41kFAyRQiSORD7HCaYlvh09/jigU1J3OVQEM1QzbZ6zktJaB1lNfd0HsNOyPJxOTLTo4gKg5jB3XS/XaynFV7Hj8XmMzBxSnDQmf1QA2KW9XrRuR94WzFtBIjFH4uSiI+bYI09TtQqmhBAYmdiUXDhhY5h2ZtYnNOOPm+mfAtwfCJ4D4nZxBSCAKrQqOZd1y9uetz3nKrVprbpe9+t1q7XNc1zmyQxFoTY9n9ff/vj699/++Lf/+ff/8e9///z527blbc+R+TSnZUmneTlNy5JiJJqYHub4kMISmdDNq028HsPFgCKExKQ9eUXYWvMrKa15lXYvLWVOcUpJFagI0LVk1SztsuXnl8v3l7OpzoGnGE4pPkxpCqFxAP5hYaktP79cphhQHxhO0IJGqgTbul+u2/V83a9r23crBVtlFRUzFVGrTWpVAGAkYppSnFKEFMIUZYq11O/fXr5+O+/Ve7pgnKY0TxRY3FJauuPhYzMFjrNmgWaUPDccGSmLYW1Sct73zQBRGlszRmUQE+LUOCoG9D4VGBNFAoZSrOyWd62llaKtgjRTUUQkEoRqgibQSt33VjJwmD6+HjADo/mIG8ZYXfJGSG5b6Q3omAnBemJaa1NpKF3rM8p5Sy2l1H3P+563dVsv18v1etlyLqXVJhxTiNPp4enXX/8FrRFpDIiJvXmVD95uZTGyud6waagY4I1c4f0p0CfH2zlyLL1/loO+O7qJTTd/99zxOzwuvAdw/xyX/pB36kxgnxByX3/2T0ncH1+q98HpVJRf7QC4JZe8beu+reu6rtu6batTugDme+ayLMtyWpYTEyZIIQR+Q7KAmTWB3he+Sm2mo/gBAAEYMRBxIFsSAQQKgUPJDRndTcWBchVrreU9f/nj+2+/ff3H3z//7a+//+2vv3/7+v3ycl3XPTBPU8QTlFzznqfAOMVAjsQccXrDAjNtpgKgKqIoygyhgvs59G3XI2rxPH6K6bQ8gGoJodUAAMyI6BLcg8r1BfaofDjY3PcfxVDkqmeoEJSg+z6RSxDTFMMkAq1pBe8v3ACRYgynOc3TNE0xRj8/EYUQOTCAKDQim5Y4zTHEiBi9t6t7uDAnpoTkdBOJdAu2mNI8zYAIObdcMFCYpzTFWqvmbGo0zTEtBqjSTETBS96AmZDZ1MSFZ3NKj0uMEc6rPK7l25lSAiILplFMsk2swZT08Bs4DiIKMZqyZz6tWQsSOFSsd7nFHokM13NDRUFjl90adPFhN4hQA1Nrok3Ud3Gfj46Ru4eQIzEAx7g6ZlMHot4YnYkRkIlTDDHGkEJMkZgxEADSEFof0fUQQ/csVAgcE4fI5K2iehHucJUQwYaIoP8pmNuXgINDdqmAGph4Z23szaC7o3VtrZSy7Slt6yWlNPEUw5TSPC8Py3I6hRSJOaQkpWqT7fExBGTGdbvmfW+1ahMwRQC3qNDA3vhOVPOeLwjfU0wBW8nL6bQsCyHdODEAAgzMkxP1rooh7MzhPeV2QI1DFwnQ65X74dyf3VERt+N0Ov3L9Jct73x51quWWgjJtAtNRgqCJ04PaXk6nX7+8PHnTx9PaYaqUGRCiWWVZtqKtiJ138q21b2JqrGBzZFOTCEGAgimMVAgCogRERGlJ55sCjwxpxCYuAeFhs2g9takPa9HiqnWU63GVIZ5ursVqNpIlPBNaAoIQxsOAN6FL0SOU0BG5xPfWgoAIgdGMNfz0yja6H4o1vU+AtgQBUkRDFQ9WEYwtdwEcwG6CuKa877vL9frmktu0tSkz7PDIKy/qAGo42czVASDJlJH+Vx/lHb8Debvh4L3LWQKAKBuBY6GqOw7Afa0iotrbnsdYeDg+RIY6YHjUpBulY3jAn2DNBthlPQfGKUZgGAm7nCZ657rltuea3E9TK6l1O7kS5yrfP7y/HzZvnx7/sfvn//x+5cvX759//5SS0sc5oc4x3Ca4jJF5hAIGSAxTpGWKTycpsfHuYmVoqVpM2tq3t7WjAOzF5XGgDFArbWqWZFmVlSb2hQoBEzRa5+Tgq3bXi77Vupa67rny7pf1g3NSgxzZJ0mFNOkMMErmCvSLuulhGAipZSEyGAocrmul/P1uu7FieRaWzMDaiLFGe4qtSmAewCRGCgiBkquoTKoSKvqpbS9SVWIFWIDCmyggP5WIRBFowosGBSDYTAInSwHcuvNplqbt8VE7xHY1GopMcRIMXBgCoQBORJPiAw5Q95t3zXvLedSS661SiPCyKwEClbNtLVSSi2FQkr2ujJJvbGqgqoCsHHvQeGqFr8oabnsl+387QrNREya1CIOrHVYdnuLD609N96K1GJ5s+2q29VytirWxFrSmhTF8oz1RHXCllBSFyC6wH1sfEfR2Y3T7SP/lVzhT8K+eyGTL6wGtzrMfwKPb9VgNnCn13t1gHt8fA/j3lQReP+1u9P/+PnIdA6A6ytY14b+p5CuHXC8VWnSaimObnPe/fD2ByMDmP3nwGxPKaU0z/NyOp0eHmv54DZxtZT3botAvxUw8sh3CVswJOTAMUUwJzTBDJuKqyRqrufnS611W/f1cv365eXzH9+/fnn+9uX58rzWXdBoiimluMzTw2mZYmIkUFDRVoVGikHFpIGImFaVpmAK5K2ItIFSFcDWa7p6DOZjE5FSStJmJmwhAOihozzUt0g9JTlKugZ18mfPwbxEzAIiMrIPXAKOzCGFNKf5IaVFxVozLFW2rTFgDDgnnBJNEy8zx9DHMTuZHkWbSREymCd+mDklhIAYRiNyMo5GEbvDKWktDaDWhimEOSFgUdlbYSZOgaZUwfZWBdSYMbIBZtCi3lcAkNBNvEQ1NyhoyDinGOZJm0rRupeyxRxDjlyFGqIGBE/5vynNcyWwEQYCYlCWQIGx21RZN5zHYTzrYAcBwBRUoInW2goXBAJDU3Upb6s1t+5TV0fJDhEjgSs33H6tuw8fReFeS65maOz9MBh9o/0hE9PHik94qDUDmqmoVCKqpdRSWssG4pYOMXGMQURUDLr8r0HrtlmtytvV5T2Y6wzDUQEMP6xKAyRq1357l+o9Z7cdZuYYKIY4pTTP0zzFKXFM0zzt1zVft8cPj/OcpinmmrfLteYi0sC64jKEoCEGUAZV1T3v1gqjgZZW8s8//5xiwuCYzyeCexVFnD2YQEQIFBCgp7hu3O2ILe5wytASHZSvDhLwdZD09Pj46+Pp5XrGiNVqLoU5j6Hg/vhESBOnD8vDz08//eWnj3/5+OkUY7teRauVHfa8N7cJtCL12vKl1ipmZgjwNMWAFAKzaTKeAy+BTyFYtAbO2iCALoGmGFIIgQMiK6iCC9VJhsq8iQDCVOpDqcZUmriUxrkGf3YGgEjEGIiPKsXBsSAhdk+RKQCBgJi9I41CAM/4mKkpImJgZg5+GaAmaOpo1cVjpGgGpGhKptpaU1tLKaprKSGE2mrJtdRSRJUYuK+XXfd1q7pBBWsmKF1wIu4R2UWIN4jb40l/s65MIGYiG61qu68hBOEYICATuTuC5826CAJjTFOaYopH6Ad9EFnL2ysxkDsxeFysfbyp95PHwdaZmoiU0nKpuUgpsu912/K+ZxVVsaG7D6W07+cv65Z///L1H79//vz1eym1FQlET9PyOM9LCnOgyFhFa1OTRhETh2Xih4fp8XFZs+xSS61FsIqHQ86jTDTNcU6nCU8Jcy5ZAHexigKgQBTCvITTFFJKMcV1a9tle77mNZctl63UXFuuDRFVVBuTYUBCA+YQph+GShMt+5aRc67nywZNWy5ly+eX68v5nHN2o7ne/xtCVl2L7HsVMVEDRBILAYTURNngxIGWBTlIuuxIq8G12t6ElYISRwUCRAuEgTABVgrC0TgaBUM2YDAwIK92VIOmVr1OtkBTLaK5tnVbU4j+J7In2FIICTFAzrZtum9128q+55y3UkqrgUkDC1MFQEDH67m2EOef3yy+ow7TFVgIdksBmplq05Zbvu6X75dvv+N+1lrUG1nvu9RiZmjH9iCjFsRhj3CroV5jW1UqqpIqSiUoXDG0a2hrkIVlJpnA2A1MwMkl8Ez4DUoB3CLgH+W5rw878O1tCfVJrIM/GJhl0A2vzqDDEFekz7Rert6ziCP0/C9JFG7XeajWRuLbZwWOWP2+u+8/OYkDXPGnnPe853Xz5jPXdbuu63Xft1pLLVlac6GUq4fAzF8lTdOyPJxOl45uEXLJ77yUijMdNwmrGwF4+rtLSwliQEMREIEmVveWSy25tCatyvVyfXl+efl+fnm+vHy/Xi97LdKKMPAyLTDDPKfTPJ1O82meI0cENLFm9ajvac1aA2miUlS8DRkospIKqWJQZEXq1fTqXuAirQFYCGGapsAkIdxow6778u28xy1OD95yaX8Cc9EUTRlBGQmot7snoBCYQ5hP6fQwzQ8qEMQwlxawkGEgnBKmhFPCOWGMrogBjjhPlJK0KsUMVNOMywOlCYwM2I5W8yEAB+MAHIhJ0HKpuRkQBmZE3BFWs4AWGClQbriCNXPshwa4mxcVePEpBqOAJmCbSZZGZgtRiLHFVlIoKeQQtkA7YyFoBsqEgTHye9wTEBGo97QAIQnEwRW2Q380BMs43BDABUuqJk1rrZnQHdiaNC9Xa01yKV1w0/2Yyd3JA3MIbIjD6dwbT/qfXvYHcJds7nkBOAx+uqrUBYqgUFSlthJCZESS2mqtpeyqjRg4UkgcpwAFAMS32Sbi1bS+eryNot+BuUeMfGeC5PLEw6bRQbQZqAKK9Ubz4OQgEwam4OajMU4ppslh7n65Pj49Lqf5dJqa6TVvW96hVvYOERw4RorBJditllarFiVQa8VUY0oPD48IMJyaOuvOSBDj0CcAESH0/mMDsx7kNJjdXHMH8T2Yt4Fx30pelmX+9MvEkdZ8ebnGEJjIuwEyGQcIieIS0mNaflpOP59On5bl45RmxkKWoeS61W0teWsGgphNL62ca21qPiK56UltAkTCaDQxnSI/xoACDUAMwcRAPQ09heDTSbunNSqiAAmYU3FmtovmJrGbbVoXacDtdsDRDBB7DcpNOd9TRQBdUGtiIreql2OgYIgB4Q7mhhA4qCeuVEWMRAmJvWGNt0BAUQnKrYqYaS1Sa923HbBLCVxMgEjM6KshArj+d8xLRDweZt9pzDVDow7noOh1iD3USwCIBMkjGyQ0CIAezhMgk6fGD8UYs5dDpJSmaU4pHS85/K3g++f86s74Nqnqa6KqHv1RcSgaPMljIuL6gNa0Vsml7nvx0zPzXhqEkkv98v3567fnz1+/f/7y7Xy5Jg5TSA/T9Onh9PPj4xI5MiDodS/nlk0lUJqncFrS6TQtpzlbade2CVSx4n4kiExknDDOYZrmEz8uFFM+bxJixQrQwExiSqfT9LTENKWYosKGa261OVVVazOFcHhPgO+6pqr0Jkp0Z5UGLeeKSnkt63m9vqzny+V8uYi0x9Py8LAs87SkFAI3g14x6c+FGANZYAvR/0BKOE0IJCFUol3t2mTNFRtwAwr+KDEGnJg0cVVsRuKNzXrZNYwGFGBurGnW1BREDKpYKcKcUwgphBTDFOIUUgrJQmIMLee6b3Xb67aWdXNlVa5VmCyQMDlR08T2KqVKnN5JpTtCUgVV631cVNFjJDDTqq20su6X75dvi62Tlt28kXXetdbbBgUKYA5QPdMHACAN28ays7rPr5kKmkBlzRfZz22bWoo1BAreC8M7+zAgOV4dnK3hD5d+7CGvOd2OXg1+3GT6jBZV7O1UBpd0417vh4oNay9VteFA/UqJe0Dt25X9U0Q6XmmAKuhtJm6Whh1fOV0xAK7ZffeM4+3ZvTihlFJr2fe8reu6Xq8XP87rul63a867iPfbEe9sYiogaqpOYsaU8r7lfTMwZgaw7fraqMRfGTv7wAfXDIf10FjPgckCEImZtSZ5y+fL9Xpe1+u+XreX5/Pzt5eX55f1uu9raUXchD8wc6AQeJrinFJkBrWSi7aGZITYpXxIe5E9t9YaaAVtPvgMSbA0yIoBKAIHM+olme5V25qpdVUAoTLb0NR2ce0N1N4/ze5U9WfyXFMBEwRhMCAjMbAGaBAIU6Al8cPM80KGJCApsglZQ6bO5s4TzTPFAGpqiiHyMvM0SfFia8U047RgnNTQvPW3TwZmCxxCoBg9bWW1GYClpFNCRC1Ja7YYLUVLSUU0RUWSGDVGA3C5OYABgzFaDBZYUTUEDaqBNUaLUWKTGGuMNXKN3AI1JjH0jCi84+/f2VwgI0NgUpZKIVBgIDJUNI9lGYYZggsKDJy3bCgZi4GJqIjUUAMRM7UmeynZ66RE3LOhmyAwBw6GIKoG6p01sfe8MEO7tbG5wYwuGFDv+CSe++0daFWhNSAiqoSI2kRESi0KQowxhWlOKo2Iaq7SdGymatZISd64tsP7bK4ZDlJMzYbF5x3C7fdzZHBH6QIgqGf8RNE1y7XUnDlu+Rryer2+PM/zMi/TPE9GWEwayMQ4BwpzhBAxREwpsk1siNDMtNbS5LxuHMLD4/Xx4SLz7C1jdQT3/WKOLPNYjG6L2sAmMDxFjlt9f9wl6d65KQCCKERCbEzAQAwh0TSH6XGaP8wPH+bTp4fl59P8MeLUdjnLbrpfr/v1uud9LyU3F29jUV2b7lVFAUCZLDdZcw2JUpTIMAd+TOHjEtMwpPaw+ed5+jDFU+IpkFG3B/JaMgTzHhZuCuglOw5iO8zvKMurOQ8NHnhAebAlAIhqWiWDldoE1HOlp5BfpyUBQogIYCa+aLuq3AxIlcSYNLKKqJIKiTZRRVFzjxMcTjp2I7EOat0vEm6bDB7x37GhdZsAU1NgAVD09r/UK84923BYI41yhl5ydacv7zWVMcbO3KXkXtDdNLt7iqSYjkB0QFW4fP/+ytUlhjhN07gGVe09cQYcQEI01YMv6nUk0AFjLq3UWkXtfDbEnMv5er1c15JLJPr54eEhTQ/T/GFePpyWD8uSAhKZmpba/EZNU3x6enh8fJznKcQgVtbazrkqoAIxM4VAIUCMgiyAHMNySsy0LHWaampYlVD1dJp/+nD6+DTPyzRNaV52CBPH+XTdrutaaoVBrBESIyamxBwIgfnVFCKkOUQVa01Lzpfz+vz15eX7ZS+l1Or91CgQR6JIzIiMLmOapiVNS5qmmEJMcUphmsIyxflhppCsigGqmai0VmopBhVyGcUiGCO1GGwOe+QyJ2/gMoxbxBVyMKy2CAMhIjIAm5F4JZZJ134FldAa10aZkLdStlz2nHMpVVpT8So/s6YKhAjAhtQUatMqCvxOAbD0FASoAqK0VhEIGb0Cw4RMqpS8Xc/P32KbEquQCpkwakjD4cjrX8kd3LsJdfXOsV7ngtQ5HCMFqK2dzxfAP7YiT6U9VEnzQ0hLSJPXz8KYiHdrn70HM+4FAjf8iH1pHTARQEVqa601Zg5uBty3jz9JRXeBLDHbUfT9T7yl3ipx/xTyHm7AqiLOTdVSqkhziysAbkKIjQ7v6/4GYSSI1JXQpZeV7Vs/1m1dt23dtt0lCrXW0qpIgx4Wd+JA3WamNSIi9hiYzMC9+/bt+u3by5u3g2mK6AEf0TTlEAKNcq++dyFCnwu27/nl+fL1y8u3b8/fvj2fXy7bNa/rnrect1yyovEUp8S9iqhHD6Ytl7WW7epvVH0GxRhOy/x4mgOHb8+XL9/PtdQp0hSHUQFSEcgCCiFOS0wLALkhhAsQVK3VIq6fdxzGaEDQl0gxO8xIAcAzCv88bvGHWLVVMwHzbWqXtje2FlJFqgSFvFcCQ0AAgzlBS0iE80Tz5K3Gg+fowEIIYZpiShgTxmRmcZ4wTEZBFdVQeqIER/cHwhDDNC0xYkhLEy9TAkDgwPMUAj+clmlKIU1hmkU0pTmlGQBSba02n5VE4LZkIjpNpZS2LPN8euCUKAnGgjFgSpgSxkQhqLKBNW2l1bfcEyEGDmjDlzOEFmJzxTcRuDQUQ3APCAJzO2FFM2smpipCtbUSaoothl4oqE3zXnLvyqwqSt5UvTdnDkAoZqxG0MAaGqEgEGBvWIuM5CV7CAOVAoh2EGJwGOR3D9ixVYN6iCwNEWMM82kmwhTjvuV9yzU3EVVxj2HtbO6b4z021+6mj/YuObcaruE050vZWKyw411PYQuAgrSRXiIiQnoJgQPHkNKUpokiQyBK/PCw0IeHhSNwghApdpgLfa5Jaa3UQkSP58vjw6OpxhBS4ObQx028Pf3sCQ/HSWpHsN9JGycn76aJDUqnZ5dHUgLfIF0zNW1gDVCIhAmow9y0hOVpevjl8enXx6ePS/yQwmMAbFvL51zLuuct71uVTXQTVUMxE5VcNBdTAyJT1lzbWmrISAhzgDnQY+KPc5zQg0gEMDT9uKQPUzglioEa3CCXO9YpAIIRMoC558MIA+7pDxjJhCG0G9ir/w8IClJViheQSwMRk6c5v04FIIYQEEEVSZGQBsxFUmXqTShVVFsTADET0zrshUGVRET0ONtIZcDBNx8xlY1KhB6D9o0He5IEwbvuKertj8Pd7ozsr3DUOLDnJkPsGLeXfU7TNM3T5NUJKU1ud+P9w2OMkZmHbzkiIqj92//9/8v7jzMqhpSSHYSUDqWy9QshBBXqTpFInic+8iFV5Lzvl21ft7zueS+5ltJqnUN8TPPTw8PHeflpOj3N0ynFJUViMLKmct0ZO8ydHp8eH54e5mWmEBrAWtt5LxgihZgoxDBRihBYgBoghTDPUwi8LGWaS2pYlEh1OT3+9OHx548Pp4d5WeblIWNcQjo9nC/ny7mWEpiCyzwACRBUvdFFDfwq7cqIMaRq0mSvuazX9fv387evLwYKhNMckIgjhcgciQiR0S0+pmV++unj6eFhmlOaUwocIqbAU2AKrHvxKglRldZqyaKgwy8HEVMKOkfUaZ9iOU2tNnfvBvW64eYOa9BlLYyGXlU9KF7zNpvK7s/FjUoFJsCtyVrrVmtutUirIs16hV9rCmaGbMiiXlVtFN4sKQDDEd1hLrTWzIDVWTkEQRPWmvf1/EwmKU2ME2NijmGweoF9j2Sm2lquNedcdylNSm1N7KiH7nuJgVTR82XL5brXvWlROD3J8oAzMSPjCDBHD5O+bNyxmni/PL6CmLffOVbYnrUopZbA0bl/eysqfH1Cz7N28c4QLbyvlLhjlN9kK9/5sY5XW2sORr3BNDP7moPicjjqEin/4HuvZ1Nrzrl0acL5cr68nM/n9XrdtnXfttoLOAUQRo+T0eQAvfE41qqtCpEykyoY7G4pU0s+n5+v62ttLiKmFAlRmANzmlOI3Bnn3nUCOhZXE9F9z8/P5z9+//L5j2+fP399/n7Z17yvWdUIiIiY4jQ5iDBX6xsY9F7btdSy7fu674gwzWlZ0qefPsinn6aUfv/y5d//9lvO5afH04fHU4qBmAFwK23dq2E4PTydTs2APfjzrpKI6Jy5gwUiwq63NpGGCNqrKm4j7G7bepd1AgAwqSZ5wNyqdbe2NcOqyBAqWSFgdsPtYGBWAtSIzI5xeVnCssRp8tcIIcQphhhJjKfZDEJiZFYkBWie8OmDx6u2EEMI0xyR0uIpuBBCMIMwT1N5CIxTSjGGJG06Pagah8icEMDruLo2F8HbRajqUqU2iSlM80xMFBt27i/SNFFKlCNVVoMmrbQib7qgMVIiHuIIMJYWavFlgggMGLsRt2dyFcwz/y6fktHoIYVYY40x+jKjAiXXklup3sfJwJ2EgRzmIpEiqBoBgxFaAwFrJmBoDKC+cTIRAnrKTE1B9CaD6ok1dU/E47lbb/qhiBhSJKKUkixLum4hbFvYS65O64qqqUn7z5egDVYNDqA48BAeywkeBQt3FBschQaIo8DJlycVLdpIVARqVU4BI5EEZooxhimHbQvrNRg0YAU0VT9PE5WSz6pf01c2Oy/zFDh2W3sIMS6n0/LwME0TxBSJHJSCDW3uj//1qxy9ZO0Gc12x4k28Xt+RVuu6btu+tprNGiFMIeDET/Ppw+nx0+nh43z6ME0PgWYGBmlly/uWc95r3UrbBDaFfSxGqtC0dzH1FH8TrU1qa2ZMQJFwDrwkRgXpBikKABNhJMcAPXpp4mFAdTLJk6B4yEJvEcuPD3jg/v6cxtbQNR4GnsdpKmKi2F0JXt0TBAwhIqJqU0HPSYUQwXU2DUDFWrVuglNarSgCtbY9hz1rqSRCok7d3Mj43v+7P5buNo69Nxv1zcJjL+yC64Go1avsZOQ/ukNYD1xunC4YQWBEFmUUFmYREuEmHIRVgwiLcGsBKRCF1rxtY7DAYAyBPTME9kYbBaMOz4yQlL3pg1p31nY1OZGGFNM0xdQwNxHNpW57vqzry3V9vlxfruu+520v2hoBJMTHGD8t88fl4cM0P03zEmNgJLQQOE7BCDaRc6kGOM/TNE8xRiRSg1zqy7p9u1yQI8c0pamILqqThhSYAzj9OKQaMUaNYmw2TdM8T8syn5Z5eZiBQ1FS8DY0UnaKhJGRkbyRdGvSWhVRedNKBN19GM3NKEcTTgWGwBRjSNG9lPgIIjyXCYQUiCNz5OA+lQHI7X0YmTHGkKYwT3GfQqlBxL22+jIVEBiBEVyk67UYgYFQmjZpu3jLeGlw2Hp58yHplf6eH2F0LRyFbptEWWQXydKqeuEaACIw2Wgo1KuU0VWfw6ngx1VWFVR6Smw47nkXQCBAUwERaXXf1oupTUlShBQgRXBC1IGXgoKRWSltK3XdynXdL9et1NpLS4EFSBCbahNVk71lyrVi4PkhLjtPp7R0PkNtiPjgCA/vweOxOhp20uAgSG/fgoFSOsxVaa22WsAghKCkRN138J+AGBhk8Hjdt1+8fQVvncn+7IQD46qqam1t3/d1XUvObtISOHgCx1ufIY0k4XgJdyKupez7tu/b9XI9Xy7Xy/lyuVwvl227eu2ZqPgF9kIAZoCIGICG7hlVgcXEt1Bv0ChquRRR3fc9v/HjAwTvnuDVu8csARct9PwEiFgpbV/3y8v125fnL79/+/b1+fztup63nGvJFQFTcMtSjtFxT9+HvMRi3/ZaS97L88v568uLmp5O88PDgkTLw4KBL9v25fv3bd/VlALPaiEoAea9bls2YKYYKBlQKVKruBmhu2XZyHQP4quvxSKAXdmpI6f6KlZ5uyEDAIBkaDsOmAuawftBeN1yF7BG5MjESsSlUCnMzFPiaaIYMUTg0Hm6wMbBOFjX6QAQg/dHByD0tl8GgMgIgYADEAMRIEPv+sBAjACogdiIkZzBNCRGICOOHhUQDFKYAH2NIkQ0NlEUCoHYrbysSaut1tJKqbW0WlqrrZSy5U3Aans9VHygIoApDiPjngchYjD0rgIxRGdVxLyLl3o3GVXthul9FVNlEQ4q0F+9iFbVKqgmBsKkzUy86QQRgwZf20FZhQWMyQAADzrJwz4DUB01Nx2p+OLSdYaDn+yYDRG9CtxXNFVN0xRTitdpW7eN9pKLlVrdwfzN8a5oAfAujrpfaXDoqgAGl9iJtb4e9mFMhM4yhMjU6/wAqJdqMTMHZDQ2RCxVzte1mlajIjItjxAn5OQ8HBqYaC1NcoFSr9++JaZI3dTcwOZl+eUvf/nlL395+vDhtDwGYhd9gN2cFt6BuWBwGBPYkDeY9RrBN9Nq2/f85bKW67purdZA8LDEBw6flsdPpw8fpvkhhqSKTRStoGx5X/d1yzk3zWJZYFesTnkyEmJgBGOn6Edjc/UyDQIMSIEwMlVSvUFydWpUpYm0ZlRb20u57tt520QHYFclQg+6vJ7JFHwYdwhr41mN/cgfnkdR7qiHhATADA4sA3Ka3vTmQQgxIoIKKBqi92qM5Fs1NKgFrpe2Xm1bZdugVhAFEaxCTbgJqh4wFxGhWyVifxhq3iYNHSUQHEUo4CJEAzI7OhVad9ns6yX7HesP+FDbex6NvFGNG09ja9gauN1fa61UigEiQ4wWgoUoMQQOLfRGlCF4VxYCAHubIrExHxC7yrFPHBztA9CU0pyWh1Nu+nLdc23ndfv6/eXr8/nlej2v675nNEiGU5pPKZ5SfJqmx2l+mKaJYyQyUx9aD9Pp4WGal7kSZ8OmNi8zcVDApqbSrlt+frl8/vZsSECcUnpY5mWZH+b5YZ4Ili3HXBs5xOkkdzSAGAMTHzxaCLzM0+ODtbKXjaFaQA1gbIQQERgAxO7Wi/tbYqiCoMQYppiWaXpY5noqQMAR5zkuU5zd4JPpCHGktlLKvu9I2LRUiSlSjDilwNOEcYqJliU+PZ5aE0SMIbaj2aIBgMXIU4qnJT0+TA+ndJrDMvGUMIAVy62trW6tbtJya0XEKYGqXsSjXqaIQMAuiyQM3gIdUcyaaTVVMCNvhYxMeMseOSNqhmKqFsLbgAhMSe3oekaeS+kaIzCTviqUWleA3l2TURs2hKIGWAfIRDDIpa6lbFu+rPt1XZtoiimlhMSGQZGqttJMRJGUCbhqMRBE8yWagyGJAWqfK3fsKB770N0wN0+4jP8OztcQe4sgO5YtkSYViVykpN509Z2Ftke7I0C9hcBjIPWQ/fiIo27p+Jlb1P5qTpqBmYi2VvOe18v1fD7nnFtrqspeTBIC9pxWP4sH0qLaSqm15n13fcK6dpVCznvOudXqNnjHrwORUVBi4gAhGbF5riwABA9NXGXG6LAGoDVt7T1t4a0kYHSrwyGkcI8NURVrVfc1vzxfv315/vrHty9/fNuuWZsFChgpkdt4MfemusTMhNG7JERmAjifz6IC67bX9nLdqrQsUk0fPzwJIDI3s62Ua84PrVW14Gkcp+e9GcEgGLxrmrk4k7kPHuzkl7uI9VUZAUVQ8WhZiscW4M/M4G2QCAAoGesKoGTNkS6CMFJv8RjiFKcpzb2VILWccoyJmUNKISUMQRA9p25gighiQCpNWm1mNnMKGIg5GKq7DRkogNOhHIKhO5JLqU2apil5o4Cy55JLYILZQENpspcq1sW6AChNpXmZABL1IFxVfRmKYF5dUGrN27aeL9eX8+X7eT1fynWVsimYkaWayRLCD0afIrLn/ZDo38hXc108xZBSmAKHniw1NRXy2vDuHuiarh6EC5iZaYNWeyc8raJVrZlWJbPCFJjiBJwAmZjIAquoBJLezgYRLIWU0hRjBHJ4baPorMv7jhVlqPDv6H1zooR4tPAAwGXZl9NpvqyX84UDrxcysCbyrtblz0QL99vV8Y9DhYtjpnn8jP23EAGBuQcMMU0xTSEmp8mHkUVvhAGoCqIgzbTueW+tGVaR+bTF6SFOJwqRKIKBNmmltryvz9+xVQINYNQFpvD49FRK4cBMnDhaSgjY3dTM4H5RhAO4d9zouNAblIzsj3Q3vh+PvOf98j23fStba42ITnNM0/zL8vDr6fEhxKDKKigqKAJtK/t539aci2I1LIJFsCmmAJGYXU/LpAjSl/2uhXafL+4bKjJi6+tZB7kioiqoTYxra7mUdd8v2zrWQEMzZmzSUa6/oWH1cRs0t22r7xB2CFoBDKk3BSTv20IYp/hq/Aw2FxRAeoVEYA6MiqaEALXYeqGXZ7m84OUMtbnVNBmwL4hq6r5vHeB6AryHTKaKIm4cYdQviTrRQh4Sw4j/nUVzEt8rH9zpoMPcPkK7RREeMJcZQ8DWwBuf16altrgDkzIps3LQXo3GIbBrHFyxFDzgfselbyhkEMHDQgInCIYxJCpBiCktEPeqiFupL9f16/P59y/fruu6brtIO8XpIU0/pfnTw+njaTmlNIeQQnAJh5gWqdUk4ZxO/y9jf7Ylx5FsiYIyqZq5ewQAkpmn+vZDr3X//5/6oevUGTKZBGJwM1NVGe6DqDnGWl2ekcgkCSLCzXUQ2bKH5cOnZ0VqBm3osi5A5AFpdbgdx+v7/a+XF/XwwFLL7XK5Xi8fnq7jdisCe1v7UCEKACBikRIIACJy8rsBEURoXYo59KPulb2DhHMYJ2CKZJCb6Be1SwS4YQQxSpW41OV6WUcbQE4CyyrrUmqRMoEfQED3MLPRR2sHUmjIMB6VFqWIshZAklJwXcvT7WLmhCjC6dqY/C6EEKFaZV3q7VKua7ksslauhdgHwFDdTXfTw6yZ9fReUovhoVOrnsucMgRvmtIJClMWeA4QhITITsGA/qDu5YZO5qG5Of+4e/KxUDjBSa/FB7wQuW2T82MDIMwgPP0jHWEEEJnHjM12DzNvTbc+9qO/b8d9OyLgeqMrLFIZSQC5BRxqasAYzFEdhoNlxikLMAemejDolJ1hfIetzWr2vAImjf7sw2EKhmKmXGdh6XMKaWY8eURBHoE/2qt9PVimGjUvPyB/jHlm8su3xe7Xf/az6vwrGA2Pqimn8q0d27a9vb21dpiah587+7z+z1d+O1Xt7WhH2/dt2+7b/d6OvR2t9zYVbPEAzfIc4yAKZCAJLsEFuABSAIIEiIInVymTV4VYws2sm6k5AvycNv9QdMHD2RhS26fuGm6hYfv9eHt5f/nr9fOfL1/+/OIGEFSolDohy0lxY0I+p2+lVClrrXkCbPsORF3tbT+O3jKIYu/DAJDZwvfR99ab6vCoAZ72i6nsTJW9uge4qZtBcGrgT1o1nTM5IuLJQzHABHUd3J3Av3/bPw8jz0/XGume90+GeiJ5yQERc5HM3FhECokgUilVuJAQSyUpgWwBmdY9x6pkgDiG9tYCggsvgMic9YrNixGySUDmAFT13se+HWPoqqsHENFxtGM/ChNBYMTRx3Z09ViWaTiiw3QYEAIjMVXCQuRuxxiH6YogtQjS6P3Y9/39fn+7v7++7+933XbXPcCBYmhb5HmR78pcddPWKEGhQB2aXdw0riWUDAwRCQCHgLAg8IggJ8/5QCRjNwITeEvCpqnbMB/m6jE8R1UUMYSHpAdyxvghM7FMfl9uUwAUKbXUUsucmLu7aV7faTqX0CQRYUEm/m4yE0hEZeLBUkshon5tl+tlWRcWCojMoqLW4Rd4wq/K3Pj21/hmiPVNkTh/R8L5SEhUSi1LrcuyXC71si7rpS5rXVeWLHM5MkX9FBM5uJma67CuOgK8rgvQ4kHmQaoRGIyQ0S+jt33XY7NjA1dKNiZgEPQ+Pnz8tL3fn27Peh1Zoaa4aZ6E3761+dAfu2fuIAT08OPY930box/H93TLGVswuo1k0rMDExYEBNVxdBvqzu4iIQ5I3tS6+vBwQMz5CeRKyLceEIpgcFpOPTwG4kTxLVw9NFwdx/nPFMIRHQEALUADRvhwz4C0E672cFIP9UyFnJrOWdeeNK6JuWeo4glAQFaO4IBIBYoQCmJhZFov5cdZEoKwIIFBAKRpMbMwG2QYpGMa3qSGzTCcc7CLFIgYmBVAeJztEgICMnApCSiOYZpUG8azzD2NTEjAI1VEMWe+maQCX/MGzSxRbnCHUB1dTcdAnLHjzswmYQpu4cO1jUOISRAEoTAJiQiX03qh5P/OKpcB0X4xNnKfMCDCSWxPaJeIUiMy1N62/a/Pb//45+f//Oef//HPP//5r89fXt+PvYPDtVSpy4dlza/ndX2qi3DGnXumPKh7t6Fh6gaEpcqMhzFQ06MdAb5EmQrWZBUO62qtNx2ttd1GCx0Lx/bb0scNpQQEIQhTAUTEGUkw35GFI8L0FikUi1AlqlQgkt9BBtEdm4HSL+rcUE8yNZ0O2UXYASBFq3NNAhMFgPD0qkWMcDUlJEckRjZkVwR3AkxrgCw5XUOH9a59mHmajIIUMneA6L2OkU44czOkpbi7epi7umsul6E+LLqGZplLjAgiAulKui63y7IsdbaF4WnR4A42jfFzmBSmYyqvxhiqRfjnqi6CIggAfZ5nkINGhgia45fpdYIxkyFMA3yYwim5OPGQ6MPGcLXwwPQTIilSa6kLcQHi3Hdimh5Al+u1LkumlT4+pQCAhBrPivvbn/qHt5Dj3exrYpbFWewioAMg+DxQYmJ+eJZqUwf7cwHj7snAGmpuJiL5G9MOHU5A91HszsbxGyvOb4zAHn/4edanN8IYfYxJFSWSMps6KZkO8N2yzYsEAcKLu7svecUU4VqXMbpbjsymyaVjkjjTtxkDOQ1b8PzJpJS6LiyUpp2MiEyRkTpp6PaLdQI6DDFgOsrkXBezRNBhvY92DIh4f91eP7/d37beeiQTl9M7JiXJkLNWEsYidBrKiEhlIUBZKokAkSNZgDmoncEA5mqekxIHSA8+87CpdD/nhPMSSsoHfbdivv//OHkXfM5S5y85dD6hjm+KjZ9e7IauwliYhSUbTF5qqaUw42kvlbduAKrZ0RspUQaXUgeY03OPKEUul3VZamtt3/ZcmlLLg9ruKa2fDROFh49A0O2+v76+7Ud7enoyd2Z+f7u/v9+riJmqXu7H8Xrfhvr1dr3pFQDaMXobQIiCxLwwLcxudm/HPvrt6cZE67qcEtVUlrrpHFaCGeogDuQfbx9T2+3Ame2AOnQ0Hb2bGqRtK3HhUrgAYQQo2sBBSApI2S4ERKbazV42T5/5mDCCA+NUCXIgqGtTJAAKAZ8qlLCc7STxGubAOu/qr3KxM5hluivnIDp7uCl/mbl4xCxcsikrUgozAWHG6HYdfagN0zFsWK3156XyS27uOek/T6GvSzDiMejO2SwiMjFJqden548fnz5+vD5/uH34cHl6WtbLsly4FCQG5gB8sLoAwN1UVU1bO1pvY/Q0oWDCKQFxC4AUaWrvvR19u7f7W+jA9MpGTBOc7X4/9mO0rkMzWW5CHI/t82AUfy18ZzmZODkAuPn9vn3+/Oe2bfu+//BA3CPvv2Fh4+GX4UOPu5oGUQQH1EKLMwkMc83mhM8T2MmdEBxDp9DbT6JBQASHq7skHzWtwYZbN++zzHUPUEADDCQntEADSDtuOyH4E3CJzALQM6j6tCnMS2EeMglQ0ZmDlXBqUgQBkQRpRa7CVVh4vfy4VBAwKxEIh2BEpBQlIRAICjmhExhC5GA0xczMmLoAABtm4xFbmvC8k/D6dF2fb4Dcm41hcKZgEwYREPFsx80ygOqE0DBS7+VurmZqajbMbZYy7YjejjGOAJyaRRNiE9fU0kObuL9ACEQhzGTvUqQmlMvTPyU7N0Cy6ycg/n6puIedLpw4YygQEJCQc2cfTT+/vP3Hf/3j3//jH//+v/7x7//rHy+v93aMMWwVua31aamfluXjslylFJZCbBHdbZgrxIDQaS9qI1MVzy7FzVpvFqquABciBggiFKIj+hg93LXTsW+uDUxXgW27jd4LUf6gzFQpu2dOd86cOmfeB/igMKGogtdarks1o61FjxgYLcZmgfILbl1Mh6FpEkQT7wOf1BRPM2ckZOQiUovUIsI5mdEwd2WnCAbIMM/c1IFhoV1bG9u97UffW1e1PKFLkcsqqvW6lA/XpfWRaSkYJ8klJp07zjNXzbtG1+gj1POAYQSqspT1evvw/NtvH56fbhngmZmWX2nwgAnBmtroR2tH7+0gZAQR/rFLBICY6YGTWAUBGaBNMxMF5iHraZ8YkXmbZ9XmJ/U8IAJSzJlx7LUGEq/rermsjzJXikjh8ChFai1Pt6d1XUVyBpidNjhQQGDgDL2JBEd+rDLOihMf2H0AALqH50jpRKYRAn1SFxmQIrvwCZL8YhadFl1JLTBz98wRSKP6R5z510o3/y3KHntyYeEHy9s4MQ0L14yLG8PBibnirARzUJNlLp5vDyaVy0211rosy1jXfr323nSMkWb5pjlhyxpE3bracDMPTbCTGBGRMpcHpTDR4saP7gDnxkBIgpgF2HcPJiJGUyLK0VwCkMn6yPiG3vTYupm+vtxfPr/u98PVhSQfiwhLySiYOW+jUrjWNFTFrH5TDCNJXc8rgZON4ADqrmpDLU2sEXF6tHsUdwectmBfL6C89eAcBn2V/56LCU/xTlBwak0AAEAn9vS/lRt+fYlbuF1KuS61VgnGIAARXBcSBoihCq0DMUlRt9bHth+A4AiJcLqHnd1qXerT7bpeln3f39/f3YOY1nVF5JxeZ0MbgWLETI88itfXt3/9+df7+9Z/70TIIn99efny5WVZqoOb++t9++vltQ997n2YAeB+P46jTRNL4YvIRURN3+7b/djHGOtShTl0Vpbf1PuAAAxRwms4/9Qlquk29ok7eZi6DdWumZxHgIIsJFVqJvmqKZMI8SAcCMaplsZHkTpLJgeMIIjcHnN9pLbSwvoA9EC30EAMQPOTYnse/qY+hk6oDcDCs2/KOv6sdQ1P0lbu5TREJp5Ll4qkPRoxC0RAmNvaL6OPcz/auv4flrmzDDzPr6SYJdEq3eWnJogCghlZRJb18vzhw9/+/vvf/vb86fen3367Pj0va6K5ApgZHOdpjhCA2YaOoUfbj/042q7aTFu4EsaDHIWn03S4qY7Rm/WWGB4SAXNdln3bj30/jhkzA4BmM/n1wQf6bvJ2ltpZYOYUztz3ffvrr89vby/7T2iue3TVoTa6jxFIARIApma7tuEogYzkIMhFkDNzHmBmfjhQjqrBItzCNUdQ8LXMPf/y/LvmE6YdjmPq9EMBDNGJEMkBLKXTAPY4OyAxFJx03HODfLsbHmovetS4mK3R2b9gAAEXkoVlYS7CwqX+ipvL6RDCEITnkcoICIbMdqaDRym4LIzAUkgYmYIJImgYdg2bmE+iA1x4fb4+/fGJuB6HjeaAmDoGwnQtFKmr1MVUx7FZb44AQLkTI1LV2027dtWuOob7LBEDY+gIQIIgdArn4ABBdABLSV+YSYSECwJ9U+bW1KcQETOSAAsQ2fL8Q5mbF/C55OhRhQRGWLSu295e3u7//Ofnf//P//6f/+u//uu///XPf30+9k5BjHSV5bfr9bfr5WOtH2qpNL3Ws5k/QrPMtXBzwwibfKbpTBbhaqagxLguNUXqmZiDENla6nBCZHABuK98HLvqCK8AwQTChDOrhab9C0SERUysijEKAQlf1+V2XbtiC/OuCtoDm6ME/hgMHRGuEBFJFc9iCCE8LCyjTfK84fmtuRZeCjMjU+Tsj8IpKI3aeebpwIM9oMN70+Po29b6GGmzUquYCYTv17W1kRS6c37yTb30lRE0Ey3VwQHzgix1Xa+329Pz8/OH3//49Pe//fHp0wczGz3Ndc49DAABngVab/v2vm+8IaJ7mDP/tH3m0URnwz1/pFS8zXI32ZvpPDHNEtwj7DGt8tnGY/5+IhYQD3FAzqGIlCI00bxpiVtrXWq9XC61lvMzdjdLZWAuKIjkWiYgC98eIfhQwT/OFpyo7qkDeJS5iVVPItQ01J4zq8zv/QWam+2DqpkZEbqbGdE3yGA8bHXTYjeCMK8n4CxSv/ljZzcwr1PNeLLWDlOF8DSFTViznPLH75YtAAMYM0UwghBVEV2qZxdtZzvt8y+GjTZG6tqGx5nsg1OOxARCCBxe4zEPyIktOAQDBAyD74PQIqJ3JaS8GMbQhI/BQ9XH0Hb0bTu0j7eX99cv7/v7ERqFhQhFqBQpVeoiJcPORahWLhVFZi8T6YykyAQ0vygNz+ZviHx34fENe2T++BmvjlkYzP5g0rZyucwWHPHbmyirXHRK/JrmGyX8gTH4Kxw3X+KBHiviUynXdXFGEzRhl5LCJ1ONMahUCXePodpaDwwSDkSzUFXNvA6PdV2ypd627fXt3T1uT0+tq1R7sLQnIOMcTI4Oge6x37e317eX1zcWvl6vUuT9/f7l9XVd12VZROR9219e344xgoiKQMD9vu/bDogoKMJaqpWiQ1/eX9+3TUT6p+4Xm9LWcwCOpxumAFSI5XT9//Zl5q2NuXAtbOLwZ/olYiLI6dSCxEYiqCM1cghmaEAnZeoU5js8chFzQQRNoQIguIcNDbQgNyAgCiQP+KoBN3cPVZxKRIQ5zJ+GolkSJ2btmK5POlcOTb+TrzfcPBOzgYMQK3VZ1ss62hjHsOHLuv48N/vfkBbOqjsHEHlTfy3EYFa9DlFLuV7Wp48fPv399z/+xx9//P1vl6eny+1SV+GCzIYYMPmlEJMGmynqBCBA4kRBBUvVcage4coYRJFjnnB/lGBMKIRtu/djG61ltZa849b7tm8vb29pHzIxuTPMZsJEp5wfZr8+K8x87Oqpdj/u2/az9Zra2I9t6Nhbb12DQwpxDhb9xC0gHBgIiJEZhCA85rfNA8BhchWSSISeoyrA7DC/xn09SqOAeNSsccbewyPTJL4mQH89O6a9Yjp/E9qE908y9dw337igz6HT/PsPxb1IEQEAH+FDR/nxmSBAESTEnHHO0EJJgNdCCIRdOJaFa60fPiDOZLFwU1cydXaSkhQJDLTRdBzEVC6X64ePslzK4WMEIDELESMGQbBIXa+lXmz0tr+Ptiff1oEiKIBcVfXQ0bSN0cbo3ayZNtLuwppPQAjLHHqTIAqREAYEgRNgeOpDA8mJndmFXdgm32ZuiPCvFJ7HK9kgj7MJcgOYt3a0oS+v93/99fLnX1/+67/++R//+Y/Pf37RrV+IL+ulMC9cnpbl+bJeixDjgDmitAAFH+QwzyN0CBODiFILp6oxXVQZsTAVqmtd11pLTXXXUngRaowUmMKyQojhZjpLTwwmFOZAICBm4pOVy4TMlBLxIrQUHktx9LXKUopHBLpCGKIzhwT8xJIMMItj+iKaDWuP7ltdI8KGu6W9GAhiJaxMKiQP+4dCUnhZyrrU67KsdSlcMbyWZanrUo6l1FqX1o1ZSecMIzW/oQAGYYCG6IhO04AhGILCaaoEMgTFPCJqWS/Xta6329OH2/PH5w8fP3789PHTp0+fPn769OH56SnCbYK5Wa5MjsxorR/Hfn9/+VLQQ7se2MAevsnfH75CIjQZ5D4b0qQbMFPJ0PSlCAEzLIWXKkstCHg2BWe/DggAatAtcNhQi3DXSG9Xd6e80tzVDAATRxhDdKymQ0fX3jqxp8VNUGZgZidyIgQP25+vh+g3OO4EJOBR5uJ5MwY+Mu7VjUy/XkJzuPn9qYL4CNqdg0opUxn2jYPHBN8R0wv5K30X0R8ehVkNa1qAZJhSO/Z937d+HOnThxCerStRI6JvTUJOzPjsghJx8hNI9nBP/292pzAK53AGZJZCPCI0jag8SRec+ZWI+AgmiZgEb3j0SQH7tm/3f323fSLaMRAxx1/b/ehtmBpiqGrvfd8OEeqtvb28v728H3sLzwQDlpJfqfgHdXdV8ICu5xSPEo4xcxsabgDBRKWImorkOTCfPk0lUPZcgYlBz9tk6i/NzMFVY1gQk8xjkOgsf79h75+ALhBABBD61+v7/+8rUyiWgDVwQTLCQVkPoc1Bwnkz593GTCKAkKnvJ8zliOE0Q+lSoCdSPYLlTPSFnNQEYFrlZPgMJd953pi1sEhyU5GYWDDnlsxpjYsWkFYMk1BOjyzj+RMCzGnl/MoAsiS65iZgZUKnynRhvjJ3wh/M5+YDjYlG4rzczwoiJoJNHsIoyEYkQgWpExKROhvIxFlnJ5mnUgDZVBASAkXa7ACBYkbboJv6yJqGPNCG2whVt8yTSI678SlWBM+uIVE1xPSDBQQinphuhLmD6YNgeoZHuTCfJ24EILJIWZb14hrrevl5DvBrNHdCqDHJVw/fh1PcAx5ogR4hhOW6Pv326bd/+/1v/68//vi3P0pdpAgxQg7VJ4X8MdlD4AWiAlaUwiSFGKhSWXSUoQV9MAVTJNQYEakCJuZSuBRm4QBX1cQjEdDd+hj3bSd5VXeaNTEttS61JvsUUkhCJ/N9ugNHDnwJwcz70P047tvO0zXx60tV97aNofsxWh9AIZVEcnXi49MHDGIUgUShnE67SZiSFAzDyCgDn8N8DA8gmOysCaOfcMesbhHOtN7HMPwBsz0KLTxRHeSZTcLMhEyQ1xpNeCVPrNPqDWFC9JDdExOL8EmBqR7a84b4qcwFhCKIOZe3QIoiVAqTAwSHEGaZu660LLKsRMSA4O597/udRicB90BgJiEgOO62ORKUy/X64UO9PNUBYwSinFYsjhAisl6fl/Wm/djvr31/zzLNAQMYgM2G9k3H0Y9OR6d26JDRidseIkqIhFwIq0y6HDMXYqFwDCJk4jDyzOdlR3aRKAKFA9Cz8fvmA/vxqdBclo/jNWcX923/8nb/73/863/9xz/+8z//8de/Xv7618u+HQR847Iu5VLrpZZVyiJSmALicLXw4THC4WSZSKpZAfLGrUuWuZRlrjBTYV5kvSyXy7KUelnrWnkVOoQWSRUTCnEVyrFWhALEZJALhUMOG+XRPBOyEOVB4KFVrBaHWGqpRZpZICiEYQ53Epn5YerqGi1OZkDX1rWP5FSZQoCqhTlG0GxAqDIaUxHOCXupUopkSXtZ1rUsVSqC11KXmm7Hbam9FS2sSg6mHqc60gA0a1zCIIp0c8gylyNtlg2S5p2T8KXWpw+fPnz64/e//f23P/7t9z/+9tvvv//2++/PT8+3p8tlXfOc9FPkaOqqqr3v9/ft/f315TNEjOPYt42A0z3yx3WCs8x1dzBIaAggUkyVINyylMtSmYIxapGllrXWNBtKuBdw2k5GwBjOXQOU2nB3Ne+9HTuZKhEjUwLXkGWWOzOvS9Ox6ui9NSAKIAMK4BlmBPC10kX4oczFb8G5CcdFgM0jKkcZDp78UTN1AwczRPSzwksDte9eRMTCFMQSEZDsUZF5hmd9HRET2VK1UyWGJzzo6IipNnVT1d5Ha70d/TjacbR9a/s+WnrBKUTQ+cc+Rn4nheQUKc+vXBoBj6rkHApSQALgjsAIhcUIlXAg6umOzCy1LqUsj0Fwfn0zb5wv/vzyz//6vsz1OI4OgNm339/3dnRTRwwc2om2bQfwdhyvL+9vr/fRDJ2KFClSKotMaUgu1ABNl8O8E3kSwjgCdAw3QwghrMJeuDAxIiMm1kRIjGf/G4CQVHtkAibKFsDcMhWlW0iczhXxFfc/+6KJ8iJQDmUIyB/X0jfN0E9H7HyJh3hUxwVwARxI2aAFnW3YNPw46Z5MXATOGCOimNzRiIgoJVlpGRS0OACXmi4NOWxECvIAAALK9CUPAErD3bqMpZSaBhYiwqWwlFkKzH0OlGBNAHHmW52XxZklyUSCLJPVN0/81PRzERYJZjSsTBehm3Ag/VjmAhFKUESk4b4nzH7SB6bzHJqzYAUOAic2YiYkpuEyYCQIZWpmNofp5HmVEc0gtcpQGfKDy9+TQamWBvYOblMvMUbqgs3D2ZjOANlz/8T54WACkqcpPeZimoDSqb839xJhIvNvajpziEhd1gs4rsvlF0vl57/1LTo4gVuYrLGzVgI4VfFlXS63y9PH23pbuGBE2mNjQKTTSQ4rskMLCCSWeuVyQ74ALYHVbbIRdOw6Ngh1CkdgZuYCiMRQF4G4CEctec2jiLg7RHAtGrHtu7y/acQxRg7SmfmyLGtdhBm+8oPoMbFHwvQ1zBZuut4MHUNRKFu4b55J8qc9BYLGETatIwgDkaaXK+XXHP1P4BvSnsPcnBK1pTkCIAIAZMAiXEXKbAcfo0AETJtRmGYr0zFh9v/hj/YY5m8/9b5MxIQP8cPj0CAkmUS0aYyVBXNEzKnI3MJMwBjkiuPwfuhYkxnx9bEggBAhQTD62UY/PLSm/x4iMPOy8u2JOSdJxhikAzM5DZBIWCqjBISORuCl1uVyWW43GsADcAZkSVb+Usp6eV4uN+0FIH1gcuZHKYQ1HSxA/cHAyGGpcRUuRILMlHlnqb2T9F2YHySAIQfmKRTIQYLCKBLM+RHMOWjodHv4/mXDtGV2aJJzQg3et+Of//ry33/+9V///ed//sc//vHf/9re97E10rhUvtTlUutaylpFcPZhA2KEj0zVxGBMkg4yk+QE3MEiZhtzFqmlEFeRtSxLXZaylnJZ622tT5dqNsKGGSenSpiYgSlO8TMxR2UgBAskQsFZsmbvBEjBEUyLiBfRcEaalEJGLiwGJdCQKPvb77ZPuI3kKwnBWuXpumBa7ZqVIh+fbs/X69Plcr3UtRQyB7Wj1lKXWpdSSylSaqm11KWsa71d1stShPzpun56vrk5AVTh59t6v1+PoydzlhmXIpel/O3Th0/Pt+fLeimlEFH4gzNPU3aex0AwYCBeL5ffPn3849/+/vf/8X/9/X/8X3/87d8+/f77p99+u16vy1JrKbmpzmot0oRIe9/vt/v1VmsNczBP0V0EBMpPkzQshWtlcyQDn4mXIUxSWM7QByZM5FkQGIIBhIhEcr7BzBPc9Ti6Ig0LKDNryF1Nx4DwLGUCwCOQSCPCXYhbqWVaX0frhyN5EgahIAqeZgA4gxJzNH1OhM4D6rwQIvVziJHoHgCmjbGZj6kyQdPOhDGt6N30F1EIdAZ8ISBzTnLOnwJOZhaCAxDNefo0bMmLUZUITdUsxZZb2/Zju7dta9vWj70fu/UeZpDX07fYzzlvh/N0nbUuRHZMcE7MzvIp+4xZhAMhFMZSsRYuAlKISQFxanoQMRAw8/XOyhof4rn864RPvts+AaoBEb1rPykR4Q6IkWbpQ8eg1vpxtH0/tAWnZWVAQKgB9ACcbpTJeMlcHknCtpRaKxGDe2G+rsvHD7euo/eeXiUfn27XZSmJgp5MtQAnwrWW22XRUno1Vfc00PMpXANEcsIpkP4BFnjwGh417+Mh/B+9BLAGigepwVBA8gnoOMLMnXusTsz+qRQETDHTyXCeg59SUmDMLFJq9QCRkh5WAAAc02wvTcBOZCsCqHCppSyL1EIixMJSSllKqVOtLEVK9aAiRVggooiYiCMgY5axzAIOhUthKyxCE7qgOZXNoRaDEBpV4bXItcrxk60AERUp4eFo6XpPU7M+Gf8EQBEcweZphIAIkeLH/HYAhOhZ1Dg+bvLHx5TvnxEEAxAMggEsCbgADmgQqVrzk3CaaSmIGBgMWY/R/PPgFGuffjPf7YYkiSSvxOYALTy8zJ1pw8wi0s60FFij1uVXS+Wn1/QJn/XuCRnS9GBKen9MxJCePzzfPtwutxrRX778eX//nI/UzMboYwzCSHeJfEtS6nr7cHn6WOqNyopY9317f3/btvfRNx33cM3GsZRF6iplSexRBPiyLossy3K9Xdr+sfc2WkMiC3+9vynE1fTQTkiIwURrrUspKVGHaVE0TWoCoNR6e3q63Z7qstZS56DkcYb9sHqY61IDtY+ZaF1YikjFWCAKBSMwQ75LhzAMBR/hWaWaR1K3cv6IhO6AEGcCHl+X5bou12UpcnLw4DFxwTyvbM7KPLIZNwfLqdlE2zEo9zgnfxGRH5VKTIiemJda1qVelrrUWoRpXtYAc8URIkWgakS33q3tduzWbj87Z51VcYIBSBFkhjEiuls3SyGeO4ZPPkFEnN1BXoQACCxcF5Hi2nkvFJm0zkLkGYY5rUqyAQSermJ4mkWkZBkmgJSDGgRPUiMA540IIQiL0K0SiSwL18oA58SEcm/PeydbIkYMEqQ82JmQACzsge/Eedt+92pb2142QAxED+jDerfPL2//8z//8T//6x+f//ry9uV9bG0Bul5uBbmWUkuRaZQWFqnjAcUwggBkZoxg4jNZHgHA0xsifETmeiERLUJRmatILWvlWrgUvizy4Wn97cOVKQrBUM27hgiZYa00Ex2JC8PKoQDJwy0YnJcP5IoMQQQiJRLmQAy33t0Mi9DtWoM92HiY2dAfomg8vDsTLaXUVZ5X/P05VKfeloWeb+vT7XJd6lKlCD9fLh9ut9FNRKTUUxCeEInUmrCuaPHQS8F4vpa/f7rte2vpoz5UzUw1Ieoi/Om2/vZ8+duH229Pl7VgaAiDCBWRWsuy1O4xPIJYzA3w+en2228f//a33//447fff/v06eOH56en6+Wy1Hre8hOynNe3ACYOAMAimR50vV5vzx9uzx9vf/2lFv4Tl6NUrqu4uxu5cw7HhagKizAxgpsbEvqkPQ0OIkCUzFNaalYnWbUwj8TFlyJVOMwZU5U5mUkAgH6O4c0PQCECt972bXmjUhzQAJFLkbXImrwVQj5LtHOTnTNlJMzhWJaHsytHOKVgqMNGNzVXN3WD8DwdTbvpCDdE/q7KfPRUJ2xMZ5t+Vtrzjjq1GxDhZmqqiVKM/CkjRjv6cRzbtr+97W9v+/vbcX9v230ch7XDx4DwCVQTfXvo40NT95D6TXFeCp8fVf3D+Ddn90nuIV4XvlzldsHrFW63qDX9CDRBztbhZCfnuySaTvJ4Apmt/Vj6Q0Kec4o0Z+0QjkgEwQiTpYYUEareWgfr4ZOVAGnTMXsxU1OfsVK01rLWelnX2+12WVdGuF4WhI/LUj99/KBmzChMnz4+/f7xWUSWOu0UESEiivDz0/WPj88AYBat69u9vd6PGBZukbJ6TquQr6LE+RHmpwcw8cCzxXh8fVMS/xrQLZnVYm5H7+FduRtZBCJjAULw8xtOHJo584w4085T9Eqzm5FaRNJ9wqUUD0yJ3om1x/wpp5HIQ0ULVIRrEbNHmVtqWfJ6nfI/WUsloKx80cGlQLFAQCFiqlwKCwEtRX2BWhbhQgm2EWPSKIqwMAijcSm8LLKsRZTg+yErE1+W1X1uCnAPI88rMkKYClElkgAyg+hp36RpjAs2wA3DAGdAfQLCk5sz9bL40MdGSiyTc5hV46wf5o5lAAdDyy4wsrbEicVNBOUcdOWwfT4vYTgn4PZ4hUKAa+SAO84sSxs6HZqJUkf081L5VZmLMzrAv00SA0QWlkoswYQspUit8vTh6fZ8uVyLR3t5+dyPI9zBw1Qz2psIa61S0lWd6nJ5/u33D6Ov16MsF+KyvXx5+fzn6+tn7e/a7+Gay7Is12W9LetTXa/L5VLLyqUwX+N29fGkvW339/1+770bxNv93s2a2TEGIQIEEy7CtcjMcgYcY/SWeWHuHtfb7fe//T0Cbnk/JU3npKD98GKmuhQHlO7UnU8TlgVtASsISEmrmcZWBj4iNBwD0XNuZWbGOI1UzrQMKiRVynVdbut6WZYqQegnkv/ADb4SxeIRnuYOZrkeH10ZATCGBAhiQZB5jXzNERPipdTruqx1WWothDAlcfD4hgDkAaFhoe3QtumxWz/8OywXcmme03IiC4pAzYi/HpkQFWZpRJJCqlzpFN/27oSJGNTF+sFFyIB5OnBnmRs5KJt7KU6uGCACIwql0w7Q6beQ8zSHNPxNE24gAEFcCl4W5sLrKlILuE/7pTzJJsc/5mQGMflVzDyL8tmeerhNo5SfaGTHvd2/bI4YiBZwHH3f+z//+vI//3//+f/99/+4v91hGFlc6vrher2WJcklETHc1DQZSxHgiZEjEQAjJn+YJ3gWARlPkKaZEACEWIUgWBaWRZZFauFS6LqWj7f19w/XQrAwtT6SdQUYTHBdZamT4VI5QEjA1QEhSjomZ4UUZydBpEyD2BHN3dQdqJR6Ewm2IONuR/MfyO3h4N2lUF3kaV1rzUos0+SdENcqS5UqkqW83nw8m3ukBPDrfyZ9KfFOMgeO5Vqxf7hYnnU+6WdqpprM3ECMS+FrkdsiHy9SGdSMCZiAhSQdHc2rRxCzuyM+P11/+/Thb79/+uP3T7/99vHjx+fr0+1yuYjIiTRMSgoAAALhaSQisqzr5XK9XC4fPn58+vBpvT1fnp5b0//4Mr5bLAilclWJb7a2RxBCISrMRBDhpoPnHRLRyQALC9eoTNdaL7cLs5iaqhGgm42hVbgyOxsDoOfkNo3fpw+uWwQaeOwRPjpvQqUgkwJYAJV6WZ+W5VakMBX+xpFlIpAZlgSRbtJElBdSDviIMUPdAai30doYQy1M3dyGWXdr2o/Rm7t+/PBvy09DRpyD/HkiPUQVky2QDu1nzZRl7hgdz8TpVLEd2/14f9/eXu9fvrx//ry9vR7vb+3+bq1Fb6GDTlJp7vFHpZvFM5xV7IRyI5KBl0PJh3MhuJ+SSiAWEim36/LhubZn8U+lEDCFuWuoh0Z/uCHHqdEipnTlPofX1I4forLzTdMDVY5zupcHfp4POaNxh6F2tG7NtU8FsoerDc0QqzGGahbuzHRbl9uyfni+UYAQMcHtslzW+vHjs3lERlgQrLVclsVMl1pKERIGRA/PMvfvv39KYuW2d/zzy3a0GaBl7sQP67cHmnK2FPFQ/sz9MF3m8Kcz9dcvASxIaG5Hcx3duYc4oZSScRTnes2ZISWuCkAswiL4tcwFgJAiXOSUprgDMgvOog0w0CnQIa0z8esNhijMtRZ3rgULZ7xOVrlFipAUKUuthLyUWrkghUvB4pOhxbxMabZptXCsZZGpReEJLwpzESmCwmhUitSlLEvh+KnMZV54cXNTUsQwcyVjTCKPEGfAjQCQWjzE7uADXcGUwAgM0QM9KNXU5uinGyQ+POjBz14kj8OsMiZ/myBZ7hgGREqo+Bj7nB8InghegEPGrPODolYAp/3fGJBBf5rhFAIIhM7Zfbr5DMCIQMI0EvnVUvnpFV+1UZMZn743iEwiICVYSEqtvCxcKwkZ+KHjOLbX436PcAR01T6ajoaIbiK9JIVdx1EKLhXDj35UJH57+fz6159vr1/cDtcj6WMQxLLt9b3U12W91PVSlkspi5SVT20wMslSg9A9LMDTxLs3SlkUYpiqDjqrxH3bt/v7vh+ZOX653lo7Ru8fP/328fkDi+z3+77d932jy8r1e7H4SYHLeU8ggisCMnmlKElGRCd0AI+gEwxHCECEjI+EIkwhDIhBAgLMLIuUpdTrdb2uda2lsDFGArGFUBBlhi8AAhSEnF2eFR4vLJdSrssyeT6AQrgIX2tyPatqtGKr8FrkUmSp5Wmp17osRRYmQnDP8KqT422h6ojmaAHR+uhddZilH8I3dS4iEGZKFhNxRLq6Zz2vp1xj1kbpGY2p1ichZMx/F0+OxGkIROH8DYYzMbOvNT8BgLmNMWycIqAzsQnCInzOIjF/MuaMcBQpJW2qWAovRaRIuIelYoYRBH2OIRlcMJjgnDVm6wjhClNtlbAa/Axxf/7zpbTmCAaoEX3o6Pb59e3+utuh7ChUKtN1WdZaa5mePhYpPP96xE9V7QTYYQIK6b0PAIAMJEmOMnc1cl9SSscszBfmKlSZPlyXf/vtiSG258u2tzZUT00rMTxd179//HBb6krECJLZN+EAsDgUB3ICNzcCDHAKdTDDcMwATEYGKogOsDAOwQjU8eMzUdWXl60UVjU1XZZRS5VSslZhAG/kwkaoRAWnU1IEBJLP6okc0ZlMiAgHIxI6wPBQ9/TmL5nqixSAajiczNDVwNVDex+oEDs2xtHa6/vb6/v9Zdte78frfmxtbH0M8yAgZkgdylKTJlFqOYOIH4jiHHY/Zt5ImGsuvagRQpjCffQeZtvR/vPlX/HtBR6QaYYw/y0OjGzJeBZ3+MC8EBwcXdWAXNSrhXpMgMXTiMbTWtM0v3WR5PQxEwlBKnEBAZCBBUlyHIfhliGeGMNthEtZwhTCoK4gK0qNsAjyvLhynj+VWJxdSirwEqZhRmdhEwBsR29t9DEy3muMo/dN+2HTVMdu148/lLlzl5+01YdeaY75k84boaamo7d2UhGOyLiM7G96yxp3e325f3m5v74c7+/tuPd9izFAB4Vz0tyFCQuxzIZuTs6+ylPmj/AN9JOIeIBBpGgxzR6BhCkkOmJjPBhaxbYgoY4Yw48+ttb3PmBack0LfZnKJ3kIoOyn/ePu768beIzW+tH63kYfroYnL3n64aUjXqI5x+hNk7TgiSabqSeaa8lyI8B5caabtymR5E+FwqeIZd41hfDYo6SYMe9yQCZcCl/WdKplZv78eqdvi9iHfuR/W7meT/hBDzlZeeef8dDn/fgyVR1jUlgR3GhKnWyGEOU4QIiECAOEuZQCQCKFRdAdANGTB5gOVgmeEjMRIJ+js8kKjPi6IWHiRjPltjCZUJGkQUoyrErGkycjsSBQYS5MEFBFoPiD15ykBUSUUtxBpGDy7884PWYuRawwCqPypCwVxv4jKEeIwuI4dfFRPMyST4QBtS5FSkqQk3A8M8/yc5p+fRAQ55AyScOMGE4O5MhO4QzG5JwY3pwuggVYIKQQfCrKEIW8eDKQHjp4SCnfHAxNbmecjVGuATpNSGN2huHpiZHUBRynntnsDAg4p46/eP1c5qZP9WmDPMVQMcdEJCgFpXARqVQEhTz80O7aNm2vo9+z3gJwYSXUSKKma2p4sVlv0nd0uweieby+vr5+/ny/v6EbgkFAxnwjNoB3JE7TPylV6kWWtda11qXWmp9AqdUj2IOJEcLNgSBZoKnwTXNOd3t/e/3y+fP761vvXcdYL9ccav3tfh9//O1yuby+fnl7fb2/vVah+n2Ze1JM3HSM0TTMGEKABEqBQpAoK2JO5QKz6A0iQE4cXJiIwi18AHi2aLWUtdSlLutS16UuhWXWuFAJK+FCc3TmEAVhRSwEybgV5iqZ8HT5cO2TPoBAAJXpdrncLpfbUtWgD29Vnxb1xZdan+pyrZWFJafkMI8SmL2R6dDwyLFTV+tjqKn5L0gLQAyECfakVDw8QcbhpjG9UAmJUQpypUBAR+l4lgwP65rHqAMn7Smn+BFzEHoyeQA9YqiaNxtdhybvJ8vA06JHARxPYhOzRBGAKrVIyaijNFriMHLy7CQRWR3BwD0EUTAYJ+EjiXo6efVGGMxYmJJ49sPG+uc//jr+TGZtKKSoGlvrduiVaixSiQtTZS6Fgeb4JQe6QbOSOBl/MP8y+xCcfLwE1pI4VoDQ3LuS2RIRiEJUWFbihagKfbwt+PvHj2ttXdvQ+VmaZ0WyLvVvv336uNYVUdEVZmIHRIiHBLAnfwItCAx8uA+NTGqiDPTDcDB3QS/ons/t+1fr+udfLyL8vm2X91oKcxFiYkAGKABXogvhirggVsTMl5hpT/OsPd3veFJMgNCJTMiZQ9LchFNr5UAjYDikAsl7JzVWZbPqUdx7H+/7cT+O1729bO299X1oUwsEKVxXUoOASYvJcyY5+NN9cDZ8E8mIRBUBpgiBgBhrEY5Fr5f9dh3tiVgQ/vp+/BpH68fREz/KayEH8/M6mGPeOKcxEWoean1oH1qH9jH6cM/8HG2ttXb0doQbE1UpkrS/ZPee5CKSUpZVlgsApB/WsDG0J7+guUqpQlAEhUKYkryT1wAERIK5HhHJW4EAzN42ez8jZGZWiYDWRmu9jT6099GO437sb71v4CNcIcz+/v/5YanE118j4iEah6+NuJm7jd5Hb+3Y9/v78fZ67Jv1YaNrH9rbaO14fd1eX7fX1/39dXt/723X0VQ7uqG7EAAKc4GKuDDVAnxGM3hk/wDpZP/oNRGREnvybCxDRwwIg7T3CkZnMHSLYdaoH3hsCNG7t2Hv9+PL6/vr/Y7IpZRS6lJrXaqXkqQFSUsJFtMfT1pXe/nzCwToGDZ639s4hg4DQCsZbWLDTFXTwKT33lvvx8iH+bB1gAD+hqFRhJe6LLXWvArcCUIIS+G61LrWdN3OHh8tjIbkWAmmKC3TOivTUqSUYu51+qZ/NTk41zB8M57E81TDRzl8OjnFWfg+Woz5n59frXc/jiiFsTLQDAnKUBX3lDOlxbogIUEVWaQEoRSZZS4anhD9OZZMdwOawW2A+Ci1Y0KaSemcTPVTB5NjD5TJQSmSkDEJUfoUI2JJwlNEiIC7I4Dg1KMxByDXwg4ofCou8qxPq1suRUhkou5CIfSjUh4ATl0+Mkw0cI7oAiNqqUUqk8xNPd8DIgZO7dfZNudA4xzWAmM4hACCETqTF/ZCQRiU+JYlNycQKIIBiZGEiYHAHSHDg9MO+YRrEiKYNWa4pZIckiGY9RKTxAkXmoaiZadrOmwWuTPs+pz9YMSPNEL436G5c8p1VtqTppvAGwuVwqWIhIgTWug+jqO3vR/vo21ExIlesrN4GKi5G7ihB0JY3+koTp3NbKi9vr2/v7xu28ZEQohA7piY0jldJUAkKVxXWdblcrtcny+X22W9LOsiUjiAKQAwwm0MECbgIEop3tTp6Xi/319eXl4+/5UhjbWuvffjOHQMDH9+en57+XJ/f7m/vz4/3X58Jtnuzn5ZDSGcIYiJaqHKqA7mQBSEQDGdQRg4QctlKetaay1j9NEh3BJXXEpda6J6pVYRRgJDB0EsBAtCRzAMOGNFV8KKKAjEVAXXUp7W9benqzWfSXtT5YOfbvmMqjmYmg7TZmixlHq7LOtaiREIPJwYwXPhp8tlZJ2jrmOenmZpSfHTC78aWVEeMJggx4wYTk+TVE4JimBQoCPPrhkB02Q6L/jkCTyIgEiPGSIgPOQnERCuphg+uulwM0QgxslVV3d3CMsmg4lAiEAMZa1lrWUsOUWSWksKOBGyzBV1EAtzKOiCzjgjAN1cM+gKElKEIrRUIaKB+MOl9K9/fnnpx4joEANCSIQZA8PswpULVpFJGJ9YHCT+7AhB53w2D4CckGKc73wy2SCmwx4iSLoEjcE63SEKUCGuROn58nxZVqLfni7qrh5qYWbmgIgsVJgvS73WSmYCYWEBOmfQAejTgSsUA3xm7qmGG0IQMxVGwFCwiIKxMGDg/ae4RVV7eduYcTu43JkEgQEJGFAAF4Ab4BXhAnBBXDPzDoEyHTUnSScXO812PL3liuBlwctCS+WlUC0kgsJO0gF70LA++j72PfYWe8PWqRt1G123rtvQt6O/tnHvo7t3d2JaL/VG0s3Nz0t3TsvncfgNt/BrhAMAzFpwyimQhBnKui6362W0a3xDLH28RtfeRy3I2Q1PFQZMkishMQmjYBQKOQk4UxgGDIAOEB59aOv9aO1orfWexGjKqLl0W8FghOkOu6zr9Wm9PnvEcWzHsbuP4RbWTYdZRzS3GlYhJNttSOQnEB7OZzGjjZLgmE4TCBFJBnUKNYcYvY/Wx2ittz72bXvb3l9ae8ewtJox+9G/JWsIeFS1jug+SVspa9ahY/R29H0/9vv2+ra9vR73ez+O0fZxtN5b37fj9XV7eT3e347tfuyb2nAwDycIxiRCkVMEYxSKSsgZzwtgHj7JiZAGDie/gQkDIszAHAbEcEMHjaCICCdERqewMLVBo2E/EGB0a0231/fP//r815cXkbpeLtfLFa63PAcBA9LXhQjwZEN98zLzl88vqSYLM+2jt25qSGjJezZjzeGtnYr0YTYgZv4yTLNRjkfJjliEL7WutVYpjIjheXcsQpe1rNdVRJJC5UOta8tTMiMo0wY4gRUEoamiTheGr93KWUM8TvLv+Lnw+F0PwcMJ6H5DdPAIigkIfvvqfdjREKCKyMMUJCAswBwTrcgxPRIhVOJaSiBWERF2R0IwmpEuaYqeAY0ilpf7Y6YyNz5+8w7w6/idhNgztoAYSYRKWiMwJrm5MCNghgQjIAhBiCM4AXCSsZiQSI0cMoguzoMAJt+CvTAJJaUPmYB/oSJCAEQKcgQmRCxIIIU1yXxrKct6rctFANNvAyOjuXEyZicj1s/5MeUHHsTBCA4YjuBMzgJFIG0m0d3Rhrq5W6S9VFpGEBJ4MQDTMA2Ls9L9+uN+s9nBAhFUE25OlwBiEhB0CyYlJAhwM53e4ToXvDsCJr3Xf/IohF+VuRMk/koGfzCWJjlvunIhqFsf3Y6AGDFGb3vvPZjRg5hJEInQIdxhjCmXGhbwfgzzM43Ptvdtux/HocJkcrqnJZAXSf33CPBhFja0j977cezL/XK5Xi+XZVlz5JOy92zgrJRv/NiTYgXZ3REXYkNSc7vf7xE5+mft7e31y769t2P/GbmMmC07BjJyIS4iSylr5cvCy1nmstRaK1IZPQoXDKoLLwuv13q9LstSVevo1T21NVx4woulSC3MBIkmErhAVIoFwyEIAggQ8Eq4IIiHIHIpfC3/798/+q5/uz1lwZgceUb4+Lz+/vFaC7MgC7BQFb5dqxCvRUqRZNFEhCvbECFAgEqUGQ+O0C1zvjPTBn/pb/8Angjw5KIjCKEQCAWTEQGAIzkh5C0ZnoQOOCkJADPhOhLTDDhntvi9HC8p7tn8aQSGd0gWwTS1cFAN1TyvMYJCBdVJQ9Qp6gXludzgwsxlqaVkj5tlLiOyB6YpNgcxOCXBPkANh8LQfL9BjKVIEUaiO/1Y5m6twbY5ojMGETFGjvmIkqCePEeYfMnzUQQAOPm59x+0tXkrQf6uJIDQbFsDANImylVJFUcnADIjd5okKmAhwMJVTh/ABLxzoDd1ioAeagjGOF0pzjKOICgf+4QzHiwtACFkYUrnl/AohECV4/34Wf+LtQogOETTYeYZr8wAjFgBLgArwgVhRViSsTZTmIAf4CmcUyaccidZlos/X4gXrqVKpZW4kBQTMaAA6rbd7diOPt638fYe94OaUjPtdqjvaveu70N3tRFhECzsGMR0HMex723fxrGPdlhvXiq4ZUjDJIjm2QJf4Sc4ObSP/UEnNsD0i+2T9kzTGJPknGokAT2WZXm6rs9rWRgrg1BqjeRyfbo+f7g83epSy1L66Pfx8t7bW7P37u/d9zb2o2MgrFilEiK4OjhRBi1jWerldvGzUEcGEizGFzAFk1Kul9vlstTKhUNgJHjnHkPH0EGT6ciFQAgRwcIpprU78fT19ggjV3JGY1QCFTChsEd79yuUzjy6+rkxIEJnDIrpGRB0TP+EfTv2bXt/297e237vrfV2aGtj9HEc7f2939/6sY1xeIxASw0bnc5kgWDhoYqtQ0RkCDlAPEJNARjgYcXhqR/HZOXaeTODEwawB6RfOhE7UhbJk8KmZhNhPdrRcCUmXpb16enpw4dP67rkzhZhqSIsRNvLl7fvbx8/9oy2yjxHc/c8Hsxd1ccwYjU1Qb4sC1xtJdai05cnTlZzzokm6xmE6LLUS61rkcJEiIIp6sCCWBF40oAjTvERExXmWmSt9boshchUt22HgPDobWSxc9qbPrJT/CtqC4/jPAHdOKHbiJii/kd96z4lVP7Ya9+8Dh04BgoXDwqwjDXKGF41NqcAAWQPVOeAArgyB1ERYZEId6J5HUWIyFJrLdKRGSgAr2tdqpRa5jPwSEOBeTZNdj9V5kUEIiqzIDGBIBZGmacrCKEwAYQQ5HHp561JjMAAhJGuwulfIDgTcb6edkFzuojpAIdIAfRzmZuj/3kaIRNLJcKFqpRa6nVZPlwuH9aVzLT10XpTNR3odsbxjkn+BmQkJI5gAMmgO3/4EiChCC3ClK2XClgBd3CKjEQBMLBkoAYSCweEg6PPU47nBR+A5Cl0m9yECSQiAqT6zWem7axIXSMQ0c9/kP8UASOAMIr9n6G5+c0S0MnleJqf5OOGbHMi1MYxtMNwIxsae/ehKMISAsBExuwBYQZDQTPrCGBo2/YjcXeE2Pe238fRrQjUQlJCBNPwflqTetapZl0dWj+O7X5nrtfrrV1vl8tlXdd1XTBDYgJFik3Hu0mTw+xqKY0+lklGUtu3ve2NERZhG+3t5fO+3Vvb/WeM4QTcCFmIi5RFylLrWvlSZSloDhbAXEutiEVLtOKEfF3L7Vaut+V6W9ZLTTAi3Pksd7JrKMKlEGFYwAinMAFfMAZGYDDOGfGNsQJwxIKEUi5S6A+4omx/dJxC76zb4rLIZS1IIBWlQl34dqn73hGmNdVMXHUADdeoTIywCDmiEykEZZQwIZqruRT+sZsGmO67mZmUtSIROVFhrOzCROwRQWiYYwqP8Jnu8qjfIsLVLdw04iG/o3PEFYCTtXo6KMRp9jM81CMj5QzcYHQYA8EYkTEyJw7IAA3Yx0rX59rLBYlYKotwBEc6aiXfDCAZsu4QiU9DBAzDNqDrwzpy+hID0n8bju+P36N13Q9MdmTByaJmSiBuMhLyncDD1jEdynGe5ufIPs5nlPhuuuIRTW+qLAMwGUGmPgZneNIYaD6trikZ9XzK4GcYYf77s2dQDVUIBfBkwAJmb5nVLAMEYKBjHgxZBCAAM9ZCBpStCyIKgTl8/qkjYqbLZfGw7jpMDxuHjWZjwgUAC+ZXLAiVsCBN3AiQzx8zPAzC/BH8hdfL9TcptFzrygzLQleWhesypA4iBOw93vz1y67729Y+v9nrnQ+lw0y9qR8Wu/mm1j0MwxFLJaBgxqyg9vv92LZx7NqbL2uYJUvn60Y456pff/3mwpkUvvSLx58gbkCh0w+T5ORmcnYUhHBZrx8+fvz4fF0rL0LMCU6V69Pz04dPl9tTGve/v7/re38bL6/Nt+734fej3+87AQqXpwudbFojIg9HBCmyXC6AmHNiKliMPRbkQAYpUtKWmAUxEBUpEEVdu+6678wkdalSC2EVQkQFl0x5ESAmfIjBJEzczY3M0ArFwgQsBidq8NNDUfM2DKeuBcwdw8NUe9PW+7Hv+3bsW9vux35v232/b8d2b8fWe+u9a2+qw3rXbdN909bMRoACZ/NEDCDZlgOqe4zhEa5qhI7kAFMyC+mphukwRUHm6IQBge5oKf91yFQUwqTKATGRGEpG1UAgeoSl2dwYbfTel+UiItfr9cOHT3/88ffLZU1G0mx30uTp+5e7t2MHyBDNGYmZ817zQDXqioQ+XJBvy6U4elldbaKj58p8HCVZUzLhUspSSron5CRbAAtiCSgzs85dLSMuAJGJauG1lutSr+sizKOP+/2eY7Gj6xhnqpi7h9O3le50Kjjh5ZNIGQ9mJnwFdONrpZxY3S9ex1DvnUqp5hxgQYEMQGERQ0GNPDiAPUg9IMtcgQy9y3gInk07AKTpSpFSyStJIF0vy7rUUiQm5uZhBhGUY0fGIA5EZ1JhDFiECmHKY+REe7IYFkKIRGATNgqimYaRQ5pUGDpjSDp5zgNlQroRGE4YM3oijQt+pdWLyAnJqUuUKrQWWa/X29P16el6/bjW57Va78f7fb/f42ijNRwzWDOcUlydxAFCDucAAk8dWITj9CXmhetFmIJ66GCwAubguTvyOndI415k5EhBMz7sTqdfUkBEpJ2rhnm6j6EqAISDUdqSh+qsdE/CVMTXdZOKWIwAR9SfhiHwa9LCY6UltQO/bcHgpMkRGkSoxaBwRPdghEJciCtJJSFiRdYcdqXG1xHCfehQHUxWOQhz8mw6/HTnBH6YzDw4POCQ5HKLiO7BSDKRPFcIJTQAdHWzoOmCUKWUUusZhAaAJKXW5eIzmab11my097f31+sLht/vb+3YdbSfTcsBMANqBaVyqVQKl0pSWSpzJTKIFIYLEiDyTKSCQrwQL0gVoOSSQQoA9qD5XdwRrBA7A4X14WO42qRrhqMbuCcdkyLAzLti1SWcEbjI5XbpRTAhprn2Mw8YR1gJZwhhqBUjODwB0RSMJMcXGQirgFaJaBAdoIc7kZMAIagjucjPlEsIUw/y6arvgAYQ4AqQDnqR57yqej+IGC1A3UxTHpDzDjD13hwhtjseBzLOUzXSa/y0NwliMAxDMHBFUxgj+nDtBM5o4MqjgXYMT2IvmaEquaeBWRS3C5ssgQgkSCwQEj6pn0iQnvsBYZgOuTl2GwaNoVkmJSRDlNNrhvYfUYbUP585NpBhBwmWEJw5UY8DCk9x3RwkTsLSo8YFeMwYgU7YOZURMSdmOVZzcA1VAEj24fyx8Kuf8Zz4Z70V2RFN01HLoesMv5pfabSeY0AHiDkxNlN1c0KnmNwwYaxBjGSMEVh/0roS0bIUddLuZtDN9z620XHyReAgqBQVsTJUwMpSkQtBAWQg8FB3NRumw1TdElB8JhLVW4AjM9daVikXLitKZUIAVNp3p9du7/vY7nt/32hXOtTVu0G3aBbNfQQAQRAuwCJYC/Xe2nH0fR/Hrseh7bDl4jqcCIGReKIH3xS4j2Iiwal5EHtqLX4xXgSAWqqWUUtZai3TY5Mxwj0IYVnW9XK93J7SMYOJ094O1yssFy9r8iea0737y97fuw5DBe4O+zAGsPSvR4j0/Q4nN3Uzdw0HoKkaQSYSRpRKUrnM9EgJQA8PV8RgBA9F76FHBKMgBTIgT6qlASpMZVK2pogYTC7kRlEF0AlN0BeGGJ0GoJvhT4XuULsfferwEGKMGM16G/s+jv3Y7tt237d727d2bJn10I+j9WOMPuZdojZGHIf3I3QkzEepoiosgBxAPvVjajHUB6EC2jdlLiNUopLIXwl2NnqUuUHuZJYS9ADyFGKcnTgZsIElQwjIumrv2ruOYWqR10RmlF6ul8slizlMPS8R8S8uZfUxJQo4HddS8AgBbu7mmSzMSFWESw20kOne4Sdaeh41OZim6emR+UkBAMCAhagm5SkAPNNiNQEzgGCmUsq61Mu6XNelCEN474NJiKTPMte+Im3B6cY2q4mJ3X5L3IVJUUhAOB4QxsRxwzncf9EPATQ3NSvuF4CSJEEUCHL14QO5kRxAW3RzHoBopmAKzADgnhG+cYYmAUdQAFowhFgEB9mI0R19er+ddcM8k4HQIRDZvQIgQA0oHoheIIywJCceJriLQAnxAoQROmOylCLXOqEDUPaVfHL4HrwBxipETJGmdXQiJT89l4AwT5NaIWCgBeXK9Wm5fLw8fbzdbrfrcrsUaw1pdVwG7YIHQgPVCPWQvJMFRbgUlHzTOIeDFkgwpzmVZEVmDAJnYuUwAQs1d8XpjmBBAUJITMm/nnQAnKSEybIMzF/85IdlsQcJtcQpkwMiDEcLc7N8t2czlMTOQACV/yPSApxsgTlsgEkZhkdr8SAmIzCDCGNlDFoqXgJX5sJSiYLoADgCQhRtNrwJ2HeKzqhCg0KZAlEj31LSAyLcMHE/s5g/Ua4shohpxc3kCOrRTLF3cI9+6BgWgYhMLOu6LpdLrUtdikgBACllye45aYcBHmARR2uy8dFaegrGT12SoKy8EFOwIUfhwmnYZRQDcxhMHtnlO4F1m7rnQw2id407dMFkr4Q5upN7QDhgEErlsjALAliEtr23rs38UNvV2nBiYCZW2/axv7diIuQSrbYBR1uG5mFxWl5FD+/um46X/fjXvr8N7erdcikEpB1IQAG6QrkCy/BLIBKjm4UBOBEIUzgAEyaa++MycW13ItTRTbuZxwAP8NGtHXYcOnrOIMZ2N+2MxAgcOFOLALn3OHboPXSoaoxOOviyUmthamZ99KP1CMqQlIJawcAP6Hfomw/tI7r5wsHsAhqju/YId6QIjDFidAgrRUoRQgN2QNbAAWCZahrBs8hJ9t+5Ah3C01I4ND3HpvczeRAYpllc/GRAd31asfhjnyyF18JC4vAohALPqffkfMLZFEBMlkLutjhdgCPyvEumCVMkjZOI6pJJnknmtaxHZ/hN3oaA4QR4/jFZIKcb0dwGmSCHp0lqYKYtioCICyulH6cdrfe9x+iggyhYiQcBcdoLMxMAB2LhH5FLRKyloulwZzNE9aDJDyZ0JENQAhREZipU6sJlqVIEmYPMLFofrW297eHdDTEIPTg+CPXKXgWWQrVyXaQsziWzENxJHZvD7vHmcZz2T1NBdH5ZuvdzsGE67pqq63Dt1pvmYq671hUBsRQsiA8oZda3k7SQR2UezX6q8M854A/PBC7rgmC1lHWp5QxsyZ2FgLVWRFBVd+sjZ+DkwLL18rpJXRJuuL+//+Nfnz+/vJs5M9f1UtpgOdAj8+UDIYgjzAJczY8e7++dCgAd+9GOBmAIyhzVpQaEozA62zQbAOQAZEyYggkJI9nxRuEUiDOLAQDD1W2GoUYAuDJ6FRSsJlRZ1rK0uuz7se+7quJPXI699Zf3d8IkroTum76/9e2eX+3Ytn0/2tbbkSq00dsscC2Dm9RVwwa4JlIA2egxcw5YACUQLNTVHYbZEdECBqICGkAqoBmwMlbiUpzVWcUInSgQOJw8yIxN0dPQkQLR0R3RTcEQDYkGS0e2sR9jb9qGmz2G8yn27WOkU3Ne23m/tv34aa0AC2K6YxBDYCaAJ3+SAshnMBF6TrAizEEtj7MzAOHBMIVZNSBaymTBAwUMAbFKWWtdSCqwmUfX0bqGO6JFoFBdywq+XpbLuqxpFcoMiBkJYd+9nNgeSYEnE/JB1/2mHZy0p28wuq+d4reE+O9eA6BDdMQhbCIkBbkGwOjNrR8d+AB+PSqXQoWQDEMxUIgyfgHwEQxKAJI+Y8ROaIggbPveLneukqBFHqaTTDuj4wiR0F2GkkdBFepEHO5AKAgFQSAKwsIkhAtTTcmyIAH75CJQcK7RCCEAEJnhTIJRCBeiKELrMkbVxtGJASlokt5+vJTTsiejqgSjYCwUS/farHSviovLCljZuEQVOhh3xoa9e+tmuwaqUxWpsqwshubg6saOGpjsT0JmkUDyPJSQfEZeBaLlTZMwK4BjAAbP1hfo7GwA55LMvwokEhEATNORFPwk4gNnEmeEAEQonV4vs8Y19zl5jRD+Ka71f1vmPtDceYxP+4cJCyFifhAgjFGq1CJUbijPVJ6yBwYw9zczDggx8mAONESAoOgInaEJNPCD+eEePG9id0giSKKE52gQU7MyYx0xiBxRw4cqYnNV37d+7F0t3IKYr9fb7el2ud7cL8t6AQAuZYFTWgPgNhPqjt4RoY+megbq/PCYiFdZ2CnYkaGm4tEZDGJAaEAacIm5qFP40NMSfZhaRxug4JqOXWABqqAW4QkSyCLlIrKwFOSC7ehtaFM7zLdhbRgGMgQP3Y6xv7el4xIDjGQojxGm6eCISdaM8DG2offWX/b9z/14NRsAYyoqJ8srIlZg5GXhyg6XAEYaYLsboBOTFA4nIEcjKfRj7xgx2judgUOqpuZq5mPEaFMfFm6mbbR2N0aszIWZuABXAoje+f3N39/j/u77jggkLPERWwtV1dH7cRyHOeYo9IJKpDjusP0F22dV6ybNqRTgGgsZaAft6jGCRqC3Hv2AcFwXiaUUEg4UbumB6T4ni7OVDw/UAPNwSyr5uZEAHQgx84QpAs95DPzUEMHtdikXSuMTiFgKrYWJWN01OeInJwFPgefDBTMHiqcM7dSPJEifmqO0GaDkATIL1yoiRJKAjIXHZMJNuCQr+UdRfrasAXzOvdAAp8tDeulAZjoCC4oYiyFGxFBtre17I1MKFQZTNUXiICx4epAi0s9lLhGVUgKRzYgEgcPRbaoMAsgRlZGErIrVgpcLr7dSV0GS4D6Gb1tH3iPedGzQCZEoSGAvOLLMrSUNDqVUp0KW7RSrY3PcAt4D7jHVkZYl6Px/gAEcKICifkp31VV9dO/d2qHHrnXVepx2BTLPXzhRqh/Q3O8mrnM89tM5i9fLwhi1lrWWUoowizACRgQCLKUA4FCdcywPdVBHh7ek02Y00nEcf/751+eX91Lk9vRUSy1HYymhFsipIQyiCFYPH9bj6Pi+KXhgOqkiBnMUxiSVuYMxCM85YDZIWbsjBnNysdUsTMMoEMlV3UYEuDESEgkSAyK6EURhQiGAskodi7WyErAbEHT6ictxtPbl7Z0JKyGj99eX4/Nfx+uXdn/v9/ejbUc7jt5UM+hO0yzCUqcdmfxkYIqe+So5FkZm4iJShYHYATBsuLuO4YfZZt4BFMgCIBw9GGBhGkxluFQnDU+lAYIEcDiZiRm5BXEwBKIDWIqKFECAqAsxifS9jf3Q3kMNI5H1WeO21gFomt/HHB4dx49lLiJQQSYsRapUCNQM3/GI6eMPlPnxFpC5qmphGukYNT3HZo0JAEmBNZptep4+yIgARWQtdWGuQN3Mu/W9KQIIZeZiWcuKcFmXy7LkFIJIAvCUaPvDJH5iuvHYAfF4j3AWFzDL/m8r3PhmoHyCu7+Cc3tEA+hEQ9hKQSnEJcJG177vhsPfBvB7IanITASFQRDlK7+VAQnOXzFphATCIAJF2lppqVgLMuG0EyRGKixf7d+QIMOYAkt0AULmksHnCBLB7gXAmTySjgUByTyDAIzsnYicARDDs8xF4Rl8mCJQKlKg9l6asDIKZvjQ6fzy7Z0M54eMBCAQBaJg1G6lqTSXgYvLBSXIi+AqeAgcBAfAEXoYsgGYE2Ipsq6VHefAgx3GyZYhZGIOpMT3DDI9MTcBnFa0HunsOS3XHYG+JePHKUDJn5cIz0+A6UxLOSea0z4YgufZ6ggA6YP3yKfN/9b/wzLXI8//0K80ykhI/wyXTcIuIRKQAKXF2MrLjetT9uEAqtoDO3tIkQCx7D3nfYsEgWGAPI0zEmM6ywj33DaohudWj0miP42G5iTODFEhoA9tRzuONoapOiLlCZhwiHmUUlkKrwVZqFSWSpgMkRhmcRxmQ839rD2+fa2y/H792LiL8ma0ILBTdO9dN1QNRQ2woFJorSFFR4Q6DPfmeZyCN9CRXTgktcvMIwzBGXUVvdZyLfVWyrWYhhpoYHc4HA5Lv4+oDs1hOPTuR+/QIXr3PnyMNNPCifLH29CXMT63/vk4vhztLVyJNMMOhABxDNMxGhBzkIQAQoC5N7dm1ikCKWSijVP/+sOOimj7nQjSJFfVhqqauQ7QEao+LBt81xHa5yUpDBWRCiKGWbQG2z1eXuLtDYvweuF1jdZGOxTx5cvLl9fXoW5AjPhU4LnA4jtun3H7ax/+ZtKAeZUrcEiA9tBuDs2pOVrr3hq5ByGJAIEDEGLT2Ls3jRl7iCgCTGCB5qA2XTV8RmlHwCQZ5ZI7Q+gwAO2jw/eA1O2yXFF6b62HjXE2B5FFaD5Ij1OuBADfnu+QH3TytQjTanCatOPpCZXmjMTMUuQisghnQPup3JlnTVbSaSQZkRKZHCkHniEj6ZOMmeIxYWXIAVD6iKa7jFn0odt+3N/3AlE5GHgeMEgBNmtq8ukY89PpG1NfEG4z08JHSKGZclZJ6kxgXqpIXbkswKIGatGG7+qb+e5xBHQgRGCEgTAw/S9mBMiZyYfkcyYakfxzGBE9YmSZ65G9dPpcTMAg/f5nJs4jZxPTfgTMfAyX4VIsBRQPAPcbYm5qBcM9R+e999bbcRy9Hz88FARYl0rgtUid9EgS5mSspArXdDRPs5Mx1Lt51xgW6uAOaUI1+nh9e72/32stCKh19NZyofUx7vshCGHdfUxgjYgOpfvhQabmGkxQBEuh1svRRxXJnOEcKhBSKVJKQQRT9QA6rxqzlPuTu05/gEQPPQA1ALPaiQgkAgDT8NxdZxT4z7dPb+3++soUjYDC2svn7V//PF4+9+3e9631venoOk5Pgcdw/FQSnYAhea7/c8h8ziFPVbkHgEfmU3of1gNGuEZkmSuIwATCAARETO5IjohIDpFjSUufTEYACvJEUQEhvfXTSYp4jNa0d9PuZhHmNkY7+n7f35d3ll6XLAlzUgsQQ39xTyeCmI0NnP4sCO6ReqPwyDeie+v9OGKMSWHCWUqCn8hVVrroFGRISBSEbghKPd3qugK5o7Xet+24b4cT0iIWTgi1FAgownTaoGZahUXYVBHN8jQ/mrRRf9CCp1c6IzkhI5wbCE44K+sjdA9TgJwc62nk9f2hIhxFcF34eitPT1QqscTo4WBDh7siOpoGahDTKa/jHLpjOjAwogFykJ0RmiiMwlgEaoWlQBFgBkkpYhopyDQ6nmMLyG2iUkatwGwYRkDCrRaRYoDqEIjKNIQQ0QB8jqcJiIIpmAAQ3MkBEZxQhf04oHVSZTMId7duGqrBadD/K5fYAE9me0xr98w1GRZDbagPi+GAgCO4R1F0RZ8hpRzIRmREIFyqXJbC7k0ViAMlKD/dKZkJ1xGAydk999jpkgRAGakISMCE6HPVnn3X/P3xaKXz32NiTs+LWebCVIphQBCwR5B7ZkYq2MSMvzkG7GdhFfy6zIWwcA3v4RqGkCw+x3A673iPBKkpEBzZsQRX4JVkzXca7shMwSTAUR3LyXRM1qlBZKBAchknluXIHpzaF8/wMH1UWGd0YS4qRCM0AsKAMHfoPX0k+xim3fIBmWpmG5j59en5Wpe6XMqyru7LeogIi2hvNvpoIzxb6l9BdMvlt/q3bd+LsgxgVRqmbWz9rm0T7aRBFmVd5Hah68WSk6Phex9b895gNNAe6m6O7uiG2WsjGhFcCt46PS8O1yiSXsyKPIB64OGIDhTYgBTZsHSne/fjbmPvfTu097ROhrPMvZu9q30Z+rmN1z7eAVzAhKRShYqErdm+22GKgsYgQADgEW+hb25dkAhI0CJSyat6qu8fGyr82O6EkDWunaCum4JZmOEI0AB1Vivqs7uFIDl7l3AwhdZi2/D9TksVZBpqrR3btvf2rz//+7//+c+jjWFBiJ+uy++35UpKxwse91393agDC6xP9VKZM7uleWyGu8JQGB3YQSuGQkUgg4DYut+bHcPRc7SDwiAMFqAWauDmZ/J7PG5Ri2nok7WaGwCgXe3HMndZPkhsBKZ9RFi4uiPQ9D6Jry0DPvqpecQ7wAz5SKuB6RKLKeqdJj65CSTl+SwL80JciAxRT8VeTq0wgi3cLLqCAxYhEEDEDHAyg6FuaWiYoRDzunUz8GAjcnIDBVSE1vv9vr+9vV8K01JCCLIjNHc3B6BpUcHx04TeI4baGDa6jpxTNI1uTGWhcqlrXaSupSwzzrcII5COGG30Yxytba1t7ThUh4cj0sQtZl5LfiXtOSXJjMGQIiCAEzG3OP0bHSPtdE4Oc3z1C6c0FhEpNfMbM+kLIOey1secFj+GXPMjPA8myCtAR2+97cd+37b3bW8/HisISykcni7kkuztKUpEAAA37SPcuvYxRh/ahvVhbdgxVNWTyePurfUx+jh4HAezqKr2gYD7cYQ5QbgNn0577oDAW5AEUPL/i1AtXIoslZclEyVOgSwhMRWRDHklAmZM27usbNSc0R/Dg1n4u6Z4aUyTq/P5T4jc2tFsqOu8IL99jbbvb58Rpkvz8eXz/a9/Hq9f9Ni1H0P7cB85pZwRFY9rE89rkyDCgVLBjQE+Lb8mfc/nwDK/wjzUfXgMh5FzFfegTNHIuKXcl4xSkEgiOBzCQzFmuOOJOwY6hjkOs5amE8K9D9MRNg3FrR99v29vhSNCR5HiJ0dqFqREUOr3KwUlTaeQCBgCGDgmBDGFvebeTe+tvWxb3zYfI0yTBPTIOPhKkYLAKbCdxCw3D7Oj9fu2U0QhKkCtj9dte9t3FCpRsrpfmEmCCabDiyOFYzi4J/VwfpuzETJVzcCXBzIbQAQsRNMo7NyA+QF5hIeC4jlS9oj0i/xhqVCttK5yu64fni8fPwHmT+GYeIZl+a1JfYwc3nHAKSSOmX5Hc4rmYDmkS9N2EagStXgRJ3I+FQ6IJJKeqWn7zenwlykOIsBkQpbpTSIs4sSBAkSVqQoSE6KkczwREzEIgbATOSAgee99dGAer+/+vsVxgHf0liR1bYcThgUK/Yq0gO6pNsZwiAgKRxyq3ayYtjFqazUAe9Oj2da9KahjABOJcDUZEFGk1rJWYTMgDuJACpoOIjkN1rzOpq9CTpJnrjIykuf1RZAR9QFhrpjbZfakAATTFR/mw03HXJEy2bsAGXviM7INmdCZIsgdNT1+wjIPLekLpx/Edy30j2VuJLFnRon6CEvSHsyp7mOqAIFJB4JAduQgQS4oNSWUiInLMgcGFqCKDuhuhumxD56zVJhjY3zIzSiCPG1BbIJpEY6IEJhOH7lNzdAdzSDC0UBT2qaqqkMtm0LV4RmrhiR1uQLUWtPwRkpJaH0Lb6313lN1g7NS+O51qcunsl6oYgtsFnHQaNBaezva6ysdO2uIRb1dlo8qI7ysWJlGxF315fB9x3ZAb6E2ibnolIgCYBD5tVqrbBFLgafLLPSBNMvcQApkxx6owEbSFUdX3/r+1rb3ve3dXd3yAofw2MN3izfTz2O8Dt0Ro5JXWJGkVArS0ffNUQ0IB4ecqdMb2AZuBUuBUlMhFjrU9Mew3/DYzzI3Ad25Hs3CHcxJkRTQgt3JgzEEQHJlECWek/YIvh9x39id68JDo/d+7HeIL5//9c9//Oe2HV0NAPvH5/j41ASp37Efh9rdUJGvhY7rsgiboRkeCpvBXaEP6B0pADpQhZpXsPvW7X3XoxtksAuiMAmjJ5fEw3MAkEn0WenmWTk0xnC13CGAVP7vH1XAl1qfFwrTnWjPpM1wTOmPmZ9zu4kvzQP+PLgnhISFSTLUnFCIBClTcIWIAwhCcLqiCrMgM2LHJOQ+tAlBAeQBat57eCoFAhHhrEG89VCbH6qfcx+fI1R2kpCIUAeF6F23vb3fd1zrykmTSkQzPBPvZpyQh/3sxxc5WTE1G+bDQh0tBGjlci3LstRlnSGX6VUPDqq6722/7/vRD+37GCN0et2ch+O8UeeU0/F0EGEEIZCZI3Gq6qZkOW/TeQ3kpR8BSVHOL8ggea58BolRpHuTAY5TO/o4Ms/qIQFDQI/obe/Hfr+/v7+/vb2/bMf46UqCtZaBLkwyTebgtEoDTChUh2rvo/feex+t69F1b2NvvXWd3zIlZgAA0E7GdoqZj+PorYe7e+LnE/VM85GA9JClWkqtZSlSKtciwlMjIkzMKMLpeLjUM2IUKOtJdEeDzPWc2AsiBFicUfQjz2PPC0h19syjazpP/YwojGPfXj5DThO1Hy9/3T//2d5ebHTXbu6KYTjr1PwEz64RTyUVAEQu//j6gq+c0BNAPDHIMAs1T9+WlBkhoSEaTaOAnLJMa7gICg/VSVWZEGmiyOgOGjmXBiIg4zGG2jBLsFhN29i3AwlNtR/C5SsZFQIiZL1cfvvj22eCCIWE0oMVeX7mBDEbVo+MbFXde3vb92PbrHcwLTwFhfR1EnqymZLJQhTkRBYQhCEHFQI3FSQB6kNf9/39OLhQBSemMC/Z6wC4qRJkb+2BHJi3xASNvxa6mrsnL/L82bmQhEAwPD48wIRTc2KW9W1q6M2d5RdoLi2VL2u5Xpfn5+XDs6trV+w9y9ywmJDdMO/qpo5mqFmcMBIzu5QgntZmGtEt1GhuY45avIqJKKGlkW0uMxFkRkLx4AiOtJxP4JmCySqbcOY4IHNkXcRSGCtnVlRhKYU5vXaxMAgDc5AAsy6l7UUJ230fr5v1I2B4dD9274eN5qXGSXL58aR1MJ36tEBwDwoFGDq6DtEhvdfWqgceh+2H7s2O7k1DfU6whCs5zjK3kKkrK5ACMRI/+rmRcWQeka6JAZBTRwAG9NNRPwFaIvYwAjbQOG+JnAplJEuil0jIlGHJ5WFZ7J7Cc8+jGxgDGADUjBBOU6D0tfdp9vfT69doridpwd08EMDJ8eFcFo+L+TFjMLceNiAG+iCCjOFEMuJgJBaWIrPAs3CjMAxFN7REqjP+lSFpKglXE6EIP0hvRJjDApgMRBCZHohnOw3pGRbJ4A1I/gxwCSC1UDXtffQ9lerWm7Z99GOMrqpqwUQkM+zgx9VjFh5scSsVn56hVOodWPreur95BxwB5iiOPUiDGQTQkVK8iRo4AntEEnPTc5QpAsjBDLiH1CgDxJBjTnYejyMdKQkogB1JEbeIpuNox9uxv27bfrRvZncQHjmiPdzvZoeHEkIAAbLUdbmIlNFV5Bjadjc1nxg8ghIMDADmuXjchml3G7+A6Pa94aThZHMmKCXZIgCKHoTOBIzCTHPmLkKXC13WcB+1DmJMJvtpVMlnOygYRXgtxasxEgZWZkYBRMcSWAOdKAQInHTAgWEjVKNbjOykBoShO7XD79EPwnA386PrfmjvmjzNM4cbkw5uDqHpsp417iSXhUeYgY4wh6BwAiLxHyevmG6pxMzCIgCYHlhpJ5lnQSRfkPBh9//wUihMGeWYnouc1lpE6fXDPrtARhcHCeDBYoaJqeX3P4FGDhCAdFFANzKAEUGEWROqJpkuFdturjq0j1mxIiyEIIzMHrOFyUY5JvOXshQEBNXpgYIRaAQ/ORcihLBFxFJBnQzYsXCB68KLYMHgMDT1HuDoZxXjZmN08xGgiFFkKuYdInNYKpeSnuwZH32GRxBTBboA3Up9WpanZd2WZatLLzUklNTpVGJ+dTVCNzCNMaI1P47Yd98P7x2GomW0TeapDAsNU7OhOcCYv5onvJGpYH0cox9v7+9fXr68vr4Mi/DLD+tEhCF4GpSd5QGcNnNxZlYLMZZKyMwmxUW6SCllZFv5AETjZAdPrku2LDnVM3W3s9LLkX262xGdgm6AB4sAp+Qzx7SIk20W7m6q9G3FiAiMRMm5/0bIn3QyrUVNVV3VVL1362BhYJAqhV8wlo/7e/QjkeKw3u+vx/vbOHZwzbztKUF/vNX8iXHiz6cUy9Ahs0czmfKxSeP8zP1x0/n5wUVERAJhQBhnxTVtlszSoyrPA1QFczhjgJEg0nfXZ/GbhX1EGEyOjGXDodr7wUQQ5jqY+eSqQkJcC8QFfihzaV0uhCwszCUsizJ0cwSdlTuEhw/Vo7f3Y+/Hob3LLHPp1NVk/TPbEmEuqlKNOjsBMvXeRl/uSy3EQmzme+9NFR2bOxIcrfWhaqo6GgIxMQsxpy/eGHY/jm6WOYoAJyv6oddCALCYUkX1ZKTO9nBmDhJxROTsK8JwaJK93ZcfILr1sgrclsvKpQSShvXkHUakeAiAwInBJALDLYzQcjEwYMV6BVkQBJGz/U/lT2BaPXmgAxnyIFKmWfUk8wKQHNiCzXIATQCAFJmQ6YJV3Agm9dacDImcwCmykhNiIy5Akh5OjEHkxEFEhVkICLb7sd2PoQPFUEz7FqNL+mCbUh/mPHOTHss7wsYAiMB0dUIfERINQRAKUymlSjWHbe/b1rej73tvfZirmoEbhRehtchS6lKo926AU2yQh/zEI33OTb4u39nynfnRAdMgOOVy/rDAP+mnSTGeVIdZeGUk4JxBTE5LzmKYc3sioiOim7mYu4NBpNIKvvrn/fD6laHY+WPmETAdDr66OnxDd5rgbz6CA7ShNEJgNCIN0MBwQEcyYLcwQ7cwRVM0BAV0BUJKLI0JmNK5kzCd9QWmFxggM9VSSikekSyEU/74QASIuIgQMXpFiHPTSAGUcNShvbeyJ1wbrbW2vR/397b3MVQtiAmpEjPij/pfH6rWMeBSyvpcaB00RpR6f9/f8XX4QaY8ghXFSZwCSZCc4KyaJ2ccPDdfZJxmTJQ92FAUi6NE5ih+jQabTOY5DaAsc4/QlzFe2vG57X+17b5398cc7+us5zGVm9cZUpVyvVyXZem9b9umQw8d92SDzQdKJMQwP/5Q9+42zPXH2iUi7ls/OVfILEJVSgm3wBEw0JVtFIiVaCEk5nTmoNuNbzc3paVCEWQyyhlHxiikFlYq4XW9PN9ulUTVIOBpvS51ZUKzCAYEKx4AyCHa4TDPMvckLwYOICMwUPP70SHcTU1tdO1taDdXe0xOA3KiHZ5lriblZ3JWM5cSw8AUASL9JYl/sak8wIEQRaRIVZ9hftkkPhwYGEkYp/vEN8yEwlQow3KA0vc2UHIpOBCkgadTABOxhQiTGnDqy766GiFgZoxlI2jJdctjPPlRNpkZOYEfpq333pt5OAKKgAAXpsLe3c0hA35nUhdmTym1hDtCatuTzET4E5pL9P8w9mftcSPJmiBsmzuA4CIpM+vU6f4uZv7/D5vpOV2VSpGMANzdlu/CHEGmqPM8HcVSKpXiEoDD3ey1d4kqTpRKOkIpVGDpKQoCBkUL7xZGOgDoHQtSVQ8l9oJBQSXFcinKQdikVi7ChUmQGYgTciCWivBA8bQsz8v2vF72Zbst67Hs2q1xn73Ah9onHDxQFVp3Yb/tdr3Z9ab74b2HWbpVEATYUPfoR2v70Y+j5UdvGbCq5sNdzVTb0LYft7fr29vtGsDl2/8Nf1dcCTM43/lqZ7FyHyYFADAxF4oCi0eSatrQrfVjMrRU1SZ9beIsM3AtIs4gzBRoGcC8cAizJk3+sTB/7BWyNiolqQuYCU0zetunK2dEuskxEea5XWsR5kQxz5ptkmeH+hjaux7HIOzhoH1AxD0o5uPruL4e44jwAI1QPXY9rt77ROUJMx3c8yL5eVZm5hsTBkBqY5KRHYGhNOuTVH+cnvvptp38I7fJmp9/E+GE/g3c3NENVDP9lN0snHSQGUVA2uohBgJnhOncgd3REdNKNIlBYRFq2kcnwHA17UwEk713LsjPfnxIl/VypspyWExpitoAvFsYuNuwcYx2Pfbr9daOxkQsxESAkd0UnqaEgigstY66DCRyhEDYj7ovy1ZLEaksgDgTEdWjt/TXGHrX/FlujIgoUkWKG1xvrZ0KFyRkpiJciyTjMONk81wJ13CZNqo4g20pmJNfcjaPua6JMaLA3/lh2+USHMu2orBBDLM2dKhaBBJxIAATMKMJAEVGmDhCoAcjbhgPjJtwCRYgCA/G8MlbQmaX4mWxWobwYPa5xZ5FmQfHYA12Yw/yrPvQAoxZBTzTPNANFSAMMcACPM9yxlTJpgcnBIIhOJIhOkFQKPi+931vFsYrlhVJnNCKICKoDg80X34qc91Me88HI7KbIzM2jgBwJiyl1FJN4+16vF2P2+247UdrI+1ghGmtstayFlmLVGEjBoATl1eAIJx+ZgRzNpb98TmSmMVjhtGd6RYZFuyprkV4r22zaZ0VLtJ9Rzr3kZzKY2CmyoIjITkhRUkTm5zIWGCG7N47xr+9/hs09wxstTwEPRkYcSeM49n1EmbIzRCsha6FWDCYg1ADB8QIRGcNSmWumaqTGmkPAzdDZ4rKaEJIQexENvmH9xgDRMgA8lprKdlJq+EJPpzcOiQmjCIBBDN2GyEjcCmHtzba0cgz1tF6G+022m7D3AKQkQqVhaV8trlBAIJgkVIWkUJDsXdDimVrVNw5t7L072FABzSkwJg0uwwDSLFLACEKUWEMDFT3cAmUwJJWlIj8wU01ZkACZhZv7qc94mrj+2j/6sf/bsdrzzL33PEgIHIhAgNJpL1Wllkn0MhMxIE4wg9Th8iZQ2WpM6CbGMnTatWn4OZjOx0BR1cCICZiRkIgIVnMLDQMLCdVHFaA1zTJYwYpXArXGkYg4pQ6V/y47AmQHRbGBy5f6todjRQCVi4rEDlgkLqAA6Xqrrl6D0TNIam7poRRLYaFWYvo54OaWjnLsWnupO4+J2UAObTM4tTcg3Jrm4NkcAxFhKA6vRY/CyMiwh0Bi8hSC45pKkwxa4zc74WoJN028yPo/GBOJ8tZsQZMF8V86AIw1a2RQ1kg9fR9AE+C6RyuJfOGIsCDPcDcIMwtD94IMDUf5u5ABITm0U2PMRTCiCiIidZaUDjUJqPu9IOZUgRCEgZHRqQIciOH/Fo/Pz4IxM7kBSPD4YCFCwpSzeYWANwBThnd6S8E7kxBiEVkRorQXa6Az+vlUteFixBjYDrLjERlAymgICzCWy3rsuRHb4MKwcCT/TSJ0dkjqAJhHOS3Xd/e+utruz73o1kfvsQJPGX92MfYj+N63a/X/Xq9Hbf9tu/Hsfd+66ONMayp9mMct30/2kGl/s+v/9dPEfTTOTK5pacOca6hvGhw1gYn48IBytBEc5v00vsYGtPXwU5fBwCA06MmENGJwt8RMySepwkV4cJJIWS+xzHOUEZO1SMgJX51hhGfXcK8gtPslYUz2mhyHhIBjghVa12LjJnVqd5Tv/SrA2kc+7j+CPCZ/KIjRkczzIoFKc+JJK0EphgBJggkQgDggOihFkPBNSPXJs2d5g4D05d0ekMnxQUAeNbSyIjME/7MgWWgnTCWUZiYomdhM0UjCECBnkekB6b3AUIatMz9N8LMVbUDQFjoYEK4uxIiAGDZfo6aR8QilU4nEwsn8rSKh1PcOa0QIQJjuB1jXI8DEInPon36PSEB5Pi0UKmLltGRKLvwW6nXpa61FJGSjHQiwNQqDDcD8ABwN5sAfR6eIVyEKwD1bqP5UDMPAGDhZa3buibiNAVvhMnzjtTPnYGOs/ghpghADU/Vh5oZMXzeadd1AfZaa4YQmc/tPOe6OQ+dxl4AlPBd2vejM+BCsTFehIpjCQSi5FHizPEhJ3YWlZIRLkbTX48ICJDdWJ3BOFAcyMNTDhtgzF6qEhnECBgAZ36keRhOlBBRAzXQzoMHIh3hFH2g9bB97/veDaM+ij/wchHZuBRBAnfzGA4CUH4+ftwgK4asAhDcQFmGlFa1t+ngvO/77Xq7Xvfb7dbbgGTBLAV5LcgFfWobfNZt2XYgnNGOGagIYXEuxKSITPfEtBI7a+BwCIXIKIDIU+Q0z71buuNUX+cWAmkNdB98Zj2PCIaASiDMRUoUT+JBsIclt/Vnxin8Gs2dlzwiws9m4Sxus2a3CCU0YV+KXxbdFr9sr5ct1vWYAkzIbVeBhKQBlQE+3JQspDsPgYNsD94XUa0OmUORjAWwxAcReXphzzmBTV4jGrHPQUyWoIBoEAhgAFSAK5KkDhIiMMzDVa31xmzrIqWwCzJEmrwUqYVKXdZl2UQKcfnpmizb8nXdRMpS11IW34/x+ra3A4UDk5+GyBxMwBRMgZjIYLihabjyuQ1lS02EJJSYhTs6z5CQPCFoWrIGzNTpuNus5mbKAeRTphfp4D17KJgsqPu2CY6B4KY6oOOx315eX/fe3263Y/ThNnEMjIgkomMV3pZy2ZZtXYYqIzLSVit+Wj+asCVQ4pIA5IGq3oZq694b9lZMHcIRqAjVFVeTZSlm7jACGTCj1uJ+fkZQH7QfdcjTcHQaQRYY6gK9qGP46F17c1UzDXcEGAjDQ03H9DWDLHPdNCwbtxwZ2vzVLKbpzUTApuYzj6Ps8NKNACj5nnGfoaQeHxzQPklowN3MnCCqCOAiqBLDs3aPNEx4Z9wKoSRVIxukADYQBzqjMO9Eummmew7NEpunNGXAu3wqc9Rwhs7OZtfTaMCHG07FQJpc6jAP4MpUxE/bQ7VoHoC+IENdpRYz1z7uQ8cEWedJhkQEhQXZUIENyYE+XZSAUDCbRm0G5CReEApCYSjTIYHnECs93dzcA5ABkik3nQ94hhcwMz0s62+PTw91EcRQ7cdhFq2NIGkAzeF6fevaA4GEy1rLtpY+SuuuYaY+DN7vKngAOqhF73679b9erv/+8+Xh8enp+XZ5elzM5/nMgExlFK1sna2wFdZOAwHD+rG/vLy93G5tHMdoR297P47R67L9j0/ntJnrGRkVEXRSFOMc6d1xRTgFR7lEk3tbhCHOVPMAT0aOv199P1VNZzkKJ1/uvJicxODkb6aQn4twLZxl7kngmmV3jlvep8uMwkTMQBk5GCf1M39ADAKYQRqMkD7orsPaIYXZ2X5xIiEERZLh3Q3dJwUoU4SRgAVEAjCt+vPi5Ul47qCAgM7kNEkZhMyFpBCX2UVboAl6QVOyIATWaR6Nkz6USb+TWRQZZjbLUdcwAzAC54zGJSKmacaCEOGAWASXgljQAIeD4NTbwH1qlKPSuPPp57n5i84Zpn4LwQBjCrvsLAKHAaEbEuKylMeHy20/9r0BUUYB36nIJ24YBMSITF16l1IAMTe7KrLUUkU4i9J5lKO7qWq4M1OKJXObab1fj9Z6ZxTmgmnMmNNsRBYuS33+8vT8/JST2DQuQQLV6MNMTyDdI/k1gIAp/mMpIjHJ106/WChQmClEiJJgkgIm4ruWa167hKhk9pEOaAnzFg4hF3JOwXtE8kpgglHg6EZhBMZoQic9N5lmwSMKUjmzkTk7D6JYKj094dcvJtzdm/thfqh3M3TF0AKwEC2IpWk5Bjeb8TsRmas0EAdAg6hAEqgABbBghpUwF3FADXD4fPgAIZQzPXZGNWMAYxEpZWXZgKsDT+NwVR199Ka9UxZ9qFgC1b2HHt6V+vE22k37rqObzlOAgZmZkBxiWNKPkpWTaZppg26MNvNLFCIsYsCEMdJjAmmCkHRSJidIZGbxThzNYjiDKRKNyqWCzFxKjXxugQgGIpVS4FOl+0vSwhSD57V3ADrHMOdUzQCI0IVjqX5Z9HEbjxd92Pq2vAVyhFhgCsuRSOSGTD3sMBtkwA5gEj16M+rKbgUwwBAMI2BOPCnzPuhOwwrEzDoMpNQP5n6U0nOeiRqIyAvKQlKJBYnd1EbzcahZ78Y0lrIKczASOJgRMEvhcinLtiwbS/mcQ7Nuy9ffH0up67otZWkvb9ew8VqQ2REt69aAYE63ZydwDEt3UDdwyzCIWUlNDjw5RbB76vB4OvjxjHWFOwHu3OsiWfoMyDE9+WgKKDTgfTOblLGJ/UYW3aEQAPttD2Zu9Xq77r0PU5+aKAhwAGTCpci21MdtfbisY2jGBWzLz9SoALDAmOHXJ086DXq6ttajH9IO1WGuHh6l4KYMIeulqAdgD+CYwMq9jkN37IrXo5T62HxxVEc1cHVUo2hhpjqyJ1VV0+Hq3czNhiVn8nREsDRGPgPo46TYxjTFfY9aR4ppFp4qpfxr6JDuhPMqTjE1hEZYODh99lh2MyNAjEW4CEqgeASYQDJSKGfBZ54tEgBFMCAGkM3oR5xyDDiFGdOmFeG0bIEJzk3LsSxzkU5ixHyQwxwmNdzDXcN0mqXEUM8xRgGsDD5JxWgBh7mjPwJjXXktPAbLwZNJk0GGyWb3ACTkwsLsM/A6u/ufrknECMugNgcNcpIQCuGoBCXFNdNDgsLRzE3RwxM/ZGYRSVur95eUtdTLUi9lEUBXbfsObQCxIbWA5nFtR++HY6AQL7VuS2lNWtVh0APIHOecOh+2zKJBiNveX17e/vz+4/nL89dv1+ejPZgFEQozUjj7GNaLV/EhPtg6dQYO13a8vb78+68ft7Zf27733nQcOrZL/1y+nLSRUx2M2b/M4jZB659q3El9gZSICSCWyVejUwrocOLO+VCe88CJgichl3Kqk5z5k7Awfydci9RC0zDp/jRAQg+ESIHn2ZOoJ5FDwBzbpldtIBHlNoY51Yfp0DfsqCJCpqcJwMdXFhGQcK4xQDbQPKMlmYiRBc5wHzc3M5y+p5h/HyGMyAljfkLIjFQmRKRAC/SscSoBMCM4YkwHVUCcQbpZ3s9nydxDIwBNwRUhiEHOsQwTx3SJCg+CiMK4VAQBdegGnONJoCQ1uIdjuGV8R97eu0ryU/WSY9VkGKOf5W2mYZipIVOIM8JS6+Pj5e12e32rSJzWIOZ25yFCWGQRmrgpNSIOmHxiIU4bbkCYcj7MhZqy1FhqXZZaSymFhfm2H3+9vF5vNwDinFBSYaoiRYoszKWWp+fH3//xbVuXdV2lZIBXvL3tP35cr2+Hh41JG7vvb8SIIuJe0iXT3ZHiM0pXUnmTLijhiMDMxuSnnDpgUr/4bo6BlighMwmHcAgFW9Kwg85ALUf0QANPazBlVJnEWQDkSMO4KIQLUEWvRCXCCY0Jay1PT+Uff1iRXe1QvXalPngMcMUYC+KjyIVIbp1jZ+sUThGRxwpABxuIh0NBY+ABLpkizSTCWHg42RRf/rxUCKHQKVA8/diBqUopZeWyIS0OYqFqPlR1DOvdWpt0MBSogcO8WWcFgra/9eM6+qE61JQjXWeYSUjYAQK7DcOTAQSuEIZhhHkSGBgkNz3CAiOQMDjnCtPBmIkIT7/JaXMUZ2ZfTBoREYAjIM7RKwAyCQqC4wzYACLAIhU+vf47NDf8A81hUqji/jjkcwqnm4oDKKFV8bUMD1GXmUbswURLoVKIwrSrRoYTZ2zoyKBNOCH2OHE1zIwq8Jw2pMJp5lycVOeTI5hPzqQ3UBYSCeXiXaMG7jBGVpwgBIwwxjja6EMBSWTOBv1DoN/H13rZfvvH70XKsqxF6hWg3264lFiKLkVrdVI3k8KeX302R/eB6MScJzQNAO5uufeYQXDSuacWCc7rfaeIvHPYzkoXBLBMQ5OUQbzj7piHIkJiKSci5OA2RoudcLTWuqtms0eIHpH1VhV+WOvXx8u3L09fnx6H6ut6vd7q89Pl81J5L7kAEi6F6aaZheig3rA31B421lJKKGDIukHviEzqmStDKX+FZB8HtAavb0gsb294fePWeHQbPc1OXRXPD0jxtpqniN9jmKu7aahNq6ncuebNuJPLI2a3m9gnZZlLMV0vMxUivSJ8zrpOjZcjKpJhutl9fn48L2l2/ol7OUfJAAIgImBEAZCMpciFEXGecrlJnVd14hF5ufO5P3WpmFBu+la+Y/nvw/ikP6YE1ebILpkz6ODmo6tGgBAVniMhpGHjurfjhvXx7fJ6dV+jK5zJopFt+7R/nydTQtHpPhHDs1r86aKkBAHPSZFZqHs4OKmSizmTn/numIm04TlWJgmM6VzsgDar+6DmI8x710yHwhn6RQbQArr72xivvb20dr3djtbHsKnZOpfC9CaPiVfmukjX5KE+1NQsra4DAYhQGIkpQtZadQFTdEPX0KG99SJMGKY2emvtONo+WiYZcPnZzTGm/mkOyBLEzducDWq8F7gBMbkNCdADYEZPnVggIqK7I4I73g8QYbxbLJ/cBwSALHqZiViYP87zkYCYsQhnFFNODSbhf47ATwOlrMXT/B1SCJ1lxeTbpYY6lyowRcQJD+MkAf3C0gaS2QTzbAEBEEAB4ACyYAIGZOJ0ywnIuTZEBIKnPSkEogWOAargBuBAMa2q3BExAsCdwgWiAgYRM0zyX/aPiZ4Chs3zaO7FPo/AzKuqmYvLXFmIJVlF5mjoaSaqGfbrcT66E685W273TCrKb3lu8Z9rF/e4vd1OyQb4nFNNkayfTDViWpZ6edgul21dl7IUDXcLNYvpnj03iaStuDsGzN4uD3JyNyfEAHO4M+BSXWAAeHELhAysykwaADCbLTZGjmA8zBwBdXTVrmPoKC4eGoB5kT28j74fe2uj9xEOU3dElMyW05TwXDC/gnMLUYEk5gMBcDZqqfKhGSiJU9AcklwExuyjiJEFWZA50M6SZ1Y6J0MoTqZmvr3TViyJG0mrTEZEfsz9S2jZ1vX5SZeFzHDoOI7jdmAnCKaQIrQtyzML8Q2aYRvsxOEQYAAaUQEHYJlwBfaY6RVZ6qJkOAm6A34itxNiLUzp9IsFqAYuKItsW90udd1IigPaPQMhKwpMSbWjeQzX1ju03W8Dse37aLvpCP+QIXSiDskVGelfET5pPO8alLQqsLRqjTA/J5J4opJZ6SKhWwRgNhpuBqee6NTFUsRZhOaAahJyTk/5k9pbl//TMjfi/Tcx6Whzxft9dGaO3Zh6VpSwlHB3JAIzd1DFMaJrJGtrWylZwqbW++hjtDaOpke3NqAZNsPThIAADHEq0onOLeEus5gwZW7WqQZ2QgsQjyz8IuLUzIOaqQ+NtHQFHc21235tqvr6uu9tkHCIo3uMbm5IpPozO2q7XH7/xz+YWbgQ8WidtyVqtXXRy9YfVuyDVKVKFM5U2JwB4On3z0gChOiTq6KaeY1mKRSTieWftUDC6ZPmkBPsvLuB6dlRmKpQYcyMoUxvdABMscmsp3Eq9HMORxExRodQsuE4la6ISA7uAIy4lfLlYfvH16f//OPbP37/qkN/vK5v171enn66JgiQ8yvCDJRDR0qZeSJUXdXaGO3o/ThGu1S5oDo5rRfed6IlhqHPohBOSh9FwH7YXz/c3V9++OuL9ZbOROmNl/ZlI7OqpiMCTMu8yVI7Hyu3k6b+forg2a/BO1cD3MFxRgPkXmMRGRg6AM3BwH1eQ8qj2FlQ2D/BUQwgc5eczwoiRN4FQJ5IbSQ19GwSPgC0+I5bzB7lFI9MOC4JiXMfIUfwSC4xeC6u89eZM5u/hjOCIBGCBxjFUAtzNSNlNqZAgGAiVf3x8vbX0ZzQAb99ebwQrhiQ38nCI8fKH2quFBuo+zDv5p+4uYRYEA3CgCjI1I9m+0isZHprEJ0p7oHT3TbyYJ+FWg5Mk7aQde00ppznI2MqnRFtGvD4oXbTcRvjdrTrcdxux37d+96taQ4Y3vF8yKuam3AQURGptZZapYgUYZEpyCJGwLIsaM4AjCAY6BY6tB2XtW5LXWqpKqIsIY7ghPxJVwQw/bAwD/OTqjD33gA8hRAQcJp9TFQVzpKHcvfP/XnuEDGZskJFWBhlUhJOwv9JEGcmFmFOLIAQZwA1IRBampGfR0EuUpqY4/yDk0M3Y0giAO4AcXI682pOJhIlNuPm6p7eHPYLOIqgSDAAOYoTuzMEB6BNcxMpIIFMjIWAUI2GovVhXb0Pt4BUjbVmxwE+gMPFncg4x2xIAaFhQ1FdLNBR0m0l3oMeIyCCfBI+znebmyoTkDBBMpqFq3BFLgFogDDQwtTGaBYRLmiAlrMZPGvscA9MD9JsZD4WK5/BXDP7/v0HIbGQCFOe/dnETnQ/mRlcl7pd1u1h2x7W7bqoaxsxjb3cztuHk6/CFO/yloAAzsoBQR3MZ2V8lzdm2UHMpdR1XS/rioCja3gwSSkVkc3RHN1B3aK1l7fXf31fDOyyrduasWmFmF9e3r5///Hjx1s7RmsDEddlWZaao3AESEquZ+2D9N+QFmjBlDcgpkCPIwFdIILzitMpfmAhKgIcRoGMvBBVREKwALp7CUZqjrL5pHTPyL180sUwEq9PeCQ/wCk85s4cVJkfVtgu4i6meCWFGOQEFOhYS71ctloxQN+ucQUKlzhRQ0h736CZIgVCpygHCZlB2J0MARxJEf4+OiOiRRYiLrQILcgb8IblsTw+yuODLBsSmcNsvYiYuZScawS5U6j3PiL2gd6ICayr9eEGCJQxjaUUqbWUpdRq7sOURl4lmIMmyAAOnpm/4R4BE5YPQEADIIoIPK8pZcvrEUkEx0xdScZ7An2RYGVMrsY8DIXRkU6tETHzUtbPS+W/RXPjrJtnBwr3oW/+E8wxlCn4AGSIhy2vnQdAnMrUMWJZQETWBY4WiGamrfXbrbWm3bwPa4pNoWuiaHge7mnlT0T3wUVGqpyt8bs0L8dTAgSAPFfExJ0iInN3LPM91RVC+zGuDOZ+tN6GFXSecVcOmtvKz9DLuq7ffv9tCiAC9uuN1xW2JR62eHqwdsRxQGu1ssvpwQNnAQNTmslEkPtaaJjpUAOwAJ+z5vt8Eu6UhZNM9Z4kgAAUKIiFsDKVtFIkzIw6jI/IACIiAQoi55NL4WE2zADBER057jUWgoMgbkWeL+sfX57+5x9f/3//+Yeqfv9RX9/eQn4u/QFBJjU8YLoTEwD5Gb2nZjFGO1pr+9L3oRxsJCHHc2mHMIYqepww4uy8yQOOwwKxd//xPV7+st5SOpbjXXVX9+FmEZqDS5j2QQbokBXSfbmerkVzozyR8bsNRXqIYziGAliAQoyAHj6QBvgAHBAa0/yOkJAFpaAIiXwucwmAE4g7SygEDMyI23lATQHZxG7xrGDTOXXWBxM/nWXuWePi/Q3MPwpEPzMPp2I77uiux5muFB5IKEhBaXIZB45TlaeswpKWODiGvr6+/evHW6Y6jePr7w9buWx3XTrBGcaZHwDoAeqh4cN9ZHv500qBQohOhqDA4T467McEoiahMwnGyc+YfhF8mszg6Tczaal0CiFO8xma8/UM8YYYHmo+zJp5N2tDW9feRz/a2Lt3m6hznM9VzuST6Y+Zkyh1qbWWUosUIeEE5jFdCmqlCEFgCIEAU+utH8tlWbalrrUcQ4pyCXaKYCxFPjPGZqc1Hz/EOwoPADAHuRH39Lx0aQrAxF7pXl+6W9hJaoBAAhbKlI0idCaTMp212sy/FRKRzEScjXTyAMBPjug8BSYihnOLAnj/QilNAzBP4g0xi3Dqy2Z3NukTPkVn99V6x9X//vhgEHlwsKFPxVigR1JiCJ0tSoAQchEUGopMMdzaodaO6BYaONy1ex8A6jkLwPcyFx3QwoeBuhiwY53s+/eRWMw074DzbZxsXUidSC4+5JSMFuAaSAwUjoDqwX3YcDMGkoKSw6JJSQg4/ZayWMotNAe0GJ+viZn9+P6DiEqVWkuR7E7oRNkjiSiCUpe6XbbL43Z5XC/XtWvfD8KZAJHhiPkocbpznmOtOU7NchByZgNTXOJ3I1I8CyORpS6XbSNAHUoAUqTWBYhbt6NpG6bDRrfX65X/5D76ti3buqzrsi5LKeXl5e2vv378+PF2HKO1TiSPDxcPL0krmZa5nkyJ/NafgX8hKkkyRkQERsyGOD1r0AMQKfLwhVT3SsGQMPJg5MpUCBEzkOrkZs9RDwdEnN0JwDsWcW8t50QC8GOcOgRiUGFcF3rYCILdAMLGGDEYWchxW+rTw7Zu3nr8W4yCPTjJwBAYkXMGPuMCJQcUuUKZQtgcBSAQ6BM9jImlVCapstaykVyQN6oP8vggjw9Y1qGZ9QqRlHeRIoVMyQwDMNRH79Z9hHJkKAc6EDDzQkylSKml1KXUpZSqZtwOus8hI6ZPxVSaRLiBYwagJO9n7h732Sje93jSHEBaTDcUDD/JKnHa+522IlkdMyIyIwCmCSezFFl+vii/LHPn3ftpWeWs8aRpTVjBA2hyKnRA63B0gOAAYeZagAiXwoTiTpkcHKahFn3WKaqoBmZgd581mIOcAAxQv1uzJeN0ekrmT3nSlcICkVBImKQQV+IFiSekx+rObuLKbuKu6fkU6CRU0CXdFZgiPGxiJr+6KDSXNoTU+vD89PUfv7c+DKlcLq///vf1zz8Hg84HBRgxWfFIFMzGPsQD0JLf4yQzignuUuY56WPAAEwPUITp6TMni8REhZlYKvFCvCBXwDLNc97v2Tn/nGNEOk1FbRpewWQgIZijnbkCjFiF11oeL8uXp4ffvz6ZGWNUoYHL9fNScQ+YIy1KEBto5lGll5AZqI1uvSkGLNUui4MFOdBsSc7BkhCdvkWZ0xBjwBjQO46BGfzgDmnOM42+4iTPvS9ZPNcqvIckRU4G/D2Xcn5owAAwAMUwDAVQAAXUAAVUAEUwhKkRBWCqJY+aZSlLkr8/WSwnpu4w5bUWqRnKd0rZy0SceU0nSDQf92yNYP6K+OEjW6AMXvq46c8SDzJh3L0Nw71HTowcsCuYQVhkctJEgpLxyhQOAGrqgZl/Zmbh4Wb7df/rz7/InNuTDGu31jVH0+RADjDUWxuAhOqYo4lz8vfTqxA91WoenX0lZ0ccwI56Jip/eM3i3BzndCjhRzz791kIz+4xEUWcDR3EGcFr0yojhod5ZGCuDtOuWeOGBhigYz41xMl25VpoWcqXh/Xr0/b1aXt63B4u67rUes8pu99JFhKhiemJiBSRpcplrY/bMmIMGMggRt1srfKZhjqbu7mtzEEVxF0zD3FPsD097+BOZTmHO+8XLhU8/AH9nlyFJFFhnBfvvi/MRjiRqgkLe3zYZjOyCWYlRucwMhms2SsGRjDBlNKfgPS9HYtpAzyPpfypAmGYdR13seyH58fBFCwwPGPfwwzUUhWKCNo7CgdFCBBxJKs845XMQw3VUZ0yzDCmy4EbhGJQphYhzsT1yBxEDJzlL85mweMezT1nKIQkc48OgMn8AYe0oEVesFQoFcx8uUQ/smtG9FkVKySl+D4rnZ04QJIO5/YdvyQt+NvrlYnWdQlzWAILktCpS0YmTkrtBu4Uh/auwyHKwlL57a1mvsisGgOEKaf3cLJhM2umlrIUIYS9H3s/1EduPFlaIFIty+RmpvBurRgPD2sttSzrGoh701sb171db21vvWv/8fJyHPu6LOtSl7Wuy1JL2Y92fb3tx9G79qFM0XonJtVBgFMEkcxIiMid69NKcTV1B3JUJ4ykUgfCmUWYdJXTFn2aS1BQEEMwMAriHKqdy/1vKNPfHtVc0ieif9Z1d0Dwzh5Ah+huYcN9DEIlcAEoiMZAAUSxiBdx4UniQYIZ3ZtbfmQeKYCXiPLRPClwnt13rPHTRUEkkSJcalnWunBZUFauC69V1hosAWFmH2eb9xMon+iT1JebCZZsh7mWsomsUjcpFy5r0vTB0oIrwyoynefs0+K8bHPLmtzTOeZOPCg1SsiEZGiI04wwa0ufENidTvYOvk4RG53EXiRjQ0wLo/KLjujnPzjf+f2vTiwXTvg5T4/JKnI804RMsfW4HSjMTEuRIswBVCsRZjrDMA03A/VkJ4dl9TLts8Hn1OyMc7KAgJgyBkr2VB7104IqwaypKyRGKSy1cFmYV6Qya5wEF93cqqum64i7kTuVKBEsIlKZyW3SZT+f1H6m3uTWIqU8fnlGJip1eXpaHh+c4OV21VADcAdkYJxqQmBxVhUzYENSDkCu5uGFzFBDPO52pIiJmwAJEEPmESYhUJiEsDAXEWZfWBbiilQDxfFenH+oi5J+j0GAjIVAGDCdlAMtpV146pwggIIJRKhWWZf6+LB+eX50s3AjhN3L9aerEuBmGMmEVcyiDzmpAjBdd8MshnrrLhCPA1wRfKJDPNGgtHhFlPtVmA9GlqrJ+cuUqABiAJux8vftD/1e6QZmvqefNa7lOIjQAEfAiBgBw6EHjNPwRfH8iPvphJ6mxQSW83/ARYhrpculrtt62USE+Odh9JTtZlOXfmfT4ms6FeDceYHuN+u+ou/P3X3f+fC25gGYO8ksVfJpFyZGZAMa5tFUud0zgEgVLdHqRCqnDwMySSkl46ZnPlsGtTkSMpH28frXKwwtaqLuw3o3z+xDJAsa6nsbjkQjmfgzbPczwi1EX5fVI7r6EF+Aq/OGnLbFat6HDrVuNsy7mo0Y6uqJ8WYdlm89cHKP8U5ljYmD4ok0ni15MpNTfTPzINP9xUMDdYbCJx9eCIVpqbIt5eFSvz1fvj1fvn15+PK4PV7Wba21FE6LqbmL5+6TZr2ETCQkwstSLlt9fFgUhsEghmrYFOvy806LgEm3AsBJEYYPBZbfD7f3I+n+NvMUztU9TcTcEidhQhJKB4U0JwjAZPLQeZAiATgQQTi6A566iLvBcy4sRhYSIokZOwMn32HWy4m4IUa6NKRLGEDkfcJIUuP7cImIkgESCMO16XD/5MZtaQQWaMlHttDhw06kOaKTERZyl2CSMz72HAFkhOa0vM5RadICAS3NACGSvGvpopLGNVO1RPOYSz/QgLwWsxYMTGPxPMQnUzfQMEKIF94e+fJAADg6aWcbHGO4hquZ0nAknvX/OZ/zCAS4Y7p5rT6X/uGxX29MDGmkTSQk6SF7x5VFBAsHIxQyDCCQKuu2LFt9+bHs+3677b33NGjISJqpB0AqIuuyrHW9bOvjtorQ2369HlczFSFmnKDuCQEl4sgQtZatCBDUWpdtCaRb69fWf7zuVN78xXsfLy8NImqttdallnWptYqZ69Ax3NQ9AtzHGHNKkaysgBPCgHlvP5V0YxioOiiwE/ocjU6clQAM0945k3iJmYAJkIIJg0FQMHHY7OLSE+S947x/nHK2uFvf5EgVc2wW8aEAS2KXjtb2WMSKKKNRQIHMAwCGKGyMOsvqXFLnhplabHBEh3ABF3Cbi+0sqB3M40yG+VTmZk65lFrrsixcFi6VapWlcBUjNtOBye0ChI+nDJwjrUmYFcFSeC11LXWpW60PpV64rCgrYk1nTgefwfeuERbo74zA2R3Nohbj7N05z6F306G720JaN0zG3fTAzduZXyzBuakbw8nTmbOq1KESIlP5VOX+ssyl0zAmDfsneSJRqxktmKNGRmdy4SgciKAGXQGJhYrwOnWXDIQZw4MIweCMXtAVTxVDnFPYiTSdJc4c0Z0chhPEBTjhr5y1zCFaYDqY1Mq1iixE5SRszgwr93JmbKuOwac7eZL/EBHC/PyCP73cY3S9I0csfHm8yFKwlPpw0Yh//fmn/T8y1OwEMxgRkYIpiIxJhSxwMHRGQFiIVouCxOBiDrOxy4MpZRYgBIWhCqjMlqcQFkQBBKSNy4PUx7o81rUtfriTe0o1DcMADAAIJKdZjAvhRhOmiYCG0BBGMvcDDVAByjzvudaybdvT08Nk1CDyoP/v9dORpAMiQoerIjmQMIll6pGpuQ138wB17N7QtYcPiEwaRQhIq6uEUYMBJIAjJELidKWIdMCZeSk5wDmVb+/d7PkIoCMYoBEakGFooAE4shMNiMOihbeAFtDzA0ABBoBCJIhryRMBnN8oHRcJEEKYoBZelrKty7ZJkc+ssa5+pB+WarjyOVZzSkHlzEDnOa9I+R1gruB8T+94wXtdcyexTP/jQKT0YEBCCmQL6O63oXQDMutq6SfD7mSWhjuIOS45JybCGOJhOlIS5mraVAGAiFJE6KpLEBtgYGtjWAQGOjTzWxt4PRoya8iISQWGGJ+eICG6LItHKLual0BxrIB9eFdvqGwAABYwLHyA9RjDh0Zky4JwQvd+gp7JdDhH6x/RifuKuJOu8tw8t0iIAINISdssGmgpvFa+bPX5sjw/bv/x9eGPr5dvT+vTpW6LVCFGyGC2CbeZQU4xPCzbYkzuXHaJspl0L4AmGkwglT9vvvnzngfCO9HGZrV5x3DzSLrLSQMdA8D93so5xPthLjI3f5pYEb6PPdKx8vRfnjQnmCd1ghgwOyiiGTAip+N3os8TKotZGBsiQHB+Sm6VQEAOTqlthfM8RTyjARExIfbPtUu4u46ciWDm7w31MWJO4JgIGUDZVVywZJVgPucCeE578jcI8R6T4w6OCJi3nvyscWJGpyXfMtGcpBWk3jvm08hzEnOeWtlmQHVIu2hZZH1AkXRIJRtsQ7Rp30ff6WjEkm3SfKcRubXmhTtX6y/Q3Ahvh6Zt/pBSpHjmp9udszBzFwtJFHB0YJBF6iLLKpfL8vZ2vV6vx95a76OPyEmWBwYBUGFeStmW5fGyPT8+1CJSiBkjbF1KLTOWTNWO1o/WGabFy5IszSrpSg1EtzG21rmKE2i4v3g7jt7GUB1j9FH66LUKnZgocnoVo4erqmFgpEoC8hg9sUb+jPu3pjpaAXYaDKKIinASYhzdc2A3MWGY58nJ0EAIMsPcCnPccAp679vH+4tO6Aunsckdzf14BCEktmBqo8foSOBEgE4MPIVy4AQa0N05Ik6U4z4luPdBBEHgBM7Tqm8eAR73rAb3+OxQnokgOV6SUtIgULiyCBmhMgrdh8PvuNI7rpuVnwALliLLulzWbVsflvWxLg8kC9Diwcfe1FJbZhA2Z8MYQbnnIjjOa35OpGCeXLkP4Vnb0n1bSerlCVTAdB6Y0Pr5XE6seZIf7qlpiJjwNsMvVBC/KHNTRpeGm0QKgAhUJiOIc8gFEcxeq15We1rtafNtpWWNWkCYkArSIrKIVGJDbAFW2NZqfvGCURm4QbTwNscSGLOVmYfB9LlPddK9wJ3/7fz9ad93B8iQMXEMJiKaaEjSDYDCSzC7T6aaeW5md6QQICRSaPQJjjLz3o0QOQV3EIiQkuRSpBTGnINBhvtJ0kaIklIOSnGg39Cu7rdwhVgBN8AVYxNchR4rc+WlCgkLYw3YKB4oOoMXZEsXHXxAWExL62zAspTHLw4Fy8PDbb/2dus9xeTp/mLZWFEgwBb0HPQUzEAIaADXsKvZcAeSQO5mhysGSRA4BBKVWtYHQrgYBIodDq9/e6giovc+OeEeBGFqgaP3tu/Hbd/16KoW5mRO6kgWXa2pDwsL9biq/zn8pdl1H/ttiHGlsbE+Y3nmqNNcCODeVsP0mz4JNJA2fQNQIwbCQOxpg0BiSIYYSIaogAq4q13buHZt4B1iADiBIRqABiiABjiEAaAj8geYlZABiLAUKjK9kiPGKQj62+v7bd9tRLqrhCeHJo3xCIFPqnRagfAJ4BIBI+U6nNOve3NH8bfVnxVAMmIiyEMiLPza+7+v1x9vVxBGkceHSzc3j4IoeRnNARWm7xiq+7DoDofaoaNpH0P7GK+33jQAOQ3UusXLfuRB0Ye7RSm8qCw23nSsrRXiEiiBYIDq4PD26ZoQ0VKqezAaoQ2JKl6Yu/pwP4btavuwNrSpd42R5gbwLvb2OVKfIM8HpOCEPM81mdviXDVwHxF/+nCEgCJlreWy1qfL8nxZvj1tvz1vv3+5/OPb8x/fLl82XNnImx17KxVJkDlLJjADt1C1dnjbW2+HaQ8fYerDfEQYoTMGYwiFfCpyA9IjxCYL7HwX579M8ON8bwF5AuSS+PDVCBFJEOFuuFVk7tV3lQB8gAdOPlMiQw4GJ+6S6nbCyXjOYhQ9pncDnc66Pp3LFGbJABFzEjrDDJNGcwY3zD4N74a76X+c9e7PnB/zUPW892Axxui9a+th7hbEkm1wQStgoiMdlUPdh7oFWbg7z+LfHd5Zb2exD44Tuzu95M7xb05MTs3VpLvP/0IQEJlVCBSI7u5hDsrEBGzEURZc1tNhby1h5MraOlK4MxV6f9zvHZr7BGzmMw8AnxFugOkflCCMDes40rZfVSOijyGtMZiCKRoS1EUecSOGZZOn58u+H/u+H3tvvfejj/kxRtfeDRHcrWtvnW4N1WVoRwxhWpdyWReAyHDrJHgnfDxNGImmMq4ICq+FaSkgDCJlKY8P2/Xx0vtI2K0UqVWKMGA6h8BJcJtZ0slGm5qlE1tExDOd6G+vl7dr7G/LZotC0QgRZx5j9KP1fcduYugKZMbqCG4Q3YMEsRAJjfS4D5QcswYl+HJitlMMipBy4VRZBWSDGFMv+/fHOu/sTPLJz2UAgVjQHd0i3EIBW7QdvbTBajxHHn/nTJzMtkA/HRcwzmrU3LtqUzO0nwf0kaMrcrcTZ80IX2U0JKmCVtkHW2XvFINCMJ0SILJ+ChEUCWI4U+yqLLWsy7ItRAtQNcfeW4S6j5x9EgcDBhJObV6+W5/m/36quuBsKGaB/Z50nuv/9M/PsedswOczeue3Jb5wWjGGeyCGv8O8n1+/KnO5SKkBFIHMM/pFWEopkwgBAJBlrl02fXqyr4+xVGd2ZmAiIkGuXNZSNqKMoLLCdlmMwjtHrUB7uIRhOIBNi5/JS5nd8zyO39HcO4RzAr44/ySmYXPqKScQTZNhQhMRI4A8LZmE2cQsYx4D0tQh/3YRN/xMuHTz0ZQYA1LXCURBCMwgjMwICGdTwzENKHFOdwgOip38L9S/XP8y6xEb0ob8QPSM+ExMKy+rxCJUqDAtjhvBA8XgAIFSc2vBC8WiKkdbsV5keXhceXlcnvSpHS/X68v12o5DW7PWZ1Mb3sEG+AXwW5RvUQQIkTSiekePESBEzLiDvnlokCQOAoyyyPZQmC9BSLVTB3j56YFqvUEEpSLSw9QjRj/67bZfb7v3DmrkTuZkRgOiqzf1bm7mFm/q/+72X02/7+PHtRWji4xn0f8UKxCCWRcGQEYx5oM/gZaACUn0gA7RAxtAQ2gZWyISpYQISDGi7tEN3lr/4cfLiA44ILNiCBgDYKaenQnJRMEBfC8qCJlQmKpwFSwUBBY+3H7Bb/nzesNjT9yRKBaWRYrQVMQLYiGuNAfLPNm6QIRCMZ+us6uHOxHyhMPg3tUhMToTpkTXLK6t/+vt9d8/Xo0QmL+0HoCAvIpUIiJKp6w4ea15kAyH6/C3Nm5HO1rfW+tD+8imEx1xOLzsbW89AtTAA2qRRaUOkYPkjYtwISksNFUc8EoM9LeNhZCKVI+c29GQKGLCFjiG2aG6d927tmFDvVucLgjh7yXYuU1OyAvO7e8cIcMdWrkTAD78BYAJet1HR4GIVEUetu3L4/aPLw9/fHn457fHf/72+M9vD08PdVtlW3ElQz3GcUMSdwzipEBFGLiDaYzhY/TWmo7m1l27DbXhoQjvlS7j59oFsnSYEO6UmeDcpe7oxyy08H4ZciHcKU40LcPmSIqZEsjJDYjuZNA40bHz8yNjOMDm9z85CUxJ4pKIUFM3m/TjMr/w0GHDxhiZA5xuOGYW4bOUZeJAJgLG3F3P4cRZ555gE+LPh1IGl0z7L4s29Gi9Hc3Nw5xYJFw8Spi4lj4VdmgBXcGc3VlnNnUqB+7sg2wb8GONixDoHoFTaYLJ/Yq7j0iWYhCA5KeFZbADkIfrUHdHAHYwJKgrrhfmArJy3RCBwXhUcLfRmcvpcen3gz3L6OnvcE5uPrfOCJChlYk2mnr3MSgluYYIo4/jaBxq5M4OCHWRstC6ydPzNvpobbTWW+utjba32+ttf327vt6ubzu8HWahbtEbcQC5mmQ6dGaqPGwLIqrbUEsyqweQSCD6jGBlZAZmLrISVUJeqix1u2y3p/32dht9EGNaMkthEXaP0zQa3GF06633Nkxh3rH5TOS4C0/By99eL2/X8fqydl+NVkNcKtWiXffWjn2nZothOJIDBwQ4mdMwFiJlFiZyJBSgCrQElcAPO0WcmH3iidmz5RD7xP5n4OR9Bd9n/whAqRLIuqRgLBgO3twtXC0OpVvYevRFXfwdtD77HYTEnTEC3U9BVq6UCLDIZONh4j9hlwFpZkfh6paJyoqhOGMu3AWhcqhYZ+8cA30gpN0akBCLYBEWduIgZpJCtfBSy1rruiBVQCENoggf7h1CCT1dMiHI5gnlgYRG4elfNJ+nPNNyF5iKXpzPQry34jiJTpGNd+7pH8rcn15miDh70pMa8NPrc5mbk6USSIgi7lluM3EpIlK4FBQhZhaUArXCusBljVqmyCnJskzB5MyGaO6KOJhV2JbiFE4EFtA0qsTgGAzOqT87zyOcu24i2HMTvuO471ZqeXsEQhAEgREYgCboE+e0k96X4sQfEih3IjzdpqbcG++F/MeXmY+hEknFZPzAf6WTGUxMEGSIGoAQAkGEKByLkPEwvFK8uH33sbsvyAv6A9DOdJAERWFcGBckD6QAiVggLgjAKJzEkbiEldbg7coFFrrQupXH8iDyzezl7e319bVdr3q9jdvhQ928m+42Dh0rwO9YfgNhZCTSgAW4Bo7wIizEbziK441Cglx9aDgQcJFlWR2Y6xH7pzIXWu8QwXmuEaWJpqv3PvajWWvWGh6ttF66ggeyehnj1sbbAYr/63r8v3v/rzb+3e2HRlW/qO3qq/kX8+U0hNSIFtEjNEIjesARcAQ1jA7YAFpAA+iAnWgQhwgtFZcFSkEpitjUj2FXtTemK9FgNBZATKYgAKApqkFyRd3PTN65+TAhC5XCdZFlkWVhkclEfqdVna9b7+M4puQWoYt3DwToYwxVRlpFVilVpLAwoZu5GSGKiDBD4knxoY6hSes94yvm4CxNgarpCgEir0e7jvE2evcYEd2CWDxokVKYiTILdzIW5qwMUN1fj/312K9H21vbj+4+iQF2kjXBHZN7EhhApXA9pAhntIAIT1MvmIKO2C5wefx4TTxiqHn4UFf1bt4tukUbcRt+a7YP24f1YWZpjnYibwB3bDa3gDh/PR/otNPHE+6/A6Fzn4RZJMLfvtj5ycyy1PKwrU8P27enh29Pl98e1t8uy1pRyMU7jN320oHNonc1RE0CVuRA3EPVVUfb2367HbdrO/Z2HKNlKko6efySBwX3FLR3mGNCSLMiO896/NuPDO8UgPRTvLMUzkHgO5AL79jvORmcBPF8stDv3xly4EmU4TMUQamPmn4WhUkYEE4SWJZ/fB7zqd1F9KSOBwQBQ6S/44Rt7sp9//COf37Fu8YZzH24H24tU7/U0VwA2KPY4MFShFlYGB2oK3bjoaLOw8iNzJBi8p4+fgt8P0zmuBhnF3Q+F5RD01m2nKfneVsQZhHmkM6VOqI3b4cdB9QF6sywnSFAZxsixMwMM3YZ8G8Sonj//+cJUWbKJdZroWAjLK8rERCTmkJvBBwSAECFuBCx1GCP6uqpvxzDeh+9jdvr7fby8Prj+uOvV5bXdkzObh8dwIZyUicd5N5xzVl5Tqk9uhkOjfS5JkAhWgSBiZFFFkJgKrVsW318XHVo9uqnKjLj2dLEGtygdz12OnbUrp7EptPxPO6twKfXfrTjelMgp+LEKfQaqm3o3gf1oQrDwJEDuUBMsbEhuZNZVlkF+UISxAFYZ8vhc/eYrG4PdRCbz92pYiQPmrZws/CNAAvAAAYEJJ7Scaxp/IVpyQjo4abdXIbWaT0+dRoOM/g4Mt8dT4YMnWiLUClMinE2wz9dE3fX6AjRiClLMQBkFjvAGyMvzLwKeQGr5JVj4Rgd1YeHGiNU8cJGqQSnzELyEa7hBs6ZX531Nib7J5CB8P0pI0B1p/QHMPZUvMwt4wQxz31pwvYxuSU/L/z7rM5PnCPeX6m4QgScAVD+f1zm5g1KCbGc2x+kBCp1sgW4FiFhFUpX3mQtoxAJA6IjdaId0SI6QAfcETvCSMQT0ekeJn4OpnP7njqHvO84gXSPOx9vMnpyC0m9AUBOgCtCAacwDA1Hh4DZ0M954Jk9k4e3nfw39/vu5Znb9gti95zKEQGgMDFRAFoO69wGgLPQslVqoRC7WjBhBBOWpfDDegsFb0OjeRzoN7DdnUGvQbegNzQLJjCG4IhqKWQDcVgAAkDOpb6o4m1XQ9uILuu2lPXLl29fv44i+/W2v13by9v48TJer3Z0G6O3fmv73g4xfwZ6BCZkYDaABy7PXNQjkx3/okZBElaCbNhx9D5MDZBk2R5q3a76SWsFMbpGBCEzRQgVxkJMSGHQu96ux+16tX2n1qj3i8m/sD9T+/rX9evyA5f2r+8v//V2/d76a8RVpDIPQIp4Nb+ZLWbdnQOOiJvDzeLwaB5HxA50IDTALHMHQIdQxCAOZpZS61LWBZiBWAP20N10NxsQToTMRYSkbuuybQsh6hg6+nG0fT9a68w4faoICYOYRKhUWdaybcu2bSLCUjKl/afLohEamQMVCKDuoKqqP67XH9cbEz3U5bIsa13WWhBwP/ZjPwBxqbVIMfe0TkvO0mkIi4QnhWP2b5CspO1he3x+rMvyY29BzKVqa9feLRCQj+6Sow3AGXMwt9HJkTL3a+/X3m+ttz6OPiCczrLR09nHNGfSGhSYXh9U0kNRZKoI83ENIIAvf/zx29/L3KH659ubO2Qu9bXp6z5e9vFy07fdroe34W2EWrhlweTnU3vWHifWEqe53ll5BJ6/h/ufZI7d3Cs+1Lgft7lzepbxtlkagttox+1No1MV8CKhEAranY6BSxsQ3XS4pYYSI1zVhva277fb7fb218vL6+12O46uXVX1zDmjX+wpSbOL+abgvqO/11NJus169cx3OHuvkwKQazXBvqx9cVJf4r2Qyy2akNOPYtqTzQzxWYZNNQgBkKqN8DTbL+lNVhgRTLV3dbeIOO2KcyueJ9FZWidSCRTgHoTp74xDdQztI+MLNQfuP9+YBJoT3yDIo8IIFaBHhBpFRzXulMjCNJQISHcFsRDz4i4RJYIZmInOtJY7xJF0JCIgCibgSHPqCS1FnuDh6JPWO81bZ9Dj2WvN+GEiQoFgU2iHHTWkOjEwAob7cFWADIqmWthOviJSoMN9KJmP3Am4/2K9Js6vpjBp4VGqLEvJMKoxBoASIHKanhELzltAlAZ5i2W0hD89PvQvz29fb5env9bL9vLydn277bfD3I7We8dMHOSht6PlJRlmXfV29Ftr7lB1tNHrKEeXZdQOZowrTcAJAEQIqZbCl8vinq6PkfMCRLSZ5+PgGA46bNlkPar2kULUDIixdEdR5w8yrfedVnWMzr2P3riXfJLD3dy7Wai2ZmKhXKzUgjiJLBCBFgHMLEQriyLdB2gERAGQKKKFD3dOyh2DBUoSHJGAUB0t2IM9yIMjIoKmrhGF7gbf5NQNxZCDCMGnn51amKefJk3nsqnccCQPcIxAASpBkS7ULMiV6yq7MTdGtZ9JEwDm1v0Yphlxs2TYPQH1WsaKRaosKy8LLYV85dgkbsXbDtpRe2AgkzLNClohmim0I2ZWPZbiRSCCHNxTYiKEhU+LacQc6UU4ISC69dGpT1rgGbgKudrPPt5n8NcsZBEmdWEu/I9Ujty0ISLxDXMHp3RThAifHkafXp/1v9k65jkvaSiDMM0biAhJAkQEWcZp5kwQhJlEQEjkSAMQEYY7ISpiBxwBdhpPxGRYz1uL+fk2N//z7ZzuR26QRihIQee8LrLM9exxGLEgCASFgef0lCbxZxb574aNd+OiOG3RZvJ7ePJ1PwBJ9yMpwsxYCAGYCTFmZxIebgBWCm2XxcPM4zBDY/YoRFxk2VCsx+B+QNM4wG+RwnYohK/Ar2TgpYYvENVi1QALNyCHEogQdTJ3oqiiHeMw9QLyVJ54e3ra/vOf/PAw9mNc9/7X6/jzr/79h+6H7kffj+v1euMrjrE4LIHpoG2IF5JnLBqRRoMFZTiYdQjUbq2N1k0tALnWKszrER9RtLxVfZa5jsgYDBWYmAHdo3d7ux1/vbztt1sSGReLLeQB2tOP2xf6i+vy4/Xlr7frrfU9ojMX4gaIHq9mV9VqSuYYfo148Xi1uHpcPXaAA/FAakAdsQeOiBER0yFcliKXWpZasyFWs5v7bYzDdEQEI5Uidavb5enx4enxIoTa+2jH2+sVECACCdKFPdlQLFgK1SrLWtbLsl1W4ZJGfZ+Rfz/ldPl8qrtD7L396+31v77/IKSn7fK0bds6tnWNiJfX1x8vrwCwrlutVdXS+mceoFl+UOadJr/QY04eiJifHh6+7O3h4WJuQcy1Wuu3rsfwYfC6D5xupWCnh3D21Th/5/uwQ/UY2oYONcrJCMXUabirqppawAByoGQYF6Zaai0lMO2eHKZqEP7vdfvtn3+7JsPs9nZ1h2GhGrdmr4e9fihzM3n4tFf8sOMl3QsAzh39VJ6BA97Z2qcNVOCc33zgMPiJ0r2v3WnXkm2EzNQJJIww7ce4OURBY/JafIQN565QOyxHjzhsdFPJADEAHWpjHMdxu12v17cfr6+vt+v1OBKPmlVu/NKjMBXTcRcenHzEjA2YmxZCIkiTd3t6hGWNe1pOvvdCk+w6v9yJmiC8uw8DZJkUp20tIsHUL6VvtcdQM/Nay7qUUqsUFkF3U9PeD4hgZkkPthOSyR+dMBwpwj2QCMiDKE4iXtYlOkZWuWb2izIX8LRnmNs/OqETDoQeoZnnBwowyYqUtInEnjyKg0RUgAVwRayIJbAA0Cxs88olLJd/kBrchNPoDqZ7MkY9fUwjbe8RTifAlBxO0TBncheqQm927MbFEIEJCCDMbWAEIZTCSy2a+QLJoPC83XBOZgEg6BNl7ryJEO6m5hHD1NyBYaFKwgZmQyFLt2BAQgYShMBwpzT9wcxJIAA0deu23471stVlkVqQQHW0Y/TRI9xhRWY133s3NzPvpn3o0fveRwBUG1VLUTmGLNqdEatE4cRxmVmEChKu5TQ2zLCJ2atmErvN6RKa2tKk9zKaalftGWLso2trox8jjWh+fnxMVYeO3nvjXrmWsOrpqh6Rru2k7gVDpCApeFLNhoZ5iHNlvgAEFqagoLQ850lRALfIC2UwDAjMyYg5nfkJNcl4wQ5z/OFBmDKV9KphQUYkQx5IlRgiUtHMkQwyn6IiiLzldK8BgQMgSIIkyJPOKQy1Mq2yqMhOeDa0f7smYW0cSuyuasPcHAwIZKnLWBdfKpdlZS9YJbYCtxJriaNCb9EPc0sAwSy5i+HNhjU3gEAOwNWnvbKBB0MIQiE0QkcG8DkdofCwXLHKRtghBpxyizmxeCdl5dZ43/enS8s8e3PrDjhVgLP+o2yuZ2ot0nQDOzf9n1//jdNCppzL9NCh+WfThTFAmACgqC1t2PVwBGgDl7QaJsGpuDnZK0QQ0o567GtvZOamfjv81vzo3kdSiuF0F4Z86MPTTyaFth6BZ9ZF5H6eya+IwMIShmQ0FKl7ONlMK7nzOOOe6p1Axp2wfF7qkwP4+XoAADDTspRShYVx4heYXDMm3Jb67evTP//5x/HyGnuLo+1mx/VWAR6BHwCvCDeAA7CnqH9Gl8JpQOLf+1j2A4SawI4hYceuh6FH6o8wJ+ARcKgNj463HX78wPKw1MtaSzu8D2tdpxRt1950tKFtt76bhmr2nWAUzI5wDD3SPcopDP8a/UXHHoZmojr6OPb29nqrXJYihaUf/adrExE2hruldY/1IYAMMXoDd0ZK8VQKvNyjq3fUg8bxdr2hsMhtf7vebq21oaYepmZH58D/7baa/nCF1mLYbfibxZvF7nEL6IAm5MRGbEiGZHAif0wo5MTdw9rwAHUfasd+7Puh6h7ILHXdlsfny+PTl+fn5+dHEdYxRu/l8gNrkfKCEIxxF9OkH+pS68PDZVu3ZVmYhFlOF9W/vYiJWRhDki0uLMyAdGntoQ8IKEUwh0Fu7tHNu3vANHEf4d1dzdIjLQYmqjoHW7PpnUcfIT0Nu3l8UduWui31YaW3YzAdZn4MHbarnUUkwNnPBYCnv6GH5w9wTw/diqy1XGphISL28NZ7630fZmrdkmoZdMfwPHJQOAHCiNZ/TlcZ5t/3YR59eO9+a1nd6nUft2McXc09I0kjThlt7lon9nYfrM+1dzIXfm693v/i3aD0/Iz5H+6WZAHo5qOPdhx8FXuBTp29hBVohRbhtdZlwJIzUSdGQiIJyK1QiMJD3VVHa8d1v75e3677be+9m059xPuA/795zbsZd7JCFu8nHYYQILN6Ockh8hFFPVUws5Kdh8yn7zBVYhGhkJ1LRERWaFk7A1IidhGadALiBHFLqSXC+hjJG4CIPF5zGdz9TU9u3FyYZ0br2akxEuEYOvoY6R5nfvf+/+mnzStmEBZx4l3JR5t12znfS56EzWI+Aj0EgAMrwEqkhCvxFkQAGeuRuAynsxM5UaIl9zWBQOeqnpS5uJ+bJ1P+PlDMpx2D2JECwE2jtYE0HEZvwASEBI6hGAMBlro8PT26vVNykh6cv4mTnPfw8HOseqKzBJiU5kAULw5RaiGRgGR3KCEwvA9Y4bSISCD/LgBEJGEOYSJQfUSMUnhd5XJZj33v7TDzWmqtNfOeEaKPgR4AzlzWhZBoXeqyLLVKqWVZyvZwqcuSg8Hkl4fDTNSZFMSYZBAAiCl+mS4283EMQmAiE9ZibmHmOqy20VfFu0z842WZjBkPVxtdu3QRB0eium0EbNSxm7N0JiW0YGPoAA2tYwi4OHYzRhPyVBYCkyQgHnBEHKM3j246RodsbZkWpAVII0hHjXBMn1EKoiByAB+K+4FFrHco1PthrYMqEy3IgMAUzFYmSJK73eTWEICfdlMeNAJ07vjOCMhB6d1DhMyfaT+EKIURKCgsbPggbdiZj8qlMHNhpmURZqpcsAqMAktBPagzSB9DLczMwDTH3tkwILF0LgsVk3DhGZaYizyIAD13oKlB9cQxBYWD2Ymc8CcW2v0mJp5E03cE7us0WSVZFCdFLCtKFkI/T+eZCXDuARSE/2dOC3gOS4n4JAWdLhPMgBLAhOhhXR2PcMfWaClYhYswUyEWIpnfnuZO3A44DuqtZ1jrceh119sx+vBhqZhK2ClnOGjmZqAjWtPeRgCWUkspzEzkiTqYB4AVpwAGGjQ6IJHqGbd7bxXmDnyOBO9FbUyHoZ8R3J9XjxTZHlZhFKG7iCNJa7XIw2X7449vAP7653r9/nL96/X69vb2dkX1r8vyXOsPszf3A6AH2BkUkieZARwGfx0DYG/mr27f+1gJsSkMYidOzy8CIHTzY5h1/a5X6iG3vo62tWt5fMjIV7vt/fVtvF21dW1jtN6P1o9mQ8FsahKRDGGYjdORJACupi/aD4h1yKardj3e9te/XjigFinMr6/7p5USNrqZ9mF9aJdCoei9Dwf3ylJFailNxDxM0R3CXPtQvB7uRNT7Psau2lXV3c2HakQf/6uX0WQN9354111tt9gtesQICEIJ4mQSiGS9OR0gKalTMIa1pl21JR2t9947AklZapVt256en5++/fb89cvzl+dSi1qMoXL5E4uUWsCUQpmwFC4iZSZ4l3VZlmWppebZPdVhPy0VZiiSAlshWOqyrMtmHkRFqppyJquzEKFHpH9tIGZiFQGwu6fk20Mth3jqEZA6pNP4No+Hm0cPUI9/fHn+8vCwlOVt71s59ujm3tX2Pq5ttGGn8+O07JwbToCGawQEUAAjbFV+e3r89nhZSqmluMf1OK778X0/4raPozFCIawiKUtIHgIGTOgy3D5JxYfFX4eq+tH0aHrb9brrfujRrXUbw/xd1z6Tse4zq3PEnP/IyhemL83ZE78/3gmGxKxx/15EnZSo/PrkgGDWjwNeYJAKtKKVeqVRcC+y1rIty2Z0CdmgLFylehpz4yw0SU19jOahOo6jve0Z76j9jkkDeGqNP++zZ0X7zk7LCmqa055vHWFaw7DUUqQUyVwPovnOp9g4TobfyX94X5qJEYdGzmznxWRhqVVKiQB3V/WhqkOJqC7rstRlrXWpIny0duw31ZHnAZ2WAfnNU0407/203Z2Fbl4nERYhJhp99KSonxj35ybFIyw8ibmpUAIEYCBGEYzMFrwP5LJ3u9eIERQz3nwQKaMzUHBBqJmFKzKfWwMwRzVEh7nmJrUjOyhH9MjwkBmncldjxL2pTuyBGJA90My0t+a2t9ZEAOcBXAUrAwRs61ILTTQlDf7O9Yj32wQh28+x6pD+F8SllqUuVCRFMDncsXBzM7V0X09LJEoqz+yH57qaO8fpYlQXenrepNC21aen7bffvrTWRmumlmBkWOgwHYOPFnFEYKkAhKWUy2XbtnVda11qXYqUIvUeuYrhYX76uuJ0PYSTdAMA097/VPzluFiEEdCIuHCaIZpFEhgA4DPInbJgRAA31zF6S1dhFtkenryqrepdwX14AHjmfnagA7SBYgS5DzNGY7LMYkfhEiHg7n61uGq/jX50aogonJYSK9CK9ITIiAthJTAk+VDmWu/28gbmWAmE1PrQZuFUaqnp9gpUuLDQBDfiTiHHOc+gCDDHYdHDIxzDGdwhaJbDiGkP+vcHiJiXutwbeQPr1qMj7ZKwSC3lYdtIlipYSDgqgzIMjBLGCQxpJBPezE8PW9JiVtyWZCMQQUbNnfE94DQrR6RAIgwKokjbfwLOOOTZ7tx/5rlRpB3YdJCNe42ba2k2mYaBTuEMCMiOcHKWMMm0kJ26B/2Kx/3LMpfO8ExGlrntEp7B6AzAgBhR1Dw8VOMgqAxFqDAxSc5xeCZkQ9pi947HwWPUnIG2Nva9HQ3MxqSJnWPP5BEMDR3eux9HP/YBALWCL8CS6SFkFpZe1TiABGgg8iRRESfTd+4c9ys79RJZ+s5N7CTD3f/CL6hRIrRtJWvbOyIW+XAyP1zWgK/rwt+X+qeIebwcx0vXcRwjogG8qv4wu1ocDmrgnkuOACDdHl67DW9X1Rezv5peiqwAK1INqgB1WlCBoe1hu9nox9iHv+5Vj6Vdy2XLiZu1Mfbb2HftakN1aNZ6OSM0M797T0ec6he/g4jBhBgbIgaM3m+vNwHMbfO2j5+uSQSM0XWMo42j9c4s4BwWQGBRCJO+ycKoNvk65ho6/HaMjgDuw5PaDgGQ8Lzt5n+67YMYPJUn3bwZdAsLcEABXJE24ipp5yZ4QluJd6pmuOs4Wj/aaD0vhBappay11oft8vz89OXbl+evX5++fpG6DIehBkzug9BBO9kQglprraUkijLl4TnhPt2aPqO5SJxqRHAmKiJLrQuiA4qUMXqoZYqlB0y3pgS7UrgOgS4UYQ4eZhDdtGUlCOgBhukoOpfgiNzx6dvj41LqIvVtbQ/LEQHNdLgeqq/tuLVxsr+mIfEktE6HYBDCBbkSPy7L708P//z6ZVuWrS7m8XLdfyw70OuucR0qCIVpLbLVelmWbFvHsDQEgs/lJcDw+H4bqr4f47b3PWvcY4wRquF2tp0QGR93f1Kz8Jh8SsD7/wDoPum9U3IB3ivd+TTDHcNNylee9HPejeTuo3ffo4sRdvLKVlgrbaWutayLPmExXqCuvFlECHEti9SaRXcbeKTkWPVo7bbvezuOMYaeuPlJOaP/ZkyUP9s0vp1MCiSagVtIQKk1ZGaevVZJ44NMbcwSxwxM5zgP4H6NZp1z4v/pt4mAM/+dWKSUWs3celdzVe06RGRlrEspVbKrN7XWDlNda+VSmIggMCVl5n4OoKeVoXlOOe5RzCYcVYIpGQu990Rz/Vd+fAnS2nTJ9AAHBhJip3AOAEUPzWn/CSX7SXXJBxCQkVLXjU4lYs0gdLifaoQzneHsFLKMjelzEhNUPmduafczWRT5/ODk+QJljJpH9KFd/UC4BuwwMW0Rumz1stal8FJrkRURA2dhdyLy827N5SzLzxmu56oopSzbWpaasZ1d+3E07ckxMQpOrnnS6u5A6cl0nIEG8+HCkIoXqstaHi7L09Pl2NvoY4yuQzPxzroee297E7kB0mxWRJZleXjYLg/bumW4WQWAlNTlmzEzDzO18PD8jgnp4992TZxuAo4AnCiFpJz5bMYjIf3pDfPzTpuELoBwM+3QwCGoFCqllhrFrZh17b331s0jmIChA7aAFhHmEK7hJbx40PRNwAIoAA7xovoyxtVszxqfiQsL0wa0ISpLXeql1sokhEKoSIrYw9p+9O8vcTSsDIIO5q5AUFZgIKIMlcEU2H80ArnfbwAMIAsY7g2m4FUwHCNomsc70k/aSgBgZqnL/akACAsFxaPdIqCQPG4XH0/EJCzExM7kgiY2WBu2ARGmNoM73HK8RGw+3C3Asz05Ha0wS94TicgIdiCiiFn1c9q2EcwBe5zv777XzbOUgCgoYqYzY4bbvB+vmFbxSY4l4lmf8tR4AmJ4BAMGgX3Cnj7vuvPbT+cXwpR4J6YLs9eY33buSmAWIyIcjPKQMZjmaMgEJEAEY/gYOAapkSr3bkNJDeKjjXBAOKi5Gfbuo1vv1pupOgQiGMSYZS5z9onEU/HsZkojxuSswel7B5Cd+nxr+e/nSRgf//0X5e37KxI2cJvn8RSeRjDTslaWx8tW1rps22W7PNKyDpa/vv84zPbjeNlv/7ruf92O6xjH0OHBTAznFoehHrfh6uCoGqNVfBAxkYHUAQSQIyjAwm9AN+QG0CPMTPaj/PjBx56bmPYx2jFaN9V58Aw3NTPTOYI4y4CT5DzhLyJgqcvy+PX5t9+/ffv65bKujJBGQaE4+ucyN24tyVGqw9BDx9DeAkgNTG3m5sDsnGCaijtGuBoApBqQmUqpUkpSYjACrA/tzaZOMIPK7H5DZ9NF77PbdABFCACCCDcEJ4xs912YCYpwrcvjw+Xx4fL0sD1dlqelrkwSGSysNjqMo6JfKiELBjFCLSKnqcA5kJt0vXNk9vNrqI0+MILDO4J6DDMSdotFpBBBDXPbj35r7eijDR1mEIFmQOaZxznPNSgCTLgt4p6+tHGo7TpdVAgjm2ohKEyLyMNSvl620Z8uS+2uuw7i9MAK9dAUL8M9TRYgkBiFcSvlqS5f1uU/vjz+/nj5dlnXWpdSNSuOgNc+6m0Xksp4KfywlKdtfbxczHyTcllb66PrMLPL8nOqeFf/92sz89ZG69q69mFdT4b8ufEAAEyn/IlGxvnwJU83/fshIPVO57P7od7NT7xPmWEOhjFTOFKZPiUkiIiLYBEUARRwigF+CwiLA7QArChDzSMIsTJfasVSSQqTnHUDxrRbsKa693HrY+993MVV9wZbfqkjznhMOLu07JBokr6zsJo147nUIe51/UnbQMTTQvx+HWfmZvg9JSx9xUWYSKY4hsOjt6FmqurhUkpdaimybcuyCKAfbXc3HY0QWUphLhkhH6eY5xzgv4/HAtIN1jDMg40i4uTmWu+9td77GGOMoZ8pyzjn03OUz8wikU0KEdEgZlcxUlR1JHNDM7+DYsniC4SUrB3mdVhpioSB6A7TEtPBDrNDbVjaLiF8LDhhXr24X+5773CmtyQlmBnIgMkMW0TzONxv5keGyxGWIta30I0etqVsy7Iwp9sNTefLWfUhzrk+NKeXn/fas9JlliKlVpZCTF1H6+12uyFHkkymcBb+RrfI0yqt4wAR4XSQmHspcKHiHFi5oCi61XRQDIvRxmi6347b7TiOnl+OhZe1nnj/UpcyK9cT6lbVNJeYDZB7GLgagN1LnBxVT1V44uNnVPf7fAYAGWjKJH4u/pOCiG5mFDAMAN3JjM1nBKq6mjW1Y6i5QhAgKYIDAZZAC3IF7MQH0xURzEcMducwU3sd43WMm9kR0SLQkZyEcA1cAbWUSr4URJBgNsYRfjjs/Xj768/r9RbrUrYqS0kzDkCsy1LqWkopxBVwvd02HQhhGP5+x/B+08x9mA9wDCAiJVYSBB5B3aANN/zZJpaRV1nzfkdy4SaZj8BTL9utNUcON2BCG2QdbYD20OGjj95bGzq5NTjLyNwaljVT7kWqSJnd8iwX54EYNDEJI2RMZWeWqEGEEDkJm4SE+8D/XWEdsxicMBxNmzBzV1PzkXvBnbEw975c0HQmhn16/TLsd1bZPNFgIAgioCkO8HNHmCm7kDbP5mBugGrpcAAARIgsKAVF0BzMwJSGkWqMTmOgzbo7AE/+hYUpjO59WG/au43hNvJYNrMQdhZicWIhFpxuzGFuoMMjpiT2pP+c29MEOuZJ8H4gvO8jny/Fh1dEWJweFuec0cODiNal0qUiPjw+Pj5/+frl629Q10Y8WL7/+ef3t7c/396+X28/rkc3GxapMySA+3hSw92smzuYuqpKbIhUBhFF+lE4eqjTFeiK3CiGg4ZTaxSGN0p7umTkj9ETK7F75q0l0eY0lDonoackIzLgd328fPn9yx//+P33378+PmyFCSJMh0Xo+HmXiYDroZppreoM4GNo5wBSB1VTG+7TEYmJAIAx05LP6WZABFCt63bZHh7zyQG3/e1lf9N+mg85QCAhTe9QpvT0mE0gAphHWmTgJNcFgDNBEYQgJvGQAFiW9fHp4fnp8elxe96WxypCSGampsfejyOOm4RuQihCEUzIxHcqJNHpWxg+K6X40EudrzH0ODpAhjD5McatHbWUFGxxKYjoEcNCb/vR+jFGHwYcSAaocY76sk+UQoUrUwSgBTb1H3sb3sw9FSVFqAhWoUVoZb6U+vVyQYfDegffbRDzMFPzoxuE2rRen25GiMhElflhWX57fPzj4eE/nh9/f3z4elmqlMKiDmkldjl6lSLMi9Cllqd1+fqwfblcAvBxHbehSeEdpo/r+tM16cP+fN3NQtXGMB1mY2aHvte4+PffvLP071yj94oNEoB7/ysft6/5vu4PON7npZQztImSEkFlXAQrowgioxIcEOpBYAxYSc2cAirxgxQvFUpFLkSSfS+ect9h3lWPoXsbt97bGH/HVTHkV7SF5IXiRP5O1JZmtQJn64/n/nVHh92nN8PchAFPZ1F8/6YZ23afC2Ma6pb8hcUDhtnoI4NDCXG51G1b6zKzgHpr+76P3hlRiAtTxk5geBi4R0oHJu3pHTeY2pAIR5ohaQkxqmrv/Thaa2101TE+xzhNyBWcADyAhCVr/fTlEmY1VuJBxEoEqogEbndm+EQwHWAANPddVRoCgDvYiHyWw2E07V11+DzSz/rrHXA5zazui24upqzSmChHVcwYbBHH0EPHoboPbWrZjZdSQh8gtAo9PmxLrbVWFk6PiLm3nMq4fL0d+vK9/XxVEICQM6C7VhYhovA49v16fVu2utXlZPQRIs4JZv7oGOHkKQY5mTA0oX9EAmLkQgWZJNgyNqUWWQgo9Vzt6Mfe25GkaosIYmLBWutSay01gVVAzDuvomPIIFFVRdWhQ0eoWTqEwZk8Smd0B5wnNZwgrqeKCdKBnuj+ZL+/0jQpACOUUoukSmYZahI+81uOPvY+NAyBU+0VmHwzCjRHHCSNGQMG2M0CVcGGqV5Vr2Ps7j2iB4BlQCksAEuAWV0KbMZYMYhc4LC4mb229v31+n0Ersv2dFkf1vxBAqKUJIKVpdRV5LENGJ1nhMTZRL1vaZE8xI5paTDLXEDugYdGGxaffHOZaOUlr+kckgcAICNjVml9WDsMUaKAMIwGo4M20O6jaW/ZiJpncAlRESKRUktda4ZHL0uVWo4zLYyQEfxcwGfji+KoidBO9Hmygk6W/Kxxic8M7DQn8rtEyyHQLM373M3N1VzPwQYmqJvfNe7yjZ/XyHz9osy9P1gTUMqtC6d5J76X5w5oBEagBAPj9MAbcfRQTf4NSsFloVInFgwBFE6QsXNmuR4hc1DADFRjjOjDR7PebQxLqOssMMDpJBchpcs+TQedWYViOCBh0H3keT9x4MysnOBtnIgP4qn/gPdl9uEVH4zIzN8ns0Q4tdoFpdC6bttm6/bQIjqCC0ehPayGVffqgcPYPAJy04YJz4AHqAMAkAZgMMVSsFayoBnuiogI6vAWeAVsHj0hUTccDSA9HEPVckBvcHfXh5ypxdk2YwQFrYXWWriwMBbBy7Y8XS5fnh//8z//43/+5z//+ftvX58ftqUSUUr9PisAPOLW1YaSG3refXfVQHJPRCdwpmNzkkE5Weqn1GiWWSzLuj08POc8NvXc+351AMufHHBSmSMggj8KzCnJQJ53Mq2DYpptpaWozEqbaF22p8fL0+PlcVu3WqoggZOpmUXb/bjC2DmUKHK6lpIjwg/nUM4JTq0PfmqmczEBMeT8PhBsCn4YBWSWYAGgHgkztKFNFY0CaDoh5CcAIIAIP2z1cSuEHEhdvb5eAWnvnQmE8Mu2fHvYvj5dHre6Fl4LxVIZYMRiHC2MEDPF/nq06977GPclbIGEuBRZa3le12+Xy29Pj0/bsgjhhALNHPR02st6I0miW10el/XLZQPEpZZ16NHlaDSGruXnXUXdX/eRM+4Uus2SJPcmus8X6F6Y3qM0T1wnp8Vzohz+twPh47W/e9HMDvccL1MiVJKOgJBXrwoujItgIRRGQBwBPSXw6NV9DWzEJgK18rryshAyEs2k3QC1aMP3rtdjvO79be+33tvQszTNEhSdfuEqQJQigtRppQGRMCeaO+P/5vuPSXw7/9DdT/7deYScBAUIgDRUjMlJmaPiDGXI7LE8BVVNVQFBmKTIuq6Xy1YKB4S7mQ0dXUfnkmmPzLlR+hmckHvgOXkMyNkzelp0TIt9vL+PdB/vvY+RHKpfsBYSscSpoHYkI3RjY3EzF82YUxuiPHiwipoOMvOk9Obn3auEEdHVdzSA6XFMiAjkHinZ7ZlZlylBc9nFnbeQP56fde48O5JJIiwhAkIQDOEQh/Wj92P0o41MzEbEUksVWqqoXhChlLosi0wHu/cyd24ziEg4oAH8XObO4hsRED0iVD3iaEdrrfde1yIiJW8RzEnD/NGnZ900HImT6E6Ylsg5eMZkNyauFgBSpIgwMTiCY12WdbPRpoLQTPMKJVCSDI+5GQYiAAMDAQoKsqEoKgWiAWSp6w4E4QD5GGVBhQiEHqF50CYhlbAUZKJfTlojGRgegJnn6+GGJxc+At1CLXKDVU/DVySZqqM0BgBEJx7E4NDDyDS0++g6xq66m3X3kdYeAJlfVSNqBIQtlWohJetQt5Bmdhv20saf+/i+K2/rE9mF3cHN1SG4deFSS1lq3UTAoKovEOnKdW8Uz6FlFnx5B9AQMZAd2WlXOIbv3QVD/l7mEiADBUCkYnM2ESefIALdQAeYgAGggXWwDjp8dBvdxtChOtQiAIAZCVCYZYpRc1lwlrYMwRAUjpHE2xmBBlOh7zirbIfMiCFEvJMd5gEakx+EHppkbIxADJ/1IviscudQmpAYCJBjCjnpXsvnMIEnRfVvK+YXZe59a4XJdzwXL2IQTHA5jW9JBYdQEzzCzRSGham3Fr3Po6iWHCBTKSgCXCHjYbvogcowhpqah4VqDPUxoHXvPZts8CCA5PjSTKU4EQkuJbmfafo4IezzVJvrZYLFOF3k55wxJvrx99ofT/H455e76xgJg2FkbuWssQiEKYhz7O8V+AHwn//xu1T58uXhH398+ec/f/uvf/35v//1/d/f/7od/Wi9Nx2qY5h6apsdzgykie6mA1Qme98j7BCGw2FxDGvDmpqan292WtJNjlxiOPCObUCWE4TgAYBMtK3r89PD88PlYasP2/L0uD0/XL5+efof//HH//yPf/z25WlbyloLQJiZmw/qALefdpmjqZtKeHkfWs6KBYlEZKnFIvT04ktLPQ8yp+lJCVCk1Lqu21akEKEpnTeYzzDmVGNO9UbqTCfCM73XMRgxdZ907oAR7nBWZ4xMy7I+XB4ul21ZC0s+kwbWUZWssfWwAT4iDOEUT6aWGubJcLf3OnvXX7Ddl3XNjIeEmFIqxYgWcDQNUIcYZq/XY+/aNbp6V4/wbs5Ed6JW7gUi27puf3x73tJV1+Lprx9bKdd2pF/hl4ft9+eH358e/3h8XCsJxlqIsQQXKmwMhakQPa3rX2+3l+ttby13MsvdBWkrZSv1eduet/VhqYh4662Plg9bV/+x9x/X9v3tto/mMPG25HWuSz173wDHUCAL+cSii4Ch6ZB4shRwZg+eC/SdXj2f4qw07t5/c6qXn/IRqr0/vfPXswP5WDPPaM40t2KMwlgIK+NSaBOqQsLIhB4wHNQj5omPIMy1lnVd1m3bLmutnJMnADPoHrv6W9Mf+/jzrf/7tb3t7Rhj6LiXFPkDDeg/LxSEwgQiieMS5WYmH6g4J3ALmI1ulsOA4OFh8J6NjkBEfjLyTjEf4gdeL7NkGRURXUf6UuX4b1nqsi7LspRaahEP76211tyUAFNiVIswYZiPoROT+AAMMDMQsUz5WJxykvzpknOeP52mXeq9yflUvzBLKVti5FkSGZ9pRx5unjKDMaY3mQ5TUVO7d1ApZ85mIABGRFODCPMYmmlH6B5NbUaPu490b8hCME4MA0667MflnCuVsIAUgspYIksIzLB5VJwcjjmBcM+yLedK5+ElhU8Xir+17IhE/LNRCUBYOLqr2TDV3VtvR2vX61trByKIUF1KXSpnr5Y3P9wMkmKZVPEsJe/82IQgglMzj0TsDhHm5j3UPJJyiFk5CDJIEp9N2U3dDcJH76P3eclwft175yYiWDDMl7L03ltvrfU+OgBgYBi4ug718LP592FmafGJIEIQQDMp8tOuApnMgH6yHgMcwKKPUPDAcDAPHRqWbVagOgWypGMB2qTCcBCNTB12NR3W2ui9mzV3jUx2yK45CCHbJ9AuO3iMl1aflrKJdI9mflN/7fFqsWCtgnUpBjYszI0wCKw7jBHmVoJWx5rtLibjG/PoAg+kyDBZJByEw2EoaAdq8NLirfmt2UXipwIuHHzMiwlzH8Q7K12QZHp/OoFRBIZm/oNbhohoGvre+2pGLizJkhEkhgBTcE+jXbJO1knHvINIEBbBHuCWsRIG7giOmWaPxEyc1nwp1bFwoMAYOqfQ9Hdd93vYmSbvH8nuveF5EH/gbAnUh09eC/9tmRsTxJ18pWlcl5nD+byQC1nhvnArfNiw7qGJizffD3eLsNAlLXVJCKXEItMZpnOwJ78hTMMMVL137CN6996TRzi3d6RZ4M6mtZyhgSIp08M7Jv5e2MK9vPv4hER6mGcR/7Gqza4UT3z159Xjmg06ICJw3i1mZmDCk1LkgkQEIlJq+fbt+Z//8ds//+O3//Hvf/yv//rf/+//+t//33/96+X1+nbdz4/b3nvXMAtEeK+eAPPR1Qia+eqRPcZwODQO9WNoVx1qABNQxPdt9aQEzDdL59CTENLZEljosi5fn57/+Pb825en3748fXm+fHl6+Pbl8T/++O2ff/z29LClTUpqqM3s+MR2h4g+1FSBsrKhWecmk4pRhOtSHEGVlGlSKCy9QsMxDAIjpMiyLOuyiggiKmLqbJTF3chyjkBIaVod7+AHETGKJGWWiHAGLwMkHhcTxJjqybqs63pZ13VZquTk0hXDk5/E1sMHuLobEWTBfM4ukn9DJESSeXd48o5+fq3rGswnpyUzly3cc2SvpsOs6Xjb29G1WwyNoWFu0O+T+YA0JiN+uKzrsv729eu3h8tlWTHgUkshuN52ESrCX58e/vjy+NvTw0XKSiToXHCVIpXLVqnwVmST8rSu/97e/lzKdd+PfvTRzcMcEOlS6qXUx217XpdtqW56bW2MnlOKrv7jevx4238c4xgjJ46IwlRKKUuthGmKSbl3Erl8YnJ4wLC4d9DzcaOYDTi8z47ujX6WuW4AGqd7+Nmmf25F8ZzWz1M2G618LtL5bzK4iIIIhWARWBm2QlvhpSRwn2eJjwig7JowhLnWuqzrul22yyICpmHJc4dusQ97a/rj1r9f+79e2u3oXftQnT/mnCSh4fJ5VxFhiHMjmR280Cm7mM8y0tn2zBdAuM8H/+yMiZgiPeOmNbjhJClILbUuSyklO+AxRuujHQcglCrLUte1Pj0/btuW3/Vore3H9XolwqWWpdaU0QPEUFMdEUEnkwIAkOYMGADc5+55Ukpi/iVKF8f0/D/9I39FFGMuWC8ewW5/S/f8/7P3NzuyJEmaKCZ/qmbuEedkVnZ19fTcy5nFBUFwcUFwxyXJHQlwRb7PPBX3fARyQxAEcYG5w57p7qrKzHMi3N1MVX64EFVzPxGRVdXNxnAwTMvIOPHjYW6mpioq8sknnwxFCTc1VStFtffeepeuRbWrqY2PDPTNPCi92z3MPdSioQEgBFrErrabNfdm3g9+AsDBUHjcM45ZNhBPwgqxMLgjBFEWr02W4cAdBkYRI1ADQKJsu1hEhlYGznTR4I/RUZr8eMQQoAhzS8nhL1+/vLy8qDZzk0JSeFlqrYX5SDJhBIClX6xDiyOlmpimO8ohJAGUWD+iQYCrmakrWMdRASEMQ90jI1xX1Y7WY7T5yIJCswBItYVSS8nqXZEiBRF77620woXiCg7uDgDm7t2THZ7weTdtqt0s12OtgkhMMoVl3wwLBaaPC3hHhMwsLVL294jZCQpgkA2DAaqQYxgmN4yDyMJaRHPtvWV9y+jdBZBVVjOVHQoBERYWt35r1+ciz6WswhrQA/bAPWgPdvRzoXUVA2zdNQuo3cRDw82sIp9DVmQBlKRlBKADZs0ZBjFyFSJTpJvB1mPfA2/+dfPLbtddy+Jv+GHhYX3K1yLSkIMelZeCzAiCweiMTjBDDVe3Pn1cC4uxrgGEqLAUYclm0+FgGgCgO+qOupM2sjZEnAjDOYgdwNXCNFwhDCN4RBQknOJbAWHu6OgI4BBdW9PmbgdcOfJ2nrqyY13jsVWMhXgQvQcOXini9HZj/tDN9SnsN7OK01FCQgSGVCbDElgCinqJkN5i2/x2w+sNrltsW3hitObuqIZNQxXaAoVACHqL2xbbzW8tbg22Bl2xdUwBeZsSIgOwYz7q3GV0WJeB4w3PEObmhgc/YeKYj9Z0/OIYx/x1zGjxo9bZAJBcIjmcnkG+5rxChKltGoBTDr0sVUohZjit5elUP53XHz4/f3m5vLxcXl6vL6+X19fry/X6cr2+Xm9b762ZmiOAhTfXzZR6YxoJXSAEx+7QB5LRe9euliyEcbdH1vIOyGdO+MiIEQQEAbMMAuAAwhmALPf4bnu3qpYyIJBBGGN5l4kGACZCptEAcNBacjojAxYoCwYQakclUjXtbmMDDIBs7xEAYKa97wHGRB5KBKWI1TKKpRCJJDf4QBDhZVQ+lFKkFj6UXDkfR/r809MddZkstWS2kKbkpw1qhXYwxTDKipjcaqbHNL6TwiK0CC+CTKPVydvcCIxZKzL2+blMY0QLHkiOXQCWBRyRuNRSl9RYmrJM2WI3EBxcVbe2X2/buZSUpnw+L7/9/PS8FGYuRT4/nX7z6enz04kCwkzDGZmYay2n01KW0t2ve9/23lXD7VRYbXVTy3Qf0CKyclmk1FIwovV0wfey1BU5iGqRp/NqRB0pSJnQ3G+tX7b9y0UQ49b2re3em4cfXUnfGJWJvSLQt3AsxIE30D1QnT7xUF+JGIyFUVCGkWjpXNu56GkSFegxMwKEwSmpzFAZq+AiuDItgmvhpUgtqQiDjoEZg83wGCerAiFZU8NZ68nEbf2662Xvl10vm153vTXrOhgeufdm3Nr0bbFVMlIwOO0b3eVw4QifaIZ2ATEJNBiANHgbOVDDDYqBXwYSCgkTl1rrlEt4JAyoaiCWwqd1PZ+X83lZqwhB79kmZdeu4UHMRaSWQjhx9VR1gIg77oEzwACAzJPOQpDMswfA0XbNx+SG2eP0A5PChWTNe0k/10Z7jXEGZWM25p7a1SJFVbVkMZmqmqllPxM1C7ckWfQIN+vDHQL3SAe3uXfPTqQTf4VR6Ph2C8jPMfMEhqBTPRiBEBOongISh698sCR9pkiRmFh4FKEN0Qs6rI7IW+AfEUutROwBrfdt314vr19fvjLjspR1rbWWrNPKHBJkfcpQNBVGQHAclEf00ZEkmXAjHOFRESSMxTEsUpXHIqWFKZCJsx4JMVJCipGYuTMRabcOkEC6jr5JEBYubiWYKKmeiVYxFQQb7Ukcs4Nw2ogU4tFuGZ5a9wgMQxH67rvyhjgXRI58kJ4QZmZoQvG5MBBGXsfzW4sAh7B7V0lzUzezbtbHfIB0SidAjYNVAdMKYCjENtBvb6oLkwUqoCK7VJfiQi7iwuqxI/RsZOPB4IbsGCvhFWPBcQl1NA1GDhNwxzAGZ1CAm/vX1u26U7lF969fti+v++3az+e31HZ3770NIzhDKKBgAUKkZBe4YghmZivt5DS/jFSIKwsAYDq4yIJIHqDd2q7hbd8xvL9+tetL3C6+XX2/eoSl+AORkyhAd+9m4UaIhXnM/JEkHVkOSGoro0O4aeRUyF6DB9Mpg9v5MQBKs+nezvjjeOpMcHq7eH8BzXU/yG/HKscj5wGCgIFLgHfz7hZm28bbza5Xu9z0uuHezBXdnHvsPS43X1d4XWFZoHIUAlW/3uK2+dZg79A6dEcztEmavqsuTi2n/DSaPI5au6S3jpsdbu7h48Kk5k0/fdwIpPf/kAjJp/0xYQEAgJnXdZkjEXOAAe+YBcyMKsx3gsr0+XxahM5Vvjuf/uaH715e0sG9Xa63y3X76cvX3//xpz/89POX19cvL9fLtnu4uoMGdnSMkoWOOPDK3GeS0j+6ZR67xQEBHZ8BAIAII6sgmZglsWoWDsQesTV9ue1A1FQv23a53bp5d/9uez4v5bRKLSzMwkz8Np5GxNMiZiDuHDb14BEZgQRwELeBkREJFQCzHYUP3yEgDMPcbd+vlwvWWqQUhEDwWjm8wIzi5xNHRMxK8MRkayml8DCrB3o/qXVZuJmQyZC2S+fXDVyPEiY3jTDMlgf4QMgdQTwhFyqVllXOUs4FGa11bQrmHwFSAHOGJOEGAA5cR826azVdVE89Nd+sd+uqmYJtqq33btpV1a1p//nl5T8yuSpGfPd0FsLvns/P51WYhcv5tDyf11qr9d7UwL0wV0IUSbS1yJ5p1qXI87qea035myDMqF+QBCk8Wte96W1vX6/7rbdPXFaSc63n5fRDxE/Xjb9e8LKBxa7969UBYu8dwLe2d22FcCEq/IGWMCJyFpFEQBBAzKrY8Vs4KmTjOFIAK4MRjJEnP9Df+fkIbHEycQkmizpRxqThQmEos+CsCi5MC+MiI/jJVUvh2ZQRsq1RBLqDmau6duuqk9C673rd++XWL7d2NLnYu3c92IZwj4Jmmc2bUREWDEO8u7cxouV7nzZMmo8P1XQkQohAjiCIGMoTDgGD3gEQiQVkaXQt1T1a763t275v227mpZS61PNp/fTp9Px0KkWYwLVtt+16ubam7lEy8pEqImGq2s2SXpaKVOnpEg7A+l4aeNzd+DY5vDHlfT1bTsOBRrw5iITKKSLcjSLCjYc473BzicxImYRJmUsRTbZu+ri5nHIxkXZTgiy/HeUAgxFkHurRR6x6Z3+nZ/7Rij5+GpDYavYdC88SViJKvoTqKFEfxV9Hk3n3QR+GiZqIDDoJzZwkIcIHbi4hnc6nFP7bW7vebtfb9Xa7nc/Lspyfn891KUhgbgjogbNNeUbnyCR5j7OXtiWlBNDNDEEp4SvioAAODOjWs1Y/MwTAQEHIyHmRRUQ4olbzFH1se2t7771bt3wK2m3HdlBmcjM3AwASFg1yNMwAAQgj5lRydAtL1WRTMtVou4nwv/rbz28io0AOEgiwFOy7Q5iESOip+JoAFBoAjoanHqFqETx4U4YYgEONyHJ6M3Oh5EXcvdzc+sMQ7GgQGb57uOve0SAbjgELcilYKgg7s4Y2990MLcBDgBwjkG/IN4YFQc13NfGgAAmsGCsGkSu6Euwel64/Q+yAZqB1316vt6+3tm3ff/eW32JmzfcJSU7qCAsn5hWGruMDZI4WE4mQ5JLvsqT5QiIWqcwSCGa27w0giBQBTffXr/31q15ebd9s23qEISqhkTixIaqDRrg7Iy2ljsWV7UZgCH84eDIEIp8D+JFMH1DuiN1j9vLCOKrXhysHw+7HMDdYBN7BT2/d3Jg6HckYePjxcCHSSwzgiGLgYaZde7PbRrdLv177tsPWojdwAzeAcNydKJYt6gJrhcpRJFxj233bfe/QOnZLkUJCHAjuhG9LHmkVEr6NIys5fVy6bwuJBX3j7H4DL92LTPO7kVsEQMAP+yEDADBzrcsR7c+RCTj2skcDmYgAhDDJqT6t5fm0fP/padu+u1xur6/Xy3Xbtv22tT/++NPfPZ+f1/oPfyzZbP6mtpt1V1A0iMqcqtsUhAFqo2rEhpdrD4j7BwdOoR3IuIHGLCPiQOhmt97wRhZx2/da6OtrbWq72mVrn5/Xz8/r01rXpa5V9J3mPyKelmqGaIoGd42QJHMQFcZgQk49BHSHphaaxeFzLwcPt962jTx8CahCjBS1CsaSQq8AMCkKiSuXdV1O67LUUqsU4eQj+pHvn27uwR4cLnji9oMimnF9BozJH4KkowSNAsEMomK4uSsvJ15FngpwOAOAheF73f9cl5wKfzMayxkSAdk/0lzV3SxzRCOV3FprvW2tbW3fetvavrcG4K/XG0YIwsIsCMx4WgpRliyVpRSRAoDd46rq5isQEC8IQEzCgajh5sZEp1oL09OynGsBoSH+EoAR29a/fL1sW2tdb02vzdYTAPBS1/NS1irr5eaAGnG97bet9dbU9LpvEd76rqaf1vrdaRWu7+vyEIBH+dScOzHXZy67fHY+sK/JvRmqmePnszlQnhHvDu5hBgamOw08CqEgCkKRxHFhEUpPd2EqjIWlijDziIsCeLLjJyslMLJTqZsqBbha77q1ftvaZdsvW7ts7bb3bajBHrSMsSwjBh/qA6siDCH3Gvvp54/VBRMrDRq7baK5s77AD/r9ZMbnSYrwsi611iJLKbXt3Wzbtu22bdttD4BsdPL0dP70/PTpaY3w1EDYb9fL66tplMw6p+ICUbfI5HSMPhSz6gGzx8GE0o61N23gvDa4V62Nxh5AcKT3vzmIRFItZeLHHuFT3MbMCZWQiZRImDXx4bun20dDYRamRkrdFA01/buYegweoQEG4QiDDYND22PczB0C+XZ1w7hHCw8dwjtqSjgy54k5DaOcnlFWRqc7qL2qSpEIgdExMRvbSbpnACj8llqIhMu6usfW2q1t19vttm2t7yeoy1qenk+lCmCYOwagEzJ6AGXjCmaAlMENNevaug5/3yFost+BkIAEBQmA00b6RNSDghw9yAF56NvkVHPI1+yliez7tjdo7mHdzNTdc0YSU6lVSkFAs0h9kXB0z7WVRUeIWTieFROavYJAu/fdRMj9bdeMoHRzcyUAHbnE0SI8sqsykwMQzAr+jBotawlkJnHzftUyBmNkZLz7O5BuQ8w5D0iQ6LCZNjf1IDcHNHQCXgBFhKSAcBAZYIto7uiBHg4pCRRbwA2xEu7hV+3UjQM44EygAgV9C9vCbm6v3b+YXS325l1Eb5ted2+99/dorrW2JbCAmNoZghFBAIwZtIcpJHgwq8KYRVKqTuqpDhR7bDFShIg8vPcUTtJQ1N6vr3p5se3qbfe9GURHUkTl0Z3Uk38RLkQk1cHvfREwLQKGDWI7IGTfY8RD5DVmXHoYFYQhX+vuRy7rADwGQsLxntr+Hs1N1QkbidO0CIj5TCECCBUQEcxAMdwNeqfepfXM1pkftNjEJ5In7tEUHMMMdg6hCI+u2JXNIRBTTDB9MUmWgqR8jUjmi2edWcoiTrcbYSLXMLYGOL442F9vfo7HC4b/dwd9YSb63xoauG+xYx+apI77FnZPeh2mPbJJBQII01IrBhTip3VNa/z56fR8Wn/4/Om3P/z4V3/48R9/+vnHl8tPL6+3vZl72zdFapnTYiZmNduzHV/mceelTTbYmB8PyMOkMLi7qeL9RvbWhfcAaN1uexMmYaxFLnv/+bJ999PXT0/Lp6fl6bSc13payuVtr18gxE9PJ9NivVvvTBiyGC/Mglkw7hasmQM2dSTLcHrUF8yBxVH2C3kBRcQpDF0ABKFmKekheEAowrWKMOFMph5hX26sE+/LzHZMHyJpCIeKiQDSSInEKNghJEcfJel1IZZACiCqK5ZzyOoAXQPMTO2IH94ce+/aWmGuWQ5C6TAN6AqDiMJdSoTzofgGakW1qibluu/aU5/LwwkBka57/8OXr623UrgIs7BwYS6Z8ASAre23vUXEU13Oy/Kd9j3gqS//8PPLf/rpy09fXhhQiAovRei8VBTKNqdTOhnaWpvqTfVJNYgYUbWbaj2v352fkLh1U/MfPfZ933pzt9ZbRKj18GxrX5Gc3omhEmEpozYwh2F8DgBMTRB3y00zZs1ZuAcMuZAjYI07Se5AjQ8zM0xO1gIBIzGCpKIC4yK4CJ4qnSotQpW5CqV9J2LzsGwVqySGgMRF1qWstSy11Ow9ljR8TKqx3Vq7bPt13257cp0VwJliCuscGqAAEcIfunSp6J9JkF8IVQ+oGg/WLkwUIrXnDmbXkJNMBC0C9pYBSd/2vXdl5qens5Ty/Pz0/Px8WisT9a7a27Zt+763vRMiFSolu0CAu/Ukd85eDves2R1TOOL8Bwt0ZJXyKj3cHQELy1Jr79bFIOB9EWd2EUg0d5zYnWjQf4gggjCCgIIBkNGRwtM8GI+acDWVVrgWba1r19Gp2NwsUW/0IB8RFKKPvikp0jafw4EfHNY0YmTER0IPDmDKYyqRjUbEI7oZ6jettcv19uXLl6WWbdtOp3Vdlyz7q/NIeJeI/R2gAIDE4qF776+vl+vtBhHLUtdT9mQUYkrCdqL/BJT8hKNQJ2k33XoEeASGRxDct4NhOtPlyedKAN1YwdyNkUdHgxlUQtwlj4OAhetSiaiUuq6qIxule2v73vZ9v902yI0gtYqSK2u+99babp49YlHVw4GQCQyDIrKUN2Xp3h0sIDXcRy+M6SqPa8TI8pLU/cMIi8nUH1EsHM8IzMGcHAqgA3uO4PQFxvkytZg+LiGk4iQgAxPaULVCIq5EgoMPkTFd7j6cqqwEBEhGrMK9yAYcsVtrvu3RenR9IvhUsBK89PZTaz96fBG+sNyCO4YGhqE7fhP2zyPctDVERGRCwmwnRwgh6ZFFuOvArTMco6mLuy5rBHDhYgsRSxFmgdHvc6AhYWrWoDfvDV05nAISQppI1DBDDhiAjBBU3MnBZ7FVDIOeG1viCgSM5MQ+W8MMchFkdSTnLoFACAaZ8bqjiiPKH/W39IF04wekBTM31fR0I1X3J8EKcQSMCAhhAGYavWFr0rvq2OBSCjiGWXCI4ICwAO+gFoROA77B8Gm/h5pa8q1G93ZhIRZixuwwAal1d2cXHBaXHtzZ45c486Jv3Ny78Zi7Ldz5B8d5PzpiYHVz/7pv5zjjCQjwUfPsMFKto+SCEZdaiki23ASPHz5/+u13n//1X//2b/744+9+/8f/+Ps//oe//0cm/OOXr5frft228NFmI9m0EdEyqIKY8NX00u97Khy5QxwPbwrmZu4TMDx22gGoq9+kl9EzEYTwp5fr6cevT+flaa0pwvB0qqe1Ai+w/PA4GET4+emsqvvedmJACFmNVxSRwiwEbuAcgGZObFmj9qBENPbv7IxdBFO7d6nFGBTDCKuQaRboJfoDiEFEkqq5kLpKPpPc4xnB4UaNeHC4PkMYAwUoP7I74CRSzhQOAGRjXyrVgwIYywr1DLxaNNt3gBamYako9dal21pv216LANREkUdAMllQgQQEPnLNoxlsRE1nINEgNWu9td721vbWW+9b1z/8/PXL15elypLdNaUQl4jIxox775t2Qnxe1k/r6fvWbx5P++k//fHLf/j9j1++vj4v9dOynEQYcSlMnG7ujJid+7qYQ/foEUjMhNpab7vQ50+nk4gkg6219vNLdG1dcRtBtyOAiFy7AnO1t2OCiEXk/lwmCDuej4cpZELx7hXpfKZpFfH+MUo1aTohcV+P6XpNNxcFQRCEIIvi14LnSk8Lr5WrSC2SRYWA1C26uQSIdFEk5lLraV0HPWZJsabsCUYO0M1ue7tut9u+bW1rfXfviCaSRKPh5ubsNA/hdzYl58N0UY/EyxE+HYm5XOc0ZZXinv9398i9RYrUKrWKCCeZrTe9bm27tmytCxDrsp7Pp/Pp9PR0Pp/PjOCm+7bfbtfr5bLv+6iCEEndXAAw66rurtP3ylVyN6pviQcxU44zvo4RZUeYEUIt5bQs2q13DX/scnRMFWKm3IExMHsG5ALKKh33EbUSJ8MIIkU7OXhAtW7mUov00nvh1lrbM/1lqmhmZugOFmCOnsI/OfWO7eAejsWRs4vHF02RzfSTRoj9AK2PB4Ueoar7tl9eLz+VAuHn8+m0rutpPZ1P59NpPZ3WNctia61VSnF/q1AOiEjsYPveXl5e97YJ4+m0nk/rstZSJKYly4XhqWITQMiZBh3lccpmCfoOq3MkHPLqCYlYeEbmjKygCka5AUeyuIaP63GscwRGQZEi6IiBptZbb3v7+vKyb9t227IfiOosJwREpAAcfGaIwQIMiMCU/iN0AMdEij5orgJAAlyAAswBsrQ88y9pYgIxwIMsgA6RHzgMUN5krjRUxwgJCMjSNPCh5AkAoy0zzXmR0w8wOJtXYCpqgacCkxRGmfEDTtYcCwsR0BDZoyCyIiplR9ohtt72y6Vdrv16e2L4rvAq8Kr2ov0L0pe6XJa1oZtgEMHAZvm9p+Lu3ndEImQgwfTGmGDCPRExuxUameePhaXWuq4rEomX1V1KqevKLGnBUl3Qend3V43W0ZTCR76WmScxNzt6BmEMxg6FRwRbuGZnzwGr3Js/Dxk7Gttfd+umcxllJguCwDEYQwOAAn0QzRNU9ExODFf6g6nyETfXj1IBM7Nc9X6ACmBpnIb5UusKpmhOETSa+jEDgBNRZh6ntFcmHh185NcImUdxaYrOZPF4FpwRM5MgMxABckqHxIMbP8zNA65wuLnTyxs/fWsy3t/zsf3CLySrAABwoLSHKYdIjH1m7MaenTHoXRk0co4RM4qM0Ccdr6fT6fm0fn5+Wk/LaV3XdSEiiBCiH+kl3PemmZYDM1LKCHjo00TWZqV+y7zx8fTuQhPjCvJPfNjBcEAkD+xqCRXnAyWEct1qLUstp0VOSzmt9elU11pOT5/+9t9+4+Yi4vm0qAoiOaIFhiydF8wugkLkWgIjXLsQ9bzIoQk7u4gx0PA1iISxMApjWjkODsIQjmzFkIL5kU4vYUbLEWlsR6b3IazJhzkM6ogzmbITdYZPROYeoBmhj2ofCACQUuvpxMvJQQLFcTFeHcVNrfXwHULRFQCgvE3R761ft/2oCYUI5Ax1EQ55MiBIDcZhjPGYgRmNuEfX3lVv+365bpft1ve9tX13bWa7uZQsCeOmlry43XRXI8KnZXleby+tXbo+nU//+ONPf//jl9v1Rp+enmploqy+J8bUGM3bNmEpXKrUWtdFmyb+n25OIFEROdX6vC7PSz3XstWSrTsCIrcAZgYkG/1RvzkIocjRrmWmU0YuO4Z09uEbHVyFEfZP/gAhZUE4jagHxl+Nf/ONRuDEIJxQLhSGUXYmdKr0tNC6JCW3IHEAO5CjGyCJiUitXmo9PT19+vT58+fPnz49n5+e1nWVIhCAqA7Q1ba2p4/be4vQ1Lpm4lpQmPzBxzWPWj7Q/kQi9OHp4oAw/fB3D7OWwxYR4OCY4ENEeCYnhDm5trVIqcKMrTXtvu39dtuvty0CRLiUcj6fP3/+9Px0XmqttZj2tvXr9Xa73W63TVXXlbKfsAgTobuncsGIPGI2jZ1fjK9n4e7ddA7+wog/fKb2MaCwLKXuRYt09+MhPk6Vwa0MwNE0a95+BABYtoJNglkQUmTTY0qSXb6vR4iK9CK9cC3cRKcogOlsSZyaD5m2tJi76swxZD9owMPTPQBMPHKocwImQDIcgggkpGH6EQLMrDW43m7CFG63y21d63paz+fz9nQ+nc/n09pOp2Vd1mUttWzbW9FciOhqreu27dfr1Uzr83o6rSmMCDjd7DFVjhRZ8jILMyMBIDIaIRMkF+u4rRksRgABUy41zML8DsyokCVKU6k5YNS/xxwFQiSZ7VeB3ayXWlhaa1cRQnCz3npLEc1BkiAAGrsZBg6VFSZkYYzJmCAizCbo7w8S4IIRgD7Rcxih+8B3AykAgxyQAh0owHH4IQl+wNwmKUZi2BgR3GblI2QF6kFhQsBpfThVYLMFLwABOhJQNi0dzLgH6bxhwxJ1diJjacIUeIl41X7dt+v1sr9cThiXyifBm/vF/CJyRWkFNGHBIILkAgq9T4YMHkLWXSeii7NWYWADCV6rxWwZn264lFIDEY04vNRlOZ1YxNS7qSbIamaq3nr0Rmp0oG3EKbYZxNkdMGYhOARkEYGGkaPD7GszHNyEno5VFuqGvQ2YkIJikLYHAEJBAZgYCIxiKE84H9BjdOh+P1M+ag+R/qObqSo1PH42PYhBGIuAiGTdQzgBCBGIMKIwz6htABIzzQUwE3SIsxVJknFHPnlmpkfZ35B1SumQkXOAw40FeLsZ3O9gpjDfofrwgPceNzvt2P3M7wZl4IOT2zC8g5nmuvMHZ9r8kIC4EwXiSDOkOqFn4wsiXJfy3aez+fcYcV7qX3333e9/+vKHn77+/Hr5erm+3LYUzElF9UHBnhhkir7kDp9FTjChoHm3k3U2f+gIqj0LKZiZsnlpACKOjdlcVffWb3u7XKUU/q7D3/7bt9OkijCiefRAcDReDGqKhzAgUjBEEe6jY9mYzOnVYGRrUxChIlQYKMy1GZj1FBR2QMg6sLQxx/PKnWaYtRnzzEl2ZFRHBRohpdgyl5ogqEhhqVOhbKqTB2SJMCCWdV2ePtWnz8BL8NKUbg1a075bu+3WLxiGoYjw+fvgb9fQ3vr1tueTMncVMfE6yzA4WyAS4qiDpKMwPWdLRECQYxAMsLGwnNZFe+utm/Uj8ZBZl633bd9vre+qm1pAXG/ti9x+er3+/svLutTbbXt5faUAJjmfzk9Pz+vpVNYVMcwtXWrzUPDUfezZwzp5AEjd4WVvf3h59YhL3w3itC5//f33T6dzXnRMvmM60ExU5a1VyVk6TcGxFKdSjPrx4TaL3nOx4YDymZAZs3cOP0yGifDCpCuk/UwpSkpQqBCuhdZCp0qnyusia+VUZnYgy4gUIiCIqNZCws+fPn33ww8//PDD7377u7/+7V//5vsfns7P9bRq12jdwrv1vd32/WbaEHqReDoJ4SKMtWCKUWiuIwtzP9d3Dt19xt4D9UwmPAbtcFeOjMPXTC8mCxbKEG4vEaHdbje9XW+pVWgRgJQ03Kfz+el8Op9PtUi477fbtt2ur6/X69XdiSjD7PW0MhNApIBV7m5393X6349eOA7HFCeEOcOVaVHDI8HU5GomWlxLiSGJ+u2YEDFL6mW7kzsx8WAhR5agkSJNz9sOIvfAU2dWjVPWUWvRXnXNJHpW0Q1LqpblY6Zmqm6JWT/kAtMtGF7fdGmnqZmmCMZdwqwHN5/O8xyCAHfvrd9uG0S01ratLLfbdtu26209XRLPTQJDKWV7xy00sy9fv7S932633ntqVq7rwsJqtu37PSlAnB2raqmllBRLhqQzhmtXT0Dt7t1lIDIihewKmwW7TOTETKwqY/55OPrxmMe9j7JQmgOfFYeOGCx0Oi2fP38S4ad937a2721vrbWeaoaeqpmp2YVISJnIJWQWZKWIvISRNn87VViQC0QgxfQMADACPa8T2cEBKEbdz9wAM+F/5EIpqWkO5EEYGA4c4YmJJ34/+aJj90HGFPSFyZ/KFySExQHQPbpbM61m3VKyywNTZYayFZgxdULwuEFcI17Db+FbeHf37hfDFrEH7ARGzKWClCAGACaWUjLEfTMmS12evv9NAjfTjyISyeomZAEuwcWQNTALMD3AABwIiAJAzZtpUrtZfXDdW2vb3vfd2ha9Re9iypa1YWlzU7ZJMryagt6DH+0QAoiEHj48ojHPaCjcEUaAQ6hpNlJzHL2tpq3PLJYLgmD0EatgUnXN/GAovk8QwS91QcsQ3LTjAzQ2XceBwyUuN1T4wwkBmAnBWcLLSIVGth6hmTI+NC6IR2JxbkvDfR6QrUf6RJmygpgEwnQhB2nhwSX90Jt9dHPj4fVH4uKbf2fec368P46/wEhEembfD/wW53sOJO+A5UddC2bNg5tZ9MwfeThgLEU+P5+F6VSXH7777nc/fP37P/z893/48e//+NPf//FHg7jettabqh47CMDAt4SYhTM2ykbEB7vrIaUewyCF47xidDPLSg7Dueg9wizMrHUWIdly/qJBeTceWIsoYQkswGbUoXaoAMgABYCJmQKCWVKr8ciQQUK6RCgiRagwCyGFe9+7USTHPOKh2mGy+MbDu7MRAI4k+PByHiNXgEBiKUVKTZVrkcJSpBQkHvgZBHoWk+XOS2VZ1+fPy+ffUH2Ccr7ebP9ys+2yb3Z72XS7IFiqLvrnt9jl3vt129NPNzcr1UtYVvQHABMwUszCeZgNg6eDPrKHCU4EL1JOy2ruo7pmqmy03tX23nvb25YlUKqbWk9FVQhhLsyVORsUfz6dhOW8Pp3PT8vpLMsC4N41TB3D0Htg89hUd7OeuqyIDrw7fN13eH1FBO3dwtdl+d33xSMVX8kjDrchC4bqO+05RJhu7ojBY6yEmMVDqekD061KZlyammBGYZCCwsSCnH0lIBAetEqz5iLrz4YHCakjNtzcmh98qrzUUeauBjYdpMiuS7VUpu9/8/3v/uZ3v/vd3/z2h9/+8MNffX76tJallOIBQWgRXfvetr3d3HZErQWez7LWlRkXQULoQ+EqvSk81Y/gKPzmOH6c2mJj3c5jYJBuRCSFC0mtcjqty7IkS3vf2+XWXy+3l5fLy8trN63LspyW0/n03fff/+a7z8tSaxGEuF0u2+36+vr68vJyvVxrrefzehBGiaL3rjp83Hjox3vgzQesC9MdZ+aRtn9jPGddgPYehogpf15KurkfoLnEJIGBgY4RxA+spDAzIiLkx0bmRxHJTEln1iildk3d1NSn2Nija2um1lVb19a1q3U1s2kpc/flrMS5i92N7RDn+xw+bphbpnabale1UT0XSdjrXW9wU+37JrVILWVbb7fh3y7Luiy1SpEiJWSF5fvHMTH3L1++9t6vt1vvmm3U1rUys5luu2eww4yjkKjUUkqRMnDxCDfPsmVXC5/MSMAZuEAOIAQgITMjMUQ4OZMIWSpYqmsc4tUDZR8IemDk/4Oyl6lyxnVdiPB0WvfW2t5u23693W63FJfOIjM3G3hwtk8uGYAaiXEAjLQu4/upgpRuLiDMvqSRREjzGUMmm2PIg83C53tGCQfSMHM6QVMXJKd63g0OT3fovGRrLIAgBApAoAGOExGSI2WlWTPvZk21TU/36AqYkaEhNgILuEFcw68e14gtorn3DgXAEDti5tK4LFSqEwOQMFcsHCNt/njUWn+zfA8wGnp5Slkjllq4CAqDSHBxEgWykQgNC3DEbDff3ffWzcEBia23nrtM2/fedm8tdAfr4lrCMMCGs8OEElSQGDHd3CTzhlNAOKaIAk7PiGd+VXJ9JVwSHTn9LyebcOEEgNw9XBAEQjAcMJDMwdA0m45SOPpHdvYjN3fm0Eb+e85nnPW1s/p9WrScKkxI6MH8gJdGamdPeaaDEU84tX5oOoUwqkjywWSDdjycNYCRGMto/b2be7wuDrwP7yYvBjnyzpKEB4N4d3QRvv3+m1PHN8fIyD18cWSypjW8M3rS7Aam7XWzlFxJgCEiCGUpZ+FlqU/np990/f67z58+f/7+++++//7z5++evvvj889fX768vF5v29609ySQR0DI0F4cTfRgDnhmoxEPfsX4HweYiw6pKxsY4BDDnWTG7N0HVBircLb3K0ynZXkzJggAA2wb1a3m2B3JsQI6Bs2pQwjECRQAEYwCcXwgJ+aUS3scAwzJ88PEisY44t3EzhhsTIkD5SJMZjsmPYSIpVSptZSlLKuUlbjg4NWgEYETUgwxAGYSqafzcn5aTs9Yn6KcqG8BV+1Ne09JMDd1V4QPmEApUJrAQYqmm3kvpZpVkSpchUNIABmSiDEKrAhxtNYeLtzD3AMwL8nZ7UMXv+172cqe2sG1tGtr3Po2xMj6br2j7giLyCIMiOaxq77uO7xi0+7hPemKHupx3dqXy/Xr5Xq57Zet7U3TGvcAe7leehchAWDEQrKesnyLmMlhuLl96oZGfRcRHcszRXCn7L+qaTdVcwt7xHFzMSIS5wNBEZJChTN3kYFNEEzUFmckidOkjNpiYEYhPFVaK69VlpIidCWlah0CY/R+z3cUIhZZl3pe1/PptAzNfXS33qG11trW9ltvm/YtbCfQShEVK0sEMGNhRIDW+96hE6qaki8fkHPvduiO0T6Sr+ZeewCDQ1ZVuFSuVaQwMwZ419673W779Xq7XffeDYCKLKfT6en59Pz8/PR0XteVEMxUe7verpfL5bbd0msUkayCEmHCCcFmrOmHm3vXbLmH2R8BJwA4KgXT96Bs25aNZiA8tEd2Mjvu680fp5wEBCB6BKb0YE6bGdFQOmVDvmEgjTFIn2MNDRCmhGXSwAdTwdzdE8q9u7mtt973pr3nyzK1NepqHlryDqDmkBqYBtY80o9sXbl3Ys7Um0eMiZovNlfQDO/cTXtv+16GqkVJ0cx6/vz0u+8fx8TdX19f8xZKkXWpifwSU4xm4gBTlbaWmui+SJnUYfNwzY7dHkd3vvFLBEbO8rLxkfcWMAlxg9CJhvAILgzTBYAjVz55ZCk6F4ghQoRVhEuRXmutpQjXIvuureveehMuIuqWwylMmbEpRMQCKVGfrLr3k21cLyTkFyNAScVxQIzcakazwGxzdwDZ03m6w2kIRIEeBMG5JN3JRx15JuCHSGCkHGOgB7mlxAYGBJKnqhCNp9Zb37e9m/be1TQrH8kDARipkbEqmt/ctoiGoEwuooYtS9eJnIjqWta1nM64noALEJN3VkQ3ftdJhJmXtcIB1wVYBABKkbR4yAIiTgxjmACAHCGYsRTQ7gGqNiXnU6G/t9b6vre9uXbXDtYLmIFTeq5EMfx7cIccssFvHwaNJjVmJJVtTBQjD6RASgJFzlIDjWMXyMLbJDQDIgkwgjBZgAeaRwcE13wmkVLA7453bi7mvpKkWRidp4f3l9J2GQYe2eKY5KRp++6uHgwfiIdwKfEBvYwWUvjwPCZneYq5xHRnccTXBy13pidymR6WF4+hCby/5rizOChld1/4eMH4Hc5g682oxFHRP1OHBwVgXsoM7x5YGTNaPvr52OjhM/4bDBMgFpZKYzG6w6fvP3/+zXd//bsf/uanH/71j7/9/Y8//+Gnn/74488/fnn5+vL65eWy7W3vqmqISDRTtzjTFGmlBt3sgyOSb5RYOyhF8MgJR+EQgbXS06k+n0/n03o+rad1OT09vztJxBBWH7S4bHJkwVO5ZWhDAQZRthokFnKF4SAnWDcavFI+9xwuN0s0lwglCIFg9oHN0nQY/wwEdEy8efNpvihDxVmesyzruj4vy9kjNNxUCYLGhkZIkeq8ZVnW8/OynsuyZn4n3LRvfX91a4hAxNq17R+LLSQHINQ8opupeVerapW5iqxV1lLMpUhUYRlNngGn4vCYNzBhojlZZYhflnQ9Uj65d21d973f9va6bV9v2+u2Xfft1nY1S6XZhI640Kb9x9evm+61sDDldDR3c7CArenX2+31ul33vu3a1QtL4SLSX7aNBNYq51qeluVTpSqylkLZ1xyiELmI1yFasSFf306VgfRl9sLM3SLdDFU3nbyHsQEdWCxKIS4sgvnB2eiOkBFkaCnghNpyJAMw8rESBCMKY2FaCi9V1ipLTVxfOOc7JJZtuTlhABGN/iHunm7I7YYODYkQt9t2eX25Xl/bfg3dKXohPxUQ4nTImJAZIIIgLVjugij8ATf3sC15pB+V72xD62ZClRFEKLIwZyqCRRgxeZ+9Ne3N9l3brr0bM3/69Kku9en5/PR8Op3WpZYIu+1t32/bbXyEOYssta7Lsq5L9n9R1QhT1dEzN/yY5MdMx4fj+DYRhGMyIwDQAEqSj+gRTVVb7Ltdb/u2b13NP1IVwKHAkaHfTON5Fsk7ZvUZHCjDLPidxU0HMTju2AiMepMYomYe2YLXXC0FyNq+9220Yu9tP6RUEILCKVAybzb1bvFgVMNgLCT5V3rnxty7jbeaBVEwEhiZakgfyNV660NTTEbp9ZPR0+/emBS/XC4AIMKfns/n85qMBWJwYJgSnEQJkw/GgoiEA8wubDk8cM8bISFlwwPG9CTH/dBUBxihFQCzM5ETHYOagzgRneTyZnQ56aiZ7kcgRklxq/SyGOsivWnr1prue9v31rrmvkhD9NGQcskMwfQPU9FjZsB0CKYf64PEMFBmJIekCgzZssGGugMl+UIcwBACEIYkDpmlRY+S+OnmetZYOTnPKTbcOjhoEO6679sLdrem3dyZ2IlJjM29Rm4VGLF37RDGBKXQ6jR0a0eMVZ6e1qfn9dMnOZ24LMhi+01vr97be4QbEAa8BGN95npM9XtKAyoSzEltRCAkhGxDhUTaA2n0YjBDxJE9TL1L7Sm8EqYdrIALAQkzsQNZQJLOLD219IKOCjPMuCCFb5OQoMeCh9FCJe7a2sldIPCZTUlFmsooRCaR2ZJuDh4x/GwMQv6AHfbOzUWA1KMZrKmIzB/l2qDhB2YsNB88jT8cfu1wRSCvbDBuGRmJsuITJpNmlFXA1AFIbBGSIznTIZMWk58R50+ONz26kB8Ox91NnaDtIJPdwaI3aC4iHg7HsWy+WVIx1dVm/VfGdQewMQLD+TwQkHAa1AQOVE2t94TbElhARBZmFi5Si5QyQlcz3/a2be3nry9/++Wvfvzp57///R///h//8A+///Ef/vijEL1crtfbvkGb9c+TeD5sGEzf75t7mJh45o5zPTqlXOgA6qgQVIJToc+n+v2n83efnr/79Pz8dKb6pq0gAICP1GFAFiuP7XlILKbrG2ncGWhwK4k8bBLRY7AvR7CeI5vbPEAEeDiSZN0oTCxndg4ZE208oHzQg/0SAIjMnHVVpY7SqvP5tK5Pqrq1LUYEeDy8ZDTUejot67kuZy6LYTEgD7e+6X4Ja8l1ct/35u4W77bpnCYa0d3QTC20eDUrLFVUvfpI8w07xDln0jPLCDCfT+JRE3q550Tm0819PcHbbe8/Xy6ny2W5XOpN+EZ77+7q4Qn2kvBu/afXy8vtmkhY7n5JmvHAvdvrvl+2tjVt3cxgrcuphjBadAd9OtXfPJ0J8akshflUChAAzaZ2I5GJCAAaV/12XCbyZtlLclAU3NSy8c3Ijac5GfJHyIwiXKpIIebEZYERhLAwFiKh0dsizVH6uFlkwhAMLogiJExL4Vo5BSoyK4osQIRuQD6DxFHTmRtreLiatta2DSzSA9hut9v1st2ufb+F7RRa0J0xm2IgchKvEwP1eVMY2czzYz83JzxMrkJ6V8NgmB0kgVJKrXVZailFChOhau9937b9crldL1vv7oaIdD4/Pz09PT8/PX06Pz2vpXCm/PZ9+/r16+VySZGnKvJ8fno6n7MrKzO56+gc73eW9ASV73jzm+PhVsYMmFDnLBCm4eZ2tX3vt1tLf1Lv+peP58gT4cNXCZel1E+e7475f+PmzjYQD9Enzr1qGPD7qPswWKpqOY71upfbduMNoUMzUzPHCPQgGuYxydBSyuHpwiDKjzRLNnogIos4aq8RETJh4ZryO+GhrhoBEz1lGc3wQN42cQr32/XKzLU+PZ3PT8/rui7CDASRchXIiNkzWlLzWKSIcNZ/wKELG6PHcu5RPLIgkyeZpVUjMwbH00VAZmNmMxsxWQrVjosfOFuqg2dN6SGrRgMRByZ0JhEsQutSerfWtTXbt7bXvu37tm9bSyvigA/9gMbofLRwjqTXIZEB4UiB4AQI7in65ASz08OYVAGHZsKcYtOKDTcXMAIoBl4JcZhkCMiW4RiI7hA+K9PBYYo15e5nrnv3CHVPDpAzBzEV9wCGnH0OEbtpj/Ds5rEEjWa9SCTEUk/n0/np6fxUn85lOTHzdoGrtx5G79DcOCAveIhHiTiRy4zCRQBp8GoR6L6rErYSiObhpoiQhsjUeteplaGq6mYCpugFqAIiUQSag3qou2ZBYM4JYUamIR6QVNqwI4g/ouiAGPpTIxCZuV4gDnRCJhDidMoJAULNuxmCBrmjOSFjakb/JWguwLouajZBSRoOOdwppocJGvsS3u3JLAGZxo2Qs3Q2BR0paXOD050uVzJnLICz5/OIA2He/D1NNrDPh9J2PDJsjz7dvJ7jR8cv7y+LuS5y8uf0gBHMMb1dVXvvX1+vB6R7XNxxrlw9NMsHh72P8DAbHZk1CWqZKE5WLiKyhHA0i8WiWDAHcbhH794sHAhIWGqp63o6n572p61/2g2pSN3r3sedY2pVkLnldDxQIIg3tzJ8kXSXRq0o3YGK7EJ+Xtfz0/l0Oq2nU13Xuiwg5QPghQuhc0SBqEhK4iZLok2MDMLgCC4lSsC6YDuRRekaaoiAVagWWisvK9dKU93Fjd3FIGvJEbINm4x9BVNHmKaNxgeP/r7vZiknJ0O1pLQCIgeMRoJzLBLS4LRlo/U3UgSYKfRuCB4W2jGMKTB7Z3qptaaY6PtS8VLKstQxxQnLgGlmzmhU1FFycuyYy3PaE2TGba4CGFwhGoQTOPb/FKBABnTgEnlNq1mPUAgWMdcIryKp/MpSgMgRpxgQevbjyS55FMjC4hIUaOwwq1hSlgeYBXkonziiZSoFjiBzIOgI+F5rQZifT88R082dTTI8qx0Hy/+Ie7INZzChLFKqSEmZmiQ2A+N0czEZCzRbrsKRm2RwghBCZhSmKnke4VpRCghD5mnDKITDJJVUAXOuIdUIVoXWY9vNvGdyc2+6dWsWFgTZXCLAkTJlgSOZA+5RQw06krGamtfl/G71AHIhOLY0QhJkgXweMUrDET3DOZJCXJBrBotA2ZhYAi018oizVpy5FC6VpBILEqdsuTuYgwcFECAjF+SCUpELsgSJI6bExSB3Iw4XL8PVZItPUdK0OYc3NLyDMQ0SzkUAcAjPWcaVirEiG4mTAFcSNqd35MIsK5uZqKQuzC+noY8Rsh9UN4jhyGBiyHk5d9kVzHnps7vc+PuIGPl2IB+1vZBRO7FkpRphkgE42a4jSCqHjntuHkDuyIoskFKj0kc0C9Obcs92pjCFJo9C/rw6Ovo9y/sqCCgLMVNdSBaUgsgR6JBjjBhoAWbe1brqjpisCM6EjXZtunXdzS25wgRIQOE2N3UiT8tgEWrOk3IHCbB17V2beo8J8Ux0AyBS7IIiDAFyqwOPub3n9BisPgN3tCAHdvQgCS4gARIoQCXlfoc6ABDPzC8CEcJbQwsZ+ME34WNMVdkAcLrrLuRnypSwjSLoYbNSip8AyLND48xNR6QXmz7CN2juaHHkQxUyp2V22ARwjCBH4UGHdQckzmIGYhJhkWz3TCmsJFKWhRycJaRQBCEyJCmZ6+lUliqjHemQzxDhKPLezfWI5tOJh5kBDRgdbsig9aAGSPkIaRQcYkB4+N60q2v2cUzEJvvmQXKbKZCCOEmHjuFERkIoDuiYtX2zZA8hMfNIcDvJ25hRFA/rAYlaDooSxuGl3xu2j0AMCYGH2zJiVx9KBQTCEI4gTKhV6geW9t/9u3/35kdmbxv9jqX2Tzk+xkT/WccHefePU/H/YsesN3j8CX0Ihv9Tjm9c8Yd7wPs/34zaNCP3Ax6/hPce7Lcn/7ODhG/+fbiGuT/MzMdEVt7d0lSC+uaWxl8cMPwjo+/NKBzQ+/3W4/7pfoXfvvNDpuovuUN8c1/fXMf7AGmm9Y4f3Ud9XNf9flKL7fHIzOm8E3xz7Q+j+Zh1+Oiqj5TDu8t7eO19Ghyh4MNgH28K8Di/vn0CD9/NZ3R/m/sjueMDY4B+8Yh3cy8iUgDk3Rt+PEvx3Tfv3+5PXsIx994srnfP4xeWyoiX7mjP44vvI/0nFmHMeXz8nvldy8lvcwGPA36fQW9+9zB/jgn85olPt+7dzT5eccT7u/vw+v/U8W5qwkdP6luoAh5sAiT2+faUv/hk482/bybzP2tbeHxMAd8Y1ni3ED6aQG9P96dH7pcv9060o7fuS8DoujRDyY9NIuK3MwTvs/s+5A+vf3eCX1prj2d5/OE/dUd8c57jy4Np8sGlHQP/7s0+Yrw8vNH463ej/M1L3p308ce/QPn7JxzvFuu7XRePN3q02W+GAPH+4MdlPiA7b97w3UC92UXfzJw31vCXzFp8+/wfL/Vxp4e3x58yLh/+wQfHn7AJ8c25BqH4vX7LB2juxxp1//99+EfptX+h4y9cSzi3r/+CjiF/8KcM/5/ctv6zH++s/ccXlyHFN6/6Zvv4U/fzPsL+M9fz5374zrb8woQ5/NA/+64f7yP/hOO9I/tn3nC2h/gv8PgmtHw40mp/MGGOv/smZPnotH/2rd+Z4/tv/uRZvp2aH7o982VvZjHeN7uPz/b44l++gD9xfHC2h+jyz57vlwf8L3yzf+rxuPX/OR/2Lz3dv/SB8C6afueGwBFJ/EWn/PhV/8Tx/Jcb/l9eh798/JMs7X/Rxz99g/wlMx8frJ43LuU/76G9Wb0PDve7V/0lJ3vj7P+zD3xzrl84338tE+XX49fj1+PX49fj1+PX49fj1+PX4+H41c399fj1+PX49fj1+PX49fj1+PX4r/D41c399fj1+PX49fj1+PX49fj1+PX4r/D4gDDnYO9/+EslIN/S097Tor8tFojj6/HvGyrUL1dV/RKt+oNjkuqOctCPmN3fMDrevmmW335zzggHfzzJtwR8/Ib58u4msg7zT1eN/Rd+IKK8p1ei56+m5MH8McDb0ph7RRfCA13ooZrnw2Ka459v2YrfFIwAxNsCl/naJDSP+nc8iLVTIuNBJwYPOu770or5+PKNvvmVyNsamnul2nHpAHCoQTyQI/GhCfPD1X9QXvhNPdHDaHw74B8ef2bCxf3zmMPvK5d++S2+WQHHH3mAvyOI4bc1ch/VTnxwzX+CaYxTHe+XXhlv2dXv7iriT7Hi3hWN/POPWXT/5hDmb0hvKZWYImTxICjz2A/nYRbl0/roAc/TvZGgmRM8Hhl87zmf3xrvdzZrTL05cvdazuP3Y53NUuljhX7E0/+AUfyuSvUXj/uKeLNkHsrA5nP/YFP6Z5jj98zmX6ixefPNu8LbP8GOxbcEewSYjQCGgRuPMO6KRL/09vHtecYXs+73qCh9eMEH9/YX8c8/ftG7n37E7/zmSj+qc4psg/HtH5jrN7NvTq8s2LrPgG+XwXGrf5aGfS/zgofCmNw/5jKEY2O/E6PfbkAwZ/1fMq/fDc+3hvFbXyaFh769ZnjXsOhPzLY/MZP//Lz+5pVvpk780hz85fd+t2b+7PHheGIKjn17vCv+hfi77f/a4nI83NmiavSXYgTGqEzn0/J0Xk9rrYvUKhFm2j0sO/QQ02hOc3Ql9oCht0HoLFRrPdWyDO1wnOLAKRCcZeyzI8AoNZzm6tF+DtntobhLANh6bN2/vN7+x7/7h//xP/7Dy/VmEA7BgiIgglWgCNaKtVCtlLqHMMRBAiBO+r8o/m8eh+Ufbn/3/379HxBHk5bZ9g+GbvFcSkMxrFvq8UBkU1i4vF6//vT15ctL72bq7pHdwyElTaaX8fiExzzBQzZ49Ix/vziHpze9x0cv8l/oQAD4m7/53f/hf/+/++Z9Sdv539cqf/NXv/lXf/XDb56fTlxWFgFj2MH22+3ldv26dVNcO56ifIfL91E/u6N5dNW9vW775XV7/Xq9vFwvr9fL5Xq73bYUbEeEIlyK1CJ1SVFhzFKMbGyw3/R66ddLu7y0y0u7vrZ96+2m4Y4QTPj8VD59Kn/1m+Xf/Denf/OvT7/9Hj4/tae1IdzcbubarTZfv17L77/w77/Ilwu83OLWxvsyUeobXV/3rz9dX3++3V5jv0TfwIzMkZD+j/+n/+0PP3x+HJaffv5P23YhZhFOFbH0ZjqEQkipy3Je1lMptdQS6Pv+um0v2/a63y77dtm2fd+3VExXUyLMDvXrel7X81rPLIVZFuEn4TPzirCiV3CMAPDpkqcamQ9ZsvSyUvYaZqNqxABUoCviFbEhGEJgnFm+o/JMIoCSvWFyMUIQOkGkwiaSYOpYkTDn5yIiRPw//Hj9f/zh8jgm7Pvaf+6tv14u18sVELIVWWrDMaVkE8PQqRhK4Yi0LnVZFmaZjfAAInCq4Ll5a633tqzL89Pz6XTKLnGpeGrull3ezJZSl2WpdeiJmtm2b3tvRUp2/8o/AggmJkQzs27mlpf2oIZ9LLoc2mzZZ5Tq91McF2cvSTNPucnu8Hf76bGKVZj/N//L/9V5PUepXhYEL9uXsv0s13+gy3/g7e+5AC4Spe5x3uLptsH16357bQx1kROV5bbybeFeyRGdyB1dMRxZhAvvffvjj7//8effmzfmQA61vfVta9fL9evl+tWsY6rx48NdTT8LEG10yHX10AgzdCN3rmU9rU9LXQE0onls6lezS6AiATOe1k9P6+fn9fvvz7/97vxb7/T65Xp92URkWVcprG7q6mFFfsv0jSD3fvuyb19nE9/5OR77pmN24k25pRRCNLdt2/d9NzeIcPfWe2sNAU+n0+l0ym66pZZwz5YkKbR7SNjci3cmMDLkJkfYGqM3KVM2cWDm/Hc0RkO4y2yleFa2etahmX40rjhuIt/n6Mg2W87Fenr+zV//t49j8mkt/+v/6d8igIeb+2W//HT58tPlyx9ff/rj9acvt697qvb7oYo2nK9IpdxIkT1g4AJcsTzXp+/q+fPy/Jvz59+cPz3VZZG6iAiR0FCZ5NQlv3fcOTZjOlpNpnwmHC8hmtENDRFeRkACGvJgQKPbWkzl2Tt8kTKdpmAapmAWppHK2m7d7P/8f//3l9Yfh+X/9v/8v/z88o97t21T1ail1LI8rafPz8+fns4e2NVue//y9fXnLy/btkU4gBehWssyumhUJnTNTuUWqXUMQEQRvm/7vu1M8nQ+P52fPn16/vTp03pamm6bbgqGgsH0+nr78vPrl58vt6/77eveNyUACqiV11NZ11JXqYsQY2vaWneF1PPN4O/QV802y8yMBJAy84W4EPGQZLNuupk3o2ABQeB/+z//7//2v/ufPY7J7y/+//r9fZRSHpmGSm5EDM3XY6qPJn+He5dPblyJEA8Z71SyN0uR84ipiJ0ipCKcZyEkcMDhyZmbTW/OshURQCDONr9TyyzlB3Pj8uwOlcthLorsqoffNgnxh6YwD/oAeFrwv/9v6pto+gM0t8fe/AbTocwpSUgYSMPXAkOK7AAhyAWkYoQCKYVKDVmAmfIKAaYHlw2+DNAZPQrLUr1WQArEyJ6bPhfqVCP3YxQerzt3kykOl01rfTy9AGBXdGJ13Jvd9n4xBIdgQENwwnQGMIiAGIgwEAzQD7cgUN+MibnuekNiAkHgqRg9ZDsBsuFyqGpTVTVwRMdwDA3XeL1evr6+fH352luuKKCMF46Q7TH2eYyJ8vMB3Rze8JvoPUFJ/OY8/6IHPj8/x9FG7nhbNhIoS5zOeD7zWfjMLBAcBAYcDmZI2tAIIyrgylHFnMwDexiyAJJFiBupQm/Rdt+6NdWGCIbixMEFQyA4MNVjwcAtvEXfrW+633q77vt1b9ut77ce6ojBBES11NrVIruwFqhlX5cd4+Z2VVc0BXfpFVkC2QA1ojtACIJFEEA4RLNt77fbfrve7HaJ/QamaEaE9F6Aw9zUOucMwKDRIBIjrSzMFoiMyDRmPrqFmreue9Pb3ret7dl9hgg9NNBYWaxYdJwCugBAiEIh4CV7kofDCOYDRkx5+L4wofRU7M2LSe1NjECHIXaICIxUEAuiAPJwc7OvmDMGEjAhpgArZdcPYiaRIVBf5S0VCiPQFbyDNesbIjp4YAAzjM4kMaLWoSoaGNk53hlcpnYsjFuLbIFm6AZmYRxeKCoPVWQNoBxXdAjDMAYXjEJQGIRRAYzAMQpFoRACIlAKAGAMJrQATTlQAsZAChrNTO8rL/0iHzrHIQRM4/eISBhEaJEdNDymWOvjsJzX9el8irJEWTG8Qit+k5aK6sEcJB4lbh7iTggAhm6CvnhwACEBEzEbgSI6kgOGkxSWKg7CjAAeoQ5B4B7doXk0ta3pVbUhRXZLfcBm50wBUEs319Sje5ijG7uxuyEjUKSba35Te1V/BezIwEHi5LAAKYlLyRnpZh3BTRFANFRDPVz4beYwwsN1bGFTRX64hzSE8wnR55wJDEdwM7eu2txH4y/Tpm0HxFLYTNw4smdIWIRGaG7Dj27uNKIPQODodxAQEGx5BofA7II1ekQTDrg+F+DhKzuCIRiEQmj4BF1HkyX06eamB+E2mpzbu0Y8hPhUBDFtS6iCoCH0iN1863bt1pupjm6bU/swIsVQRyohkIEcJKgsCEroIuAL+SogFX0lKATCKESMKDRlyke/ycMVQkrvNxGe8QVNHylVT3k0duf0cQmJgRiQ02RA9lQb4BVmb2bwAOthGtrBNIzDTM3UtNkHDb96v+3769Zs23rXMK2mjUBrgSIRQE1tb7rtt9t2vd5u4RphIrT00ktZtNqyCJGpZTCcLlkq34fHbdu22yYkafeWSn2RUkJ177opaK7trV+v++VyfblctuvL1m9KEQSwLKJazYp6MRNkbHvft24WCRcATB8XgwBmBCXEAAwokJsf0Qipbbe+qe1OwRxCwL23d7tPbNN5wZRGDSACz241AVN2doS0RMCpeU5jM0jDxQEyumxDpONmYAbuQygdEYiQAZ3QnRjI8vHnzmNuju4YnsrbZO4WI3+WnfaYRy9TotGOAyA8IuFQc3AP9xS5yhazdPi5Y+E4mqM7uMG8t/ioq/pHbm5amA/ThRmAWoAZdPW9m3RjYSk+FH2zW5CPHs8YNDJKCBEWPhWCD/VpH+YhxlMYYzjjw3tvrzcXkhgnZqSNcYgKA6K5t962tndVjwHhD18ZECIbrIeqC6NZZAcZQj56oZDzO+JGmjqPMDg6dCDMlhygEaYWFhgj+gIAU9+v+37dL6+3/bbbuBwiGE20P0ReH1zVdEqO10yw5T5Pxyi8+8P/HAcinpa6LnxaymmRtVJBIHQKIxiNrcJTY92NzN3QNKxboFuod7Om1mfvY1MP8zAH81DPbgEegIEdSDzYnHISm4aa702barceYFxwWRgjBCHUMZwxzgudFzpXXEqIGDEEZEyJEeJADtWgBhYSKYusjkrIK7KQCGdsGhbu0Huoooeam4OjIiog8Pus92iHMsw9jJmCxACAyFwykMWR/BpjpGbNtKdXYe53ts0Bn9C9SQsCpZ+MwLNnGMaUw7+nh3HgR4/5AsQ0Xxaxh28R1/CLe09AUtizk2pe+exZD9NHfsilIHy7QnHuiO8TXjHCwDs5xdxVNa8nW3/Ndl8wxouIiUopMuBeIqLECAY2jSOh49MjMhu9xCJZE2ZHVitgIhJEhHhcS8TEDafc/ZF+zMsCAHPHCOeguEfbKeU/0/9D0fowm2lzB94QAR8MCQCAF/fqyIakZEaqvDndEG8Vb2fwQBZApu7Ur/Jq69cdv/YCvhaiShBgAOqxg9/AHQiACJkk8uopEYRwUzVzC8u9CYEhJGa3KhjtBAfDx93VumYbG80JD9mIbHaufTA9Yw9DVQRkAUQutTw/P33//ee/+vz0w/P5+361V2kel9u2X29bgMfY/kB+81fybYMIIhLhcHJ0J3R1A40AZhLm2Wp+pJAj3Ax8+oeZwyGWvML0j7N18/ExHpbfn3+mDggT15qS6dm0zw1sIPbgCGpEJGLMLMWKsIhkm88JkOXeQDNVnU+BmQNzr5q95AAAImzueQMzm1+8XT4RqgYQTVvT9nK7fLm9/nx9edmvt763hKZ/gepxcHtShN9Au8fVCNsIuR2gu35aLSBWkWyICUTgwACj7QYQINB01B2OB0gz2eiOhOgRo6nUjPfGRcz8ZwAweIxW3NlDDilwbOV3SP1YtuAfDwrAmUqTpYQVp85OSEwB1tvt9dU6kgAIBi4in56fRGTfb61t4dG7gjsBFCIujBDCMJuaBSEQYzgUQ9dcF2k70k5roDNjABnlEvJAHzzH9OSz2cTs44AJVbtbc+vuGjMKAsoQmkkIpciy1ForCgY5EGAm1HA2wGVQRmMMDXAD9/YOZEkr/I05JkIEswHyH5SYuUWMfAUcuuYxlmGuhukUh42AcxhfoQHJe4C6e6SXjBABNsxtplURRyM8cHQwD3CzjPEYEVgS1s0lQxGh5GTCnG0k8xOkQT7yaQGarU/MzMjIppsLRf4yNzfN/jFS8e3a8wBAVIemwc1ErBQzF852aen1eYyuzNnZF2PuM4AjWhrbYaR/CxbgM8OKiDRv6r6r5mq/P4f5eQD+w/Jl0znf9nbbtr13nW28p+ORvrUZuCIq42i5krsoAlEgAPW3vXnG5owegRCGs892urmjB7C6G2BGUBmfmt2u29efXm7XrW1d+0Tfk0AS99Dk/YHHv3F3ZOfFfMty+P/RQYhPS11XeVrqeS2nhcWBw8gNwyA0Qi3dDzAF9wPPc3QP1fRxm5p2G+6dDU831B1CMyDxoAD24GJoQgCgGqqwddtVu1lgSAFcuRCYUHQDVwp/OtHzSk8rrQvUYkQRYGqOiBHFAgwWhxpUSbgsciKChavnjjf4JGEISG7owR5NtVsodsAOH7ZaH4aGZsfA4faKIBISz6ZelO3bc+KYdtWu1lS7JrITY+MayzAbzt+DP8LESpCyUWGGP6MvFIx2cjOSwkk8gNFnhgJBTbfwi+mr9Yt1JZRSC1YndvaYgsjHPnW4akd7mkkoosMNp5ndfzMmEcMZPcihZjZCAOaY3W4PsywiVWR0jsuwgJmIzCDAPBxgpkdnA+5Ew7JHqAjYsNoDeUjH2syRDBF9pnbTx1WFcXEBSIEeeZvA7KPvNFBQMA3uHyHNq4URrHhAonuj7YKN8w8/9wNXF8EX92qEykisLt34ZnxFvCywPWEAFEIA3Ha63uSl4c+tfNUKvhbkhSKgE23mFv3i3QmFWUqRmm1CHckR3cPMuociAjIlUh8h4R7omLFaGkBCJDDrrfW2t67dXC0MsvsR0Oxu5MNdBMzWUW6kPU/CCMtSnz99+qvf/OZ3353/6tP6wxU2KZcIvNy22/XSekNGEkSCz0//7bp8a1WIRCTygTkaGmBAhLBIkdmCfniq7oMHPh5TBDHX7A4VEObuxmNznBny8bRG0iA8sjcYCbFQkULZjzzDsB4Js6patuoDJJYuzNKLVRGxh3UJiDApOLmFIQBP93euy0nyjOxnfrALYjAOPnJzQVUjfGvbtd2+Xl9+vnz58fLzl/312rdm3ZKc8OBaPnYewQmXRJgGWJhrdNNm3cK7ezd1CCIMqABlnCAdTwQZrRnTd3fKPnOOQYgeCD72MvIkOeaqRGCchiP71IHHgAeBgGiEHOkTxww/HjhXA0mc4/N+AzpzcV4a2ILSLbspeui+W2vXi5S1lBOVda1FpC51eXkBU9Xe1NQhGKAKFayZ1QUa/emIADkgwB3dCAIQs429qjUzAQ5iIgoH83BHC4ygAAZkBBldAVlICosIIXoGS929uXUfPTcpgCI7bwrTUvl8Wk7nEzAEupM5eXBYRlsaymEC3dAs1NQV3ru5gDjt5aAFTIqCuoe5zx6tw6rDyEqNKP1gAnwDXWQ0EhERGcRR8hoIgcjSn8LRKAqSqeoeERiRbIZs14aA4JDJi8DwAEfM/pYkPFhhEU4URpgZuYG6jvFKk5sXrGaqXdVUuxqGDze3fqTP/v5nI6h8+D4ev8hOcgag6o1MulblqoplbL3jFEZASECjTV5EtvKe1C9CpAR5spnkZAHkwQ8+7uHmzgUwriSOrffhVQQe3ey2ba/X677vZuYQmTWZaG661uCefUfdiJgJIHfUzMq8dXMT5R0QcsLUeVKYZ4xsko4YBEGups32W7tdtsvrdd+6dzfL8Bfn5188BhYAk80Fg8Uzp+UHf/GfGcrNozBXospYGISDwckcQCE0YjQ5VtPu1sgcDahF7B7o5qq9912Tudi1devqqm4G08lzQHdwgERCkyceCBgUTsHsUqIusAjjypB5vB6hFr1j6POTfPepfH6W84pSACksohlkotydmpVNy96pG5kjIIkwJJuJBxkTnQA4ghELwBbQuPTeQnsgIL3rpUIHTQlHNi9T+UEcyCyVWZiy9mggjMnh6127mqrpYECNXQsGQY4mPAzJhSAAhqAHBzS9WZwzdWC541cIgxmAjmgBO8DV/WL9qvtVW0J/xJx8+hgTfqw8fIgnIdOM+Hjct3qcvvXjEe6ttYSqD6dWAYhZ5opO25qRfZGyLLUI57uPPuGEEOhzpj++R3ouZs7DLA8qLRGLQLgTDeLv9LYHAw9mL6UkR2buLv0+5JlIu4PQaXoC4cjc3V36CQYn9nHcVBq+IzL/dmR4B6Hk71M46ob7DrtHL6BP4QBB4RZt99sO1xtvypuvJKdQItvUihpi9H672eZMpUrFKoqqZNbd1cPCZztlJkZiKsyL8BpGkS08J/428sdhqt6aqqmHOjhSAEVkj2hD5xEmBIAHuZMaqRIxlChM61Kfn87ff/r0m6f1u/PyyRqXupKIeWzbfrleSJCFkPChN96xfBCYISIIw8fOFxEDGEPKuTnx94GCuvuAxwiZiJMZL2QGuUffE8Qw7G92EsdAdEiuIROLDMLvJD8Y6ojKzCMTQeISEgfRY+RcJ2H1cGQTx8ncbtKf4mH1RLZOHoM/Lftw6D5Ac1tr5va6XV+2l5+vX3++fv16e73062ZNE7UO+MgVHGju3aGBcPDw0DBzC0D1bDsfgGF+ilgClspcSACzj3AEBB2gMASNWDpDa4IEtXzuaYHTlR9p1hF7U4wmwEkhDIDgkQxN2sJ9i49ZUjB4F0f99+Nx4gVkbexVbDft2pLopT1DEwenAkxcl1IQsbVlb3u4aTc1s67WuxFSYUZEBAOI3NkFI4AFS8VwTHzEvJu3bjxQW8wEuwY4oCMHMZAACwqgIEohGegZhLmpe3fXiEQeIwCBCUSwLryu9XRezk/L6bwGhkZXAANQtMEZgDAMxVCMDq7gFmHvhgWnbb6DiYnXxiCz3hMKI+wb03FGIpEskeH1JUs7193YDpCQIMusZkL+PmNjpOpg5n0gqztgYD/pMWWDbsws45HBP1KEFBBBgCOoneZ3sBtGCjzUzJi6qHZSJQ/P21kk4B3p9CPSAkTMsXhcaeM2EB0AA9QD1bj32rEoAFFBZJx+JAQN7w89wiKJgnjcDwC4R/YfBwpEmBhYtrLmh9RofnF/WINMnQliGFyh0S85YO/t5fL65evXy+3atHkEkRDnpja27xxL91B1QkdyImZgliJMTvzGYuDgUSQrCbIWihBwUIkDAgjIA93B1Lfrfrvcrq/X22XXlqUO81YGKAKTsxAzqQz3jXCWWSMMLBxyAB5Krh+v7YMd9D/DEeG9G7lpc93dEN3Rg7yHq7uqWlffu+/gG7pZD20hW5ouM2172/feNt032zdvu/c+EOCAIMIiVCudVjmfy2kttVC6Pqau6tq9NbMeDKVA5WA0QINQtdbA+mmlpxM/P9PzJ5ACDtCMuwUCAbI5XXe6bPBy8y9X/3rtHcTJgYsUFiTJwEcYgRmlllprXdf9dtXerDeHQClvh52JhBgJk7RahKsUkQokQIJSkAWJEXMQkhimM0k8alHG0kYEGA7zAGnmDIajdmE4YA+/gREKDfx2ZqicOJAMoAN08AvExfSqfVPtqkjkrOE2P2Zn9Dzd9OEetiCcZY84MKRhtT6YiWq6v76aeW9NVQegxnwwGdLgpF0WkVKk1FKEw2xkvoZ3gplIOxogDeiMKLNF6D6SX0iJBkMummmK0ysKBCKWad8yGjMzQuSaIcrAPHhepB+Qm4ebpzOdZImJc8wlPRZHHD512rn36wfhhaIRCEOl8PAXs0tEQyGEE1SMQiHa4LKbuzkicNInF6YT4wIuptibXW/7azA5LIBK5ICqptt27a25OxEhLsRIwoCyVD2v0bhldDDKOczC3cxb10yveKKXuTMFhod1N1VCVXUrDgAe6EampEqCiLgIn0t5WpanWp+krMjCpdR1Xc9P62273W7Se8BRhPHWNUNEprTkmC5qZsv4AYXKzYimCzmYcAMtybglwm3GJbPaI19AwEQgzEERYeyEYGacjNQZJSGS+5ha6ZW6u5snQXzGdQSHPzHCqvTLYeBhE6acdInDbqd7kanhICciCg//IIIDAPDwy3ZT6z9fv/x0+/nH689fb6+Xdtut2/QyjihrvgEefuN4M5iZnWElXEFvehv4U2i3vp+edX2y1U91gZLhQAx/NWKkKIdbOrOSD+meGIH2gH4QHAIhl2QEBI33xnERCDFYEen3QETyBobT9Q2f4/36qbJCfZJwBmPveydso/RbwQGs990cuDg7BEAReTqfGXED0IgIsG5GKgjIkqHebF4fgEAMVCgcEAPIHLV7Y01HEpzC0QIMUYk8yfQigAULckGuRZhpghnulmmd6VcRSKXlxOtJzk/L+WldT8uyrGUpXXvr0frIglp4V1cDteTMWWAgBwO876I4s+ZgD1MiRkVmP6JKYi6ZLCMauW6AiEAzT6h+pEoiggOAKNIiDtCVMABskOuGQ0xHaCd5fyMZGAjmIYQiRCglavrT5u4QGOFdu8dAJwCTHZVZShnL7b4oDiPAhM4kxsqsyhGezmIhA/hL3Nw5uw5PN75xqwIA3EPNAYM7tI57B2JhzhLDucs6Bg0KfyaX4Ch4AMTAADc/UCpETLPC09OF+1JKN3fkp8AhIMkPMHPCRAHogWHWen+5vH55+Xrdbl17AAECDsZsomS5KNE80ALRkYIpaiXmKkWU3lVGYBLYRnaWmZiRET3cwtwH5haBYWDNbtf968+vl5dr25t2c8MhmQAIbzfE+6gGTqt05JqTspDw0QiVhy+R/89g/T+7jwsAANa6kZk2t90VRujg5t59+G/Wmm9gG5h2dd591o2627631vq+9cPNbc1HwTAEEZRCy0rn8/LpeTmf61K4CBMmTOyubmrhsPC6yFqwcCA7uKrtu/dWCiwV6xJ1NWazCDNyZwBBLGbycrWvF/96sS8Xe7m6U8ESXCEAiQCYiKWIFMalxvkcp1M7Py/brbdmvVkESHmH5iIJMTKyoAjXkX8vyBW5AEswBVGAZybMEsHV9HPNzNPJnGjhjK4AA9BnKg8nL3IsUBhJkfhmN52wLlIAOLEhd4AdbHO4hF/drqNoUonJ3WLU0jqEBSCAB05W4di9pi97398OH3dQed/vSKZ2eb14RBYVAUDgQFIfsNKImbOWUmopRdgANBznskEEZprpnXxnFOYDl0W34UIQZrowkfCMJMIdIjx80JSAZv2P5RMQ4oggPPyb8S7uyTHPWmz3cFVNv9zGHT0u28zdHdBxmtP3CuXB8YWiMBSGShFgr26XAEdG5FMsFJUN9wbSNNydEbBSVMaT0JlghShmvje7bPvXYA7oiBrQLVpXvW3X1veIEC5ShDhLhXypYScu0iw8U7Hau3uzcA9rzVIQJsCJATEpyuAGpt5bEJot5hYA4ABZCKKWRJ9F5FTlXOvzsjyJrMSFReuyns9Pt+vttl73fZDy36vOwYF/wj0ZkZ5rLoTh8gx0BwhpTpyEVXzwdR3nQ5mMgGQpJGqbEAUAAqgpQmSR+2BtUFL1/B5BJW0iIpOnA8A9OGvHFoQPJScWmAzNB2w2kkqAcVBuiJAjnImcnJLd+kGWz90vt0uz9tPly+8vP/50+/J1v1zbTWGSJQ8o95vVP6YivPERZlW7hW4WXZtq79a2vnft4Mk9QGHJUmuaikaDe4g4yAY4y/bTEZ6pnmkDMjU/cdjEcpI1ksYsL3dwWmel7jA+d8EKTzT3nhK5H4usVJ4FjdEkGlIEJAbqAGTq2ls0F4MSiFyKCPEZEbM0BwNMTRELE3ggwbCoc9iQgWOUPCC6Y+9OZDaePIRTeu1GZMwuEkWAHQtxJSkszIgZRJq7eniMnDMGEpSF13N5+lSfP5+fP53W00JckNg2M/Vu2sMN3NzV4vBxzQ0AiDNMereCjpkagWnu3P3Bzc3VMrRBEzJAZOZhwxUpGRIeNtP6gUAQjMw43CBA8gAwh8mGG+UnMwM6qXQj3Dd3ZmGW9K2ZWc1ba3vvEe6qrpZLKM0uIyBzFmnTFNmZ3JWMMsbqMhdVNuXhrxIyKMLlzah84OYeCcn70N15C4DoCYVCBFqoRTOsCqLBNMpkwJPtNYpRzWdN6sNayyuFNCspnyHCKdeVJznQq/HOD+bi+HZg9AAAHllC3PfeuqmGBniGOzNbC3hUGuZfjTqDUDUkku6lO8BHGMNMUBIB8/GeIy5OHxeJza3v/XrZb6+322Xbt137sLfxTeR7fD5W+4HUTk2FweY6LNXD0xgjMF52SDMcRIgPdo+//HhrTfC4qHcvjN46E1lvpt2dPIAiPAxdzU3NW7fWvYXvYA26wU3RMPNmplvf932/3vbbdduu+966ds2KF0IoQusqz+fy6Wn59LQ8nWsVLkJEOAhAFhCAgVWWRRZBQQO00La3DXQHRMt6pGbedvOYcGk4gKva11f9+qovF3292uVmjkrFuNiy2nKydbVlcV+cs9oQQwqsZ2ThRUFzf3xX15lRkAjVwqVIkVKkEEtGxJkOD6LhzU4361BrGdDhhIAeQKLj2c5dZwpsPK6IGEMCAKk7MDYfRzSgDriH3Sxublt4BzAkICauQyspXaFMLMFR/jjeccyHwKG4MfJjOOLGX557d1jmYd89sLbptWBCubXWIpLWjYmAefw2jvudaRGiRFtHpiYiCXp4UHiGM0GRfMt01zJzNziEfgf7fEC2B2w9IQpCQgsP9YcyoTCzacN9wO6PRhMOqwxJUno/KHX/ujBzCLngFtG3iC0AEQSghHE08PDYwzu45Q2FclhxrI4VZYFqsYit2Lsp9Ghhqm3vu5pt2027DhoWl/wi0Iusp4VVFnM31963hltr4Graow+mvAMNdncEWIT26HvsOyBoW7QURUrR6NTKEEIhqkyVuBIVIgGiACSW5XR6/u6zuRPRejprb6rd3Wpd3o7KKPOFA5kaZMGM7QJiuHZjAh4bAyWTbOxWg5RCSDwFwOjI6BFyUJpLMiJEVZ1aThmwHQVd9w0oJ1IykDiVxCZVnpmZhyZBRHhY5vFzF8MJd2GMpTPdwUFroOElE6H720kEAGBuf7y8NG0/XX/++fb1pV033TVmjc/DfHv8q9wc8LDo97PiGMiAALUAMIAWFoPObuE9zBEMfK0VMEG1OBJK8FB6BtOZHjMcHz5gWqcRJ/lYtz74uPeU+7G/uI+PQb12Ne3Wm9l7w0JSuFRAD1IItOgWHdCRkJlUQTUheQBwxCjMknQEU4KgSN2Yu5+R1VJx5NIhcxhAyRAINUO1YCGamdgABzDEIAomECbnmChduLk5hHmicsKUvgASksDp0/L03fr0eXn6dDo/n0qRIUaFbuHdE/EIy9gCiImCGSVIhjBbKe+KiEbR1r3kdxirrDeYfvEk7o56ipyFCeuycIlCRJy+8kyy3dlguT9kih7G/pSRW/ogAZCyIh7JOjSMYHeLKIDMUmst7glvpshIwgDJZqAjS/+wNADRs95vTm6cQRInzQmSCUqciYFvN6L3bu489VzEx/oZuxEQBhCFeygAe6hhV+DuCBSOBIQAjBJMzKmmA8dGlqMQxzshsVDS/1OVEJGSuHLkSeHYe3IAJ1HfZwYGAhyjm217v9y2vbfAYGEW5mJZ/RzhAyFIHzfrfxLg9QCzaEjUAKmoVbX35FyEIEQm5CNkT2GyjM9IgsVdb5f968+v19frvrXeLRxG0U6OQOC0AAceFT5aE3jMMZoey7AfMLzZCeWBw8NjnObrAxjgX+KIRwP5zS8i2t4Yqfdu1t3Zh8NlGKNuo2u07rv7Dr5bb27dtnALMzNtrW29v2799dquW2uuFubgTMGEtdLTafn8vHx6Xj491fNainDJzSoQAXkK1QgXoYKBqdywuylSAKj63tVBnbpRNzBVVwszV7Pe8PViL696ver15tvmHh2pk+x1Leu6rKd6OtXTuVZhFhJCd8dQ4RCBScd/e2TIu4icl7rWglyRJIAUQMMpiBGY0Ce93oaje8+rDq7PMD5DdwBnWhBm9SKllu0R5cxo1xAdAZhgCNwyETliN9/Nbuo3t5v13d0AkQujEIcw1VKLlMKFge4kiQf3FY9QekaKGbrh/fh4rhCS1BruahZq6TSMovm82czjEZVSlmUpktm+ICamEjDdy+mNwki1RcIS+d4eDpaLY1hfSDGdAEhiapZMu0Uk1ICHMZmYIMDQiXLwIAhgIUJwHHuW2wy750aSm8HAjSdR61vfHYESx3m0vQix3r6cHdEQDKOB7WZhAeQuYAWcsVO4wrVTQ1MydwMX1J17SMcF1hM9G36/4V7w0mxvW2vNWYJFPbZ976pSCgBSVtkEIJAIIZWStdBurWWJSKg1U9emqm7mmStAALMwg95832DfA6HX2os0KZWLIBFzYakswlSICiHj7LdiECC0ns+fHWpdPn/6bt82026m4Y78/GaquLt1Hc870fAH2ZEcerhjOviIXzLxwW4loiIlAycRKbWICLMgBgAdkRqxj2oaHGWeA/udWrZJV0FAJkRCYSlFShFmPiZt+r25Z7o7WBgeuVDEyVAdKcHpDUAW1sxIbBwxHK/HQ13/05d/6N6/7q9f2+tN9x52kJFyZz5yIhMAmTHqm5Pho3+a5I/ooeChTT28e99036z3cHX7HEFAyAKEiRYRhgMGBCM6BAF6er2zyi+X9jQNkJEL4kMxzVTIGnVLkFFJ3kNmk8xdw01dm7Wb7k31eMrHESJQCqIxYgQUrxYKFCyspsVT5plSGgsoSJCSgoaxFHbT0E4QyDRUGDE3Fk9phCyjzvlAgGZkTu5IkbJoCGARDpC61cBEwmEUGOBuQ+0FkJAYEJmCIUogI1WSSk/fnZ6/f3r+fDqdl/W0AILtvWvrCW+6akqhABAgMRGgIIWwEBdmIVqW8nZMZr1H7733nsAkIZKIFMEhaICctarCM1OYxJEgIpEypBsPws0Q78Fp0A6UNhBJhHJPzuqnAwkAT9HIoHACYMROKsQVRo0AAjJRyiz5SF9mimaAC0NfOdUcAfIhxjx5Yv357ZhZQ4uB3mMtH6G5kxl/hJWH1c45ixiDRoRhHmaoBq0TBrpDyoQwgQRFZNUiRIz4LaPLCAcKnOUCLMTCqfkOgCky5vf16xEOqV6AU2HCHZGCIlIQw6Gr3vbtcr223gMj6xyLsVpkzhYe+A80jSQgeECouysgeaB0xfdu7lyLg4k1NCIig3xARuQAth7bZXv98rrd9n3v1h1xQmrTTxiDfJ+XcKC5I0uXliAcPmjnMULM+Yf3U6Qiwzen/uceD1vKjNF/AaNLNHe0xHAmRAfErHB2U49u3jU0QiNa16371sy1e++mfe+6d73setn1tpuhBzmxE4MwLkXOp/rp+fT5XJ9O5byKEBcmQU5GQCFmGrlYBHb1HfbNAtLH9djVu/ZuvWNX0B6mFurRG7ZubYfLq14uul1t371t4Y4RDZHqWpa1nU71/LS087KsXCuXioSB5ESQhayISO3t4CRaW0XOtZ7XxUEMuAe5g7oxEUNqvubMHoCu37fUO1I/M6PI36K5OLzb8XlmZjMviwpgiECMIsSFRICLI2jrDdpubQu/mWokCsp5diEuhYuwkDAyBcyMyjET4IDQDhz37t4euPFHExCJRCQz+Ig+PfMRQidggoiMWESWWhkBwmCYXYrwtIbDEEVAMKbvxmOlDmAv85tpjCOAwgbQhEhEgDbRwQNJGpTDOfM93NwAIp3czKEBJlSsybjAKZEB4wYCcUDOAFO0YSweJGJC8vhgKS+Xl7V7dI8e1iE6WpADhwt0wcYIAmZ4U2yIRurmYA21YSfuWGhZ5NlxW7AVhG69e++uxMqigapj/0CkLKxL2YfU5oJR3OXJAwm3bbu5RTZPMAtKNzfANFQjRa3bFghWl16rAjFJIWIWkahShDl93EHnzT2PmJfzKlKfny16ZKbHVSPiH//4ctu+0fzPHXqUfT/IwOLDuOGBhM6sA6SsAREmfzpVNhmJSURKKaUUYWHi3D2PzFd4GKERw6SDjfkxtGyz91bCxJlxLKVkGxSCByd1wGNMYObhGIfCL0ZEUtZyisKMjh1hKLTlxpRbSwTS29hZ3b6+/lGjX3W/6NZD78mKaSsSon1EgvP7GO7ut9sFjf0wuzKZq7nu3tRtt7b1poOcAGkZAKCMMR/pIgJ0mBoJyRKAuxk4Ks/g2OBiulIwq9aS0pCY7rBtCeVaWGoIm1rf+37tt10t3m9CTCEEWaEcXlhcCqCbMIe4Qzi5oRmaBUBw5tlQhNalsrbWG4UpEjhApAIy5SwwC0h3O3wUahKhGJojT9sY4TOwjnQCPKkPQ+01MIIAC4mICHHKjVElXqWc5On7p6fvPz19PtcqUsXVvPXm2rIU2c2n6Etm84e2DsQgwjHX8q69V2RfEm37vu87zDBsYRYRLiUt95iwzNOAxeHDioiAJAQ5TcRUYZhu4Izl8/E+CGcBpJ6DzQJ/BBCILGFDRCZe3AclAYARlYyVzGws3IekwIQ2jw+PFIGPkYQb0hgzmhxrEfD9TPlIfWEiqMmjf/Rx51BkUJpuQQzpYAY1RAQLBwcmKEJekuLMiOhh4QoOSVyMQwk40IdOfUzuEsaoHXWfekFT6z7mhg7IQZm4drOI27ZfrrfX63Vru0dI4eKyQqgBzKQhIhCmhEfWVjhO5NQjWu9mjogr2du9OoMXQkxCy1ABBCIhYnNsu+3Xdnm5XC+3/bZr07CUd7qzCO9fjzA7UnIv0B3cR2iL0wgRRjx0KDqeDAznOiPmVOr0O3Xhnkn65x5/IdM3IlozIu9d1bqaMHOkJBuObIdIqUs4VIga5ObWoave+nZt+761vjW99Wgd1AAIsAAjVKF1wfMqpypr4VqoEApiIazpuFEpVJiEkRHJ1Jv2bW+X1+vr5Xq53rKbWldVVw0zDCfUIIvQVMm3aBabw+7YHJtC6+E9XCHC9Qa9eFtsX/V2anWhUqhUZAJiZ0GpIpWJ+PkUb7QW0rdhkiJLlVPz6BbdbFPbzMU9O8wMq5F4ms0EVS7g41SIsxzqAQaCRxx3pNciU43uHaIj9EBEYGYhzDq6ADR2dw6WIE79diaEGIkrISoMTMMtewhyj1k1MVyYcNSMyQaUM8PY91YmpuxiCrHDYIWBJZGbnIGSw5TELMLBOqZDkiXsEXadge6A047h8gz5M99tnrsEYGR6Lu3HpPoBAGRR/jTQ4OF737vtwsSMIuyxRKwRYNYjNGIEUTMQH+97uFt+nB8he/wMN9c/WFP09Yqs3tR2VQXF4lRDBRrDzqCERmjBvVWN8CzaUPXWY+cQQGZZauCp8nMtW/dLbwjIJFQWQVY2E2OpTCXNrI3OO5GsMmZCYoAlJddut0tWld+zSw4U4EYxSIKhPZitN2utSy1EyJVRVqlUhEsVJIzBpxwq2MRSllorcRAHo6ObhVq4f3ntb9xcd++qcI9ncpp9M6UCpuD6AVwiITIdOcMjtMHZu4x45l4RedR1IoJnHyIYrQGyDWfWIyZf3t0QcXIeRESKsMjkbSNOQNkj2cSUO8tIo+SvIQDv3sQRDx7mfN4sDNv5Zp54+BY3C1NU4EAfOAfOu8WDVQxAiMNPdzM3NfN7cnCGYnCwYWnUlnkEQkdDb2jIOztFi95833V/rqdzXc9lqVKKFGAYyhzp/nuuf59V9Q6APkGlrBUcYR/MslVAAJ8qDTF5DTEVkK1b79Yv7fbz9vrz9rqr2Tt2u1t3beAGruhKqmzONuaeeYSBWYQhGAJwqLsYABA4pkfFZFlRMjwpRIAYOVdIcX3t2QMQXIGAhNkqS8bGjlkOkMVipuAK3kfOiWDoJw+GFSMtxAvJScq51Kd6/nRank+8LA7QWvSm11u7XPdtbz3R6wgCRAohSA2oPBlnEv8jbnu4j+A2OeiDhyAsghOeS38uIOibLP2AQ4+DidMHCQ9Di7Cwg2eNhEw8vBhTG2DkqLgND48UWwtXAEJQokwSJc5fMgsXMOr3ESLn9UQyLJycyCz7ZE4UIw4aDAEcXPicXBN6+KDa9xeVFmKGhu/dXKK7rFoWN7tTODmhGmZKGNGtkgeVgszE+VRMLYLKEHUk5HB2AnDPrkSD0h5HtUHadhuFORAw277h8PEAPCUw7Lrtr9fry+V1b3tAsNACgkyqw+8fA4TAnH1YMqpOOBjdo6s27xHw3arwbTYgPNyNnCCX8qBeYJIwo1vbtq8/X15+fr293trWU8R+cvKOhA2MRBLAgcvewf3B5hjZreTDD1MKMxWX/aqS3JPg96SxDevxixSD/y+OmaZ9/+PelAlTx8Xc8hmmWo4jkkhZlhWBYBFcgFWtt2bNN2uv7XrZ9n7bdVfsLg5ChbO4cil8WvC8lrXyUqgQMAaFC0hBqiRFauWKwIjoDk379bZ9fb3+9PXl5y8vr7fbdetb6xajMREwAFMAGoRFpOxYB9gRlcgwzN0UdA9rEQqKsZMJ6622UlhKCiQAcxCDFKxrqWth4X/1PzGo347LiCqFeRFZu6ppa6pbb6+9L+FSSpHiM7sz2hMcZfnTkUt+14wqaXwLI29IOKvQJlyi7rv1LXxH2BEIcYFSERmHWTTmcA5iQEEszAAgSJRpFEEQdMYYZZ1w9LeIY8ri/fbGpU1n92BWxePr71MlMQbz3rV1zWgeJLL5G5HnWpx1deONCDLNm4Ue8Fiu5h4BhpM0drwRIcbwZD3lHIdjysKMgak17yNXBMhIIoLIEWAWXa3p7t6ZoVaqIu4aHghk1sInipbJM48YBFDECap7uLpH+GxHSyl67I5vhyUCv1wBm29Nr3t3sPXs6wm0QCPckBpRQzQQsAC3gB7m0c1RTdSZsTJFRTqV8rQsl+aFnNFEKq1nkGKZ+AQionAcjo+PbU2KZM8FokoCAVoulYhhEl7Tjw9MuTMCG+pk2qM37U3dAwlrLYEMWIiwTFgnUvwaxMGYsrPzUrkutAhImLl6mP/7v/tHgJfHUTEL7TZTAxMTxKNYI2Iaw6PtaEK5mPE1JCMt7unzrCk7aCVESUdPmmG4D46uqodBgJtbinH2dHMdASTBMBbJyqLEv3OeUkS4TegJIGnfnB72XCR4L0YcjLxDxxcikgzs+fkD2BKjY3Pw4CBCdgIH83G/TFSFi0hhLkyMpKZNe+tt154mZgKpY1AjJvYbMRC7IUfiPUUIOmzRb7bddLu22/frp+/XT776qTockS1iuDtS7nNOgIfeKmQxXSByVjDi5DB8Gwr7cOzzyXqkc25mTfvW95ft+tPt5Q/Xn3c1899M53ocrrv3K6hRN1Al7+xKmY9xVbPsbYJOySlw0vj/kPZvy5HkyLYgqDfAzJ1kZGXtc47IPMz//9eIjMzZe1dVRpDubmaAXuZBAXMGI6q7pdszhMmMJP1iBihUly5di/qcGwwOR0RiVjc1D4ABYOYlcnAP7d5208OtRygWklpCLFtA6OFuYIrW0RSsg7XIS55lD53MVwQkKJXKVepbXd7W5W1ZL9e6riRVD+1737d2vx2P+9Z7UzWIERWJQhhEztIMM4fUcP9FNzcVwTJ5K6UM0FZGZRapJR0Ojrk4z9QubygzowgS5RbBtE0Aj3AcSeS4wzwkbMPdtY3p6dRvjZHc+Dh+IwiiEzWi3nsygmotOYw2wiKi42Ck+YDQxyslFR5p4JGDczpGAXIU8DwWwt0BA36ZzPuNbm6eu5+icZzACQzsBIkwnBzBLXp3ZgsHE2JKT6eOOLksgbUQCiYLEcOd2V2CUmfMYqj2+cA7EYev00y4zx7SaOuOqmM0fAKg9X60/ti2+7Y99r2pRjgxCjAQMmcbZFbMmE1nOF0uMw6k2XBXdQuvX1fPvGs+C2gKQkAiEARxtW1r7z9u94/HsR3WNMuBGRD+zePJuAakOUKemYwhKICPHtenX5lfeVBTM8fNGeLfFHf/Nx6Iv81of/OIaF2Jsfeema7QGMINyqGXUpdwRqG1YA2ErtRadLEDD4gdvIN1CCYEwZRnp6XydZHXC79eynWplyJr4YWxElXihUvlgeMGoHl0tcd+vD8ef90+/vXx/s+P99ve9q6HegxUhYiGNFF6v2ZE7ORG5ATZYnQH17AjrCV/xAmRWYmRGUhGacQcUqleynIpLGz/r/ia5g4COCEJUglw82ime297b4C0Wje3kSX5tBOd4O7nmhKfR/RIHyYldwC6E+UKj+huu/aH2w6xEwhR2BIAJfuTQI4ULMiCXJAUkYjKZMQTY3AohY4cF8/MAp6Z6yeI96Tezf7kJzT315UCMNkC4ZlYIPmYKECcbd+cO/uE+GTX8+SkP2PyqHhjyjmd9KrBiHK3cEuaXFIGfai85FPBANbGrF+EuTfV/Thaf7S+FcF15bWWVA0hEvPuoYB57WfZma959mcnFDGOzOn0TvjFJ3j83vGxl9jb1tpj09z1KORBDelAbAAHoAEREAehQhiCBnKQBbmnAjKCZ7mTs/0IUpa6XnlZzcYQjLubh0eeQumy5xHBjNm3xMHFmhySjJSAAITAhAIkTI4jDQzt1rsOjTPJnlbJo2rkuK7mymEODhQkVEpZ5XIpl4o1zKNH+KBW/3RV0sVjChlMSDAXyqeL6DPdHSskziL/WYOl0Pa0vuA0GyEihkEnJHL0LM3cA2wQJbI8yHMbIHknVFLoTiR3TEJROWiWv42BNFR9iCIFknis5AGNxMko/EzC+FQZ/ptAC+DkAY4BBBSYsSMQMNvZReRSai2lMhemrn1vyd8INbOYfcKZ5sLJb4gz046TG+vgpr5ba9669aMfRx/+jG96NfdLtSKlhAgxYcRAjGhGhBErggjBp3fgOMqex9SJnuDc3e6pZ9t6ux/brd3/tX384/79v+5/HWYW376kuWA9esOucCh0BbdEdiO6pbOkqptREAcDcIAFKhEiEwgSAWEYJAQG4EMADWhCBw7uaAa9h7YoEqppQjv2Wzi6kxu6gnVwDTPwRDbBs3+ekjtUSBYu17K+leXbsr6t9XWVUpHIPI6j7/dju2+Pbd/35tZjeKQBYvAwW40pto8WkXpE9qvO2hSz42kSMXQVp7FCJoOjzAH81BMZuRARuUdOGeDoUDwX6cThRh4UDmae4vdmqjkpeDZf4kxN3JGcCQDo2AFgsZrz2ecM2MnfS3XHE3X+PDw6uzYkTM4MkA1JgKkKHOGOBl9x/9+hudmt+QzixqeBuzOQu3sENgfTODYTJmEkwmSRE8FSoza7rHZZIxbHMAingT1bhOVq8AjM8TAiTDZLTpfB5wGfrORhCmI4ABA7G7v7th+Pfb9v297ayIZTpBcjJwsJkfkJ1yeVHilSHAOSN5AWR4QpivnlmswAG/N4YOaCwHrAvvfbx3b7eNzeH/t2uDplARsziswz8PlM2d4cBwCkBVdZhYXcICysuW6qbpDS5XGS+nMIDqaghZ9hI+aA/fNF/m88fs2Uxxr/3c8CdFNS3Jtue9uPKiRVBpGUGGuFSxAZKtaOBdA9akClWAhWEVsOWVvZjY6oDQsX4SLLWr69lbfX+u21fHspb5eyFlqEFuFFlloqo3iAurWuWzseR/t4PN7v9/ft8d7vj2gHaZcwzkYRI3NODgJG9r+dnNE83Lt5AWIf87aZOylAIDo6EBA4oqU7Mw2xBJYom+0LioTp14tzWnKrQbfoFs28J9HP1FzNTIdmWOIxg5MAMYhH8Cn5y25kzgkkgkswDH5p3i8DMIjD7N7bQ9sB0RAKotRVTJEkIgghkt/FlbmLKCATZYaSmIOTWfbez0LzOXMMPq3WPvEUZg5yFl84098vDwRgIghIvkbME47nzNlSSy1lWRYmAh+SQjhQgdEEHDhRYnWYR/yUZ0H83P+BofKqAJRxCRFhyhRBFpeIAdjVVHc1u99vt9ttP7amu2pbFn7pVddycC+0Fy4slI4GODLnkfJPMHcc5DgIlvHTGO/vqt0A+K9H+4hmh5oCANaOSwNyJAX2IA+AbJZadzNSoM4MdZHlspTL2oV20w/Tf26Pfz7u33e9axjIIsuyXOvlJW9WgrhdrXVtvbfW9mPvRzNr5sd+UISa63E87vf7cRxp8AuR4pq1cEVYwKugtQN3dAxyi3QgyoINJhgPmICk5h8LpeTohVkyfs2NHFKK4NRh+/myjCSQxgj3/IlImmyueaQhgDuMhZAyODNygra5Us8dlOd9KYWGis/oJBMAIQUygemkuJ/rBDLTHgMkIuVEc9kjxhTdT2NXiMk9z7seZ1aAQ0dh2ON9qtg+NWvyuCL8ek0QoYo4uHlktwLRZ7DGedLMFH8m9sxMOufIcXCE8zdm4TAbNDCKtSFmARAQBrrbDi2a9UPbo23v2/2Py+u39eV1yaGpdSmlcikiQSxPFdfs543BpSfzNr/E85uZ/o4cxcyPfuzteByPv7aPv7b3fz7e/7F9/8f2ru5/K//vL6MqkoM5FmBuXbX3o7fDtKNbWM4PkSMF5lAZzrU1h4YQGJGQAWugZ84b6WcWEEDIwuGFwg0xZClYGYSC0zoAIQgjwBEMQyF/HSFngUAYuAAXkJXrpa4vy/ptXb8ty7WUtTJzqB360MO2277d9mPfVVvyWVNm5vPS156XECPQ1NNC6Ff9CSQsUsbUEzHLSHNHQ2wWr2N5Pw/30b5xgN67T8oRM5+SFwGILBAQgeChYKDgbr2rah8k9rOQmph4EtAy/gun7TX18NDewyV1xJgIcczDmk3P+1SQ98+iC4jETPmZKvMiLDTAwcnmj0Ia5Wu4/SXNDVDNIYDxOKN5pncRw8LEIyCdA13DU7l90D8QnRlr9SV99QAJQch49CNTSDeTUY8xzpWcLspwFkkew4GD5LWL0eEdiuxIRkpqdns8bvfHPiRqB4MPIRCdUqCTcPQZB4pjaeFBw3QQKOhM5d39V2urmbAOtAMLlVIJSt+PfTvuH9vt/XH/uLddwWCoYMfPl/Xc7DiXFTqmyOpC6+tyfbvWRbS5NTsebdewQ+Pz7+LA94AJ6AS34hOUdiJg/48e8TXZ/W3qAhHQzcjg6H0/+n70pVQPZCQgIKESdCERR8XSQYDcsQBWgoVpLcXXXi5dD6PD5YBCLCSyLOXb6/rH2/L2Ul8v/LLyUjjT3Cq1SI3Ao6tqvx/b+3Z7fzw+Ho/btn1s+723PVqjUKLUlcHEL7McRMgxLaZcde4dvQHJbFZk9THOYMIgG9d9EIIym0IOqS5VWc7J++cjkVn16B5t5rjJq/FQ92GAPGZoA5PCdbZkR2MTAYd1H50FDo6aPgiAk8ASkI14jdhNH/249UMjFAOYe2/VFNnBAxADGYmIg6WJGSARCVHJLJpCMQiHJ/1J4Yuf//y6LvCcNnnmuL8slkQXAGaam3ghREorrOu61rosZa01I0yMUdogAp8szExsZxWQ1KyRvpx1qbmhRaBlTQwYLKUyBUGmzvMj5YwUqGnvuh/b+48fP95/bPujWzfX66WYXdwqw8HAS1ku1/VyvTBloMi4gWcaO6AxmMIrozlOQyLjd9syIv5za4u1sAADQXpTlIYlgDpInrioRqrRezRFBwYpVFZerkt5WXamm+k/9/1/Px7/ebs9DuhWAhl5qcv1en1lFmZW994thTOPoyFtrTc1037A4YDu3s20te1+v2Wa6+bhQMJVlqVeGVfCC6NuD7tTM/CwyK6wu7krDZVMj/SsHyqfnaM4WCI+Y3jcjMLRRk7wS6j5tGZgXtYMbX4y80bmSELP8cvcPh5BQ/Y4f++8D3k61lJgxjcag2GU+OjzfDnhkJm+Jv2Ek5dbhgl15vc+G/KfFsLI9mbMHMM9BABE7o6DHzA/+8yR8wxK9c9ft08t4uFqnkbVel6WyQkeWxTHLFtmuwMS92fuEU9E/HklAaY2doyNCRGWohfW7/G40/Yu9+9y+3N/+/Py+sfl7dv15Zvr1S9eY8SBQCCeU+44i5XziIIpqDb6KU8EJcLD1aybPY7HbXu8bx//dfvrv+5//XP78a/j4/txs4C3P/xLmluGfmW4m6nZ3tq+HaqdwKc5AQKRI1oamTikgH94oKMQCaOkLS47oIV7+spHIAIjFS5RHEKIXBamyig0lG4AIgg90CkMwgI8MJyyp4LBElSAK8qV61td3y6Xb+vl26UsY2q6He14tP22P27bdntoVxxgSvpwPpmqNgS/LRw9wAzUIpHUL0uFkNITOykBg0tOPK5SZFUGkRQamLRYmLxXgwhIwSNxIHZMzAEBgJEZHMKGQJBPbyNVA8gxovTuGctq5utAhMNriQkQ1N0i0AzTZY2FCLNbbmbae+99OibZ7I4h5gioSBGpUhbhQ7gmaI0UMaj19ovnAfwWzR2mw3OU+DNukT8QkbwoDA+36M2te5ahqapGHKVgV1dzRloW9aUkNz8x00xwAfyTTHQ884lw88i1hINZHO6R+XdrvfWuqh7gEGq2t2M/WsZmS/sIcBiGqIMulYSkWbP4OPfpFLsc5zsRhQf/Pqsbkwburl3BerjdPraPH9vH+2N7HK2pqdPAwj5F8HHyz/9M8RQMACAGqVwv5fJyub5dlnWxbtaMWULDmlobEN9IFDhCEMRnrjz0FaZizafIOC/rfNGf/uv/NBk+s3I44brf/EpSmsHMm0ZTUMOI1LECBBDxpJWnlWh1WCr2ldXEfAFyMatqS2B36SApS7TU+u3l8va6vq7lutKl0iJcmUoWp8RNrave9v398fj+ePx43B/H/mhtN+0QPqyMGJGIBbkwCyMJcQw+fVbfCG4u4BxMnmEl704WXdkJztMuzsicZwNDMhSZ41dTcRta4NZNm2o3U3ebvASH4Z+R2yy3WALOk1D/REdxNF0T0c1mAzCMCZD8KXXX8N361tujHVs/HMERJYtByHAtSCWRMGJnqTJYVjzoY0QYQcEMTE8JxOfp+WnxfM5p4ROxYb7xJ7z7fBDRuixmhtAhIN1nCfHsqSURLNdUFuVmFgFEPjkJ/oRyR0f9mRBEzOgxZCsMwhCCCYWpFHIgSw2EzL/MzcPMj+PYj33b7vf77fa47ceRXsuAIEKEIdgoyE1LpYh1oHaf0tvnVZm1AQ3nHgQAdx+U6t+1ST6AD+QcTF+AVsNoAeZxuB8J17mRaXSFZhTZl0icBoNbt4+m/3rc/3G7//f90bUw1VoKkADyKAJKwWx8SSHqiGzmd+Qw164eGqCqTa21tu37rr25JR0ZhGWp6/XyInhlvJD3D9mEJKy7ubbej9b241jIAs0J0cOUEVs7ujY1lbRYgxzr6h0ahwCmHTiAg//GHW7eU0h+C3yq/oZVKSAMv3TC0duLkaZR4PAGB4B5gmT0yoUeMJRII/tk2f0/f/I53g2DdJq74xxjSyyHsvue3FR6QrafVkWONP184z8hZ+dqQXSiE4MB+Ilrfv6eZUM2z59ZIudHT41V1D6Ikmbm2lWb20Ta8Qzf5wjP3DXw6S09aTgD1XZQs3Aw9N61cU/W7659t2PX46Vdr8t6rWtNNQuW0WCePJEhCcUEmDKHAzYc3E2IHL7t42nbx35/f9y+bx//eHz/78f3v/aPW98++pYo1derMog64ITGaPQ0hxgXKEG1FCywAAc0gBx8B6cgH5MAA0lIg+9kzAQSc3hASWVcRqnMFaBEsDs6juMEwIczLQrxwlAIM5KWbNKW6+t6ebusr2u9LlILIlp3Mz1u++O27fft2I6+H+6R/pkRYQ7TKNAHZztGpy2AAvKQzW7Ez5sHB+kWz2bSaItkXkISASA+O1/Psmbggzg0sIZiQUA4DLMTDqBJLEgurpqlzKLjpAbN82pQoCcBbpb8OR8ZFlMhRVgkgplHYoyUjCL0ISSd3NYEsnEkgu6g5t5VD5rxMFEMjyj+OX3Jx+9G0J6ShTkTTT9t4FE9g2u4gzZvh7VjNJQAIed1SiVziIi1FvdUtQBJmiMiYEw79XlojouB2aafhTIgevqMqWpvfd/3xzbm6I/em3bzgFN1Kek2EDEmdQa9y2cEyc1ujknKy7g2SFwwaupwQMMv43oxKFWeV2Z77NaPtvvtx37/cdzet2NvYRnXBtXoDCOf8K38V44WBmIQy7LW9WW9vKyX61rXBSxcg0m8uR7aQbU5WBARF0EBZ3O2oc8B4Ekq98Fthq/39//ZAweCjPi74IuADMDomKItFMEBBYBTqT3CKII8CBwjCI3ISYILyVoEHcLZvQI6iKMUWUpZ17K+XtbXy3qtshZaChVGoWSBhXv0brft+P5x//54fN/297019e5oKMDEIAggKWrHTFNpl9PeOSICNc0QCZ3ACYR8yAuQn9SxWRfMQS8Y88qAAB6uEB4gX0F7ADC3pr1pa70xS8rgn2EKYLLQ3NS0m3kAZyuGGDHFKHNrjNCQy3gEDkie1hCqdIAevmm/9+Pe960dh7Y0qIgABCYsJFVkZa45zUnkzDXKSAxOZiwFiBRBl/BTuXpciZ/W8YwDkwA5eZBzgf9u/YlwfXlRVaaDgDI64uBdIQCYWQNAiGywZOfKLCbBLDMNRMR5wA+embupjnQ7IlS79ubawb0wVkmVNHFCAnQ177H3vu3taNpa37bHtt+PY1PrauoIBmhOatC6H6yWVg2M7oYQiJTyhz9n2ACf4uRoskSYKiKm66vZL5cGsa1rGJEqo4lhOELz6K6PHruBACzoEgZu6J6CQkjkGD1st92Oj75/v9/++vH4121DwpeVqiyO2FWP3nJ55+KqnODX0LqOJDEmANu9996OZr27Da84RCxcLsvl9fIqeCVYoR+r1IKs0aObgh/bsT0eyM4FqEAu3cK0HXvLoj/Ro7xN0ZsTGClYKIQGOJzuo5+uyqwQRkd29qwyH01Yh5JaGPMwekbbCHQ397k2nxlhZHITiYqljHqKVoJH+r1zkAQagAVSlog4Ufns/SVzKDyeNt08rUwQp9T1z5/ozCiGlsP4mPNIQMxxrVkdBdNXNUuP2HqfHiaQKnGBYwu7u2t01z3nCMa0iZm5+jlbhQSYTEmIwIgxEPcs3kcom6juOPGSW2dgjRR8BwQNO6w9dHs/7td6udblUte11KUuS6lFSh0UZhEWYmYSGmNYeF4M82Ho1awf2vd+3Nt+b9uP/f6+f/zYbz+Ox0e73/u+W2/eEXnm4M9HJ1RGL2whGm5RAzw020ExvBxH7hMQyU0MACCMdIHASHFdxghEQmEWJA4nC/SgEEwLWSADWYBqYHUQS7GSTLoQghlr4SCChRGABZlRFqlrrZe6vKzry7qsC4sAQD/6se3H4zge+/7Y+t5GosXZDEc1t6Zj9H7IbOU5zEyCTCLMUpnkV2r7c814GExHGYhRefD4moBiTPJCJlwe7gEaaDGmfiHlgzEJpq7oqmq9a28+DI2GBlgyZdKHRSRT3qnX86xbp/yKTa2bSbpHZBHKiTQRcSu1qFpPOyfNahg5zd8Q0ALCTLsTwpA0yd30b/Kf/yOlhZhNlHNbZprrEWCgGtajN993O/Z0RAeAKAuViosl/4W6ZgsAiZCFhE/VVz/bLHBSpVL6I1FTwDCAMRvmptZa3/d2vz/e3z/eP273fbtvu0Ws1/VyWctSpQgXhjl2wozMFKlb5JA3IxBAR9voeVjTKHkSnKODflWlmFs/wuM4+uP9uH20x0d7fPTj3tquJ+9vgl+zKzQCCc2/nQkEIguVpVyu6+W6LpelXhYKBEdC7ltvW3MD0+YWyChFqKARemrWCCGiQY56etDQlDth15GbxPlfeL7uqHYGrvzpzuNoD+fPj9g9v3xZQgiADMgQgBZkzh4CIIhMENmFICfCPMAjvb+JgAqxFyHgbEHnUABLLZdFrpd6udblWpe1SGWsE0DBiG5q2lq3x3Z8vz2+Px4/juPWukM4JNUahABGfZ7bmmkWkjDoMoiGwAhkRuAMzM7UEzMF9KyzZpthfOqnFFDMozW7Cb+gdOrWvXfrTQ/urKbD+jvvxpjHD3Nrpt00InJn5CCPu44dMY/OqSmGszafej4BBtHMtt5vx35vx9aPpp1EeOzWIRQmvJBUsO4BSMxSAdBdE1DJ+lsAhbxQiCvZ5FTMHHcGRHz+gTPZzevy+f9+vSbM/HK99K7JKE9WJwAID66ruYc7YYiQM5nZYH560iC5FEnWYn4wn/vLTpHawIjQ3rS3MJVUAhYuwlLYRvfb1X0/+u2xPbb98di37f7Ybr3vxCQFAzFxXzXsGkezIA8KM4qwTBeYmFhOCtN5bz8HyeffR+TaM4MvwTYAdLmAsxwdvIUHGKBa7G6Pw7aOF8YqQWgcikOYlBAxMDRst+1oH9v9x/3+/ePx477XpdaFkIsDNuvUD6dwisJL4cpcPMDNhYWQ0Wcln0NlXbV16z0dmxAAgQrLmmguXNgvXqhyFWRy6OAR3vZjvwugoQRJpg5eiuz7dvRDrYefKpBm1hqCI3B07+E9RYe+us/nuorZwjvT19FqQWSicAiaSOzMyea3ODFWBMQh5PUp2c1zNsJybQ+yCQGykwQ7kAYmXnbqNZzkWUpKN4xxGTczG+npeZIM7DSbQs/U7OcjdcRXABic3anCmyPuX65IRGytnZm+Jx6NU0MUoqvN9zBP+lEiwPx7GiIkJ0E9ochxVeaKPGFen0e0A0Q4eI9u7g7erG+63/vjsi9rWS+lXsq6Lsta10t+rWuVUqVWFmYRPssAOPEzdVXTrvro+9aPj2P7OO7vx32gRsd9t7Zb766WVBT61E86Iy1TF3IIA1EclHzoBJaEC1P3Hu4QadKdRkyEKAiMmGk/OnI4Z3OJmIo4OxAFOGA2xgwo2IMrcAUsDpwST+gebhDhjACFsWTHAKWwFC5rqZc6/qyLFMm8ux398b49ftyPbW/HYaopYTtETgDNIovwdPcNiARIWYoUEgZkKcsiUvgX3dzcQbkdzBMOsAioBZm4iNRSSilnLTb6tANXNPXoji0gEdupbuUBqBEWoea9d+09NTEAAodqCTGzFCnCw9GXcqh15JMJA2dbQs1tSsQDpuoFABJLYSQQh/BJ9FM1V/OsRAPII7W3sozrKe7Bo+GJiChpyfbz43f2EM/8hgJj9DTnBnYHs0xwrR2uPTTnAgfJIxcYpNxvSkCPMgGYmUQwxxHdXa1nuUxMjJxoTpYthOHZ10g5lPFwDwdAFqm1bMfhHqqqrffs+jIOf8rBkBtkvhShxokDAAMg+eTGI47uB6Rx3O/684hABCJUS6nLYh0P6hDhpl2Ppk3dNPVo8iwUrlIIcRbxY4geRlMXky9B0zmSksyRmi+IvPDyslzadYRp7MiQPOZUOq2rrJelFOlHb1tvW++b6W4+5PY+CRXO7/K2xhkAZ9dghI9zkm2OVj7zup/C508XRQpLwWxVITKiIAoiTxBlOLjPeGkQjhhETFwERvJGw41TllIXWZdSV5FVkgdFTMhIiOgQ3Xzv+tiP+37c92PrvZkb0EzJs+eR3X5M4xik0RDHeT4ZEoiFYzAagwuwOAuTpLA9xueDAuLpZTDo+zgKhvgtYznXv2UQF+7q5sOeFM4cMCLUrOkwpk76vhAvUjC1gsInw/MTnvspkYwIDbOwR2u3Y78dx9Zy9j3AY5rFxFNOOXussxhNUaWMhqkqJQgloASJNvI20OvPRwvOdQR0tvnOx9kaxbNP/PkRkTGCEYQJgmmewWbWeyNERhDGWRITM0MMXReYIN9ZatE4f0+SGeSpFbPtm7oNLIVYAqmbbb2/b9u/fnz/77++f9we+96Po7V+aO8eUAtTKRhISfECtLRvRGCCye4+h8oghwTOdDbTmnMYDj5nwO4IoI5fgi0Cvta6BIqBHLZYX7qiqje3rh6GgEgRgiYMUoAQsAbVzhweret9P+6PY7vvfe+mFsUBDLCrwX40g028Vl+WeIkKFSmGmxcXLktdwj3QPAzBw9W0dRZG8pygBUQgCELPxkH89CcBza69NdoDBVBSUNjMbN+PfT+Oo10umgsntY8CugeAtf1x7I9Du+7t+HWljAMjfGbJJ/YU+VSIcJ5Knx+zpsiocy7CwUs0U1VyMIvuYDmIzImNMbEydyGJQLOkz2a4Gv6+khtx7uBhPIGASRacGmORCmUxrBVgBo3x4b78e+6qsycwCqWv1wRAfcT10ZwchEpIqusZquBJiJ2CBzPgpExGzH9gepPOr+e3qXcUAFMfZHpF0TT9UNDdwdVb9M2k9kdppZa6lLKUZUl5XS4l50NZmIZufcBwDshGVrO+6bH19uj7ve/3tt/7/uh72rxpyiP99C5/epiw1uKEiqgUDgEMpMzm4OZdtXfvoe6dYuRkGEzoRMLDewkx3E17IwRJ19iAkGTaDY+RWgpg0OK0GBaHPNbNW/O+u+6h3cKgVJal1kVKlVJFFpFVyiIsHOTduu3Wdz3u7bjt7dGtexhg8tqJfEQVPZoeTVvTrEhynowkO1OVS0VhR7DfXRNETNOHsYhochYmkeRcYc8WRI5vuoUThZOBxJRgxaymoDtgYET6PhehMCM3goik1pU0t685pVl4Cu76WHKTHuBnDkSzY8mDIBHgHkRjazMRiICn8GDWpmABmflqhDlgJicjm0HE5Bb95lT+TZo7mjQ5lA7BfGbKo84zhdZi3+zYuipQagROKQMaUtsOIGkpEuamBlGYCws5tGxYRG9uVkQkfxIzOhAhBWOopY7epPOMilyEL+uCAE1t25uZR4CakSoLRcpuPOlzABCIeQAkHjKMQs/sGTOFCaepVfBFjRwAEIEFRXhd6mW9hHKrVqUjgUdXPzRcE1kPZORSZb0szKTjYc87A094gJjT5hgQ038HCImCCpWX5ZqG2W4ehhgOSo7AwITrUr79cbm+rO3o+2Pf78f943iA+RGukNZPmMF+ALiDYxYwmC4TAXnmJOdoxCRMw7geeV/wN9ekLlIEpUh2cokYSQApIsdWaR5ROSVlWXEgEFMBLETCLFKkipRSqnAVTk2cQsHomTUka8AjmtnjaPf9uO/tcbSjm2VW80wC8/aN2z+UpWeVFgEWROjgGOzBaAIuyGIkaf5lmcQOnsJkfA4DvvGh509g4C+K5XCmuarduphojE5lJuEJMUGiW70fval2NQUIYUZZEqyx0GRRDH+EpMvOFZ05YqqK3Fq77cd9Pw5VS6XCGOr8mRw8S0QzMw0fXrs0LRg453GJCnAFEUAyB9MJ75y3PlPYM7cY6BaNio2G/MevOW6iedrdHCGEKU/OfIfae7gzYTC5SGYHmeMycS7SnPc6L0AggAcFGiQi6J+TGmZKFXdh5lKRxZH2fvx4PP7148d//euf//mPf97uW1e3PnhTIkKlyrJGYHMDtcHQjiACKVEqpXhS1lIZtFNUdeJzqcnvyTY+V0JWOJFpbnx+m4AIf6/1AiiHSqD0KEeH3VSjWyhAXldgilqgMnJOhJdOckRsvX0c7bEdx9G0K7pjOIIGtK5HDyejYkvxVUMBCFEyghJxKfWyXgkp0COUhgRY7/1g3sxszmNTWAoQeLhbt8gzZ8jehZtpUxIgz7woifq67ce278exq2qexcMWygPCrfuPj/cff70f+xHta/Wc2yfT3PxdmrKqo8sXI/MaZzeLiHzNeGdpBCNvTmuoDgSOqtCDFCmIIVsdS2U3NAXewaF3RXdwjLDUEMxUmGcRh4hIIhUxivN0RByoWIQjDi/hfJdPkZCkCUw+0MQbfk5+f7d/ctYkYjYL0U8YImYme36ZzxdjNm1c/3n5BscX/Pkc+cPPs+BMtRGTJTR6Y0SS0zUEhtbAuzW0Qe0YFDEpRUoyFmS4IDMNauiwf7DQ7trMuutu/TA95td089FIGeLACeL+Nqx4EYNihIqgFJ5muCbkzu7eWt8DQtWgqysNoocQAQMy5Qw/QCr9B0UUCMagkpqpmERRFpIiUihqd2km3XPuUr0ddmxDVRcceCm8lPqypqq6VKZCJBgQ6mZdj1trt9buTR/mu0MgowQHMAIPmbCm1lo/mnY1RERGYeFaSq2lFK5VpACSgeeIwdeLQoRCMCGKFJxDHjrOiJQKIQCMTxbvE5kgB6Zwd5CgZBxiOMI+tD1QSVzIq5iqaZ4mAAClSK1S6xDdA8Teu7oO6q7PAdJM3HGeyTSEzwApYwcEFiYkSgGd9FuwSDMG6+YdsEf0QGXSoKDRdxVCkRRhAICvl+V3aG4egUAx1bjGBMzcD2n7kXQFs6gVufCzZkVI1RQEIhz4s/bU2SYmCVTALOvctEOUIbQK5APTBYJUNJxxDZ69fhEiWph5P9q97mpGiGNILfsxP8e7SUafgC4Sck6nYI7mJdUgm66Ev0dzmalWWZd6vVxerq8YzVpC2tpac/dORmSuAQ4EWFa5vFQp3Br1BtgDDnVwhLyniPhZSGqC+q4BEcTAIGtZANUsCXNug4Kb/PBa+eW6vP1x7a3VBbmAhbXeLG/R+MSI53Ifc4o8XeWyqwGTmzMCJsxkdwTMAXQD/pr4AwBgqVyERGaOizw76knV1iG9FwHgQ0IPE08SBpKR35allFqkCpQUbAFg9E9LDj1Qzffe78dx24/H0fbWWyoEEp9tfTxR6xyGpE8IHGEAUIQhhVsMukIwAwun9mdKzAwS7c/sk+dBMmHt355GMOEoc+umkpnUONcQp5RyRJh51956197Nesr0kohDUVeImL5NdK7kiSQPNLeZHb0/Wnu0trWEjQGS5DPegrmpu7oZgJqqaY+wMUM1iBGQxQBzqgMzmc33+YSdzr194tnzTY1xq0/v8TfXJtse4QFDJJnR3DA8oveupoUZQwbncMbA/BgR/kRR54s4pW0OJfFu4rl5HjMjMgsxA7EBhvl9P/76uP3j+49/fv/+z+9/bdsRgREJxRXAdEWuEUhsiAro6cNCjKVGzeEaOvNcOCUezxbNBCtGELfpFptXwH+piBDgD6GXIEESA+rmR7e9q4MSNZY8/FCYBLAiCwctQbUHHY63rrfeb8ex7U17D7Ww7n6Y3bur9YaKxVfxSwAIL8JrumcR0lLr9XItRXIlsiCiRfTe9n0vRqnJGOFoGtoswMhTPSzjx6DsmFrvig0oiHNCBNQdj6Pt+7Hth3Z9tsGHPrS11j/uP/751z8e98e39e8Lr1+Wig8UzyPSlR1PyPP0Uhnhk3lqGMxE7Kcewwmrmxl0DUdz6sodQJkABGBZ+FrqCuDkKlxCjY9O5ogNPDBzXBEhOelTmX5kXyJHbaaU8vB/zso4C9Rzq8wibXTOcBCBxm9+Yg78/jHcL2AwHj4toydgnEnuuXOfJ6enSOrsLML4M1LkWc2faHLGN4REb2FM73F2hwlTncthbNDBs0xxpMS+iROCzPGgASEGeoyo1EO7W3drYd2th6eE/gxwn24gIgT8QngGADCmHmRACqRAgRyECV+RBxNQGLpCGi3GgK+DcvQ8OJdKgGq4KUI4gWBwEAOzTN8cLutS61pMWqdIJVU30O6t6bHbAGWRkbmsy/JyqWupl8olZynCVD2VSbrpoaBQsJZlAQIUCIbgcIquFtQwWlCOfCExkTDXUpalrksphUohZvcwmw2SL1GFkCVXo0d2N2iIx4/QGeDmhDQC0khEIHshQkP/WQIkABmMQBXEhuWbMScpXLWbsqcBu4cUqoWKUDJFM3VLuGfogs11BQBnkjtPZ4ppbAEBjAmkc2EuRFme5cCZdBMAhmAIJVAC96QMQapHF5alBOD/tTR37soJMI+dOE7r0YdgBQL0vCNOlBYimSAgUyAaAJkdrfFjg2XFqxUZiiiRkwApEA8BbkESZJBWjIBD4QtpOBcN5+j0Fmckouv18nY04kygnDnx7ymmQp92Bg6VFYDZhCcEwhRYT5TlubkAZ1x9PpZl/Vv5c12v317/fH354+Xiby9//Pnn/h//4/b+cbt9bNvj2O7HsbW2d1Nbl7KulRlFQTvKDhu5oyEAEyQgFJDqk611xGbBFlSYmVggKABQaFkrfnspzPtj37bNs3iK2aCCIMaycLWytLp0DexApmgIRBA42ONOHFJJCjggB5qjtrDDwc+G78xtYYaW2e0KT33CeOZ7Y51ArVKESmFmTKt4yylRIAzw4HS/QMQ0bhOMQoiFRHi0+7gWkSokTEIuYBQjwY0gB4pwC1CHo+vH9vjxeHxs29ZazwbI5Ll/7V/mXw652fT2TGsUj9Fxp9QvRwJKP/Kk5hIgQaLX2RD8XL2d0MJny7qv22deuKG6AuTz97KbkFt6spVUtfd+oJmkIC5REeHAMmT3aUy2nBoL2drw6Oa72qGmMYWEINM+SF2W1rbjuAFKEiLUDrMGEEgUMdEZoml8FTFUmz7DTXGCTBNSwRM+mmtl8rafxIKvj/DovSEgIgtPapG6ae9dAwBrYaI86rOXlGw894GODapXQtmInIgePRn0s8SBMZxJ5ECqbu1oqv/4/uO//vXXP75/v227h3NhJiGUTOgdSB169xzonlJMQAhFcF1wWRYRGUkKeLKEiVKLY+r1TumMcEfErtp7R4AhJQEMP+cnALD04+JN2iG9Y9feLdQAyYR1KbEWWCoWQQ4CcCq8LFTXI2Azv+3+Tv5u7aPtj+NovSPj4wFAO5A5dRLSuNbowqWXF5UrhWAQMy7rkmcHMQLC/V5KQSRvrT22R+9pdxaqeBwm2AVJAJuqzkljj8leUzcdcpI5FxkBqrrv+7ZtrTU3DzmHxDJ11qMdj+12f9xfyjf4MnA1JqPiPIlGVJ50+RgWXuBzfWTLUmQAhwOEnNmcR/YEVaGRQ5Tu2EkMhHlhXJEuhS9CQGDIlZtK7WIWClmVZbtYEnqa9fTIN3HGhJk1zgRxZFAxF+eMNwTgT3WWmenO4//f1M6IWEsJOC9+ajq55yugJ7ZzghYx49SAj1MJMbf0OM3nd/NV4+xW4aevGbshpUJHzT2SFRzvGwNoKtIAQGAYukFgWA6Zk89rEpA+2BauYdn/tFQuSzDlCSEPHHzmIEDTnuzzo7ke1s1ULcd8B90zwR1kkloWCCBmkVZ6P7o2DQ91g4jCgDwsWkkgAN3taMbBEizOIQURU2QXOHNExuDobk21uWvSwJFZSqnry7peL8vlIjXVfSDy1gQzIImsb690oQJ1kcsiCzCigJOr9x5924/7/X6/PW6Px/3+2I89h1akyLIsdV2QOK+7A0DqL/yS5hKSlJL0dHc7R0E8zvpmnEERYZ7GDSmB4eguGBWhMq7EKwFH7IftOyC4YTiBIgWRAzJBR/BhQhJEFBBDSLv3iNAUiB/qKHmSxIRW5jExpCOHriwgGoVCoDt6oETktFzueoAiRFSKsHlRH/LzOFvjqVlWyQC+UqH+3aQeDmL93I9ZSRONWWMRYO5E6BRADmTEMLoTARHAHINOqXAcIWKXg3tfaqXEPLKRFG5j9tWCDIiDSDD7+DBoHwlNxcAC81VYBK7XtWsngaa9m85xoyEjPLPzAaPNBDaRfORPdfbwYhr/Sb9Nc9dl/dvy57pe/3j98/XlDwhWi97tse+Pbb/dHh/vj48f99vH7fZx3+9bEnkRozq5MZUwUPWWzFoAsCE+p10PPgLEQhzYPYQjEDlFPepaK8laF0Q42mGmo5uebekwJJDK1UtttnTz7A9GEDgjYoCruxlx8CKyZMMLyTBiaGXgU3Ntds0yLj2bXzExgJ/yOkSstRRBkazYk2IRljhh0JA+gTPVRCEqDIISWIiLcC1chJlTCxiDwDEnBEdvjjyoWRzq29Hft+398fjY9q13NU9ezpAsoV8zXcCpPTtOmYAACnQCIjrZLSPBTSsJIiACp+TY5aExdsLnFG9cnV+IHOPKwOABqxtgDPPBRBs/Fw8jz+29HRiOU7KoShlGCiQzgY8ETkea6+Ae3WxXbeY26rTM0CMpuNpbOx77VgEEUFjMXN06YgRwMj0Shp/AdQw9vpgzVSlgc2a4J8Tz3B3PqzKv94kI/fSIcO2diHMAGwMAzCOiR5ukhSIyGVZIzHlzJj4Kky4x0AcY/5fGu4hnmntm4BbYVLf9uO/7f39//69//vWv9x9qLRBKlaUsItUMVN0jvY4cANxhICBIRCBFlkWWZSkiw8ksYjZ/kIiyFWfTpNSY07e99957H+R7zgrlp+uCEWvbVz+kHaW16Bqqah5CXtgu1dcaS4EiRI4QguLLQtdLi3j0fgv9YP9hx0fbttaO1gKVpBncUAzYqEqF5mBFlla/aTkEgUCIab3UWpmISmUiXFZGDvP+eDzKx0rU0RTCTOE4DKMVooLUexLEMpdFjzE0reooRPOqAICqHZnm9j7GWIazXSpeaW/7vj8ej5u9fh1BG5joXElT5WW07AHRx1DFAHx9tkGZqZbsKSHE0PVL9SILB7cU8AXoyJ0xSEosFS9El07XUlAIWA4+Ou+7WE8ZtGBiERGR0f+dRPmRygJO0CadG56o7WxFzf1DRDEp92NSI2ZvBM6M+LdlIiIupYxCNMDc0V3JUtB0UqvOr3HOFkfAOUv7iSScR2MOvc3tGs/XOr8mYMSDXoejzDvz+RGUxr2AMd6RxhVjGmWm2fOfCM/p/XCHpE8B4BhJGfHlTHOf3SHg3xXP3fphzU3V1N3Qh179mHEnkhy8Eim1yN422D3LN/fUAGGZcyWImmzeZhTkIA6ChJw5fEIegBAMxqFqDewIUw935lKXsq7r5eW6vlyXy0qMKHBig5jChqVcry8v9eX1+vbt5Y/XlzcqBBwGtvdtb9v9fvvx48ePH+/55X6/xwQG6rKUWgOgq6sahmeX9NfUH4mkiHua4+R4E8BsdnvOew/wFtz9nELHcIooHJXhpeBbobeCEnCD/p6aWhgWoITOYkjJRzX6aRBUtZun9BPMVfGMd+MNIia4MBaJpawPBnkggTt6RGq9R7gzwjxXhuEf5wpRd3WNiMz7xpMCCvbZong+/i2ae672iLP8jNGSY4KCtXKtQhylkAgyg9Couj1Hj4a3dBzNmO046tEvNW1xfEyoZTKv4BGG3pGC2ImNpuk4QHiYJaVndr3zQ61rNbsS4+PY49iHStt4p1m2PGMH4XlCP4uJxGwmO+KMEwA/3R8AACIWXoQXnvTRBSkAL3p9U/227bePx8cf94/3j/cfH/fbLVw9NNExiJCViJ0lzAAczSDUrVtAmEPXwO6kQTqaclnlQTADiRAtpdRSSnEzzMtq2c9NnJK5REL8XIgXZE/2EWKA9YjuyEDFqTjknJWhKWhLo4yAM9P9nMMMXCABi/j1miCCVBFGluw7oHuoB0MAEgN6jDQ3NdgZQwidUzqFiVgYhYHRGYMgMDQVNRO0sEBz6A5bt63pbW8/7rf3x+N27C0FqWeOOkms9GXpPlvsE92YwWGQb3GQ7GPYLhAQAzOggRMEBbhPmAHnzFkkowcp6HfRdx4cA+AD+nnVzTH8lNd2V7Ou2iEcOQCCMDXtM8tNO+/BMqDBJgILcI/u0d014gmlDF/cAHBVbe0ox4ZckRcJSHvCMauPHMEASMQAEACUVqLhSF942PFMIuepDJ8OzHEYDYwHPv3MT2vlKWjDFBZPz7KYEDIMlXhVjdECoFx1GZHBh7VYdolH5TDabyPDyh9PpVZ3e2zH++32/Xb75/fvf71/fDw2ZhDhWstSay1L6xGhrhGO7sAES2GqUAmKwFJwqVJrKWVhZiSctnA+68wZyrMfbA4wxPiTu5brgBD9t8D/0cgad2WPTEMcwBGMoDOmkz2UEgTIALXGstC6HKYb2J3jBnqzfrd2aGvavRns6rRTcSrBIGnV28uu/TBrcwAlIKfICRObKEXqsizLWuoqsjAdRmhG7pROpyTOPFdZ6mo5nvku5KRaJI9k+Pscre373tqRDGaIE+hP6OY59fvbBw4ewmjNzV0dAEDMmVUCBMzKB4cQBc5fSivo8DO1hu7RAjpXZTYqiDVoQawchV3AsESwCTr1YI9BOB+dVR6Ll2GmuLOdNhfxfJwyoWfqiSnbkAuFCCdVEVLSFYMQHU9U6beJboazIf2QPXyansx+rvusQQKR8m9hvGzAM4gNFDYmoovPzt35QmMfI8I5+DCHTj8DiCMoBGDOT0wYefaqDD5fmJkNQWa62YONmWV/zm9/euSKedKoPj0sVL17qLp6Ojh6VkJjDSV1Apm5pIhNqFr3SJ8SQERSQMzJEgQAH+4zA/6ECMbgxHAxgNCZQBCMQJmkFESQWut6uV6u15fXl/VyqetCBJj2ugCIVKgIlrVc3q5/fLt++/b67dvbH6+vr8jo5Bp93x/b/vj4eH95uV4vl6ypi7C5OQQSl1qklJxCCkhbV3IP/o1u7gzKM/fEsAjU0epGBEjaQ+DQiEmglCIP7hDAFWFFX8EE+uEH9Z165HkolYBriKRjrTKNxnROpLhFuKn5tCH4tJjR08GYkHOYMQ0BJkRy8vPGlkVTQ4A4Vx8DTyZiXtdhBZi7EwFhBKPfbJ9f0lycC/hcZAM+hFzkNDY/L2sxr2aZ4w5MDSLMEuxKsdtopMjEXY+2HMellmyuTG8YFgKGFCw1D+uoSoMVQ8yMCJPkpkMIBkcZKlIuVwAmQ+g+nLvDh8dfMotxlA5wukbO2nUWj4gAkCkHoeelLr+kdKq+bRreC3WGJuLIjEQBwczrZQHEssh6LdfX+nis7dhb29zGoPH6UtaLXO/LvvVj78eudmQKFZYCGQ6mqArkbqoIHEbgJMAOjAaEuNQSYepdk/FiEQ5JxcCIcHSDgCDBsjIhCjJ4BCJFALmTOiELkyA5aaMuhjrOnbkcTz0BmCgBAMxG0C9rRZhFkmkzmHOmrsOhC8DRI4cCGZEZUcgHnE6AZALO3odhN8RwkgnP3LuZH+q7+n3vt+P42NrHY/vYtr31pHnmEqWT5DPT3OcBc97tgYNgDl6c0+Lg6VDu6E7hDFEIXdAS1aSEQ+yM6GNrEJA4SRAHfo0zZ08AZqgkmId8HsoZFHKMIUcyzA3Merg7F57MlTRqFBGWCWplDKcOqEPgEGPMTA/a4qSyg2lkpkvSRI7s8wOkCmYSXjPaZe6IglDAJVBsNMcQYTQ6RhZ7EtfHmYszwz2PxRMb+vJg4uV6Pc+wgFSL0QBgEc7cJSWHW9v2HOmZNzclMtwiYthJCCdQDyNGzz53zPPVo6v37u+3+z+/f//Xj+9/fdwf26HqwlJFFqmL1CIl3DsBoRMyAy+Frwtfatr6QmG8LFJYmCqTyIilgxai2s1ytj+lCQZmmXHZaF6a0YL/un8CQHftpqhBSCGiGsreCXq4WoeolNTgwijka4G6mEgL28M30910D91dj7AeZu7QI5oJQEFECkPrqNq7JbkfFAnB4Tj21g5EqHtlkePYVTtgip5UkUUNCRWpIAgiIwmJkDhxGjgxEhFwClowJYZKiEHIiVVq1+M4Wmu9dVuVgYk5hjUu1CKXy+Kuwl81YmfhhNMWZWpbjGsGRAwMCaMTjhGWAceYYQBlHjgdRALD0Syawh5wIEepUFaUhXlRKE3Rd2sYBEa6w+2IrVlTjGDAM68NIhRmHKtumCjZJAuPZhcEBc2hCxxHZkS6CXDKsjslHIuAmRICCQieJRP+ElMCoKewVDYbiSiL1MQofGaYs9MEgUADzqWYXIZZh+LITeOEvOaW/QnmGN8QjgkNCk/kL4Gg87VggsExdXwooQQkpynXMv5k93r2iM4hOoSzD4NfrQUHGv773N+ANEwjerrPZpo7Qep8WmQmFkFkVevdzDy6tiFsFU19WeqSBU0tFQomh00YC2NhFIKCwVlTM4OU4uHBJOsFAbDWdb1c1sulrutyWWutLCSFaylrXdZlva6vL+vry+X19fr6cnm9rJel1lJroJlr97bvZd1LLSyEhZgiQg3Mm/auGoCMTEBAUARTQjhvXCnl61LJsf08XlKedgbotA+ACAJEmvLe88ZzJqsI6Ege0Lvp4X3fb/ftdt8bdGhGnRBkWagQAVOI2aDkZTeLzBAUAtxzoILOA8FjMC6HfRNiylqNY+1ES866JwWqIQKCxlkeROCQ1P04hRuI3HCo5UGa/a7xZbX8Fs09V/wpdQ75Nd8LMyLSugpiNWdCIAoYpmhz4w0CsiMFEjD3oy97u5SWzWEcxjLAGARA7pCGGgEwK2gSYSLyIZOmnlt9RpRShEshkW62tyPza/ckSyBkJZobiLLle2avI6XLcjUih+HUcUyEun89k3q3x969M8OOUaSUMURahQpXqVz48lIvL+XlW90ey+Nxe9wplZIIsffl+lq3x3r7eHz8eAS6AapDgAOFQ7iTO7qBmw1kLU0xUQILByHCstQIt8O0m2oWTuneQxAeDuYeEMP/C4mRwMMDE2MKMkdkQV4EguRAEqQs90/BqzMcnt8898KvCwVERARm6E9dvSAIIOcE3AIDGMIQOEkLOd+PGIhGkMqeQeA0upBpGAoasHe7t34/+se2v2/Hx7Y/Wn8cvbsHnv5E4zTkz2nuhBXGR5kI58AURmLoYzjdDd0onMAFQxiciSTMwGnM25xPlU9PDFxBKnCBX6Pvp1wvR1I8oZ0zdI9pHD/t0iw8T0wjUoQ60lwRkcKS/ktPVbHsASugwkzXx5/RmsoPa+q9q7Qm5VBtxEITN/FAD+f0IgtARGYSAkEsAawwVbxitkXo87FxLpOZ7I4P/Qno/XpRmPlyuX6KTWM6AQCkCCISMyCoe+ud94x80yaNOQJM1dxFpNYqIIg0bbDyLIwYk3dmbl19P2xv+uPj45/f//Xff/1139tjVwdEoMJ1KUstRUTMnCk0ZR+RVpE/XsrfXks6hSDgunARSf+Oke9AWHiYak9dXyGGiVYlzpK83mRVD5j9N5soQg9VVTQkZGBQ8a7WEbtbV8UIIeJSYam+FFzFlxLMTdsRfngmuHqEHWEtXBygexDVAXoEgiGoNjVVNw3iLLH2dr/fPjyilipSUqXYs1HHhaWyghJi6oQRI880V5LMyBREQamKynymuY7EhO4RvevR2nG01pupkhBTGvYAEZYil+sKECy/pLkJ5U7TMvpkKQeARDAT4yzAZjc9N5spxlSoiNMaMhzMsCvsDrswUiVZRVbjaijNsB++uYJ16BtuO22NVUtqfOOslGkot/A4YwNyDX9W23iGCBo+UgCJ2QLF6DagOzqZ2aiAJiVqxKYY4fTnlRLdFQYSNj834tBpxBi+aDGu1LMT/bkvM1FTHA5yAwCeXLRz28YEgLLDNy2P6FOGCxNZhrmuY8wrpM7faSpHg7kOg6MJ40PjbASM4wXHE4/i9tNNR3ieTV8f6AAaoBHdPVvCqVLFYygjgyazSCGS3m3p1rse1NTD3LpZMQdmrlAKCRXiZBoHCVIpWBgrgxCkHKsDIJQABIwKaT1bl3W5XJZlZSkZtetSai0v15e369u317e//fH3P7/9/dvbt8t6vV4uzJxnknpXbV2PdZF9kcokgAUouvb90KNt+7FDU/dR3gDw5/EjxPKLbm6GVv/0iCEAFehBAwjmwVEbHoS5ZgJyoMuBPcK2rnc/HtvHbXu/bx0POpRaFSnwWiS7nqEWiaGnyC3qwDgzzeVz+DDA3FICkolynHcWg7OsmVp4MVkDgODgZwOCMBwDfDDEBgljrho4BQvIYP1yVX7Pzf0Jlnk2I85YnSKyhQLEHbP/kMs4V+6AFWlor2XO7ubtaIccRQSkEM+QEAg+PuIc54gwy5G787blUHOODTGhCAVwAJoHixALTkQHHGJA6YEnhh1PuGmC44iAQMHMbk50Jka/2VGP2/5f3/9Z6/Jx3V8u97JUqVKWkjYnXCgnlroe3XbDFqQgzoi1lCQd6sv62vT6dn15ezzux/bo+97MLNCBggS5EDLFcCv28AiDQHAERCaOUtlcsIWZ9d6P4zj2Q2ohZrcw9d5M1c+RoAhOyph7kiEDLCSQWZiLVqwLgpoeYcmUhzkI8Eln5tMG+mWVADILERByTEEQzTn9gBiN5Rn7gwghMPlakPMIEMneUDMNU1XoBuqkgAq4q92O4+NoH/vxcRyPozWz5u7wHNJ8zv9O2Of57vJNR+QRMiJyOmW6pywqmpN7CtBIRIFwBCRQAuPIKXEblSbhkGRBKVhWLCtJIZLf5LnjZIyYiPATCM5sdLR2TNOPc5KUwh2U0mjDYSR5T4+lDCgBYHkzIYu3qfw39bZjHiJzUMUhLIX5R/6IcVbOgMlLBqKgMIqG0BH8qbD8vJ7PRPZT1vvpYuME2H+9JESllNzFYzlARDgSF6lMnN1FQvTwrj2bXcm4yrHTgcxHmBsoUA51EZwssAxy5m4WretjP27348ft9vG4P7ZbU3cAJAlEC7IgC84umAgAuAhVprXy22X529uFkNTAHcqUfsnTEojT6oTImHBOydLpeYOIyarOJTcLm4jw53k+H3sP1lgU0qW0G2gKQ3bv5NRXcHMAKkKXC66FC6MgW69SllIu63J9uWytOVNDcIgOiIrUWZidxFGCOJzCZm8BPVDV9r3dj6O5T14VoHbd9sM8EJlz5ipTWB4mfZyCkIWLC8jCIHUtdalSk86Rq2E0dpJx3o7jOPbWG5NgyRnMQIpS5XK5MLEYfwkskwpw3tOYKyqv5Gf8Jc8CShEVjzDz3K+ZAfkwKjWL7qhBDhxUUAqVylKlFGFJLCTFU6016J21gymlU4ZBeNI3zJgtz6NUX2utqep8hzM/wzkBTZQq9TEGA56lN4JjEHoADZOOCXj+lJd+eYxxokxsTwWigXwjBn2u7fO7c67rTBTH2TBq1UxAk5V0sgJi7nB4foPDxBE/ES4Tqv6c6Z4kjWwzZktr3E5Hj8AYvi4/z3lETLh5tGbgZJ3OJOQJv3y6IGER6t5TptzVXYOARApJIUZiZklpQSH21aqHRSoJFAEARpQi18t6va51qVKYRbJsQEJZpCxFSgoCyZBpdGNhKSUAhmhhWaQWLmVZ1rqul/VyvV5erteX6+vb9fX15e3b69vby7fr5Zp2yADhrjmWM/yyt+3YtuPxOB6P9tjatrftaFs79uM4jm6Gku6H4ACBMTNdtOsvgmJDN4ECQ5iDhklyakNnn25OQ9lQXMIUHANiTHYGgnk/9v3e7h8f77cf77dbi4ZL55WE8eW6XFdBrIVMwIEsUJ27WmfrhB3Rfk5zIRvmbjGGTniME2PmhwEZG2Ci+hnrP7WQMc2Peyo5poJQ2jPFyOZizNmR/Oof/m/Q3JmDPx8AJ/NvZL5EWAongDS4RiOkg1lAhBMkXVeYhDkCW9OdD1hRuMS5jSCCIByQgCDxPHfIORuAoJnjTmIuYyq8BJAHput9pgKJS9LTlgBPMMWnVuhMGgbFasD1EgBwyj78elDfPu7/3//Pf5ZS1vWyrpdlrcul1utyeVkvrxdZGDmQIvNPzZFO78TIC62XhacexLdD29GPXY9Dj7231rseXZtND7yeioLukCEhzCnbMCSFxAgJ3LX1vh/7YyvVl1oXU9euvamqszAzD2tDBetkSiMqhsdCTLWWxRa2laO3sG49IiYydy6u5zXI4Pub7J+TV5LJE6BFdDPElGzDgKBRo2WohJM0lJLtkGlJutsdx9FiP6IZOYsTb24fx35r+721e++7aYp6YBa002R+Qro/jSwMmGDE30Fii0GqdMimYea45uwuHmUYcQZRMEWnII5AsMi2LZIQS2rr03Lh5cpjhv5rnJmd/Pl6hANZyuvrYW6epuBJsh5wZFgEmKkaq0uNyE+ZES0XgQ03qDAABwrkFLgYY2PxPMIg2c7+fEsprYCIyavMyYshQ8FA6GQNY8doGDpIajGR4pnI4lkhfqIuTFR3bKzfhRQcmHQmLDRWgRDXWkVKwkuMAAA56ESEp+JN6vI7jQPe1GDMJcGQxzvz3Aj16OqP7fjx/vHx8fHY7k0Pi2EaERDq0AzZkYORqFQUDiEoDJfCr5f1j5cXROoa3SJCw9UCUm8WicMRHcRcLBmuTESec3IQSDSSRMDU/c1+lMNX2k8APBSgg/XwHtS95fAwmLprILbDtRMEM/O6yLqgIBMsptfajmX99vr6t/2PHmFy3xGiuzmqg5qYslMBLMAFnMFzJQSSQ5hFO/Txcb/d7/v+aIBEJBjYuvZuaZQHNdnzIiKD9O/EhaVKhcLAgV4WqZeUQncHG2cHYHjokP/c921r16OWOvdFIEIpcr1eixR7SPSf18ooCciHNwQwD/EEesonj7RwgkEAEGMgxDFRk0xzLUxd1dXYkIMqSmWpRWotUqUswpmCugW4mjW3TnkDQh3MiU3HaTHQ+a7pA9V77+mClo+hxYHzeBmW3EDogORn2yVbjCm67cPVbIzSzVD5y/5JiDc3evbmcr9P0jNQwsV56MWI4rPHMhLfeQKerxCQdfhAxD55Rz1byOMNDXfbGVUHEjzOi4nCjdvnA+zFpA0mtpFZgtOcTJu/8CWrj/BM5gc+8pzS+zX9T8f0afyh2sy6ZSOzEEqRNB7OU8LcV1iQQSota+mt5w4tRS7rsq5LXUpdihROEBEQSIhEsjuKhLMJ5xM7mKuSJPkaUpbX17c/vv3tjz/++Nu3P16uL9f1si6XpSxLLcSk1rUf7mbWTHvre2tbO7Z9245tu3/c379/vH//+PHPvz6+v99+3B77th1HdydmZApCT15BTrsgtOtXSYEM58RBOMW2MJfPOC6RKALMUwnBRgOACdKXWYLJCFx7a4/H4+P9+/vtrx8f98MVObjWKvj2Ul4viywoxUksUIG6RWfu5o25Mbs/ubmZb519vNNtGGJMmSWDPnVWh3saU0A6DEciqIOGEa5qZ5obQ54hz5XRyZQvNRQA/Ds0dy65X7ttz99mRmZ2B9WIsMzJc/5sNCiCILJJxUwMQb3ZgZ2p1BLs4TwYRAAjCSICz3IjmzCOfo5cxafnEhIhDwr/NIKEU507JU4+lbAD2Z2UnWcsGveY098yZs/310Bzv23/+//3D2Gudam1Lpngvl1e/ri+9Je6SnpdenTVlhaD4VGKBAEVLqUmKpJ0UFPvh/dm+3Hs+2Pbt9bb0Vtv7dh7A+2haG7oSQgZPDgSB5MHIUOAqWnrjYTFyxjT62YWhBjI4OAGrmCKrnRe0XBkqrWsvrCv6A2sO5LOO/3pMB6DC5PE8kv4xVQnJSRMdjW4h7qR00lDTZ7UuKSZhtigDYVZ8pHbfmy3+3Z/3De/73EYQalRy+H+0bdb2zfru1sPp5LcTETE4Y9Ip9HfTC5z4T5hh9FNhpnjhjuYgzmakzm5s7m4i8dE4HJiDgwh0VMsJFVkYa4sC5eV16usV+Hforljm0wsCmaTbv6tx8nX1zA/dXAGpmukaZ4CMfiJU0DYR7ckOxa5c3JkNZ8g7xCdaEtCvOADSkTCLEpw7LUpMkqBhIiOrhANok9k2D93cEYb6Uzjf0ZzJzp81q5fL0cOmkfEJFNiABBTKaXUivMVI8IiydA0HTpyxpYpaJ4wgJQGkWBmajZBI1B3Nd9avz22Hx+3j/v9aIe5IrEIEiMQqiMbapAAEePCTBCMUSiuq7xclm8vV0Bu3Vv3pkfvGXoYmZk4CNFARMQc0JBSa95PyJGJhCUtDqeqzO9coQEOAzYAC+zBzbWn75M5qkdEa25K7sEMdaFlBQrCKKWspbwsyx+v192+dYzGtAH0TWMP1TATUzaqwQVcwDk8i2YHJCQL6OZtP+5/ff/x4/sHAOdYLQ3dayQe0x5MTIJpRYiCXEgqO5WCAARSuSyMDGqaOoK5BCLCVFtrx35s+3Yc++VymeOfQQSlSthapDwO0P7rhYFBgPbPCO5YXURjAeciG4EfII9NzNmMMdHvGmqhGj3QmEEqSZVSSym1lFq4siQB33oEWPc+lK7MgizCDCOPCYhJbmytJY6bjIVhZCmCs9sOCJ8Na9AJMZB8bCmcWeTcT8lBPHfKrxkdAjLzbOfCWFKf4OFZPo4Ed/AxYabmn2pUQpz1I0z0KuZ9GyEKJkvp01b2LBziJDLNDu/wS4ZpxxaRQmojM400tokwJEMHQ6cAg3HPvnYL89z2MUoXZ+Ppy8+O95SyrKo+dU66qjBAOjsWXtZaas3YRO6AgQxSeVlrJsRCLCJLLXUpy1LqWkoVoAjw8cqpvZXIjJs7AiHGmNvNYWaauMuyrm9vf/z97//jP/78+9///I/r5bqUWqSMHMSt99Zb036YHl1bOx7H/jiOx/7Y9sd2/7h/fL+9f//48f377f3jcbs/9n07WncjZmAKgmyZA48JgN6/bp5sggEAE0MEPIcyp1b6gAZSI8UABuoQhcdOcvNox7E/7vcf7x/f3z9+vN8ehwIRSbGXK+5/lP5aOIQomBWwByhRI+hMhbAQuQd8fl3EIWk2OjB5jCWH2EwtPJiAMTWqWYpkpqBm5pFVp4WZ2jTbSoYmAMAkQ43lZ/SbSPvbNHfUbAnjnqfm2KAjORzsI3fKTZfgVO8ejoglPwsCYhCGQHAYObIStsMJmy9R0130WUlGLvBsVE7klWLSqGmSlxEg5dbc0YdAtZ/KcAOlnVU/DOJepD0E5EjwiF75lBACiOgelGnuL+wo7b7fO5EebFKOi3YLDwZeWC4l2MEs0NzVtJlrprnSyDxa16XWKrWUwinPEgRZVmJBunChrsvFtHfdt2N/tGM7DuodVVjWpZRSU5q87KzQQkwKvbyt66Uua6lLwWaJLCYVx7uHgat7d8usO2B4fToVKmtdYgFbXbuZiZlZd7ChrfZT2EmeLxEL/Zq+MBdiIBLMfuSU6Iuhg+dpjASh7l27Hs3aof2w3kybQdfoety3+8fH/eN+3/R2xOFEl5Uuq1Lc7disdTTFcJ6CCXlvR9/myRs9m2ET1xsz/Bn7h9mlje4D+qQrzBy3+kgViUAYFdABkQmY5VKW61IulRfihWTBslBZ04f8N0ZoMUqE8V7O3iBkmjuml8b82UBzB/4CA5l6ah16zJH0Z/aemmFhozjMRhVBAKUYU65syKkc66pHug2yABOltAQzAUWApd5ZjGbl2Tz6lOPiBGsnXeH5eNIUzv/5Ozg3nwUhraRESoqcJuDjQ0zTKIeKPmn95f/FWeVDmsmazdfEFKrImOoB29G27Xi/Pf768fHj4350JZGX8oLMyIxYAhYAydwUkZcqS+FFiNEE/e26XNelSkViJhBxUeqFAQOZ03A1PRRFuHhB5hzxjwjW7sz46R2mIc/QRHOE4wugi1yJkcgM3KAbqYmGBBSCgmAOYdmJQid2YgdL6IMJl8JvL1cXwKXQUrGU+499h6PfewS5URiBM0EhEIghfAbgSFCqXK5LvVcWsnBTa80QD6bKXIa8PzGmJCC6g6qjRUeOsjBKyQorJc5nv++TM5eHQfTe932/3++Pl8fLy0tOoKTkijBHCUKiMQP7+ap8WWRj1+SmPmuJufieiOOM6BmIwCE03MIU1MCIQ1ZaXni51HpZ6rJIWZgXRoThducYghFg5IauERpkYWQ9IsJ7V8TmEaqqmuJq8209eZABCCISJebbnqpnz8P02SAdn4Ro9JbnX37ZOYT0Ul/H5Kq7qnbv1vvookZ4DmQmjxamfAymTkKqJCIgjpn0cbpFANCwS6Xn1RwSNDgzZ4Ch0WoxzKXGANl4tzG/j6RPQQJG5wcOAIgce0mP7hPRzSeYGQbOypoGy2sSLuDTD/30ODbdNwUPCGYmECMQ4VKXtdZ1WS6nDpdHgBqaAxoAEXEwUso+mrfeLUytN2WpRBJI+TZSPn0g0TkJP4erEhsVJiHhWpbLev32+vbnt7/97dvfXl/eLsulSEFESwUWN9Pejr0dW297b0dv27Hf9+2+P+7b47E9Ho+P+8fH/eP9drs/Wt8CFAlYyC0cwkzDwiEcgzyNzXBCOZ+WCqAMzSGaWOonSGK6EZ5rbzQDAtys99itf8DD7La//7j/eP94v73ft/t+qMVSZWVYsBd7yP7OYOQ9eMmxvAAuQBRMGMTkn/DLseRhLH8mTNNAiCx/UAHCkJMjJWmjJxGhZobYzXoEIaZCQwYQDXIamwjhU0MngigAvsoU/ibNPRPcscBgtD9O0mdmF2MUIUkFahCek4zhSFiHVioEBmMIOoehI2qnAyy8hQWsQRgic576RGAx0Z9Mask9CYWAE8DLJq27meNJuE7M5Fkt01lkZkKcou4OkLHWc3gyD+a0s6GZXdAvgcYs2m4AAdiJ0cCBkVeurS7aUcNAPbp5N1W1nigdAW5HL7fHsiyXZV2XtZThhTgcViojV1kkx5JUbbvvj7JtXBj2HY6l1tfX67oumRDUo4QYr0gMy1qWtdaylFoQsRYREdPAZH30sOaWM9YKkLEckIIqy1pr9LA1f8BMvYOm4C7AGIsYuRcBDw89/iV9QebCI83lZ1oXPvlVs3Po6tZ6a/tDt0ff7n2/a9s0mnmz/ePx8f399n7/2PvtsAYkby/lTaPSDr1BdwEogEj8pDuOluDnMWwIGEyzOY50SlWdae4gLdinNNedLYrnT6c2EjpDIQwmrsO/8fLtsr6ttBBVpBpUgCSSrft1+8CsrSaSPCN65qfDEsKse05Vngfg4IZ8PjnNwxITn880DrbsoCE4Dok9gCTQ8ZDaGvC5mWnXfmgvS12EgQsNHtSosdUTF02H8TEi/onqO84/mrq1c9OcCe5Efc7U8/d910y+R0+/5+wSIka4pVubKhEUYQY6nzk/QQZsEclUwmx6MgN01a4WiEjiDrfH/uP99v3Hx/cftx8fd+S4vJTlemEhIAoQVelakIaV8rLUby/ryyIMymCva7mm2xCJCJaAYqV7NVcIV7cIKEyMyMy1II0qBsLDRPL8yHnWNL3EOcX7i/0kAICsLEx8GJqhdlIvGgZRAzoP1laG7gByRAvgKR9eC32T6/K61pcL1Yq1/gvfv7ebbbMP5gjAhDKc/YYYQCBhWcrl5XK5r6UKIqr13po7FNFSliKl1kKph48eiBYdzNUt09wcxJmccPcYLLmTV+oRYd573/btfr89HvfWvrkbISGBMLpQaEoj+5dL8ynFnc0BOJPJ57GNBCkhOEtEPCdaMuPzCAvTMAtzUOaQJZswy7KutS5FqnBNE5IAojAMQQ9wDAW3QPPQNKhxs5NpNUiNc1Vjvq3zGELCWuuosWEW2vM8HXt9lByz6e2p/DVU0n7dPIT0urzmTjHTw5qbQQvXxFN8jE6f+ogwJD+IOQSQAZlhZLjMyEmBzSbLKQY8FB4yck9YeeYPiW4PMf2BQZ+fZ6S5s50eGBQpQjHgBiSAIISwNCrPmZHMtPFT1AQACIeTPREz+/1t5bzvut07D8Y4M7izFy7rcl2WS13WZVmkVvcwtwgEtBgyDwknQnhYKPQADOaQilyQC0gBZBigroF5mIWaq6l7SJFSqpRay4KFiHld1teX129v3/78488/v/3ten2pdSEi98zWumrT3o79cUwcq+3b/rht94/tcX/cb9v9fr/db/fH437fj95Ug4wFCjIYtG6mlgd0YAQwI4+b9TXM4ihSUxN47JGx5MwdNGXsRn2V3TcAMPMW+vAt9Md2vO8ff91+/Li93z4e++NohHgluVa8kFXdeH+n6KgH8IJUEIUpvXArIQmzAdmUABpLJAFERAKUXHRACKEIDOGIE8aVmmmuuxEqIgOQBWEw4RRqY8Z5cI7DDgEij05iB/w/tYdIukRKcM8T+xmCgD7DuskBFTYX6xQISR2hQQIZ0BSHcxhn1mMZDN0xOiEwQQSVgpC+EhBTqW/YBiKSexg5hJ9EzNx75tF75Dzv0Xo39YFp5SeGADyzjTM3QJw8VRijnphkiFR1GwKXv+QuFtpH7wIoaq8AmId2Th+HqUUK8rnqqN8homvbUY9mrdnRtJZapFQpOUWPyTLD/NQoSFxUpLD09J6VKsu1Xl8u+SlQoMfqpMS4rGVZahqJIWJdy7IWyILYQSOnrIb0DAByYam4LrIsslTWjtKCa0hFWTAcNTDcwXFI1GQFSMBMXPg3M9EIRDLm3QFhugwM+HQULRahqk3bvt33jx/Hx3u7f/THh+539cP8sP1jv78/7u+Pe+u3Zg2p7FAbwMoqbuK0EjMJZIwNCCeIodWZ9N/c8aOdF7PoGSn3SHMD0aeUmDqqoRmrh7rMedQ0iZACgeRIKCyXWi7L+na5/vGyfluxAhQIcSADygnWX8MvzsszF88g0881mO7cZqkJN+gkn7qWCAOQyoMVBv9nQEMwpb79ZCOMGpSCIGIqtCJEuHmott65KLtXxEoEgJyeLu6GSOQyMpV0cCdDciCbbIvz0+ApuTCyEDixtJMy8m+QXEgsGueT4dzJGbnTAdQgwFPBONwDycPCghzHVhtD7pbcf4gA6OZqboEB3i0+7tv399v399vHfbvvx7LKlZZlWVkYCdOtKyJNW0EQqtB1rW/XymActlYWKcNHNmsHAnRUQzV19Z8gOAZK74FIYIwSoP4M750z479C3Iiw1FgoSBShh3W0QAcGKIiLExp2BehAjgicw/oGYeAW5uClkkjFyo7EUsTYH6GPDjbMniFH505yN0CCb1JkvayX62W9rMtaW1dz7c1yzggJJRgISNImniD9FlCRQwplOzcwzEwTiQ8fzJxRdEZAmFk72v1+f9zvx7GbdaRCCCAkmuMQiPhr1xVPNs2nr3GuslnlzooMzmzsWWI5pqWQWZjnjG/FcpHlpS7XZVlrXapwFaoIEG4ORKDogmFgkB6xqIGWuy/rDVfzE/454bJzjyeEPyZ78mSHQfcfv3QGqie2hZS9ywB3S35h/NJ1JaRLWVPEzN04ENSip8SmBQBGdm9mHBlSuDjGipARGVAIhZEJOYZEbIZuesLjMwbN1s24sIYGoeDJf8i/H2lufp5h5B6QGmzuAWBwekOnnUE+c05QBSA6Ig78+gx/ged/xEmh+Ar4j0fbdLv3pSIvKCUnm9J0cGiNpznQ6GIkX/zQ3rp3s4HqZBw1DyOGUkEqlAXLgiwYqUXnkNWSqnVTjyil2uJLoFChSktdXl5e//bH3/7442/f3r69vLzWUhkp5VjUetfW+9Hbvm/3fXsc+31/3I/tvj1u2/223e/7475tj+3x2I59113DgZGBgsIVDADMcr4209wUSDrJJ1+2j4zRFWRMTBAA0M6OyFx5RDnijzNqm0d0c+yuzR6H3g99tH50VdNFuDJcKhfUaPd2B2obygK8GFWjArKgrCQLU0UqCIyANs9bGJwWACCEoGyBERCkTV5KnA13pJxGBgKMIAokJglBNAb17AtbSwQox2lm0yDQIeJ37dXfobkDGH0WbLn4cs0TwhSCHkxxEikA6Mba0TQnkZ9q9hgUxt7JHWmMiLq5K0IjJ+zuaS6PKZ9KSbukwixMBZFGoAnnsW6TXQiqtm39dts+bo+P290huIpUSYQBk8oHPCrncXvPFBfT3IRmmz4LDlN3d/qlSAIgAk5HK2JYlsvLy+sff/zt2x9vb2+vtGDrfHQCxLSKAzpZTBEBqriHag+ixohCXEqpIpg6yZjxBt3j2NuxH1trR2/d1EBH8Mi9bgAcwCCVLy/L9eXCJIgMhJfX5WVba2ECpEBtrodpN+vmakhRFqor//nn+vpKdfWtaVBzbMBK4lSAHTDQNdwARq0PqTXF8vvu/ID3JugynBfOXC2jiPa27fv99uOvx7/+e/vrn9vtw+432+9uu9puurf+OPpuW/fDvGEo9hY7vQheCFfCSE0jZgAIS44qw5gNTrhsZLAW84g/ySwz9gdgDi16YHfsTt1ClVTZXLLxJzk2BMAMTFxLuSzlsq5v6/ptqa812I3UKDzcQufC+XpNTlzz8ykYowOfPW21YXXpn6kVebzQ8wT3CMegkdRNWm+2+EdOHwYQY0IFxuRfAtsW4RakB3fvzVXBzFBXR3EQD3JgNEYWMQlCJGAqVAEKhRDEEe5DAvNL1nHiuZ+am58+8m+S3QywCa+bWaRwUoC7AWDMGa1EzsYnnS+S+gwAoDrm9jzcTAPRAx2wqx5dH3v/8XH/uD/u+7F3VQfxNBlBSvcPJEEEAiavaIJa0ReChTkhbmaOgGZOoTR4z2kiCgxELDQYbggwgL0c24oIQiylnqTG5G4OMRDm7gjwReQyrrW/UFNpRodCB8AIQoQSFMGkjAfYHtyBh7gVOMIRuvne+kOwCHlh+vvr9VrXahRbj+PYH49j6+YGcOEsU5nS0zQCMYJISl3Wy/X129sfj+aBvYf2LB48wJGAGerC67qWIprakAHEQDLmGgEi0H344MRgmiUZJn2NAHvvj/vjfr9v23YcBy7IxITiAtYjC5hf4iyeY53nmvukqvKssZ6bCwZV7TNUauHq7mAowMJ1pfVaL6/LclnKUqVUoSpUMSDADJWgY2qNWLiBW4BFqvchpEYzMtEEN/hEXLLajHjuihN5hpFwfk7jYCLgaQMLkLUjUaRqpiqDfD2VEUrO4RVGjKVSLbQuoq2ZqquOH8JT7GtkvtlXR+JADpQc8oEgB7CRnc4SPIvavLCz6Z1K2SnXDUFI02o+U4H0yBi/7fEpzUX3QAszdwWzCHSwmWHhBOAIJ2gcMcMWnrxrBJy5NPwWTohj0+3WYyUKIRAaFuFo7q13YIQcUXE39f1o9/t2e7/n4aqtD+/kBN7BpeByoeXCHhTAEoRAAJRqHa5uajkLT2hKVsQJqZT6cn35+59//1//43/9+bc/M8dFQE2ucD96b63vre2tbft237b79vjY7rftfju2x/54tH1rx960OToWLFjIwBzJIJrpYYm+foa9s9lNYybyy0oBzna3mbvlDY10J/0E/wCmSyvnckEIDhIgxoXplRiwN9i2kI1FF4VVYK28Voaw+/1j2x8kC0sFrjnnSrJyWamsUdaQNaieLkpAyW3KW8kROAxGfdqmOkaApaqUQYCbA0H2KkGYGSlKbp00WrZu2jSamfoAtsIjFer5/yI39xOa+xmhQZzZC0zJhQggQpHCLGHcC1ppbhiGgxeEhEGh5Eh5IGFEysMqOpEh2uBXRI7OSxL4CgtzYcrmASGguSEGoudUvQOa2rYft/t2uz9utwcwXugiteS+ySY0TluoM8rEk74Z4eE4StT82KP3FP4FukTMQSsAdGJc1vXl9e3bH397+/by+u0FBOhIhjjmEH+mAhHgw9vCTe2IkdkQ4lJKLTUFaGLCQxDQW+9N25Fpbteojg4ckIUvD79XqbS+LK/fLgick0mXl3rdF1ukEAqQNe+HajPtat1YYLnIepHXP9brK0s1lh50ODVgQ3EqgQ7mOCHDgJxe4KGb+Wt3fmZ057oByMoh8UWAlPTxrm3bH+/3939+/PM/b//1vx+3D7/dYruH7mq7RnNSQ7PD/HBvBBgNDdhrgVoKYzCjCBGBDbfrPFJhkKc80RSHbC2laIXZp6ZZDOVH9mAH7IE9sFl0ZbUwc4hCGAXHnGNhKsJrWS5rva71ZV3eqlyLYm9DH9rC9DfV0PPKPBt/Z2svYoyMmql72p1MgscIUoEIPObqTpYCwrlcU/17WKXE/HhJ0aGs3zLHzaoNzFW99S5NrZtpJ1oVqkbxEE8Rw1LEikvBBEKUo3IcnMOSY+r5+ZjYD5yI7kx3f0tW+LQ6IGFbS1mxoNQATqnsiRvn5wtHfz49nLCoDUl+H+0SRGQJkq52f2w/btv77f7x2B77cXTTmeMmEzvt/xgCCYSikFWkQl4JK6dFLDGRBzQzdmcgHCPtMe4myRipyAgToWq99f1oTLTUWkuO+Ua4Z5qLiGnxoUEA8rkAQIBrbVc69nI8eDdUQAYQCC5BHEJGcIAewR3ZCIKc0CEa2MOOXbeVbOVY6+Xl5cJvtRi0+3Y87t9jb0c3B8i5K0Fh4hRODoggYikYl+vl7e3t2LU3fdyPfWuzgRfIwIWWpVxfl7osx3Hsm6MFCpBBWEpcRFiOsgzT1tHcEobAHEHpvT8ej9v9tm3b0Y4iRUSE2NWVcTDMfo20PD3DYHqDjmqBTtLCrOUGfBlz0UOaggFYGg2i53B9XctyLevLsl5rXRYpVbAKVnAIV0BIZh0YhkFmumCAls1JmP4uKVElpRQe7rfoPvT4Z+doZn3z5JwAaAxgdwzCjk2PkyALAG6uvQPWr9cEoBAhgRSSgu7lskg7am9de7M+ps7Hj44aIBAhESPADHuZwFEEagAFWEQGy5n7wHBGYEKGEDyHYQAJwT0YsvsMTyT9pKoB+Exz00XWAgwhxU41+zOjBXPixMiT4zs7R6d8HODUcIDPlIbPj7b1/d4wsutQpHDWIZp9XoIgKJDHge3H8XhsH+/3x33bHkfbG3w2wkSvK1+9BJTUig4UIiZEd4h08tE8VMLQiCwsCKlKfb2+/vm3v//P//m/vr398XJ9KVLMTNVab60dre9H247jcRyPbbtt2/1xf7+/v99v723f+3Foa4lFec7NlMKB5sQWhtosos/4OHt+WYnwoLj+sn0Is0HmbjEPBHPPHnNG6ZRCE+HZkwvyVMIGBuIitO9QP0AWllYZVoFLpbWKmd33R+9GLMN2lYSpSl1KvUi9QL3icnVZnThQgAWlAgkipchIJkgxm79nmhuOY5TH3cgFIx3nhKbQLgBgqFvTfijt3bhj06FSmVAXBPx2Jvz3aO7crnPF4alPyllAZMFqjohDNVtKLEuEkfYwjJhCJwichhnoiI5onoZ1rmjNFYMRjIFphoWcVcXxoql0g4hkFqFxNoMj1Ky1drSmah7AMJ3gkCKxFsxh3SeBI6VBBscwKRU+1VRmkJjf/Lx6Yoai5HWnen8pLELEKCBeKzggEbKwDUg+Bol42LpqasR2AihlWeqCREnPtIjQKVSCBCJYCkU44a6d9i3Ti66q7kHoiB6h4bluzN0xgEAqrrUsIt5dD+nNtPXetBS6vtXrS12uXNYI6iAKRbFodA82oBh2fuSpTTNuuAzvjnGI/PQYkwQZLHww9SBSTiJbz57cX7Nufe/brd1/7O8//P3DH/eww7w5eSwBEuj56xjRAsSoORpyMDuiA7gDOYYjIGPQkC0fo2YWYB5dB2/kqUjrDh44vHtjCKr3wB5wODRDNY4AJlkQiKDQ9L8hqiILy4JYPbhbCnp7Kk2Zh8HAM36JNPjTEpocohyvyNVgn0kVcQIkSHNwe6ilwdkDPvk3XwHk0dnDQWaFAbOFR1igu5sbupnlVCL3wAvgCuARJQJi6I4xElFZsIItC3QNiLAOoMm4G51MgPMYgl//BZ8YlZ8XStad88uMDjR8zQMmOBfukcLxDjjSfZoTBrNamM/5zCDMbNuP+/3xeGztaGk8kaoSHtAViBKM5VpQClahtdKlyutluVSpMo5bBPCAbu6ADk7T9jMprYjDrM+npgvMsmSo2iEFzFt6ZjXuvXeFrwKxACDYCh0HHyGtF4sIcMSc3Q4Up2rEimIkIIGlk3VUZHFmI1IINXO3Qnhd6v56+Z//8Xa0DaG1/rBmpfJQFailFgGKCAvLupiKlOvL9Q+1Y2+3+9G7ExGLXC+Xt7fXb9/eXt9eri8vtZb7/eZuXRv1BOufmU3SkzIFrLWs12Vda3p/Jgp+HMf2eDwej+2xLaUudWEWpmD28LOQ+bRUIE7mKwBwJJHyXGLzrkPO4T9x0tFkzHnKQTSwIGcBWbiusq7LZVmXUkua+mAhkNFvcwunMEydawLg+cEgOUcAaVZdSqlLXeoyZz/Ah9JRSh+EiGBaTM19mVXc+GA+GC2pf4bPhZ39CbWuxF953Jnos9C6LutlJULtpt3acbRjb0fT3rR3i+nNAJCKFlO+lwNrYAEYKpxq0dS7GkTznvdK3W0MGzC6MKQ6vTAUIUaiAozn9c9bMKkIY8EnlJA9GkYLtHwTgIROYD0QyQwQHYMSh8rh6JQBeW4QnDXMnLlF/xL2AsDUtVs/tHEnpgUryVDkDjewSOqejx5Y81DI5xngl2f2KAwiVAsVQRFIukEKhyAngBI6+NhECIzCJEXqulyu15eXl9eXl9fr9SVVHcy9q/aurbfW25FyI8dj2273+/v9/v54fGyP27bfrPesxCLtq6YCuHkoTC93D/OkFhBOwUiiMa/166w8jPE/fzrxJHbgoeERkTMJlJxuH+XK6MMBAUpAuATWCy+Xuq5mm3esFAJOYWraW9uOnhp6Q1KbSmnVZOOyYL1guUBdoSxYViwVY0GphgzAQUzT2swnnpb9BAP3rJsj1EEISmAgBqMADWUBQEDPGa3UAI0Ax2CcVCCI8rsR6H87gjaOzyFFnI2aQZaFNBtzN4vUJ0FCEVqWisDt8HaYqSd4gECMVbBwsonDkxbkqE7o5M4YRmE41JEGCh3MM70WImKjnrhbHh8eYKattdTUEBGpkmhBAESMqbNcFjGP31Oq4ZOuyuAM4pkD/24I4Blgzy7Niei4cTCJLLwylyKLLZ7tu7P/7KaqTXs3bdo7IVzX6+VyiYij96P3o7fWukZkxYAiSMTCQPg4jsN6ruzwaBYObAFb7/DYEAiA29GP3rr3wiQrXy7VNay5Nm07SsOy8Nsf19dvC4qnsFuUhtWxehzqZEZp2AWJxyIgF6BCROho6qD+dXoxRudrhCOcXmc+tJQx3DDzTQt0DEU/oG++3fX2ofe7hwJoFCRJQdcIcicMMEADdixAFYUAwdx7EDpyykEHjy6lR86KGHSPrtHVNT+7jlIMPAiMwAWGvwK2wObYPJqDGkGy55mq0MJYBQRD0qIYgdXQTXsAamhztZHxn+LrP59JMbwCYpy8DpFqIRTgUwAwZRZ8ABnZl0NKkb5SipQqknACZaw/t2VWnTGa/ATomKSeXJjTDibAHAzCxhp3DgNXC3EUZGIABCcgRpijbCQoKy6MSuAa4aHHaNmcPL0ZFOEkQp5/df6f34UUTROcgCkySERkzywXANEDkp5IyUVFJOalVClygmdjEycakJk9oKkde3s8Hu04TBuG8aTNR0RXJwYSKlTWItfK1yqXhS9LeVkv18uSEw/u00FuZCxzGjDfIU6gkWMeE4EAIsP1TJgBcdJyA5FEUkPNM+n7JcsNgh1hBzqsdl3MEByIjEoEB1BgcSzOFaRAcSw7RXBwWXm5UPQIV3PVHm6E/nKp//H3bw7mfuzHbX/0y3VZ1nVZl3VZ6lIsVF1zNwY6M1+vKyJkmmsWRCTCry8vf//7f/z5558vLy+X6zU13ltvR9upIaR+akx5KRxCdcx8uVy+vb29vF5T66lr2x6Pbdu2bXvc7/f7/bJertdAEuQgdnL7dbmYezfDs4MAgbMVYmMGbdJGEAdndyCCs/QZVgwRaEDGEmXBZZF1WdblUqXINLYCYAh3RzM0RVNyTfIwBCe2dJLmgJhrqXWpeUEBYPKigrPEn52NKf41d8w8UpPlcrYjBmE709+pjaXayX83rkhELOv6+vbtj1KWcHSHY9se9/v2uO/7fd9uoC3CHBwwCAJpzrkwkyxUrkgFgAGwdaND8Whhrt6hW2gPbQNxYwwiJ4JScKloIEvlKv9/xv50O45c2RoEbQLgHiQ1nvv+D9er+qvqqntPikOEA7Chfxg8SEk8VRUrU6mUKIr0wGC2bQ8kBfB9Tn5f0B/moycuR07kwgbGSEysahMN0dSIwAwssV0nSMHMOh7vnzbwvRCBiMBPPP/d3dV0zqMDUCAHF8CS1xdaBJg7zlhRS8YSbWP3EhCEy3WHMVrjrXHbqO3cNgKJjAshEkjMwEI1eSnMzEVaK9vWLg/705enrw8PT/u+l1IRSU0jbKqqpnnYGDr6OG7H9e32+vL66/nln9vtZRzHmAdEIBMyY1CEhJmrqVpXG8OObqNrnzbTrC/STYcAgamIVC6C9Kdgxj1MdeEhp04g8zYXSICBKxJYI4yRaLVzuZHQgAIYuJS2x77bfPWOFZ1cYw5P0MrMzAndkJlMWE0Hp728VJRKdS+Xh7I/sF8oFEERBZEDhNwZImKBZ4uol5Y7EBaY8igjdCIjEgiO4EXQT6INWNJ60YUwkFN4nZcj43znd5+vz8rcc3GtrhnTPyNzN9fcLY9/wyCjYEQkYYKGhAKhfrZMmMcgpK/NMrJPT+xIhEnNDEMpGHPfxxnMAwGY9GMMZqCFDmriJXlkqGkSUGqtXCXpE2vumS1N7valYHi/JU9A9zydFtcrB5L8H6ev8fERnSaw5hg5U2vC4TXCgnLyjFykCHO6icx56JxZ5j5cHh72B3N/vd7wuDnQdEDAhPIiPG9p1dl12DDmIuLJrgMSC+xjOhghI8gcOlTVXYSoUtkFHLy4VkIJOGLbyuVLe/x2UTiOeViMYKPq1IK6Q7fgAF44xrJcLih12bypuyWU/vvTSHvXLLAwlf8GzulvCpC8fdWwyFLKFXTAOOz2pm9vho4YmARREIIgdCAASMtpA3bkQDIAjVADAUr23qnp8QWD5F8VU2POmNN1hM2sJxe0QJBaDSBHnA7DaVrMAHNCLsLSKm+F90KbeMomMRYNFqYrmLmGz7BAONMK/zxl7o/mvtNOQjgmKuQRHotdegf9IqNEGZmp5Ey0lMxQhSVNPnmHqylL39k7wuHn6owTUk/3n8XBS4wgzMMUHAgEqAJw2mFiHi8RSIRSMRpsBdxBR/QXMP1IzYUTqP4wALn/B89q+C+ILhZEh2c3uXbh3eo+KXmniJCTdYYgLLXVkmTF9xo3PJAiVtI1gLmPMY9bH3O4KUKkuzYJBcC0SGIOorRany71cS+XVi5Nam2tFCY2uKeSwsJvw8nPdnnhzcBOGBwU5pbZ6kyUlhH4HuEYEZEwtLvPaQvN/ftQiQHQnafVqVtokJoRSHhUAArgIA5qzs3ZQxxD2aVsUi/sE3S4TndPUea+yQ96ooLHeHt9+/Uqx+Wyb9tWW6ut1iLDfGZMHEZQENK+tVL4dhuvL90diUCEnp6efvz88fPnfz1cHmrbEGHM8fr2QkLIiZouJnxmPRCSFKmlXi6Xr1+/fv3yJaOQj+M6+9Cpx+12vV7f3l6fHp/cYhlbsXDQ39K8VGhmOZsOubkBLHwJrQiSgnmuwrjXkqskynMKI9CBnQvWRq1Jq3UrTbgyCQFj3N2+0QzTxTuZcYwUnLkwkG1Z9qClltZa29q2bQGR9/0duV8TiQ90ilz6uTn83uEuCWngmbmzTINsXYdun5S5CeeWtu+Xr609EBYAvrU35heiZ0A2d0d0VwgFSNpcLMkoCZcqbRdpxAWR5ZiAI5yt6/SOGjAV5gD0RfhEdCJUDQ8IQhauLFSQmVZS8DmvWI8+zpYw5QQpAnRkJVIyRSM0RGUkBVQkc/UATGf89YDiZCusKu18N2OZMn56qqgpTkAGadSi5HQqVtaX2bz3GI7oUqhWdhOIJJ45M1wu5fGhtA2lopQwME1vqnPkbx6qjkAizFiKtFr2fbs8PDx+efr6+PDU2s5SAmCm8GLqmDrnGLOP2Y8sc68vz2/Pv57/fRxvqtNNKdOyMYMW0QMsfFr04bdDjz5n9zmSEgNnEEEQ4onmFvo8FzpP2rVw0s/+pIu8f5iFumMgpU0XZT4hoAMFEEqp28bz4qNZl+JDwNFm6KJ2QoCDERoQo5MDauQeYCCWuqF9KTARlGASKBADSrhgXu2ZIRAAmNlsfKe1JFrjQe6sDBIu6O+eKsskYE0wOcNWEu8GAsBPpmafp6CdnKEFZOe7IaWUIlKyvsw1DSnXSuojAhEzoxQUxXAM9WWfNFU9kf6M6Ex2N6ErOIGCKRkDQvahdNIVmD4YnUSaJgakuk7VAUBEWmtcSw1HISlyv3DTadrDyRE4zvnyqhZ+L2TXuZhshGWv+9ljuZvzm62wxzJFTNCS27eiuVBw5YqQtNpqqarjQADwWgoBCPPW9q3tY+iYcQzbNpJ2CYy0YjXT43btxzHnYK1uzlxEKgIuFBDmtKm3SRTMaAYeCMQG1NXf+kQgcHSn4TgcwOKmLkONbHooAhSSvTQHcEIQZTcGY9cRNjwASXKCgdkK5Hjtt1k8xFAjCkZwQIBgRyZUt2kKgK7DR7cx1A0QmLk22bZSqhLNu8rTT77Bef47qMVAv0299tmoELMgBQtTKVgKE6944WmuFsNiGgyNMWIMnyNmd+3mmuiGMzjjKZMHcHWazuqQUchCIEiVuBE1wgoBYbh84jW9bTEsp9W4sOvFE/zkdVa36ViR0dOevTK9E+aXu0OSGlEYa5FapG2tlpoZv+9sPr9TeNdZAgh3nAtyfBz3D1jVGqw2wnPohw5ogd4JKlFBIAQJDAhTDVVVi0QhoWzYAI8NpaHOk6N/3wlZ475zGPCclZw//+yprBOFEJEYRNwCOEzdMl0pe2N3zDx5Llxqqa1tbWOmrBCyRM7uecWdpEbMPCIQgBGRERFLk9JKcDEQJ/ZEID0QUYQLC+fxknaD4OaWFJxkgQJEouQU8cEbNuHQdAnSaRoItdRaCp5V8p19eIcDUmut4PAn5RJuRIQ8i0VlqG6GQwEiFGFACAWj13CZ0289dgIMZBKqW3sAApgHzl6ISGoQE0ojfkL6+ePncfTXl77JtyaPtW7MjARoeeFbcrqQAjmkwMPD9vPnt1p3RCeCh4eHb9++fHl6qnUTqeaGSMu/ZK2xtc4p/YyZL5fLw8Pj92/f/vXzX1+/fu399vb2OvuAQFMbfVzfrq8vr2+P1/51XMwBkEUQP1GLe4SaEVKsJNAw8DvrlRBZRDglOHCvklOqjauNpeQ0MAIISqXaqFQWZkZhEAqhkDWWBAhH09AZOl1nuGUfSciLIA4IzCTpgbeiSikgnBzvbte/YwDvzyju5NP3ocDaP5hwdKwPPPvRT3lQweLEw/E6TEERIoD7mFezI0KJozRCADdMoOj0vXbwAAZDmMHMhS+l7oyT4CDnmNPGgcaMHHQGWtK5zckZlOyAgU5oEVxKlJr5ifDByGh1GsuA+7SD8SA3JlVXVCZlpUlmxGqmTkYpXCED83ADuwP3CwL/4/T486kQoaywKKklMx5qK5QEYUji+Fq5Nqx3G4f2m/bbHF2JUIhb5X2vl8daaiAbogXksYg5uc7AFlM7DYiIiLZte3x8+vrl67ev3x8fH2utAGDubj519j7GyBr31vvt9e315eXl+eXl+eX15fU6Rg9L6ZAD2MlsTKK/jqlj+pw2put0TVfQYTYMPGN9kGutBmfq3e/bB2JmUNqaeqy0y7u15rksz1WHvz3mAPAIjGDmsm0EDxBPiDexozIzgVlUhJkDFA9GEOYiaR6b2KKGTRjm15ihMQ5rO9XNSQzZWag0rC2YPRXupXJpxNUCzcHjzJU2zlAEQ594L8kStXTEALe8Qxdf6ExZdbC/q9pP4yHeCaqJnix8qbRSiqquZgA80tIh4D73J6YUPYSDupuqOajzZMSoTIxECIWAEIyC0TQyrIuAIBwDBBE4T5QkvK3plHt6x7pFBn4BQK31AmSYgfHhK04mj4/V4DsEpQNO4DIUO+fsa4iaV1T6hi4u4F+Ul/ezCMDD1MacvfcyS7HK7hiIAUzCLEKCgRAkUrZt29o2J5tO01GTk1tblVa5Xel4OwZR3+pW9iZV0rFtjIOLIJPMau7gwFyZUsKpZnOMa+865xSGUigcHRipOMCtm0VnFIYSDodiV1ByPjTKAFHHMCAQkQ22HDqIa3EtoWzjpgPVPCiHDBCZ3IN/o1EB0ww9BMEREFjJ2JHdyNADbHQb3UcP0yDgwnWr+8O2vajUQRJpEhCAGjBtBaQFOEyICGUcbwgFQCq3KiiFS61SC2V2srpP9TF9GkyDMWP0GD3GYeOweZjPTOwMwRC6K4mCPVjd3AkCwUkCGKgSVoJMMgkbptMzVdB8LS1Iqjki3bNLPhum3RfKWjjnBkEAjJPScbfawaWwk9bqnmujVpGSG9t9DZ3et+Wd0nf+RQtHeS9wE2lLLnwkzAgAEAbu6MTQGQtiAVxejKo+p6V6j1FAGlbGumNpODuuSCA8eQp4SlDOujZnmfef/LVS7uyvFWcW6BHmmIJiP6GhiHVjAomUmshZ2xoRqipodtf3pIPFg1V197TVpsIURCy47bJdqmI5lHtwIKbWGAIYM2oCw/G0QV3+bJC5ziw5qwwKzNYk2W1uZjYtg0Xn1ImE+ABVJE+V5az1Aep2DzUbcxoQlN+66wC4sWDIEI/q2MyVVMAiugcCVI6GDq48utxucCUQxoqF284gtcS4wTwEgEsFYiKupSLXnz8UAF9fe8w9dC+lkTAsTxfHs51EDuZggodLo5/16TECFFFb2788PT08PAhVQI4xwzHRRj+jTE6aDRJzq/Xp8en79x8/f/78r3/919evX1+ef9m0V3gBhyxzb9fry/PL1y/X3oeaIxCLMMNnaG6oOjFIrvPVwCyRAxGVu+98hsmefJIUjjiSAUUsl00sWCrVjWsl4RUoySEUslZyeDiYhanPETo8NE9yBKTIsR8jEUoG8PByyjynf7QuwLOzhZPD7ms3rtUaHzz5iXIUgYgnixcB8P3B/vVCYHGUQx1ugwcCUgSOcfR+DJuGGKUuo5Bs/daSNXdLJ2BzEyG+7Hv7JjQYGjn56Hq8oUtICTPERQmLk10EMCk9esNDDdqOQVBqciEiljtw7u3zMIAIyK+A3Z2NTJlEicmLm5mr6jRWVEUzUANUdwS0Jc6DiMC7Y+7HHfXbSwiFqYq0WtpWt61te2uVGJBCbbiGpzeL+ezWr/N4m8d19pvq0NYqX0prbd/r/tBE3KJbKAXQmhqmQjxyF0egZWg48r7tT49PX79++/79++PDYyk1IDKJZ4xx9OPoRx/HGLc+bi9vr/+8PD//en55eX19vWlGlwWouk7Xaa4JB+ajsZSTpJGZq+sw7VP7zIuYhaWZW4Dh34GtHqAeiMCZE4DpTyR34kwmEgGcISB33PekiecHMkvbtiaPQkepg8YVTDMhoxEqoXk4AhNUwVYZ8UTw1WwqzOmgY97s2Ki+l7lBgqViqSCSHsW0Xxo8CoYFWJqgAjmwhWc8CyADGOBpZodA5IRB4AQOS/a0qtAALGQhfz6Xz8vcD3Bnrt/Fzc1ACDSFdc+u7b1GMBhIQQxSMBL+ogyemjm1cONYGrC0rTQMgQz7OY1eQ3KAnXOlpB4vxnjy3tRMTaeaR7BQwcJrOuvq6m7nQbFawz/ApThvyA/fa9wBMqA/+/JPnk2gmY0xex+1jzqrKAFShoIhBmX2eiAzlVq2vRFFP2ROrq1cLpd92wtVxmIORZpIbft2eXpse8sj9zgopVulBGLWVoIgHqFzqo6IUJ1mRlyYKzCJkTl5mIb7DGEoTAhkoBoUBtdhfhtUDCWAMZC5AAIzRKFQcqVQMuZBRGoGjChJ7sG12P54EABTLWkUKVZkQiZDhYhgjNn7PG4xDlIjs6AolfdLaXtpjUtlV3JL1Bmmp+0dQEBoQHh0tRtpwbozO1YslWuTygIZSTM1xvQ+bBqo4pjRDx+3GDftNxs38+GhARbl5ERkGpBEsDtDikudM8tPwDmQ3RFn2AydoRZmcNpgAiDwGrrfpVHxd0v9AVUNCAA/u/AT81sCncjZIhEh1MqtltZaLbWIpEfsUm8v3Bc+HPa4/h5feAqeBe7dWg3BEYPSSQsjR7hogE7oHUMIK6HlTH4aDJ4pcEQGJMa0SqeCJAgO9q6KP5kLZ8kL7/byK9jxU+jlpMen7Q+i4W9XV4oI8uBOXnp67lUWIQQzB7D0EkQCWkMV07T00kx/REAkJGGshbdaJoohq+XJlUQ4krupd0A4GDjRyipLfwvKIQNmb5zYrIOHB47pt2Pc+jFtTh1cRKRsW+Rk86T3rm/Jz5e529/PBPGKEliCA9iZEZmCSAkzjlDBwxXmoONGry9YY0q1UrBhLU1YgjhYOIJFkJdmkRieHp2QH/bZb9JvQlgyIDu9utg5DGKJIYII9q02aWbsMTx6Ke3xYd+3BiGLUO1uK9vW7idn4uKIdLlcvn75+uP7jx9ffzw9ftnb5UpXN5hDdZirz9Db7Xh7fbter8fRdU6WunKnP5m63jtDOD3W7/5IGRRCi7RAJ8CDd4Lf3QRjmQ6yoFQqjUvNKpUYmGFlGueyTMco0zB1m46eMDEtuRERMDLRKnPpXs0ldwIcfFXhv+Fl9+8iN3ycv3ZOPxYX4vz4j+OQv/ZOQIxwcrXehxNSzyejOsbsZhPc8gvKazmCAR3I0Q0pnbw4MiKKmpSdsFAImPfjtZYaXsI1WNJDDAkgo5YWdd7CpjuABjhGYFiQCMsdxwbmRW3EMw6T0kcm8TiS9ca5Oqu5ErPSRGJUBVREdENbmcIGBgvMXRJD/PRKRiJkYpFSa22t1lbrVktFCiQHCDOFgLAwNR06++zHmF1tWmhQg8LcUgdRmCTMACwIkdNOOCgP1DB3CwAAQWZuW3t8fPzy5evT05fHx6dt24nZPdR8Th1jyc56v/VxHMf19fXt5fnl16/Xt9fr9e3QqenuMIaOY46uppp0lbPZJkQBpLAIC5umw+ZQWF65GBawRGl/l7kx3QkRiHId4CnhRQiPvNDXijsvsVXPr+M5mNAFy8bbJXwvY98ND9HbbRw3VRuMSmiAjiGCe5V9r5h5BG46QNF8Wlh3GzaHzY69GrABOTFJQSlUCknjUtEGgbFPyLkjMJEEFQSOIA/yYAdKltXiF2SybpIswtPXws6A5iCD/c+l8h+4ueAAfJ476XRraoZI7h55xhAvLQkudVneesQgkta5LJwkSwefSYkE80qVoRISYTBBWtWDBdAMVFACLWACiwiWp4RNzUnAGDqm21RTXzHbFmnO5HfzqIy8SppPZvt+IBeeXcs6XgAwMy0TE1tRWH8sH1yIFHiSddRHn8et16PUo7KgOIXTCnYUT/k1MyGFFDLnjHuANOPDQEZhLoW3rVxGrVu9bLXWMjRiKlpwQEGWrWzbpUib6nP4nJo87H2/tCYBX5hZuLjH9e14u96SAg8QIrXIBoHiwO4ROqbb1biG1CChha9BCCM3lAjHMHEpUtpQ1dVSOmQWqdS/qjkANUdfrCGIYAQCdzMloPBxXMftzftB6qTWpwNF2+TyUB+ftmnYO4wOMMEd1IMdCYQWMhaogcOhOys2KLvsjUolAQgzn2Zj6hg2pqnCVJwjxs2Pm/c37VcdV/UePh0NlLAQOmMwBqGgFXRGZwlGJzAB5RiY+kjH4aaghh4Ed4lrAGCK6vH8B/4Co1bnd8dwE2WlAE9NMbzTFdZ1ykwi1EqptZQiwiuX4F494+Il3buz+Pha9yVhzl/jTJ8HcqQgCqJA9IysSi2GG6OS85b296o+zQkzZeVAGIJG8cE1EFZte7JzP7AWcB08ZwrVGbH26QsXlnVahE5VddMwx9OhyAkT6KITVjJzg/SJc49F8KV0mzYf095u/fXWr2MeaghOCBA0g2aQIxFxQ25F9lqetnKpK4QQl6IhIN5FyXFyaj8WG+uxeUzza5+/3q4vr2/qqq6t1douF4Ui6A52SjLvx4vlgJ7lfpx++LTwFs3DimExqKaboQUGiAUrAKjCcXNib6KVgPqENqDxU2OqUgS5ARBHFBZhWY19RJULPHAR76WMwu64wsZKRYRSZKpOnYGKpAiOwiQNoqiBmolQFSyc4LXr7Dq7zmE63Q1iBWwhQm2t1e3py5efP37+/PGvy35x9ed/Xv793//89//5P//+71/XtyNlZrPP2/V2u96O27WPY0MUYeFParr7SA3XWA0xm0kzD7+nlSKgrflm+PLTAfewgEw3tzqDnRilcEuztyK8Kl1BlFNuiOERGqe5HyAgU+ZnS7oIIWOyKD/a5eIHxk5EODgYnNL2Oyp7rrH7wQDnpnrHf7NgOYl6p3XSx5e5X2+/AIn5jbgi8tkAmNnMXInTfys/WRbpyEUqVswqwZlEAtCTM1JarZciO3MlLA4zv+9ShBnXXbr8x90C3dytqwX0QaWWUkotLMRMXKhIFWYSTpdtiwAM9HBEJyKnTKw0Y3Mmy7wSWnpCQqKEzsIQIMMGTweaHMv+bZu72utMVZRaSyvSmCqRZAoekzMZkzkGLPvFwAghlCpUaN/r3rgUCNCujmEBGhCFpLIwiE5Ui9B16pRS9/3y5cuX799//Pjxr2/fvj88PJZSkTgcLExzX6XPgs4xRz+O6/X29nZ9fbm9vVzfXo+31z76cHWdPofNPue0SDXyijoAIiZxIgZYudWQdu/p3o8ozIWlpsfmn6dKcn4Q8rrJEOnVV0UqJpPg+86/IaZzGMIIjFGw7lR2kgvSl82fDPHg45luYG6u08MwoxlLLQ+P7eFhJ1oCazvNnfqYfai5m3ZVVYfpYIBEkkmYpTSsbY6D+tXqbkAWBFyk7Vw34lKoGPF0nY4WCE6BhMsBJfKGyN2U57M5eADyJwPWT50W0mp3bde7IxaRIeZjg7OpRmb8kPWaXBAAQUQS5ijLGAOmO4SaAwKLFCDEyriudHJAC8AB0EMRtIIKAAdgYJir+TKT7SlqcBvu08mCHUDNx92CAU56R0AWX3hesGmKhCsgDWL103lCRGAGhPsai/69qxZ2AB6gtiQv7ajt1lkgs2PPZALLbDQpguQsKIbrIWW5gZkuhqVwa7LvrbV6qVVKCVN1R3cOKEh7279++bbvD9freHu73eLIOqlWKfWx1IUqzqksb0Dcx1A3DxdppWwIaA7TfM5j2AydYlCDxJGYiIIAaY1wIQSiRqlSN55zqg+L0CSoGshfzEKIUA0kDwRwQI6BgUAGkNOEflz79Wr9IHVW94GAXJtcLvXxyaYhkYe7WrqQBQYKMsFyIgMDmIHDxbBBvdBWWAqJhYaNOTxr3DltKqpi0hX61Y437W+zv6oP9xFZ5iqTM4ZQMBTxYJdsF8MpfIRiTPSVrWvgmhSaNI0EimyVznWfNe6nOTTntXbn42VfCE5OgXE6iSTNiAiLcC3Sak3yOxOnPvIk9UHe9fkHFz8sVvBoxhnn5RbrREzDzzSmCuIsc9e0Oo2eUAkUI7qzBcRU62Mi8hh9zkNwEFvavuC92L1Pae9o7ap5Ce43Vf6cPitz8S5Pw8TbzEwTPs6xDAMRQ2Cc7ij3AkLNAFKivmqI7FcZEMGG2uutv97Gtc/btExVhyBxEssmgpnk0uRpq097vTSpQnfDySRJxImxI2JmWd2NHdZvRaiHetzG/Of19u9fL+bm4BeLy4MOBURcVLFIm4Y1eU3PBeZMXP19rATwFtXDHhw3C1ZeysGgDmQAruZ+Mw8rpCUCjwGbwtb46dJYsCEjoTBgIRESD1czcCvCpWx7w17KqDLHVO1qnRhLEfc65pA5LHpGFAhLLQ2xzml9DE4/PYZpFj5Nu85uOkxnmMHJ/SHK0e3X79+///j+8+ePHxB0e7u9vLz+z//1P//9f/7Pv//7nz4Pt0CEMWY6LtyOW+9HKYUQWD4rc1d9ewqFM48jk5Q8kq6XZS5Axvs4JqPbw9mnR1edYECK1ZFRCtdWaiuSqk5kDgbMgXuWQOAW65JMwmCanqSFLDNJSrDf0dwsL+717r1H8qW9TXrpO6pyvuN38u29+o1Y+/dUZSbp+PeXhz3ffgFmn53BOEnNTE6Ef0CCGXGFK6Uou5bGyGbgDiQcCBbOyCxSqos04ook6Jwxo6VUEc56yE51nk8LT/b+tEBkaa1aq60VbkWoCHAlIMEATi9JzKM0iCIciQjZk5ubx9sa/6AudP5UEXgymj52A/gfrI+SSSckRWotm0j6xEmWQYEuZM5qaLBMbwLBC6OwVJa2l7ZxEQzQPh3cKVNYmIqUAgXUzSw0wAMBa20Pj4/fvn3/8f3nz58/v337tl8uUgoimoVmhvuYc8ypU3XOMY7juF2v19fb28v19fn29nq7vh791vuho8/EaE194YonFkciUoUlGImQ7gVNPjAhKsRFpIjwX2Wu38vcUyUosXjrsOiagQFEJCwict9khMgZ2itUGXcqG8pO9ITwAxlv+BpKethUrRpGuVXbVh4ft6enPd1FIsKm2fR+jJe3G8b1GAlUjzm9q5lH3hZSCrZGddPjCtfXWZqhGJC0nR8eJR6pbUgeXHoARcycSCTtPqejQEirt095j1qoJwL/5+s/obnn6P5UKZobmp2EVge8kwEogiLuIcApDohghOyVi/kAl0yGVoMxTWjKimsFRsibEsgZg8HAp1hPcTw6gXqoWZ/zGPPWx7CpEOqhEeqgjupu5icxChdLN9axAogpTAgEj3XwnNRcuE+W8/0/i4j/QJDKHxPNPeZxPdq1bJciBcIZnFfChCqzMDESHsd2bG1OTd2emo05sg0hAAslilqpFBKGQplSUNEVdKLZXuvDtm3brsOu4RGW+Gtt5fKwbXv1CDdD7LWWWgsJJx5SuAhXWMJM6J3mPFSBMMApLMzc0Dm5pnhagItTJQ4KIgr2CHF3BfdoG/89OUpbGCTwe1BXwiKubnNOHVNNLctcDEbCUrltvF/k1m2qUncgcAgIIKCsJSGUIMARFWAEdI/D/FAvqBwuZmo+cwVAGIaBa9gMHa7Dddg8bB7q3X0GGkD6QAlxgAYSghMGYhCCUNIVjPzseXAlV67bBxcpIJ2wIBl+REgMn/BQYaE0p2FmpCFkYHj2XQCAafJDQpTKs1JLKVKI5AO3NUHTtVoXoBuEi+gbSCmQynn/+lOLB3xeeni2Z/eDgDWz3yagRWa2pL2BmyUhyFVQITJW1t9n8GvDf/ys545bvcAqdj+bu67aNGdBlmlmaivRLVY7nQAVBJzOwh6QOpD4ABLnfxAAPaL3+fJ2fb3drn0MncwQQOygjtOwMolwKeVpb98etqe9XWrZynk9BKRNIvzO/ct69yNSkjv3GPPtGC/X49fbgYwi5BmJS4VY8pNYMtj8nFfDMrnEv9BcQFTaNACFS+XWFNRiuAVOJ01VtRnpRO2hhw3st9mlWw1shIKFhCDtPgSiZG/oDiQgBQMZaqEQxjIISQHIiSLCZJQhxV0cBHAK70V2wjLIhYyY9la3WsBt4KSI5D20UvMijkBCKqV8efz6/fuPb9++X/YHRrndjn//zz//1//53//9f/379eWtH9MDCAUBTb0f/XY7brfr7bi2rQUY4idW7nff+99W0b3HWov8PsuISGATwcABcMVGh2IYnXaY50wWPH0b4DRBj0U6Oucia/fmGvtQdxL+TleIk1kL8L7Z8n/vTJWsgmH9KYpFJffzmDwpfwEnlHf+xX9tn4jo8wiI1VKeLEW8nxFrvgKZ/sAsHCVCERpjBIlaWEAoUWcHF6oFRXVMn6nvMw83T9VPXugBAJCxrILkzJojKQwgxsJQ2StbYSpMjHb3e1rd+blLAwApY52Cgj2cwulD9GOOodNHYFGSEJQM0gkgOc6fFboMaWFFgiwogsIo9zLX0ZKmhEjZEzCCEBJiI6rMpVBhJPIkrZziC6T8bMAzAgzQgUhKoX1ffNzHx6d9v5RSAXAORfLk1PYx+hh99NHH6L3fjuvb9fX59fX57fX5+vZ8u70dt7fRr6MfcxxTp9nyxT0PSMI0q1rHecr8PE0+gQmLcCtcC1fm8lk8xDsf86OlO557CBLW4nTOQqLVb5nFev84R/LDndEquQmipFJis303DQ9kksyZqK0+7vVhqyLrfE7yz1FKLlQ+Bo0ZfZoFgXuyaxCQPMUj2q2Pw5AN2YC5bpdx28etXR7a5SJtL0BIVCCVx4KnL4EDOsb01b4klpM/+XupfO6bu4Z5p7WHu6O5gUbmmIEvsse5gN3XrCR3dFJTCRCBwsgr+ASbYMNcxzQ09cm21YBKWCqgEKc4oKCFdegGXtALEoF6TI8+/Xbo6zGHq1MYgEUYgDnYypRBRILAOJ1K0384IOswh/QrW6XLcm+ILBQi87Uj65LPapf75IQgwDT6MegN26X0SxXBcIYQN1c24snEROzmQpkc470f6eVuOsfo2obpCI+IKRmBAEpAWy1bk1aIwClsq1KFGCNsznHMcQMIImyVL5ftctl7P2423QwhRKhy3fZL23ZCxEAza4VbpX6UOeqch7ulaY/qSCvTKui8hiORlU5YoBOTUFlLwWG//BFVChHgFkRwqi7oDKm1E9iI01aOPC8wIXCSyrVRbcQ3yPhdT1gdMFLeEQusIAecbtc5X45jY1Xhyd5CYQT6CiVFtIjl12AQ5j7dpupQ13AN9IQZ47T6T8E2Ukl3haCGUNCXpRpGih4X8wkXiTMg0owsq7lIGtsn0XC/xx/BeaWdbra5xxGJSyooiiSKm/6rlFfL+riVGX2/ejn9+RAwKNDQACPsnLusrLfVxoGtWydJuQFqMDRQkdVZnchBliUX8fLG9fBwC7RwBTfMSEM4K9c8uhY0u3Dd+8/P7f8Jmpu/niCuq44xdE5/l8qG+vL3zZmMCs4pU7nWwlIQwR1s8QXPTwloFrfen1/fXt/ejt6njggiFM/O3rAAFZaHrX552L9/uTztrTIXyjAeCAgmLqUQkZmpapYvcD/0zm8kIobqtfe343g9+nXMttVWW9sfattLa6WUjAQdo5sfd0rUqpKYFBjmX2cKb4QkW22gO06IATocIpzQMAIpkAiEoQgcqDbn7e2m4i6hYXvZd9mROSfV5qiKFigBvp44MwoIIroIJroPYSK1jBmxAQ4kJdgILxBcGLUgM23toZYdbAxWIdpqe3p4cJ9H770PRGKWVtuPb9//9fO/Hh+fCPl2Pf7nv//9v/63//1//1//x/X61o9BwJj/UrhFH/N2HNfr9Xp9u1x2j0fIoun3FzHJGXabQ8U1uU4fn5PNcrZaeLJoIiBnv76Iufi+AZPfrurKjuSIQXDnq71PLH6bwtxPfboT3s7NfK6Nj2Xuh1MxVHWqpm1aWlFkx7RUp+mZBxlvm574iXhltCG8N5YfP2dGzZGft9cajfCdegnuEebj5DCLkfgsxpWIDcICZG7HfKv9uVAVqqF+PZ6HdXWdOmxOQEvrZ0QBIA8KZ3dEwlKpIOZZzgKtRqsgkjFYABwWBmqO4cCxTJXvDYnHClrx8xDMdLllYIkYhGEEwmCMxjgmEqlpuOXc9RPgiVdeWf6DHCwgApIz3VPbs0I5CZAZSyF2LISFQcjXuZZu6kvrTif5k9EcDDCoCmGhh4fHr1++fvnyZd93Znb3fvTEWLNX6UnL7b0fx9H79e328uv117+fX/55eft1vb7cbtd+vPVxzDnUhoXGKtbiXGx5O5w5zedJmjQhEMZWZN9qS+bVZ5w5zFnEIv0skh3xyjJZohI+3bniHD9HhroHExXmStThOOCmdLQ2L9u8WKCUbX+AYORW28w1LMJ7K1UoietIZBaqwFKQhWurt6PcDrp24oE4Jmm+3UW4VOKKx5yvx+02bQZNIC51v77sl8vT05evX788PH6RupWyoaTqEZlFRJDoNu1tWIY95nW9bmv6xI/vUzT3hHLPfe1Z0QTkcGElrCAjogeSY8Z/LQHI0ugAkxMFBIaGaczuAWGuc4YPVXYEIhRCkZxguWCkF6vBtFAMRWKYAdPj6Ha96ettztAkVKY7351tsAolXBSENN9N7r8zpE3MqoERT9YUBAR6jsOW0vVTZuGda5X/axpxTKQ49lXmQghEmGgei0l5cTUCdHOkJVWOcAhnIptTtQtxQAJVFj4jsNVWa6uCpt2017Q+woAws+42mIlFWpPLtj1cdgg7jmu4IoYIbnv7+vXb09MX9zCdc4zKWAuNVkYvY9Q1VhmopvNwiMAaUAIhb4PEQgwgClMp70PqrX22VNLfH+9xVcRMYHGXEAAQIAPGmVXPVKhULI1KA1qhPJmBcw7aF3xKGIEGMMNvczwfh6Ao0yTY0UtASa0AOlDmF4EjeEQ6NmQ2o4YbUKATxgrAWWcGCnIFrkEtqCIU8qTJrGxpRKIF9vgCUsFPTDIPizizG/7jK29aTzw38Zv8y5lIhKpwLVK45PDoJISvkn99itV9RWaCQqxmAiAyrsMTP481wz3/Bjwx3IwVA0uzYAPUKBqgHuK8uHNLv5RvWrgHpvtJYronXHbCRmuH4P2CP2sOzPsX/xZG3L8RPcXIpmqnHcwdAYuTSKZKc445SwDkpFjVUHNWC2cXDmp+O8bL6/Xteus6zZWo5JN2BzWIIGHZa33c29fH/ctlW+EGEWoRAffg1gzm/UjSvX/ZiOgeY87r7Xi9HW9Hv/bBrVFpdbvUtte61VowHFwjYowZoOuPEnMREcEgVPyjgEHZiETQWvFNBvgNJgQYKBJiukIhAwuwhKL6HN1skCvHdI/NeWMqkiBbhqRYAAYsW6gMVEuFABBRkEREMGshBTBiJbLwEtaSbBfIzNjKRaT5xINnYbls25fHJwCvctz4QKRS6rZdvn/7/vP7z227XK+3t7e3f/7n1//xv/5//9v/5/8LEEWERZAYORxMfYwxc4Z7u17H6OYz/rZYAyAkEbkvCADHswBZTJK/k59SMxWB4AsuPV2J4I7URKSdAnFeXgi5G2P11KeKbY1Ezl84MbZzVd/L3AT7/wZ01yKfE4kimCJQlqFELH+ViHA8q2pPv1xVM0su02eTxHCzzH1DcsrcuST2IzIinHnn4VNtRgAhKrCRTBQiMgRHIK4yXgtvQk2woWPvt2mH+lCbahNmHjKxIHCgCA4QSi5oEZJgcRFrRWtRJM8034luoWYUSAF55OSDPUv70zE4zmFpvpUJFjhGkDNFELiAzWyWfeZQ6W5Y9sdSAeTADO5EAzp9ZSAp1hl3dFqrIYIwkRADVqRCSAxIvvAr9DvJBAHxrDDAkZGrcCn18fHxy5cvX79+3fedWdy99z6nLtVdwJhz9NH7cRzHcTuur9fX59fnf7+8/PP69vx2ezmOW++3Obuams+EaROHzDWYremCHRgJYWkbE44WplZ520orLIz8GyPm3AoJSAPyaXm5xgkQSTrPvO1cpanmz7SHdAomJCHqiCWOw69Kx36xxzAiL8i1bQiMXGtNU3ojwiIiCIVRCrOIGaggS7DUullpjaRkhCAAMmEmPXLhUokL6pxvx9s/12M4jkDi0mrdXzcdV4FR0Ro8FUEhTEVpKVIrEwtAHCOxEg44+74TI/rj9bnTwsfn9n6vICRNGiHcATE9qNGWvhuACByQ8cMdAYCUX6N7iHl41kAA0NWpDwMYED2iuUuABCMTwHoTkTzUaRiNA69v8fqqExQKgSCQB+ES4ABlmjmcX+0aAiTvZ/0qpGUkxPIxzXEIApKvkML7HvxPT2NhBB4xYx56vPaX8mqq7VLqvlYfrpkAW3cfMG7KTAspiAgIJpi9HzdeHjXM3JmYayn7vu+X3cw0ZrAHm8FEoLLxl68PdZPcD9tWt620WsaQIizC1QUA9tYe9u1h33sft959TnAXQKp1KwLxMEbvvfd+1FJLqeaeIKKbe6ipq6LNNTviNN2TjF39dKkQQhASIxeWrZa9Cbp6YZvcmYRYRdGCLEiRNKKHFJICLIHsAWZgBmSAlBqtNMuJ4Ag0QIA4TF+OQW4qrMwq/ChSJPkEgeGEzq6CVUIlphgLsSBBoklYC5fKNfWdBctGZUPZkLfgFlQBC6V7bjABIy42AoZnwL27RlgODCLkRPw/sVm4T/bvyygi/PxoICIRDqgiWEXKkgHw0lR9dsedc8xlhJ0nfoSvtejZlMfKUAzKLbtYO56Ir0KEMIohGaAFmqMbgBJ6ESFqtV5KeWC+IDUIilONi/D+18Id3v5Yy378sj6tcNdRsEa6p0Zj2px2uqut0dFZRIeHqs4559RpxkvrvPxx3V3V1ez17Xo7jj5HhBWOVrhVbq3UUijj2jM/2g3jHBjE3Z45wlfLkr4WsaRv5B/CZrPqHWNc366/np9fXl+vt1uf8zGiSNlaS8fAS6uE61gxs3MoFERLuhTxZ3GGgHJpIswYTMG9SMVSoL0qHCBHuEE4gAgWBIqOLmAUc/a38cuuxzH3Pvexl8dCl8JbBJiro0sJ6cAiEArhgQBoQBYAkYLxQEQmpPWlWbEokXxXQmIUqoK1MLRiD7sFmjR6eLrcbrfb7cD0e6vb16/fHy4PhGLz5fX57eXXy9vL2+3t1lpre9v3DQWQYVq/HjCsz6G343i7vl1vt+M4mPmTKISTxr3KScjopxNm+ACcfiiYztspVnV78miSNM7EvJIWSVJYBsiBZ3ZZFgOZWMFOwQSEQEgpPsvf4juKfGffZtmdX9Uf0jQ4obL8eLR8+JYyhKQfnWiuq2oyOk1V1fjTFLSzUYakDEaa2+RwO05yoXmoe4Zgoac2GxgRg8AR2EbwcDomFgIBRx0zHWuMNMiTuavuQon8SURBqFy3WraytW2jtmEpKnQluE7vXefUeXh01xkHZFI8YuZanV9ZxCm9XRt4IbsWYHGGZhNjIKITIqWrM2JM9DjdpP54qdmcyn3c6AqwwuSkSmpwp/UxjzmPacNN0YGJuBVeEDihAAqErGh0NEQADzQGhwhAYpZaEHlrm+z7j5/ff/z88f37t32/tFYAoI9jTk2CksOK/xijX9/erte351/Pv/759c+/f72+vN1ufQy1HBcBrWECnQK7RSdYebNCUoDEEWHZ3RIiMLXCtUgrwgRh00bEX9sHAShjiBbtPCKcKA2kwJHW44/QtHZbwFbeIuHgbjEBho+u3fF4cL2YOWv1WXzaTM33mpsgWFejPrZW9svWFioOLLhJazvVWjPTs4ow0XGkU7kjE8vpUYoREOo+DMDc3M0s6+I5ZtlfeftFpREJsmxtu+yXUtvb9JfhV8UJZUCZgOZkAVT+33Fzz+d+nwzdxz+LTBNpupYtmyOgQwZvAAIB+oc/n1HwRIQoRlE8PAiDycK6mR3z5nF128w3891jq6UWZmAmWxMUNVKjfuDtzV+e1VCxEVUCBmDAtHqg/DrzTcXcNogElKRBWKNnS1FIeMa95J0aFJhxU7AyBP7DZY2L1wXLkWH48XZA2Oy9XWq9VCnCkrA6s4gWm1c9yu00XFzm27mL0w6o1ipFsixipsfHx0d/RMTDDiUj1BEDgNou38tXVR1zqs5tzz/HRSTJnVlCbbVttW2l6jG0j369hRu4V5Gt1VrKGOO4XW/H0fd+jMvQ6eZmPvq0GaZmE20QBGTWHhbKuRh9tlQoiCAYRYir1K22h70yWFh1bUephzSdCoZpjQt9agwpLAWYHdECpocbsAVNBIxwQHbjCMhDPCAOVYTuKiqsUqOVIu2hCgFCBkMThEdBL6HVZ+VRWAthMmGISuUkQFfBUrA0lEayIbdV5kLBLHOBEWnBoinZcgufnsnvgEjEp/IrguJTDfBZ8t2P+Dz5AxGYqIiko4TIqdw+q7s7QSG3G0TEnZV4cgzXxWA5a0281s/SbdENTyAAMwzeIjyclYSdHdiC3SMMQhGt8Fbw0uqXVp9KeSTcMCQWg+SdC3jW9B+q3rNyPL/xeP/ns9dZoWahq1Mzh9Phw/j5vs9UdcwxdM6pxjzTNcYt3FXt6OM45vPL6/V2TFVA3wq1Snur+9aY2wyxlBabuU5XdVN3yaZlSXcAISLLXDgJlxGRle4qs8zM/TiO17fXf379en5+ud6ucxpAlCJba3trl32/bI0JMyZFTeOUJSEiCzGz+19HCoI8FKksDbAhqtIG3KL9mvwS7TVpI+BMXtkJCrpACPoxbtd+U3wZ29G3fqm3Vh6bPABSDlm5OBdnYcQHQkMmZCcJNCAGRAwjcASinKR5CKD4gp+zBKgIRRhbBb9Q3eQpLsdYyb3ZrBWp2/awb/sYOru+vby9Pr8d10OHXtp+2fYvT08oiAJHv6XzvU07bv16vV2v19vtRsTmf95J90Vw7pwAO02bz5oSFpKRxV6cMpE10VtD3xRD5oSJRVhYch5bCMsyK3CLdUOkXbKwOIIgCkKi4GlZxXSvaBM1NQMAXLDqAnE/0BjOYfM5Fs7vyEzdfVlQny2tu6Uqf7niWbh9ck9TnAT/WFsxAgAYAQJSB7N09KdJQbYK6KEnvyOABWIGdQjK1u+sVgzIUNKjKAwihWxMglgRt1ovdbvs++XxqT49lVpH2C8zeLv5YaPruM1xVRh+Jp0vBiW9j0DjzvJfwPYiLC23pFT75D2M92sSgPKEeZcCfXjp1DHGeaqklVcXyRhPVx2qXXUAOVAkZsNFiJCzJOAADqB8YhYGGGKIFq4IQgAisnEttT48bo9P//rXz5//+vn95w8RYZIx5+jHy+vr1JlAdXplTNXr9fXl+fX51/Ovf//655/n43r025gzR8t0umDgYswA8skxSLIBMzEgp2AlewBCIG5Ftiq1MEH4nNPUTP8+ZNd7gGCOTnY3sUEARVSdlG6VERY5R437O+MeyTjEqTinxdh1tDmUtIbWUDdTzfzHlRAarhH+cNksMICJs0HgUouUtm21VK5VChNhFEbP9DmAIFIARFhE4YSUzdzBzTHAVV/friAlpEL6QBBf9v3p8Wm/XCaWDjKgTGpKmyJr4Ekx/rOC+39Ecz88wLU1U48D2RUAAtgHMCfpIif8T3Sf6BCLhyMABINL+DQd0yZMH2g9ZoeTxg5eIQCCPBDxzLga0Hv0IxSDIDgcJUDiFL1DNgWrKSIkPo+5RRoFXLPO95Fkvv0uGBGROWZwn2Z9/lq7zZeV77gO1zmH9GO225BaWERSBikswrSwAM5fYSYSQopAdVAu3LZWa8kbmRiHzxFDRCyV9Y44r45epV22zT36cesdSmFiQHRmLLVsVpmQ2bZaWpEqIjn1NEtrt1bK4+VyuVxG729Mwlxbbbb1MfsY/Zimycw0V9JJYRETgiJWg0b+CQ015zt5S7AQ11K22oSCvLhN4SLc5jQwCIXow+IK0yUZ/gIsQWkcR+AEGgtvknDxQIiSHcoIh2muEBrOIoAPTRSQSCMYoCAhUxS2Alpcq43GNgQDCUU4jTOpFqyCJWO3G3EFqoElsMBvNe7Je3EP0zhDaDxmRMbEC1KQAQdh1M97og+/ttpCAEACAiooFMiEcjY+54cvOBPOPxAnWeA8AzkH6CsU7ZyfnoTE5FYgneyCyNsjMreA1F0N1YAdZFV7CmFMIvLQylORJ+ZHgg2tQKq+KBVg92/ovcb9ky73H3fMfaEAAGTdaAlbqS0Wyco8JESMM2kmPHTqHPMYk9nntLkcaLPMndfbcT2OPoaqMnlh3itdmly2Qly6cleinPql0C2FqmeZ+35IvVcnf/4Yy9HMVOftdryl7+XRZ0AACEutrdXWat1aYyFEULc+pwdk7jvAIj1/QCHfX1SQGuAD4xMhENEUVGIqiWlMMANDVEHFEEy1gkfvt6Nfp4/Se+vXctvqsdVOxECBFFyMirEI8ySaXIQEuAAlNokEwRiMzOFJQ8xfQQiHEAxEZwAmhCIAjTYuwbva5XbcbscBgUSFqTAX5mJ6gwCb5uoYWFj2tj09PH778pUKoeDLVW79dr3d1Pw4+tvb9fp2fXu7IpLp38jlOy0WzvFB7oLFLFxvWLLO/LT683tbeOcgwOLRE5MQSTom5M8RJCKDygmAE81lFimBKIRCwWfmmWSZ+7E+89Sn+Dkq/MDoyd2KCz5bWzSzDpKfEyfl5/zNJWBS9eXdH59Gzpx3V54PEMvfZrVngQDu5qdz1tkIgC0jqvTHMEJ1YLdQBfdzXIOr/8GzNk7/e156ZpT08jh9gWpBnTImBcZ0vc1xHXad3u1+s9IpgDkJVAGnrycjLvOpBKYXZ2BlR5++E4EcKEHmTnyf9Py2SpIB5RFmNueYY/R+CHPqbtzVfUYoF0p3FWbiSjnXDvQgAApPqzTzHDYRklMy8VCqSOO6Xx6+fHv8+vVf//r548f3b1+/pE+kuZlr77ejH3NOc2XhIqJqL68vz88vz8+/np9fXl5eRlebbubgAEhE4CeOmw9IKIPez4M+dSGnSDELQSKsVUqRIuwIZtM1/h6GRLhPX2sEAO/McoDFVyfEsxTMqntN7BbwDnnGwlScE228WX+e3XAUVwkNd1t5kQ7hYao6XGdXC2IglpJlD4rQvtVahBAY0VXn6G6qhmqoHpqe7YBMImxIkNSjMEtbeZ0qfDMkRfLTsPKyX54eHi8Pj1B2L5uX3cW8gGHRIIOUtf552H4uQXu/mXPRnks1GQuxUm9h7Xay1KQlHuAOQICOiGEpg2EgRGSSysSYS9o1bKLPQHeMCQAWNAwC1ExUC6ffGILGnDE9lAhrKxgQlJF0KUMMVwWwJZoDyCGwBJXCjCy5iAjPMZirqk7TpeYOlpITfKJlqEkWf+mi4UMpD6tiCQANiwBXnzEPZRk5COTlQbNGXml5UqqUIlKZBB01yEhIp41W0m6IhADfpqsI52SFaVzxVrhetsu+X4h42nCwqf16jTl6AGytCNPR++izFCGECCuFnx4vhTEZOLWW2kqtbLb4K6UyAaUzgxmwGHMhsgi1Cdp9mIJ7rbTt0jbmp/H341jI3WLEBliAByEwsxCkPJTZXcEpzDB4LPmXYKm07eXyGO5+AAKAa2SybiIXgkjEQpxW0WyB3YPcCs39GE28kVI4A3MRLlzBZ+gwraZbAYsIwEBk5AJUgypyISlIBUDCBVAAUgSf5vzZYDu4gZvbcO2mXfMfGyZYlLwWT20EM4fE3xr6vGPeyd5wx2TThpdTEnfynuPcdvfCdi2z1SWeff6iA+ZUYjlc6X3qn6uSIBYolx09IIABMoJFpL+Os8JUgOnQNdAQmHHHeGR4YvzCUJAZ3ZALsgALLKPfWPPRT5gap4Tncxg3VwueI6E4WbhpA0JFuEqppSTtMiLUXc0gYo5xe7uSyDnvfP9L4hzWrhmNoambhTumjAm5tMKtUGUgiJxahIMH3ofZgajuoOvldq8S3uvdU1qbhIfEdyM8kEhEKKG+lfYdXErb9wAYY4w+0mg206JzXvTxoY3bcwnTVhwLCNLmckG/YkjGpQY6AFKkR6FHEaiMDB7ax9H9mP3l1vi1lZdWn0TKkp0Xl2JchPnGcpxlLrGwFCEWDMHgwuzOphxewjycgCbYYCZnEmazfIsYQJPOICytVEQWrsI1CQBe4enhy4/vP7UbqG+1fvv69b9+/vzy9QsVRkYWvl7fXq9vENj7fH19e355vTy8msfUP/1bsisDyAAyZqQP7p60FCCIWR1m4xM5toDApHJSeBite5xzioInVI0LSeOTjbnMzBm5SIGChEIkBHmCCxfhIqvMjdSKK9rqM9NRAQPOKjuDYIhZzkLi3OMIwrQUuwAQaQEcScuglKkl2+DvJB4AX7EvCOftGwGAHh6Zs0IADm73JBuA1SDcRVW0QobSZwYZnHB5EUQK1yOpe0whMlkOZEccAcf0q/dq1tzbGJVF1V+nvbweb7+u17feD/VpYXdaOyL4OYA6SVcYgUiEmWa6enX4WOlmZQAGsbayhltEDq7+PlzW88/aLszc5hwp5SXGrB+KVKkiVbhgcBhFQALmBhkzjpnRawQk5EGRMwIQbtve2v749PXr959fv3//+vX71y9Pl33PgDk3u+zb6HuEmY4xh87oAL2Pl+fXX79eXl6fr7e33g9V99NNYbEKKCBWDsWKdVmQ0Yo2c1p8TEJEXqOIslVuJYQ9XE+z3T+eiU59fb3mgZsXAqVr63nJnAMzBDwdm/G9OQOIMAcziSlgFQ1Mh8+wEbOHTlVTN3MXQmZAN53D57h5TKDD4rLXy1YAocxRa8m6dYUbrjBjmxrTQx2ngykRSBVoxsMIT8NkD5wOhh6Eub2JCIi7uV+P63QoA8vAzXgnwhbElsYYJ+r68fUfU9A+iGDefxlW77iOI8id5+ujHGmlYzr6GT+2dtqafAcWzPM+LELDV96UhpojTPPwocgTRdYbhJaS71ASrFsFhwkWkNLs1VedppUAAEmyAkgP0vSHQyFc7B01dZ1Tex9z6BzKUlu1Wr2IlCJEVP3z6/o+jk7flgAMMzBXtdl1Ub4zonhZTy1aV62lbbW29SNXcjJn40JzahmyDEKcphuNmwhLLaUIAIYFIY/HJwutpZ5yHZ06GHnbtsvlssE56WAmdHCthejpYdvL6H2MLsy1iRSmgZmFkUngJGwec/oUYzZCAScbMK42+7QxS6G+y7Zxi/7JA0n6fIqcM6rXHIhz5hUgSIU5bIZigLqx4GnZUiq1vTw8UjK1zGKi6rSkliGEI2HeMxQcTmYxLMKMQzcZFX0TqxiFZZNSpRBZsVlEq9leIcByTWBQCSpANaSBVCKOQHcOysAIWZLUwJWM5ZbL0sfQeei8jXGb1lVQlUxrusMhi8Tj5yVfUhASesEAPCMUiABAYokjPrDXzhUGeTHG2WEvyg+ds6dwWC6uESf+c+qXzwMLKe1OsizF5dkXQe5hCqpBE4LdyQKNiYI3jAeCJ8YnRsYA5AkswAVYAObqIu+VLny8c+KPb//TYjdRgw80jiWnK8ytlEtr+7YRcQC4R5/j1vs0m2MG3EgE0wwiSSyRfhO0mm53B3MFm2Q1zCEn0JVrE9wKVEZGOHGIpdoXZmIGpMywTYA5TXwzVFZE7sjcKUKK/Czp4JvTcGYh5jUEQGApbdsBKQDV3GeEJVMK/ihzI2C+PQ9TvTSPHUSoGu4YDZzDw8whvejMDA0poCA0JkED67O/Hv0a85lhb+WllcdSmrSczLtU5yIih8hBpVBBLlRqLZkjHQVDirA5TWWKFh4QDDiABjNHkYjiSwOe3JRYQmyRzHYUaRAMQNHoy9MXHYaODPh42R8fH358//74+EBFgBkI/3n+VZ9/edjo8/Xtenl5u1xe1Az1EX4XosXyMYCE94UkCQcpYcCTDaCqAdNWravhkUESgWHgQMm79UgRPcKdGHTa8kpE6pwYgDBySQhVQhI2IRAkJhYSJhGSVSiYYWgsvRs4BEYABS10C5LcTBycprarloDAFau2QLpFfMr+MaXYlEMkP+cnv50oDpaE3lyGCdYlGQnW9wVwh3vznoqzxl35lMFEjOd4ExCAiApRoUD0IF+cBcIQUZZAHgEUwGo0Bt6Cj15eXgU5DIdCv81xHeOmUz3sNFOIRf9J6JA8K92E1zH1wBQAq8yF04wn3ywwgDQ3M3ObSxMR9NmZco6zzD3McM7ZKVtczkwQqa1stdQiVVBQYSpMDTdTiwGQDjSrQ8lkvJQIBAIW3i77ly/fvn//+fPnf/34+a/L5XHb9lKauatauI9t14dpc/bj6qpjjqnzdrs9/3p9fn59eXm53q59dD/fIjiXaH7LieLIaZ+XKQEO4QgZYMkEK3y8ltqK1EqtQGGbGWPv9leZO6e+vr7dz9wk7BDzYoSvo9cz+GD55hAiIosQMQKgeyaiVtSGhqbT5hi9346j9zHnsOnutXCrTOA2huu4mneHm/k33Tw2ZqytVBUIvOvBp44+e58xZkwDc1JHDUQsRbgaN8MIMw/zyNC9xLxTtQ3MSGU6HEf3a6cyqEyZvkFrxSD5aJFl7p876LMy92QIxvv/AZxX8X1Wef5nSbpoeXhRjr4wMI92Q0AETy0+52YDThhWwzV0uEz3iQhB4QR6uoCchtHg5uagXGAjAfOwmBmfuYS0i594EurQXCOcmaoXOAe/AMgEQZFvb3jMocdtEIUOGBKllFqNiPZqn0F0+bqP0SCCIDwCw9CT9A8A5Cf7IR0IkBhnmfOYrZXRRm3ChYLD2amgVClN8kcuDBxBIIXbVkurCBjudCp1W63ZiKXvEyG6GxMKFzcDCDft/aamWROt4OUciFAYKLBLpRqS6VtI2MfMRAIEBAdXn936ofM2tasK+nTt8lj/ogEBSAZ25kLwULUxk3mCTKAGefxlU7KCZglRiISlSdv5oq7mU3VMm2FmoUmCQVBAQ3SktPrI/YmuIBFv3SvFlCgEm1CUQh6ERaN6KIAzYWNzSnETLbl60rLQabHQFlgHSVHAADQPM9AZNmP0GIePm/WrjevUroIxCVXRUYJUCv7dEMVv3WCKMYjek9PwVHXCmfVwqlHu6wvuPpHnTH2Z0Sal6hze+zoQ/COOiogrsuG+RSXAlu+6k2ZxqxBTHAnWRehVwhqGcbr2IwMkmksMbv+ZxfP/6nX/03H64wJgEkparZetXrbtYduIyCOJWa5z5vc3xyQHKsQJNgR4QMbgaYK3EQEZpAfTYBiQQRWsQlvlTaAVFFojMQfMTGAH9KySzQFW4te6M0+N0WkeIkVKa3Xft3Y9mDpMN7XRxzHGmKrmdhqNpsdmBKiaTgNPGDzok0F0jH4tMbQbzMBS0hzRTbMyjpSK5+BZFRRQgsIwDGOCDx02bgB269wL30prpZXSuNSQFlKEZbB0koKCXKi0VtsmUjEEQQrTmFQrE2wYHaMEjoAhwrN6FQeQxNECJ9D00NUoICASIwMyBBWGy3axJ8eASvT16WHftsfHh23f0mO6z7Fvl1raoUfv6nh72V/b1sacj7aV38tcDzdTROQ1Mj/VXYS5rxavZ7EHLHVb4CFcmAgo1hubVl2utqwMzMhMjWIiT0TI+tiTCgWOEJzMEcJljL3ykxlX9AnA8ho6ucAf1FXvzRsAIjJT+DL7w5NAkJsNARMuXHrLRZhYJXGE/V3mpkou1nFA9796baUISBuYtePp90ZzsaLOk2ThVulGvZBtIMmASIgcNHHmJuaJjZhWZ6YwjaFTIBiZos2wYT48KZ5w1+6sH86JEpw45m/zZMT7l4cZwLB4oilPW2XvGof9xwPovREDgqAARixEaTDbCpVUgYC7z9AZ07I+BGAmET7tclCIC5fG9eHy8Pjw+OXxy/dv3799+/H9x88f3358/fK11o2IEdB8LS6C9DFBcDC143bcjtvb9fp2vfXR1RUwSAhWMxNnURXAgXC6ENGa96VkyPOx5SnFRIJQCAtjKUE03eeYfczep5rpX5yfALB7MLwvrdRaLOcMDVJbRYi+BE2IEWBIwOjshqAV52PxPQIPN9XR58ttvN36sGlhgN4ozIFPuZOpxTEUU6dlHj49+jQIHNP6MX+93Z5v/fkYx4g+YhiYkQXmBFUhIyQTx4BIx+vEEGqRUqgU5IpcpsbR1YdH5h4vS0KEiLBwBxcM+NOQ+z8YigXc6T3vjKCFTZ1L9J08deI7q9MOSEeGnNU4GCQohcQoAkzBFOAO7C4hhcMQjAgKQWGQRELzi3D3PqfrBFSpsCGDsk+1Ce/4O64+JCsAVfNpqsqMtQgzZLWZfTAhsnCr1aZ3nO6hqjpwUEjRZNN+/fpnLDK+lx/v9QgCAPAJS91NKO6YXKBDUKTVSrL2uLAIo2CQBwUVkialiTQprSSfAQWlig6vzVkSkIbjdrhq4ZTmSzL4MXD0cVxvsgKFUpTkHnEnlRERCQLBjK6zO3q7lLKzR86H/HSJ9uXp20c/+rgNHxYa5jAiXK0//iUWQSiF01gLmRxgml3HmAbCQBSWZa6hK7iG2XQIF4YiVKtUr7s3i6ZaBvBwMPDpip7I2MA4AkqEh4ubgEqYgJeBclMp06d7obgZDSEVYJbbkGMUVXdHJpc04kVISQNGBEzzlJzSCrujAGIjAsxSSS3mBB0wevRbHFfvV+8318OEcLJpuItHjQInevLbuXsKxNd1ghx3T+4Uh8GSVmSlm1sOzwn8ud7gnSyU2PB6b8317I/f3a/WWZ+T9vtdmLs0BLMBA8u1oRagFLhZ1AgCn2FvBC9VtlZ3qjtmxDsJkLxf7O+zoDXPuZ+Yfy6Lv3ioq66PO26dVAyppV329rhve62XVjHzhMCUuTKbu60hVk6EOK3H1HxMvR396N1M8wl5sAYPQ5gR4lKBGWuhveKlci3MSOGwBHngyS2mQEfElaQT8W4qiIstgkCErbWnx8fv3/tt2stt3IaNPp9fXv/559eXh4djfElUd+VXIROHSKm1IoArO3FYAPx5J+noCj0OwBtQTHt1fTG7ug03i3ACJwBc/BkKYzc0cCV0JkdU92lz2LSJs8xatFRlNSwRYoKkxIrMIEhCpbfSNpGa3FwpuHWsjRh2hAtCiRgOXVhq7a12ooqQZIweeETMNIUKgWSvnkgQFqn7fiHES6tzfC3CpQqzGIA6tFprbbVsXWemtdf2KqX0Pur2o/x+BbnZ1ElIEbGsOCmDdDTcT6YhqmWu6kw7DgRiKkwCTMAQ7ADm7nPOMUbvU3igCzgrQxEnlDPBPn2OB4CmWUkELe47rYoDsogDWDlSd6b1ycJJlP8j3QWRkDz8TkLN2zwvETxnnFngwunEQqv84E8gFmEBCF5PA06fgvW3vtMUPnB34xwYrVlrmkqc06P8c+iKjgWoOLaAAsCOhIiK6czkhMZZOLtjulCBBmSzpWe8eH5viVgGLPui1aSsgci90qazUbnDAJBQVY62zTVgfvhwQwI6429+P1by6iUUTEIOFy611FZLK6UICwdTd7Nu5lN9agyiSJebdCVqtQixEEkS5FgeHx6/PH358vTl69fvX79+f3z6+nB5aFwxMNTVbYyZ7njjGNqnDjf1Ff31/Ha9XdUMCWur5gFMc6hOTW4uRmrEsvFI41O/D/CcVrMD6IFIDMHoTE7kiF3N+tCZq1pVbfQ/sSdiLm0/CTrpJkuAYG4ellawxLgclJDjXCxJFkJQiSk4d9GvDR4Au8YRNqbepr7MCRhcUIpQYSyZtcKBYYRHuI8R6MPm6zH2l2OrbwCo6nPY89v1n5fb83XcRtyGT4VM5ku2dgAMi+E+z7EAEZVWtr22bdv2TWoDLsB1zDiG9RGAjFSoXmrbiogBhpupmyJA+3P7/L2j3lfRWeLer99YQ4ZzwZ3X3kePbYdEBQkIVqIUABhEISRmAeYQcgQMQ7CAIALGEEZhEAJO7WvS4OYMRQU7glyKSOFQnohjfWGrckVCiJTtuplNHapQK0+tRdEo0ukgz0hhhgKzGCG7g47007CTVIvzon+Uub99uyd7YdXxkNQsoJygBsT6jUjldaCbqo0lAU70LINNOMvcKmWTshWuzJW5UGkyh83Nai2tCpSwqUcEE5Vai5QkM0DADemVWURa22qtHn6MY+pkkVJLq3Xft620QBym5lZE6l6Ym5pN82lKAoSxJL+qc4xx9HEMMEDFZJIoxjgsTvP89RAQa2VclSQ6wDCPPkYGzIKv5I50czIImwDhTCBCpXDzYtE8qlI5nDriAD/CyDMWZyJ0iBIR4cXMwxiMIWS6HMYyYTgyYmFUYS8gLH3IGCV8yXWFQQSIFvgBbq4zJ4US5JGBu+gEgWFoWeMqjBlzRj/iuMVx837z4+qzu5BPcQOHFjhDl/D5j7M3UmvpsWxkT0uiJHAuv4I7SyHNMt/L2/tFtaCXxHERIAcWawBklmjuiejc268TtAlIPRcAcERBxOWt5YAGgBSwkVd3dlPVN8Jt2x72/Uj3DqSCJE6ctnK/Lf3ziv+TA/WZyurjY3mvc3HZOZZa9m172Pe9ylYKBkw0CpjMhVnNAnBtKCSiszczH3Pejn70YWrpDxvIDjKdXIPUHyKYoQpuVfYmIkv46QF21+YAcGCcA9+/Kce4YG1orT0+PH6b+nIb2z9v9HobYzw/v/z74fn7t6+33kstAiyL2o+Z2R7uhGhEpuTkf5a5ETa7wuEd8AboEq9qr6ZX0E5mBE7k6Y3kBmbkxu5kEMrowoGoEUMVwA18qlZ1MS8G4IDqAmiAisxBGYra6tiYa2pwSsGjQRvItBM8IFSP4T6YpbXR6hDemAshI3bAHqGLHu3IUAiEGYEIgYoItG0rBZ8eCG3Vfe7DYqjVUltptTY8rnPYsC7ljZiO4/bjX/OPKyi1E0QrGGWVuREpqICE2JEy6kxNp+qYk1GiIksBcaQwsqQ0qEXGxAsXCoGgIuGuRBzhDqY2PTrATAYhBIabO6d3QkpRIaG4c2/+7vmwAKAcI97LXCKKFFADZh4PAga9R/klRJucSV6m14sVRH8ZAyNiIUEEPp3+k66gjh5udxgq0pJgXdexbqLFm3IEytyQHKpARBgFRgAGl6AdqAKUAAbMTEgnsILKEOgagWHqfpgPC0vB+Erpvburn6y+VeYuHD7VpbTag3d4DIDedT/gAY4+Aygs800WGYNWmfvZ62RVS5O6tbrVuqX1fEHCiDD3oaP3Y8zhMT1mLVSw1lqe2sP3p6+Pl0tlqcKCTITM/PTw+OXr169fvnz58u3p6du2X0Qas5jFVEu643H0/Gf0OYfq8Dn9uI3Xl+v1uCbFptQChFzlOPpxixiRzz0JnXmVLlU+QL5zgBGcw70AiiSkB6ETOsBUP269X8ecOoea+SdlLknNcCgioiWUd/eFlqNTISnEJOkocjpemIW6pcXkKDgv4l/3eET6dYvDdaoeqtdp0nCvLDuzJAPPAQURLKKDT/Xpeu1U6SgsZbEDUc2vx3g5+rXP6/Br95kqHAdCYCFCzHmvpa0uYmUqreyX/eHh8vB4qdsGVJ3LUDyGHwM8CICBq7SNWdI52lXdPlkqn5a5v91fC5s9xzR4//33W+2cMywj53vTmPcKQhBGmJM5miMzEFGaVwA4ARGk0jDz+pb2LMezc5qTz1Cf0zDMTT2HhAFItJLiCSJt5I2IIkwVV3qpqhqxhREAOwYRZnAjmcW2z71bR9MBqbcIR4c/Xdzfn8R6OrikQqveDUwuyBpErENmFRn5udLrMCBs8U3yUvXpPs1KzMO4KpfMq2ZpXLZZ22h7mVutTZAAIYipiIqUVOif+iVkptFmrdXR09iOmHjQrcgxW+uNGBOiKCJFM1eWETlL7pMYojbTeilnwYsUksLfsE+KGCREgiXuZ3RMl9bsRcPO8RMERPoXEIAwVuGtiAWr0jQqwBuWncqkqhIY7CTOGGwBPSwhA0IIYmZOpJEmuBtAwDTiKtUosFmoBUIIRUXiwrI1FBnT5rShOgwsPNghCyYFVTyjQdwdMi1sThgTxogxYo4YI1RBDQGJgCbSBBrL5/fPx5KasJPZT5i+1ixLSJOQMoQHvZPtzjnsOdMKACBgfH/llMzMpmoaE51m6yesejZf75BJ4NqDEXi6HyWATGgEuAE0BNEwt5vw63F7OfaLSCmlIXOsGwjvFe2HWvfjIsDfD4zPds7iEeemZSSDFQmyLFEydDc8AvKjkEUEwizMUl0ElP8JMPPe59vb7XY9zJyYuEhpW9kaEMOKwHQIQ5CUoyWt896q5y1DjMv4JJsNhzgT5mjZPrxXLbWWh/3yeNkv+7bVEu7Xt7df//zz8vLt7XotRWotAYVX6hWJFARgpImEiIYrKf3DcwOuKAUILWx4V7tlmcs2xIximo8wj6PYYdYxtEJEIIVUbC6q1SxjABt6S0csLswSyJGU7FNUHp5fQACH5vAglvkbckwCw6ge031isIEO7cxNKAOoJ+LMKhCB3AIczYNZmRSATd3UMuRHWNzNNB1B3C0QqEjd6l75SsA24bgO4rfj1vXrn4ACErKcIG6aN6Z18ZxzzPBV5ib+F8uiCdPc7XK5ANsIGKjOtIJ2T1L86b+TB+epGHsnCIFH5Dwa3QKYUQMQw+EkZ6dV5UmcOPGMWJIwSOn1ClNJoxKA8zBcw/jMFKSs8CBJ9MEYSe/wYI5Py1yRAgC8omEAwjEQiDwc75kT719JwLIJAciiFsFO+AWW8ivt8/y95XaAzPmFAA4CVCVVdEoBHARCECyR1jluzuv+PsGEVRrQ3fHotyguPFHfrHHhnQKSZa6tT4XpFQpACYalXve3ZwKQ7HtppWylbLVtdTFxi7CQp/Wgqtk0UwgjCCLaSrm0/ct++fH47V9ffnx9eGqlbFIQIb0nLpf9oe17aZWlEFGAq7vNqT7G7GPebv169Ov19np9e317+/X8/Ov51z/Pzy8vt1sfUx2IkIGYCxFxusMGMcXp9GKwSkt3sLBV6/OJLAJkP8LAwREBbmEQc1i/zdtb15lJ6e7654iVCEXK/drw3IEBiMjCSFwqlcqMgiAIktcVuHlgRBTgHeki8LDTw44bxIvAdFUwqfwgW9vp8YG3ncDTaQEIwZnAsy4CB5yAGgB9fatmoeq3odc+b1OHetdYSYV5rONy7/KT9xM5r7BI3UQqDCNmOFBwJabGgJJBpigVhEndOJyivKOw76//GzT3PAkiBwrp9fMe/XBefdlJuodl+Ena6+cJFQCJoKCjOaohO644ZHT01b5m15cZJcJSiIUkn5qqO4a6GYKq9jnGnGrmEYRIadCVhbWHsClrhKkOW03KKnOZ4V50EAuTROBlmCoQzU4+R6RL6Bk28ekr/ryrPgyZT4gX3v051uFB5wfGO26XH2zgGt5tiiFNXP7lyRLqdSvbXseltr1IjlWYJpvw5BRmMKX5ICD0PlgYeAk5XT3CEVGuImVVWUyU/ymlXLaHy3ahe1RN3lQ6fbnSr8roXsV8XsZQqpsQkVOyHIROnmqdnMjE4q8GkGd/zkWk1aJBPYAUBbhi2bipzCgoQMYcTAo+YwxDMMQoAChcGpfCnBor9TD1CVS1WBQHd/BABpgRDlGF9ktDqdfbuOpAV9eYaii+aECMSmB0+uMCBqIHToU5Y2jM6XOmzhA9yIGMyZiVWYmRToPr3xeErzoVl9faIpAIM+OakASCpxjhLHMD10w09w0ixXLLXQdWLCOue2zNOWBfNolwfro8NJEQFlscgwCcsv1EhKBMLHeoCOzhqIfw6+14aLdLLdveHkBqUpZh8SHuTLrV/ZxONVnNv/8P4t+PBDwiXUEDkITJZblzAJxOQgRMmd8y3QORSymEOhRdcyqE53jJPI4+395ub9cDwYS5bXV/3Ou+e4B6MAWBhylEIcRsMPJEAgBM5hJjbovCRAhu6roePCygLv1u1s9FZNvavm0Pe9u3pu7X69uv5/Ly8vL6eq2lpBlFLYUKInEpSwKb/ay+Y3/vB2y9UKnIxcOHKejN9Wp2FR8cCnPYuI2h3ov16geB7hyIXKAgNy4OhFhtY/KNfFu+iRxUnKtTpfTKcMJcv8DqBIGa7Q9yGIERZkogRnVXR4VAnR3nlbAQCpMgOqGldpSoqHkiW0yVqSJyur0yE4QgkJnp1KlpsengULjs26WVN8YKfoyuETdinPNPOIpZSqnnjDudsRPv0D5mChXu+hkgIMJSpLV6ebg8fXkyGKgWNlQEmCmdGoRZhItIKdkmI+KKvqRAVCReiFYmp1jyCxFjkVow1TycLVSc84y8GM+tB+f6j3PVIIWjU6CvItc9o4bpHOogMOb4OovwHML/8UwQUUqFZQZ/rmFHTMMPzOTHFfGZ1JtYSrA1HMq8AzhB37MqPfEYD3fXCPYwCwK4728fOAMnkSIZ+hLYYdbD6LCUoGd9+/7jUs1CynuZCfmdvACA6+YAwIw0j/AAWxBudr9GhKxgBIrxiZ9laVIvtW6l7q3trbRStsJZVqL7mDrHHNPnxDDGICZhvrT9y8PD96cvP59+/NeXf31/+rqVupUCETqH2SylNJIM6HRVxenhHjQycKLP6+12vR0vL2//PD//8/z86/n5+fnX8+vr0Y8+1QMo4+WJGJGKZNgIC5uqTrOh7gGWFLQIi3XGGwADKGT0GRIKenD6SoG6a7dx036bphYaGS3311IhYvxQjizvb8xrqHCtVCoTCjknNAUe2TUhRCXfiR+Eny64X7g4OEP3aWDtIlvdLhd+euKtwei93/qczgTu6YFGa8EbqsYwncmomj6nHVOPoT0TgQI48dqEBLI+skB7H45mQtDoYwgP5nAPoEBBrsxbZrmxNJTmWByRAJ0RBLbPStr/JzQ3+bEAC9uDQFjpJngv3JZZYawvkgKCczmfkGb6doAqMIMJBjACQm6Te5kreSJJYSlcMhrKLKZbn3qYg2kGKJkuIxdCFpYsXgNC3JlZbWS2D5z+7okJrUMRg4m5UIWy7U0VIARgppgMIlvM/1Tmwoe69g/I914K5KPL9Ucf/sh6mpCg+OLghOuSVqWTX+b0USGpUuqclzkf5thLaSw1rXWQiEoptdUicrfUAUJkoEJUiQTV1XRaePrnlCK11lpL3hylSHiUhPrdloJP9bR+9lXN4Idv97MHYfeZy6qHs7/JFh/j5HjfUwMCAZGoskQRcz4UBVBCGhWlBmLsUgmdyRiGx21ONwInCAV0ZpBCwgHZ47mrBQZOKxbV09AsGKJCBMYu9FgLlSrDI9QMTcM0x5MJToQhOMa0UPPMbwBEtZjqY/rUUA0ziCBACOZgMWFjUs7K7K/HsthySQj+rcbNG8wjwP1ENvL+QThR3rtDAy7PyVVFRkT6AZiZmZ+NL8aStLxfLyfsRLGEM/nc4yxHKYIhyLEgFgcKs4A5mI/j7Thex/5opvd+DOGUuy5s/7eUiHPVn+Xtf8B0w2Oq2iob1/WWLkbZQy/0CTAv7EiLDebpQGaAaa9zJg2pjTGv134cvVaUSrXKttf9oU3zOWw5wOMZZkVp1bkOfyJgAiYS5iIknNxPQvKIO5h0fx8XvCLMW60P+/b4cHm8bK+3fj362+vr68vr6+vr1gqc/jxMFGkSxEyAbmqmbH+tFISyUy1EEh6m0627XcNvGD1igg7vx7jN2dW7+Sg0TRwFBYvIVgAxhCBmZbhwXADRI5wMWEEUCpJUlOq4nLYAA8iALHLuIgEFEv0IwIg8Jc0MXLsbAjCtMgUoj02qzFXIppgMZa5ClYDcISKKCEIFFFWdY+q0ZAFBQJFyaftWt8IVg3WY6QAM+wuOSmP5j6dmACQleF3YYJh+NoKUhDWmWsu2tcu+zcDZD0ImJljxZ3z+I1QkVWUAtJyH0NO4O+EYtSBLOap5AKZJJiESyprWrQSr+9q4T+zWqQdE6B4nVMVBEX4Wcu6By0zqPCIAT0yXOA/Lv9OMAVkk7rsk1tQhIjCI0DNe93TXivtM6E5qymDZNZCLPKNxobEQDq4OuuIns8Rycsq5Vg8YDJPBKV3liB3CKRwz8yw+7Pz3b+k9azbHhssSMav/bMJXsZujhfAIgtUwE3nOvhhBCRg/4+bWrWwPtW51e9ja3kotUgsRmJubGXq4hs0k+QBhKVQKX/btcX94ujw9XZ6+XJ6+7l8utW21hdsYx5ydBBkJA1xN5zQDdVTHPvTo43aMt+vt7Xr8en7573//+3/+/c/z60uGI6aPC9L5TBBZBJPcTiBMc0yiOSELy0iPZE/z2GwVLAm7EABEGAxQCILcACzmtNltHurpRBDxt8NyMlvWxol33m1KkkRE0rsEmZwxp1YBGJYZ2I3gInAR2BuWSmjo6N3V2fcHuTxdHh/k6QFb8bdXA+8Q7o7uZ2eCYk5h5ORD4+o2zMe0MbRP69PV8uDFVsql1Usr2fxEwJjW1dSXw1wpIsKEvEbWi6BnVEC4VIJaubZKpRmIhVQyDi4oW/3kEvo0BW0hTIuV6wDo8f6LHkEnCTfWw44gylwvj2AByeVKZ0pfALjDVCdCYRwUKwqKzhBFWqT1NVpae4MjgqVJnTIUx4wYHpbudhlVtW4uovwFSr/azKLIIVN4Mtsd0B09OOtYD0IGqSSTRV0VIpWmQPQJdnlHZ+8IGv5+FP/fj23x7AsWbvfeS0TkmHTN4Ba6im4x1UDBho/rkEIJQ2SZK0VKLaVKfu6lUCRAQa5EQp4WX+E5HSqlbLtp84wjUJYCV3FBp9kVfXks2LS1hVZJfhcbncjgxycS/nq9AsEKGWImTkJI0Mo2Tw8AJwik5auVegIOZhNuwo1FpThsACBAlfTiaITOdthkUPAYrjO6xwF+dXcNBA8wD9cIZEy/IAYkdRgq5FVYkLbAi3nAPPoox7HpLEgPtU3wETZHaLjpTKp3jwBmDAAC1dDpmslnjpTuywLYCm0Fm3glZQj6D/QWADzNXFYkHkuyUVN5kfA2nk82m6Y1Rc0rcyFIdAqr4/SlT4s0xGWg9KHPTI7vOWE5ldkQpzJk3SAJvwMn1WdNOgFSLTvnmHOazfDVC5zren0FGJ7FYJ7ja9x2BqWdteGfT8Ujy9yYenIuIpbnMmJ6x2h+b5jQDwITRBT3GhaAhAApkZzjGH2qnhPZiDBzNZtqE4Fq4SrysLfHh23fGgufbqMBsKSAS52Z1UoGsZ4uLYvRiPfjbj17RBCmfWvfvjz2Men5JV1Cez9+Pf8qQhFOaQXh7u5FpHBZAud1l/35SiFCIOS5NhV9IAzigTxgDHe1qbOj3ciHkQVoYDCK1A0KIwog2tb4a+UnIHIMR1Mcht05UBhEHE2BDfQkTEYGG7BEESiCiEJB4GhKrgAzJwcWp3fn0vogCzdhZVIck3EUrsKVkHNhliIWm3pV9TmmqedoiRCqlMu2723f69ZK81BfNLw/T01iklJWjZZOq4AgnC7Fc6bwTM3N9TztieHUrmlMNw1XwEgHAcqwK3YgBzIgyfW/+kfwcHYnd3Sn8PB3kMPvA0xKXRoll/I0rvVk4eP6LpZvIPri1+Z2DyTGtBzL8MQFWCKcAD/de8lYkse/l8pq0ujc0llRZVeMGLQ+M30Q0uQ3kCs6AGHNQ/LqOr8KgEA0xAERGANDIDgC2RBRMY7A7qBgHuac5mfAp+LmTt6LE9G9D0NOPP5+WeRcN+NK12+eI6L3CWeWxXCmpyGk65KhE/7JmsPtoV5sq1tt+9a2WqpIKZiTGSPBKOCTQA3NMx1QpEhphYoA03S73g7BN9Ok1sTpthKuYQgGONwDWQ2mwe0Yt1t/ux4vr9fXt+uv59d/np//eX45Rp9qSCTEi4TFa56WJTuLAAKelh1ELOJWbBadojrM53KjTUFyVk6ATFRKaSIlHEwjY22WgfnfONuHJwjnpeD5v4GI67RPfUZ+SMqwKYBAKa4UbxQH4YHYddK1c9jo3p2dK+0XeXqqDzvtLQRjMFRCo8S6PQtFTExNCAsGFqDgAlyQOvAkUUagy7497vuXx4dvT09fHx9EChJFYJ/Wp04NTWIALKfnrcm+FUL4/zP2p11uJMmWIHhlUTXAuURG5nuvq///H5ue6Q99zlRVZpDugJmpLPNBVAGn07OmEDwMOukLYDBVFblylzHGMCOUZZdfJa+d+kVSGrgNxzn0HC6cv5dvn5W5dRaiesB8BBquE5SnxKZkZ1Pu6UyUopkOVaJkftIBa4nWqUAoclUC3FRZiGiu1VnjEgMCqj1ciCHSW7uoGvOZuU/6UOScFD3NvykC5QAkKpE1qURlQFGAE86QnAnASCGGdm6Dz8FiiWBAV1bqJ4+cA6nEGlw9L9rq6R+fuwwo8Os0BzNVuIJOQA+1QOb6PZII4RQj47DzPqQk71pp3ERC2kQXCUm0bDsjKUlJGrHyk3KCTMree1iGo/ppE5e40SCF2lEiVwrLijKqcmuO4tZrTXw8pyPy59sbUYp2laa6AoMUIsQCRhSbC0ihdzCvskAlQjaRTZpFTwQTd24v7g5yRrDd7E6eOZLgyGPEHa7JwwhhyHlsd5HqjTiJPOk0VVxCNpItchsWI/q+675fInTr0rY9xm2MW9jdwjiMcBDtRGjEYAjccvGfMhPMReFkXJQuik2j8RCEfGZ0M19kTTmLL6kF7D1KxgdYTutmSZSZQtKqscrLnogigUc25qyWHrc8L4VoJoD49OmsOeE8e6qXk/Kcnimi5SjjPiqHNyzCqNodms9vGpmQV9D1oxp/x11AfpodAWTGMIvIMew0N/dyfIxp7AXPHO7ICgXSEoNQZqtkyKgK0t3HeRzHcZhZ9WDlJeg+xjhkSGtbb/3lsn19uX7/cr32piIPFiYxRERam4bslfgwC1kvo1P3iATPUAJaVWsSUoVeLv3Pv32v57zv5/DY9/2vv36oSBl21udnBPrGnXPZXD8SPN7fJtXNA2GZRyCMYhCdIgfzQXxmDBtuB/vd/XSJ4EgGa9saiyixgiW/vGx/v/a/k0pyOtkZ+5G70UghKJzMoU6DKMtghDmYQwQqECFk49R08cE2ImkMj6Dx8O8vdhxBVKypEwblQagUz42Zwz3CW+sRY/jFLW1YeJb7ARH11l4u15fL9bpdLm2zFE8LfOIRyyLaWtmhZmZ1i0SkrWXkeZxvb2/DLMKR4AhSEhZkmtt5nobTfEzVh9SeCZIAR+G0ObttQVIlFWVKOM1Kt8BW0MLjCt/BBEQjlnFthet5RKzbvzRrtcA4V5NZK4x5dnWcudbhu8kyo1wZCaAAfTKfR9azxtRkZFCJMxOZnJo0tRcPLSvNHjZjxuzO1jrXPvw80hGUB2FMtm1yzAhkJxqgEciZAZwiJEqYnqZr60Fdr/WaFtWNZhk/z6G6tgHiB8UDtWPMl0hUfE1mCJg4yWeUQlAQ4uPWcvmyveDae+uXbdtaa02bEiGMw60LjNMaDaNhowoO6apduUkwHTZ+3G5haVdzcxWeFCoHlSQ5gsaIpGF5Wtxu++vb/vPt9uPH24+frz9e336+vv283TJBZU+rIlK242WGNtkrc04tXkxlVc+O3HK0ceo47+eB0+2oMEskSEiUCCVk3bQ1O83TPODzMs377FMuIS/0LGelWIzy8kTOsAhCcHnGESMEwXlyvJL/ZL4TDtA5TrqB3W23Izik0fWLfv/WLx2djDPL5exkGulh4WUJx2gqbSNlIU3u2TYcO7eDS/Wj0v7jb3/+x59//sff//5f//kf//jz761tLJrJx7Dj9GP4Ofyc2e4jw3uj1hhh99ttv9/rUCb4F4lvHZcLS2/SLwF2D4uIjLu/frgmn5a5Exyd66tIPkTLyiSQoKCsZVb5V9NZMwBBIQBRHawAKKVOBpKCHGOErImOStn35cKEqkZ4YqfrwK/o3icmWgT78HDyemqrTq7+XkOcplFQuntWqGVmJJPVN9CAEDMrREl0+Xk8uvPPHkmfnOKPbaj++Pi7X//wbqwzP6xgZFpg8IdiF6B0S5THloA4y2aPmLixtFO6aFPtQlIEzSSZ4c80RXETjTo38zPtzELPRSTuOd68c+NUOMeUGi9x8fNuWAOw38qXzHy73cFQcVVXVS0/deW6npW9IJQ6O1tUI1rLLBkpgIAaKXgTksgW4pFwzuBTYKZmGvAkd8qDUtJHAmbppkxNhZXMc4wg+DjG2EdrpUmjNlLuAwnZz3acSvSyUVe9jWAfeUbNXWoimyJR4QtOFXsWh5EBSczMqtwlN41NsIkrpeSiHX9YPih1caWHTk707JzWZaQP/8dDD4M1BmGSsmmcGpyZvTOR0CwLTubpeDRvm3jMFT70XPnkz9GaGK7VVH+fcHezc4z7eb7tTcR2TpviAippdmTEY2vAvH3Xt3q2a7+huZFjTDR32JKiMRNLEjlgEcNAIM+JhLMoUbZslZtbE/kMLzTXfFQrRpzEmQh3szFUGhN10Utv10u/aOOaAs6dvngFK0tzPtOHWWcuAmUCVHvgKlOj1DSXrX9PgOQcdrsfb/fDPX6+vram26VfLlvxSwhgliZag/YKMfhty0CMtMw7JeDbDr4rn9qGwISdy/DSq/rlNEYWfsAq0lim15tQ6227Xq/cFY1CfDcl4zOPkAgJouS5BpMleQYsBTOmGB6dsSF0kEc6zoiETfY3aBKssHgmmLrUNCKCg2NGLVqeSW453GDDkdRbMIMFrfG2ybZp79K7SpKTJD6RW4lw66329srpkOVtWtTzc5zneToiI9dYPsz9PI4bvwWfZx7Og+AsyVXjkidNV2VKZhJ+fGWW+XStHJrmAGCCTJnGgh0/HAm5SAvP1bAOgFU/zt2gOt5cjyeKuerc2hmocGD6vHZZtTFTiVinhdeT5jS7Nrx7CoXm8pycxIOoBcxpzuN1FX2rRB0c09+MEJSecKp/L2J/MaNJlosY5Vpf757oanvXpUK9VwEIC/LXV1j1NxZKXqUBYyY1CHPyJ17CALRr96ZNVXn6hIcnsnQmGTbxGwYLkkiaaG/cJAhn2Nu5j9OP4yy/r64qBZbzJBCWx4ZHDothfrsdr2/769vtx8/bz9e317d7eRqySuONWIVFVYnhlUw050NR2XsspA0AqWaNT4eOJkNYMnKcAzYxOaGZOKjStHUVHXAzN49YSdDrAn68VWpPn5hH0SGrdk8un8sa+GQxaSkpDWmIHf6T/Cd4B51wc6bDxD2SvV2kNbm+tJcvbeOQCBh31a1vZrBBJ430DCQiNKJs63urCy+EZPDWOIMu/fJf//Ht//zPP//bf/3Xf/s//tt//ed/9e3K0kF6jjiHHyPqD+M8zvN0P5WzCWwcbz9/vP746/522293G6PH2DBe2Lq69gBRBDxpOPbbx2LlkzK32EvThqLu0tkfRKFHFV2XVAh6ZDoKrIgEvEpQmlSCSjypi1qTZhrDKRPJdd5AiQjFwUA5xsEjmasyBQIWMcpKKWBJAQqijIhh43Em1ZyI16MWemS4Z8IYzlwoFp+eASdqhJbQEhuLVr/6bk77yWNhuY+V+axh6eFC8fuXfIR1Z3WxJj7PCmh+Aj163EwU8SUTDHgGJyjdww00QprLqPjYuevg0UpzcZ4yEKo2brFfTarhFDnkfJN909710nmzPShYuQkNmkbbhF9e0cdXlpn7GIlUSZUUdZFqXFmUVEg5VbIxUqjoVTUH9ghzP9xOtzOHc3DjpsIZHuSRbghLcehX6dFc0gVQM8975GmeYXBvyRsJOW5H/LidXcb9duy3sXXeVJ1j+MgjIhP72c1F5GvmJcGeNnwcNhAHcgh7oyCYpYc70u5j3EceVoUBsUhr3DU6R+ecNa4nf1L9ywPFLSZU3YqUj2VEyHW4FbgUj2EUUU5C24zPq2nsgixtuI0ighC4iM7zSKmZIJVvc00p1628DuIIJC9+Ac3p4eNmAQjhbudxvL7d/gdjb7a32JVcS7SVU6wiMWsCrBLg3V0SER/nGgAi006LjGE+LFi4DO9EFUQeBeUGlyt6MeiZiLk1JeqF7LkHkO7jPI9hI+FUFphdRKmcBCu/AJlCpTCj2ZgmgIxMN0uAfYnA50lf3WVMJvna7iKq9LfMJBJh2poSi0g7hh0j9OcbMu6321tv3769jPFFZQ4mmzZTR/iqkz+ScxO4v0WQ7zZ+2Nl2vPwlL4eS95YKkhQJ4WDKLrQJbY36RnIBFCZhnPewt0gcLof1vfVNVLiDOUGR7kEe8KRyiSYpbiphjuCCApzBLFeVF+Lm55lxuPk4+TyIiJuKqLYKJaUm0oUbpWQQJu2fMwPpGcPC9xHDzwKAp+ZbVRLsTuKszhraoaykXPkgH5ePaKe+ur5HcvX0T1bV1nrvw4xKRYAymDuOjDzPE81Dj+yj1asuJRFZ5GlBbJkcGc5oEUhP8+FxBE6iYIE2FlfJTljTl8dwptKGZ4U2QZ/MnOKP0o49JFZ128+pPjFzijwbqzUfoXegSd1/UcLdDw+CsKCcuyZyGjEnNAU9Tx+xNbaZi5IXtyJSZs1HyWWb/DSwfQ6W3NMq4+8JABMXDoBgThFS5QAkoBOcmbDIox34tS/ILOdL0Nz5Ao8y+Fnjzyvyfr8iWsUuMyh+bzTmlckIGyNtZrxmxLBR7grmVTNkUorqpby3iU4fvsc9mJM37uUJtmmraxK126ZbmodbuFkM8/0Y+z7u+3G7H7fbfp7Dw+fEbbbNkeE19kJGMQ0iovT1dSeJKiUYTEnK2kSFOczP83T36ptEubW29d5bU1EiDs9x2jiHryDHzEfV8Ouushr2uenMR4AowSQTiYAAkuBIPzzu6ffMV8Qr5ITUbcuZAqZ+4W/fL721l5dt69oQbJmMrRGuDbm578P2ktNFkp0ufKYykAqUDJ0oWLWJfnm5/OPr9e9fL39+u/zt+/WP7y/b5Yu0K3H3IHOYwwPuGOMc43QbwqmSY7/99c//+a/e/kX/Pfb7OO95ME6lk4id2RI8gykW0PP+8WmZy8wcgQJDF9BE+WD+RNmLrISBIv1kesRUnJUag9lm8yZEVWRSBCwzI5ClvqRy+AKVycGytpyndJF/zXN4npFWqcXECcDdc3iUvZxo9ZkogHZWvRmRIAsYp7GmEJIozD2M2coxtYgr1fAVv/H3djp/YSk8AM5nRMXUAf1y4811/us1X6XOr9DvqnFzbX3PbYKCAVR8eSKTPCjTEmLQcreawexEVRbXfGg21DXtZrXjZq3PfAoRUSIBX9rly9WvG8bu8Aq7PAkye/hfcMHPytzjTKRwiISwlxdEecSKUhd0zSiHvqSUyYUxd3M/fJwxzrCg5C6NRZI93SJohI3khIYkmglIEEp+mB8G9wqE76AMsNPb6fx2NMZ5P877maZXdWPPM50sEbDR3TvRl8iXSFicpx+7nciNwlScxKV6aYS738e4nzmicRMmZhFV6d06UUNoZu0R9AlLoIbXVeeK6DvMtMrT1YrM4eHiqZS7RSHB78vchMMzI4o6bSPmuZtgFgRVhF1ScKS/69Hm/ZSTE1O7bJQO8wE4PepUIiDS3Y7z+Hl7C8TbRtHTt6qTSnmKnNHMD9LCrJTnfHKiCL9tvhFxjhGRw908lbmr9r6JShJ75rDI6Ss6JxFl/ahNRVAYdgXsmds5ajBtzClKrRMrJdK8mOVJmEpeFfZYiS01e3KPjILKU7iA42o8l8Rnnr4RCVSAlhEV3FbOZdIvOCOHA6I/f/58fX1tb7rv387zVBEiEmZr5u5U6Wru4YEPlyXzeA1H2O52H7rTnzvo0OatQ5MkWVI4wNkJG3jr1KrM5TRKz7yH30YSWz/8smsSSedemiTPtIB7GpBCJMJNuTdhIjexiAzKlIQSf1H5JtROuqWnjXOcfJ5Qkabl2NS1dZXGpMyKQgjrNCzDoowM9xg+RoKrZWvSgoSkE4jD2Zw1pKd2aFe9dBbR9nuZK6z9savO34tj6uHqvTXrnYicKsMMMZUu40433pKvoRKKSvdK4kgyx0mlV2cPGgzNoAxYuOeZMDCJEKkoq2TjlHxGHSdNa4eHiTWYGZlg9iUKnXHEvHSfNWHBRBxqpUcyHrDuAl3zOQWJCOffdK0EYp5jUip/BdCjpq2thabo7R2LaHbXkdXWRBAFczCFPDbjWeNKWYCNGj7ElK4lsk59JgiizO1FiAAJzMI5wIHVEMzp67KHmcNgJIIdRWNeE8Z3L39SLJZh7POsmSMrml35x32lxgpVmwfCq6yzMcbwYWGeHnBWYeWNuROYJQAbI+IMizQ0knOWuV1BQuRR8u0x/DztHF4GzG7DC2g8TzsOm74xM/0Cc6QW030TmTMHlsBSQctMROXfX1cxNLyJMJ3n2Xe1YfUdVLh37VuviIuIdI/zLL5X4CFrqF3+46PmIDXpjpgBgFETvCctsqKp2dPewt/CXzVvhLek8oRlQBMCkm1j1WtvvcpciaByuWpNmJDnOXg/MNzIPd19+ECgUlaFgSpzc2t83fofXy5//7r9+XX729ftj6+XP75dtusX7V+kXQOakMwSjbCZjXG6D6ZQzv3++tJbp8z9/vY//8freY8DOAQNICcyoGAqTxLoHx8uyv/CUCwfHdbH65izc6k0vqnTndnQMCIKIjfigUEhTqzEUurnEr4gydjPUW6BIrq8fqhYgpnwAFXf6mkew2MEBqgiYKcTYS1JVY1ZKMgc6wmxV2qDR4RwLuiqDn1ERkbNRijLoFQY9fWf6CIAzBtrsijfwbr5+K12lUfh+0Rwc1m51aqmVRXnu7/E7PzXol8Xm1DpDSUEQaytLUCl0kAEmCtOqzSJVI5WXGOXSqzwpIiwIRImXk0AA6e67xg902mcnlHEzXc4xnxy9Nh63t8fY3givBy8OcSkAF0WUmM0UFK9JY9Ln0jLHJmGdMooFZeApG6ioh6BQZLUyteeIUrZFcPpDBzmu8VuHORJOxJj2D2VYMdhZVyoI1JlmqXP7HKOPOWQSDvOPIaYb0xfRABJR5zukeaRZrkPHA7P1MiGaRIpjGKMa5I4OPlJv34+RFhTdSaF8nrRORcUJkz12GvqbENW1mECD5tOYqIoG3h7+hmDloFHeB0ZQXOSme/vG1r3fB1WiTlgnE8jIuc5XtApzOk0YCfaAzcb20V5U7aKRUW0svKtESQWL/DZxc19vuiuv28ZwzyzVBS5vhIeMQwZM1SpkuJEckabV/ooTVWFSk4RX8XgUoCCeXrSlFmlimzaLtq6tuKLYHIbChqnin6NAESADHDdcOU1UlwQIanVmBmgp68eCMxEKgx+uW7fvn45zMa57zeUTbePYU2V2UXGee5EcN/v93O/nx4fVxDRtbWWfaeMdDhRdqaNqRMkE0mVW1KcAcoATmDPNGTZVhrRtKYyz2N4hp0Y2MftsLfTj6BMqvhWEWIK5IgAuSFcCE3kInLt8tLkBSEIt7GPwW4S3kh7a1+ul1KibyJtetoUfcbDxmnDM501lWg6oWJGKgiDW7AaESvlBvryTf84L1CT3nXrojJFtL9clSoUV/v06NoigyIieu8RoSpRWNuErcLCzzCJVCQzUrjqG5YJB9fhghU9NbGKB+kuaEmQaXb4c48v6KxEKg8s9kkyqrUUkYQgoqn+KM3nQiww3RpoujDMbaPur8cpkp/sJh8ftHgH62LNwjfXgbS6zkcNSQQKiZlFxnN+nnN6iqlPouLDZSYzIj18Jr4lAGJgfgnPl1wegJwp9V3WAVc+ZPx462ji2Qu3qdc5r9+Etp8upVgj3XVGYtZcnxI5juPc7/skFniGeVi4T2f9QAQlJJWIRDIlnN2QWdWrhWV6CMT2OF7PxioAJ5Vbq4c5zNPKvydyenibIzJZSFnnVl1mqLPSLVNcj/TKmcejqhdI6esKny50oZQ2XfqlezgLKgNVN9HGJOlpbjGscs9GuOf02cBnVJqaQVVgeXGlqoAAURDACE7jGGSO9CAjv8HekDfivZy7RIUVLFGG09zKfX77+vLy9eWF3INOoxFpaeFRA0mevkVZIV0ZgDIrKyujpSZtTa4qXcAx4rz7cYtxDz8AF6HWFNQSCmiBdu5uJu6NCwxO26+X+/WydVUGwvzc9zfmdBuHjQuI3MPDjXt++/5hs/2kzK1F+y5GdJ5kda+u1vMZYf38hhkOIJyD4LWpJIezhFRmLU0HhiTywBhOCOFU5WiybnpgHqKLwZDDcniOhIGcONZMvzASzO6zCj1ClVXM84VUkShC9ZcVbJsgwCKnmwlIuMY5SyHw2+7yy730+0Wbf0+PAvj3uvCXv3lCBbPE/aSIxGMbArJ+x0wcIyrhcMVdlBAdtLZmWs+YEkiuhiqdEjALp6D1ZIek3XE0ZyhBwlFmYsVv//WlfwJxu0dkvdnlnpAiIp4sFJoCbky53EbmNpDpCQOMKJggnJSQitiMoAgEMXEnIUkQmFQ5t4YvoU4ShCPsNuzttN18H/vpw8dtH5wZY+TwM8hu525l4heEaIqm6eZhcbbjNBuHUUTvjaUzl6+FncN5OA3j4TIiQMh0qqWcoMwyp9Ksi//pIK0YWlI6qtrBpz1CUq4lk5nlNVrDsbBMX8cHU4U/zXMqIsxtdzvTHRHrCMsMiySQEzPA4bHYAvm4hQkUlDwnDfWvtVg8g8opjaSkIRmIYWGuw9rY+rH1rfdTxbKye6QDSpwTIlqqXwDPyf9kuH68UxLmjpxK4gIt3AxB4TCCMpSpKSkFuMBrk4SWa8c0roDI4oBMmmisCAAWUlHdWv9y2b5ctq01YWWeJmGttd47QPt+mFmJaEuCHJwoo4lpKCeiLTM9PJyYa9aUk1xdTwXUWrtety/nZb9t+9aaEmW4jRgtRN39OPZwC7Pjfj/2+whkvrxfRAT8+XXbEG/gV2cYXXHd8qqhNOpNmvq8qJiM0+lmlJYtU8WZECyqpAJxxx525pERfrP9Nu4jjFVYhFPLJy8tTo90ZGhEa+3S2x/b9r3ppXH3iLD9PHmc7K6ErvKybd9eXr5v18t2uYi22mEiImyYjYQPi0hnhVaeMguzVBFM4LaBmjNl06Qm3/Ni8v3yvbE2bkoi/dQP2XDT+zlXCVdCTFBQBFGm5mVjgnuLaQjhbj7MMHZ3D4mQDJnHrNRchUVKH8RS/lYEWXfrtHZKzzCkxVxFOVdpIkExN2/GHGniWac9fsssiVqhLQSadJnCI4OTGTwNGDNyFbZro15xC59BLFj19iy/aZkNTuD0WeWuvnPSDtbyZALKwIhZuGxOa/sqxtHiPkVd+DSSolIREZJ4CWeSENWRz9FTzpMJC0ea93aROyhXqsvSztByZ6o9IGone54vBZQvzCvqm1N+elnu9/vrz7cKXMhKQPdFtKyBjjATIxujcbYYdCLMfD/O4xxpWW3umeMVb5zgyLJ7TGRyciNRkBKXJXyWzKqcuWRlI/HjKleHHzPWwHOWuWtWm8mqYK5XnqgAK48Maby9tOTgxjxGU9VNuFNQDDvH8HOGrT0p/kxTjvTxNol088lZcK/3VlkIznDGEBySB8fIGAGjuFPcmQ4Vaw19I91IOrFMWJCSiOTa+pfry/dvf+Swk+5HlrXaed/P8zSziKCpNappfzCTqm7g4CRn6axNiMNtv739iOtFvn5/+fr2RdpF+1UzaAKA1cZlIqXGIOs2Zq41LJWxdJ7na/o493659Oul4sEz09sFXz9WK5+UuZOVmyu8cBZZD2HlWuIUWYb69R6uBxFZRJKlIxIiwZnB88aIAmeyVCmRkapoJh4SDxHqXKDuk8HgFmUB4KAgCuI5Qi2WYGSRtCY5ewK6TBGonYxKWSDJHMSoMz2BTA94Ft5RtKfpm/tv9ppfH4QJFS2IdhX9z55/VZ/1xJ49QdW4+ev3wlzQuZrg59KfX0vLQW1uGpwVQECMSZCitd88H0vy6bQI1CuSONIoBsch1nTrbWNIxvsanfK91OHDfQK4RRSjOZk4RVIFLiHKGdkIrpRBSGZiUJVXVEGRNUKDMpWdB6/TghMgIa7ynYXQgSvYqJF0KJ15vp7n67n/vN9/3EfuhzvC0x0WiDiHn7D7CYogd0FeOl02qinUnSnLvopIGylLgg8f+4jzsHGaHlbS8roGwekeUtdxun6XFiP5s92XRUpzy8tBbIIXmKzZ8hUqx7d0z7Bww8ymAFL5Idib9eAwO8NHRlCuvowmdyhAxJLlDvaki787NnMaIGF2h+UyhPCcW3GCGRxuPoiGGdnQcbbTrmdePXpOQKwJEViByEmDinmY1hGYiNUc/7alpJvX7V1cKI8w82AYkglNyKW0qzK1pVV28so1Iyr3wUpxZkriQMaKuGKQqOjW23Vr1633pjotOAIMVe19IyIbYx4zQUkZHO5IIveICK7wgKaZmZY54+N4Xr26WEgSbl1frpdz2P7ydty6ijDSh3kbbmJMYTaI3OzY7+exexLayy+7B+HPl37h6E58cgy6xKWPJhCE1cgxgKCCkhCHI43OM7p6z2gSUpmCnOKeu5uPfYxx7n7ufgayUVfeAKJURPoZtp9hKI0qyaXL95ftH8KNQJHDTcaBcSJCiDZtL5ft6/Xl++V63S7XuixAhpn5KSefY/c0y9GZtUtr0loT1Rr6IqEKEiPRRqTglI0u376MC4mQKJji/6t5/7ipPkT7c6rDMyYlaPrxMVP6tBx1czOj8xgYmZm8ylyuAqWGKtOEtYIlQJxZsnokkDXzM4RTepZsp/y/JnpS9llCS8c52Tl1oq/pxFRZTTuw+fwX75WWneLanNcpkU82eOIB3f+2qaAygB4nSD0PWjMfrPnfiozJdVJPxKOiGoRSOLV8ehcYyIX/Vn5KzEqbKJ2K/rOw4eckpWY4SRzl6MmPs6f2mPVzi55V9cGjzF3n36+7BD3+vyDo9Q2Igok/uya534+3t1tY4bgTlMec3DAnCwkgTI3RKTUGDfPjHPf93Pdz0sQCt+E0Igu9DSdKMKRxv2q/trapdBGVBSuTiIh0ZqkLN4dU01Gl2qZYQuEkmm8KAcmMGUIQQYj0CEsEN9peOim4MZ+sItqVlTLDYpxjjHGWE2O9PXMyQJ8UKnVgVAuRmTQVnERwTuM8GDfBneLIGBGDcVKeLKacraV21kbciIs+DHASM196+3J5+fbyzc/BQTYy8jhP349JGH40PijoO+s6NZKKJuJGpACl2bjfb+ftZ7u9/nG7/ezXr5eX73WmzGojs8AeYgQWxMQkwm2aSzERbJx2xn7n7Tz6eVQsCAHon1k3/v5X7uEWRUKY81bKZVfCiYzJ8Zh3Z72zuda+ZyIi58oOBAVsLWZmYin7FJooxRhxnnaodE505vLcTZTnomeMchg2j0iAq8YVQBWute9lxHDPdeeV5AIzVIZmGGHtk0TTmR/AooVXkSVJkiGZn/rmPtdh/qI1o7WbPPgya6rzWLvvCJn1hY+u4TmrwYOV+/RTxSpQHpj5rF8mA4pYQFKp8rXnAlRm5+8R5+UCvtB4JObPB2WQR6SdFZnApBFOBGEq0fmcov87BHt6E2RGECEcIRDh8EjnQTCBKz8424kSe3ISIMlNuTVEDaOnoqU8fEDCCeEInfAvOxQsSdTRWbmBWqAnvUx6XAy3w/ywMyiJR1IJGDmxGTaibmgcSjlHRkxMwWmDmZIuoZkkKQ16T7u7HwQrf/tIyySkrIg8BjifiPf7B3O5uPD6t5ynzmS1BpY1WBYeFR5pyKBEEEFyVY3hYe5npGU6UQoTRObhWVVzrpaIapd5z8urw8RzwlZ4TDY9vaQBhboyIyUjHDTAZ4JABjIIQVgyNxUXTa4yX4LqqpiivaNJUC4Gxqdl7nJjJhBFuI9ByCIggygS7mnkzE40SkSKhFUEvLDotI2jh0aPGJVMJSoiIBYhZWpCTcp7V4h5+sFEhnutsKLwV3Hg5qPSzwhEaCwAMXNksPAkQSbVLC4inKiRMqWIXC6Xr5F27DlGZjThsHHsFO7jOFhEmCPC7fSI+C1YkYBvfbzIaC9Q02HUds/jNl4Rr4abGR+pgzUFkEwfHrd94BwXPV+aXTVfNK8qmkbR4rQxTrsfdBjCECQiyUAL9zNOC7PDxn0gZNtetstl05dL+7K1l0xY8RDPcZ6nuTOzXLbL5bJdXrbtqm0TacTyGFkL3Jki/RzHsd8iJFIDbUKeSFCNHUouHCxCwlfpfJGXSFImUWL66692/FrmRialA49wlGkmW7CoCGUyoMEeRgRKBnNh7enpSIMHOTw4UqvicHdxqSn2nAMkZUR4htXyml5SiEIrvVZs0RXKmKNIPrQM6Aq8jUg3ezqNv8N46xU8phf1l+9OCzxAI8wjduFEv++1uU4FeiCwtBZCYd+lca1CrPCS8gmgueRmpZvCWdzfJ6np2VPQ8jbjeKCURJiuKERcHg9RTsIUEVOG9/55rtc0EZ5ZTS/YGM9DcAFmRI/Kfp2pz121JLlZxfiHq+IWNibGlZgWS9MKUKWMalhZWJkUwUVqOE87Dx8jkFxbT1jm8BwG9wxjoalzofx1qEkr85PXdatnCBVKkUzODA9mJ3by2gvrLion2PLSkGJRI7yUBCnKLI2VuLEOYWYVFZJwhEXm1COJ0hxIT3kFfWqxDICIWxOeppYshLAz7aR4U9wEN8oTaQhjmJArpTCJck07CisWKo6eCPVL612asDpFJHmkhZ/T/sEXkxtA+echBcHp7EwZNQusd12CJIkzMMa47/e349jNRqbTHIbXtypsDMxc91RY69u2XS7b5bpdr3273N33Y0SOkdSTVAv8JSLrv12Qz0gLFiX6A3JaxFPGbGMjp2LyMXPHA+TNZ8kbVY1OBMT9gYu8U4wiA55xDpeDle3agBSmtib0lGCPHI4qcz0IU+tKYKiw63TC9zCO1Cr7KaqV46wxMz176KneBIpHRcWT4UyNlCQJCH6Lz/54CwGrup1V7+Iq/FINriJnXiN6QKRrWgVM4OJZ1QLvPqwCJjG7aq4nPSflNIEuYuLZMzzfFHr3FGZDPfcYWpjB+qyCQcPSKQPC7u5MECEvs518dOm/b75rt/cskagwguHMohQujWEC6+yhtcoLyk3iFEaCtEsP8nJhJjAjwJETWgCgOUs1C/Lk+lcHCUtXvlz4hfVoNsLMz8PyNux2nmeY0VHkXzBnNqOWLJSaIQhlasIqyWlsIFGIXlgFulFe2X/SoDwn0SoCEZwVf5kVCiGoX5+XuTIlHXjqseYYyaLyzBcr90FdQGUKEefSLUcG3M1HhCXmm8IkOTk9BRys8d7qYh7pQ0ChBc+h6uQTlDwp8Jh71j8ROXggBgCQgIJESKQRDJoUs78mSZincVaeQ51lk6FUkvv4vcxFRTTNoxpmVYKjdxEG81NdaQZAhCR4BiQRkMJFF5nO2kWB4iSs+A3Nov8LWtnBzpSZOTGesZ1Udynn0qsOs9I4ly2G6JwxcxInBTNlUhlhlK0YGOzKyayXTYgkh3HGOI/IijKz81gJFKpcCBjWaODXx9d2fGvH5rqF7iePfw673Y8fzj8Nbza2yKszpWSqp7nb7mP4/aq37/343qEbf9lUZCCah9m++9uBHUJQEe6ZjYo1PDxOjLvZfTB6Z+ov10v/srWXrV3OYe7jXA93q/jccrnt20W0oZLDCKDkjIIC3G0/9vv9Zi4WGtmBmXYwNzGa6n6phKKtb8I1fSQVYrr/f+z41ZC7sg2JkDEzszioyKjVCtdFrUiRzKQZ/ktlnJBu4U6eFuyhEeph7uJWCgIhjumGPOcoFbiKikNEUEZ4emABkSsKpY62Wsk5DRaqUn70jxOUqMW2iABFr4/FkMAvJ8Wj1pu48BQG/n6rzP08V5mFeaYvJ6134C1Q0uplpFA7PhWRgChn4MyjtJyjZqA+j2UGJPGaHdaetoymq8ylXLTG+RPmOkcuZtJ8KlO5t46QtRs9Kod3r249j8dKyQU0M+KTI7kIX/VZzFJpzqqtQicxbXghzEKSkWZuY5ynj2E2aj+jekHumV6XP7Wy9WY+FaEYC4sdVVXD482jeolcx3AC6ZHifFqxaeYOjKxEXQpQ9W0gRESiIDlmZk1Rk2FORAIGyA4P94QTJQuIWEmk6tCcEPun9wkz995aayqiJTrdX0cciDelW6O3zOoPfGH8LIX7ljJxvko0RiPp0i6lQE1BUmRa+HAfPsZcPzUYqVFLCckyxI1NKBMOWhQOJmqQRiAbY7/fX78cN/eRdW0QKOFeothiBVwmcUbfLtvler2+XK8vL9v15b4f+8hzjAHeiMrUiImU/X+vzJ1ZyQ9PoukaXVy8aUrMeF/5rD52FbuRWcRhimQgiSOquHViF4oUwmQUlIpQmW1zt0jJGsmXJ1kxPYbPCJC5ViuQlyEiEVECkAhESXImaos6pNaYqcpAmpAn5oE7lz4zsUQKWCr64rO757EC331CrsVJT3gbv/3/UWY+q99f/od3H+WzUM05C36aQy0uA9XVFCwODSbgO2vgtXs+C+ZHkU2I+g4FH9exEsaGzOBpYv+AA+vb0O/Pdd4r01AubAIRRCnCEYzIIXkKxsk23D2BSRaJMrNiZTFWTXIqClyyEEEw67XH64hId8y4eZAnKdAEG7CBTxkWw5IOi8vwLrZHHOlHONzTc4SCNJiRlCkBZfTI5inmzNFa9q69N05SpCBG5l75CF5FYXIkR0hwepCAKQT56SbDXP7GQFkXZhTvz314WCU8YkE7kRHpGT7voXf3TbG8wi2Ktks5zUMyAUQ+3vYJ1dADyq0Ll7n8xtekpQ7k0tt4LvM9iko1hCEcHMVIiKCqiBFevCSkA55lCglPPA/tesZZUpD4pMytOnc+P5Rw3uEpIUCjqiIm7lE9AD+4O5EZsSClZeo09c0EYdaZqstNqQmpoJJ+J0Y1gZMYOQojLyuoxw1eyjEiFl2zUszqnSvtiRCR5uFuSsWtEtUu2lvbKEKQ99vbfb8fx15mTETcmqa3lfH8SX44ITsdHUdShnAKIsd57r4Pvlve3GOWKsQQSjGn28Bplr73vF8qn5KUuMdoPszvu72NPLiroEMowsKdgmLAB+wMO1MAhAh15a6swoocbjZGablHIrTJdrlsl61tXXubMq5nK15Fm6/tD0XW3ZdBsnCNYzg9oOXKoIJkLTyKWSBFhPnNDtXd3U5g4pSqmpEsKywTqDshOYme0QyFvmVmli3JXHfxICmGeIYER6FRqObcIiyqxqWYc5pMVJX7AAPoMQfD5B8VQmxjuPsikL0bx0dEzZRX6VaLcTk95XO+/SAXrNX6xMU+3i3zpp0raI41Ki1iQi1VSdZuIBQyf/aEVRf7IOdUuLYEKr4pFig7FxpKjTcLOVr9JQHJycikTH5IDZ417sRl5mFVqJTML5yXpt6ad/vGJ/9/sq9mY/wp8BSBiErzZuHWeu9ta9pFWERm6U9ZnX+kh8U4bVQSYyS45twrFWNCQFkYZgWLrLDIEnVDCJhM6HhA3cBMs6kDmjkBAWjUyfUYchFiMslyJTskkMSojCeQsLN4VKuYk5Uf2qR12S6KIJWmLA+gUX7z40vAIwonKt/2JsTkJAbaQfcu98ZHwiw8IoVJhVUgSiK10IupQMLUmC+qF+2X3rUqzgc9o3jQ6bnkyPNuI7AQKVIyyMEJOMi9FOfEwRzEnnaOY7/f9v1+7PfzuLMUr51LXS/z2Ui988zUVPu2bZfrdnnZri/yeku6WYBGJJsGhFmYovlvd8rn3NzpGDZ/1Vvz+LDAoqQKgljF1ISK8rE9JILI1gGcIKq7MoIyJh6AZCprWxoDx9mOvQnQmrK0QmWZSyOKuciZ8dgs8rkjrDMr11+vMrJWnGcJRzmCePYNUp0HJy1OyBqsfIrl0rvf8dufsWpf+vXD93/4UCfSO27B+6/6/SfnCoidugwwppvEpFit7ZhnjTv3t/UD6Vl/EwFgTC59tTCgmsl5RtKYaGBdkNm3fnhp7x65zB6LzLpw8MwkxBh5Sh4HjpOPU7iJla3rI1D5cUA9iumlKHqg9kTF25GKnIclzIMiJ7RNrKQh5EQXoU312m0P38Pvfrye9noYWRA7CSMpmII5c48Q96IfbMZfKUmEspyS3I1spGV4GeuXEYKln85cWUk1Xv8E5K7TO2tSFZHl9+zDfLiNXEM9mt7zOTWGq4ybSSjAQmAfwjJa6btTec+Z0+poeTeuavcB3U4xGM17otq+ZEripHVOFsWL5i0FEahyE9mafGn6UnGumLy8EmzNbp+IFh8Is/aZ8RWf3ihlrSNSKTOoQp9QumMmpAqrSKvkaKkqiBmhj8cM26hil1EmoBlKKY17115GlHVlV7QiEWXGGJaJh6l23alStrDErbfeO4sgYRarBy8a8gx5MAtVVunb5draRXQLn9RNBrmHjRPpsVjQzFDhet4O+RAjmMB+P5re73e7vfl+5zEsyME1Pvf09AMelaJCkrmx0MbHhaRTtDC2wAFPtUPGkXF4HEEmVPib2+mDXEmZujTl7mLG6EIdQeFZNaXbOcY+xp4xmEMb90u7vGz90rQJPeWQUWIfqxSWcarw92/ftibu5u7jGPe3w8wLa2/aLr1fem+qM+pEOIVJWbu23lj5PK4fzqAxxrHvc9NhKgvqguxVlFbKSlFjnjjihP2QzKKpSiKPmVA8l8MsUDwj3GaMQHrVQsLUwOJBk4e1ZmNTt/G4kwoLdjezYbbE9oyKsciyootE5W3WeToZm+ZhZmbm7pi79dyh8yn7/u0EIFLRGhzGKrqKrsxEK2FjoRiocTPPLOtCNZ5BF/PraW4TvBCa+dX1KUxZpV/E0nFE0NPmdxXbC5h53tORy1eIaJW5eJa5Oaui2XtnrtL4oTqpZTJh4nwgoZ+cPlQCUWlNm7bW29Z7F5EiSUzO8Rp/ZiDh1dZEOVxQgonArJyNkziFMog7yUa8EbUyBfOImgtnZm1WtXHFMq4odHudY/HYIQlJEXCLcKuzVmfjysx1nDMIpTlIgpR4EcRJCPA24VsGVIRAUj4IOSmP7dI+XBMPP8bpMTN9MogkG50Sb0Q7y+gaTSiZjeGSZYA1Q52E6g4uDE1Zy7732i+XralQ6TmQy4CZknmxgDCPGyZqM/ywimKPKMZzgVfBFozQ0/Q42368vr1ur/9KacwbUWNuD8HocJ6CM+YwT0C1tX7ply/b9evlZb/ezwBAldduJeNg/9/j5s42uEoYysfBuTLnMQ+ahfgtuCgeeG6VuQ5HZOU5Bi1MLpwyGAHVMhnMSEOeI45T77sog+nSqu+nWfYsis8DZMx4d5Q/FvnS6j8Dt3OhgeXW6xS86GLJBJkoO+IxoPm9nH0uq3/z5/ow3335Qlafu9jvZSKtdvB/4zGVR1i6InrI7IhzbkhYvQA/r9Hs5t+ByRMTpsdfzZ0ty1IUYBbhxSSeb/C/f5L1E0rrGhST21IlK42RB7tqboccp0pmcBVZk6K2uCRrP+O5M5aGgBaURQ8/5VFOyQClI1H6pOAytxEjfUE/0+5pdz9v7nxLc8tgEiehXPThMTAC5mV9++LCiqbMkGkG4xgWlhHKlSMzYxJHGoE8hS04mN/v8Y83i5ipMCUPTx8Rw32YnWYDq39Y/O9ckOxMTlvJJrXkHnPBx2iyMN9lcIRkSmUSXiP+R6jXo0KewD0hZ/ByJQTTAkXnJJqZOElIpYoz2VRemnxp0mcxO8VrmViNyPxirDfx36K5ADKISIhUBEjzyPJwokkSYiIVbipNyryUS1HLCNGqfKvKlWkhRoRJRM/GaMqXTXsTUZoh3yuonJnH8PMcmdl7Kz5vPSlVjQgRab211kQ0ATevBR1TT5KTQ+0BUNN+2V5av6pudaYLOCOO49jvb0HLqYRq7kZNpfUWENp/vVkS+74L3283e3sbx00rQRVcTqQRFp5hliGMibWwqNwvyRui5xAbCHen40bHjcOInDmTiUSYfcAZxrqptN6u4iluFMrcMlCGXO7D7BjjbrZHGkk25m2rMrdrk0Kiy+7Vo2yLj3HuNg4V/vb163Xr99v9drvfjv3HXz9fX9+EZWtt2/rL5frlchGVxRVNp0Rx/S5NlP34b7+XubfbHXP3JK4TT7X3vvUuUuoLKqL7o5GvO5yJIKQq2iDKq8yd3cocPmQELIPdw0aGIZ04mKDECpEKsIrSwhePiEkew5O1wXnEMBtjMHF5CDJxEbCXLI1r8T2QXI+s4vg8TzOn+ZQLJi9ubkTUaOXjnqKiiXBEIYQ8+2vmMtGoRhlzX2WkcDB4KtfmVj4hwnlCl31KYpZoZX7PYCTPtN9nOYw5UXmIxKtpXoAK1uSkQOVljDABi/L1XhsZUATnWPtb/NKtrAJigcSz2/yEMjfRHlFtrW/btrXWW2vEXNe7YMXl6BhRytb0yJpELZ4tESlxUDKlUyZJJ9lYOpEiORyTrCKROd1/EogijhKXVqm25KnuJVT5SvX8w93GAFKFU52yAD4GV5m96L60rlhhTwFlQLOrlvoKINXGonVrZqJtH8vciDjGqDIXSPIUNeFD/NZoFzm7ZlcOxRA2rVIVqiSNROdxQJmCQhx02/r12jdtwqg54KOEE05eoMlqJsHQJty16naPmL8WAlemIy7ieo527P321n7+y8HMnaCq29b61jcW4cE8qRRaNkWqrW+X7fJyqTJ3Pzx8jDFsIMACzkyLJ6y3Hp+RFt5j0IllUoviUzNqapFUa4Cf5eS7xrqqnwL4arGAJCMzmJBacAVychKQYenHLrdSNRfkpwrW032M6RiHIi0gVic68fNVuQURJ2glf3islj/n2Y/KbyQi8Ew2TFqOiGujKcXJ75fl39S+vz5mH4t3RfOHr3p857UvvP9Zn/yE50DoURuCshA4pipjcw6XQGvaXwr8SXhY08a5S9d7+rGgX811TdJrxyQsC8N/93KLXLpwCAowI5IpkgjmcQ6SgX6I7tJCoc/pznS1eHZLk2eaKGFzbQJr2oaqXQgPHJIYbmk+CcQJFmrK2tkbvGdr7uHHeTpN5+Z5zHo4uXm5rCUF4NlG8OmMhKeZ3SyOwEh4IIPIkCPyiEjAc/nmejDl7x6xNbMIcx/mI/wMP93PCkQlUEX4rvtkorlExCzCjVmrwKeFy9dNstCrZeRHSVktNVWeaqHjAVRI7Id7av68EhfmjNcmqvnU5AeVPrQ17p23Ta9dr8pbReeUwRbCKSaI/OH2TkSd/cvT5/2DgCpOVbmp5NRAJhFq+lvQS7AghShlaieoDk1acHQJhytWuupcFWxClyZ9a9etX7bWtYnIxN1iHbdEzLz2CqCEaOv0jYiCC3kGiGU+4IkJvbOwQEhFl2yfC4FprWXfLttl27Zt29QlM0DQmVFL79/FDwv7v/+MN/L7Trc77EAL6sLSKBuhlcEectSyJAihC65KX5KvIT2IzC3NR44d42BEYxAoHT5SKk87mNGaXrp80cgRTq4qG5Fmws1tnJOuYCdx9qbSdLtsl8tW8HahUgAyhttxHvf9uB3323nuxcAZ5/n68+3159tff/345z//+vn6urV+vVy/fqHOL3zZhMTDI+x0P32MdGkkysT0zf/x4aA28+M46wIRQOWkrGYjbMREd+qUKF+rVZISocSfIqkK1ZnIyCuaoSBYImRKWvhIH4hBaQRnTuEUKiYwIbnstB465SfIwmX2Xt24e9HGV4vKDyBmniRLUDaLOw8zP89xnuPdjcmVdzh3hE/Q3FKz8eP2fQy8+F2S3yxfI4EMX+FNKEIGM3MiJ2CV5aAHi0obwoSfGZO1TgaSSA5HfQI9NqQJa1eduF4fLV7HXC+PT6I6rx9N+uOMDJpTLOABhD7KiAf4PuthSvrtqkBVW2u92Aqti8py/cvM2hiJGWUNWAOHFX5Bj8qcOEmSNMEgBYGks3QmpQTcp5EUAcnL7epR3c9DMyLIn31K5hSYRyEL1XUSIDyHSfXevZ9DTMhq9mWgolMzuCTmBFVCRZiwVIUWSdI/khaoOlwmIDIsw+En09HobFpSsxRKIsoKw5igLIgfUHRkIiXWkVMkVgsnRJzHYTZKp65CTXlY8FR2lk1VTBQml/dVAlnHOnnSiCS4aFwDATb3/ThI35SHcA93Ckc4iGoWucZ7KqQCbq2/fPn67Y+/7cdxu9+OY09khE8jsH/D+fk0HqJW53Ns8GjGpptADXNWb7y+byFMa1VikfUIQKD8WyabDirV4wUCieLVYj/AaWnDzcwGS4OIRd7ut+M4ho0kKQwKk9+XNf2JIA+KoEiWqDLXolhyAGqQ4tNzYYoWpte9Lk0RFW+0rONTP8G9//89fsd6P5S5j351LZLPy8fPBr7z16QVl9lHzQtAs/RZhK254SxNcT6Q5ge5bFW6oKXZX+M/oqqnKKbe96FUW8juh+fljxq3mNM10UaCEATLgINH3g6mO/Vo2ps2FO0rCYQU5qi+L7MkpVFBARksXP06Zqk9haOACnuIn2MkjcBAFFU/WJsoqXAqdVX3c5wN4pU7g4Cb+0AQ3HJYZfzQnuBhhoNBEfDwm/ueGGBPzqA04MzcPYqFLFFe48r0W0WHCPd8wLeH++l2rmF+EAk9VSRZMR80ndNERZWVysWZSkBOq8aNmQm8QBFQ0Lybo5ArgLiiIKbvTM5BAoApQ6kDqPqlieyCgyhJghmi2Ttdru1la9euF+FGGe4jggIqqihZ+uQ+1Fw3F/vQPMx85a4/H8y8tcbMrWnlu4aU7g1mw92keppswYwmZSshImXkQROUCyJUSrCqiBADm9K183XT7dKv18vLtm29N1EChUdyTTeo4NvMZOa1p9XYQGaZK8pSXNESnNWJVS+FyxEWma13Zl4WGRXrRKLSe7teNhsvET77/gVfpYfTcMiHOyUS//dfaIlz4ByJM79AvjTpG7cL0UlxIs2q5c/kEPaLjG/iL8EvaNc42fgcyJF2Rrk8g0AcQTTSCVARdJVL05etfwmAM+Cs7cLckGTudB7jPOw8wk2YLpet9e16vW7btbUuokVyQnr4Oc7bfn+7315vt7f9fhvneR5jvx8/f7z9/HH7+fPt54+3+31/ub7kN70It79dv778fdvaOY5jnHHc9iPOc/jbKMfQ/sdovwpG3OM87PEhERGZMA+1XUeVuTxv94UnLoJKGcOKVpkrram22W0A4eHIhcoYmcEGcgiMyDh9HtZMtCBjFJuGZPq+VmkkUsKSVUtRTTdrSMCY4B/wqFjnU0ROG007z7HvR0EDzKzSJh+Ha5j9KciSs8snSUxuOk/JaQ12AlmUeQqf2lZmYzKWJXoCppTS06JmYxgOnxT+R789RZ6ZZclYe++kJyUvoP1xIKzad+XWTBaHgDmdomYrC5FdAyCaPejjxWbNi0BPQsrUJ0RMT/tfHtR7u2xb67311rpm4ehzvBzlBMhMw3yM8zwPG+bTFeNRg5eILFKcpMIRRcuuRVa5BSgzswqUSeo8wqPur+fs/qgIV6WE8CCEMLhxaieiPkdGi1ZVt0gUG1qJOVfphYIwisTLQgztlSxfFAGOso/Sj9x2EblcNqYKbHDGEBpKZxffiHQ6pCemoLl6jGAGEDNuKABKZzJ2EzvOwXQMJvjI4HGex3lGGFFqE+0qw4tbJlQ2QVmq9mSebisTWaTEnMhGRGuZJNo2YnHzcZxozKrpbjjLVX3U0SBNtW26XSePSr99/Xr+/e/Hfv/5869baw9KED2g2d8eH8vcfA/O5nOI8OwylxVg3YbzAFrfet7waw6+brjJ16ZMJiijKatwcaRq5u3I8wz4SLeIcDfWBhaLvN9vx7GbGQvRtI0A0Zx6mFkkSSKTczqlurtl5sxmJMoCnmfrAprUGamk7hqcTh/gBUz+vsd8uvf8WqnS7/+2rst7EDfnMn9Www/I9v2HAOUcL2EN0FbbPH/NyKFVkJYt6SNhhaYX9eN7rqnSo/tfXfajIZg0rJx1M2bH+ymiW11MVboVJc2Pu4yKXRgZCUs6Ke+4ZPbEBiiebhvCFMS+EJB6toTK0ZUkrUHOHD8TsxJP8XkkiwOWQSOSIsuzVsAq1CQbzLbz6JAgYRKJSBs0DozgPMhHEspImcL9iKM8HyPiCD8Bq10wCIY8MjncEpYhERzMYZ+huRFuGG6n2WG2u51uI2Ly4lmKDkZFOcilJiYiYRVuk65BT7JOvS0Ppige+D1WJzNbmmUcNwesSWvYknPZLvhofuviN6+cEUlRiNLW5brpy6VfRTZmQZ4ZFoOIGryUacVMewixgXmEW8SYIWO/PJhp642Zi2JJy97Bws3c04NImJThUfHQSUTCPGthmiAUQCrSW9MmKsRAb3zp/LLp5dKvl8tlu/TWRRpAEVEYf1W01ae9d/Yt0Lf+sox35u63JBYeMUc/MsebTRsRPJzMQVZlsTA31W3b3C4F5WbGGGOMgUSJ7X6XRWTi//4L7PBIi9QRf3OAOVpGT9nEokAKKupYKI8Ln1/Yv4AuIS3FjcYBP6vmZq5jUTLIg4QJwUxNeGt66e0lEhyZTqKdWWvwlWee52k2PJyZt23rlzJY2LR1Zp3gWJr7Oc77sb/ebj/ffr6+vb3e3/bb2/3tdf/51+3nj9vb636/Hedp8U0avdgLK798e/nzct3ux5332xhJMey83+/jftzN7D8vho9lbo7hdX0WCk5ExGLMo6pcqbi84nEIsXDOET6TsEiIkCjPkBahdb9FpgECZBjbIDuBwWTEzunPFSMMEOqYrsHZc6ZMxYf/ZSZQlS4TzSZq+orUdjpPHizmn7uPMY7jcA93Z5bevPettVRVon9z0NSBMDHSgimrzA2igtAikWV3UhHV4S5iKgZkykNBWDVBhmcYzOL0tMqFzTI+JWLSSeyhOaAmLq/lyUEtCTrRkias9Ii6TKUwACdNjRcTTYbJKi/zHb5LhFnTzrPoQaTGYn455cd6DkBruvWmXbWpCFcI1towqiYHESLCbMwYA5/n4UTigPK8g0zHrqYTcQUoMs2CUQSY2p+UIQCKmEFzIa+BwlI9riefRFAFIOUOU/qC2aPRhB6nZhBSeYVzFF4RAQUdC4mWdnqGK9UNECD+pMzl62VDOnxQWuVBKJ2NfVMIkXlB1Is2jcgsCU5k5kRRCWHsEmM440TujAjjNHYf7qeZJVKEm4rqTLhNIQR4lrml52RwEd8LmaSIDHOzuFwSpNo2YvXSrZYsgcLDwuw4j/3YxziVW9Pm2wuDm7Sm+uXr14h8/fnjern03uscDPd0Ry7j6l8fn0vQqu55wvJTnL+WGT0akaxpzLxl6z2jKXvBQoJryC6ErnLp7eW6fXm5ipCXEZQXTSCYQMQBmPtxnjksgOFxu9/O8zDPJq2GOxFgephgBCjmSU5cuxpX/THZnROYnlXgnLbOmXnkEm7Rszj4t5vMh+u0/oBfKtw5xsn15/nR2mbeVbrv//z4m/dV6fz+i9wQ7za6egILg8WMWXy+EC6l2SyVH8+0vK9rjkRroIZZ3z6w38nIqj+D3lkA/Powi4JlfF6fh7ipEoMQlJY4LOI4DbllGnLL1qlQPS4r2BaJgIe5eyKopm1ANQNVUxGVryVTWWQwN9XMVtBijnCPRLiPRDIahNtFvvxx1asWTTIi7fRxDBZOgIVzEIzJOQOWXhmgQWm8wuDq4kamRR6AIy0hmZRTjhwfr0zEiCyWwuF2TpHLNIAkflSx8JjyPRBIWFVak67chIVAlXddb/PvehusrbZujCjDzyITTcOChSqu9/fpKFQDJg6wEQVVmavUmrQm102/9Pal6Qamsh2NYXlykqOXe0zEmlTMrYCKtGDuw91/K/2btu3797kg5jFDSVB3U48IzKzViXrlkn1l2TJjsemYZF2p1knAl87XTa9bu/Tt2reuXVgJHFG6gNXFzS57zhUBqOqj3gWQmR7T+KXYZEW9YKFCEGtdRvp5Hp4pamqDWSmCwhOhytvW3S3C3eccZ26i5SP+4T7J/L/++/BxJjghPfjV7G3I14NeRm4RJ/xOfiqyU17kvPL9mvvFbzLucZ7jdD/Zh0Qs4yvJEIcwKZPC65dQCKcyKZhYMic+xEVa8HQbVt6vxQjpbVNuXFz2zEx3P9P2Y3879/u534/7/X67vf18+/nj7eePt9cf99vbcXs99vvYj+EOdyBFpPf+cr1+e3m5snTh7sFnRbg42wBo8CcGFBMUpEf3veodzOE7lb9VvTOtiUICM1p1EdTxQATmu4uc8qigDMRIO2ichDNkJJzYKwArFhEuK8yMysVrnXDPFUj0aJPoESNGtPbSxzBv1VzriTyg/lpac9clWgT4f3v8oIw3+NFlcibMIiiZnClokiML1TWQMaYaAhERpSsq7BniyRyOHOGAR5aLKIgq9qEIhpNnXmlLzFxXuVhRy6xw1aoELDNengKLcrwsnm9dqIdatkZOD37gLGwrzszrjkbJCZympdxv9X/tcVECL3iEeyn9J+UJdYeb23C3IuVSFahzYy3UQCBzYyFRJlAml2A+gwGplEaClPaL8PwGuUbyc9SdWDPVh0h32RoyMWvZhE/SiJ/HYeauPVqHNCUVnukHzEQ1WKqbpaqtRVSeJMH8DVAQ5ksFyhLgoTQYB+UdODLPhCEdMx6+zoNaa9NnpG72Evmk56BwO/f9NV3shJ21Bh0oCoiVO1JrZTeeESkMkVyV/AM1KGsgoiwLYKZSqG7X1jZm5SlkUCGtLVvAjYVUVbRVpigy3Qnoqi/Xy9cvL1+/f9uP/Tj2cXa3cjEKub78voQ+LXPn/VOny8PQQOSxkulpEYhcRdD6MtCkNkx0MomDiJS5N71e+sv18u3rlYnOk8cBp3TPTIioijBLZJw2PHK4n8Nu+3EcZxBrooLpS8suIq3OKnimowZWqqCM0KypOHj28ZHTDLPa6yQkRQ18JrpWrg7Lyfh/6/Eeha0H/fbPD6S0ALWcbK9nHfu+0v3kR8xr+2ttPPG8zBnZtmSlcyREyYHgEvy/q3QfP4TeY835/oXMImQ+8yeM+/uTy8TwFR++MBemYlSAGMmUHEAe7uP0kWmJyvsiFZLpBaNJpEkJM1BBaEgU7aJAYcqYt1lULlK13E2FqNWKSsSJ4eHDjdIVwdT0wl/k5epZTtPu4SPGaSwKkIr6mXFmDMTIHO4BL5UHij5KyZh70qBA8cln7E8AwfTbfB4RZnG6n26josuwTKPfBTJNG87MmOZ4pMqtyVYwFTLp4W+J2ufqfSoIpc5RBhaNOhwZOYcScwnPT8tJkRKKyVgoFSY7i7M4EcApKlvXbdMvW/vW24s2eMLCwizOEScTR3hxFstQKBeGgwVpWMTp7r9dlNb0259/hMeUC9QaZkpoJCK8Ot4CaIE6uQyJMvKYjVzJ1FRUuSn3xkq8dbl2ufR23frWN+XO1ACKDPcEnDh4LW+U9ZVZKc/y3aM+LPzGKtUnp9K/oMOyh3Qf5pbnIe3Udqq0sk/OMGHqrQ3kmN7BsUqjidt/2FYi8f/67+exH2Ai5kvyD6efxn8YfRv0xcmRg+EEbEJf+Hyh2yXeut95330/xuHh7KnIZMrpE6KeAlLmltnSJY3TaynW9p2T9EdLdephZuGBJGZt2lW6sFLyPF4RPo5x3I797dhv57Gf+32/329v959/vf7znz9ff9yOux+7jTPGiEzKCXBftv5yuX67vrywdtHNwR7I5AwJF+GT+eMBVCMbILOiOR5vk80RE/G0ymViFclUAMmzAHgOIp8eUZmrWC7hQRj8pHHSOIjOJAM7ys96TqDCYwY8czKtNn/W2rOiYxISLlVn7dDPIUs1gI8NeXKF3hXec5xWT7l2BnqUyr+fP4UmzXl1opI7KyI0EplCrlzgX8lSHWxcjONSa2SGgZVaU1Exh3rwcM80d/M5mav9JSkIjMwqSoXKsy+FS8hQc5h0n7KjudqnhwMic+51RasA1nxxerMwL7u/+Y5jbiCVRhfpEUwkQgQwB1HU2/DxEMrMCDfPBHkUGicsQtK0ETJKM2le5uMZoGfzgekdk8lSvrtQZRUORximlXkQkRK09Gh4GJLSc/5YpK15jyzzBeGSzKqIrrd+httkwj0yw8e438ZxnNq9b9H71rbeNiat6LLaaRfLZJpD1sExb9f8zVVAGFtneFXc3jAEB+KevgedxFYnCU2ftYmOEZgyqs0q+gGV5HuUWfd5nnncfRwugt6ptdn3ZaYI9a7MKZLhyVRb7rr/I8PS3acvPErNKSxN+2W7fGltA1i4KTXlriRzxUpjQqaqNJXWtAsR3AjchHPrL19evn//Pmzs+/3YD7eR4YhAv3xcPp9zc1f5ioUH5bNKegzMsQY5PFE24gcA+Gx7E5U6xgQV2Vq7btvLZbtetslWDrcawiaJiGgj4gTc8xxjH+dxjmOMYUaszyVVIOYk1/mUodUdJnWkrSectZtHlP9UNZyzD6Q6uYIDkiKJqQf6d9YC79DYB0Kac+78wHo/rsTZ7D6Vus+a8h2d4N8+nt/0HYywMLkiPiy9+9xClybgVwCWnj9wPgtaJi2LZV1/Logwc23b/6unmBY5ImuuWpPhZJ5mKlJ+bVTORWklZhhOIFZpjRmqULAwKJMFHHUXlWdO1lLjyTAue20mILhm2pAaUhIi3VKq5LawCjERgJu2pgypMjcD7uHn9J1XVTvcj7DDx+7jtBiJURG4j4tdrXpOlrlTcuHKBKA0gB8eZR8WPiJGhNc15Fnm6nImpMJo61wpKEG4NWklKSnkvlbfIuQ+wC163m3PEyKQFJkPr5lfOxhad06VuUbkRK7iogGi0sduXa5bu/Z2Fb2QWNrpbj4szXM4t5jzGsZTHjwDJ38lLXy8KKr6/frVzPd95wOZ0z6tDoyIOA8aSJku66gKLHPZc8+Snaq32Xq7XrrbRYmvl+2ybZe+XXqlVTeCxNLpPdr0X7RBTwuL5/Osis49hrkNq8qEMb25mBnFPogZ+yNuZqbalKlRoV6pyu41g413rUbUFvhhV8nE//PXuN0GCVjoQnQ4nYEj+Uw5IRB4+Wi8gF9wvORt81e1Pc8z9mEnBThIiIMlIIAgNSCMhmwUnULhDCMYwYHlTVfrvY5JDzfzjInLqG5NO5MQinVoEXYe+7m/7be343477vf9tt/f9tvr/fXn/edfb68/73amD5inexneSpkKa99a31q/1G61mV2GnRZjpA0InfJJmcuVtpZUMwwEvYNAUf6KmUFBkRHMUGVQAMmlU41Imz5+Ybm+bWly4SP9TD9oHGQH0RD2ZAc/NQY5E6umc+aDRZCRD4kxAeB1r2INMt+hO++g33ecLypmw/MR7z9+ln6/Pdb0JAErlLPmNl63OiVlCiV42jxFzonTTGOc2wcJS1NlhkgANNyHsxUHBwmiyfcFGCHEwlAOVShDhCPSgeHhs7Et39R8nIke6cWTJplGbA9fv6rnSZbFy5SwFQha96ZFuEdkYnKwwQjmcp/4uKuUype4lIVCMyCsUsQkwnPEOM3OKeGZRlhYKpVi0gp4OmpRmRHmAvloLn0VbsyNP4SBEuaYe3awq4avGbOoqrbWVRX4xZez/OYiLBJjxHHYCvVmIlaWmSzCVBwrj4oi8amVTyrv80x8VubSJkhkhCedEjvinnkLOiMGwXLZLFUyFi1SSUUjLFEjMwuBI+g8/djH7Wa3t2O/na3xy4teNhVlEUISM7UmNTSImVn2nIMip/l7zUSEWESbtL69bNvLdrmq9AxiqEpv3FR0oaWaUFDKGj9Q5jhPJime+GXbvn//Fsjz2I+jmIEW7iHt7bdl9FmZS0SFAL6bvjwYC+st5d51602EqoWjcjZZ6RLxsOiGA0acW+vXbbv03oqdBwiz6npVkapNpJWuNzOTPLKUSSCiBMawxJ4gD7hH2OPn4FF7zg9mvTcH8+9QaBR7KZBufh42RjTxy4at5UpPfT/m/+Xx+DkLInj2cPPfCsquqpRmdbtq0Pr8iXWnVyv5bmOj57b4649cGPnC8hZ9BBOX4SX7mk9rAYDzujysFgqBf/Qp83LMacuqp2ck+bsVPUfjv+0yiTo669XVtiZl80fTWztRynUI4M50JuUIVufDiHhLJaDyamQWyuq6riU9/Srz8aQJ9QYmsGjWKI9rUaEIBIXHyNPSuUQD3ISbNBaIouUFJCwql5eL7W6Hj32c93Hs53G3fTecbp7wnDYTVHVg8SeQybQUFcz821Wp92CKAmluV0TELFowRp3dOZscZlKRVr9qfAPM6mx6cJcy+tmLPIrW5DUQrTvvIdOgxRmmuXbmyIJrJEmD2VRdNURRmdFNZWt60dZJJIgi/LTTxuFj1BSayvh7+loxa9ERF0ACByxiZPyO5jJT37qoESULMvIxxyPmcC8FKBFEhFgzyTw4oFLxS9PdU0Wu2/bH1y9N/NqJMb5d2nZpvX9p7dp0y+R0etySZbn5vpylGUm/JlNEVWf7FJV56V/rDSs9UNVY8zgoHkREmCEJ7hBGeWfQLKI/4MR1RwT9HveL4XlYIABDMF3AV+KL0MbUmJLhDG/AS+CLnVe8ydhznHlaGV8zg4RImVSggIK0xgJKqrRxNBqcZ/o+Bo4AuyNAjAg4VrGLBJNCpWnvsjVuwpUUZh7DxrHffx5vP++319vb/f52v73ub6/7beV0Rs26BUJMQqzar72/dL02KI3008fpdoYXg59EWu/X61WbPpzdnm+QkKgAieTMDAl3Yo9H1ThPo/W+VIPCTMrK3IIyTjtvdlxs34yIdSPdSgVlkfCDbRffOXaOQ8RmZRtZ7nVzSU68mGQ22bOcLSxv7gpz8a3VOAHdGq5g5l5h8ne5ei1V7b2ZbRHJZZhUA/bp5PRvzh6CEs82ZRL0ylWMKoSiPKiq1BAqHxjGTMrwef8TAmnh5PMSNuWt6VRtzQ2Xa2ELQxhSoa9cxvtMRB5EgQzUd3lU77QQHCI88O11tR59akqVvDNmcJ6E9UZGZkxWfK4nRGtOHJ9dlDzP89h3IoYIs2hr2pvM6VaEWX3COIYNK2+dglAyJ7pKy+xnDdmEwExQQeUrUIqy9ta7NlTnN6GDTExqS8HT02pDypCTy9I357T48fRzHsiUzGhNtq1lRvU4QKaHmxNTITlWLA6fI6aVSDt5Z1xGXh/vlFDywEi/+/lq8Ur0anQTuLMvxsY0g5RZFS2cjpiJtIbqJMQSQaZOEgk/h9/2ozuzJHG2FKDUnSQleeN1rKEuTwJZbOJ0LFfAy8t2fblc//bn379+/XbZXpRbOBjStTftXXttz6AEWSIyMj1t+Hkc5zEQKCQUGd++frtcLwV3m9kYh9nYHbfjI8H9kzL3XZW1sMiqnx/lYoKJtt6/fn1pTYvVXqUGM/lwG2XeUceHeZ5AbL0X7qKlRwWEuYkUqT0iVZpKpyk3CZCVO3MBXpE4xzgtSySQifoRdZbQgyjxyD3DwiEXUWZOk+YYAOfhb7dzv51bd5QnBvNkqnwGXy5Lk9mvTFrP2uiqFsOscddXYMJecxtBUcyTCqmYpdq7i/3rvOpXsDdn7fmEbqnC3Iv9FM8hda4j4IFkzDL1weUsmBuYnrv5gG0X7Pu8dvNPn8MMs79BWWsKRCBLkKqAJDGSSx4hMbv/pLNm5U5gZWGeDmlzCkmoLS+X7gNr/DixyyokM6q8F8oyuJZgDoJPfl26ERlDBN6JRBqXHytpa61v/eXrsGOM3c77edyO+03k9cw3xC3yzBhZ1RgBxMsvfdFd6qipv/54n8xNGwBmmnQ1x8wr02V5Ra7KXrgouTpZuQu08oznLb4whvWO1oaVT97AhJijtlVew4LHuHCeimTCJ8tQySYp1Rsz96ab6kVbh4gDHj7sHOcZ5hTlcEtUoWM6LWyX8AZEpeD0zPGZby4zb508mBkiFNPWcU733D3D3QwAixJLZsYkHbKKEElV8iJy3TZmunQ+r41gm9Cm0vtLa1fVHk5TAFckpAzExJsyl9U0les4YwFyzJxjePUVbmZWeH9VWnP0AxRDcdJN3DwiK05DymFq7i752wPLHOfDwxzDkZGBSKZdaFfahY5GR6doGA3ekZeIi50tdj72GJaW8CQiElAjNCYVaqBG1InL50cVXaKxMY40tjMOMDs4iSKdc+VpF/WJhYmbbE23JspEjDAfNu7ncTtur7e3n7e3t/vbfrvtb2/3t9f97fXcq8wNQvG+hGTWsL1ft3ZpEBphu49hZ1mJOQBmbe1yzRbt9zKXmUX5sRW5e9GfsCYYZe5UBOq11wVAygLdBtxHnmFHt70ZMXeXTAKnR3ik72x3911wKE5CRFAGBQeXkgEV8/qEW+stLJB3Acqz+eY1GaPHLot8jJ+KXJ4y/WEgwkStzC6r6q3qVlWfSO7ENX55ECBrZjL1MMmUOTU+s92kFdyaQs6kIDMbw8JXZGJkWDg8mUukx1vTBTESgkS4izTlsp2qGRjxw/aRzUGeRfOtM/cBPxChTrZyoqdHhUszca1Y9lyOS4UCVRdJGQWOlf16na7MlJNusfqZj8tnHOO4H7V9lZtYm/ELmRluNo7j2I9xDjdzj9kmVK1bMFsyIJOxXIYaECYiIWEW6OKSqYoCGc/OoeziMrPuWNGVasMztAkgBnPQAtvWWBfFGRBo4+3S8b4KjlXmMgWzZ4zAiDCPcTpiWuS3Sv19bPzvlw9SyT2H2d2Pnxk/id5I7sKpQtPL7FnU09LjzPK7MpObNmIh4ggScRYDeFjc99OjdmgAIK7E7upcUAfjVIjMXqWWXCAgKr1tL9cv379++/7t+9/+/MfXr98vl6tAw5JTNt26blvftq333mqoHzkND/28n8f5+uN15g4y98vl+9evunVRYRGzsR/7ce6v+/i//t///cPd8imau+gyeNDjc+Ghz08qesV166XYKw6FMIWFW7kdFNw+LM5M+/Ly8nJ52fqmorR+TuV0poAJIo25YUJZiIq6immk5B7up8VgVtVGrBOrLNYdEdcxExk1mXhPdeI5WHqo0bL8j4af56DkUw9ZcBsx5e/C6PnSMyuKbhask4hDRNMIOJ6QGwBQ1u6PpUoveG9q5WPZcq5yNH/9Yf+rx/O7zdNqFcTrrv24K0wYOR//SBMOzRKlPb9wvf+xtHTlcfKJApgWrkzTBnxWPkKV0leALjEj8BB3RJ6WchiDlKgLi4BmUgBqkJ0FXBChOscZd/2UOgZ8pkivqv55WZiSUSJ1QhIiMimEQ1BNgbBstHHTxr6JXbxfpF2kXUW3Jpvq1o7DztN91GiuyNwMFJIxy9zKTvn0zcl5DC64kqrGpUW3TRTrYs7YVKUJq5AQ8aOMn1r/OUStHu5d60NEeFfj0uOaVac3xwo836YSHBTyPfXXqlCpXDIi5i7SSFoyB9LcLIfZ6TbSwbWhNeWm0lVaxTTQqnGBSdqrWbF/1iXWzcLM0oTjKY0vwUVr2lpLgEXBXK8cGcKSigmnAsK8NRWhrZFfGtLraNLWmdsi4j9GOsRLuVz2kwUClrZs3ourK54ob4QK+0yWnV1V5oSnH3da2Ygjc8WHM4KKQTzGMLPHjGl+2cpN+XifVGqBgFmkiW69bV0bk1I28p7W82zwlt5ssJ+wEVZMFzBliicTBNSVNuLOsgk3JemQTk2ziTPO8DyOARKBKFTKqojKb6lc+oSFdevb1rsIAx5mdu7HftvvP99ef779/Hn7+fb2tt/e9h8/7m8/77e349jHGJ5JXJPF1rRv2/Xljz+/f//bt+vXF24ywvLcj33fj33f7/d934/dbXiuFOuP90nSumtpAYS5xjpzddUGPZGCjEhOEhIWzuxuPSx8p/2nZ4yxR98TNclNxElxEE7GYLY5OU96Apr02FUfdAVapexjnD1Lk8eMDesDLCfGrDTgiOlZu6gvs8tq2iZ5e5a/DyTi3W72vFGQ4cvQuXaBcuMqo7CJzM3wOSGtjp/85D0zE2MZI8HMM0M1C8oTRhcOFWuKhApvKk2ZKctnopx8qigtO5uYXtQpjJiuPOudK/xl9oTPmSOAMtziUiiheAvAjPsrA6ql+iw0oeCkqHXq9KSAPB/mZmZgImFwZjpRgKb90hjHGOcYi7Lw4H7NsWpWpO1kkdbHKbRcEQgipEVn4AojQ03GgpMjnRdtvGrc1lpBuTSdGkE1aqTHqZqLyAQgGalC26bEWJk7c4Qwr+Akwqxfa8Ba/bZWDM7vrgLp5DvsnuOW45Z5Tz6SRgZlSk5iWwaFBIOf2Fj9F8vkiIJQY/Oos7+wmore4QR7wjwACJKriy/6bYmbqq8q4BnMQNN+2a4v1y9fv377/v2Pb1+/v1xfLv3CyUFJISpNWITLDXkDRcRZPtP7/bjd7vfbfd/vbg4U9aGJyPVy6dvWt+7hx3mc5yFvd8L/+HC3fIbmrreGMSF3Wt3qqqgmf7U6okvtjk2bSpPpKpeehYu4m8eItN71cumtlWaOUIZfmDGLCTDpNC2P+jKYwyLdJ2fuPOMcrm27XLh1LXCpzk5iFB/Xwx/s5/LBnC4vjBIDRQTRMj4pbDrdfIzBEUXtRW4fy9yiZ2IuzGSesaWiXJ16jAwKt+pOVzIZgYVEy9swp6iBuLYNz8Wwiffo6S+9xLsPn3d8Aotg83h6a1Q+D4ZHVZ7rtHhwciesi6r2a3XzhGvnpasueqpocg7Sfi9zK6WQsm79yqmtAndyUKXUWln0T0JQerk67uegzMZ0UdZEMQcZWXvMPMVBlQP+eDNi9eL1h9kFT//q8Ec9WOhHDTbDE4AfcaaFuVvTPtNnGkDEKtK6bry9tP5il6/j5WbHPvb7Oc5hw3yM9IRTOqVTWKbP/YoCv+29s/0AiLnUQTNNYP3boxmROdnistdTIqaZLltmVjZzw/EYlNWbWrf35MNQxRdVA1aDQkogGBUZicdxU8i3SjS1pkG18MqCSUVZNIkdaTGG5/Aj7YwwQoM21k2um162tjVd1o8zZmpltWRa5MhP0NycWbsZ4Q9kepYDdSiytNaieqJCsiOwsseKN1+XjAichCbIbSVNJ9XO6157RQRmF8EsdULNKUaVtuWo4HMrmDUttdYKXmORkjBXt1fWDBM2jEKCJrr4WISPSJqKcn1fQBfhMwpe/7XY5UwBRFQv+nLt379c//Zy/dZwJRfyUM8WITGoRJLu1RYTMQslu3MYiKhx0wqf167SFdySG0knbSkYMcY+MLg36Rv3VvMPUuJ5jVqdLtt22fpGFOcYYxz7/X67v91eX19/vL79fH398fr6en973V9/7q+vx+3tKI+mAiz71q5fvnz99v3bH3/8/T/+4x//8Y/v37+1pubjHMfb29vt9na/7/u+H8cROTIsM65f/tH4w60yt+iKOqlNfmqEC9H0qMI2OSJLIBoRBIgSgxKaHJqH7x7nbcjmutmM9RDhEI7G0SiUoAKlkpE9vBKmhiMTPmXMa0Wvtva5uxa4O2FmZLGFSjdn7mViVcu+YqVVJcKrMhXhSMk5n1st1Lsp3LvtPc0MFEm+wOJa+EXqrKqURKg1ufSmhR1QsAgQGHNLyekiklVAMQsSTFCmSxMGqXAvx7/KYKL0qQwjC3iQe7plBVE2yaQID4vVhAOAPJ7M5CETA2RlHJPUIQohAnG9dbBc/XwUqfdJ4LCMYW7mvzKP5g46+0dML+RS1iaZhSPytOP0w3w8GJTPuSgnC0RIG5VCrFyni9fMVK1/8UG5vu885UQrQAbQ6YGALB6uqM6enyYyhDk9Q5k6IRLzcs7hvlD0xsytwLMFGAkrVxNSzr+aSgJKgEv/TE2ki5ZQ7eOt4hbHW5y3HHeMHTSYo6i+II4kRHpaRlEMKZGP8VuWdy7MnUCB5AgcR4wRAGp6r8rbptoEcLMI8zr2C8idAGD5uSxAWylYaGv9er1++fLly8vLy/X6cr1ct8uldUp2JIK0VCuPwaD7GGM/bq8/fv7468f97TbO8xxWqBMAM7Nz2DmaKlUYcu9N5fws8+A3BcC7MvddybS6slllLbA3kom3vn378rL1WekKqzBTYgwr73cPizSmldWENdWdMjKaZkfUQBIBdztH8VGqxp2288c5jsN6UGtbI2IwRBjEDBaqZjUjfU4nkYv9Vz8ziMK9Gs2YxjRUZW1ELSUuN6zf/e3nfH+VG8zQNr3uy5lowK167ec9Uw0aWJkEoHgoTZFARu0kUSKCdxak73fSx3uCVa0uQhrW9pqzEF1QXx0HTzxpHcjFCUJMrUSWLpezokswf8DsbwGkI0oKlc/K+MOtwsJCFdJbJkVzMj+1gJyzvp8DrEhCgMzDzSjiomxNHCQlz5yYBJEIiySRZ9oUlwKZsUyGgiqxMQuXc48ZVFFEYyIIQIlYMxRPC7cye0proso1YyIEaed20fTcXuL6NV9232/Hfj+O+3Hux7mzn56GGOln2SEtkconCwoLdqpAe6xNk57vEGYVRpOIqMIqrDw7YI90D5u5lFXGPQrkfCIk9CCvTSg3FpcmiIIoteJtiIDJ22OKLtlb9pZJ7ETJM0G8MUsyG3KEnW5jnLBBEUwbaaPLxpeul63VKlcW5rWt1493hGXYZ2VuZJaV9RN6n58yb2UR1tbq/A3QZCvVyGseU+smZlY8sDG8zzucZW59MqSGAyuQorQcNURF+ZXlEscwc+99uVqSCJvVt52l7axxc7q/zy1x3tWJ8tw6zvM8I2JGSvA7PDgi6fOk9Qb0ptvL5du36x/fv3z/9vJFssXBcQyhEDeKEXGEW5ZKesnfSWJgWIUkq/DW5dJ167ppkiRactW7bjHGMA+9XHqAaIZBQmY+U2vatLe29d57V3eLsPPc7/fb2+vb28/X1x8/X3+8/vzr9efP2+vP++123m5j38083JOFWaVv29dvX//xH3//8x//8bc///zbn3/7+u2riIwxjmP/8fPHz58/7vf7vh9jlCe1g8Kv4/eNtkgIuQT6Vd7OdzwziMIhETOVCunu7IRUpqazS9dj7Md9dwxWYmXt2ntrnbsISxPaOIQgkjUPAHISzDD7//lUZq2yVl2+q3TfA/YoSGjeJ9Mq5BzjPI7agVR12wLojznGyiapYVkt7jXv/e2auNuEU6lk7IVflK46GESUwtKabH1rranUdpIRZ8DNvFpHjwg3QlaQBZIZaAKkKIkIdRGZSg/yDI+SluJ0DEME0pHVxBOFx3BbO8+kKz/EEsqswsICIguyAIIVLEmELC1WEjzCqhMsPRij5kQFYAyL/XRkpn4cc9a2w6UaL48ZikD57sc5jmGn+YgpB6XagCvLgBVlEy76WKNYB2DxsqRSMqcf/5wEkihNVuxksySzqCqzJhZ1sPDcafWO8uYp1THSsp5NgIma0rRExcPulECMaYVKwhXnDKESHoKBJtJKLvdbmYuwOG4xbnne03aSUdI2IkpwJMIjzaHZhJMpJopecwqKoAi3EjMm0mlY2kgkem9UudbKLOR2mBmFP6Atmja5NTysq01MWb5ylYz48nK9Xq/Xy/XSL1vrXZSSPTO9CkHCBPgxzO/7ebvdf/x4/ec//9rv97nwyiA+yM1tDD9H9I4IaSrcQXkfv3uUf56CtlhQoKdgaf3hsbmb2XEcW2/xcmVmlYfDmaoIJRgs5VrkEikFuBJlTM/nmDVzJtO6n5zOY/x83X++vQ47LE6faWbEJE0BSOubqnJFlGaCSIREKKk4bvbYLB/7T1WEMwW37Hkps7eXl4vKbNJmOCcXDPy7GXVOlSaBmbVL37Q1reFtOIyr+HxS1Eud9ej4p1yk8K+EKjiJBjkoEPMABr2zG8O62HMQVC8lIuFZrn4x2WSLOsvLV4wmAF/fpIZl5TqWnBE1GUyKmb6V66fMcB0QSh/uANWY/nGq//JorXLAGFg1Lk8JJ3M+YP9HtRzEs1KNdJ+Li4lUuAkIBfdBS21NU9BRuR0RqEj2WNOfAjARYZPpXsSGOsaj+uj18xLwSAzLSAtpIU1ZS2JRVzc5SaGlPVDaLjq+9HG0cXQ/PUb6mceb7W/juIedYev5/7545sk8W9tJW6lAk3mcPoDzRfWY/JcC/8L9AeXOjmuimKvFXDLNifRGWfMiA3ChYA7hFMZjqEWUyqEcXWnr1JR9ckpUSRupplQyuVsMtzNsUAQRkzbuV71e2+WiW9fe2txji+1bwryIWHflJzQ6AmjFgldsDCYNI+ekska3NY9PpIiqpodM0uLSquDR1k0k2H1C38t5BxPuLmwi4Y6pIJr2R/nAZRdq+CxZiKiqj/XE/fGvD5LDY0OIFaVWpY25jaldmyV4dZug93z9X67Jn1+/vDRs3y6XP16+fLu8bMIbOTl5kPtJftIYmIaQ00ceyMDwDPdx0nlAKMoeVYHac5W4MWtynZ/wskFzbV2Iuqhok9aobEJZhLlSOzJ9nHGc+9vrz58///X6+uPt7efbz59vP97eftxvr/v97djLxNyiYBUR0taul+uXr1+/ffv29du3b1+/9t4zc7/viciI+/32r3/968ePH/uxH8cZYa2jdWLBJ4DC46ChxwScHh/igcKsuVRmUpKZV3YaS4XWXSRBnnCOkcFJg9Mb5cb90uii0uipNV8D9ooUW8DqFJIuAu4CF1Z/lu9+B5BZ267HAvUXwF9f8eRsTcx23VQ+u6b52h7f9NdbpTslURB56f25YBeftOW1xIhiVmAFWpCIaJPOcCYdPtIpAhFshkxwCX1BWkwCIjBHUeoCI3B4nJ4zExgkDJ4HVMGLJAKpJby0yzSRcS51bVdVFk8OkDtVHtRciTXYR4GVBKBqpoqEF2ZHDGb6zPyIAJ73L1EjVoAj0kbhGe5jlOlLFvBBPEFwVkhL7aSNRZ6rG1zqq95aa9qEZQ4ik2s0KUIiWEP7koOBkMRSEfT5qKfrpqB1ANb4L2rwRlQ05EiztOLuJByYZe7yyyt6uNI8GYjbY9Mv7DQ88NvyCTfbX932HAf5AM1krATHjJtGeApl1JFZC24qK2AR5Ibp24Msoz1HzUSbCJiqVq6gvaq/S4BXksUFqq/uHtREiLW1piJVrIebjfM89l26kCBm2x0cHkFmSTiOc9+PfR/uEG2Xy5QOp4eblSAgPewc++2W4dJqfED7/f77ZvupBK1uh7n4Jhz6jgNaBiA2xv2WXcS/vJT6henhJcUAhDjBRYFBTrYL1fsT5Gw5z/0C9auTwP1u//rX6//4n/9MmDSITms3VRXpG1i0tdZZODOQTFRTAwZ5TCpJTDxgnoo15SGiJJ7PDQxhbirxcnlUv0XMZULlkf76qDK3XM+4d+299a5lE5TFaamRBCbTq+bqkekREpRabW1dRpJWihYMxEgQHgbneMC3wGPfeCJHiHRPcpQJztPAgaXQtadYC/Wqy5GR1xwhmTIerQsna6lLaYXyMZdpDzFTZBR1YHGp3t8nRKpCgaXSJeZS/05KDi2VSz2XXAZoieeZQQQV6o02ZTezsIykVCmX7/KG9QjAEatxmGLcqQKItEgPeFHH5g+h8iYjmu9HrVrzcBshw6UtA9ZWm0Z4IhnM2lm70kvL2Hx0H8OHx5l2xM9/3YkQcURknIuL/fGy1BtL01ZlzRNyOpyvmeN8ikJzmPqA/+qWKT+kGnJhcnYf0TsT3aZYdzgyCscVduFoGkIpi42aSKZskl2jN96atEaGipJryq1BNYWd4OHuI+xIqxC46ule9PKil2vbtpW0W7aY5agWM84hZgf7yTUhJklKRASVCc/ctB+VIzNTVq9OaEAiJR4a9IJ2Fj8iiZyqvPbw8AfmWuBs3XBFTMg0sgWAI5/I7HpUpfsB3M2UKl8XDP+Ry4vVwdYnzJfvISoV3Lq+PQjxbkD2yzX5zz++22iXv10vf37pL40xAucZp+EkOve0w+1AlZTrKoLMYpwxTh8njcFC5fNpmtaoQYJVGmtDGW/GGg8EJ7rotW3SN7l0UqnM5qmjZ7ifp9nb7fWvv/7511//fHv9ebu93V7f7j/fbj/vt9fzuI9xuI85Xy4TjL5tLy8v3759+/b129cvXy/XKxMf+7Hf92GnjfF6e/3Xv/71119/necxzID48rV9od5IflfmrdntKm3XPrY2tPX7cttDDXBGRsYYo/XWt67aJKFJmad7EZo6ySZ6Ubm0dlE0zKaKaB1c9cHkwdROXiLEyeis7ijfvYP1PBZvNEGU7mFmVpEbZQifz7slHis2M9zdZmT0RCe4zKQ/PijpGhTgwbPFBy+O6RxrVd1pgCd5gn0xi5lUtQmrKMg0B4VRJtwoY3opFAJTtL/ZHQR58Om5jzwsE6jU46bUGxEwPK387JhE4/kW1RbH1daSsFxUuyqRJMlw3EfsZUg2m0ZSEKMM7VOIlKGCJtREnHl4nMYRH/34AIiIdimOnDQCpcVAwIbbCBtuZe3xCGyoMLdGbSPtxFq4UM12khks0vrWtPXWJpobVXuWecKUioAci3yWsw1ezNvJZK09pWariQQ85pitUouDwmIc436M4zTLqNTWKtQKTG6il9akb721JtJU5two3GyMMTws/CNyGT7G/pp+hO1UIYooi2Uu87HyPQie1Urd/yCUpc8DXMmgXBxBeOExlWmQFuE5AY0C0VRVWZQqdQQ278qICKZKnOlNW+EY7naex36/3UglqHEXbsINTcqMMwyUcRzH/f/H3p822ZIk2YGYLmbmd4l4S25VXQWgmwtGCHAoAhF+IWXwiWz+LvxFiDTIwYwIu6vRlZmVb4vlLu5uZqrKD2rm12N5LzOrsqoxzWf16uaNiLv4Ysuxo0ePTtlTCrbbK9xhijGEUHOZp3Oes1dfLzmL1GkcFxOg45SfDKBPpKA5i0KODqH1k0YeAQJIrVl1TnMpVcXTANFni7b0Va2l1lqrVDUJgQgDMbbUYnFlXeN/VKxUrVVPp/n29vj+/R0F2+3iZhdDDK1GKEXiAK3qIHnf8joRIRAACjk16tHJ9cpiHWEsXtWtCCg3z6Bmm+BQIyg/JemcJeJAMXJMIQ0hRrcyVhQ1bNYtF2uuRjl6MauW4e2bOzREJgQQz7RTAIAuH8IVclpQb2OX2wINigKsoG0qNs+ZdF0jtjPFZuvayMWmDX2wrjS9gVdcWQgN7IH/FodamILH3QRhSEHUt24I7srCjcol6vp7W7ZG4Lv2RYbgH0KEIVCKkE2KaFUlEwX3r0ZAr4nmCouuWjDz2nnO04mCmGvnqS0DbQ3CFlRXgJWGV6UKV+GobBagp2EbGiEGChiZQwiEAMImSatqhToJE1qXt5Xy1DgL2ncid3IFm4ahz4fr3YvfsnZ3Wmd1wFbFr4RJI0ouPaH354YRe68AI1QvhsQkkdQLyxB2NEaWgg7BUsAYMAQ2C0GjWgwYgnFQ9CCliGSVbCpAhoEpRE6bMAxhSBwXxQI2NrcBT/Fii64ffWbsuGBLocWZPSrtPLtCvw4ekiLPCzc0VV5SS83Umrbe+u7CHjb/JsLLNTGzWs3cJWJREfSRubzl0YeswG57QZv5VzWH7CIhRfeVa2jICbQQekI9AEJLvn64UCPiN69emW7Sy016vcMBpvk4zbVYJshmZbI6WylmCgTuHWdohrXoNMo8SS0k1XMGBa0ELIlC5WAYiIGQFKrHqUXULZzZteghcEjA5DWREABATS3P4zSNh8P9/e3N7d3N6Xgaz+fpNE6naTrO85jLLFoVFAgoMCAFCrzZbDbbzW67HTZDCAEBc845l1zy7LnPp8Pd3f394V6kqmkIGDe7HTIGxMeTSo95ts7eB3LL7MK+d7zcRoBmPlAFENAUmRIjk0U2E0WtxSoaBoiRUmJNbDFAuEwUPkMSonsnKPT4diNvrXVWp/yXKdonmBZkWMhdVRWRWtssAeuZqHWcXm1X1RlffwkRI5jnUj26JgSwt6SoMwgaVEDPTG2ODpeXk1lVrRXQHee8nAVTsFYqCIsoovnex9Rj4diGB5EaVIPaYC4UwSJYqjn2YqYUaZsIEbCYZnVxWvB1C22ZjahbMBByIB5CYA5EYRYTkNL2BQRGAZCBPMvNwFxGGAiHwEPkKpCrTBzkKcgFcH9XcpjLCGBSq6qVLKXtbqDV57TmNYNErmCOsSWmd0kDIBBzjHFIMaYYA7MptqIcjSrybBHfQYi1ddvaxNUNy8F8ZnSXLSRffbRatwMDRdVW1Hqa8jjlaiLOfDIQYWQ2DhQiIsVgW+QhpCElAxOttZaz1CxSVzXkL/OSVJnPpgVqARNf/QxIFU26JqC5WphWpZb/iACmCrVarlJEQcCagMw5++BuFKomVXMVdA6WqEUMKATPOldTAQEvgAEYkDnElLyQtYrknNGAFIMxKw5JhwiUWuU2A6sqpjLnknOpVUMIw2aTYkoxxhjnaULElk2OZGpTHkstAIZMyHgqK9/73p5NQcPFyqmt0uS307nCxsj5wDW1kss0zinEFAIYSlUxKXM5Hk+n42me51Krqm63w+5qm2KoWqrUni9kUq2KlqLzrNMsd/fHu7vT6TQNm7DZRuKQ0rDZDiEGD5K4BscM+i64e78jBWAjEEUVVDMXv7fZacEFBsTExIE5BA7Mzb2m5UcCgIWZoTy+Jm4XEmLwJBwv2toSuxsttaSd9jDLkqnn1KZrB/oCjIYGzVgEuhd6R3/Wj+XBUfTHFn0QsTbv24NXtNHnvLG/3txs1nmKZozdKADzkJzjBr1wKN7Be5D8WTb3ar8R0xar9ggAXeQZ1AuHq7pbp4GpEaKhGHHbnyugti7HAOTm7hXKXE0DB+bguwQ2IlMC1F7Awk9aDdzlttmteP0CsyV4jdBjY41PNtfzivYcN2AAz1324sQKUA0KMzIZM4SIZKybYGCAEGJMm5yGWRX4SVXxJk3qOhBYbjg0lW27TUuk0m9XB3ClllKLJ+xLXyxV+6Lc+kTrK/0aIDYDVQhsgYDImCAQho7t0MMJpC1bywj8JeBp2eRY1aplrdkke0WhJl+nrkhpncoulLxnnkmRWqRWKVWLGgE8jIf4nfBkkQWOou/6GxBkDoDk3gMu8HYy0iFHh5XtbD2bFLsJbh9yZgvnCgDgyjMn0bD1sq6CWNxjGnPYsexa7Lvcl3bETvB2ctefNzSM4JXVnMetvZkZIsXIjOHRSo2If/XFa7BZNygBs2XRPMtU64SaQXMGra3KHSKxCdSqtcg0yXiWPKsKqiKjZRDUTEDk56qKYImDiaq2eghimlWmWkIpWjiGAEruV+w7KzM5nY7H4+FwvL+7vzsdDqfjeTyP03kqY6lZtAIZRYrcbFrJxQ9xGGKIonY+T1Vu7g+nUmrOeS65lLnUec7TOI65TBxok+Jml1682r98fbXZxhCfLEC+ocaVMKEXJPUR46YhzGSBwEhElz2LgdVa85xV2300VTDwzELoN1eqUCvx3hPP3GDH5ar+cx/MzvP4dNjR94JZEQCIcOFowcCagFsBkIkoeMVG7m7N5MEo1ZZSUGt10MckZIGJnlJ0gfjL7QsFm6xMUGasGWsx8ZIKzf0VAFSr1HnOiFWNAACtIggueN2zoIG6eBQAUMzD2WBq1bAoiBn25NXIXqTPd0c8REqRzAC9XA4qEj4s8WF96QIAVOBqXJSQkAEC4SaQWagISs2EGhQBpOUfsCdt05DiEENVmMVSNUHEdh6XphWkogcszbwkhknRPGmZRaTlCrcuxB5pAVZW3xiKWwojMkdOKQ1DiinFFGPiGJihF8roXmMKXg2jBQ6bD68hNF/11p16sgMioyKKmor70qmBx+lEq6irnjgwAoWmqDBEjMSROYU4xLgZNpthMySHuZ7xhVwzQEfoj5oZaHX3F+/IBiBqKAYGhEpqTkTWItmAA4SAhmiKYOSznfZMejR0E+kYKEUOkWU2EculFa4J3Lgad1giZKmeWIhiUL0jESMFA6wiMOd5KkcY500h5Ugp8EAbjjGFIYWUDElUqyggcOAEKaVhsxliTMHN2gxKKaoWPBovMh/K+TzlktVETScDsMezynMwd8l1xAbX+pIAgM1EiRrhh6ZWShnHaZOSDBswFFHJ5Xwab97fvH9/M45jLkVVX7y4fvn65Xa7qVJEsp8GMZYi81ymuZ7P5Xwu94fT/f3pfJ6JURWZ4jBsdrttTFENvByrqIm0BR66eKot6IgkKL7f7RFeh3nQE6WZAhGHEIcUUgzdTdM38GpmUOkxzKVeviOGlGKIRExA0PNqn1RVgk7CYguxdTq8VQJHjzMDImNANgARc1F+5xEW3mCZNDo3aq5iNa1GjerFznf483ZpLgfhykRZ5dMsyacIbqirXksO2q12Ewb/HIROB68aEV7vd2pSFRqJ13x5Wk6Ai1KhZUg5wkcwrIRgSORCOK8L4FvFZklRVEqZg+qQzBe9lpbmNDH2bbY6eAQB3/mgXZDuZSHyvRA62+DHoWZaK5gpqhhj7CgbwLw0BIhaMBwih0CRY2Qm82WL0yYN2zltklZ7muuKC4JqG4wVU2itKPLldvoBGphZtYoGtZZcsgc9HXF1ohBWQduG/Po5eqRAI2N0F1c0JoyMkXtWHwKgi7JZjVUJgMmYLLAwCoJ4UXjJWmfTDBYQuEmHGxiAnuO9SguETj7X6gpQqWrhMcz1IWTa95uXa+A0NxH5PlYMUM2QArngV1QFPLFT7VLdEJp+IISQUvJyDwCQS87zLFqpT1h9XNpKkuCYx1yBv0hpG9yrtWXH+/TXYa6/c6F1FwGDf74fyfIhqlpKKaUQUUpDTEmQ4SH3Twi//uI1Qz7BfMQp11LrPJap1Im0gFVBq+QgjQmDiNWi4yjTWMdR8uxSFFACMDEpYKBaRaoTShIT1JZ8mVXFZJY61cx5lsDKAQMbgqKhWC1aa767v727uz0cD6fT6Xw6n47jeBqn86zZrBoIEDAFBrfCj4FjiilyjBRYRE6n0+FwEtE555xzrtkdP8VEtBpoHLbbXXrxav/q9fWr19fbXUpzgIegDpcdtfUfWw/vCigCRjQlYzKltj9sOiaUWmebaxEDzwU0ROB2x1WlitQqi+TGhw41z8d+BNTqc/VBDJ2tveyOluAYABgR+Mytvu1rupom5/RE/J4g4WFML2wlIlWq+zWbMAczYxZ9HCRi5C83rwx01HnSfNZ8hjJaKdC0WgxNVCylqszqBT4BmCwyLNsGVZ/UCcC63rXZE3hArJgVATUIhD78OaDXbAkBQ6DIHAJXAaRqaEaEsLIdaVfKurQCxbgosSIrRoaAMDhOI6yFFRgUURBUnBuAAMBIkYYYhyFW1anakK0ieD2KpRmAVKgFAJECmbaIXJmtjJrHVt23h3GBAsbBAAMraQUjF8CbIaYNx5iG5GAyphATh+Cpiz59gqv+1KSCiYLvC5ws7lO79Qxz5Bg2MQxEgCYApWjVRW5lJqZVtYi6sUyIwU3joQvdGDmSM7jDZhg2m82QUopJQUgYCHgOAPAgU2B9YZZqb4s7p9Nv2rYvBAgKoprFgiIYI0OraGTobp1tNUUIRJExRUqJQ+C5iIjlLIEBI7ZANZFTh4RM6koph7kOLlrNPXfdyrPULHlbEw27YbfbGlFIwxCGIaSkhlqKVcGmU+Xtdrvb71NMAI2HTkMxhRjCkGLJ+e5wPE3z6XTMea41V2J78fWaQoKPsrltre4K3c7supi7pywhugGtaC1FarO7cduCnPP5PB4Px9PpnEsRVUJOw4aQqpQihQiCWTAuReZcpzmP43w65fN5nKZcShVp0UyvnhFTFB+OLfnDbd+0ySpcW7ro+KzHl3osqQdv21aTXMjBLbsaETyLt5XAJNIn14Ta7WzF5y5x5ksI1LFIpz8v8yY8/M2Kh0Pv1YhyoS+e00s87cst1OIE5Ucarj+ryxGhYVxYAad2Fu3n/rbuitKg8hM2F3BIQYFYrEpbaMy0SUbR2D3drCl7FYABBZARrQu+oYtJegcDQ1BPvEWMGny/7QSLE3L9pf0O9ynVLnsAvJz9Cuxbs/RwBgtMBb0IfLO9ab0XoBW4QUUDQ4ocMAQMFLQlcKAIiJgUe0pyQ//OBnNXIXFo2wqEJ29qHGErIKhOKC57Er8dffFvCNO7NC4DFD1UtpRwNLcKCkSBEJuzM0DTjRABEjABYfMlbqVf1URMpZXivKSZ92686m7WHYRd7KDq7n/NrvcjfXIBqtDzTqCV/mV0BvcSZEAwsx6Ys5b0demJPip9NnTQoiqFWmFXJKCWgrZeDxbvGOg9q893vgiJiAh23ne5/MvLAC53dHnur2fm5d619CMAQGRmQFexP7gUL3ZbxqDVpjI79qlailYyX02hm+c4rlJRq0VL0ZqtlraZMzOvb0XYWPwhx1IHJkb17ZN5fnxfX4VEqAp15ywFMailTNM0juNpPJ/maco5F6dkc8GKUJdEHuQQKAT2dSYlCkFbUnyd55Jznuc857nUolYVxBNeKSCixcSbzbDZDtvdZrNNVBmeSYx+sLtfukv7LzYO1UetO3wuo0jVpe2XYBotcHW1P1FVV6O2OBv2IFZncfvN9p/XwoBLN7h0aV/OL/vPNpl68q+78SA2qn3df7qkveVOChEg6hOYS4j7OJgpCVJzFILi+jM07dkt4OZQS0U/sxi8fgS2pUdtcaJs4Y6etlANq0JRyOLLJXiNEEbyqmDB50AmJvJxaP1uNPr9werVZixXCbuwDQwQwUt/+HAXBWgW672ADaESIFEMHENA1cCV+VkNIaiCuljSEAzbj9U8fqHN0sCvjil4Id2FcAATkOrJH8QUmi0YU2g20i5Zb0gXgcBNkRSpwVzDVu3O02g9sQCZOFCInDyYaqrU2TZn0Xq2rDPxnprRnEydB2oqDKbAIbhkM4QQghoaAKtQ919/DufaUrjqkpJjbuihAJ777KBXTRHJmI2W+plNYWwLEkAEdrcgbgIHNRMxRE+2cGax/3NHPye2DMQg9NXdwOW/Ns9lGjNDmHOpVdQMHYlx4BBQAd3ZwWv3IMaU0jDEGE1NRTwK7+a6MQ1+GUup0zRP0znnSUKE60coF/A//af/9PAi2dv7b4tkaPPJyjZptTpj5wuZKMZG9Q8pxRhNVUVLKdM0TeNcq9PzllJy8ZaPbr8NhKSqVVoZiVqk1FpyLbWmFIZNHDYpppBiQKIOo1zb1HtOh0eNwcMeNnLUcpktm5wRALgx7EyM7FOlLxjQ35SvrG7Wl+X9zYcf3r3Bdr/bDNm7mqqqFK1et9MvDFhXLLjqx1n9rhz1o+t1csHtjtz3FVqYfSFle9/te2W/KWTo+Z0ETXnrOGeBqG0R7jP4BW3Bsup30nhB6x2ErQByl3LgbrP9m9/+9cOuoiMeWjxeL8NkmelwAXQGTrt6mp6ZGSghpEApUAoYA0XGJlbTLmlzS9eLCx10c9wGqOGiF2k1RBYk34pbIHTM61zyKrrZLn7bgbfdNHTs77tegr6poVbju1qtWosnAImZffnqa6fxllbt7HYfjqasUYn9KnTYAo0AocWzwN8u4mKF6hldj+YyP8TLJqT1EkM0RiN0W3hDMPfl4S647qPFnQx8aWIAdp8xsobn1LSauWTTt3SRwhDCwCFyChQDR7w4JLs21xMXZKplLHOWqkJSH7C5keAqdlGBXejchffyuG4nX5ceZj3+20nwy1rawKUvSZ5jAgiXUDUCuqtL6y9+rRp67SO3Z0NjV+66Cas1x1ZcryX+d2vH7JNF3wfQA/DicFk9A6PReQZ41rhelBDgNU+ImrXOWmbNc82zzKpeQtv6EELX7KharVKLiphUx0LUUmfd7ddrWzGlGFKMTNxAV3c1CSH0eGygwEsahX+dqjhAraVW5xmb77kuJXH6NXTSyr+TsE1rrcy7dKRvqs15pk1ZGFMYUkpDHDZpGCIzYdmhxnVXyflc6nTp5rCAzYUu9D9qj/37Lb5c18tupC9efn+J3BOVgydQ9sBV2zov2A8uO1Fs0wb0CXU5pD5nQltY+gTbyhlor06Mrl8kajPqCtp2ecylgxEiEoWQtvsXj4bPNxsGMHetrabFtDbnfrWlFGLTBaFB87WkXuJ7NZ607yT78TeFr4s2weX+PSmv8YuE3QIWEZHUrIhlaXYJqx3JhVjxc+LGlaNXxvQRpB1LqTuAeSlxv9jOp/jEy6Rmc5FcRRUGeYUP98//+N0/nKdTw4jUT89HR/WripcHWkrRt4TftutAcI+oBU12fRb1CHED8U7XA/SECOjLSNvYuJau1VEgCtiHn2pxqUKfYlsxjCZv6SzF0te8azJRDNEzk9x1waD195zznOda6/Xui9321fqaTOfj4e4DgFMXHlbFTicBorWlzmcX5xeYLn1AW+oJdGMXjyU5DUFIucqcpVRBBGIMhJEp9pLsCOg0iaiJiqgRUYwxhmWxABGRqjHE/Xa722yHYbNJQ0oJmd1wt6qItAA5AjikdbkCmEmVWouK+lgWkfP5PJ7PuWSRqiJGpNsreNgew9zP7XP73D63z+1z+9w+t8/tc/sX0D4RXvzcPrfP7XP73D63z+1z+9w+t/+tts8w93P73D63z+1z+9w+t8/tc/sX2D7D3M/tc/vcPrfP7XP73D63z+1fYPsMcz+3z+1z+9w+t8/tc/vcPrd/ge2pOzdsv35NLXncbFVL7KF3xSpj/0EibE9xhf6/y/uWlFSAlnO+vAMuhlUPsmovv/IkzdWnuT3C8jJbEmLXb3+QnQuLuQCsjmN9Iu1N+e5Qz/P6bH/729/+zd/8zeNr9f9P7f7+/u/+7u/Wv0kp/ft//z8wt8K2qrWWMefxfLo53n8YT7egBVXUtBoUA1AFEVbZgGxBBtSAGAiMQqVBecP7L8LV17x9RRSIghfAQgRVq9IrWjRnQa/c1tK/l4zf5sCl0hNG9ZLQulgeNMONxW5i6RUXV7NuW3X50YtzNatL7d6YBnOpj6p+HeqUtV7sENwgePFP665DuDh12iVrV9VEaq21lDLP0zzPKrJYqNHloFpq9trq72K21F7g5gNLwng714v/3JMxcfkvroYGXEbdkmK8vM5/ttUwMoCvXn7161e/Wl+TL7744t/9u3/3k/vaL9O6d8TFs8m9Ld3ZgqnXZH7G3u2Xb9M0/ef//J9l5fzPzP/hP/yHzWbziXf9i2//8//8P3/48GH9m7/+67/+V//qX/05vus59yUQkVJKznkcx9PplHP20T4Mabfbb7dbd2VejJn/Au39+/f/9b/+1/VvEHFw39D1SF5Wsl+kPZ4DPv6Ky7evftOm2FZ+CBcLEuy+BRcLn+c+cT0L9Ya9zrY/llIe3cGbu5tS8gOrv/5kMc945mGxinuIP9ZPf+ROP+kKH/P0vBjgrxHH6m/NlA0MwKSWPI95mvI85XmqpaiCu9iKmqjq4sDSr97f/Ju/+c1vfrP+xixyLgW6qTk123NyFwKtVaSK1Fbq101sbGX5BG1W1+oOkdquGTFH5sDgVXige9eJSpVapXlbmVfMRaJWTsudqYhQxb0aL06LbmDUKw91g/l+jfoLL8aaYITA2+3V9dWr66tXL168enH9erPZNSO6ZohOJZ+/++7//airPPXNxf1ffRV2226TscBPg277uWDchh0uXesBN7wyGLRuAbScS1+nn0DSpRPCat2+QO1+9N0otDt9uEmUNpsh6KYvK+eXVYez9fGbrct4IgLg4e/rI5j713/913/7t/+vJ9fqE+1HZ5+/0KT5S7V/+qf/9l/+y39Z955hSP+3//v/NcVEgGRYy3g6fTgd3//wff7un/7bu/G/gZxJ5ip1VMhiVgvNmeq8h/w15JcomwCbgBq2U3hRhi/S7v+0/au/3nz12xB2gTfM0SvWFqlzrrkWBy1MkBhjaH43zXZKrI2hKiKl1rlWL7LgwNQNnkxlqY7RPOf6oyNFAiIgr+HWrNrQrWiIAWku8zzPuZbqPrFmpddNX9ptOR/LBM2bERkDUyTkblpmANXtuxmbm5MpaDUVkKrTNE3jeDqd7u5u7u9uc569bHJgYEb2eQYVsXmHArH7/UArye24t5nYu2MaQHfM8+qNDybfC55dvJMAwB3GFNQWHL7U2G0/+oTopl19lQMzgP/x3/yfH8Hcr7/++m//9m//Un3+cjvEyz0UKbWUUlXVTUzddpHdB/LxQf1ZDvLu7vbv/u7vHsHc//gf/+OrV6//HF/3v5X27t27RzD33/7bf/s//U//8c/wVWuIAdDtk+d5Ph6Ph8Ph3bt3b968ubu784X5+vrFN9988/XXX19dXW02m2EYVh/15+3G/8v/8l8fwVxC3A4DrtbCNf77BXCuPfPswd8ffZF1E7QFCaioVlXz2m6IFBioGfwH4uDGhtDddhc6DABWpd8fNsT1Iu01Bdd/f/fh7el8anaE5G5sjx+fPllevIbEq+98CDiea5fXNK+8DouevWgrsLFcuGWeVUC/AGg2T6fD7bv72/fH25vj3e35eKzVasVSba4y11oNxJ0y+/X6f/4//vYRzJ1rfX86mVskG4YQUgiBqOS5uGPtPOY8Ss0X60gQACM3MjNAIFAoc52nXIs4aA0xpN2QtgMQGoKYudfgPJd5yvOYRZpdmi+VMfIwpDSkYYgppRhCKd1Ue8rznBEhpBhjCCFwCEQk7hnvENosO9GTcy2l1mpiYAEhfvXlb//Vb/8P/yq8/uLrr77+1f/xiy9+RRgQvaZtZA7H47vvvvv/POrJz5SHgIdUF6zd8PymYudtbPW7tjO67DZ7R7YLzO2f393iDPqOrb0JAQyMDM293byyV2OHl06zvNjwQsoaXP6/OK1iM7JenXNHuhfM/cz5f6z91CnFj0lUaxUvqsTNrZe51bD4hXbh/5zNap0R1bFTyeM0ncbpOOcpS8kqpooqVXQ2KGqmRgomOIudVAMIRKBEqpK1ZswyjXq+L6fbGHMMWy8vHmOsKkW1SLemNFAC612iGZoSkLlXq/ccdahHJFWIxEjdx68Re0jUqQf/SFx1WQUAUK+n1stvmLkRK6ExgqIpGao9nd4YkLvdKQIyxUDJYa4fKUDww6MGc9EMlM0UuHplUkJElWJS88ymCiZEQGSEAIsVYrOJRvdvhV5tYUVJ9Bd0Whc6g7y0VodhFeVob22rGK06av+tYdvyAxlgPwLtv7ZP4oC/RLf3bYyIzDlP4zRNk9flEtEQQowhpTQMwzAMjnrd9pH+5QzMfwHtz3sXzKyUKlIPh+PNzYcPHz68e/fu7du39/f3DoNOp7N3odevv3j58iUi9hIk/2w9ZGFwnv3bn/zp66c/99Najahac82llIKIHELgaCnBsHG/6hYZu8w3z5zLhcbq0dtPNPyZbXnLwyf96+Dy5KfC3E7F4ZND/dTNWn9Un7Gx117Gy1z9E979pDm7omYiUsWkVGFiJBWxKmZIFAIPhKRazNhhM6Gxk4atcIaBVhXyslXIyDFwiEhsCEt5CxFzH3sEoCUQykjsdVEIDFRABRRNHcZW8ypyBmZVtJclBWZEYEREtIVddidlREIyAlNCIFCtpeR5msbz+Xwchh1TJIohpBQ1RpNan16WZ2DuCv1Zw6sX8YEB9BhxB7H9DmOrkQaA0Kp0eE1OuGw/OkfcrLYR2wjtGgb/X19ru3f747iimfUX4uow2ld5D74szusAxXIIlw3Ww2DWL7E/9tNWtZzL6XQ+nc+EmFIcUhqGNKS0FBRYf/VPGRWPj/bhuz7xp5/1mc++/elr1Gyaj1UYxEw1T6fj8f3x8P5wujvN51GL1KKlitRsUAxNlMRCgcNkOFexUge0LVksY5inOuL9HW/fBAgp7Ye022z2+/3VhvZVcK6ai9OeqgyMFFj7lhzcWd3QyNhYWUkDqbJrDKqIiDb+VUWl1xgT6SN2wc/NghpMDQlAwf21UZrowJRRjT3e0yszP2yMGFokhpiYOQVOjKHFHlpRZl20B+ZW3GagYGpDLZrLfrcbUtimMJ1PNc81ZzPp+3+vM2fmNawRAQiMDBGBegE4Q1hq3SN4ibcF0gI8POz+Gz8Mr9zWgiTmHwe9ZkkfquZ1StDQwBD96/zU7CdP03+uZmY552maD8fD7e3d3d3d+TxO01irpBRTStvtdr+/2u/32+1mu91uNm1DxUzwcKL46YPoRw/pF/mcz+2PaE+vvYiO43g+n9++ffv733/73Xffvnv37v37d4fDERGJ8Pr6xbt377/55v1vfvOb3/72t0TkJVeZGfrd/KX6xpOjfaarWK8s/YnX/OifPvmt/clz2Onp3/rBIICCmdZSpzFP53Ecp3FExBBiTGm726MpbwBC9CnUHly0j+4Z1mf6ETYKepz6AZv7lMRd2rN/gicY9+mTZxfWy/sB1jD36YuX3mJmDRFfVg4EMyfi2ufhmmFGeHiB8PIEDR7jIv96rVa15pxzLuZEDWIkCsSMyJQ4BbMqVtWEerHSQBSIQE2qapGMhbDUKq1KXSAMiEzaCASo1UqWWsVE0Yx92JAXDmr6AVXSioKGarWoZJWiWk2rAqiYgVRQAVXwqoqBDb30tNbaopBEFLgVugAjVS3zdD4d7u9ub3bvTDHwEDgNw3a72elmW3J+2lU+CnPXv3g09a9f0O6ZY87O5TTM6Zjf13Fo6BMaJ21gXoB1YXrNIa11TLx0RHuyx+qYZCH/uyTBHr7RzFaV7B91xIcY90JC/2j71DSCy2tMVOdS7o+nm9s7JtzvtvvtBgBiCPDcZNRnjR/58mff69f90eT70z/w+T/82NvN9DzeBSYX/Uzj6XR8f7h/fzjfncs4SilSxGUDiAKIolRBCsBkepQqFbZISpD4HPJURk23lt6Q2jDsh2F/tX+pLBC5Cs8Vcm2F1NQgsqmBugyAHNRRKzRoBsZqZMpL2VUvs+eA17UNtauEmvTHI+8Lvwu+p2yEqLXNFgICEwCDmFVVfFwTGsBLsiMxtzBKCCmEgSi2ukLYa/YugYh2AwHM0ACkoojM2yHSNtJ4TPPpNI+jSDVXG4MYLjWmHI+SAVlbQtqI8SmiPVrfp6Kzs8uO1bkEH01dCXfpFJ3kvXQE651toXVbPMZLr3n1y0+LXf+ceK/1/1rrNM3H4/HDhw9vfnjz9t274/F4Op1rrcOQhmHY7/cvX7568eLF9fX19fX11dV+uxnMLMbga+XqaH/KIPrc/iztF+wqj2BTzuV4PN3e3Hz33fe/+90//MM//O79+/e3tzfH4xEAAPDq6urm5vb29q6U6vsiM3MU9fAz/0J94yFUWo3G5172o5/zyVf0JyveGleP/qd+GE4tqdZS53E+Hcbj4XQ8AmCIKQ0bUPWyvUSIRl471M9kveQi4LMH9umjXSIwj3QITwHu+k+P/gpP0e2CMVe/f0RILYC00bGr3rW+R2ty2szQMS3YgvXJuT5TbHX6+kLTrvdz4B6WmNwzfU/V64TVeZqnaZJaVQQMtmmzGzaUhsCBIykoW1UTJmTGQJSYI7OJ1lwrVYSCkCsrRqSIwKhe110qCLjMU8RMDKBV72NmCl5rDpsaW8GQTEiBrJIJggCIgRiYqVYQQG2ajcAUKAKRqBeT89KuRohIoYVWlUw1z9PpdDjc395u9iYQ4zbGzW5bwACRSpmfXpbnRAtPBNarh8ebm4UpVVHVaiK1VCm1lSwVUWv1HmOKKQ0hBmZmL/7W+CPr6/2yqtrSYy5bJnSeaIkSrCnYB7PYszuw9Y+PpjxYdWz7iM7mR66QH0S/TI611KyKTnM+ns5esJqJUkpe1vzxKTz3yfaEF2vk2qLXXrYcfq1aTO0nRV6WT/v5Z9qaSPnDH/6eGLWKieQ8TuPdON4fxg9jPmaZi5RSiysEEIm8Gq2ZiZViU7ETAINpllMoY5o1HXXzHlnDNEQerqbXk5ZZjHCrOqgEUEM1BKhRRbyePXpdXh9rLj5Y9swECKiABKhITCTihUhF2AFwFWd3tbO7Xn+y1fTuO6EeVgJiBAAFRRAAzzN7uuVoYl6vSB7jEMKGOGIXry+cqOFF0wNdoeWzXFCGIYXddotWQiibQaQ6GlcQBRETqVpFqmoxq+YaK9OlOy9Fjntsze85POngZusfsaPah5zEBY4/JRdaX/YwzsfCkT+lR/1xbRkmZlBrFZHT6fzhw4f379+/fffu7Zu3796/H8fzNM2qEmMahnQ8Ho/H0+3tzW633+12+/1uv9/td9v9fr/d7na7XSv72TDNauX/l4l4fxac/Mtdgp94tfus+Ozf+tLihUxFpmkcx+n+7v7N2zdv3rz9wx/+8N1339/c3E7TjEjDsPHNb87l7u5e1ZgDE+dcvvrqq6+++uL6+jrGmFK6LEx/wbbmdD+2wH0aGj5LDX7sy+DBVX1A5fqDqoJf2FLKNJbxXMdzHU8GoCWZ1BRD2QzVi7WGgKCA7J9gfZZCe4AOHwHKT5zOI+T6rDD3EcZdP28n8nTJxEt5ZOzs63MwF3qJcLi86CO3xncDy4PfCIWFYCC0Vlp4jcD9Kj/WmX2ySS3j8V6kljJLzrVWrQIGxTSbQq0SAnEANAU1NEEggkooTIUZxGrxQt9SxNSMARGQiSkwBvZ08Fplnuccp5qLSjUR8KRwInTg7AQUUAxxSCmGILW6Mnc8n0Y4iWREBVACRAFDs2pWDcgW4skMwagtPL42KqhoKWWePGX0wByHWFOqhJRSijHVnyha8F7Q96oPEO3Csy6v9P+agUktc56naTqN4/k0j7OUUkt1mIuMu/3+6vpqt99vthvmDbYixfroHi4YF1ZI91GUoX31BYVc+tPy+Owc9GgueBpf+JNnLutI18ygisylnMeJCANzSrFUWddf/7ltOTwfOarqFKWZEbe2XKuf+JE/c5G7NKn199/9r4hOMorUInWsdTyN91M+Fp2LzlkKmAYMkYHRCBVR0UwF5oInAFOToKdYz2WWdLAtG88ITMD78W4SmSsO6XUILwIxqrkEtFaoYm1cNfjIjX/wWVPZ2k5ZCAlQSU2JWVXZq84vVeU9+VREkKqKmCCiGnVyt21fGpgyQFcAiFlVU//e9WWhBrqJiYNXS4+JOGLTD3QW46KRaE/RFE1JxcU4FHjYDEJgKWrdNoxrJo5xtZZccilzKWMuYy3FFHqUw/uKAWJTpwMY+v/6Rgwfdn+f3sFsGebLGrRuCwJ+3LsQ0FABLhrnf5ZWa52m6e7u9ocffvjuu2/fvn33/v2Hm9vbnLMPk9jaMaU7xyvDkDab4frq+vr66vXr11999dWXX3652+3wYQjoT2z/UgHyf/+tR7pUROY5397cvXv//s2bN9/+/rtvv/325ubD8Xg8n8+ItN9d7feY53nOWUTO53GeZjMruRyOx3/9r38rUlTVke4v2DceH/DHV65nsSA8WdfgydL26As+9pdHYG55Ck8W/RXdZCoqOddprONZptHypB6PNslDytMmDYljCJYI2KdQ61wo2IM55Skb+omBQ0hPMe6nAe4jELw6nRXevSyfjjJggbn+eCFdL142TtE+swO53C8zW+hvP/62CgCaogFhs6TwFQ17dPJnzR015/Fwq6pVq2oFERA1NTEtVTRkIiZiIDRfOVHBLQyImBENVEzFpKpUAYNEwIyMPKRN2mwQ2QxFbZrmeZpKzlqrikdaARCQGV0cgczIQxp2m+0Qk4pIKfN0vuMPpFzKCFYBqoKZ20lU1aLAIKpVVKqpgimatfQV68O4llzyNE3n8/kYOOlgqhBCKjnXoYr8NJj7fOtLGz6MmyyDRkodT+fj/eFwd3e4vRtP55pzyUVVAY2Yrl+9LK9fy+sKADElIl5D1DWDtIKvBgbAXRbh3/fMIvrRMf1psPv0lUv3/rHL0Y/lYxixqTas1DrnTIS5DKU0SLp6+8/42IW7VTVx3ymptZRSChjE1BbwECLSwhquP+rR1/3oYTw4pKdXUrS+efc7ADHxSL8AFLA6lzHXs2gWrWKCasjChhGNUZkMCIwZUarAaJjFDiJnKbIdbSaNs1bVYrtxrJqqDtd73u+GzbAlBVAQBFGrAsxGBgpEwEgMQC6QMYA+QXiU3gjJyFCN3GLBlFuWUhVhEZZaq6CSUDUSp3XVIw2qjdBtmFdVwMFxEVUzenQBm+sBEhETBQ6RY2JOjRLur3ZAqi2tztAUQVCrk9IIhowUAxBQimBN/SNmCipWq9Q855zzaZoIJwBDaUZnusKmPnD88LGpihY24Ufp/Kf9cI1xHxFD9si97OOf+cu2C0MiItM0HQ6HDx9u3rz54dtvv3v37v3d/d3hcFzWJzdr6ySNxz0xxnh9fXV9df3NN1/nnAFAVYkohPCRJeZfIGb9E2M7v3T76d/0/FS5sGBmoGol13Ecj6fTmzdvv/3uu+++/e73v//22+++PZ/O3qW327jd7pjDyAGAxmmcp8nTFvNcxnFUFXfmMLMQwjAMXcPwZ78ol+H8k9ncj91NfHZMP/jhyZ/XwNY/o+NBE1ExKbWWXOapTKPkyfJsZqJipnXeljzVPMuw6UZIzdWmcZX9BDuPcInO+Bfrx/vlEuanDmEXzPsY5vZfrkEurJHuCuMub26n3yDqAwatv4ac9/1pbG7/pH7KT9hct17DfnT93+N79MzPS1Mp83g0/3g0UAFRUBOVXAohA3ILNwY37mkJFW7bg4AeVgQ11ZZYxsQpxN2w2+72zBEwqMGUpjFOJRd1qzJTzyzrbC4TMAINadgN223aACiI5GEkY1Ka57PZrFqqlKJFzdACKBlQM4kwJghMAIpO6ZIhABIymPsA5jyPcxoRiJBr2dZaVarKMzTiR2Bu59dtkZF0qufBxcaWc2Kq4zjevH//7s27uw83dzc34/EkpUqpZmpgxPTy/jifxpwzEm53Ow7BHg2ph/GRLlXA5o9k7Shw9QLfQJgRLD3paRC59xsfPksPfDp8liXtF5m3eh9dhlTf+T0/bJfDujBo60WlEY+lzrnk7AgnN7uNUhFxu91ud9vtdrvb7ahpwB/NWfbo5P7ERctMc7kFEDDfdSlABatqBbEygzIGQjBj1WBlUNuwDRsjZeIBxihFpZiCVcDZQFTBqiiUXMtUSmGEG9Nr0KsUX22HdgJqVhWqYFBiY8AAFAADYoO5oNTCEIjuwdJmFQJQQlIwRjPyW0JITMREQhpURN0yUHwGbz5kPiVZlVJyzlqmmudaxMwsPXMrOwXcJhQOGAKspyxr21Pqmxf0/QAigaEqSkWtpAVNCAzRNfiogAqgEIQwGgwIDEa+HS8Zqk0CAlabFOKCaH02RVsw8DN7vWWBXFM6q5N68NL16Tas2f79pRsiepxrnuf7+/u3b9/+4Q9/ePv27c3NzfF0LKW6wYm71/hc4IB4nmcXZxPC3e3tZrO5v7/zzKTf/OY3qup+SCvPVLPGrfysLeJ/P+3RzuRB+yUg7Kdv/p/rWq1CXE4ueKY2EhEY1Cql1Lu7+7dv3719+/b777//7rvv3VSh5Oq6oq5RYTNzmT609HEqpR6PJ0RMKQKYk0illBcvXuz3++12+2c6qadtzS49i3EvUAqgG8T4rrPlA2DfsK/uxGI+/hTvwrKArcJQC/pDMFCRmnOepjxOZZprnqUUUzEDEwFSlSql1lq1VlMxVUMyNaC+Fhusvt768fYzNSTsyfhP2gVudoBIT+QKTzW7FxwM8BTprt+7fI1ZO+8F5l7Q8wqrXNja1abDf9/xFD5gcxu/Cx4LY09bJiBs/7BlWzy61w0KfUymgygEbg+GAlZVex5KBvWDQQqRYwoxEpMHgMFMBQgRiQmRAiNQDLzbbvbbYbff7fdXu90eORiQKBAwApcgDQF2BEZMxGwGNUsp1QTnqWqZYuAhhM2w/+IV7bdXpUyljLnOc57GPBcpxIyBDYFUyYSpBi61StsSWSd/OIaQYkhMDOCymWXlcXnsM+0jKWjQlq12uxaMa34dl60XttepTqfxw/sP33/77c2797fvP5yPJ6uiIqBqZsw0Ho/TNIrKdrd7/cWXaRiaSnHVb5efDFYAsSGDhg8uhgwA1NSYCn179Cig+rC7wvpsHr5m1d1/XnvKbLWv8LnB3Vfpwak8Pu3lx4cA43IkZiYiJZdpmo6n8+l0Po/jeZymaSql1loD89X19fX19Us1DiENaTU2V9vjZ478T2la5R5QQNF3Gi4vVxMkCWxGaEQgFlTZNKFdMV4FiBx4E2yC00lOJ7GiAppVxRSsiulc52maZyDQW6vXQ3j94qq2CLyBGohCFaiKEdgwAgX0fWpzbkUDA2nuAKbL5VbvNd6Hwfrm3oiYgrGKipi65XUREaGqIiLuFyJSRcZpGutcpBb1gMv+8VWxDhUROrHLyKHNor0zm2IHomZmqIigaJXMwBS1klTSgiruaGhIhuwJpwaoCMlMENiAADyJuYIIqOlK9LuKb2L7wwUBP8KkbZ/or+0vWiHl/l97+LtHb/1LI10EMFWttTrMffPmh+//8P3bd+9ubm+naTYzZt5sNtvtLqUIAGZ2Pp9F9Hwe8zznkkUqITLTzc2H8/l8Pp9VdbPZXF9fL6TdQ7bs588T/920Phv80XfpR974HH3wx37VzziGtl1sbipqvjkxg1rrPOebm9vf//73//i7f/z++z98/4c/3N3d+duGIe12u81ma2oiUmoRURXfzxARi+j5fK61ANg4jY5xAUBVvV89PLs/V7ewJ1qF5yhD6DDXPR6X4IpjBPDlc3WHFsh6obKWU3iIc1cxmm5vBGYqWuaSxylPU5nnmrPWYiKNYtCe+VuriKgoqRqakV1mSMAOyX1YLTtJwOZEA/SRPkewomlXbYG/8BAH4xMQ/AzS7b9/MMIX46aHMHdFdF8Q0woPw2V+v+gVLvNvZziQTNHd2h3grpEueKLJ8q5+y1r92qebVSNSB6uEhGBaQUClFilViqiAqIUwpGFrwyamyBARuZl8ERECMwUOgcOQhqv97nq/2+/3u91+u9sBkhpWUTAy5cBKFJi47ZcQiIiZRPR0Opuca6lTLTPk3XaT9mmz2ey3V0xYJY/zeZzPp/Ecx/OUJwNPYTY2DarCEkNVUQREorapaX3VLYzCwrXDEh54rp/Ap9jcNT/6UX2IGZiJSpU5z+fT6f7+cDye3FZEi5iIiVv6E8fAMQ3b7d3N7YtXt6VWaF56jzmGhdlvHc53JuBdGfvGqhnfM/snh+W+9wO1y16r74FXj3/2hpdJos0Un5oC22VAAwOFVsPAWrmDWuo8T9M0nc/T6TyeTuM4T/Oc85w9hSqEAMTIHGJMaUgpSWAm5IvnFvUE/F+wGVAGEEN0DY2BmokfuZmZqBaFogBCIEPAq0SvEiWlIFgHBIBSgQ1AVBRKVc21Mk5jmccaoWaSGkTFEIEZAVHNR7LvfBNyIk6IbEjgGnFVUwRj63UQEMFA2o6wz+fYNmzgtlxAaEZIimRKikiITFUIBYnR8SEJ1KJIqub6ITV9olkAUSkiqBrMwymMzMTcZkfrGKNpE5oqF8Dthw3NQBVVSIW0ggo2xEqKoi37UNVUq2gVECHTgBiJIlMw8h18B56LXwRYD5TBsgFfH/pF1bs8wcvj5a+PBtGjX/5lIW5vVWQcx/v7+5ubm7fv3r1/9+7+/n6eZzMNIaY07Hbb/X4fY8w555zNrPNQ0zRPJWdXa0/T5Cvlixcvvv7669PpZMse8Y/cBv/ztkeA5uEf7GGDjpEeUgCPnj9iBJYX/IQr86hv/ElX0o9TVUsptUm3Sq3+U1W1lGJKAwDOUx7H6dtvv/vHf/xv//APv3v3/v2Hm5tpmoaUhmHjZV8AQFVLLTl77Rd1WEnEXuppmua7u7tSs6q4Kre2Sk48pBRiXLmh/yV6yHLH1r/pv2/De0WCdhPDy/PlT9QmIlyy9/uuePXYJ6z+owM6Uc25zlMexzJNTuWqSPOoWaj1nglhnleEjS+zBS4/bJceBYhLha7nWudT25P1P8ezD0QIK4R7kSWsHxe80dfqZ751hWzd42d1nWx507Lp7zgWV//tgMc6qG+iBSVCR7oMwKual/AYwOHjm7NqqlrmmYhDBGRCI6YADBQAFcjQCEyROUQOkUKkkDj6nhARyIujsMexYooxhEgUXBNXcgGgalZF85xLLiLAgT31zC8tEzGhqRBGxOAXQ03FUBTVGDnGlIJtMQwh7XiYwmaayuyZJwa9nJqKiappx0UNFrpc0wyIGHppsAv+/0j7KJu7LFkNQffNHQDaomQAMIMqkksppRYRA+AYh90OiWouNRfzBCkAoFBFx/P04f0Nx7TZ7xysLF/ZjDgdqHj37t/pmxcioktg2vyCDsNw9erF1asXYYjI5F1vGT2Ia4rY+iW5dNrVyLXL46eu2E9pS5DIO3H3c8IHXRQfvsMrp/psILWWWnMp0zSO53E8n0/n8/l0Hqc5l1qKiF7YOERGZFUoWaYpn8eJQ4iBAmEI5CG5tj34ZWdghBgIQKWCGDi+VQVV06q1yDzX6VwxS2RDthTxaqDXuxDUqFpGLbPNkw1irAaiNVs+WS5YzlrOFGOMsNnG3TZtNikOkU1BEJkwphCHkNIQ4ibEwQxUQcVEQEXBjBARuPGltPjMLnZafdbpHrHuymAGQIaGxD7BElIgMTGrhqhaQJPVClYzgjzOnvQ2lzrlApyCmcvHmiq/3wAydHs9ME8AUFQAQ1OfCRRUqWekmdcWVi0K1bAqqIpalSbUl6KaTYuKamXCyFRByUf/shRe/rOCucvccIGsl5XTlg0A9BhZf2lXJlw++mIX0fYVf1Gwa2Y558Ph8P7Dh/fv3394/+Hu7n6eZ0QchsG9FLbbrceXa60553meSym9iISPtlpr4cCn0+l4Ot0fDnd393d39w3mDoMrH+DC/ly+f/X8vxMQ/IDz6/CrNey1pZrZXvceaSU1VRek+5DwukCFNW32XPvkkXU+7OcjwoeoTk1Vc86H4/FwfzgeD+6eMc9zzkVVt9vdfr8n4nnO0zh///33//C7f/z9d99N41Rr9aWcmE1tnuaSS8t28MKJtVXwRiK2NnWXKqfTGQmJudQy5yxVRPXli5fX11eb7ZYu57Vuv3yXeLAr6b+BBVh5BSxQaE6IXkNJEbTrLh3mWudxu+1gW2p9HV6OuxPBC+VrCOb59qJ5lOlcx1Odp5qzVM8bAsdozSoAuprkAs0vhZ1wmU6eXCmEXqruI/GhBdE+A3Of9c1dvfhBf131c1gtk+sd3vqoHm71lonx8ppHMHd54oW1PChpTUWJPvWjYaNu8IFu4QJ2fbm6YIg1mLi0kuvx/sQhpGGbEjJyoBTTAEEseaIbEzJRQApE0Uvyhti0O07HQFdwEJGIjuNUSuXzyMEpKaii81zHuZhijJsQN4Eiu6MYIROJaqliyBSRAiACMs9qOpcsNmVlJqTAMezibtiKNOBgjoOwJZQYmC21Tb2S5TzP0zzWUtGL6i1v8DVrKef0sD0Hc+GyPq7u9nL3H/pUqzrMbRVQwTiGzW4XQshzzjx7yhwaILOoTuN8c3NbVdKwYQ7EdKHvAb3GhqiKii0LrAGCEaBXyPYSH6jGRIHp6mr/tfw6DokYGQMyLx2t7c76rO2LcV+N8emG7XLSf1Lc9SKEWnXDH/tAf4+aqFPjeZqmcZoO9/d3d3f39/eHw/F4PMxzMSBAChxjSjFGt6tDIlHLpU5zjuNESDFSYIyRN2p9XPNyhA++9Y9tCBCC848m4jMZqIGKVbFaNE91OmUquouICRPgVaJXOyJVKxJM5g2MyVI2zgaqdYbpqFNEm1EnRhwSbXdpv03bIcYUWRWIkJFiGlIa4jDENHBIImoqVatUq0Vxka8jN8q0ibvVOrHZwh1+i5AM1Yy8qgm01DUCNDJQtiYQV4ugg2kxzSqQ8xObEACAUmUqhUQG8xmLiZiY++qC5Dmu2jW32jq6Qw8UIVP0LFMvT1xLKZKrzmJZVKQ0d4iqWkUQlVEIjIAJAlIAZMVeZHwpcGbd2qEh3QZely7wgM29dA/3s+5Rs2Xg22VItU976Ev2l2iXNT7P8/394f17R7kf7u8PakqIm83m+vrq+vqFe/vXWo/HQ87zPE/VjXO0wZtccsmZQxin6Xw+n06nw+HQamIxI2IMAdc+RKtj6FDy8YH986Leh8gHOmDoANfLIC/8p0eWVVvA3gCWjPIVxuWVnYsbrj2IFD9JYH94PA+Q2R+x5za77KBUpZQ6TtPNzc3bN2/fvXv34cPNzc3N+Xye5ywiV1fXL168jDG5dvTtmzf/9Pvf//DDD0SUhpRiJGIiUrMyz9IttD1FuC9H3VgKDcxqrTnXUkut9XQ65VwAEAlFNMQQYwRmIn6oE4MLWfRLtwe8zMOb3VfwvplwOZkpgmu6ms4RwKVQBIjotO6Cnlarl60hoE8ZqlqKlirTWKdTGc91HiVnlQprfsr38n40CqorwVSnfWz5knZaK4iJLVEUEZ81J1qD2Qcw9wmWJSJY/ebZHRo86pOPoG3/RlhgRX98+JLl1lw8MS5PLkwbwqozewoaIT0E69BtFy7f2Ik7/Bh7WWs9HccYk2kgSBw5xhhD9EJBTBQ5xpAASBV6rQIMMWw22812g0RqvoVUNVW1WqXkajB29tMtLTVnyVkMOMVtTDmGFEOKHF2i6UDOgCgycyAiU80iZS5zkUAlxbTZboY0DDFSIGRSMDVFNMf6XpUCAUotuZQ553Eax2kkOqmqVnBf3d4lL2VHnkVazxmKLT2s303CB9zjGgOLyDxNx+PpfDrP81RrNYQQIyK6IQAiNOdcIjPIpRwPx1xyTCnGFEP0T/TjUwBVrSq1jQm/twYGtByJGoiaqt+58cVV2m+uXr3gFBIjAcNq8MB6GV8+ztbcNK7P6FEk6BdstroBC7D3pm6T0fSFeZ7zeRxP59P5dDocj6fD8XQ6TfM8z7OqMUemVmjEZ2ps8XoTkVLKNM2ISDOQaYx8daVIBJgCIDM/7AZPT/ZnTMdmUGZVUKlWi8tCzQxqtZylZCnFpOdMoQGZoQoakIlZxW4TYqpSRbIKkBCahgTbtNm+vv769YuvXr/68np/lWIkBA4UmAPHzbDZbIaUhhACUTA34QIUtSKKYBYICRmJqIli22Jv1gMg2uNz3lPIy/u2wd0LRnjhRCNGIg6YYFDUippFcJphmdJXjWMKACFtQxo4JOZI5Dmszpxgm8HQh2ZL3zNXQoigKlpDogpaVXKtcy5TrlPRqUqpuUqRWquoihohBIbIENk4BOZEaCGIghmqGzCIqoiCeD7ois1d+FmABeji+nd+6R7skS/cbX9/X77gweLwZ2kPeqya1VpLLveH44ebD+/evb+9uxvPYxVJMaUhXV9few0IVZ1zPp9Od3d3t7e39/f343g+j+M8zznnqhJCSDG9ePni1atXr1+/3m62ZjCOY4gREGutMcYUUwgtoLemMz92eP/d4N0WOnbBxjzP8zxPeV7+V0rJJdda25LcEYqXJ1+jWAe4jnSX/LzQGz9py1vWSOKPnmOXt5rp+TzeH+5vPtz8/ttvv/39d2/fvr27u7u7u5+mqeSqqtvdfn+1jyHVKqWW+7v7u7u7eZ5DDK1KU62+GLSCMZ3OXmGXDhp9lgIzwCpyHic1CzERh1LrOM3OXe13u91uG5ifO70/tSc8ohsfXcNHv0E/WANTp02qaQWtqIJg1IQAziM5AbCwubYmdGEFP1cgGEFUSpVSxuNpPBzKeJR5Mq1oBgiI1OWI4Cqy5oTqVqh9O/yzOsGzV23BshfY2rvuo33XGu8++/wZmPvk4l+u/+pOfPr1D6hcs8u6jwsUBgAjUIQGconWAB3aQ78IK8b4+WsSQ7ravYwp7XZX290+hRSYA7GJmggCoLHXd5Cq0m0samFfipFIVGpzkXeWRVRloQiJCJEBSbRtU0QF8uw+X9kFxgTIxCFQDMSMAYhRqjlEUUERNDAOzORQNmAjNyuAOVCOTNgmWo4BRJTcyVP7nm6V72z96nyManm+PAQCQDelQl+X4dH9aq2r4u6Ox+M4TrVUBAgcEKCGwOxmYIotRgwicj6fz+M5xLgZhpQGl9f44qnYpI21ii156W3701ACmIEYqDqdPZf56ouXr8/ntBs4cVzFUi8eZBebBWxsdOs6iEuppzXYff5a/fTWOa7LDbg4Rvg3uWBpcW/NxZWC8+l8Pp3Oh+PxcDwcDsdpGudpLqUgAiJxDDGmFFKIKXBgDusRparuX2ZgprXWEgMrQIiRiBFb1PWXWn3N4DyKmaiAiG/jwcBKsTnrPHu4HcF3SQYgqtUkC2gFqVZVqtUKpVjNVmcTQyVm2uy2r15sX3/9xa+/+fLXX3/x9YurFylENGMm5pjSsB22m802huBTlaq5Sl3NRBTAgBAVkYiZmtGtGYggagurIZkpAiCQgUNeVANRlVqtb2k9+QwRmDgETjRgIEEY50x8Bnlmsgmb3ZCGtNvHzS6kgTlgyy7wOhZ9r27uH6IghqaqAlKxVvRdNjZMWlXnWqecT3Md5zrmkmsukkutVVRUkZlSYIuBUsTAIQyIEUkBVVEVcyl5zsWRtAF4IloLWfosfLmjreM2u61m3G4toIKGHWYsvagntS2daYG+f762fJ07oZ7P57vbu/fvP7x9++7+/jDnjIjDZri+vn7x8sWLly92u93h/v54OLz/8P7d+3fvP7w7Ho/zvCC8AgDb/dXV/uqrr776q1//5q/+6q9evXrNIcxzpuPJbRlSb8PFuS9wx7sPDu9PICx/2baQSc7a3h8O93d394fD/eH+cDicz+dpmqapId5aq+fs+O65A9UHaHVp/ke/Dunjzf8aY3Q0/ItcFs9YOB4PP/zhh2+//fYffvePv/uH3717+/48juM41lJd0RVjSsPAzI4t5jmfp1HA0EMgpbj0B33dtAWKAbm4ELxYp3YiwpAAmZEa0n33/kMu9XA8TnP2eoRfffmlf2M/zhXu/NNOGfuHNGhl5jmRj/jCFgW3Th6oSJlLnqRkLbOUjCae+nrhflzGtMwIBugKQ7iwAp0OAFhYRFUtolXyNOVxzNOkZQapTRlHaMgesvLQQduRa0MonYEy+9NWoKUK2gWzPkSxayALD6MTTxEw/BjMffr4ibf0y9vAEl7Y3Ha/tIkywCPL6PWdfGnoD75qdBDWwERnc59vm7T56ouvUxp2+6vdbk/EoGCiZc6lzlqlWK0gIm6AIU4wU6A0zeNmAIQq7rlrYmqg2uqNtqsdYopxE0IIAZldWweqVaQVS2oyvRQSboa0AU7IhOzqFCf0TFShasjEAForMSFCkVJKVRPHeSmmYUgp9hrRquLxlFq1iecb2l2HJ9a07ro9z+Yu9xIXoYZd1rb1zZNap2k6HY/n02meplJK4ADBAYb7N1sbP4gA0DQWUmOIDiKYmDoiVQAxrbVW8SpysF49ybeg5plOWuZc8mRop9N5GseSrwYReDh0Hg0kP60eY/QCWvAA6X6iz/6k5ufagcBCBqA1MYZoFU95rLVKkeox02nK0zSdx/FwON4fDveHw/3d/f3hvrioH2BIw7AZohfWSimEyO7zvNoyeiAyZ1LVUnLOEzPFlLbbnSdJWAjY01cf3/SfP9+Y2elYzapZy+7yNAwRK0VzUVNAF4p7EENNipZZDQT99AvkAqVirSjCIJFlILh6sfniq1e/+ubL33z1+psvXn+53e1jjIQQmFNKw2azGTabzYaIvS96NMeBdKk+TsiLDhoiMoGaqWKfWLTRsGQtLcNPnjxRuxE7Yn1uVkJLkRmZAgWKsQ7E0Q0In07Uw3YHRJthmza7EDccInXTb4LuAY4u1YWWBacVpYJUlIoqaK1EtpgW1bnKWMo459NUznOZ65xrzlJFTc0ohIAQmTeAkSi4bRYHQzYjEeBpAgNVNRNt18se9YBFiXDBrwuf64ohJ2ZWv+/E77Kbs74l/fNiO1uOE7FW32Mfbm5v37//8OHDh+PxWKsQ8WazffHixYvrF7vdNsZQarm9u33z5s27d+/ev38/nkePPvt0mVLa7fdffvXVr37961/9+tfffP3Ndrcjomme1azUOs95GFJKaRiGkuLgP6S0sJjLqrkGN6vI9T9bQ0QRmef5fD6/f//+zQ8/vHv//ubm5ub2xssijOPo/G5TrHZ2NoYQ+AFBu6D5BeYOwzAMw6Y3f77+zfL71BRWD0DJHzXdtlnucDj+4Q9/+N3vfvf3/9+///u//4f37z6UWpvFnyEAEBP6fenZSG405hEAM2NVEcEeqGyFl8AAYVEvqbnPtgIYATMTAJQqqiWXejyd7u7vDTCE6Bdku9uR5+M83vn8qT1hjcXWv1yQrqouSNcnD5As8zmPpzyda54lz6AVrAWLfI/bUIy1QBx2tvWBwK/DUljWNjUTsapaipSqtYApmiCZh9AMUZy80sXOqoXBu+byQmD90RMGfpKd/Vh7+hb4CIRdf9GPvuZjR/iA0PVl2gzMqAsbAAGNVjx0p3T7jIL9y1pXdQbiI4MnpvTyxeuUkhsjmEL1qL8VrVCymBqISm3yGzUzMGTKpcQ8G2IREanaTIu8FK8SEQcOHIA4JCBmooDApiC1bWNEqpogARIEimxoGIAIiIAAVIEEUNTERFC1ILKa526aQak5lywqzssOQ5LtRjYDh8Ac1EsYlyqleprjgkJXGLdLRZ+0j1RBa+R86+AtbAM9SUHVBxUiiIrUWlweXKqUimoVAAxckL7kzykS9IgYM6eUdvvd1fVVDNHli4AI5IWuVGzZuSD2I3Es4+FdKXU8nU7H47AZOAY1k2W/2D0F/JCXWNeqg/aB6wN6JW/6k1el1iH9MrXcUjMVK7VOcz6eRyI8jVMuJedcanVtoFNu0zyfz+fzeZymudTSuFBeRIFNB1JLBUBgRHxQYN1zWn3uNgNANsRc5HgefZmKKTLh6lCf0rr28MdPNRF793YyqIE5MMfIKVGMRK2yrmIERExqpFXUSrVcYM4gBqAwzXia7TDDWFlpCMOw3+33L642L19989Wvv/nq11998c2rV693u+0wDCGmGBrOSCmFGJBoFY9tw6yKFCmIiMFLSaACiRkiI0Vw9tS7rSmgGlzSjls3M2i8s0iV6vl+VHPRzDFVtap2nuZpnp1PZX68e9zvr7fDJoSUhhTDQBygqd/8G9wGhxDcYEFMs9XZ6mSSQQtIBRXwynKmRSVLGWsZpUxSJilzrXOpYgpIGAIPQ9xuhu122A5x2MQhUYgUIiADsCogkIjVKqrVauMSYCF0oQ/wh0/6Xxa+F5eJoLM/S6jCOjeDn5yBf5nWvs9M5WKU++7du9vb29PpJCIhBJfkvnj5IsWYcz4ej2/evPn+++++//57V7ovjrkpDcMwvHjx4lfffPPb3/6rb77++tWrV8NmgwA5Z68b6TSkD72cZ6llnudeTa2xlUvI/hGB9Jdqz1zw5funafrw4cO7d+++++6733/77du3bw/Hw4JxF5irqpcz8oyUhzDXWWG/JogYQtjtdu4d63B2TeL65zxCvcv2wAcyMzv0/MkNHeNO03R3d/fmzZvvvvvu3bv3h8Nhmia1VlLTDMAjPCBmhqraltKHiBAAfNtJfV3odIsf1WrVcLVhW//WQl5E/PDh/e83g4E5xfTF69dX+/1+t30i4/6T2gOYi5eaW9hFd9jjhOZ5wCKScx7P0/1hGo+SZykZtCKoo3cnqaWtUSALZmj4di0iBbjAXEOA5unY1YPgWghXVQZjYLfydkOYJWjZ2HKH1dSDQA63n71IKyXheve4tAUJriUKn8iP/FHFwqOb9cyPiPjT7un6vlw6njlbBwaoK2qAQNdHvtIbP7c9Qvz0/GqgVco4n4sWx7h5ymXKZS5ahBrppCoC6rXlW3V6Jm6Sbe8lTcyiQEbsBErcDLvNZpfSloAJGazlj7j5kFoFNEClwDEhk5BVUABgFCUREEURrdXrfkgRdeGeObtUwdQNMgW1oILVECKHWEUWHw/rbbV9gFXM/Jlr8imY69cMmm7a47im7YAazPVCUg1o11pbrqWhQaOXxZ31gdQMFVxRijxsN/vrq5evX6dNCjFyZN98A+Eij8LuwEwLX9dMtrTM8/3tXbxJhBhTdBmS6ylpRTvDw+ARdV9oNz+wTrc+GkV/4sa7zzUXoKtquVSeM+C5ihDSNDfX2+bc3NNB5nnOeS65qBgiMgdPvCMih/i1CmjxOq5r0VsLhTSsa4aIHJAwVzmdzkyUUtxuN9jLcP/pxJuKvXt7NpPNJm43abelQICRiJiJKSgTxkhJjLJKtlxtzjAzVAAQGrOdZjjMdq5BaBu31/H61eb166svv/zVN7/+1Te/fvXy9X53vd1uYxxCdKe0YdhsYhqIgwcYvDdK159WKaUWJGKLCiCAtZdOISebTdAuJoja5Gi4+MR6iqeqVilzyXPJc5mJKNdEHKpaFhjnch7HXKWIEj++iFdXL+jqum/LvQSxa+BoUSw4oEYwsGqarU4qE8qMksGKafXVQUyryix1qnmqZZI6a52lTlINMESOcQib3bDbbXe7tE1pm2Jyi5hEFADZFNUwFym5lJLBQJvbj63ZtCUA9GAC7SkSnW/xQbJS91rbePZ/bY/3Z4W57YDVqtRpmm5v796+ffv+/fu7u7vT6eT75/1+76pckXp3d3dzc/PDD3/47rtvv//+D+P5PI5j7TNYSmm73b5+/fpXv/71v/k3/+bLL7/0UgFVxH3HHOP6nKFqORdTNdOl3sQjhOds6JOF8M9+QT7WzGyapvfv3//TP/3T7373u3/43T/88OaNK5KnaRrH0ctklFLcKtg17ymlFNMjJW6t1WGxo8AQwvX19atXr/b7vdO6qzoLTdjgcNZr1uz3+/1+f3V15XcHAGKMz8KXTzR3EBvH8e7u9s2bN99///2HDx/O53Op1UfcwmbAgvoAsK1WFwjrzbFEixqvVr1HryHyCbbZUWgnJ4lomqYPH25ENOesqmhWS4Gvvx6GFH/Jrc4l97GFIR9etwuzZQqmVsGkSp7z+Xw+3E+ng5asNYMKgKIuFKtjUNO+6e++47awuWsqF1qw3NAA1VABwciQ0HzjzoG4zRaudCJrl6tKV+iiOYFooNbpq49epY8B3H5RPNsEnsLcT4Daj5G+sMKvTyHvchsumPghtPgpjbqpm0cSu5ATmoCtlYd4iNMXDubBcfjVefaKqViVWuc6G1ie8zROecpaVauRYsAQiaktdtbARQiRQ2AGQjRj40aRkgEbsnIIIaUYh03aDsN+iBsERicmG7QUtaJQDcTAQ/GEqAgVPSAqRm4qJhWrkIlVESyN3/akETNAQ0ZgNJBqYlokpBCTqNZS1CuM9AWnRyZ7f8XF2+Nx+1ixX7yserZ8ZE/BW7O58kBkqrUCkietaK0mYroE7kENyczFXzHGNAzDbrPdbdNuk4ZEIXAIyLSM5p5K59YRbosKUkrOZR4nUZlLNlXi4ObePpZcwQsAy673mbN7uBbjn5AYsW5+kUQs5zLN8zhOOWd3HAfMqlaKzHMGAFfF1Sqd9lUzkSru/6iiYI1p8CXDQb8pKGjV2oezMDO2XQCoGqqJGJIComeI1yqncWKm7Xaz3WRIMXD3cVsh3eXsf/rMrArHezGrWglVAumQAIwImTnECMErNxSBQkVxFpsKnhhICRTGGU5Co5HEfUpf8OZ1evFi8/Ll1fXLF9cvrq+u97urzWaT0pBiCjHFzhRxCE5jW5M4u7NwLiW73IXbFpXVsIiqQbQ2saApGLQUL7jgMp+AlixXAxOVIjXXeS4zIBQtRFwVi8KcpYr0nfnjltIQN/u+02z8CICTRW7X0vYloAJaTLLKBHU2yWgFtIBJg7kiRSRLnaROUmaTbJLBqq97MYXNNm13w24/7PZxCCEGjpFDCiESN7/DUmqKeQ4zUzAPxLrUtlPZAI+43KU3X0R8/ffamQht188ubC60kNrD4iu/cPOvsFLLPOfj8Xh7e/vu3TtPsa+1Omzd7/dpGIhoHPPd3d0PP/zhhx/e+MtKKbUUAyBEjnGz2bx8+fKrr776+quvvv766+vra3dg9eEpIjHG7XabUiIv7tO2r2Ldjcy6WMibE5n80Ry1P1dbayVgFeaotd7f3zuV++233/7+99++efvGd4bNNnia/JQBoHnQ+jgLl7NwzFpKOR6Px+PRWUxmnqbJq3K0GEuntKEDBUe9flO83IZvP7766qsvv/xyu9369/605rjC/BvP5/Pd3d3Nze3pdJznLFKJwlJ7dX0hoHfNZayuUayZMfAFRD6T3XX56mXt89d4B/BiImAWYwzMZsZEqXebGEM/lj+hG3QK8Wl3WnMc7XS1M9K1yJzLOOVx1FpMioeJwBo15YVvtEEMX10XgNthLlwmAehME0KrP0EAvagBEqFBLyTbMGxb2paL1sk3Q2tOUB+7LJd7gB+dT55a4j6PcV0z9vAFzwLcC4R9pExw/OK/x2UGb2LOjx756h6Zi0nUCMwVjKsz8zsLbaCttO+E+qn1+Lm/qFnVqqpVapVa5pznXHJFIwICDkQUKFAPkhMRBuIY4pDCMABhtZaJaWRAAMEwGAcOcYhxGOJ2SJsYBjRC86NGRgIUAzaHueizYqtQ37IeO55XIAUFAwZAkBYZMK933K5+30YoiBiJijiJws6gNfJzGeb2XFz6QfsYzF3EpQs53PrpustCj+M4JQrqhRZNzBCg5e9cXmkIAgDL3OkhYgqcNsNmv40phhiRXK7cJQc9YWYJl6iJZi1aBQyYkMDQZKm2UqsFRgTopTPW05aq9nw6fNQ/cS2j+WjP+mjzd1ZRVyCcTufj6Xx7d388nqZ5FpFS6jyFmHJKEQE95dnDGb0FZBIR3yERUqAACNSmkeXGmLbyMiIkiEjE2DXpHjyAKhwCEyOhiJQyM+Fmc04xmm22w8BMbQ4D6xLRP2YWNmEzkwJl1hylbswEiTiFyMSowAKIKMCmPFU8FgwIoCgV5xLOsJHNNqVXVy+/Cddf4hAhMrNri0stxYYtM4eY0jCkYYgpcQjUFNoNcKios+DzPNdazBQRmIlDUJM5FzRVImBiBakK1fXEYiCGF3mtxyaZiQNhRQUTk2pSrZqCqCKSASswIBJRjJFYn163SzJxH33Y1TdtqQLHuNWkyxXqBDKTZtQCWp3NXTDuLDJLzSbFk5nJ4UOK2+1mf7Xd7YfNLm22HJgCIQXEABgIA1NEpBiHFIcYk8uktesL1hu9hxipN2xLnGHnesEMFcztM6AbFS5i37+EaAEATHWe58PheHt7e3Nz45LcUgozO5ba7/dmdjgcPnz48P333//+99++e/f2eDyWnEUVAGIIaRh2u+0XX3zxzTfffPPNr169fr3b75jZrcSc4zSzGKOH1xExxRgCQwjre66qjhTneW6q1lVi1iNV65+vreaH5qDuhzSO49u3b9+8efPm7dsPNzfH03GeZtd35Zx7VYW6TH0OfyBnFX0ECHLOp9PJlSEAsEBYIiql+FV6FHhdlgn/BKd1X758+Zvf/Oa3v/3t1dXVOI4/dmaPacum8mrZg24QsUAodQzWui5ehvajD1r2Jy7GeJRKuDzpH9uFpSo+Y6+hvE9Wp/P5/fv3hKiqHoV9/fr1q1cvmXe/yFaHViTiU+izAHQEssWdcGUa4/HVFlgU0epuRrqIqKzNgx3gXvxs+2rYQ4Cu61pYJ+yBIFNbiGJ00oA6blj+dfqts+2rz38WoWBXG3/kmjxL0zake5G3rjDuAnyx28U9B3XXUBbATe0vc7g/a1fr6fz/6P/QNF9oYN30v/Hxtvg9mkNGbMmfLgMMxIqovaBQL3f0CNc9bGrqiVwu4QOEmGKMKVAInCLFSDFRIENwAt8vYuC0cZgLrSizy7QJkA0DEDOHGDhFjoGZsZU9wzbpq3Op7ZoTQxOsOHgj6uIIQBAQgQoGjA4Be7Xelr+CwASMQGRMxkwckKMCJkNANoOqVU0vBVls2ZB9TJr7Md9cAOha6TZ9dHLZOthtL24cch9Y0nT+CKAi/g4n903VOwcDt1xzADNDprhJ2/02DUMaEhL3lDxVccd/M1dCG4BZqUVAi1Q1RUYwNgARlyhXkerJ/URgSOtu2OHrhe5taqQVAdDO68eA7sOh2Wlzg1plznmc5vvD8e7ucHt/fzye5znXKgAFCWOIKSUi9PUFEZwCCUxEDKi1cL/dzORhHeojzrrAounDKgm5fw02BYYaoCgAcgDfGc6lOH+8Gc4pBiKMIUQIyyB82C1+1nSMCNEMVNDdEqSAVuREiclYQQDAFFEtVOXR6FSAEbVqLpoljHitm1fpxVcvv/mrqy+/LiZjHg3BVErOpRYzI+aQYhqGYdhwiO5f3aUgrpCrpeR5nqY81VrVFAmJQwhhzpJz1VoxxQAEXku4VNMKJoAK4bICEZgRBiY1RoLu/yti4oYqCAQUiYmAArNGYDWVx/sl6Js+aFMA9uDoUpTXsH18tjJZnUFmkBk1o1Wwaup1yGuROotMtU5SZ5VsVgGMCYk5pbTdbnb7YbdPm21IG2IEArdHBHOTxEDEgd25LxGxs7mAS9//6J0FgF6ypPO82JJVoP0DWPJVfBXtbO4vEhh5rrWPVdV5mg+Hw83Nzc3Nh5ubm9PpVGsNIWy32xcvXmy321zy/f39u3dvv//+D99+++3t7c3xeCq1AgARxRT3+92LFy++/PLLb7755le/+ubVq1fb7VZFXffpyBURHbA6eLXNpkfweS3TXOSqROSvdP7SzFJK2N12/2ztMRD0EhjjOB6Px8Ph8Pbdu7dv3759+/b29vZ8Ok/z5NPygnG1F/1aCGAVrVgXjtPn/AXm+iS5oHlEHIbBtxnYfcdcubG2MMs5xxg3m82LFy/c2+vVq1fn8/knnWGfxxeYW2t1w1+RC1GopujSR1uyddZUZP+ITtDAhaZpbc32LdBfexkNz1hd4aXGpJZSz+fx/fsPrvmmBoF0GNJms6Ee6f6jG64ALvZzWfYP65cZgBfnstVyvdIZmfWyMlodsvu5sNtZdfLn4zB3Hf5zUCCerQSuuxU1ECWvuNWsKhbhXgtMt6o9HlNaL9APTxmarOoTbO5HGy3/wwZZsUfq/MlC/C9/XS7mg8dlgb9g3zUGfnJb/ZKtKqy3e/Lg7LzGFbZCEWiorf68CwiIvdRuQBIggQcuuY8W7SdcsmqptW1XVZgoDjGGNMRNSpsUUsAYKaAguMMkACA4zI2bBIjFGupypIsBkH1cRKIQMLI7IxgC9t2OEx4IiMjubuTwERUUQV2JwEQBCCtUAQEH2G0T0QsmrWCuIqnDYw5AQX1+5aCmueYqQrRwf3ahlD6yAfioNvdCbS7tQu72a9p/aBtna+unLQKf/vplF+JjD5dRZ9ZYNHJLVEZiBSOzy3JK1lPPXb3egcRCjQE4LPZVB5AIqX/1s/utiw1SnyzaZz7bdT7e2qn52lBKdbeE02k8HI73x+P5POVS/RvMzMQqVARwklVFEFFQoF0BgAcu1/poZmuDpZ2Vad8gX/6KAH3Pt9KbESKp6jhN4UjMNKSYYlgiPj/5ZB+3EMJf/+v/nUgByGAlJkshgDEoEAEgNa20oihXjZlsBhqBgVGALA6BX+/iF8PV6831dRxizVVlrlLLMNS8lVoBkIM7lqbO9Pdqt6Kls7jTOE7jVEoxxNSItBhj9KxqQfLShlbyXCSfRpNsVoksDjFtEgZqFIP17bepWEtBy7WgYeAYOIU4hLgx4JAL56qi5/ODZXK5F9h704JrCdojgaKKSoYyW5mhZpCCXtd3JQAqVXKtc6lZZBbNYsVMwIAIgYCoqs2l2jQXhVgEyau8E1PPCYwphJDzXKuYe8OoigiAGmiD4E/bZdfnRIJPRQig6h7IpK1EmjbeuuettEISv6ho4TGGU9Wcy+l8cir37u7+dDo5xloy+s3sdDrd3Hx48+btzc3N8XjKuWFWx6m73e7Fi2aR++WXX7x6+crrAE/jdDwe7+/vXWpJRIfDAQBcxjCez9vtdrNJwzD47nSBttCnykdVBvxHAHAG9M/QGmJrEshVc/MEWf3ej4SJDdUMgoUFrPufEFFEGt0EsHCc3sPXn+MnXtzPpUsXFi2vs7wA4NrfcRzP57Pn7W02m1LKy5cvX7165TzoTznJZZZCBFdFD0Pabrfb7c49amptUv2W0LTCuJcuvqxEvkCvUOxyRqvXXqLtfn18NC/qyfUr3b5xnmcivLm5STGYNvGumXkRPu8tTxaXnzr9LmvBBWVeLor/pgXR20njii9ty1yjdr3CKDmLQk6vUFO+LZ++7ISXZbF9XQN5vniYl8+TutiyQt9Do7o095Lw5hcKHi+yj9jcRxfkExlqD3DuYynCisvtkoWHAl6/lP1h+W870QXGNoBh/YfVa9YHCQuSdep2fZIeOOteuZ3G1c4NorlmzsWcwSuStVq8LID1wple2kcnWCIewmCgygqmHEJ0wd8wpGETOTGyL8BWzTxvCoxalSk0AnYuBshQFawLBIiMUQkJQfycuu97wxxqqoaKQshGhGhA1mrwNcbR+2hToQIgeagaAQh6hTdC5IBMSqSIimTEgAzWCjyBofVkU7/qrcNpDys+1z5iKOYLmy7bwEYjPir7dLnxzRYWfJ27VG/uWrr2tsvUsoggfLup0D3asLlzdsNVotYX/F0gTn77Dtf6/nwZwOrKVAVARDUjwx4gWXpz47lt4XdhObwfxbj26LmBgdUq4ziP03g8no+n4/F4HsfpPM7zXNWAOQC444QCmKiggrWCyaYiYMaEBkz4wB16wV3rHfsFjrdd+hIGWu4F9fwLRERfFRA0z/mgEpi3m2EYUuAQ2sz7R7YU0//47/8vqnUc78fxXuqIWNAKiDW8LaBVpaIoi4UKlCFkikwJN0MM+2HzJQ1f8mYbhiBacj5N432peRNjGbYmlQhjjCFGDoFCq2HdqmmI5DyP4zh2+09VSJth2Gy2260jHu8oJjoETsxZZM7lcDhKmUwLM1xd7zlyZGpbNrPembRKq7c85xxD2sS02+yHYTdsdoY0jvN5nKvINJ31US20y06/iWC9zxEoApApmoBWLNnKBHmCkpuPmIoPAVWtqkVkKjJXmWvDuFVN2o6IBWDOucqRxskJgE7K+J6RPXjeEBhodes6qVW8/rZ2EPC4AyCufE36xqnhV1RDRQLXUXmPNrA+qtpbnsP9v0xzpDXNkwsSbm5ujsfDNE1E5JlnwzAAQM759vb2+++/f/v2zfF4rLUg4trGdb/fv3r16vXrV69fv3716vXV9ZWpuVX17e3t4XCotfrYUdVpnu8Ph+3NzXa72e/3V/vd1dWVp1JtNhuHzn5sDolc9uoYzmFcCEF/nqXAz2iLMthHwSKFcggbQ0ieGcYcQ0gpDUPymbfV+QzBFQ4LHFdphdAWTYL36DUruVAhDu9yzv6CheL1TxvH8XQ6uUGvS3gR0ZHx6XTyr/5ZJ0tEMabNZnN1dfXq1cvXr1/lnM/nc86lY4wlOrfq2Gb2kPiESz9v13BNXUPX3Yq03AkDI1cydq/WZfFyCLUA4/Pp9MMPOp5PtVYAU9Uvv/zSN0V/zN29HOyF81itVs+8sgWHsS3JLixyt9aWRW7mnLUHmIEYYNmnthnhIkfwr4LOr3q0nylw4BBUxa0x3VnMzKh5hDeaj/qX6qJdADNQBDQPq15QOj45D/8DPsZ4l4tyAbp+bR6o4VuGFC6gvKWzI2ErhrFA3I5hHv3v0mceEL/gs92FWV0mzObmZu10eqwLOh/XQYeuuD8DM6+4icwcQowhphAThYRcARtW7Py9Lfu35c6sW+C4315BHwAcOIQQQ4xpCCkxB/LlSMBYLw6TYABQSwV2nbVnZhK0WR/Rljwp707a9g0OFZv9VTVVJdBWTRjJkzcVwEzVyTmpCtUMAbWJepFc5WtqYEjEHDEERF7umyGBipqI2KIqJ/e/h7aNA3O9uD3bWR7D3Mudt87ALpBwQaV932gLBm8P/dETxi7xics96VfVLv9aINSagx86xm3QlImaekXVUMUI+u7Mj7VtVJfoiCqaoqKhGfkhGkJX5PYxtUCa9Yl/dC/wpC2vcxOZXMp5HA/H4+FwvL8/HE/nnGsuVdzLioNXJVCVTscaABA1YlJERchUgblvOwkvWcO+dW86lEVi0dLc27XvW43OY/ikiwoIGAKL2JzzPEtM8Wq/22w2mwEfzrw/G+/GGP+H//2/U6l3t+9ubt+ejjfzfJjzAVQAANCsmrobrLJArBAKpUxDSruY9nHzIu6+jLsvgEl0zvU8z8dpvJeS62avNYMJEYaUQkouV9AFg9Zacpmn6Xw6no4n1+kRBybebLbb7XZIg1dCRmJTi0QRsUxTqXqe5jqPKiUwxCHtxDfbfSfXBb+inc0thTl6QHy73W93e0Bmiohcar3FaUmfXV9Hx7jkwQpHt2iIiqagFbRgnaHMUGasGaSiCKguJYOqSK6OcSWLFbWqID1PDggNYM5ZtTQp8JJd0WvpMDeZaEpxGKJaqVJ96VapKgLLKOoCsRVdA9jMJxYqFwDMyB0jOnJvpTY654toQA5/f25f+kR7FLB2WNMVC87UZvc62G63DijHcby9ufnhhx8+fPjgWtIlq8M9Adwi4PXr169evXr54sV+tzscjofD/YcPN3d3d4fDwcz89dM8IwAxu0vW1dX+5YvrFy9eOLDjXvbWr5usUvEd/1lX9/5ybO7ja2tmTjZ7ftg4jgs8NbOlPq8f55BSrcMyP8QYHeN6axkO3QVynZgFD2Ei9mXb74gjwsVaYaGHz+ezH5KLQPyqOsw9n8/PWVI8besXmCPpDnNfv379xfF4vr29Q5wXcdxjPLvCBYuaYU18LIvashysb2Jf71zQ8BBIrW+CqqpJlfP5fD6f7m9vAcBNJ5h5v9+7bfBK9ftMxPsT1+DBXXiIPzuv1bJKL5zTBeaCLRJIMwcTMUYm9uzuTjE1u09qS+EDDqjlixEREgeOaYgxqmkNlUoRRLSW+kKOSwweooYLqdtQSUds1ki+5d5cvhQa7f50M365Kst9/HRbrGgXAS+ucS6tcO6azG33HtZf0xnb5cq3pdewWdg0xnbV01oHQwQzdQDc8T54vgMqEnvoMsQhxCHERJQBqQmhYQ2uL9P1oxY47IYrRGR3MGYOrrKKkVNo1SLMjExRjdS5ip4GL2hIMTASIvjRgQGYV8gjbHp390NwMS70MJZqFa2iCIpohBRDCNQMqFtAQb3qHhAaEhCrl3Fl3zeqmQKScQSOgIxIAOSX0hWspUqt2j2YG1BcUbmNIX/msjz6uSPRrka4jCnER3kriyQblp7SUviRyHeDptZBQP8871srQfXl4y6/QwAjQCNYBILqfZI6e9zHsZ/cagx1cnPZHi6QeQn4LA946Y29K8NzDNfTiwRm4Gkccynn83g4HA7H0/k8zjlLr52FhEzuKrVSOdsFFV0iYmZ9IcQYor/cZ9v1JeqXD9y//VKKid15oJX8rdVqzdM0ErfClqZSSzat5/P5/nDgwGbmvvbrk1rdix9vRPTl6y9NJRAQWCA4HsG01DqbM1vFpJgKmCFyAI5KSWioNBAlxABqVrJkKfmQ83Ea77ScCSCQJZeUphRjIg6LkltVSs3jNJ5P5+PhcLg/nE9nJGLiGOOwGbbbjceUPTcvAppaQCTAENNmt7968TLPUctMaDFtmsWsd51WWW8R/LWUvl4ElFqkBjHGsNkMQSLR7dPu0QkUAXEGFy44sLsrWB6hzFiLiaA0yaspqloVrapVrIpVRUVCjgTqoJmZObAqSJGcRWojZ7v0zHXnSG6rHeNuv73SHbGZKTEGZmmzAyzZ50sMd9XFL5NAs2bwa4Q+KQNA0+a1pcp1DGCAqPJLMpd9JwtmNud8OBxvbm5vb2/v7u5Pp7PTrg7sYowO+NxE7HB/mKbR4ZejDUdIHSS9ev36i+ur65iSp5Hd3d07xnX5qYOSJauMCJlpmiYw9dSuw+FwdXXlVllrKzEfkrW61WNZVAT23Pz7c9rDG9Tphpzz7e2dE9un87nkcnV99ZKZiEsp0zyN45hzUTViTsMAvuknr3OrouIq11LKPOecZ9fmOggehiGG6HIw/95FCQt9+kJEP80QAhGGwDk3bvt0Op7Pp2maay3SRWW1lpzzPLfScj+Z5vTzpRB4GIarq6svvvjim2++PhyOHz7cjONcq0gVMyPwcOnjebzBpYU8xMd/tcbcLrvdJuRYFrm16HJR8arPDwAiNWcgZwtND4fD2zdvYggtR2Ked/v9brfjP8pPd43nVscMC/5sD33L2mccWJZKbFNXS+l3DWVL7ba2tW4+MysIt7r0YB5dJ0NBVVFl3+IykTFzYBRszIIn1K9pl1ZtzlfAj9RkXUD75Rz7DPTs2FntVX4E4ELHuE98GGAVprig2+XHBeNe2Nx+LaDNiZdb0+/Kete0jFMDR+zohSEUFvcfcGsv3yXadlvzXOZxnoYQJkRawPRPYeEIOcWETYZCRBSQCZiMUDrpaL3wiUivbOCHg0wcKIYQXRqqLUMMWw2G5rDLjVEBhBb0KK02sFgDKNzMscDFOsxEjBwQSQzFGnb3UjPBIYqPPjA1LIruSivm1K2UmnOZ5jz3uBO23rF0jLZ/er6nfCoFzeOu/UZffrYL8m3dot1lIiBGRGRyGGio62DEhXF0ktlHD3Yh0YJd+/bOZ6XGGBupCZE1vgrAcYe2gdQMHxBaKZcFMC+RjfX5XYjbBfoirA/iY90I+8UxAxGZpvl4Oh1Pp8PheDgec64i4nOoh4WYmFzihoAIi97Lj2ehUhyempnbAPvs6UvLarYF6B8bei53bEaV3PZUoqrViRlVAYRNGoYhAVgpWaWez+NdPCBRYN5tt58eM59uRPT65StTQRNUQROTUubRREvRWrRWlaLq2mNGCMkoCQ6EqVI0Qyk567HWeRpv83QndTSZYkyJcTN4LejkigUgMgMxFZWS8/l8ur+/u7+7v7+7H8dpt91dXV0NQ9oMm+1mm4aBORC5LJ6MgAEIIKRhd30NpmXe1TyCybBNHBISgqlZbVUhini17xZpaCU+ALqlLiMH5s2wUTVaVejoPcQnEgEREPEwCrmkCNTcYEFmyBPWGaSAKIgXJ0L/xqpWRItaURNAwIBkBBLADICZmMlNNUrJea5+qX2n2fu3ATEzxxiqXBPZMAQADUwaGdF8/vJtelMeXOYM65XyrIdKli1oZ3h71YgefDOXKnnISOWXZHO9+QCZp+n+/v7Dhw83N7d3d3fn88lrdy02XqfT6e7u7v379x9ubo7Hoydf8qos7Waz2W63zuZ++eWXV1dXgblWOZ/H+/v7u7s7r5vQBiPRZrPZbLcc2EPWtdZDzofD4e7uzvnj6+vrq6srt3e4urryIghO2q0x7i+ozX1EPc5zvrm5+fbbbw/H4zxNZoaEV1fXETGXcjyejqfzPM8iSsTDMMTYapxBJyFVfFiV83h2AYCImGrgEFNk4lzyPM+4itSvsKDUCrWWnIuZxhh85plnq7V6yprPb9jWRM8ey/M8+ez1c6L5zUo8Jbu+vv7qq6/u7+8/fLjd7384Ho6qVq2CB4QNLzP6k6t3kbGtloY+f8oa7AJAx0VtVHcHPXCdTAhhIcJrEakSmEJgJjyfTm/fvl14ilLK119/nVKiGH8uxvW2RmawAliPQ5L+2kchfXSMgkqE4KIFImK9bO+lCXWaA8ESy+kKOF+LzZx4okrNT9gJYCbgQKgunFI3Du0bhIXU7ZanbQXup/Kpq/GJzeGTlb0dzPK4ugbPY9xHbbnIyxvbhyzXtLO90K87dgp8/e3LCF3a+t74zp38EiMYoJoCAjOlFMm2kucyb6fxHLyr2AquwOWI7LHOA8BVPSF5xVtqBZcZjUA8Sm7oqLVr9k1aMS4nKRlCopTCgB2nqoJoz5QCIGzlbV2LIKpSaynF9Q8OhRsLC2SusGuqiRSHgUIwIEUUBRGoCl0WTE4p1yq5lFyqJyyKWs55dlO0lqtSVLVvQFYRg7YXesyeensO5i535mGnwucubEfBfq9bMTNiBgNlRdGmQ+nbnbZvWoD3Er7wxdP3DD1Kir1zAWIDr4h4GXzY8ffjbCy4cLjrQfRgQ/Ts6Fl98aeaZ7yVWsdpOh5P94fD8XQ6nc4iXj4HrSUeetKkeykwEfpsskyjPrH6+tFW1hADBwSU3rTnQfsQ9W14jCHGFEJEJpc9eJGOTsnkWkstBRC22+1uu0UklWJeSRsAADbDcH11lWLso/QymH9iQ8TNkMB03mzzdj+P52nYTXGrXhUbxGu4EIL7g3CIwMkoKLIYmipotlJLPs/n+zwdCIXZUgybzbDzkgfDhmNCYgBQtzwvZZrG4/Fwd3d3uD+czqcyl+1m6/6mDjI4+EJijbXy7ZlBiHGz2xNgyUPJg0pNkTkRgoJKR7GmauD2j06cUiRkWJegMwSkQKz43OVqdb4FpECV5ojXig+Jae4+YjPUjFLBXYpa1AVFvQabiZo0P72WHWOeyuY0TOs8tdaSs9RS24LSCniaG224QLfshhDAzD2NyY1tDJqoyE2ILq4KAM0V00MK0JzM+/hB66B4mVJ8ZDa0/As7LbQx60qVcRzv7++XzDNHsR7T8Bj9+Xz2il/3d/fTNIlU7nSsyxXc08ph7hdffLHdbJm5FjeRHadpzDlLraUnWjnF4htXl+qWWkvJ0zQhYkrpdDrt9/vz+fz69Wsfp26tZStj3V/wgjxdQcfxfHPz4fvvvz8ej6VWIoop7fdXpRRnte/u7qdpVlMXtgKYi5Q9VdnMVLRKLbm4762jUjBg5hgiEk7TxMwi4sDOp6zlpjBb21RD8A4m0lKyvNiN4yci8kviMNcdGLbbHUD8yeeO0H25/YZuNtuUotc8h4ajELwsPJDR4ln9YA149jk0u8nGKvlvOjByyGNr8gh72oOZSVXpDIYZE5EZzDnfHw5mwBx86kDiYbOx7TbGFIKD+0cd4/nJF5/wuMtJPRA/WBODPjeHO0hzwG5E9PBtrZiRE75AK8ZyeVF/RDVVFFEScT1MDEGIBUlF28JraAjSWKr2JZ8MK/8xuB9WQP4ReIWnLO8TcLvW5Dx470OYe7nsjTJbHbAtMyPiw272aEMIC63bwY72GdVLOYGDp5gCWp038zCkNAQOn1qPn/uTj3G05m/Q6gb73W9HCk5kGJIh9aUAAzEzpzAkHhIPyIRIhii1r08EAMBMITAxgYmZVo9PCim0ShcIROYVfhmBEQJTZE4hDmnYhBSBGIhEoVSt1dxDDRb3pJxNVKxUUTMQVd9j55JVi2htmQPPto8gV/i4b+4a9Ti6XVa29oEtmmjLqtd7E1MIwQxMxKgq0ELIYhfHL0eky8PDw7M1zboacKu+eBkafQT1j8HHr159Kjz5nssZNzj+o7EBRFOvdD8vORbzlGupVXx7jNhiQ+DzvhMoTOQpF07irtOWV+OhMf0xRuh5LUsIlZunXnC8i4hVJNcy5+zJWL60lJL9ohLRMAxDc24nDlykllrFdLvdXF/tA3MMMYbQtdjQR+KPzztmlucRwKRmlYoAkdNm2IEZEwUKNUitoqJeR93zFqCJuIoL8U1B64xWA2EIMaVwdfXi+uUX16+/3L98nbY74gBEBiaic87n8+nucH93d3t7e5PnDGbDMOx226vr66urq2HjFqetPwDopYJnwyxDBMPAFKNpDQzMYFZR1bB6nidSCByHuKlqYoDIISSiUEVzLqYQuCIHJH6QprE0EagFSrGcoVYwA/CwoBviFpMMmkEKSgVtMaH2H3BTZPNiL5cLvYSWANA3wARMTMiEQqhdWtYYgkbIWhdztenYhcIurUJtZoBGK4MkbOPAaeU+5pvMGLpIwVZId1m+dImSMP/C/lmuDnL56d3dndf1XaqUeXPu8O7u7sOHD7e3t+N49lHjqVcxxhTjMAy77e5qf/Xi+sWrl69ev3rtmExkBlNEdPWqqnJ3k/UaKx3TJERIMYhsls1nKcW1vMvU5KXRnOHz3/sRfmIkffLsn8UsaGZudHB/f//+/Ycf3vxwPo9gwIERqZTCHA6H+/v7+/v7w+l8huYz2kJC2Kx/GAlzzlWqqTLzZthshk3ogqgQAiGN43gez8MwWM850172vYsxLIQwDGm3211dXbkoOefcl4jWU9yz1ZGue43pz8nM83HtkLF3htvD4XA+H6d5LKWIVAB0DRKYl3paZ3L4orE8WWKLAHA5Tlj55nbY02cQwOWMWqR3cRhDEmirmb/TDERtmue3796dx2maZwc0X3zxxcuXL3a86+O1fdFP6AmXuw/9mB9gX0Twwo4+knH9h0a0ARJy2zeaGRj2420JQ10W2ABRP/dG7fYriH7BvOBzSqnOpcxzzaVWrVXahhd87lkWth4jenAy/VQA8LIEP2gfAy9PYeuj54sclxav3DVle4Es/Tb7I3Wk+5AbRoTuX7wcmXOj/Xo/vC9PkS4uNnCt5G/TgQCiOs7FgARlGFIaYooe8LcnsWfr3fjp5NCESYYgiIoI1JAuI/GirAVTDUEsiqmBKgG6xQNzoMDu2gkAqj7vq4H51Y2RhiGEGPzwVVOtQ3WZXytqBCYG0KYX4gDEBqQAVQ3UmIECsyGQEoPbAzUxnGpLuQPsieZVRQyMEIAIkA0YteV1I16E6I1weZhwtbRnJ99HxK+P7V75s7e2mLbFr91Fx2IhBDOzyooELkJew1x319I2KXTT6GUwtLu3Rrqd533QyfsfLx+2nOEjeLvuf/0ULqfapzlobkjwUaO+xi87Zqnuvj6dTufTaSyllNpAqQGQVydrfkMcYkjx0mt9/XOku3xuPw3fdONCnPiHuroweBw6BE+bEq0yl/N49uX/7u52Gkcv3clIziLH5uI+bLabYTPMJY/TXEWu9vtXL14OacANhMAID4boR07/UTexnEcwq2VWEQSMIW43O0Jk5sCxhWuruweAi1qIEEDVKkj1ImYmBU0C4ZCG7Xazv3p19fL19euv9i9fNZiLHs3XOefj6ejB5dvbGwQc0uDU79XV1X5/FYdETOCDxAyRAJWgeeVgCAGNmChGroNKJVRG0TpDLYDs/4g4hDS4HByJKCISEYtosaJVKjGFyCE+z1yKWK1QCuYZSm6LqalJUc2mBaSAFlQBE3Az+TaptqCETxe26CRcKqGyTJGMBASM3MtDIiF5EETNncbdzxwIFgGCwWV0dC7CRwJ5XUL2z/Lvg8uI96RpWoiYZbi2j3CM21NpYYUSfqnmIlc3gn0Kc7fbrcsJHPM5zK21qlroZgKpF4vebrdXV/sXL154nn6t9XQ6i4oBEFEIcRgUETNzzllUmdmvMXfk56KURXrrKXELYekYF7tc1bea7Y2fHFbPhs/8L09f7B9VSvFiYO/fv3/zw5txmjzpcJ7z/f09gB2PTTPgajYkIiPoIbVFeayis81qRsTDQCnG7W632+2Wwz6fz54x5g5+rjQtpahKrc6wNsmsj0QiKqX0mPZ61b+kdnWY+9N5buw8RaOK3Rbj/v7+dDp5yToVRSRAA2hCCDdphDbJY8e1Hc49/Gg1z7W5NOjYesFEAO4VZubZO2bgnBmRiJc19bXRA746zfN5mt69e38eR+IQUwLElNJms+1GQY9v609v61WuTw5kdOEXl6CnLSdAiEZmJtotBRG983sKAbWrgz1i/wDmOpZoDwYOc/f7fZnyPI7zOM/zrGoobhz2GOn12bIrMy8f3D78Z53/swD3gnEXpLsg2Qe39XF7AHCxCxQuL18Y24VdA2hRW1inJS693d+m5gXW18e9to5wGEWASOA8EPVyn4mZL7sfe/B2ex7lAjPHTQAFqAjirGrTYnNwY3WHbm4fYqiGZgwUY4wc0OmPVn7XJ31DUwBgBGYcEm23cRgiLsFD375WyaXWIrVIyWLqlszctdokhuhmsq7UbVAR7P/H2putyZHjWMIAuJiZL7FJuVZ29VzNxbz/48xMf91duacUi29mJAH8FyDp7qFQpqrmt1IpQxEe7mY0GnlwcHCgKEBmQwAKllBQhIZyswgjKBI6IFQnatX55znQB+KirvH18SbMxb6mtDv6xi9fQMb6pX2qXQAAsF2L1ADiPEfayVzA2k8X+TP+/MzkP/9G70F8Ppnrt/sUuiH2y1Ktg6WtovOvV17R1mbkbDnpvAMEYWRR8N6HEH0MJj/z7kyY9UGDi2DRMuWAaP6/js7d5O3KLo1sUs655JSWeZkPh8Nhv9vtd8/Pzy8vzzkli36GOEwwkm23XApzkbKUPORhGAo52u32j09P3juEmxACOg9wOdKvBuGNW6AqOZ0QVLggqHduiAOqBO9jDNagiM2/nU1pg40isPklIgb2AgZHOo7r1Wq7vX14v7l7v7q5H9ZbH0dwpLWgOx+Px5eXl5fn5+PpWEqOcRjHcbPZDuNIRCJSCgMUMJiFBFfFu5XQRXMwIQJ2qKzW9sUKRy32Je8dCCArMCsLCIAjh4AsKpILFCqMVGwnez0sJWtaMCctC5asANpgrnJWzcAZtVSfAtFqsGBqKSml2kOZMUIRZhVzrBBQ7akRAldJucre1Oeo01T9JnWM25RL2p+XhlLFiszU5AkWfNj67douh/Y27ZeuGAYB0BrPAgJCxzf/z0f9CGa2kq/dbr/b7w6Hw7IsIoyIxjsy87Is1g3B7Ktsq+4erjHE2MxW1+vNer1er9er1WqZl3meHdE0Dre3N865eZ6XeZmXxcwBTA4BrdyKrKgUsYesNpKd/rRqNm36Tttu7UH+80v9E4TTQ6m+5AJASmm323348OG33377+PjxZbdLKRnMNfANraO4tMbsZo1peSZbi3qHtt7kwmJUA6zjaHYlZMMnwsfjwZr92nUj2rC8BhxQuduzwrXv/c2niy99DP6VmdFQc0sG1jdGRAV3MWaIiKA1iYiXTN5bi9qrzeYMXayrrTU/A7ZX2aLUrpGc8zYCgMgsgMUSMrYM+hB//e23cZqInPeenDOTZ7sn/8II9N+yge3QquPxqylVN2g9/1tVFczPhxCU0IM7LyCELSDoa0nbulEberxCqi2h/3oHvQS5b++tbdD/hVF4BVV7XWD799lY4dXL3oS5jSC0DP85JsIOXy6vsl0NXpoiXVC2dlCtnr8+7esvO5q+WLm1Eg1Xv2oBBnbY8uZYVjk5enTOgWX8yHkkh2aA0bwWVM8wF03cpSpcanyuAIgQHPoQvKMQfIxunIZpGodxwFZvZC5epXBKOaW8LHlZUskVRZs/GTgi76wuTRAEFFsBsyiwMFs5SuFccimJORfrAcpZVRDUUW1rq8CFSaRtfdA4osqfvk1RvtkeAvDCuuJcZ3IdnEH9RpWV9xf1m1abHNjK2mFu65KkUCUpF8FR0+70hOiZjf7kbl7EiuaFIddQt1/w9RJgF3j2Bu9/w3lZ+IxN38VM0pq0EkB0zocQnVcRa8bGquJDjEP0zY7+cqfsyNh2Pr2YsGaqUXJRp2fT0xYPqEIpZU7Lssz7w363e9ntdofDfn84HA/74+l4Oh4B1DykHE3DMIzD2JuKn+Z5XlJZFQWMQ37Z74cPH6nWoo11eYB/godT0Jxmq9h2hDF6ojF4N5Sh8FisIqP5f9S+6WA+dKIgqmzFLyqAggRu2t6u7+5uHr7e3H89bO/duKEQgci0kqd53u33T49P5t7vnJvG6ebm9u7ubohDzuVwOPgQfQzeBxeC89TWpepMbUpUJVQlIW/mdSgqQALmvUZI3tVyEygijpiwICCRJyItVi4uqtk8pd+EuZIWKglzgpIBQNCM1ItIBimobMImEKlCWvMvk1wkl5JyWVJOJS0lL1KSloxcUKTutgoIZHwtKNUprgqX5NB5qJsquFKuWs3SmKuEF6A1/qvCGHNSExF0ViPuAAhRmNUkKF0EX9cYUiJAsh7VZ/rn/5fDnmSjLV9eXl5eng/7wzzPpWQw0wnnzKPKFAsm2GVm58gheUex0rhxiMM4jKtpMow7jVOMUVi88yGE7fYmhLhZnw6Hw+F4OB6OIYRlWSrdpZBzOZ1OufjgGlxs/Sas8P/u7u729taAsnX8Ohuh/Kt9sF6vtwDQlpHj8fjhw4d//OMf//jHj48fH+fTnGtLMOn41cqk+rpIBC6EFuGfK8S1NU7Dpj9GPOtfDegTUUppvV6vVlNKyVYyQ5n29iZIMISdUjK2WypnBABnJuJynf4STuGTA60HhZ2eMV/OuZJzKRkQXbWGBTBwikgo2jBPJ+VqeNjgbpcfdah4eQuM6/POIyEjEbFNiVKKbWvm8E002OaQSynMBq6M/0k5fXx8dK1LsKre3d7e3tw4N3x6019/p59Vx4RYU47Yt/i6W56hfMd40FGtVG/9ijhbzhfQGl3ZRzSi8JLNbf/og2M4V0TSshBAySUvySgV0asVAqAFIucbjlVVdRVuvOKh8C8fmXYn32BnrwQMHeN+pvqszoQzj3smdKGuo/WjAOnqTLGx0vh2ZK9Ny3T5T7gST2NbrBEAVIS12L7JVp9ho1Sdj1/NijcwnQIUVYdmczg48g6dQ+ec9WwCAeGaM1QVUatLUSBF6xG8pJRSQlQkDJ7iGDfTsBrjNMZxGsZpGMchDpGcJ+eQyGwm276V5tNyOs3LkkuWnK3zAqrVoDtCTwpQhEEBWKSIAdzCmgvnwkvOyzKntJSchLMKo6kVsDZCBmRmJ2Kt2KqlMGDf69+eNn/C5gJ0vlWvNA+Xy2638qovgiupyrmZF1pCxJ6WS61J/ayLFe8s6wGLB1rWCM7fvnpZXzrPsX1Fudox7sXFXyHnV0j3T1mVizNon4iA5H0ICoiqyFwhQhhiHKKl/OwBMtasw1xsEnhb+KtHpaqKFGVDq84RWIMD61TEnEo+HPYvu5fHx8ePHz88PT3uD/vj4XA6nXJOKacYw3q1cm4NCCGEOMRSSi6Fra+nCCCGOJRSjofjR8Tg3Hq1uru5dc6jc428gHqb6nB9bhw0l8Ua+zkCDME7pyFWOywu1aJVitmXgMWHqqKsyizFghMQAvUOh9Xtw+bh3fbh6/XdV3Fz68cVIQKQiKSc5vl02O+tFh4RvPfTtNpstzc3t4VlSWleUgix6jOIvA9XK0ylIgCQQE0b5VQUsGJcqQJzcs4pgAB6FueKI6+IzntCKiyiam76uRqMvmbppGQl0pKwJORcPxdEuWjDuPbYdJGCiLBhXE65pJRTzkvOC+fEOWkpIMWEfwgAIg3pYn9U+5KnAE2S257c/ihUc+k6CXt41dpgGReChTmXXJhdLRqvCIGL5JxL5v7wI5ppDTrfLXvo/1eUWx/tnp1/2e0sQ2193fq2ZbDv+fn5cDia4tNVLbsPwZ5Fw0NxHMf1arVerYZhiCGWXLoZ2Xa7nef5+WUXdzGE6EM4nU6FmVkRoZQyz+C5sHMhmBllLW5zzt3c3Nze3t7c3CzLYkYN1quiyluJPi/kODO1r2JvbYRoB4V2sabs3+12f/zxx48//vjzzz89PT0ty2wdz0yRbCysgWxu3cu8d8F7K4S1l2HTUNl7WhmfBT+u8jcxBI8IqmpWfcMwxBhyNj10ZoaOXc1D11B+g7lXK+3ltbzC7l9+2Mpp3nDWYMyadKS0sHD7IHDOgBwio7QEY98FsROPn5l1l+emDVDWiAWQGVtlBRtZTxS8r5z3kpaSWeH8W865lMvT03PO2RCIOW+OwxBjaFHQW0L/T+ZK370u3NFsXPpUuoB90DjJhjPB/FygUm2d4a5kAADoFcytn3GGfbZIIiKiKpeyzLNVQJdsKajaMe4sctDXRx95hN7j7OKuvHXH/3xY3sKuldl9i8x9+7CJZVfa2f/zbKlYv3+n8a01U3B9iqp9BPWTTHJFSU3wcJ6VAiICbHRq4dq28IrQbbtJF3+8njGiWoTBOU+OfPAUHHpHjhDIrMmql5iqqKAAFtueQAEazF2WmQi8J+9CDG67GW+3q816Wq/HcapLqQuBXEByCgZz2VopnU7z4Xg6nZZlzrZOm9+WIipV7ampGJVZCuciqZRcOBVOhXPOaZlTqhgXlLEKBJzz5DyJks9UuI95n5p/tvN83mnhHG1rHeDrn57vWZuIqtBRZosUL582W1n0PA+u52nLXOArO9tXB/b/XsXb2niDfqLnE8a3OoC/+d4tfvvzQxX0XJJP5LxHIkTHwlSciPjgvavV31rvaqWdoa3U9XzsWy1aU2g8J7PRMzmXJedlnk/zfDwedruX3e55t3/Z7Xb7/W4+neZ5SWkpbGJBnOcFkYKPwQfD1My1h6wCOufHcZrGFSDNS9odji+7/fNmJ6qrcRyGeDV29evPUOoAoFIddsj6ypAiEqEIeedEirBT9Sb1aRSjqopClTKICIBDGIjG9d3D9vb99vZhmtbBBVv7VTmn5XQ47F5ejodjWpIqjMO0mqbN5mac1ujC6bB7enpeUrKWhjc3N/fODeNUZ5tNDTgvh+AQwCmhlFpoZXJBKGwnSegcYQg4AAo6JPDeE2J2bkEAgVLmUkphUaBXM1WlcAHgglJUGaxMRUXP6Fahte2ruv1zm9ZcSio5lVQxrpSiXKAaHKqSVndsoUbHXH34eSL3rs/t+e3PoOqZhL54IlRVmOGccGAEsnaCimiOwpasqEjMXHq1UZtSOy7RvwZf3phcqubWdDgcdrvdy8vLfr83LYFwzQRa969jO1JaVLXpBCoM7Yc1L7BeEoY+zaCjAnbEYV7QeefdMIyr9Xqx5l3LknOxpzdnkVJyToZdzFPsshea2UF0mGsdKzq6evPoKNOoUPuiO5G1AF6gFf6bJni/3//444+//vrr4+Pj4Xisk7FRet57qxizU7IBQbR8JnYRRZfJduNb55xVzZoVQOEiUvaHw363//jx4/Pz0273cjpZLFE6L5uzttC9onBTTiOCc6Tq4Or5uzyHL4+JGohDJKJpmh4eHr799lvrEmKNdrv0omoqwDwZL6izi7w2nKnQK3JD38r+4UVNhZzzGfbLZ5vItvUhEvbVvocTOefTaf748aMjV3IWLo5QVWwKmXXon188npfj+j9t+2ULcs/M7zWCa1vbJfysQv7m641nW4SLi+toAhu12fEeigiX4pyr9QR1TddqFkpnAqsH2/b2Z5h7RgZvPCFtvXp7WDrCePUrb2PYz/zk4iXGCBIQVv6wvvlZcNm6qjW0KwJdwHoxgd7kyjq2bf/qGL/WHSmIcNGcOaWSEuckXEClhSINW1/QgZ9+TGE+zsk71ugAvSg4VCdMraGu7UNFJIsUFilFOZNqcFQIueQ5pSWl4BDRW4eTYQjTNKymYTWNcYjnJJV3tQ7bknnmsIDgHI4xLFNJyShpYEvgInDL4ZZSsgoXyZqWkpaUUrFlKDNnhiTAQAzKWDczp+xYXM6ZeRHJpK7ByH576u369HiLzT0zodr/29EkvAp29WI+GIRpLqO2stV5QZ2zbdRTf5MOLesMgqv58Ppor2v5lkrsVrr5+ncukC689Rydn6IuusEvYqNaBlgVgcg5j9aCi1WccyzW3YMQUERY+FJXoaBEZyhg66L2wLcxWIWLJpyX5XA47PeH3W7/stvt97v94eVweEnLnHPKOdmWyK0+iVnmZWEWRFLFeUltTSIi54Mf4rBebdbrLXNJJe+Pp5f9fvX8QkjeuRgvPR2vlvLP3AzpXID2daApSFURnDu7JWqPIKQp181PIKAbya02Nw/b24f19n4YVo5cdWMXyWk+7He7p+fT8VhyIfSrcX13e7/d3sRhpUD70/zrHx92+/04jOM0FZZhtd7emlihzuJGQzj7vyMSQQYqtQFzKTmDsIOmjkcKzolzGCI5DI4cweKdI1SBJWVb4tXFV4uacCFQESZlg7mgYNcLINgeKmkCAhbzwLaeayXnnNOS01Jy5pylFBUGcy9kERQpRQpbT92zqKttcq1HA7Td0IgVbTsCmT5LRD/dX2xXFuHaUZBIrHQJEND0GuftHBSUEO03jMdVQKfW8O8vn6AvOYzHtcozs6o97PfzPJecARCJDDows/mzHo9Ha67ragu4bhcQms10bOUdtR40hDCtVj5EowyWYTEfudVqbfivtRarHibceifYE2UAl1ojNDvhLoc1rjH8qU+qth5m5tlirr3H4/F0Oln23wrILqUIBnPnef7w4cOHDx9eXl7m01yYLZjEplUYx9HmvpWOWcBrRgD2PiJiH2H1ZMzsqnK9SkFU1WyZHx+fPn78+Mcfv//xx++Pjx9P88wW5EnVvtgpNcfcpVMhds7QtowOMTsX/i/IuI0gWK/XX331lYjYxDA9tM0WOzGtvmCsam350D739V7QN0bEywdZL0i4vk10e0d7k87Qq6r5NzMzmJ8JUUfD/a1sejw/PS/LcjjsEHSIwbpFWJPqPznsSSbA7mumrcnLOXXdd+n20CJamgWhunS20rLKCykICvBlRVh7oyuo27PqFzwQIkLJOSFaNyi74YBk1X2K5ximrnlNOmVqKqoneCafL6+3Q4pXd+HqaPTLFVo9M9kXmOL1z/Ay1MGmqAa0ki3XiqUbUXumdM+/iwAgXL0jRUBb79l+2tcJAUTUNhI91GjsA1iWUwpzWkpKvKSSkpRiOpMzm3yOctoaf32Ukvf7QwhFlRRdISZwDl3VFoAKoAJklSScuUgpkjOBRO+ic1LynJaUFwXvBAGqm+8wRCNxgzdnVBsXNQBgBJdTiIEIQ/RUhpit0ETAYC6zFtXCkkrJOc9pYSlSNENe5HQqp5TmJS2FE9i+SaU2TLJRFAQmVcpZzMPGuaAtIdmDEWh35tXxmfYQl4i23qf6d1/C2ovPULU9O+dgF88u3Vhv6TXbfplmuTyF12TuK8hbN+y6UV+e1HkmtenVHs1X6YMzQ9mR7V9EBFfnp6rKqq13gMF7rJJdFS0iiKDWgrl0MYVNTzuNLthtSOW8sKj9osLxeHx6fn58enp8fHp8etrtXk7H/em0FynG/IoZUFlEQQ4BVYFZUsqneQFz4yNXS0lCHIZpNa2mcZqXOZe85Lw/HJ9eXqIP4zCsxtH6e/z55V/dCruZHelat7DW49aaELQe3nU2IqqZS1e4RBHdysX16uZ2tb2dVtswjJ7I6EXhnObTcb/f7XbLvKhC8HGa1tvt7Wq18SGywGlOT8+7x+enyp/FeHN/n1L23iGcG04TAYKSlVAAKYIWuwNcOJecUJUooENCAiJFjM4TqHPgHThTwiqUzHQ8skqRYu48V4cUAUGTP4FWBhfqJduj20UvlusV5lK4srk5m8qQcxYu2poAK7OyCNTEtOJr08e+F7WF2VJijeDBWg5l9jKmLnhVFml/96W8C/sAGoSGtjVd3H3QDqdrgzTVT8bknzvqrxsOMyp3t9sZBFyWJZdiPVdExJLjBnPneS6lIIJz5kjej95NJVoXNLO2RUTn/QgYgiKRWTsXEVGJw6AipRRjLoJ3J++JcJmXtHTKsEqNjBsGgE7EAoBzbpqmP4G5qmqNea0j7n6/N/ev/X5vkL1RycvZur/VpNoH2SvneW5d+wBYibiTiH1ZbJLQmjQyuGk4/lAlT7kjaasmAMRSstlUPz09Pj5+eHx8fNm9HE+HlHLf0YnIwrXeQ0Wa+2GHlf1Mrpt0rNbr9V9W5l2P2HnlnKbJvn58fPz48aOZXczzDIDLMi9LjSyVRQSI6oB0x1+4onIvMO410u0vw8bm9p9iI4a1sbyWfyPrFkZENUqsv9uSdlpy3h/28/G4Xq02m3UMwdw5rKvI59beV/CmJy7x8oHpwW49wc7jVojW2FzsQXHfrbuvCly94eXlXv33k1dWNhTJVwvIVwNps6N1RG1ouUPHq8H/wu3nT9hcuF4b8eIHePErr34OVJEukgNyeF4eK9KlKm2oDaoACZTtEl8DzwY8eh5RtRXid769Dk71eRRQ4VJSzkvKKXHOwEygHjEgMhFZNk9tjQWF2vHy8iilHE/HyIzkyQV24tETEJn9hdbtMItkKcmKZ0pGkMKueKdcFl6YMzktQIyspOiAHFpbIlPEVhJLFaUa5hIAEBCiJ6/Rq4CF1KzAgizW0VNNfZty9rNTUiFhyFldVsjCWhblWZEVsoIgSO0Wp6qKVrBeChRGEVIbebgI0NqZfTpVPuPmeBmLtMIwvZQEXBwXr+s8pzQlSONbtU2Vvi3WyK51I77KsXYUfJ73Wq/IEG5zUrJtG7HGir2h4CUWvxDKfHKVPabvT0ybiX91iKqw5Jzn02lJGaBi05Jz4VLPWaEzMdDEgj6E3mIXu0KX+cw3EtVfZD7NJ9v/esFZWk45Z5VSIZTdWSTvzQnLe++DD+M4jtM4xMGyt2albltLCMF6mitMjjDl8vz8En2YTF0e/wmWpS190Gp9a3ePc0QLDlrkXikGgFqAoLUTDPlIYeOHzTCtQhytbo8QRJlzWtJ8Oh4Ph/3pdFTVcRincbVarcdx5XwQgWTeUYgKWErtS/f0/DxNq3EchhBC8M7ssmzBqousgqpw4ZxyXkpOpSQHBOjamkiObO0GRCUQACFyMQ5xyOS9TbnXkgUAUCVlqqkom5NsKq5O5SpXMtdQrrG6hnSbprlaFtlqQrW9mABQhZvNPtfy0VSzbKqgiN2qSC9tky6dB+o2c7HKV4pZVVS8qIKY2hbQemsAkfNeWrsDbTyEoqX4qMOFL92lXo3aJ6NY7VEvwd88zylnLgweUFBEDQjudjsTM6gqkQvexxiHYbQSpS5XmKZpvV5vt9vVamXAFGsgCMZCKZoheeZSAEBUY4w3N9tpGnPKORvmfjnsDz3LP47jdrsdhsFcrsycYRiG9XptyehOZ356gf/93/89juPLy8vT05Ndgr1D1a/kbFfXDRNeqWntR8zVDc10UWY6Yf2K7eZK7VIh3vtxGBFxScs8zxY/7Pd7k9I2wesQghfRZZlzTsfj8XDY73a11wYiBmO+2z2zlaqUwoWNRTam3JY1180lVQHAAO7Nze379++/++7b29tbPiu9//q4XMKt8m+9Xj88PHz33XcWDNjg7/d7xGMpYooPABVp0V99nwv804myhrTOm+b1lnFmdlQBwFbaLn22dT6lZJIPq0iza4dmf267lUMkolzK8/PzTz/91PkXm5afo3W172JNnXD+Al9Hlg1AUjPwtMLvJga06yUEuYhXPyV3LrAY9N0bP3nBxb3RStHUYLdBB+1uGNp1C9C2+j6T6hf1ovrgvxr2q6MBxleAtn/nHMq8gXxf4+N2ldggu5ntnjszd5RcX3ZOWUOLls6D2W9QHzdr9GWdW0lVjPLD/tsIqsxlSSnlVHKWUkh1IFoF7wEjkiVspHd8BYifKP5ZZFlmVQghlZIIUQkAnSircMtHcBHOwkUKcxEuFpxmJlARZA1cPCSEWenEp2M+rlKIgxvYIQangupqUaOZf9WRawQKNSvcVvTCiiKmWNDMXFiWnG6X7SnNp9PhcDocDrvnl8fnF3844Lwcl4VVi4JY/TZUlzGsjTZNn0qq1sYIFM5kVi9MuTo+b1p+gXTPBS761qrUpCWXZC9WRhXBlPUIWOPFJomwPdwk8ShaDSa0PQk1J4NQwW67yrY7U5OYG0dXOUOjV8X+JiD9MxfYiweh/Rsb9fvnR+NvOed0Op2Ox1NrYplTSiVnhdYtCkABnPPOhxDjMIwAiK3eGS4ePT3/k8xfKlfd4X63e9ntd4f97ng6MifzmRIDT01s5n2IMQ5xGEZDd7bjmOuzH4dxvd6sVuv1em1iQR8CeaciKeWS0hDCdrPerNeIQM5Vu2PVzw7e+ezbLAdV637Th7Vuhz0b2EvxleqMBAB0YXTjOoybOK78MDgfTPFhrZmW0+l0PByPh/l08i5O47TebKfVehxHIJeYU84sYhEDi3JK+8Px6ek5hLjdbDbr9QpHxOCt3h0qlWHIXLg0hUAqJSM5Vd9jHkICR0hQE1IsRC5ECsPonFMEqU4Hr54GU1MpNicxMzggG6mavetUbv2rOSyZxLp7U9RRMkcING8IqU8UNrMq+9ueEAAQ6s9SXR+g9eQjcsEHALUw5jzhm5l5r4w/f3Y9ZVB/LtHWyuBrW2W4t5O43KL+qeMyxQcN5pqP2PPz8263O1kFb85cLaxqXzSjQo3KNSbSh2CGyp/CXGuBZqawNkBEZk5OiigAhWXJmUtBBAIIMYzTYPdORV5eXj7E6MidTqd5nmOMq9Xq5uYGEQ2IA0CMsRuWxRg/R1iKyH/+53865z5+/Pjhw4f9fi/VD+GqdMzK7/b7vekx4Lz4VCZbQZ0zXyowsxfzVrPRqFVlwmCC3XF0RCktfWBfXl6wNXsz74IQgqos83w8Hp5fXna7F7tYEXGOhiF679otRgBUkZRzTtmAsiWOjCzvqmJbh43Evbu7++qrr7777vuHh/vffvv9eDx92QQ5E5c2SjbO9/f33333nYUE8zzbLOIis6ZSklx0WbGjPiz2jrbwNqRrT8LVR16ALbzw57EvbF4Z0Z5zZmFO7BwhBrM4p9bzuZLlRISo3gdEYTFvYxHpTvOG3d98fM7b7kXu5eoF5zFqWK0tY9C6cNuva2sUAUgXMr8rIvnszHrxpq/PqP2wI73GE9tKILWj7YVG8Q300KHe5673c6jDLubzxwWdfd7pL+FuH8xXAB+xcbo1Tmhcbv8VvODVwWid/hb17uAnE0lUCFAACEmk2StrzbsJoVaLupRSyiVzYQIYnFPvI1BGx05ElZtkTBXCJ414hHlJCwDmvBQevXNAhAismTlzyVzrBAsLFy1mXC8qmesVk0eKVJwiyUnxyKdjOh5zHLPPxRMAkCNnOE2UWhN4InQO0TlP5AM5Z2OoQAogQGrGk4rWU4W5JC65pHk+HZfTfv/y+x8xRnWuwG5JmZVLlflVfqqJYdRYIxVSMPoHrROxIEjP3L463jQUw/5IQ78TcLURffor9UXSVKugF4+QiQeuH5UqgSQA5cI551qU0DqjtbpHSxTXmLDSX7aZEpH3TgQJ28+1IUt9fXrXu++nKwl+Gs7+6aEqhcvxcHx8fHx52eW85JRyKcWUI3DBj6n6YMUvq+32xtr/XiKM/kzq+VyhI40WOoo5GKi2sgYABDS/zhCG0fjbcZrGcRhH7533zldTe9vmp3EcrUEdszjvovcinGZJOR9P8/5weNlPCuC8d9WP54sO0yEYu6eAbXWo19UmRydUqDGd9dp9nPy4jtM6xNH5QK0RpdUsH4+HeT6llFlkHMNqvVmvNzEMCphzOc6n/fFYCscYV6t10+Tpfn8AwJyziiIiAoUQEOick0BTFJaclrQsJSdmJgVxIsKABEpiRl9ssZggKCF5TyEEqm4Mb4hQazanTpKKSEyuigDKAsxqFG6vXBERM6eoxcrmqyFV8dVUDyq2pgIiOe/Gcays5TDknLSKIqyvjUWcQISr9cqKrhq2dkG8MMM1e9VDVOhxcYXk9UctnMUOc219VrVAvTnqgvrwpe1b3xi92umqlu2bj1h3w805W2M9LQCgKWWTtBrGhd7iwQQKwzAM0YCXGcFWK7EmJGBmJAUgRShSWPS0LMf5dDydQMR7F4O3HnvWExtAQwzGly/LklIahmG73RrWMb2slf/f3d2t1+suZnjzUNX//M//VFWjq5dl6RoL+2kuJS3LvCxLWkyka79oaLiawtUsPJqHpa0KqlJKLsV578xQLKVqZVhyZoQudz4c9qfTKYTgvbWdcd47BVmWeZ7lcDzsdrvD4VBKUREiijGATnLR8g2AVKzTTTYe3ZJFfRPRZh5srQQ2m+27d+/+9rcffvjhb/f39y8v+y+GuVeHIcgQws3NjSGD0+m0LIvN1ZxZFQuLcPW17XqDbrVWHZHrMlWR0FsT8vXe0TeXPgiXEgXtj1kzkusSF7Gaiba+Lcvy8qzeuXEYvHOqapmWfqPfnDNvfveNb1aKms5iWQVVa75VSQdAE1YqnpHxBTup57e6JnIbIfOa8IXzmt+pjQrJLnHuJRGmlv0zduTNC/kMwP2LA7GfRNuDLhHwxQ3t/2nXiBWw919sr27fvbriNlbYsY021uDyZLTWCiJZBrYOTkfKiAigWphTNqedzJxRORJgoIDApCzUdJIN5n6SdLWpzrXYIxXraKa+aMqaWBNDESxCrCQIgipoaVVUQUFH6J16KCgMDKq7tH88Ou/REThCGXjwkTSgUwKPehHmIKIQqMFNM60XbYtTm40WVaKIZxWWIU3DJk2bMTpkh+KdOhKVcpoPKadSWJQBQYFUSdWxWqUztRtln922rLfK8uBtmAuAZpWJiEZ7tVsOlY+t0dVFfIM9zLQHXdG0URdbIvSZUi0irD0YAKS0uAOhKgGKI1smjKO0ZJx0IxqRxVpTgiCh907VtzO6mljnob+Y3K9+CuckCVw91n912CXmXF5enn/99ZcPHz6kZUlpUW0OOparsr6WhUOIw7Rar7cAME7jNE1tatczrKPd0k9orIOnGON6tTpt16fldDj4lAjRKaKr1dB+GEaru5qm1TStxpaodY7IkXPOyCwiMp9iQw+AMNLoY1TnuDALZ+bd4ejDExIOQ/TBGXgF0yJ8Zg3C/iJt5AEgmpCHnDGsbW60FaTyCUAAdoo+TmFYxWHycSDntbb7UxPb7ffHeV5ExDs/juNmu12t1uhoSel4mp/3+/3hkHOZVqs4WAtWMRbwdDqVUkBri69xGNWRBVGISmq9tdIyz2mZS8kibFEms7OZygJzyUspiOCJgnM++EDOeWdFxBZWvZouJk6Alt5o6ToR6wRhxWRSJQvVftnCt8K5KnQlFzExU+1PIdqboCGgUVnTFIiCmZWWUlTZQkxbCusDRzSOcZwsE92KkPTCp6YtU42osiehETI99wiNVm4rQH1k6mZVBKqbhqqO0/SXT9CbR38ujZLsVVkGZCvGrRGASvW+WVJKBmKa1WuMwxArjxu9D11acHt7e4lxVRWQkEgAl1yWnF8sb7Lfe6LVNNI4TNN4e3MzjtECbNtFvPP25JqtFSIam2jOsjc3Nw8PDz1t0sb29SEi//Ef/2HMvZV/ee+7XFVEsnXwtmmM2GNjcy3k6rfM/Tl0zpEj71wzkfCb7eb25jaXvHvZHQ6HnNLLy3Mp5fHxyYz55nlh5k54O0eqmlNalnlJixlNlFJAlRxFDI4oxgFqpUdTAVWrAXXWczGEvvXZsly7MI7Dzc3N7e39+/fv/8f/+B8//PD329vb//iP//zXZor9h5rlgkk4zNaeuSzLoqKliLDaA9VhrtkD22HiKNuPLvnKyw3i1XcUlKCSoB2/Ql2unb2HqpbCiBe9uKg2HrNw19mLFUrJh/3+t99+Yy6qYjfieDy+ccHXNOSfgD+jRs7mCUiIRqrZ82v6eURsYrL6yJ/3d7AZe6FxvErR9C/0k52yDWwvC6hDdhHut8JjFVGq+Fbhk3aSl0jx1eZ+8RpQvdrir/b6tuecw5frMWx/X6Lht0YTr2ng/untPPtf/ft6zea2YkRj1LHmSVtVk7ZzUoDCJl1NqaTCGZC9FwL1ZIXBwgIm87ERCZ9WhljWXlWkFM6OiRgEOGvKsAgVcKZkc0TO0WXuThW08hgIxewQmP0JAYSliIoxkttRnMmCyfZ9IDA3IwHguus5rvPQNAwm5XGuq2ioNjkiIu8jegDgEsiNIQw+BPJPz4/Pu+eyFJbC1mJTScEJO+GeHzvfvHOc9taT8Vk2t39RLWEvEjvnEa3qk/4rhnG1Mattgl9GQO3V5Gr/TAQoKS9QkYSSM6KCiJwXImKWWkcMqqq5ZBFRBHTkvLd1renoX1/Fq6mvjcr79KqNjdQ/Z60vLlxFSs673e7333775ddfl+WU0mwaWeecgXsuvKSUUwpxmFabeV7Gabx/uIcGED89TwWA2hDN2hHF1Xra5s3hsDfZmwiqWKexOA7DtFqvV+YEul6t12Zq54MnREB1jqxCUkRN8yPCxhbEGIkcIjjviUspvD8cAHQY4mazHjhWsXndsj43JAgteKk1Z1g1yFaIYMaq9TXW1MW6jVmLWe+c82FYhWEV4uTCgOShVqhpZp7nxQz/VcGHME7TZrsdx1VKZUl5dzg8Pj3t9gej3EKMtnrudrvD4eNutxMR32SaG6vMUayrgOn9c0rLnJbqUSWARQqxQXzIIvN8OswzkRtjxGEw5ziyhCyImJjhVWx/sfobFdpkC6zMYKJbluopptIW/9oENVewKw3j2r5gtG4dbyQKIU7TeprWANh8cFm0GBYTEWjiHu/JeYdoCL5grUVDaO0joN3eHvJJZ3Oxfb9h3DPMrcu8fY9rPzdVBRim8a8eoLefqj6UhYtRuaYf7TD3bLClrAqGLA3mYuuIFuPQUG7s9WfTNG232y5XQEQRyaVYqwFWOM7z4TS/1GK3wzTEYYzeuXEatzfb1TSaKMk2tHEYTWZKRCac7T0RvPc3Nzf39/dd/vu5Q0T+8Y9/pJSsKm6z2fTGxSbMqOrbZRFTvFTZDQGCqNhaYU6xyIh1H3EhBh88OfTer1er+/u7eVlySsfjYVnmw6GY3NncCXJOqkKEIfgYg3Okyinl/X7XuwRrM2jzzkMAACBs/2tJG5trvh0d1dhNHYZhtVpvNpv7+/t3795/9dVXf/vb3/72t79tt9tx/NemSp2HiGhxCwDY2ZZSjsfTfn8oRVKqjmwANT7RCx7agqLOM0DLTL/6oKtvVulddXDpXdzaA+UISc0R1BrmuSrdb9IREYvwHTkiBS2FD4cDMx+PB+fcZrNdrVZvwly43nzxQv3ZybSL6BPaOmSXRoAoUOVleFkrcX7mELDaG2mFnRdD0Zb5q9PA84c1Fg37dLhAutp4oVaybQpTrAihrsmfQIuLLfuzxyus8smW/zabewkJavIU8QLk95O4Wts/BQ3nKaPY0QNcY/SrdwOgahyK5zygwT5EQFMq5lRy5lKEEcQ7RVRxtWkmW1uHBnPfXGAQQEFYSi4JHYBThy7pkmBRYhecC+QckUd0TUnXoJuAGX5JySVxgcJ64pKXUjICECCwOsCAzgEq0ZnPb7lrMOsJpFomRQb1iIJHH9C5BkkJ0RGQIxfJDUQecIrDGIIDIFVgWY7zgfeceWHTJTpFDxqwlrpjSxWf45PPTZY/W4jthvU3hDcmwiu+tHHxenWcX1nvKgAAIXpnSS5LrntyzoQMqgoEtfOxIwUg7DxpDTutPkiKcCmI2Jhj/Swea4dezMX6hhffrpP+rw5bs7ilB1hYQaH67iFSz3pAAA8IznlEkLrQvY5Nr2Bu/fEZ6cYYp2ncbjfzcuuDM2fCGOM0jKZ1G6dpHKchjqarsxIQltqFyDlvS4Z3HkKt+S2lpJSXZXHeEVIcBgRNpRxOp/3huNsfPLlhiEMMl7mYT48O1tt4EoJDIrBNrnUwJiQkg/4ICoSk6AytOT/YH/KxlugCGv7LKc3zfDyeSmHvfYyjoXkfYi6cSjnN835/2L286M12mkbnvLWnSmlBhJLL6TTvd/shDt4H7/x6tYrBB+8sWVNKzmmxnitcsgozamFCRFQBKUvh42G/Oxy887BaEyA5JIcpLfNyOp6Ox9NhiPev5VHXvUzOwbK0MTFO1xb7JtE1QW5hLSyZJRcpUq3Wa4spY4LI3koA1OaGc65JtVikdLakr+3GF4iw7T4AYDWz56XhWuOjlWu4FPN3HrdtXQqVnUCwfo22vBm9/c+LFs60DQCIShekmueA5aMv3GStoYYYsqzT23sjuQ3gGokbYhynab1ebzab7Xa72Wysnt0+S5gFBJizyOFwfNkfXnZ7g5XOu2maNtvNNE3WIoEQiVBFEWgaJ4PUpZTDYf/y8mwtcI02NmlE/yB4AzvV58WEmN1w10rHam0comlPnXfzvCzLXJW4Wq0JAcAmADR/Lmt/GGN05BCRhZe0HI6H0+m02+92u92yzMuS0rKc5pMpSmOMiDiOg1HFZt1r9QZpSRfB0hkp2BLdgK7ZdlCXAdjR1wT7/mazuX949/Dw8PDwcH9/f3//8PDwcHNz0+vzvmRuvPlNbF2XV6vVw8NDSwLMKSVCZ1JyRFIF5mIbsVWq4YVPgo/BO6oFNBecrs1I+5x2zwAaKQeta08dFkLvHAUSkcKZmVXNsfjsBOfIiYrzXkRyzlbeWVRPpxNzeXx8/P3332OMj4+PnxuLDulUL7LF1zuWXry6p4kFoMbUTX/VVYyN/YX2jGtP6ZzfDq/+98aJ2S8jogggAYqQlegrOEDumaszfWio8LwHf6aKBj8zAz4dlv711fu0NOLnfvGa2AW4xjj19BpZd1mRBg0GX0QKf4W22nuiMaDtTz1PROedt87aMfIQQUwG4GxRZ1VSpSbNVAX6BOdiVS5pzhnwyMCM7NFlKMUXQSGn5nbqkMi6QpxvurYqEU7LssyLlFxgXpDyvEjmPKfleEqnJa3n9TCtxynYw04EveceAREq1J6bUCuHKtSrhC4RgjHCzkCqgjjOAXRybjsOy3p9GIdHR8iS5+U0n3JhJI8uEI2e0LkIXs89J6p7fRMdfHK83R6iDxkAEKEqKb9RjWSTpK5+eP5XY4+N1AW8fGWLQBHIkbNkmfc+xBBDcN47ckikJtj3DonQEQpBJZAwiIgJmFTzknKialLQVISXOOMSU34u91GJ4Kuf/MWTpapmBAUA5CgETw68OKot6WrBoa2DLIJQl0GsGintNECP/KhHwPZTBAV1DkMI0zTe3GxEeJpGZRGRIQ6raTVNU4xDjEMIoaYhnCPb5JjnebY0KwL4EJ1z3oeSy5JyKWWZZ0SMQ4whjHFkKTkvp2XZH46r3S6QQ4AYgumePwNyoSUuq3keISG6GryXbOJTQ/nOeQDrlIBAHh0AeSTnfHR+cD6SD0gekdRyoKUsaZlP83w6iUAMwzBOq/VmnCYkB8c5l2Jc726/dyFsNmUCdc6H4GMcnPOAmnPaHw7OeyKHiiXzZr1yqwmtM7Zt6mnOaVHOIIXBERYAAGYgWpZ02O12u5cQBgL05NABoMzm/XDY7Q+H263A9U6NfenCvnm0m17b9DXJ7VmtwCy1KVwRLazJqFfjLitfWp8lFq2WYohWbmW1dWbp0Hyr1RJCiFiMIy4gwiKECEbNvZ7qfW9r1ZAGZGv2s5I/leA1xKtgMmQVs0yx5x3g4s2/9Lh8NkUkp3w8Ho3HtfonI24N6TLX/xuBB62uyJj7ZozrnfMxhGmcNpvNZrPpqlyTURpaNGfjJZfD4fD88nw4HFJKgDjEuFlvbm5vV6uVVVw5R4geJ/JhEK5czH6/Px5PHz9+PJ1OAGhVbm/6iH26hSPi/f29gVeT9poKtjewGKdpGMdVTk/Pz7lkbkC/h8Xe++A9tjLEfuU2niWX/X4vLMfT8eOHj49Pj8s8L8tScm3HapJc7725KyhIWtKSli6ANmhrpjY9PdjojDPkrcuOo+DDZdc3o0tDCPcPD99///13331/d3d3c3O73W7Ng+ISEP9TU+XVMBLRMAxWCJhSWpaUcwGgUqQUBkARSQlqdMRsU7ubd5EjDKG6INC5RYLqqwrcmpTEDgrqS2xEarsQEaGMGbKolMKIYuPcYx6jAJaUvCPvCAg1izC/PL/8/vvviGiFjJ/OlktE9ucDBDVfbH/IiFMLDVEZRVrCBuACbF3rkRo/exFRnP9zPofz1tC6BFcDWiVUcuA8KpA/Ow53FZReOM/82UVdsKR/flwC3BaaXfz0AuzixVGvxqDJ9Wlgw0wWWyIiVXocsBGZqvonzeuuyD49q76uhLyNkidHIYRhHPI0lbyoZmUPWlrSr/qVnklwAPKvCQULuRQgl5Q5ZyjFleCjeGEnQqIkAIBKTogMVpnftgICVKlCLsuyLPPCOc8ie9VTOKbTctofTrvjfHOaN8ebaX0zrcdhIOfIm+AdbSNqdLKwChKSd1Qr4YOJfMn82tCQLiKa3KGAFKdl8nQzDk8hRkTkUk7L8WW35EIuOj+EgBC8G0RZsRa8ECi1GrU3rI/gc2zu9VLSYvlz0HLxvFXKva9/Pf6piQq7lVU60avZABDBORd8iHEIMYQYwxC9DzXEVkUidFXWRJVrBawku8Ycy5KP7ggNU19ERgCfXGtfmF7NifbT/qPPo7rrd6uiSlBEJOeAlBQAsZYrknNEgGh7jigqAzlq9txXp3eZU6nvb1kQssyaH2XgzQYRV+vJpJcxDqtxGscpBGspTFbX1N9DWHLKhbMJCADIjz6EoKKIWUVyznaVIYQQA2QwK/jTfHrZ7YPzIfjVNOlnm5TC5dprOwKStV1QU/aYeQAggher7208ASg6sN4aFMgFcp7IIzmosYGUbLVhKS3J+TgMw3q9GcfRh2C5m8Illd4hw3pkVI7TmpTGOABiSmm3Pxi1I6KOaBoiAQvnnJec5rTMKc2ojNW5Asz2RRGWZZnnw+l4kFhSjCkGxZKL2512u93zbve8Px6thv31uNTly6bceYKJKjQ9LlTIy4WlNR5T8xoUREFilSwiLA1IKoPRJbUhmdRiRHSeHBGgWruplghs1tIZRBmkp2TQkTMO7BzQ1lnXpje2f1b7tfr49plbHRYqxlXFBnNBFfRfpejq7iciS1o6m2tU7lJbJZTuvJZLyTkXLqLiqJZbNaGCiU3DOI6bzfrm5ma73a7X61aCWWMBAO2s8Ol03O/2p9MJQb1zJoNZr9bDEC06xUpY4jAQaC2fZ+bT6fj09FRKWa835uTQfcSI3l5z+8Pz7bffisjpdLLGFrbyIWIIYbVakXOEuKR0PJ1EJOVslHZHkN2TAZvnRu8fYWNYuBgd/vT09PLykpbFOiGHYKxCaMy3Q8RSyrzMx+Oh5FLXcrpI99b87OsEMLXDN28BizcM85ke4/37999///3f//7vt7e36/V6HKcvA23nSXKxbL8xcwzibzYbq9+ySmBmWWbDuyaitdvOqlKKCfTRdhkffBBxzjcThksQe83m1slffyzSegRVu0hqDmKqqmabIiDBe0dVMI3WJS4tLOIQ0SMCGoN2PB6fn55MsvL5MXlrIr39Xbz4YyafzMwgDMItzXR2PezXen3JZy719aZ/flHN8jT7FwHD1kJK1gjXOmUInD/kk/uob3cOqxj3XwiGvvjoM/GtgTzfaGn29kSkiI2Krgj1nzu9LtJQveiChUTOxzhNKykJtDgHYkXnbZ41abOq+VIB+E/t5xDIIYuUwixciNWreFFC9SDWrk4FBIkdKYKIslWhoQNUZs7MueQl5VMqOQkXFU7OccrLcc5zKktKx/kwbU6r9TRMJsf3znlH3lnhjaqKgDAoEpJzzpMP3nnvvbnvejRz4upoYckFEVQsKYBOwU3BDY688dLH0zxn59kF1cE7HcQJmARRW3jV7+BbN+PPCoHPgYjdi7auSXNkhEbT1ie7/iJcLRNGTJKqgJICVOswAnRmgjWOcRzCELtuQSupVDliVXX94WvPmVN25BCgZoG1UblW6NM/+tUcuEpRvDEedfn73KCc3+dMxDJzTtaTOUOFF1ZaZaoLIqLqoEW2IKKlyPoaUVdOyx5ZeELW1gFBVTwrRxkEAcdhtLtB5LxBQ1PImUNHykQoEiwlbRshACxLArDEmYNGfSGCCBcryWRBAO8dIXCRw+HgiYYY19PUd7I3BuG8RkAbUQNWNUOPIgSKAB7BE1INhlGBQCpQa61EapBsyy8XXpaUU1YRRItxx3EaRXW/P+Qip9MpFybnp9WKVUMMJZfD4cCFcy6qend3O45DziUXVtVj7Y0kY/TraSBkKfOynNJyymkueTEvElUCAKK6U3HJDmEM3jtCLWU5HY9pKafHl+dff/3p6fHjaVk6sXc1ic5KGAWtVV+q2u5znamiLMJFcuGchRkUHLkxjt5BjKfTzEdkzWIdC+yZIFQBZpOdLPNyYi2VKzqr8NtUJwTQlNOSrZkWQw3EyKHHJsXrmcguxqsbV/8ONkK37gft8hDOMLfqMhQAiP5ECnWdNLl4QrGaDFePhcOxtgQzIrcqFmpAwAZ0rWtcKRk9AITa+8JVG4rNZnN3d/fw7t37d+9ubm5MIdB0zIqIMUYoRXMh8yZYZil5HIfVNE7j4J1DVRUQtp6oFdchkoqWUg6Hw8vLy35/OJ1m5yiEcEkY/+XWTET/83/+T++9tUAzFQG1BmZWirTb7w6n4+l0MudgW1G7QYeZjhknSq07WmMJlJtHnTVDnudZm9A2+NCs1qpz2bzMpZV4i6h3ruXnzrH35xbMfljdcM/jq6qpOFbTajWtpnGMcTAi4wuAwSs+4vzl5bS5PDcTe2y3N19//bWqWm9BALD+w/13u8OJdRKhhXpAYlFCAz21YuqKOalcTQ2QAKDxOKpaO3bbGbV+HKigSGQCfEJyjhAcQlDVGMIQAyFa/yDvPbZ791eD03QLlxrQRgrW3bqVtDdkLiBFpaiwtq7QFeC2ET2ThIBVtFu9si7IKfu+ntcN28kuVoz2GzWotmYL1d0e8Szwb+mBy3veId8/iRvf4rD+mQP7ynmBWW1OV1W3CNekmaE47Ui3/dbnP/384Khad44+0jXJZ/eD3DBMuhHn3ThNaZlFuNr0yGuYa3+m9c3roUBlEgYVK3gszCmzq/a5KlCkZGso1bQsKEqqgZwikSqyOgGvqOSIvCCIgiMS0gR5l46007TML3H3GMaVj9EHY1mH4KP3Fd44Ik/oCJ0BuapHd9Xr3ZFzaN3Z6hZTy9JZpHCGnALwOvqbadyPw0sIKbGqcmF2zNYpqbfmukB+TbT8+vhMFzSo5FM1Qmoo+TKIhws27yJGax06TGHeOuCpiAKpGTCpgggieudiHIZxGtZjGIZL2gD6ogLnhErlqAAQSZScyT2bA8MZ6baJcwHTX0Pb/sXlimmz9ouelnrhaBteSmlJszkt2EV4S5/XnpYBiRAInBKAmSTU8OAsxLf/1PcmROeIvANQFVGvAOCdFxHbaKU3w7LTUC2lLMtsQUgIAQFDGJzjaq0A6H3wPiioIwJv8b0YMyZcCDF6r0QifDgcUWG9Ws3Ltl3H29s21f1MesjTrktUGEAIlYgcYSAkRzbrmSEXES4tj9Uml2GpKh2uO65zLoY4jdMwjIVlt9/PS56XpbB479ebjfderQBlLznlZVmmaby7u48x7g/7p6eX/WE/z6fdy06Yb9ar2+3GE3M5LssxpVPKcy4LWR8XRwBA1dZDmNkRTIM1+pWSTs8vjx+e/vj96Y/fP3x8fPxobZY/mRv2H2kdAU2lUPWz/b8m0WU1J0PreaDgyLsBJ6LCjJSKQBEBKFzsgVBFsfZruaRlOc2HwsE5wmpe1Ay6oZb8Kag51HApCL0VmvPkoTtZn1labGt9vyftm3iGuS0yA6gwt0WuYFIvsGjqc0fbjvs/675akZE1OGhs7tFUudbsvHBrMFvZ3JIr0iUyPFE7xnjvTM5+d3f3/t37r756b6gOEU3bS0TBe+ccIJorjHLhNEPhwa82q9VqGD2RaaJFRMSoVXt7YpWcc+0/fNgvyzyOkxGK/xTM/V//63+tVitrt9vRYW+0+/Mvv6R/ZJMpPz8/Hw6HbjdmmNh7b0DWAtFXi5sB8ePxaApmEfHWHM75EMM4DjFG+60lLYf9fllmm562thO+8Z7YntF+7y4xrkURfSFQVefcOI7TahrHMQ5DCP7NgPkz8+Q1lu3Hm98xVnu73RJhCJFZTOFi5soibHtazqYaEDM3AERHzspkYIjUhlIBhFmwhuFVeUfU5q4icoc32uZtKYmIVFsXCOeM5TH9PaAp8jw5RIAhxCGGHnqFGO0S/nLm9Gu+TPfrRdoIKtykhiQVlVWKcq4gH1EApXr7Y6NZBasFS0vdIBJqJZe07ZH108GaX2H7oPPdwv5FTWs6q7Y3ESZodXq5CJ07fv4Xjku4r9cHfp7egwswY4uPNuBdO1WpGlwxWaxwDZnATDMvtB7txefPuQIVvZbu4nz7q/SMU4DIx2Fy3k/TxCUzl1qYoc17XTu0q2UvFFavRwOgkKkQRFS1sCyZAUg9IgEDMyfJzMyiytZjQTyCuoDOW/kGKQA6JHEebJ4QAjjIJIdyKnnZH3YThgn9iGEkPzk/xWGKwzREH7wPPsQQxujHQIS1ywMoqjrTVhI579A78BfpR4dIaG70ouKVV8HfrqeXcZxinOecBSxwr9CnVjJeoL5apv1lMPdyBn162/r0+HR8tQtvWh2lTRWsvLIAEGA1UOJccsrLPLshApFIzRDY59hTZPOttiZslTKIgEDCfNgdjofjPJ/qY9NJtH5Cn0zrV1//P8R/FegqqNUTzKf5eDxIE7RZUV1tOBqDGRuFEBG6Vvs8wNqi24pTnGWinXOutXer8EQVnPNELqc8L0spiRkRz2VtWmvjSus/RBbTGSQwc2JyjpwrxUBaKaXklI3XQec5p1xSla2mNMTg/Od3pr5G9MwSAppLEzmwYJ4siWnZ1Woab1IxVYVzhrwu0CLKmfOSOTMRDXEYx3EYxxjjabd/ft4dTrPZWyuA5YiXVu1udTzO0e3t7e3tDSDMS5qXeZnTklJKSy6ZpajkvJzm+ZDSqeSFS9baOMwBgBh2A0WQ4MlRRAUA5lxOh+enx98fP/6x3+2W+VjMNuH60N6npvJuZsHdY8/qC80WZQgX4cz9j0DwLoYYwlA4FxEBlcXMRQAA5ELpa/YNgqaxIMsaq7OMmFatLptGSkCpteMktDpb7E/bGctew9y+Y9lX1w1bahkLnePLDnO/CMq0B/q8OeWSlyXVjg+H/b5aJqdcrPjMpB0sJjNk66VRChfHzp4R0/nEGM1a4eZ2e3Oz3Wy3jkhVzdp2nmfn3GqarMwfARxh9G6MEaJu1+u7m+1qmoJzVUstdeGxdIS2vhXWvexwOKaUh2E0c7HYwEof2T95dL799tubm5smOK4w1/Sj8zz/9vvv8+lkHRysR1o94bapVwB+Pdr2Jpb7th7Ixl4TEQas8uWqdMIqb5jneZ4tSD7rqttMwEagXoIJe06pRoR12dHK5ZOJZa1xxv39/d3t7Wq9HobhnxXjvoLRl/W7l1sSNdMuIgohbDZb59w8z2mxUCidTifDIVJbsItqURVmzSkvtABg8H4YhhAKhWrdja3Mqz0mtb28DYuFACIowvZsinDOYP1JyHmrzlNQY3ltAG2PR/REFEOIPrT1UK1ycbPZ2NT6ogG6oAnPg9axKDatIYJ15CEEdEjk1HlwAZxTQqvvBmG1J6sIiBLVcvBqZt9mXb0HUuFF67kZartErE919/9sZYmVJsdeuPCpGdlfzYMvf/k/fxikB+h5KlWoHeoNjZoItMOPvlv9s2fVO2RdYGRtCy6S88E5pyFCt6BUZYE2/+veUUt9VYvgq2yioBRkk5NZByRhkVSQAMkr15SZslpTIq1+8L3vFjkgMpTiHAMwqoC1M1MGXrjkoifWk7ioNIFfu5hczHEoMaYQyTl06IOP0xCnSJ7Q2l8AOACHGJwLjshgrrPeSwLmhOsQEAWBQXVZAugU/Ohdqz7RUphcx7h9IWjMeB3gL4W5/XewWtpBy0zrOV9f71t7lppwQVQARABBa6rVwipUJDslYZZc5tPp+fHJT8O0P4Rp9DGeZ3M7T+xzSbWmfNt058K7l+enx8e8LCH6IYYr0tnu2flkX5O4eJXuaR93/Zo/m639BBVENFs3pt2eS9FKLVR4Zyh3Wq02m800rS5DyDqsF4NtTAKAOfhU46r6gQrMAqoIZjButq9nxx9zI2owVxDJObPsYtsIDQIOwxDj4ByBCpcsUkpOKRHiSG7w3tuIeR8AgTkzF5XPFs63S5Gr9RbR+YDkLUYhIucCuQDkAFEUBM+NwKvdDdRHEgCFueSSU1bW6COtabVaD8NI5JYlPT49vewPpoleTavNZjMOw36/48YBi0gI/ubmhrkAgEk2y8giEocYgidCKSWleT4dUppFkmpRJWmhB2nN13pHwTuE6rCbysxlljxrWUDYWcjyyXItKmxCBTN3rVC29nvo5pFGS5b2J+Uyp7wUdqrBefJ+HEcC58mr7nMWySxtyzUppM0u8gSgQGB5c+c8okMkVSnKKuhUnQrWomsickQmd2kMDDWaFvsz1LiWC0LX1vhK4rZnQLE/ndYTThWA8J8rQVOVnEsuyYxyd/vdxw8fdy8vp9PxwmChmZpUnNuzONLKW0yZTcF6OqxX2+226rmdU602zNaLwWy/tsyAyCLO0XazUVEkvL253d5sxzh47+3C6mKCiEii1npt3u/3T09Pz8/Px+PRcuKI2JWy/cpeLxjXz45rHrem6bRfNCD+8vLy4Y8/fvrp559+/PHDhw8m3rUXdDGuZd7t0jqn2wWyhm57NwTn3DjUBuDNrTxZ5zDTtytArymz5dEwbicPulatRhQoInRh+Y2Wx7dex3d3d+/evfvmm2++/vqb9+/f3d7cWADw5WwuANilWXzeCxA73rXX2JhbB5D+EeM43t/fmVNJznmel3r7KsytQQKzMJeUkrbmveYSQ+PoLsfBspMd5hrBoeKIWt9lEBEVLsKggYJVtYUYAyKYXIQQHaJzVBuWePN/sy6LQET39/dfffXV/f3909PTb7/99ulsATjvvKrnrfD162witT2wUg7OikU8mp5umMK0cnFE79CTqnBJUnKal+W0cC7emxFfHGK0WiB71nLTPlvAOQzjerWaVivnPXlvuxJzKXa/SjYK3Htf1SCVsZLLrdzuNFwxxRcz4K8Abh+ZT2cPtATtWw/gJzxdzUQrqIBiFXHUjwDvyZmk0iIHI2jOKLURulfkugI0CXglCC4AbpOwXQ+Eub2hbZzNWlQBxBhzFLFidTivwVeHgGRNRjWhb5/EqlkVFRk9UaRIWAgLIxAigXoC78gROkQH4AjFZLOgpFisC2jLkdsib8u/J9JAFAM4J4iZOS9zSklA/eBd9CE4H3wIbnA+ejd4r95jCMQARaFxvQq1S5ppxIrykpKm7MQa3auKcJFSwHlulA/U1APWhqOvoOnl8abTAvREcuNvLmcgvhreBi4rwQQoIgIIXUVioFsQCVVBTVs3H+fnxychHKYpxOhCaDndhnVtIp0Re93W7L/MPJ+Ox+MBQDabdfC+IfEzwv3kTF8Tug07X36vEVZ/cTR1P4Bd0TKnw+FQskXtgC0UtjVNFIZhbEx4wxKtH3SlTBBa8yC054nMJhMIFLkIQlEQ0x8iYN/koK31MUaz1KmsbdveLAdqP7LIOsYgbKaZXEpKCzrnwjCSM3EBhuARQLhYau9zaw21xksAoE3kVaXJDRshEZFHow+Nbwbh3oqn1i+eUwBShDOXJYtI8GGIwzSthmFQpGVJT8/PH59ekMhZa7dxvLu9BVDzZDAoE2NYliWXoqDkKA7RDJjGaQjBEUGRvKTTPB9yOjFnFRZUUurCF3NcMQraE6W0SGYts+RZyqKcCNgTvPlIsQgoG8Y10tGq8Zq0qrIhbE3tWMxBLBWelzTnHBApRhfiMIxDnIhCSnw6LmaMK2q8eS30MYdU0docwTre2X7KwsBFAcSJg1CDEbs55B11Xg0BASwZR9BylW0NbZVHHdperq/aKF5VbV5noKAk7otojkaWMMuSltPpaDKAp6enjx8/vOx2p9PJquZL4SbLba3jzij3iuQzyDiOw3q1urnZbjaVRDSm3+DjH3/80WGltexyRJv1ehwG7/1qvV6tVg3f1KWw2k0Raq6t13a73dPT09PTU4e5HWJebHXw1pJ7PgxawXVaySDdbrf78OHDL7/88tPPPz89Pp1Op14E0027bDTsupZl6atNZ+DsxdgcbcdxnKYpVisGSClZkZ+okFk0tooyuzsCYk2/obG5/YC6lJm+77y1GwS3lg3ffvvtd999980339ze3o3TZEbdXzAtAM6LvVUHnsxUrmdsDMH3O2i+yMaGGqE+DMPd7Z13ARGXZTkeT1L76i1dR5RzZlZr2C6iFXQSOaIYI1q4YsY4YE+d1VNhs5cxws/lggBaSrb5CQDeB0KMMaxWq8pC5WTlucG5IcZpGmMMCGSchd04g7nv37//HM/y6ff1+sdt28YGGQ3FEDlrbkVI3vkY4jBtb6ab27jauOApehHmPOdlPu4P+5d9mtMQx3EYxnFarVbWAEVbEuN4PAef6/X67u5ue3MTh8HHCAg5p5TSPJ9Ox9M8n5hFFOzBaOmB/li1bf5NgPvJbPiT6XI5MtqOy7f9y6MKHBSqgkNEa6TXVtsqKiWiVnh2Tl43NNwe5Pb35Z1p795e1MWd7QRsdBDqixFMPWAnUkkHUwTXUM3g9qsLEZUMiWzI0VVq1GCuKgi44AYjQhCYAAEdqicIRN6hQ/SATlEdCqADzFUIoFbzBEYnIAIKqEYKGommSOhUsDAfjqfd7mVJCRyixzjEcRpW47gah9UQNQ4QIwmSU0BUAm2tNFVZoLAU8wzOIiri1WQVxh5JKeKsCa4NYduXqvwFq1P/p8dnu6BpL0y5TIics5l4dSfPEYoZ8wkAVL2siLZEpyAAGMPFaVkOL3sBCPHgQrRGD9fTpMZL0Baac8uJKhVIKS3O0ziOrx6Dzz027WXY1oS2XvX5+Bcb09UoEVGMw3q9ubm5ta6bndepaLWKrf1mszVLo6FFxpUdMgs5dZ3LoZZXRrS7Bt559ep9ceQsBuisSYxRm+05NJoHm3Jaqq66aviMdggh5JxNaBjjYJHRnLJSArcAuuAphGEYY4iD87FVuX1mVC6CiTaUlzOkQllrB1HJb6tu9h7ROQvybZaBqrAICJfqL4DWyjg4H0ShMnoiIgIKAudMNiCGGIdxtAmC5OZleXnZsTALO+82m/V2s9mspnEaAKSUnJd5mY85L8JZhVtlRNPeWfUnKiE4QhPTe8LgIHoYPCQP0QPLGwPDwsrmAmMMLgtzzfYZIGsdH4RVRAtrYc1FUuZlKYwJnGPBGIcQYoxxHKdplRVPMi/NM/Ei6sPqV09k/RFiDY0Y2R69WotKaC3p0J/Z3Ja/aH96olOhE7ufsLmvqFxAG7iqHAIAAgdv+E+cp0x/WK15mJkVPD4/7V6eX3a7ffMR40ba2vVKcxnmCm3r9L7MWZtcYb1eG1odhqHHeEZemj0CIhqa7IGi0YHDMIzDEEPAlu2pBfJYkZ8pAYzHtbIwq+6yNMLnuIQ/ORDJKJ+L71TmDAAcUWjiJ1tbmJmQGLn/Sic4oQkGbGrYsFgAbMR/8IGIVDSXnFOe55NZzCKhC9US6JqOqn0orgmzq1PFykmHEILV/N3f33/33Xff/+1v337zzcO7d7e3t6vV5K0RY/u9PxmQjm6Px6O1en56erJuz6Yz7vy9vb7D3Jubm5ubm9vb27u7u81mAwir1fTwcP/tt98sS0IECwmouSYDNNeTNj1OpxM2zwobQFfVC90TlPpk6yyH9+Q95UxpARVpQjYGUQLwzg1DVF2Rw2kap2kchjgMQ/Deim6DD6a8+uqrr969e/fw8PCmoVgf8Kt/Xo7bm6+HjsxNcUzOkfcuhDDEYRgGNwQXgigXB4RQUg7ei5cQfAhxGIZxGKdpMotPM6y+WIbFSBQfatayLeXKXLLPznkAtjqcy1qZfsLn+XQ9//9kenzhyPwrhwLU00QBUaysFBE5hNaapY95o2UbateGJz6DyBuQ+cydsotoo1LjlQqDsK+51yDnEia3gwhDdKTowXv1TshndEKAhAJazGAWER2BCiGROqcOwRM6hFqnpoiqzrC5AiiSgkCTaRM5Qi8UlMZhWK83t9vb0XkvqJkTsx73M+eUcpYSYpjSNOVlWuJqiFMcVnGY4hBC8M5baOkdIkGN2bkUKUUKg4qagvAyuO5Bz/VYXgRNb47vm2007D3RWEaBS03h1dvrOdJqYY2AggJ30YJA6zuqCEJQwQxzXlR3h1zYheC8R3Jt0rT4CAH0jMxfiRa01swyQKiFg3BVW3oGtNehXvsCzz8+t4Pq6di/eGbsEXBE02q6u7tLKa+m6fb2tm917bbUibtaTTc325u7u3GaiJyIOmeGxGieBx3m1qFv0M8mlffgXHbO26JcCgPiMAzOu3me59NsHjTU6gIN7xrLZYQHAFj673Q6GcHjvIvTillOyzKnXHQRcKy4XU/jOA7TephWcRx9jPRZf6h+odRIHRu3Wm5o+iAEs3CkGgepIroQ0DkXvDnZt51dgQUKF1EGMK+fEOKARLmUJWUWsS3Vkhyl8DzPh+ORmUMI69XK2ooS0bwkfnxCR0TgQ7A2cathmKIHEC4pp1NaTtwMUyxiPueBapfvOrEJITiKwY3RT4NfRVeYSoEib5hJW4WUCWerBFe41RHUajRRFAURZAZmKKylaC6aMhdNRXTIAmsMFIMP4zRtiihAYeacLdwzBXYphew5dQitDRgAqpIJBlurNTXZQq2AJUfkkVoaBs2TodpCQtszLO3Z8jddroDnx7+5zNtz1dhcIKU/gblwgeTmed7tdo+PH3/+5eeff/llt3ueT/OSFguTtUp0sO9ieqHRtJPo+QoDc8MwmMBxvVqP4xRDtOS+4ellWUSkd+oyyLssCwCYFYNRof0J6t5YfY4az/rx40fDXlbj1a0S+tX9+erxl4d99DiO25vt3d2dBajLvNhyIiJ9eDtu6ERyC3/OXQlsVnjnyZGKJCmn4+l4OqYl5ZyYOZAncs52GxPaKmBtxFqZzPPJKYBVFLcrjXEwJfT79++//e6777799ptvvvnmm28e3r1brVbTamXWzn/JbdshtZPZ8fd2/Prrr4+Pj0bomkzrUrRgt361WhnA/fbbb//2t799/fU30zQNcdhstl9//Y3hUjNaBoDmtgEiWoqlSCop3kdSVWOMGGNtGWGOATU/Zv+v7gEsLnLI2ZkvjqFcc3YWZgx+HIYYfQhuHIdxHJxrJjzoCGmaVre3d6bxeHh4d3t7++HDhzenxHWwcZ4Ar14GF+vy9b/NmR0bf2XJKGqva9TKxZpeQR45JBQLoq4QB1TxVWF2hZxDwh6EtmSPLQp6+eReod2ur2hndXkh/es3sWMjw66GqJ+ett338g+eX/w6wW38mShY3lzNm8h5q+91VkKHACoVYVRiz65OVAQ+Oc+LXPQrovfqePMatQ7cJZD+5PgEqHhP0xgIyGHw6h2T80QFlUEZpFTMhg689+i88+AcEAmoonIlokSIFRVIFBVIUVqq01JWHl0A55W2q/Xd7c27+4cpDAFIMheVl9NB5+OcT7vTkTKOmkdJg/fR+yGEVRxXwzjFYYxWcxPGIXgkFshFWz96uxEgCmD1PW16QqM8Gkqs97rh0DegP3yOzbUJUp8IqeU5dSpc3YZLwNtQjABYZ8F2e+ursTp9VUKGmVVTyuQ8ekfkGr6t/6vk0gWFUD+xT1AE29qvquuwn9QZtFz9uv277+P1x/0Cv/BARHTOT9N0e3vLouv1ep5nBXXkrEMbtkQPMw/DsF5PllMjIlUBcJUlVcHqsfoqrK0fZNu8mdOJWHOzgkQxxgCBC5/0VErpOr++2xlrZduAkR8m57X85uRWcRgLyzHllHNd7VXHGIhciNHH6MLgfMDPyenOokUgpIvACqpQEwAaTSoCNR9kyNuqviuba3PTUvnMXETFJjc553woImnJh3kuLD6EYRhLW03nefHuYJc5rVYhDuPES0rLPO+PxxjjOMVhHDab9Vfv3g3BSUolnUperMcv51SZ12bpjFqd/1o2QaH2kKMY/Bj8FNwUXSqYMjjR17cLgJmlFDVnXGE1AUN7CGsYp7V5rzVEY0EWLAKlqHJOpZTMjsIQJyIXQpxWmko5LXMqxQJKac2BHZCimhyWiMgRKBoHB1rNeSsqQEucVjbX7Pg6g1s3m4Ypr/ZURMtd9waePWZundIqwLUStItGlq+OOkdswzNm9OPHj7/++ut///c//uu//2u/3xlRFOMwjmNNE+N5ewVoMEyr15P92JCrFYFZM4jVelXbwCIaV2eZfVXtRnv2LByPR1UdhgHaZsPMVsxkqPcSPi7LYjD3+fn50tY3paSq54z/P390FNivyBjK+/v7XErKCRHNitp2VQaGizXtjSJ98w4LoVUBWV907q03zP0KL9HMqxzd+Z06vXF1dB3warV+eLj/9tvv/v3vf//h3/7t/fv379692263tvhgL3a8QhpvH1ZC8Pz8/Msvv/zXf/3XTz/99NNPP/3xxx8mWTZVwPmsoI7YOI43Nzd3d3fW4puIHu4f4n2cpundu4dhiKra38FkvlrzYGBioE6KX8pOTPtxkS5AY0OdMwhERNVQKGcH5rbADKAm+1VlQghDDNGaW8Uhhr7neOedD5vN5uHh/v37r+7v7+/v78ys40smDHZPsX7LLhMl9ppr8Nce+MuHHsnkyO04Y90K6q1VeN3OuhYOG3Hb/e1UBIB6adDF3m2van/OCPfV9fzFxf75T//8BX/5zng2D64kggKYbtoBVJqz97+r6Zf+8vOBeBWTwxsP0+vI5M3jAgF3gPX2C18NnHe0niKBIwwOvSvkEmEGXmrJmRQVAQfobQ47dAGRRDmLgDKDKrKgghNEAAJ05ouOqKAOnSfvnY/oPPrVON1stne3d+th9OSk8H4+Ds8fcefSUfbppAVm1AHYNp7g3BTHVRzWw7QZ15vCax4FIXoyH3SRbH3jWbWoplyYq5cmYuPRLnBlHYMOMt9GuW+zuefQqgYMveb6gp+Hq4Xm8nEysHYRatVPb/Oogm+ovZOo6b3tbCuCPVOq/XSarTKioSNHSFZ24y7jtE8fmB5W1t2+v/GrKfMZxvvTo7avi2Ecp/Vmk3IhC/YdxRB9CBW+iaaUUk7e+WEcQuhV2Gj+noDms8FQnSmuzhbquSIiOBdiHERBliUXJbOGQmoEHlDzM7Y1yOo2bP+2bc58Q4moinRjjNWbhFEKclJdWGcegWdXFlcGV3hkEVEHbw0MArTsncjFOdcUNwpCvUAQldqgS1TFOURHqlTz0CxAAlqsEiuXrKA+OCODUynHeTkcT4fjKRcex8n5aD1tESDn/PzyMsQ4DIMPYYyRkPbHg9WOK6iPTgG8d+MQPeFpPi6n0zKfclpKTlKKiKCxV4ZrwYRR2vNTWtk1H30I3kWH0UF0Gp06PJc196PWpLRWZ9AMxWrQV0NFbU8SAjnywUXxhb21ihBOqZyOJ0LnQzCFS0sNF6OaKolSCqBDV8FZSotWihVTyaVkaYKJ+ozWWhTvnDfbsasd77wrQtulupIB4ALm1mcF+xqsnSxRAEKBz9C5HSyancLvv//+66+//Prrr3/88cdhv0/LAm1DZWYbW8uxWn8pQIAEIqJazO5eWtvbzuNut1vrs2V9yKR5xxrzSkTWhhcRTbFgUIaZj8cjV9sgWq/XNzc39g7UKjhzzvv9/uXl5fn52ajcZVn6m5jsoS1H//pBRCGGcRy32827dw/H48G4+xBiWpaU8pkSq2MPjhBsTTGnlmq77cgYe1UVYSilcMnZCs9KySrqmuUhtpSW2fEDqO3pfXq3GE1FpFWp+vVmvd1s7x8evvvuu++/++7bb7/95ttvv/rq6+12O00rG73Ljf8vMS4A7Ha7n3/++ddff/2///f//sd//Mcff/zx8ePH/X4PAIhoLTN7nZ/NJYtVUkrPz8/LsixL2u/3P/zwbzmXu7s7QNxs1u/ev7Mmc3bfjQLoyofKzzSh8/l0EW39bBsOeUfWfM55C66qeqHwELwfYpiXJS2FmYmAiKzJzrQaY/RmHWofRESr1Wq12tze3r179+7+/t7aW1yC7C888ALsnNmeK3Tb4tgealuECIbavSqhFpUaEbErjmoAY2ZBrhVxdqtHE8L5VmRtnVl6u3tVtTaO1ZGvxqa9QL7it44Kaur4Ou/6BeNwFXn9BRT+BPT3b9cZ2qZ3FVtW5CuqaGZ0jXSu2AZqObGoGJ1g1Wad0j1PoUu89Ao7Xf796WveuIq+Otezf33J0Yf71RbAcgWeCrpAmCBjSVoKMKsyKxI6JsfOO/JAhCqOBEmBQRCInaJHJFVGZAAWFBAGqU11FVqRR3Nuci6QE4Ah+mkaptUQ5+BnV1A1IHtQAkFlkiLLvJQDp12ax+N+GuJqiDE4lSKSFQRAFTUzp8KnlP542e2O85JzsacVLy+6jcV5Y3orsPgMm4uXD03fAOGMcs/LbHte6mEpHq2Z6l6o2+UGba+HDp6bDXmre7hMi2jj0myG2ecR1c3apK8xROc81ALTix264f6LPAXqeTu+fKIuphhcU9afORDJpLHjNK7X65SLApjF92paDeNodbQifDqd5tOMCK0BqcOGc207VFJV6xNTUfjl52gLY7z3AKMq5FIshoRWcBNjhPNzWuPy3qXJEIDtZCEELqUwz8sShnGw0E3ZSQZOUFgLSoQyUhlcGULJKw5exCm8vXPX1BYBViKvjmNfVwkJFEtRs7tjKaqswSE4daRShBmJBQs6yqWklHPOAOqDF0FRTSnvD8ePj8+H4ykOw7RabZw3M4/T8bjb75b5tF6vyfs4jtM4DsMoAI+PT/OyIMFYBlB1RCEGpyIlz6fDfDqlZeGchbP1BELT4bb/46vbgOidBx+j98FhII2oA0mBN9jcIlxKbsu30bZdjdPjTqhScwAk5wJ5gcAaBZa0lEVyKkc4lSIxxhAHH4JzLgRfJDhHqiq1sUdRUocOBUsu8zxzsWIwLMLmnmbENwKCs0DMO++d90TUnkMja60k5gqYvEK69noFMLl9DQhqFF3ZbwDAXN6EuR0nnU6np6enDx8+/PTTTz/++OMff/y+P+xPp5OqeB+880QGQRQRnHcxBntA7F2YOSv0ijRt/qzr9Xq73VrPs2maQvAAyKUYDNrv96fTyXSQRGR7tpotPyIz13osEQC4v7+PMVotWpc92JuYV4OpRed51ioi99akt1PF//JBRDFEo3LfvXtnQgsWDt4fj6fT6VQbZRSu0o2eVLHq1KujrqI2UmassCxLWhbmYv2JYgzemTUHVCPWngtr8KkOfDURZiLnyYUY727vvvnm2++///7vf//7v/397+/fv7NevgZGewsce4a+8PJfXl5+/PHHH3/88X//7//9f/7P/9nv9/M8i4jVz1lbNQtUAKCU8vLywszWqsMkJVYdOM+LhXObzXq1Xr1798ClEDmbfjaqOedmf2INtMUogC736qYWttIRoSkOQjAnAmtfSs6RqIxDnKZhvz/udvvjcUZE7ymEMK3Gm+3G2ilXcXkB59x6vX54ePfw8HB//3B3dzcMg3P+cyinIdO30/evvn/ejM+SAOj04xnnUs0bAAhCBBHvQy27dT2X5k3gDi2A75YXpRTvfYxhiEMcYhxibf6ZqcFcZlEsxfjc7vva87xNSaBqcOFagfDXSFfhGo98AnZVz/gZEc5r2sUo1UFChpojs8cKAS3dpgi1BsKeMxtIANDz5XR2Ea+8jPH16bZb+SnGvbwvb9zf6zH5k5EZfLhfbwHQPIyoEGXEAAskx5gEMlv2EImRCjnvvDoyIywihaKMiiUgBiQCLYwFARlK4yJtxUcAmyNUmwLUevQY/GqM62mYphjnACAUHUQSIvOaXjhrXmhBDxTARe/G4M2anqjfJVhKmZd8XJaX4/H5cDqmXAT1vEX1jeoK639uBF/DXEPHWIP7Rta229sBrVZ58nWKpANdIkUgFennAtpB96vEvFaT6dZ4pWVLoNVhtHeFBnNrRTM5Ty1Tf77UM9h/k9ZtPaVfE87QsnLnWfUnh7Ww897HEIYYxxhy8Dl46585jaMP3jnr5K2lsPlMKKA0GYOKYUHj5uwZ6VnI/vnNqxKBHAUMouLTQs7Z5mOg1mBu3/KxafJ6qMAsVaLnfUKsDUREmIVQHejgFKUQLyEL5QHmkeeJ06aUzDz8SXRpyTyUy2iqBz41olQlozRNu6DKKIhgSjYVFqCiQCCQs7VvZe9cCFEE5oVzzofj6fnlZX843t7eTuv1OE02mFZ+fzydyLlhGHlkQDR7avNqNBZwiLE2Msucc5pPx2U5lZyYi/WAMYtBw2zYjY3hYkohEUHd4YiCo+hx8OhE6ZO5IsyFuRHDCmCi/r4S1o4KdVFTRUfOUUAakJScEpnVbcpc+FQyj7UXuhKRdx6xPhqWIUWHpKQKzJb0UVtzREWkNA9ts6ExkZNz5rRApGc294rTPf/V8zj1NeeNqVvn2kw0EZX91HqqvzlhTDZzPB4/fvz4yy+//Pbbr7///vvz8xNbkyFy3nnD8XYthm6JyFewy8zsnLX9406+WhHSth2r1WqI0RIXKVe5gsk6LdjTVudkLKypegxO2RO0Xq9FzgWGXUZsAHe32xkmXpbFSNyxHUbI/dX68WeHXc4wDuvN+vb2dp5PKS0pLQjofXDOpeXc95irczMaYeCIuikYtce/s7/LslTpMzOokjs7mmF7gC8w7vlo24DRC34YhtU0bbfb7//2t3/7t3/7t3/7tx9++OGHH364ubkZhtGyRpfcyj8Fdl9eXn5uxy+//GKU4TiOd3d3d3d3FsBYoIKIOeePHz+O4/jhwwcDu09PT8w8z0sIcTWtQwiI36zWq9VqevfuHRHN82m/P5h8xWCuVrP9oo3QtVtv1CY1JwQArdp2b+3EwxBDjMFHH7xDgjxNOa1CiFzb0VWXMUK017MVkyip9zHGm5ubh4f7+/v7m+12tVr9ZRKgI134ZOd9g5i5hLpnx1+E2rfGhIPSoeGF9rguftp0QVC5KAIE11LdZlfZN+v6i4Z7SC6FDXAR357BXPsPGKSEFjdjnSX6Be1Ie/L1E4yon860zub2sWnjdPkOosxasQrZbqWiAlZ7UiFxIy3UyHGA2jHi+tO1Yqm/oszar7Sv+pmc/38euvMX5wu+utJAfutWAGCwkjyRAyXFrBpYc70cUCRBYsRC4KyNCCGSKIGi9Tow5OoAFUks1lckqCRIW2iafF/NYkCjx2nwqzFOQxijBxUMBI6AUAlFJJecS9bCUBQFPGJwGMh5T8FU74iItOQyL8tpSaeU5pRLYTHlyHkrvbzdfzHKb7G57V5eDr2pBah6nNrtk/bDprdBAEJyiGahp02spwAqtdS7ufpVOaYq1dT5+RluH9nv/1WY16bCGSlUbHqJ82vN8CtWDtr0rn9frQ549b/PHJe4HxFNuyNOxSsHLU4QuSgXQUQkFk45L2nRaqxtMlywHSPG6HxtCNFKbvjyUxT0sqqOXKOQeeRSRKRwUVVLDlr+tId6hn1LqUXlqmIqPedDVBDL1aoi6BhoGiO6Qjl7kAnYS8KyQElaihgif5vhxsZxgNG53SLQ+u/YuqeK3pn8C50DBXLehZp5BBGWXKSoYMlFSikK4IdhGidmTflY+MzGxRhXyxJDNArFnjlVLbmcTidqrdqEeRyHh4f77WZ9d397d7sdh8il5Pk0n47z6ZiXRbj0p6X7CvRK6j6NetDYFntyzgdnanrv5Q2rBWt90TBuYzzbjG0mdiLKoqygRIQuYAgUYhgnFwIizXQ0vmRJGfDE2STZTG3/aa4D50ygKZtBEdFiKgXr+d0mUN2TWstFJGoNjzrGvaI4rpAuVtpQW73meY8xdxtoVwuAWN58eIw/M/d7Ky16enpKaSGiYRxirIWSpZQlpXlemlOsCf4AL6rNoMFcy5oaxr29va0YdxhsWU4pzaf5dDpZkaIhSK0tA5fT6WSYKcZoONieJrNr6M3MVNW8tx4fH5+enowVPh6Ph8MhpTSOo1HIq9XqujcEfDI1vuiwiHSItch9tVptNpubm9tuepUWS9XkZUnLkkrO1Y/CIItCpwdsnVJR08KYhphLIUIfQvDeeXdWPV8/2vUWqzbMgM2SbLR6qa/ef/Xdd999//33X3/z9f39/Xa7tazR5Tv8C4Ng0hFzamNm8yZ79+7dt99++80339zc3FywuVhKeXp6fHx8/O2333766aeff/75eDyVkj9+/Pjjjz8OcbRnZWgc8P39/bfffjPPM4BaykvPbS961xUDu3lZZqNTvHcxhOAcBJOrUXAuhjCOcRiGOIQYvPNOVYTVe59TLjkD4DKfdgjD4KcxWo7TEcZhiMO4Xq0fHh7ubu82m02sgcHVuL065JOl5m2kq32HusywEqADIABRARWp6pU0oyMgJERh5mKdK62dOKec/LLMyxKWJQijeXRwYRDrU6WqrFYbX7A4IEJCa0/YPXCqRplVxWoV6p4tqmYIYn7+WPOWek4ifNG8OcPlS0RQEXINsLSBALz40we742NlZuEiUiqSMIurUrkc7GTuBR1b6b+2T9RTalcAtf764s6qNgjckM05x61aa4zUeicZG8W1QvIK+fa/FB1cJ1oJMIoHQgACIlQEB+Kk+Ow9Fo9O0QkAIimCIGdRVcwKxIhFOUteIGcD+mT1HSCgxg9bayFnLAmaI2r1xswgSioBdXS0Cm4V3Mp7VBYiJVQCK3ADYeHEpSiLsiQAykDWONaaSJEncoUl5Xp2ZCUn5ofEtaq6rU09A99UAm9kWD8jWngVh2mLIx0RgCIQqIpi/TCpk95adZk9YAWRYuZPqlpjRVWVCk/s7op1+MQLUwU4K2MMiBijif2Muqtdn6N4CT17wcr1o3LeftpcbzqBpnJoCPdPcK79vr2SEAmVVJyywVwUBM5SMiACUS6cSzbmgGv0DGaVFWJgKaSERA5IVFEEBKGltzuYQFC0KghC590wRFFZlrn74xrlYBnYfrNCCN4HY6GslSiRC4Esl6iKznlVIdTo3UCRfHbkSDgQB05kMLcaY8lnhN1g8YQQNTCCBofo6kYQeMTq/IAAzY3WOQBUEZbCwkWxqLIoORdcWE2rnPlwWIQ5LcvpdDweDtM0LcsyjCPWhsn1DpeST/Op3jZVQJymcRyG25vt/cPtdrMKjrjkeT7Np9M8n3Ja2GAunNfUS4DX6YkeF4Ea9179aofgmT2LfMrmas1CNJEs1OW7ERcK1kClqrqAHGEMjrxHjAroXAXCh5OkzJJVJFO+ONPaqFku+BH7WGa2dAeSyZgUQZGUxDAukrVcNqcFdyFagMbXtjW9wVxCaNbbZ+72deVZD66bf8nbdKY0G9Tn5+c//vjjl19+OZ1OKWVL4N5st6xyOOxNQ2mSAPPCMm9lE79bARA0mGvB2zRN5mbVYS4ickPVBpgs8PPeG2NnnREMmA7DYAofe3DW67VhX/sgO+3D4fD4+Pj4+Ggw1zpZiIhzznysDOZ6f2FI/C8diOi9j0O0NP16td5sNvO8qIiNQBpyKSWlfDwebTct1sZFQVXUFlKR3oCbma0lclpSyklFiEKo9gsO6WIKdyoXoa66dWNGIgwhbLdb8wv7tx9++NsPP5ijwu3trUkzO42trRbngmX50tE4HA77/f75+dmCk9Vq9c033/z973//93//97///e93d3c2yLYgMheTSv/888+3N7fjOP7008+///7b09NTCD9ZLDiM48P9g39XMXopWdUwbjkcDjkXZs25+TG3I+cyzwsAmK5jiEOMHiDWFoLeDdGPwzBN4zDGIQYfgnO1t615eJ9Op3k+lZKmMa5Wo5mRexencbq5vb29vbu7f7i7uxunlbtqKfL2cQlq8VPpQvu39i/xnBhFdAgOwamyBUFcSi6LSwEMCJEDBSkiXLdcM6BwfjmlOSyRJaIjAE3MRaXWHFQcxrkUyKQI0LRAOedSmIvBXBFW5Uoiw7lmy8BuI0TNL7YB0i85zouPmo9pn2/nsKW9GbZkVU+Ln19Z+/VY9bNw3bOQVNhgDTU63NY/uwC02kRqntqEPWVuW3jD7nDxFFxh3HYV2tQb2urfbG3jIq2U0TBUs6NsX6pz6K69qEnRqUO1biQEBOqUHWTj3z04QeesbQYCg4hwVkUxEQNI0rwoJ0FQw3uE4FouXomAHHqTbiOZ3b2wFBFnLLFHHT2tvLc/KsoOGYEtQ4ACWvt+Fi7dahMVnKvFbd5F77wqMpuHFjl0Sqgswq1qu0uoz7G4/f/tufOnzX6v743FWt0Bj21CL6nKQG1rp+pcD4gqIo5rfY+o2RlZlhbNbaDByTMg7SGpfg5Z2cQUBhBQVKGMXPU09a3gDFmuHpiLxbei6DPuhS9kc+s71V+ycRFFVY8Qicy+mZkFCwOmYiNTVIGYmAQALGZR1ZQSIHofnUdSQkYktETRK/pUoYYB5jg7DIMIm4Vkh2P2fXt9KcXQmGXcLsN6cujUGQ+fUgFS75F89CgO1XEkPyp6VmJFFpD+DL41LaxVBYoaTW/7oo08ERncBWvCamkvQEQlY5HIsXWpVmVFASI0VBNjDMEHADJqbRyH1TSlJRNhydmSyywMAKvVCsBS5iAs8zyLyhCHcRjGcby93d5ut+MYOS95Oc2nw7Icc5qZs1YzglrHX0nCa3jbQC4iNH2Gcz6EGAeRAsqs+qkbdced0BJyjcFVBevCKNYHyN5abXUDEaBqMOG988H5hETCUgoLcJ2Wlhv01bpBWwii7aERVVAhvXi02t8WjNcrtGfwDHCvNUn9jtVHE5tEoYFd7BsMAICcYa4CgBK9OV+0tdvthv8iEkIYp9H8VkvJCGAkrrWnIhJmcc6c58yZHW3QmAUaKt1sNjc3N9ubm/V6bVJCZuZSlnmxzzJtT6v6V20uBIbM6qZStYZxs9msViur7LQEtEk/zS5312x9U0qGsB8eHu7u7uxXLiDLG5nTLzkqzJU4DONqtVqv18fT8XQ85ZRMl+R9KoW9TzXgB1iSitSOCa9oP71oJMZcVEzURGejtPah1zeqftMCO9Nj3N7efvXVV19//bWRuN999939/f39/b0pmPHNZPo/PwIWhHRzVrgQpZiXgnU7MzZXhC3CMX43xBDjAArMknP+8OFDjOPDw8PD/QMivn//brvdbrabr8pXpnA4HA6lsOFdSxWIMIDpdDnnjAi2BIXgY/AyMlr9cdMtjNZHYYgxBhtSzvnmZns8HhXUJNQppXlebEVarVbbm5u7+/u72/vNZjuMo02zM+P31oB18gIaxv1knC+IwfNb2XNtbC4C4IUboD270oIaNBcWkzM5crYBNwtRi/EbgWHQB1qvH61mCyza2863oL5aQ7Xa44sitJai1a5UAICrr7/oOOt8rw5ARFtsVVVRRQUFbXUUUXND7mjD+ioaHhdRskVBAREEpDM217dDANBqCm1RxQ5zK0XVF1PSJle7OMHOa18hHvt+UxRaAk9ZrMLNSm/rC0wFiAiOXo8IFgC0QjMxEMq5cErCBUUI1TvrGK+qynbhyoAJMINmkoSaEZAJbU9GJUAkcITg0HvTvAHWeCkvOc2FQFBs1/eOYnCDd2PwpUgCkLoloSJ5pECktXdZmyWqKMggpuGEOnEJCNEWOWG27UWsDbOcw5yLa//c8TbMPd8Ow3KIWHcw01Oy9YhdluVozWmWVEoWq39qMFeYsdgzJtoiS8vSAiFqI2jIaFHs3Go7+QZ223zp5ybKwAyMtu+OpYhUElsvlIVtkz5Ttnpuu3e5sHfK7osSJXaK2OCwvbkjF0IUIEFiVtGiRXLrZt4RQQhxvVqvphER07KoKq3IY2jaJlHF5v90tWZVuhfBOR8RSynOzX1rwVYRbFvasiwhaLeEse28CZodIYrqkvOSUiF06KMfiTy5CMrigviAOBYMDNjMPN4emsYYaHts7GQsf4UAhE14odDjXnTeee8UkEVKySwI5AkpBB+GMQ7jGAciIgIrn7+7vUspex+QHJdyPBxySj4G78Pd7e39/f08z6fjKaWUU0rLDJvNZjXdbNfb9Xo1jcHhYS6n4+F42KXlVEpVLJCBXAQzrLCEyZtYFwAQbB809fWIIJ5UVBd6LSDTtoL3Rbjp3NVyF+ZNCABmN8wqUnJhLoBFIOfEoEjOhskaSFRTFbDEPaK4imvrvmVhckW055mDnVHuHcup/yFyl4KGa5jb6Hiwtall6y52407iCii1sMxeIPg2zO2ihXmeu0Jgmqbtzfb9u3fv3j3MaSnMp3n2fgdVbq7C4ryY4OYs7hMxPDeO4/bm5vbu7vb29ubCYIGZlyWd5pO1FbDWD0blGmtr5WLWdsGSHlY/biIEo2YBwPoUGGXYj91uZ7GW9978Yh8eHtbrtVG5f8nM/flhm2wIYRyH9Wq9bJbD8TiOh2FYUio5F0QkKgDYtQkKZtpf1aVtDz+7zuWcS87YiqhqbvCton5beUyU2T3aHh4eHh4evvnmm++///777783Z4C7u7tq2Xbxi212/OsjgK20AC4mzOFwsB4c5pBgATwAqNJqtaotMJzfbm/GcWWo7ng8HQ6n33777R//+HGz2SBiCGG1Wg9xuLu/A9Dj8TjPS0p5t9t/+PCHmYWJVO9FEWEuOesyz0fvPNEQwmo1goolWM0EdBzCOIRpjHGoMDen6fZ2O88Li6SU0pIK8zwveSMhDtvbu7u7h7v7h9ub2xiHC+7/PG5/Pnp9nF8j3fbvBk0rAwdAiqRAWs1jtK8EVikfvPcuEDgQyCEFH7ILAqKgNlN8CC54ck5BXfbmG4wXosymGoQWGWFd6Ns8bLkraWW3Bumw+nL1y/8np4o2eND+Y2neKogAxdqg0RxaFFBQal/6M7qq6gBmbbfAcIrFUe0QxNasoUcdCMRVtGfrqDYu3YCH4Zo2URt6aWNmS9mFxLanxaQ6rguzAAsUAVUUURFzWzcqA1TBu08WWgZNoqZ7aLRwyZxTKikrCwEFR6IkAswCzFJK4cyyiMwExRMHUuuNJGQgHdCZ8p88eYfOAak9IDinOS4xJFJ2qhgI1TkK3sXgo/dBSgFGFkRy6JBInQcfSDQDOAAGZiRVdeQ9+VDLOyNoNX1nEFYGhAJCtoG23bRRcI3h/FSU0o43m/32kW93Xluk2Dj1Ku2Z5+U0p2XJJdtOXI2yTJubCclqjdr26QgB0BEiKSpesWbUnoH2FMD5CXj15IsJVlgVgAhLKWdoCC0W+OR69Y36xL6wtO+3jN3njvNp2VNszysgOR9CLIqCJAqlcNGSuRjp2K8xxrBar1bTmOYlLTMAxGHAC/1/Y3M7xrUHqj4YhDa8lPOVo6cRHsMwzPNciu2F5H1FtyEEROpVw94563yWcmHEMcZC0bvBwaSgVW9OA6Ovrcs+EwIgdLFHzTj1QKwuceZGW0fLYHfjTZ0TVdXCJbMgOnDeBU+rcRimlfOBkIggxrher3MuohJCOJ7m07wkI9KWcHN7s727W603u90LAjKXtCzLfIoheuc26/VmPU1DRGXlspwO8/GQlxOXpFpMOeWaWvUS5raB7ZKFepFA5Lz3YYhxJBRPqioZ6RNPgbbNtBDd9DeXbC5azgsJSItq4ZIUkmhm4WyUgt1oJ8UVsMyfgAIQgq+yBjCACzXENdX8RYRbtxJotHFFr22mGdjVdokV6dZ1Hk0ngFdyBWzCpzoZrJIOjc3Vuvzo5/dpbaLY3n6st856eHh49/798XQ8Ho8vzy/N/cAaTbJntk3GOA5pYg3n/ThNtzc3t7e325ubzWYzjqPJQ63P4jwv87LMy2JvSES9cM0YQW21aCZaIKJhGIzNtfcxucJLO3r9WUoJAIZh2G63Bvumaer47K2l5q+Pvujao2psrsmCp2l1Os1GygKA5RAsIwEgzLl27q6uuqIG1M4Z5MKl1Abz3gyyqK8er05Va/EMdg7VAO4PP/xg1WY3NzfTNHVftk+u4/8J5duwG5BVVRv/XvNnNg71owGR0KjUYRhX0+r+/oHIpSUtc/rp559enl8+fPjw888/T9M4DMPt7e27d++GcdgO0RHu94fD8WQGvTYmFyljUFXrcz7TbIhwNY2lVjGCuefG4GLwY/TjEIYheO/J+byattvtvOSU8zwvFpmKKiKN0+rm5u727v729n672SARwJmLayP52Wfn8pWvMO4l9q1f1x2/b4SoHQGgSepMZem8894Hhx4Egg/eBeccKogKNdt15z05UtVefNaSux1kNISrgtoXkItzar65HYXXH751wV/87LRdUV8fACoqJCCIRhkKcFcdVJ2DnKGg9HYqzjkFUTSh10Xk0djfjoWuVBAN4db1D2vulJBqDrP1BEXLeekVA91y7i01Z/QB1j6cVsNMTa5QIxmzePhEHqYKWYWlmBv+VaN0VgUiRAciUKxySkSLcCq5LDmfHBUM6Dwa0geq10Nml4vOoXdobowLc04qyzLPs0+eSnDqCBCcQ1+bQbiZaWEGZRQkRUJUckAenaAqgTIQW0yF3lEIzkfng/OgqKTCUpRRQFAdtC502rKJcI1UP3+8hrl68ahog5s9LBORnNI8n5Z5yTlLNlaMrD7aZM0tz9n2yI6wqTpQGqbFarVa/2ANkC43au3n9GotRkQCEEBA7daQtry3kv7PPhYA9oT25wvPM7mmG/564LARX+S8C9HFEdChi9oaXBELCpOo98FgvnM+xjCO42a9Xq/GI4JKIQIVzjkBknMI6EFVGPn1FWi3nTAE5r0bhqHNXrbkL7WOR7Zh2xOMiCFEaCADEc1ybIih4uMY0QUhzGCZGEIiDNH5WrTmPrvo1IfZnlxsgXWHSKAISvZESrtL1ZFdRUTSsqRlEUVyDKogAyF4QrQqGlXnaIhhs9kgYQjx8fEpl5JPOTGnlOMQcymWbKiaWe/YuRjcGMMYoyPUUgqnNJ/SfDKMC8q2jKCV+7R68ws2tw7yBaMLhKBgIUMscUAtIFmEPx0arXyKnpcjkP7dSqooEiJ5tHYvLNUoYcmFMwszZy7CTeFr9rxd4autldq5wQQpiAJ1SsDMoewJlgp3m0LDoXPoHJltcw1K6A02F/BCmwvQ2VwEc6agHkz3JGUTLXzu6evaR5s9BqQ26816vVmv1gAwDlOMQwzR++CdM5FfycjMLmcDbfMyi7D3fjVNNzc3D+/e3d3dbdbr2CrPmGt7vJSSI5rG0Xhca/DbDRaGYTCDJFWNMZr2tBefqSozm5LYKs9M5m60onPOAO7Dw4MVYFnnlxYa/dPH5fJ2OTillO325ng8mbuCNThglmpu5d0wDBYwzO0w7ra7PllQYLLR2iniqk4O4aIxOJotwDCM43h3d//w8O79+/fffvvtd999980337x//76TuBfVZmeY9a9d++Vh3T1E5MOHDx8/fiylPD09WRhvpWnv3r1/eHgwBbYJURw5AIzDsCX6+uuv9v/+91yKAhwPp/3+8PKy+8c/fhzH6ebmZr1ebbfb1WoypR0XJqJxHG9utoi4LPM81/ihlGLidwvMnKPjaTocD6tpXK1GbcPV3NLRQmNH6L2zDqgAOK3WXHichmma7h/uv/7mm/uHh/VmE+NAzvd7/SXH53Dtq+/Upaezq299xPl3L3C1Ya3O/9XSm/PGKgDAKqWUbDVmbKoSbh9WVw0gBwCWM6QGG17h3DP79v84YWx1E7BQ2whVbXYE7aI6qG5TFKoCo2FsBUBVh0gAHsApOkBSpGZlaiD1fGAnn+q7191KVdT60AMinqtAOyfRGggTdgnfBc5XsL5jgEQ+oAsAGAC9ArEVLFeFAXd5M2kGufK0QSACD8AMjlRUyYGzgVJBMSluLgpOwSOQIwrOqffCVBS0aAFBAfTeeYfkPUXvB+e9dea1LK2wlCJLylDKKfiTpyX4MkaJoW3HGIIbQ5hLXpQTA1s9nYIU0QLASOocAJE4BFCwsMtTqGwxgIiidUKTyia2RGt1+biIFGpw/jaX+yabe5aIX9xXAFVRLrwsy2F/mE+zmvsSoDk3mVN2+702PwCxxZH2IAAAmj1an3oKPRRq0ug+KXuQ2s4EEaC2ybU5Y2CkiV2qesVe+uYlt9SDWSxdYNwvOyz7YddHVhETBjcweG6kmwqLUpGCAEAI6h0BmjpwNU2b9Wq9WoGolGLMVE6L89H74BwJSyFGa6Z5ddraym2NvnXDMAKAVcOYSDdUd9XQVxZmsI1Nm0QPrc090TjEGAMh+hDInGhVGcwYksjHEOMQffRGbf6JaKHye+f6gfZd+8vctAy5CisAIDMTMsuynJZlViXvGUC1rAiY0AQaRRUdUghhs6ZhGMZhKsz7w+F0PJWcM/MwDMu8pCmLCBGavxswDzEOMcboCbTklJbjMh/T6VjSIpxRBcE8WZWIKjxu5kGXegUiAmisEQKgOh+8H0IYgJMU16bZ6zvVnzzV6hzedqE6bARAjoJzCijMDIKQOedlnrlw7RHILCBKYFYsKmg66fODbxjXCGJFBRRtPtXYgaeotD0AqkwIawmaO0PZesOo8fD9aUVswlzA1r4T6hc1AXkhMKrKis8/TX0T0taG2gSL02qaphWLDHbrgk29WrRuCBWJrEI8p8zMIfjVen13d/f+/fv7+/vVeh1DQCIzajiejofjIefsQ6h9IkSMSF6WpXsp9FXOTMGMp6yG1qqmyn16enp6ejL7MEPJOWfrH/H111+/8vb/okXkCw57TqdpJQLb7TzPdubz8bjPOdsMtTz7METrnWG9zQyZ5ZxP82xUjs1kbzYr3lvr3UtE3mesfTOEaN3Xvvvu+7/97Yfvv//+q6+++uqrr25vb82YwqjxS+rh/x3d9uPm5ubbb79l5t9+++23336b59naQyzL8vT0/Ntvv33/3d++/fa7u7v729ubzXYbY4gheu/I0TiODw/vSmYkv8zp8eOjkcEpLTGGm5vtarV69+7h7u5OVY/H0zyfRGQch7u7OyLa7ysTL8IAkHOxzGXKgDMejsdxP66mcbNds7DNdnt6uu4OUZ2jOMT1Zr3ebL4l77wfhzgMw2azvrm9vdneWJ+gL+t8fD4+B3PxnGpte2lfaNoN7hthW4Muy7fPIFQZSuFScslZEdCZza+KCHKt/c8555RTyhXoNkBJnb1EQDRH1a4JtiG1B79LUi+Fg//q5JHqa4sASlYSUIvRoEKxUiF7Lcw35y8rHHHO+htYPs85JAfkgZw5zuqFCrnC1aaBrGyiRQE1rSwqLIJWtVZXaPvCRre6s1lO0/kQnPPmSoUtm6aKqqRA5Dx5M/MYfBwRXWHhItx42c5EzvuPy/H5ckgQ0KNnJI+qqPT/tfema24kR5aoLb5EAMiFTC61tGa+nvvjPuY8bN+RVMUimRsCCF/M7g9zDwQyk6wqqVojddNFsTKTSCDCw5fjx44dIyRAYsSqoJKLVqmlViVHDoiDYyIgAKjFZSARqEmQhJWAiNB5N4Q4OouvIgioQJVacy7znAT1wDQxHmPIZWM2wtbB3rkh+KG4gyQy5YHUqlBTrVlEALXdvgKahByBGNkhm9wERbUKVJUqKoKATXvJPSlQO53bQ+Bfai9pc88x7vrHVWqa5/3jfnrcO8fOedVmBsHM0PNpxOzoz6yTX1YDrEKgi73Xs3Pq6hdbUFwbD7WUjlgIbP0iH4sn6NwK/JxGRn/z3mNfbT0chGg1HpwnH5RESJArVxGsAkCioMqEoGyUmffeCN3NOGjNWvOcUhHNOQOS1UhzzJmoC4ieoHyFE+8C3juAaC4KpRTbs9l8yphTyillI72WhHHpVX8IkRe/TCQrcKsAiuicd96FYQjRUi+I6csrsuU3LI+yr1z9sXR2XsUE6Krt+qtALaWWXEtWQELQSipJpYDUFvwBQrScCBciOOceHh/GYZgOU6lVcyvJYz2AiMF7Ao3e7bbbcYjBMUjNaT4epnQ4pPlQ0lFKUilG6NpsbHWgrM58T9dbgQA8ia9ImZ33sfqh5iMS49PDSHtYsga40ncTAEuxsA4iZMcOiQRJsBwzgol0c61StdlyKCAAIwov0UHtdVJ00cY2ZQSsh74ua2FbkO1IyEhMZKVVyA6c7U5pKQ/RLbj76g7nKWh2HwpALZnZHpcuXzxPy3th4PTWaHh2XQfoYzAlbQwhGNVaSgGsYKXISragRByGi93u6urq9evXDZ4uLgrH43Q47Pd7BDAvW9vzjOB8coa3AWkY15CcHQvNgWu/35se93A4rJ13d7vd27dv379/f3Nzs7iJrYL4v2vnfvHFysyEJKPudjsb59N0eHx8NK4W0dzUF3tXtsS7ZUaUzub2sLN1s+3rp+VlmbB2Dg8hXF1dvXv3/t3793/605/+5//8nz/++G+LEndBxrBanf52mPJSu7i4+O6771JKVhvP6iqbV0ZXL0yPj/s3b97e3NzYVcUYx3EYxiHGMAzx5uYGAD/+8vEvf/nLw8Pjw8PDw8N9jOHq6nocN8fjcZ6T936aplolhPDq1SsAGMdh8XA4S6wSMaHI4TA9PoZxjBcXu3k+5jTWxmhqO8GrQkVbi2KI43Z7cdEGhvdWPWSMMRrT+Xv77Uu4dv2vy/b2bFXC9Yc9g7gqIiAq5ZT8Z2pDQ/ylVssxLbXaMa+Usk55NAKYxfIz2kUuowROn9NEC2s29/l1/o4+kQq1QEuYsyQlEGx5biZKLaUazMZOHpOZqDECMrN37NlK0jCjRboMs3M/SkLfyWxp7J2pPaBmMlqttSV8mROZWUtIsfilJbdZgS9iA8jAreyI7aEta0OVgD3zEOIYh00YNkzOEjJbVZh2RwoANe3n6ck4gVJBqkoFFct2BrCS87mKWa6USh6IAjkiYiUCwDQ7RFKBqlVrdeQ1oLnnOY6OnT1TKxZcquZU5zkLytHxwfM8m7dt4xiJ0DNF76N3obAHVKupXUGLagWQ3psLIaY94QNU0QaWaO1mEy2bpfNQa+btjJB92WrhZd9cOhV5PP3XDEHnOT3eP97f3sYQhjgQc+1W8SYOw5JrZkSspWgtKrVFK6poragA1QTuiriSQBIqoNYOBrBFE+C8uBmcojNd7ajc59Zp7+yH2LMB0DvidC7rL1KVJ6/6SrMHsmjPmzBHQGsXCGObJgRKhgKWZcYoMse82Wwc0zQdHvfTdDyavRdYGQjnYKki0bYiu0q0+MhauY498XaVKm5FfQ+1VvPNXcibpcB93+hEAVSqNlqcvXObwW8348Vus9vEIXjvXU8yfaFrVoQQrERMSw8jGHUJhAgitJzpTeJGjN6jKjoGJlEtJR9zCsAR2QpzLasxAOgQ4/XVJSDsp8PhcPQx1lr302TXF2O82G2jdxe77W63YcKc8nyYDvv9fJzyfCx5LnkuZUat2M3em915+4ufYdz+lbYCh+wD+0jsFUiBng2zlljcrtsOerLsQtq6CImIHDsiAmISV6scXToSK1ZVLVY+GYGa7RcCIVQBUHItv6+PYbVYF4oiaZOA4XJiXIERuzdzdydHjc21U3RHuthn48LIAwAuhG5/X1ykRmcw12h7/DKpST0VEntFXzNFnqZpGIaUkgWRx3HcbrcGbiwEYXpc6sjYBJrXr15Z5pm5HCBA7Rj3sJ+m/d5sO5h4MTw01tZEuuZcVkoxSa6VlrB/tcynh94M4xLROI4AcHFxYYYDP/74483NzXa7XWwclv397282i5xzm82m0YppTmlWVXN17cPN1i9i5nEcrUuXZLhFnW9WAL3n25Jnr1lSzawEw9u3b7/77vvvvv/u7dv37969ff36pnXv+d39gXe6btvt9u3bt6WU/X6vqlYnwnQL+/0e4EPJ5f7u4fr6JyN0t9udSREuLy8uLi+894Q0jpubm5sff/zxeDz++c+63z/e3z/8+c9/JkLLJtztLkRku92E4N+8uTke5w8ffv7rX3/66aefPn78uIJlTQdeSjkcj+weQnDjGGMMzOQ9h+DNvSOXUhvsxSwI5L3zVpavORS7U//3e9Xnq8eX2oryeJnWfc5M4Ula19Zlg0dtAzHn7Sq1VhWUojXVnJPZFjGaqBRyKcfjARCrSKk1terWLXhIiDnnw3QQgIrgqjc+twnpWmxVOsQ9ZZA2Rqpf5PPWdvyvb8i1ailKgshKUksFJFG1eFhXmKOzyormRMhWJan98eyZLcvFkQWZ299LrHch4drCjct/AMBsqlW01m7mKtITmMTEZ9WwqZE6Umqbd6qqtcEgW8s7m4tKTkVFoIqa2L4KGIIURQEEk8K9xEamXKfH2dKnas61lCq55pxTymkupVSRCuA5BHI+DJabKGZkCZbHbCJRRQTsPu2NIFMttRYpOZeca05VUZKXPEtOWnKD+tBSSCh6jo4jc2S2jAFRICACUKCGW7RDGgFoCli29BNzo2shbxHoPdWHyCpO0WcDdLLySXuhChr15Pn+e50SUhXReZ4fHh7uPt+OcZRN9SGA4y6LEZFSC5ScELDmLLVIg7mqtWqpoGBjojOy2L39CFCl38QCnk43tZoNq7kCzT4NW9UJXGIlvQyp3dXpf31mNdWwnt6x/aybgn6pLUe7BQ8oQlUtPTUGu8AflFTA3GIXXAIAzOzduBmjY57nWUoVLiqCAJYOtSDXfnGwHCAtDnKacQDQ8oJPjkghBFU9HGarrIad8ll2PiJsGUR9MWJ2TBgcbgZ/eTFe7rbbcRiilQ/74mpjB167yBWNC8uyatdnaztRizJVKaoKCMzoPakiEzAJSC7pmNi7SMwesZvW2BRRiTFcXV2yczFO+3iwlbfuJ++ddy4O8frq4vryYjPE6D0THktJx8Nh/zgfppzmklLJqebZFMDULGRXqWcvwFxoUE8BBIlNWx+QnAKLvlzSVpoWynwioQczoNGiaJQCM5Njx4BeoRbZu2MkrohFFVQWRpWJrYOgVlUlx93rqyWgkQD25Qqxa2ZPwcsWSUFsvr8L0u0rNn0N5p6zufZQF+J4UUn0jctCAi/D3AV1LdrQUsrxeLRSCzFG6eYJzUhrmkxNa680RSohInMzyr26urq8vLi42Iyjdw4ASq3zPDd7hWka4iDbjR3z7AKMJFZVKw9hE81+eHFxsdvtbDs01zPLOXt8fDTATUSbzWYYBmb+/vvv/+3f/s1sB54XhvgDCM5WGgqZeDNunHOqcjzOJpyYpj21VHfbIghV2NE4DgDw+Pi4nuyGYr0PzjlquWttmVIrrefcOI5XV1dmpPDDjz/+8MOP33///eXllVkIr5wNoM+HP+IeX2qbzebm5sYONqYtsQs2B7rjcX54ePzppw+73e7i4uLi4tJqc7x6df3mzRvjdy8vL8dxeP361Y8//nA4TA8PD3/5y18fHh7+8pe/HI9HSyV8+/bNq1evrq9fbTZjCJEI//znP282WxMcLzXz7JTV1d4zgDJRjMF75wMPQxjHwZZHnnGe05xmRcdhiAOzc1a1ZJXVuqzY+Hsg7sLsPCVx4Qn1015tAwcXbHbKMIBGGzSdrHTCGkqZa045pVQWboUQQG2GVm3+uLWWWqqqEpOdfHIu02GqoBUgDNVudoG5i7H3ubGAPsEiZ7vF+a19rVtq0ZIBWUkASABFoYikUnOpxM5770NwLg5DjMMQggl8gvfRe+/YO+et0gEhG5VheQiWIAydn2qRuFXr6lokbMQGtOIOoK0qdvM4KSWXknLOKec55ZRzLV3koJXabt4elioJMFGr0F6rliqkndCUVhvhZCf5DOfmUu73k0qtxcj5XEuqOdn2V2s1jzCOiOydj4AsglUUidVqPGmjqU8aDUOiljNueD2XnEpOVVGzl5wkZ8lFSmkcDyE6puA4OhcdB2azjCBVUiZA7bRgqUslEVHTXjrnnUMAI8S65ZlRRASrHWg5x9kRru9CLwyVL/vmnmEbI+lQEUqVNKfDftJcodY4DC4OFDx0uzfoqM6UYb2MlgpCNQ1KqY3NVaDl1LYw0IYz8Wzm/tqI1zMx0jLDV3Tj+raW/z5/05d/+vxlCx5YnS7sSpbgiL1GOxDsZ0IAAEIMwXnnRGR43Hs/IYHUWkoBQO8dYPOP7OPZ2Gbs/EIDryJSS0EA14OS5jJruTXD0OzNAUD1NEvbt9DOBs4xAhg3vxnHy932crfdbsYYg+VjfUGXa1d0lmq96pNnYTnsJxECqApqGVOEwApKJtiGKjWVPCN7cmZI3n1rRFQ1eH+x27leUX4/HR6nw5zyMEQaByIc4nB1eRm8g1pqSWk+HsxYaJrmw2RuYrUW4kVoc+JxuVuJLUi3P+q2zAE241z2kV1kF/tIP28tytA3JBvQnRclxNXnsWdn6Q611EMc5jjbCmi+jDaeTHdLVaiSqDJxU7f3ud0+QAFPR7STWKlPYhPwWw00R+Qt5xGW3dfcw1ryIHWM24ZtGzadKEYEBauCiKBKZ9qkr8FcYxat2XY4TVPHYd6iDRcXF6Z/VVV7KFZvzHxq2TEAbMaxVTtDMu0KE4OqCXlBgZm888wMCotxrF2Gc1aFW4ygNSLTqmQtXrmGh25vb807zDCu2ThYZth333333XffvX371qp/LR4Lfxj4M5TbXGMdMe12F69eHW3vtOowAFpLbhXyemoC9GlI/cC8xHCwQVULLgCzizHEOLx6df3q1as3b9/++MMPP/z443fffffu7bs3b94O42DgGPoC8sfc2lebde/V1ZXJLWxKjuNoJegO0yHnMk1TSunh4THGT+aafH19/enT5zdvPt3c3Nzc3Ox2u2k6OOd2rW3NPtkS8kqpIhJCfP36xhyXx9EMOpCoFb2zbIeu8lLjalOC/TTd3t+1HBjQUsp2M4xDZMI5pZxzHLcX16/H7aX3Pi6mEM+2od/bFkCz/gKf14lYtc7orFkvbGSUgVzbXVClSs7peJznNJdSRMXcHV0/Olo5klyy3YhzjMTgrdREnecZyAq6QgiBV0Yt/VIXELLQU7Csjn9zvxz2U54nREZmQDb7S2kmmMTBxWHcjNtxHMfNOMQhtpp1wTvvvG81Dhqt2FOSzIma2uq26EBOrBwiIikK9cxg6AIys9Ht6bu2oedS2+oTcvYhzcmI0LnmJHmWkmrODbMCVmBBDqLAjl0wlrBVbtcmZKu6aH31uWiuisw5GzxUkVxKSTmnpLUKKDnn4xCGYdhcbraXcdxJ1VwFclJLMZQKtaDmOadjnjk5IRYkQjbqxmp+lOYgRTYMpUKtWouUUpugWy3DGx2TJ/ZEmcChFhRBVHPhbIUYCJCRipBIrYRoyjpQSzZZYoUm+23B4B4L6KNH4UV0u7SXDMVOdHgHjwCLERF0B++jqNUnHlUjoVYxwt46AVRbQKS2FJwqilURoOaiVezwsij6+vDXhsI6E6vaftII44Xb7Dxbn8YN3VOrWHCmYFjd3Lpj7F07NbG8D/zqzDvtJesPMXQAHXdIP2toP28smacAysQhhHEYt5vNcT6WqrUWmdWH6H1EIjs9t/Isxlh3N8fasqfNv7gQIbswtlSejYkRzfacmO3zTM646EMIkRgJ0TsK3gfvN5txO47bjbUxDtE5BiTtB4aXmr0hae/Hpbu/dLRAtIWBES2TtSISqPaomkjNJc/oPJbAQICOyImAsQ/OOR+iD9G8G3Mp9f5h/7hXEUckVZgweOcIUyrz8XA87A/Tfto/HvaPh+kxp4NqBhVkMia1S0KZiKmrOxaMuwyJlvxl2IGdc8GHIQ4bcv4LkM6OS4sE/DRWDVS79r/20YgscbgYcy0VEUAFmub2xNhWlipsu689whZeWowEe8kGbLNeuyi3YU9EJnbEntgbhd1OKX2+wOKv0Kncfh/LLtlyRHV9aIM+5FvZIfhSJhb2IiYLrKy1Pj4+GqAxgGu1be1bUy+EEO7v7y3VMuecSwaAOAwxRAQ8HA+3nz9LrXmbx3GoVQhxiFG2u6U+kJkPHI9HRLRsrWWv9d5vNhuDqgZrbHGz0r4fP358fLSULzKZhF2eeeW+efPGip+d87h/XMOGApCIEYZhePXqmpnMB6DWgqgpJbMLE8m1ihUjMAKSemkYM5FgZjDJE1jpRRqG0QDu99//8OOPP3z3/fdv37y5efPm6upqt90N56lm/xiM2+4bMcZ4fX1t6Hy73b579+6XXz5+/Pjx86fPn29v727v53k+HKbHx8eHh4cY48ePHz98+Pny8vLVq9emlgbQWgURTQVhAl9j6O1pvn79upSMiCH47Xbz5s0NAITgVdVORMxk8TTtTpdV6pzm+4f7KiWXNE37z58+D0McYnCuGe6+vnkzbi8tpMadBYe/+5yw/LpFPBZm9+lKu3zbdqFlvW/xTUsIXnhWRCCiWiWXdDhO83zMJYEKM8dhCNGbYNJwcErZBx98y/hjojynaTqkNKNjSsyeg5XWUylW06WlueppUwft36iqovbiZc/YlF/tsbu728PjHZJj55GdIisSu+CHIca4u7i8vLy6uLiytSKE6L33zrc6ikwWCy7SjKVrrcVgpe14pzXsJCZu3djJrR5UAwAlQCOPLXLinWN2xI6rOFe9L6WUUOpQSknHPB/ycTqWdJjTPD3UkmstogDklPxQKzA7H9gH1arALWjTan9JjxW+wOYqgpIpIQhAlaCoFKnM5MMwDMPF5fXF5Ssfd+w3SHGe5zIfRaFaCeiaJM8qs8H8KhJrjVUceWN4+2laENCx8wREDEgqWkotuYCWk4TDqA0i75yrlUmYQAiEwTEqkzdLR9WlIAZoS+isUkspWhCgqFQxhlwBa2mOkvZIVtZcJ5+xZ+0LhmLrpwt9rjSjJVTVUmqRnBRKreScC6GJUqq0ZENTYdbl9KZoHgIAUipUMYumdhpqmLPxt23bXnbqhTo/D9ksSBf6NRuJsejEFyjafxvX96kAy2H47Nz5KyC3d++JPG5cNyEKKnYf036VC7Pb+GX7DGYO3usQt9vNnOb94Xg4ploqu8DOkULOmZlqBTEHR1EAE+DmkrNVbaq9CloIcRyHzWYzjOMQo/O+VsmlAqLxWKaFFauipYRMlg7rfRg3w3Ycd1sjcTcxBh8M4/YbgCdfLP0P59bYK+hv/6wnZtHwESw6sVYGpRIWVcHmWSVSs+JMOZBLiHbe7s9XIZgLVFSTpjzu91LleDg4pjpEVSVC7xyC1JKPVmprejxMj4dpfzxMtRwJlVkRF/6bua1HJmGgTr009bI97c5iIiGBJUqFIcQtuYyJns0rxKaNPZ3C7PkblWs6Mde1ElZUBhTK2OqXVylqjK5qS/sFrAomOWvMMnU/yB5janotIOttRSuQpg0I24cbj0uO2RNxexqE8MRQrIeDbGac5oSd05ZZ1/sHWmZsr1ZxXn9y1S9oAQdDujFGK5x7PB6XWMTV1ZVVuooxGsY1vGvigZxzqUVVjf9FxHSc727vWgGj2mKmPvgtbmOMhvksBm0a35583QwfTPlqhrsGc+31j4+Pt7e3Hz9+NLkCMw/DsNvtrq6uXq2aaXndH1EV4uWGAKpECMDDEJlpGAaRapYPOef9fjoe51xSshSQUu1mAWAJVizcuYgIVFAgx9673W735s3bH3744d///d///X/9uxniXlxcxDgsMo/2kFf1I/+zm/WkPfftdrvZbF69evXdd999+PDh558//PWvf/0//+fPoPj58+dpmvb7Cfq4skORpSRa2eeLiwsRHcfx5ubGOFqDxaoaQljx9DgMkZktlc3qUZeSTahg0Wc7HgBAqWU6HKw40v5x//nTpxhDDAZr2HlPLrwvxTu/Lom3bFt/czc+ATTP8c35B3Wq6zSTEYCalqrh9rYFmjghl3w8HlKaS8km4I8x+BCq1Fyr1JpTzik5Zo4UQgg+BOcn2B8Oh1wyZmLHvngAYbZKl2aw2/ffE5sF2sxfGyZ5sTsaV/3VPnm4v7///JFdcCGS8+aTEIeNi0OIcbvdXV2/ur5+HXx0Pjj25hvZ8oEAq5RStNQ6p/k4H3M2gUEBXKqbP23nOAGWtRIQCHmIwyBVAZg9EhMykTKrVKks3kuotYrk+ZCIZpW8p5Lmw/4hzYeUjqIA7MlFBXQxxGEUK7dJXBcptTbLi5Wg9VnXdXLGNp4qUkTYeR/D5uLi1c3bmzfvyW2quFywKmHKolrNbLemWmYps4pU0VJlrFCFHBfjru22AQUsW52AiBXQ7MJyLg1XS4vhg+VjEDFZDWKyBBJCxuCxq9URwCQaHeVpLhlSVkQRxVqh2taoPXCl2mQDPVixQrvP2xeroNl/oZ2ybGujltDgnHOuplRrNdeV9trGa3f5tKycNEAFxdKRWjrIKiXuFOjvY4eIYHmKHS2sr61FGFSokCy1IRaYtejH4cmHvHSXqxHcf+VXVqK2/68jxKc36Qhn4UGxTVhcHknDiOi8H8fhouwUIOdaa1atIhUQzSGrlCzSMwNqlcbit/gvEZkxQoymPQrOOZPhd8qqixxMhEdWY8T74GPwMYZxiJtx2IzjOA6bYRiGaBCMenGvX+G3Ldi9BBCewNwOdE/HdXvQhKhESkokYgWzsfdjhZprOeJMoOA8IjKiMpEZuBEQEHgfhlg3m83FbptS2m23VxcXu83omaWWmudp//h4f7t/uN0/3B32DzlNUrN5u3lPocdxjXEgG9dEPSeSzsZb+w+2PQGt4O8gUrkWKgT1SZcgItnZElr5SktcJiJsFK5zzEvhXWJi72ATB2N/yeEQQ7GMFgUL3lTRIrVWqRa0QUQFkVoLZFRVqZXZWRVfQOpnXDXgy04RWvGm4FxkDuaba6cU83uHXvdnxeO2mbnA3LYcNH5mWVVsBLTIC30B5loY3QSXFks2J1rTJ6SUENGIUqNIbTxbiRCTyaaUcskiYsIPs5CzIs8AkObUnOScs6yyRRNpgM/mg+U2Geo1NtdyyCwv7Xg8Pj4+moJzv9+LlSPu6VnmOXB9fW3Xb5XVVkvNHw8El5Fo+gpEvLq6TsmcFggAnfMPDw/3cl9rzV3pZF29/G1X2OQZlmx3efnu7dsflvbjDzc3N+M4DsPAfLYp/J005N980/bsttut3bj3wfQJF7vLV9evzVX39vbOjkmmRpimSUTmeb6/v7+6urq6ugohlFKsyMXc0qfUTMr+/Of/E2MopaQ051yGITK7i4uL9+/fzfNss9hOOE3fHHyIPoTgPDdQa+dFq05h/xbDMG4A0BzBjY/AVft7euR8h3razpfr0++d/yGApcRqY+a0RcLryaHUeDhoh9b+6u7R3XSbK4Kpuy1INSbP8vwrqPRs/xZ1bp/YmNxngORLmPcLLdUy1xqcOsccQhEttWIptdlxNqqvqkKpKlAtKt6Rd5WuMm0hkeYELNYn0HPFoC9vDVg0rSqc8v6JiIE014Kz1fYiBUtwMkwkZjPaNuNmPCpZ6lzLlObpMB2mfakVOZCLGT2EEd2mgMvK5EupWqosHvk9t0+hlJfGismFzTqsNllt25BQAQUIgRRIwTy77H1L1Sqmk5CqhRSKYmGvQYiIUQzcKrSlh5HMNQJLrblUoxIICkitpeZSc5FSpdbm51ZFSy0pyzFXoUbsxhAtPkDGtbQRItlslFLO85zTnFNORXIRNwze+6VGyTLI+1nu5QH0chU0aHKUZRyuuKie5DTXWnLpBtHYR3w306iNYrfhrKCCqCgNNK/euE1gIrTYt0WGiRs+NqtYe02Hk4u4qEolplqr5elhlxrS19cUPSHc9SJ++uKLv9n/sYWisUe01oCZmmbhDJxjjwbbhzatu2PejAOAlloPh2PKWVVqLXYH3ruUUEVySou40FuqKHvjRg2zhhBjjM4HJDKuPRvvW4rUImYrSxyCH4Y4jsM4DJvNsBmHcRyGGIcYmi7S9VSJEzb9Si+Ctip3gD0DbX1cMKFJ4xbP3kgRFpsNBljGmiIISNF8LO0siMgO1TlmIUJTCCkwcQxht9m+ur4m4t1mc3m5u7rYBcc1z8fDfv9493D/+eH+8+Pj7WG6k5JQCzMGzzH6GKKJDrkF31pOVndhPl2mgqJAl2ZZGRcm8i4MgOCk4v4pzG1gWECRVnFDc3Ug71rQzNjj/o/o2I2DlYLjEN02DSmVlE9Lb65WnFxyrVmqqCKo1FJARGupmR1TNbhOLTOyKS0cIos3ObKpigNzWNzEOqGLa0K3Y9x2ltPOSdtr7GDSTOha2AWa7wICfpnNNc7MdAKXl5f39/ellPv7e9PCMvO7d+8AwFQNltpleTxWYnee55Tm2v1DtNVFkzSnnNKe9sM4jL1ZWpiBJNvDzOr/8fFxAYIhhEUaQUTG5C0Vfa1KsIGkm5ubt2/fXl9fX11dGYlrWt6VKvc/t2GX21rp2hijFTRxzjNzziXnApCMdLAzwFqBY7262Wyur6+/W7X3799b2lYvVvz0Xv7hGPesWXqcnXkuLy+ur67f3Lz94YcfP57ap0+fPhk1a+mMNpYeHh7u7u4vLnZGCZspm6ru9/tpmj5//szMh8Px4eHBGPE3b968fv0qxvjmzRtTYIuIHb0AgZ27uNxdXV1uthsfvPdea81zklrHYdgYTxCHYRgury4JaTocDofDnJKlBf+dGBdegrlfPH40oWcHvrj8v3O7hnSlm722TABFgn46hpYMIa0ODZo7t5U+MtOkUgWpFxKzFKUipUjNYin3tapUsHfQ9ooT+9LxxTpe+3tbBagI6H0YxxBHmVMts6W9F9Ei1ZK/alXC3Nb25uyLCFCleWNYXp352gKSaWr7+aR1tQIQtqoXhlQRgdn3as0ISCKQclE9imgpsmRtnk4TBnPLXHKea021zqUeanmYj/f7h5wrcSCeK0X0W+BNEo5C5HMxSWyVXpIDDFb5mp8AOERtmd611JwlF5VqKEXMK6OUOWWWLIClYjYbCMnNvkulh+NViwDJWFHBIXp8stIzIimRqEquNZlbY8qEFaTUUnOuZnpeqnSYXnIpx5T2c6pIVCNLRKI4xBBjcD44T4TWS7lY/CDlOZV5nlNOqeRSwUWOscmB2k5kuxidQqfP2ouGYus508900ACoeVuGEPKcFqp2OSHBCelWEPPA6Dpi7Fe0Rt4df59zgfZuhHimC8N1XEahZ4q2XEVsp60l7nxaDpY7W9/WUyR/+oTfNuc6m2u0Vn+f/rkNvpxI8SWOoKf3V2aKMSLhcZ4fY5hTBtBSMhIjgoFO0yqklFKasYk7nSVNs3EJpr0zx0fAKmK6FnPGRgTH5BwPMQzDsN2M2+1muxl323G72QxDDMEH79fb4YsD4QudYMmm2vFcG2kL69fQ8umIcjp+EaoQI7JiS6rseU1FCkCtAIDkyUUkJPRETq34oAIjgffbzebV9VUMYTMOu912HIJjSOk47R8eH+4e7j7vH24P+/t53hMIozbH7W4I7DrOtWMVdY+49mx00SuobQxghCcKEjsfkZBFEMuTMAmZYJ/UfF9sKHIzAKae+EYtpNfwJTIic/DOe8ch8pzjbGfZXI3WLUY+FJlLyaVmEcG2h6CIgACIKGMV88RVbOQNM7JjouBcdH7wfnAusgvYirbDCuauwO6J0LVTTB8OpxeAdJgLVjCpa3O/AnMXNtdg7jAMADDPs9mKvXr1ap5niymbH4IlJBmNZ1DGLI3s3Uop83E+dgOCWo/m6wIAjjmGQMzrmimWx2YfYURsU8HEaNk2Sz2I+/t7y1gyrvf6+tpgrmHc7XZrOHK9OP3qXPn97cl7tmp/lntnFgS25qlqSnmp/2IxN1sVDRmbJNoC+u/fv//Tn/70P/7H/7AUupubG8PrzjH0wgHQI05fvph/UFsOKsMwiMjV1dXr1zf7/fT58+ePHz/98ssvf/3rX//6158+fvxoBPzhcJjn4+F4LMVMEuowtGxF59wwxA8ffrHB9uHDB9PMlNJSrIjQ6quFEFRhmqZpOlgEZr/fv7559fbdm4urC+Of0pym/T7Ns+VXmAXHOAwueOec+XhM02QfHWP8e7rRniO8dOR48pOXArZ9U+3bLXaas4f7zGNKVq5DYKyjEBkPqcbjqmitUqqUUgkR0VLMjW5qPug515y01lqyUXkgtbO5J5sA0NPeu/BGy865XPQX7qjfGDM4xyH4cYjDmBR0ztID11W1SM05F6wtpEYL/YWIYGrQHgBfoqSt/GHOudcqa1QWEyswYfP6REQAkyW0sDwo1iqqRRRKFSLsqUYt+GwwsruMSRZJqkeRfcr3h+NxToSJOQoN4LaCQ8wa54IuNJjbNAuivV8ugu78845p/LoFE5qsTaRUSbkc57Q/HJxnJBBwxepOSK1W5AItLZxVqSoWIQFG9IiBllqclldDgE4Jq0ouUnOROeXjnAgqSi4lHeb5cEyHlGZLumt/8pzTIc1ZgaSyVHZuqIOAsuM4RMdkJyFfiy81llzmVFLKKc+ppFwrsroAllC7GvwrIPlCe9k3t0VdW3xyOQxig7qLSrcT+cTUyq+ZzN1s31qAo2tqEYFMVWhBXJNnWjadoqHVPs/W+jkR80k6wXT7XGZGwiWhNfjAzM9u88RIaosgrwQZKxoWcQXLfrX1RaL/bj8p260BqpIKLbfQ7qpLSroI2fgt8uqGYbi42CngnEvKCRC980YxtiMoWT4TOh/iMBqudeycc96bpTmUWqXb39SSiXAIwXKehmg5asZ2xXEYhhhiNEk+P8O4v3ktxrXoeDmi9AWr8fa6IvANOimaUBgdkeG00kl/QFXFCqhSUklHQMdO2YGVqVAli6gR4DCEa7jcbjbBuxg9I9R8mNPh8e7zw92nh/vPx+mh5COqOIfeOdNp2KnAKPHFaMG6uW8GNkawrcW6PinBUlOwO0s+6xJiJm5rJyq1+UGOybUi8u25Alu5nTYuAZEQvGOk4JkG50uoPVZlS5GUKlYPuNgG0spp1KKGem2zQhVcqp2FOMZht9tdbbeX43gR49b70blo5iztOInnMNfQ7YnNbYfS/sViqr2ooVbCqC8fFBfUNQyDYUeTARjNBgBLod0lfWocR/uVGON2u00pWdUDWw1qqfPxeDzO+2m/3+/NIKyWOu33Uuuc0mIysLCbZm4PAIYUl8wzi5ZYMQjTfRoUvri4eP369Zs3b16/fn11dWUq3rUS4PfNlz+iYSfFr66uAMDAutHSzjlbcBZ5rilcLy8vr6+v379/b/Ttu3fv3r59a8XblttZ3v75B/4Db+78g1e11qzDQwjYcn3cdrt59erq5ub1999/bycTK8t8e3v78PiIgNQL+d7c3IQQai3H4/H//PnP4zh8+PDheJz3+/3PP/9ERPM8Pz4+PDzcvXv33gjgGMPbt29rlavrqzdv3x6Oh5s3r9++e3N52dLLSi7z8VhSjjFaFr/3zjufcp4O+5TS4Xj8/PkzAFxdXTFzCAvSXe8vv7Vvn8BcXe0+S7MN9KQjwlYq/BTUJUQhBWlLszTfXOl2TirVzFxryTnNoFZcVkpOpeRaSuFcMicLJLkyz8ecUy0ZUYkgMR6tOLzIfDimZLKNDgaqrlEBwMmddq0xfAJz8ctuEpvdrmrdbHdxGF2IIUsYKrsQhiHEgZ1TgFwrmfygrdidhmmMnAWBTYlOLUsESRVFgbRDbe2BKkVA6kbobT1jtjqwVny0BXpFRLvtTdv4G6FrUB8VGcgjB6BYlOcMh7naTlr1MZePj/vihlsXBmSuskgelvA4AMD/eP9qd3O57hMjkqXaEcMgMQJgEZU5Kx6A77PQMGY/7NgNRVKRUsEALrML7DiIgDKq8250fqDmDEYOSM3HAgVYkRWgYkkgKVeaDoX1AJKhppyP0/GwP0xzyalKknoo9ZBryqUUUQWpmo9J56JVa67zYT5stxebbQi+b8QAiI6diwQu1FBTKinXpJCAqskXFw1MIxtbhdDnQ+UF31x76mrPtnG0C4rpfkvdOKOdkpiRzfd3sSyRFuDoV4GIqoCkioREaiVMESz1E6XjPrOCF4HOqKm24lFrKNaM65CaNCoOIQYzzzrNFQBVOGkdYKFUG/+6nj7GYfzG6MlynLKY/BLj7XMWlDvQ6Si/y5FWYV7LDCJi58ZhKBcCSHf3D4fpKKoOkRw7QtcD6mgbnPMhDnEYDKtZyUJQy7nOloIttQIoI7ghjINJFMbtZtxuxhhjjD54z9TBVu+o3nO/qQdgWTiaXVq7e2rPqWcjwXLGWR/dFRQIQYmJVPVU/wQ6tFQUqUnTQRR9MJ9ZryZ2ABBUQjSaBFv1aK1pToc0Pd4/3H96uP/8eP85z5OUhFgdhxh8bLaJwc4GSxIYNUUutVOQgmHc5Syz/mPDFAABqX/9jM1lB6pKimKVRMiRyUOpY1xEJuwnPVsPEYEAidkxqHMaWm6tGcmY83btAaCi9qcmybP509SSpWSpBbAoNDsXF2LcbLeXFxevtturzeZiGHbN+hcRSJfDK7TH2FEsIjRHhROVqz2CsUwBbV531i8tseTrhmIAEGPc7XY5Z4O5luYMAEvJ3AUQI6IRrpvNxhBqLUWqNJhb6zzP8/H48PBwe3d3d3c37ffTNM3zPB/nx8fHYRzNOsRws0XApZc9M08SW3CMoTGY++nTp8PhAADGOhvMffXq1dXV1TAMS2rR/xWMu+QgeO/tegys24WZMtW0GcaFhxCur6+///7777///k9/+tOf/vSn9+/f91SzuLLTtnfWf/DtfLm19XtBOdbbpqePw7DZjq9eXaeUv99P+/30+Ph4d3d/d3f3888//+Wvf/nw4cPxcJzntNlsrq4u37y5ubq6CjGAwsXFBSGq6s8/f7i/v5vn45zS3f3d7d3t3d3d58+3P/74ww8//GDqhe12+/btm9u72znNN29uFpjrvVdRG4reOe+Cc2zJXLd3tz/99NdfPn08Ho+fP382F5Hdbvdklfi9kfqvw1z7tvVVP6e3GOJC4NISbsPld0SqlFJLz46vVWoB1ZJTSrNKK/KbUzILWGbMCUFVaiHm+XjMaS4lAwiiMsIRCVVBtKSUjqlko3sVW3GgVpkCe7Hf9jetrmwFc5dzjr6k0Nhsd0AYhyEMIzvvi8SqzoU4jHEY2HkFKLUad41gWrLGxfQF3rAqGkGmKlArLppaXcahUR6nTlyYDm45At4534ksXZ7I8vWi1TCVqioCNJiLHAXcXPAwq2pR1Tnv9wcNtxM6h+wUsRvXdllz74Hr4f/5/hzmqkKp9lSlVLH6BIBmplFz1ax0yLLJdQcQR8iSqhaBZrrBPljuIAiLsMPgw0AusIuBfXS+ZV9BBVYlBc0KBAVz1f2xlJShzlKOKR3207Q/7FMtFaACJNEkmsQscEmkJFNuzOk4HafH/eHiIl2mcRgaeWdZxs45JkaCqimWnOuh1CnLbN5ObXvuCZVqGPeFQ9EXfXNtrJ0Iy2U4LoIv2w6J2HFzWBqHYTtmxIIkmJuIR9U2QKuhZ3WQ2h/HVlJPO9V6quG2kLd94PfteEUrM5HjcTPaqj2OrVTP6RYW/vc043sovVNWsPIUg34Zv4HOPY3/NqZFLF/BOWR2tEQ7aq1SLBpQEXvC7vptkIh88BsdVXWe5z1jzlVqKRlrLdBrRxlKYjZ1pzNbKuqieJNAoQr3UmreuyH6zbjZbMbNOG7GYRitrhkz83rR+NJx+dd7YDkaA4LSwmif1BrYMePzXydEVrbFgAQFW/d3flBrVUiqRMjVan+xB/KWMKUIhlyYSGqpJc1lPhweDeMe9nfp+Cg1E4pjDsEPrXxsSz+z5Wkx5lysYZrzRxfGLCeSl2/+JTzXALOinbG64HfxcsDFD2w58dTObRity0BAioDIAIogLTPZcjl6hqcUkAIy1zzXNNd8LGkuaa7lKJqqKjO54MK42ewuLq4uL6+328th2IUwMntihwiIupSEWGaLrf39787mQiPhe7yj7wCoVkAeFLS5TX5t98ZunTuOY8751atXb9++XU62r169suSzBekudGwIodUFtEI7CAhYpXnaj+No1u93IRDRNE1Vas65XW1LGQHHbKlp9vcwDN43rYLJGe7u7u7v7028a6lvS9rZbrdbk82rYfCPbgvLZQPa5Bb2t92mSZPnebZ7fPfu3Y+rZioF6wT4m+f+P7Yttwwnni8AgKpeXFzklA+Hw+Pj/vHx8frV1cXF7vr66vFxP+334zh+9/1379+/u25DixS0lAwARJTzPE3T8Xj45Zdca0nzcb9/TOlYa72+vnbehxiurq+GzQCgr16/fvPmZnexM+cKVFARyxNgZhOoqSg5PqZ5zskGlQUZzEvkb5Zx4zPRwhpCAbSo62rV6uEXNOfxVvnF2AhVqFbB+HgUM00q5Xg4pOOcU66lgOo8Hy0H2iZmSinPcynFCpKUnG3hnFPKaa4lgwqoopooNKNCLaWmkrOFnbQVh2wyq57E1oJiFgRdjo1nMPcr3RKGURGc88wOiV0Ig6L3MY5jiNF5j0gCigpGN6Cc3nN55w4mTnNBe8YdEQIsRj/NPAeWnl1+sycxGxiF7sC7fkBr3KuKigTERJ7dwG4ACgpcBWsFqVJKmhMwJegWsw0jwxOUC8fjDy8NFgYAQAIlQEVkJLRQnwDmXAQP6LyLEZ0rNS+J/s2Kh4mYzOGd0SGxsVjEjp0H0ApMIMoKpKJkmuNUkuQ01aRllnpM6Tgd9ofDVFSACIgKoCCCMgEymcNArrkezZwvJcudGIYhOO+97dfDGMLggnOBkD0hMhUlroVELWWthSsWC2OTVTzbr1+CueuTIvadzVhe7LG607RBdj4Ow3ZXLl+9yqXMj9M8HcpxbtpjaVXwLNUc7D0szZy5ZyMqgK48yxYgDbDY/nWthI0q59iHEGMYd5ur66urV1e7i10IsSkOFz4KV9AWGnruwlFsUfLTiO+rxK/oFppOc0EHKlpKTinFEDjGIYbSnPkkzVJSrlLt/Ci1aq+n0s7ZoKDqmGMMKnocj/PmOB0OtZYpzcc51VoIiZ3zMdgoVFHTBqlaDhiCiEphVB+cWWHEIQxxGIYwxDjEpkb1vueYPb3Bv3G3bs+oJyh1RtL+xUDrckw6MeBLI2RgYFWtLFS7XaxRHaoqUIvqXJGKIkhlP7CPyB4Qe1nGKiopH+fjfv9we3/36e7zx/3DbTpOINkReOeCdy3Prpka+q6P5a4I6Ww8wElKftagr36rW9CX0Xs/h9kB+QRzO8BtjKgqaFVBQUSwvxUVAUEEpIXH2kxGJkRl480tf1EALIc5a8lashTjdI8l73Pel1KB0QUO43a7M6/EzfYixsGHiKfst4VUOdG07R7sANgPm8+eHXYtSts4AZfgyNfmjg1ag63mFXU8Ho1hVVWz6HKrmqj2N/fqdM65dnQHQAAR9T6EGNmxD2HcjNvd9mK3e3h42E/TftrXWg+H6Xg8Hg7TOIwhBnNy894OPM6y6ef5+Pi4f3h4+PTpk9mWGd/8+vXrtVZhwd+9B/4vtPW+b1fivbdSW4hojmyfPn26vb019L/ZbEyPu+TPLULk9Zv8M7cvkXnWmBmCbUM8jDEEv9ls3ry9mabD8XDwIbx///79u/fbnZlp4A/ffweg4zhutuMwxo+//PLw+DhN0+PjQy15v3+cpv3n2883NzdXl1eXl5fjZowxjpvNxW47DkPwwTl2pj6nJsJre5UCMgzj8OrVNSI8Pj6ap4dlPSKipS3iiTw67Uu/2s5hrupSP2lRxPUlS1RAUQVNsaCIuj7KAqhqSblqpTwb3yRVypxzylKK1KKgMEnJiVpdaK21WM3VWnJOZC7jaOamuYrUJuatpeQ8Hx0BQMvhVxGB5jdoWv5TTdBe5GbBtCtd4grZf+kkxga8iKsCijL7cdNySn2I7FoFHASjEF4eWgvYsN6rTR/Q1Haryd6EttDu48TpQnskS/T86UcstDEgKhleJgQmF5yPPgzOReKININV+1Rzc6gAqBbVhgXhqq420uf1IYjJh0hYtao4USBERpEWpjNxCaKIlJJzmmspAEjIBIzIKrnkUrMiOEIVcipVtJi9mCqfnhghOEARdCyVksjhONfjJDVJnWueUyopiwIwI/WUIgakKlhFGAtLYa0iJddaZxGYU+4mSH6McTOMm2HYxU2NY2AvClVBqlhSCCEu26qVvjV02f1kz3rmC04L6xh2/xU7eC1I1zobCZ13cYiAcD0nVZ3i4zE8zodjzbnmUosNdUFCYgbLzbdUMaNyq1hAduEsrfU6D6bBtUQh6yy2CuGbzWaz3Wx2293FdnuxGzaDj+Ek7NDl4N/g7MIPt/m0JnGX+/11amNhhk8TU1VqKTnN3rFjiiE4romwlAIK5nhgCMc07x3g4vJ2dmcIuN2MaZ6l1sf9/jhNqdSlAp4CWDeISq2WPimdRFUEdYTBNy+FVuZhME9stxSbhNO8/A33+mutrZzdNndNvUODtv0MfNaFJkMBItOUCDGRsGjnUdGOH6Ji1QPBFMdeBREYAbGz0QqimuZp2j883H++v/t0d/txerzN8wRaHLvozSw8xhi9N/Ny15MGkJpaa6FynwHcBd0uq0x7GepZNuGqT2C1eJtRcVNFdIxrnS8qbQkVEwxos7CsAIKqXUXWmGAiZLSilGSg3ES9FVWgFqipllzzVFKYZ57nDKwcyGDuxdXF5fVm3IVhdC50NhlPd9CfVydrl/ta6Fs4PxstMdEnx8KvjyljndAS5wHg+vpaVS8vLw3mbrfbi4sLf54QuXAmC1m1HkfG1MbBWOvdbrt72F3c3d19+vxJQff7/eEwzfMcDuEQJzMy2/pdK/HkHIDWWlKq9/f3nz59+vz5836/L6XYldzc3JhWwRzHzrUK//j2/HMVEQ3mWgqU2bGZU8SSP2eZZ+auZZzi+S082RL+qVBvm+RP+nwNeywu6L0bxigiu932+tX14XCwvEZmury8vLy8ssdnr99sx8vLi2GMMYb/2Ix//vOf5/kwTfuH+7uPH3+5u7v98OHnt+/empL53bt3wzBst5vRdGJ2PD4fBv1IBgA4DNGMn51zpRSjch8eHmwM27Dvd/E7nNo65msfKB3f9M3O1igRAQISUMM0rdDk8gfb+lZKrkXl0LlHURDFahNZAKDkDL1uQ9eSnTB5O/62GA8CgBBBxYKYuuKWwegUA7QMPfNsWTfpVLEen7g4nlDv1/uEmdhZbyCo8975MAybYRx9jI79suL2Ir4nqhg6km7WTITSqrjW7lhuryZEkEYQWumFBnk7dm0nhzUjcvZo+ncACgQoTYiDBMze+cH70bmBOCA6wKoooFBF+tJqgTPF/gzOTzdPdaiE7HwEKJQrcTXlHJJaUogiFJEioiI5J2K2EsWdemRQM2QrTOII2TVDctEs4qpWRLIKFMgIjM1tAXGudToc58e91CSStRapRYoSExChMlNg9p4YsQIUcZCrZMuKKLmmnHKepsNSPmkTh+24udhsZFNoqxoGKxdqF9w4oO7WhItl0Vla2qm9UB4C1jNQz4+bK9Zn8VbyMQzD4EMAQB/D4WJ3eHw8Ho5lTiVZ3aJSa+nixI66O2Fr7nUiyr1irTUiQqPbmLGlCXE/FLDzftyMrY7fOIzj4IJnv/AtHbusvJJXSBe+tJq33fu3AsA2U5nJLDy9c0YRith5DS0TlIgQ0C97zPmxbwGHzvEwDJcXO+wrGs85l4JYTECEQI5pmWcI6pkck/3tHA3BhLvDYFxuCIv49ARv22Pty9Rvv90nN69aygzgCAjVrMFoge9Pb+6s2fpJQEoCSkzsWFrwW0WWODhARVWVJMXGpAJolULskJ0gKmiu5fH+7u7u88Ptx4e7T9P+vqSZoLKjIfpxsCI4Q4jRrJdWMfE1wG0LyupPk1P3M98a436N8Le1cuEoWklcoqqAKICAzZQCEFUACVVREJHbym5ErTKi2PJGiCDQOPglOrOAclFY/CkFVUmVmgTCjpZN6UTOdXuHzimf0OyTJ9SmjOrzaaKrlzzphYXN/ZUBhV26sNlsVHUYBtshTIN7DsWegomz1cjEHu1pNqe2pQiR9/7+/u7+3u/3e6scZorbKjWlNAwxJivESjnnz58/f/78ycoNbDYbg4avX7++vLy01Ps1x/xPgwXbbs3cHBgAIIRgxW9FxEQLZqdlAuUvoId/ktv5UltfXo/Tnf+T3ZTlnDG7YYg5FytyZiJs59qIGsfRcJWqxBguLna73Xaz2Xz69PH29vZwODw+PuScD8fDNE0PD/e3t6b6vr2+vr66vt5tt4s1x7JPrTvWDh4isuhJDodDKaWUYlKZxaDjt2Nc7CHNFoYExS4tBThRuaCIKKJKogwqxIs+ELv7kgKIGbmC1O7wBdKDve18rgpPaw8svIWBK/sCAdUuTMxSta3sukBLA72kpEs5XV0eoqHIExRYdcnyvTYE8kJekfn9ttcrIBKzdz6wC8yenOunedsuT/GqE7i26HAXk7TvnHM+ILLzznsPgAiFsC5prPZ+ROTYL7vJcul6XoQZO+3T7h0NryIIkGPnnXOe2CExIEHLzjOWp+mskYi5xWGZ2ZxX7f1jHJ70SRVJKdfFBbgnhxA7YlYA1KzmpFFqTRmRCdARe+ejj1ozSLYAvLYCaqmUOVsxIVI7LymBikoBkVzTsabjIR2nNB9zUq3QcmgcerOgYHLeueCcR2QAQXQCmEVSraUKQhFtKSilImFhKqjASIG5hg1YOQliJBZUqoW0DcfOaELzDoGXF7MXi/3q8rT6t80kGfu+L6pgOVLehxiGcSTmGKNVDz/up/l4THPK8zzPczrOOSV2znnPzmF3UzLzpppzTklqba4BzgVvuzI3xpf7WGRqQihmxxxjDNHcXbz3juyY3eLQtMa4p1uXdle6YgiWVWKZ0V/dpTsbB42WJUKTHBBiiLElVam5c2AIfjOOpVYAcMzeMSIurCWccSmKSMMQmdCUtSGE/XTYH454TFQr1+aIaZl7hOgIonfjEIYQYvRLWD6EU4L5Eqk6e8J/RFPQOR1NBOrQqQXtQAFtNjzpfFy+OvEEQEBAysxuCXmfHocKACGICfNFqoJWqVQSOU/si0oq+Zjm+9vPt58/Ptx9PjzezceJpHiHwQXDuDEOPkYfgrPyCaeAOKxJ3NNB2WTOvadWogV4gnTlpSllGiMEaOdMVlJVlUbBIgJ2UVHbwEQAEbH7yAOiIoCAsqkbVFRBBIWg71bd0gTEMkeKlCwl1zyXXHLWUhRBqSctwHL0NTTdn8ZT8Up/Pi8dfr48aPTZn19puLJcMGhiM8YcFfzL9nYvvlF/NyCHzs7O3vsQY4xxs93sdtvNZry7u9vvp2maLDF8v9/HGKwstkkqcy7GgNYqFui/ubm5ubl5/fr1kqr1t6kq/2FNe0U3OzxcXV2pNuLAhDpLl/4uEvFfpS0cFxGZ84z3rdyoc465OcmrAjPbqHOOr66urWTa69ev/uM//uM//uP/+/Dh55TS3f3dftrf39///PPPr169urm5edOb6WoW+twy/54XPFtGOCJO02Q6XaPbsVf2+V03SNSTewGxibBPB05UtUA3KYIqIwCBgFg5c9tJm/ECLKqfdhJGMMLB0gG0kZ9wSkjQE5/Yv7Uypd0Y6XQhfWnBZdlcyvyqNocCBZVWScYUoKeo2okUb3ICe39EFXmhu2qVUmvThZn3qAlLmclqW3ZLMARLywfoF72o/3sMmRDBsRNW9aoC4oRbwAcquSqVidi5FoYmRiJvxdXIPVFOL219R9qiyhbKVBKyYsDkHLKJAVBblTpoDwIYEIldGOIQx9BzSxYINm42T/uk1Gk6SK0lpZIzWqCYrOYyQZe7SBUptWJ1DomcI44u1DBATVpmU0ugVrPEzeXItu9ARba0aS1Qi5YqWXKqaZ7n6ZDnVAuiEhEjOwSH4LoVhVEtiASkxCIAqVbvaq6VKPdnjapqHlslu+qLVAFAxz74QM4hOa11niFLbZOthYCXsn76ouj0RW2uiSNtXHSsewJjDeqaXTIH50Mwg9/NZqy1zsf5eDzMx+N8nOfj8Xg4HKdjnmfnfYzRBb/KNkcAKCnllKQUiyMuJaHJMXbk2pAu9ZJVVjiqhx5Pp2nDEG3GrNnL5atWRxhPmcXtnvpLfvMGYP4iiIToHCNY/Vi/uD0gAjGG4AFBqqgqM/ngiV5iU2zdQYghRO+89+zsBoPVLyhVitjhArDVjKXg3WYI2+24HYdxGMYxBu8tOe205vTn38nsPwbjAoCqHtMkwp6DsncsAAzkEAihxdaX4fv0fleLArE2RAeg0GvQ9H7BJhdohfVqLVgScUDnUymH+TAdptvPn24/f9w/3NV0KOkYHXoXNkMYOq3tfGDLVDgdu1tM4pS2sUo4W/+BE9e7Viy0v5+3BnMREQWRWM1ZDgG68SCeSO+GdHvIpTvrACIwYEVwIKIgAkzIqqSK1IgTscIQUi1ZOksptaRaTUUHbeFlRF6kRkB9o7RZvazL53fydYCrL//Lbx9XdoONw1k8sAyjNMHSb+W62nHJ1gRltkXGHvt2uxnHMcbgfWD+VM0kaZ5rnQ4HN8/zMETjTEopj4/7aZq8D8MwGLIxxYL5GDwL9P8zNgO1ZtF6TiZ9qf2z39FL7YXwwvoIbyByLT4GWKK9Cqte2m63b968vb6+MsO1EKKI1lo+f749HIzWffzll19++eWXn3766dWrV+/evXv37p1ZyxnY3e122+12KRRi41lEzMB4nueUkikWrLKJVYo+x7i/9RE0Mf0iFThXrGqPPDUSUNvCuTBH6BwwK6FgK3ej/eMtLe3EFYNlq7Tc0kY9wsurgJ4WziVeejohS39FL32OC4V0IlN7KbFlytvKuKgKsVUXEnzWV7nWnAsSEwFSE/1qF2o0YSSSfd/zIc786WjVwAy1nF0gqYrFhxSgcpUqtjohIVUmdoTofTCzI7sDhe47racbXoalgor5C4EqgBjsPC10qNBtGEBRmzkEADMR+xibRnM0r3FbMofxKcwVlZxzM45RJaM1yAiShcJRRa2lEhZGQlIm8s7FEKSEknzpLDiAiJRSUy729AQFFVFQUs2pplKz1qIl53xMUjIqE0Grf9Q9NJvozjqNkIBUC2CQGmpNtTpXylK3zmy6tJfQ1Wbkxc4bzLX6ciCyRDOX0Hg/meEZeQgAL8Pc9RbTHgH22aTa7MIUAA2KLU1VuVYEtMOOipaUvPM4QAg+WrWhGDub24Bp26NFGl9r4ttFm9vMnrADgX4CW+l41xh3+Qr6rMV+jv/Sfn0i616Ii77csEme0Ch8RkTHpNxXFddiwgimZ7AkeWbaDDGGlge26t+2TLQFBtl7HcYRiZwPwzBcptRs8LQhE24VYjmGMAxWftwH753jpsde3hzxfJVaLRd/H+JVkYf7e+84OO9d8MbVO8/krJoDGcDqauneuS38tezDoITE5lvI6kABCoiCSm2UQYtFiGqRClqLwlwVjylNx2k6TNPjfT7utWYm9EMYvNsOsZmnxcH7QM6zOf4YyDsd2awbGgWzTJnn5GQ/KfafdKT4fLCYc2EfjCokRCRIgsCIBPZ3+2VadprTKQ0QkBBsElUkR1ARTSxF1H7HeFyrOJ9rybXVuyugBRmcd36kuPWbyzhufRzYeWQG8+jFxeCtI/Xlv6f7beeiZaToScKgy6l5MWOXnoP2q3TuGnctscI1B3aOcfXXpuPpX+2XiNkBDKo2xagVF4jDMDw8PBwOh8PhICKgOs9zZwDUe395ebXdbt+8eWNFE6zU2TP7sH/Stlze2Vx71v5LUrl2x7pewRd6pkssT5GK3j+2j2y327dv39rX4zjc3Lz+8OHDhw+/3N3d2VCptVpWotUQ/vnnny8vL83bx6qWrEvuGcy1KiRm4ms1TayitfHBi4szAJwty1+5wdNZGLHN1bN5hp1hNVYXVUiQWNUHjUMZRz8ObhwxJy255lOUBxRABRduts82XbbF8+s7gRFjj2EVnV/AQoOptgsTEhN7CpHjwMPIMXII6Fzzs2wYkTtXvbC51DZuVLBEhWc9lOZ8OMzOeeeRUEuuiTLTzOyZnLN0bOKmTD5hGV0WnA5KG6RBBGJ2iMROtR+eAVwvQdVPMioqiNArxrcYYQ/iNqR2AhjLRqMqZjkhamaIh2mapv18PFodoOZeDMYyogIoApViWXFEFOOw2eywVbgEfzJjbs05t9ntrDaEpQZRiw9iVa3aHMaMIqk1FwIke/SCSM75EAZTpTTIxSwABYBRS+fmq0gqac5JpKAKIqLzfkQOgYktR/PEcqsKQEFSYkJSaFpPBgmAIzGwcyG1vmqlc2UIcRhGHwf0XpgTqpYsWo6lzLkUEVKLlzIhWYFlWBJXnrWXykO8NNOgPSbtlf0EzbzXeeedqVjEqsoiOiJUTccZAYkoDpGQNtvNZrcbxgE6frUdTVVVa+/Ws9bIrhXuVtD1CWxd82x5bYvvrDDuV+6nf/Eb7n7VQ+0wukj8CRCIkZqbgXPNT4LZiZMqYCliTJsxxmB5DC/o/LBPcmY3RPI+jEO9uChW5a/0ShMIgGhqjn4maM5YiLa391P16p5evK+/C+eKyMP9g3PknQvOBx+C98EH78xNOhIxoUPkHtJpT2npxQXpEpEi8OkxaPPQMqnSkjsBoCK1asqSUp3m437aT8dpno9lPpAW7ziwH4ewHYbNEH2w8k7eHkZ7dAuSO4nbACwVA5ZgxQndrkIh0Ol+NPXRi/1Xq9YqbS9FJWwy/WoAF1fWi23T6Mzu6aAGdgJ2xLVjXCYohEQKaE4uVtOyplLnklOpVbWCChF5jy66uA2by7i9HDYXIY7sAzkGO0wYRbISk8BZT/SzMZ4iQLbgwjn6l9PXhnGb+fXv4nUXZmtBYH8PDlvwKMZgYQ0f/LgZN9vtZrOxGrBW4SzNc5qTNHUvD+M4DuPV9fXbt2+t2tlut1vkCv9a0HDN8z258n+tG/ld7cmtnXG8z16wDLZhGKzy2Xa7vbm5+eGHH//yl7/85S9/+etf//rhw4dffvllmiZjdh8eHn7++WfTOtvrDeba1yaEYOZSiuHah4cHq7K2fOh33333+Pho7O/vvDfoxmCIhKgtyLUCoQuiUrDyTISMAD7AUGsaw7hx44bSLGkuRCKkKiBNnoBNU6W2YSqebFOe9GDvvgUY63L2xacvtM2fkZ3zHuPA48aNI8eBgifnyJ1is7addpzbg32Nn1E0X/1nbZ7T4TCHgAiukpZcEJJVnETgGES89+xMwmhuE+ZoKiK0cldopRwAAJrMXQFa5QrqK9oKn/RFEZuRGDfhqikJSKRWUZQTiG5yW2NgRaSWWksu8+Ew7fePD4+H6WB+beZMoe2BogW5Kjrzwkcg78Nms+2qNwj+6XR2wV9cXlgVt5xSrb0W81JgwipBgFYpgIpVkaxaU0UEZh/iaOZobSMkVqSKUNrQExEpklMuKWeVyoxMxCE4HxDRMbsmCUciVIvAihB0VV5P+nOEkRw4Tz6GkvuJRqRWVYk+DEMMw0jei6MEknJJueSiSbQiejsNICM4REZ0CNyR7tP2Jd/cF1bDFhhpqXeCCOy4H2iaugUBup2ZlpyP00FEDPmEIZp9K3T1rGFUe+8vXIYNr6Y+ss8/oVta8bfQ9sz1TPnKTZ0Qzu/cl5cXM5EZso4xIoAiAZKx2s6xAdPayhsKABAqE2034xCjqcdWy+6Tq1VEbLKg0NZrs+m2rAAEaGU61keCszf4LSSB/g6Fxsu/r9N0NCVxcin4FLyPIXgfvaveVWbHFJqnQfPNsCfeaYmFCEBCACJu1Koqq9aCANZ7HWVZVKdKzbmkUudDTQfJR5LsGZDdEEIMYRzCGIfBcs68Y+JTrVr7vMUa4sTo91tajYYnX5yPEgSgF2ULdhSE9oEqiKiKFbsYtx9UAFAbOXNiQdozBUJyxK5JzJipy4oJAUVRRWtRKSKpipl+KxGYLCaOYRjDuAvby7i9GLeXYRjZB1OAnZ+AsHEz65FgLBi8MDFfIrkXjAsLLP5qe2Got394hsD0dxe7bw90HZG0CHUIYYhxszEZQ3x4eNjv99M0qYgCOucuLi8vL69MrvD69evtdru45D4/jv7ztdPDegJPVn34z3z9f0/7EvGvL73myc9Nucs2Ki4uLsxYw5ySLfvw8+fP9/f3+/1eRBbbBGa2UJFRuVbR18absXQpJXtxrdVUNGb+YBV8ntArv2GQrxd7ux39AnehCkrNcxDBCyjUsWx2x5RSqwLALDlrLSoVRLDlDHWjb4QXrUefTc9l51ToPBTiUiqJABGJkT1ZQaNxO2y24+4i7nZ+2Lg4sKkte7Gc1ZucfZzByhe76HiYp8eDDEBAhE4VpYJULbnOh9kbAceOEJDMFQA7F7Rix872UNuXCGnB3Cs40Tjq9jX0Q3UXXpxAc+0lyxayuP0toipVzHgtWzmSz58+7R8f5znVXE5FzgzhC4iKWN3qlErJlvDj2BEzIDFb7YVTG4dNeH9jBWLmec5pTinnnEopUAvUCkwogtDIRnRkSjZi5xCJmb2XWk43gChg8tRA3quKSsWqpOJUFJxzTdzMyF0Z3Vg8tMo7pdTG9LWjBhGxSAgRQ/Elx5JLbUyx4VxQcc7F4IcY3TCKcxkxIcyqFVWIkByyQ2JEttgntBA7vjgrXqiCthYtaF87WwHfVh2wSq2AYGyi7b0ADeWWUtLx+PjwcPvp0y8//4xE290Oiax+r1F35pt70tDqS0CiHZk60YUN6a5G5RnI+8p+uUye50f8Z+3rL2idYZuoD2G33SJizsVWHe41ZJdB0geuGtMarBaX9wZi+/U8ueA1/F1piSxja/WKZwC347Z/CGejCjmpEEgphWp2Nbkyu+x98i5ZZqXj4NhKF7VMUeqRqnPZbrtsQgJ20CzXePF3ARVVMaKBSL1DFQJ1CCE4qBK0VkTwnVGOPrjgF2dc6ATEkzvo93EibBdK96WXLgd7Q8ovs+Ta1npYsmqhDYTaLaRVQbs8t1O5AABAVmsSgYgcsWOL7ZmzvE01MqcFUc0iRVWR1A3Mzg+jH8cwjHHYxGHrh9HFrRs2YdyGuGUXqBcB7/e2AtjnRFgjdVT7jegZnLW+Om2H2uzVVLVH074yar72j3/Yr1hrsi5zcWIiM9Xc7rbTfpr2+8PhYKUmHLvtbrfbWXLRxXa7XTLi/4jLAPhNK88f0/DFQfnfoz1hrr/0qme/hQDgvd9ut3Yuurq6urm5ef/+/Y8//vjp0yfzIZ6maZqm4/Fo+WTH4/FwONze3i4paD1Ca9yZWKL7kgVovjcvGbr9xls77XpnZ9LzIdoONYoq1JxNgWADKuA4jJvdxeX1Yb+vJTeJk4hKBZUeLmsLwtloPWG8L06CZUPuq1q3MGVHVt1lGGMc47gZN9ths41xcCHSsij1++pMLiwoxBYhXIcBe9vvp/v7h1IM56ErpbgyH+da76pRlgtrQKdTQicTz8wxThACEbtf+YJoF3751OH9X9ZYpCWGNaykpyoRKhaIVO3Eai0ll2naW02Th4eH+XCUWnWpHtV9AEBVa0nzTEiHOEybzRBbNN/xC89jd3H1+vr/yTlN036apmnaT9P+cJhSTjmnWotd1tI5lveEAIZfezHiJo4V7c4+1LYf4zmrVCscCaDMnXfsJxtaTIz6dGg90Bi6huW8iL2PGcriSWPbFJ6tjHLw6L0gITCzJwUHDMguDsS+Vx3DXgGFXqQ4vyBaeMZ39dNIm8BVavMH41V5d0QAqKUcD8f9w8Ptp8+//PzBeY+IcRxqFTF5HyERN/8kRMVFgPnUb3/Nci0/Inx2DoP1MoA9rNxu4otE59PPOf3rV3Zq7QqwZlm/2w5DrNWUONoHA/cR2iIV0FS30KDeKlb7UsNnXyshQgumtJ+uNk7U/0ucTUlYSQkEUQmza75m3rnZe6vMELxv/g9dk2bR+J7+CWQygvaUqflvACJgBSStJFJViqU0IAIROEb0xOg9ayktwgKIznnH3nYWZu52jE9Y2rO2pmy1P354AZc8of2xaxaecZCA0gBwlzKJVktMqbnWtpQgnpbShvdRzQWZCNhk99Qzpdk5an1npIMoFNWqQME7P4RxM15cbi+uNruLYdwOw9aFSH4gF9B5coHYYXPCwdXBAl5gbVdzDdpcOPWgdmp9pWfAHsNcxM1fG4S/C+/9reBwOYwgd1GPuZVtt9vL+ep4PBymw/F4VBUFZObNuBk323EcLaa8zhP6RwHUv7+tec3nP/wv357SjV/4pyc/b9+aLf0wDJeXl6WU77///vPnz58+ffrll19+/vnnX3755fPnz58/fzZ/sVqriRmsqDIY6bjSly95I+Z6YYSuZar9rTAXzrY7aKf2JzTHaptUFSLHjhyjdxyGcbs7Xh0Ph/l4KNXyYYqaU4vBq+YThsvSAKsPOH1Qp6C1bc3Qdl9qJK7BXEQCQiKLSHkXgvfRheBDdD6Ytq/VYlxt9MsHrRkcVXixx6b9/uH+XsQQvSWElVJkv5+m/ZSL1RmWk9V/h6lLiOYcudorDBdbgPGU8Acd7q6PGdjRuQHHM5ZEVQFEzqVwaoaZVewBpDSnlFPKuZRSRKr1wWmAqoKC1JrnWUWmEPebzRAHBGRmeAlC7C6u/v1//b9zmh8e7h8eH+7vb+/vbt3j/TwfUzrWWtawAU9PEHpqnDa12iLe6+5A0InCRtbAQkFCi6ubWBYQzwSyvQNWI2e5N4UTc2Jv3y9JO+pr1ySgyN6pWmUNJMccyHmgbtfRQ8S/FeZCf9xP2dVGyLeSKM0WIQTnnI0j656c82Ha7x/2h2maj0f7aGfOCf1iem5ZHybLw9UeeLK/5HQ5S4cts/1JtsoySHt1prO5sSxD5+zh6u7O/vMrzd7ZFqyWKg4Aqmhno2V+LiNez2bU2ez6bR+4+o+u7ujJy55f/d+2yf3G90FFB6BVqkhB0IzCBM6J8+KLOFcdF+dzyIsrRqd2nWtxeDRruf74+r0RU2cQTUGvogpVAIUaGERgInSOqSX7Ipp7iRlRYC+puziMaCumezrGvGQ+su7U8x2xG8J8ve+K1FTrMpyN3Km15ppzybUdbZW6/QF1ygG1Y1zETlyjIgqhEAihWN1GImq1IpnZ+WETt7thu9teXG4uLsfNLsYxhoFdAPbADojBTBlxIWwa6bIuA/H08VvesDG17fi/grkN1HYjjJ6CJi9WWnwyaP4huMvMK9ebJqjaOcuHMMQ4DmNKyZ4mMYcwxFYs0C88bv/7H3HBf2j717vi/4T2pU544efLPmK+ywBgI8Esh6+urt68eXN7e3t7e2tI9/b21nTej4+P5lBqsUqjb43fDSHEGC8vL9+/f//dd9/927/9m4mAQwjLCer3DK0z8Kf6VO1zti5ZrAkBgZTQeUJCdt77GIdNyqnW0rWHvRaCqoKlJ+Fpvfy1a1yuaYUxaGE5m4khOyaLSHk7rZslKBMjtaroy1N5Cqn7ty8ZeMM8z4fDhIiEpKoxDmaXkdOckgXtUy65QdQVzD3DvGef2Anpztm9+LJnv3Vq62Cgrlr7oYXyuqxhPXLOKJYFo3SaxMopHw/T9PgQQ7C0WmbuFYZOzfuwvbh286xAimwuPQroQ8xpKLWsLrV9CraTzRnEXC6pFdLrlIfRdqLN+3157O3c01Am9uPjCrHDU8JgeaQrIZ9CF6EDWHqjWqa1xUBFFZAJyEo2EAXvwhDHVvup1dPm50PlJTYXT/gTFqxmpWoN5dYqtSJSCMFc9628GSopQEppv5/2j495TqjgmGMIw2YMMZigpBWwWD7mLByy7CuIAMj9u9UwWn5tLVZq193fYnGWOA/wLP39q+2LUxtXp3bVlrO54HA7zqxRqeJCUT+dur/lOv65G5KLCFoklSX4heoreMEqSEWIqpuz9+wdO8ee2Xu2jEXnPLP9aQl0hP1sgmD5C4ZxUVBEUUCgKKgoklmzABKxardERDr5ZwHCKvTWlguLw3ciZGWesIiEl8XmnLtF7JKH9cn0ZcCbSj2mvCx0rUZmrbmWUrP2wKBVDreTHzfzSFACZVJGYFZ2QE7ZKTslJ+wqMZBjdsDeueCHwcdx2O7G3eVmdxHHzTBuQxy6QyErsSKrlUGEhvhtTC6S4OfKC8O4ZxKFpRTFCeMatAVVFCvk2TDuPwn1iaca5aufEaIHsMB0CKHW0gMt6FyLAKxFe3/sBf2B7/at/Wc3E+xaEODq6ur9+/f7/X6/3z88PNz1ZmDX8NRix7+W7W42m8vLy7dv35oZ2du3by8vLy1WsMapv6U9GZDrbej8hatIZOMgzYzMA1kRoxjEKvB2yyZtc9r+6ozT04jmamKvdmrohBSuRFidJWwh6qYS4G4gxt066WSfcLZY/7amqrnklGYD+bWWzaaoKhEjQgi+lAKgpeR+ADhluD6H0Ut3QWNVnmPc04n3+c+foIozmHuiupqblyFdVV2ORs9vbtXLBo9rVZ3n4/7xkdk5dkMcnGMJDuAc1SEheiJ1Lgafh7hJmyIKIQ85pyoFljUcGjo5sbkAVmQe2+cK2OLfk8V7cpYuZyrsRP5CUbVDxVlvLB203lU7Kl4B3PY3mhmmDcXFG75V6+v/TkyOyDsXoh9ahWcfLXb3rD9fhrkLG4/LZdq8amxuLdWcFrwPwXNLqCKrHlFyPkzTNE0lZVA1bdwQo/fBfMR64cH+Mc1GFM+GTx+MbTDpafRA/zliNxY4cbHruXi+jugp0AON7e1P6nfH+PCl4b68ydmIX7rxBLkWBdTfSrq8uCA8+eHfvKv+rvchDqCiWKtgtbq8KlVAgAQIoSIWQvSJnGPP5B15z0Z1OMtM9KLqVa3e9Wq+IPRCvBYREctcBZEOQrSLwm3yIHTTRPMdhzWcNc6xQ1j7WtcT0N7gyVqunWfQJ8NkmeYvcJe51DkXW+JE1aIfpdYipUhRk1kTMqJTFVXXYBUJAxKqI3CkzMBO2Ss5ZSfkkJyQQ3bEQV2guIm73WZ3ud1dbi6vNtsLHwcfBme1f5AAUVodYeyV0xRbRYvFTQxPN3t65HCGcZ//wRNDbmyuPHvNl9s/Bu2tH1gH9n3R4L4DwbJc99XkC+j2G0L9L9yWh7vmm5SIzHV7t9sZIkkpzfM8TZP54JqkYdHsppSMmbOUx3EczYfBmOCbmxsrGb3dbpdtuCPd3zS6cNVWv3vWFhDRsIMujBESUBv3fS9aVr/1GrhUkoLVF8ve+nxer3H3wuPCKTgLndpbIcL+bZ9pVvPyd2ebAkApOeXZgFet1Q6r3vL9HTOTgtZqjLUuPXa+ay+Xv1yz2Xjh+ucn3urpvn/286U1mLsCuA3jts1nWXwaGu544rxfT5hQLBctz/M07Yl5HIeUdrEEEXoCcxEI0REJc3A+hjgOpaqCL7GUVKUCLNthK7PWDxu6lGZGo0RAoau2FzAvPd2oh8a75SssdO7pb/uVFTBaphjarrQ6KIGJJWCxFOm9qioCUk3tYWFEO7shE1mRWct4GkwYmfNvcFpQgHKYV4+46e1qKXWeZc5OYeOHy812N4wbHwMyFqmHWV2RWmVOWMUjb0KUzQZFd5vd6IMDIlHMVSlrEXFW+KnV+ugDcAE40BnxFaW86rEFAJ+mfe+p82F2BkH74Go/WM5u588CAUDLWfYiAEzT9NNPf33efS+1r60G67XiX4vg+fTp05OFTgFSrgCai5YKVVAFVREqQgFZin8jFlZXNTO5Qi6L8+qzOifsxLGwS+f+x6cDskoz0BUtKlVqkVJFqlbRKktCKnSYC0BWma7pXVsxEIF+Nl1dfEO/Z2zGgotPO0Bfi+wHK3jU4nzPjuJDjNvNxta4ZkvSQlO1SlUr0WCFdGgp2kPNfYSQGE3NweSome4wkev1ANkOrI5NkSEqWfJcZgdSpeRide8QAdBKeAp0cmKJD54hXeuns8cKi5f6CeyetsYTxtXWrbYSqeVegEo6PumTeZ5/+umn3z/o/pCmL3y7eqraN93Tzvuf0B4eHp5OH9Vffvllnuf/pE/8l2jPb//x8fE3r7T/uLYUfbDMM6NvDaCYSkFVmdlg7jojzYwXpmlCxJTSNE0rxcLLg+329vbJT1R1no/nMBdOpzhcju1wtkkuv2z/bT/uX+P5z9vP+jss73860X/l9GroVlaI9tlVnNaYNYLURRK62sVXEKDt2j3FZf2RiNdXV/M8m6dpCHG73W23W++D2dZaWsMQQxfIKqz6/Audj331W5DI+WXjwlb2r9a31NuCVvS00Ug/Oeh6M4EOc1+8nmUDsupxPoQYx812u90MQ3DeIT9DdDkfHx4+lJKP82E+Hub5UMok9SiSVQtoXV1g/0Q9+48dkNryaEzRWc7UwnUsv9HM2KHF/M8rUcMZujr/RDw3/9L+Dk9eK3oaJI2uQSCAZtnW6xarmytAmufH5z2J//t//+9nP3uhy9fg/HQPtkHAaTQDPNlCVsMCvjQq/sb29XfRlwffb2vPpvSXBuJ/q/Y8vLKi+5+2p531he/xa68BgC8+tt/xNP+u9iuf8/zeX2I9Xn6X3zeecPX/9U9f0OX8o9vzPoBne9K36fN8+nw1D/W/RevHzFP7lxgqK+z3tfXh10DVF9tLK+0/e5/8Z7fnXf2sl56Eb78Ozf9124kUfD4mXooPfH2Q/hdpeNobny4p8IViv7/SLS9MuSdL1fnHrl529p+/s/3qu/yBD/f5cvytwVeXkS8c4J5+/5Qf/tdvL25I/2l7lJ6flf9Je/Db9HmxvSTL++/e/isNld+Ihn/XW31rS/v6KfEp+/bfoy289X+3topvvND+u9MJ39q39q19a9/at/atfWvf2n/J9g3mfmvf2rf2rX1r39q39q19a/8F2zeY+619a9/at/atfWvf2rf2rf0XbN9g7rf2rX1r39q39q19a9/at/ZfsP3/kiOp4wplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjQwMTEwOQplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKMzcgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNy4xKSAvQ3JlYXRpb25EYXRlIChEOjIwMjMwMzE0MTU1MjE2WikKPj4KZW5kb2JqCnhyZWYKMCAzOAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDQwODQ2MiAwMDAwMCBuIAowMDAwMDA2OTM1IDAwMDAwIG4gCjAwMDAwMDY5NjcgMDAwMDAgbiAKMDAwMDAwNzAyNyAwMDAwMCBuIAowMDAwMDA3MDQ4IDAwMDAwIG4gCjAwMDAwMDcwNjkgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQxIDAwMDAwIG4gCjAwMDAwMDA2ODEgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAwNjYxIDAwMDAwIG4gCjAwMDAwMDcxMDEgMDAwMDAgbiAKMDAwMDAwNTY3MSAwMDAwMCBuIAowMDAwMDA1NDY0IDAwMDAwIG4gCjAwMDAwMDUwNTQgMDAwMDAgbiAKMDAwMDAwNjcyNCAwMDAwMCBuIAowMDAwMDAwNzAxIDAwMDAwIG4gCjAwMDAwMDA4NjQgMDAwMDAgbiAKMDAwMDAwMTE3MiAwMDAwMCBuIAowMDAwMDAxMzIwIDAwMDAwIG4gCjAwMDAwMDE0NDMgMDAwMDAgbiAKMDAwMDAwMTc0OCAwMDAwMCBuIAowMDAwMDAyMTI4IDAwMDAwIG4gCjAwMDAwMDI0NTAgMDAwMDAgbiAKMDAwMDAwMjU2OSAwMDAwMCBuIAowMDAwMDAyOTAwIDAwMDAwIG4gCjAwMDAwMDMxMzYgMDAwMDAgbiAKMDAwMDAwMzQyNyAwMDAwMCBuIAowMDAwMDAzNTgyIDAwMDAwIG4gCjAwMDAwMDM4OTQgMDAwMDAgbiAKMDAwMDAwNDMwMSAwMDAwMCBuIAowMDAwMDA0MzkxIDAwMDAwIG4gCjAwMDAwMDQ1NTIgMDAwMDAgbiAKMDAwMDAwNDc2NiAwMDAwMCBuIAowMDAwNDA4NDM5IDAwMDAwIG4gCjAwMDA0MDg1MjIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSAzOCAvUm9vdCAxIDAgUiAvSW5mbyAzNyAwIFIgPj4Kc3RhcnR4cmVmCjQwODY3MwolJUVPRgo=", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"300.018787pt\" viewBox=\"0 0 684 300.018787\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:52:16.455853</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 300.018787 \n", "L 684 300.018787 \n", "L 684 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p31c65d4520)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAA6IAAAF4CAYAAABOwkTnAAEAAElEQVR4nOz9x7IlSZIlCB4BCi54wLCDQFndXUS96t51bWZfX1C/U/9Tq1om0cxmvqJoKDMiPBwYfvbARaoqgGfBzKJyHzAz9/CIjMoycb/20AWqAvkwHz5s/ut//a+EL+1L+9K+tC/tS/vSvrQv7Uv70r60L+1L+zs1+299AV/al/alfWlf2pf2pX1pX9qX9qV9aV/a/1rtCxD90r60L+1L+9K+tC/tS/vSvrQv7Uv70v6u7QsQ/dK+tC/tS/vSvrQv7Uv70r60L+1L+9L+ru0LEP3SvrQv7Uv70r60L+1L+9K+tC/tS/vS/q7NP/gXY2Ae+BPV3xFAVOkdGf7HyHscv5D4tfJ8mp+O8mnlJQ99+q/TPvfdyzXe8/tf1Oj+VxpjYG7315f2q7Sc872/1+5+YEj4Ob/gl3f+/LFh/cRE+sdREvv8K3moP+kjHf2xd/+rVoUp/9zzPkb//7U+7W/e7u8nurfTv+wpf7v20J5i7Rff7t+iEdG9+8e/5zle3+/H9s661X3x1/bLw+fmv8/+/rduD43x/eNg7prX/Ca/9mX9O2raZ/ed+9WzjMFDVv+X7v15zVT2F/ff/R14PxA1Bk//z3+CX3SoB48ESKYYMY0DDocBr3/8CT989z0+XFxgvV7j9OwMj548xpMXz/Hk6VNY75BTwjSOuHjzFu9evcHVxQW2NxvstjusT0/x4puv8OTFc/SrJbq+R9O1cM7Beg8rB42RiWMVIJvKvDQQ4KzPU4RRbr+6NVPuqT7EyjNKR+mkIxwten1PIlA1MWvAqp9PR2Yj/27741sMlzd3uvz/+r/+L/yn//Sf7h2Oj7eHVsbxQro9Af5XOUxev36N//7f//ud3ztn8dXTUwCEMI0I04iUIignEGV479A0Ht576LZkjIF3Bt7Z40fj0TQNvG/gfAvvWjjv4Bw/bs9hgEeNMpAJoJyQiT87p4gcE3JOoJT5AUI9S6lckZXvLQq5wei8y+A5fPcQo8qBpGuaCGU+67Qvc1t+Ub7qu6hxSHT0+n95ucEQ0p3P/Zc//xmX19fyeQTKGSlnpJT4QQkpJ5CRdW4t3NHDwVkLa838cAbOW1hn4ayHtR7OOljrYK3nr4Z/dq6Fcw26rke/XGGxXGOxWmGxOkG/WME3LVzDew/vJdzPGQakX43uOgQjPVH2R9Rf7x5lVI3P/J/MhfJ9PR6YvyfiEaWMjMw/E8+N8eVfMPzlX+709+9//3v85//8n+/8/h+r3bd/zRPv2HEpfV/28H+bPWyz2eC//bf/hhDC0e+bpsF/+S//BScnJ/8m1/Xvuf3zP/8zvvvuuzu//3/+n/8H//f//X//3a/n1245Z8QYEULAMAzY7/fY7Xa4ubnB9fU1bm5uMAwDhmHANE3Ism9679G2Lbquw3K5xHK5xHq9xvn5Oc7Pz7FardD3PbquO3KSfGrtfPfdd/jnf/7nO79vmhZff/VtsZ2K/VRsJYBtMjljUB8o5dPnvZFmK6n68/yzuefvutPW71t/fvWen4ccjGzi1dc711T/zhy/tjzFyF/18JRn3jIDDVD1m+z3OeP1m5dIKd65un/+//y/8ebtW3jv0fgGbdthtVpjtVqjaVpQzsiZsD8csNvusD8ckHMWm0/PqM91UJjqnJqDQ+a+e1Z7Rv9+BDo+FsChatjUFsnzYXfL+FDblYg+6XiqbZUsh2jTtui6BZarFR49fozHj59guV7hfNXiZNHceY8Xz/8P/Mf/+P9CjAHDeMA4HHAYDjgMe4zDgJgCUorIOcnd6JltCg6YZ9FsrdX2H4jK3CZzPEWICDlXoE2+GGuLXWJA0Mll7kyy0sV3+17f0qjdeDzbDVENqcpX/mtGBiHLmORyfQYGFsZYWOPhHM9T7xvu98UCXbfAOG7xL//6/73XJr0XiBoAftGhWS1kglWLhggmRiRDsDkhGmAfBtzsd4B38MseK0ogb+EWHZz3yCkhgkDOIlDCfhqx3e9xs7kBeYvTMCEiI1sDahxM18B4z0DUcsdbuQxbRVvvfJXvzdxz5bpRPbdsotYeAQN58jwsAjbvTHx5SqZ8ZKzPg2bKk+b3FSPKu/u6HMvlEi9efDW/jo72vluNHvheWzW1qj9TmWQPeXzk1bc2lI+3n+8lmu/rcz7jr3v/aZpgjLkLxAG0jRM0aEAJMMW5QGgcofVA08xzxhqDxlkGqc6i8RZN49A0Ddq2hW9aNL6FbzoGpc7Bewai9mgD1Y0SyBmgHJFzQE6RwXAMyCkhx4yc+EAx82lbtjYqANQChsETGd3gMkBZvh71ZjEQFODopl0Aop4FqM4FPTbKRn/7wb/PRHgoKDSMI3b7fXlNJmIAGiNiSog5IuYIAkeWjDXchwJEvfPle+MAZw2st/DewjoH7zyca+Asb4bWphmcOgKRBcHCJWIHgLEwtoFtOvhugabr0bQ9vPewhjdWGAagWUA/GYagBZoerRVzy0i5PTFr0EnIR+BT3QcVOJUxyNL/WcEn6YHAcyO0b+79uK7r8OLFC3z+Wv57tLtm5e09rDY8akcHgHmfN/YTRsnf7p77vr/3c40xePr0Kc7PH/3NPvt/1dZ13b2/X6/Xcm7+o7b5PK9/1qaAIaWEaZowjiO89yAixBjZESrnV0oJIQSEEIrzLufMDlLvS+TMOVeA6enpKVarFVarFZxj20Pn7sORH+Dq6ure3xtj0HX9PUD0/kNagZZ2wGyIlyeUH/V5JIb1vDfOP9f7h6H59bj1fW3PPWQ+HN25MYCxuA1Gj8DxUX+Z+XWVg4y/y2zQ33MalFff6jcdx9uNiHB1fY33F+/R+BZt26Hve6TM7ummCciJ58Zut8fNZoPdbseObLXXj8b7fiB6HJARa+Ne8Fr/7vhvt+fTfVsz1eNd9vZ5ny8g9GjvPwaity5j/qECoWqTEAFd12OxCggZaPslluuIJhLS/QF/NE2Pk5NnCGGCczsYs0MmjxANggMsOeQ8AUad7TLhTIUojyZ69UsDAXsyu+tpVN6KLYHa9jUacDAacJCRuvW1vEcFessK0Gu8x+EiHVy9710gCmJLiJ1MYqmQEWvIwsABxsOYFta28K5D26zQdWssl8uPOhAepObqYJYftEuryW2tlaiPh7OWN88QME0BKUTknGEpA/J83zRYiNduv90BxpQNeBhHNH2HNnWgrFY6Hc8xGZ55p9EFMA+VqYbt+H4qb4oCg9uL3xy/bl40dOcdb29vt/96T4/e87uPNRIwanDHMNP3E4B+99OpjNndyaa/qq/nrzPa6i68fR79rYMWf8375zQxdKAEZwnWG4DYwG28E5DpYK2FtQ7eyu+8EzDKP3vfwGtE1OnDwTnLrxXwb4xuvgBl9nrlnJGzRED1cQvgsbGS540ZAIyFMa7aMPggnY8Lid6RgFOqVkXxk2isVSbFnSkqfzWy99yHIfTTjG6aDxs3jXfoGn8EZlNyyN4hpoSQHGKyxWECAM6Y8rBEsEQwlGETXxN7nzNMJiDz2WAcwWSCtQTjCNZm2Jx5vUtfjxSQpwFx3GMa95gOW3SLJfrFCm3X85j6BsY4kHUg40DGAsUrWaF1o5uxdq3uQrd6k44PjPt6ydRPrn8nXWLBe+A9JtEn2s/df/6W7S4Irfe4nNIcKY/inCHuVzW61dHDa/M+UPqPdL9f2v9a7e7cq52javNM01SinIfDAbvdDrvdDpvNBtfX1+VxdXWFm5sbjOOIcRwRYywgVEFn13VYLBYFfD579gzPnz/H8+fP8ezZMwAM5puG103tFNXr+uy7+wjo5Hs9fq9iotw+PyqgkYnZMTkLOyYnjvRhPvs0wlfsG5r3xmP0WV/T0U9H91qbTup0LEZ6MdTVGrccuDAGxjqO/lhbvjfWwBorT6dysv4aBpH3DdpGx3hZHm3bwVqHFCfEmJBShoEp+6Lecw0UPwZC52vj+6fqdUfPO7K7H/77fQNy25a9DUh5XBkzUOWk4SjhA8hR39uUfwBYGAtYY9F0HZbLFdbrEywWK7RtD+ebB9MoCBlEETlHpDQhhhHTeMAw7HDYbxHCiBAmpBzLXarTmIEZzX1TQXtTMMrMVCMDcW7rZ8t6qCOiUPvRwNjjMJLO4ftsjXkE6n+rq9Jxu3Wd+idbvzdxPDRRLg7wTHplHAxhp38D71ukpkdqM6x1aNsOMaaPjt9HgKhOlHmBlxshXrjOMvXQOwfrHIgyb7DjiChRHcjvDYC2bbFaLXFYr3F9fQ0yQEwJ4zRh2B/Q9T0WyyQTUSI6ZKtr0quoAfKxh8TIvc7eqeMNUh90j/FSR1TLfJauroGnUc/HL7J1Pv2i+3JD1HOacy6eQ2MNG8Y1ENTX0AxkyzXrvdE9Ud7/5RohxxHGECwSvM1l43IWbOw2Ho1neq53DDbbpkFTfu/gPUffvPewbqaCGgWgZt58au9fzhztZIMicVSUIlNxMzFQJSBnQkokYDXP69EYWEtwTjYNZ2UDPHKFQb105vYk0T/LvzM2nWe7fnc0+3VPOFoPAJE52tDua6136NvmaPkS5UIzCykgRItUAW+OJltY3e6IQaYBwWTAUILJBkgJxmXAZZiUYVyGcQk2JXGUJZgUADMiWoc4bDE4j2G7xGF7jf1qjdXJKZYnp1gs1+i6Bbq2h/Mt4BrAecA6AA7slZQotTEwZASMWmi09L5mcAxGZ9B5/Jzb42SJI6WWOIrKgPRhT/8/dqNqH5+/6p6Vc0YQimKQCNE0TWUftM6hbZlq2LYtmqY5ii58zOv/q93BA4b4l/alfU5LKeFwOGC73eLq6gqXl5e4vLzE1dVV+Vm/v7m5wWazwXa7LQC0NsydY0aOsnK6rsPp6SlevHiBr776Cr///e+RUiq/t9bC+4elQT6n3Qc4b9ssd9dffS5Reeh9pBSEmjwhhAlTmAr9sThqj5yxeXauluNoBpqfs/rZiJ+DE/q1jowa+dlYC+Mk7cML80bOfCf2r7EOTAe6dWYCn3U9916jMYWOu1gwmFqtVui6Hm3bCWCZOPiTEgDDDlTtcjOn1pny89098ghEmluP6u/3veZzaL81ANWv9aP8rQKhWZwtOu/n59wfBlIbRkGWkUBZ1/VYSdrgcr1G2/fwTQtrHxgVyiAKyHlCjCOmMGAY9xj2W+y21xinAWEaEW/RqInKBK9soZqaK4796h5IAL++lDAD8ExUAhgltUvHsoBAgyP77VbPKFa4c4vVrdf2iNoudh76whRMlJFyYtYWCfXZOFhwUMTaBtYyKzB2PGbOOY7gp76M4X3t4R2JlKJXbTDVn48iot7DuTkiGqYJMcbSoWoIN02DxXKF1ckeiyXngzrvAWIaSo7sBSsGeyZGlkY9NMXtcH8HEzSyXAAlP4070gqdy0r0tgBTvqHjn/VdygY354keGSK3L+FXtFFqEBpjlAWZZXoTR+kcR+tkCotD6bjfYcC5dZKvqJ6gX2asPTAfcKtfjrbevzXo/WX3YSgyELUE7zhKXvI+JSLGuZ+8uJqmRdvq75wAUMlFdJyHyH3KzoESsVMQCrCxnWST1UeJhM7R0AJCMyGmefzLYWz4wPEu83UAMM4BmT2BjD95ezqe0fMReT9kqoHpfLAfj/bsnLqP9vxQ89ahVXoYqrVJhJQzmmgRnBVDK4OEsWAxr0t1S/GmTrDEQM0R4IjgM8EbgssEZwAPgrcERxwRhTHIKSASIREQpwPCtMc0bJGmPdJ0QBr3iIsVUr+CbzvYpof1LYxvYH0L6zxfiAH46rRL1AB5wCNsZjCK8qzZK1C51aqulrGq9jXLZpiA0Y+Sge97q3+AdkzxBqhEeGIIGMcRwzhiGA447A8YhoHng3j7l4slFssVFotFyX+rowA8J/8t7+/v3W7f7P/qTsZfs32qbx/+e21oq7MtxojdbofLy0t8+PAB79+/x9u3b/H+/fsjQKp5ofv9HofDAeM4HgHA+vuZmcaPy8vLEml1zuH8/BzPnj0ra2W+Prninz1dxIV5a5Hdd313XyrWC5Hs8QkxREzTgHEaMA4HDAfOy4spIsWAnEW7QR2UUMAi/X3s0xKnoH5rbn02/1332hmkcbQJR5FRSc+whs94AaC+bdE0HX9tO/imhW8awHs4+DIF9NQsXx8IAuge+FDTSOhytcJ6vcZqtULTtPC+QYwZISS0IcFI9CnnzBFaO2tTqP2q7JG6b+qIqNJrjTGCRiQZrjxFQZ+R88zUU17Oaf4dpxQJODwCm0I+LXms81pRIJpzQo4JMUV2SE4TwjQhBLaDOD/z6AQ96nFjLJww1frFEsv1CdYnp1gsV2jaFs55GEtQjmXdQpiw21xhnEZsNzfYbjfYbq74sb3BOA6YpkGYOsc27ww69TdU5jxI7IMS5JuBKKoAQgk4aS6lmd+TI6IMRI2MjVFjZJ5R8/nKb1jGt/wdFbOgAsz3AWce85kqn0HIWYCoUHKN9XCuhfcdUtuXMei6CaEwOH4BEL0N9G6DUJ7odt4ELRuYKWXEFMskqz0eznv0ix6rkxOcP37E+XvWYrlaCWWEIx+GAGRCNokNPaueqfqa7lm4dHTJ86/1MLAZFvbuJskhneNfqRFfFuv9/XTf7489/vJuZWJ+etfXDUsnZIgR+90eu/0eIUTxZhg4z5E555xQPKuoqSx4Bp4GbdtwFKFRIPUpr+gdmFl+yuKxug92zh632xvufRvtv63B5FuCs0aEcAzTbaVPm6ZB4zt43wrgazlH0YvjRYG90HZ5gy8wif8V9ECSDJpzFqphQFIwKp7ecrDKHM4ZiIkwhYxpChjGkb3EOYFSgjEsHNE2DdqmRde0aNqGPbZCCa4u5cFWj6w6ZAo1lh4yKhTgHrsljvI87v0sgr11bDCy4jHw1qPNVvpDnEeVz69skPJ6ayRFQA5Yb53kkTo46+FlX/JO6Zt8X5kIIWdEIhASKAxIOeKQAuK4x2F7ha5foutXaPoFfLeC75doFyv+XdfDOQvjHDQqWvelwvs7vVAOhPn7GvDfBaHHPc7OE/kMmgHox6LQR/3/C5cb0S9/7T1XcQRCU4pzfpwYz7vdDtvdFvvdHvvdDofDQYSZDLzzWK3XWK9PcHIyPzRCqvvav3/Cx8fG/CGH4Jf28fY56+hTzzn+ewgB0zThcDhgs9lgs9ng4uICb9++xdu3b/Hhwwd8+PABV1dX2O/32O/3GIah5IFq1B9AiXzWTpfCrsn5iK4LgB06w4BxHMv7/RrR/Lv2jexhD751zagRxg8J7T4GjMMBu+0Gu80Gu90Gh90Wh92OQWhiiiQyg1bOU1OTuNoBH/AHFKD0iduu07ZqIAo5141jIOp9i7Zn8ZVOHGL9kiOU6DqYtuWx0SgrjOTrKQg9NjUL3fgj47JcrXAyTixGtVpisVyKMGKDHhaL5QrpCZXz2xoFnaYSSpyB6e1UhjtRUsMgQkF5nZep9utdEDv398w8FPsBJGMuugZ5FrwpDgmSuSEOaJ7PETFE7Pc7bLc7bLfbsoamaSz01WO3L/9knUPTdej7BZbrNVbrNZbrNbq+h/UN3xvuB0bbzTX+/Kf/H0KYsN/vZF3usN/vcDjsMUnUnsUtq2uQvrdiz/Axn4sAJuU8O1Moi06F6EpYC+ddCZLlzPR0paoDJKlegrsUbBvHjLEqel0D2drkUBxFRIg5l/fPKSHTnNfMb8I2mHMWXlivjQRhjLGgkBBT4sAXHGAc2m4J21vAt2UsswJvBb4PtHvRiILQ2wEu7WxYwGYBoULPtc6VzkuxohFWF+C9h+l7rE9OMI5TyZFrWqY8ltwF6UgDMbjIVmH0z9hIKzdU6QQiWLLl+9ubU+210sF8mGZQv+re3runfa5BMIO4AkSnCdvdDpeXVxjGkXPVjC0Hk/cOSWieKc8THmBj3VmL1XKB9WoFLBfQPKv5Xu+9y6Pr4efxV6WVZvHY8CSXaLO+6iEQ+utatb+4GQM0rYGzRsCnE1DXoBOPZ+N7NL4TamcrgNMUIR3OE5k9iLcjMQaQdSQ5MCmy4loMSBL953GaPVKZjABRgxAZiB7GiN1hwmE88GtThAHQty26tsWiD6CcYJAB3wCGlX7VYfFAD6B4D/VZCpAqz+19B2QNQ8uqpGqtP7AEeC1T6X/+qnkPFsbZ4onTz+E9wFQR5vkaTH3oGgGiAkAZjM5CR9YawGSQIWRKiJQRc8aUMkIcECYICHWwTYumW6DtF2gXa7SrU3SrEyzjI/4sZ2GM5JiYuodrA+mefjAovy9zA7dff6uJ0VciolSp9VLtyfxU+zl71c95j89ttz9rjhJN08QqoWJoaG7cRoQ39vu9OL543zo5PcXp6RkePXqElFIxytUperz3/Pp7zT9SWsN9oKB2fH5pP6/d3e4eQDj3/P02VZWIEELAbrfD9fU1Xr9+jTdv3uDly5d4+fIlXr16hcvLS9zc3IjATC6iNRrd1CjmYrEoOaCqgGsts0eUvn44MHtAKXGqwDsJQ+3XA6L1IUcAmaN9//7P0LNBDNScmPY4jdjvN7i+usDVhwtsrq+wvbnGfrtBDgEkSvbIGYYSNKpUmCcGOJbyO273r1WNFOk/x0CMaiBqJCfUNbDOo2k79AsGn8v1CeLZOShFIEextQDI2AGunLCEGYTy18qFW4I194/NarVEiJFB1XKJvl/ANQ28a9A0HJVt246VShsP77wGM+HqoJGZg0d1mlr9KH0hdOQSXa4joUABpXeAaAV6rZy7x6yAfBQ0mYGoRsh5fjCO4BSN6+trXF5e4eLiAs47TDEgpggy6pzQ6wEoyz04j7brWBV/vcZyfYLlag3vG04j1DG+p20317i++B+IMZa87DCNmKaAEHgtxTTnaStWUeDvvStjoMEGFaLMEqTLOTMYNyyGaJ1DI04nvf+Y+PPCNIFA8F6ZDwxA50oC/L32/RzwYNuSnTHzmKScEVKU6HJAkP4s4l8ChEEZ3nt0bYO+67BaruBXKzjrQFNAGgNSJiSygPWwsGiaGYTyij/++lD7RFjsYc+qejvqEguavxAKjTQdTTxOdOWV6JsG/XKBEAIMwPSMYcTBH3hRqrEvk3mOEqYSqbl3IbGFerxIwFuPLkJL8jB15MgwFzpnkCxY0kH8ZN/UAFbX7OdTFj/2vilnxJQwTQGHccT+MMgGbNE0QSgavtB+UhRPSpmEBC+0aa+Rvqa5dW33XydHLEQ4RGgSCnhjRavgLrcSXXRwnj0oHCmX8asUij/1ubdbHfH5fCLiJ97TGCyXPby3aLxH6zmyqBHGxrPql/ed5H16MA+er+jIg4rKSaNghI4PXV4LvBGlqFQjjSDWvSGbvyO4xsFTgiMDlwg2E0IGwhQlp1Qo7eIxNpTQtB0aakC+kbwWpzdcB+Jwd/7K32Qd1M8w93x/1y1EAPJDXo3S59YeU+G1TIu17MRwGuEUY5qBqH52TX2Z17gxgDOirCuiUr5s1DwvGYgSYAmZLGLOiDnBm4QRGVZKx6Q8IacRIY2I4YApjGhls1bqU9N0cNYCzhdsOU/LyjC9Pb9Jn1obQnUHPQwXZXeZnQY0A/XPaw+v8fr7+/N+PvtDPvnZKs7FAHTE4XAo0aLrKidOaYmTGNkqFW+tQ8oZ4zCWMhYASv6J5sDNgPRTQOJ/tvbAur31u4eeXz3r17yo/4nbXQfJz3v+3aYG7DAM+PDhQ4mAvnr1Cq9evcLr16/x7t07vH//nuf4NJXop9LNtRSLKt6u1+vyc9/3xekSYyxRT80lPRwO5VoWi0URKaqdz8AvXdcklEHZfchA2St3sVR9OvAfWeiEDfMpjBjHA4bDDvvtBrvra+yur7C/ucZht0GOfM7x2casIWWCFHKtgUSVPmLm1jdKqEBzFWwxuudVZ3qJClpY62GcR2xa5GlCniaYnNE6j65p0HiH1DTIUu4tl4ig6gbU8ZHZNp31PB4WcukXHZZpgbbt0XYtfKt2XIeuX0iawgpdyxThxnkBRSg6Fcoa0oho/X0dEa2DLGqPsJ1f4fZb9reOLWDE3rMcvXN8toOosOhSYlEqddDXgSIIPiBi8BYT07ablsFjJi5R091cYxg9SFOVypCJTUGWadRNg6ZlRpuxfJ0xRUDAa7IGaO4ugsOwx/W7q1mlepoKjinR2ipqm1Ji55G1rIkDtjXIADlFxDAhhglTGBHDVAFvsO6EsXBNw/YPgUFbzmzjCViknEDJIFuLqE55Y46c7mrnUKaSX2tlPhvDujjZiFhamDBME8ZpZNpzDFCHNxGz9YgyuqbFou9AiyU6a2G7Dk1ji60YCDyuNDuNGKNlEBLULpznyP3t49Tcj7Zjz4dR1dzEHRcDh9WtDewNSQlh4kEdhgEhRcbJOSNOASknhBQxhYB238E4Kwng84TPUXMGskRhrYglieFRgVdVMisRl2oBahRXKSwlrG3m3IGcM4NRo/IjHwOlVa8cRVRvG/4/Z+ev8kuImexa7iMX5SoA4EkRY0QMoXhrYlTKp4TXfYPFImChUdNyYccTRDcbAyCliGGc5FCdsD8MGKcJMYlni2Z1MPXONN6ha1v0fYeubdBKtNt7EfCRZP6jvrjPKv8b20nWWpycnnAk1DecA+p5E/eeS4BY03BuiBFlPHM3v2IGonN0i29H6BGZAShHQeNRJFQBFtMbhKJhhG9vLfrGolkYuGmC6xfwhz222xtkAsbhgCkmxMD0JSQWPOpSRM49z1/fwIHA6rokKroP9DXxOiDx0pULQ/EZ3+pB8UjLQaq5Dx/bOZwzTGlVJ5apqCbGwhkBotCv86dqFsQR9Qd8QBrwQeushTMW3lh4aypwKnnR8iYZriTeNy6h9RYhRcTMDpYIQkRAjAlxZF9eAqHpeiyWa/T9Etk1vHsaUw7B2y6FY1CKo/lh7usmwpHsujZVytVPUVB6z0r6Wa2m8d/OOdPvf61WcoFTQpgmTNNYFEJvbq7F632JzWZTwGnOGdYYtF0ra4TfZxxHHGQvqmmJCkIVUNf5UP+e2+fc48cYPl8aN52jx2CtAgy3nlv/vWaPDMOAy8tLXFxc4KeffsIPP3yPn376Ce/evcO7d+9xfX1d5rgxpoDFs7MznJ2d4fT0tDxOTk4KENWoaNu2xdGScy4KvKqwu9lsCjh99uwZHj16hPV6XXKp/7pOAlAk0wyXPqv67lYnyUtmwJGLYzZgDKIafDhgOuwRD3vkYYCNAV4Vcw14A2R5URi6lRGneHh27x2dQHccpkXdfebryQAWx6c6BIvzjzKQE0e9YEB2QIJBbFqk5YA8BWTROMkpw9gM5MygAEnsx/oMsFC1mNI3H3Hgdl2LRerYwdZYOGfgG4+2YzurX/RYLFmAR9NRFITWfWUqMMo/13axEaprFnHELD+j2M0EFP2Ren/NmcfVGBRxR8pWWJNVRFQDPXm2E8q1SXAFyMiGhR692FzdYoHlasJ6GLBYLtB03BeZVElX16zh1DvjpI47a3cQcqHZKmuNAKx8D/R3y0LFKWBzs+Gyk2JTq32kfeaNRbIAJYtMCkS9MLI4Ws3jzfTVlAKm8YBx3FdAnvNYrWvgCPBEcMpIsxbWNEDDJfhyNjDEDpkUOJiRU2LWl5eKDs7CW8tjTgQPFd9k+i6lBDIGIQTE6YBxGHAY+TGFaV62FYU4th1MjmiMQV4sYWNG23Dkc+E7DDFiP0WMOcv6YUcCIfJXigxIKeG+fFxtnxQrMvVKNiiG530TGSCkONe6CiEwQBVDYRxYgGIUukjKGSEyfSSMI8ZhxHgY4NsG1ruSg6cLJ0rCco6RKQglwtei8R7WOxgBqBwNmoGn5s3pz03TgBrZuIS2UDw8dURUyl+YaqM7ChEdtfkPejAZCV/ckib5rEbQKjYCRskgEUnUM8v41EA0Cn89YAqh1KB0zqLreqyniJh4g5k/4bb5TDLEGSFEDIcD16fa7rHZbrHbDyyeUz4fsgg5F69tGiz7HqvVAqtFj0XfAwsCqIHzrvJcSX+pZ6jqQlM8lrf79tdrxlqcnJ6i9Q6Na9HI5uEkv5ATwR302DNGvz58HTz6uj4YhObEG0aSSKgKL4hLSXL+1MdrAeNhXStUIBbIaWKEH5fw/R4ZFlNImEJEmiJT3GPghU6am83d58FfnZsjh9wqNzD0EJBf3xdiObo/lIP1aO7ovvARMGqtgfc1LUhqgmqOLqRUCwycQZUfihIFVeEiWzmY1I/kINQY8cx6Y6qIqBUxCiM+uswU3ZyQskVMFiGzE2dMCYeUEOMk8zwjEtAv1gjjgBQDKCUuF6Ma59o/porZ34/3K2fF8d8gjgK61cvAcdkWFSs6eu1ntKP9HDjKK1NjoRY+AWqQ8/OcaMefS8UZGYUueDjsBXx+wIcPl7i8/IDLy8sjdVDvfTHSIQZEjBHbLZe5OBwOBUwbY9B1XanxeZui++8JhN0nClMbsg+nlHwBo/c1urUYPya6U0DMrf6uqYe73Q7v3r3DTz/9hH/913/Fv/zLv+D77/+Cy0tWwg0hlDm6Xq+xXq/x6NGjUm7l6dOnePz4MR49eoSTk5MiUKM03aZpKhCQRW02FPD74cOHkkt3fn6O8/NzUVq9DUR//lxg4CQ7EVVqn/eAqTnapyBUlDeJ2VVjmFj45XBAOAyIhwNoGmFihCOu3Jx18ycAZGFIdAO0pph6zVGwHSp4ebQVzUD19lf+DAWi5StqBkoGJUmRMAaJDFJ7QBpHpGkCCTDImVXbYXOZG2XTLfdSO3tRAPpDxmHbNVhQByNaFNYZ+Mah7Rq0fYeu74rwpxOnroVEQ9UeucV2uf1g52NGSkwn5TnFwQzrON2FwMyTnPKcBmFNYUJaY0Bty/dXA1Fgngc6T8zsZNazXU89BpMGxhKMs0xNXy6xPAzo+p7zpL2DzQkmqUqxEWcC5yuyorEC7IxxHMowaG7p44UBcA8QjRH77ZbtNgkeWMPMOe+8BMlYxz+zFwQWFtY4FrNyLbxrABCCGdl+iAHTNGAYdnyPVoCysbCugQfgyMDTjEGczWV+x2Q44hgDKAaEw4AwTWzfSCnBbC1IwKgXtifrZrBQayYgEQFhQhrY+XMYDtgPewzTNA+GAnwiUIrwhtB7DwoBNiW0ZGC9l4BJQCIgxQhrINHeJGl7Aj4LCH0Y/TwMROv1c3R43fIxVdEJSEg4TaJ0NYwIIWIaR0bfhwOG3Z6B6Dgx+BxHTMPIneo9fMOy2HNEVBJxASQJk2cxUrzQTVqp4Wg16uYqEKqR0yqX1Uvtrbbr0HatgFlRPnXKjccRCC1jVHfD7QVl5v6Zc+yOe+1nN/X2iUcpxoQpBIQpoO2II8Ii0EEE5ERM4z0cEIWu5p1DmEIFQG+32ULNGaxONk047A/YbLfYbHfY7Q/YHQYchgkhJcSkxbO9GK6ElB0yGQATCEAMCcM44TDMarNt20gdQIlia4TrqJMeRPq/WjPGoG+XaBsRtjEe1vjiPWLgWUOhqq/ujKb4VknzHebSLLyRxZIrUIM8KotM5K+Nh216ON/BNh2seMs8Zfh+gWaxgrEexnLt0sP2GgcCKEeEmLAfRmhkNRPQZEJDBJ9zJaikh5Gei9VxIN1ezn3M4Gf2Ht+BU3on0Nydh5rOVT54hBrkJBpaA1Fj4EtEdFZus7eBaAGhWtJE6o5CNmOJkCpdSGvFkZHDHw6eMjJ5xBzhc0RIstEHLhWT1JFEqmqci1cY4jGe7/nIXXX/vLunh+6b7ce/u/2MX7o+1MlER5GUEEIxELz3pS5hTeH6OZ+hreTCCMWJ89gGbLcbbDY3EsG5xPX1NXa7PcZxKoDSOc+RgOWSqYhiqIQQYa2T6Gou0aemYTE2TVM4dpLeXy/uf+aWirE4O33Z6eiOUjDq8jbH7dgZ9e+/PbxebvvebuezKW1ypnzbcrarET5Nk4ipbPH27Rt8//33+PHHH/DDDz/gp59+wocPHzBNE7z36Pu+RDkfPXqEJ0+e4OnTp+WhAPTk5ERyAnv0YoDfrgOqQFTzrNu2LdRdrSl6enqKvu/vUHPvP8s+3XLOYh+agv5qBdSqI/nckHORgWgqQLRmcVFkVo/JXKaKYdG8n87nD7+fFYeAuvcLvbPcmTgTqjoVRwD0yAlYuTtr5xVQzpVioBiUiNP8+ZWzTWnEkjKgKqflLUiAIGaxqWI7PDBHG+cQGw+2E2w58/jzMzhCLeUOM5BVJBGirH7UV7VtWjNhUPZq3VdYxyXDeY8kNqamfjEAYiCVZCyZiSgVbODFUTDf55HT7JZXlHSuQIWMeGqpjiOoHl8SwCo2gJZPM2W0gJyRwohxb0EpIowH7JumBFmIgOcnLYDTO/1tRX8lW3Z8IGUZOxIlf0g9cbGjLDvFnQhZGsd07Jw5TXGcJoxhQkgBiTKK0j6Y8u1di8Z3aH2Pzrf8esPYwzcJLUWkHJDDhDSNGDNAYwQowOQMGwlICdkAUa/NSVDON0yMNRYxs0jRNHFu9hQmdraL7gjPg9m24Kj6rMOhJXVSDCAQjCWp+DADZu0UU5nNamvOVuXd9iAQLYvnaGFWE0dQu3p8rOzmWeiC0zhhOByQcsZ2s8V2s8Fhu8Nhu8VwGBDHCXHiAzQGTuQ14om3ntXKINESNTr1vXOeD9z6YUsU1JS6Tk7KmzhnucyFc/BNg8WSaS6L5YKpDYsevm3gGg7rG8ubGAMlzBtRvYlZNULNUd9ov9Vr7ecd+7OnTz+fwJ6cmBLGkRUmAZb2Lp4t4cFPU8D+cECMTAtpmgYhslCBAr/6k+pRJ0oYhlGEQ7a42Wyw2e4wjAEhRkwhIqSMkFjRuO0MjCQqZzKIGRhD5DyucYLfW3hvWVin7+RQ5a9KMXJlHtVXdcs6+JWbgUHX8uFsYWGIwaDAGYDui37S0dfa66qR0Fn1bY6CJomKEtEsuCO5IxoFNbaFdS2adgHfLRmIOs5L8cagA6FPEd61cL5F27S4thY5RsTxgJgmpDiByICIo+Sagpo9wblc1BaVUg/ooahdbzTlp7SjepVHk/kYjM6H9ucCUQWUylKwcGAA6gwYiOq1iTOI6bv8ujJn5CA2RIXO642ZgaiAUaVXa/hUmF5IXKYZnjxcjrDJITuHEUbGys356gZ88FdglBIBVveIY+NkPmjpaOYcA0wc/fTxGV87RX4ZgFBjSXPLdrudlEfhg77ruhIZVRDzs4AoVZ+TNFrDQir73R6b7QZXl5e4vLrCzc11EWpR46Dr+nlf7hdM8RdQbIxFCKEY1LvdvkSCnDgX9ZpVQVfPhX9PzRjDXntRWd3v90XsRqPCy+US6/X6aM1/iYY+3Oq+4dwwrWnJqUbGGDm7FvBeXHiGnzsMA25uNnj9mnNAf/zxRwGiP+HDhwtcXV3hcDiga1ssT1c4PTstoPPZs2d48eIFnj59ivPzc5ydn2Mt0Ut1rNTz+G5O32zc67omIiyXSzRNg7OzM6zX6yM6718bGVcGgrI/ND/0CIhWIBQklFwiycNnQUuNNmnZPkOQPdcUxxOg5xgDFGT+2ZLaRwRjZiB616FH4swHjmw3aBTNzlFLc+wkJMx0zOK2rQxzKzaLsWIPQ0jLeviaDJNnh2kJShjDZ1oBg8DHckRVubS+BtYzqVRPY+SMPCnpkeXe5xJy82fr+N120uXMFS9iYmbdOA1IMcE3Hjk3AIzYMyyG5TOnQ2hpOSvsI+clZSb7ogJ7B4jibrCmTkXTM5OFd7LMk8hMJI3wik3ArXJbE0ApYhqAHCOGgwSkrDmap4cXj+7vb++wXC6QYsQEw3W8E6s1U04gKwgZKONonYX1Dq7hnM8MQswJY5xwmAYMYULMicuuGaYPG9vAuRaN79H6BbqmR992igBBFiBLyBbIOSBNA5If4DNgxgA7BRAlpo2TMrcyIIr+8M3sMDEOU8qYUsIQRkxxQohTVeEkV0EKnuPOOvjGl+gyQIgpYAoTTEowNmLKhJgj9yu/uDDP1GGnFuZsad61cu4FosXUqTer24iKZ04BwgBYyjhl5BARxqnkKVy+/4DLD5fYb7YYNluMhwEpBOE6JxYxylL7yLkyEKrcxSqVBiS5iSRA9Paj5IgaU37WMhuziI6Hb3yRwl6uV1ifrJBzRk89GrRsWJItdfqoun3dYMU5ptsZPuVdLED1F+3/8wJKYtxNIcA3DavXSmQmE7juZGRxoxhjMb6LYl7tqtBbKvfFrx2GATebLW5uNtjudtjt9piEDhwil5OZIkcmrPfwDfeDSlEHSUifgkItQts06PsOi8WEZVgiJsIiZSmT4os0dVkM1b9/CzhqjIH3HRrvOM8lqzfNAGQrx4NegW6et/qt9B0KQNE8mFkpraqPWw5AA5ADGQtrW1jfwXkGoU23hGs6QItkCzugA8Faz/WxrOVI0zhiTxlhYE8VEKBwMNPswGgaD6Vpc91Z2cQF5B1Hfuser+YtzX+9PTIPbzFzK3QeeYXBnH9ijUZDGWxaVfyTrrIKRK2V7zkvVD/QEJcqYlovv4eT99UHj618Ld46K8YKgYiFKcgYZKO+ZjWmRPU4BsQoOUEpwZqsFosYM3TPGr/bK589px98ot783fX80bcjKiIM+/2+lI3QiMZqtYK1Fq2UIZgNFbrzPvddXx0ZCGHCOE4YhgO2m1kR98Mll6xgeu0e4ziibduiDroWuf3FYoGuZdaK7vFatJ1kE76+vsZ+zzRfdW41TYPFYlHKXhxHdj++T/9jtmOwkVIqY6c1J6+vrxFjLII2Z2dnBZQoKK8jaXcjY3X7n61/7mv3L5xj3yZVv5/n7TAM2O8PpX7nOI5wzuL09BSAKaAOAA6HA25ubvD27Tt8991f8Kc//Qk//PADXr58iTdvXmMYRqQYhYZ7gsePH+PZ82d48eIrfPXVC6HiPsOTp09wenKC9ckJ+r4vQn+3AePtn4lIoldjUccFWKRI803X6/WdyPgvBaNEM420frnSHW93NoPRXP6eiW2DpABKHno+KgOGczEtCtfGOQFfaujwmawnKmAAO+fN6z9HPlOYoikwH2vyjZ1LlaglwOeJMPLKuTE7/WeHgDoFxPEr5wWyhbX84TUIrftSv34sR1TPRoGWAmozUgqIgR3QKbV8ImgpD6ASdgJfd/X5dURU76MwWESxNgauAUnQPEwgRmYAZOLa9dbaEt021sAnh5R4r6kB6H0pBPW9q31LJHNJOjRTlgAUn71ZVZRpVoQtDoXKbU6ZkGhCjrrm6dZXYByHe/vbWYu2bRCNQQ4RObLgktp2SAxA2WlPEgUWINo2PPSZgWiIAWMYEWJgWqwE15jZxmlY3rMAYut7tL7jdEYrZqg3gDegHBCNQyQD0wagHeCmCTlx1JoSIeeIHANytsjkGQwbgAwB1mGMCWMUSrxGaHMCQco8FuborL2z6Pq5Vrd3gAEyJWGDZUTVrFF7pDh9FC8qCMVHjZ6HI6JqAR7NmuMJlCtPVwnxyySIIWKUyNrV5RU+vH+PcbvHuD8gDiMndosnLBMLgqCIisw5nsbO9Rprb4aqJSo4s1bpWAAk0sIbRiWIIvRE7x32uz26mxaL9RJnhzNMYcI6nWCFNVzr5gVj5smrlA4CVLWc77f8bZYxv5Of9LP2fBlUed+yUMGGs/MsI26tQ0yZBYRiEiM5AgaiFMZeosYz5ZSpNHLB1XQhcB+GlDAcRuz2B2x3zBs31qFfLoFxwjCOyDkyEJ0mWOvRdpkBgkS7nNNEecP0iMTS0HkKCCljGAP2w4h+d0Dft+i7Dr3UAGwaj6bxpe5j8TjWU/BXRKV6cNReUkjuiW6E3GXVk+ZT7nhdkR64efZSJv6eyqYpm6ABCCx5bWwD2yzQNEv4dgHX9LC+A2wjwN7CSp0mFm5ZSiSORV/SNMEaYEvM0+eIdCgOFJQDJ6NpCERMowY5LsME9mzzQVPF9T+y9nUaVUk5UFrux6i5ZepBNnAAKEaNZc+fIXBJYhn7ov5nJLJpZyEjU3zEekTDVj8lIuRMSJKrwNFiAZiG95xAkR85YkwBYwoYYsAuBOxiRIKD8QkuAU27RdNdw9oWIAdnW6AzJXcH4umWE7+se6ruX73uJW5a//0+jDRvBbgL9z8F/euen0Go0viurq7w+vVrXF9fFyD66NEjeO+xWq2K8E95l8pYL3ml+Xjvz5kKbfRw2JeaoDc3N9hcsyLuTqJ4cwRvga7vsOgXrArpvBjY4uwSNotzTDk9PT0txpNGdmOM2Gw2Qv9vCxVR6ar3A7B/tPaRtSOAQyOg7969w5s3b0otyqurK0zTVEp8PH78GC9evMCzZ8840nZ2Vsb0OH/2vs986Dr+kftO2/F8vd2OgQBmFfgQWUFyHHFzfYMPl5e4vr7Cfn/AcDigaVu8ePECL56/wGq9EkeNwbu37/Dy1Sv89ONP+PN3f8Z3332Hi/fvsdlukRJhuVxh0fc4OTnBV199ha++/gpPnjzB2SmDxMVyASLCbrdnennfwzeNYB4zH1Kke+FMCwYIwzAWh8R2u8U4jrDWopfP1Giorpc6//WXNrW96jlU22azk6qm5qpiLt8PRw2hIhjzo2yfBo1v0DYWthG9EOeYZTFyahI7A1n0smm4dIk1tdM+Iqp6qLXFCatRzpQTYuAIrbLpnGPBRe88kzwluFIEfMgIA4btY2XWEPhMme01ZUeZedvG7ACoI5GfAqJsS0Q+Z5znvMzIgpQ5Eax1nJPYchoWWSfaE8VoLGC0puXyOOr3PIZzOpuCbRlfiPYEzeXmYLLYCcQObfm+nmP3Ae/7vi82bkaZIwQSsceAGAaEcECMA3KaQBRRVJRNXcdd85bnuWfkvdR20yua677f6m9KiGFECgk5BXmkqr4pEIIEXiq80jQt2rbnSgYhCDZKDNwMwTdOLBQRwLROMIkTYUwHZzhIwNF/cbgYoQTnDEuEzjn4RY9kMnJqkNOIFEZME2EyvB6cyTAmIedJ0sQMppQxpowxThIRDSDK8M6iabycxR1aCQ5532DRdVj2Cyz7HutuiWW3QOua+dJSBqLgQcx4kIWpMNsIHy+o8LEcUTNvhDpZeBzLIqtBaClFoZtADBiHAbvtDjeXl7h8f4GwHxCHCXkKXKBYxHQIkosmXGso+JQH+cwesZpal0UUOEvcwlTeLfV+VYtBufqFEiih9MVyIeUBMmANmq7BIvc8kasJPfdD6aDjRUW4F4iqx8yU6/vcA8Ac97f8Z6yB9w2IOHqcMudhJqFHhJgAY5lmnJkG6T3nvxpUeQE1KoAplN/94YDd4YDt/oAQItq2xbJfAOaAEBMyDVzfaZxgfRaVODNTpRtJwDbghTuyuNIUIogmEBGaHQPOvmuwXCyxXC6wXCywXPToFz2oadB4U+pKHrf7rPVf1nTzK+CpgNBcxBCKF6085y79Ry+LdOMpNabU0zsLETCIYw8enIdxHVy7gO/WaNoljGsEhNoK/rJwkjMWbdPDGQtDhmnqMSBnBhfD4YCYAvIkNePUW1gQd3XoaVUXGJAVAEXzRc71Pk1Zn/ONHvf/vCQ+Dopqryf0q6BaY4BMFtlRieRCI6LOlKLNFscRUQafdWSXx5EyIWYAlMommDIhZymJBH4w+JwEgE4Y44QxRQyZMCUCOQfrE3wCnN9y/q7hurJts4QRgQJyXrYmKtHRmfJV9ZP0J0ytf3u8b93u2SOgKvc3//3z1oIe/HU+2eXlJV6/fo33798XcDmOI05PmTpY533pvNGcOH2QMFR0/02Z1dGnacJmc4MrUfK8vr7GjUQvmZ6X4Rte/72ogS4WC3jnMEk+KdFUjLa2ZWo5G9UWXcfG9X6/x83NDVJK2G63UHpxXW/xbr5rDeT/8RrRsR9I+z6EgM1mg4uLC/z444/4y1/+gh9++KEI1IzjWKi5z58/x7ffflseAIqWQC1Yc78BfNwv/9DY/YF2XwTmPvCVRM3/cDhgu91hu93i7bu3ePXyFd6+e4vtdof9bofFYoHdbo+cMs4fPcJyuYRzFi9fvca//su/4k9/+jO+//57/PDD99jv9zCi4Lxen+DZ06d48eIFfv/73+F3v/s9zs/Pi75FCAHjNCLc3MB5z6IzjQehkX0YkgYAOOsAx/seAaBMGA4DLi+v8PbtG4TAFQU0gqEiR7cdMffZMD+n3QWix2DqISBag1Cm4cr3Yjvq3/W9fdugW3RoFqrn0bHjaXfAYXfANLK2CIjQL5nS770ve9k0seJ/jHGuue6UfWUxSgWHcRqL/dK2Hl3b8f5C7NxNk6QkTQE5kQBQATzFsVjgGvQ3amYVT2LVX4XefM88vTtHWXXfe3AOojUYp4Bx5LQ23zToWtnjANY4AbhfP7J4ix2fs0Ruud+diPFwyTOIHVQOHyjw5BcwNbruhdoZZEQJV+2o+67hzhxSAKOCj3FCDCPCNCDGETmNoDyJ02K2DZx1PB62VnKWOpZ0t4+Nvb9vcsoI08glCyOLQWrkvpRtoQxYC9e0cNL33jdo2g4EIISJbUGwtoSxmmNugWxBWbRIpDRgXSJQjEleE4aASCBKoJi4ZJC18H0H2xhQ9MjJYpoM9jbhQJbpuZYAw/XSU4wIZDDljCkTxhQwpQkhSRTb87l6sl7jZL1mZpHn9dJ3HafLtC16zw8Li5gyTEzMShMl5CwOjaw/CwDNEiGu1ZJvt0/UEVUnAt353Yx0q+KsJCZVlrqTU8A0jBgOA4adREKngBw5KR15BqIEzAV0Xa48ZLJAwJ4o6zTigWIA6UWpN6pMNI2qHJ3q+oUHeQoTfOvR9i36VY91WN+ZsMU+P+oDKtdRnnPLs3Vffu3P3vrp+KtGefVwYU9d4JpLkT2AfGj5EulSfvx9H04QGt0UsNdI6DghJmKah/PwTQvnAoBZaVOBTsmD9HGm1joqmyEb4hZkuJBuThkxjRjGEYfBYRgDDsOIw3LEMC6wmibJj+GyL654Mn/lkhJlzxQwSoDK0rNIlQA4dUbQfLjcNWT5oKGcQdI3rI6rHuAK7EJAinMwvmVxooYjoa7pQXAg4wT88eelmBHixJuu5c3d+w6LxRrpNIgS6YjhMCKMe/aOxQg7hZJrU8CP3EfxCqpzxBhYq2CO5NyU5xvtHwVO920m8ikfyXXRzUnXicnEB3omGJs5+mhE4c1aZMoCO+csgzkaOlPiE3KJzCkthoSyrlT+lDJiIlZ8Jn0kTDmUSOiUODIackKEQSQA2cNl9v451zClxng0zQJ9v5IDKMETAyNOKFGHl52VLiqjRWgbgidng4Yx/t0oagHwUJcIz47bh/7HWk3JZaN7i8vLS7x79w5v374tdTjbtmWwWKnpau6Zvl5FjmIR4splr00pMZ1xGLDZbHAltNH9bof9fo8gNMWmaRiASr1EzYkzxmAQOqRet14XgFIPses6xJgY4N7c4HA4lHqMSk9VenHbtuwAE6ru7Kn/fCD/9261gaoG9c3NDd68eYPXr1/jhx9YCOfHH3/Ehw+sODyOY4kIa+7vfr/HICr1+/2+lASp8w8Lk+gftC9+abtNDdR1pOIq0xSw3+2x2+2x3W5xfc0CWm/fvsWr16/w7t07DIcB4zhJ+ZMei36BYRjRdi1AwHd//g5/+hNHQt++fYfr6xsYY3ByusL5+Tm++uor/Obbb/HNN9/g22+/wTfffIOu63A4DIXWe3V9hXEasd3tMIwHnJ6eFoo5ZSprrPGe61t7EUwCcHV9hWspe1QLIWk9Up3zv2affgqI3vc7daYXUKZnbhEyUON7trec5Kn3fY9+uUC/WCCECGSOZCuIAhG6rsdytUbjfbEzrB3YgWos2q5F13ZSd12CHMPAqUw5w3uHpmXBs+VigcWiBzIhThMmO4EwIiVxKmuJQDsHRnTPVts4E8EaSRXFwyvrc4DoNBxwOOzQ9T2nmRmDOE2stRISuq7H1C2KBkphC2nwpaIR6z59BwCKAJWeJ3pbbHbpeYMKeOrv68GcI8E5p8IOO3JEYN5/6+hscb6VzlIEkzg/Mg5IcQDyBIMEZ5lOSs6i8S3adom26WE862qQMVBKeB2Jr3u57xcPjQqIEgChABvRhaAkdTJ5zlkYjiT2Cyz6Jfpugbbpee5ptJX4vXKOyEnEL7NDzgRjLNOMZdLnFJEMW18KYpEJZAmgAEoTkANaByy7Fp1tgOSRo8M0WXQeaD0wJc4XTmBnBNPZRQ0jsyaGsQaucZwy1/VYLhY4PTnB2ekpFn3PKYze856jEVJY1tVIie2klBAUnJNKZjEy4u5mBhpPEYNCb7/HZrkXiPJimhe5gtFi/FE14WgGo8UYBIrCEiVVEKMCotj7kgFYCZujmqR80UzdyDDZwmT2oGmemLF2rkkEFEEG3SR1gtcLryw40vAxP8I0YRpHDCMr+apBViaRro0qyqrtKDvUzGZNvafMh/zPb0e2gfQL6V4uh6qxHG1jhdZU6nuqwWvkGo5WuUaVocngEQcxHG82O0whwjUN5+g5j5zBiltV/VCSxZpiwDQOoJwQRN6aVRtnkRBV+su5EdqeiFQNLAax2x/Q73ZY9D2WSz7sF4sOi75H37XougaNbyTH1/3i/qwbX3+uFop2shG1PhytGQVw8/fV4MjPJTc0V4V9yyYtEE8Uea1rJRK6gvMLGNcgQ3IUYSQ3kd9zChMGUaBuG4+ua7jmpm+xXJ8WIBqmgMPW4kCEFEho2+xAMKYCltUMKxDPMsugPlgViKtk/X0biO4NMwh9WKY7U2YqFc0MCmu4T0Aiw04c/bUCSHUP472jynkBb3wpJ8QcSu3cGJPM0yS0uywgNCPEhJAyl2wBezUjpJwAZWSThbargFDqmlEEIrgGmIxf3y+xWKwF6Cz42o0ty6umbx31qRoCuh6NuAXkx/n7W2Id0Mfxf2xUPAz+db4qXXYcRzG6OVJ5eXmJDx8+lHlxfn7ODJEKhGoOGtfvPBR66DRNRfWyANGYMA4DC57tj8usWOew7Jg220sOZw2G1MF1OByw2+0AoADgvu/5PSSy2TRNyYXU6K7WZ9xsNvjw4UNx1mluqZaC+UfPGVUfmEZBNQf03bt3ePXqFV6+fInXr1/j3bt3uLm5mcdCckJzzri6ukLOudRq/fDhA1684JzEurbker2uhHAAwBydX//ztGPDuv6eiJgtNAVMU+B5udV+ucSHD5e4urrCzc1NWRdXV1fYbLfi/OP5cn19g/fvL3Bzs+Ea28OAn16+xA/ff4/3799jmib0/QInJ2t89dXX+Prrr/Htt9/gN7/5Fs+fv8DJyRrL5RLDMOD9+/d4/foN3l+8x8XFBQ7DAU+ePsaz508LEG3bVlKcBsQpcLS70xIuHo1vMIWA/WEHkkjoo0ePyti6InBz3Ed/7fn5uUD0zngoZilXpRsbFaxTAEPx/guDTfQoHIGduKIMah0XKfNNi7ZlsTLOP2Wj28cAyoD3LZq2KwDfeQ8CME4swugbj6Zt0fYd+iXT25EzRrFhYkqwIcJmKiBUGXzGqhJ75TAUp2gxEXB3l7nNNnmo//a7LTaba6S4ZkXXlqTc4QHRJ4xSErFtWxj0BYwCcsIbudZqzNQOVvDIdu/MdFR12GI61q5RA/UioLAA9XQiPXsjYrSyl81A00qKWEkTk2uxhm0CiV8yiDUEIAGZQRilERYRnSekzgDwMPBYLldYrx9huTqD7xfwbQ/jnOQia7rUHBTQOzk9O7+3v40BvGPBIfIWSFyDMye2cZyzaKxF2/dYnZxiuT5HvzhB06/hXI9kI5zxUmaIRMF3QgrKkHMw5NH4BXrfIbcTknWYUkCeLMhkOdszB3Uc94OJE2ye0LQeq77FSe+B7IHUIIQGy0WD5aHBGAMLE+WEQ0ywIYFCRKAAGK5v2/YtGsPK2uvVGierFdarFU6WK7RtU1IAtENYxCoDiYOM0xS5jCABEyyS9aUGqhHbacZfnL/7sXP2wYioAk0euGr0cLxwZhBaAxSZVGlWl5zV0CwjfMj7ZvW0GLHLTDXPBYwSiRiJqJhZrk2q61yNDV3ImhNg51U0X2+18FJOsIEpGuPIcsYppQfsaHPrJ3P0XQGhZr6meaO+/fUzmxikt/NaiBRIibOGOOKT6gVX3mP2hh0Zw5hfFyTParPZYrPZwfgGvmlhLAvLJCJ5bw23a34fIYYJ43BAiqHkijZti1Rt+N55oGkAYuBwOICVf6UUTxaP5EJoZavlAqvVEqvlAuvVAqu0RN8TWjRMybwj4nALGH5uK52ph8C88JT+WOKDjLgq4HXcj0RgGglF5Byq3NAsh4GOheR7+ha+7dH0KxjbwZhGIqEi3U16WBCGYcLV9Q32+wOWix7r9QqLvkXjWyzbhgU2RgaiJMAhxoCYMiiH2YkkfaaglGOLFpCi26wCzbTqcnsCRue7PQazR8QkOcAe7G5RTCT1gEtENJsMygJGnYUxhGgYjDqAXXvOwGSHOa2D+ybExJTawPNpnAJCSMwQkDJDMUWEmDEKdT1kBZ3MijCGP9qK2txcg5j4UCCm69BouE/JYLk8wWp1iqbxcsAaYQFUY10EjKq1VwHQGoiWqGgZoPnnTHVUW459yUfSefnxaX5XKVeN7ctLNsIBdugdDodC8VP2AxEVcLjZbDjfc7PhSJtQ3/iyOWeT60WzUN04TUgpou+ZOrdcrXAiAMg6Vwlk5KrEC4NdBRBEhPV6XfZ1dWyllHB2dlY+6+bmBuM4luiQngt1JLQI25W18I8JRvWMGscR19fXBYD+9NNPePnyJS4uLnB9fV3GIYhDQB0OMUbsdjt8+MDCUG/evMGLFy/w29/+Fvs9C0Q9e/asRJe5NqVSdh/aT3/hPvt3bLeN+5qmud9xTWyut/lBwOBrvH79BhcXF7i5uSnR9XEcEGLCouezqG1b3NwwLTqlJOvgGu/evce7d++w3+/RdR1WqxWeP3+BP/zhD/jDH/6A3/72t/jNb77B48ePy3y+vr7Bu3fv8Mc//hGvX7/C23fvsNvt8PjJIzx7/hQnZycs0tU0mMYJ+90O0zjytQiDoO+5RreXcmhtx47bR48e4enTpyXifTxmv864fQqI3sdaqq+CWUco9NwZjFIRQSng1KAIVrIzm+Y68dZJ+o6BE1pk2zQMQBLv9d5PyJngxaZpu15KyPG52TQjnJ/gm4aBaMdOsuVqyQqtACgTpinCuQkmqX6J7PfWzkJ1kBQzsVc51PLxveVzIqL77Rabm2uA2KlvYLj8xjDA+YRpGDCNA1JcwoDLvRgzl56blZZ5BIwBCxLlep1IaTLSCGIWdhKgpWJ4bElGUB3srCZr5HkcwIpISai9mJmDRZhQdFvUxlJbhyzBpgwyGYk9rDA0A1HkEd4kdA2E2urhXIfTszUePX6Cs/Nn6FYn6JZrGN+W8z/lJAypfHRcnrTzfdVN650nEMhxbc5UlBEJXlL4lssFzk5PcXr+GL5Zw9gOGR7BTvDWw8FKFyWkOCGGgRW4ycOaBrkhxG6BnCfEZJETIeSyMKSOKmA8wZoEl7lefOMslguPs/UCFi1MbhFji8XYYDm0OEwTDiHgEFhZF2NAMsCYE0wE16FtmVJ8enKKR2dnOF2fYNUvsOwXDMIlqBhlHcUUpdLJhDAFjAJEk3Eg3wKtQYMsNq7a5/xgG1NtzfvbR4DorV+Y+puKspViMSByZsEgVe2qhSyKYeZqymbm/DSZHUdRzOItu/XQb6uNr4DfOgRPbOSaW8/VW7CWFbZ0kdbgOlMlxkF0y2i5p2+0ewzKoiv3chQR/QWuZtmQy7AenScz3QjV/SswKteFavOorjglzgnbHw7YCwUpxITWtyx2ZFSaO5XE9jlPi99Z60jlnOX69DUBbSulFzqW9dZNKPhY6rER8WaRiWDIFI55TKz8O04TDsOIxaIXYaN2pgr4OUldvXbH2/4nDl4Sj54eetWrGX6a8p7aoXcPDHM0b0okVBLU9d1Yrs/D+hbGdfDdkum4vgWRE359ZCU1K8WjxTjf7fe4vLrG9c0G6+USUwg4O1njZL3gKPLqBOuTA4sXiSFKOSPHCTmNCCnDhlBAnKk2C/2ajF4vAWTnOVu8K1UfST4pQQVrOLk/hkGApr+37zV5H0oXkTE3shfwsW3lACQk4zi+asBRU8uvScSS4VOMOIwDtuMeh+kgXjqmp7M3lETBObHac0oIOfFcswy8rQpjOS4Mbf0sjqZAkqeH5tGyAECMowgoDBzVc35OLRDgqfXNysItzgAzL2Qjq7Os6/n5Gh0lOoL7FSDljYHpPR+Z5mIAK8hTMDlUJaBU4Ofs7KxQZOs6oxqV08dmsxGlTs6l0VxOPnc5IkHALIKw6EseaNO2zGopTpN4BKKIjsvIzHXtOCpbA8zViimQmiuqtOLdblfyvqy1R/U2NYdOAS0zN/7eIOv+s0DPVQX+19fXePnyJV6+/AmvXr3G+/fvilKw1g5Vh4GWULgNwowxR8qqu90Ol5eXuLy8xIsXL3B+fo7T09MjMaOPl7z5xwPuddO+mCQHcBgGbG42uLy8xuXlFS4uLqoHA3UF9FrKyPsGfc8Kzicnpzg5WcM5W9gAKhC12+1KxF7Lsfz2t7/BH/7wT/j9739XyrI0TVOcPz/++CN+/PFHUdZ9g4sPF8wcGPbYbjdYrpZopO42pYQwssOWGUO8hnpRszw9O8WjR49xcnpahKpUqOu4/TpjpvOqplbq72uqZWmmnIDlKm5f12yf3d7l5hrSxqjYJIHPifmA0r2naIoYI3u8AEUj0VMvUVVhbTnRzmBBNK4B6XzDbLCmBdkE5yOsn6SagwNMElu2iopWjsb6PosNQSiRwaP++czQNKUExIg0TQiHASYbpGli8RrMtqEzBt7yvuisL/XQrV5rcUCD8/RFy4LTq1jST+1I3WNR+l/Hn/d4DjrUdU35OVr9AMgFDzipWtF4j7bt0EpOpXzcHLiqUv1SNIhTAiWJPhqD3lqs2gZp0WPhG1jHJe/OTk/w6OwEZ+en6Ndn6FansE03A1FhSDHYVnsZaNIeyIcHet0UoVTfNHzGiXiTtRbeWbSNR9+1WC0WcL5DRouYeAy8lUodUjauBNZS4tQ6Q/A2wyKBKIDIitqyCHkZzGA/8nM9MrwFGm/RtQ36roU1CcgGPgJkMozJgAWyJURkNJTR5IwmN+gS62a0xsK2HVzXYdF2aBxHb5nNNCJYU8YhxFA0G8I4IY4jxilgmkSPxndwfYa3vihfH69uXfMfxz4fV83F8eKqIGKpCaUb/iTRLSs0iloUoogFuZm6RtkA2QJSP85AJITFWtb80/mOqg0rV4ATQi81XF+I8jEY1efUG6WFerRMpfQqils0S5FnIqlX9YkNQwDocd/NYPT2wHy6yfBVQJsXRp0bp03oFRUonakQ+jtbPtiYue5WTAn7A5dq2e8PmEKS17FKJYwBhYAQInParUXTtrBiBGZJPqZMSDmUvo+hQQgeKUYAxGU0bAfjWRq6cY49lJ5rwlqZwDEnYFLDmUWY9ocDF7bvOywXfcnfWEo9Uj5QjuuOVcPysSGTPOVqrujYGc4RNeLMUMCvzhGer/Wpw/kIfP+SS6BRRgEXZESyu+nh2yV8u4JvFrC2Ydpz5I3SNUY2LyCFhHGasN3vcHl1hYsPlzisVqx2BkLXt3BNhx7Aan3G9XhjQgoRlAjjsME4sDfLhKQQZlaRNhbOJOQClnRuSI6DHkACQsmiAMhSQJs4hyNOA8Zhh5giKJ+iqCEdTWuanVNFRk3yCAzmQxBc8scZpsnmbAA7O1piSjiMI3bjgM1+h5vDBrvhUKKgSYBjKWeUhaZLkqNquLSLdw7ec60s3/A+4LyUi7KQurzq+IJcFWBtBlFESiNSHJFii+QbWHK3gKiYCRbl91TNCd1XNC/0vu/nz5439AJE1fnyGUBUo2v7/b4A0Wma4L0vRe/Pzs7w9ddfY71eA0CJNGpk7eLiolAYN5sNH06Ro6cs+y6CH02DpqnqBnc92q4tZUTq2nN12QkFVk3TYL3mXH2NziqoOBwOR1FRLVOhoE3VeJUOrJRfBbHTNAm4OCmf9Y9Sa7SOXG+3W8nffSNA9CXev3+PzWaDw2FfCpDrdddAVKPB2jRiOg4D9rsdK+6+fo1333yDi284b/Gbb78BQCW3EPd4r2vg8Y/cWLH5IJH/a1xfX+Hdu/d48/ot3rx5W8Sdrq6Yyq2qywDv/wrolPp9dnbGNNl7qO06h05OTvC73/0W//RP/4Tf/e53+M1vvsXXX3+Nvu/gnMc4jnj//j2+//4H/OUvf8H33/+A169f48OHD7i5uS5R2Juba14njZOyZo5rIjuHcWgxHDr0bSfRuxaZEs7Oz+VcXKCTNVYDxF97zO6L3tWRvQc/T2xKLSvCzy//lP/EaOHzSKivVhRvjRGl18xMEYVhRgRrjOVSG1yHUZVN+QGtxOAFlIrauZ6HxnpY72FdA+sbZMz16LW8SykpWL4KEDazTWDmrf1XaQ6AI4BCwHQ4SKkOrpvdWJkfVkCo7L/et3CWqyVYLQVUlcdLmQWQQpScf0ygmJHAZ7O1rFrs/QxGa4f87MRm+9I5HhftTw0M8Hs5SSnqSy3euQoGBPSQVBngRwwGgSIQHVrn0HmHhfOgrodfnSCmBOO47N3J6QnOTtc4PV2jX63RLtcCRKlK00nlvdW2xyGAxrtAlJX1ef9j6jdgY4SZHAAW+LGyJlvv0bUNnG+QMguCquqyt42IEDkRVOKAjLcGrbfoGgvvCAaRbXSoaUBigxIgkeoMghHbmYWEPHzbMAU7E4xJaLJDzh4hR/hk4Z2BF8X5xgN9awHTIFsH27awbYPWcx76NI6I44RBItEkUXGtkDFOAWEcESZm3k2RSzn6foHOWJimL6mcBjX+mtM71f68r31UrKiAySOVTN3gZupWEKMCgHiqq4O9RAMsjNNIBHvD2WK0ZSPS4vYG4PIu4hk4niT6dY5U6QFeg1VTg1Acb54KEC0kClJTPav3KDmvd8CoRstuX95Mf5j7b75eFBj/ea1cd9UN9WWQbujVZj6DUirPP/Y26uInxBBwODAld38YEBMr7rIctiugPMYotDjHyf6O30vzPaMYkKlEotiTwmV1LEuhO87vtGbub/XWWeuKMmBMqVAu3TRh8Fz/te9aLJc9VsOA9bTi/GMidF2LBqz8VXeSKT34sQ6mmRpezZV7nyfvp10pvcsjmqmsB97oEgM1pSUYAxgHuAbO9/CdgFDH9GeSfospwziHDN6YQ5gwjCw4stnucH2zQcqsUtz2HR6nBCsqgMvVei7ELoZ9zgkhTCwcljIISWgnHs5FOGuRnIPNtgBRa3lN8gyfa5IdzcoiTMD3mmJAmAaMhx2r9uY17gOix6wFVRLmnmT6KcvdWxAn2xtw8r6VvkVGAtfm2o8DbnY7XG9vcLm7we6wZ6BJxNFTybVNxN7fuTaZ5JTLHGdKlygqelsUA3XYyKiKLyFng5whkdGIlCbEyNHRlBoQzcrexhqUerQSGZ1zJtRS4f2CgaX0kZlnbgGiumahmzlTihWI5k8AUQU3GhHdbrfYbreIMRaFWY3mPHv2DIvFouRq3tzc4OrqCu/evcO7d+84d26zwXa75Wim5Px6UdlbiOhB10vERiJtSonNlDnvTUChsmn0qzGmUByJqIjuaOmSuk6oirMYYwqY3m632O/3OBwOJbpaCyxpBLZmrGhax78FTbc23Ot83OvrK7x58wY//fQjXr9+VcrsjHIPmegIdOoY11EMPbtCCEzJ3m5xfXOD5u0bfBBq7/X1NUcBQaUfeV/tC4Ploev9x2mzDaDR8Hrevn37Dq9fv8ZPP73Eq5evSz7xbrcHwH2lc0kdG48fP8b5+TlOTk5wcnKCnLOAxpviiNlut+j7Huv1Go8fP8Y333yL//Af/gN+97vf4auvnuPp0ycIIWK/ZxbCmzdv8d133+G7777Dy5cshrTZ3GC322EcR9BOahJKOYW28VgseqwWS6wWPYJhVxiliGkaMI4NTk9PAFBRlfXioAFQxl/v8Vfr7eo9PzUfPv6pdM9DNAYMlW3SKuixbJuwsihT/TQHsn43GHXoGaHO1hTaylyCBkmk1rzknBoBn8YSn9t6nlRVG7iUTkVDFKftvff7V3Z96zw65+BggJiQMMFYL6DEM8isesBAoqOey7pwBNhJ+gifQSlHxOjhghMf8Cx+R0QSTf04oL6dMlb6swLl1hg0jnUt+r5l3Y9FB2ucrFmS8iIZ2eViQ1J2SMJWaqxD5zyWbQdPGb2zyATANbC+w0oYC+vVCt1qhXa5gvUMRItGRI4lb1jTCKewRRgfuDmCjLODxaxDU3JtS18TLDJMeZii4MuRYA8ntoYXW7f1Dl3rsWg9Wm/gbIY1c8SVOxKAYf2KnCP7sl0DL+WFVAXaApLP69Akh5wsfLRwzvC0NYbBr/NoG4KxnAJm2gbGcyQ0h4gxSL37mApeICJxVASEwBHRMLGuSxDxx4YMbLtAq7WAiwV9y7n0CVv8XiBqdEJJV8+0PBSAVmR6ZSPy3sHblhfNguvCsdQ0bwBcE1TqJ5FOvlRKuICogBUDIBo+bPWCNBncCtBTqKEBmwI9bi8ciWzBHFNGSEDu0QIq95ePpYarDX1utwyWsgnNXqf5NaZ6zec0dQBUfS6WKKlRLFHPQku+dWmzh7L8U3aVlBKmwGq1u90e290OUepROdmwUowMjmIUhTqp5eg8UySB4lF01slckEUv1NxxGuEOQsGVS2uJOLKx3+MwDOxBMeJ5NKZ4GNV7R1ADbcJhT0hBytRMLOCzXC6xXEZ0fQfvNf/r032unjiypvTfkZtAnQ+3x12HRfqVKbWpUF2UYgjiCqDGcE6LdQ2c71ju27ewrgGMbKiYN/AQA2LOCCFiu99hu91jnCZYZ9EvFmg7WVeGacwhRnjLOTK9ePLHwxrTOHL9qzwhTAZEAaBYwH6MkTdLGyWa7I76ig1Qrpk18/1RrQUpTi7S8mEaMI07jtaah/JE601Jvd+ACh4wKDOwGYgJcAaI1iBZg2TYgxozYT+N2Bz2uNltcXPYYz8MOEyhKLap+jHBHgkWKI3bSvkbPTTm6qOVcVNNIWsIREbwJBtLRQkvB8mJCeAyUmKY0GygqHARCRCt2Sa1UBEwg0+gEsCoH6SU3ELSBX4GNXcc5/xNay1Wq1UROTk/P0fXdQghlMin5hheXFzg/fv3JYdOc0lDZDGsrmeRsb7v0fYdzs7PBISusVj0YhBEUedmoAjwAa8CQvNZ4iUfLBenVYwR+/2+AIaTk5MSGTXGYL1e4/z8vFB3FXQq1bKunzqO41Hqxe080r9bE6s5iyNrGEZstxytfvv2Ld69e4uLi/fYbG4wjgOy1DtsuxbOe6TIP+/3DKjU668AfL4fKv6QnBICCNvtFu/fvyt71n6/w8XFBZ49fYonT5/i7OwM69UaS6HrHgs8lYu/1f7+AFXHUMdWI8laY/X9e6bgXn64xOXVFa6vbxBCKFHMtm2LM+b09ASnp0x1ffLkCU5PTwGwMatRS80lVSfOyckJzs/P8fjxY5ycnKDv+5LLOAwjbm42eP/+Aq9fv8b333+PH3/8CW/evMXV1aU4WUaEEJCS1EF3bDQuF5yben7GOVznp6foe05N8d6VPM3zs1M03iOIAKDmdAPzXH54zH7ZeNVOnOP3x70/178jzQvEbMvMxqoI5FjZhQvtlZ/MNhlH6vp+IXRHZuZwmtHE7ySfZR0r4RIA4/gsmCZ2zE52RBgnEAGNZwZH0/C6AixSUqV1rSFagfoShRXQZYySXuqt/KP9B3x+WOLk9BTeEoxl6jCrwjqQsXC+hTHANI7Y7bY891JG1/ecZywCTiz2KKwfx2epBcE7B7Qdp1g1zJ7KOc0BpCM/1GyTwqjNbOQokz43s20OqLIs599yHrphrQhoCTABn1X5wRAj4jQgjAeEcUCiDN92WKxO0HY9p4IRAOtBtkG/PkPbrbkGu2thLdfpdCZLRBxwUjfdCFy0RIgP1BEFoNlHcy1PYhVnby2QM8I4Yb/Z4NI4xBDRdGu4ZgljO8RpBFEqtc+d9WhcC+cTyAKLtsOyX2G5WKLrl+j6BbxtiiphFod9IrDoZOS0quwtWzWWS+w0jed1kTIox1mTAsIS1Qdp2hik7GUCTQSouJ1gHi1RAxLWnDGF9crK3Qo2Zc47KfVTOdlNjTdA84L4xMJ4mJqL+RCb62Mq1TMXDjGA4pntW5a+7voevuthvRcAymDUWqZkGjB9BuXm+L2d17+bYjyQCJrMq7zKvdQ7MxpZmEHnkTvHVEtDo52YqaxldRkFefmO5PMdIHrk/Zp7+g4Vt4pMFnfcZ7UZzN598FgrUOfvUX4/U5PF+FCgJQZwkrqTh+GA3X6P7XYP6z26bgnfdgCMbAoRUTwlPDnrQuhMR3XOIUs+inrm97sdb/hhKiBUP59oFj4ZhqGUG1DP/hwtVc8aUzVj5I1LjejDfsB+P+D0NJSx6vsWziqg+FSjsuC1E/WY0UftapjnzwxEeRFj3kg15yIyJLLgciuNAFHfdPC+g/ctqxGTLZE6Y1lBOoSIEAYcxhHb3R7b3R7TFOC8x2q94oLDXQvrLFImTCECjYd1LCPeL1ZYLA8I0yggKcBaIEbIdUEO2AiXHHxicR4vBoBGiDU/b85pUUfNfO+8eUXEOHFEdNgjhgnU5/uYfaXfa0A6O0q0fw2Y2AxEA84VESoUixtl7McBm8MeV7sttsMe+3HEEMK8ZgzTfbm8kOSHEHHehvMihy7uLDKzI6vsm2oo1DNgVuw1RAxEU6wKXkd5jmEKmBpqlmnxekgYzIn8ZS3poQ91pGmZl7rH1GFy/B8wl1N4sMcFiCoI1TXUtq0Y4Kc4Pz/H2dkZmqYpeYQXFxdizL8vOYU7WdslihkmAMA6pZJ3v+gXOH/0CKenp1j0CzSNx2EYEGLAMI7Y7ra4ub5B27Y4PT0txrs2BT51tEUjosaYEqFScOScw3q9xqNHjwrg3m63R7TfmlKpFFaN0mp09e8PQvkricEwDFwT8v17juC9ffsWFxcfsNttEcIEAqR0R8N7T5pBtBWW0W1tA/Xk81qm4oAbhgM+fODo4W63xcXFO7x89RLffvMNvvn2W3z11Vd4/uw5rLXoFz2aZtYF+EeLihIRxnEsEdDvv/8ef/7zn/HTTz8VMa6D1MWOMcN7j8ViWSLv6sR48uQJnj59gidP+LFeryWn9D2urzkf9N27dzgcDmXenJ6e4vHjx3j8+LHk2DYCjAN2uz3ev7/A99//gB9++B7fffcX/PTTT3j79i02m01xiqiz13vOK+tEROTxo3M8f/YUL54/xdMnT7Ba9lj0HZw1JTLeLVbwjS9rMhX20q9c7qxq9XvWn/PZ88Lo+SqRbNW2kA1YIzkzzVNTpjji1PgWi56Nniy1HlNite5MCbZpmHrrLJqmLTZjyhnDNLIcgTqiKbMN0rRoWtbGgDHirE1VnqHaXfXebYrTshjiRoHZbLJ+qg8/1c7OzrHsW44GOxY7TDBSMoO/juMI2twgiprzYrHAYrkoKsud0Lkb33DUXIII3jq4xqL1LTvVdSwMcJ/QqTqPFYDPFN05iGAVYqsyvrMVNZjromZl06WIWOXvs+ggs+xSGJHCxGd318LZ08omN0hwyMah7ddo+xXX+LYN9xOs+IDlpDTzmWnEzn9oDAxB5ogIrqYMkwFvLMg6UIrMNBsnTMOEzc0N+uUplutH6JYnyIltI5bEYUZg41oAGYYslv0CJ6s1VosV2n6JtltIhBhSai6y1kYkUGDBIGRCzh6gXGp/+sYDmZCQWERLmQFEwkqMiKKVwaAUyJInmiMx0E2iqZE4YqzplV7SbEAScEwJSJmrlxhObeLneUm9q1mIla0kK/0XA9Fq5t35hYJSQyxz3HYtFqslFh2rujVtC3gnuWe2oj54+K4txhoMmMsvtf6s93Btw/m50UErNyuYMvN9zpNGJw4ZubbZz/T5B+a8Y8zRxzpyUyeYz4aqXo6pvqtN1zvd+NkgVK/lGDjfff1cg6n+CgFYBij0PW1ZDslpGrHf7YX2FtFaoc96jxiF4nnHwwqZ7HqHFs4RiHzZmHJmASQCR95cjMU4dM6Lp3gote1uH5i1N7eOxGm0lRcZECIL0WjeBx8OaqhJzsanxl7Lt0DnSo2JdCRvOxbmcclSszJpDmLKiDEjxgQiA2c5zujhYF0L33TswbTsdZ0BB9ODTM6YQuDC6gJCd/sDUs4MRJsWTePnfhwHXN/cYNl36BpWAmy7HovlEiGMSGlEjOydY3ll9nQWGrU8rLVINRgSEDqvn5lyrtOJNBIc5cCI+pjw4EQvY8InmbIS1NOqfc+5nYm90tYiZYuQ2CWRCNhNI7bjgN044DBNGIV6XAwcWQtaR1TnsPEssjB7E8z8GvmRI6mmrGSNTx6vawKyluqZI6PQw42ELmYZ6MLq7+TQhkb7535VJod689VnNT+kvhgqR1oB859XvqUW7EkpwTlXgKjWl8w5Y7PZYLPZiLooR0Kvrq4KjfOopqgAJBUKGccRmbIUh28L7TmkBDuOgIEodQcGnwZFWEUjegBKVE+jngqmayCtyqDOuUIDDiFgu90y+DgcSiRUQVodadX31hImAAQQ6/z9G4Etmr9kYT9MYcJ2uym1XS8uPgh9dIthHCViBgHPniOfFMv4KjVV0yg0shxjROM9IOJwkPmTUsR+H2UfZqXh6+trHESMh+uPjggx4vT0rNSmPM6nFYfNvyEm1bq419fXpb7qn//8Z/zpT3/Cy5cvq+i7Qdty5FNzhFmESKOg53j69CmePHlSxJuapsE4jnjzJhY6+3a7A0A4OTnBo0eP8Pz5Mzx//gLPnj3FarVEzhnb7RbTFGCtwcuXL/GXv3yP77//vuT5apmhcdRoqIrD8JpZLZc4Pz3D0ydP8Pz5M3z14jmeP3uK1XKB5VKA6DhhnEaQ8XBty5HuEEoFAHWy1I5dbn/9mNWR0PqMvR0hLawsfULtcETlND8y6uoyf6plYMq+ymu2Bcggx4gwjlwSTNKBjDOcIynq59Y5uOiLIE+MCTlG5JAYJPgGrdQP7boebdvKvmSKo/k4rQvlHLsbGa57+Ndri9USXcsAFJYVSBWAxpwxxYQQGUyMw4HP5TQhxQGh7zGOHTopB9Q0HCH1ju0FZ73kunKpH2MgjlSxHa06ZSG2QzVG1UPLfXCJRRSnsdYDTZmd85mSXB+z5vihTs3AQjghIEVR8c0J1gC+aWF9UyKunHZjkeDg2wV803Fur/OFqceBGLYRidg+yBYgSQe0DwyUsxZd00jkVrCH93DI8IYQJkKcOPgw5j2maURMxONjDGAc61qIgKczDPgNPAyArmnRN5zr3bYdmraT9DSSc85yihMSWMhcy18SrAOcM3DewntO66JsS8AnS5nFkLk6QMwJkaTyBc3VLxJxpDRWLL5S5cRy5QTKau9VwFLwj5bd02oBJSxYL+VPgM+6PVhHNCsSLr+sFqMYUtaaQk+hlNC1LfqOi+5G8SZAjC9rWaXMi2dVD2GN5gGcH2e8Y2ApGwlVSlcahbWCGGxlHRawphbtA97bmRYngEeT0It6KhVPmRqstfen7qQCe3WVys/zLl+9RgD15w7MbGTKo6iMqjqaRUQuYCgXr4eIyFRgoCLxcVQxTJjGAfv9ASGmoiZnLE9mpeSqUTO3isMOpaXUtaKOKcwadVAjT6MoSjMr1ydGphqiXoroeu+lBA+Yq2+cAAaLBIspEvZDgLEHEDGVx3mPHhwJ8O5h6gWAo4hoddmYYYeCkaqmY6ajPldKslKnUyKEwACXnOSX2Aa+7dF2C8A1YLCkWEhIoRaAYXrR9fUNrm5usNsfcDgMaLoOy9Ua3WIhi53B/uVlwn67xcl6hcfnZzhZr+C8R9svsIgBIQwYhj1iHJEpgCjBUELJzcisKGuS5ojOhoSumzp6p/R1I2tFo6ExTkwNQYI1D3tb1GtKsDA2gyCgMMvamH09sg4V5DsQRQQiTDljPw0YYsCYEyIpY8KWpU8CQLPUvEqJN/IMi+x86XutsZytfDVCBxOPvNZ/1Y14vrYKiIt3N4vUv1Hnm4hqzPvNXSBagL2ZgSjMPNdmaq7Ol7nO2s8Fopo/VzuWlOaqwiyr1QrTNBVF3f1+LxGzXRF1KaBO3lO/Hg4H5JyxWC5xLTl0SiNvxDDsug6L5RLjwGq73h9H8vRaNZKpTJv1el2cWUrD3Gw2sNaW2qB1hOrk5ATr9bqIMyltU/NG68hh13UlEty27QP001/ZtNRUF+L5vT8wpfTDhw+4vPyAy8tLATNceoLPIMsi+EItDzHicBiw3W6Lc+A2IA0hsLIlIHRHreEnlyFzUsV9dF7s93tcX1/j8sMlLi7e49mzF3j+/BkeP36C5XLJysdNcw+Yqdf+3wed7vd7XFxc4NWrV/jjH/+If/3Xf8WrV6/w6tUrXF9fc0S377FarfHo/BHOzzn38/z8Ec7OmDq+Wi0FkJ7g5PSEI8zG4nAY8OHDJX766SVevnyFzWYDY4D1+gRff/11qQ/6/PkzrNfsxNnvd7i+vhJa+Ih3797i9es3rI57cXEnUq/7LF9nh/V6hfOzMzx6dI4nj5/g0dk5TtZMb18ueywXXEN0sehFHdwgZANYy/XAD4fq/FRRQKnVa61EJ3752NwGoR9z9pZzRH5W+2dOexKH4S3bQeeozvVS8sNZWONhwWqkcZrgnUNQW0+ou7qvwRjRXkiYRKxMFb1DCLAtO3aXiyW65QLtcgEv9FEDgyw6CnVk9ijyV87Emo46N5LjQ4+R4799PqvAOA9D4nQ3TlRXOW+1IUKjuY/qZEBGjCOGIfJXDQL55ujRuAbOqXK4OJiMmYWZeMOZx7kC2vxzdf+mAi3EgQMSKicJJzSDv1cHbkpBInKxMMqC0KEBiPCp7FsVk0jtdUOWKdwV+HQi0KNaMwbMriI57K3iDcKD/d94j7PVsnK0B6TokbJHCg3C1CBMwmTIGQmQ3O2AGEYQLIgsUpxAOXEUUTETSVmdyvGu658TPsU57wjZJDTJo4kO3mQ0reVHY9F4C+8ZjBvDKtExsVNijBFjTJgSg9EEEX00CTIKgFQm8MbAWg8iy3VvifODvaRJEs0q+MYkIEHSKY2o/EI6U9a2/nfL2V/Pn/vaR+uIlhzNelFA5qjh8GzXtVifrkUExQk1BazwlSawMSY0KM+y2MaquEKCySIsBDCNVylabq7PxJ4UqSWqoCxXxqG61zB/rTc1UmBqzBGwJDUMa7BYbYpHtN07vaDePi5BQbc2eANTymUUcPawjX6794/GoOQnyKZuwdzzbOZBz8XbIV4oyrIJzoA8g6OU+/0e280G4zQhZoLzjeRosjGfpbbo3VyjqgfMvICseJyS1t2qQIwCUWO49lWSsiwpzYZnXestxljKw1gr6sZaasRyjU0QewOnSDBDKLQZ3zRs/EouIOvlPDz7bwNn9fYBKrxenyKs1JdKzkguYE6nBC9aQggz8DfOwhgP3/Ro2h4ZDqmU46hBHr/JMI64ur7BxeUHHA4jhnHCyekpTk7PsFouEWMoh+puu0GOEY/Oz9H6BsvlEtY36BZLZEoYhz2arkcII3JmrzEXho6c3yngxFgrqvSzkVHn581gVLzT0lk5JynUzPmomrD/0ETXg4UIQObcDWSwpg8JHUhKxfCSFgW9FGHIYogJQ4rYTSMOMWASb1+WuZGTrIWUkWNCCqkCooCzGdQU+DaDPANkK9dm9KEzZ7Yi6pk0U5OT1MIVaq61gOEIhyFRayybseU+qoyXQsXVLahaZ58ComXb/wQ1F0ABonVev+ZnLqU24Wq1Ks9VhdoaiGoER/c5NSALZX6a0HUdrq+vcbPZYCGlJGixgPMeXc/KeuOKazYbsLNKa8vqXl3vA2dnZwUg6z6htUJ1ftYKukRUBGa0xIle/+XlZfmd0nPPzs7w4sULLBaLI6eZLuq/wmb/aNN9W3Nfr66upJTIZQGi4zhVjkAVD2EmhYpJadmR20BUI9ZFHds79nRbidZjBhPqoBjHseRBvn//HhcXH/Du/Xv89rfXmKaR9zdxFGo/1efCvwVlV+myL1++xB//+Ef8j//xP/DhA0eTQwhlLjx79gzffPMtvvn6Gzx9+qxEPtWRsVj06Bc9uq5lavp2j8OBQS7Xbn2FzWYLYwxOT0/wzTff4H//3/8PvHjxHE+fPkXTNEUY6eLiolDZr64ucXnJ+dbb7bYIEykrQfvQe49F3+NkdYKzszM8On+EJ48f4fzsTOpGc93Q5aJD23FpNRiDMSTsDgHjxBHB3W4HIpLol5ROEpXSElnkT/3FfX5fNBDAHVuhrGn+6ehYIHUaEomw5my4apCjKObauY6osx6wBtlmjEMrwnO8UWZxyDXe8z07dqzHlLC3lm0PM5eNUsGXxXKBbrFA2y/gGi/rKMNFV4BoHfUrOgO3+6Hct/bT/f133C+f0ZxE06xEeUUJ11p2dGe1/xIDpxgTcgoY4njkdLLGibihh3cNGt+ymJFviqAk12Z1pe/ZfpmjXvK//G6OrBgd/0wcCMl8LlJKpaxdVpV90t/Foq+RRVCQsRBrhjTew5hGRKrUDlQgZ4QJacv1Wgs4azhiaPXwZLtNKbqlRJ15eHzaxmG5XjB9OHjE4JFTRMoNR+GnBtPoOagSAwdzLEA5IkwDYJwA0QBKCex6Z0xg1S7gboKyp4qtBfapm0wgk9BEh6Z1aIxB21o0nUXTGviG8zNz0rMYiCljDAljTBgTPwIRIgwDUZF7pFLvE/BGEIVxpU+t4DVrWEQ0JYsUmU2XJQCYMhWbZJ7Y1eOo6Rx5eM95mJori+tObmT5MytDtV2H1ZpVETVCGEJCnki4x0kAc9XhVqIG1X+12XdfU4xQNrWCBe+/udu/LQsFmKNRqDZAgzI4Ct4/AmGO3/kesF+ADPjelZv+ua2MqWyKJJtMDlNZ4JSE/504V68s6hRBFCVH0QoIZOEOZy12+4EpnynDNU2hexJRKYFR5xod9eMtb7oC0RiZYqZCIFo0Xr8qRU6jGux4Y6eDRmlu57plIqTA+X3WGPiGN0wDdUoYUAQiJUyDxTQuME0BrW/gPH16o5fSQXWf8zzRMTWVEJZKxquTgl9TDilrJFKROCmdLKviuhbGCh3XOhg4GLIcMc2EKA6ZEBP2+wO2OxZxCpNQ7ETlVkU1NPo6hYDxMGCSPNvDMGKKCY0zaNoORAntYoG2Wwh1JMCEwKU+TCpGJSsll0GFJaqcC7O3HrCwJiMby5t6FvGZMCKEATnxe/NRcn9TBxZxx8nckjGonGsz+ZupPDEBlAymlDBJGRYYC+sbeFjY5JBNQiKe/yAAiea8hqwKxspYmP1SRdTYzF69+qGHr0Zu1Smrnl2SQ5RSZs08cXqVnFACh1ytgTF59h4bPZrqaOhtIFoBPigQrbyOxWH1aSBat9rRpmU/NL9Z60KP03hU8kTFVJiaKV55H2EDG2VTmDANAzaSh/nhw4dSN3S1XBbDIvdcgimGgCAOqeEwlHmmNFz9vLpp9FTrnwIoCrrKoNC8v7Ozs6K2u9vtynxW6q5Gyl68eIGbmxssl8ujfMtCIf/FBvvHdx/td1Uxvr6+xs2NUHGHQ+lzXqcofcKltHJFnx0Kzdo3TTm39eyOMSI6Bx9dWcfO3Q8iFORzyRw2bkfx/GvOoyorn52dlfFVR+PxeH1q9/11AOtms8Hr16+LONGHDx+K9sBqtcKLFy/w4sVX+Prrr/DN19/iq6++LtHQ9ckJ2pbzA73kFBpjMAwjLi4u8MOPP+HVK1a3VSGYx48f4+uvv8Zvf/sb/P73v8OTJxxhJSKpXWsxTRMuLy/x6tWrAkA5Ij8c5YQScd1FnbeLhdCG12ssl0t0XY+mbeGc1nY1BYiwwqtFzAAR03THacLN9YZZQR2fF+v1CqdnZzg9OUXXMxWQBXk+Nj4fH5u7lNTj/ND6Z42I8kp6yBSl6t97PqP6vgjOwRWHiHNOhcnlORzNcQ2XoHPKEGhbTONUtC70/WYasynrvoDk+YLk3Kiv5Vak58Eu/Wv2EbCyPvjM0/qlmgphjS3nR04O0Vl4L7TWqnQGVwQxIthDAHFEElJ+LZV6qgpIbaFHl3qpmO/X1EiuGOdySmV+fxb9FFtSgGhxp8rZb8AMP2sdsjj9ScewYcVfLjNXs4gYZBoijhRTQErANDK4jXGCMY5ze2Ou8iClxKP0SZjul8w1BvAOnIebAZMIah7AGRhnYBsHC0LjDIxPIHWQkJaiAVOMcwRRBsdFnAhLGhhDyBSRckBMI2CyMAAEO1iCdwZN69DlBo0h9H2HRd9xpQjv4axB0rGXmuljCBhD5GgoCIkNbQG3BibxZCDKIKNJSAyOmX0oFQPkjIC1sNBSlg5WA4dVzVce35p3iTsoX+D/g+1BIGqrBTcnCOtaM0KDdMU49t6X/KMsReXV85xLhIwviefrsWcfUONIImX5uDhqMSChGx2kI+dN7njB3z1sdcA0OkiG4LKT/NNZjtsWbw/K4nqo6eZnavO53oR/gYd49iBSAQwpRs7FG/dCFYicbExSoiLlonAVJVfPgPNOMhH2BwY5RBn7wx6DqGY2ljnqMKowKvS9mpZ9557VqTD3cc4Jo5QaKYaRHBIAioee1To5cq5lE0II5X3VoNSo3DhNGEam6S37Dsu+Q2MNHDj/0qQEQxY5OoRpwjhFtG1CK7Tvj03+QiGQ7xUMsdNAch2M1LkkyTlIkGCz5frWxpQ6XVkTwskikyl5ocY3yHDIpJu7L0npIURxDOyw2eywudlgkqiTb1t4GPbY9h3atsE0jdCSOpPmBMljmiLcokXXtDAW6Pol2sUSfjzATgPIWJAWAycjOZQR9frTQ5loVpnVeZ7hYJnYwRHwGBDjiBBGxBiKZ/MI3d+ZN6asZX6ahkVnMR5LTHUBATknBMrIBARi1VyChWsadDDsqEgJaUoIeQJFpk4jU2FbWPk8YRrB6n5r2VOqtXUNSEkYYneYGaBCaG3iVeXJkqvDNjI9R1+seaIGgMlAngEo90EW7y5u1Q7VzpLN28yOM2aGVEDUKBD9tG99NuLmPV1VZff7PQ77Aw7LPYbhgHFi8DmFEVOcWCzBMOPAQCKQkn8YQsDgB6QtO1L2ux2urq7w/v17LJdLnKzXmE5P0cnaNsYgLpZIMWFHOxxEsEUjszWoqfcHjR4BKKJLOWesViuklMp7KwBRBV2NGrYlR6opqsBd15Xo1Xq9FjCwqHIg/zZNAeLhsMdut8Fmc4Pr6yvc3Gy4nvMUJHqtEU4qqqCaH1vn2RNRUf2tUyoKTTdFhCjGd+PFCXgcFb39fQhTqTU7jhNubjZ49+4dvvrqK3z99dd48eJFyamsHQG377Oef3+LdnNzg5wz3rx5U/KCNe/38ePH+MMf/oDf//73+Prrr/HkyVM8fvxYQF5X8gGd5ZSPJE6YDx8u8P33f8G//vFP+OHHH/DhwwdMU8Djx4/x9OkT/O53vy+1Qk9OTrBcLjCFgOVyUaKPwzBKqaMtxnHAMMzlimpKrnMebcNlLVbLJdbrFVbLFbq2hbOuOOo1X1EdBGyEsxjbNE7YbZm5sN3tkWJCv+C5/OjxI7x48QLxecDp6ak4k1QY7JeNye1I4H1je+d3Yq/NG90MCGoLS+2pO59T2XNaa75Qj5umGNZ1XVCrObIiSNS0nA86NR7OS23NytmXxeuTJf9fGWYlTQu6j86AeAbLc+Dgr3di3WriQGKWV/W5YoeXSLeUTjw2fGobWs8m/b1eZxInsgVTo7hEjiELM+etVN7bu3YVsw5RzkiOOmYYSzBGxoZv5sim0CCNvikp2DQqbqQO21v9aQgmZxjKyCkgxQETgINpAOPBivkkgZokpVvSUUlGS+HeESIQIkV2glNApMh1VzW3FQnREMgbWHg0aECcQSqsw4wYEqbAZ2eGAFFvua6nt4DNyBQR4gAaCTF5EVPUaDRgnUHTeGRq0Tm2A5fLJfquR+MZoPPeIFoDMWKYAoYQEZJgHGdgvWNbSu2VmETESGqUygLUknbeNAAZNJKqRxIZB2XYzHOCkGaWVZpFroqzRgf4M9fAx8u31B5Tnm1l8yge7LYtuXmHYeCCuOPE9eKSev7ybLvJIlBwe7QTVVTHmrJRvE4ajTBGUD1QHDPH1m3pkDuTTDYcUq9XnjeYI0rIg967qp9ubZLSRVCwfTei/PM2pppvnVNkGuQ0IE6sJpbIIBknIEcpuqnQNw0MvOdo0DAM2O52yDlhGkaEEFkJUWqDpkyYJlbKTSnfS8vWe5jrf84exBhTMZA0t0ujoXXO0jQFtO3sidRSL8bYueB9eR1hnAJ2h0GKNxtQw3kBDTI8CEQWmSwoOC4jEiIr7H7SOBevEFVzG7PxZASEGgEVvHmZ8qiNZQbdPAZtBifRZwMjJVtgvQgLEFNHrOVk8ZQxThyh0dIC+8PAlHXHhZy9b9D3vPEAs5o09xtHr6eQeAOaJqZteY/GGbQ9042abgE3HFCS6TFvJLG65+IFFkBKJGcgWM5b4Lqwb9ijGsIk+RKT1JT8iAOjeFQNIGJa7KG1R44AI95OaO5z4jUbRaQB1sI3LTrrkWzmkj4UQJHFBfT1XDi9joIaaCm4IzBa/w76MGVf4a/iFZU9RymxHA1VChI40mskEmqynrbVulEAyhHScrBXnrb6e0CkCmR+FrEivQbgk9TcmrmgAEQB3uFwwHa3xXK5wGLZi5PqgGli+iwrGyYYY9E0HGlo2xa+abgMwjTBGM7VizFiL7VHP1xcFEXRaRz54JQ13/d9EVfZbrc4DEMRVqnLqNRRuprur/uMMaaUkdG9gxVRuRakUnj7vheKYl9yXbUUDOdlXuL8/Byr1Yr1Diqj869tx9vQ7KAsfb/dYrO5kcjZBsNwmB24KiwhCp6q/Kv5o7W4k284vcJrGQR5jyT7eYxxzrmqgPYx62FuLFYXsdvtsdvt8eHDJd6+fVvK+ux2O8lBZfGnxWIBYGaI3O0HcRf/ynhU++Pi4gKbzQbjOGKxWOD8/Bzffst1Pf/jf/yP+Oqrr3B6elqEqUy1vng8IqZxxHa7w9u37/CXv3yPP/7rH/Hq1Uvc3FzDGIvT0xP85jff4ne/+y2+FWXhru84D3e3EweNK1H7m5tN6ae5Xu6su6DnpEZDl4slVsuVAPuWaf5yfXNOP4m4kQUMn7uDlO549+493r17j/1+j+VygdV6hd3uOQwgERQ+Y7u2kfc+HvPPne+fA0T1uo/+RmW7q86Ih52Wd55C1d/MrEHB9YnZ0K5tV6X0GmImR6P5kSXCXFUBKPaT5v5LykWxF+v7niOT90VEf3WKupkPK2OqA6u6T+du04cNl4+T1yt8LPakRCrLvWpKl5wyhjIMSW6mnoik7zXbAmo3QUCInpfs7FIHN2SqHVNslUUGsQtKsh17Z2cbXXEHVVE3Ihhw/c2YQmGVpWwQs0GSmt9MWc5Fb0JrvhMRFl2LvrkLgQgZGRFJqKzZZGTDNcyjyUiGkC1J5JbrzuZsQcmAEgsthsRlaBJlkGFQ6RuLxhtRECYQoijYZjjyyNbDk+MyO9bya8gCpkHvnTBQmCnhfVP6jm1CQggJQwgYYyy5oaQOGQPYlGA8912mhIQg6Vmc8OOMh6OmrC3LoR6ItlPlxTcSJJidNqQpP6j3hdnvUTub7msPl2+pPOfzCN2iKihVRGhBrVxMTBntOKHxo4glMA2RxUMiIOBEcz2hEVciToSFfFVqQSYBnnPUlMoCrT01NDt5cP+GYJ1lkSPJB2u0dMjRATqDyocCog9vNPfQWW/vVJ9ofAvHG+TszGJQGsKEDAv4iopiLGyySFJSoe6vaQrY7/as5GUM180SjzCpp7US8Sh3ZxTcq2GuXknxJIqnSaMWqtioc0dFiNQL3DT+SHmxzmXSKCorQorn1wBt4+GtQWMzfJ7gcoTJEwwlGNcwRTM7OIrQHEWjXr8HulxBp27M80PnDXuCrAA3Q3XEm0co53mCGEMgARvON+xBtB4ZFiFm7IcRkQz6foGudyUndrfb4fr6Bu/fX+Dq+gZGvGKLTtTtxGjYbDbYSsmbg9CqvfdwqxXarkVMCVuhIFpnmTLiPLrFCv04YBwOcH4HigEZASBWTmNlOjV4cHfuGgj4lntUR4tE6WMYMU0DpmlAmA58cJ88BIxm905ZP3qOk2GJdTUmwLmWGVJOKYNr7FkPGD5ifQYCRoxCUVdxopwTDFAk6gEIldQdGQ4GM1C186woV2n0WUc2kQBmNVCqdWMx56OTrBWUrww8iVjIyMg9HD0XOPosGPUv1yC0AqCVIf2xxlEQX6JAGnVUIGgsy7UbAwwTg51hnPMOndP6q3xIeu/hRfRJow7qlc8pYTgccH1zg+vra2yEmqi0VzXW266TuogdwjSV6KfuH+qkUsClYkJ935c9Q0Hqdsu5expRbdsWq9WqqAGfnp7icDiUiJS+ToHqxcVFKV+jbA51ov0arbJ1q3zModS93O13OBz2R4rAClqmKUhkl8tVjeMxmGHnikTWLZdJ0OsPISDKuUbiDNR9tnZOPHTN7ClXxsqhOKjqSPpms8GTJ09KHVrNudQI9XH7FaNE0hSw12rBOv4qWqW1cpV2zVfCa1cB4na7xcX7C7x7/x5//OOf8Ofv/oyXr37Cfn9A23Y4PT3F119/jd///vf45ptvcH5+hrZtkWLEfj/h6pKB+utXr/H+/QW2293sLJSH0nEBU5yXvaicr5YrLnsn18hzhdM2ppAwhQg7ORgbkAH4RHAuY7/niP/11bWUhNlhGif0fctpEJQxHPa4ublC4x2sYyegqnU6N5uAx9G8h9t9IPSu0132+ArEzR+kj9rAUl1wjVhopIeKlkFMEYBBRgay1NxOYndAVVlnRXgTI4ic2EypqoN4nDZV3z+UZihOoCPHqt6zVYfOHIg4uu+P9N0vA6kzkwa3+n4eAwGhshcXoaejXFbufCpO+AqQplTu867j8u7nqR2g96Q2qtaftLYCIjLWpP1dAHPtGK3GoQKgWSifuU75kXlmZY/SEVAKqYr1chkW1pVhacQkNga/p3kojcgYoDGwnh3eNnuklOBTQgwJYZqKzkmGpmwVbVt2GHgLZzzQdHAdwSLC2QRrqcwhWAPjAFhCthxlzZTgKSOTgyMLOANnVdm5R98v0QoQ5bxOFsiMMWKKEWNICCkjGwDGgaxh4EyEkBOmHDGliJCqcoMSJXZWAGEy/FoVgCwBAWFMUsk0FRymeMWUufJz20fLtxxFRCvPR4GjuijhYAE0xGIdORPGYcKhGwS5M/BESjMQjbOiVqH+VkAoszuDQajNogIt9And8MythyYKVAvk9v3oYmVhJBZbKsBINhWjXhjMkxZiYNZ9ohuA9NCR90Y//9jg/twBmqkIanjW48HAbwJZD+M8K4V5D+Mb2GgxjV48TPNrQpiw2+9AlLFcLNAvFmi7ThSzKhCq6ry19WR0gkE2Ed6oeNNnue0QNKdpvlYiKtELAMUY5pwXWzZCBaLeN3wNYKnpDKaI912H1hI6l9HkATYNMGEPpADb9nBYoKEWngIchF5ZjPaHm27IufKSlUi9MSXCxV5FK4ejAHBxomSjJTUyjHUA+D5AFol4qxtjxJQPGGMCrEXTdkJlHrHb7XB1fYX3Fxe4urrB+vSE64atVqX8xTCMuLq+xn6/LxF8azky1XYturZDTBk3mx3XBG0c+p5rlS6WK8Qw4bDbwfsO2Y1Ike/NiHgA2WPl4LsH3QzUBYIzHTYFhDBinAamdI4HJCK4SkjseFbrGlAhKD1EiGn2BJDheqomZ865SBAvpqgoes4baQz37yER4sDqdJS08LKAGe/myIc4zIzUuzIyR/i6RBodCor1YhW0qonEyoRlf8j56MF0f13vZn79kQEhINTwIaZr67ZYUVGYLPOU/6562AxEdZ/5eERUI42LxaIY5ApEuV4wl55han/A5uYGw8AKswCKqiKzHDxTBo2FNWmeI2K05MzCRZubG1xLyZcbocb2fV+YEl3XYtEz1UhLCKnjqo7QKTBbrVaFUqlAVP++2WyKE0uBqN7f2dnZkaCPAo/djoHCZrPB+/fv8ejRIzx79ozLnUie6q/ddI9VRdXdfoftlsGDrp9xnIFolIjz4TBgt9tjOBznjmo/3T74tR+dcwjOldIVRBHOWaQ058jd1/T3VucmoQB4LU9yfX1dSs18/fXX+Oabb/D111/j0aNHePTo0VFkW69Jv/6a0SJliNRRRp3rCkDb4nClAsYBTidRZej379/j+++5zMp33/0F3/35O7x+8xptyznHz58/x29+8y3+8Ic/4JtvvsbZ2SmcszgMe1xdXuP16zf46aeX+OGHH/DmzRtst1s2VG+VkNJrdI6Vbbu+x3K5wnK9Qt9zvq0K0MSUxLgM8KNntgUMYiZ4zzoM290B19cbXF1dcaR8nECU4Z1D33donEWYRmyur7jGtgWQCev1CSvRi04Db3PHuZ2f0+rx/ei4qv00u/cAca8ZYpE7Y4ppW2wvBaIxJdgYJS2GI1tTGAsYJQlCsGBPQgyhOGAIkHNB8vmLErU5uiaok1UBEOWZyqn3qpFQy6q1agPqOVY0AjCbpX9tU1sOqGzIAvaO6cEGFZA0lvdqW5VXUUX4YlUKGBWQoaJBVnKReX+RTzbK6rm73/AZZErN0EJftuKMUP9CgaPz+80mfRUQyFTUXdkSZFvKKA4pvSH3aaTGp+IJQO5jZhFlw0qvKgJoH5qvDjDtrP0BUwXSQsRhPyDvB2QRyoziYCIS8CaVJ7038AZiOwbYPMFQ4HtXR4ZjMEqGkMDpdjlnePLI8MKg82i6Hm2/QLdYoW17OMeCZVno+SGys2qSaGh2BuSYnVXK/KSIIQZMsmai1A5NiQN+2UoFAbC8Eg+JQakQIftZpMTRYsNRYVJbTpwds53HY3r8uL99uo7oraZvpeUW1JvPhp+HsQZNbGfvt2z6PJCJq9TDiODOHBUlAn+VWpEkNW14hKuSBjMMLhtJeeDjyEMNJuecFDzWhGg3q4GiWqJ1lAzHm8q86c6AkV8zLyr2CEKMbOHCf7Z9U22O+uESxY0ETDnDGEJjpGi593AiVsH9zgBTNwYArCAaU/EaN1K8OScp3KvAH/Nkmh1V6uGaDR/1sqvABREVw0iNFv17bSgaY4rxoAd0iXRT5mK7mWtxNm2LtvVoLcHmETlOiOEAGnfIeUJjCb5t4EyGMyRiy2U1PNyIr5/MTAFUqi7Uuyd/YwlxgQTsNJXnJwAZjjjSZR0BpuWcUXhWhiWDSMTRQyJ0U48QA0JIxSgehhH7wwGHYcByvYZvmmJANQ0D0f1+j8vLKzTeo+06LBaNlCVYAcZgigHjDdfwtM4g0xKNs2i6BfrFhK5boml7pOmAaOwMLLPWUk08xtbCaoTP2mpsFBKxl5Eoi6oc16QdpxH7cUTKGWul3d6e0ZXxe+RDEieSeitV1Y6fpzmpKoHOea4FRuaMHCPLrItzyxgwQ0CMLPXamTq/xqhj6vg6jIy7ree5OKLUCUwG7AWtoqE5Sd1e1DelbwoRK9LPFkB7lCNaAVBd9qY2yypQWv0d0gcfa0b2hL7vsVgsSgmOQwE2EdbynpwoY7fbltxDrW2o8v9KK+Y90ZQ1YSAqfuJY2u122G63uLm5webmhhU/l8sCEn3ToOs5j00ZExrJUBVc3UcUBAEo0b66JNR2u0XbtoUeqs/RqOj5+XnJpzwcDtjv92jbFlp25sOHD7i6uiqKulrGRWfgr9UUCE1hKhFRVSXeVfU7ueRMKCJBh8OBVYuHUejvs7Ovzvuto1MqZuOcxTQqA0lrHc9gX4+Wu0BijrSo00UdAHrN+/2+0HRH6V/N3VXV47ov74+Qzp/3S5oCT3Vw6GfpvDkIVdzaKvVDKI4pRdxI5P7Vq1f485/+zJHQl6/w7v1b7Pd7rFZrPHnyBN9++w2++fYbfPPN13j8+DHatkOMEdvNVlR7X+HlSy4b8/79e3F0aJmKVEApwAympmkKXXyxWGDRL9G0Dazkq7IOQCpRcRXk4VywxCwFa3Gz2eLmZoObmw2GwyA1fJ04frjOLteM3Zc1xcIigJP1XOqNlnn6cH8/FA29txEbqmVfrN54Ts2qczBnhkqBcobBhs4PBqiiC5Dn3D0NMtjaGJaN0oCKuIomxBXAVjnRnORrZFU9V0ehqSJYJLmLKuBj6zPt+GvVaxWQ/GVtBm53x+Do8/V3kP6wx9HNWtfDcFnhkjvIkftQhOKMlkHR87ACtAq2ASppYQa49VkS8VQgCg3wzOOrTo8SxJFARDZZFFwhIoDisK56GZjrWZJ1cOVMyvzcAjwl6CF2WrYkdt2DnQ3y4LH1jvMjM2ATwTgHFzPsGEE2IUcuN0Nq7xuOpBq5Lp4nHsgOxNpQsIYFmpyVyiCO57U6AbgfwJ9pWRyQy6B1aNpeaqZ66XvOSZ1ELXcIEWNOSI5BcTZAArPfImWm7BIhEcTum+0QK4waXUNqd5QKC5mvMZLwDwzmEj9ljd5jeH/GpH+4fEvtnagOPg3LE83FUbWeHHul5oVbaAE6wRKBAu8SKUoB1ZTnDckAOevErDanCgCpbLlcUAVCcet7ud6qN9TDcR+tgW7d85Fq7D07c+0xJKgirngGqk9V8KlLqPbnfLRVHiTOUzDIxiIZh2gcgvHsKRFqqirrNSA0vhERKULjPZrGo287zkXpe7RNy4WMjZUocypAVO+1jljptZf+IjDnPqYioJFihDXHxefVuLy9YSoAiwKKteYZR0lFRTYEVupyFq3pkEEY5PNMCLAhwYOw7ByMa9H6DvAcBTQqJPCJFcCJ2naOaCnYYkccsiUpf8NJ9yzQYxCjApAIQoLLDg15OBg4z2DcW89URuNgIyeSE4CQAvaHPVJisG2dE2C5RIh5prZ5NUp0vfE1e99g0bO3fyW0M6UY7nY7TNOIkAKm6QTnpyc4PVmj7zkC3vcLpGmPOHlEGUdUG84xRXmmSfLaU8ChE3OuoxljxBgihsB1tZZ0O/uIWzGcQeV9jlYf6VyTfYQMrKjJEcRZMgUkBITINbP2ux322y3G/QFZAJV1jSjLNazWHFhIifHg7C2u9wLdkLVEQPHWQo0lAmWNJGvOlnoJWazIqBDUbWQrQNuYmbau60mNLRiU12r+Z7UN8PdmPshrIGoeAP7a1AjX3MmnT59KHVoGYBqZD0LpjxJV9t5juVxWNEtbarSq95wphywkpPmCuv41B/Lq6qpEqNq2RStOSo1c5ZwLsNH9olbBVRVuLTGiPxNRAUaLxaJECxVsKEXz0aNHR8JFei36fAUjWnO067pKeOf2fv3LgWkBorJnHg4HiYoyYL++ucF2s8V2t8M0hpJbOI4sGBRjEOXJY6dgiUjLPJp/x4AURtMkOPIdJNKtBjgqEFLs//mqy1yey+pyv282G8TIbJjdjvM0v/76a3y4uMDzF89LdJQj4bNz4f5+/WWm+mq1QtcxKHz//j2cc9jv93jz5k0pjfPhwwecnp6WXGGNiMYYpbwK02pfvnyJV69eYb8/AADOz8/xzTff4D/80/+G/+1/+w8cCT0/g2+8iDiNeP36Df7yF46kvnr1SnJVb5giO7EWw92IrUffd+IQWhYqs7OsA1CigDFhnCKsG0EAojh5nHfiCCRcXl3h6voGu/0eAKd+LBYLrNZrLBZLtF0HY9iYPAzMWJmmgMR0H5zkzOkiXfcwoLzVHgKjd6KoYvvVP/NQi2OvMOASiM1lwBCUsum8R+M7tG2PrmO9A2vEYWZIxAL5wcJFHl3bYdH2LOjSSG30TIhuwiTpEFpNwMr6aKTuaiOlBZ0AVEoJMUxwErTgcjDEDk0Bo6jXoMEMhI/OlZ81pe/2d/lqZlCoZ4f+RT/raP1QsR3qx/xauWYYwImSv4LGYkubEjmvI7C6zwB8HhaMoGcY5ioDt++mQMmje6jt6erG6fiV898FC0BqsIOdCCYTrMlwjko0W1No2N6jks9I5n4kyiy3BBgpg0gWhhEdstQ5TYmQI9NiU5LAhSMYB1hvYb2BcSR5vZw7mj0BwcIboCkKuVpfNfF4KVOKImw2cJnnrzoWnPWcl2o928r/f97+czuSY8kWBre5e6gUAEqQLKruufd+7/8ys9adO2vWrPm6D8/hIYslgBSREeFifpiZu0cCKMHD7iCzAKSIjHBp28TeiXDxEWfv8+OSImIwSJb7O4AQkwHIwdgGNjLJUkLk6wWPW9UOdWIDGcPMw/PsMackjmohOgJEYrM8KNcuQxwVxWWAT+jLA5/REX0KNOkgVA9D/UAekJX3X0eOptXCs0ElQvCI2tlq/a8BoMpnKJOtbrCC76oNlHLYPk/JlTeuXP/Kq1Ttutkrow+9lpU5eNVGCSBSH88TjZ3WYPTzOLRMzBUwBhBgEMhkIArjkCyn5xongr7Jom0adC2zGWcg2ndZi6xtOGoHkGghikMgxjxe6k1pBUK178Wzrl5wAkS43mWZFjX01DOmm1WdGqcF2E0j6cSR2ViVHbbtOjakCJiWiPkiQDREtAQQLFrTIikQVbIjo4vlc+2sEVjk8ZsXYWjkT9ohcj1BSsSMaF7rUBbE5NFEx2PXMJOuMRamcUi2BYwDLZ4j2Vmy4Zyjqs66zBgaEzBIyrR16iiopgcRXOOyIa2PxXtcLhPev/+Ay3TB7BfEGNB3HV68cDD9gH7YoB82mKcjptGVjUYikRmMVunx60i1yXOBKk92kHqDWcCojyU15vpQ7eHi+ZYtRYzrMsuElp0UiDJpAHvlFsw+YJw4kjyOI8bTCcs0A8T6YW3ToBdAP80zewLnkNeOWiS99mqrYWKtFQ+fqda1tUMgp7MHfYSihZpBKEo71+vONQhF/f4CPpOeD6gipewFrd9nvwCIaqrkzc1NTkFNiWvMNEp4PIpckKTOMxC1hSglRPjFI8Y5R8j0AayBqEajDocD7u/vsdvtcHNzw3IfEoFp2xZhYCNdpVbmeUbTNLnes+u6fG6tWVUgqpE31dTUyKlG99q2xW63g+qcPjw85IjwdruFMawteDgc8PDwkIFonUbJff2pdeTLj5whMk+4TJeq3Y94eLjH/f09jsJ+Ok9ch6RARkn/smGb1+MS0VkBUUuwyeb7UO6FGALCwjXi1jpE52DkBh/fYhW7yM4SPkLwOJ2OOJ2OXGf7xx/49R//wB/v/sDH+484HA/46aefcgYMQJlBfWV05rb9cw282Wyyo0EleMZxxG+//ZbTh3/99Vfs9/ssN6N7ETPkvse7d+/w7t27HBlvmgb7/R4vX77Ejz/+iP/r//pf+J//83/izZvvcHOzR4wRhzPr0v7zn7/hP//zb/i//+//wG+//YYPHz7g4eFwJdUSoNlCWoLSdZySOwwD2rYTsimN5nK63xICaFkYSMbE66yzICNkUvOM+4cD7h8ecDqP7MTsB+z3N9hsd+iHAU3bcF1XDBgvF5xHjsQn4TIgccq1bXvV788fTzEuP5maKxHRVWejWtvy3hI5VKRVdoadJM46NE2Ltu3Rdj26vgcREJYZBA8j9XVkeH1oG5as6bsOgziTeA8NmK2DFfoeBXKWTAawjXNom9IeBEJ0HotG2uXBDKhqeF8D0MrJmMGWjG1d5r96hOvn1w7M2iYr31GAab2Xrh91f+jex39ayxFEroSTTxNrTBrNJLhafzRQkcvrEvLPWNvGlcNCbynJglJAckEc12BUbceyVqj8m5KtcYZgNAnWPA4mPfW7j0B4IpkoIsEbL78bpEgw0cAEIIUE78UG1EcAYBm/WJNgGwvXWZgGUHbEGIiBoTGsCSpANIQFPrKjPFESewNABAIRUuQ1nOV3FCA2gOH9b0mES4g4L4EfAkTJGaihkAyn2sJYlhRMVtqNdUQbS2iMhXMGjVVyI8Zw0+JhUkKKUsMahW2XjKQhmxz4KeBTRr86KxQEfgKMPglEFbg9ZVAm9bJgDdzy557YsfOCAzaqAWSiF27kVM2VamReHQQFc/J98rFYGb8ZwAIs36DmboL0Lhdlx8ANbKzJdYnVBVcz4XnwWNpHDfnSAfklgtS+ffJUT59f0plrqY7LLDpBi0dMgLUzQAZukYVSZFS8bGDJcgTKUGVkK5BPlQ5QVWdWFre65XURSTm9axHh+ShgUweeEvEwo2ZZMOt6njrKbmUDzul5Sm9vCiMcUkIAYQoEJCYvIkeIzQ7od7D9FrbtxPNeOUE+cfCiqym58dGw02U7IUm0WIrTFVwYA0osFK/QiozUSVgHOAeyLadIJAKwIMWI2c+IkUFg0zhsNwNub27gXIO26zLhSwT7aWYhc9kMA4a+R9NydAEpwS+eH75IJs0i57J4jxATrDAj98MG0zjg0nCqZdR0XOljWdbFb1SkTyqzEaqfGURvdokRS4iYfcLkeXGPzwxyI9423X0ISRYEgwyEc8MzXXhxgJDo5gYs04xpvOAyXjDPE4JfAES0TYtWCHmatuXIhYATHzxMYhe6UvvnlDQZ71q31biWrykRfAyIHly3SrmXeaOVRVlTxIzWVSgAzboxtSFRNuMCRpGBqH6e+0BavQaoqY6IyhyK4ckIdH1oNGqz2eDly5d5Q14WDyLgeDridDpJhgoAsMRB03CUhkHeLGAqCEhasiaifkdh0osrMKoP1Z3kCIxB27SIfcxRIQWbWjeugFWjiZq62/d9XmsA5BTQes9SrVCNuO73e+z3+0wKpOuQOtNqSZS+7z/Tol9/aJtMlwmn40n0Vj/w48MH3H+8z46BReZ08CGnvgG1g5VXJlP3fE6rqmpHZd2FrKfzNGFeajZez44BiZzWmLBePx9hjBglI4qzIuZpwngZAXAZwjxNeX94/foVbm5usd/vc3qsFXKsxyC02ji/4FASoRhjTq8+Ho+5tlgj/vf391cRUd5vNBqu7LZN0+Du7g5v3rzBjz/+hP/xP/4f+Pnnn/Hdd99xGQSA83nEu3fv8Ouvv+Uo6u+//44PHz7k757nWi9UsmQk8qaAuCZ2ynWrqURDjRjDbDQHOM97YUwR02XC5TLieDzjfB6xLAFdJ6zFhhncl0U+jzIng6T7tt0DnGuh3i9j7Yq/4XNHDUL1b73W1aB5yim5AqHlp6AYAKjIbOo1msAwQYIfldM0AxK9pgRJQQ65bjQz4YbC8lmvVzGyQy/mWsm4slXq+36UEn8NFBWsVSD0uq0IwDNb5fr9T7T7GvQ/P1dqpyZQ7PXSX+on1fMakLUS1BELyDAY1awLVZUowEOsZwV5FYljAY/1ddKX3fizrbHuDz7YhjBISKakCmtEVO89xpi1zJ9rtSV6HANnGCT2isB4A7MQaAamecEspEA+cSyfKLFUjU1ILgKOAEdIMl65DCwxAy2YyxJIOW22zirlwh299piJsxSQg7SGM2H2CePkcb7MGKcFl9ljRhRbX6O5gAXBUINWCMtcZ9DAonUWfePQWJMDnGVdZn6Ty9ThPE14OJ/Z7gHgI4lNS9UHrsfkl7tdPpmaez1YsucDCiIeL0g6ANSqz16IxFG9vNjkgS4XTZKCm81imSjlm0VUNeWaqJSE4Gl18yifp2rYJrCga0pMYyxIHiahDx1v1JmURb6zAqTXsKYsTvr8emivHIGgnNb0BE5/9uA0VYk6jheuzTkeWXvvcsFiDYL3GC9j1sRKMYkG4CzMljzxQhuKEStGCEgLkZXNr4DQvJ5LWygIzell8wXTPHEkSBYnoHj9laGyrgutF3VNvdMUOK0lnec5b9pcY9TAaaSFLIJpYMgCzoC6Fmb3Em77Am5zA9cNpea3Tjf7RPumJIQGUdNTUToqIXvtArHWJcjASN0AJU6RspbBJxkLMq6ITTsHGIsGIvkClp7wi0dKBGtb9K1D3G5AROj7Dpd5wXg+Y/EBXtI/CUy/393coGtbNNYiShRoukw4n09ASkzq1Lawjo3KECOWeWH2X9egH7aYhgFj12G6NCCS2sYUASperQROQV2DUG0z0T/1MxfGh4QlEuZEmCJrdz23xzhjAdcw+MwPiEccOfLLTpsk85dy/XaKgaVa5gnLdME8jTL+EprWYbMdsN3uRFeOMkkIRw8WWEkxNU5TUFyl22XgGidkPj1fROLaWwXmMSklPc8FBqIikWE94nXBqWivUUQxVMTwfgqEAihkRfIvA87SD3V+hj7MF9SIAmykah2lpq82jcMw9Pj97Vswm+wFCQk+eG4Tx+NinheRa1mEcfbCzg5JewYVIAog139fLrxuadRRNSeHfmBJCTGAN5sNdrtdNvIm0TnWelAlGgKAvu+z7qfelxLTqMNLr0OjqxqRvbm5yYyvpUTA5/VHI7PxM236Z44YI+ZlznWL7969w++//463b9/ijz/e4XA4MlCcS2Q3r9l5L5K9N7GXnozKATAxCferOvh0HaT8Gsm6oHvAPC9ACzSq2fckGC2OybyfGo4o6Z6dUsQyz/h4/5Ej1JcR5/GMh4d7vHnzBt+9eYNvvvk2M9kOQ48yD8p9fY3xAjAQ/fHHH7OOubUWf/zxB96/f4/j8QgAmcNgHMdVenBKKUct27bNaehv3rwRrdCf8dNPP+P7799gv98BRBjPI969e4+///0f+M///E/88svfs6yNgtBlmVcgVPtCdWqVeEt5ALSOjqVDuF/IGNBCuT7LBZP3ZR88RqklvkwT5snnseK9OIDOTBDYti7zRORoEMBOp0RSx8o2DzMMb+BcfwV01sd1Sq625fXx3HOcbVaiaGpqpurcq2ir2CiaxeGXOUtLheARgkcMTV5z/FJ4KdReqdmoayb/eV4wzVMxpA3BLwsWvxT26nnOznEesyY7yUmdjKhAp67xaoM+0ZZfmgbNb64cUE+0z9WJ9QMZHCraXAPQYsej+o2MuLYUGBHbPDBq32h2m9rYFTCMCawZqtwvIfdpvYasv1F/X4+V60j79c/8yaccHVdnXQWpUMbgc2vN5Bd8OB/AcjMWhhyMJ9jFgGZgGT3mmR3/ISUEAaBkE8hFBAMQCVtv8ohxQQoBiFwkmhKDOJMSQlwQgmiwC/ezrWyIBGSHXxTNT5ZJ57ViXhiEnsYJ4zhjvizwlEDGiWpAyURzpkHTWnSuweA69K7D0LXYdC3axiJFuVbJTEiUsITAGWjzjLf3DzK2RoxLRFjWWZsZO6Xsmlj156dG/PNkRXqyJ8ZLwWDFE1RHuPLbE9YXqU9eO0SIcgpu8Rbp4E2lUJzKxE7qNYBGaFP1GSUGotVABBIoMHsWIgMxY0lSy65u9JnxvXb4XTft04Ob/qQDiFN0ApZ5weUy4iSaaRfRwkvgaJexJredRh1DCBJ1iHDWIIQ+Lz68uXE0bFULizUI1Wsv96ZAhFNnl5kjJFprpx4cNRrrqMZTQFQ3aN0s1BDsui4/WP9M2GqNRTIOyVhQ18EOG9jhDra/geu2cG0n+e2c9oAne6PcTYqxMKnp+MyIQEBBMtUYYh1QQxYgyykLKeY2U68hSxqJhpmVtF0YIBLmaYZfApAAZxu0zsFsTI7m/fHuPe7vRxyOZxEdZpbjm/0NdgJYCUD0HrPoiE7zDALQ9yLPYS0IEI25GV3DrKedpG41bQfXtAgIQFqYibDyatUVnIXHkFsmChCd/cJMbSFhDsAcCHMg+AjUVOz1Ya0FOXaOIEZmulUACgGeWR+YF+vi7OKNLfoFYZ7h5wl+mrJGV9s6DJsB+5s9jLG4XGZ4P4nBwSmOrdS8WsNSLtYJezMVY7GVWmokQoq87oTIaXI2RkRj8nqTJOUtRDaGsusjg0t9QBw15X54bun7KRfV1kC03p6fIi7S9KnnItD1oYaLRmA0Mqm1UTElnMczEkrWgraJCpBr7TbXx81scIt2LANI9sKqwas1nUpcdDgcMlHSsltyJK4TbdHtdpvBgQJRBa66pqXEEiKaXqvOLJV3gcxVJdvS1xWI3t7e5tpVjYrqubkec8pSVH/1EcUxxEy/R7x79x6///4Wb//gtNDT6ZwjNznqYtaGfk49jhLZl5R5IwYn17FJdNNwZgaT4zghromZCCmmhOS5rto5Wxyl6ozU8YrKMAQkw4f4+4jy/uH9guPhgLM4Hs6nEx7uP+Lh4ZBre0PwkvZtK5mc4gDUVL4vPfb7Pb7//ns0DQMR5xy2220mvKqj3PM8589dR7mGYcjEVv/2b/+G//W//hf+/d//HS9fvMSLFy/hXCPR1hPe/fEO//jHP/Af//Gf+Mc//oE//vgj1xjzdy0C8GLuR+dcHuM1EFVnge4xIUbxrot0UjScBeILd8ayTDmFm8cp145puceysJ7vEha0bZO1Q7VZQ0zMwjwtkhFBeY43jcsZCP/Kka5+rl5LV8arGpWVc7847ZKsSRHkPeukLx5esjFyFlUs5IdMBli0eGsnd/0Z7/k8y7wUJ4wxWAToMghd8vsVBHHktSK+U5ClcwZrW/X6+CoQKu0BlO/+ms/XYKx+aGCB+6M4mHS8JqJCgidglMhkua6SlVHuKZkIChGRWNwjIeVzFAcs8ncCj4HktWPjKRB6PXefOs+jdrjCIfx4eq2ZBYgaWBhqWF/TG9jZgBYgTBFhkTpRA0RLUh8awdKbyq4fkcKCGL0AUQ+KAiYjvx6jRww8riMpjpEgAAFJHFE+hJxiH0LAkoAoNeTjOGE8TwxC5wAuB02wjss4nSE0MBhch03bYdsN2PVb7IYNtn2P7aZH6wwWP2FZLohxEUjMxEY+JYxCXjhOEy6LxxIWACE7kuoRl/2l2oels57tn09ERJG/QL2xedHQ84JQhnMZNPmbK2TPkxwS+wWzmOkuJxeZyRNSEiFWfrihRzP0sE0jzLwlvU+Nwjym0jqtpLy+9v5o+gVZua66jVK5fP03rX67XkyoerVIV6wivqufX3qkHIEaxxH39/d498cfOB4OOJ2OeaNbL1B5ScFmM2CeuKalbVqJOKhuE0dBVX+x9jSVqGh93cVby0BTiYg4pTEmTsf1geUgiCgbgVobpAZurWWnz9d1Zsoo2AnRwjxdeCNKUYhOWgzDBsOGa0tjZG0nPzuExSFYQrIE5JqkJ5u2ODEEQFcDVq5N8hSStotgBhkvSeRcoqSnxgTYJqCJCRoBJWjtoYG1iUWIk0g5hIDgFxhj0XVsKHy0Bn5ZME0XltgFSYohywgsy4zpMmG6cERqmmZJX2yw3W6E6Y416I7HE1JM2HQdhtahtQ6u6dB2XHOzICBGXlCY3MkCxJtQpuWWh6Yjp5SEpY3JicYlYJwDLkvC5Dll47ktwVoLmxiIphgkKEqI5AtNPhXQpc5YqmrirdSAOMP06MY5uI5lEPqhg3Nc07gsM2cOjBf4xQOpsDHWkTbjxKlVRfRjkJpVMfJBrI9GhmCEzpwdOkxSpI8883XNU/CpuwpqEIq1B13bjZDPswKhCkTzRlo2VBcNeAd87iirdC33sd1uZQ0BEiJc43A43OMySrYDp7Bgnr2stev6YUDBCmujalqcAkE1+lR38ng8YrvdYrfdYdyNcNaiE1ISlXdRoKvZFABy6qKmVGoktI42EVFO662zMPR+u67LdX+aLny5XPJ7lM1X0/H+qqPeJup20ajohw8f8CC1odNlysasglBdO3NmkRjbT8m2gArLcDbMEqRUwII6wiZsAAJmdSRUdbchBnYm6H6SgejjCFi5Kf4nxvW+GELA+XzC+/ciEUJcYnASR+rLV6+w2WxyFNIY3Q++bo/UNO/b21u8efMG1lrsdjvc3t7iw4cPOJ/Pq/rh61RLBcObzQa3t7dVWu6PeP36GwzDACLCOHIk9O3bt/jb3/6Gv//9H/jtt9/w/v17HA4Hzk6pnBiakqhOkmsQqpIyRUdRo/gEiL5hTBwNMYEBejZClwmjrP9ITNSjWThEFjEBl8uM8ziiaVjGpe87vlfHjtoQIsziQSDevzVLSq5lHMev6gf9XP2zeuHp9+MxQKrdb2rL5j06rlNyy1ok59HnRU+aDK0cTdf9T5XNaYwynNKKCVdtMD4EhFY6ooVh9LlGwRcN6S8F/msg+a8fBdzx3zrvzUqawwhHCfKmpBrYAK8P6riGOjW4qFH+fhqM6xx56tavAefnjusAWAUIPvWpJ5/1IeI0zjAwsBThUoANBnYxMJ6Jh1ICoiEkx7amtwmBPCgAlng3NoZTvCgFdu8TMSlUSAgGQBBGW8oJvEhIMImz4VyKCLBwyaOzDg/HAzZNh6np0MAgLgHHjw+YTiPSHNCSwa4dYBwxOeXQo3MOrXPomgabtsem6zG0HXoh9OrbBn3bwFmCowBHDUIEQgqIiSO+BkBIkUve2PCt5iqyA/MxJFJ7qDg0nzs+ERGtvVWoFgrxmhATyJRU2tL1a1DEV0BC8wutPzAKDmMGtJyDbgFKAkItmq7BsN9iuNmhaVvYpoV1DprWURtnPBtKTWgGGlUaSILWRs2Y5wnWSeSKgKwDlVF+tcg8sQDUQE0n1CpEnTtKTeCq877gSLIShxgxnkd8/PiR04A+vMf9x49Z568GolYAvLUO+/0efuFo2XbYIMYAkw1uBbkBMazvTSOcNatozOkxJR0mpQBjOKo0zyFHNDVqocyYzrm8AdTefmPMykNZs3ty/UzL8iDTBUHqN4bWoes7bLaDEJ8YhGXGNAKTA+bGoDEG0VlACFqead1qE6uNE61pMAojZUFWbMHpJyTPRQApBanpinBtQBf03EKMAwIM4Cwz6QKcDuyXBQSgaXs0bQsiI0YCe2oh9RrOScRos8HhKBIKYmBdxgs22w32+y1ub28RYsC0MCPxw/0Bh/sjdpsB37y8Q7vfwroWTTug7QbEuMD4SWrahU9QC88VhCsIlbkcE7gmdAm4zJ7rE+aAcYm4eCDEsqldH9YaZmuLEclwAX8kXqS57ofBTjKJS0eJgakxCdayX8FZgnOExhHaxsL1LfotMyq2bQtYcNRpHHE8HDGOI8LiV6RnquPnnGOpG0RZwERnkJbcBkkBrOp+JQKB04rZODLIrLlp7VjT1FxIai4vyCm/XH6SAFB+Iq8S8p4MQnWNQU6ekbnc4NNAtBr1qQBSTWXVKMjN7S0OD6z7eRQW5uPpjGU5ybopELgyWjiakxBjuffa+FPHVR0ZPe1ZN7Pr2gwy1flUE5npd+hrmlas0S9NxdR1JSWuLVUGUH1N15X9fg/vPU4nrs8cxzG/TyPE1+30Vx96ray1yvqPD4cDzucz12sKiK6dJXpom9TkNzlCI79fG92xiWjBdZmtdaAtiSTUiNPpjJTG7JgNnkANb9a6x+f0QqyjMWsnZTnyPmQtloV1WrVfjocDjscjRolSvnz1iufWZgPXEJz7fG3i9aHRxs1mg2+++Qbb7RYvX77Ed999x1HZLIcz53FZOxpq9mZN3VZAutvt2FkbAo7HA37//Tf8x3/8DX/7G0dC3759i48fP7J8zXQRltylAuU2R0IVdGsKeSaXAqB+9BiTmKPKX6CKAfwmHxaJ9s1cg7t4KS0wkt3BZSEpAZeJa0iNJQxDj2Hu0XVtzjJizU7KdsA0XbJ9QAScz+dPjmHt68fpjs9/5hHorO03Wfuv7c78WdQEejFnMaE6nz6nThWCKeB0BXb54HT2KjvGWZlDFsqqyw5JeT9hNd+u60Sp3KwYb2uVhOt00+v2fO7Ie8QT7Vmfr56R14/1Z9d9mL9H5roR+wdA3vsj08WDGRwNkuF3kGQIVdZ/vmgifpNigvo+CwgteyK39eMU3Prnp8aZAupCkKQ/n167ngNG3keMlwUmERwYENpo4BZmsdXocLIWyQGpIUTRAY0hwCTWUrfE0UgGpkykqEz8KUREw1KMnhLrcgoQpRRB3sDCw0WDJhlYEHrbookGvXVwkZCWgIcPHzGfRpAP6I2DHVgGatgMGDY9hpZTb4eWo6FD22VSUebJMHAGIIqwBiBH8MGAYuTsNmKoZgTgRcnSKxhH7YCyV+gLBQsCn0Oin4yIZkD3TOfnoZ+emUx5JsjmlimvZdGNUajjFYiqhzBxIzmWttje7LB/9QLdMAgYbQoqrxokKRCVC18Bw8qTH0LAZTxzbR1Yd+tJr81Ve1y/4/ozPLFK+L+spPLac439iYM3qIh5nnA6Mbvixw8f8OHDO6k1LPI2arzo5koEtC17YycJrdeLoUpQhBhWmJkXBwKg2lHMLOuDh/eSqhKZRMNSYdHT2tBaM/Qpjz5Q9KaSGP8KXjk9ss2pVcs8YZ4npBTh2g5t22DoWwx9h75rgBgQlgkTApbOIfgWMbZX4PK5xi3gU8fLyiuv4zpTCQPsOIll0UbKeqpELGmjNTfQkW0sDDG9tzHMSOZTgl8WIXqy6Ijp5nNqsdZ9CaNfbsuUsMwzR0QvF0zTBcPATIE3N3tcponTdf3MzI2XCct+h/0wAPs9nGvQdD26foPgJyzzhenBMxClnF4srhlwTQNHz31M+ecSgNkDk+efswdCNR+vD2ssLMlcjMRp0YFTTAPAqSyJJYVSZQQYEEwkOEsIltA4g7axiHBo+hbDpkfbc11nDEHIZ0aM5xOWaeE6WFPkfPLGpB7wpICOxyIb3RxdYD1b1iXjjZjdD2z4EFLSiGi9hsiiq/dgkJFnBqLV23SRzmAT10BU5qysLwpCZdQixi8z4K/7pZZI6foeN7c3meX248ePePfuHULk6Eitq6obT8rZJwkxOzBK9CJHMWLMGp6n04kld85n9D17ZRW4tG1bpCxkLdCU20YYLdVZME1TrnM3qo8oTgNdf5iAjaNxTdPk1N+Hhwfc3NysjO2a7OhfBaFK/HZ9Hl1/db0MkWWd/OJzxC7rYUoUU9dPbXvvfV7nrx/6+jUYJWK2bddYkc9pmfSmqj1KSaJv8cpYJzVOa8KYtfNz/VyRlkiJ+QoOh0Ou0VQQHeWnE/b2ftA9oWbW/YTlUl2fMQad1Mfv9/ssUaTRUE3NrVMstS9qIKoRS63dtNbifBpxPo94/14Zcv8Tf/8714VqHeo4nh+ldHOaus2OVY2Eaqq5TkZ1LOkaDAFZJFIUYgEgpZhBqDqDY0oSmZJ2M1xK4QPLnJ1OZ5Ah0TCNUrMKxDbyWg+CX3x2/gDImQRaX/vpcf44Mvc1MyfJOVRSI0Y2wpkMUVLl5wnJNbAxwATPDpPlwhwBQsjnvcdiPKyZMU0yF6gAlxCC1F6XMZAzkqSm1Jglr8PLMufSIn4/1/vGJI7oJ8AN8NheFIMiv/ZXRTL/yojo6sibUkk/Vp11dY6IQZodq2b94fz57HgtKOERGH385UouqmV3nzrS6ie/X3le6g8/D1qfY3GNMWGZA0wyiIkJH100iMHAwTCDsDWAA2LDsiweAUtg0kKKETZw1lZrmRBI2xMglmghmasELMT2T3ZDxcTniIQYuUTokgxO5og2EiayaCKBQsR8voBCRG8b9G0LcoS2a9EPHTZ9j03fYdO12LYd+pYBqRLTMXGS1PUmztaLcDARoACWrNEMIUNZ570GoTpWMgitZ8HaL/HngKiOJR17vC9cd1yqHo9f0c2EjT5dMMVFYmI2sHRim1z4zdETchb9psftizu8evMthu0WzdDDtW0Bolh/Pakzile5vNDXVljwAQcBdMs0oWkdG1ZyMjXw0upcj9voesPOf8sYr/w/GeR8nYmTKu8at5O1Bl3P+nhBtCnZkOPNKNdLNU1OXdUFX0+lgBmppCtGRPF4lBsOgVn6jLVMULMsoslYCppj4pTZhMIMmNMejRFCjDkbpbVQvW4SGg1VQgfWDNRapsi1gsbBOa6jdK4BISGGBdF7BD8LhxhgLHuGqTKcnztiSqCIDMi5H6WfcvqPtAdJBMI2MJbps0m8CwaxFJijENskITfKXlRnhNq7gfeFKCURwbYtXNOi61rc3d7CWMfnIJbTmC4XfEwJx+MxOxU0ErDZbLKne5pmxBAxT5zCO55HdK7BsgSw36dB1w4I/RbLfIG9nBkMw6w8vUVuB6IVGTFD0qhhQa6HaXoY14Fsi4ggdOjp2TFuDcsLaeqvIRLeXhmDkg5CIpvCK4FEZ61BlEdwFrFrWVy6ayTyFTFPC+bLgvPxjMs48vyQSDpHd9ibXuqDPEwSSiYDMUoWMQq5NpK1uqQGSVKpub0IlIxERD1CLOMBAEQkDABJdFdX5NpbqGOmBqJ1im4ZUxoVzUaBQNEEINKnIv/PHLLT69rRtR1U/Nw5h7ZrkRKy/uZlvEidIUfova8AEiWYUHSer6MFQCExu1wmnM5nPDwc0LYdpwdJZFajRzc3NwDYKL65ucFuuwWIa3XnecbxdMLDwwFkCLc3t9jfzOjbDk3L6562Nc/DmEl92pYBx36/x93dXa4R1drBOmK2Xtu/vFk1w0PPVRuNIYQMll69eoU3b97g4eEeRIRZjF8tSdB1sp6TCjiV+VWf0595XItjz3uOmGlGUGg7NI1IVYi0DZP8cJquOl1ybaMY9DUI/fyjqp2Th+4JKbFT4/3793m/9J4zaV68eJkj4yVN98sHs769TrNWgFnXC173rV6bRt0VgOrY/3j/EX+8fYdffvk7/v73v+PXX3+VSOg911leLlIv7WWvILkPZu5WuaBB0nGpqgetjbqEsvdwqplGjIrWpmo2RwGtzrEUDBHzHMzzAuAMIohDMsKg1LjTPMv7ZnYKWivGMR4Rg338+PGTLf4cGLp+ZgU8KpsDYnCzfJw4N0NECh4UEsuBhYjTNMO2B5CzIMfrcfAzol8wXyZM44SwiDbv2KBpzjgeDpJhVIjLlmXBokzyoWLFFdI/6xyTC5KWCnFWEoPdhceYMcytELU6v4C2laVdgc8vOb5mrF8DuUfOoC8+0/U1CPzLt0CFQrX6yih6nEy2KNCxAiJl/K6v5ToCrNiC/wZWwLKKqCE9vif9LO/nCZpRxV6WVAIIWQ1Bou1YR5GfM1QMGTRgvgEKhCQZbuzz4awRagnJAcEEzJTgo4dPHKAxiAhIIl9DsjcWRBRD4jEfEkLilOdInH1npC8MEmwCmmTQwsBFgOaIiBnRNmwPk8V2M6BxFhEJrnOwrUPTWLiGf3bWoXUWnXPoRMrRWCsaoCR2vNTzUgTQIiKiTQk+MUmRv0zw84wo4BWiDOGSYZ6Havxzs6rRUrqTA4/Pj7/nU3MznOUzlVSJNThKqSyqeqwilWJxMdNYAaJJiRjiU5sZSz0QEvphwO2LO3zz3bfY3N6g2wxourZ4nPRaBfxRwQ1yrQot1eFlEEPAu7d/oGkcjoeHPEjLOzMUzfeeqkFcRxU/2XwVTqbPvf+JowayvC4QGsc6kiqjoSDeZj0sEYtvuZbSuUY75aqfisFbulkjGGyQGEOIycJW7L2zEpQginEsUc5U6jtLRKJII6hB4pyVaEqCyoDUxCIFiBaJkASCNQ5ONMWccyCw3mgQI8qJ4W9tw0DUfD5KdJ0qVDz7/FqQ6C9HQTmaSU3k1AsrhEXE7GeizMQevUIIy4BLFnSTZIFoG0wXwuxnjKczQIS274VCv8WLuzu0Xc+apVK/exnHwpYshrMaTSrqbq0yEDP4ny4TLuOEuSuGkjEObdsjDltMlxOMaUHkxWNXPPlk5D5SEv1O9VgDIAvrelgBo+Q6wMwICfAx5Vl0fRgysASkZACKiMT0Pioiw/M3ic8ruxZAMEAqQLRtHLN2hgg0DmQNQmQtyuPDCePxjGmcED3XNhoqtP4q5aK1ixaOa1BBIkOycP2Upt8AzGYnhmAQ/eMEgkUBohoRzdNLJ5cizrw2V86q4irOf6TKq1hriJYVqQKgcq5oAvBlQdEnDyKuMW4aJwZ5j2HYYFk8jqcjHg5HnLtzxXTt81jjy7YIxq+kQ4o0DnuBQ2ASlWmacD6dRcqlx267xXa3Y1Y/WduIKK8Dm2FA3/c5yhNCxOF4xG9v3wJImOYFPgbsd3vszVZASHE+qhGiwAQg7HY73N3d5WiZRn8UvF3riH6peaeONR1bei7d12KMaJoGNzc3ePX6NX744XscT0fMy5JrVkttfHFs6tqokb9135U2V7KlmtjJGJNTFWOIIAwZiGp7n88nHI8HxClkhlIi4j06G9pro/eptGB1Qlw7JOqaXZVUUWDIUUQPYx2GzQYqY1I0R792LBfg23XdVS1hZYRW79dr1utVebLL5YIPHz7iH//4VepC/45//vOfePfuHR4eDpLyWyJtej5rnUT3+wJEJRKq5E75unBlxtRrQXaceRRJkcKlUMiehK1cxlwC80oEyTgLicl+5lQIBNumQasg9gqcq/PpU+P8yejWNaC6AqEKwBV5c6Za0ShWneKUFn7LOAGHE2AtZ8gYZmdGDEgynqPohXGm0dpho/2R2ztJNo6sDcs84zKOcA8Pmf0220IQkCzjxjgH5xokMpKaiMqJKNk21/f/OXBI9FV24bPtvvq+vKl86kxPvl7vRypbwvWexX7NkXUrTnIjUXlDWaawgFF1MV9/T9knS/ZIBQ4rOx5yhpTPVFsXTKeYJBgC7ZccdNHsq7IPpPq1Z9rIwKChlj8XI5KX0h1HgBUg2hGiA3yKmOMCnwJ8YjvBSAZVSsQ1ppRgJE2YJRlTHu9cH1ocGoYINgkQRUILixYGTTSgJSLGBWgNTGvROIuubUH7HVzj0A4d2qGFcSzZSBSh7BGWCI21cFZUH5yAUSQOQiExH4fla4nE9avxdMY5RgTDGWyJSDL1CA41M3vuXZnbmk33NEa8Pj4BRFcjp3gpqonAP9cA59q7k+0wfdSaekSSaK6/m4rgw4CSgRXDvet7dH2HbmjRyEadPTH5uyjjqnqF5/CzvEYG0Qdhod0IVffMWoSVwbi6gSeOfzV960sPnTiUPa0N+qGHsZQNLCJiOYqGpU6cLJqcjiiRLWiEIIGuFocMrKUvY2JPYRQ20whmRFQ2usUXD7N6wHVjVd1PTXOr07a0Ng9I8vkCeAuDZyMgMDD4SQkgAyM1fU3Lm3mMXtKtY0lHFoZA55rs6f1M4/KEqcaxNATfdyqgHCnCGPZEG8nzN1KQn1K5v5yWxneNjDhISIsarnu2DUtdTPMEe2kwXS6wrkHjHG5vb9D1Ay7ThPEiKY0CQnULYWmb8pjnBff3DziejriMF6l1JHRti7bt0LiGwbwhGAxA8hjbAa7pEMKicUchVWKjN5IYQhFYhOreGivp8Q7D9hZ3LxYsRPCwOC8RxnvQM21PAjyJEotEG8pggd2HJpMiGVSbobGAiYjGcl1GFXX1MSHMC2YfMJ1HTNJOwQfuM5nT3Heaxq6OMRaIttYIyVOVWlg5JTiayhq9lgzYMaFzM2bSIqCqCdJ1MBsrOrQKEF29pkaEPHeNZxPlHITHQBTxq4GoerB1jtagQg253W6H3XaH3WaLU3/iFFnXYHEeznmogyyJk8ZYB2cDgg1wtmQ/qMGp2RFKFtR3PYZ+k8FXTsEV0GiMQSMADKL/HGLC7AMu84zgA1x7gpH6uH7oc40zqZSOzGN1LGg96M3NjbDnHtC2/J1KqjTP81U082nD7fpIKeGf//wnHh4ehFl4WgFRbVcFrP0w4Pb2Fjc3N9jv93l9b6S2Xb+/LnOoo825L+V3XTuJKIMj1fVTR6ITbdg6AhYiM0urA27lSEo6LB9/37UDuXALmOzQWgMmBj3KiPzw8ABrrbTDHaZpEsD950Do9TV97VFHz06nIz58uMdvv/2Gv//970JOxOm4Dw8POJ+vyYlKuUnTcnS1V53QlkkWQYWh/To6q8mI6kDVZ1WnlfchAUWGGap1jjBhXmAWT9XAyssKFWdiUOc1EJqA2PLYrLOSNEVdpZL+RCM++xKlyvSvghUaRYngEpAYpH1CRMQiBjCEqVnbLHIAR2yjgJDBoJE1NI8BugJD0jYxcgYMXcx6elOJsIvRChsZuBixS5IY2/mD9KWrxFMN8xis/fceApJScX4C6hTR/VCy5RLAEEVsxsT9klMzn2HM/5pr0V20htS6RbKTmgFs8Cx9EsV+53kiJWdJU77VjtMaYs36A0yzgXGP9aJNMnBJ1umUEBIVJYTWgVoHdAbkwAzXkbJ+PAUOTFCMLB9uWcIvgRAS00WExGoYIQREBEQKUrplYMmiswadMehgMVCDgRx6atAbh8E6DFLrOXStlFywXdz0LVzfSHYnRzqV98aSqAVITTQ5CzgOn+h/TNzKcy0iwaeIow9YQBgXj4tn3Xi2ySkzn6vDWTEWSFOyq/lRz5UnjudTc/VjxHngyahYeBUzrKJJ2Yu6AqX1+dQ7Um9ijMhJUHauT0MS6QSpIQyBiYUuDgkRQUgdNLVEo7V8HipgOZUtNTcSCNGHrH2n7ydNQ6ge16D5eoOrwfc16KrBev38Vx25LZnVU7U1jQWa1q7azprCiFfYh0U9lzgfPUT2xBhL2UBnw78Yo3ncJDF5ZWItnimbF7/gMl1wmS6SAsaDwRjVZXRISftVWQ17AZsNrDVY/IxlYSOt1IaxZqi1NoNQZb4zSsbgHIx1SDFg9hyZ6tsWQ9/iZr/HdrNB37XZ0MpetmeOmIScCqWd85gGMlhJAXlRMzFhiQlGougM8rme0AiAK2OtxLEIAKo+ZCOCjYB5mVkLtmnQtD32uwF9H/FwOGRh+9PxiOPpJFGkHYbNgL5jgfYQPD5+/CAadh6LZ6Ol7wfc7DnCut/vmSSDAqIFkALadkDb9Ih+ETMgcWRKJB+SlXGQFoTIgsnOAbY1aNsety8s+v0Wm9s7mPbvWBJhnCbY5wzJ3BWaqkJg4iedeyhjMKlRYcSwcmhsBDlO8QiBmYq995h8wGVeMI8XhHkGJD3GWZJMHQahxnJ6tGsc2q7D0G/RtI1E6U32GdTrJTvI2Ei0QjCykKlE0dm489Gv5n1tvNd7swLL1fP5SwsQrZsrZSCaWKNN/lOh7khfJjVC1bmB9dqkf+u4t9aia4u+5+FwyEZ14xf4hdefEPhzmgFRG9jWOJB6gSWi7n3AOF5g7ZGdI7IZKlGMSlooYNMU19l7yY7gzd22PQJmTD7geD5j2Ay4iVILbDUax/3GfYRcY9s0Dfb7vUS8PuT1aZ5nqfkrLKtPstM+c8QY8b//9/+Gcw6XywXjOErteGHmZZ1algKZLpesc3p7e5vvWfuldgpcMwHr83VdawgBwzDkaJ7KiSg/Qgisp3sxE2JMWdKlcQ7b3Q5d10qK8JyNtZgiENdsy3Vkhq4s8MfgdB2lqkGpkjaNZ6njnCa0bVeyeL7y+JJ+uo6G1s9rNPtwOOCPP/7Ab7/9hl/+9kuOhDJD7hHn8wWXi+q9BnFEsgOvaUrN9aBlROKoTSkiCOBUB8F6d2KgVRxaZd6UkpkyP53j6H9NDBZCQELK/WqMBdfOc12u98yoHAWUGiIEkfLpu25VQ/vVxypAcXXUzr2UUDSkBXoQa3CTjTAUQCFKuQ2VjBBBI8pWz4SX3G5q29XrLtf1C8C/WvvAZo+0aRBAW1+rvskgmYikUduYEKNmgIpNW8kuFLcCfy++cO34kuPajnycSajeh8+f63HGR8r7LjeL7keU92djUvYzlGwX5V54BBv5s1dD4XEgq+CIyishM6DgiIIeFBR7zNOIy3jCdDlhvpwxC+EWR7IL+IwKRmvHRwJuXv2I3e1jIEpgJnrmuxB5N2dhugZ2aEGdAToCHGBjQhuBmByQiJ0jMYIiS2o1xrLeckpI4ihaUsAizr+YPGLyaIxB0xg0zmDbDrhtB9y0A3btgF3TY+NatK5Ba5kBt2uYDdcYIUGyhiOh1oCsYiFkDWGbA0TCrm0tyJrKBkn8u2GugDksiMsMTwecF4/704jj5YJxnrGEgERCduRcJekjDzWkqB4/19Ik6+OzEdFnF/cKgD6Vmqt7UzHKq7XoauLkiaSgEOBUjERMZOI9lnmGvVhOyfAeqWtBTZvBakpJjBASJq9iqGUDV6KkQYBoAkSo1xSGSzU8BZjW0ZHHTfB4wX2uvfLi8Zn2vmrilWFirWXvaiK0ycniIN4YwyA0X2sSMpUAWbzZExSiFHRbvZrs8s4P3fK4HiBwymXwHBXzM8aJSUemeWLG3RjRth02/YC+H3jyppg357Y1UK06jjxwPZQPCwa7KWx+TQGiaoBaYmFeBbnWGpnEASEs2G6YFv/25gbbLUdXnKsJL55pW2jb1m1c0je4WUwZS5ENBOaq0ZQQPpe1JCnBkh5UAVEmuilC8dZx+m3TNnJu9sBPlwuca9F1A3a7LaJEIc/nM6IImB8eHjjifcdaeUPP9XVMLnOPt2/fcnpv26EfNtgMA25vbvHi7gV2uz3XliEgWgKSR9sNaNoe3s9MMZ5CTpHkqAQvVD4CIQGXxaMji0QOrhswdHvYxmL34oA5JhzHC9z5zIX8T8+CvGlxbQkAiiAKoMrzWmYKgSP6IpljGpAFoolYQECICBdO/T5fmEUyLIt4IykTEQUkdrYYjviyM6BD3w1ouy47cCD9v/IS5nVJbRo2P3wCFgWiKSIkJjmqo+o61+tRmNNtoXOtbNorgwrqG2YQugKiQi6QAan1z47zuu2vr+YRCFUjQwzdtm2x3Wyx2+1Y97Dr0LUtZ0W4RYAI2KC2xdusaXAa2cpeapFVuFwu8j3crkkIzDQyqk7GKDqk8zxjCZIeTizZ03Q9E2b5gON5xO7CJF0pb8DiSKycpRCHpWpNTtOE3W6LYehzOu3pdFoB0a+JrsUY8X/+z/9BjBHjOOJ8Pq+0lIdhwG63w3a75c2buP5bI7SauqqfuS51UACnkVNNr62ZYBXonc9nZuR9eMhELTEy4Q1NJQuExLPdtg1i6jGOZ5zPiSWPtG9NWu1DOl4+tdddg9E6Iqx/Z8A8nnEezxgvF7RdlwHy10U2dS8rx3p7frwXXDuSNWp8ODzg999/x9/+9jf87Zdf8Msvf8c///kbPn78iOORGZ+5LrREDXVdaRpOye37Hp04HUBcp8n7AVA7PMu1Y/W7GuG1jVXatrB+K4Be1Qer08yYLBeWCYBmHtcpsISWIcrEUV5r6r+q3ddt+WS6biqRUJKOuVYn4EnrQEa5AUTbXc9L6khSiMIbxeM2XI8DvY06Orpu6ZjXanZK677EGTkc5Cj2E0drNZMKOYNH+4zvi6669L8OjP41B98PcLU/QXZsInbIr8bgOnuIBMQ+GsnX1/mEzVwDUbUOUHdr0uvgxJ9IQIoB0zTifHzA6fAR5+M9LucjspSa7EFPAVEN7Db9Hrvb7x5dDyVhx40RCQxEjbOwbQPbN0gdIbUAuQSXHNt3iVh3NBF/LkRQ4rRlC0KS6GeIEZ4SZnFex+B5HlrRQ0eDfbvB6/0dXm9vcDvscLfZYui4pCJnPVoDZ0myDMTZKrWpHJ21sOJ0t1oSZzlYwkE/C9XFI51biIiUMPsZcbpgGk9YYHGaPR7GC06XCdOywMcI60jYpsWxaJVgUzGc/idZmfj0mvJJILry8POQqSJGa+CpP0kWHgZCa2Nfjaw6lSclnfiV1+tq3KpIsZlVKoElHwwRrLHM+ifecJOYzjwmEYdOahEKAY2Pq1oavivUbpf193+iXZ7yUK3fV98v//41SDSnOxmTjdyYhW059TKJ1mqKiRdO3ZgiAyBDDtQqYcXT95Tqfq09xropSlrdsnhcpgnH4xEfP97jPJ6ZhjpGdG2HceBamLbtOB20aUBkhXzCiueYvTRN28AGw+nWkmKQUlqlOlFORR7Qdi0ILM0RogcRp6IN/YCb/Q773Q5914kUj6xen3Tq6v3WHjq51xRzZMjYBla8tSDWTDVSH8dyb8SeXHECJHAefwwLCxVHD4oKZJgYhpoGbSdR4K5FjFyXAzqi6wdsl4XTRsVQbR2TsLSSttc4x8AJlPuFBdsn9CJjst9tcXd3i5d3L3F7c4Nh6IshSwmx6dC0rCca/IwUZiBCQD/X2epCFZNB3y8YloBGdUjbHt3QoesbkLPY72+x39+CzKdT6/IqQMKOV9kHfG1cmwaAvYtGnOcEOBuBpMYswZLUtSaOUFtKLN0D2WwMEKJ0rOGUNitspJq6HWMCfEQkUfJKQtiSnVslGuSDZ41RqZ3lIcas0+ugZHr0axLveKqeTkoQUT0Y61L5KMn8zGC0AqIyToP9soiotPSTvVJe5TXKGLOKiG63W6knZHDllyV/LukaS4Wl0pMS5gQAcxUVMzm1kOszT5yeKRIXGjV0TjZM2RyMeHXbBAzDBrv9AjKEeZrgPa/n5/OI0/kEa5DniJKOsSGuGrF8cJruJteLAsgAUutHS/bCl9Wc//Of/8y1oVo3qABb17fz+ZzbimXE5ly3RwAzyVZALiVm2NYMklLLWPREOY25wWa7wWbY4DyeYYWFntm1J/jFZx1G1hrljALVmXTOZRbjZVkQBNjwCKn2B0Lej5RJEZVDLzvtZM7ofWi07VrWx4jTIyXg7u4ONze32O/3GKQ+WAHXl4/tEkmpX3vuHEpYdTwecTgc8Ntvv+Ef//iHAFCuCS0g9IJ5XqSeHAIKC79B13Xo2i7X9CaJaqbVflSybp6+/jKe9P3F+Od1Usm/tC+9575llnsj4Dcg+Xot4jUocwCkJPJYPJ42mw1u7+7w+vVrnE4nPDw8fEGbP31oIOLpF9PVAyKrxRpdZMCMnVDujnLO/NB1te7TtO5/YA1AHwOjtY1AeXfSDB2DZAgpX9e67r0Osjx5t58Di+UmvnB8//XHOoPnuaPs2boO1g6mbNdXvf4vw2SqggSQrq3mT4wBfp7ZcXY64XQ44nJ+QAoLkHyVrVTAqDL6q//DT9PT3504PZyII5QNtWhysKRFNBEh8V5iNZNK9icDyeASUieSrTGGiGA9gjXZqWwcwcQGJiVsmwYvNzu83Ozwze4O397c4fXuFjfDFjfDVmxby4DY6B5KecwmsKM26Brg+L2u4TI965yARStEmwJEZU3hlGEPHz3SZLBME2vELwFTiPAAqGnQbAb0TQNjW1jXoWk62MbBONXz4T2hhMJ1xgJPLHj5+ARr7rW3XD1Bkhr2zEnzwFFDqfJGZ690BmfCWEnlGlcLNGkDM5U3WRLZkAgjXmLYlD3CZC0X+grrqo9MvqCt4H2AnxfRGZzgPZ8r24G5YJ1W16Ttcf249hI/5y0uHsYnkO4nDiKNdEpkQQg/lmXC4mf2qKush5yW37OIxhgTj1jbyjXV11J5ouSI1d91mi4AhJCEgv+Ch4cj3gl1fQxRIqItBvEED8OGBXX7AV3bC8FGIzVENhueALLnGCAEH+D9nMeJcw6dGKjWcYTkMl2gKaRd22C33WC/32O32zJYpdrp8YkjAcr+pgsewCCUEMRjRJxui+KsMFqzmARUJWWVlHz7GJjF11oY38B4YWQ2BEOyiDROopY9+mHgNK+FIzp9P2C72cI1LZAiGufQ9x2zJIeAYejROMftJbVD8zwhBA8kQtO02G23uLu9xYsXL/Dq5QtsNxu0DWtmsmfKwcZGmB17+GVCWBKST7lGtHFNqW8wDbYxIUja7rDZoFWjq+sQkLDZbLHd7pGZsZ9q8tXwL2nRq9pNYzLpgb5XM8yRLJxN8MbAycLvDMu6tFYkcoiEQIjXKyKWigEB1lAGQmwQMzlRSmpoc61nlChnvJ4zsriyM0zXN4BEmLoedGvDMw+51cZawz82lPV3vd8CWHUt5PhuEgIldgiG9muA6NPHtRNNa902G55fCkT7vs/SBsXJKE4b8ZrXLLQKTGoCI2b39piXhVPSrcmAV1Nz21ZYC6U2B2DHA1mLrd8iyHceU4JfZkzzjOPpiOG+hTOEvuvQOCukEJ4ZpEdOp9R6dADYbAa8fPkSh8NR9CCZqEUfJGvsqh+f2fxSSvjw4YPUYvJ39D1nbOz3+3yelBIm0dK8TJzmGSuQ2bYtVK9NAVvwPoMIBWb6sIblXlzjsNvt8OLFC2zGTb6uaWJm13maMF6YAZn7cJZ9LMp5eb/oug7LMuN8Pue06pRSZlZn5uvihKh/11ReXVNNNCuQWo8zBUC6Xx0OR7x8+RIvXrzAixcv8fLlS7x69Qp93/8lhvpjxzry+JymCQ8PD3j79i1+/fVXqQv9Bb//9hYfPnzA8XiUutAZrKGtjkWbyy3atsuOQGMtElQbNDCwut6U8rVUACr7UMtrtZ53DeqnaRLytSU7JbTMgAh57MTA6xlH0RtO6RMzxxBHNtq2wc3tDb755hv88MMPePfuHX755Zcn2/E6kvzF0Tm1k2Tt54fUsVHRQKcEjqwwUwCywwu85yY9iyySxcF+ZfBScazpz2cvDeD9KK/1nE4YjUEiNt5h3cqZVrLl6u+osv2+5PiT4/rJLMSUHt1nsbjL+1b3Tez4FLcw8hi8+q66bay13F5GOR9I7qO2Ha8M6CeOpwM4ch2pZPxkC55Kc6mdO10mTOPIj/MIxAUUPZCkdCZGhJQkMJUyCE0JiP7pOuiUOMvPSPp70zZo+w5t08JZiyWxjGGUoIppOPNAAWJu+Dw2tUbbIbQBxvE4j96hBaEng9t+wDf7O3yzv8U3+1u83t/h5XaPbTdg2w+i/UuZR6eUFAKq+KEs8VAeAWdhG46iGiE1g+EYrTATVVgnMhGpnxHmBaOPeLhMOC8z5pSQrIMbOmxoj8YHSaNvYEwHZxxgORuVFd0SgAjJU0Zm7/zEgPgysiLtnNor+qkJVG2SJYXs8UTNgOhq4tTFyjFxjejiPWgxYhxyOklMERSJU+NiFN4jJhOJIQpIKte9zEL5PU2YJ2F/zV7eamH5CnfO04uOum+KB/PP+IjU65TrhCyDUg9ijwuRREJT3ryCD1hmTmVGyykEyib33AKZrvpLv1vPqV5sJhq54HA44uOHexwOD1LrEjMTY991GDZbbDdbbOQR4hZdYAZD1zjxfpocnWIPb+L030Vrqpxs8I2wSAKjX7iOyFm0bYftMDAQ3W2x2QycK893lNv7U62ePW6VoSRhTk4oUKIU9YKqNxAECCuYpqOQrG4xLgg+8QLlG1jvEMUTpfqcRAaNRH42G63pmuD9hGHY4Hw+oe8TUkxoncPQ99jttkhAZtRkKn8GW9M0IyXANY5rSPc7FmW/vcHd7Q07ApLSQXB03bkGTduh63rWZROJEk2DblwLsg3IOcBFbAAkqR3tW47kqkRBmwL6bsBm2CAJMH96QOPprCWddoZYTiVh5dxOkcEoI1KpMzOcmuKsQWMNgjOgyIaVMvyGmJCCaHTl7yiRZAZMhawjpcA1GzHw5hWjXBs7zZyTQn+CMOgGECXESAhBF/TaQ1/Gmf5R83PnNKjs8i0sczovc2ORrqMqfa1AFPD9nyQWqTumNiIgzIFSvzhN00oHsSbiicJIGJOBlXk0TVM2UouuotSniLHsvWPWShkPGo3SFP1hGEq0T1PerYVNnCbOczHBz5NI9bAMw/FwxNB3mLdbOGskqrfgPI54eDhiPI856qrkaTc3t0gJDAzlcTqdcDqdMvtq0UN+vhX13ueZAV6t07rdbjPo4uwF1m48jyM7NkLMwIzIwPsFkChoGavIILTeU5qmRWM4O6hrO2w3W1jrWEN4XtB3XU6DNQ8GflHWaE7XVcdgSkkAVYNlaTNI0zTlVTaU9HVEkcdRQqi8x4vDWetbawCtqcQJwOl8xuF4wvv379l59uo1vvnmAO99Ia8Lf1XUv3awF6B/Pp/x/v17/POf/8Svv/6Kf/zjH1IX+hH39/fipJizA6bemzVNOqeWN1p2wQYeSXnMs1d6/ZruR2Ang9aE8lt5rvoQkBYPJUtLKeXIrDEWykifwaiUK5i+EycML6wuZyMMePHiBb755hu8efMm98+nDm2HnFH0TIs/82FZ2JOkMLJBjWREGos1urPsReXXS7Jh1JlMNSCtG7cGZk+Cw1R+UYtB9+hkLGeZye8wVWp5jgZqsUn5t/r6Z/v9i9roqfc/4Uh55AyQ/bMGoJ8/F4ElXJ6+KD1Xtt0BnudX76Orn/JFn7iKZ64NGc48vhyZH8FzVHTRxzSDwgJED4pK1BZyNLRERPk+o3+6pEWDbsaKBFS/Qdu1WaXAhAnkeS+2YFvEQpwTqFNd1X7myGkwBsHaHOtCcNjaBnvH0dA3dy/x3e1LvNrd4OXuBrfDFoPof1pjiwObwAzS4rgxVpwmuj4bTqVmkOxgHQNRNbQSBIRm0UMgRNZLXfyCMQQcLhPuTyccLxPmEJGsQdN3GBqDNkZASrSQGlASkGzZWc/lQ3XvJTW2n+3vZ4HoNThR8KnehITHkwIokz1V59AGKCi+gL7K/78aaApmua6I63earoVrG3TDgKbv4NqOvVMxworX3ZAyAiY4Cc2rhwMR8GbhiIucl1OPqgS5J7xB1yDt6o6fbVxU5+Ofjyfupz9Lol3F5BrffPstjLVS8zNBU/PkQgFASH48vA9crzJssN3usdvtMwlEDbye6+fsmRUjYJpmnE8jkzWMnJ7E2pRSHC5ECPM8YRJa9NP5hGHYYDhuMrEOT2aTBdtbkZlhciX1uHE6XNvx8zEGAdlMUOR6jvq9uGONwU4E2nnTSVW3fK61i9tDI/j6dEREkhRhSD8oaqIyWvhvnRcAUmRmVwC5/piMyBEkSY0FU2lrpHOaJpxOZ/hlwWUccTwcEEOCtQ5d22C/3SImJlmZF4/xcsHxdC4EGCFkI+jFixe4u73DfrdF30lbG+RJq99vrMjhdD380gNxQQqcIuiMg7MOkEdjgZ4I1HDE2RnWjyJC7vuUEgykJumZZtdFVF828pwhQjQEC/HQmQgESUGNgVkTA6QevETXmJCDacx9MJAwGTPZEZhkIKFEWMHrgJKxjOMksiIie5ACktDBh3RFEGIM+p6FopvG5RKBJFplqD3JBdc9MpLUKZeQuNZF12ltoOzpr9fXVIBo8jw2k9SMpoTX/befGedfeqw7zokMxWazyVG98/mco4Ze1hmtRVOJnGmaJNWypGHWtZKZtMaovMeSmXR1HG+328zgydqgPJdY1IslMpBYgiH4hSPkZOBDwGW84PBwwDJPUK3Aw+GIDx8+4vBw4DsVoNhLnbWyT0/TBO89Hh4eclroZrPJEdRPHcYY/PTTTzlDRxlzvfesVViBCQWoypztfeAyB4o54qXgj4CcFWOlVl4dKMsMEJisznuP0/kM9+Ejk8pdJqQEdF2P7dYKGLb5WseRJKqWJL1/kdpMi67j9zVty9FbAdhInIoehUwuCGAxVNWMyThSoh1rba5vqqZG3m/Y4fiAvu9wf/8RHz58xMePH3MN5u3tba4r/isO3ZN5DWC+g99//x2//vorfvnlF/z66694//4ds+OeTrhI/bmCM40K1SBU63UVKKYMtEjSCteOHj143ldAQpy/uveSpRWIz1InAjQJkNp3m9nOjSEm1FHiMPneBEkRjJHni3PYbjYC/l/ihx9+wOvXr3F7e/vVOqKPIm1XzxfXPN+kRjqVkR6JJStAXGrB8QCtf8uLZ3V2ylrt2ryl8KE0LtUD7gkn4aO+yH1VZfCRXr98r/JAaE1cHaHKDzzvfKiefypK/9RRA85P2W5JwCRVzoGchfPM95S+oustYP2Gq7Z62t2T1v3xBHB+9pC+inIPmvGjIyg7sRJv6FbKEVrXYLYO3lhhoyVETwgBiIEkGsqstWreJgDP4NDq/gysYad86zq0lgEhRbahYvTAnBiUUkQ0AIxf7fH5P1kWDQEuEgw4ZfauH/By2ODVbo9vbl/g1e0tbocdNrIncUqtzY5XAJnDJqfqStotfyfXNpMGUISYqFYk4PtnIscQAnwMmOYLHg4f8fHhI95/+ANv//gNb9+9xcfjPS5hAiyY0Tcx8WlKLDATg0UMbLsnFKC/8hzhs/6YTwBReWSUrcZUqnozf8kTkbb8HhlICjxzdElYdsHpBAm6+Mi3p5TTgrwPmTyhbTv02w0TAfQMRJO8l0i8aSgU6Kk6D2JirwmMUNrzeY0lWPv4Hp5KfdDfr1Ncnz9q0PJ1h9aINg177b/77g2GYcupuSLOrLVDuqEhpdxnDDQ6dP0G+/1NrsOhOv++mtyriCjYn8EGB9fQnM5nHA8njOcL5tlnOnhOR01gRSTCOF5Ek7ATQ4/TdAdJw3XO8sOycdI49SgPq9S8tu1AxnBtXgwI3iOFgMZa7LcbvLy7w26zRds0IqvBy4eCfui4e+Yok6YABHWAUAyglBApVJHyNQjl/jfsuZXPRyKQ53S3ZAxguEbWNS3INaCk0TWHvu+x23EE1Mh9Xi4XHA8HIBF22z26fuD0YMdEVe8/fMTh8CBAlAFg1/WSnrzD3d0tXtzeYrfbouuYYZkQoQLpJO3DRlSLrmcgGpcLvFxrNnatAwxrdvZNgwZsXGk6lSFIvwQuyoRKnTzd5sqAWGYF13knIol4AWQtUogABS7wlzWBx6cpWnECQNlIM2iCkREr/UOcMWCUyU6AnNaDeT/B+4h5XoQgZkaqPHgxaVodzxVjCNvdBjc3e/RDCxWaj9EjRHaQPOV5r+cZqKyrukHFVI1DqLuTVgYpICnGSegIUswgNCHhcve85t/XHimVKaPRQO89tlsmLeIUxbM4RRZYy3qFnG7LjoSu6zKgA5CBKMD97KyR+c9ZEd4zy+zhcEDTNNhut+x4FKIedcgxeRZnKrRdBxCwzBPCMgMS2WOBetYtHscm7ycPDwd8+PABH95/yFHLruvw5s0bvHnzRvRTuxzpfXh4yCD07u7ui4xFYwz+x//4H0gp4eHhAQ8PD7kdTqdTlmZh0rkWgzR2iAHTpbQXUNKaGaSUzBFlQ00gxBAxByaFapqGdV8PRyyzl3HOQLzve+x3u5ydU4u8swMm5UitZlyoFNYuRZzOJ9DDodQl+oB5YafjPM05S6nsiby/soNn4euTVOUcSaoMao0uanvvdn/gw4f3SCnCOYPT6cVfCESLCa2kUu/fv6/qQn/Br7/+E+/eKUPuKI4CL6n+tHKE1RJaRa6IvyfFdeQaeAKwPbM/RRWiBvL3aGRTnQA+eLYPrMt7ai2ZpO8FkGVhlI3edQbONdjudvj222/x448/4vvvv8fr169xc3ODzWbz5HXpPXwpgFrdKwq4VBsP4shT1nZe6zhCqvYMpbheIzXkdHXu1eWoLVk/V79hbSdXnzOA0ah/WpttVGxdEudbyXIqKdS1E/y5/n2ujOupo3ZMPhs80Dfqr6SWNfKinm27uu90OpCA1+cQpjpywd5TtdnlhCtHAzvPeN+kqs31t+trL22BXHMeIY7afP/FOaDOOWctuqbB3LRoXYvFNvAzE1kuC8F7gxASgjDgFrZjPucSnmt3yXYjycyzDZxt0dgWjXEshQJCiLOUR3mWcNP/pLSHAWhi28uyzWKcQUMEgkPfNng57PDtzS2+ubnFq5tbvNzfYNv16Bw7tjjaWZijIwCoVIyzoMaBmoZ5S0S2TGXv9KeCUAWiUWpJQwqYo8c0Tzifj3j78R3e/vE7/nj3G969f4v3H95hvJww+xmwiYmJyCLBMBBNFn4heAAhb12pTO3siNBx99wI/4KI6PUoys8QPTOT1+fIo1MEibP36Gq053D/9aEsjIGNTOt403VNk6mD9WYpaaqEziy+RvWKK1MhbxIRMQuOG8AKNX5lSD91RfUifG1warM8fj/wZ4Aon4/r8jZb9lx2XS9pmT4bD35ZxAuWYT8SxHvuGjQiru1EwFqv61G0u1rQyiCSdlTjOPE1WeNgjGOjBkGYMgOQlNjIwFpOQbtcLujaM859z7VbTSuRUL4+JcnYbnnT5OuEOBki5oWLz0EJbeuwGXrstlvc7HYY+i6z8ep9fe1RO1lKW3B6AQFVFE8mM4BMWy7OlOKPkvelhEgGCVJz2fWITZfTVo2k0YXNFn1/ZOkaY+CXBefTEURcK7YF13fCbABj8HA4YJ5nnM+nPLeYjXOLb755jf1uh912i2Ho0DRWNgjWvVRPLVNsW9Ho7dB2HfzUSpSq1PGBDLOUkuEaAAOw9zqAAtdSBs8gI4p33nxC0FIXQx1buqkrqYchkoA2ZUxGAdkg4cVPomjWIkhE1EndTkyG0/UhgBtsSJBoFXMXs2PrcpnlMWXtSAbrPH5iQkW2lsTIANq2gbEabWDm5sXPnEqZ27gYIdnRo6BWxxuKLSX2GD8Xy9qtQJTvQxd0idpW5/F/VvPvuX6SKaSpsRoVvbm5ySmrfd9j1lr0EIWZjyN1wzDkiJ6uUQxiFkyzKUZzZdAz2dAZXddl5tqaGRakzkVCYyycI3jPTN3TMCB4n6MfkxAYGVn/U4x4eHjA+3fv8eHDh0xENAwDttstXr58uYqQAsD5fIYxBi9evMianGrkP3cQEf793/8d1lq8f/8e79694zp6AZUKtjK4Bo+vZZ6xtMujCJOCCSU/SuAsCSIjzlU13BlUONcgJWCe52rcShs3vL4oc2+J2qrsGkQqig25tmUSuabh61VjcBxHXATgzDOnPGvkV1oBABMDzgvzMdT6qHo9JAZRTtGV9aDvezw8HDCOI4ahzwRZl8tf52zR71yWJdeFakrur7/+irdv3+L+/iPOko6rYF37OGdjKHmcpGDn2viUTXTZlyvvztV4ec6eqA39lcM4RznL9WimQX1v9fVyxoIQzcjzXdfh5maP169f47s3b/DDDz/gm2++yTJfX5IB8ElnPNEVMqwORQI5Giopuurv1TbjO8p7cm7XZB635xNflfC0DQfd768/SpLdlK7Asr4m+9I68lk5YGpnNVXf/Ym2+DOA/qmDo6FF9ESlaXTXeBKE6j4ljaBZQ1BngexBynCcCDkKXZCn7LPX7Zy/X+/tefssB3igQZFyzSn3ObJ9luR7nbVomxZt04qDr0GiBXMELkvE4iMWn7IefakR5Z9LfL5PNMOAbegWzrZw1MKSzWMgkEHAAp+spLYGpORlOHNwR+UHKbBDnAK4nMhZbKjDvt3hxeYGd7tb3G732G+26BxHXjkNnBlpobWnSJwZJrWiEBuz8A0rSNTE2CTOa5KCHi4rmoPH4mdcLiPO04jj8QFv//gDb9/+jvcf3uHhcI/D6QgfmNQu30d2NBrEyKoKoTZPUjWfMtGHXtvzx+drRK8GDqkxntYL0ePPycWxBcwDdjVhka88AzUx/MtI5+imEYBpEoHSmg64pLSIkZ31jyDGrAxeKgNdmRS1vhFJiq5RPFsceZG6F3ziPq9uunju9DIqa/Pz2H3d1tlQ5+jVMAyZsTUlrhPxywIv7giSr9F7I6JcuGwtC99qMXUd3a29TGUBYC+kGhFcR7LDfj9nBkoQME+EeeboWBKKUyXxSSlxUbcYU9M8YXSSDjf06NoO1s6w1kndUsA8LyBig0k/Py8zrCEMQ4/t0OPm5ga77UZArcvOhTKWvvBICakk88vvVIwHWQSJNAU6rcZmWXwTIpVNKwGIKSAkQoxcj9m2A0LTsdODeDFxTYtuiBiklvZ8vsAvAeNlBMCEK0M/oGk7ZgwVYxIyhp2khu22G9zd3eL1q1fo+w6dMOsyKU9EjAL2ZAFVPTZjGYg2bQfXtHCugYFkLKQyX2LSdDCAKMEiAgaICzP2LtOFjdHE8PzZ5s5wnZfHJAYaiScve8uJF1iixN5pSUtJibVxo2wSzrlMH67U4eo0YW8khPVQ+spAHAnFqKvTKBWIcuSUEKtCVSIWjmcnA6D6oYtnoLXM8yMjRYYYNALFtex87+q9VO9+QhFyD6F2EOnyyWPb1JJcso7+FYYMcG3blT+YXXbIqbmn0wkHcYgsi0fwQeq9DYhKfWcdaUuJyaH8wmBUjWcnUW0l+FHW2sPhkFMdlbgoSJqhsJnAgDf1rmkQ5OJjjFjmGWeRiFpmJuXha37A6XjKqdgqc6JpuNbanCpf14mez+dsnH/KQDfG4N///d8FTD3g48ePOBwOuAhrrX6vOhFTSrkOl0sQim5pSkXXUq9HM19KJEEcWl2H3W6HYRjy2NMxreUG04WjxAnsuKrlXhRoa+R6mqa85nd9L3VIXEahTKocOY4ZqFVmUt6DmGQp5LGQEqfpar1nucbiBNX2ISK8ffsW2+0W5/MJIfzZMX5lvxDldj2dTvjw4UMmJ/rnP/+Jt2/f4uNHJie6TBd4Ycc1pjClKghVJ0lNzpYN58o4X5vi5Tpq8Hn9s/5da3TX9Z4GtmX2cG1fBczaljVBGBnDZF/E0ZSbmxv88P0b/PjDD/jh++/x7bffYr/fC7Hgp9eUFQArTz4PPOu+UC+b/J4yCK3Ko1JJyU35PajOH5GuIqIZrGhDF3T5uPGr99YglMFYEq4RtSNLSY7ac0/e/6qBPt0K1wD+87Zl6dNPRkWrvtccLQLveddRbNL+InpyfCZxFFAUAhrttsrhVGAscZCpBveUkVC+h/rcTz5QMvOi7pnVR/PaF6VcIWfOtVmTOgKYQsDJe8xLwOwDQhDm3KTpvnyupWJQrw+VwGPlhw7ONjDGAbBIiUkRyRpYOATTwSVOb11iAEXPUdLgAcSc9QOt5Z4D65gbh4F6bOyATbvBphnQNT0a18I6tvPISFqtOkAVNhFEIYOQfATFBaAgfc65BTFB7E9wfWxMWEKADxHTMmOcLhjnC8bxhNN4wul0wP3DB9w/fMTpdMZlCkhRCmGEdIgSgUTDN0UCAkCeQAGcrhwJiPweHjSSxVQB5eeOTwPRR14uXSh0IX3+xPToQzJYc5E3UA/O67moMJTfawSAyn9XSDt/oHbMEHLEARUIVamXVAFRBmEaDTXrhaYGu1+Acq4jyRwt45lMX4tEIbTmtsiYNK3QOItsjRdNVG5iXlx8CFmkOjPhattUQHntYS3NqNI3BMpRsqFnT/riOSWXN2gBoCkgRu0AocwOMW+OgM+GujUWy7LJbW8kHZQNoBnTNKNtO9ze3ko934LLZUTbNrhtdri9vcHdzQ12my2GrmMmWNlEPrcBPOqr3Gco4FleyJ5A6EYoq6qKkCtJkThQNK1T6xoQPMgDPiS4pkPXb9Esg0i9NEx80LToDGHYbLDd7nA6jTh6NoBCiBiGIRupTd+hdQ7OmLxRO8d1psqS++rlS44OK6CDOhR0IyWJ7lIGorZpebFtWhZIT2zk1w6JEAk+RXgkWAuQBSyYQp3T8yZE76s59MxBhEgGlIpYuRb3s6uV25BIAKo1SIjCmpo4KguDGDmiFqNqy3JhPgWui0hC5BUhoFuMSOTNX43guAKjkBTmBKyAqJF2W3nRYwEKSt7DwMA8MjT0EUKAD4X1mxwTkehI0mhU8DFvxApEDbHOmHMiXC307cCnPY1ffjxtqal3uO/ZATSOIx4eHjJgUwIXm9O6Kaf0auqj6nKyDFeCmXmcWGskhb/BPM+w1uaavbpelK+GnS8hJpBhBwUlZAeNJ47C+ZREC/KA0/HIwHY8Y7pMmKdLJv1REKgpwUQcyVWQdjweM1jRCKo65T6Vbvfzzz9nwH48HnE8HnOa7vF4zMC2TjXVNP3iibc5mrwsC47HI4wxuFwu7Hz0UruO0taaOr0aawIuY2S28ZSYbbwQNbEjS6+LHQtcW9p1PYwhZtHNjLA9UoJInZzE0TBjnpe8mGZDUuoYU0wroFZLzijorImQakbmP/7Yout6HI9H3N1xNtCfOcTeXl0D1+UzQZLWhioQPRyOmWlYjSklkWI9bLeqC60j5SkDrcdj5PrZ63F0nU2h56vbRKPPTdOgaRtxAPM6re0JYJUGnkmweMigcQ63t7f44Ycf8PPPP+PNmzd4/fo160xXffXcUYOwEghIOVsoOyV0L6gctJoNoym54qkTg5c/XKIrSdNSVkA0yf583baP/9CT8e+fNA8EZOkdKOlWyhdFxWla/VwNrGtbe93Zj57ip6/A4XPXpr9eg8+r50n6IUc0iQqHxZU9//T3Vc4CtR0SWDtdbX4CUiIJ0klb1eem6lxXMDdHt/M70to2zzaLWFT63qT3KM8RCYdGi6lpmRnWOUQiTDHivHhcFo/LEiQSWkda+ef8DCGXNQZd1wsQZbvImAZEDoCmZHNk1EnzLDHCRA8KHsZ7RL+AEJlY01mk4DFNI8Iyw5FD23ToqcdgB2yaDYZ2QOc6jryKVBAZSb/NQLSkQCsg54zEiCSAkwEouCY2JviQst72tCyYlwXnywWH8wmn8YzT+Yjj+YjzeMQ4njBeTvDLhe3ZZAVxKfstO4kQiSO8ASAP+Z1YpjAZ1JHQyr2E9IkZ+Lx8C9aLoYKc7BRJOjevwBqqKS9WPZGk49K1kab/UE6DLB4zFA8Arsb2I9NL0wOeuInrp1MZ6Pl+Vl6uGgBX93RlYD+exFcLoy4ukBSbnNPw5WajXpMljdIS1yAST4YEwFBEIiH/kQ3ehoDQuFwbG+La4F4B0JVHau3AIsPpD9ax1z6lBGcd+rbHdrPF8XiD4+kBp9MD5umCZZnlsUial7D6xQgSemtrDdq2wdB3GPoeuvuoF39eZhYqHs9ouxYhcMpdp5G/mxvsc/1jpRn6Jw/tJR4XVIC6bJSqLQkhBippQvXWxhM1VbIfwAyyHubiYahhkGcdJ8laqScyFgaEth+w2e2wF1mF8/mExc8YxxMOhxZAwtZyZHXoW9zd7mEtoe9Y/uXF7S1LtLQNrKGy0WuPknjKMpqSjIAEsJHF2qGuaYEY8phVNuqQEmZJ5zCW0FgDayASFCMTnoQIS0x0FJ5bcAyn0lMMnKaSkgAxg+LlDvw38dJlFHinBAhVDfeDA7Mwc5q+8w0845OSicHkbgKQpbjfmGwwPd7Uix9ZNz1aefPkkUoNFju1xFkBIEY8Wg8fpR5FoVhPVQSfF9zV+woQldVtZRMxOv1kVsq/dJRzqqSIEhZpPTIzzE6ZfVjfqymYy7Jgu91iHEdxSjE4ssZgMSYb2Mvi4dySo3PKXKv1mmqAX6ZJWLU5wjNNE8YT68hpVE/1II/HI8bxLGB5YvkTIEdZ9Z4A5M8CWKVa6pqpYFrrSJ9tMQGz2+02gxV1Ju12O5zP56xRqsy5Gu3SDBYFDhqdvFwuePfuHd69Y/KccbwgxgtHBUx5P4DVeq7XrkBUx6f2an3/ysqrETX9XAgMFFSHrmkcS55Fjm6zDNoFRJdMkIdU9hVO6UeJroqWav0dOe24MqyJKI+DcTzDGMJ+f/PnRzIVG0adIx8/fsRvv/2WU3J/++03vH//HofDQYi4uM2UmKawPtsM8K5TtYuhn6FYvoCcaloBzevP1mnL9bpUpzDrZ5UACkjM4F3t53o+HeeaStx3LBn24u4W30tt9OvXr3M6Lqdgf34vLUvWykICnjU1yx6dV7hUAAj/VJCq7yw2oH4Tg+6nDNrVJ8oVqtMV2uxUzkcoQRFTSwwRtK4ORFhDFRJzRX6a8nUJauLJfSbFtmsPZn7uKw5tJzzx2ZIdcUVihDUIxROAt+7rDIhjYrLASLlVTeI9U6Ny2g4RGgSogksxgFIEYij3Xdm915FdNVHWgLNqsmw2Uz6V0G8x4WLboOmYvd82DWAtIgg+JSwpYRH7pQ6qR7meiupzdTjnsBk2aJoOQ9dzpNI0MOAaSZMSWFY+5cpmmyJMDDDBI3qPuCwwCkStZWDqI2abmAwSFjYx8VEKnA3FUmNCxmiSmBriDDHFDuFAEQNsdlxLXaxkKnrmemRAGhJ8SvAhYpZMnMs8YRx5757GBcslwE9A8hYUO55tKSClFgBHdiGaqDJaWKNbggrKVcIShvz6qmmTrAyfCFw+HxGtvD3F2NcBrIvo04sqqDby+AlNeaXVgJY8aiQhFKm8RjUgzF63fFcCHNL6uU8ePOKzVwWp3JEadlfgs76f0iyfXkRWnqq8MIlp/5X2ItualGvnlBgmxohAFiGWVB2Xi5Y5WuLIIRluXyvEETHER0B0HTUtfkbdxJg5s5HC8Bbb7Q53t7cYLxecz5zudjjc43B8wOFwwPF4wGUcgTSJgc5ntNZwqukw4PZmj7vbW2yGjegrCeCRurtpnnA6H9E0Fk3j0DqL3WbAzW6HF7c32G43LP7+qC++doHnSFnegHTMCrDgCSbakiLvkUGHAlF1bIANPhWMZ9A0wZgJICMpFlyL7PotDFrtYDRtj+1uL7qKFxwOD5imC86XE3DPILdpHRq3x27o8d3rV7i72aPtOrQdR6o2fVe2aNIRpwBGPFJJot2i/Rp9FD+QFRbdBvAlLVeL2pfgMS0TxnkCGV6oDRGWacKkQDQGIRFyeXG+Pox1IOdgAgkIrTzhWoibGElq9oMhI9pUkM0P4t1kVuzGswxNEwI8CDZJ9W5gUMtrD7OKGsekTzFK+mO1wVcNJ8s9lWtS9KfPZaNFvPqEnPKex5Y42HgPkbrgZEFGJHSycVs87EgkmRpqWMgoJWIODWtgLHEWgC1SQPQFUYx/5VBwCQC73Q77/R63eQ0YMV4unAEhTkdNW5znWVIrz1miSMGHAlUv8irLwoBKAZqCNAUpy7JgPJ8xXi45WjFdJjwcDjgcHjDKdSjD6ySgVeeqdQ6WWMtYQYRGtDSNtL7Xvu/zd5/P5yxd80WGurSBpnH2PZOJKfDWyFVNPqNAQ8eDAtHj8Yi///3vRT4GxO1CKdfYKgGXpmgCJcWVI2isoavn1dRYjXRrKq7KzvD+UOQ/GJyzNBdAaFwDZx1iYLZdl9OPL/Ce512iAqy6juWnVINW9S9L5DZAN/DaQapjRYmC/tVDwfnpdMLbt2/xyy+/ZJZcTsn9iNPpVJFGUZ6npWbMrut8r4z6kvLIn88Wde2ofwJMZKezOBYyKZE4j+u0bf1+7fuEUhtaR1T1mnRM397d4pvX3+DNd9/i53/7Gd999x1evHiRU7q/9MiZafkv8JpdMdGpMzMpQqs+k+2vJKQ0qTCAq01o1PNGEsmVMqnsFKTa2E31xSEDxtweVMBiBpKU69qttUghZfsoSP11oU9aAzYGsZSdgUnOH6EOU8k8SpWN+VQ7XoPH59aW6umn3p//JuVBSNmlqvt/BqRAdnrVfc5SZQZkIjQflkutNPhR7lOBuO5jSZ2vfCIgJRixJ1c7k9qYCpSfuA+1qyj/XdweJSLK7W6cBaUOrm1huxaubWEckysm2T8VfNY/c5M+09zONdjttnC2xdBu0AsQteRgpSREGZ5jYmVvG1m5owkNovVIzsGkhMYaNIYQjOEsuZTQWMos6CEoYeKMVggYcxuLE57HvFJikmQGAfMSMU0LM5pPC6bZY54DfEgZiMYERNL03Fgwg48wgdCgQWcGwFlYtLC0YPELgl8QwswkjAhACmXei0OOyMKYBTFNiGnhKG4VGErqZAA4k/ATe+fzEdF6oFKdhiuLbFq/76mIaFmcy8TNAzZhPQjBE9fIACL94PWxAqA8XWg1uvDszE/1bxW61+syGXyvQXXdJvXPLz94MFF6duw/cYghnlPwBBiIsHlKXlL9fCYvUACqEWijScGx6LDV3nIFopqezJNTNi+ibOgw46FB3xN2qXizx8uIw+EBD4dbfPjwAV37Ds46HF0DY07cpsuMGTOaxolcCUcM9rs9hoE1NBfvM/GJjyxAf7mMGLsGjduh7wbstxvc7He43e8xDD2cSqSsOul6AHymn3L9RwJiRBTKe57ozIamepFR2NFSTFJXLJtrSqLjFuQzkuYZDZBGWOp4ITEEWAPTbdDu7mBTL+PNomk7DNstfPA4Hg5ouxbzfME0jwh+grMWm82ATd9j6Fu4Vy+QEusHurZF1w/oOkmr1VppEj2rvJnyJYfAXrQYOMpLkUca11y2iJhZRiJyTUOIHssyYZpGXC4jkmzghoxoeE1YvOiYOgdjErxXEHXd3A7WdQwUY5IUY3EsE4PiSHm5BcEApvjEclox1Ise4VwL13i4EGATGIimagSQAZkkuloaPaJsIz6+zGrsZGNI14RiaKW0Xt8KCHjsHNGUvgRI+hFEVkfrKrUul2T8ocxHyBorwtXGUiEOkLrY/5qIaHUHAqy0hnK/3+Pm5gbH0wmHB2a6XVDSAhV8LcuCzWaDzWaDy2UC0amK1JVayWVZsgGuac5KIKVgbVmWnLarBsnlcsH9AwPR4/GU02iZwp8dHEU6xKKxNpPvqCSGAmIFvXr9SrgEYCVX80mDsTpqsLsytFD2vdopWEc2NG11WRYcDofcLgxiA8bzGQhcI84EUci1pHr+GsQ5Z9kBZJDXfU3L1cjoNeGORj0ZJLKUT9MwUZKzrO15Op1xPJ4kShqxLB7GFGdv07BEgUaEN5tNjo5z3TAkChDyVn9taBfg/GeBaG0YpRwRVc3Q3377Db///jvevXuP0+mYU6ZNpRm50vIWcr1ce1kBvvKVunZcERBV9kNtM13LwmgfrM9bQOXagYXsPNXX9dw6nliXt8fLly/x008/4qeffsL3b77DN6+/wX6/q+5D2+vzLXq9wxI0q20dJWWG/ut3r/u4REbzbZalN2k2nRUHlKTMIg+Yaq0vX5Ptxxz0UCDKBr4xJCSOrKsaRUGBH6xbnwQUrXwJhBy0KGj3anRWHyipso+PL11LPhcRrc+VQZ4EPtSm+7LZo4LdGhGNua1Xti+tGqMAfDEyFIznTJ4n7vkaiKpNXwdxRPeogNFUOddhhC8lwrZsB9mmzeyxtc2TgWgNzvH42vRw1mLTD3C2RWc7dLYpQNRYUU/hTzP7bISJCSYmOBsBa5CChUksk8RAlICwcFmS4f0fIHjPYHIcJ6kLVVIh7r9IbMczbQeD0cUHzIvHNM8YxwtO5xHjOGG6LLhcPHxIiInrRBMxR0bWHyWx90OCTQYNtUjOwKCBNT2sCXBmwZwumMMMwoIUBYiKw9xAnHLOIWHCvBBzV2R7OncgcoBLO+S5Nn/+pVQ9agcUiQRFPd+ugGilq6TeKVKDuJ44T6BkUVpYFT7z1ayvpcxswkpQKpuq+rMcVP9TL1pVdMJca0Lpf8+C0CdM2WoTKO3z6G2fPmSy63UlJEQVIU9MRa01ZymV9FtXpQ1ZSSeiKgqgaV8rogiAgRjEGWBYk0+98CFo6qn2Hy/+rWuw3e5yGtpmM+D29han0xHH0wnn0xHn8cyGE5IYsw5IyHVlWrNrjYXpLXoyGIY+G0ab7QYvX7zAi5cvsNtu0LZOjPfrjl398gXtS2hcB0PALKlNKjfg9WdgNtQQfNYwjZKKqZ479mmUFF4Vp08RojdlmaEszggxwLUdhmEHRyzpYqwYg02Lvh+w3e1we3sLpMgRhnnGOJ5xPBzgrEPXMslT07Rc19kyW6a1ttqwdLxVZkGSSG5kAKopNFqvaaCEUxByooAQ+d69/AzR541AgZchku8ntDINL/eTsFyvD+MaUNNJ1AAKNXl+pIAoHlbmbScgeaguMgNRApnAnzVAskDjAtrGYw4RTQRmAaPaN1xknwDDWly8OVdpy2VVK5hT15LVQzM5+FHrx3FKm9RGR12jynqSDUfZaFyMINHSZV1HTW3izcmamEkV8qgmgEwSsqJiAKx8av+Fh66RSq5ze3vL9Y/bBxxPJ6Q0CpV9AVXW2vzeaZpwPB6xsPClrD8MtqZ5zmuupmSezmecRLN0XuYMqmbZfC8SjT2dTjidTzifzjiPo4Axbh9dQ/q+g2scGmFX1rVdo44KBDRtV+su9X41YlpHMD/TWih71fOOgk9FQ5QQ8v1xmQABAABJREFUBwBev34tZEUM9g6HI4z3K9IcXauvrzMlIbGJcQX26j2qZoHNYEjerN9pDDMfq5NgHC857Zk1pdeRS2MozwEF5BplnqZJ9qJ1u2SHcAWmPtV+X3soENWUZ02Tvly4JCLFxJEKKqyZxjhhiK8cWXI9uneW7Uf2+09cw/V91c4HBd7KRh5jcYxwfZq2hZIACkBPKTPHZ7tLhlPbONzd3eKb16/x4w8/4McffsD3b77D3e1tHuOlfb+EOKe6l+pngtpsqTJGcY3QSrspANWVmAhMUBdlHSw2XZ2KW6JiBU5cA1EiKoG0lMpaKe8xlJCIs3c6YfL3i8dCM4wAzxAjKKTVPV733SoiXrVDMS81ALF2Kl4fXwpIV213tW7o2AbA+pFIKmMrcjSfPwhgJ7uS+0WJ7IozgW1+sS2kv3j8ogIa3G8RSYTtrq5fH1fX/mgdXG1uVYRXQQ1BStEsXKPEhepIu/YM1HOy7q+nx7ohYp1dAIgBcV7gTUKigEQW1gpeJ4hcS8oA3GQ+kQALoCGgMQRjLWLbyjhKuVRxXgIOxwuCjxjHGYfTBf3Qoe87tB0Da2O5XpS1O0kCNwxEL+Mka/ECv0QsS5RaWEKCAVlibg2nuqPMowFrEJNlJ71tYF2C9QHOB0x2AcECcPDLjBgWiYxKyXYkJM924rJwOnAICcbqOFvNbHzJ6PuEfEs9uFB1WxJHxdMTEoKac6prQX/Z48HGrqSExiRaO2WyK0mX0hNlVL0aTGoU8rWoav314vj4KB6dEgnV+g8xHlf3tV7g6p/Xnm59rd5cVtcLPDP0n7xK2ZRJahiSGG6zdHzIwtYxAU48x671aIXIgFyT76sGogBWKVoAL0BRgIUhgmtcTh9Yp5ClyrgmDCIIv9lucXd3h8skbJPHAw7HA+7v7/HwcI9l5jB/AqcIqJC6bp7ONWi7Fo0QlHQdS7zc7HZ4/eolXr18gZ3UXqkESvFtfb2hQuCUWELCsiSEOGOePabpgnkaMS8T5uUi7c1ANIQoIFO9dFScG7yKQ6WCUoigGGESMC0XzMsZMczohw32uzt0TQuTdjCdhSUCnMMgen/zizukGHB/HzGNI8bLiIeHeyAR7l68wGa7xXa7hW0YhEJTM1Pe+pCTW9UoSZGjkFJUz0A0gBAAFDAaUkSKHiEyG/MSFviwIMRFtLIg+bGcQmLUYLMOZFjf8P3hHRcpXLe5a2BaBaLFhOPUc04NQhCWW5FtKcRkBqQ6oYmYAdcAzgUBoxFzAlwCTJTsA2WoTUnSdRSEytghucY8V69WDfkqXWYgIFBTskj0vKxoakG+KyY8mnPGGNjEUjMRko5sC/hMMBw0t1aym4qxVq5HADSV6IH+/K8+dD1TIHpzc4PD4Yjt7iP6hx7L4nNNpz40gsrRsxO6rsXlwpJCMUndyrLAzlNec93kcB5HdMJYO17GEg0MGiV8wIePH3E8njgl9DLhIgBpWRaOdjZNlogahoEjoYYdWLqWKaOvRl7VKNeIrxIu1RIqdR3eX9Wm9fnqyIeCy1evXgHg6z4cD3j7xx8w8wzn1vIh+h6Vy9H9K8YEvyxshKtjs9q7iAoBD4BcE6nAaBF5II1KKxETEy+NFSuwl/2y7A+cCm0yYNb+KRFFXH3mqbT1sn/+a4emHPucIsz9r9FwyhJnJteA6rUW9lmN9ESNxkkfahpiyVClqrbuaVBd7CYgpcgM+AGIsr87latzLoMNdg4suRyiaVhbVhnEAeQ9q21avHzxAj/99BP+7eef8eOPP+Dbb79FJ1Hw547nAGntm0P1E1djuKzxyMakAsiUElYlQVBHIK+piLzeK0GKrm8KYELi7CWFqARdl/kPKnpr+QoZ7DIngTUAiQxY23UYNlv4aYaR8pwQEjwFEFVaWnIuXacMle+DrslUf5t+98pVkdun/v1zQLR+XdeL689p6nZuXzCgZ19szOm1T5FRFTeE/J0vpfbIrt/LL6uHuLrVDBQJSLGSu3v6fp8D1QWs1uAVlY0DYYJWiRUe/6RBCu5wkXR8DIV0vD11EABH7EBA8PAxIcEikkUgA+s0M4mvJaeVCxjVbC8LEt4MgiULQgtrqDiwCJingIdlxPk0cRlaa9EPHYahR9d3OXoPEvLFRFldglN6Oa3XLxooYpuCRHLPOAvTWFg4kLVwkj6bZLzaBNgIhJjgQoTzAcYugEjlARYBFikt2f5PkKi395gWj8XzWmVigoPgOSTuf+nAz43xL4iIXvcSlZX20UvrBbcGobz4rGsUGfzIZK+AKGWgKT9WG9FzsIOe+f1z70VOdVt7Yp8+zfPe7dWbVlM3G7JfuZkaUm/1GkSmxCm5yvqZAHhf9xjJhmlhTERt7Ky8eDWQzp4HQGvqiIrWWyG+iBxptaLfKFIhTdtgMwwI0WO33eK832F33GOz2XJqnkQrlmXhaKtzIGM4bc45ZmWUydd0LZqmxXazwX6/w4u7O9ze3GDoOzEOnhqZX9e2RAZNOwApwViO9PnA9ann8YRpGjHNI2YRM+eNPQoBFKCJzyXSJX0TBayGBckvQFywxBneXwBE7G5e4nz7DbpuAyIH57ocVWtbNvKX5QbBM9PweDojxcSsnXTIrJ4qfdG0zOQWYhKSJHq89aWEFAKSsLlFz/TihiIMMeU4pSApNUK4FD18mLH4GbOfMPsJ0zLxAucIZA17DW0j9ZcNrGsAPL3ZAQxEqeU6M4rqOJL5JsQg2RAh+RkDiBgsKzI0BCSTYI0U/jsHFxq4EGFsgLEBFBzXu6AiTSDdOJRYqvLKizNLty0Fq3kmZytH1zgUh1aWUGCjn+teJeU2u9MIIMOB2bxYS/fkf3hcst9Jr6venIXUKSpHsxoh/9VItJgqKuUSQsB+v8N+t8d2+4B5XnL6qqaVGmPQdV0Gd5vNRjQ+/YqsRusbyRq4acY4Mkt2LZ/ixREUYsR4mXB//4CHhwPmDCb4EWJE2zGzOFBLWFhusbQmyqkfWr9pjBG5qk2O+hUQsHbgfe54bu+tt5FVNtGVI7NtW+z3eyhr7m+//Y6b/R7j5ZKBaN+z3qb2D1AkP+pUaIAZU+vom363RkXr+kyNXCp4JKJMuPTx4z0eHg44nU6SRr2I86E4YGqjuQbw11HPug34NVuyeuS6/qqoqH5HuYZSo81jRn8v5EQZhFapZ8VWzxN3tSddX+1TV6/RJH09yjoNlHpFwOa9gQmUeI1WMO2krsxa3UulxrRtgJjw4sUdvvv2W/z04w948+Y7vH71Crc3N5VN8tcd12Cpfk7ekY3wRxMj24pXdly2pfjfKGusD6wXbbKZWLLOqLo5jWlqpIYsYKLJAEdPnWM31WL8qA9rZ8LnnCPVS4+h6Ncf1+1ZR0DrVO6ketUEJBNxVaWZbYfVuevLprprBNFVN1DfS40/i/GpyDEx+K3ffwU+gcKy/WVAtOyJXHZ81YkgkQ65br0yyUgQ4Kd2TOKGYiZaH4FgECt7LwQGo9y0GpirIqNR05MNDCJ8KjW52aEk97sEj3nmtdmaGdYadOOCYePRdVMey+r4ijEhSGquXwKnkc/MXUJU1ixWEuA9zxgCHNddszUiGZYkcnuqEU8RRCz3t7gAawOcTeJfJ6QUkMB6qZDSLd2XC8u/zrR1dDRPmWeOTwBRHUKPFxKd3tyn68kptlk2MIEyaVLQRQo5BYUn02MgmjcJ3bBM8UZlsFtdZTXcqj9Kfdz6SNXbdFN67LEsUQmsnqs3zfJ3yhN4tZTqAqsL6mc31JT/ZbDBTI3D0GO73SCmiHE0+Xs1XK/tEpOKoAcQZIBXRpd+TtOw1LDKfWm0tpAXtZo0pCZNyBGfZc4pEcpia12DzbCBtQwwd9tdNuiWZc4p2WqodpkG38A6i67vRC5ij9ubPXa7DYa+Y2/1tRPhzxooRGhbNt6maYaxIxISFr9gvJxxuZwYiE6XLKvB0VAuzreG658cWPPJkAMZiySZD4Em+BAR4gzMExICbGNxvP+Aw4c/0LZbGNuh7bb8WTDLZNe22G13zEI5z7zoTDNiiLhcphyNcK7BgC2sdSBbvLTICw1lGvwk5/Izp/r6ZUKKHs4CsEBKHggeSCE/YgzwfsY0XzBOI46XM86XC5xrsTUWtu3QuCYTl5CV+wc93yeWa9Wy08NYWbgISBFkLUx0SHFBCjMQLRAWuTYvtQq61lGO3lsqjNEAJM2LmJkWgDKGJkhNRwwISdYfTalVVtG88dULKXLNRg1G84zN+2FJneN6z4SUAtOaI0A7ZBWVhSzyUOMolZ+yqavhVv6LutfztX02VfSvO7S2cBhYzun29hbH0wnzvOB8PmeAN44juo7ncdu2uLm5wcuXL8HR0SPO5zNSKtqIswDXSSRcrLWixXmPYdjAWiNOMImoxgjvOao1SiRU1zfrXJboChlgLohhHdVUw0B1OO/u7nB7e5s1OTUiqoBNo6j6PV9yfH55qt+wPqd+R50O/erVK3z73bc4n0cgAdZZ3N29wMuXL2Ct45r9BwbpLBlzyFJlQNHRy1HeyE5NEDs+fQziaZ+EOO1Q6mnJZDmc+/v7rJOq5EMA11ZmAhiRF5smXreMMTlyWjtP6v20TuetZVKu03i//Ki/x+T+3u/3uLu7w83NDbbbLY7HE2vOwoOdaZrJIMQc5hqE6nmVZ5tdZabaodgURbFbsDbCS8YVlTme9LMpk7eqbQJKK5vJZJtIbTLeU/uuw0Ykwb7//g3+/d9+xg/ff4+XL15gGFiWh65su78K6D8X+UhJ2MX1PqWBavySgWpMoBRhicq6LjVvpIzvkYEoDLcvYiqR6CeAaB3b0N+999nJ5acFyzTBzwu8Vwd/6ePr7D/tt3xyBUBU/V199V/VpnXkU1/T52KMXGOYJBoagWTWfXGdgZGbXg/x91LGqmV8p1QBVZLR/biGLoORDESvbOr6np6NiK72Qv09QSV/YtL1y1fkdnO2ZfnKsYYwqR5r1zdejhAClovnPlRZEpFtMWSKZiZJOxB4rwmBHf7sLYEBcW2946itcRbGWQVIrLVALGnH4JTgAxDniEgLJp8huNhjvgSglFwrACnwwFNOF2cdjKT/WkpwhuCIYFJi/o+kDL3IfagkSMyOK5HdxGumtU72DOT7i6KLynvp2v4o4ytbRXjsZFofn9YRzc1QBscjV5L+ttpMSCa9AjQeQCkkhkYKRIX4ReMPGVwSUwPXC4CRTSovBFfXeQ1Cr8fYarBfoVO1K1egeo0+82fX6bbpiYn9uLFLF3zFkpR4IDXOIQrb7DwvXAuaEnzwEvFhQ5bZ55CjMlzXKXT8poh466KlQDQl1fqs+k4asJYQuDbgcvqUiJ2zHmCba1Qb57jmUUCV6oRyGhzXYYJYXH0zDCAyiGFBShH90GO33eL29ga3NzfYbZlxMa/xn+79LzqICG03ACnCuhFGJtsSZlymM86XE6bpjGm+wC8SDfaQ+kWDxrUgsFwJwcCYBsY2YIVNSXSdJ/iYEBePEJlx9nD/HofdO/T9Dbphj7jXlEBmtuzalu2dGBEWjxgSDhJ5YINu5HpR18BYh67rJXqtBk3RcdIUihQCwjxhOY9YZn7E4NE2FtRxymuKCyix/AKzA3v4sGBaLhinM07jCcfzGUM/YOh6OJHh6doezjUyXw0bC891h7WARE0JBDIOWdwLESY18t0zUrBI3mQmQMSIRBGajMXrP6fVW8Ng1NRfrE4VQNJ71QAPQn0eeCFNhTmaU+nqvTQJqE1lV5PFQmtllVhADXwyxSsbY6zWEfVSRTEoeU1kFmB1KCFfZ/1vAd9J2mANfsMzwtz/FYeS2xBRBqKn8xmnE4OTy+WSo4sKJoaBa8frdYR/9/AhsCh2VUfLdXhAf+jx8f4j+qHH0A9SCylkFLJucZ3MiEXWNiIShusS/VwWTlWdxRFWRxu3kuZ+e3ubgahGb5umyfdSr5WFVfVTx79u2NdA1DmHm5sbvHr1Et99+x3X20r09rvvvsWPP/6Irutwf3+PDx8+4LfffkfwHsfjIXvSgZSJ6UIsXmyt5ybhD7hMl6xbiaSETw3IkNSHjjgcDvj48SOOxyNUG1TJjhSIqgNgmmZxPCgBkpI+rfdcdQhbiUaugeifZ4bW7VkZk/u+l7F7J329Q98dgGQkLV7Kdciy4ZlLjYqDag03K0O7+luNcH3UUSxUr/Fw1zVK2wXFQW4UGKSSRaafV4CeUt5D+q7DN69f47vvvsOPP/6In37+GT/88D02w4Cmaat18qkx+vXj9ikgcd0BObsj25GrN1TrnNqKEVaiu8wlkYCYEEIBX0Rg+QsjvZAEFFQgMDO9Vi2sdmXWCT6fEZaAIMoCarGlOvOvtg9R+v/J/LwKkH6qpfOpP+MEuAb3Nfi8BqgxRY74mogIA6QolJVrEFr/Xu64XGuqnqwDLrmPiZ0C5cbKOER+z2MgWt/Pc2m6+TRq08rncjq3zoPgkbzWqU9Y5sKyXjsjgLXJnwq0frK9YwiYp4n38cj2QwahxMAUgbI5AEqIKkW1eCEDCkAiOKMZDR3avkdLnaQPGyRDiJEQZD/TbTwgwicPs0QgBXHoLazZPktJW+I2JxiYxNfWWAu4yL1tCQQLAzAQFQKQ5ANCBBYf4X3KDLggkpKzVMAohLFf9twQImghyUqQssCgWRqyv8iekYdBdg59epx/njVXvVfroZSNpqeOPJjyxXG6YrZQxTjWTXF1EyBELa7mUZyjfWW2CHBN6pApy3/S80uqHXvYYl4M6+uqEXuWSXl0p1e2JF3/Udrg+aFdNsNn3/DEYYgAa9GkhEGIHlB16DwLc66PhflWiA5SYqIJT1wbVMsE6OdrcFlS2LhC1wdmkFNGyZqkQz2CIRJMNKDgMxsoCGjQsJSMsTDGIbkWTRPQtr6KrvK99C3XgwIsjh6DzyD07u5WCIpa2H/BEHnqSCnhMs1Ikdl/z+MJ58sJ43TGZRmxhAtCWpAQuEg9BUmdAlKkktIQLUwKsCKnYGwLsp2kk0UYmxD8iBgumBefo5rj+Yx5uiAsM6exWQMDgnUWLRqEfsBut0cMkbezBIx0ARHlWq2269H1PVoiWMvSPTk9JwGcmAH4ZcHlfML54R7LNMLPI5ACMLRw1HGaSWIvOwcSK6bmVFL7uE6U+0qNOtewt8/HCK/OpefGOBFrTxnLFweTDROS1YsQgeiA4Bi4KgOeML2BYtZLJkqsiGMMnCUGpIbJKEg3qxiK8RgBJgtWkhYHluLjcVobdup8g2wkTePQDwPrlVkH8pQdPjlFPgLKYqCyIbq+6cpDhhfqmL2+RdesBqDqbV2vKVWimSEwi+DnDZm/5ihXoWBjGAbc3NxgvFxwPB5xf3+PaWJ9Mo0c6nqz2WxyRNQHj3E84zIxQ6n3fhUx0kPBTtu2uLu94wwMp8Q3A/p+yNE7iJGkTjZjrRilhTHcSeqigpthGLIm6n6/x3a7xW63y1qhGgmt9R3/O9p6nWlT9uJh2ODFi5f4/vsRh+MR0+WClBKvk7sdO+vkei+XCz68fwdDRiK5M1SSZREgrRrPUbgGlnnBeeTUW021TTGyV7/lFHzWeZ5yfWWdZVOPDWNsrmcEinOUCCumX+77Qnqi6WVMnsT9xKQ69omW+tL2TJWDNuT60MtlxDwr6Q/E1ig1qmRM1uotDqg1qPjc39om1+mqBUwQYjQwplojcsStjN88nxKn7irjtrNCsEhA17a42e/x6tUrfP/9G/z008+SjvsS2+32CcmzPwE6UeboUwBD3/VoD0j6nufPrGA1SmQmRrr6QOUAl5IjtdvyF2SHYXWPajMZyu2mqfshsP5i8B5xVlIvjoBHMqy9Lacvp6TqgWLXPtlaf8F6kdbr4nU9KF9SVTuKKqJYRUWvz/HUWlYHGlb3CazqPUnaOWcJFW+p7ONyTfn96/X9KSCan+dTlLRdFDu8zJ2AsMzwU9GcnueJszueH2T1jT77kq6XJJwzJhlEQ+yYslJqI2n6Wn+as6uS2uJSsxkjQgpsFgQCAkAozM8xsrRKSoCK1ppk4FOA8VInDeaHmUPAEtlJwyfXjDC2k6qQHkIETAD8wk4sHzwSDCLxayEAPlalK2RKdpgPoBhgiUCWs+tMNEiRGeDJEHwgkE9I4IyvT+Ka7Ix7/i3PA1F5JEYxUKBYR0bT1QTh/q1XHBlkkVk6+WPivorCZpkBYgVtFZyqF1LBp8LsMipXCE8nHxIy87MODK1JTSnmj0d9P3hwaDQwyX0nqvxECVzXpevdlVexLIWpWn8o/1n+/fwkye8QYMxeXPaklDRYi/N5xHkc4cOcF/AoCw+JBxy5zx6H0GvmXDbM2egOPsBnsfk1CC19zJtESCFPoILRefFShRX2LBoYw8XYSsBkLAmzLyFFpvBP0TD77s0ed7c3GIbhLweheu8f7j8ixYCP9x/w4eN73B8+4DQeMfsRIS0gl+CMYT0QJKQUuE5UUiGoIdgkJDTRwVHHTLbdDiENaFuLeegwjvcYz/fwAOaQcFHtp3mGXxZY13B6rrWwLBiJpm2x2WxlsbGwxqFrz7xBRk4nvkwXtCKp0rYER6bSCU3qroOfJ5wPBzx8eId5OiMuEwwlGGzRtQRjHCB1DAzqLFxjYeZCJmIUoOYFRUErR698CLhMM3woHvvrI1NLkAJRytM4O2ApcV2ogNEkoC6FgGSDoOuSOmKIPX6q19UYgkUCp/JySrNXZ1riXOQYAUNWogMNQsMbdmH7Nnn+GuukPRpstgM2wwbGJlwmAx9iiZaHoIuX3qyM/TLf2bCsjCSZ34aUXCpVILusMVHXWSVlI27LJG809r8DiJZD14quZw3bRSJv9/cPEhENGMdxJYvSdR1evXoF5xzmecLpeERCFMDjs8GdmbxTyjIwmm602W6xEXbum5ubDHTVoaYlA3UqaQKvi23bou/aHA1TAMopjNvMPKv1iAqwtGZUz6nRvv+ONr7+u+tavHjxAgBwPB5wOp+xzAsTlxlej9uGNfB22w26rpOU5pANtVyHLetEiEFYwuusFa7j1TrFpuHykMY17AW/yozR6ysgweZaKGCte6lanLUhfLlMwk4epb7JZSDadT26bviXIqLqGAqB0/gOhwP++OMP/Pbbb/jw4QNOpzNm2ef4mura0RrUPNNP1es58le1ic4XdZTU+y47xdhopWp91c8p+VTZhzWlXFLwDMnabLDZbvHNN9/ghx9+wE8//Yyff/4JL1++xEZI/v5KJ8oj8FABjGLB6PfVNk8q/1X2ZAYYEjhIQrDDfRLy3pFZylFprNP1d1TfKjYyOxYoE9s463ht0H4IPD5iiDAmgZKV7BODaKww36bKqNbARRX1o+tv/3x7P5Uq+/g+1mNq9VpaM2AXuxu8b8p4M9XP68/XNab5eq7mtqKIGoynGlyk9Tn1WvL1qq2/GidX40jeVwBnKSXIwFqez/qb44hRHtM0wWsmB2nPXLVljZefae8YIxY/lwCV/EeUkMiCrAU5yDoq92kNTLJscpuIFA2yMxoJAR5znBF9yhxckSBSbXoeHuOG2KbMhG9saME6B42+hsiEmDy+I2ABcgRyEclwptfsA3xccBFuj5AIIRU9UrbJLZza4IIhkgCo1hDTWJJBSGz/NY3D4hvMi8U0EzBFVpeoqTiq9UtLHwuifPp4EojqxCIiKbq9diDIpLyeQPVgyYNGwF+MeYBBPAVQoqLrhUoHX+mb6+GEyqzN4C4iiZ5WNeAVgGrEUD6r//H9VhFRHcA6f2qwX62vK491vprqPQnFk5TRaFrf6icPXQQYiLZdh0ZqKTlyUwufc944Et+/TwkIBXxnmvfqAmsPmv5dgKjH4plR8ilyDhIPZPHA5RfYMM6eo6LZCJDQ4Rs0rUgOOCOSKKzXyUE4lny42e9xs9+j77onDL9/fUONMeLdh3eIweP+4x/48PEPnI4fME0HzP4CUIAxgHWShpmIlU8oIQnxh4kEGwkuWtjo4JJnMNS0gDVoO4fWd0gGmJaFPXiRMPuAWRg7l2VG07ZI1oIsxJizaFwL9FyLao2FNZweNy8L1zItC6bLhLG9SHoFb7BR5BYSU7eyUb3MuJxPOD7cw09nxLDAWaDvLaLvmGNcgCVJapyNTlLkSABncRqQaKokJGZfAwvbXy6TpEg+N8gVPAEgK962Ulul44dSBGIDig2vP9EjhQUIC5IlJrtNEKkhgrMGLnBU1FmCM0yjngKnWrFgusJegMDt2bUOqZEUrGxEa106/2SjuBHWzwZd17B4MxnEkDgKrEAU3DYk3rOyvqzHLem96iukW2Zi7zVxfZiy6JuYEKOkWlde+AQGzMb+9Y6apw7e38vddG0L7HeIKeLh4R63tx9xPB5yGqYSES3LkqOPbdvieDzg4/1HFs4OEfM8rciD1FDP0U3DEdUXL17ASJr+7e3N6jMppbx+ZYCv9TKG0zFvb5gN98WLF3j58mVmxu37HkBhElc2XY2Ial1sDUb/ayKjj626+nvatsXd3S36vsPxuMPxeMQ4jhU4TmgaB2M3GIYBbcttp6lmp/Mp78G1JM1SOR1DCMwQXu2ZbdPy+xv/6L5zbZo8X9d31nsKSzy5HOHUIwrJxuVCAJbV+/m9fY70/vk2ZTtE61WPxyPev3+P339/i48fP2Icz5KKXNk9lfzcNazK/ULrr0moyM2q9ylAB9bG/lo/FswGL3p8NRBV0KrncwLoOVOI7691Dvv9Ht98+y1++OEH/PjjD/j+++8z0VUNQJL6KP/k8ShNM6XKlli73TMSXCGV60cFUvRcAkRDrIoWZd0zxjCrqbQH53Ct7UiFger3Iys1fpmEykhqOku1xBBEMkeVARKSsWKDmnxuXbWLsoL5/Nik/M8TL4hT+1OnqJyaT6exVs9JW2izaWruuo5US1ZSHmMkdcN5DFeDJOugElXtWkVNr8EksDpPDTBrMLq6xVSNG9mvc9ZQkrggI1Mot8AsZRkqwaREeCnFKijyiXZ95ogpYJYSjlL2YwGK7OQmjhRSCViK3i2TEYJEuzNSjpIGBKS48BgT8Fjc9VKGCMNszmQRyMImCwslKmW7miyx49YLUwR3JGAi4AzIJQABIQHJe6SkkVeCjxwNBRmQSFI5YxAslzUpViMyWZEhEpdHGXCAIhGweAc7E2ASQlwwzWV+6BzNRzVPPzXGnwSixSNRg4xiRqk0BP+/BjR6Ap0QyIBVf5qcf1yvHan6jnzROtD1YUir/9kboY8MgHUSxvXCxuI3GlrIYFgnkC4sTFsvBql4jvOGRGXzKSBUp+UzjaxANRWw/DVHbZZYw979tmmkppI3LqXGH8cLzuOEaVqwSPoVR8ZkcMl9aX9d6x1a0SqC9n1OL9BoeD2Yyt2k6t5IvQco7at7kPZn3jyMMpB5IVZK6NoWbWOx224xDD36roWz9im/1lULff2xLAv+z//7/4UYPcbxAeP4gOBHEC0gw8LssHxT5BJMBKxLSCYgYYFDQBMD2uhh5wUpXLAsF4QlYL4E2H6A6xxa16PrduiHGUszw3UbGNcCZBFjYvKgZs4gT2BKjsIkEDpJeWWD7YKLuXBKRwy4XEZZAFlvalk8LtPERenOAtYiRY/GGWz6DsEmpOhgLdC1DchSnnuQvtE6PQXAXHDfoG08E5oIGU2MBB8SEhmM44TzOGVd26eOskkRQAmSdMxgNNdgGBiJzoIIyXVAMzMIDQJIRQMVUeSWEi+SrbPo5NFajo7GBCT1o8hGRoZBlLWi02Wc/CSQVaI0K5GdtTwGR/HAAEflWQAkY3IjPlk3hNp4FQNXfuf2F+BKXAtLkmIM4oQSirK5iyWUqnP8eSKXrzvW+4syPbfYbDbY7/d48eJF1mY8Ho8AILqfowBKg2EYcPfiBb4bz/m653nKIKgGsLUEyXbLNX1tZuG9AUAr1tsaNKpY/dD3QvTGUcLdbofdboftdpvr5LXm87pUQeegkjP1ff/fFBF9qj/XJHP6+2azyfuRkinFSkJHAec0c0qtprsp4F6qaGid9WINGyBIV6ycT0Qy6r/rcVGDU5WZ0bRoAI/KQqZpEumuLuuOasRapYG+7Hi819b6ocfjER8/fsCHD+9xOh0FhIo7LDujP98zq3dlO4b/q/U5a6CibaljSPWH1bEfRR/rus2LzaHrM5dxbPqeMwT2O/z888/4+aef8MMPP+Du7i5nEzyOrn9hMz51JGS7SkFIbS8+aqgq/JQ/Vz1KeRWJQFflAIiJ1wUKIMkU0vUyn5YK+MqyVuVS88VQjIiUEL1G1IKkdwp3xrIgiEOLl3LiGkGjWUFUPa4i5lAQpzBVn5FvvxqOxYchdhWeBmflPkr/fykQ1fuPEYARbdYkcTBOCcpuEwLvL6Ak0jf6SgGTJdqq98D7cwnG1A4IBmbMDF99Lgeo9K5WnVTdQ4mG5hrRPA804BIQ/MLyesskjxkxeiBFKIuDmKvZzigt//zhg8d5OuZ3E5gUzjm2g5rQwUUu0TEaKQtA8iVtVp0yrKJiAcudHlJUFz6iylYSgz/oN1bYhzMzJekwr00mg1JjICVJAiYNKok9IAmnieJVxCSzLDClZWJHPK/10m7GgIJ8gCw7YmTcAwbWJFhLaJyFc5LqLhkHtT0DU+M3fHLheV5HFGUA6KTUoZY9+gas9/fkQEoZeyZZOSiVAVvA2Zp6Jm8C6pU0a3FrSN0G9Malo/jrYmaNLQB05VLRUrh8PRCApcXI7DUrQMnU3lFa36e2NwOssunUm3Jpx/zPZ48yacrf+o9zFsPQCW27Q9c16LueRc7tEUBCGKWmLxTKfAuRZBHiouil/ilrHVoBqeylrmm1Aa3fuR5IKfenXqghXYRJG0r62YBSLL1Na4OocQZt12K/22C322Loe7TO5Qm6TnH81w3veZnx//3//D8RwgJgBtKCpk3YbhyGjWM2WcPXCRthXCpAlDwcElosaOMMhDPCxcDjAf54QWhGdLsX2L18gaHdo2236AcPFzy6YY+mG0DWIcpG61Vbz1iunzSsKZmshUuEtu34Moyww4JyKtllvABk4BpeGKd5xjieueal4VrdFAODzv0OKbRIiYF20zGxFM+ftdNHHRfK+tY2DUIKoMQR1nME5sVjnGYkWEzzgmnWdL5nxnkqW2RxPBXnRCIGgIk0FcYgNQsQeyB6BqN+AoJHMhFkIhMJJJaSaaxF31hcnEXnDFrLnsBkIHIxCQhB0pxbDMMObdejaTs0TQtZZzkSakSfzDZMwiUppZfLBTF4jpRah2AbBvuI2aB69qD69XXqP/8eESkCiGI8sHFF4mHl96mpIWsf/pr58GcONXL7rsd+v8fLly9xPp/x8HBA39/nyCJriHIUjKN6d9lZcblMOBwOKz3Peea6aQaIfL8MRG8x9AO2ux12+630SZFuUa//drtd1X7uhQW37xmc1mBS6wWBYtzVIFSlUfq+l1TXIqP1333UhEDWWnRdtwLiGhFYhIWYWRbZKTnPM6ZphtYuacaLRn4VhOY0WqNeelxJh/EMvtZTrcGSMtPWqczXTLj6mXXU1OU0YAWiWrf7tbI514fWfRUgeo8PHz7idDpLFEXtpjqVDCjOZjkq4/v6yA5uW/pL36vjSu9XnbEc8fQ5JS7lUFYBrSv7Jzu+TU7H/e7bb/Dmu2/x808/49/+7Wd8++23mWzrrz9KgGLVCp8AUvo5tb9qQMpAlKC69Lz/mJyWGwK3KUnKN6iS0cmGUhL/d+Ug19+0r6KkPAeCJ3ZaJa3vDx4pcPkHAYCmXcKwYU5qI6rmvAJRleYqEa3inij/Xo+WNTBNlbH9TMslPLJ/NKKutaIkTqMEzlUyUEevERs3MdAgK9cgIChpWEn7AOX9Aq9rl0udRUipzIXrKZHN3UxDX+39GTjX7y0ODQXoCQWIluCR1A8ntnH9ssAvM4NQP3O2WmZ+RQbf6emeeLK9fVhwGrl0ROuVrVNnfIvWd2hDj8a2sMRRSwpA8omBaOWMsoZ5NJIBmK1CZOOIf3JALbHdoSzERuc8j6dY4yYQYElI+6Iw5QqpmY6TqLY3j1eCBaIBUhDPBGASZ40ZABTk/IoXERlYIyCJQzKRQTIWIFY6MBRhrWRn1PKSxbzJczQZZED93PE8EL3ycJXFVxcAunq+vG89aFOeedmzBJUKLGBFz12nxeS0XFmEGdAz458PASaEDGhjUjpjplBGTEIDXgakknzxJIKiV/YSkYjTKzCzVwD4E8aeAnNZC6u3XrfFnzUYdVETQhzR7nRColLT26t0yzhNYADJ7emcQyPvK2lIKPdrlEK+REJTKqlDenOlv8tCr226YhjMR8oLUgYdupmJhyulCGMchr7HfrfDdrPhiJWzlTMjPRpr/8rhvcd//O3/hxgXtC3XWO62LZp2wEADYIjTcHXQGCaasSaAzIKWEjoAAwgxRMxLRAwOPi4Y0wy/eLjGwbU9UiIY26FxHZp2gGt7zvdHyl49LRi3bp32YyxHPmqReV7IgGUR2QsRZW8aPteyzIjeI1BCoASbIrrGot0OSLHhBYmi6IFqTbS0czXPiQwslYgos6SxseTjDB8SzBIRk8G8eMyLkhU5PD/WCwjVoZHnNxUJGoCvDbEFGg+KC9IyAbZBMh4wkcFoirygWtbTa4ND1zi01qITyY+84alMi41whtA1DkPfoesHtH3PtZZG0wsbSctlTVtjLE4nA++Z/EszJ6wQKrFLGV/ga9J2Mau2zu1QA9T/P3t/9iNLkqx5Yj/RxcyXiLNmZlUut+6dJsA3EgT/wfnD2G8ckAOCJMAHghg0wGGD07f7di2ZeU6Eu5uZLnwQUTXzCI+TWVWZVTWcownPiBPubouaLvJ9IvKJrOJgtSv/Vi3Mvtma/joXx89tN0goWevfHg9H3rx5w+PjIz/88APff3/k8fGxe6FaiG4IgePxSAienBMPDw98/PiBlOarvFId66Xf2vF4x/39K/b7A4MBleBDr2N5sRIu6i1V72wrz/Hq/p5xbDmgvoOorcew9XN7ps17t9/vORxUMK15xv8WOaLPmz7/LUhu5WUaoAQF1n4D+hpwBY2gaKWzmhe0AfhboNCZEvUWELV1e3v8BmK3/daAe8u93fbtNmy3heqqKvzc66KqQvB73r17x5s3bzidTp0w+Lltuxc3L1jLg9W8spMB8RZfJz1E8brfbz2Odc9f/7TaRJ3IvkFatPdXcNnAvZmqT0rbbI+7LUHTwtW//vprfvfdd3zzzdf85je/0RD2lmawtdt+oVa7cb/5G1tyXp68uYZYrhv6pj/0S2AlMppMcEbtuVIrUhziKiokVA2MbsCNtNXR/r124PV57Hp6dFzepIjVeiV8pJekz9k5riLktkDhydFhQ8V/utdXkPZJIP/EFt/menY7qlSKWxVyV9HbAtXhSqG49afY6RueN7pkA6NlY++Zp3TTs90jauD1eQxBvfqx/vMpEK1XP9v76+9boFoRA4ZNNTcnVebO9ip59Yg2+HndfnoelJKZ0kStTaQx4xeLjlkGxmXHMC8MYSBIJLqAZEFVgFb7xgXP4AbNHS2ipeNq1nEtto/b9u2qquhqCG61aDzRoUlz4mHbvbMpovoQmgZnYyDX/kC7pbF9dpa32giCQu35zy36SHNfVfW3iKO06BgfwAUKQjXRNNo9bKKyOq8isvGKfrrPf5ZY0SYCWL0U1aShWQu1bhfc5sVcQaRbVUHbJKChdzpEE/NyuhaC0cAkdAZrucyc/Zm0JOZpVg+SbBbCoiG43dtpiyZFFx2PI3oTssjGEkEXxAit5o/Xkhh01utJ/2wWoxVegSr0Na9o7ffZPaV/htH4/KO2SFrXhuABDYGqtjiJUzXPy7IQQjavTrC8TK3DOVuYVrsuBfmVXJQZzLUpjVZlnkzhVtVIXWfN2ngQNgaM96v68MZr7AQD+rZQlkxFGZ3dOHA8aJ3Uu+NRa4ZaSO6n4ftKYPz5rVJZQFIvPxMGwUdwQSP4l6y5UlLAZ5CacZIILrP3hWMU7iPgC9kXpiXD+SPTJTGXxI+18Hi6IGOE6In7PWJCRDFoiF3JmTQvzOb5jbVqzSfzUGu4hae6os8xDoxjsb1z0tDYUim5hSfCMAQkOgbn8BYVokVDg+15omyXWMJ8U5VEx07KSmbUAoLDS1DmTzzO0wmHitfvVM2VXBYtL+TE35gxrAtkA73bZ1hLB2AVI6GqIM4jYYCyQ8IEfgRvCrUtrstVnCt4F4g+MHrPLgR2PihwlkIlk3Kx8S3M4czFBeOwNSfIB4+LDlzAXKOA5jDXqkn5yzKzJFUgXRfguhqlm9u+Mi2e2hmyjuxqG3nFXR+j23Mt9KttrrVvscLLHppft63ndM4x7sYOAH/44Ud+/PEDAA8PDz0898OHD9RaGcahiw2dz2dyTgZMr/MTl3nh8VHzTZtKriqpat3PIQ6WL/qacRz7mta8aPv9/lm95GW5votWy3gLrJpnbhtK+vf0hK7tqfmv+1ALG9+Cu/P5zA/ff8+PH1RA6uHxQcNbm9gQtecftrxc4Arohp5je03KiugesqZXrKrEre/v7u46yGx9t32JCPv9/gq8tL+1mqma6/gtd3d3/OlPf+rh3j+7t2T7u1w94xjbXt/y3s2O6eCiGU8bQ2rbB+1TG6C49XiuBO96v7dCKdv3ANu713zQrUp9O0aMgcNhz/v37/jyiy/45ptv+KfvvuPbb7/l7du37Pf7JwD0l23Nzrralzf3tr2vq3830tnuZwvoWnpV72PvcPhugzQvcaFCtTqNrJ6nnwVEq1lotW0b7fee5KBZX87yAr3rtWObgJ1s00ea3SebVDXznDzt+ptPorOjP8lcPnMKbfu4vVfQsi3FlQ6DO8Bsc8xsUuk5obVDTzHbdPuzOX+2q04HovZGnxr9gy/fT73+3xUgrfZsViBa17zQ7fvm7VRCvlBKMkCqr1qa1+9JtN5NWuD2HBHntGxi8xBnta/naWG+JCY3E/yF6CLRRQZnIboFjbxqYpzBs6SBsIzgINWiobkGQqsD8RUJqmfgQyb4QXUwxGt5O+uuZgsqYW/zqOrcyKhScDEgqtjH4aogJSMlQUZLFM0JKpr3ilyRMP15OkHLEQg4R/WO6j2uZMQXChqRN1s00bJoJJM4v3n8wlWf/wQr8xN1RFfXvBpaVqJD058pbLw0m3yedSFscH/Nu/TBdxdyydIEVqFiOVrrht/VWu1BlJSZLxPUyhxUnEV8i1/W6123Ec052C46NSljFF3AowxGLRrep6UBQn9t3cxbRrL3zGZz6GUUeD4Pn3qVf4ntQW9VRVq8i1bAttUGdUzzwsPpQi6FOAwMg4UUDBqqc7l4vBcFG02yuRRjgHIHiQpEC6lYKIurSnDUdi/r5u3d9eYLXJnLTewmBCUOStEwz+CEIY4cD3vN4ToeGIeI927rKGcdxXLVx3/Nfis+Q8346ImjYxg9IQriVQ14TgtzSoQqRByhZgKZ4DK7ULiLwqvRci5i4SyF6Zz4eDlxOV84nWfyD48Mr16xe/Oau2Hs+VIhRkSUpU+LejN0g1fwRVyNP+c0LMJ5VbBsDOiSCzInY/tVgt550f5zBmrRZ+aqQyQYT9OyBFoVzJXF6sWOkyrvOlQePIgnSABHL8+QirAUwDxLy7KQcmEcdjefi0hVosZGh/5YRX066ynGzYqACwpNQ6aGHRJmaMrFbhU7E5fVI+M9g4HR0QeSFFVNr4VcKjUlUqksznOx9U2c5gXFMRAkmFCFzuvSEjSqsCwT8zL1UhhY39YN4/f8tm3tuTVOe/jTmq9TbeW6+ry0Fc2MLtr3Guf79wCim8szMAfCNE28ffuWDx8+9LDXJibx8ePHK9DqnJDSAqh38vHxkdPpDMtCKsXy3C10Pw72itzf3fHu7Tv8vYKuV69eMQxDr1N6PB45HFSwR/Osq4po2dr2VF23ee7aq4HQp0Di7xUC/bQ93WPadW49ZdM08eOPP/LhwwceHx744YcfOJ1OVyGuDYiCelJhA9gM0MYQnwHJViO09ctW1Knl3x6Px96vW9Xcdo4GoFuobgt/vr+/5/5eRaW++OIL3r9/z36/53/4H/6HP6OHnj6n1dur54t9PAVL/7gilmUzp9r81gvvr6fAfNs325/bzzQ76epKBTQfXdWNszS7J29sqvUcMUaOhwPv37/nu+++47tvv+W7777l69/+1gSq/rqaqz+nlUbutxt4IXruOo+x9IHbgGgXhjNhFxXXN8tNVBm3CloH29KF1pShthJu18Qeg/dsvd2GaVopZxxoiQq5viZ9fuo8qZprZP0vq1e0AenWE7URitDW9J6j+FLbgtFPALiysa+3tvHW9nbOLPKyIVQEcEZoOIczwCpI/5ywOkp48rOB2K3XvoHCdu+V5hXtzPKL9/L0r89C+6FHbLQox6ekTQPTlUItluebU381FeQmsrqhCVjJpU83taUDpTSHmrBMs4pEzkkFhaoS9IOLjC6yuqNsXAeHj4E5DYRlASekWno0W7VwXIJqkPjgCXEkxgpR69KLZKRuHF0CbCIBSqsmUFYF7lJ0IGp9UdHUySzUVChzpswJCupUEOkOOh0D1caMkkF4QYID73HB4+KAR4MJ5nniMs9M04V5Xkg54Uq059TmDJ1cavPypfYTQNS+Ks1mauCyQNXaMpoDvWU1UZaxvdqiHIIBkYBUW8xyQXpWLcY0rYt2VzCcJqbTxViJGR/9CljdKvohdg1NVrs/QluEVBmtsEwTjx8eOD884kQoOXVZcN833Gu1vE8bIbctzU8loP8Sbd04K0ONILCfF938o8cVx243sN+p8uB+N+LEcZlGLpdR1XattlzeKCg2VdRWt7TUAgUrllws9l1LyDjvCC5oGKoZG33hsjHT6lJ6y72tFJPqF8IwctiNHA8HDZMcB4J/yujKk/v+6/vOObh7pQzObufZ7TzDqKGxSOkLnIp4CLU6yJVYC9FVRg+7WDkO4CmQC75mjj6xl8plrpxmOJ0XYp6ZJVOCMv77/UFj/FHmq1atJVUAnEd8IIoKEHm3CWtzgeIrMUCOhRAW9Rw3Y6BkXPBE7wgeZbDaHGuJ8S28oe0b9rOlTrfNXo0NUbVeHyhhpFYTHhlU5CeVypwBWZjnZM/ltlAR6OKVLo8ro2yRD2IXVlt4hHLTRlKJilS4iPgB53eUoPdFyppfUUsvzLwFozsfyL5SUguzznqfpVCWmSTC7Kz2KJVaB5ABkWzsfcGVDOKpRZjmC/NyIaWZXFJnDxU4106G9WaLcpX6TLDi6mP2z0byNR1hJf+ahbN6RNdv2Kr3dwNIbbOne/jv7u56iG7zhDYA1BRe7+6OvaTK69evNdf5cjHhmMTZBI9Szp2MvFwu/Pjjj4zjyKtXr7m/f6WlRQzMNGVV9Z7uNl5MMw86QbqGkLbvtc9vvZ/bkNZ/tHb9uFeStF1vjLEDOa0JOjMvM3GIvf7n5XK5UptsYkWtP8bWH3G4Aletb1JKPYdzm196f3/PmzdvOhAdx/FKcXgL2LZhuU2UqHlUW57v/f19Jwb+srbaJlug/vr1a96+fdPVvpsY3Nq32znGiwD0KQhVG8Jfe/x42RZQB9R6jeuYqx0gtGO36/7Nb77qntCvv/4t79+/5/7VPfGZmvOvsC6YLdXvxjxotzyiz4GoOTKcw4WIHwfifqf1qRdPSQ5KBoqKC5Vs9kkhFyUSS6kWhcPqzXkKRFdsuPaEbXZSQUpVMErFVQ2F1PxP8MFZzptTb5DT8hVuA1KfRQh0R83PIwXbJ2rrv5/q8m2KFOs42UYxPC3NUigKRu3w1zXgn7+en3MTLXfjGmutXX23+VUbqP257abY0pZs6H+D1WixHFHbF3L72cTZfgLUryd/+S0nQnBKuscwUKnMfsbLBc9MSUXLsGRTH3epVfhDSXGHZIcrmVwroVYDourY6dVaXAVfEa85qGEopFioA1r+JYLg2aIZ7eVMqQuFRCXbi1Xt33BUMdBaWL3mBQs/NwIMV6m0KNfVG92cd66q9xSv+iXO+14BJdv8LDY+t/3+fC58+pn8rBxR6UyCsUfVmZJTxTWs2gd1k81XD2OIVrep5zRGqNdsbK1VF4cmTtRusham84XHjw/d2GkAV0+kC1KphdwnaTdttzyIemGLheYtifPjI48PD4y7kWVe9FF712t5NaZPuJ68V0JEfQJtgNfKkSmb+mRS/PLQtG4YO9dBnxNBvDDEwG4cuD8eeHWnAga9dIh5HJKJW8zTzGWaOJ1OnE6OXArzMpn3OmtqoQgxBJwfEPNwDiHqc/bPjbdtyJOCKSHnqgqoCEM4WEiu5YU6Z3kam078FZrzwhdfHqgkC0HzxCi4AJqkbpMsZWqCnJQ9GkvBizAEGAcYx0qo9JDw41i5H2HKidN0ZpkLkyQe5MJDOVOqMnfzNPP2TQacKuBW3WDbxlcqDAO42EJ0HXhjy3PFOU/wsQMALxoN4KkEqXgqUjPURCnJcisyterC0ZTb+jZuZVjYgCoVK4pg5w8+4kJgGAd8HEilkkolXiZyykyXCy3U/VZ7ePhAWWZCGBjGgSGMplZr4dz1+qoE84pXQeNXBiTscClTfaH6rCFETu/TOa3DGpx6Q3dhIAfVOSqugi9QNDyGkinLRLrAJK1vRmBHrQMuJ1xeQNbao5fziXm+sKSZWi1c3TW+ZeM1ga0du1EQtPYUhNYWO9C8nJbzcYVeV49oO/gKA/9eQHRt4oSAArs3b1738P/Hx8ee+9mEiz5+/Mi4GxlMjdZ7b3meWu+sefKaUmqx0Lzz+cz333/Pv/2X/0Lwgcv5rHmgr1/jneveoAZaGjvrLEe+5U42YNNCb7e5n0+FeZ4baX//vv6pJiLsdjvev39Py+ccdzvev/+Cjw8feXh46OrGrf7eNE20mqG9XyxEOfhtHVB9tTzTbX5tCKEDyubhfAryt8dveaTtc9u80vZqob1/rTe6jYv9fs/r12/46quv+P7770mpKOmxZE0b7OXfzFhrNk+zAZ6E2T71hD71nt8CENu/N0+GSPPa6h7edJnaMXe7He/eve3hyr/73e+0Tujbt9wdjysh+au31TtHraa2+dxz9fTe22cqID7gh5HhcOCQEi448jyRlxlKUuJ0q1FR6gpCjbRt4KRrffR9g6uSe92Z0Ly4pWoun/2sRfcCoSogdWJOE681OM3Z0cSSvA8bZ8VGE8Ps0eYN+jntp0iK3o+l9qiD7fe2z/smGL3hRb0mOzbnuLHWXeX83rj2Wkq3j/8cu/bpfW9/bkUya1ViXOcjQMW1f7fxUFZQegVggZsXVV/4+9X1WTqS1zSqECNpSSzHhfkys1xmlmmhLNmiLkXtikacUqFkXEJDXLOnFkhF6zYXVsVcXNHUIr8Q5sQSFspYVJtxKDi8lo6pYqG3KtRUSqLUZA6Gog6IYSAOirWqlWcptM8XShFKEEDTnbyLNo+V7Mg5k0x1uLbqJEMkjANxHLQEV4iknAkp4+Z5k4a5Ieo6OdqwV+0E1kvt54kVyQpG10HpcK6op4jryeGdgtAYbSOLAW9AJQwDlEpOCVkWxFWwmPVWQqUxIa1W0OnxRC0F77zVG9QrKGjI3WLqgMoK2AX3UUcP0bWRrbmm08wyX6j5jrxoWQrv1nCa64G5AuSnDNHK2Oh5m+3YPtd+/vIAtN2fmq49VNhCXVooSQwKRO8Oe968ume/27FYyZTFwhlSSlwuypKfzmeCV7dZyol5mmxjNDAKpqhYzcupqmDN0Hu6yHSA3IWgnIXwa9jBED13hz2Hw54xxn6MlhPQ+vV2+8s3Xu+FL77cUavWWmpxNc5VCplScw/9qEulTrpmFF/xQYhBGGJlHCoBVO66VI4j3I/wOGfc+UyaZs51Yi6PuHSilExaEjkVBM8w7Kk4oqC1p2anDJXVrgo+ap5kZ2W14Laqtnqi1xBfjflXz56j4KUq6Cxa7kQZaWOvsAX/Ctj0jJy+l3rnVCJc1Bs71IKLA8Nuh4+DcnFFhabOp7PmVZT8oofu8fEj0/mR3bjnUO6QHcTG0FXHGsq9stuN3AGPuAEJmRIypER1iybv4qGa2JM4ovMMPrIPieIrxUPxqLARhTknNWzSghbj0b4RyThf9GHmBUmBKp5aHTljojsXUlosR9Q27y3zJOuva5TEOk/b+xuc2u+ajfHb+kKfR7Os1mclvaf+vkC0G3oiuODMY/mKWrW/Pnz4wMePH/n48SOTkVwfPz70kNrjnQKX2QS3QOvwigjn05klLZbDWHu4aYxDV5yuoF61jaDQNjyxrVHDMDIO8QroPFV1veUBaGD27+Z0ftZuXUgz5Napp8DlnYI781y+f/+e77//nu9/+P4KjDYgmlK68npquYJwE4hujdmtN7B5QZ+Cy1ug8yn4bCV+tp7Gtp/8dd7p2smIllP81Vdf8fHjR85nHaPztKgdseT+zPW80qOvpJGkIs/yN3sfWARLt1GKpjhU6lW/bWuINsDlulox/djtWRwOB969e893337Hv/zLP/Pdd9/yzTffcHc49LSXv1V7Bpw23iue/OyhyO1vgHiPHwaG/UGdGYMnzRN5npQ1rCpC19Y55XmrOR3W+pJinpu+TrLaWU+9otf2X9ZQxWUhL4mSFjtntjQNq3FtNRRbBE9TrW91SNdyfzommsaBbNb5F5sBeP310x/uHidWMHnrey1U99n3fwKQbu3UW8e+FXZtb8CT7/2c9inveRtH11Ub2ucsUqs+AaB9Lj33zD05MT93rxSUeN+PB/aHgwLJJbHMC5fHM9PpwjLPSlxZWlQVrDzQOq+lalRVFSFljbJrCVGVog4AUQIhLZngEzWhNUhTxbmAoEA2J9XuyO04NTddL8IQ2R+jhtBKwLlB1fxrUedHyRbZJzgJyLDDh3G1tyuqfbHMXRMGAT8MxN2OcTdq2qIPuLRwmWfT0Xki6soTL3ubdw2MvtA+Xb5lO9DaYLta71YQtB2I3hb8490djw8nxt1O8xdtMKi3yZSvSsvTVEU0oEsC7wRCjOzGkWEYNyI4en1FQOwhI26N0Tebry1kApaYWyErgxDFUWLk/v6O4/HAbr8nDhHn/c2xenP739AutTbzcTUkf+r7f32T/v/VIbOycupJE/MEaK3FGDRcLXhPLMFCULMKf4wDu3HU0ha7HYf9XnM3745cLmemy2Shu3pOFchZ1H9TofqK99ekRFvwWm7OMETGwZPGQAyeu6OF5Mao+cOy3tOvaV+LCMd7Fe8pGXKGVv5SjQYhRkfJukAsJiVfmwfMCT464hjwJYETQvLEWBkixFAJoeJ9Br+QfSUhfLhE+KHq4hEjIY68rpWjd4RhVEJlnmm5F2Ae6GaU1QZEFCjGoIXsgxe8KGMoFY37L4nmBWWz/FkGBltgYzNKQa2zvABxVKl4C4uq1dhsPFJNaCktLPNEyQuqtGZhwDfadD5xLhlyInhHtELKzgecXUPRB9DhlVTLQSkWAOQC1a8vqkqTt7AVBaKOMXhqjJSiINY5z5AcS/ZGXGlYj3iPiypaElBSLFlNuSLOBJz01SIJdBNoAOU2EN2Cgs2oo+V3NANrTZJvIV5XsHUzBW6xzn9/dKR4ew3E0fJSKkLz9s0b3r9/x+PjI7VWDc1OictFhYsQnUeHgxBD5M3rNxvmv/IwqsDOPKnibitZdHp85I+2rrf6u+/fvef1mzfsLNRzt7/hXRtWT+gWgD4lH5+C0X8cEPrzWveCjpqTXmolhsD9q1e8/+I9Hz9+5HQ6dbXheZqZ7NkI0nPlvLsON32a//g0b3Trbd72+0uvrUe6Aa7b7Zd4AOs+dH9/x29/+1utW4sKw715/UdO5iFOi5U+AxXHMq9ss4mmaeZ0VhVfZ57gaEZaCEH3RjNEiwhFVLlbBW7o898Zwa12moqrFEtZ0X06cjgcefXqFe/eveWf/1m9oF9//VvevnnDYb8nxlXQ5Kml92uN208B0dthuXXzOaGKBz/gx8ogDh9HyqIeUbE95Gl+Za2tAt8aF9L0P1ZFCmx9XdfR1rrqaCmUJZveyIX5fGa+XCjLREmTkbUq6FNFaCF/0lORPGvdRNfX7isCcjVAf5HWAP3WntrmiD59Pf3uSwB0e8xb57zVXvLKPl0/f+59PRsz1D4fFJBC78uqNgqbUOViSvilljW/tH2f9Wvbu/mpJ7PMMz9++J5hGFlyYskabaV8tdo3LkDE27gScg74FFR3xe7BBccw7hh2IwgqAlmUVM2W+lPspzpBWsk8PW7JmZLU2Ver5VFXQUSdEFBtrRYFiTIiNUAJxryrJ7XVwHEWYht8JA47hmFnwqyakhDyQlgM4CpoYogD4zgwxNjrhJZa12jXGHCLR2zf7uOhbuZcbUTQy33+co5oe5DGaDXj2xW52hduDbrg1Rh59apwejix3+8IMayFtk3hKuesNZxaR5nX0XvPsBsZdoO6m6OKJvRRRTObrVxJyaSyJsN3M68qbhbztG7DMaxkIPevtD6dSvSPJqiwNf+edcvm52ahrSt/9yxRfmPY/OqAlPXh60XpqyVvs2GavXPU6imhMoRMGkcDnwem+5nT+czj6ZHT4yMfHx54/Pig5RKMQc9LgiKUVAi5MMSBGNdwonbvzqkKmdZu3OEcuFqIUcUt9ruRGP0TVvfXtf5E4LD3FCo5VdKiYLSxrbFqXqirnstUyZJtATTm06sqmh88vnjq4pFQ8AZAYyyEIRNyxg8VN2bmcOG0/EBaJiqFEEd82CEhEA979iJWmmjW+mma0EgZxm7oVCNuQD2J3qS7gxOCA2f5qlUytSR9YUyhhd+2718BUhsjWj7NIcHOlStFHF6sb8TYuSVrwvp05nx+YJkuGzB6+/Gly4lpmfHAEiMpRryPhJJVGbgvLWVdyDZAVIGfCjdVH6ghKAg1Rk/zy6E6xxgCDBVQb26IkSUFUo6aD50LJRcVowgeojcGEXJKTKUwlYLWp1bRomzfaaqjOtkc21T8Ls+1EW+wGuFmHEk3U9b8Tn019Vzs6XS/qFldYmTaljrQk/1i0+IvatvTKwAacCK8fvOa9w/vLDR35vHhowoYXaZuSAhi4ZDC3f29GlcWghTDwPl84mReO3eZWNLCNCkbnUvSCBjRslZ3d3eM48DxTvMMDwdVzR3iQAiWKvIzBYj+NmGOv3zbRqK0nMzXIux3O968ecM0TVzmqYPPFeTPVk+zPZeVSGyRQtt+eyrM04DkU4/q9m+3vKpbb/RTT8mnns9f0kRURfzu7p7f/LYqCB4Gjocjv//97/nxR1V7vlwuLLMqCe8PR453R2IYNIooLXz48QN/+EMlTbPqXnjPEJsAUoSq0Vwtv1GBaF2NMuvb2uoG0spyJfXWIYQ4stuNfPH+HV9//TXffPM13377Ld999x1ffPEFx8NBtRRY14G/xZhdjXtj2jaeuhfDc/UXGoWqNQkdLjoGP1AH3acoSVU+0RqHek+6Nuj3Gjxt9TpXxdstcf1c6K2tsKLeqyWRl4XzwyOPHz+C+8hyFg1hXKwsRTbjEQWjzV4KwXePqDTHyNUZflkQqn17LVbUQaiB5RWU3c4DvRWy+9fmv195UVnJSJ7M4586Rvv51CO6/V0/A2ChuR2kWvi2Vddo5E83zes2WnETsvsTG+ZlvvCHP/2eOAwcLif256OWavGe4LyS/JJxEdVHMbXYlIywt+P44BktRUGcIxtOaY64Ui1U18o2tWtsId/UQkpVHSDV4/2w1jd3LfrCSrl4h/dBgWj2aqfhqalCdogJTzonDCEyDDviuCMO0URfhVgKuWjt7hahGr0z21NT9XLOSHaW0zoQ5lm9sGkDQm0WXIPRDQa50T7pEWWziLQ/lnaiJ2B0O/haTkqtcDgeGMcdIQSWpOJDaZ7V67AkA6JqeFZD5kOM3N3fcf/6nmFcUfs6uBqzttYVzSV3lozWCWjna6e6HpYhpdoG4ri7O/L6zRsL7Yp4t9aIexmOrovNpms2huNqDOhn/rzQhV+ydWC6/bcIPL2eGBXcl0LaZ835m2cul3vOlwsfP3zgx8OPFmr3wMPDR6Zp0edQNdy5+GJqou3wq5y91ocbOe73xOgIXojRsxtVGKMZiOtVXvGZv3y/CMTRUasjddazar5mqYQqgMfVSo6ZpVXzcEYyiZVVkUARC+OxkihIURXXAH6oWnFkV5GYmKcHLpcTiLDf37Mb79kf77lf3mnYkRXZTmL5j5acL4wol1I6ePROFwqRamrbFcE8oZiUeReJqJu501jI7WuVPHcOzQOHHg1RHUip5HaNpTJfJi7nE5fTo4a5mwf2pY04LzNpOpNiIM17cprJeel5FbIxVpzNXyna4WI1gRG5khTHcmqbT86hOaKEgFTBuYCPlZgLOcdVYS8VSspkEYoXsoPFwVIrKRXmtHBZVGG3Gimxck9ts3HIRpxpBZfQUXX70tNJyOoRvQqDsvWje0xBF7OWh/5k3v6yJs+f257RdDgRhhgJ3vPqXtVtL5cLp8dHfvjhey6XCykvpEdVaXXmEdrtxp4j3gR12trRtjY1OArzMmtYFLWHd75//x4R2O/33B2PvHp1z+Fw6HmOWwD1tF0bTu2eft3159du27DOYRi6cdfEPdJGnK793krn9BIi1gXPxFk2QHQLKrdiRE9B6xVb/sJeeAvI/BKtNlVPFIw2gmK/PxCHgbvjHe/fv+NPf/qe77//3mqWzuScubu759Wr18Q4mMjTzO//63/t9XEbyarRRkE9B7KWC2p5Y9nUPLceoDV6yfo6a12C4AOHvdZS/c1XX/LPv/sn/vmff8dXX/2Gr776klf399bnpkLMS+vArzNun4ZyvvS8bv1d90kDLi6YontFyD11QsNt1xcNvEoTcGs/GyS94vPsPE88dtjaXAp5XkhLwocPFBwpV0pJShDLbPukretSzZmB5Yk+zw39JUbrp47RQlUd12q5T0FoA6nbOVqtjz7lDf3k3Hzy7y2YuIp8s+vpe/Qn7uXpz+ce0QZCrx0+sA3NrWue6BbI1s1xNn171b/y6f5e0szD6UfiMpBKYskLY1RNgxhid2J51+pregQL27YIJxEhxKBlx/YKREttJWeK/ayWAla7s6DBUbVDVRk4J7WpvfPEYSSGQV8+dsDYsJBKgazh7BRBiuo3eO8IzpnDKHb9HhdUIRqcqvS2XGkx7RF7nqUoEZdyUgFTQfNIGwv0BFZ0h1hdcdlL7dN1RGVl4PsTtaNvx9vTBUc2LOEQopYZQbgsicvpxHy5kOaFNC/KANoki5ZnuNuPvH37hi9/+xt2x8MaBqEn08HWjbnVPd9vvpulpr/prFByG9kGRL0TxnHk7s0rxv0OF4IathtXQ+vMWldvRTtPffqzrgzeVX9co/ZPPI6/pK0BwVtYsV7lz2wNwBvzJ2ENfVOvQuCw3/Pm1SseTydOjyfOl4l5SSyLyqvDBpib5867VTDpsN9xvDsQg1MPXnAWlmUM0JP7+jVbBVLS3lLsbGNGzCvoRcFodAy7QDmCzBnvK9VXZioPc+GHUyGUikuO+SKcL4XLXJmTkKuCpjAKuzuPG4TFZxYyNUzM5cxpfuQ8n5mWhXnJPReguEIQ8JLxknFScBbiJUBwIMEIllqsxqvmuYCW39kKPjwHoa0XqgLdqmC0muhSy6UuSYFxq1GVayVV0fIalxPT+ZFlupBbno3UFxf5GDy7Ehm81xxWE4ooJVNy3ngKbMJVMSAuiHmHxeZ5FTGJcU+W1ThQd7vHBWFwBYngqzAUXUhVLEpBaMkacj3Xwlw0UT8XrTeasglkqNX0hEltkQ+mbtvhc/v/pgkdYLcjbI8l0kytDQCSdU6vqrkKiPs36wqH/3HaZn0UYRhHXr26Z5rf8/jwwMePH8gpcTqfuVwmM+Q9ORdTk94D+uiHYWQcd1wu08oAW+gjqPdblcB3XSCnlf24u1OxnNFyRV/2ftoTu7km/88RfALcztnaGpzV+qSJB2pkUl4FP5rHv15/9+lxtkDzpproDUP309f/iX3zr2jdULLmnArT7Wvl7du3BK/hul9++QUPD49GhChBtt/r2HLOM00zl/PEq/u7XhP7cr4wL3Mve9aUnKOFRTcxwJSS5aAua1pSt7R1UVcP8sDd/ZEvv/ySr776UoWJ/umf+Prrr3n96jX73U6NR3nqDLi641+k3/7c9jTP8OZnNqkINIeGEW0i1+kiZlHQLFxpNV57rdfNp64Ou1rEzVNX+4cKEh1OAn63EHYzcT+T00Saz5Q8axRRLv38DeCIHbttM0/Bb/u9G+CrawI2a3Vtt9zutNZnNvS2VZuTxSIGux3b7dmi9nFdFQMEtcEaWG4aJ9wCoDeA6Jrj9yREevts23vtWNZJK+i4QURsgOWtUO7WH/1v/Tv6PTEboFgplOuXRaH217Uj7co2/sQYDSFwvNvjQ2AYI2EQELUV0jSr5kZW55kTFRNyLiix4qKpLntCDSw1cVnOlvLXwJo+IWce9riNJgmaAqBFAQrTlDhPC7UIMe4IcUdw0dIlQs8Pz0bQTstCWQpl1hS64D2DpQ4MQeusq72dycuJealdGFaFjaqq/FsXtXI5VCvrl7PWjE8Ly5J0rVwmjeaocdPL+p0r4uLFHv8UEBW58cW2OWmHXg+q9dm2DiBGFSzyHgHysjCdTpwfHylLVhCa1Vj2zsF+JHjH/rDj3fu3fPPdNxzu7zaz/unAXhejdr/tuhWsK5Pe1GS3wLLlm3qv9X58VLnmNvC7ydc3983C2U5dt6Ii1kP24F6MpX/xUfw1bTWUe7CKrGVtniHU+rwnt3/sSfitxME4cNzvSK9ekZbENGlu0el04fF05vHxzHm6ME0z8zSb3HqmVsE5iINnt1Mgenfca5icFY6+XhR/lc653SosyUJUi1h+aDOwdKRIUHA8jiBZQWkwuey5wsNUCDUxFE/IQro4TpfKeRKmZQNEB487RsJeuLgJSMDCwoXzcuI8X7jMC9OStUxO0qLHgYxnwUvB+4p3FScmXORVbr5aKKOCTq2LqgcxEEplK//+bJzqP2jy+tJDXYqF0hdyUlYumSc0V1hytvyaM8t01rBczah8ER6NMVCkMASPF9FrLlYLy2UThtBQ3NLGYxE1IGpb2DRHQ6zWlTiT2RdTZhYHPuCN1/A4zfXs7LFtYnZP07JwTjN1WXAz5CWxZM0H1k2tWReysXZ0AEm3ONrCq2OIzQ/FkXX7z6u1ZRuqu75bLT94NWOuD3m9FjaA+o/URIRhGLi/v6eUwuPDAx8+fmCatL7x+XwxVdzCNM29hEiMsZd2aaU/VKirhXzG7n077Pda7uN45NX9Pa9fv+L161ccDgd2u91VOYs1OuUfw2j/ZduVqbgBAttR1+5dx3AwQBq23gT70BaE9jO8ABJveVNeyhd7ydZ+7oTZ/uGvfT5Pv69rh5c1h/Z4OLAs78w7rAZWE8hSXQOrkXuZOZ8vHI8HQAHAH/74R/70vXr6c0oUH5AhMu5GduNITpl5mZnnGddC0peFDAZGNaVIBHZj5HDc8/7dO7795hv+6Z++45tvv+Wbr7/my6++0sihGHuJu1+mf/769lLk11XoJnS7q+D6utfBmmyyQm8mlG3zMc3G6f+3r9n/15QHFBjBZsV0EDwiBTckBaPzTJjPhGmgLIGcSktIXedDowY3wK2RiEok1PXSejTMuqrfbFvw9Yn+7eXUNoDz6oUBhlL6tbUx0hw4sgWlTwHoU6Jpc59rv67XfNW2ABQthfMEuj69Zdb16CkQ1fdqNZt+c7pur2w8os0buuHOr8BoO8DL/Xv7r3EI3L1S8inEiPeBkgspLT2sO82LVlQoUIvgfSQOe+Kg4a7DMOCzRya1a9f84qD2r48MMTL6yH6vhOpowm3gSLWScuF8njmfZ3IGHwZCGNQGRIkZ7x3ei+amPmbm+aIiXEkFKv1+xzhEDmNUsb5hoNbCtFyYl4nTfOF0uXBZpg7u1Ttrz8BAt65TOhrabKiVTrTpUGxr2VbNmp5idbuYurZP1xHdgNGWz/PTLKV9xzt89YzDyMFCpfI8k6ZJc9iCsrBYboH3rofjvn7zmtdv3/D67RsFohsstV7a9XVUO7OSDvbw+6Q0xTsz/prp1xan2h5Amxi1XhUn7sDUvBIrw1o3P//+rT37rddrG6Lwk1+2XwQBh1YwetrPtbIsB1UPu1x4eDzxeNA8rtNZAWrbyINXMaK7w4HjYcd+v9YJ3TK6q3H4t9xUBcoAko2lbbl+2cqnZMMdFfEOF9cRWKowSeVhEUiVuBT8AvUCj4+ZedJ6taDq3QQHQyDsnNb1zIVAYNh5wuhxXmxS1+6JdK6akJclqWcVThIfcHhEdDPVOlAqAKbquOYRrXmzUV1vXJW28DePqeUp1GyhwZqjl1MmLS2v22p19fDcDCXhqopr+OoIGljFcpPosNASU4YU0Y1TyahMcbkbI81woOoiv05+HdeykY13omBfnNdQaRew4C1TuHQG3oUWsCMlgyRld0tRQapaWUphyaUD7g5Cldba/A7CtTdUjRGe33gzTPobL4RyiS7WzRP6fG15aW78Y6w9t1rTCqjmeXp4+Mg8z7bBarmW5i0qlk83DGvpFQ0v1dBSasV5R7b8U+8dr1+/5re//S1ff/01X3zxBa9fv+71K6MxzL90mOc/fvvpNVSX2p/npfzbtr/N9bTw+RZWrG3d/zUCJFNK7eHNtaLlzS6z7YEawrnb7fDe8+OPP67HKavynYbu6pjOOeNTIhtAU+VtLRs3DFFrm757w9df/5Z/+qfv+N3vfsdXX33F+/fveXV/f+N5/eM8v0+NpWvyxwDLBjauzdZTuSb41x3hGmDqXnarT6SfB9YVugMs0D19GAjjjmG/J0870mUkz9H2QUvF2HgUm/r/tjpBr2O/4mP6SZ/1w+aPm23t53hEi62H8hSE2n7umriStFBNu2b7e9Nf6f0AK4DcEkgNqNr7K9jeXM96Yf17HZj3MHjpO13zTrZvbz2c7f62IHQLHrf9U1FtkQZEs3lBM5rSewVAN99/fuWfttmdc8RxtLnpdahZ/uSSF3JaLL0nq9ClpXJVn6xWnEAWvJROZGgqg5WyzIHg1T4bYqCUCKIYKA4RxOGr4HMxz2hFUrFw2dL7qQIUzRlTELlQawIygkbJeWkOjEzNlWVaSHnmPJ04Tycezycezicu80X7S0zWsq71WVNOlFx0RjnLz27pUKK2kXeeUnZ0/NDs+Z+5/f6kR7TH2m/+1r2TdrKWJH3lFbWL3h33vHv/jpILh/2Bu7s7zg+Pxiyk7rVx3vH6zRvevn/Hu6++4O71PWHQGOhbptgWDK4ezDahxRYz2TgyGiBri9yqyNUm+jrgzSOxOWE77hY8re8977/twvKpPIqf3z79/TYwW3x5LVWdSVsw0o7xksFMW76v7/3qY2J5W4MBAa8KyXezsr6T5f+mJSEiGnJ32PdQua0XdD3mX37fn26fOrAj+FeASlWrIlkBEtREkoVUJlM6qyqGheUWi2culYdcWVLFnRLulOBcyEshLzq+vBMGJ2RxIIEsAQkOvwvswive3L/h7au33N3fEYfQH6KSKApig4fgWg7NokBVqoLQ9mxLRkqikhBTyZUekrv5nLFa3TPYwmJL7rmTLUe1heRq2F4zzgqdGKtVgcZuhy+eS5pxadHQ3Vluez90EVnHX8tfLbnXlW3blwJR2ZC+6/yUmlXUolYjNBziAsUHXIkIzvKOoNoxTKOOgt7TsiTSMnOaJx4uFx6midOyMKXMkldN4b5t161BhBEXZV1w2zp0c8jpHdXN9Lvx7uZ8tRtat8ZwF0RTS+kfyBxtTe+keS5bSZevvvpNr4U2TzM/fvjA5TJZ7t2FnLOqjtr6kHPGe83pG8dB86CEXgbk/ft3fPutlrH45ptvePv27VXdyWcpI/9wwOtv27Zg4Lr9Wmvs9fH/Mbr/pXtfCWbvxfa5jZENNpbh7ds3pPQd4zhy/+qeu/s7fv/73/Phwwc+fFBBrtPpxDzPG8Em9V44bzaJrb/DMLDf77m/v+Obb37LN9+qMNHXX3/Nb3/7W169eqViJ1co5+/bbnnDb4XkvhSm6zb0+NYpsP7khcFSr36vV3+Tq/eU1JPNOysobYDLeUccIznvyJcdaRzJ86AEQU4aPmskp/Mqduab2naPxpEVrHa7u9KEAVcC9bpPWg62+Z/41BxUYLDxiLaSOL2rZI0masQsdOXfJmzUVJqvQKhe1PpMG+DdjPurJ7BZU7e5zj1cX6RH82yB6NoHt4BoO9YngKh9MKNRUQ2Elsozj6jqlnRL1l5tL600pZuX+rxWoRTtJyUATHSsAjh8GPAyQGj2heBCxEeLWPAOvFXxcHYdooRFLoVakwobZatmUBZSWUglkUpCfKDiyAXOlwuX6cKy5N4hzdFUQYkRE1lMs6YXuSAMQyR6rUwhUpimEx+nM9N0ZlkuLMuZOU1M84XzPLHkRUF38P06U82WUrCQUu49SV1f3kdCGBjjjjyq0FHzjrcn/OnRre2nPaKdNYEtEGus1fOHuAI2cY79fs/b9++JceDuTj2j58cTaZ5ZLA8DUSB6/+Y1b9++5dXbN9y9ekWILbTqNq/x9C9toPe/SrUJevXXfp190JtHdL1+bq756yRsi++z7noRlPYF+/nbv1jreKMNVNn8e73sF5o8+XXt96cG9lacYtyNyk61XJiseTDLskCFeFUyYRUNWU+07ZHbF/jnYvifY/CIOIb4BlCmqFrdTVigJko5U2sm54WcK6louEF2juQDU6qkOXO+ZPiYqT9OuPNMFIhOcF4IzjNKIDunokZuJA6RIjsOu9e8e/OWd2/fcn+8I5pYVMuUdaIquMGDdwUnGWrSNdRVanUbdlTfk5qegNAGVKsBvjVMV9mutBHvSaS8WMhq7d7PUgolG1nTwpXsOQXvNWeBiMweFkcqhfPyEhMmm4fTrqmBUGXaro2HdfyWDqAtT8RELZwRXuIDUgLOaU6pM5DbvperAtFcdYzORpw8XiYeLhOP04VLzlxKJtVCadfaDcDNq/E04mAjVvTS/G9/11uvz9aibfdcvfX0gG1e1vVqft0V5S9vq0fTdyDajOl5njmdzp3oaCB0nucugtMAqfeBwyHQ6vVFK7l1f3ffc+gaCH316hXDMNz0HL0Mwv6X0H7ePf8a6+yfc/6/V+tbvtkKLe+179u25KkYk+fNm9eM48Cbt6+1/NvdkePxwP/0P/0nzpczp8cTKWlN3P1ec5i9D11YROPWNBolxsDd3ZEvvnjPN99+w7/7d//Ct99+y/v373n37l0PH/5Ha7dCtW8RP9qH0PZ6JQevAeXzY7fPP33j1ufr5udK3t36f3dM0Eh0TxgGhrIj73cs55E0jVpbfZkVlBnodF7Tt0IIuBC0tndLGXPSL3frqNgCZQWlazRSA+BP62Xeat0jino+yzY818DpdodquaG9PJCB0Goe0u75tAvdgtD29+v4H3rfXkXbbYBoiz7U+uesx4Or+7spYPX0/VqvnmqPkmYNzc0tNPcpCK0N5D8fP6sC808tdEKtWlFBKxBUU8sHxOGD7k9OrESKKFkhwSPeowr35tBya6oX1cKsc6IUWBahlETOE6ks5FpYasb7CBIoFS7nC+fzRbFSTprLb/mctaLpSV4j5FSJxzEOI+MY2A87oFBzYprO/PDDH/nxhz8yTSdqnShlIeWFpSyUWlUFd4hU50gls9TMvCxMy8yS1NPb/RlZwPJW97sjTlQVGKzmc7Odmv30kklo7dNA9OXn1NutQWlDhgr4GNgfDxZ+MnA4HpjOk8ZZL8lUQCvihcPxyN39HYfjkd1+p8yCAJsandvTNxjzdMETaWzI9WC8HoB1u0T8ZPtUEv6nPJ5XDJj+4Wec7dlRfvojfQOVXirFmVBQjKF7CX76mPIT79unNmyo95prG4KnlEg2AYxarUj3RlnxenF7aVN5qf2cvru+x5eei3eBr774F8QWGVUnW8jpTEpn3PkDOcOyZIrTEAdcoaLiOBi4kVJwBVxWABgC7KMwhIBETxgiebenjq+ouyOCLhjH/Vvevf0Nb998yTi8IoSR4NZwFiXVxICo5oNq4Gs27NNdk90L2up4VlO9bMXUnxZ/bsqYrTCyvqxIctLQXP1MA6B145lcoyJEAKfLn/cZXwpVyovzpLG/pXtjEzktONHC0NK2P9mMwg2R0qIVaGC0trIIOqpKrpQlkeeJuiwUy/NquQ+ZTK5ZQ2zmxRbZhfO8cE6JxZjWfMMI6hlNzUhqeZ+dKLvNsL483V96o/6s91uY8Tbv99Ptbw1YV/DnvWe32wFYHdELKaVNHuhg9Vl13DbialtnUj87sNuN3N/dc39/x9u3b/niiy94//69ld+6BUKftn9M4P6P0P4xPJZ/afvln2sfSza11dkkxCEg7oAPWpLOeae19myMfv/9n3h4eOB0OpFz5nxWlfR5mpjmmVoLw6ilzN5/8Z7f/ua3fP3N1/zTPymp8sUXX3B/f9/Dfn/Ne/xz23aIbD2jP+URvX7/59kzP90+sUbWdVVun1x5PU27qALOiwLMOBDHHWm3J+WMpKREZ4j4YSSMO+KwIwyjlrvohLr0c7UzXaV46c1f2ck9TeRn2oJtD3fOGQ+9lmrBuZ7/+fS1fa/9zsYG29qm3ataq+mLbD2i8qTvrm3+dl1SQUTLD/XH9+SzT+/5JgBtgH37as+z61isYkXNqXT1ag/9eW/yU4PL+ci4v7PSkElLmtQMXp1m3g8MfsCHaKV8vIZom3e8iW5pVJvmcGpdUBN8TJr21G4sl8ycFmQ6kaQg4qlVyKVyuUxMFy1XVpJVGWk6HIKC0AZExePFk/MIdSLnQXU+loXpcuLHD3/iw8fvWZYzVK2sUKhqszklEXAe8YCsZQALiVwWfZSmp1IKGn4cIghWGWNgGPeM9orDjhAHBe2t8skL7eXyLbVavcHN49sC0O3Ue8Z4NNZPEO+Ju5EQA+Nux92re6sjmju6r0bxRxMGCAacaJMEUe9DM0Q3rUHUp+EiT8NGnt4bcFNSeDsxf8qoeSks5db5fp1cpS1fpYtF8J4xRg77Hd4JeyuLEINXIZdfsN1iQJ1zSNTaRI1ta4v2p8J4fsbZfqGr1uZD4Ltv/tc4L5p0njPzfOZy/pHz+QMiWpx4nmbT6m6S545UVIrb1YqvphzpYYyV4yi82gslttqpI+V4Tzm8Q45vCWEk+pG741vevP0tr19/hZM9pYyULJ1QCB5CEIJXVTQvGtLUco8awyYVajW13JIVhDbAmQ105txrQDUBomKy4LlsFDNL3jCNpbOMutGu9M8arm8sHwJ4RALuE5WLC2v+QS622cui4Ly0HHQTV7BnXoEqq2HRYFhjRmvV3IVaYUqZ6TIxn08s54uq+eYNGCVTGhhNhZS1rtdSK6lWzTURu1dZ17uWnv8chG7vtRFx9q/NTrjN195+9mUI+RSMPiFXWHfcysv9/Y/UQgjs93uLnij678OR/f7Abr/nfD5xuUyUkolWRHu/33M83nE8HjgcjqaOa6+DChXt9wcOh0NXHfxbtP/l5Z1+brCZjVaPtHlFx93I/d0d9/d3vHv/lv/yX/4L//qv/8q//du/cTqdeDw9dKIl50KMkbu7O+7v7/nuu+/4b/7lX/jun7Q+6BdfvOP+/t5Eun5ahfZXu9dPjPHtXv4UjD793NZBce2s+MS5f+Y1fvo4be3d/KUDL/WOVfMAOu/ww0DY7QnLjDcg6lCBmDjuGHYHht2BOOzwflCwgBWYaT6GDoDrM/B562f7/afsw5avB1zVEd3WDb3lNb9Ve3Rb/qXlf3Yq1UBo++lkkxYn0ve0p9faS8Ggc0OMSP7zPaLXobntKT73iJa1hmgnZPXfNPzxswna5y0MA/v7N+ScmJaJOs8UsdxLB34YicNOa4sayEI04qpa1QVnjoToVZ2cXFVvI2XSnFhE6xT7oLnGuWYu84WpLJSiQkUpZVWlnbTKSMlaZxgjxDQSrHlENWfT4biEyOUyEEMgp8Qyz8zThfPpkfPlkZxnA8tFRS+dHSNobV+cw5dKdVohwSUQV9X34TTsfQ1v90riDDt2uwOHwx2H4x1jPDAMe8ZxRxy0n3J+2e/58js3J0Z7yO1ftyeQTsTGOLlVbpzVSmvGct381xe4CvTwQlQwDbqV18DprfCQlxbJ9bZuoc/V4/F04f9zco2eA9Jtvz397afby2uTXP3Qa7JwTu/YjQN3xwPeCYfDnt1oE8bdBuY/57yf+sqtXIF2efXJ+9ff+XU22J9jJ3of+e1v/x3BOwViKXE5P/L48Ec+fvgjJRWmy5mLf0R8wQddGLKIpoLXAgZCxQsxCjsnHPfC/VFg8MQQ2cWRcryjHt/j7r5kHI+M45G742tevXnP/f07UvZMF5jnaiu4EAIEY9OceURFqs0LvUcFoRVqplYtCt5ApSaZ28+0qWln8ttlU+Oue07r6v1U9bRWJdM4VGOA2yLUaCrdQrz+JgWVD7i9LpRayFqjph+3VvMoYyVYuspsteWm9vOwWUOkAjkhOZOXzOM083g6c354YHp8ZDqfyVnrqTYgWqVJv9s9WsiSFllf1aZbTnkHn1db9no1ejkdrffr64bOpoeuvvfk99srxNM+3OTZaG8+Ofan298aP23PFzb1PJ1zWv9zrzWEx93Iw8MDj48nUkqMo3pKj8cjr1+/4dWrV9zf33N/f6+lWXaaIxpjQKx0z/P21Dvz697r/7zb/6xdoVftr3nOP+u7ZmS3nE8Nrb3TskH3d7x7+5bj8YBIZZ6VWLlcTkzTpR9AhYle8Zvf/Ibf/e6f+Hf/q/+G3/3ud9zdKekyDMOT6/r19sq/pt3yiF514cYe+rMA9V/6EHs0nv1TD8a271bgZ++JgjsfI3G3J6WFkDMhax5hiAPDuGPYH4m7PWHY4UI0wtRd2cLtbFuHyU8BsJ/T2jU/BaOtP5/WD73ljGngE7j6rqHyDtz6M3wCQj913Ws+qSCS1+ihJ4D76XdvA/TtHrcpSdj62dJyaqmbZ7nxirb++lk9e7v5ENnfvWJJC+WitQtwieLVixmHHcO4YxxGgvf44Kz0SaLUrBUhvGjNTq8CjTUXkkskEeZSIWdSbQHalVQyZUnUpbLkxLJojed5npgnjSAtOVNTUtVv77X+p/OIlw5EBQg+MM1KzKZZj7HMM8usegzUgjitFx8ICmaD9BdOcMXhslUnELPrhI7rEKhO8V2MkXG3Z78/cjzec3d8RYx7YlRwOgw7Yhz+MiDaBlefXhsj6+nntk1ZC65UZ5txrf8yg1ZU+bAPvu3QqZVaLSlbNgxcbX1hXd4A5Oqs6ceXDbh8ds32nabctmWyGiPzIqD9xHH10rehuH/5dPhzSNC2gHjnGGPk1d3Rwjl10xstZKgZbC95iv985vXlmnXrJ1745l9wLvj04v3nHFPEcdi/JgRlq2opjGGvBXyBZTpxevgTFx8ZfKKEQhZhrrBUoXpwoRAiHHfCK/Hc18CrUbjbO2oMuDAQhj1y/wb/9ivCm28YhiPjcGC3O3Lc3bELOxICoaiaay1QzCPq9Rk60PFpsnDVijmvhE6i5IVSlh5im4x9T018qDRFXAOfORvw1NyHq4W8ez2bh7KBUCvkbaWQci3kmkkFchFqdapyS77Z55oDobmprqhH0udCSAUvC71IeN+C2vxvGxXUlvhsglw5LZR5Yb6c+fjhBx5+/J7L6ZE0T6R5RvN+27E0dLhuN7lNlEC11bV5YK9rAls+aPu85XldAcwGSuvGHJI1L0rXrvXzvb5oB7PrlaxmjawbQN+oN6+na+cnx/zP+tiv0NYThxDY7UZA79I5z/5w4HQ6c7mcSSlbyYytR/SoEvf7PbudFRa3+sPPAeffx4P0uf1jtF/70avdfk1UAwxD5O7uiHOiUSZWgugPf/gDf/zjH/j48YGWOnN//4qvvvqKr776im+++YYvv/zSQnHHnhut53pO4P4jtFu2UX/Pfj5dkT6VvnTr+J9s28M8++jzK3gKjvXH5q/icCESxj1jrRQXkKgCUSFE4jCwPxyJ4x4XBsQF3Tfquk/e4gN/al3+uX3SIpSejrsGLreez1vtKYj9Wa0BVK7X1J9KQZO6phfJk89+Kjz3GRi1a2jdWszLKbb/qZd4DYG2I336lthyHC9/1jnRep6uMjJqnq0R3yJCdI7gVE03k8iLChBlA6KqVgvJCck5gnNQNCS3LJl5WpgmFQCSJMgsSDAw6J16dsmIFPWseqEUgazOAnIx8SrB+YQUZ9oKqq8griBevZ0SCpIreMCLvhBLmRMrXRlxIVhuaOn9m1utVtTuailVWslBx784xzDuOB7vuX/1hjdv3/PmzZcEPxL8wDju2e8ODOOoIcMvtJ8EolePTTa/0/6gqHmlLgyEdkPWgFs3ctdwAjVsu+nbB14/yeYYDVw2GHgFRN367w4Tn4DUvqgj3bXsnnjoGhBtRiNPvHsttv+q1ecLyjUY7R3aj/NLN6HV/gQZIt7dcdhrTpb3Du9UWcs/WYR+iQ3u5xzjl9xI/9xjvfR5J8JuVJEg0dB/lrDTsh9UptMHHsYDZxepISFkkgiXCpdcqb6qIFGEeye82QVeA8cIh8FRQsSFkTjuCa9eM775iuH9t8R4IIY9MZpB7SNLzdSQTXxIF8vgNDTXyVrEulbAQmdrrhtwuZDTTM4zKaUuud1yPXMuPQJhLVrfFvQ25hsT2hLNVRZcrn43Bs4+k3MiL9XArirN1dLA2/OFPtemPlz6HPYuE1zWotA0ZrWiYLYgUi3cl54sX3JVvJ7U6zBfLpxPJz78+D0ffvyBeTprWkHNaJlRDZfB8nw7MdaMiK5+63R9sj24boDgOnvbBm0s4Yseye3c34DPDjq3YbUr7NzCypayoOBYbAxYGFL/9nYj/sdvIlpf1HtPiIH9bs/bN2+YTDyqhe3GGHoO6TiOBBOI8M6bcNFzENqO/7e4h8/tf5lt++i30857FWYchmgCXQNv377mD3/4Q1fUbdEAqiD9FV9++SVv376zskOHrqOwnuvvN84+de6naVDb9ksRxX9Ouw34Pu0saN9sJKsLkbDbQ/C4YcdwuFNyPwSCV2IsjDskDFq3uukZPDt1IyBfvt4/tx+qhebeIkBqrVcCkO2ZbMfRNhy3/d6++zT8+yUi78/x3rZvPwWit461BaBXRCvr/OpAlDU0t3++f/b6mT69g+c07ydEi0RwQQhVBcZ8HLRagnd4cd0zqZoiM2mZKUUdAVo+pSBUA6RNSRgT+aksU2K6zApERSPqfAyEMRLGiAj6XW/EO17HQM7UZFVKcoZsYLQIITici7o3hoqPQgia95mrw1dHLurpBDtf0D3Yh6DKuwJLLgY8TVdjSwaY80B1IFUYSUvd7Dgc73n1+g1v333B27df4l3EOVXUHaLqQKR0enHcvOwrbeCPyrZget38vz00NbA2D7Zu3rp6+M+e9/Mhs/ES9PdusG/PFsOGPvvHhZfm+1Xogg3IVsOvlGsWco19b6bok/uU25P39sT9OQvQX7ZYixnIwXuNSR+HT376cxPN1wwDDsFVwYuQ04WcLozDjsFHBufBOZzzJK8AKNdKNTW06CujF444juLZBRiCUIKnhIAMA8Nuz/7wit3xDSEcCH6nstcOU7OD6CrVqxR4rYJ3rQ7u5pLb4lsaCLU8z5xIadm8TISorKJDJa+LdymtYDFXP9nONwOeym4YCG1A1KlSnAoGiNXwEiuBw4tkY0YXNj2pqtsW0VJYDYiqAGEFbEEXVCgKzAuqALRkyKlwuVy4nM88Pj7y8eGBjw8PzPNEU9YPXhlF7+24pZhzdw0DXj2Smw2Sdh2b966mTfvb5nvth9iz6nh8ew6wmGoDstsvPgev+qdC2zi7B/Sqo3+OkfCPMOdXJV1v5RCGYeBwOLKkhWXRvJkGOls4r/f++Vzo7R/hvj63v3/7W46DW7aMWA3c2L0TKsSl43e/33ePRfOIfvnll9zd3bHb7Z6F4/6jj+ufBaZ+DeDZeM7+j1uww9792QSdaImWEAnO4XzEDxkRze9zvpXgCaqKSiMw1YXSjvHJMzztCyMWf0576jH8ubmn23O3720dJPp7u5RfiMzsW1K9flQ37unpz08B0Y47NmQ9V3vhX3qhz1vj3h0CLigoDYEhBIJzLPPEMlVKniklkfJETjO1JAWiVssdoysaEBUcFCzsdiYtWTGWc4SSEQ8+quHiBLMxNczXeemlLFeBpoIzK8U5D3gQcL69FKQ673BBkKTHFhEkeFxUBWgXAs45jXArrYLI1klBP2+x6gtq3Kj4VYiRYdyx22uO6PF4j5OAiM6Z4GOvofpSe+GdyuN//gOuf7FuPfUvPMank2E1are+QA2Ka16Gp54TG2T2c+Uu5OqQV0tPP83TIb+C0jZot+/Js+/UdeBvJmr/Rv+9br+y/qtd9+b7zye3sDyeudX+43/8j/z7f/9/uPne5/aXtw8fPtxcZKdp5r//P//f8N4K81aV0k7LmXk+c3p85OHDHefyO5AF8ZniCsmwh5QCo9bgfDQRnB+kEETLrlQXSG6k+B3+9Jrwn0/4H/4TzgWcs9w2c8q15PTS8qLNc+bFktL7hkv3ZCqmMnC5qQfahA1azue6qLcFvC322g9tavQzbDyFsvl9+zcR9dB11d0ezqHHLS9sDG/igYMfrnYYEYdrIb+sq0R7SQemrBvQYIC0VPLhoLWuloXpqy+ZpomSc78NZRe3t9HAoFy/bkVU9MLc7TPblWcDKrn+k/76wt87wKxXn7uGlE9ou9rYatt629poz+2L11/c7O/f//73/Pt//+9vvvf3bp0UqdeqzrW26A4NAfetePyVZ/rv21q5mact58x/99/9d10h+HP75drvf//7m3//D//hP3A+395Tf832KcNd6xQvzPPM2UiyeZ47+f3999/zhz/8wTyoQydm/pE87X/84x9v/r3Uynma9B+b+XhtYv1CoOaldntp/ekPs73OJ3/v2gtCFU/VmhsktExaThkpFUm5r0W3VqOn1/OS120LCD+VRwrwxbsveX3/mhah15wjbH5ve/Vq124iCbfvizxZS58C5Ju/frqJ3PzsLTHQbXvquHpq97f3zBKwa9J/jcPIbtzz+vWXzL+9qKDPsmiaUcFIeCPiuU6iaaf8l9/9y83rGkPg/fG4nrtauK5zWqbEC2WIlP2OnO9Vh6JmqpWM0y+2yM8tb6K/tRrtGi5tUaPO46PHBxNptT5Qst+EJ5PqfdSyAnANTpMeTqxribPoCrEa8LmXSmv7lvOuR2g0MdFtug9237ls9EX6Hl2hOgTPfn/H/d0b7naVNP2B3/9b5uOP/1+z59Suc0b6L/OJ5zPExsp/+9/+t7/yqvG5fW6f2+f2uX1un9vn9rl9bp/b5/a5fW5r+8erlPy5fW6f2+f2uX1un9vn9rl9bp/b5/a5/f91+wxEP7fP7XP73D63z+1z+9w+t8/tc/vcPre/afsMRD+3z+1z+9w+t8/tc/vcPrfP7XP73D63v2n7DEQ/t8/tc/vcPrfP7XP73D63z+1z+9w+t79pu6maW6n8/sN/Yskz0AQjWw08a08UDLsYJaouFWPUwuQxMg4DMUZVgMqFZVms7MKkdQ9NiWkYBkYr6qx1bIopSmk9Ra1jo+pPSyqkJbOkxDInlpQYhsC4i4y7gTgEhhisGC2m0Iipier9YGUVtqKZ7fdqMsVbBan1frcKpFhtO6c/fVN6lH68KzWw+Y6anqsq/vH7P/Fvf/ivqhTZCtOKVs/Q89deTyovhZQKtOoPTX24laKwn85LV8e6KvtQse9KVwEtpZJzXetA1qZhKk+Eruz9NlLa2HAV8ehPp89MHKbU5lqVn/Ve7FBdmbWuSppbVdA2HvWXzRNoysYb7bd2mVpRQ6/9sNvzL9/+87P+rhTO8rGrkJbypH7j5l9XZYasC4upw+auNFZwAkNw9hJicEQvZKu/lE0VFMQUQT3e+a7IWkHrfjaZ7DbG2mOzMVxsDJcrlbNiJXxUWa71lLB+tx+rP3vXVXARd3WPbTwJWFFlrUfrrZSN4CipklIhLYVlzixzptbK+zdfEm5Idad6otSk12Wqg9cqvk0Wtylerz8F11Xrthp9OSetmVqS1Ujd1BjbtFWzu91b+3tT5614qTgpOKf1S4Wq9y4OL6ZOt+kirfNpvS2qIgceqQ6pDldXJbpSC6lWEpVMxdmzjy4whsDoA9EPBBcJPvYyOSK+z5FaC6kUcslc0sJ5mZhzomRHTv5Zf0cHd9EU+Jose93WjCtd0t9ZreH2TK66r7a6s017UK7WzNaz7Vje673pGqgfasp7tRRbc8XW4rbOtuehcvauX6M9S5uDIjp3xNaM9sy7ovP2OzbQmnJ6u19MfVhsHjpxNuQr9ckrm1Kga/cVAhXhVOIz/T8B3voLIoW5JKayMJWZKc1MeaIUrY3btZG70qXDiVf17JRJS9EawKmgdei1unGr2yZic9HrXjHEwBCjriV1fV7ZSjZpGZxBi5f7gAutFnC7Er2mUjLzPDHNE2lJumalTEpJS0LZniN1nVGtD0Uc4q0Mhikx9pXJykflorXwctG6xpVCr5WL1iOPQ2AcBoZR9/FxjKpsvhyQEp+N8Xk+saRLH6d9FG1UQZ8K3us+anOij8HrJ7mtkVk3tk8bf6o4qWNCS3w4rpRJTZ20rXPbQSKbvtuuSW0t3F5Da3153NgetY1/qyfd3tM1u6lN08d2KatC9aqEeT1XXCsnEQb2x1fP+js6+GrngUqumVQzqRaWWkhkfaJSqFK7WrlOVa1fqEqges9OVI30aT33XiJis05Xu76K7b3tp126E1PbtrN0tXQrhdH2uVIrS67MeVOe4tqS3TyDdUj5pkwqQnCCd+u6Utr+bDW+pdV5ZK0QgdlCtL3U67VMS2ZOGRXhf4PU576h//iv/yOny2O358TR53hp60Rqz9FKqIlVnHBa+sObXeq9jttq4wEBHwI+xF4yK4SAE12D3aaeuFm09BKGRe2OPn7t/6WPZ32eYguNE7UdnAt939W5uFBKopTU7dxqqrdXFQBo40lWwwYrj9JwR4hEuxfvVtu37RPzPOv6lhL3h3cc9m+e9ffl9MDHH/+kz89qhYtUG1B9NCJS15JzNkGFtpe66/FadP3LNlikj3+H7+uJx4ljTplpzixJ1f+d1zEXvSOaHSZmB2Wz21UhOJOL1pWNMRLD1nawPTgVYogc93sOuz3juGM3jAzDgHiPc55aIZXc68+32rAhBEKMVpNW+1/3h4WSS18Pc86cTifOpxPzMpNz0hqozlH2d8/6G14q31Ir/+Hf/h88XH5Qg0ztrN75a8UD28w7BtJ6jLth4PWre17d3/Hu+Ibdmzfc3x3JS2K+zDx8fODxh9/z+9//gcfHE/OykEvh7Zs3vPviHcfjnpQXlrzgHIRBi6/OOXG+zJwvM48PEw8PMx8fHvnxwwOPp0devT7wxVeveffFK169vuPV7kgcItnKY6RUWapt0DZlpBW8t5KJzuk95pLJNZENELS1Sc1OmxxZayEOcWAMI+MwMI4Dfgj44DqQbLLOtVbyD//NTSD6//mf/iP/x//L/4kQPbvdyLiLhOjwWsZSH2ZJTJeF88PM5XGmJKA6BV2ugCtUVxBfkQBh8Az7SBwClUKpmZorpGpljgRBQcU8Z+ZLIqVCrR76S5d26Z2wbloK5wpVCm4o+LESxoqL4ILWRHJei+X2TbVviLpwOjNcasUMr/Ze6eCwGY/6dTtvac/DNrK6Lky0wr3V8c2X3/DP3/7uCrwAFDLfy3+mUEilktp5bXGs0oykghfbeCqUItQCc67MuTDnQq6JVBLRw5tj4O0u8voQ2B0i+51nWmbmy4VpWbTeZoUQIvthRxhGEEdFyFRSSlxSYmly2blQctVyJbaBzrWylMzSCgzXAiREsoInKbi2GaMGf056nJKhZKhFrOhw6D+dGBApuvgqKKuEIOxdYBciYxwZwkBwA5fHzOmy8Phx5uOPFx5+vJCXyv/+f3NPCM8XnKl8TyqPavDYptbLzdgG1CxCJytIduLwLjDIiHeDgVGdV0s+M02PXKYTc5p14St5JTu6mdG2yRV4to1GqHjJDCExhoUhJJzLOJcZPHgfGIMjiCMYsCkUNbvEUV2guohjxLHH1QGfPD55yJWUE0tJnGtiqplJIMYR73bswoF3+yPvd0fud684jjsOuzt83OHDHh/02YhzpJI5LxOn+cLvHz/wbw8XfrhMzOd4E4juAnx7pwaSrn8Jau1gupX8ERGGcSQOOk+TlcZZSatKtgLeDTCIGZFtL2jy7t57xnFkt7P6n07Xwcslc77M5LTo95wYKakgpxM0ImYMKejQda+sYNk5q+nnqbUyzzMppav3r2Tq7W9XxvcGgAcXOmnSPlMM7OecmeeZZVnw3rPbH9i5HVk85xKeGLC6N/zT8BEvCz+kR75fPnLJP/Lx/D1/PP+JOV1wdYGarX6ugPMEp+M6zYXHx4nTw8z5nLicMvNcESIiESeR4AeCj4xDYLcL7HeR13d3vH11z24YkQw1V9KcmKeZlDPH4x13r18zDneMuwPDbo+Lwbi6atRIYlkunH/4noeHP/Hx40fO5wvn84XTw5nTgxLHkgQSSG0Eo2hB9BCsKPtIHAZcCBSUMFtSYpq0nMk0qSG4pIVSE4WsdoSruCC8en3H23evefvuNe++uOfd/St2+4Hw8Ttkfg5ET+cf+PDxv/Z9aaVPDVQ1cNW+0I2nRDICOy3JQDtWqsEhorX12BK7RrCG4BmGQBwiu92O/X5HJOLMkHPd4He9j56WglsNe92NFIBlK+lA/+7mslfCdAMol7yQ5pl5nnXdrgr5YlRjHHEddKQl9fF8uUxcLlOv3dvmrre6p8f7tzeB6M4L/9t36ig458Q5zzzkmYc681hnZklkSRSXCaESgq4XEKgEI7yVFItG2nq39o86GZRc1LVbyb7ilLjJwFJ1D04F5qz9MnhhtNre3kBw8BCiEIIQfMA7z5wrHy6J0zkz50qukOsKsKy3N8QUauMFzxi8PvvoOERd13LV68ipklIlLxmmGZlnpOS+1hGE4kGiY7cLjONAKoX54cLjw4WcIJ7u8FzXk61U/q//z/+e//z7/0TYeYadJ0RHTpmSCsslMZ0S8ykZGLWxIlBdRYIw7ALDLrAbA7sxMkZPzoUlJcQ5xsOB3fHI/nDk7u6Ow/7AEAai94RmG5h9IKL2IiVTcqKWrISSKK2UKSSq7etGThZBqhBcZAh7hri3/TdRy8yyPDBNDyzLWQFp1vk5T4l5zqSsZUsydQXjBkR173ZEFxhC5NXxnld39xz2eyW03ECpmaUk5mXihx9/4E8//InT+cS/fPO/uwlEP/74R/7f/6//O1BwkhCXEF/BC+LREmxScMDgYBDjGQx0x2FgsDUwFSWgpyVxnhPTvOg1A0GEIXpGq6c9DCMhRH58mPjDDyc+Pk6EIAyDYz96Xu0i9/vIGCLRRZwE5jlznjLnOXGZF6ZlYRwG7u/uOB4O+OARL5RSuZwWLueZV4d7vvjNb/nmzcgX7w988fZLXr96Qxx3+HGkFDhPFy7TTFoSNWu90+PxyPHuzpyKlZIz0/nC6fGR+XxRp+M4Ml0u/Ou//if+9fSRD+cHLpcT83whh0jZHbvjZdterDD6zKtQVubyyQeV3TKMoqyFDpYQo3aEWT7KtHkrYr7n7v4OHzzzslBK4e7+wP4wMu4GfBZCxhgb9TTW6ikl6IKc9d+5FKZ5Zl4mvHc6dUshJ110q22G2Uiq7qEwFriWasyWdIYRUeZWDeTSuHO9B2M4OzPTu0fZ85wTKSlgUUOtdYyx8eWKer3qb2V/RM+dPcWpQb46AhvL2mo8bh5H3RDCvPD3eu1pom4YytIW3eeP+Oc0YWU/m7fk0+35ScTAXqvf6JwZxO3S+1dabc0tS7cyv+2elcy6fTOVyjQnSs26kRhDquSdMivKgtkXSmMbbTyZ+VZQr2gpleLaRQiNmWwvOyRemQ+CC2ZsSAfba6Hi7RfXruz9ayawtINu+3LLIGO+jmbEdGOfzn555/Hmdev1x5xTBtN5vKtqKOCpRXTDrZVSE5dT4vwwcXqY7Oesm2G53eet36855+082gycT4yf5vly+M56eu9xxUBHLStj2geOPDvsOn0bAbGuFe39WoVSITVypDZvoFYnq16MgTevUlWvlxNHdWaw65XiSsVT8ShRQGP/62buQWdMt8/UZr6Bcrtvac/u52RYrP3eAPp2kWieFVi97rVUpGKeo7LpRczAru1y17PYOpZS6mAPUMKkE0tA2S6FsllX29y5PvZTT2U7bgOkek3r+nblTdrsZdv3OiAQufIUbb3E3nv1iCqjqGBWXloiKx9OZzwzZ2aSVDAvQHCR6hLO5kaWSpL1WTRvs3dCiI6YHGkodMdQVeAfgiOGoNFGQ2A3KAEaQyB6T/OUIEIymtGLIzinhqVXY1q87itFqgE2Ne52uz37/dHqGqMG65AZRvW6NQqXZIRdhZLA1WprolBqxZeCCx7nPcMQCUFB22SgaU5aDD6XhVwzuSRdTauwzFmB0nngfLoAhUPOn8gjqlc/Nnjiej20hbB7Btvc2x5q89y9bwRu82JvIlA2xEcbK91Fpts91aIqrledFpnUF/P1muvmM0+8o827tJJp7UsrGaR7uVo2Ka1EzPb82zHvzBPTbBnn/Sbq5XZvl1p5XC5UCucycSkzlzozs5AkkSWzGSUUUKrbOcR5ShWc0/e8q0q0m/EgGCiUlTBsL6naV06EYGRYu61SwSsSUG9OVXKxIBQRXW1roQbROpO1PZfaPZm6yG6B6MaOsP+8OLwzIs/6O5XKUlDAkW0NrRmp7ae0rULHTHEsSXA+2XeU8Eq3zUJ7huA8uGaTiDpO8OCC4KPgB41Aq2XTayL6vl9JmeZUEv26kVGFXJLZrpmUC04yDkFq1mdWMA9gQcT6Myeo9rylGjmr60Db01bbU2tSppKQPCupUzOQe93xLYHk+vwqSq41+7jb6GYHiU2lmvHiSTmR0kJKsUdQFazeeU42l5/vEddNrYs2Phr20eA1sUg/h2v7H/a+KKnifbP9af6aPryajdtwU61W8zRrrVARXZM0Akfwzp57G6/NVkcjD5rhIOg88tK4s9rtCG9e1zoKXjyH/Y5xiITgcaKOh5wTkhMk350lDfM0R8Eyz8zTtIYhFCX1ckpKBts15LQgQIyB3W7EORiGQHKeH17o8peBaAszEK69oM4mclv8NoZ/c5GLE2KM7Pc7hnHAe11cvHf43WDGd2UYB6ZpYknKyu33I4e7PUMMpLKQ8mBAUDs7eE+MgXEs7MbC4ZCJQyCXRMozMXqcq+SyME0XxFXCEgCnRYqr9E7WxdJC8JzDgYWuZWrN5JIVENaq4QnOr8aSjVVnBjuiYU0pAagx07wO3fNiQ3bIhee+CzrDkADnkoF3jxMNk2gGbQuZ6EWNOyyxAV9sNIACzbaBtWdjD06csiQ1t8FkIXJV2up0NS3bmbrpVFfAtjLGggtoeG4jLVq4MJt/N8O/b9Irc41Hw7ps/KmRrANsu6g5MU/tlslsIVbmtdRJe3t8l1L5+HgiVw1/K7aAi8b46ELpDfBIJdvCp58V24DUw14sjMQXKLWt9E7HW9Y+puhmqobgoKEwXlnGForbFqNSWxilLigN2Gv31L4htfDRKzC6NZLb8y/K3Kp9KohXABO8elikjcjSnoXHoaF/wetPR6UmWBbINVNS5uMPFz786cTHHy48fJh5/DChUUkvky19g9+OKxvLVYRa3Wa8bcLq2tgzoymIzsdcIkMZdCO1eavG4zp+ViZnY9hIjzG08agh0UvWURltHcsFFtuQGvASqQRf8a6YYSIGgLOFpyXEizLITvDZ4RAGUYNlXTNz94JsCQixCdbXXfTZO+d0DSzBnp2FWn4KiNr62dYsaZvrxtitKBBLSwJxPeStpVJU/YeORdeMBJ2ztaFK1o29gdD2bCu1g1kM2Ld5XeuGANkYS2uB+dI9omVD4nXj336/6kPo760GzPO/97Fn95GMvPTed69rO08jiuZ5pki4uXOWCv/lT99DnSg7Ie8FfCSEkX3cEalIcVCE2cqsJ6CWTLG+CxH2+L5+elcoWQ1oLzAMnjFGDvsdd/uR437H/WHPcdwx+DXyxblCcY5cYPSBXRjYDyNxiMQhgndk0cA659XLV+sOxOF9JA4jPkQjOVayZzkvpEtiqYli+0YhaZjx7PBhxsdIHEcOhz37YWDc7RjGkRAHFvPKTcvMskwsaWKaL5zPZy7zhZLhfJqprNFJl0skxES4sXF2ILHxenbywuZ+p2DM06+EcSsqr59pZI6goYrjOBJiNC+6hv7nYl7/quSPs/nXvG3bC9DQYwcOTVlpY5FyBZjbPFqN4k1Io5T1g3ZfpbRw0mYUr57pakRJNUIlpVbgXklHRPdW530H2rpEegOGTj3bBkZvtVwzf7x8oFC51IULC5MkZpdYJFNaSCiVDEa+Cj4GYhjR8Fjr65pQuqTQrAtXixEkpRMHugeL7kkCwelnYxUWB7lWi9hikwaTdb1MnhhgjDA2cFRsLSuFmm/5Buq6Ztq5vUB0jugUjIIGlk25cl6UeCs5U1KCPEPRyIdqzhQBXBU8jiIK2VKByzwxpZmcZEMwrE3Ho64LPlTEaRSfiKZCIWLjzGlqVW7jX9dU5wUfvO7jzT7zFe8rBAsdlcyyzDivIfwhDN2WLL4CGbH0ANc8ohS9P/ODtgiyHnAv0AKldYxpVF1JF1LN1qcFEY3KqdTVBhShiiO4SvWOnPSZpSXZsW3tdvqd6DzFa1rCMAcuISoRvEkBSDkxJw0ThTWa53YzG24zXrylmTgniBdw4KQgFt7vLaVuCF77O4j1gU1c0ZQ176STzrWqHdmZWTKlOj2eF4bB41rKEBXsfkou5Jp1nhRLIZKqc0N0a5KqnjcXg9mckd2gGOJud+DV/ZHdOOBFKCUxT5MSN1X7vtqe2/bFnJJecynMcdB0BOdY5ol5ujBdzmTnyLOn5IyjcNyNRC+UeqDUwqXCj4vcGOU/5REtbUDVdfCzEkc9ZLKsxlK1UIQ4RHb7kWGIFi9ddfETzxAiMUaOx4OGyGT1TIXgiEPAezUwe/5XC6mKmHEPy15ISTeNab4wzWdcULaq5MQ8Q6nZPLIR5wOY96Aao1Nq1sFcoFalk3LNFq9uE6QCHrzl6IiFI9sKZYNVQ3mptgG4NohbfLmBdAFX8m0gWhUQUivJiQ2ugeAd1Sg4BaNt41FGphgVWs27qROebnO3aEexB7R+XznDktecpE789ovazNTtpK2sJ2iGvbF23ibpNQC9Bh7KXBq47MBAv+dx3fvSvlhpi6uBMzb3sUFetYqujzqn7fdbw177++HxosaF9R+isf0u6Mt3dm5ltpq3KBX1DOZNLkMubZJpWHC1ECJzkuGqECQwRs2D1jwtse+3fLQ1bFlq83yuwy1LCz2qxgjaONuyc/0e9bzFCJhS1SOrhoiC0BgGBEc1b4dUC0sTrx6UEJTXsHlYUqGkRLpkPvzxxPd/+MiH7888flw4fVzMa/oCEEWNeTUNnW3QGw8VjpZh8mQgXh2ne6uco4RILpFUYg+RLj3Et3SGmL45t/NvcyV1HOZa7fM6V33RULAKay5w1TDCoRbGUHEVhII340LDDZ15kwu+BF03EIYEqSq5lbHwpZp7GFPzQtb+3Nf1VkS39eA80QeiNzDqYuedbgxym2frOqTz6IknqLZcy6RnFaFW0XV3UcO2hafDxgPEynzrNbpuDDcwugV83rwzzdDWea3HdN2o3jyTJ6+twf7UG9X2iJxz/1sDoA3Abr/bwG0/ZlUAvSwLsIY2tmOpp0BTF7IUdSc86fdaK//5T99Ty4Xh9Y4hHpAx4N3A6HfEWnHZfGQ1UViUMKFSi4Y/aShhsFSYgnOQFo1EcE4YRs9uHDgcdtwd9h2EHoaBKF69jFkQKRTxJIHBeQur133XxwDeGViomk80RCUSfSAOChrViKx9XfTOcZELl1LJObHkwlIWUq5kkywQpzmou5SIQ+DOCYfDjlev33C8uyflzDwvzMvMNF2Y5gsPjx/58ccPlI8ain05L6QldW/A5RJ4+zbxwsapBFsbhND35wJ446Gk0smpnFVjIeXS14VO9qH9P4waXpfywjxXStKFvFhYKSId5Png8d6tNpO6E/q6IqKkppIrzVton7EIBxE1XDtxTPvZoqpkBaFtLbM518AoGMg27wTtXoaBGG3sN0+TV2912PSYc+opX/PFn7dUMn88f6BIYXKZiySSLxSxtCDzVrTkC01xdgSv4ajORbXDEEqeKPlsHh7p60jzrrU9UGGrw4tGmojZmLlCrJCqKLFQNG91yYlp0bDT4CCYR6170EpVQ92eV0kGnqWtidW8Us3zqncTRIFoyylPpXJJhdOiHqGaEzUv1DxT60KtuY8BVwVfhVAdxciilLFovoWcbwNRsDSnUNUj5yydxNZK5x24igQNtzWHrD6DKpaX2byLRu74Zs+LRQBlljwhs2eKO0JYdF5ELF9X9wMNx/f0aBgpSAeh+tPiDM0+9UbImxOtFlLNSNG5HUQU1Be1ezuxgt5T9ZVadG9o9nGqlmMuSvA4JxTf8hiFaVmI08W+s863XNRT2lI2pEUw3Goi4ILajlnHS+OZvAFRCTZrWgSYCCFqyL7z6mks2LpUihHJ6sEmG4FrDpBk19mBaDUgGj2Cgrrm4SxF50YpCkSVJAaHAtEqop7akqklIShoHMdBUwjjwHE8cH84sB8HzVXOSkQUlCQSH6ibfTGnzDzNhhVmhjgw2F4yTxfmy4X5ciaJkM0ucFI5HHYcGBGv+gGPS+Z//LcPT8054BNAlL7g2aKZDWwYoujeAcwGFs0VGaKyiTHqA8GJLiy24Xqlt3DBEWpQxtC8TM7rJKmyMgjqqdRzWI62gRaHD45jGnnz5o5cFioJH5VBEqnGZGaqGYc+RGLU2O0ORKt5u6SCZAsXSn0QN8NpM0rtVfpgUuY1k1r+Qyn9Uy0hvyXNjyEz3l7j+7maIe9c6vmPLZyiNiEU8VQpjevt19UMe+9sK6hO7dDG/CPKmiUNqcqpko0VrFuBomfIs71Kf08EXaj9msvqXFWDoUcEVRMoWa+0eVF0eDXAvtlgn4BcPW1dvfTKTemCjHqbajU2sAFqe70MRGGabXyoRdDHm29hlUXUu+oaX2uHlcZfNfavdtazHbsJj8xo2K9UzS/04u25YAn4NmZyE86om+eIQZjaw268A1/UQHNSEBMp6sZNBx/adVL03pzzKrTgV29acApk1GugQJTsqNVRszCnwnJZlGFfZvKykJdMmStpKnz84czDjzPnh8RyKeSlP+IX+rxSjSJuG4e49gTb+0/Hm0GyooZOrS0cRceKiNM8Vx/xbsGJx7mke9u2X1b6yNavjfCQWj/AumnmAkuxMMPavHTNqGjXVUxwRteOTCIZ6NdcMRUcCt7hcfjqGaqn1MKCsFhI4pJnLmliTBNjXhjSgviIZBVO6uuhESMtnFpfLUT2VsfXzjaXp0YwG/C4eTa1KhAtVTTkZkna917FmLyJsqiIxZrWIGbEV5owTe4gsBnW61S0tUoE38KdGtnDSsQ0gupWKO2VmIyN+RZe27yezZPZft4K3e0hiDYmhNWz1I7d+qoB9iotBv/akKm18l9/+IG0nNnlPbu6MBwijownEGWw3G1dQ4soFExFAaFOWL22EGG393gvLLOwLA4vjt3o2e0iu10kjpEwBM0BwoxGVpLGe6feHhFytXzylPBpRvB6freSZ+I8w7jH+wjiVB9BsFDgQAye4JQuwlaMlNXyVSFBnTxiOUWX88hpd2bc7UjHREUFCYdxpNbKkmbSsnA4HhhMMGOeNUIKCkOISPXU5J7swds+59oj2sYEbTzKSj/VzdLBGknTjfqgfRaHgI8gPlPKQpaZ4mZqyIjLyOAgLhQ/qxdAWhRH7UdWIhLLIa89JFssVaBFCvSdVlbCqV7Nk/U++xpm/1MzyJkH35OTGsC5f34lgtrnxWl4qLfoiisRGhEVONoQQk9bAR5lplBZKMyiu2CPjOqEvevnBa/kplPvsbiAAKlqKkcuSXUMKix5oRQFciKYkIsCFmn7sEU+CRDQdTw7m0PeiOG67tg5C/OiNocAS27pB7rvph4O1Xsbs+7xpsGhKTyOKQmSK1UKS4Z5KeSUqV3YpZggXblac31RIFtFIGm4ay6VyQiuUtyaBvR0jGdbR7NYsJoSDD545cMs/D8tmWXJ3esufQxgXnJhWaqF7CooWtOhdEbnvLAsE82Dkb23CLNmX3ojA8B5JWWRDFL6/tj9Fx2wrsfXFaooMSTNtsmddDf0Bqbb4r0Qo2e3G1QnwUT/qo1lcUKwsex9oAbP4oRzzaQ0M5Nt3quXPNWKeE+QqFECN5r4gB8P1DyR0TCwRhwJxeaczfgC1QShnNc1RO913cOcgxAEcYFYqwL7UjdOk9U2zwYsvXcMDfyUjFD0HrKwVB1/jtIj3Rr4U8BsROE8E4ZB90CvKZH73Z7j/sDxcORwOBLdgHexO6f0NtXGEO+pOZOXSMkLOSWWaeIiJwYjatO8MF1OzPOszyAG01PYs3cHnBclt7zDX2bk3z7eJFxe9oi2pdXC2yrKTjWs0gyHNjyDaE7o/rBnd9jjh6iOodaXtZonQBeDXFXso9iELW3AZPXydG9BKd3VX8Wc/1VMdRT2+8CbN3f4CEuaSGUml6Wznyll5kVVduOwY7+HQVw3zhAF2SDK7JREU/bUDaPtbWsIGWDerhZupv20LJrbMk8zDsEHmyBujRm/P+bbzC6rIdzUDtcwtdqV1mrRUIyupmnPhcZESotVd32RqVnobr0KZamURdVONewBanF9s9ugSNYVuoWrrINICYGmyoaBUV1EzFXU+7mRFWo0b3Nu2LDAq5el1NXAtL1HN61sYYBUC1O2a66oVy9vJrgxnjfHdzWFypLtvM7CH2xhNhaweTUtEngFomJj8sqo12upFVKuzGj4jz4xr6EZ0p6JLSI0r2oLE0NBMerx9vq07diFXIXkwBf1/nc9ZPN8bVl5qd7Aiyc4DSOLPhJ91BxVcTi8YX0DxQVyFtJcSUtWQY95YZkuLNNMnjNlqeS5Mj0mLo8LywQlaSZk76ibfd5CZezxG42ANBOr9MW7h1LaYlPIGsJYMlksJLbaJ8SvggquKYLmFXjZWFrVE3WN6WNHNCQYIyRqRb3bSQ0gX9dod9Bnj61D1XbdUitZMsmM38SqeqsRIQpEYwnmAcgq6lASc545pQsxDcRlIvoZ8QPOa4ilSNH8YwOOThRcOWOdXffbPh/jxVj5Z/nHNDCuM7oRaDoELS92SSzLTM0FiVEJmvbcepiArg3KvOtozLngu0q0HbdsQF0jELwjmjfJVor+eRUNMrJpAzy3ntB+j5bf2oDoNmz3aSjutl0dV5onSD+fLF2kze2eIlJfAv16jt//+IFpemRMF3bLxPF+x93oud8FBhk0v60qmM2+AaWiY9tIuYpGlww7IcRAiIKfwItnv1ORomEMhMGBdwoKSqJWpxygiLHQHqdLGnNOyDLhvQpzSQyIiQw5U3R0xeP9oCGUzlNRL2yMgTgEJVSkkXIWXphVRCSVSk3G1JOpE5xOJyWcYyDuRoZxZH88st8fiHHQ510Kx/ORcRjZ7/ZcpgvTpPmjcYAYLU3ihfDzulkrtpnVsmUGaeRmZ576GGxrjw+eYYwMY8B5wBWyJLJcSHImywKh4lxFBqjRkYOQPCj/ljWaBFXLls24aaDU6FNNE5LSgWcnYmhjfL3u7bBtuhAKHHT+eV+pVdeUHDLJeySlq++0fNBG4vd80FCQ7Pq+1Qc7m6572t9SOTs1hIsUilPAJmAes+Y18xv7MKBq4l7JLHsvAaWunqqUTXwpz5Sy6HgLFlrcwHtby8qaxx1E800LJtKHEvGpWLRRzSwJsgZ8dCumi5Il25N66sVq11brG1Uq11DKXNWKzRYyL7lqSHFt1ELtYLQRp9U5WrBPRY+Rc2G2nMzObd7o+Jwzac44bxEKeIJX8R9NK1NhPWFROzQ38Su9JQ0JN7KKSjbPbLQqD65F3IF6x+YViHrnVxuommK+KEHW/Q2uod5Gtlyn9CF0pd9u9zkFcBpxmTV0Qax3ml1uAmaRiITAsDdxKZ3C0OxP8/qqzevIIlykMOWC5MXIC7OJqEgIeMKLXn/nI3F3R06BWhIpT1TJBkbVbvCWqleK7pUtZFdcW5Msv9/yeaNzDE7tzJaeUk04Ul+1OzBwQnCeIE735UX3iKa9gFMHiJMO6/v41WepOZ+XCiEtZHPeeB8YhpHd/sDh7sjxcI8XjxoXrlf/CE5DeX0MulflhVoWTsvM+fxAXlKPBqlZIzBqKbhxBIkq1rTTCig++k4YlMfzC6vKpzyiNICwLvaynag2uJrXprE04zgyjEMPf0o59VwPFfTJSMXUEpeef1FqwkQEOzOu08YMFJMEV+NANxFxjmEM3MuOYXRcphOnSbhMhZRyB7NLWpimRK2iMfCDGTzVItqr5fZRqBgykzV/o93zCkIbuKaH05VSmeeF0+nC6fGMF6cbWzQZaa/HyvuXstIbEF3ZfSHrslbQHJ5gnr9iGylOjZjN93vfiLfvmshIUQaJiqq7zSr7rIqszaBuhpGslwSdhGhwpQMH6yNdzBSEtrmm8615J0tf0LX/NgsStRuPNKi7CUFqDrAmVV4W/V5nbLfHbeVnOs5d4/FvLfDLogYYFqZSpSKl4kp7tigwdVUXY2o/tOJcy78zdq55i2iGfC64WgiiRI03z1vJ6knL1cJ7qy6w60amc8pb3L+rLTwJQguTNBDaGGKoPZG95z0hIB7nIjGMxDhoSKcLagxsOIFig7qmQpoK0yVzOU1czhPTeWK+6CvPWb3pSyXPkCwdpuQ27l4GojRD2zyfOs29YVfZjAsz4GgEqRpqxVm4vGvklX5Pw2ADTbFyNVptLrVjtpG9yXmXtkua0VgMjOYGiGollGprmD0bCy1vZae6x1Egm5dJXIKa1AsgEZwou14CYh6wGV33ljJzTo5hGRjDxC7N+GUh+Iz3Rb0ptfS+dU69Y858yfJCf9c2Rm0yPWUi1/xHyLT8ZB3ramhZiK0panYvJc2gxQyJFSBenV2UsGtzO3eDqxEtymKH4IFGPHJFwjXQuQWi1yA0d5GNVo7CuXp1fwidnGnecbc5ZgsJCz5QQumAVr2r0g1g6mpYvdTf3z88cjp9YEgzY5q5n/e4V0eOooA7FIcrnuwrS9VQ+yKJLFXNV1tTNB9YvdDOWWSNOIbRMYyCj4BXUiQ1gqc6Ko4oygr6GNQA9o5cK3NOuKRiMU6qGfCCK7pfigQG7zVM13sKWdMtgkYfeYeGiWE6CtVKsqDEm6SihkmuVBbOlzPiIMRgqswjPkYOxyO7/U5zl7xnOigw3e12mit6mViWmaYEjoVkvtTpDayto1s69uy8y5Pf9VPr8w/BM4yB3X7Q51EWUpnIcqH6CXzCBfOaDgUZFuqgSqiL07NrMoeWcNIoHdmQoS1Pu61BTvcb+3fzSonNmX6FeoiVDLdj9OM4ryGMoZL9mhNKI99sXvY852Jgts0lqh1LNmtGP+HNMT57NcirvZyjH0NQoEJTYAdq9To2LTqneb/Uw6MRIcmUjHN3BNjaGTy+qeoYCE1ZhSe9FwY0EqvSym6tttuSVd1+SdUqJ9jstzldTKQll9LXBTNllbSsgquVUhyWNcUkmVRUWZziCDiNmKE5UGq3XHOzl2zwie2xCgatRFNZ1+eX+rskVb2vVcnyInpuJ9Y/zuNzQYpG06lgFDb22phv+5TZGuI1BckiUrx3tq8lUjZbzNZ9emiux7mCk8IqttXiDmxM2HkcgBMtRyNsR1fvk2pAv8rGvmxEurN9RcSiMFpYswGvBkQNiDQldy2T1ohJ1XmhKmntgOg1tcU7By+sKc4Hwu4OFkdOF2qK5lixEGIw8KvD3NXVIype1r3G7AxfNYTaW055NYdTzcKSKmmppDmzLFotweMIQUlRqUL2ooJXZmdoGkRV14loBFPrZOfExnqCnFmWnZKFNqedD4Q4MIw7dvsdUh05VWoWIzUsWiIEYoyKL8pIKTPTWYWILpdz3wKbbeacZ2BAvCMMkd3hwOHuoGkg+kHOL0EfXqwjugGhN8BorebhUxi+bsz6hCi1MM0TPFameSIGzTdrB6+5mvGQbCFQKfdhCOx2AzEG8wDabiK1ex+zhWV4Zw9Y1BM3RCFlR0iqNqXAwVGqZxyUpQtRY6J1QStdyt9ZnmgDUtI9mGZcGzhqCfQKjOx36Ex2y/PKxWSmXSD4UcVe/OqtvN3EwnYUECMWP76ol7bltYB5NHMLYVu/3/u3oDkthU2Ys7SUVvJSyalaaL6jq8b148gLG9EGKLRPNja3s1mbPGLzPrV9dRUgqdeHlNrHWFPy7caCqc5JkVV9rq5LWhGdkgq6a89zbQSdbE719E5abTtpSURUirPw36y/k0tfRJtEeWnAo2rIhLKTgV1UNcsQg4aHo+aHbjxYPL/GQVfEQnw1lKpVGFT7XTrB40VD4drC7n3RcV8sd5V1g9O+0fdEvJZ6CJoHOoSRGAaFLlVPmFPRuWiezzRnLufE5bRwPmmpoMt5Zpk1ZysviwovZdEwoSyUIpsNZTOMbvZ588qVTS6VDth1Xkjf0Nr8aptcyl7FnUrC12idZYDGwLXrOSzSx0gHRazjpocBm8HR4qLWTJ1mSEISXR+aF0Kk5WTYvEfLPGmYuj7xnAuI5ndEXyiWZx7xBIFUK3MpJNHczKVemMrInC5My0zwCzEnQi4UX/A6QdZxQSsn49QwuNFUeS90wNZqgjUjvc/zanlzy6Isum3S0hnWpgbYvJHQcjzXOp628NhL9woVdAnBG2FiHgRbW0rRmtKlpMZK0PNX68ZYvgFCde/Q8irzouHjQH/2W+PbVUeWVm/RRoAZ8r57lrwK6wVvdTPTRgCJFUBfER3PW0I9ZGVJpNOFWgtjLoxTokY4SGaQDCHjYiF4KEaEOAGVu8rWD6gR5RwxmD6BS+QyMWehiOZcBRyxOrJ4Bgl6ndER4kjA44aIH0YkRq1pYTXuStX1rZLIWcFk84iLFJwLDMOO/V79O6IJU4h581zwhBgJ8YLzE+Im5jkxz5ofXFJmniYePj4AziKTcqMyuL+7Y7/bGckBwXt2457L5cI0TZS6UC1NxrvnpVvsgfdnvg2tbpEwpdQ+P1r4ZMvJV1EQU9w2HYtSF1KdWcqZpUwQM+MeXIz40RFGBeVqeBZcyVAWMw4DkgMtjF6V99rUqP36xNaXTqY2IN3xSNtd6/Xn+u8rIJVaet6npkZFWl1O9YKodyMEb0q6RrK0ur6VXvN37VLpx7jV394HkKJeIoGWw4qY0AmNJFcjPRdYlswkEzkvFo5fmOaThmIvaw1opKl8Wi1IrwRjMXJ4yYUpZealELwjh0rwYvDE0hiqES12T15EQR8W8WMEYzIhG6TH//XnoWKBYv0lpOJwomklSacNUoXaakcLSlhb2Kk3wcLi6KHjOiQVxDkUyMRg9aere9FW0RXYRo4qOdFrVRNwTghO9+W0VIqvRqRWi95hva8CmHdY887V+eOaQKOr+mxropXRc602dicQtY9LbqRFywxdiVnvPSVkfMg0LQxjH9a9uNmqvd/1TqvoHEIUkJZUWKwMWq0WYN0JRK8CTChb1whirZmpzi6K2k+uWj6prwTntfzireYCbjyofbWckeVs0ZiVUk0NHpt3XsCpIJALXsGcU1tM1uGkIf/RE7yWVKJq2oSbdNymJXdHVgiOcQwMg0coxODMFlydGX2rra3f20gRWgWPUoVpmTlfzsTTyBAiQxzY73ZaUjCnDkQpQsR3EldT1ND9YjcgsjeV5MJ5iKqgO6sHvkUgeNsP/BBxQXP1cid7Mpdput3ffFKsaH21Qui6F695QY3trjaGmqGXS+E8TczLRAhew6+cUJLG02crlK1s9kIqM7UmjscD9+XI4bBnkIgPas035avSZN4t5dCZ+pp3BbzVjfKmquZ1UYyiEywM0hk2vb8WDmm1u0QXNDdsirELfRI18NnCQpQZaQZtY8KaRwEDAlHrBQbX80Tlpbh0YxOb6QzVvANq1CqTrUIclqDYQVdtM9vuqxjz11hLGvMq+qDyUikJi/tvC4AN5Jv7zwpA13+vv0sDD1ef2witOFuwDIRuRUy2XpqVubNrsesSS5SnFA2ZbUZGN2kMLJbWD/pd2Rzj1i2Vls9bLHQAR3GV6gx0SgsDtittoeGs+SDUineB3RDZj1FlsaMKbkkVMGVULPzNTG1lsZynOmW1FGNLMz1ohZKdtBBdnXOuZN2opQFR63JT57Vv4iUw+JFx2BNb7U8fIVfyUshLJs/GxF1mpvPMdNYSLI8PE6fHmcnqeOVFmcC26GjRbaciXxYz2phN9wmH6Pb5l5JsUypQtR8a8dM+18BNi1xw4kjF41sOt92/cxr26rZe0TaWZT13G6NbYm0lXjbjtntnnZIDPbxbDKDRhaO0qLuwlIUQtFqea/nmKeMkk0KleFTswjbPJRVmW9grWmd0ygNTujC5iSEsvaZlI72UdVdDrzHFUdyLRqOIFrbWkB5bx6WBKrsdI0pKySzLoptmiD2CQ5njNTVgDcm1kPKcrfj1TM4z1EzTK4tG/HkfdfyY56Cvb7VQlsqy1G4MdZBrAKwp2G7zOnPWa52XhXmamObFjALNx9V8x1VwRfPHVRCvtlWjtnmmrZ0HUHBr9UlzN9hXJryuzNuzVkSJpZQT01mNoXFODKcJokOs3EIZKjJozeUYHS7qc5yl2HW2OSJKXwRnfbeQyoWcCkvN+JwI4hnwZBeppjo+BFXA9HFEvDfpTY8EhwQDomDAbGEh45fcx4b32odxGKk0r2QxgJqtzExkGFQBXEN5BXGTjTcNe5wnHSeXaeHj49mKtKt3YDfuNF99VBJpiAO78cz5fOEyXcgWMVVKVgPu5hhfw7AbmdTCu2spNK+nvaEGdNnUOBSMtFDQkWpWUig9snBhPAR2d5HxGIh7z7APaDaD5RnOmTIt5NkINSMufZPK3dgISjZIF2TRsPhmPyjS2u6Nt3Ka1/Qg+7cTpCgZFbyHYTCBudUT2kq4KFejxmPOaotBI8cbkLd14aU1BbH6pG0vM5BvcMlMfh0LPbJCWNA9MPjmuczMixIOS15sbUbVxp2Gfqo3NKr3snlDS+WyZC5zUiBazFBvmgnd3jElU6f57lb+lsXue7HcUMOIvW91iJjqetVIuT6G2vpTNYrJV49mqQaLDNO+c+ha38rVmPpCdxw4S1sK4nDBE52l0cxcm1btSYvwrEqAxrYiNfR6zTUIyReyL2hNJZ3PUjcWnAG/nNUT5yz3Vr17YvZ9MTu+eTot1k7UI+ukWnqRinc1vZXWb7VWfPDkmImxqACk5SM3rCCiY6bYmKu1WVomcCRQXYVSyTXpWr+k3oc6772mGhSPDGJYQed3KomUF5a0qDOhKhCtLoCvFMkvqvuLD7jxqPc8nyDuoCYKqTudMCGopo4fLL9cTAROLN0EI5aCt9rDIWjEAM7KxGl0yRkVrnp4OBGjg6p1o2NU72jTmXDiqFkFhHJ3gGUze5s1rF7hnGFaZvz5rErotifsxj3n/YX9MuOqo6SKFM3j9mbTauqS4II3Uuigqu0h8DiOSi7WB1tDbO8NgTBEwhA1vxTdq7Vk18Tp/JeE5m6AaOvPxg47tzXi1i/kklnSDJO5rqrKHgczYPKSrXi0qc8VEweqM1AokrUmkjGOg11eNUOp1TpSwRpjicwo0g3S8uacucurGVAhGFPsAN/t32bwamhoUWYaZx7R69yJ1YC+DrVp3hrd0JpyVrTXyDCMJgCgx9JBeLu/bRqoeWTMUq8Z5BQYSYMp5oJ6RqI1rwMGDM34Vjyt+Sola2z7iyDtL2ltnNTNqieb20I3+mcr7fYAfd5uvthZjmpgFAWc7T0amDULu+Xn2DnlxXtcB3jz0gkqiFOaRHp2PQ9UKvqe/UctGjLrhCFILxY9DOYBskW0Wn5cLmseWKEq8GrdUl2/5caYixhrKmIB1zbmtgZCBYp5841R1dIrHi+R6AaiGzQxv3okO9KUmM4Ly2UhTQvLJTGfZ6bTxPl0USD6OHE+zSxzYVnUaOshZM6tuZYIvZYkgNdx+qkm0jZk7Y+K08T76s3bdG3jt2ejubQJyQvBBZUvr8UApwJYFWkxMQWLZGjn3EyvPmJKNdNVuPKKbsWz2pqnQQO26hgJ4JxQarJwJwsBtnDqUiu4grhMrJlFlMEX8QQHUQIDltslmUIm18XKVs2kbEA05w3poZtb85QH0fqQ/kXkvw7zUpR8aDXYoIWtiwG7VTG2eUQcVcOrxDZZezbtmedSmJak7Op8Yp4fERKjF8bgEQ74EPDE3mfVQH4zvltBdFelA93VGH9qTK/rcAOIycpwVOd0ztkDF9Hx1Bh4sTWj2jOkjRHnuyKst1yprfDRtmQMBiLcS6oiKDDQhGLbs5aipZ6WTAqeGj0yePysJRlkEOpOI3fm6BBXqK6SqolElYqQ1cNCJjOTaoWitQrFBaJENbBEw/azDzA4/H5kHA/KTFsYVxOOQNbIk2z78CJaNky8U/XHoAKEgR2jVNvDzBvgVPwvRBM2KtVqj5a+x9dieX8pw2XhfJ4Z4shhf8f98Z7yJhNdYBx2eLS0lRPX96UZW+87+Lo1vqUL19hOaaVZVEAG1vWkCQU1YbhGWjYCpNRsJdRmssxUv+B3nt29Z/86Muw9ce/BmVetVPJFSK6qkrLlBFabY9LGXcV0HLBwPWfhqeszMA6232f3fG48veuGIb03TAuG5v0UmyPeWYgurHaLRYEtSQ30ZVloOZ3OSmE0cuolIKpcnO/zoeWY12oid21dMfsoA1IyQurz1kkGsXqPeTH7S6elEwWgIWg+ohNVn88lM5s39LIkzvOC946UCzFrSRVvRGgHV9Z3uo8aADTgpGN+S4NLv+ZtfdnaCG273x4J0j6LJVCZqFFz/HkjLEsVsmi4ZO2RX/bEXKvxax7H+XafBx9MSVsRo7c8zWpgVB0sgRIrMWqaQjMotntZS3QDoGiodEuFqDav21RTu0VoJVqcmLCo70oeqttwBULL2neb6BgfPL4YWLYOqmZr9w142y8ihp51T01ZU+umabaxpaGgMZhCbG3zoNkjm1ddn3C1Z5tyI/pesFXEU/0OQkHiAYlnHcNS0PI5m9QREZoqcddhaVPVzirVUtekKTFXA/xiwSkWN1cKJSeqd1DVG+pFQWhbGwVnhHLFspA7mdVI8uYwKcCSZi7TuZO0ToQYAsf9nsPhgCdQUsVVFVcMPprCsFs95BahE4Jntx9p5aGaU1GQTvzmnDlfLsxpwV08KS2a9z9feLgsbGfc1Ri//SSewoW2ETQwtoJRvX9lrKZ5hodqIbXm4xGLBEIN0OaF6rHgyh8jrjLMkcs09Vpnxc6aS2GxfKWUmjtY32uqsgqAMi2cTLKBC/EqxR93VDRMpG2YrmTLDV2Zmj4RbnVGA661dKaoq/s6GPDAwBAD0Y/sxh1DHC2fsC0CLxuNbaNsO6f+qzErBtS2VvUzMsD8Dba4bBBZ3+QqdAW07YZmF3BzFPRNr/+1XUNbQFajvRSQsuYTV5qLTO9L2u/9FKsgQ9+Un4JQxCJnN5tCW2vYhDvZ4tvByQv93JqGa9i2UgHJ6ubSBBF6dmE1gCUWykPW5HjviF7YD15fo2eIrkt9V1nLdOTcirbTMbOraii3cPftmG7GgNaQRZd9C3PKqWj9vqTP2lXNGRTvNVTH8kJ9DZBRAQIqc1m4PE6cP565PE6kSyZNmeWyMJ8XpsvMdE5Ml0SaVU25ZtFnpD+0b510BcMq7fpbP+l932pi7nERZeLbPGqbmIYZoeHDJkRVZANGSyKLkErodf1WUGALuzQwuhpxOu02xBFmtGr39b2QlrtRmyiPsuJ9TFbLodaHhBShODWWVUAsI65QGrAtBSQRQsL7RRUAfWM3AwMDNVdU77tYP7byUZa2kHOP2nCumCCKhd2KWDmB2yO9lMI0ax7WPM1M89RDBJvIgziVb5/MAygCPjuqiSH54Ho+TFPVxdRJcs6cp4mH0yOn8wcu5x9xLNzvInUflRwMqpJZrZyRdn7bA1puVu3PSkFz0wLI3ZjelmIpdRUq0RzT9n1v40s6eKk04TuLQhCHuIDzEW+KxsGZCI9a8VyFej7zRjUj6nYLHqIqBoF4dk7YIexqZZcrY62MSedJdJCjwMFBCsx7cKNA8Mx1JpWZUhNSs639leIK2VlIDAlXAs5FUgl4X8jOU8IIoxD2gWE3UnBIVqPZtTBUmwPq+bFyZSSW7PDJIb6qwikB8ZEggDhaaaRVlMaRU2FeWiH5hekiuLka4VlN0EPXk/k8M58nlssCuRJd+P+R9m/LkRy9ti74wQ8RmWSV9M+1lln3Nttm3e//Wn2xL/aav6QqMjMi/IC+ANwjWCI1p3WnLFUsFg+ZEe5wjIGBAW4xE5KxPUUO8/LrJhXfnhulFm6vjfzJZe+9u8u8nudzP4GojgPKt7jFA6+4T6BnZ2ztjV53empIFpZbYv2WuH1P3L4l0iqk1RZKUpu320KghkiLgR4DXez6GRHupPYAyiNhl+BAIE7XYsXX5iBOBiCc+cjl3Lu8JyNoL31r7uY5euXHtRgzcvf9sB7cw4DoaT6TuGyb8/f98lDwfjPGYeX5wDD3O6u74rmRtaao90e6ZT+nmdy1tTw4MMsxMaJ1dcLruRce+8GzFLZSkBY4QiAV61+2pyX99rGbNor11dWOmxcNQDjyFuYZdu4Jzz6vVelLDLCZpmG2lDgmHIvMLs3IfSTgSZkr1Ow87ZxgWYa855OjM6+Z9W4zWPGZsNZrKBcpvRVc8rr6uToIvWpnd5+3C8QqxWNGsMXcRg+KYG0U3bguehNqr4hGUij0vKAp+/I447e9Cj3lqL1b76F2egs0r4qOMydES5KCpDN3+5BpOtbw8YL7Zut2qGTMkd7NrNzwLgTxG4HJlmMgLHHWP4ayTtVG/3wFijpC1UiXDOlOXL8Tus/oFCGlRozNQCXiZHJHeqCF0Qs+/Dvs2vRuvc3QrX0oRHqXWZTDJbj328KSA7c1sw6n8jhG2Fh8szFFRnKo5yR4S6H1eYJEBbVxlEfZ4Wn5SD0OosC3+51vr6+kkOkNk18HI39w8L/tTghItVy4m+pOBZZ14dtv302CLOajftTCj7c3yl9lkrg2Em03QNoA/bwQ9w8V0ZM98aLjXHRnpWDcSEG1cxw2pBpH+EMoPYLrJCkmesEYBunEBHvJPPedvC7cWqWpwZjmb2g8VYcTqaLilSXF+yXcmdQTWBHIOXG73+gIR2loqTRtxBbo4WSFxns9k6KJdubrPmU243TTaSYxbNS1CzGs5HgnxsX6r1ze9aHc88ljvJeTxh0X31mruXcMhOoAxPPTJ2s3KrVnUnZ+jRDOn/3pC/jshQmj4jjA6ASlelkXA4g6ABi//+P5dnmd41y9gNJ5UoyXc5XaXv5N5ufH64NxhH9A4p+8HbNIOYGOImhobpPufx+vJXSsjG7sUEyRJQlrDtxz5L4mbksiJXFzBQ+kmJnI0X0osLNmdvjYKJBxZwTvWVMmkytEA8XuwjYqD8MynmZsVpKFKJkgCR8WYrLZYhWP1grt6Lz/ePDzjzcePzbq3mh7dzDaKEe1xvnixg5+LeelDfpxWQo+O27cDmXyDp9e9HH4nZK0wdiegFJc7sIEBPbTfc5lgxYKrY3ewjjJiQlOprOqXe4ZpS57RxW6DJpnvBmTcY11OJfZNWm5rrFgoxCaGHiFhsxxBgLB+qhiqYRYyCFyCwkdQFSN3LCeyup7pjkYbfRWHZTmD6ANWxWkEMgSvFr290fvyrGbEci27ez75sRhmCY+w7Tj2A9KKcQQaLGRYkVSnoe+FcO8MuvAsToQ/evtnbe3P3l7+0+SHOj3G1nupkbJqzkAk/1Ve0LehwvhmdzNu6Mfx6dcq6CzQikuzUpMPm4QUGN/zQrGUJUgEAIhJWJarHcuiMmlsYNb+zmH9FcgOn7uPwHRHIU1BascROEmwksT7h3uTblX5eYLq6mgCaQGQk/sCKRAn6qZik2dcNmmmGqoUTEX0oQSkZ6RkIkq9LCguSOLEG+Z/LJaZeNQ6yv3uZeeHtlIg2YGMVYtC4QWvCffWgAk2LinEK0ve8xXFGfgbVh8oRRLFlM2mWJvajKyZjIxqWpA9HFQnwWqkiWyxGx986GyBT9fWqMcB8/nk+M4+P3W4JM2UW1j/jYMY65TbXXpRXcCaVT7BxmD2D5WMTlf6YUQK3ERlpfE+jqAaDxHXoiRDKgl2C2Zg24Rc2qVIHYNW/Befov1OmJYF1TN0XhWEUcMElfATNJ2npxc21ucM8GRyGkO4+f6NYcZCeFxFPZ9Z982N4schkCZMfZoOt9+tcDV5h6Ois7oD9Ee/H3hZIW9q+BqlmFGg8c11ebVy48pUcAdQ2O0vtveKdWA6OM4eOwH21HYqlngBr+fRkCa+i4Ga1tICVLAxxh5yUO7gxBmDsrIQ0aEVZ2SXeFc56InYSYu/xc5DWP0EoPE5auDAFWGhFXB2yvOjqjg7S6fPYRlWVhvt1kRHWoPZQCqM64ty8IAcWOEljb3n8CM9JDTA2Wsq7FfrFoX3BRKbSRbC2gLpJA8FnWXsuskL0YbqENucMKwdwOzEsLsx04xWTSeKpbRH3vmbCf57P3Fe2HbDnJOM4eQ+AsQjXj/rO0dM94x198BQM2fxoH2F4tcCVSNKBmNd8LSSN0q7kkgpsNHxZ2zsufoPT2LZLZ+7FzpWAFMu1f6Q6T34D4dhmeWHHm5reQcuK2JNScziYtnTjLm1reOF9EGXPC9GJ28ila86do46mGFkGNnf7yTY+Bfv/3O9q/fSXFBu3gRwKYrqHY4HOvhBq6i7qprPhzLurIst+nJ0bvyn3/8m59vP/nzxw8Odz9v1fK03ho9ZvRf/wefJYhfA9F5AJ91vDO5P2/ZeLnqYNQSFUvaxRPIwQrYYSBnEMU2t2nOLbHZS+G57yzbTl5265s5CqVYIm/9Op2A9eJITAzb/UWyLc6YUDENdh+OWmOHCGdi300nPqojc0FZJ/rZR2Jc0mT7tJ/l9eDgcgSoGMymfATGEZimZOVzEmZez48fyoCa8+p/8pV/v3Xzi3694WfCfX7VJ2D0v3hp14DBSNh1mLsYUBzOZ3jFb4JR0RMs67k0VD/+rnmtrtdsYm75+JqUD2B0rNN/ronaYYVXGW1gsLFa0rsdqgLazn8LwXvZvPH8tmTWNXNbEmsOpDSAT59S8toqtTc7AC+H95B0dP9YRhWQISU65XPmPm2SquOolNJozQJ4ChnRRCITyN5zV+mtmGNmMAvwVjrlqLz9aUD0+WOjHUo/1Fxvi6JFre+4GYvfBgITjMgazR3R+8yGf7u7cAo6+18+e4SQCGSrRnSTQQ/ZafeATa8OIMeBzpR/gc4+8dYLpRViMIZxLJgz2bSkxioN6uB+LlZmEJKz8owfX4NGm2vR00T761h7g41UhOGEF6gt0Gm23IPt3RAaSCERyc7kIphcRrIRBb272ZLvkUHkeUy9zk8V8TaAEMg+HuqzR62VH9sbvZkpUKlDemsx0dh/Y8NbLfTaIOnF+EfchTMxZFbj+oJ6ktjYj8JzO3g8N5IU7lnYlkDIO5J3NO42WD7497qeUAaYv4C+8Xt/BYNXg7MPYILz3y3HO/cMwpTfhRDJIZEkEvNqRj4xE/H+61ap9aDWPr/nNNmQed28pPB5RBH4f/6e2dfsqoHATQP/0YT/UQO/V+F7EV6LmaeUiiV6phQmRKEtEV0DMXRb28lkiX2YrbgcS7yCfu2L05DQUG3QcFJ7nirKD+d4EE9eY6D1ylGwKoYWahVCtbErCg46Ldlb9OYn7zDm69xK4T56do9CqRURYX829q0ix5CtWsW/VSOs67FTjp2SI8exse8b+/Zge77x3Py5v3EcB63XT6+5VVzcLMUJhyEPHG9crmtNrHISxORuKVkCpn4uDeOtGARxl1x7igHReFaSrHrk7tUqWCOixZA4AOUAS4bWrEfPzdhGPx2cICbMNT1ClE41wPW8++zYntVT+fvZp7NN5Pq0lqbr5/7JiGv+rPkSBEgeIx0AB4geZ6M0z4HsYbHGDe66tU4lmJMSRmxovUGF2tycqDT2YgZFpekJvvRs9rHrFYzc6cJwkO4xGkGDVXL7iNkuRx7AwS+g/axoSilbK5ExJm7cdeZ5bWtheBJcAfX4eJDR4iCv9T77hC3Kn47XX8WVkMwB29oIrJqmyjyjRn4gKJICmURtiVSimVL52aGKyfNFHAR637mPsBl3V6LPnvf30emnqqEHI7YYfdWXPNKP1YvalpHMaTexqKhPKujusB3TGccJk+BSPUeKBbE++t6tB3FZrfUtLQnJwTmhUTg7DfYE96aZ+SlmHhWsdUbi52u9dWVvmCljj6ALIjdSqEjo3ipiJEpvJk0e65uOtzB0Iy7URgqdxSE/W90QdVmsjSrFhTWtlFsz89VFyHlscu/p7Y1SOrUqtZoXTBBbV84L2N0Qd+lFTx8YfEZsaxz7g31/sG9PejZNWAyd2hKlZ3RU71VnrqXafP58Jg8DzLxYvqRC7YVt3/nx4yd//PvfbNuTfdtptaAmjYHlRvz9//h0mX8JRM/z9wQdAfEeG1tgdrCEyxVgMnk6KxkyI4VcN7C/0THwVsUkGEepPLeDnDeTF0bxJGn0nVhC1LRS1ZLUHBNLyqgEFmBpHQ2RpkpplpxaTwDGxPfRK2HyN9wFEGeRzNjDm4DNRtIBJYwqqVVkLWgpY4OPcQru4soAvDpttP8bkO+zu/HF5//+0z5WAj1xHYH78nNOeuF6uv3za7Ck+wJkL3/Og0ku4LSpJ+P2xk1GLdPwqU+G9/L+/GVcgeh5lF3f14Ck12vz9wP4qysnAnkYm2BjVMAY3OlM579uTGqKAR9vEFjXzLourLfFJBTRRqoYCO0GPmul1GKbGfWxHsbkqT8lGqMUvLLl4lqiX5OR7B+lsB+79eOVSmt2mOYhx+0ZWuDYdh4/n+xHMfY0RpOFHI2yF95/PPn5xzvbzx0tAtWYe+mBoJFoHMzsKeraXE4U0OgHWA6EJVgOEi3ZDa4MGIPHP3vYKJPF7/kAoHVWLSbJI2IEkqsdbB6uucyZeVGl9kJoO6qZGIYU6ewJG0lZkLHvPiYdpqrwXnKMQGL2OAnSmYzuiHU4uPV3c1n33jXTI41K7xEJHZv3ZclV10qgmCRHhBWTdSdJNBY6GJkQ4nzdwzhCzk4Qf38G0lIILDF+WREtpfLnn3/NjXBWDs3oaRgNdY+pg/Ef7Plw4kzRWGXbE0PWadfHxi5Y1eIoNht6PxrPoxGOAumAuKNZnLBNdmh6Qj+rs/6+hkmRAYTAr5XJ8d5DjKYmkO5gql96frwaYJppEHP6jGkh5oWYDIiGkCxB7GZQ0/rOUcp0Ez0dcmVeQ+FMMv+2vgX+3/9roZXViAkiSw/8R038R4l824WXh7J2mx/47I1DQXeryEkU+i0QboG4GOElObG1w/qGe6OJTaCNEud+G/mgSEFiQ1JHopHBKo0hmZyxVtXlcVahqK2YXLeZQVKpEFqk9cVel7h5HxHyan1Z2EiJWivLrXA7qpHFzdQAOWUe7zuPt53tWSAUq4pKo/dCrRv78WB7/iRI5bk/2bYnb28/+PH+Jz/ff/D+fOO5vZ/Oyp88pvGZ/cW5Gj1jgGuuJwB1xUR0YJ1zJOVo881n/8HI6vzMn42Yl3Xo514QI+VEBYqDUXUQqoOn817KHlCJU8lliaua0sR/r4Qzwhg31z8oASZYldPZdvJr1zNcYBC+fIge/tF4m3LJdVw+f7YRffLw66CAanS/jOHpOnoxu/fDiSXKruYxxW6gORiNWM8dasA/JLvepVaOWh2IKns1MFqaehUoXta83YPpfuw5RtOA9kBT6000g0C8j9/Br87Gp3mvR9HgXDPR1gsnuXnmHgM42efU18x57U41R+gGRsMwAPKAPNzMZbaDfHbN5SJDzYSYDMw1ey9NDbhPWXIyZV7MgeCzTrWdRSPfIU60+WtodvbSO6QBrK3KqH3kcaB4b6p7rsgkGk6S9NprbNfEF6i3XHQxE7dT3n+C0BBsYgZySlFjVu4vmbzaaBAbA5WQFC2XCtY9b2t9tAMGP/tdQq/WVCVq60xU/gGIwn44+VMFWoSQSawQuhEVvsZVKkL3vJZxMPoV7jNWymBNRAnRYnZKkTWvhJcFbZF6QD0UM4azWQq1tan+aq16IcLAaO+Wk6bka3p49wRTbsSQGEpC809UpDV6K9RjY9/eragXTWpS1Yxjkey3UymtcJSd2gopVnKsrIva98SEKpSjse0Hj/cHP3784K8//mTfN8qx+4xRW+Px3vj+xRL/ByA62LULevIFM3rqPjqgjkDKuTEHwJCxQD259IRDdFAIxgg2haM25Cik546IJUHoCUDNCU+9d6wTMNv3dVkIKUOIPnQY9lLRUhGc9e8edIf0rVuz7ZiDaa9ZXcpovVVWEb32HdnGMtChE1xa8LISUbhUXkZQt8D91dUejy/D/7gBn3yVXvDkeYDK5evtoxPM6fV7P/3z48dX2Kfz57rE0t+qZa9OQozP40FsyFPGNTZC7PzeX97hGKB8jWEfv0Yur+l8byLn3wdx8E+PlByIavdAPfocRlKCL08zJkoSWFPgvi7cbgvLurCumZSjuVoG3DZ9zEcrHK3YGhDsmoXoLpb2lDj6If2pTma4O7AB0cp+FDZXBhRPlLM7koZuskdtULbG+19PHo9tDrXvXamlUfbK48eTx59P9vcdqRHpgaTZTY3iBFcDFPbB4Ee/4kEs8VojJEWyIrH7IWiBcZrG/PIIIRNYiJfYAePjNj/XpdFDNFJArG/I8ER3VtYc8SQMl+lMkGDs8uVADCOp+LB2/D57oLXPWVXD5E5nQjAk5jP8qR/gXOPbuZ9MCiiINJNyB1NMjJgSpCLRCAJiIjnRFjVb8UqsbzH4YGyzUvfnKSHxa2LmLv9UES21sP34MYFddPfZUY0xssRcnYNY31BixLKTNQ8xGpGGSTIH2dTdfbPWRimNcph9wnZ0nnsl5IKmHdIObqwUoicc6ut+OD5OYvIEm9GdFj/IY7HzJQZfEyE4mOxzHJOCJ+9n5TSkaOZxtxdSuplkWAJaK1oL9bBqqBli2Lq7XH08S3WgED7l7YII/6//lQltofVI7ZFUIv8qC/9xZO5BWUojhsaTYrPtajdlAtaXKM9IukWbR5cDLUdKEHowVrypgZIIeMvYzKGJ1Z8NDY0u1fs/h0zWqw09Ii5pCylQaiKlwFFNytVrQ0pg6asTUT4SRoIRSd6HOIi2tdY5tzsE82RY1xvL8iDGByFuSBCOo1rbgpjL8nE8eD5/ohw89yfP7cH74wePxw8e2w/240npT6pWr1T+/aEjSDM5B9uR475HBxMxnIDF5WUxhDlaTbVNgNVhionGuT3PoCuhzmxGtL7PYc3aDZiGYarogNXICZvpCh73kNmoPiqoI81QTkl69cQ9uCFFEDHH9evhqL98cAkLw1zlur80qlfzRgweHfP/ZaICiFc47QwNMmIopNSNIEGwmbPu9In133VwN1ozehN14OAqDWtl6pSqPgfUZp93l6/aWCpvvcDI3TTmpyL0ZhXRpoGOnXE64rgdYSZNPU+LKdOePebBieFBWgQfpSbiUxMua0EGVa2XEwjP//rfgOg0wOudTqD35tLcLxIWOWNPiBbHzXLVzQ+7olohWTyNLr9POVKrKaKoIw+1NR5l5HBq98Yr5pZzXat+YkaZ3pdubgbhrAzPfaJz7Z4x24G5DtXhOQ7LqtNjqQ3Qa+fUICFHYIsRbveESiLmTFwWO6vFTR51kOadiE5puzfvwej/VWau1f16fvZovbMVH0vRQDQQJdNZPS50RMaMYwOOZ5xQhorJgKqBeEdNY2EgUcgpsOaFdflGYKHXgNZgbVTtoNad7djZdwU1VUwpjeOwYlnrSs5+vYOcUE1wgvekiMSZIOkd7YVaNo79iYRAEiHEZGozrS5ttv3V6JRuRbvu82RjtHnrEiO9do5aeTw33t4fvP34yc8fP2ws07Gb2WKza5lV+PbFKv8UiDoxNAPiOJTH59VNdexNK4NlC8IlURFfDHZ1VJjbQMbFGowIlnjhevuu1lheamc4kQW8pylY5WlZMi9L5mW98XJ/4X6/OUo3ILrXxmM/aLrZgh1Jro4Zd3ImaD6MNiUhZT+cPDB2H8I+z6Gp1vIFKEMOZBvYdPwRcbQ1bZDDAEufB5u/p8y/PK5ng4yrr/z90LjUBH+R5s7fMPsWfv3Bn/2yy8+Znx59fjJz5Cm17VgfwgCCQ7IrJplBzoO9O3g9X/dFwsw4/IXLMrQ1NftPHRK7xPZ6OdQX3VdHqmAMokZnZ13CIfOVyGS0zdkObinysiy83leW1WyqU04+GNqDYmveTH7OdjoDsxsK+YiRDxUfv6KqzU0CrFG/VxtVUYtJJ43AsWpcbzZom9rQo9M25fFz5/Hz4PF+ICFaZaS73Xdp9GdHDiVWQZoSWmcNykuM3PNKwBjU1huPorz3yqYuCwwKCWQV5BYIGchmTpaiOcAlr/p+9gjBpKjXfx3klPYxt9H08+pAx/wHTsA3+wV7JfRiFQk53SI/VA6xxKHP/htbIDNlUI9lU2brK0eF608a63qWEEaiONa8DPBri3IccKMvbOyPPTQkVntdiztsmzUdKWSyE29jppt7zs8Ye16zX6W5X/eI7kfxioANGgCv9KpXjWIkSSIGT/BSJgaTgdleNDnZ3LQzdtpFqM2q9bU0arMD9ygGRmWvtHjQw4ZgLr8BMUJiSMM8Hk6DGa+IXsHndMj12Z7AlHDh4DiMWkXA1Rad3lzpoAohsqjNTLSeooSlwiaLLrWy7zuP50bvJj0dQMBek7gTaQCiAY5fY4rA//k7ZIWjCEcR2AKvHV57ZylKPjqyN0rtXtHVKd0KtZO3Du+dTbvlQXdzwdW8WqJZd6ij4jeuhbmGhqQQOl0Lre+UunGETD+gHB1aIOO9gNjYh7xkY7t3I0GOelCqzZPNeSHn1WJhhuCjNOx7F/JyZ711j+NWPb/fD759L2zPnW/f3/n248HPn+/8/PHO87nxcl+5f4ukpVP7g5+PPzha5iim9ij9iYZCWoSXlFlfzSBpWT/nzGMUcv5ogHG2yQwCZvQ6+7nOmWiNXKS1cx1K6wb626j6NmoNLo3UKfGNksAr3wGxHtYFM3hrilRvT3Kn/Q4+x/KUjFuFxfOpMBJZ+7OPMUWH9W8HB0bdHXFj9Ig1WohGJWpUcke88/0a4yAJzvE1IQST3KVzDMg/9oheHrMQ4cm+KT+sIBRUfTSHKyhG7uaEgMZm90KCXVMnDe0deWtXOIfBJDEiO8Y+9+UAPXZfbXyXqrgJzAne/KKg4cwhPhxRntjKBGf2yTECJ3o1fTjhWvo7wL7MdWTtE/b6p+Sa8+yZ4GycT+N1RPmHHlFTtuxHGbosy5Ox81Q8ARvqjxnuQiClzLJ0eoNaG+Plmf/FSJRcq9qC9092KN2qbFksFxZIyXOU0Ok0JxIuoMKB+ZjpPpUrwc5YM9YJM5duraNuumgktBEty2LXbsz2FddEj31qlVkDgHa2joSyu8rSiaSu09V1nvoynGucvnr9nNxqrfPc9inHjpLMcAs7T0rfCAWSnJmGMvZhH7/N6w7Br4X6MlSTWrsaY10X7uuNFG7QEtoD5TjYDwEachw0dx63kVg+C7eNEUKjuCH4IX65Nk4PyKiUG+GTo4BWatlZ1pUYhJzTnP1JsPbGGJPNAc8LrVVizKSUWdPKersRYmTfDt7f3vjjjz/4+fOnOeYeh3tOHF7ttyv0pUsx/9QjOhI28TxoMmpXEOFSTfGVOAKhrb6ZiA+oakuwYxIOZ5dlJP6YXsI5jd5twHYQtUTLN2sInRSE23rn9eXOt/udl/ud++1OSAlC4miN5154e9rcsuYMzLCUHsz+YF5itJExKYnNA0riyU/0P31APa7vj5ZAiM9VU6/F2CTKiIpZL4vY4SJqA+jDTJ7+/33oJ89fjw755c+PX3GVj/z3H9efGea3927Sot6N/TXg6Wwb18rRABMWnGYs9597lQ9/AKOXtziwwLBCH+6AgngfzKVCz1l1++ytxGgBcsx4DeoB1F/TwAFJAksU1px4WRe+3W/kxZwQJPpsvujynybT2r/rSIoMLAWvgI4q0JhVG8bBr8ZK1tbRUqml0Yr3mQ5zIsXWGAGtYoYCe6NtSnk03n8cPH4Unu/F+ph9uLI268nQDWIRNyNRpCu3CN9z4rf7aoRPU2qtxF5t8LVXiHoQJAGLILdIWCBkJaVAjuZqGcMvh/zlEYJJXAbcZ0qfos+hdKn8gIp+H606Hebe7e4GJ60iYt/fkdM+3hdL8INxyHORS+KkDjV6cBmws7virLbCACMjufJ8hQGU9aJ6OBMNjDzTwDCs0KDOxipjjl/EehbH68/iPYw+Q8/EFWpJwzAd42PyZQPdfeTFJ4/eO3spZthwYYhbs0MqLZklO5ni6zDlaHFUxtgEBZr3uxjDa9fB+3hqpRyFWq1vuQN7VZ5HR1OlhoMuG0ECOSRiiCwhWaVK4iQXxmzQ3js5Z3I20HN1QZ1AVHB5Lt4S4WSUWK9epUI7v6c1kx+ZGUeY1bAhQ2zVhok/t533x8OVMPZ7klcXQnD/gZSBgNS/R84g8H/+BneB5waPp5nX5EdnKRD3TtgqbI3QqxOXfca10ATZzCwpOpguQHtJ9FsEiciuxN4InpbO3vUsxAUIPuKlbZT6sDlxu1L2hjRzRk0pg6w+226ltEpaVsK+0Y7dXFVbI+WFvCyTMEtecUISISp5ebHY7pWaZV1dhqWU4+Dt5ztvP9/5668f/PHHws+3N9a8cL9l0q1T9Mnb499sJXqfdKX2SkiNJQZivrnSRFhb/vSoijGcIHXsUa96xmSzSZdlmUDU5hSrKWDUwMOYJW3gT6F1QlVqxav9lVrMkTZ2q4CO8Sg2RsNIG5JChl4FrWrjHwYoEZ3OweNs6GJ9agZlndBS9UTd5IulFPbjoByHVw3NyCdrAh39dUwgOnuqx6E51pYnm60Nx6eTHB1jr+bBOHK5Lx/ir9OJfbDzXgJd7Ey1eCnIpUlZBEKySrKcBgOeRwVmNTYoAesNTN0SeolC7CNnON12xUEiYvuj+3i65l87lWwXsGl/9cLGWFQzuYXz0nkSPwomQ4ar17xCz6qc4FW/s6d95DlG2psDgdfPJskq0qc0++9rXDkO67+zQqxdJyPTbD+auR1GqHa7OkEiOVsbTK2dWIv1Uk/jNp0kLD0gzWTWTW2UGAsEmp+fLmcFEGunaTBdaCdt4VMA8GtmZIlLvfvpXG7Xo6O1uBGp9S+Kr+OBJ3TEaRz8B2th6FSrcvs5jAMd+imPbbVx7IVyHLbGvLe2e4Ggq6C/fwVEzdwvhkBOkZDi7DGu2jlqRFGSdCPfXSEywKEVn9Re9JihGgzEBzml0ykl1iVzv60s8Y5ohp7Y4hOoBuRUjOQ9rB1rqAmbmis5Kg5ETY1gYp1RfW52PnoulFNgIbBkQbRRy472RkyRvC6kYCOCJEZSth5QbmfLU4xmWhdjIkoiEii18vPtjX//+9/8+PGDbdumH8VxFET1HI32DzHlSyD66/edJfexWIzhOCuEYrK9MJHriVo/bCv/+nhWgwIjWI6B9Ikhc7UBt8ashTD6hyLrzSqhry8v3NYbN0foKhFpjZzNFXHMtpnyAE/mgpxmGDHJHNg+gOiVkR/VGRyEfhhe7EygBVNhzhka1YN5QEx48+XN+HsU+qevhbNSoh+/VD/7Xrn84yff8/kv+OXjAfAu9VsrCTkAZB5AV1MX1K+htSRM1m78u8MNrj/S/rxercu1uazFaXYyyAb/uv8OvJZglfDQLLHXPsiRQZScCf+ShVvO3NeFl9tCzJEexOz3o427GLOb+uWgGiZEBpYDPpbY3q/fhqvzGqWhpdFLpZVKO6qNG2qDxbZr26vOAFWfSn02jkdj+7FzvBXqs519hipYmVWJpROH2YAYUH2Jwrcc+L6Y2y5NOQSOGngWM1DrAeqoiOaArIGwWvKbkpKDjaNIgS8rokMCq8HDjoifg2MvHnZzdZATMv9u93QkIj6jUQqxR7pmI3047/+gUIMnRngKIGPJ4uZjjLm7MBu7vlg/J70xgv1paGYGZr5mnMRA1IkZN2Mqbb7CHCs5GYhYxZxbo1fKYxjM+6zJ/m39B6/45GFb/8XrNdApSO0gVumrbtAWNbuLqlWpgwO8CUK1I833oXpyGE5Bm14AYm1nj2ZtsDd7vy0UNBzkmLnnwtoWNCnTMGlK1S6mLJf3Oiqg1ZPyKxCNMgCt6xrdbMaMtizZGa6wtdXpDNkdfHRVT/R3m3W27+z77i6yFs+XnFmCGz/oeGVfrW/4X98DryHySIl3SewlGZvVFIoSiqLF+phCBEnibLbfscMsLhWlBxvvoneT/hOTk0fdgKw0O2sixOzJYsSrFoVSN6QL9VDqXpGeiDmhekdGQpQXci3ktJDSgvYHR6mE1tmXnW3dfRh6dgM6F3uFTEzK4oRSDJG8JHd6buTFkq+YA2GBuMDt1YiINZvJW1qUzk7TaOAjwpIDURbuUVhumeWWiSnQ/ndGP5mHnpJVFcb1H3JcIxDMRXR1IDrAV++dXl3K3ca9GyqM7iTGAKJWtWmX9T3MXmxupxuVEdDc0apIhV5AY0db8/nkQ4lghj3KIKfwtXsltZjmQa13U8b0PrdFR2jSCdI/9FeP+HOCJY//wa9Jshnnp+LgJHEN0CjDqfSrnNHOeK+4MEYw2Uuzs8+KCG1WVeU868QygyEZZJ7XbizkCYI6GB09nNHP+TT6KIcRZhhSZcFsjyKtC00YnjDnGxn5nP/9VKbp5e/+Oq8mlSOX0lHdPNUy43vH1ThFI2esGMWYM0LorIoa7lR0ArrPHyP2DbBvr3UxNZCrwc71q/N3jTEvVl00l+Y+15m9fO1iUwKqoA17qnlltOBGW1ncpOtstxsGaXahR27LJTc7CQ7VboDIAXkDxGy0nUD2SixKuhhpMVqk5LzSY6GpDEDJBMM+ytf27lF5Pnf25w6IY4E0e5VVoR3tizVur8feUUBcIWQSfKH0hd4iFTFQF+zcqVVn8SwEi+1jVOLcm0G95WUU9rxlICRSWAiy0LVzlI3gplS1KaV2d/t19ZaO6u5wYBYu9R8PhgMUWzU/B+EWImuycUeBToqR27rycn8lhAUhkdLKkhfWZZ1Fkzk2JyYrOlXLUUs5eLy/8fOvP3l/+8n2fFKOw2ZJ9zHFhEsv9eePr3tEx4UDJlMlQxI0hFA6wecooX9gnxBGJcNXr6Hz0Xgd06wGBcQG98ZsLGZeWZaFFMJkrcTZhyVn1uXG/fbCstxMMz/YoMBMDi+R4VK1YIKM88LI5X17r4KeIwRm/LqUuK33xBL58WOiyGwYl47Nnvy1pPePEGl8zVd/H58bf57Pj18lv3zu479OKc38Wb8Czn96iXL5Kr8zg2XyCtskJkZwHJjXg6RdEpk/C8XMrab50S+X7RLw7bWLzzcUZv+uU2Ef3AX/SyBvT4lC6IEuZ4U1eIKfkkm/1iXabCef7xRypGKW8H28dP0AhZhSqQGkugHVISsaXI1nJ6bjrw2q/dmLugGGJTatdpdldErpHFvjeDbq1mlbpz0b9e1AtkrazyAQ0GnKEtT6OGOODA56zYmXBXLqbvmt5toZIadA0kDxvkVxdjqkQMiBtAoxXQaJj/3/6do55RnBM3FlyP08YDtA/AVPMnVFI2HqzQ6x0C97Wy5JFp7UnD/nZKfP0NBVqBizb2eqzL1u+11nH9NYrKOq2sfTK/HilVBVZlxwqGvHr2DVo+qtA6WBNCSZ6ZAyCLJB+H0cEn6NHeKxpnu/2NdrfNj8KyPrNv+10QZhiYCMddkgSPPXbkmEuX46EMXYZhGfcdqaG8GN0QQ6e8FKh147ulfuudGq9RwPuZDdS3dGDMKyZFSZPaOttRmjRzLWfBj5WGcxLsTkvcK9u2vhkOsZwTgM9Wy498McilOlN+Xx+Mnj508ejzf2Y5/XepBhXUcvrFLEZF7mW3v/5FrD7XbjJXVEMsJKKoGSKkUr2qsdUJgLa1wjKYNGaNHuUa1mZLRHoS+RcARyS0QyRCWtgRgy2nda3+lSiSnZeZojeYnk1SrcvRf2YkZlda8EFm791fqPkyUVJrdayflOSjtBEtrERmbshfzYyXFhzTe6jw/sfk9CSJAh+3midB7Hwfv7G/tmleWmjWWN/Ot/fOfbby8ml42BnDK3ZeG2LOSUXCkiMEzcUiAtibxkQgr88XNl+wSI5px5ebnPPS4uQU3eS5eSfTzJsRGLXSky97Tv6+7VUmojeMw1ZfoZn4QTvCGBQEJ9rZE7tSgax7xX7IBoStMRU0yZEPz1hhGvxssbJOYgm5KlaWb+E6aaZjxmm4f3uxrGC27EIN6CEtFkPzfGNq7Wh3NcXfYX6P+QNCq11TO2yjBNOo29uhubXb9nnOPRVSlB+gWIjpatPvPHj1mTWk/jB2JupAvWejFieh8pn8cYq5qeLTrjROiXM0Yv/59AtOu8NvarvSdYPIfTcQ6cUuHrn/beLjmOPy642NZUsN/3TwWKjvma1DqqhkaiaO9Ohoyc2ytlM0+33yFifa5N8LMIA3OjOlrVXPOrTlVZE6WFznAMHsQLwdVdrmQyefC5Jya54XnUAM5CgK7UoVrzO2skSSTho6GSuwKLrwhVGz8jtl9DFCMFxeKyEZVirtUdWum0o3Fshef7k+djR3CzOjfvGWd/2cun1zuEwJqt+rcuC7d1ISchRTWgyJNab4S+02W3Nqzm0tlqxlsxgDQhBaUltZgr9robYwpCZd8Poh6wFmRdidnePyGaoRlu7jXkzX3sNVuXHXOWpkKOfi/C2TyXBbLAKsIaA2uK3Bab+HBfb7y+vPLb93/x/ff/SQgrIpkQsimzQvJ+43AqSkKg18bRNmotNqbFnc63xxvP93e2bcNMmUabo1dsU/hylf+jWdFk2uX6eeZFsLvmn3Qp/sASo1lYrGkQHEDYz7VDcDYlq7j5hoPQZCA059UkK72C9mk2kPPKutxYbzfWdZ2buA8JgDdeD/w7pAHoyAVPE4tTQmFv1MrYgS4fg/EAoyGOCqpOMHrGgeDSxBGshojEw6eeifHfH/rLn+PCfwYW9ZPn19/z63d6tOUjOP51iXyyZFQuP/FM6vGeF2mKdJOZjwBs196+Lvi3qv+sa+yXsXDwg+TqGCHM6pCizs4EDyzjABoHQfd3Mxb9PwB/cWAVxJ3QxHsOg8+lsgp5zpFlSeaSu2TWJbthhyet45A0lDnvs52TziKOoN8VggXP2ZXYLZDRFGlWhZKmSDUgqkXQ3UatmEOpcuyV53the9upW0d3RfdO2xqyN1LpJFGS96CJNmJvpCAsUcghOmliQHvJQo5uChYUCZ2YlJSNiY4uUrCnIEmISyQugbSYZX9wx7qv6HS7N0OKaJU/9eSqT5lWnPK+cWLIPO4vFdHWQRs6XnPE48s4AMdr+Li2dYAfJndBVx8/46TBCWS8B9Erx5No0PFezuTVFBPBxa92CIRgBIDRzNVjox0Ue2mQqvUuBqFFj4/eqwmjgjKAke9XPYF8GAZAXyaNtsBVxOWAQ7Ux5Hu2Aq3o2Bmz/kZibFVKi2nR70AFYq0gNm6ruenbAMx2r4QmFtdrMSnVUdpZNVVmbD1NioLPiBv9ot7/6F9nlVcz6xqfj550pzSq23ZvrLIrM06Ytq9T28G+PU2qlkyy+/7+k7e3v3g+3jnKbhWomaOe18eqyMbydulzLMovV5vbfeWWFGFBWAl74Jl3mnqvrat8JEJchXiD6pX4Vhv7UdmOyhEj7RYIJbD0BKymzAiZnFdqe7JVoehOyGmC0bQYGJUOvR20cvh84Eqk0vTw6qNL59JCTI2cb+R8Q0Km92BJxlbYws6ab9Rb8z7HQTQG92uI82zUbpXxHz9/8nj/OVtd8pp4/X4j5zxHmsUQWFJmTYnk8vCYEyElJEd7T9mqmhKE9/9PYTuR43zknAlyAwaBYy03Nvc0zs9d15oZojHJwDM+OVHSzdylVp85OIHoabb4oe/fZ+mRFJpJ0nvEe/EcHHU1xoHkVRD9eP5MJOrxQ86qq7rJmHD+3plj+Fof55VEmXvIfpwZgyUAtXzLlAdMwm+A3zb9Li753S8P1QFEmWDDAJqnvu5Sqv2M1QbI1EkMpUsnjvLVIBGNQZoE4gC6OuNdPwGXx9jOOUdzyIH7AIAjX3NicoLED08mgLU3h4fYgWiZAG8AUfkARF1uOttBLoHg1w91IMMzps1fGuSs4H56zX1ESAPVNqdHaO/ktEzH4D6ujOiMgfYWTGVo7RcmDWfkJOrqgGI9myZZNzDbxImDIOaU7wBU4jD7Mmn6VH0NgHQFpHOTjTahNj0K8MohKRCCxf6Yspk5uiS3DXWIDtnSqGwP74DRrmSFqLJXylbYHgfvPx8835/QDVsk6+WYYLRsnwNRU20sLp21ymBOkRQFkYXa3il6g/agU8zoqXZqseJBCmJKpd6puZNasPsbQWQYBVZKCex6IG1D9EZKyrI6EHWd7eivHUZBg1QVAQmmsChNbRapj40MwQXxoiSULMoiZrS5psBtSdzXhftt5dvrN3779i9+//1/EuINkRUIRugq7iMw2hDs8lXZKZsB0XJsHNs7+wCij3f27UleMnn1uO7S3PCFSzH8kzR3fuMAOqOqOUCqJUOjsDVcycY4FosF4pWukXycP3dIYYObFY2m+TieIRkoAAtQqPWDLJl1TaRlOJXKTBDPap0x7DnK7FmbzbsjYE1zjMEonsNaRQxAz6pJt0QzuBvoCJaWoPIB99nBoxP8mi26LaQJyP/xcQWHl4dfxlmakc+/6+NHeoU783PXn/nrQ/TyD9eXMG7rFTCK/fSZnHdjk7uvD/+ief8/viNxxs7/Tc6LOCsSqpwW9A4Qkg1WtqQmWUO6m/jYS5dLsP8l0/j14chY4pAKhXNobzCJdkq2EZclkRdzoovRInrzng/Fh2SPwb21Wj+nX68hdzL5poEkA/C+TpoFMmlK6DYGUBroYeCy7JX9cbDvhVrMPOPYK+VRqI8DPTqhCqFCOuxACapkEevbFCWpEqNJZ7ObCwXvB5SYrCoTCkWhoOw0NqmU4IesG3qZaYslknMUTVC6BNo/VUNxuRnN+xBcNithJmSGJcfnHHwNB7quqERz7/PRK78SLGYGJYTeCOLaeRXGGKaZFF7+c7bAe7xdgvohQRlreazDkYQEk93jFWexBXUmiqOPHJNmSvfkwA9zNzUz5nMifCAi/rShAWe1+Ne9GK3J6Gsg6snih8ggQ7Jlr8M+r8OM13htT7A/ZOqe/A5w3j22dU/Gzv5ckxNWnxOnYidaaUptbtTiyZ7ldJ5oepVMBI7D7OpP4yJ7KSavtL7AGTv8jY441EccUKasPoiDErFErtRjzj/98eMHP//60xz+VJHgCUc4+wxTMuUO6u8b+RSIKsKhKwfKromtBfYWaJIJiyC3hVAq9MqxdmRtsCgazAisJY+ROZDuidttQZYFwkrQhaTRgGjo1JRJKbKzGSmWojloh+Q9SWHk8+gSbDYwWA+pHtR+UHu1+ZwixJTMnCgtpJhptVFLY9829vVG2Q/qWkwNlOQ8mxnr3gAZkyyyczVlex+32431ttr3eAVoSYklJlJy5/GcrMVBbI5hb3YuiDJJ5V8fNrJjmeB4mPJMknvcGyd0eh9zG/8OTGaSiyVdtofP1oo5Nsj3b/DKTxAfaREVktBTtzE60dxGB5UWxCsDrjAbhiaWK3mCJH4uOhAVr3jF2C7+B5xf61/3N5OhmadZAis6CgvBrwcnYergLTD6G/9ZRqcjFxxn+7xB5lyOS/kHkBz7EQxQdpQ25LUDiPo1kGtexQCpHpvCNY55VXPEohmDLvlJCO7aPzwH+gRBs6WC+RKYP3wAUeaPAg2W+wTPL2be4+eB57u/gs2Pednl5zF+Bn6efHm5XW0EuHqErhQ18NFS9eq/tbANP4EYg7ngAyEFsqax4qx9wQE96u1j1wTNynZohV6tIkkD90lirOBxY4dx3JB5z8LQrHzas3W1OZZuItT8upmq0s3EkgFdiYOUwIghxA2Iuo8B6u7a7T31vpFqscpkLY1y2Bxj7Vg/5wDNLuVt9XNprp2tHt/UlTljDQg2b1NvoHdoXvRqwRxitSHd7m0IkKrJfEPzdj6X5VunRode6e0ghIObm+SNdrMTlzjZxVAOyHydjOp4FaSJj+DzgkdXm5M9cFePBLWWliWv3O4v3G531tudZb0Twg2RBcZYJj0JXVM7dN9vaiOW9p19e7JvD/bng1Z2RBspWIvFup7FxiCWS3/1+BqIpkCs0YKOdubEpYsL7JCY9Euv4gA6til9ZV9A6LDpTuIt62KL0MrAaQLQ2Xc4khAJLDmyrpH1lkgJkEbXwthTw/woBiVHWHJkSZHaDrthaoChdajNRheYHbH93ujmIQZ+zP6/N71IAE5wivdHjM/PBNWleL11eqtoC8YOdrkceP/V47KBJya8RjA9r62/9w+P0Sh9SfT8pjBxpowPfv3z18+Nl+GHGaP/U8wZjxM0juTBmC+xxmnFDyY+tLReX/p5uPprvDCW0tXYGVwuGyM5ZZa8EiRx6EEpZpQyjDPs0gwS46sk/cIuxzP5PvsqTFaQUiAvRnykFE8zHrFNPg5A6R1aRetBOw53fDVJyuz16SPZMO2/1u6BXqFCaJAIxr5WpT069VnZ3zaebxvb45hOcL002l6RvZK7mNmNRsZIpCDKmoQ1wxIgh9O1FK+KhTUR1oUSAk+FrVeerfFUm3H41MpTGrtAj2f/YhQhKtb/iJgKS4x06vL35TgevXcazYrJGv0enQSCBTxPIN1BdzC/o5ckjEQH5v07gYclhto7JSSESNfmDpht4FJbd+5EZeytSz39LO6TBBn93TZSZbhuoy6zwTAmOuLVmTAbzlTM4t32wpB5LzmRl5VlWb2XPVofCgk0g9rHUZLP3fRD2ZNHqy54zV++BqKD4JubywGHJf4+r81ujMVmEZdNJvKc4+luyGI9wNGdDGc12NUnzU22EO/JrG7gIqYaaQ1Kw8FoR3tz1tuNR8QcTkXE5uT6fQed/W0h3Dzx9UsqlkTTL8nlBWiMhCKFQMg+czcIR6scpfD2ePLXj7/4448/Ue3cbqux38tihknJQF30KlKr1vvyTzK6t7LSu/J4Kj/fGuXRyWTyy51UIYYKuXKEHUlPeiy0BDVCl0R4WcgEuCXiS+Z+T+iS0J6ILbAEcz2sYSFLZpGdSqfi8z7FZr7GEIm3RFgCNVdKTtAjkpWjP9mOd5bySiw3VN30Z1nms9ZKb51t21mXJ/v9zrGuZJQljNiuJzj3KluMidt6Q7SxLJFlTSxrZl2W2Wfae2O27Tjr35qRQbUd7L1Ru7oJnFVEj2NhgKgPazxYNcX23Km4GtW6a/+9maKYnLz73MQxIktVPR9JEI30ThEbseTeFadULZ6unqNCqgGJHUmBnkwma9ySxRm8NyxqJGhErbzlRI2dJ1blsCTZTF2G+qfTe6JV63XWKeW8VGYHSLvkGCKDxNF5tn6IzjLSAAcPynQq/ycgag8j1+bvNMTgsegaly9gjzFdwCugnjfZd5hc18wpTcVjL+2SA/Uz5oODXfc+6G7i0gdKHeur27UZsburGcp0Vz4w8pfL25qlUsY184PDXf8n1PL/TVgg179dcyn+novNX+W5pQof//V8DBWetrFeldo7rRTKIBVTnPL2kAJZEqKZFAIpB1JcCKGionTKBNND7RPjKftUN+VEsd/ZrFKKz4WXONxqu6eZ1t89KvbgxZ5hkOhV49Y7pVVT0qgrF10GbiRysJaBlHw8z7iWNgKkd9u3Vc2X4CimkLEiViJKdAOfgGBxsDdvD4FhvTTJVu1fXXFfq71zHAe1FB+LE4ji4LyvCK9eaBBED5CK9b1aS4I53FpvZ2y2Fum2srsIRUGxOaEpHdRW6D4SJoiQgp1ZOWZyLJRw6S/29S/doX8TQoukngjipmvTXV0gCkqkEUATOd+437+xrC/EmDnNwoKf2b7HGPjH5nKrNo79YN92tueT5+PJ82FAlF65ZTGly21huXlu4yS2LP8/ANEYAzGFWRG8UDuM+XISxZP+7qXzs942gqqqTOLMeijDLNWOOU3BgWCKyWd8OWvnSiZz4IKcg0skIzEJw8ErOLqyjWXjXXIME4huRQBLfrpaq5RZsjcLVqsQQjZL/ykxqWg3IxMDox2kf5Rf6tnnMCW+fpm6W2H31q5NhM7i/fNjyCv0b58bdNs1xJ3A8fr1Yp3hl6rluHkfqILrd3w8owaHoOffZf53jdODTfMg2ZzNjCP2TiSNNi4mAsxfMBzn5vkxgPhgU9FJYuS4kNNqQJRILVbVbt7TMVyJx8H6j8epF33iALAOQk3WNZyUg1VCvQI/5o/h7ztgjf2iDVqll0ovxUFntB7DMZfWpXkiViFtR6cdpu+nQqjijsuCHMrxVjneDrafO88fG9v75uvJZzOVTmyNRSL3LNxH9ciri7cEt0W5JWFJgSVYtaJ2l6bdAtwTTwk8amErlbdaeJfKO5VDlBLVKp3u5hqdRIpjHRhPQOcEB/8ERLs6g/nBpdFXVQizMq3Bsoou7uKnEGc/aGfIj8a6VbV7H0Oy+XiSZlLeuo0ZsTgrE0jNxGxUDSfJdKmSTMIiGgB0Z0DnyhwQJiMcmh8A/u/GZDfvOxVSFpacTNWxWFvBmhfrx5CASAbMDTNoIjgYPXvSxsMrsaNq8hUQFTfzQGY/VQiRmDMpZ+uf8rsVBCdezJUzpTx7VW1UDKTIdL+79q52T6aaWowdM5hNd2iGTLVbVbS04drbpiIAmL1Co6ozwM1ws47JRt0EEZ8R2pxjOoGEkX9ntcPWjJ83ntwQhHZUtu3g7e2dP3/+5I+//jRzm5y5p8x6M/O7ZVm8R0potbJvuHP159dbgZ9HpoTG2+Pgr7dKfwrf9cayvpC/RZJUJDdSf0O00kOlJTVTohyRxb0RlsSyJHqO9GguoKFGlpTJIdNyY8k31niwNXuaW6aNFAkxsqSFFBMtN3KKWPFTqX1jrw+28k4sN2LIhCgsi63NZVk49p3jMLO0bbE+oP22WGyJwWVhFgd7rS4XNLfOJa8IyrIEliWSs5GHMSSvonvyH4LtdXc61dZ57gdv28ZWildGEgShH78D699D+NibIhNAnf1pY0/7KJbWKcXUKjpNUdpUTIBJjRElRfX1npgznqdhR5gkzVQPaDCH/Ki0FNyEipnb4ZWkKA5EdUg6xcDofC8yz7BJ0Cpo7xycZB7jvQ5gJtf8Qv/2b+P8n7H5AprGR3r9nq9OTgfNI3Zez2n1fEMZ0uHz9/VfYutkDxkg1Mi96PLgpC7l5MRwdjvP62M9QeJVbk+YRy+vuJzRZa9Dum9zqPUChJik1VgvwvAEGDmTn/j++6+qkeAH7gBhJxg7v/2Dw+5I48ZnRv9//3B3PjxiMjDZRc0kZhhYNVuzYaxJ7xOP2Jghy2vSPF8I0LC50SOPFTGFg2i0sFYNkA4CIHgFcXZyzZdpINJyzH7eH7V1qX6dRxzv6sZx/rSc7yLzjwFJEUk2RiSEMUPaLmTw1hKrdlaOwxRix1HMRXpRclJEh1Q42p7s4t4EDdFumMP38z+NExn3phSLFUMmHzyfDroQ9BWjVAKBHZFCCIXOAXpQtdpaq52eFG0RolsmirXtNW0EPcj54GjFFCranJAxMLrEgY1sSocMmTowmH8bXS7E7iN9SqPXi6qpB1QiGiOBTM53bvdX1vVGSnnGUAsMpwrE4mSduZuqEQBWDd2sIvp8ctjhyG0xh/n1vrDcVlMxDbyS0yfNFfb4hx7R4P0EBgLmTRsshQcydYdcuzDO3E/pxoUlkbOnyUBn9mQnEaIPcg/JdOgyWAtLgnKyHrYlJ3IyhtpkVi4JnQApzp6VKPFkM/FFOcCSB5lgzitTjnueGgaghiR3XA9xuaA561nADxN6jl4Rk9TptarbB2jlb6zYf+cxYuIJIcd75hK7roeHzFfFBKHn750A8UNue4G2l4Dz8ThSzlcxjqHGrJqbZoLQxUAng9GSWTWV84UBMIbfgJyGFYPJHa9BIcfMmm/c8s0Tf0+sgszXNa/MjIjXN/PxIViAt3hrwSu4w1x09it4RXTMlhWXWHav8Abs4OwoUZWgSugdqh2MJsMSY61UfESAjUNpRal7p+4N3a3Hk9JJTdi6wN6pj0J9P6hbRbdCLnqSN5LoWlBV7iny7ZZ4XVYDxd2q8jlBTsqaI/clc8uJo1aee2XvnSJK7Y1n7GwR9hA4QqIkoWahFZ89ihCyHVgxhrlL1PupujOl+J79Eoi2Rh1SwBDN2GfcDE8wRO2GT0WFbS2/u67L0HauZ5FpGjQJFgmEmElpMelO8P5MLmyHA7gpryNMe/vzRYnt4ZGojS1wITmmbG+0GODrPMqsisa0EqLNQlxvmdu6eL/xwj1FXhTuCAuRqNGNPkwAFYgugzz3+wghw9Tnn4BoTBEU76Xyz4Uwq/sxuLIz4L0t0WK0g1ZLvk1lEsKZuNVR5dfuvVmCdrc0UmalaVRI96Pw3AvP5eC+ZmprxDhArJkRHYc5HFplVU53Qe/dji6vFax/ScRY91rqrCzM9oBmZEUcxI4nqNo65fAB3I8H74+N9+3gti50hJh97mTK5ijr1eFeq1UXQqB0TKr2y0MV/ngcrOy8Pw7eth12IdfErS9klBRMhhwJhObFstGjvkbkNSH3hZCt8taCGQe12mwd5kiUGykFlpvScyPVjVCelF5dguxj0JwZiksgxMValUfiHjaO9gPZIacbOS6odOsXXSHvTtbqTi2RbU8sj0DXg9Z3d1q2fWAutIVaC712oiRUMvROPayaUg8lhOZkgY9wW212rvZAVXNz/vlz598/fvK+PQkpE3JCYuT1eCV/AkTHdrySrd1eFILMRNikZAfHvjuRYX35NibFB7aX5mOtAqEpwVy3zMxlVGR6o/doBFkP1rvoieFQMQnOwcRASKBR0CgzPgzFznjxo+dtGhFJOGPoIGoJs3d7VBjClYSahPh5Es7GKj2f12s24vX8pJ+XKqPy8vljnrlixIbCRTZsxYfOxX/D/zfJ8PPNMbKIIZmdXhDB3K9n7z4+NVes304kTHKruglO99zOzn8jJkK/hvwLcHZfi+Fk7FfjlyxqKFEG9TzSJMv1QlAn+j+SAtd4PK7AJNcvYHRW6/UCLP5+tbndV16PlxnXTEl1OukzXldUJLhfuLuqqkDI5nNhPKcSFnFjIlM1LRrJBItFLumcJkxjNFQCSaYewwnt7uNSam20ekwAM3PoD3fZ87owhojp9JMJw9U3jpaV4OSt4QD1eyd0elH2x8G27TaepRR6ykgLZv6WrMVPcyDnnZSSmR1dSFMrnHS+ysWHqmKMLRmtdtUlura3EoHV1F0SkbASQiFQkf6E/qTL7r2gjRis0h9FwceOWYpjPhLbUXjfHiyPjJbKsT1pZSdIZ3GjzOIeArVZbmTVZCN6DZtYddXi7kErFQ3Wd59TIuUb95cbL9//xcu333h5+c6yvhCijyQjzPU8xr50Pecej+ul/ST1Sm3WhqP4yJfIumSW243lfiNcVCkt3/jEbw74r3pEvTzbu5eyr1trvC4ZMgUfjzBkE2fYwUw8fJi4Vz5zWrzROjHskYPYaIvRfyLYjNbsktxlsYU2nNDOlzP06d5bJRAlkyQTJWOSt3iCwq5AdElmnMHfxcIe/GXKPZTTCAHMHvoqj53yHBJBMjY23CS+3SV76AjWn1/vv39aPv3sh3//FIT++r36y+c5rcLPE+kSMD9+q8wvsb/YPR9BtaMySvaexHcLcNKcFZUBSC8/VJn9xR2fwToq7JmzfzicoGdJK6+3V+7Lq7k67o39WR0cDkn09fj9+sqOSzFBlTgJEk4QGl1elWIgZUx6EiyAnRIhS+K72EZKqhbImzuw+tEWNBCcNa7dHOra0ajPRnk22qPSnhV9mn5Rjg57pW2VvlViF5IKN4ncUuK2JJJA3Z9U6bykxO8vC9/vN6JcAq3fm9uS+PZy574uPPaDGp5s+8FB59EO3iXySJEjJeoS/bCL9K3QdkvsQ/IK8aiIeqXRhr6r9Ucx+rE/f7RukhoRocVEcPZ+xJCJFfX8wFpIbWf2sdK9b1hQ6yeDKbuybzW5Xkw3YmpIPWxg9/glIk6AOYCUweDbfFJmQjW3x0zyJnE9CLlLf9zolYFRrTRJVV4DeQnc7gu3lxv3deU2jAMEbq2z9k7uOGnmxIWccenc37b3bGt5f+2sEPyyxMXmYA4Crrk0XLxCmKOZKqTANLaK3psy1SspWU+ge+GqWl/oMIroHtOGkYJiEqTZI09Fiezl4H3bWXPm9b7Qus2AVZfVHQU3KBJabwy54ZRZugmctbk5qPT+3+6eE/Y6LCE1+32MKI3M+NuxkS3P5877Y+Ox7Wx7IcaMis0JDdkluTGyrjdu6wqtTanU0TryJn+L5Qr88baTdWN739m2jXAItyNxL5m1rix+PgUZQz+8UhYFloi8JOS3hKaIBrF+sEen1UroArdI5GZn55rgBrE8kPDO3na6A4lRxeko0VUdglDruM4bR4e2H6z9BdYXIBLSwbJ08tI59opy2DieXXjERm03SlmtH9XXvSlhfBxKaYjavuq1U1vxKxPmPaNbpTEp3EKkS7Aka2/8+GPjP//zB3/9fCMuC2k1V+R8/1/kT7IV9bNpKH8EzKjJmYLx2kqpbJvdEwPMzUfNeMWmdWq30TkhXoBoNWnf8CKo3WfAIqaOCA0RZyXc4MOKZJa0d5dKaguEa4uKn1UymFnhJOE9hxqkj/buTqhnxW30f16rpwOEDrFrQ05Vl6orV2Sqj4b6YMJBUa/6/VPewUw3TrLYV5pXePHz8WN/qOeF8z2ce0YZKgbrKTcnAUvao8zvtLjorxuxPsnSGqWrmab5NRjXN8D8GSGewpc2YnnX2aolk4g/K+vTPdj/yYrmNsIjMCq7diEmQTBaIWQA8X5hAjrToXz8N1R1/3DJ7/c73/qrHT4uk+212bp0crf1ZrmUdOvxESf5RbWQct0AAQAASURBVAg5s9wDWQNxEXKJ3hLUiURe841v+W5znjFwatLSTuuVRqVp9bvi8mZX/vTOVMCMMWnDNfecl+7xGyvOSDDyWJ34CD4WZAJRL1xJcDI2GBHaJNBKZ38UtsdO2QulNHQRIoks6l4DC0H7bH3RptQOvQ/XeO85/QqIBiNwbZyQfU+7tKDYkrA2D5XRTtRIsRGkIi1b/qSB2jYCbRYtEoqO6ZRjjfRGKAfvz4e77Tb6ZpJgoXFbEvW2sJdK2gvFzRYUU2mKm0t2rdRq5OyxH7SjotnI2DVE0u2F19/+xbff/iev3/6D++tvLs1duBo8jvgx/f69uh04cVfv5vxrpJ7F32XJfHt94eXlbkD0dgMRWvNqeFh4fsG3fAlEL7eFEShd7fm3f5/l85mEXpPL4EEWkg80TzGZ7jmv5nzqFckxX9Hm3uDDYq2nal0SOcl03QPOaqhYNdR45oSC9VeFbLIjrO+KIYdRYxCG86ox7eES1L0a2oZJ0QCsI7B47B0yEBxEhzyB6KgCGgt9ypv/KeCcRUnx5XDyvGdOPECk/+4PP+9MVrkE0PHdBlBOMPq33z++Zlzc6890QwL1k37OOBTX23ofDGEEZF/XLu/DASx9NLdzfl6t2pbWQF4yMXs/ZowuAw3c8o3X+zfu6yvlWXnozrEf9rsnX8n550TaXwQbjOBQxhrw6nk6jbSi92Ys0SqLVhWV+f1j3au/mYoBNKsIXwkbO0S1C1ociG6WYJb3Sn23ymd/FNirPY+KHg2OZpLhtBigzJnv9xs5wCGdQxv3JfH7S+a31+wGYKB0jlpsWH1OLPeV9X7jCIK4lG5HeafxDjxjZF8i1XJfpEWXlpkE2A4TsLmkirQOTdDKNCrDKzCXhffh0ZoZDEgIJK8sDLb6YylVZoI2r7Mbh4zZWszebEuyZLLL/n0hWUUlnQfcCUQDBHOnMwLME0Q599x4HWOW7VxJzo5Pqfp8A2HGkKuzpZldLay3hZeXF16/vfJyv7FKZ9HG2iuLFpZep7pi/Dfi4fjvvD4eX0dSFz6/3iKmJjEJWptM/AgNY2D3kmwaYhJ1lYiccdgJIVzKNhL32gbwH8mwSSzV5whaRdITS23U1thrYauFoxZjl8UqtV2x8Ra1gV+/4XhqrRsugxxSYb/eQ7HS1WTAk85w0ImMOO3GGbVReuPx3Pn59s7PtwfbXqgdVCxxitmVOsmcaPOycLvdkW5seBSQ0uBt//sFV+VZCoWDqoUuxXqL5aDrbqQkJoMSNWMykwGK7akAsoDcjJDTYOeHHF6hULDe4ZUc75Zw5UAnUpr1AFUajQpYVaSpn1/ZAE4MHXV5X9VKrRsSDmJrRMkQdlJu5GzV0RBNdVEKPLdKbRtHMUOjIMn6M3vw/lwPeF2QHum1UoutGdtDwRUHAhF6DvSaDCAfnf2pvP+s/PXHxr//fCctB+m2EGLkf/w/6qfZikku+yXsX05JJyW0dUopHMcxB663Wum9+sb2eyDCEjIh+Kii3pEmVn2qpvzQSbyccX3sVf0A8qIniE7iu0rHdsxES3MzynU/TzIfJxNmFmbJL6eZyVQg60mWnSfeWWkchJFfHE/0Bxo8/+Hr6P3ZQ/2L+/kcYFivnhjj/cyLw0goRz7WXGkm0u3aa3eHXa+vXXItk40GSu+UZhWZk4hUhieFjtd2BfH+stWLDM3/5PLOh5M783susVc9z5kXkvN+Xaqhg6s8q9CXiqgngmP8S6cbqfHFY10Xbv2Gc+7uiG3y3NZsrFVpxQCpWivL8CcQaYTYraIZrL1o7dn6Jitkifx+/87vL99Z02JaMxHv+a+UVijt4KgHpRWfy2xGZkfpSGlor7P3Ux28xJhInL4Udnb7hVFBpM/zeFZEL0aO3d+nVfqYSpd6NI7tYH8Um6FeKqEHamzU2A2USkKSklMmL4vvXbxfdeCYcT/+/hh5xujbtig91hkwW2UiXRI9LGjqELu14ogrIpvlD7V1Umi0KvQYGJVjFfEZxZWuOzmZwiL2jhwFrW0WPWJwZ//JdnW7vxGb85pM4l97pdbGXoq1rRGR0Fga9JAJy524vhDynRBXIBqpUOqwInLFmbUb2Ni0g9YKQTopKNu28Xjacz8qtQMhEZcbt9dvvHz7xnIzMKqIzxlvFhNPhPHh8SUQPQ0I+iWY/BIwOZkLhNkfYAmcITARb7gPYnKnlElxIcaFFDISEqMsPBIkczu0vrZ19pm4PNKDgXpTmkxHqeTP6K8zESUTZbF+MSJoO92kJCLZZcKzOZrJYp09JH1Wh2NIbnQpdlgFM1GKyaTGNjsuoz15I70fXk1nQvQVEPVcez5GPdmuMR9IgKtz7ZeHxklFXn6iH20qF1bWgMQInzqu7/Xv4weGEdSVoTGSYIwjyR3PkhBzIC6m+x/yyiH1mUzs1fCEblbZ95XlvnpV0twP15hZYmZNC0u6sYSVd1V4NGo/6GrTPM/lrZfr8g9AVITbuqCoycRjnn1kcYDRZOswBesZygEWd5yNU35vJhdBhR6VJWSWkNhrRw+lqDXmG7uotAq9Cv0J9b1x/Ci094P2fsBWyU3J3UwtFDv0chDWAGtUXpfIb68rSxSeobJJtT1yj6R7nKZKXZVjE46n0nz/tSC8pcBjiWw9sdPZCewxcCThCNC8jy4QiNLJ0tG9+pwu73etFT2gS7AB9yMmDCfJL9Z4b+b4G4JVRn/ttZrJCmO/jMNa5z0z0HPK0Hq3dSndRomIs56WCIRT+p+qQ0wHtA5mtGNma141vK4iP4Nmf6XJhk/cLHap/P36WpsbVT0eutV9WlnW77y8/gffX17JdSOXd1J/krSR9JKujesoXPalpzF+TU5r/F/7R89HCIElZ5N+VWE49zaXwSbJtl8lkaMNvA74HEBGAuhMcK3UesweP+vztNnPSz6BSWk2L7QcZuaVspCGsUuwXdpUraoo4+JyEmQibr6RZtwN0yBsXItL0qgwerxM4XJKgazH16TCrVSOVnjulX//8Sf/+z//zZ8/30E799uN19fX2Reac2bJmZyznw3W5zIHw/exOn5Z6CKs3wKrBMI9Er5n8gYvf8JdK7kVYnXQ2RvSLOGWw+Jp3wVKQJpATpAimgJyD8Saiayk20rM5m6oLdIO6CVAi0h3d98gDJVKc4kyqLezeCtFED9zCyo2NL2R6Xog8SDlSl46SwGr+O3U2uht5zgiQbLNcA3Z+svciMNIZOvNlhaQHkli577NPzX/hCCJoCvaku3j0ukl0mugHUI9TK4th/UJ1//xucOlVYQOZlVJdcYJEZl9yMPc5DgOq4i2hmp3BUAkR3MNXvICudHTjsaCYIYrvZr0XDQRWUhhZUkrKdxIspoKqmNnfSjW880B3e5Br+YhoBqYM4UvTxExckwcsHsEGo6woxIz3K7HLNGRHzBixzjicRXENGbqZ/5wAUzj+87P/6I4++Vh1cvmZ78bpjHcPNVD4CBhzzg9o5ucP3ue/xfHbbB52qOCFF0FITNGtPl6WzPJtCncTgWeGdvhbWPdZsYGW48d8wgxqwVXVeh4DzITZctKAtNxQsa1HmNMRoz+BYCqzvtx7YUdr22AUTvj3PBSfXTWF+cmTnqGOMwCT8Wg9k6phdYKrZmZVe/VK46ucFGrBuYQbdqAREIPBA2sYeH3+zd+e/nGmvK83p1h7tm819H7O2un1Ma2F7at8Nx2Hs+dGDa2vXBUW282psTf+cjTR6VKlWEAOB1ioysmvArbFTqBqmLqsaOwP3b258GxV2oZihwbrXUclRgPlqVQW2WM4FuWTHPivVX5ZUzOV9mzGEGtprMLptkjIgMdo4RznF1SN7z3XEQSMS6EdiPoG6EvSDiQWTQ5zZT2vfB87Cy5kkNgzYlMJ3SbO32Uyn403p+Fbd8odTNchrX/xBzJt0RMFjOqQqFTCBTt1NI5+kGVjXTfWe47y+vO+rax3DfWEom5I2GndbEx9u5u3xqUchgQrYXoeXDZHvz1x7/589//5q/3d44OstwJ6yus3/x5R9e7xbLcbSyh8mlLC/wjEPUmfr0k9nKCo2HqM+QIEtzpjWCHnbNOQfAqaJwJf4qWuMRg7LAXfS2ZkH7KcZd4AaLRZIfi0tqABSZ3yArenynuYBlIVqEMxtoGEqJ1JrcxBgPF6bQYNjnJCUCHCQaMHiWIEWumFnUwGljiSs4rIoneIq0bla3NGpWHOmMElX9+/AowTzZufk4nt/fL4/LDZzPmCcYGGyh6JoB6Abni33dl7gYgtaZIlwK4TFVc7iJBCDlYo/wSSdlcZiWOHmL/2igmvw3jbZwJY14z95c7t5ebSyYtIX1ZVu7L3ZhqTdAC+3GgoVN7oWllShQ08EES/l8B0SVDwPuVF58/F6ZJUUw+M1Z0PpNYP10U6xFFIGo317moLDGxSKb2ylFMElaHe1pXk4j2QNugvhkQ7e8H+jwIeyNJ4B4iWZKRUnH07sEa4WUN/PaysOREkkLgIOdAvkfiPZBvmbwu1sIsylHqrNgeAo8oPHJkUwOiB8oRhD0aEO1JrA/Nk1noZmxUgKJmRlOKGRRIulQW3SyhX2WkHx/NjWxqq8QapxvqnEX2y0o2GRAn0+37sE8p2ACtZjoygOisag4DqpSJvSJjbINYEm7u2J4cXMHLhWQ7s0XsQPX1FAYIndvNDv4BVs8EzK5RTAvr+o3Xl//J99ffiNtfhGZGBVGFOM22xHvFziRvMlgfpG4AYbLInz2CCOuSpiRXxWe4tUrZOy0KqM12zDGyek9z9dmJBpjs+hY3iDD3YZl99jFmk0ClzQ7XLtRqlY0lJO+vHv0/dk2bS+rMNMIrnI76g7izb84GXvFYo/g952QB/GA/K72noQzgFRZ7rXupvG8HP943B6L/yftz5/X1le/fvzkQvdsIk1+AaIrR+5ROS/3PrrgA99fALUVuAndg3UzqFrZK2r3SoiCtEVonNKtcqFifuB6jv35BUkZjQlog9UhkJa4rKd0QkhFa2uhVoAZELbmDQNd66YGz5C4MVl26r98hJVSXpSYzEwuNmByIVnUQ02i1ULyCJCRSvJHiimCOvKg5POKjmejRnDtj4pbvrMuNVqGW5mf04hI2k79qi/RqYLQe0LTSxJKu+sWohdYqRzkYZlXa+2kqNHIUZTL7toaL9fB7oh5jYFlXXu+v3O8v9HCwa6SGB6LmUturAW3RRJCFFG7kdCfJjRzuBkSbWhUvHuauDqge3sfc0V792kU7Az2ATHJWmXtkbOlrLoLvDfg7UBwhYaRFlqT3S2+r911/qAxOxHSCnfmCvqjQKS6dNwdSjU7QMfwyhmT1JBE/YqzLe5sg1BQb3Wsywwugianqw3hJ442qGsEwesH7uf+72PsyDxdTbgX1ynT1KtRMtoWu5to8W89kvk0GbJxZ71DuXZ+XPt1JY85c7wTIykliXiuh3c8u80v4h+RQMSWRu3nHFEk+XtHMwqr1aZdCK1Ydra3YWacG2InKEjO35cYqmYXMPa18v7/y/f7KkpIT7ALB1CyeTrsqWCkORB+Pnbf3jbf3BzE+gETXJ63vHGWnB7/vvpYsR3CSolsl39qfxhik0+CoVXeG7vaLy14oz8L23NmeO2WvZgDUrCDVqikeQgwsxYDoMJzMS6LWTD0qY9TjWeH+/NycLtTKNKOalfxgE0TUv0aSqVf8IHOCZiHondA3QlsILUPYIByAy/olQusc287PHxs5F25L5uW+QujEXqEX9rLz/rTnthcjHYYRpnjh4WbtC7U2aqkUFQ4ChwarAh+FrW2k25PlvrG8bKwvT5b1wbIrIR4giaN0jtLYS58fl2P3mHmQfBpJLTvvP3/w9uMvnu+PCURlfYXlFV2+ocsLfbkbUvf+UmkNHm+fXvMvgeg05ZEBEU826/ocG3IEUJ2ldHGJg7HmBkQvclmvUloF0+UtwW38p0OuPY2QdjahKxpc4hNGkvYhXWQ60nUfdj/KkR7JxFnT4IOAhzvkCKI2bqOZPr41Uhrv1Xp5UvTgGIa87caSV9BoIwq60iu06v1z7paKs/f/1eOjbPbvm8U2kvzy7+f7Oz+vl+eHuwvO8qhrFT78J6Ny5AdjcBCZvHfSZ8mJz5WUKKQcSYuPhUiBmKKTE3YYWKXU+mXm79Pz9y3Lwv3lZkDU3V9TjHy7vfLt/koiUXelbJWQxWWj9tr/ZqxwYTj/Kdi83u+WjPjsvJTiDPAxmYtoiFivCKOna/R12ceDydRubJv4zC0tSt06+94seLdGayAtQA/UR6W8Vep7hUcj7J1YbOTKS4ysIrY7I/M+JFFSFN8bkVIzuWUkQUvCERXJQrhnOoFWqg147p2CEmtl08YjwnMNHBIYuHHs55iNVCAKoSdCt3lflvC6y2RVrzwa+yfi7qRJJlv72WNUMHvzHsNaPcEQ+32T4PI1ermtH+7wSNQuzLMd6sNNNbhEbjCx1gMM9u84+BRvsp9A1GOFXH6j/O13w2kFNuKPHU5Tcicf96TNNVzI+c6yvHJbviF1B3fEHZKrMEGoG5N8ePOnpGu+tst9++wRgth+HO6QyNnX0Sw+iioRSC7TtbdjfaBjHFNTpRyFfS+mEElpJhdLXrgtqytCZO4F7ZbWxmigUoIRCEerbEfhuR2wKKsnVfNii4w80xKB6Uzqp4SqaxW7V72GYuUiiXYTJ5yQ6F3Z9oMfb+/8558/+eOvH/z4+UZpnd9++873b9/47ft3Xl9euK0r62rOtTZyxKTdip4SsvZFDBeTSaUs3KPwW4ysUel3pS8VycHcDKM7rBqFSlIlu7R1OBBrr1a5oVN6oGiga+EoO8/nEynR5o9K5egbu25UKWi0uNHEJLpNCmNEgxGnnRC6zRSOFuOa2txhbYlWlF475txoMbj7XrSjws9Pj32DQhbvlcohs8TVjA6l0UMj54WX9YVlvdGqUmOlNzUimkRvjVIsVu575Tgax1GtEqPV9nbvn17y1jrlKJav+KiIIIEejYQYnhDHflCOMt19ceAynilGlnXl5eWVSjJZnBbbda25tM+YQdFEIBNZiLIQMTWUHQDdez1N8j/IJMunxE2URsYzklsYUeVvS2qQ/7/kXX+bg+oxSWRwVsNgyQn1AUQHceVE5chJpvzxcp+/eqgOwOlTBOyTFgd/eV3DzOwKRsWJuu4qFKMavFKPuqzWY5ZX6Oazq3UCNUV8pEjog3SEJkIRofj3is8xtrPHxoC1JoxRWyd4vLCKg/CzU+LyT56nypBGj7zzhKuXUGAQ9BKvR15qxjltkqetdwNdXzzqUTm2Yv3LEolRrTrnFfQhULOxPiarHLHbAHADKWTJhAxLSLzmG6/5hW/LnW/3F77dXhzYusTaRw9JFCSZYVhXoVTlqJ3HfeN221hvD3J+J+eVlN+Jb+82v1Vtf6nn0lSsMIFjinDGars2RprUUmyf1mZtbVUpW+HYCsfz4NiLkQ9+tpp5kvV91mbgu5aDQWgkz+fCIIY+ruTP1/e4dwI2O7RjHjg6F7D1wFo+G9IF/+DvUTuExb5Pgn0cdogH0dWeTSrSN8rWaKXzfBQet0JfYBFTyxy1sh87e7G5z6p9+iWM6SUQaF04irLvnWNr7Fvn2M31t9bOe+yI/KS3xH4Iz73z4+dGzishJlQDu1df99I4/GnV5IL2xpIt96RXno8H2/NJq80nZWSOkNnJSE/sNRKP4PvNzcT0qyv+j0DUWJuzx/MqQfgYFGUYG41dgdj4BTUJQxqzGd2sSCSBM1ET5oqNBogRlkVY/ZmSbS57s+IMz2mGoaFjmX/wCsSQpByUslHrRu8Hppc3pn5KTLmAsBk8TyZxzmzszmKLmXgkNyKIXrXLaSXHld4CR6/Uo1COTiv2tFhUPUD8MxA9MZWHvk9HBZwV0Wv974yH+skTRreJjgDLSG8HIOxudAHu4mPAM5vZRb5F8uousjmaiYkngSkn8pLJS5ovfzSjEzAgutimHYDBRv7Y78o5c7tbEhicKc4x8frthd9evyM98Pi5UY4Kwc1zcnRge0qSZFaLx9r6nNkNQfjt9RUCc2SLVW5GX5wlbnMmqp9ck/sYAAZFa6cdlbZX2t5oe6PsjeNZ2TeTsex7o5Y+5Wpta5SflfbeSQfEIqw9cCfyTSK3NGRCwYKs2gExDrIuam6MS6KFziPAoY0ShJ4TGhPH3qh7Zyve23EUCp0jNEpUao5Isj7cdWQgMSDJTv2ahJCjWabHfjLttXke001+KSbLztlGNH0lzZ24zZOk1gbAGKgjEseNhHONfsRffqPlBD4jMepKD/28/26aMMwTfMiYJRrq8kUu5NAkrT5PCiZgZTj/ydxTJreTS0+YH2cORLP3HiZXaDCcMdU3i9if4hU361Fi7vIPVYZLBeOr1woWr3Kyiqi1Qcl8n6ru8oy6qYdVRXvrlK5orXQRcCKiHGaVr9goF5ulmFnWzroWmwGKgUjxftnoPgA5r0DgKA10J4uZiNBvxLuw+vxQdRBaW6Oq/Y6UIlmM+Rukc8NaP0T6NBwbYHXcy7PSZ/2sj+3gjz9/8H//7z/488dPnvtBTJnb7cbvv//Gv37/jW+vr9zvZk60+jzN7NLcrv3Slxc+YSjsr01tTiGYqdcalJKUmhVdmhs3KL0JoSUyjTVa71CMgRYSVSJ7V8p+sKOUp3A8BGmV8oRnLBB8nIM0qhw02elRkRQhJfs8hUadRJaEUQ3txKTuqu0Jobs1N++HbEWhBYLajDlBrNUi2NoLEklxJcWVGBZEDJTluNjMQonTxTjnxP12Y10Wk/bFYkqh2VdsstnH9uSxPXnuG1vZrap7NcP75DGSV0WnDFdFbcwOmCKlWB9dLcWOI6/OjPvpm8Vk5stCUKVopjSbu2ezCNUSYycSpZv6Spz09H/011mx3rwB/EclGs6eYPEkV2ZuIZzxapzsEoRInDLcq1nI6QR6KrfGHjjH0rTZZjRdttVilzDxo5HvzXthezdp7JdxZaz3PgmjAUJnjOpK1e4k5qiKfsxEZ++qwVIjlzwenUCUC+du/gtLg9yE1LDZvCo26kcTNQY2EfYANTR6EHp0k5rm7uGdS+55xlBLndTJMFffjdzQY8+IM8H7TsOl9egKVi9X6zxr1MhSM1aqnmNWWm1ID372/P2xve88fjypt+aSYqUunVRNrt2b/axyHJTtoOw2k7K5hDo2JTUlS6XnRliVNWV+e3nht5fvvK53XtcbgrrEt5iCzc//tCzEZUElUn0e9Loe3G479/sr99srr6/fePnxxu32g/zjJ9uxc5RCrS7r9ZzZwJslfeN623g7620sx0HZC7VUy5+PZmT6VqlHoxfrfw/BigTjxkkwMqO1Qik7Qz0zvGYiTq6M58UF9rPHSNPVf4H1ExsukGR+MeaK7U/3Seh63keVhLrypMuCpg3iTl4CL/eItoMf6UnoZsL0fK/8yAftHtDV8qriztBWBQ1WALKEGgkJUaHuSu2V7Vl5Pgv7Vjj2yr5XSukctSNU9k35668n//f//ov/6//63/z+7dVGtwTDYntp7KVSqrqKT/1aGza7rYn7LRME60uu1ajUsBBzhBboBzxDR0uBp62VoxQOdw7+H//xeb7yNRD1DTiGvctMsk5TiCGHOP/dGTwB1ORL1h/qw6CD9zeIVUJ19Cr6uR4C5BTIWchZWBYhSEdbnfKF0VOKzxTU7s6t4jNP3VSj1Z16bNSyo73YwSAds1vXyZTZIWJspaIzaDffHL1VtEdLvL1akYazqkuAsh/ItSvaKvXo1MMauls9AzQMM5XPHtek0oPZBYSeVRr529det8yvd9HR2bk5/GfoAKQebLucUgwJuINtICxCXiK3l8ztdWG9Z/LqczW9mhxCMDnbaolbd3cxdW22NVQHwmIbqfZKq8WYeK+o5px8mLoP1xXIOfH6/YVv37+hFcpRvd8DMxXKo/fsetUmAnbq9XMgKhJ4fXlBIue6jNZLaVUYOxgRaxi3YdJhBrEhOaJbf1M7mgNRA6N1q5Stsb0Xns/C43lQtob0SGgRjo4+C/rsSFVSE1aEG4GXEHhJ0Q7mEDl6ZauFJkPS4/xxCqDJDErc+KGIojEQcmZfG+XW2RQe5cmz7LSk9CToIoR1jFAQaJ3QuklpTKRATF4drYF+CASrjNZqCXWk+yW235dWkxF/DY18VXYHovWyrtXICpVTkDru6vj4BIJ+tx20jgqAMfTeDyBjDlmYPZfdywXD+GWy9P4zx0E1E0G57LxBculg2F3+K8x9Ol1sw7lbgzvwDclnjBkJNmBQP7zTjwqTURGVyXo4AL3SiiPufnHFg4hV9PoA3G5yIeIjA3AwikvO3SFdbbRFB7QJVbsD0QohELI7oCdYsnJbVrKDyfN1nSZgKWZK65TSzLjBl1gW4Z4zsl5NIaz/tLVOVJcjRiMoZEh11arZhItBEScInVUjOtqsh+i57fz5443//e8/eHvu7EfhNS+s643ff/ud33//nZeXO7fbCUStn8ruhbrqR67g5ZNH7cOF097fEgRSpy9KW7r3tUGvgVAiWTM9RUgGqovPvz1apbaDrVX2p3I8QMvBk0rUJ4hYIh8axGoZeRZCWpC00kUdiA6CxOOkm1ykpKwL9EWseuf9IzpNUIAWiZiZYJAxWs2ScDvTh9fDSvJ+Sfv7QiA4r6PklLitC8uSTCIbkp2N3XpTu8JRi4PQJ89jYy87Kg0JY799fm6a7HXYJs/P0gn01th9+HoboxfEDbCSV9EveydEm3eKdkJLiCbQw8Y/VCMPaAIORumeCYexvxpm9GHy5glCgzlbhnZ2Nw+37bHvp3pjqMuwWCX4WawflQ8GPpmjJbr3kM52BQehc0aqf91MxrGvtUqhzhnIc+8FJX+xxgeVbZXlk5wbv6N7LLZ5nW5wNvbnYN90SHNHPLf7HJ1IFyexVQcotb0fOyw1cG/C0pSldbIKwduzikYeIjyCcEShRKg+x7i1MdtS3Ofukl8NVD5C8oXUGio/zvCGyCAXPIHl8t7mXb6cXFcQ2iutm2FWbQ5Ev5TmKtv7wePnRi3dJzkotXbSYiCh9UZvjWMv7E8Doq1VP6sgu4S5xIW+VGidHCIv9xu/vb7ysqzclhXtjePooNXPrUCaozjuSMjULtQu3G6V+/3g/nJwf3ny+ti43V9ISybEyI+3n/x8e3OjG8stJZhUNsfkqWmwdeKy+XKU87kbmKp7pe6Nupsia9AH0cfIiOjp9CyN3g2ImnQ8+hzpk8TsI2/79Fr7FVflKsCYCgMHZ3YuuRNwwHJQidAj3TUiCnSNRAGVQA+ZHhMaMykHXtaEtJ01/EVogeOoPB8ViYd5zCCsWQ3IdVu/w6TMxsVYS1PrYmBzVFTfC8deOHZTlRi4bNSm/Py58Z/hL24587IuvKyZONoqFZPl1mbVS8cIOSfyYiNZXl9WXl9u5Jwcxwsxr+Q1saRIb0I5lKCNRqGpspc2nelvi/Af//rGJYzNxz+45g6qa+xUB2Iyeik5ZSNzj17+LkPGECcQHfbkU4477LhR5gDXJKRkds3CGOTVoDdfcG7vXTuh+9yvpmg4td+1dp6PJ9v2tDK9Qk7JZpXRCdX9obRR2+iLaLO53/pJTMbTnSEbfSf2TCbb9MZ17UIrZne/PXcej6cxE3unFL0cOgG+YHY/Pv4roKnz/3oJdvYcDna/fDxd+mBUmpAhbRCX0prZUEhiMtwcbZHdso+eMCCanAWKLm1OMbphk5n99D4OKa+cpOjNHnafurODIiYdTD4z7wruQzRw+3J7JefFepjcg936Ec3VMkTr27hWz+ZV+zrW2KEmYTKwQfFZoI7D5MKIgm9MAyAMl0trnKAfjboX6lZoh7nRaRXq3inPzv5Web6bvCQ0mxUZK6Si5BrcoEhJdEIzGUsP3WSyUdzUJ9IDaI4Ul6PsAk8RDkyK1FU4auc4CtKFR6s8pbNH5VD7up4UzdiYnEWIiwGQ1IXeXIQs1lc35NjkgCahJ3HJue1JaQFplVgTsXVS6+TQvwSiH2Skytxv57+PcSUDWJ7Vv3FfB0E27uKvgHU46A61g8l/bH2agVqA5rVQ/9mn9HBUC3QePDYNfTQGeCyaANySjjHGwhJO8T0VEcks653b7ZXb7RtLvhNjstV3XgaPa+PvRqBcBcLz3ByV35HQ/cP6BgPEOSWkGXkw9WgMWaUlfKOrd1w3G90iVm1q3RwRa/Xr4SOp1CT2IZgMf1kyLy8rrZvlfB8GEs+DjvUB1q6kGBjjWu1pcm+rAI9DXKcpcnOb+HExgoy+OScFLiZH1/UlYuOFamtsx8H70/qZ3h4btWM9gd++8e37N759+8bLywv3u0ly04gryCTVanGWvpmU7tOHQnl2jtbpEghrImVoaye+NLREA/oV0hJY24KkRMyNuHTCCsRIVTFJWq1sZef53tjeOu3YCP0g9M3joEBUQu72/W0YaAg9iHXdiY00kOix80pMyrhud3vqQu8V6ZWEICkjaSGItdKYmqkTpLmM3JziU1xZ0p2cbwZOw4JIdHBjANtmgDvJgrhh2VAnQamFx/5kOzZKO1BppEXIy2IqlfQ5+G+tUY7ieYQ4WexVK5e4G+Bk9l7LML8KuDO+xcxt23k8NxqnoVGXTgud1sRHZvgzVnqodL/WIm7s2B2MzjihLnEWnyftnhYhIWmMfPLXNKTf4l4VykBIDBmvCNNUbVQSB7l9Gi2qA1BvNZBT4h5kKG2YMU+H+7SD0NbMMfirRd6qVaUGWAQHxn0AUS8GqCXu1jpxjeUnoThAwagoRs6RK3NTzVgnhB5IapPEsyiLCNmrGBIEjZAzrDYaEcSrW90k560Pp+5zLumZLJwx1/7nxjTqeac2xGOW9MCwN7LgGZyIHGJ1n5ap3l/dq3latOItX24uVBqtVEQj07Hul8exFbb3w9eqtXzltZFvbRqp2eu0Qo1E9dhZjYzAYlYMG0tK5BS5Lyv320qMgb0u3EoGVao7pGYya16IkgkpknIm5pWkNpYk5UbKCymXs6ff70HKifW2sC6JH2+Jbd/Yyubk5zC18l7QBuU42PbdAHT1a3JUm2Fe7bAYUtSpzAxMwhwxQsN6NmF4mYRgXhc5R/IaySWZ5Lfamv+yDVrt3Bk89PxzEJyKO7zj79l6w0N3S6Pui0474u+5hGGQZaaT33Ind3XDqGQtK++VvTzYt8hxRG4rXtmEUk+XePMltvetXdAmhKosvSEBlhgoGQqwCWSUHZfpV9hbt1mlT59J79ehNKW0TlVMnSTC2hckLOTsRIlgqjmvympcqERah3I0tn4gRabj9V46j63x3CvtC3Ui/LfGt7ikZB70owLKUDHMDXwmRufXhsmmDsbcup9lMP7OLIVgxgEp+tDvcVjqkOX4x96E34Ixu1ox9lc8EHZj3t8fD55Ps2qXIKx5oQmU3ijNh/56D8Xo3+zdXD1tuPrh89YsQR7yzRRHddeCjSDGJNbC9jx4PJ68v72bFPOwxWcHtvdM8l8B0V8B6DUyndmnfnja/2WCzwsInZVfJr4dshdJw2TIn0sk5jCNh9IaybeFZc2s98zttrCsyWP3mNnk4w7COWpiHBrDBGJZFrp0SjsorXpvrsl5bzeX40ZxUwxj0POSySnbdROTxlk0CEhMhGiD581m+8pCeZ1JPnKSnz76mdjbPFSZa9eSdJNyt1nNdjkTgnQ1F8TaaaVSd5OU9NKgC1qhHUrZGvujsr8V9mch9kbqkVUjQQOLRhYga7dxh9VkvdG6+UESeJ9GSIG+JkoUWoBngKcoG1DE5sbF2nl/7EgyjX/RxhGgJkFjRCOQ7SlZSYtJV8QlJd0P6tqUkDAJWRUbtZCFVowk6m6zH1sntkZqjdQbyWXsX61sF6DZGu7OUFJtPUr1mOG9y+PecPl4yLwuYHRQbOaAaAY7MtlqcfOahDed2L5oSnMWXGZyNJKQKwjuZ9KnDdUK0jxx8sNsSDZjN9LAiZkQb6z3b9xv33i5f2dZ74SYnAxyQDCToCulNMTKRgjIr+9bf7kWXyxvq4jG+RPH7ETrU1O/H16b1e7zby0JzMGs21txgwR3/jb5bfiwV0y2k3l9vdN75Tg2k/FuB02f5NKNRIoJWY01Fpsn4A68zVlePe+lwJhXV0LzhNkAhPqAZ70kvzHEaToHgyS1WL5tO89t4/2589x28nrn5eWV33/7ne/fv/Ptm88+WzLLkomD3FI18FmLt1s4GK1tEiMfH8rx6OSitBSQkIk5kO6V5kCUIugOeYlEMktXUm7E3GBVarL73So2K3krPH8evP88KJsgbUf6ZslhMnO4fLM9Et0Yi2DjAzSozSJNZrATxUabSXe5WofYhRjuBH01IKqFrgWRaGY88U6MK8mN/0QKIsX2kNoZmNONdXlhWe7upLsA0UYTVO81TdZ2M+Wp1vBHLx0ClFZ4bg/2stH0gNCtZ/O7MfD5syGi4OMrjrO3Oozz1hLXnn1sW9fpdMoAcGMUUakIB4/3B1ESxMahB0UqXSo9NHqTs12nVlqoVDGpr5n2yez9U+/lUjf1iVF84HRANFilJpmbt7hL+dkzZyeMNplxD+RMmkWmiunj/r/EK1eGjLxpKLlM+jtyMI8lYyRNv1ZGDUh+usIdrABeaRqxd7isDnOsURnVD0D5NITTuYeMJIDoJFjyy6U4wJjzV614ESSQJBCDnnOzI2hUNClhgbzo7C2u1VgvA9pOgIk4h6WWP6jM8+KMqMGBJKhUfy2daazg8dAR+YymXFQqBsG7VUCbS2abgVKLr+2siH6RjZe9cjwOr1hbNXQtRuTk6csRCTGTssH5jvVHt257sLTucnR7fzEGJMHRbLbzLWV7G+4L8xLusAaSQA9CcLCJZBBzWo2jGBCCzQENkZgj623hdlu43TLLLfPjxw/0zUzFYnBTq25rpbXGtu9sTz8zxpxU/9PIR/eJMW20xfbolzvaLhkzX0M63WxDxIjPNbLcE61lagne19jdqfezNd7d+dd/l9/fcbZ0tWtqfhMB1UiUjk3t8LXWFXqja0G1kKkc0iipsQDfQgMKocEaMg8K74/K423n/Rl4bpHbPXi7EGg7X7ed37b+jNYSslpap1noIdGyUmvkeQQeUXgmK1LsDsJ7M8LU2iHtfQ6x1XUHSBBSSizrwnJbWO43lnVFQ0Il0zRSe7Q91ipSdmsBSXbuHFV5NuVZTbjz1eO/XxHFGcfwiRTsSunL5aunGYA7Y8qAKg5axACnSWbVDsdgM3PA5Sa43K7Z8GGlGZslxmhZj1NzKVB34wNLPo6tULUj2eeXujx4NPv34e6rlsQ2rxxUt3tWTItuDrtnH+E5d9TQeGudWpoNzH5uPLcn9VCT9Oo4aIYt+tdXfCJFT0SvUpwxomAA2XHJz8WjPobFgadLkB27uaxMnAdQNGBJ0hpNLnFL5Fs2MOqANK+JfPcFuGTWxaqXQ8YSQyAvi8mZkF8ChyWG62ojEbp2Y7tr8fl8mXVZrCfrtloFo1k/QU7JE8JEbRZEzc7bg32wAcgxf5wTeV2D0+gsfg1Fh2TJXCvtZ4cQJitrrWB22DZRP7zEz6BuuVht6FFpW6FuB+1QelF6wWaFPq0qejwqx7M6UOssosSwsIbIipIJRDXX19Y6pfneyaAp2smcI/2WqGuEFNi78IzCpkJBKComytcdQjklJdJpCQfxCkkJSYkJUlJydJt8gsvlOqWeq5Em9OLPalVRbUqSTqKTtZPpLGp//9x2g9PYzBfwYONHNmUy/j5n7jHW+xWUzkTmDDbnoc/82rEYDChFhAxq4xPsOZj6y3pwphYZSdNp6GVy3opqRaSi4exbC4KTKybvCzmT8gt5uXO/f+N2/+4V0Rs2B/UEkyeN9PeI+7er+N+shI6HiJBCsCoc1yqJX9OLoVtvjRbCxMZhxLZqPe/NAehJ+PilFogxsDoQtUTLnEJbL9QulNZJy0pcRx+/yYsU8ZE+1ZIbSZN+HnfW+oltziCuusaBs71uA6OSRl/XGTNHpev9+eDt8eTx3NiOwnJ/5eX1ld//9S++u0nR/XYzY4s0JN0u+6yFY9+px0ErQ043yL5f74+RT5b3RiQuhDUR75X4raEFY48ikI2g7QiSOpIbbe1s0QnWLtRD2Z+V7XGwve8cTywx6WYAlFdz6A7JZPTa1FuWTcY8YnFiYZEbURaGJDyLsAgsIkS5E3hFZKHrQecgxsS6fmNdvpHijRiztdTIDrKj7sqrCjnfuC8vrKsB0RAWVAPlqBS8KtNs/MOgW6bhS7S9VerBdjw52k6nETPcXha+//bK7baQvgCi2m3+rIbxcy23sFgSIGcCRrININp6M7f1at/TVS1n2HdieJiUOhy02NAw3PPd32GAvD72TvK+2fDRn+CyPMZIHYaLt1jinlICd5OWMEovHheme/2ZM4ykePaJciHpsAR6EjT+HDmbOT2f+UVz1VLXC/gcJH+zWYafXm9V67UVYFiHwwSgY6Zn01MCaWHr72QinGdMUDviEtavHsVyMvudIA7yZCAQ7wHvOtQpQo/QU3eCnWls5OmQVaS7ThJuEPTqLQAe+MdWZgTbqZ5BDTD2qyLwWjDw/ORyjwYQ7b3M2Fh9zEr1/tBaG0H9XPg1tQabnbnbfms+Aq3VzlI77aYsKyzrqPS7WWTrxGiV0O6+J1sphPCE0G3uZFSe9WlO/ymSnMCJMXJQ6dlbd9qd0rvdn2S9/yG6eZsbGQ1iLC1WDTWVm1jvphaO8kS1egHHlQzVxpNY3ryb/4fiNRT1eGZeLCGYEaJdZrGOq6hotHzWmjFdxeXxO/gc+LxE1rtVfEuplKNa1f8LlYVJn8tZhQ3jfjMVCUaejj73RgyGVUSGIkFtwoBaW2Gi0cQqkq/SeY+KSKVXyCGRiNTj4P2xse9COSK3LVqrois6WrE2MHQYZvpEhRBYgufrwVoee5fpjfAzw2OHx9F57J3ijsPdrzPhjAxBLtjDFRSnb4rl2RIjEjI9Zno1gLsdphiACrGR1kjUhaPD3oSjW346gO6vj/9GRXTc+yGjPcvTF7Lg487xZAJnsD7CT3ewEhmx2QCoO+PawTIukDEntDGP03qXaJVAtooM7jzph41VdYRWEugN6ZVaTK6710YpajPBZAT7s2m+X1jEGCMSFlKKPp5gzJmM06FxsIq1NY5SKKXQtRECpCWas14wxiql6L2U/3zJrzfqg+xWnG11wDlaHEY7pC2eATwtITMwaLKmmD3JSmYkpUEJOZDWRF6T/5ntdSdBkpCWxHJfWNbFfob3x9p4g0SOeUqVx+YTFZZl4bbeSDHNYK0K63qnq13b4U4bQoBmQXQJq7k99055NnYtDkCx/ohqkho4D/K8LCy31cDfYRbwIUDKNoJlucUPyem8zqocR/NKvNhriSZruK2Z7K6SIajZvXd1eZb1CzWFXg5K61ArvRTaflC2zv5QjkelPBt9U/SA0ITYA6k7exWwnlARVgkkooG4BC0pNQfCLRJeMn2NaA5ojujrSvu2mIQvmYlQqZW9dY6u9NLMqMMBs5EQSoiQvXNfgl2jRUwObASQvX8Zam7LCKyygMvKfPZYIFBDIIXAEgPrGrhn4ZaFHGXkJn+PIyLThMeJ2claK0JoSg9DMjMQ15lU/a38Z4sej0qejMn83sFwSwjYOCeTF2r0HlGXjw8zjbOV+hfmHgelaiymqslPA9ZLFaOSkpl4hZzJS2NdE+v6ysvLd263F5bl5rJcRXtBezWdTm+T9bxs/JmofQZQfQF/EUH+fs3nf04gjUS6HIXntlmxpi0G6MRd7popR0prlG5SUzxXHuNyUOuIMell5n5b2feF5zN6T1gnaiNQzU01CWuyindrcFRlOyoRZRWbGRzFZFhRLSakGKbrYRSrWli15/NFNgkEVfZ95+39jT///IufP3+y7RtdzaH7t9++8x//+o3vr6/c15UlZTNm84XZPdkoxYBoOQ56Nc+A+qVrrvXMpAXCekPvd/SWkNqJtcHekbdu4Kth5xuuSlkCcVGT2KYGZadpoDZBNSFiDpCBG1F8zMwts6yRfBPyTUk5IeGFEF9NipusQpCXlbzeSGnBXF8jKQu3RVjWQOSO8IKQUT3o7G7c8411eSWExXh3EZCESkS1WJLblZwWOztyRiQRJFCbSYuf+8a+PTm2B+XYyMmIzxgTDeupPcrBXnaOY0e1mTFeuPH9t1f+9a/fud9v5Px5x2IIRhIP8vPD03v/c+ozbxGE2iqlWhVMbUt6dmLKJui0WK1HlXP8XF6sMrCu5qh8W26keCOn1UgFNW+JHneKAF6lGf2P5t499qIFHHM0ltlXjhjJ97EFAa79pHiCPEaOjB7RQW5dDbtGzLVxFOdZzNWUcbiYu3nOqRT7fH+VbtLc2M9+6dHv2bTPSuiHqKUXyKzXXlnm7EoveHlxYRQavD9bjExUAqULT4WKErsVMyR2SAGNdnzZiBahVUFrJGnkZvwtTZQmpsPpas7UV9PHcU2HZkQQq4JKMMJBjBSfCsFBhI6YJBdSwZVpNk6p0ikMZY1qm8aNfBHPri+qN0VLtdfW1FQa20FZF441k70yGmNgCZG43lhzpPZEVTPY0QhHL/zc3+k/G2/7T1KIJDcVTT5T92178H5svG9P3veDx1H49v13Xl++c7+7E32O5BjQ4MRXFHpQmlbykkhLIOfA7b7w7fsLIbkRncvpn8+dbT8oh8lxuwNPUedKG1axH6QVYw8w83Zrgbf8WAZo7aaKCt0A25IC8WVlzdni+WHGSMv6eS7ee+XYnkzJvBNJwwNiSu9V6aVTu5hJovff2xr3NSRmamTjbZSC8KiVv56VSmevAiFZH31KvORoZ/vRqNrNLCpHy25KRUslBZnkweuaeF0TL+vC3Xt9wUaolaPx4/3Bnz+FHw94ycozW5GhedphpKXFkaMpRzezQpOvG+Yqe+EZnvSulNpIywExQ1w4irIdjf1QTNWUCcsLiyaWeKP72AcrGH29xr9ERTL2k38gvsE+jguQk13SyzdezWIu7OA4DCYIHUA0QoouH2tKVfX5RWrMSFV6Vao70fYilgiqEujWqI4bWoglX51M0AAaqUdhawdba5TBBHj5Hk8yBxtorPoYXp7IObOu63S9jHEkKwAuL6iN/Tg46uHuilbOznkxR92cWRaTMOTlcy+6EbZtk40QfSbC0BgW593BKOAN2x74bAaEO4rZSJVlzaxrJq+ZZU3EHNCo9Nht1MDiQNT/jDka0xQgucwir4vd6d4JErjdb3x7/ca6LOOuernfksiXl1e+f/tGipl9Pzj2A8HmtsaUXec/2NWDUgsEIS8rKSe27cnz8c62b862JdrhRh/dgajPh1zWhfW20munYPPkYhKWVVjWyHr/Sn4BpQxNvfOsOZJj5GVZbH5tEmLAneKUWqEVpQafp4VYr0Cp9OOgHjvHU9kfnf29U56V9lQ4IDTrbXFVLIuKzRoUYREz9AqiEKGlDksg3BPhW0bviZ4Dekv0l5X+uqIhUmOnhk55wq6V/SjukKrm8mdqSFIOrGKHRogWuIMMha5JgkMEyePQBWnGZo65YqJCUNtpiUANxqAuIbKugdsauCUbXfHVOJHTrn1U942Vb6qo9xW2aIeHsdWjp/Gj4ZfFEzljytwvJz4bRVXrjTLXVQ2JHpK5hgY1m3k3+RBn7vEERBzQ2Asdr6MaCJUDaN4r10nRHEjTEonLynLr3G6Z++2Vl2/fud1fycvNyC2UbmwG0ivDqXccXmfu5gnjJWX7FP7M6/LJ9R7/H8mrfYMDycpR4PHUmZSCJa+mKuocrXF4n6gRGOe+7a1Z7Bfr+1xy4n5b2bbViCm/v0FsNu4SlZcs3JLNDm1NzWBBsT6amElLt7YMAHUlSjTyawBRZvKo5zlzIQ6G3LK1xr7v/Hx7448//uTHj59s+46qsqyZ375/41//+p3vr6/clpU1J4Zbd7NZHQY6a+E4Dsqxm3Fdq9QOfOEpmpaVtAhyu6P3O/0lQ7f+aXlWwlKIsbrfje3VECNxCSaTz2oy3T3RNdB6QNVnYedMjq/k+EJeV/JqxnF5UdKqLtF7JaZXQso+MiuQ15XFgahoQkhkJ5CWxcCt6A3RjMqBcjgB+8qSXoCEDgWD76WuplZpvZtT7rKQUrbrooJWq3I+nw9+/PiLH3/8wfv7T+63G9++vXK73yAENNhc6OPYOcqG0liWRL5FfvvtG//612+8vLywtMxnXS3DYGgQr9PLIYx1c/adjx1QShkHrX1WAnQ791u3LK1RQTw2DjO+ZWFdrUXltqzc8o0c76T4gkj2WdGVVpNVSKT5z6+MfnUJpxrMAJm3Po1japgSeSLLeN0yigGWNF3zsNOoTSdhd22lCsM1fNzDuVfMkLG5KqH6lAAb7/TF5HmgtoqiVDFy8gxDpxwXHS1dc4deqowzVfFWDa/wTDDq73f+Fxjz4LsGihhRtKsRxUFM3RNyNzAE9CZWgDgCWiGJEd8q0EKjiretuKJiQEbVYWijZ0LmIzjsea0rOyAjXMDrTHYBM+kxurUxzKyUCuNjJwX7aD/77OHXo2s3/4hmcvIQ4EiJY0lz6sD9vpLWhTVFwproslB0p2j06lzl/8vav3a3kSTrmuBjfokIAKSUtU+vmekP8/9/2Zzu2rsqMyWRQET4xeaDmUeASjH3WWc1aqGolEgQiHA3t8t72buJKq7tfvjdCuJFaGaOE7fHO98f73y5vx+F6D9aoxMI08QUF9t7pvZIyBENULWx1Z00BR+ABOZl4pUbIQnv7w/zpN521vvK+/vq00O/aIq5YjRryNCe+c2en/hkDRfBGgOYc/24WnU0W6qUImHOIMLmNmS1/U0h2hplexzXfkB+Y0yuMNsPukzvVptIMIEyOaB43lRxn/UggvZAJfJoK9/Wyq6KVAGJdn7mRK+ZvRVTDK5uGzWa66UhpRJzYkmB6zTx23Xmt5eZr7cLL7crL9crqJjw0Fr4/VtkCo0pdNZd2XZlb9BaoKkr1SNU4L5XpFSoDXFYN90K0d4a2165PzZCzkickJgpVVm3Stk7kjIxLeRLR+OMzNXzBl8L6X+jEB0NojPFO7+OrsTz3zyXT2exGZ6C4VmE2g0y+eUY1BEenhBV6yiYG5J3B6vBHVtRalG0ckAJk3dokYFVFx8vd2LohL7RSmHdbANWzIbCqSJHsAzOnRg5dIxDhMO6FaP41JGwciY9XQ0kM1TBADOwnxafphrHJQQzJv8s3jxfy+N3oRbMDk6aXa9Bzpc4TJUdKROGiFAwOO3gePrXOAXjvMRm0NwpWYd6Mnx/TAFJpipoUIvsU1yDfgWJvLy88vryypQn76qelhlRIsuyMC8XhECpdhiHmJjnC/N0oXc33m07tShlb2iMVviRoAXq3tkf1WBrSV2Gvx1ecYoaFCMF8hzpNRFESQnvwiWWJXJ5+XyJ12YWFj1aUml4+MiUI1OKTMkRQGMi5gHP53Q077pptXVbt8r2qNzfGo/3zn5X6qpQlNgFIZJRsipJ1MWRuk+wsc5UDmhOcEnIbSZ8WehLQiZxaG6kzIGuQknCHoQNWFtn3ZqrFVu3PWYhOfdFnacUxKFPwbQRwoAqOU+7i3NGw7mPBTFuk0YikSSZloQkiSlkX2eJZXGuyifx5gBcymiyeALTXeVycCuOMqZz+AeP58975+je+GuOzruOaerpFWhcKZuSaDA6gI6EgcHJwicLfdjsYeWCJxD+FKmE0EhhFKJCypU0d6ZZmReYlkCehJgUic27qRjGphXjVPhk8aAn/T/4eL5UApzepNYAqLWxsR/X1Qp3UwjvXdmqedA2rNhMk0HhDUbYj3ivYvEyu3CZhOBQd9s/KUCOMDnKAFWXlHdxMAnMRyHsycjQDsCeUawoFRHj9qKHkNzomB+Ui96NO1gL27bzeKxs+24HazABtWmeWKaJKSfzDR6JveghTrTvG2XfKNXgdDSHMSv8uhAVpvlKXibSPEO+oCmhsaKxOXepI6EztOtA3DIpGY05dHOLkohKhjBZUieRyIU5vzDnF/Ptm61bHqdOmjoxJ1J6IaUbIWdC9kJ0msheKIpmRE2wZJ4DU44EndG+gEaQHcJOjJEpX8npYgijprTe0JAhVINiiqFDVEC107T5olNKK9zXO99+fOPf//43//rP/+T7tz95ebnxH//4By8vN0I2aOr7/Y3HemcvG4TOPCcuLwuvry/89vUr19sV+Z5g++sVD67fMBrmgKNzOl3sXLLmmxyb4lCnDvHwBFefngzRoYG+MCsiHE0RHWUUD1RPjIZ6Epmw9ogQQmV4BCviSq3dVNddhUv9e7VD6DKQpgBHQxyPCaO5Pt63+qT1nMQZZHNYqIgnNiPnUi96n8WCnqGyZ0HqtmoHMuxXMWUo3fr1kT5u+RFvLDX0PE/Of/yrPoacPzjel9v6jf7aeBvd/0Id9htUD0/bAN7kjXbNu5vPqO3rIaaWJxPyabJT2XiUnfu+I7UY4skbXCMWK2ex/yHTffqgH+L2MQX2a+s5rcoJ27S/B5Xhwetr8r9NCv1uj2ly979pipZOp9JCoIVADwZtDi4eObiLVa0B2NxmqNTGPqgvqkSJTHFijzvD49W2giEcmv9ZQ+B6bSzLxXwlB+w8BlvZ6iKfHmuXy+K5pTWpWu2sYQcVtwvyzze8elR8rH3SvQYV7RiOIQff+9gbYVxTP/uloaEgYuqvMadj+FVbIKVfNxMFy4H8plqeOfLrKAwY8LOOxNEcGjfVi+eYXB8GoydqD+zaeCs7rQuLBpaUWOaM9MYUlL0E9mae3VOMzMFUzZvYvb2kyOsy8eV24beXha8vC19fLnx5feHldgMVtq3wyBut7uyPB70U5qjsyZR4Ww9Gm1EoqmytE5sg1dbuMWDsHa1K0+AT0Y7sFYmVELL10ZsSOgSNrq3yJLXoE9cxHPssxflbnOgYaB635MNe8R7j2Ek8YbNdnOd4HomgHITpEG0SasWTp3vdxYhaPyCCvVoB2osiPRxm0iFeyelq1inBjLRjFFezhaqFooXSGr0q+7pTtKDetLWPYDDAJMbBs/1oHzjGQIgG75QgpqLVKoqp5I2g2D25ydkStGnK9K42rcsTOU9WgDp2PW5iclafPNSv5ejR6TDJdnPhmG1qGSfb2OE4FMMhAhTDKQY0AnDO6YDddqloaIQUzHJlzpYkiRV28zIzXWaD8sbBtzFOU44T1+XK5XIlhEjZd6pWopvb55RRYFt3ajUi+r4VpmwdeEJi3wrvP97NELdVWqtMk9k8pJAOiAYq7sW6sXsXrZRCrUb471ohdOKEif7MAj0xTVaIzkvk+jp/fq1HISJYQe9PMfUeS7ZqY9+tG1QGPLgorexoqwzD9FaVsne2R+H9bef+1tnuQt1AqxWiSQyWm8AM5Huj+j7TZBBPmQJyCcSXmfTlwvT1Rp9NeKRHaFHorVIaPEp1E+LK+th53HfUO4riKo2mDijmy9g6IZtwSBAxn+sGUrsNMjoWccc+jb7PNUBPJ48nBtqUSJKZwsSUjUc8L5MLvXxaiR6NnidQxYFKMgqWc8HdyD44VFNkHMVylow6itnz6+DZDIj22NP2HQGDDrqaaHDkRecIniPhQVwoyA818yq2A3wkFebH2L35IeTJmiJ5NjEHiSsq73QSTQOi2YJ1a0irRzHq8pjH/ywx+dgEPC7WL67p3xWwz1zOY0riE5auasJtxb7HBC3GhGN4cDYIgTxlLtcLIaWDyjAM7UVcxGN09b0rFgSLTzlYbA4g2l2kQ+jZpgk5Ck2xzmkUgguniHMKu6qLKmRSjDaJQehycn1tTQ3ecT/25QGxExeR8nPoTL4Niqhdj6S51cK2PlgfjwOSi3aHuQfCJ+bzIpBvX5iWZkW7ZBP62pX2qPQNtAldokHYAjQJLiIW6aIU7WytUzVCnMkzXOaZxIU53pjzK/P0agJxrnAec3fBo0SMN2J6saQrmQ5ATJGUTeBNNCFqyI9ltqab9oy2yQolhypZY8GK9Nr40CBCBFU7E0utVLEk1XwNzX5m3Ta+//jOv37/F//5n//JP/+v/5s//viD375+pbXOVgoh2/ny7e0b9/sbe9nIi6F4Xm5XXl9vfPnyyu3lxv0eqb8oRAfKwqb0LpYjndYiNdQj/zghsfKheRpDMCHFOJIvpWHrt4/mrzfiRjY8kPSqHPw7kXrALNUVc1WsyKvNeGmhmkVWwBQ9Q+xETUTUfFwZrz+g7/a7A8FthHztqvgkkVOEp7bz/uCF7YCF9P6EruBoFhgkGE7o6Gn38lkhau8nem4ygrm/Hs79JRwxO+DzwN4OxMnYLDZB9Z8/lIC7N+yiw+Nt/9uy7Ha2dQx6qQbjjcHyihBmgk62BjHRrLgYKu16m7ndJmKq1P5GaT94W9/5dr8T15W1djYXbrJpF0fVczQxZZw/WBHsYpym2u/52jgvHHp9Vk7+VPNIDm5Dp6498Wu/+HONj3X+rFmSozd+w+DxiUEp182texIxGxc0RmxyG42Xbge/FWvDrjAQTm0NL8i1NNb7A22m1luq8tgLX7/+g69ff+N6OxWXH9vGfX3w9v7OY9+sUZ8Sc4rMXMjTgkgGklt9dPa1Umv3yZ8vJhXTAHBqn3allQ7NKUQSjubMgHVL8OZEV6SpK74DtROakqwUJKrZaoUQHGHz10fOiZeX29Pa9rj/sxaJPgG6fQqq3n2Rp7VzCKS1bnobrbBrImhkDkZxy7FzTaCXaDo13YYKKbjIW2/UHOglcL0u/Pb6wpfXG9fLxHXJLNPMlGZymundcpsQGjEkcpqY82zopKCUrlaEdru/+26eoHutbLVQxrDHm8TJbbtGg1rpiDY0QI6Z6zKT8wR5QfIFWW7Ey0xIEQ2ntsT/HjRXjmv74fHBq21MOJ42zCFC8KEYda7C4IZ6MRrjUF6zhd/b6b+pLorSC9S90wukkJhiJqSFmK5M8caUF6Zo/pUpBleAUva2Im3jse/0ruxboYortiY5YoORcU3xC044XHiCuIrYgVNrp6t15IWTByFiENdEYqgBD0nr5N3aEYpi/btC9LkI9e7j6KQls9vIi/E250smTdl/Tzp4qIOLelir+N9HN9+VoKYAR3WFs5lpyhYQtROicLvdeHm9kVKiOT8vp5k5L0zTwpRmpmwLHvdYy2nmejWY2/v9wdvjjcfjYZ5QtSGY95BIpJTGj7c77z9++PWzHHZKhRQzrTpUo4ttkFYMUrHvVBcMaa2Y1YCYsEUIwRsSDsldAvMSuS3Tp1f6MMsOXrgNdcNg8tO0Rvffva47pTSrRypo3V2B1Pga3QvR9VG4v63c3zrlHilrIKiQAg5r7Uch2nujuvqkChCFOEfCNRJfZ/KXhenLhTYFmjYajdqhtsK2K+tejkL0sRYe991VBW0v2FlnBZXBr4TUBOZwBO/Dr8Y52AOKQnBOtww15AGjt6mxTmr7MVjzYZqNSzzUoT9/2P58jixH/0yVwx+vN5o24++GAek9YbjyzOtR2yuH5UqwDl0XGGRqcQiK+Ysmn4Y+PTGYD85xCipHh1tprqrsPG1XU46hkSJWiPokfpqTEfVzQ+IDlTcaBoMRFqTNDjnyiWir46owElFLdD6rL+Xz4PzLdT7mvHLE4MHb7k/Je2kmZvHM/x9ZSY6RPE1cbldijG5mXYzeqidicrxnGdc54PHWC8xgSVqtla0qvSdSSMzZVB5HI005xYhoZp8y5UQKwexofPU0eVo3fRye+gEiqGrXKngiYdN+oxnUWl1J2DwX9RCFKGyPB4/7/YAqAi76ciqF/ureTBcvRJOpYlM6fS3UuxpfvIpN/wUvRIUWAz1EWugUNa5OIyBpZloyl/zKbf7CJX9hmb6wTK92XgVDyMTcCLm5hsGNEG5PhSinBZQYVWUUovMcmXOgt0QtGW1yxMIYhRSST8gbpT5pFODnYatsxSYblvRUmxDGzGN/8OP9O7//8W/++V//yf/1z3/y+79/Z103JAi1N0IOSBJ+3H/w/ninlI18uTDPmZeXG19eX/jyxex1yn/tVP4KF7XmdjTfW+f1Nhqh1nPyORR1nxox6jsuDuiu9KOZIgNhIc7NQoHnSZ2esap3NBjH75n7d6ilaqPUwl4KUs06LmgjpkzseogNhn7GxFP1Vo/i8/n9H00rOQvX1up4m/Z51OOdT0u1n7HdPrkj0YIVf6MItad6Mf3rRzCNUsZ0T57CUhTjGlrDx5t73QrzUcD7h/Ri3hJeDer/7qIz6qIx3gSxT9NMsMx68zYNZ8SWTAwGMUcWQljI6cY0X7lcb3z9OvP168KUd2r5nb1klrfouZ2CmL7E6TNp8c/oCAZfGLndmGDaPRiFaPfzoXvcVHuTRyHb7Lp38bBqjYom3QuiM5/+1RofkHPT6EjMk7kNGALF3lTvld7Ng9P+nEjdHREcnn18npAgdLo0Sq/U5mf8kyuGqEJtbO8PtvvOuhYeW+XtsbKV5jB9E53Trqz7zv2x8n5/sO2FrkLMk/lop8RyaYgk0Egrynr3nIVKU4vzjGFQF7dBsR3YvLEziMSDMhS8fgiH6rE1ZLSaGrHuQlQlh8gUraBKT/vpV4+UEy8vL7ZMx+k5GvRjQu4OCkPt+nkWPpr5vkX8M0GXbk3IXihEaz6lxJQyN1FyDyTNaO9HA2bQgrRVag30Gnm5XfjHby98fX0hufbL7EOvGCeMm26YUssFM1OaCNIsZ+k2HY+9s2un75W9bmxeiNZ2NsCCCDlACoEmBuHtCtINxTVPM6/XhevtBfKFnhd6vtDTQk/RGq1HIfppSPlfEyv65ebwDTKyAsuNXHVUoh/60X1qwlnYHYUoxzR1jLdbNeht2awA7UXQFpA2E4nkMDPFhTkvzPliRWieDkhYdpWsELqP9WGqMM/CvNhESmYhTMENqzy5GAax/mFUhSFaIXB0CPXD2B0LtCO4i7iisAfkGEhZiEO1dcihi/LfPY5C1LtmkoTpmlmumeWWma8T03U6ZLtj8mLTIcA5OXHd/TgljMLDig8Tr1GHrNjr+JlGjIEX99cTEdZtZS+FKUws+cqUFnrr3LfVbG58QimSvKsVzHLhKN6sEA1hYiuVqVYz5xUjB6tDgbZSkPudvRgna33ceawr276x7ht7LU8+ZwWlIqERUif1Dsl4elMScoY8G2ckpM+u94A9WwnS1LpQeymsuxBpaCv0WljXlXXdqKWasFJVU6fdi3NrnD9aoR2qshyHZhJhwtaf6QUZ94igpgTvfNB4i6TXRHxJhJcZnSM1YT522NShaKe07kbFZyG6b6asJ90o/S0Eg82VgOYASZBshWjtSnQoq7iCskaz42EUbE9Q9RCwnyeabqF0elKSWCGRkkO7pxMm/vfr+7mGOotLsLjb1b0ruxHzNUWSumflgX2RI5k5XtQLIfXClO4wRy/ITYGXI4k7pimho8Emcc0PYB1jRDpIJUhDxXljoZOCmtVUNOW6kexLSCDRuGLlHcSEYaYWrPgdenfaoTefPDwXlR+ONPf2/MUF/F94DHQfcCQyMSZS6ofv3yj8bV89V7/G902OrMhTZnGzcsHeezsS0cgyZ1BY953ZvTht4gqP3a6hSiHGQFGlqZDAhEiix9/wVIjCYSSv/mGep58/T8FPmNSzUFvmclm43V5Yq7K5qrRgPLd939j2jW3fbeJarMGxPh6sjzvb+njSDRBIJpryYbr006MXg6wqDa0drZX+7536r436rVB/KO2hHFpVMdCnRFehaqBooIgVoZfbTJbEy/KFl+U3rtOrQXPTDSTQaRgEv7udQkTkRpArEt1OKOmBbhCx85TuDYlgtA9D3ZhyuBhEwu1fGoRG10qpG49tpfQ7RR+s+53H48Hj8QDn8OU0sSw3LpercS0FYo6EFFBRSjPxoh/vb9b4S4IkWLcH2/6g00gxsCwzt9uV6+1qX69XYmrwi0L0Y0Pr/KpHLLAJqao+cSufvnojVAhHg+xor48X8qKoOwe09+pfjUsatPr56WgJR1CY9kRzv8iCVCW0AcjyCasIUp9VWM9mjlEoxjT3/HAHX34UxY4AeC5QxQtsRjxjNIr8lZ7in03YTCTFAcM+xfns4a/ynP95ZIsueGNK5d6oB5qO5BibeIm9yvB8Hd23EBPifNDgU0jtcqDlVBva7CmiZm3mSra9mfWYiBriRYwnWEtj2yqPx0ZrhmRqzaarOSQuefICAlKXE0HzVIiOZp69/35Odp+bB8NLVgb82u+vjkaF5ZK9que63fXqfPr4i8AuYLltOvVK5nnmslxYLhe7b1701rpT60atZn+Ee7bTFHbTLjloN2YNYBZHBNSxqDEM711HTak6Cm1n35vZceyuch4nEJvOxpBMbTkYBSvEdNDWhoJ1qdWaXd2oV9u6s++VNa5sj53dUVBt6LX4c9irdQQNVryHMIpJb3SK2YjpsW8xpBdKSJE8VVJthtBJ2c/sT6C5YhaGI5cHOdbBaEaM+id6g3M0P5vb/RwNDd+r2rHvE3GefmZJE7cJvszCl5CYtDKpIXRq7W6Z5k3SHt2FY+Z2Xfhyu3C7zJ6z2V6vtfNYd0qpvN8fvL8/eLuv3B8761aP5n4HQyxFywFbNxVn7bY/g5jTQI6R6zzzcrmwzAukjKYJ3FJRQuR6ufD68srleqVIZiOxkylhpoaFKpGoQlNhymDUpr8+Pi1Exyzg/B/H//vdeho/WzB/7j5GCR+L0J8nos4BAnUZfvNHqkXNf3MX2h6JTEzxwpQW5unCkhfmaWbKiWlKpCjuJ9UOueYQlRRtQc9dudTAqyYbRHpSTsDGxuIJ90HZHuSdAes6fbmGzd2xKMdmCM8JuPNFYzdeWPADIxwZ1WeXnPNfHTLqmPQ4BZbbwus/LlxfF+ZrZrpkSzyiIDEc/JVpmliWC8uyeFLnr6p2F6PDiKccj0npoTAYo6lfXi5crhdaa0gV+tZJmphkIpH58Xg/xD9sx4sno5WUTlluKyoLe6mEaAVlLjtNMEK9Xgzau+/s1XymULUEcdvYtpV1XXlsDzdktg3XmyVOMY3E1LrZKQspQ4yKxu4pwefmRd05G02tON4rrLvJakuv9LrTir2PbV2pe0WaEpoSqhCqortSS6MWI4CrmrpfkEbEJ0oEJgkOCbHEIGKHgUZBlkR6nZm/TsSXRHyNxJdEn2FjNxgFSvHJ1VY7a2lspdrhsDdKadRieH56J2D7p02RngOSg4lTtUDqnejCFaN6k2giVohBKTSeCdkxSYtyBODQjFMSgvGJQ/bEMghO4vvl4h4Jkcr52qeysh3WA/JX6k5PAphEPDhU/MMuOovYD19UDxEKMWmbo3MP4h1N2/dBTPkvBIN9HYraiq2F0JBQCVSCGrxlSp3snsfx4GkbV101Gvy03+lqUOjJOTLKjMgE0r0w7taUsYxxvPmn5/nHDx3zZz7Nf6O4OBLOlJJNPJxL1npHev9pmjh+xq5TSsmg16O5FQLaIj1FQgP1JCOGyDxN1N65/ngjp8S2N9a9sdfOXoW12mEUEgfX1CwAhg3TQKaoTV3EJ5uu7jdEiIa91njfHxQ+RQ4I1bKYqNpvXytFha1DYwXksOt4bBv3xwN6O3QK3u/vrPc727b69VB/X5asdw388uhUqO+FulXqm5qP51bo/77Tfn+wvVW2FbZVcWowpIRMCToUDVSESiBOM7dlIc4XXi9feb185ZJfyOFKjovvk0qXThp+wMmU4tGLUw6skDRrUbuxXZRWbaRkdhuK9uwJlIDu0PfznEaobWfb77zf33hbv/G2fuPdES+Px8oQopumha9f/2GcXTHxu9vrjZcvN5brQpoSjc59fZiapPVsKG2z2C9KzJHlMnO9Xrher3YWXRZieP/l2n5O3p+h56ayyVGsDdj2h8bxmESNOOhJ7OBu2qTQ4H7qcNnm1hutFlrYCRpNAE2EYZkmQ2Stm6doq/YMFaQNAHC0wqV1mhhs9UArHMVAOJLtA3b+0/TfQx2jbzZQLMHzgRH3mpy816PBjnHCU8oGSSUQqFTapx6LtoaOK+7DnzFNE1dftTgx8g6GMnD3wtjvkSGE3E7P+iPEkEjuRRskE0jQxSyk1Aqi1ld67Qf3LPo97K1jFl0yWohuJVOoPfDYhJwrKdwJ3Cm9ICrMaUJDIuREUbOHGUUkXoQe+bAOSoLlhd0bAV27W3q5qOSQfXVUhg22HDlVOnvplL1TiuW8YRyOv3gYxWpiWRYulyuXqzVnrrcbaUoMHpvto5VSVtPfaCaw1rrZvUQxBeIUzEM0JKzBHEcz0FEpozkRnMZeK3V1gaPSuW8FCZEUTcTycrmyXC6IRKZ54UtIPs2zbHhA4fd9s0KUQC2NvRh96y1GH/h01yTox4CiN+Odj6OxtTGJPPPvJAZTTmOYNOzZmu3BUCpxr8SpMXlBn1JyFftfPMTrAo8RMciB7DQ/XrtRcRThyQrR6tZ7BqttTxNeR156g8jWeOYmE78tgf+4ZL7GytQLuRdaaeylUkul90DvZlsUwkyI5tl9uc7Mc0Qxe7beYV0LujbWdeft/c6P9ztvP+78eHuwrqvFM+1WL+QMwezUuqtmq6pzqgM5Zeac+fLyyn98+cKX11fy5UpcroQ8E0JCYmKZF66XK3maeS+d73vnvQqFbAUpQuuBprBka0j/co1/Gm3+8hid+dHNwjsEtkKGUM54Dq5iCGeH5eww2OuNSai68XUrSt2Fugu9RHpJZqadb8zTC8t0YZkuzFM2lcqsJkgUGlGaibNkGwGPYFFQriqUkChqiX8P0CU4x0iGcCWjIDUz8+5qXmfwH98xrkEY/EmHlCF48mv8NAndio2u50T0vx1nnIW/BEEy5CWxvMy8/uOF29cL88U8P0OSAwZg1zoyzzMvtxdutxfjth6LzA7HGAKXeeayTKRwHlQ52/jelAFnpmli3zdW2ZAWkGYG7JFEWRvfv71zfzzss+dESpl1LcRUzKvJ/bH2Utn2HYmJ6bES0mTwyWhWF9RKRdn3nX1b2ffNlHTLTtl31u3BY32Amu1CztnXkRKTT0B8t8fcCdmLKaB1V0H89GFNg67WNCxNWfeOqsEmW9mMn7o92NYHbd+tCG1KbJHUEtRALd0K0eoTfCLx3C1kOQtR65b7HoqgWZAlkl4Xpt8upNdIeAlwEXpWKpWqUAWqQunmq1pqs+J9qB1WQxR057EGFbQqWhXJkZiVNAlFlaTiXfnTPiAkzMpAjhTFRb0sIRn+wWPPa7RAfBSoCTeZVg59ob+s7LG+ORIhGNAnL0YxqJmtnd2SfsvY7bvHiPap+PpVGXZ2I52344meCfaMbiVHYhTCgExhsKmRekhDpCChEmlErAA9n2LNsGgKiibTbiJd9v47y5RobULDAtG4hh8be09F51MLcDSPPlzA41v1KOw/f5zJagiBlLPzz5yb1RpaDTI2EivV8/4MM+ucrQjNrkJanV8TovuCxkBKoCpspXFZFuY8WTOqdlqplB4ovTC3wLwk5qTPChA2gbMVyRCeEDHY+xCGGIXooez5VEQ/FxeDCjJNE9fbla+ls9bO+1bYa0NEKLWYkfq6sm4raHOz+srjcWddLRaNNRei874wz8RfHZ2KUu8bNZg/YKud9tipfzwofzzYHo33KtyrDDFoZFJiWYjdJqJVIl0gzTfmr19YXr/wuthzyVeizCSZTFCpVZo28gR5FiQktM/0NlujQXdMPMcQMDYdNOho02aTIbViye5/QHVDdTPZF+sYU9rGVh68P9748/sf/P7tX3x/+8bjsfJYV0QCOU8sy5UO5GlmWa7EnHj5cuP16yu31xuX2wVQtrJRtRg6JyqdRu07EpQ8JS7Lwu1643qxhuqyLJ9OL0ahqX6fxPON6JSCD7Ym8hwzxv+sKzbmHOJNKgZkVDn4xr0PGLdNRbVX1K8n5rTLEBXEKS29mfpya46maZEgXsg0m9ZyTApHQ8uVlJ+t4o64ph/W/UeLl4+N8XHNjJ0gB7Jr8BEFa5CnlDyQiC9x8cbLZw85C0pPsMdzWOaEMMj3SicSNBGCnkk5kRwS2UUmm1ghGuJkljhxIYWZJDPShY0He3sg8g69or1YUj8KKwRVgyiPYrFpo7VCaQ/WTYnvnZQac65MuSLB+Kg5ZIj2uxqTx6LAyRrG84QBxx68Si/yHN5ghakcXAUdNJMhuNnN9aGU7s1jP7Prc/z/62PAcad54nK9cnt54fbywvXlZuKYjmwodWXbM1uJyCr0rdG2aoJAW8EsZ5KF3GyNX5v2GVpHBoTf+fzWmHW+5V7YW6FuBX1sSEhMyRTSW1MkmDjkPC1clshQj1XFBhLbTgzpaBK1apD1Vg2h0mulFZ8GlkGVsaap4defEApj+OEOFj2BTW3CsX+1n9QTKY1UKqlU4jwzxUycJm9u/zKk0MVg/cajPi2hRiEq2PTYqG8JVSW0Rg3tHPopNh0PNqRLIbhOyMSUKy9B+Xpt/OPa+BIquQVSFUoorKjBZrs5RYRgoqKTi4sONGRr0BFaVfaysZXG+33lx5sVovf7yvt9Y993TORMiTmZU0P2ZpPHvxQCkwghZuZp4jIv/PblC//jf/wH//jtH8y3V6brK2lekGgOGDnPTNNsDiOPHX3f0K2xdaOABIXWTQMix8/h/n9v3/Lhv8+gY9M3g0+I86ssP/QCTU74p/jERb07oo75H/Mqbc382Uo3w9ZdkG4w3DDP5Hgx9dmcSSlYZzeY2I5Kg6jEPDhaYl5+gcPAuIVIkUQLmb27zxHQNNCIVqyIkeLtMBtLcSTpln8ErMAdQksSx8GHQ3r0mLgIPsp3/Pro1z8fGp9d7+epc0zBitDbzPKyMN8W5utMXqJZraR4iOyMA2CZF16/fOH1yxe0d9bVFCOD2MbJKXGdFy7zgvYBu6g2yQsZkcxelL3aNPL9vrGuBWSiNutCGixjJkTjDNUK21a5rysEk8hWPDHSQq3K/b7R9U/u6+aQD6G1xnq/87i/s60rZbdu3sEpoULs5MW6qzlZ0m/OHga9lmY3Y4hVFA9UA14/6eeFqHVUMYiac1iGQqQMsYYjCTg7nIwkogm9QNmVsnWDlFeDnowOnglR2OvZ0nIeSVCDw2QhXDLTl4XlH1eH5kb6rBR2djH1tKZKw0R2jCuhT9xW4/8Gh1ehinQPpIxZv+fRbofU9qHArPRoE83gCnh6dJqs2ztW5wnrUudq+NQndOc/jEDz3zVbzj3mpcfRfTyKUZ/YabWDv7VKTY3cEymmo8l1IBiE45A6Jr06rrf9tzUoXSTDVSJHg+bc80NowpQtDQ7oCq/e94lBycFUYKdkKAzzoDSYjGow+J4Lr41lZF1cK1aJaQQRjkirf8WfHIn28ZnOr5ZUho/F6s9X2WPOsLLAr2t0Tp0ML8sQfYLk3BQgpWwWVDl5N7qdyfhYx/6rxZsrKQYuy8Try5WOwhrYyrkWRx8hRSv4a6s89p23h3NFmykFDhNvu2cK1eLtKEItZukJZ/ww5bLPHYIw5cz1svByWbgtM/u+k0TpZWNf7+zbg31fCdqOCVYpO6rN74pf627WTSYwFlGdzvv2fL3rSpedula2tRLeC4+3ncdj531T3nrgvTn9Q4XQIFXIVaiaCFNknoX8+srl61cuX75wyRemZBQUS7zFBJPMFcR4oOZOYMJ+6teo7TQv8EJVUGsMlt28cJHdJ/0LQRpopOlKbXdiDNRZmbKylp29FUqzGP/97Qfffnxn3Ta2bUckEKNDnFMipszLy06QyHJd+O0/vvL//j//XyjKfcT6uhsUzGOhBAz+vSxcrjb1mabZFGn5m+mci1+Nxwe1ft87rbVjakf4xWt5wWRaFcOtUA01cSTAo/nuOVB0f+4njQtkfONwEDibpANqMJAG5772QjecTaefGyo/F6LPTxEhxYjmfEDbJQ6lzrE3jJpjXHjbT+MVbXJqsbL3Tgsj3n32GJBG/QmuaDG8YzA8VRjYFRXLhUxDw2DcKSRmtwoJIRr1RCGlhSnfmPKNHCZSmNDaee/f0F3RUNCYkV6ZsjkD5GwCWWM9GOWg0dtObw/KLn5mdmKCeVLmCZLbi4QUIAVbuyHZkAJXDx99VT3Pqj7ydw2ex54xR4d9lMfJPrxZa7EpuqPFSu20IdLTOUTff7nGMd/TbqmFeaUGPfQNDmGkgOcFMA59VajN9E1iF4PsRosh4nmKLcJwrtNxDonx5nEtiVY7ezHE2/T2xvfLd6bZhGqutxshBKbJrKJsmGNrKkQTDBuWbFY0X60h1Qpd29FUM6iYxYOyQxWjMYxhzpFCyzirwyhZCdodEXCuxe6ff9sbYS3EuZGbEs8t+ddwwOANG4VE/EyUrp7r+5nUO1qqIYv852w/Jo+J0fNAE9TKMTKFwERgQXgNka9z4WUpLM2cF/ZtNVubx866FTtnMQuaS8CUxps176RZ3VIr7KVxf+z+XHl/rLzdNx7rfsB1h29x7nI02xOZ2/JCiBejhRCIeeKyWAx+ff3C7esX8u0LTAtFZmrPiMs/RYXUGxKUR+k0vP5CkDZysIFq+rUAGvw3YkUjORyp0tFxi7Zp0zBoV4P62FTUE1xXpRwToDPfG5NQP/hro++NXhq0iLZIkImcLszOSczJxIhCBELFgQg02U3waDaFVBPr8eKxC9KEHgM1JDRm9mYmyLWrdZ97NNhjdRy2LcFjKmSy266mOCagcXQdvdA8CtGnhPPoEJ44c5NVH8v8s+U/+m/WqYspMS8Tl9vC4kXodJ1IUyS73cqAGMRo8vKXy5XXL1/47bffKKWiaglkSollcv+zaeEyLWaJUt+prRFaQEl0onOnzAPu/f3Buu4QZy7VvEclZvK0kJseCrbb3oj31VQEVQHHzmPmunVfua8bEr6RYybFCVR5vHshuj0oZaXWzaDVORCTEiaseyNikAYJtp6rywXECDVStdNroaoFBrNoVJZPlKHGRHtM9C30WkdTPfl4VqobFicuNYK49HgrQt0b+9bZt06rHIVo0MFJtCBmcM/KYOIQMDP7aya/Liz/uJFfM/E10FNDq3mdUhu9NjMLN+SJ8TsiVoRmn0pPelx/abhS6dmtFuQUVyqdHjpNnBs6RUIT41YPCqNfE5tSPfFHxQ7kswgVK0Q5LU9+ec2fmiwMyJbHFeRj0jU60K1WM3YOwpQLrWemnI0HLfnoEwgDujaKo/Eu1ApKVedR2aE2EgXvJ56JxlMRqlI9fvXj/gdRVw62InRKeBMgQLQuevcmSPemm00BgvMgTSxJQ0S9o/V0VbwQdET/SAgc5vT838fzhHP8NaKMfxfnTAaDLJXWKKXaRKpbvByFvTJ8NCG5AIL5NEKrBVCbOvRxzU7AsGJr7jLPfHm5mR2C2vUwhXTbSymK+0YbF/h93d3PTqmlcp0y1yk7vG+88Pm5xmQU+DA1erZwGUn6lBLX2WCuL8vMtq72WfaN7fHOvr1Qto3ovqE6plfqImrjnriQC01oxF/VoPZW20rXlbrubG87vFUe98Z9M8jSWw+8qVlLBIXUYWrOL9dEzJnLbWL+8oXb19+4fnm1yRHB1l0w6yfpikb7Ghxmp2rNoKYu8lY2al0hdJ9GNUOelJ3eNzobSCHFKzkpQTJ7uVPKGyEGaoelC2tpztnurPvGj/d3vv94Y3fRKlU769a8+XRbKK3y5ctXvrx+4T/4B7138pT597/+xb/+/V9s3x8mqEIlIEw5MU+Zy7IY7PB6Y5oWgti1+kxVtLsH5gF7+9CQUBf+sKl/cJXlEXuOppWecSiGQO/eTB+x5KnZMtBdKZmifpTAKPmUcc77WSEcT/t5zoJ4rGvf7B/tWj4Wosde/mkCir9eSsmn1y7A8sSFVYzvafbbR1V1xF6zS0pIMvRUkIb5nv76eh+FL8rgpp0NSkciOcrMPnvw3CkjQTxXyUxxYskzl2yuB7VZIZrzlcv8hXl+JYWJLIladnRX9vuDHh6QJiKVaYrmkZ6Tn9sY1cAhObW6P2rrNFdjD1GY53Q8pzkzLeZBn3JEUqQT6RickKdrbp8yuGKu8swZHA3qj6gN4wY351hWn/pV5wAa7Bvrcf+NwJ8Zh3WajKfSpFGpHxoenXa4LCAjo7FipZRuRVUwPiopEDQczUd7/2MtuvCSq+pq7G4PbIXoWjt5euPbPDPNM7fbC601QjDHhdv1hoTgAonN+cpyvDcNjdYu1F5QDMa6153aDSUxClECR0Hc60AJ+U4U//egTuFwsaMQDtTi2F61KVupsO6kS2WundifQIo/PdSbItoNvdS70Dz3O2sh4z1XH38GVzIeSIbo09Yghj5LcVgCBi4SuUjkNSS+pJWXLKRt5VEL6+Odt7c7P95X7o8yaORM8+QowskqDW9wt2oNgnUtvL09+PF2577uPPbCYyuse2XdDTXnOk9oD4bWREkh83q5cL1GmhjmK04L15dXLrcX5uuN+XolzhcKgdoDbedogEioHjO88D8IyL5vPN/Urs6d/vXjbyaiZwE6duFBbg8mDjRG0r1XBlfPoyviypKWIFp7pjsXtDdTgdLW0NLR0qHY7CaSiGkix8ntQIwHGqIZxh6LL+wE2cwbMc/EeSL5dCKI2ESoRzRmWshomIjV1Pr23gkONwV/vXhOAsZUQoIfUtbqcG4rtplF7LA6rpZfpqeD5JgjqS1I6xJ+HnDOU0+9EA1MS2a5LizXhekyk5eZNAVSDo51z+SciSERJTLPF+OIzhcCG3e300jR7FXm2cSeprTQ60bvwr53n04AEdbSeWw7923nse8mJLTvTOtKl8hem4mMSESp1Kb0badpZd1PaFAp1TiiQ/HW+WmTK/AKwuP9zv393Sahap36FLDDNBrfN4TB5vPkYHQRq9L3Ttu7wWN7M76nw11agy0NWfu/Xvf4NLU+uC7+NYrBIQiCto2eE61b0hQRejXRn7I3trXxuFfWR6VsVgTTB1/HvUL1DPBdLGBKAiaBOSBLJCyJcI2ka6JFIZYzybYBpXXpgwoxY+ugqDUmlk6vSg+dHq0QzUHI0ewxUgqkaPxZS7K8OK4dqYHQhNgDopGDq4lBi5QRRMaRd17P7h3I7vwDP5U/XeH2SQbM0fcRYyI6FMzO5MuEC6odtE+QtPP+pWOS6tXah6bP4QnI8Ls7C7g+VDJ5jl2+h/VZeZVjEMkxFXVIrouEhZTRYCpxY0pr8TLa3ozWbZeQoDukIoTRpTq2/8cI9Hwlz261VbkO7xPh5+T0Q0TxazEOyJoSyT0QTe7e11U0jjiKTcTV4IFh8F+xQse+ofN8Uc4WmsXeec683q6U2r3Z1Qihm3dtsGIqR/WY0wym6bevtU6/mGXPnOKR/Pd2wnrGOhhJ+snRl6MQtftocW+ZMrdl4vW6UMtmTQhvKA2YX2/QazmmvWN9HRP0Y8rRaRLhV2LcqqS+kvSB1p2yr/St8Shwb7C2wKqJHUGwMzSkjKYZSQtxujJfFuLLwvzyyuX6wny5IN3vN83hzCDBigbtpkNQe6d3ceGyRNmLCZe0jTHZ7914+KXsNB2FaCVFmxyLNEox4aAYI8gMUijVErMuHvOqqeWaEN04+4W9FuOa+6pIOXF7uTItE//4j99IOYE01v3Ott/ZnAclmP3YvMxcLs6DW67kNCF4PPpkfXd16onH7A8F1GjemA/TsSY+PBn6Fjg3TuhiNg8GaQXhyQ5oNH70YMUYx1SeClxvbo7z5EwObI1Ygqzn/u0QmudXzm8b73Xs4V89n9e+qp5V7/Fz3qATa4T1D8Joxxzv+Plzsjf+768PEWFOi2fj0RoFLmxkHOPhgdp/us4G14whE2MyGlDK5DQTxYgsscOUblzmr1wvX02DgEDRBznkY9IdwwnLPM/HM84fVlsDSVOtCDPl8mTX2vO/8URNVOXj//RIx0b8P4QrnTOsT2rD7fh9J4+4lmqFaPG/r5XezIN8HJfC6Hj9+mHT4k7VTtVG1WoNd62mW+LNj65uIeQ2Y/ayBous3XICpdNjQ6PpRuRuolLJq6vg17H77xHcQcD6QfReKaXyeDz48faDaZp4fX3l8bhTyitg8PoQIq0pwf2zOfKfRseuz7Xb+93LzrY/qM1EltTtCkMOxClQ90bZq3Hb1Tfm0/4KLnqGOyCNTafiLuRd0Wp8+bk09tYMEfTpufm8j+Tcv7bI/bp6oe8w7ajxLw2k0RhLYqJ/OVkuNoXALDYdjaKmiFt2tm3l8Xjwfn/w433l7WFDFAnC3DqaMqTs3G+LAa00WjHhpx/vD97e7qx7ZW9KaUrrNjoZejgiAY1WD2mYSbPXCnmmSaIR7O9uL8zXF8K8IHmmpUypsDU1iiNGp+Ep/kV3JLHr1hk+v8/Pzx5/MxGVU+7c78Ug0B/WIDHa4dxxiW0ja4NhzA2DPuCC1iUbamF2AStSIbRA7KbClbwINXXMjupunJzRlQwgUSEVSBVJLj7kXyWZSmzUZFjxqDRmurqce29Ibef7weBkiNjEaUz01K0gUOsw6Zl82/XsOMWcw+fQDwA7i+QQRDFx77GuP2uln4t8JLspGvRkuczMy8R0mZmWmZTPQtSmxRnB4A9REtqDXWcvyLSpD1kdrtTxLtmTmhyCTDuTmDJrD2Zc3Py/dXvQvwtv94clmPsQlPGgW3be7ztK9bVhfqr3d5Pzrm1wadQnsIZHKeuDuq+g1WCOORMnJU1qireju9eVVhu1Cn01K4S2drbH7p6lprimYhDbZgN36uXTBU5KtjHjWD4hHF2rFILxJLSTpJFp9BhMfr82tt6p986+Ve73nbcfK28/NrYNSgG6UyYDhO7dSprBaYJa0ygLOgVqVDZ27n1lbtmSy2T8qTwFusTD89SUjy1r7x3jpHgOEoLQN5t2HoVoEKYoLFGYg9hnEYhicJEokCQwSWKWbIVSFDQKezevmupwJ58ZP8djiw/9nIj+3YHKMQ2Q8Z/0IRYkQ5Tj6RmCTWg9vpiP50gCbXrhMsQufMZR2I0iU583lidgBAuK4ZgwjrrK26xYR28kVdqHFqYFcyW4X1gwgZ00E9NCjzMqZkWSDXvKMk1M00zOCzFNx4QHOQURAOscih0uZh/DUTgfxaeewmka/L+HLPAnMWUkqM88OrN1ykdypq0Dwbnyz9fjTIJHUQd6JGO9DxicH4r2r0wp8nIxGOy2Zcq+Y8iSziSdKXSmqHRp7E2sAcYpVpVCYpmy7UE/fH6G4I7DPnpD9Bm+eBSoYtY/PQiXKfPby4VIp3ZTZJ7nieucmBKkqGbNpdY4DSj6NIVrT1y/hoJz0T8sb+AmOxc2cthpcaemyhqEVYRdEqqBiKF3punCfH1hef3K8vU/4Lcb5beZ/etMvM5IilRtSCvQClEVjQlN6VjHiFLKxl439q2zPTL7I9IdfgWN1ncTeWm7x+xi0/7YjKPZKrVtoJ3admprJA3kpqQGHRMyiamS8kxMEzFlqgfaERu0VR7r46DexGTNjevlSpoSv/3jK3tZWfcHncK370p92wgRpslF8i5XLsuFeV4MJqmWM3y6xF3NlhBsGiZCUPt65gxyiCgeGhY+nR/zk+jJYgw2qZYYidppaaPR0GaidPtW2LfCnBstdySYXYxNfDzaiPeZnDYxmge9uzd1b2cSjRWAQaPHdzkKw9FsGY2XZ17oXyamHG00+/NxwfQoRmXEnFGzevOuOyKkqz79rl9f8CCRL5evIIEYMyFO3pAe/P7m1mrtaFueLXlvzhEIHbRW9tatxawB7ZEUm8HNxWA5rRXK/qDWjd524+UaJ4feO6XYxGrY3RwiN92RPCGYtV6cIGZCNp2JPGWio1hqtPYyHRMgdDXqpuN+nUij8flaNyRY62YlV1ulVnMQqM3oTkOkqpVmdhxNj3htR5H4kIOPxc7Pa9wyB2o3Ab+9rEw1Unsm+FkBQ5SpHHBXvMmCn1m1dUorbNqoKD1Y4jPPiSkHJDYUGwb01ikUOkpVywfENUkUE5R8f3sjhsD1dkLp59kE4vLk6BeJ9J7ok3N2e6a2TJ4mlrbQeuO6PVi3K7VtNqkLnTwHrtUGDGVvlK1QSkPbqd0ymqAhREKKDAtGUaNI6VjvWOOn9m4aG7WSqiHnfr3G7awLIiQZuaBpsISRw8jIMWxvDTsrRc/v7ebL3UQc/WmccAk7IWxEefCjfYf2HVm/sf64G4Vjr7zvnfdyajbkLpSwsutALlke0Hbj75a9msVhaTQdUPNIzkA3BnsIPrHNmZRnwjSTLjfm6400XdxmLkDMyHyhTosVrWRaixQVioj5LHvOJqgP5vTg5+sYMHjDHsTpOJ8v8v9mIho+7BF78XMiGlM0MRSsW67NAoSIOFRiQKWGOhNU91ssW6NuldADkyYimRAmcljMKzQIUD3J8c5vskQ8RoXYkNQNI5eica5SgJiMNyeBQIQITU1xDRFCqwimaFXolsBKMIl7FVcR7A5ZO6E7yNjUVlTrgak/r40ch599j7HvxYv4eFzXXwebs8ti8EDjoEzzKERnpsW8GmM2ufVpFKJx8g1ovkHa5Sj2e+1eiHonScUO1W5Kq+tauK+7TXLyThvTrWDBxwrRxrZW7tvmBW/CfEH1CLzreufx+M6+301BMU9AYF0L22aBMTh8W3pDWkd6oG4rbduICaacWa6RkBuSKkSboHaGR5zSNqU+OvVdqffGet/Z7oXamsFVkzhKxjikdf/19Ras0Jdg3cAkPj1MpiicYyRH61hlT6A1RUJthNJg23nvm12XdytEf/zY6DXQWyR22z0pWGqg3v1TH7+GZEUoc6AlZaOQ6gPtDemTq+oqOUaDwI5CNGI83aAOFDF4zTC67rMr5zYle4E9BytCZxGSQuxq3NVgXnKZSMZUkYMkk3QPAhQffpkow1BbHbQp4ex4dz0non/TZzySd/Gi0GBjwlChPmC6we0HCLZ0+8l9Q/VQajXV2whx8ER9P+loitkvG79PvFAVT/IOb8CDf+ITTfXnUYDbpERDsNnqaArEiRBnQrpAmEyYA/NaDdHEw0zle3GVwYj2pyLU38+IJecf9ZiePMNxDT41hIX6Iazyt4+nKbBgHK+UstkBdTwR5UhGDwizJ2Ej8Y3RuWa9o90Ul9pzEuuxb8qRmxeij3tmS9EmJHSynM+CTRW2ZoIGtVnxt0yV19qpcegMnOssOFzXOKDhAwzqWT331DOwfX2dM6JX5hQorVDqTsyJ6xyZkvF+W7C91Q9F6bPrXlB29CxEf7W+BW6ycZENjTs9bpTYWGNglWAkATGvuCkls2C4vXL98huXr/+B/PbC/nVi/5pps9CiJZ/aNrSsVoiq8eHMR9TW/F7vvL+/cb8XtkdieySCZKYpklKglJ1tuxtUt9nkRqISpZuwX230utFapetO10rWSK5qvsMaIUZSnv1phWio1ZNcTiXmdWXddkqzhqSEAP/4H/z2j39wu94O4aPaV0p78P74ZvzQOXO5mlr7crkyTwshZjvL9G8KUX0SEpQBDRvNYD1izEcRn+dC1KD20ZPPGKPT1Kyg3UOnY57RZgOys++TTbqaC1xJtaHg0bF3/mQSy0WMRGoFhStVI4byEDXhtehY1rGmn4vOZ2Eu4NifYy+Mh01/DuzHMakexejI6iyXcfTAkD04pv6nfcavHjEEXi9fMbXdCylfTAvCC9Fad/ay0VqB7tcHL7xGY2wIo5XKrs3TqwRk5smuSwjQa6OWjX2/U+qD1nZDTWHFaO9Q9kYNOJl8NOscTyKZEDMhzsT5SlwupGkmpGQK0+OeAGigNQg0O3cc2tqO5kF/mnp6Y+fJyqe2Qi3lmHqOQrQ3Ey7rXkCNHOzISlyd/TPhc9tbp1CbFaKRUhOt54NDL6Fbcdx3WvdC9Pk+y4ng6kVN2D4l0pxZSMxpIqRqU7RmVh+7KkIDshUnKfjwWykuxNe12b692PPl5YXffvvNYKopWSHqjeHcE7VlUrP8cCDE9v3Kvt+tGSamUF9LZCjC73tlXwv7Nor7dnjjGpczIGLFgTYbvFhzSmwS6GdrUxuClFaJtX66xkfTdahARxfFevYeHdPyUYx21JpyqmgIhGA5ysCoK24R6Nz8EDdE7+j2jX3/A1l/UB8P9nXnfau8l857sXjRtZOashNZ20D9mHZG3Qt12+nF6F4dQUKGNJMcURIwn+qQMpIyIWdCmq0pc3tlfnklz1drTHdoRDSYrk4lGne0B7pGE3j1CevIq4YDyvBmHyizcf6KWDsqh/8NsSK7IR+3xEh+rCtkmPDezinFiUORI3kYi2n4PNVik7rWrFgIGgmSiXHyDpsb9IolkkZ/dQ8/hx+b9LQiySZLhqCvRjAfYiOcxaH4AZSiGRirCFsptNpt5C/qwDzDm/tKO4rKkcT+qob8AME9fmj8mTO59MNDPjlQf3pVRHA7lsw8WwGasylVJRdHkUP1V09hBunm4SmbKc8W27j7VhDutNqY0swUZ7ZtpbjvVH90Ko20pYPovu8r6+Nh1iVOyqZj9yqYdHdt1hEs5UFrG73vBj0JeEFcqPtuHZEcmLJN4SIWhCKNJN2SxSlyu0yQinGdUPZqZP+yNcq9sd879b1T70p9b+yPyr5WWldCjoRuxcvgJH/myy1AThERK0SjcBSfKTiePyaDE2plkmZCAVsxxb5eKHvjcS9sj8K2Ncre7Pepb38Rchy8Ge+UJ0FTQOZEvGTSbUbmSAvKroXQINTOVIMZ0kclM+DtBuEKQ50W4RDUcuuiXhStHZpxyVJQJrEidAZiF2INhD50AbH32sXRCYI0U87rRNsP4lN/bcbH8P1i69s7xmKQ4wHr/HRdHzNR8b1oRafKUNo7+U0h2N9Zx7zZweNJVQzFDgWFIcd0QOGCNdFO797nu35sXFzBAxg6eEOa3dWzh9iGGuyxB+d/ih9wUdCQ0TCjstCZ6GqS6jKm0TkbvSBYw0B7Q+uONltHBg09pxdPl/XjRNRSEo/B4ZyMyn8jVvSUlHaP3c/quM/faSFOGbDp3hu1FUoJ1Cy06hAfh66O82AkBN0hYikGNCdyiiSfVo+pQm3CXhphL1TBYZ92T1sPlvi1Tm1uieBx1xqQg5M2xCROYavzfPILNwpqtQNyygEJE9MUTHinGmdtmbPB8H3djObDSOZt8P1xkvbp+EKVq1auWthaYRuCWC0iHVJXksPxJgJzSCx5Yl4uzC+vcLuh10ibhBoKe9sodUP3B5QVQ59NaLB11tX0DX68fePfv/+bt7cNLRe0XpjyhRAWYpy8iWeJrDX2zlOaDuu683jf2DZFqYhU5rmCzohcSDYitMQjuD5ESh8EccYas2LW7se375Of52J+olFovRAipvw4mcdozsn8Xl9uXK9XlmUm5Ww8/DYm/58ljf5ZxlePD1ajeyN82DwcdmVPXonAEDexnk532smYllqx1qpSvYFe9uoFvU1EOeaq4x1YTB52ctFFcbTZv5kSqPe3pUMXWpBDbOhnRdxjwudNsefm90/b9yjCEWtODrG552aWHmHxuXPH079/HlEEMc2GkJjnmeVyI8bZigAV9n1l2x7s+4NWd1rdDuVie1ocN5VZHzAgLu6YEen0vlHLwxoo68pjfWfbVoeVF5uKtopx9u0MPDn+eEEffQK6IHkhzQtpWYh5sianez+qx43m19n4nwYnVeVEyXkhavmO+3V2U3lt3aahbRSgrbmSfT3F3Z7u33FtD0GFEd8/CSvdbX5qpew7ewrsc2Lfk0H0I0hQn4RagJFo2v1pgjwrc7V8rHdB1XRWSjMLuGUP1GJe3fZW5BgAgBIkHvFRXFVXvQHaWmNbN97e3vj+/Rs/fnzl7e0HIsJyuZKneJwHqtOxtmXsv8BJIdBKCMZRrqUc63KukXrNVB+s9HF9nYM6kGHNEZe9dpToMPp0QHljCi62aa3lz1Z5EDGxPHEv35FXqKsic66b7o15vHncXbhIxJBcQxxt2Pn0bsXouq9ofWe7f+f9/gdhv7tQQONRlbUpW7dGSO+mbaN7pbH7a/u5624jqIkMhZSJ00KYLoRpoYdEEyssJU9InswyLGYkZvRypV9eaNNimg7dUEFGXIkm6qrBh4qRiEPxj8Y+hGADveC4MasRrP1kOmijEP3k3OS/KUTPftrZeay1MA7iYXHSWmcIFlh+Zx0K8aNTNdCb0HwiWitot+ldDPmA46ZkRahKt64XlYAZbBuMyIRB4vCiOxaVBYgQEjGYCIu3uw68vDCgMsl9+wr7vnO/b1TtZricTI55qI+e09BR+VvQO2/A2ak/zuNRmMooUuUpkHWS9mfdjfPx/POiDoWyqec8z6YaHONhOCwSbBPUatCg0fnodhCbiIMF7urE+W19GGfKceH7XqllM+7QuvL2+IE61jvEQGvVjd1XSnH4a+vEmL3bIgdGXimkqOSY7T7ESKtqTYReCCFymTO3y2QJfrOiSZKJbUw58LIkXi8TLSil7Wytmz3JurO+F7a3yvrWqPdOe0B7dOqutH0krHbd8InGKET16fI+X2+zo/COOC6iEqJ7oUVyTOQodGY6JhZUq1KG19O683hfWddC3bvBQbwTL2IekzlYl16HUEaOyJxIl4nptjC/XMiXCEmo2ihNCXuBGJlkFMZY8SqCNON6DFgeoRu/L5l1kUGxjVMW6UTpTOBPIVYhlECsNl0T57LSoO9mAC4xHgfZFGw/19AIvbtgkkGFurig0ROsK8jnfK5x4U8uLtZMGTAPCa6w6H7EP8F1h6m8UNk2P6C9EBWGcM3g1XrBOI5+HZDTM8E734vtJ5tADiTIKIAVPQpSOTvXhr1Dw0RjRnWmaaZ1404MMZOco0P+BOkVrRu6g+4PtGzQTOxF/XfJc+H51N1/Vs49ea/+50+u+DFP9WmlNudk1uIJVTsK0+cQ1gffrVdqUTbpLpIjR6Lcej/uRx9Cb55UBTFOcnAYV++d4lMWadCo7H3QJpIhlUMiBodbCw7jMtEQU3eW4/621qBZU6Kp6Q2AT7n7+XmPGC7qxcCEamZumdIqKpDz5AWtXYAQrXtt+lbKEL0xkSWLx5XBZf5rCL+0ylWrwQ73im6dUIRUI6kKqdupmJoQNTCFRJ5m0uWCXmfIioZGaRuP+sZa3qGsSNmYQ2AON0iRriYcct82/v37v/j//c//yduPjSX9xpz+gVwDc82QsXhIOAsscf0DrOP+fl/5/d9v/PixIY5aud1uqGZCmJmmRkoTHVNHHNSccBTl4+l5Qmts+86Ptx8HnFG1s3mRYtBc03uIKR62FK9fXrnerszzRIrBhTiaQxo/SRpdOOiYevoaHefk2OpBxFRRn8StBsXBd4lzh33NigGamkPPKYbk2lfYd2+UiCfrXsQe+uTeHBzKunkS0hSMVrLj/EAXqxGgcdKdkilHWxOFY+8/c+M/HGjH9/galBPHNpArvZ2F7Xgdg/c9vZ4XIM/38tcPhVYJQVhS4PUyMU0XhIgS2dbAHeXRKlvZWMuO1u1YA5adjympJ68xG6AtR2LqtPbgscG+FdbHyv3xzn17sJXiXMGC1uKFKIOi6gWYQQ9jzMTpQlguxHkh5ozk5KI7DnZ9UhFWfFo5lI9VD92DfojbGaS/1p1Wd2orhyhRa9WKgtaOpo9N7dpx/Tnu09EePL7yN8U/tRtqQcSadxH2NbJNAaQeLg7Gv+oEn1z2OGxtzsZuiIV9i4QgtN7Yto3HQ0lZyZNani0u0efUlhgs/qvnvEbRMOEpE4pqPFbjjH779qdbB1rDappmQ0aMlpVaPpFiJKdgRWqzhqxNoxtoYd+NMtK1M+tQLpKDq12rNYTMr75TSmMvrhWyj3wdn0rq0ZhJ3hAjOvLwVzFFMFVhvFj2BlUblJRxHo8f8KLsuZ18ghFG/XAO51qtrPvKvr7B9+/Ijz9JbWXy/H7zInTrI2exbSMOGxfEcwOro1QyIWXy5cp0uZGWK2H+WIj2mAh5RqYZjXauqkR6ntjyTAmTTUThEOy0MzF6Hhb9+UyD8SGI+yeb6vzgoppA3tHkFyFSPza/nh6fFqIj4VIssVZcrZA6rrzzCM6gNeB1RyEqEe3BOXt6TkOri66I2cAML54QxeCwwaAr5gJaXaSoweguJoM22vefU9pns/bRte9D3dELZDs0LHLVWtm2jb1WSm/EKbGwMKeh1uhdNvwzhedj1/9/ZNR/eZw3S3WQmp+T4M+v+Vi4MRoPdPhn5ph8KmDfZnAP468ExkKxwFf2ndYqZbfJaC0GHQkCt+uNeim03tnLSu876/rgvq2Gn48mwKLaqdtG2XfnP+y03rwQzVY4eIGdszDNQp4yQSJCpGg16HNvRIQ5BW5zhu6Y+tBdeRWWKFxS4DolU4NTMQXa0qmPwnbfebwVHj8q5aHoQ2kbaIVex9qLDumGw0Ran+/F890RpmSF6GAF5uB8ADkL0SkFcPW4qgZlLmqcsX2r9t97c4iMHJCwEAwfn5NQ29llIkVkSoRLJl1n8m0mzEAyxcvaGqEokoxnK5qNLzOsixomi+2S6hKFkDoxCW2yBkSvBgmJYkppGZjUeAapBLMhKooWfz0EhvBT6BC6rfcoLlpiRVkIw0LGDNKrdoq2o6k7JiGf5zFyXHtrsBrUVcQVZD3BH/zQ8AGiOzhISlUFNWGZwLCTOjmDh2KkhGNq13VgHsYh8jxCEP/dw2Nv7PDBU3dOxihIg6AhGV8vzNao6AuNidZtcpRkqHi72Joo0iu9rOjW0bKi1QrR08blORhwJC8jyzyK0afJBcfo9NOo4j9rB1dvAzZWvIFom2R0qOnWXR+cq1Y6hcYeHOaa0hGjxnUd/Ck9Dt3TZ1RkIALURM1U2bUSqzcTM2ah4AVscChVrQahyt2hsp5IxBCOayO+5lqvvh268bHVYbp63t4YbSIWQjBaQm02iT0aJ6PoHA2Sp+vvcT6liKrJ1n/2uPTOpVtSJHuDXYm7MjnaYOrWEAoufx3FzMXDZaYvE+SCBou16/bO+/oNqTuxFkJK9CkjfaZp92LvjX///m/+7//7n7y9rXy9dr6+GGWjLReLgX4RJERwNfvRxKi18/6+8u9//8kff/ww5EoKbFshhJkYZ27XzjR3vyb9KPpGcvW8v7tPSWqz5kQphdarK26uJoJSC02rNwisEL3erry8vnC7XZmniRjDybGrY//+9TH4XAOKbVOWsxgd927oW3ywRHkq5roFsLNQCGIK5aomUOkT0X1zOGgzYTxhJAXq68JihQQlenPQNB2EHs1i0ASWDCE2krmuQqyRVhMtnT65ip5CSc9NNG90j0LUlunT+h05mhfJZ0b7PPV8jh0fk2X5LIirIq0SYmAKynWKzLNBwSGSeoHNlJNbb0jZ6LsrJKup+Nn+Us8VbfKcopKyINIo7U5dN7a1cH/sPNzrdy+VUppNxopRfUywzuORn91KQuJik6HlQlxma66GUZyfRf1oYB/XZMCGn86NwzO0WsFpPOr9/O8x+awnrLk7PHTkR+Oe+eo6i5SxAP8miGv3QjRYrlN3sbxuizYR9aFMcD/v6PoeQU0xGTVPRzQcsaC7su+2N9LDis15EdIkJEvRqOoIQbGTD7GJaExGiUkufNe72QS+vf3g2/dvXG83pnnmcrlyu7ki+xPKIAb7OWv8C6jR5UQqqgVtG+tqtK/eqgn+JRPjtAsi5jO+Fba98Fgrj7UgW7HhEM5PFDGtE987VoiKHbd/k6cEbCI69tJzDm8UpVPYNMTzsw00xq92z8h3RMyCbF9X2o93+vcftG/fyX3ndr1ymWf2LuzW+wL1WEVwu2G3Cxp5rRhtIkwL4fqF/PqFdHkhzhfCdKEFKx41JmTyQjREajdf+iaRHqyJ1DFkxnHsqTgsObrqfiJJOhp4dmZ27wR1p156rykGIuocXYvD8W/W+N9zREeidnQ7DaKGNKSNoDcmFtZhjGEkIAbVqK2zb8q+NeskFusURU8AVIws3ynH7wzSIRSQgsRKiJ2YOjGKw3GdqB+ii7f4gjk6F/UQMTBieT2KUXEFVhPUMXiRqk1HE52UI6mF45KNzzU8Uu3vzw7jwVGRcyL8fMidHU1byGfw+fTC/3QPBtfphBQd3bnSDDJbuwkAyODM2f2wpNOK0OZfg0DZNrb1gaqylWKdxrKjtZh9Qa+HgmTZdofWCnMyRWPrrCW0K/tuaoxRkpngjoknkUhgS7sZTqtN3MqjmqLt3qmO/S97habcU7IlmzqESOwT0gp9D/RN6HuAGpHWzUO049LQdrV6MZD2mIrFEImSfh1vBPdeVSJD82Z0DeMTHC/i81I0pYOfSbBJbppgWiKXm1qXqQJVySLEoIwupQbrsOOHRY/QgvmD4RAuSRGCddwOYQvlWFNBbHN3IA08vnTbd9KpcUDgDe5lfUSfwHSIivOjusNhO7pbF6tU8x0MtRNKRdYESVDHLQ+/2pAypIAmoWol9ko7gLr/zdr2C++p/Vjh5wb2TWx2Mz7dlDNxFM4CoTXrqJdqMJ7inA6bLPjuGfHLg7n2U/DnSMzoH97beE9+ZDqAR20NjIRTIhInJE4QLnRmtGcakd4DBONRIPH4vVp3KA3WAI8K2ztSd6RVFzP5ubA8i8+fr+3RTdehYfzr635yKkdn1eGuQ2ho8Lfk6Fta0uH3YqhJo1BbZd92eu8HL3MkbuO1BlyWIKhYd3eIrZmggwuONai9k+nMGVN1jpYMqVa2HX7QaLWw75Ftz9yWjl4DUz6FSfDilSAExZULTYSqBzlyc/GiOLoCsDaDyneHV9qUPbjX6ql++CwUM6ajOWfj9X1Gd5EJmAkN4t5Ja0NKJFazR8oqRFuShx0DodFDo0tl12KJblmp+522P0janQduh11HeKyV37/94L9+/4N//dc3/vzzjfVeyDyY08oybezbTs7V0D7idlpigm61NdZt4/FY+f7tB9++fefbt+8HhLVVs3PRrjxuNy7XKzEG7u9v7Pvu2gPY3nrWknDOdddOLXYOx7s1ZWozFbfWTHSltkrKieVy4Xq9cru9MM+zQ/+6+zAateTziahTbny9j0nI+O/DlP44n+XIFcZE6txuvtg/FKliXr0t0IqaINRW2fadtWxM0kkykUKyZhPpmAbEqGYvl4zrrOLqp80gkr0ZNHG8id4aZS9/KQS788Qsp/EYIeceP6a858Y//myNnYDGE7kifYCzx7cHV8iObq9S3Sv01w/tnd4qZXvwuH+jltVhn7A9Htzf33nc31nXd8p2p1Xz5e10L2rUclOnMGg3sUPlQS2VIX+6l8a6mdJz1UIP3c4jku2zYA0Dohz0K8kZmSeYMpqCcdh7sWLniVL7nIY9I0eMd28jqGEJckByj0K00Nruk1BvGvgUe3wdCstnM2ssrXHOPa0zPdfurx4jjqeYyDkzTzM5uYow4qKYp35LTOEQkSu9oWq5376bOOW+FX+fneg2Rb1W5i0wXyLzEiCpxdU4mjbqOZMhEOyYajSFUjdCER7rzPv7G99/WDH65csrrRZynqzwDMmHJcFpQXYet2mht2LNilqhd6ac2NeVfV+t+aHhQAupQujN9Dui0CfLcoIIO5Wglb0rtXXX1rBzroNDpatTAz/niObg6t+jYYM6c8OmsqMUe/6ZKDYIieLQ/5GzcE7/A93OtXVlf9xp60bfK11gxhRtRRuhdGK0fTomktZwtzMqSjTHgDQhaSJMF9L1BpcbOl/p04JOroQrEY2JkCZimmAgV9UaMQORhdcOiIzbTQpyDGiGmJtBlfXYOV1tHYzr1UbTzBtdxsIWutRPK86/9RE9RrAqRwLYMXx/80sc47lRDvGIIGchWhvbVljvBvMaCniHOhydprspc45phHTzpwmFkLo9syX+Ersp0bkkqXEL5GkS5hzW2g74map1Z4eXYhBMQnyayHnnsa1mkI6S5kSqZluAe0WdnVQX8xgLVE2h1UQSxKBGPr05zrHRZRvPzy44nGfDOZR5OlANNioCpVS2spon3LZTd4MHhQ/wBT/I+xNpvhUCsK13HvcZCYHauxc8zu8SC6bG+6zs60bddy7Xhet85Xozs2JEzCS3GUw1SuKSMy/XC0Kgd4OerXknh4y0Tl0bj7rTS6c6p3IoftW1IR3aXpmvkekaiWFGSkH3Fd0D0hKhC7EP8QM/OLyTPXge1oG2iWIKv17iVhN6kS9yFKID0mWNjjGRM+/H4JBVDQ4pniFfApc9UbpPDLdmENeuRBtHmJJvUC9E7RmCmliWVmY8wFhTGcWhlGrS62YD4xM/247OfxzqZJ0mlvAMHgh9gEwtMU826LQJcDRxg04zcYvdhK20VlgL5ICkiOSI5ECYEmmeSLNBnnLKhDlRtJB6oWg5pOs/bTOCq9idh64lhKMIHd0kn4aGaCpvT1DbM4O0+96adRdLKUeQNHi/eEANRzCTMenohtce+3cUaIxCDNwb3Pa0aCQcnT1/DyEi8UJICxIXOosJR2iiaXSmqZP6sURL6wob6KPDvSLbG5QN6eaZpE+B/ShGB5zrKDXPQ/HDt3wWTgRPGgyCaRyls8uP6se7pW7tAwckaTQHe2tsahC7aZ4Zyp5HMeoQNoIfUj7tmpeJ6/VqCUtT9rYbl6ebKvQi4rL2EKWjvbBulboJawosU+AyJcqrYigb5/GqHmeUBPNy9Jn60bFW9CxCfJoqIgadD1ZI1drYd6MO4J7FzwV8dbgdnJ6lSnQrhL9Glc5iB2/3QnQLxD1BiS4mZ+dEE6UEpQXzA0wUVAOlb1RdaWWlbQ/6tho6IjkKJUS6Bt4fO//+/Tv/8//6N//61ze+fXvQ9saSNq7TyjZtrPNGzuVIKqNEm/IBbW/c7yvfvv3g2x/f+f79B2/f3+wMT4lWOtqh7DsvrzebckyZ9/c31wwwyKyNmMLT0SXHGdTUUECPxwOVzlYetv4OmCakbGq519uN2+3GPE+GlHAeYG/VeaK/XujDKP75EXhuXD3ddxnThdEg5thLx5n91BBjrH+NaI+02iheiK7bxrpFQ2q5Jy5Yy3JMnWNUYlKi5zCK2iSigTZDiwkcCWtvjV33Dw1uGbwq5YDEHyItqqSUTMDQGyg/738YuZFZM/Wj0fX0GZ2/nlzEJ7VMDJ8Xonghuq5vIAbTrT6p3LeNfVstL3EkVhtoFI8tfUzYwGNko/XNbPxIlrKriZfttTt6oaJBjdoSM5KDYy+9EE3x8LePKRJyMks+ql1wb3+eO9WLK+B5IiqYCm3gzKFqa0+quC5Q1MrhRT1UhkcBOpBvBzLP1674MEPgEKsT1cNW47NHCIGQTOl8mReWZWbKEylmorvYBoUoyTzaUzppE+y0WtjWxnovrI+d7bG7cJ3dj1oq2yosW+RSE60n8hJJs7ggoPh6UoJbwbVmQkW1NaQKFFi3O++PH3z/sbili/F8bXI6WxGKEIbAngvu9GlB1T35nN4zpcRD3nio0EpxiL5zbZ1nHDxfJUEUo1Q9FGiK1o5Wa/aptgNR0Xqg1oBId37yr663HIjA3mzPid+HsXcOJBGjeR4M3ekNcQ/zZpHm4j3uTgutULYH6+NB2wu9KpIC3XmcgUpMjdi61x7JitBgVMaczV0k5hmZLki+wLRAniEvtDzR84yk6fAG1RCJIQOGZJTA4aXavFciB/zWclmDKLv7ggz/bzmLbDGkU2lA617DKdWHbiclwOJtDg1NP+Uc/vi0EB38x58Tyw/FVz+D3Di8oxeHqBmj11LZtp112+lN0DaKwZO/1TFYYhgqV1GNtBybwQ4nmzzFbOK4h2DgTx2uA6KruHKZBQszH+6oxuOwSTEyTRPzZNxUe8snlEKcG2cdDjvMhk7pwIfbFACskwAjNTm4vEe/9akr9kkpqseEC5/aGP+y+sRnEN+pUMvOvq2s28a+bux7OeY4Ojr9zhMc+FT1wz+IUIp1aazDbgExik290EDRQqkdakVLoe+VsChLyrwsFxCDYAWFPQQzVVfnholJofcgxitUgQ51V9ZaqDTa3ilbpe4+0S2NmLzAfuy8fL3wGq6kKUNNUBJazHZHmhdZ/jQyj+2ornggwyw9sAnxrx9jQ3FsrMFHDAMOGoZ4jnekkj9zJC+Zy8vE7euCBmuUzLNS10pbK7qbzYu0Zmp83Q+iSZApIpN1qZs0WgiHdyq+DhSH8+oBZLUAEjH1TF9vY9+12J2TosYbUD38xYK6Uq4XohJcDa+DVqUVpbRG3Vw9VcSaPNkO9Lgo8yVCtzUjc3bRlGD81x5Ad7cfeW7D/LzIPek7NOv9TozkT9zMwPks8ShCz0JcxhmmA+LWDnGInIenl+2jIy8T+0xnGfvhTR1f/8IfdcPvLn7YB58Kx4kYr4R0I0QTKUIzkI6mhUgy9Tocvl42ZO+wFVgLsj+gVVfQNN6UeoFll0o/vr2nd/38pzOh/sUK9yJNdHyfXcPRwFFOiKI8xagR854PHBiTGT1f+6fzQWS8gs+QY+SyzOy1+4FlXNG2t2OtBoGcTNwgiDUI9qqszbqxWwnsJRPSxDJX8mSdcMG5imLq11HE9Yp98qp6FPccBaucRcqAe6sVxdAPQaWRsz4XLsdUIiWbiO5/WUgAVJ0ovaJNkdrIpUKL0EzEypARSg2dPXZqUmrsRCpooPdilJRWCa0ReyeRjmlt6crbtvPt7cF//fsH//zPP/nzj3ce7wW6wUbLbgiXshf2UkljshGDF4KdUgv39/tRhN7f3nncH4eiMh2fCDdq2SllY5pno7JsJvTXB5TVG8gjTjG67HYYsTvqaa+bT5rsrF/mhcty4XK9cr1euVwvztnlyRrDE9BPzs2xLz9sAjukf9ot5zo9O/X64TsYk8inNT+QEdoDvTbK1tjXyrpuPLZgCK1kcD+e1oupf5oVhXjjDzGAf8OLd1Usrvv+GtYUXoS22p6oBuIIrxOBMOJVzvmcospzyWXFlhWaSg/DMxT//E+f26ktMSVib59ORA+eae2sa6e2ld67F6C25mrZaaWe62Nc/hFr3IFgoGwQb2RR6OoNPBVc/N1sVKSh2dBwoolAOkT67HXcwuPJMqejdC306uJqTiV7jmmDE6qOjhH1ZgJe+Lcx1HBLlmaFqFGinqxi+lAcH8MHPQ+qD0WwnuvkaK5yxKO/rm8T2Uk5kudkLgrzbMJbB38veEMmMyWjcZnoW6NGCLKD+usPr1Q5mMTGuSydPQqpKrlC6k6dC+mYtltTR9AYjiLNYm0l9EipO+v24H5/5/39zZW830kxseSFGIMJ5YxT+OALu8oqFj1SiOQQSd1sfnZWa9BV9Ya3DcMY54COBjbUECjB7CPlECXypz5NRAOfCqCNNTLitfnXW5gLBPd1Dj68GQ2vk6c+8h9lNLs7Bj8uBBefa9vD4Ll7pVVT2K2YVZ9EIU8dxJCHJuLq2ithIk0zebqQpgtMV2S+0tNCC5HuMFxNExoSXex1R14SXV3YAQnWVPJ1ek5ew+n5LWp/FrP8Czg1Y6xlb0QPgcFxxnfnSY99gSrE/w3V3JGQj8ULT/vqqTNvG2t0pzkmpwM7v+2FvWyUUlHnxYwitgfja0qKhGxqXCGLmdlGG02nSchTZJ6N9J8n938kGGRGcUuHatygACLmFVSKqYjF4MJG2hnCDTFZklRqo7Sd2s0zKSb3EGQkH4OwPAbsHGNrnj7zqdDrBc0Zdo5J8YAH/ephsBl34lNFG2zryvvbD+ZvCVKD1AmzsJeVvazUfXMcfeEckXgSq86Lcr/X4CP1FKLxTpPZdIBzSDzp7F3Z1p3tsVkRWTtUSBIJGqDJON9wn3ToQt076/t2cABEItuj8Hjfuf/YKGs5umF1t4loLc0tZkwEI8+BaYnULsQ8s9wyrRonKnSFVtFa6KXTirowD3bTVa2wArRhyr3VuBq/fozCg7Ni8etgRshyXFLjDwZCTkyXhWu/UZqYj1daePvReH9rrO+dtlba2qjrTrlvlHUnFE9MRYgvE/FlIdwScglIVFSam05HUrQOtQYnk/usR/zQGWdX9OJBRInduJ09PsO3PmxPwijcj6As9AotKS0qjUbpdk1tANGsZRYb8dHZVsgrLAVKD0xN0Nhpwf3INPr7ObbP31z3EVLOw3hIzJ8q1wYTCw7nkQFD4lkU4CwkTOaco6AdG1PAIEYIuGp26MKwKWnaEPWkaUwND1iJ+L6ISAxuS5SZpgsxvxLTCyEuJLHEqKspzUmIppQbDS6kjjAIe4G9QDVfSA7e23MH/eyiPwsVjQ99cEQ9An9S8h+P0Xgb07zaHCYzDtHoMeCJNmDd3XCIBz37JKdkSJJpmnw6YM0/u0dW8HcXPcgpcruavQPIkwjLTm+7e9kOG6HuR40l6tW9W0OPRI2UHti7srfuEKfGJCboNQ0o/RCL8Q54V/e47A31w1PDySdMKdI1WwPEr/e+G31hTNTSoRB7In4M2vDXK6/AfZ+Q2qhFkdaJWo4zpwkU6exS2WNnm6HNQsxKjJ0gBgsMCBORa5xJqdk0NGb2rry931n3N/75r9/55+/f+ePPB+ujoz2TnA92iAI2g8GaMr0gYhC8Unce9wc/fvzgzz+/8fb2zr4XS8yOCYirxZbOthVENrNca41WuynAOj//1IpwSLtEYnA6CqegIRWLP9oQsXPoer3ycnvhcrkwu7CJdm+M1cG1+zymmDjSmVCKWKNSw2nrAuLFz1Pj5UMTxfeCeJwYwmk4SsaVsFuDtnf2tbDdI+v7k/ruqMGtl4iqT/GkomNqGnVonHl/JByUn6PB7YWNNdfqB15r7yeKQ47PYB9jTP6fG0HnV4sBhh7zxtRTrnDwuzHqRsrZ86BfXG+geOO39IbsZuXxeKys60rdjTvZaz0jkPwc750fGm3SJyGiElFPko3LHFyLwM+LqMeEN448bNzLcQ1dUKer+cQ3ba562843j21fw1U8HZIuzGNCtpbrjftgk7iKaEMwYZYw7NRkXOczdo8J0Ie7IOMNPN2zY/3J3wby6ZJZbhPzkpmWRJoCNpyzfDY9aYnM00yastnw1I7OQrkaf3XKmeulUPdyIKpGUxI6KQvz5YTnTlMkZdOHGG+wx+AT42jXQPVo0Jv1VWevO2/3N/7483dyyrTWCRK5Xe38jikyyWTXcXC6HWIfxTmJCInIFDPbdGe939njw6btulGacUhLNZit2X9B3RtaO47G/bnnjaHNhoL4r4PKoNIhHFStsdYUyzfSk1jf2DuD1213VLxIbiQa0lZau0N5o68/YH9A3Wi1sjcIFR5757JXppy5XV+9uWK+zcQJxGx0QlqIeSHkBc0LmhYIE6fHeUBDdI2MgfQ4hRyPxgIg7cx7oqM4zBEzuNK/K+Gq+bBqbeeuUYsBu+s57FXZW3MLTH2eg4HanOWzx99ORM9C1PdwPzeX31LbvP6pRg5oIgiFfd/YtmJiN6Vi2z9at0pxK4Roqp+uZiUJV8d1a9BJmObAvGRSDuTsghads9pu3TrJXTGtkECplb1asqfJSOzHOEUgpcjlYp6AtZt4QmnFILbYt44C1BJjPDg9fVbOqcHzZE2CHAeLKK6A6xYZ8lnEcQU+9RlxU7btwfv7G/GbGMkvd3JJlLZR3aS810pvhWEyjw5StCXOy5xYZoNy5JSZkkE3ckzHwXWktGLJ4j0+iBqgKrob1DSSTMiljUWIJRbN/q7ujcf7Rq/qidPEthYebxvvP1a2RxnNr6MQbcXkpy2R6MRs95uQma+vhBjoJSF9Img3ZdfavBDFZKsH1mwoPXUvRKvxr56TlJ8fI8EfIiujKB8Nh+Pp1zOmzHRZTDRIEhJnpuuVlx+F+4/K+l7pW6NvjfXHyvt34f17g73TdoN559fM9HWBJVJTpyXjbDUF6ZacxKHIKonmhWggusiWQybVOn7Bg2HUs5t+eGK6+pmMzeaFKDS6Cj1BT0qLnSrWga4uytGrGqRYApI6aVXyquzVCuali9HhMsbbcQiJPX69xk+RDDkKreMo9sJRxzR08JVCMi64J4djanG+Bj7JGt338/vOtrdDUfxeqk/xVQx+aBDlJ27P0wFlnU6DJOU0k/OFPN1I6SsxfiGmmSiWqHaH4lrRmrz51NG+mq/eviGlQN0xj70zUeno0+RypDGjCD3/POp89f/7wEH6xWNc1+F/FmO1MNiN4jA4kR2TvbcY7gqeQ8kzDLiqHAnPNE0APiUYsDiTIyjN7AZySla8T4s1J90DrlcTU4uBoxgVOSdGVSN7dx1wjSRN7BrYOmytEWlEbf5zM1MMhJiw3rWLJHagNRPXatUTHBPwAJ/6EpkIxKiGPHFRtiBDQ8DEpnLODM9GEfnUEgqE+56hNuNa904ykB9doNIp0llF2VOjzNAWMaRP6KZRoMblniURwsKcQVNAQ2Krhd/f7vz7+xv/+a8/+ee/f/DHtwc0JajB5iEZ9LlZl7r1RhqCF6L0bgJ26+PO2/cffPvjT97f7pS9HGgGK8fMAqs12LdGb6upZfo66s2f9eSxqziKICTbl9KOxph0tRfzmWDEkufr7crtdrNCdJ6JIbnYi02iDtjjJ0njKHI/FGbIObnz+H4iKjyvCef3D/i5cDaUg4gXNZaQdY3UZiivfe2s9538Zsq4ORtkbWDDBQxyqI2OCTUZpehJVGbw+oLxRC01cejth/gjRyH689+llDz/8s8kXgANi4mnSzaazYxCtJ8xZSieq2ATcRFzDvjVQ31/0+m7CUSu68r9fud+v9s0tNm08BBA898/mFfqxWOIkZiTq7SbF3yIybl2Fku6K9tKHFSZjxDrEfpcyu74K4P/WzOg9TY6cn6P3X7MY6fFWKdnqH0fWOHfXVl8TO9EunHQjxzwpAkN/YGx5kCPtOT5Gjwt0+M9fV6JCvMlcSmZeUpMcyTl8dk7YNPQKWfmPDNNM3my4q8GK8j7rRMQylLoxRpJ+DozmLetVbNVwi1fhDybdoW6/aKCcZ0tiz/U1WOKrkYb6NopZef9/s7vf/wOKkiILNNCzpPloTEdDc4YrYhNKZFTOgrRHCJTyCxp4pEnpph4BCtQ6UrbK1qUshZqNZpObSaKqhVo6uerHtcRX0sD8q7669xwFJtGUxgNcTnu1/CVHerI1WHDtTlsWE/0VZYG0pC60fY3ZP2GPn7AfkfqTqvmo43AujfWvTFNC7fbK9frzeyH0gxxpoWJ5h6hkhZI9nc9ZNQh2s6KOQaGI4kd+dOJWnWatjptTJUoZveXI0wpkJN5uVqstyZkqdUanAq1W3FaamPv3QcCp2I9o6njg5HYP++2fEqgG29aR0dBfVMdwW1s/DNlN96WdQProSZWrXMTrDM9Dgcr7BQG6TZGxNVwDYpgHZl5zkxzJk/mnzmKw35AKvAktKOhoVji2FxFV1GHGfnN8AMoBjtA5jYxzxPzlqGYaUz34DImPBZsjDN08tuGgNHoNMrRmUP4QFZ/htF8ljRKlDPAiBXlKVvr9OB71ubQZuM3Em0qLBLQYaGDkNy7cJ5nLvPCMi+mupuMMzkgHUPhsD2JjdTaaGX4YjUXpVDqXtnuO9Ll6BZv2879x8r720qIUPdKXRpT7uQJ9s3EiLa1WFfdJ9i9mtjMkSxVS1BEO0kD61ZdEKJRdqUWoe1C3ZW6KXX3aehRhHqrZQR/T8SE5q/9i2Cj0Lsl5UETI8W323cALuxQF8Hg54mUJusE9oDKRJoKy6Vwu1X2R/XCvbH+SPz4s/P2oixrYd4aO4H0eiO/XtEpsFLYKfSE7Q/sYFHvylsvyiZM4wQ/lQ05u7IhIGqJr3ZMiXgUotb+fVqPDr9tSkudlgI1BKoIBSgdqitcHyrUsRMLxE1ZC2wVlr0R5kCYhDApIWPevkHQmU/O1ecm1sfEiucrL86LiC6M81SIHkXo0yta3BPwBPo56UTERQ44EjGD5AxPsHYkDiYIMiCyFgiDx40YotlM5YWUzKNRdaZ3I/8jJ6RYXCjLxMOsAdNbRXoj9ObQHj8tjoRqdKj7WYx6cf3hTDlgKX9fgD5d3J/W/bBcMZsOS4R9mq3qf3fCoUdjLbq0/Flgn9PrI5nI2S9bBZrB/UNi6lDrhd7acUD11gwN0CvbthLbEHlK1GrG56h7qCnstXNfd0QNxhppaM9c5gllPuKXcVGrWSx1k/AbUECO63rCyuAUlTCf02YFqJy6B+N6HNy9I1n9aXUrbLsQi5BrIpMJkUMgqtEpomyhU6JaIyiDBLe5YnCJbC13MVbRupv1yZ/rg//84xv//PM7v//+ne9v76xbIQHzAXN0yPpIip8TMTU+2PpYedwfrI+Vbd3NkisEZArkNBkHKSRD73SL17V31FW0Y4yW7DShln4m+k6hElxIUAd38hl9Yrs8RlPLvd2MfzrPCzEaf6k3m+ZU/2rqzr9e3geX8sO5PIoxOXrPZ7Sw6xP6kYn55joBdZa5QXBLuuj+eaGb4lzflfKobO+Qs5CnQIxi6PxsL2vX3gvRYMWoib5Zk30U/HEIPAZQjcTkQnVP05Xz853PcR+e7WgQ0wQwzuNTMer5G08xcWSr/YgHzpuHo9j71aNr51FWz/XcFm7feZSN9RCGtEI1HBPmswg7o5a3O7QdTmSo0U66WmPVqITq799ju4bj2h2bTs9yjiOkusqp2tNriDOv85/9oEyu/XidAS1vw8/44AQ+Fa56FnMfczyPNT8VQU9v4BzejO/4PEdnuiQuLbutntq6aoPn32lTOt4DvR+Jv2DxPaXINCeiQE/RoMr60+cXn4ZNQszWHEsZJHqupI6Q6Ja71dbJzZBEKSeLGTkfxei2b7y/vxEksiwXbpcbOU/o9XaIQcaUDhG5FI3rfaD2YmRKmX2amfPEnDJznrh7HhslAQmtYuuuGcWreW7ZW/O838QLjYtr+Qkin05D7d4rVTtRMbRd6MbnHsp9o2E3cjG/i72fegJguiM2dxNyDCw5kLvZ9+mc0C3TamOvVnHsDR5746IJmW5Mt3+Y+m2+oHGmhkyVRA8TPWa6TDQC1poNJsDnucxBHxyTb/Ep/1j/3Vbo4ZOrlg911xjpTgvTbmdJ7Z39mH42alNKP+G4Vpw+xfnjutibUlVS+Hwo9L8kVqRnNOMAfxziQqPQ6taNcNNWM7Y2HHdK1l2txaaO6jdZsQmISjPIlGP9U07MS2ZZJitEs03xhnjGmAZwvBdPELopwqmMg8ACjHaz5hUxPPmwjYh6QtaGOE14Ei6xeKNOexniL5g0dnjijMngFx4r2bubg0egB2cg6EnUf37EKEyLq27FRMqRy8vC9XphmWfmySaaOSVT9JJI78lMo3s8JjopBi6Xi0OdpoMzEAe8Uc1OR5uauMC+G3S6VmqrlFJZHxvr3eC5271Q1npMLx95Y6iZruvOn3/+4M/v30g5cHtdLHFYoPdA2Rt78YaEOvF6KAsP3tKuIMbrDUmQDF06e6us+86671bIroXdn610m8QebdZj1drl7xgspVeqQwl+kTbSWrEuH1bLKicX4hkKakaHZ9MkoOQpsNAIMTNNjeutmWhUqWipbO+Rl9/g/Ufk/VF525StB8JlIVwWalDeW+DRhCKNKuqw8tFgOZNeG2QaDBcZUAs7ysdCDcohBnRAOdXgrtaLMaGsFhVtSg+BHgItBFoUSggUCezSqYh56zYrSntRpCisjbQ37lslv23EORDnQJqFPAfy4obs/4f+MrKcvd9RcD4FcpFTwCEY8V9VnR+ReFYztaphFGhnQTRUjoPboRxDUbVrNeJGpyF9QEzG9ISnifITpC96kRkjMWVSnkl5BkkmOqI20dYg5l0nQpTkMGoXD/PkKqgV4Dax9VV5xLIzsXkuOp+L0pFRj8JZlSff0V8/Rmd0FJ+l2J6orZGj+kEdD0XAYaPC+P3++iP5HQVZraZEfkwPHWkx7p+EyuCgdoWX62JJhos5oMpWVvM6/vE4piIiGWW2mJjC0RzYtp3vvbE9AlEaSTqtzizzxG2ZkdCpzaY1e90pdQdRphyZUnLRDY7m214qtVvjBxGHnBonMT0lSmBTX+CAYZUuwPLL613XRi2d0CHF6H7qlYKyq7AHKIJxlMLoYVjLKagpeAcJND/n9tL5vt75tt3519sb//nnd/7553fev62sq3lAE4ML9imGdqgMn8RTIMUmPGUrPN4fPO4rZbd7mGIiLdEbLpOtY28AWWC0GCgaiJLJMUMvaBOH69ajELVC65yqHhm3x1yDshos97JcuN1euF5vTNNsUzCHc1WnVhxQ4E+nF8/J/+iUjyJ0NIcctqrnVuvSP9QGiHpjakDIrBkYMJGnRKRKtKZlq9Stsd67TY8WIWVL5iWYsiijEJUBz60Gex48RjUo+VCjTGk00KI3hL0Z/OQB+gwPH5P6nPMhVGT2JJ7+HSiRczJ6cDOf97dPxFpvT3nV5y2urp237Y3BNe69U7XSYodJCCmNADX6fh7bjyPpnAwGh+GG4BTGbgJxPJ1ho5zrVghZo/GpktOn5vEx4faY5zBwDl33c8BwXBR9+m//fU19xNKfY6+/rroexWHTcqpqn3H4zE3PStP2+ihCj48wyuq/KUSXJXHRbAl9txzaiq5Gi9nQg1H89b2hisU6a/65z6PY4h9NAnEBM7NENM/rPEWD/iZby9Ygd1qaOvqo4wOM5g3NIS7oAoMS6K2xbisike8/vnO5XM1+CrUm1DS5iJj5R6cYaTEd1nlTSpRppswzy2y1wOWycLlceFxvXJZ35vmdKV348eOOtjv79qBVs/gpzc73GCMGMDUrmuCxUuJxA/7yOBsQJrwTWvW9OfbOmYP0/txo86YEYyBlKv5TTlyD8ApcW2RNyiKVGVMzbyPedbjvyqVH9nShLV+Q5YZMVoiqRBRDyVUCTU0zoHSj9emHxeZ/Dhy5kqE/TT9hYGZb9Ry59UNEsKn5xFf/TNV1OEprFO0UL0yLT4MPGsVTI8YoGiMft9/Vg57h+afHp4Xo+O6xWY7izF76eA7FSdWBmdazEO0NEeMqksUSfy10rVZtPxWiSERiMkuMHJnmwOU6WREaE2mouI3isHuXQ8/fTbBCVEYy7u+y+wIJo+PHIBbLWRw5VGBsOl+RZ1Ad9xc5VFUHvv15+nJei0b3xOZZdj19QpBOObDcsosozYb3v85cbguX64VlsWJ0ysmDhBHxa430Xo5CNOfEy8sLry8vpqzmoi/eLDPeZOnU3bg/6/rgsT7Yy85WdooXfvtaTVBo62a1Io2yFWLYXb0rsa4b335/448/vzMttpQOuxNNBvOs7djUMWBmyxE0BnpsqJiJOIoJDyRBQ6f0wurQ7n0t7A+bOJa1Ph1Ivyb4G29Ij8766Ab//LBC1NRRVYPf5yeRljFh87UgEkGSHa45QFBS7vSLHUjamgnQ1Mq+Rh5v8HiPvD8676uytQB5QqfM1jtTEfIOj1ZYu21y+Xnp9bGBDTYUVD3ZkKMoFbAgpQO1oI408gLPRjgGJxr8qVGIRp+IBmEPQkEo+nEy2vqY1RRkLaT3QpojcYqkOZKXyHJNLNdEzIH+j/5pZJEz82Mki4xrLcZvEJQQ7SViTMchNzjNHAejJykyGhzPT3k69P1geOrW9YYH44FaHpyGU+kN1ODonjybf655K0KkVUto+yCNZ1cMHzAZnoQL9ERaqJ8OR8fQb/aH/+lPz+eC9Pln9L9R4vafO0WdiquJd5KeaoBif7D3NbL143dyfN9Qyx1JqIi4UmUiDdEUb+oxurIKIczMUyZn69632vj+Vnlb79y3d0/SEyFOzlGJaEiYwnFj2ztlV+4YhCgHUyN8vS3sdQeJ7KXbs26UshlsMiykKZvIhpogTK2mtFxbcz5atCLUkScjgYnukTe4sONzVw38euxvtlStmKCfYd0M9lxpVLUitHh9FxzpGlCCT8tNrdDWeOvKVho/3u/817c/+Oef3/jP7z/417cflEdFVxckE/fgjh2CWaF1KsgzZNWawWWvPO4b+7rTancf00iKVoAOD+hjnw1UBVZVBBIpTMaI8EJ0r+UoRNNksDqJo9E0mi6eoARxOGtmWRabiF6u5Gy2YGaXYRz/2hqlOJz7s0V+bIXhj3rWA+cEMRzfPPbSEEw9IHejYQNIt6rB7o0J8Bk5JVGJaGvU1bzN8wzzQ8iTbZ8YLR7ZmxjQ3Go5TjRepKZTNCuGSE6RnA3GHlO2BsS+s++7F6S2/saaHLzlgXIK8WyajrjXPbD1gVrzuPcR1nomzx98d73A+9Wja+d9fzub/CN2ho5M1qyw36SOJtFjUu66hQf9xbow4ewli9LFCqfQz3a9xc6R043z4jj5gIFcec5ZwZJEQ7/oka/6MOUoQM8miShnMv0U90a6O3ilwwGhH7ldH6+Ok0w/hAYZTZqnifZxDHKchJ8scJgviUUSdbecrLVi2iZ7pcVKchjlSIeeqUYmpHRCi7sr/RKi6X5Eg/VOc7ahz5LJUzoQWurNbxwFN+J5709CTU9FvXouN1TWVYXvbz+YloWYbao7TZM1zvJEcsg1bo+XQiDHRM0Tbd4odWFfZpZlYbteuNwfrPcHy/xOTm8kWdD+J/umCAXtZmfYerehVowmEIdNRL3T93Ef/LzGsYmoWXS1I38clLcDDemf9fz85/ms3oQL0fb2kiOvKfBFEltoLLqReqF2ZS/W3O8E1gabZkq8Uo9C9IrGyZQRNNBUKA0rQrWx+7CL4/0Net6pc2LrdqDuxsDwpECoizxaIeq+32rNrNa9Idjt76ra7629UXo9CtVDmwRrph5NMd9P/dMg/reF6PlD8rxjPvkeMHy2LdBxcD8fCgb7smGA4oQ4KwS0uRF8MGGiJZOn6JCVQZUeNx2PZC6T3eGATx4FpW0ay99HAuG8mWrdZ9tQcnAr9WlDybHoOMLdEaSPIoAjOcRvtB1kBgUcpt61Vo5TVH++Yufj9nLh//N//h9+QF9YlgvzMjFfJqZRkL5cSHN0FT51i5WNWjbzZSvGb5IOvZgIU/EO8+7+UdvqsNe1sO+FUu1nm/MEWu+U0ql78w09MN/eu1PQ2mlU9rVSS/fC0HxZTVbcldZCN9GTbPYU9r5P7ogIRIfoiirBDcAlKK3v7EW8WDabGtswdt+ehRqOi/oU3O3MelqAP69cNUEtROga7PATh7KE6E/nlVmP6zjM1TeFBG9qBCEkU4+VLkgXQu7ErEzXxLIrt03ZW6DHRA+RR2/kLTDtkfd9570U1lZ9qjkaGhYETCBKfM8EPxSfH3Ie0r5QzwaSWOAd6zgqRPVGwC+KUXGIrppOVWlG7TJhH0HcZzRs3STGcyTPgf1e2a7mF9j/v4oPtX515YEn6KwnUGdra+y/iKihA0JMxhEa3E+smys6jJbjITM/EoNj4mof3yFidn2sR34WW2eD/dzF52NM8PEDbIj7mMCTPBWiMeZDIU67Jf4mGOC+dwJI9cTcW5VP1+XktBxpzVPheV6+sxZ94id9cqWfC6gB9xs/11unFOMGjqQxylDNjR6vz+4ucFxfk8OXo4Fn3tHyl8npOc1xSsVkFk82jauUvrGVzRQyi3Gekygpq5ncSycOznxraFNSgBphzpX3x8b39zumC6CUpqhW4+CGAI5KaQraxbrPntzX5urogQ/d3LHvaqtUR3SMidTZcPz1Y44wd1i6MGc5Wg5VrUERghAmQabJmyyB2Bpx36wPkIQeoJTCWgrv28a3tzu///GdP//8xvvbO9vbHS2d0IUUcJuQTkz4hClDMAE4GSo6KmiPCJkYJpb5xj9+i1ymF2vkBNMA2Etl36xL3mqjNbXmYjSBkh6NqmFq23ZOlL3QMGRAbolOtmn2UQDYahxczeiCV/Myc1kuDstNPI/LuhfN67ra6zdr/nz2ODlQZ7I4tsa4r4NvOvaXeAMyxtF4lOMMGM3IEUMTiSqJJJmmzaai7oVd9kApxqcL2QRDRDyvkApRCdn/ffgyq3GUDx6yN3JyngCbpKSUKKVQSqG19gEqPvbY2OiGuAhH+DigooMC8Munfa84pee8V/CLZG/cRWuu+/U7ittgIjYHqgNGlvVz+Dqeg4aAnK89ROv0eY/559NROI4Gx/P7OmK43zFP2mwS6HH2iK/jz/bZz/XJ8W9DZ0H1/F5VeYIy9yN3PJLtX2V3x3sa6+upkB75yrgEn4SV4GtkIL1MyBNIo/EvxgktDdiPPRtCoPXued9mz4cpGwveBMmJyzKzLDOb0+BSjt7MsBw9pEBI3uxynu6AAh+T4aOR4WdkMGSE9sa2rvz48Y0gNoza95Xb9cZ1ubDMF+ZsTUrzSTUOaZ9n82qthX1Z2C8X9u3KujzYLg8TDIwzIU40Ffba2WqDZGr/xQtRiQENYqJpxzluSLKc8y+vtyqWd6FPMcNTMOTgWcaxFyU4IioA8chhYjxV3NVuJCFOzPOC3G5I2yldKF1IW6dKRONEvP2GLl8o+YUmM9IjHbPyq+DKtOron8peTB9n6Nmc9ctHH+zoCE5bc/2pqaLePHBvaxeuDM2+Z9g7anf94SOOjxVvcXOoZFvvwmk9nEO4GP43CtERwJ87B+PPOm7KsflH90UpZXAb9Cnq6GgqGJcCccEXK1arE31FZqYpsSyzdXhkFK3jDYVDDWtABCz/NkXE03swMExUzUfUIBq9KfX/z9yfNUeSJFua4MeyqJoB7hGZebuqaRaaeZt5mP//o6am780Id8BMVWXheWAWUYUHkJe6eqGyJEt4uAMwM1URFj6HDx+WBlSUaCD4V2bHZ1z58T0D2rzkI6mFmeCF4OBkSpV1ut6ZSdMJYL8yXfj2/ZX/2//jf2ZZVl5fvpmmfl1ISyKvmeW2sNwXYjaGWUUpZafsG/vxZHs+eLaHMRx7Z2u7XdujUo7K+/vG+88Hj/ed58PAXWvNeleCgcCYg23cZtVTm8c3XHUjQczBtHeXTfmsuRASi8+4ernb2JUQI51m/QNLgjDkIdU2CmbkEps9FSVmIS0GYA2IKvtuFdpymP5/HHwnLlQ+Z7b0l69/fbTejPCKbvqAEkXIw6hkGJy4st7ITv3IMqHTfMF6NaPJr+NCWgK3tlCrAbrag8leEbbaWPfIumeWbSftO3k/OJo1fndf4zRvcO4yiZCBRK+f+i/L6pIkTBIBq+JqcCAaDIw2B6ElCEVgx4Jj7bhsZPSHOI46FAl9ziNNWdhvQn633u72hUHUPNNnAPEqqJ4kkyUjrliINsR7DHGeFVERRExqabO7ks/YNde+1huBS0AG4kUNK5hxjPjsMsEljJ1JXsykzE10RlFlfAZjwavtaTEkN/qsujpga2LXmMXku+ISNWkzbsq4Nx+A5lWKq/O6jGrOeH8z0fziYYCqTRA61BljebTe2I+DWtvsVSOZ63WMF0dPN+pRNZfhAWhjcHv5FKexnYqliCHGCxA1hhq1maEv99WIQW1sdWfbdyO32qgTG8BaopknRHGC7DAJUEqB3gPP0nh7bqzv1hpRPW7liM8lBXqnleJ9PjYS6QpETWgzEissCvj1AuU4PHGT06gpqHwkwMaWA14SvAKrCDePS70HSg9EIOVEWiNhWUkpm+aiNcK2G0GaIzUJe9l5HDtv+8aPtzf++PNPfvzxg+250547AXVJm5Bit3uQgJQgFAjNFEJhfL4APRJlYU0v8Jp4vTMUWihCLZWfP9/40X/ayLBmZ0eIyYpLBFLItGBV31Ya9TCCs/RCo7H0TKcbYRoEiZfj2/dZSpFlyazLjdv9zuImRWd8MCa/lMrj8eDYD3Izw7a/PD5UKU6gNqLjIKHta7sYH6lXNUC9NG0GVvIhybQoqqibZjXTaVCb9YpWn4VdDyhZiAXMpwI/p5tJJ5dgvXc2E4GAnS3We/6xyjnk8jkbUTQqo7/mYx8UE9NIcoDui6PnAIIX07qrq6gZMwXOqPd1TEGxvSKDhB1lAp20g9Jm9eV8X/OWzOR1OumOvxv/Lt7LNoCanJVXPMk9ZYgXkCB8+POQo9rvOdHwTFkHAPwQe8d1GUWOoS46icE21tA4Owbg1cvn+OQ8Hi1cA5j+ijy/oreCx9kQ1VpWkprcNCRbRyFgI1jqLLjEmIgx0ZtNM3i8P+359mB77ID5jKSceLnfeHm5sawLKdsIHzOOM1OftFoOmnIiLYmUkwEZr7Y2J60U/HUjkp2QBGrZeXv7SauVbXvn7ecfvL584/vLN769fue3b9/5/vqbKyMyeU0YCLQRTqXulPLCcWystyfb7UnKd0JciXGhqo0G3FslrIm0L5TWbBZ6MPdlq8TraXgVhGX9nC1XTN589mq380zG1DrJnfFzSkgKfnbGEwuIjUADux+1Ki1Bj4GUF9LLC0kbpQeqBvKhHLJS4o38/R/o/XdKfqGp0Co0rV4R7dSuPu3DlD3lKFYBDtYadc2HuxvWqZ4qnxH3rOV1lAG84KdK7WawNDbJkNVflrL19sroU2/0Fixf9T0zgPAkdbqSUv9ykf/Liqhd9zPRvzJOH/aRWgJQS+fYzaXMmEVl9EiNpvNx8Icw+gfGBu8mE1iNKTX3rBGZnE1VZeo8EGezhGGsFNzlcTDXIyG21zeg3LpCtZDZETflscHZ2t1QQOSDO5s4WygjAZGP10d7sGHLvoi5LGCTJ7tET36NTufj5duN/3r/N27Lje/ffuPb63ezUXcjkLgkQrbDfRgx7Rpsrqg2pB9QA61U9lIoUn0u587zsfP288HPPx+8/XzyfB48n4eBv8XA33JbWO+ZvNrsw/Ecyb9IIkgmaLBeUge46n22OWfWdWW9rW6aEQi9W+/B4q6ivaLaGLKnYYNukiqdA3NFrFrZardZeHuhHIp2u+ezU9n7dlXG0Xaux/n4YuEbs2tmRV2bmf3IOfImz4qoMCrwOtYio7nbD1+5rBl/0ZCTDzD2Q7TjTmNmvvIsjXQk8r6Qn4n0TKQUeRwF9kK5VLLwKqvTTg5Mrz0LzCA5TlnfGecFCI7EuqKx+7ze8KFX1AyLhEPhcBDa2nBNw+Ws4wK7W6OY1PDYxqzfQK9frHM9WWcZh7K/y9HDM4K4zb4Tn6OV3ELdD5Eezup1TG4MZHK41hoEzFwkuH35IKpsRRshZhkVnmHPqqcYXvIdbwmGxDPJxR1yFUvIDOcPIDnQtCUvvZnJg5nOLN6pUuw9/WVh6uU5rsWZNF+TpfPbRyL6xeXuNi/yKqW1aqhdk97VHM3FenRyCsS4ECSY5M/tmUcrwpD6zIRNxBPp5Cy4eEIfHHwMtclYiYrmxMtNCCHRWmXbn2z7gW4HtVV6N0VJlO7PZnu8mxP7XjpdjYrdjsbP5+6jTwJj5u7LGskh+c81WhU/Z0zW1PtQetiZ0i9VnPG+R/w+jsKx71MSeUo9Pw8styy8iA0AX91lvESbw5aCuUvmZUFG2wQgpcLziWhBNaMarRJQC3spPDdLJJ9vT8pe4KiEZIPGlxRIGWJSq1zEikSfYekO8iLWkCqaSPHGbXllyS+mXknZ+n9q5fncqKXw/vaGanMJYCF2q7bFEKdpXvPRW7WYRPCoO1XN6s/GaGTiEr1KoIBVUESElDJ5WVnWlXW9seTF9mofwNjkwOWoPJ9Pno8n35dXlk/MFWakk49PDze2jwYZ0k6CAbC1JkLo7iIpA4SevhG+0O3zSyRKplOQHtAm9GJ5TzkaMVdK8kbZOHIcI+d0EVoOlBwtYdVAUJMph3g6hY9xESFGkieXQ2Uw9u8ApONDTqnoJT7o3O8XImBU8QZAvZBY52r+Op58uO7qMdxp+y6dgJ1xg0zr17115W4uv/8a8U6geipZxM/2ScIxWqfO5NPz6fm941yymD6MypjVz5G//gpCPzjvDwDfz3m5I9aOzzRykPkefkGfV358XK+hrLqChfGpvsL/YwZkcPWDJnMbN+sKI2XN3VTRbgWX7t9Xizk8P9+sEPH+853H+3MCkZwSbS+0o5IXb4OJAZtlbgWK5bay3F2dd1tYVlcVurSzFhsJo4q1aKSMrhZ7okR2NRXKsW08n2/8/Jl5fXnl/cVA6LH/w8b4tcb99kK43923wExM8d5pCWZLrRJoLmndj8Jyv7Hc7T02UTNV6+YKL9HKCIaR9CwY+J769KHMtTsM7MbsXvt3mw2cggDueTAUP7OX3SOT9+ya3NWs6EJeWeSVJQiHBopGQhGe4cYe7qTXv6HrK3uw8ZJHqdTmeSfihbtmYLTYVJL+CRC1yq6PH3IgOkeRzarpZTyb6twTI/cQ/2wj17Tr5nEy2Wz5GMIEosMcaSjShlGRdiWH/445ojojxscq3pV1mh/WdE9sW+XxOGitkpIH2dFcPpglTvmWadthydbQu+YXbssLt+XOaCCXEQxUvYqmJtuLEfURJGEYHU3JijVTi0syene/KDkTwFKspP3cd7Z9Ow11BpC9GBLNz4qje7kg+1+i2WTKhNMZ7Mrals8TmJwjL7ds5hvfbry+3C3xicbqKOoVZ6tm7vvO4/3B+5sNDT72jeN40ludb2vfDh5vxoRtz2H40ym70gouXbOB3VZJHoNzo1ecItrsexJm2CANdKtWqTwOVPtkdE26YbJhpYF0N28wIN6bybm6GHijK60o6u9FuplBUM1DUnun7uaQa2zLWHwwhrnqhSi5gjG7LV9xjHbLzIRE0Nx9TYsbqvhTnNnuLjNSqyCrzymsvVM6mImRrZkkiUHlDuMhfCZncJMuUdAYkBRJy0LKC3ndWdYby+NJCE+eR7HG8JFkOBjtYmBUL4FhnvAyDibfoHO9izm1Kn66jzmlPm8qRLrY+JGqMk1fWrVkrXe3b/fDWi7X1UYcAM5+j5G2n15yvdwj7EAwgHzeP/Wv54BoO4BCcDAa4pxzFYONGAELuFJHxdGzr45XIY2IigQyZshT/FLMhMWv5+j9GKmFmTgk8rKYUVFaiHHhBOPMOGEJrF3/YXgg3VlzxarJJkAYi/gktcbnnmDWF+n8zwvx9Qtg/SqDaa3xfD7moTBi0DiQjnIqNsIC+Oywxfv34kVuOw4uBXoaRlL2e2IazY5n5ZRxqEnwZHC8viLSSTFbv2Yzou6fP9+BB1s5UDqlHYRie0jBXPl6m3uhqbDVyp/vlpCkYMlnjkIgscRETgutY6Y74GZYAYmJlBVpzpDP92W3ZPTFWIiys2cm0eObPnuIVQ9SauRnJ7mEM9VGbp0sgRwi1U2dgulPgUZoO9IzQW4QVhZVVgmsIXELiVUSq0QQmzeagnDLNl87Zey8Tea0nharXJgrZUIkIZKJAW6LEr4lRGDJCzEl9n3j8Xxn354O2IqZ4LUD7dWFPhW6GfX0Op5uxtfcxRObW1pbIDRBuhI0+tlvFdogQs6JdTG3+vEeBJkeE0bcKaVUno+N9/cHL6HB8klM8WdXLnOSmUYZ47s+zIR0UGPAU9A45HThYox2jUujD9uUPFEzKjcUITSlH1A3oUavboaFGBJLyEi2GFcVwk3RpbHvYnNY6R/OrD4UDAzwZX8ffWyOXsikER8GOdS793Z7rjV8MfqFsDIi/mKyM7wsZtXkBKHhCy8LESGHc2zMqRLqPsu5zQT+fJ/+Hi43bMS7kfSesXC8kN9JuXqT8PEb8I97+SuBSxHhBID+q/z7Ts+P60IaJNt8j5dqzmn8dCpT5meYEfkKRcXRMZOkHITg1VRJr2/gq4daD+UANiH458HhjhNw00hHodfG0dRIom1j33ZqKdAtdqRgfaU5JdYUSQJUM57qYKRsFGKP9BjQFNFos+yJZnhkXjAGhGbrlBeHluXG7b6Z4uF2Y71bxbX1QqmRUna25zs/3/7gn3/8k/92+//yev/Gt5dvvN6/mWR/WcjLgkqzymg/2LYn22Z5759//MGff/zJf/z5B3+8/eTn453DZ4sqRpKa5Bxvtegf7lG51U8v96/tJWM00tBCjvGHKZunSxxy5aAMae64v1HVChLem9pcpZKXgOTMXc2Iqh7QudHCHZY7hUSrnaM0jsM8HVzEcI6N8R764j3kJsUOjEIE+Pk1FGoiaOuEoYrCY57YOrpkixPzxAla7bOb07XlgMFb5EIUyyEv5NcAuzJyvq7k8Pn1hq+AqF/Jk1EcMVnH55lfhzFMq419KzzeD2or5sCV3Jo5xBEfbQMFH2CbYEmRJUWzaF5eWNcX1vWONjvEtXlga+bAG8PoP3QHU6+WDE38sFgOoSFicpZWbf7T5OUVai08H08e25N93yilGKtBdAfC4YR73pRhS+7cowc4DzaXizYOlzDlbWGyYV81SKcUuN8St1vm/pJ5eTXzCFyGcnjldnt6dfPHOz9//OTHnz+Nwe6VrjauYFRlHo+Ntz/feH97+gg3MflbFWjBGavk5kNmlJCSgdHoCQw9gEZiD6Qu9NLp+mD3SqVEdSDqboDufqeYLEmCGc8IQq9K2WyGnIZmBbqi9Gp6+tAToZsl9xjvYjMt7WOZtFI+BG8ZwOP6d2PcyQAkXyzy2ky+PZljByIxBVIwUBoZxg+d7iBU3RK+dqU0vAfTpWMxYf78MoGoUIEDoY5Rc1ad6LB0yGtjPW6st8MGuo/zuxQbmzASicF+wwcgKn6qnoerh5SReNtqtIs40ZeDwAlIA93dOktXSnVpqYNQUzYEu7YXMDoVALN/RfjC4PKskPFxLugViHa1Cvkgck65ve3x6DK6HBPZ3V6hT5l1d9k6AXsvbkmOmPQki9mq72KmNyfzLn7AByMb/D3HJKSUfD6bgdGYFlsHvbn5SvjLKIURF51etx7opoQGQ3o4ZNYK0yDoCjZPAPprljRA+yXR++TReuP5eBCCjeVI2WC4ORSqG8EYAZdjwPoHzdHwfrt9INGu7IL6Zry6jQ9b/MHCtuaVZgYwN4VMUDN0WbLOuJhyhpA4aptVtaMeU1qqIpRmUq3RLtAQ9qKU2vn5KCwBcoJ7FnJK3Nfsc80CtS+Gkb2iHaKQFBuFMMJ2H5vHwbZvwt5P2K9zrX4eVARIt0RujVSKjaColdQaqXVyCGQJlJhRsf5VyoE0rAdTF2IWQo4sXblJ4B4Tt2hmJbeQEAeiOQRuOXFbIiF3QhrtFZG8JFfTjLPR1CwSAvc1sea7j08xGd3b2w+OchiA6ZVWD2rd6b3QtRE6KMnX/AlCe6tm0jYIApqRBK3SutjPDT8HmklCg8kB19UM+fJi75OG95uN6hMcpfJ87ry/P/n7y9djuMae6V59D7bYLmftOaKk+cgJUHoQYguX+B9mLiEeN6/OqZZ82fRZp6kIrdKPRtlMctxygriQ8p1bvJEkE1KkicC605YdTc1GkXkJ2JaaAfHa/Dr53lGY5Hh3Qn5UQLXrheT3uOfrefR0TTXE+Prhz16t+Yu7vCBfBHEBcogz9nSYPeNtjPvS4dE+NtfJq80f8hs39tmIFYBX4zhJuQF6r6BzvqELqBsJeAjuRu0J8whA50tNHnAiuqF6GiB5ynLPqu5HIMp8byc16H+aBPBoJfFrMNRM1ydcfvaLh0boA4iaEYwbw1t8/eVWnWCl+Pi8nWPf6aUiKIs7ud4Wn0jhbUitd2opHK1aW0yOpugqEU0NTR2KIslyot6bu9QWjmPn8BaqWjrLsnC7v3B/2Xn9/s3vlRIqHAW2IPzE9lwOmSSZW77z/eV3fnv5jd++/cZv33/n27dvSBR66FQtbNuD5/bg588f/PHHP/njn3/wH3/8k3/++JMf72+TyJEQyRESVj0ttVKqtXg0X/vle/l8jQczGUKE4L3XoqPC6S0aKbOkZED0QtiO1sXhw2BO6GpnTbD+f7I78K8rN03ce6IcysGNqDd6vlM0oOUEorW3uT4HqVa7u9ZWOxdD77Pae310NeyjqsTezZH9gzrK1utZJbXcd4xfknDadtpnchDaPUeLtpmsOGPv03I1/wm/FpHDf8NfV/q/qIiegGqAUbjuIb/o3otQChyHX7TazmS1Y836YUh0h1NdcDCaWZeF2+1mIDTfyGk15z9n8dSDhUnxLJEKaVTvkrntBp+5iSVKQSAGpQWzSB4A1A66xrYdvL0/eH8+ONxJMqSA6qVcf8aKeflGsuw5vhNQ57UabOC4YJOZG8HpCyDae6O2ndoirR3UdviYBeu7fWwbj+fG29uDnz8e/Pzznbefb7z9fGd7fxICbgGvUzLxeGy8/dx4vG1YP0e2BdMEulU8Y8g+Oy6T0uLOfclnukWTHbcAvVNrp+6mSR8GCtHn14V4Vo/tGtk8UpNweU/RrrTdr5fYwd6roM2MfoZ5jqfkBkYPbID8cG4c98L7P87Dk3OB/wrGPl3fZoZBkjkeQLB1mtzZMWHjdgxYu4zTiYgxW6k0rFo4eho1ktUrdmK9iWaW4w6WnAdIJJA0EJOScyenYg3jdSQJylHrnM/U1Mxc7Pr9OlvuZEjDOLBlkEWc9vm4GcT4sz/H3KjuktLm/XamXjWAhrrUdVREr4TVcNf8F9jorOq5JCTESbSc/27Jx+j5ikOqFpK71mZEOzmYfLq7+1vzZChi4CX1aAmRhglejHixOJKDkF2OXD+QbOe+RcIEoct6Z11ezCQh3Wi90ltxhnoAUJMh9m4Ex0imVDGRtgP6jw+Z61gZovMz7l7X64lHzwTv6kj62SK392LgMLRo/atj5M1Qaej1MArTQCXGNA+qKesVvEp9xjVviJuH3TgTPCfzfXiuzWg3AbmLV8iyS60KSrfY1w+Ow2JE8/VorRamugjeobEXk6IdQbllA7r70TiORkkQZSEFSwLsfQzzqWAqASxe4USExnCqYkToKdkhH0cP8r9MGdF1scrTpoRQfN+Z70BQiB1yU6sm1goFQuhItzlrcTfwuKpyL53XJnwj8S1m9rgYx9VhWTIvt5XbfUFSg9gIS2JZX1jWF/JyM9IkLgZCiYgGBxCK9tM5upTKse9GyB4bte60ftC7zYM12ajNzBwM+dwyZibgycYADU7AiBkYeRYO2N4b5/2yrFMqdgWgeBI/lAn6r5Qtl53SHcCZQ5SvEQcLwyHy6vIpk7PVeebM891nHoyKODhQDcnqIiFBaiAFaQUpih6Zvmc0LUi+EfKLjXIiQrUqo7Rio6O8+tvpnlha9dL6Dc/+9pPM8eoDBrj6+LdBXPWh0vIYfAWgPit8VPUGEP1AcOqAjp4q6r9Y4xOMqXsZ9AlGu5P1p4zxcoPQ2W85wPNAfh/PcPU/nUB0Hpyc4c9vyuWr2tkWRj9+AFOtfgyTwrhw5yupR+u5/sRd6gPT+2P8zOwHdfMWfB4jfY5dGvF/XC/7OTtfxr29GjLNffLJI0oihWyEahB6DExRnnofuI6Kt4/aKN6atR1WDT0K2pudfymyJhuRskQz+aN3tPXZPyw+/3KCkabWNthcSTKUYVSUSserlsUmHFQHpPWwXsOYoxclBEl2zbtaFd7Ec0Ik85L/yevyyreX7/z2+jvfXr8TcoBo5oBbebIdT97f3/jzzz/5888f9vXHn7y/v0+CPiZz4M5OJNZqTu1D1jrUAZ+v73ON2tIaIDQ4BokOQAfYGgZn7iovlyWr3YkxpQKbQlYhE0gIJVR6bt66vdJ1pRKtuDeup+fas/quH/OkmKKTETrj2XVtz/93cy1b50O2r9OoTYMZrVn35FCFxvl5z9zVr1MfvbSWC9Teqd2Kf9EnM4yYZTHsw0b/8PgXPaK+WC6NB1dQNcaW2Fy2as24w8K3i1XSunfJ6bkt1X+PagDJxLSyri/cby/c1hdyNuMCCc2ML4JMnXhKxkSklAlpIcQFG6lhPYnDqvpMmkZyeMpXRqXt8dj4+dOA6KhzJkmE1k1f7jmj6tmLN8rMqgrBDkjBKkDNT7XTQUzH5fefN1YifRHgt33jj+c/ud12eoVSOsferb/zfePHjzd+/HyzHs/HzvPdHNCOrdBqm7OWYpRpkrRvB8ejUQ97HzFYwmXv20xJcvJenSWfc8miNcejwQGJUraD421jf9/YHhu9nUPEB7AwNibSW7UZpVvheB7s7zvHe6FuSt9tsetIXJv1BkkPNDGWZThztSH1bKfUYILQyxo919e5ykcPolx3zvWnVDmOgvZArSZPUrUcJgarmtm77PPJPHbs/RkQNTvrph2kkVIjxUZOyfq3YnD3Txt9MAuS2By5MVc1BjtwymH3zuY2VbZyeC+q5XIaHIz+Qqye+xJLDMPpwmpJ1uhpHSCXCRrsiY+8sT1vINQAqOI9Zn5AfzSKsAR03pH/JGlU/+kgppTo0wpKvXh4Om3Ovtvg84VTRpcVaW0OmOjdxkd0bWQSBEgaGH3hnhIzuYxgKW6OkVuyPsXSPNHwBEo9OIcopLywrC/c7t9Yb99Y11dCXKltp3g2Li4v7mpy79D7lBSPdTjmQ062UmDMYb6u44nk9eMavz5PaZhOoPvZQyQQc573rdZmM8KaudCKCEvOKNYrdCWS1BPY8Zb6cIgUrwC7W5YGnZJ5c5W08Shj9uYViAa/p9F7r9cUSS931iV7Fa0SIvx4/8nPt4NyVHqFIG3GcesZhpyt47f3Ri3Dza+7V0Fh3ytLFGK4kzMX1+STsT6d3e0Cjt68GE2yZrIj+zvx995ao8578nGtqwjbciP3QFqgLg3JjVqtvUCAUBrxeZhUK4s5iWdTjUStxH0nqDkkvrRO2TvfW+D3uHIsd9uPElnvPoPz2wuERg+FkAJ5fWFZX1nWbyzLnZRXgiakBTMu2Q72bUO1GZMt8P7+Jz9+/sHb2w+ezwelbvR+YO0VSkywrpGX20KSTMIGsduoohN8Dqlr9LmYQ6Z+RQEpRdabzQNcxgzMCxGFE1ApJvJy43Z7oVUzafl8jVt8mNUpVY+TliCNVpkTgI7YgjH9IwnzfXFQCcEJD5HLXgMRqxyFmAlJCAk0F7v22og1IntEQ6aHTCdRCNCwuaM/G/tzuM27kkxtr8ho79BoRnADbM7dew0VegK7GTLMwGZ+88T/o8qss8XpEnHmL72GIr18z68PVWV3wmj8dPfzr3f3SR699+pE1TWuzRcZn8mY0lFD9GNg3kuGKy1jHV1D40CY59fuv9ikmd1mvs9KT5hY3eLACc5PAGpxOshJhjDOVo/d4mB/AO+mnaqNqt3mb4/rARcDJ1vbH8i7eW3Oz/bZI8fM2hea9xV3DSgjxxztHF7MOAr7cdjYu+OwyQh7oTdToMUQSH72BgVtFjNtSQlBEsuSbKTTYj3tMRiZIk5Cy0D2YgSYJCUuEJsQi+WBvXeOzWYNp8V+Zwg23ikRkWifWeR0Ya9153g8+FH/nczCmu6saTXfloRVRXuhqPXNv7+/8/724O3x4P39wbZvjheCqy4qy616b+mI+yOxv+ynX9d479RSGdM0hi+H5W5hrg8TX57VcfGe8GthABWkd1SUoysUI522oxG1sO2drQqPDs8uPBVqV1OeINRSKKV6S4HFsNMPJ5GdcFHVee42V0vYnjvzjT7201jHcio/h/x29MmnZET/kpJXfsPch+PsrLO6bGqI6k91+fn4naONagkNfT2zx+vjP62IXiujH2Sm/gRcr+zy2WE24FK+3uTsYPcqVohglcdIjCvL8sLL/Ru35U6OmRQi1S+KsVqCBGze0bKQ00KIGUkL4FLGiynSsN62kOHN9O4mNnpPHo8nP98MiJo9dUBS8ETc+hzxnhOJF5cE5XSqDP66FpU80PvitZPrwmZatWT5Imvc940/Hv/ktu2m2CqN97eDP/75kz/++cZ//Puf/Mc//+Tt55OyNcrezBSmQyDw+vqCfrMZrMfhuv1SKHu3flC4DFAXCCbLzWlhyTeWJZMXs+4eMkjtBmC0Nvbt4P3HO48f75NZFq+EML/YH3pTmy/3LOzvB/vbwfFs1B16MYZRVeZGhUjv1p+obRxsXg1vuDz4Ypp1vRdnmPfzRU4AM9foX5e+KhxHRXuglDb7nAVzzo0BgnpTvjTmsTKZYDt0Su8c1UBjpxgQTY3cM1UzC4lFQGMgXRKLIMH7pyMJIUchh0y9mwNdrZXncfC2Pane62PmKvbBZ34np5Ni8DU2SqI2M7TPZGE8z5FGDkA7NpLB/3s8xyiFKXXml2sp4zbox7/44jFj/6XaOaUbo3LhiYxdo1E5De4WaNVQQiV4maz3TqmVqgWCEqPQe7JkyMGojWsZRXUD6zkGbilSW2Qv2OvrqHzrBCExZZblzrp+Y729sqyvhJjh8OqYtnn9rb+u0TvEuJAGOcMwSRqJ+Vj38z/Op17//Mu1024E3vi+S2z+7CFByHmx3l03ULOvZtYjEsyl01neKaXBgaf0aUAwzBrMJTPORH44DQ9io3W1w3CMeLiA0C643N36ybNXXZUbqtY7bolJ4f39jVYKVTuqxUdcZCN2ggFRVeE4vLdQXBKoJivf9iFBM4Z2uHyepKTOBN2W5GlINdxLQwiEUswopjW/LqPv7vNrvueVpIG0dFIuhFzotdNrhw6xNpIWcy9axEBowFwmO4Q9EIqyarBWitL5rQd+iwvbcqMh1BBZb994efkH31+/06XSOJAk5PVGWm295uWFlG9Ic7K0NfZt5+ePN0o9MDfSxmP7yfv7H7y9/2Db3illo/fiSYuSkrKukfs9E1kIPVP2Spqush5yglW7YwrENFQyOo1PREzmfhtAdFnm2J8ROkaSHlNiXVZe7t+ghy+B6AAJIxk8+8wv/30Bomp44IMB15C31mpE+hyx8eF5ekakZPLnmCM9FGoooJVYgR1UFnrINE20Dr12jq2xv1WOh82C7Ie1yLTYEXfyD8lHhWmgz/flKbSeibDFg7/ufSPQwvlfMxc6JbnXPvxzDeuH3/Gv4riqKRfGaA9EGMTsWSltE1yOSiODMPvwHDVvme7h6mfB+Mrlns13Ot76eJuOK66JsuU7tv6iCIQ4ifhZPbWQf8qDR/FitFuESJDIOa4jXtQAp0N7642ildIbpTcOGkVtLrhVnMe1Gq/vPc1yWauhfxlTlpBoMdNUiAq1C+p+Fdc+mKN1A6LPjee2s+0H9aho6z72SkghscQxDcBy81aNFJEYiWuyuctLMLOxZIZDQYKPpsPyeVEINgdecicipBYoyfZIK53aCq108pJY10xMgmpGwuL3BAhqPaBUSj04fh7sP3b61pESbXRdAEmgETQqPZhr7LYfbNvBth/s+0Gp1RR6KZKXTLk11tIslmeb5MAolCnzrPv10dUkyrbeB/gbiqGLhHWSJx1xL5w4iHMvMNCtoKba2FU5qrJpI2lFfOZprfBsgUcXnp05CsvA5cVM1fdzyj62Liaf4W1j4/b98LSg0sSl+zA3z3CwHuTdJPnHcwLRMVLKnYFjJLtS0c54A6ClmhniUczUrvbqhoN9bEtiCP47EvesZin/yeNfAtGZtE55bPSk8ZKW2h43lnoJ3FqkVguY2s+Aqeq9gqMJmEB3ZBSjWULb2BXrWbBEEg8E0Qc/Xxw0XT6lyAcd/5ScMYLTmTzX2jmOg23beWwb+7FTaiXH7A3HZy8nOsA4vzCEzqgQLCl0YDoGxM5+krFMvbQ6sOtXeWNrneOwXsKUnqgG3t4Pfr698/PnO2/vTx7vO9vjoO6dundXP9lrlFh5ykGM4RxPULs5RjYbLts700xIVCZgN7DsCf/ox5NgMoatsL/tbD83tved41n8nocpHepqsuz3x46KcOyF7WHfv71V6lPRHageyGZ/oUwiUNUqcmi7HGxnnJWvwsaHCtx5t8fv/RdHKuVoLjm2jW423c0OUgbb2DgFrKMnxxG9A9PWu5n7KNReiS1ReqK2xNHy7INeYpybOg0nuGEg4+vuljOv68p+W3nbFm5LppXiFdgGGnxu5SV5wwOLdKJGr+ReJBeKA3tr2K/9HOfR2rBft2RZzd7N1oeO63s+5VfgdKEW/7Mk5iq3tR7PbEOTp4JgsOl+7b36llOm5UzQZqC8d5paf2NxWX3TRu9hAqaPphKjbnMG4iVGongFr5nT91777LcYh8npYpmmYVIYB4BmqxpzeS0nMxCTwjYFO2YbsdXL5+PMnM4v813OdzzApnYs5lz/Tvn1pz9e72CHVLOY2rpVK5uDsOCzCk1i5H3aXt1Vry622j4ANoDew4dEVmHGkkEiDAJorIbJLuN9M9oNlHosf72t/L1/Q3ujtkKtjbf8pFST9Q/2HDVJdK8RVXGmuM1zCVWbj3ooR3aCtJ8EknFw5xzGGa/H2hySK3dUjD6GZvbiAaF/vsYV+LN2DjpJu5lq5Uju2ST4VUljf/mT2tCo6NGhmRmfSGMJCymYcdyPnPm2rvxshTftiHYkZkJYifGVHNXM0HIgryv5duN++411eSGnxWIU1r+3HweP54N93zzZqTy3Nx7Pd57bk/3YLYEcZ7DYmRGTkJZo8aX7yJ54jkJAg39fdHOvREiCWDcISiImYV0XbreV+20l5TRXyGkUFkEiYUl8f/2d/nfh231HD/EB839d4yFGxvgdUf1wP07iSxBxsmVUAsIYPzJkvQ4cLgSYc7YXxUkkxmykSM50SQQSSjVzpgrsiUbgqNb32qpVQfdHo2yddii9jbNt6DUqkcSgSwZg6t2VCd3GJZmb6AmU/SLMXGPE4Gsv4zVejDhoP+cXaBBpA+H9az4R6N5DetHCjHj0IS5c4SEf/m28PMgkBgTOnEqd8Onnz3+IdjpeQWYcnKSSv46K9eT1ECD06U0SggMGESQ6wPBzyfJMv7/hHA0WXZ4YwtkvqJ6QN62UXjlao/TK1myUyH75Wnv1qmk778n1a79cmF8esXVy7YTakdIRl5m2YiY2jDPxOOh7QY8KpRNKJ9gBhHSzO8piPgmGA+3+JBF6jIRsczzjmgk5EDJebHBw1grbrtRe0KXQU6Eny5VChJQDy5LQm1Cl04paYao1yrazR3Hfl0paor1GsvsbZPRYR9KaOOphju67eRiodFPfREGSWNW5dLQ1MwQcBEazqnwDitha0NqIrZOSea5EbwsMXyx07eZ58zG3YXoETNdpVfOVGaDuPOycJGCe3XbmGumPOu/QwEdes3V4dmVTpfZ69rRXy3O0n8GvI3ZDpXuLWp97OLrUOlyUmQODNfVimYiTPR0hngo9GYR09PZJ6NoozdQlvetUVNVmfz/Mkko1EGpjptrMv1PwcY/R2lO+ii9fAtEhO5iDe8dv8A8RFDNpCWYdv6gdIjEItSi1ONMyZCHYIkpzHqDZ7YOV0s15Uc2xT8QWGDg6X8hxmSVp8d8xTUG0TxnZSF679yLM0SmYNG2U9J/Pp0v6TIY7+qLMZfB0f+zdTDauVV77RwOYQ9I4StTjItv+tQOtz4TeoM2ni1+hVaUGY3o6gcd2sB87R63uM5NJwZJcc7jwwxGbabb13S2k9ZRfzv4+TrbQkzZzOzQAZgymMyOIObSWTnnfefzxzvbjyfFuIDhlS8YlGNPTemfbC/z55PkwKcjxtGd5NvoGVOtFu35+mf9nV2a4/F1TCfnL941/kl/+rL42BXc4cULh6+t97BXt4lLYCxjtFULEnJaVqXOyLY65UHofkeDkSbHZVUGQFgg9ctRELMmMuNKNNS/ckkAyl2cJBsTDBWYvMfKyLuxl5fW28LItVGzD4xX3UUEYcMUYZfvcXTui0YkCYzHV93NzM4zqgcTICgOipwtmn/HXZDjXi3+C3zMRmN/st+Lzvgs4AYC5zmVyzNCbEazmkww6jK4AD6xLzmhbCL0htbGXg9oae92tv9uT5jZ6FnT0KHWGDGfkQN1+LUuKiEZQd3qUjuzNJInDLMRNywYA/1AdiZHYE13U18xZcQCF1hCqkUVasYrJQW6Vc4UPdv68qOPgOgHnMP8I3m/ivbjBrtM18f71Yf0jGWhoGfe9e7+JSVFTzuRspkTRCSZLCO3AKbXSaps9sMOASx30jeRVlen2KUGIEufaVJReRx+cj0rqzfrdvNpwy4nfX14Y7R4ikZ/3B9tW2PeDo+zUstseLULdPSbXPk1wTBVgVctalHJYX3vrai0RepIhyZ1/zzYOmQD0V7OHUTmbO6EPgvGvMeU/joNVixkUibJm4TsL3yOkoyNbJZXmeYQlTvWwRFaDgDQkNNISSOtCTpnv68JLXVnbQaoVrcXkWCQE+568Rpv1ty7WanF75eZAtLZKExtHU8rBc3uwbU9Temhj39/Zdjftq7vFQm2MfiLERsHE5JZsPVjPVwqXOCbT5CMtibxkJFklQyxZIOfI/bZyv91Y1xvJ3YPBVD3GzieCZovl3yO3+EItlX//b/9ke2xfxhSrOoiTHScAknk0xKlICBNknmDOgKit6zFDd1T0xxYbADZ6m0BOC51I6IGuCenjbA20LuyHq1uKGfvtTzMpahVzzR1O5AOMio1y0YG0FHqtHIc5ko5KfUzpA3EeZlz2HKNf44fO966cQP08Mq8E7/mnr6OKAZjhTj726+gIuXJjH+Cj+m+/YGDkfP3gibDSkW7S9NBNn4L3r35g8eXja10SnEmKdRE3VLGYJNFbbySykJ0MTSxOLCx5Yc2ZNa+seWVJ2c+pYUqTPqhGlOE+3GykXWscrfCsO89y8Cgb72Xj/bCvj7LxrDvFAelHIzT98pqHUolHQeZA8oruhVoKvVZXuDSbI1oqVCU1A/XRpFRIVyJCBnNxHURhMBdxCYmwLKQ1E9dsvbXJgM4o9LRaOdoBuxLWTrg1BG/XkIAkQVdBeqCK5bJaTVnW9sKBoqXQ92Tu4rdEXo3UiskAaNLMklb2fLCFh53nxQCZ1j5VZDHInN/pOhcCl8p8q7RDbepAa6SmaFYD2nkYdH4xvqV3O1cuW8KOD3+V0NHYrOIuXhybrYrdgeCYdGG5gXmK2AiXXs2nRZuPgKpQuvJUDIjWapXQckynb2PZ7Ozq6oU8ArnjzvB2HqWQ6KET+8U5e/Sge37RPUYOQGrjZzpBopvLjhYdr3q6bK4OZVVXH0fDmU/20fJjhPPIl0DR2ulaWcLXDNfXFVHOQPah2tjHxbDgY8pZd1kKQoqWAGzSTkTuO8wODQOKMmnGIXkRwC5YRT1Bx/tFMjmt7syIH15hBiP15HMAPwtup1X2GAUBapvpMAAa3MEvDVlq8p4V/97T6EBPGYV9EsasMxWlNRsvMHqoJDjgGoejOhPCx1j64Xr799TaXfoiZlQz9OnR+jl7EggVpKKibqUMWtzsww+Xs2IW5m66NjuLuomBV8R6G40Cnrh3pe2N/X3n+ePB9rZTnoVeug0Ad/g0eg73rVKqff62Ncqz0veOVqDCNEjxzT0vg547XTkPzpGgnP+vl3NSJgS7nHM+umTIfDj/4TMWRpVabEahVX28GqrVn/aDZ5fhgNDjelpPqLmyNnqzg2HI0CgWMENMLPnOmpT7Am0RdIloDmjsiBpbG4IFhRyDz1pcefVn6Y2jd45WvBduEDCuHkeMFJJAC5EQ1ZzeLgn0MKiotc+G/QFGm4ONWRHto7oEZ5oi8zaoA89r5c72pc779tljAtGYfBh0RptQLGvw2zXAra3jFCNLypAb1GIN8EDtjb0WC9jdetmmBG1I5HUYj4xlMKpiVpHOw1zIUgpUC6UGtJ498FN2y2k+MeTQIUbU7D4ZoxDOHlenPFHQA/pB7pbgXxb2x4xvLmkjOfQiBf+YWF6A4IfK6C8Pj32KV+tbp/h+BywpiZGcFzfU4kOlcLjzNZelxjjiiMcSfw/GnPq6YEiTxr726owYALdqtlL9zOgpISmRYyDEFYnRZj0TuS13Hs+Nx2Pj+Xzn8eyU4te7dLqaE7edFRcJmfoM3KruxGrP4GeRnTefA9FRIbPPeVZKUT3Jzy/GoSnK23Gw9YNUC5HGSxSWkPi2JELohLZDNQZauqAVVBulFg8tikQlx5VbENacLA7owV0LuRViOZzMjaCZFO/c1hu3+428LvZcVnK8EUOkiZE8rTdKK+zHznY8URpdK/uxcZT9oi44TWf8JDX2PVyCafjliTmVRh91tNwWJCkhuQIHq5Tebiu328q6LiSX2yrYmsHmdCZZTZob7nxfjQh//+PxKRAd90dFXIHFuT/w+OX7dY4imJXQS+XQ1/SpqrK1+/HcCCcJFW1eYu/BTKC8Ko+TvK0qTeyMKcVyjmM7gai1MKlVFkd+FINVxsIJpHszxU45bB7wqJSOHizx9Tqr+5NHvMaEEQE//pHLH8fPn9fu85giQAqnpdq4RG2oT7G/vB65lpReUrcR5y5vaRr4YK7loQe6V3o+9PSdl+byUXSaIKkfiurEugSPUyKIBhKJW1i5p5VbvnHPC/d847au3JYb9/F1ubkz6sLis6xTTBcCw9eLx5YhSyy1GuAsOz/3Jz/3d37s7/y5vfPn/saP/Z2tHWytUHqlOXi6nrS/PmJtpKPQa0NKQ0qlbQX2ne5GNkPlRO+E1kmuljP4aRXD0IUEZkYzDH3VpJgxL4QlE3MmpESPnR7U3t801GouvWzEBouY6V9Kw7AywBIICoHmve4dmlK3g34Uao6UHMm3zFIWtC4sdxt3lHIi3TPLYj3h6q+pTyOre/XF3cWVkgKjf9/caM4xX1hC3UtxJbHlhUkiIUH8F9dbPTce+0Ima2KVTjMD7fRwGp8pTPMj+3bx9WimTrUrpduM9tYsBnTvGVLjDjhUKZgTfBlEwwCiqI2xi2qfVMwoarSYDOOkEIRIRKMZbfapNDCzKZzcHvl2D4L26KTUaL+EMY6ptTqfg8i22ejmHTJGnbVB/nj8syPixB1Gljhu++TxJRD9WAE4n+MXj6+Cv2Cy0n8YPYj+9/0SPFIWUhbyEljXwG0N5HSpbHYftaKQxniJmfgP9zxPJkYS7on4qHwGNwjpza5sTJ1lyQYW9AVEyMvCt2IDw1tXr+y6TGNI08wE2i+iTqB7Zf2GDfwou6N+KHsgHtLk2Y/UmfrpT6/5uMYOZtd1If1t5XbrvC0ba9p5C0/e+4O213GjLjtoJPOjwnYBEXwM3Khd67IXno8NSeKuwUAzc43n28bzfWN/7rTDqrKCoE2ppVpVNTZ6bKZUdVOhfuh0fqVfqmqX08nv5C8J+fWEPHtCP2/kt40uXPtQ/Hcq3m92Naj4GHYUwwkajE2L0omhEcSQs6rbMSiz99eS7TDXRe/V5BbFGL+672ZW0LvbGyW6JHLq5Ny45cK3+41v98LLkrjlwJoDOdpcr+jO0hJhyZGX+8rf6osjBJDQOaoxr8WdEGvzrsYwRlNEgmbv81WiODPnAah2+9l6OTzNKGZIGF0Sz4XMUL8H80y/AKLBajvrHFP4EoumEOnBWOYlrSx5pSPE3j44cY5+odGvsMSExsQhYuxzr37tz9l3AnNcwWgn6GrW67Znbe823AxDjEBbYuSeM50bvRdKOUZEnkme/b5K74XadiLm+IePcLFxF8e51sRcQAUzsaAXaAd1yM1ORMuorMkA+r4355ML2NS5NT5+zxc4tLXG2+NJrZVt9Az5zEcB8jIs3N3EIo72h3g6pSadTKn93SA3PHn39zur8+Kzx2xm09yfY06njY4yU4NQG6k2Ymj0YCJ4mpJC4LZmVO/klLmvN563hZf7wr4/XbpbKL0RMKfkFIWchHWJJDGRYxxmdgzzMxsJdq14/qXP7nK2AZ+cgS6N+uQhQNqf5HYQaiW2ZkqFmFCfzRwUYkh28orJnWIXkkALzB4oFUWSkG6Re174vr7ye1betPHsDQmJLB1thcCNJVolJ+eFFDOBgDYzSirHQSmHJZHaDFCerYRmfJETqWdiy0ix/lQLBd1M046N/HwniXHxz7JztMMqO8GNuHJkua3cXu+8fLsRMybv8162HAO32501r6SYfX/ZOSUSiWlhkZUl3ElkE/JEtd7a8FWqonMNy9yzFzA1CcURpy5n7K9ngo777YDz0qoz86E5xEA8RkXHSZ6wynhPPmKlBesFrVgVpAt0Zj4QghNN0zSugw7X3NEuE+mxn/Fo/O9CtM04MGLDWJNj3fq7nlW4AcD78AtwEzv/GuLneYqIcF8WhptwV3PLxHvSgo5ry0yOzZzMWiHstWy8U+12lhnZ1r3Sox/zAr/mM7sdH218xvGZg9/zPp5mB5hCZgmJl+XGa77xbbnz7Xbndb3zstx5WVbuy41bXliXlTWbwmBJmZzSlOeGGOfowEEEjLU3k3bvF31thb0Wfi+7VUOPJ39u7/zYfvLn9saf+4OfxzvvZTMZby8Wp746N1uH2umlE46K7IWyHchzh3qO7AuqJLytBkElOgkzlCzWFmFVe5n7ZY4pVLXzrPj5GUwpZMCpW77oypYchJgNhCLmam8VOxtVImJGXKW0k9zGVRXR5i0vNwOh6+uN22tnva0+sSGyrBn97U5MgeWR2R6Jsh22Pput0+CfK0ZhXRIpBSNO/fwfG1LmKBHQVin7blXW8vVcSzi9N0bbSkxxzvRtvaNeKNprcbB35p/jL665Y1WhaZhL1pAbMAwbnZzVGJCcrcIbAi0E26e+/gdAF2T6NwwQOsavnGtJPU+GMXXkyifmGOYMbrTTarHt42rJVutslWle+bT8KVpPpseWwGjXy7OXfVxz/HIsCYYV2V/W+Fe3YUqdLgzxFYhO9nBUDgDJNjssOLBLySQVwQ+AECBEJWdhWSPrmlhyJAQYjrbG3kCIo29umNtc3ly3g5o+xDNn1dMYfeuXs575RF+Mrgsxsqwr379XqyZhUsXt8CTNKxvNg6J48tp1vBaM/sC56AbQHOve2ZfRu9DV+0SGGcxXTKNXh6d1ewgsLysp3NAeuC1P1vQkaKTulefb0xrMsYU81pwM2vE8FS+PYOmiA7fezIRIgyLRgGjvaiNXjsbzbef5/uR47rRDh9uLfd5S7Jokb5iX8RYEioM8V7bOeycfvvwf85h5uckyvwT+au+RYAE8RiW6cYRQsP5PXNd/Os0a7xa9AuZJRunUrVCfu/WJ1MahQumJQiLGSkyFddl5vh5s5eDbLfNyC9xbMCv1GMjuhBZDJOfIt/tKpzvI6wRpPPbOY7dZflbdqhbgQrQRMj0jHfs87o6nciobxvyp0g3Q2bM5UeMN7tc8wP9PB9obwOhKDgRzkAzJAvZXSDSGeLLMeWFJC1WV0IofhGeiMRrqEyBRrYdFfEZlrz6AfcgHHSTrSfp8mKOn7nms5xM1zihLQJIFz1YL+3KY6be4tEvAKkeFXg9q3JhVTycjWjuoZWMk1BLEjH4AVZNS9naw4utnuDeO0+DD9foVfDrQ83jzATh9ALV/fdTaON7fzaRmL+x7cSmZyXHW4XIOUwKd84X59/+lxKwi2RnwsQfX3pknoN5Xm9x1djAZQ/XSQqDsm0nNaaTSiKHSCWYq1TsB65WOIXK/GZu6v9zY9heez3fe3994e/9pzq0oBOvHXHKwhESEoMFGl4ToxFF3yelfidWx3sZQ8KukMV5cc8MEouPi//JQZdk2lr5ZD2jtRIlIWGAJSHSQnLpfM+tPjmouxBptjzW1aoRkId4iN1n5rpG/LfDolb1VSk1EOtSdoN9sML2D0BSziT1ro9aDwx00Sy00NZltSHa2Gcdls/xUFvaare2imVmRaqe0wnN/IiGRpBOl8TgKWz0o2oyMypG0Rtb7yv3lhZdvd9IipMXOYm2VKMJ9vbEsVg0N8xw1AjmFzBJXbvHGIqsVfG2QMyl+LqMblcyhUJiE1mUPjQrArG4MYDbW5ySQxMHoOb/43KcfAeiYrIeot+G4u34YahWTPWtvNo+5yhxDZmB0kGWDRAt+2HjSLhcZ8OhTnpI5nUTpdd6neO4xDlyT7WKBrnvVlo/52wCzVwXEGAPy2SOIcM/ZSU1zjgdrTxoEomDV5yWd8xYXl8HaSIrKUQ+2Mnr0B8mr485ZVHGCUydR5wnWJBmMRJ5cs1qOojY9yyS4IfESb/y+vPL77Ru/37/x+8srv91feV1feFlvvHj1M2eT4Q7wPMZyDQf0EKylhkvsmPFPmeeCnVFG4BzV9snP7Z0fjzf+eP7kf3n8wf/v8Qf/3H7yVp5o4bK+/vrI3WZQ99JoR4W9Ep8H8tiRWt2AEmutEPGk3glhlxaawslVNr2fxqOXNreuai06XemxQzQDud6UWk2tV7zFQ0IkZ0FTsDam4TIe1MkVM4A8SqPtHS1jjrASIzbveN3Jt8zLZjJa/QbrC8QXazOIKbK+rOxvC2nJbO9P9ufO8dy90GSzwFO0EWCDcLR2Qnxdj1zctW210eoOHNPZ/V89xh6c5kAx+j02Un+qJiexoxOMGsE0VE1ynv3eczxas1Cxte5KrZASHVMetNq8IulzekfcaJ2q1UmdQVwNrMUEpOPcHYBaxLxthr4rRXPEHRhszCg2kyQb0zg8Z4Ys1zaX7Yk4yBp32c05eVFlmFHqxE9r7sDx6XX+EogGv1iqOg/nWem8gFNgfmDbmWLV0Ry8r9EugDW/WpUqRmFZEuuauN28RykEwOZrNSAFBs6255hXYa84nwOEWnwYyVLw9+1y4TSMJwLLusygHqIZ8rw9Hry9P9gO6zk7SoFBVkzm7ypZOZOwWRka14GLMYoHp+psUu+dlvSr6vSHamgIbkGdM4GMVjtM2tF4vj95LImjVwPbzUP4rCBeQegluA1U4X/XG9SjGfse7XXrUahHpx2N/XGwP3b7nnYywyZdGNXG0X3tlwbP1EYPrfKX8Ppp7jzf23/f4xdumzl7Tj99NcCkOqbuCCxJWBKkqM7gO9HY1QJw7ZQuVAkUIkeB/VD2rbE9Ktv7zuN9Yy/Vni2w98ROJsRKSIV1PThKpbSDUhdKi9QeOXJkTQ5I1VyhEXMV/Xa7OfCz2biWZIM2W1NHc9YNpUkwQsHd5TRENHgfqw6LdLMmr8WNa1qbB+c0TPDqFcENmvRKn0w+fvIdErGetsXdMr9Y39FdZJObFS0pUbq5b8YrCUOYjJrX1Cj+S5s2mp5W5jMxGTnK7Gs/GfuhnpjuuZxrMIXgczRhzwsvy0oXqKpU0WkOYly99Q+POayoOmt4UMuBtRlYVUCDxYagDR0Ov2IjGT5UUIDTEOq8xtfn/H/9+C0Kfm8+X+O9d7Z9pzWbq3mUYvdYQaOxx8PhtrdIT6MvxglI4RJLh2x1mC5UrtJhyxj5MFpJLvFaRi9f7yAGDq1nuVOKyT47MkFyGu0bWAxZl+T9hQvJpbIxBIob67zcbK7my33BBgREq7ylhVO26ESnx8er/HqsoZmce1vHAKTDuGbwfJ9FMQG+01jHfDy6O2Irsgg2AsliDtXBWVeSZuuQlk61QvussARpLDnyPSf2CMdeaHvlsUOpivYCvYLvid6aWd90SxqPUjgO67Pdy249uj7ewDLYRO6R1jIpBUo92Lzq3LXZGdFMvguBKKYaeW6VvW6mTghKjtFaXNaF5bayritptZgg+GcFlmUlpwFER4tHIEj0FpyFJa4sYTXQ5ZWF0w3218dlveHGIZc9NB30Bzjzf7MkkUlg6YCZnhB++O1+js0inDKrh5fFfiE37N7r9efGHp+tLzBmf3aBMPagS/6CdDNHGSA7fCT4rmTJrN57xjTfwoeVOUivy2ceec1oZ7j2k31F4IopHiyudnd/d7+EC0SPEsghsqZsfZcOSGs1VQC9URwoX3MoxqW6vuQgFy7E1riL58cSi7/ipJkG7uHGa7rzPb3w9/t3/n7/xu/37/zmQPRlvXNfVm55teqnA45wWQejik4h6nCSAAEAAElEQVSISEimlBl/h/xllNy5ZtRBtimQXtcXvi2vfFtfWJIRRktayPtPZDdTu1970+fnV6avR+hKbErslry7ynsI8fz9eGzTc00jeLw24x9J5i5LimiU2aM6Kt2zoj8rokopZgJXaycGaEe0EVQ5eCuQIKJIaBCsuaS6yrHtDa3dZPrSiSlQjsayd5OC9EDoXklPwXpHcyCtq11vl8NLSKiar8eYSzlBVgied4cP+254pXTF2+ia7f0v1riqeuw1KX/3/ae+pw3sWuV1xOnpbzL25TgXZ/HJACghkpKvJ8cuUyYNdm+CFc2iGHHbmxuHVvO5sfzW7kv3wt/YHsIprx0V0OhKpiCeg11iVQxh9rgOh+3mPaGj33OAacFUZDPWBesnzSmwpOSzac2UM3hON1s7e2eJDeR/DRAVm/eVyR8C3rhJIzDOoO3xIXz4cHYBbI6ibQx1hjAEWJeFZc2eXKwsSzY2z/tKZz+GhAlIJ4vpoNM2roHQCUwve3kAxwGURUxuBn6jU/QSv/WivT8Tb8+HJWZ6kThoYMyoM3L1WhEwi3u7MTqDvK1Bq6TV0uasyi79CyD60RRBghkvlONAaIjA7b7w+v3Ot/cXtvedIJsZAo15f3IuyHkj9dc/jyM3QDcTke4cf6uNmII5+jWlHZ1amoO6X5JlP9x7V2gd0XNNMPgW/5GvmL7/vR5/CeAjYfgiQbefwRxso7DmbHNY10xOgTAMivz6lKPy3Ct7E6ooRYT3Z+HtrfDj7eDtz523HxuPtyfbXngela0Fdl04pFlzfE6sN2PJmxZqzzTNdMmUFigpUFJkTY0lN6IkVI2xel3vBAks8cYabyzhncQD6e+0AzNXas78h2a8TVQ0Nno0OlSdmWrVSIZBNsze0Ln4sFMtquWpHqxjGOsSA6rBZGVmVibkmx0eKUWbT/jJY7g9pmC9JUsUSgyWxA5XwmbutMPB0KqR9prO5877OiVnnnmZvOsc46HzYMCqol4ZbYKByRG4RUgIt5h4ySuIsKMcgvXa5WUaVcQghDH7rDd6O2i1UOuBSZTUn8ENZWwusfprq4zE63Ni7dPH5WD7AFF1JOpf/ZiPbGlnr6eqyyixCmAphW3bTJLVTOYVY0CWZTLqdrhFN4FTi+N8NKIT6SBhyobm/RkgUIeRlG++aCCkqY0dEI3ea3i9IsMsR3wub2ZdFlKILHlh258cdaPWg3WNvL4svNwyOa7ksJobehr9gJd+aS+J2yHu5GWY2pq/gNHQ3SxFRkXq8+stIvzP94W7dtpeaYfpBJekxMWYTQN2NnNPNBG7z9OVjEql9mJ9hVtjf+xozsTvN77dVvR2g5cX8t74Qyp/PpVHa2jbOfaHXT+Pv3bPu6kzSnVAatI222s3UjbiSNVmuO77Sm2F5/ag1t1UAApdG0fdPRmp0A+2rbEdD2ovZlgUjfCNKV2qiQNJgrkzurmHJGLIBLH5hAGTPaZgJiIpRicbfK/0r5P0D+udM1eZO2sQnA5oTwJpVAftXBxjOySca8DW8Xl6DbWFuUZWpAyCfST74lVeO1O7I91ZmZgJoL9bVdA2XT5DrVTfA1MuOyo8qr72nKy55GV9kCXjszptNoDmB9foX/Yll0rOqfz5RXlxvcaqHKXS6RfTkhmR7XrJqaaYkU0NfU/zNVffaNcP90UvpJDf1PPLAKzzK3Mziq0wckjc4so9rvyWX60Sulgl9LfbK9/WOy/rjft6Y83ZjIpiNCdVMdniVco8/sz1s4Ct62B/qwMB+IKbbgKqbs45lIF2xkmMLMvCfb1ze95Yniu1d+IXZEsRzMBTDMCQIvG2sETQVkG65xV+n3t3UC7ufh/wHiSfmgASBaKg3hLRVG1KnpVV0QBEu8ZNrbpbSuc4rM85hUxfIrpG95Tw+CndzHyCKS9k/D4JszI2rmIQaCj10Tj0IDYx4NY760sm3xfiarnT7TWR0kpMKynd2DeL+7Ue5u/Q+1RvwwCnwUmlQWiKjUvxeekxfn69bXxLRYJ4P2ycsmuriDrV5IB1jCobObb9+3wjCDqrh6O3fEiQx54YilAb02Ir2ky2bCRJ6o0SAjEUN/3zfA/o/SSYxM818XO7B5vjqd52k/JJuKRR8fcJGINca6HRRMgh0FKabVsiQw0w/EcM56Voed8So80Gn6StXAoDSv7vMSuKMZF++efr4TweV3RtH0pYcmRds1U7UyQnA4u9Vlo1Gd66rObut5hML6dk2m+1QG6LOjJHXHiVZNrFX5H51ZCHaxAdCesw2hjSMfEFYYsqpciyZGIUZ38PmqqNGvGA17vQmklQWjtZD6S75NgvPPZz8yBpBuZKrfb5li9YGHuntgAdZHevVKGBKAu3+4LWO08Hotar2eh78c82DqHLDR+Bffyng1DBGNlejd2ptfLcmAsIFaQJVJmSXPED/VoNVjdpClbCtoPYo7VysnHz4/3v+Rjr8NdDU/grrfrrj4JX5YTbkrjfFm5rIichBkUc2PXWOI6D5+Ngq0IJQpHA26Py8+3gx4+Dtx87b39svP988tgKz62w9chGp0gnro28VtZS6VqofaeTUVkhLNQeKU0oLVJa49YbS1xsFmVIxDWx5JWXtbGElSwLoSf6AUVsbqXWaoBSmpUAQ0eToMmuvyU7av2spdMOs1dvxXouRjVUhFEomTb4wVUMY0xTSLbebR8paRGWe2S9Dwe8r4Co78UAKWKzU6O4LDk6c+eOdh4oG2pyKy6MrhoTGkYSYIvg3HPe6zqkbzih1DGnt9FGNNZPxKqYa4y85sXYV2y+Y1pu5JQtXoRgjCBg45qqAVHvWUSag1AbtaBiJICoumDAjcuE+d8y38eFFv0IN/Goht8OPnyHftjeHx7KqKydQFSQwSqYfKwUA9bNnPpigNvtZnJrEXMClVOeZBV0QavvfzUJu+U51tLQap2E5fleLhUYMadGVHx2sEmsAiOei18dA/CCkLKdE0JgzQv324sB0fLgKE9yEm63yG3J3PILa7oTQqJ1q5ie1RQ519CIBSJnIsEZu6/rySr1nsp/BUSB//qy8E07h8DRC1UVyQoLTmzJ9CTwSdooGQ1KkwO6yc+PvZKeO7Ikwn3h1Q2+4r2y7p3UNmo52Ful1519f1AZyUy3+ZVuIlGqtQuMYefj7LvdF9Y1ATaCYtsWtu3Bz7eVfU+0Fi389zbddLUd9J7Yt85eNpoWomRCdOM/by2YzvPuMCxqFYEgaT6jWFU0jmeIPirD2fTYTwOiT30C/I6OWzuTcAeHfqOCO0racf4RdNlBZSqOENKsvKrLU095OTOuDCUBeF9UGuSO9X8NENodZIqMPMnBwcga3Q12qGtnf5f6vYsGhN2tYBLJ+D4KeokLaiqvK5nzoQd0rvdfyXqdiq9+We/91zN1fj/m4k93lcmYp3zJEeadYZrezffi8kIj+z+6++rHn/zwd5Zkn3Fk5nn+90FsLvptyHCXb/zj9hv/dv+Nv9+/83194fX2wn1xl+lkY1lmH66M7t9fQSgOJs76gVzf41iA16d/U1ADfsEdSZeYuaWFJa3Wo7q+mEw9ZfbWaCV8GluqCEXE1U4BciJF64enj5zCZ016nomqi1SslQg395Fo7rbDGK1jXgKHV+clygSPJuk2Iqo2k1SX3YBojaBrgtqR5qM5fJSISrcPH9XyiGjXSHGDz7EvsW+r2jjqgZSxRgq9r6goSxJSXq1/9x6JaSOlnfT+zuP5Rnt6gacbET2kqdYSYTN/gwwn9GDV3NLd4OfzPEW7UhynNMc1sdnZF2OcVXHFTBNbs1mhYYAvzvPEwocZnOVshqgpJZvQ4coeU6rZWDJtFR0YIBhBEoLQe5ztjaUM8yAnY9zte27QQYBpN1OhGJBk82OzBNZkKtSc8qWgOEw3O837UmtMH/bm8I6YilgZPh4GdnO0FjNz8D3j1Iib8QIFfn18OSU6BOuzwTekfUb9UpY7qnghiA0rz4FliaxL8ORe0BaxnEBYljx7kuwDCqixRaJu4x5Gv6cD0tGQO3T6I7PV0/DIeieay4mt/BlimNF+lqSjXTycoYwx2CzBo1Bqhc3mqVmC1jhqp1Z1wyEmO4eY5l19U8kZeWfCI8EYfY1/lTWfV9zZWDkHx5qe3wDjnGuY4H5f+O33b/SqLr9qF6nsGSS/zFCBiRaHPKlbL+tIjwWXW/RraP71dzCZGNrJEtHmXjjXz5XZ/N/z8VV5gv8E94qw5MSSrb9gyZ7ojd44azLw5v3Cse88DzgQDgk8tspz6+yHUGqk6wpiY1/wJLv3RFXrI+1R0aMRd4VYibmTF2G5ubOf9xZKb0grKGL9ixIYY5EkmZsueqKp0IV7MgC8HcXYaRkN5d7NpgZCjVxRR2POfvVuEisHXiEJcbUe7XFIpxjIi/WtDsOxmKwP1eaHCcsts9zyvwSiDsUsAesV7QWhE4OwxMQtL1TEDCOi9QiO8Up2aslZtfD9P9zwzjg8xk4Ns6KTPZ8+FpjhjM7FawE1h8gtZdBIFEgCIS2sMbKAAwdLNVU74jPRtBX7PNgekhDoPgjdtlk3sIfYLG31BGa6cp4gaTCqE15PhnXA0XEVB/H2L5Y4JqNThTE3UUZsnznrCeCH++JwcTTDi2FDBEOyfSbWY/u5Q6WcB/Sv0r75/r2ZPvi8M/HYbeZQfl0GlnDJtDJh+mS6l5QQVpYs9L4QIyyLS4SWO2t+QQgcZTPT4nlFzng0o+W4wJznwwALox9HFDP5kWAM9BcXfP1+4ybBB8NHSod2u9PXDDWjSzDTGmeXtYG5Eti8PCSimhCNSI9Itzgc1Ppthku6SfU6aLOxNtsDqrHltXZgzIQ11Q/a5jkXxaS5lgwlupYJzgZ5OBzqR/UOB0OzCtA7SrUe+yg2LzWnOX7EKg/dyRlTQOSQEDc2icFAaMCMkXrtlF6Q+kSPzsGOtuHk3b/s5xJXX01AOlbbADFjiw/i2EmsmSTq+JxyRRhnBVFHkmaVktY7YZiFeLuRtrE3zRzNVAEmebf5f2ebUIxj/rjNZB/Ab/ZaquUXMSlR00ceecTkqRQbkvPOcKvs2i4kdnNQ6Z9nOP9/ODMvseeyR756CPi4GvvMI9aOX2lKCWjY6CewZL34uqveN3nUQnGTvHlrfolmo+KpnF9PhZ6OLIUkkXu6cUs3fltf+PvtN/5x+8bfbt/52+07v99euS8r98VGskwJ7oUcGD4m18KKXJL0U4F3gds61pFfv18A6Xzfw0hT7P2q70NEaBgA3Gvjv/1pEt2/PGJG8mKIThKkClOSL+YJ0bG4UgPSOmIDVAGTFNtzAMyhTvHnaKsK6mcstq4Hpnb1U4yQs5V9cjbvgDiUUUMmO4B3VHOnzdCTWI4crTprW9BjcDN36U6nSiM8ygTIXa1Se7sL8WYAbl2zvc3QLd/SQilQ6vA/YHpN2H6Y2bDFT4GUTDIav6rQCbMdsbkPR4uRVqtVMv3JaB3ydRLD6Tj/YXfJ6ch+toNwpujjwB/LaPzgODUdbFqcy0gQWgvE1hge/baHHG94n7iZddlzzWb69+3+wrKce2CERxTrB3alcMQMNOd5MMloX0fz3LfPEsSUbtP4aHwsEZfoCvELMhH+V7rm/irTZb7JYbBzkaEEWyzWOBtIUf0TXoYG5wE27Z3bTUqWBI4B8n54GRBz7bH3D02dPubwZ9UHo1Dne57NiyeDjzITMQkyXSFbWynlxZty4blXWu3se2XbCzb14GwqtxtwXg9VCC7VHUFIEHKKc5HmL9z/DMRH5gBhz5TUb2nr1Ss8lvT/9rfvtKbsRzXwfBhgNnetcC7mESw/3LYRSD0Q+4FySlC8yux9nqLnDlH/4OIMl6jr8jsukVDoFhznz4/38n/mY56rn7+wAHlJBgYnCDVmPkx21y2wqzmtbZuyEdg18jg6+wG1RTTciEtn0UxPBXJFi1qAbJgKGqgd9tKQXckb3O+ZvXRyjmS3xK4oQbsxndVdNUMyhk+Czb+83ywZD4HXnHl/PHl/PHk+Nxss7MOzmzR66Obkq9avUQQOcUA1AIh2YlBiAlnN1U7VyJOczcHudsvc7pllDeQcyIvYIRS7D7u3xDsEk7x/+hjsWq+0tlOrjSuIAktK3BAI2apfKRNDoOmZIFyH0I+g3odsb4wJmV/75engbchzp6vgmSwg1i+6Ym51WWANgsRMJJBUiWr3RlUsEW0N6ea/rmoO3EqBGmieLPYQIBqw7zHa64vt0bMKd67RAQGvfSZTfYF9ju7LWkcF5YvNNQ4PEUF7mhntGOgeorvoxRMEzusiTBmxwZrub8E8Y63VYoDRQUC6Y7l+7J8bf3f2k2JVZxGTZY7e/iBzrpnI6b4s2CFrYKTRWjHJVBCWfCOEm/XCuDx0yStLuhkg6h0JzQgY72abEvNzWdoS8AQpiB3ezQnH3pobfJjx15c29CLo7y8QF8JRSd+qjWqRTAsLPSRo5sDTU6CvAWlKLRulWH9ol0iQTAwLKZpZHZpoXTi08SyF933nWXz8g3Z6PdBN6BJn33dMi83qzF7FD8HnnosTAfb+a2vUcnCUjefjSdkP5lzpgc1c8RN8RJKoZb4S+ySiLJaevUbHUWi9UNtBThFuC2te/MyJH2S5owJRtXHoxlOjzbFuDfUz7Sj7p2s8OggesWUwN8r1z5cbjd1ji3G+ujxf+GB0xCB2xznH7Jca8n8bDu+SWbr1oYlJeMdIrFGRRIwQjxon8JUglGLjp2qzFoTQbBRKVgzAiB/iIiSxipaNKbLzYCg/tDe6ONkow+SkXfbdCC7yYc1PEB7EwEtQI4e+OrBVyLpYr747l5tLPPNaK6aUatrZa7XYAC7/6xMkT0LjUtk14DYYrsvfDXJBmX3uSSJZEve08nv+zu/37/z9/hv/9vKdv9+/822587LceBkzQVOegGAAzQlCJxi9gM8w4tDZcjQA1Lw6I8eacThMIDr/KV6SL1UWMiKWL1UnDvba+PefHnN+eYS0EvILxAa5em4QXKHnc8NVST0Sm40H0SZoEyASYiak7Cu7O1FS5hpR3HR0dtld8lfxXsNs8SKngDa4rYnlFkhZ3DzVAmgQdS5eidlyip5BFzHCqYP24BnqVR4O2qEcnS7Vxo1VpRwN/Q6hR8Ld1VT3SIoLwopI5fkE3XxagWKvc9nJQc4CS3TviTCIuk8eo1Wvdxt3VovNcLXKaGPBzy9k/i655CV26SbNafE2BO9hxWXtMs95HXJ4Gb2ozPdencgC97tZElHjqV4YVUc1ws4kyn3w9mQnbW/LwrfXV76/vJKTYRAD6qb669oZxakgwUgDLrmWt1qGOIp+XPISdeDrn+VCKI1tEcJ5zy8ReT6+BKJjp137Qa8X+PqNJ1gd7IgB0RiHDM+dssTeTAzZ3Zqsbj+YLqvAJFIQYkiXIGCyl2FGNNzLxiywk53TuZDGjWMw+te+Lu8LFTGnMUIkOdC2OUTKtheCPExWu1e2rVCbunwnTSCrzlwImJRRnB3ySxiCsOTsEoxIOqI5pvzleo8g6Iu164dbNpxC0Wi9eHHlOBqP953nc0dxt8U+gPBghc4EdmKzcd8IDlD1DAyD5XCQKROUfb5EdPyrmmwZnEXuMn/juZi+XG3/mx6/MqlfHqLX7xFhWSLLEtwpNLuBxqXKpuKW5uYiduydXRNPTWwlUJrQyIQE+ZYIqSBLJZSK7pVjrxx7o7lcpalV1nVvpCy8HJV7aSwlkrOSVY0SF0tKaleqdHKotmdcFrEumRwiiwTuKfOaFx4x8oiBvRyUulMaFLGZvEWtL6KKUppwxMARBQnmzqlB0QRkoccBMALLLbPeFu73hZfXldeXlfUWWZZIXqxXUoJL09MY7RGIh3wWazzZ6OacWHeOanYuQSI5Rm5jxlcy98IwjYRkGnjFaM8QL8lCP1/uDOynjHfGSs5q6FkRxZIx9aHc0fpFswgtCER3A+xK6I3QAk0gtkZoDWnVwaiPcumKDhWBCD1EJBvB0QWb26WXHurLqvWL5HvwDPD+15fnLxXRL5b77JPBXEfN4doJtICDUY+jri4ZcbTp9VXx6rIlMiM56UN26SMCpqFKaxOIjgrp6BEdJNY44EyW6Ymv4ISiHYYfMbp6DysmEe2NGIMNn18Xd7m0XtbsDpitd2KtiBRE+hmrkEn4nQDmTDCtl9kqF+pnBljflIrS9AsgCvTfXtClI6UTi0IBiqCHKXR0SUCCJaIktDXas3PobjJl47FJYSHLSpaVqola4ejK82i8HcWAqCforVdqsfEA5nDYWJZmVUrJ7pZoe1tmouxS09Ztruj24Pl8cJTDkhmZ+bS1jAcHpN5/bRUPJWXsdRZrbwnB+4iPyl429rKZk3EI6E0n0A8OpgJ2HpbjoB2dXhtalF5tfEB3mfe+/3WGKFiCk1PialJ2OlX+dWsYsD5BxSm1dlJFzjVxrYp2Mcl06MEqgt2NOLrv1c4YhWyy3mYktp2HZy4gKbqEz56tdVSrS+ctf2jdQCgXgzARXP7u4GiAIjfU662bUc0AoqMiOuLHAJ1/Wbcy9+TIGhUuLQ+/XG8J3OROxeYz7q1+yAnHXle8382TbZlvwr5rgJ0hr/1wXAzg7IktHndGvzAK0sXOjLjwLb7w9/U3/svLP/i319/5x6sZE93yQna33hjHKJwwlT5/rYSGv/w5yOgzlPmcFdHxgee1GnvLN4ucJFpwQE0ce/J0QE4hstdGlHeGduPDNY+ZkBaMEjQFg40fKbRmVcag0ddCQJrQmrWSQUTyQkj5rNTXQq1Qmu1/i5vi+13nPRg3xgg+l1xmOyvXJbGskZgDcQJRsYroAKMuDuv+1CzW7jWKFZe1qZ4/9t18K2pplMNyb+lCkmS+Ek54pZDQtoDaWdBq5Sgmax1g1FeQfY5uJ/6SkhGgMfD5CsclvcmITx294meVNMZIyhmNOrHP8FAIbkIzgegkiz3/8HxSPRmZcWYQVrPaeJ6ZfbhoR1OcnXv10nrTO9rMGFGAhM7xdEvO3NeVby8vfHt5JcZosbU1m/6D5wWojzA+40GKkZjClBKf85f7fH/XmIvLcAcRY2et771Rkfnk8SUQPWfyeSDxD/6h0R0mSLRqhfqhFeYA4CUHeyaTJQiYWcGwQtYTSAqXPe3BADWGtalJGNSNV4JGXwhhpm2DfRjva0KlYT7jNzeE83PMyq/LZ+/rjdbhx9sDGc3NxeYh9S6mr49hBsfB2nWvmIwkcshwUkxmhHNbTZfdvwCiftPGYhVvDg5WUv5QzR2W1DELt9cb38o3N4hRdnS6vcI4WD8eyL+C0pHUnqBzAFEHq7/89PX9Ggj9uKVFz98xo/H/gY8vgee/el2BvGSWJZBcux9Dnj7NOKnSQzRznRjIyYYSJ4RFEqRAXATtFgBaq6zHwVYKshXq46Clg6NXmlYz29FGbcpeKo/nQc4CGFDt2q2nehyYfh3jcJElGGAOZuzVjkFOGP+XgiApsMRsYCsYmGreG1Gb0lqgtkg5hLc18XOtPG6Vx7OzbZ2uAQmJkBLLzdbt7W5g9P6ysCQPTGGw29UNPGykGQLf8aHZvzys78pmoT6Ow/qn4oKEjJJcShJnn1ZzcxuRUyZs4zRc4hKwyruVJObeGc/me/JcDKNX9Pp15KG2isJlrwQ7Ha2q1U2KG8KBipBaZ2k+aFsCGhNbV7S7eZjHzx4DgYUomSpmOtEl/uK26NeHk7gxic1ZEb0+B0AcMe8TzO/X26qIA0xdJW3jp07m3w82VUq1PvmcormXi41ZKMXYc/XeunkWOLBRf83RQ3dKkuSMZfM1T2fkIIExQ7H3UXF1AtI340j6x7/b34r/juEKKPPnxmWy92D+ktY6NWSSzuxejGCAD+ddELFQPYhOH5RuQDT/9YKLsL9+Z1s94WpisuCfDUozWV5IkLONGknB3IflaT23vRvL3iOLJhbNpJYpJbLvwltT/tyVfxblXSM9JfNfiDYeo3Zl23d63+1+qNvgqJtHqDqhOdh0WxfH8WTbH+zHRtdqlfIUqD2YqVKwiv7oa8XXw9JtlMF6M0+IZTEjDHHSt9VKLQdROq0tdG3zzBTRCQRqa+yPjcfbg+2xsT829m2j1eKkQ0fiNyT89ZpH0wuepFO/AFL9BeGM//Zzf8aNK1jrww7tJGC0K9JPRdioIIUYLJluJnsde2h89larEXOjN1ROSbpe1iJ4pUjN/VyVC/EWJ7F/ldCPfOD6WQfoMVXIX/svxRNI5Oy/HPhoVBqv1++zRwqR//Lt3yi98GN/Qw7hWXdKbxRtE0Sev/sKOD3mXEGof96P+8i/jrYhJ4pEIaiPiYiJb/mF39ZX/nb7xj9e/8a/vf7O316+8X29c8sLSxwqJyF6JjMc0k9oaf+bWc58Ly5xvLynmVhfWJrzzx9BqIZL/om/oI4xUBZvktrs366QpCI8Pr3mtI64/0OTRtU2R8Mc9fB+wUrvQm9OkuCElysUusvbj23j2DfvJy2m/sk+qsaBsXYznxvVLBWhB++QF7tWNspk9INHJ3TsSnp5yP/fzuHmqqxJAoQwLUiD2O+u3dxstagZgZVG2QuiEBWkVfrLitxXu6QKSzATuz1az2/t4+7ZZ6nu06KuaimhcURz6j++mCM6zi0AXVfrvVZ1gtTu9xhn4qBjgtOkg5Q914ZgeUn1CQXjDY4YM/DUhG4D+3CSgUMZMUaM2ZE7im32ega+oqmKvCqaU7IWNG87U4wkq7WaGqM2Xzsnm2/k45DY6iVzOp/e3W7L2tlKdUOsU5U2AovO2PbV4wsgOpD4hdXWE/1PlD+qFTKqlZCCMTzJzRWWnFiXwJp9q3cDidHZPlVjSLonXiOjHPwTeALrauhAo6sQ1UrUEiJcGHX85+Z7lDPYiehk8kdFdLK+CDkmdA2oG2IYEDWGphWX00UHuRb1/Xer9ROKi7/ERgvkGMlL4rYuvN4NiOoW0c9URsqFzbHfZ4UK8ffsjqGjv67ZZ7m/rjOBbdXmQdbiDMmlmmlsqczrMxlHvQA5cZZoBuAzVFui6RtH/d9kfE+Yv5H5iucdnCTB/2mP//zVRIRlXchrIOdMjNmq3WoJm60LGxScUiQnYcmBpgGbdJjJLFRZZj9pb5Wt7Kz7jjx3at6oOSDHwVEsEClC7cpxNN6fuznqefWu9c7i5l4hiCVFo6dTDeAvaWVNK0kS0jBpX60urcYT02xJUjZXoK4+B6p1upU+qTXy463y4175+V55ezTen40uiZAXYl5YbwvrfeF2W1jXhdvqTC4WmI+90o5hLd6sN03h3175tGDU1OZQ7bWiu3L0Rk5KTp7UBZujNRLE1gfw8qTMR0pNaf5MBs4YZbHLHV0H8zjOC7WekUGsdz8upxjGgzsOYAOYxam0EVQ8kRAyl0QjRIjZyAiUoxWTPjVzLQ5SieFGCUKLcfZ1fFym9rsUQNX7Xq9g9JLYzedfOKAPj66dehynYYDHc5UhC7YLMxJosCS6lMK+76CZsGSLPz7PbOydKWNTtR5nPJHuOg+52RcjZyvFqJDCCTZDCC71s153EZs5ywTJntyPPni/5+OyhQtRIS6NGu6f+Fmj6lWjkUx5MtT9dyNnoj9/9ZXNvhyszXtwfo0zirDdfyO9RKImQk/IpuixwfvmiUOCkAlrRO4R0QPaT/qmSLXKSeqBRRNry6SaeeyRLcJbU/7Ylf8oSiESF5vFG3Im5ExtJvNrtfn1MfAsoTNknLVWjqNQvT/P5jpuHMfGceyomnN6WhKpB1oNEHzuoINRSaAhWGIhsN4y6y2zrAsSvO9oyv8OWui0Xui9OBg9e40jQq2d7fHgxx9/8uc//+DHH3/w9vZGLQe1mgz7//p//3/x7dvf/7LGQwhIHrJzuz8GBJvfS690qr2n632bEjPO6vCv8zO7kzkWj04p44hDfpU9UbXP1Fqn+vy9OMpCMTrp4pXYsdZGrzAWG20kg3oVwdatjZ+LE4SC0r01YSoNJuCzdzTlrv7nfsnfxkzFazy5jm8ZLpefPVJI/F9+/5856mH50jjdy3bOVRzpxMgPfM/OfeJv9HLLzlRifgPjHfrZB3QxKW5Yeck3/n77jX97+Y1/vPzG316+8/vrd76tN27LMv0ePgBQteQ64KD2Qj6Ox0UnY9cgnP894tFHADqIOH9OKjucn1ns7B69dSFYrEhBWeJieJHENQ5fH1IrlGKqqlCpWijl4Dh2jrI7oKg+6zPQeySmlZCCz6RUtFeObefx/s72eBC0E0XJUUghE7KNrbG11GdKFxzEq/gYE8+1o7fYBVcuopbbM1vtGqrB+oW7z4rtA6TZXhhj27QNsOjeDs3yVdmEkICmhNbRcqDHHamVnBOikEMiXxy3zXhN3QbDjdtqpZZGK5XAuSb2vXx+vTmJyhACy7J8OHdbV6obT46lk1Ly+LJ472WcZxciXn200ZDNFUOT8Ly81pnnwJCED6NV26e2xyIBwklwCbi/DjbpoDfEY8cYTQTMUTP7fpgpq4NjU6TKfB/RiQUd7XXd86xJ/FvOOzN9V25Ym6T6WW57PGin94DIF+VQ/lVFVC+H7/UmXQ7nCUJx9yS/aClGG2Ds7mQ52awZe1cwHHBDCIzRDJYRMPHMfN3BHIzksl2Fa9bDJ8PUaL7H65I6AdQHYDUutL/8SGiWZHOKVpd1JEkIZbr3qd+cU0fPhbWzzzd6sNKYq5O9ry4HapBPC6Ina2jsKG30npzve4BBM01QCEJeMy+EmfzZ4WbyqnZNaP8lOPP7OUxUxit+6O/8is04S/DjgwzgOqqq/+qn/zc/vgje4719/WNCXjJ5CcS8EFMmBGuElyHdDkoMjRQDS44sFRqBTiSGTI93erw512FBIu0baU3UFNgENpQelC6NXqoNN1cotbNt5rQ6TtqmnTVHcopmbuOjN3rt3m8Ea7yxppvJe1TMpKBW2r7Ty0HOsC62D5cYWNaIhJHgAC5xby1yy3BbArc1sqyNvHZ6MGOEuCwsDkCX1aSOS0rWf9GUVpRaYHso29PmVJbDxoP0m34KRMfoA6vTdIp2VjVXv8SQ33fQYAlr90B2qYaeT+txDN16a5kRgWlt/nEMwZUYkRlDJu3ryckEZzqYejet8t8/Uo0Yhh0gnqBEugQKcKgPn24HEGg9ukyunyNcLknKkC3YLh0AcRBzeNL2sRr6n69w338yo92H7x0H5DWe20upg5WDEKy/XYN4MmGynxgj6jKlkeWPtzaS5dbah3PilC3JSXL657q2TKj2CU4lhA9J7SASQ7Bq/2Sdr5/QExA4h3+fLR46r8kAyefD18/gJC7XREQQVTd96cb8fn7BOdbf2NdMIpNYrPqR3xBJWA3eNQ4xEBYnUVchZCBCLJBUSE2IJRAPcz2sMXB0Ya+RTTMaIzHfWG438rKwrKv1h1ebHTsqZq2V2cOk2il147mb427T7tWUg1oKrR8gnZSFrpFaIzV5JSScWyWKKwrUbsyyJpPMZUsnOmoD+2ioVidCDlo/6O0wQNqryeWCEXj788nbnz/44z/+g//49/+FP//8QWuHzzPt/E//9f/5+SWXYWYIp2tZM2Mp//fgJJWKfABY1i+sE/gMwmYkYwZL2gnO/Odii+d6RWffqC8Baqt2PV0ZMao+BlSHjGN898mozAon+B6qlwR13E/Pe3qnj0R3gEFGrnSJEL7HZh418ohBZOlZdJgzJPs1bn58xBD5t9e/c7Rj9jiO2FR6pQ4C5Ne9NIDnvPZMEPrxL8//sJji/aXeS36PN74vVgn9t5ff+S+vv/OPl9/4dn/h+/rCbVlIMZKjt4FhVfwJDx3UWkXpevUv1/HX9+Sx8mPl4rIhvCqFRDcf8eeVoA8jUQyWwIsZf6aY/Hp/LRXttdDKQZVGERt1chzns5RCLZVWhdYtf0UgJCv01GqjXZ7bxuPxZHs8TOaaAknS/Py2hdRjsBMmI2r5fRCCj7pJ5urvrSsj07afCNjet6JP6xgQbeo5lRoY9L7DJrZOe3PAWkabncWdgM3jphUzYmqd230lxGzOshrm3Fq7J+Yoalihz7Or1m4N2N22YCmfSxPn/hfvy/b1O+KAjcLqE0yq/8z493AhJ4Z3zSDHJmngqoap8vKvDHDanfjz+DX4HAOvo5/TSRo5CRYTWHjFtFshxZz+rRJ6HNZ+eBwHeymcDvJyOv+KwTGZ+9jJru4EgaOf8XPiOczADh2cVGtnATN0Og3SFwTXF2t/VhlGpeHXiqgtXpmLcAxPzTG4G2l2MBdmz+YANUKYbEEYDJ1vdls8I6k0yctsLBZm4j4HuuqQscbLe76+/8EOniMddCQrvgHGRR1ppgBLznx//cbv3w9KE557p3hlSnuzfg0ZCctoXDAnrhSFnAIpiQ2vpdPagVC93+iThw5JrveYiiXtQrCbr2aqRPAxHNrNrCQKcQncX1bQb6QUePvxcPbfKqeecVuw1LMP9Jc7bv//KdNvi0dHdfnyz1eg+SHR/Zcp8v8Yj7hkYo7EtBDiSkg3W0soQrGeuNjmuINlUYYVeksJTSua7s6220bX0OmhsvbKWg/WFqjqlVQNPq7CyIZSOiLdMZsx70sO5GRruVVzwKw+v6sVJVLI7KYG8GKd1ko7DmiF+y3weo98+xb47e/we4Y1Kil1bGKYgliFApfUxxQJORIXKCR6yBAzKZtLM3R6qxRV6tE5no3tUXn/cfDzz53no1o/x2EB8v/9P/VPlYtdO7XbCJFRjRSpiFQ6dkDTGpIyoglJyZVOzsCmaH3Wbn9uc4AHgGFK/D/0L/jhGM6gwGnIM6pzZ9UfPJ8VOPurOc2+vPIcaIxZXYJJh1QCLUQ0GehQ+qxsSIyTMONiJz+JHj13zDVJGgz9rCM64XWB0l/utJgir99ebZ7kcXCUMpnPcDXtuBKLnFWgWgJHdEMUn0Fqedro+7TqT++dEGXKsa3Xvk2gN/r6x3+3YmB3VBgHkXOSWEOuhTshnsqc6Bblg/wcsmEaU8EzKjyq50E6K6ES5vo5wab+RYo4bvcHsKpmFidfueYiNPmdLivNBPwg3UF4IPBE2oHUp5EoSyCkykKlJpO/iXbC0ZE+QJw56UqKxLCyxFduq6IxsKwry7Jyu9243W82emwvPB5PSj3o2iilE7oQko0f2I93ns936wVVGzHCXKuNJOADAKk1UqrP//Pzc2QqZkhiyXZebG/O+cFqs3RjUFLsDqJ2an1y1AfH8ca+v5Mws5lWC8e+8Xi883w+2LYnpWz+nuYu+fQx+5LGn1Wt2lsMAMegiBMgtvfOysZ1fMiYlde7ujrDJOVt9Af7uhykhluLMsa5NDd4Gr+rlTrHJZlJ2egn7XN9jsqIQ2JPgL1yxjn2wCTWQ85rhJ6Ky0mDu7GOnnk8WbzYrwoy+02mfNjfT3Pp4iBtZkvWF9c7hMDr/YW1LVQ11+ShUGl0tnZQvG/vyhF7yvoB4H6KQSdwtiBsvfuRNa7c4spvyyt/v3/jb/fv/O3+jb/fXvl2u3PPi7W0OPgMOlxqLyo+fw+eXtmBMba3+HUaiYyTLB/6Pq2x/hcgOpQ5AQ3RXb0GEB0R+lS6GEjw3A2ZJEUY6PiTx143jvJG0c5O4+iFvewcR6EUU8DV2hExo78QV2K+EfNKB8p+sO0b2/PJfuy03kxamyJpMadrgljbm5w14XEiaYPmEyOigIZA0EwOK0tcfCYp5jchjaZm4Nd7tFagKpRqcV+lMTobbC63A6loxKb0M1cfy6DsjS342mjQjs5+r6zrjbyu9NqJGsxXgkZFaIrl0QgaAz1ENODjrez3/Cv389E+EmdfpFOVvU8vl9jOXD74nM449qCevaXjz701ryK6k6zonJd+9eExdaXlUtOcVS57Z2CcERDQ2Xo5aIDRIimq01PB262tbalbQSB4G+XIB8xYzAlxjwNj2kKbe/q8bh/UVE5oVW/NsTPex32KkEPj9/R5vvKfuuaOC/nh335JXMYHT0FYUmR1ELqmhRzN1MSpAdvDl+CA/zfqcG42pzvillFh9EPE0fjUNDsIDaF/AMonSBxM9/h6fo4+EhQVc78b70uVNS98f/3G47fKc2/8fD8seXe9PfhsUqOR7NDEAnVK9hzzU4VGqx1tYuM5Prne9pnUZFT9/L2CosEkTGPwOmIDpVWsEhNz4PayepLuCce+0bqzNKjfJZcCMeu5/tof7/z1j2dc1ss/DzA6I/YXqcL/wGBUhJAvQDStBkaxcSZ2YJk5VXK57NqHY0eg5wzLgqabOaE2MzTqUulSWHphrZG1BUoP1CbuEmvjG3pXSh0BV10SWV09YIdUrUqpyr53tq1xbB1pO9IiNIGiaFFzliwF0cq318Tv3zN//1smpMjra+K+dHJs5GhVCij0Hoghk/NCWgKSzVRn75Giiepzx0xGZBX4XvsEoO9/Hvz5z40//+Pg8bNQDqUW20P1//N5GtP6CUTNxl4I0hAx4wsNDZVKdNlQcrOIEL0HIxoIzSlRfK33Fmgt0McB0D0w63ltYYA6h3cDjCJzHZ9JiE7gee2vtjhxUvixN1RMpB1FzOUSocWEarZrRrdDOyYDofPp3THOXJ9Jz9knfz71Angvph96gtWvssYUE/nbN5sRHE4326vz8K/tFuPAq7X6AO3gMdZeJ8gJQseB1lojydlXM5Ns0xddXi8yxutUdxUdjrQx+P0dDLs1LFmrgVdXRzUcjJwY/9Ou9OuoIq/Iqqq7QZ69qdfK+jCCGaZL40JeSbVrdWzKkcJXcU1QvtPljpBpmhHpZr4XlSAN6obsT1NrloDSWKg0r3qadWQHH/3RtaE5E26RlANL7NzXQI+BvCSWZeF2e+H15YXSCu+PJ3n5aQZGvaJaEQ0kAqVV9uPBY/tBOQ5LX+T0MxizgUO0MRHHEUklWpVCbcSCmR2ZdDRmMxfMObmZSWDIVM1Nu5PcDEV1t9708s6+v3Mc76xhQcPNxmNtG9vjne35oHjFNiT5xSH/r4/RO4xXcqwvulGLEx1usnHNWYZUdbhOjt715kBUfMxajBEJjVH5GsnptS1AmxuG1DEqpU85oFVHoo3uin3Ww4fM/JToDWwzmgRG3nUCUVOJqEnuHIDSvdL6IZHVywK+JK7+e72444D2BKHjvZ+53udBJUjg9Xan9cUSab8/RRt7O8xoqpkx34i5swd3/uZrLnH2w4/7OZ4mobWq3T3d+b688o/7b/xPr7/xj9ff+G29821ZueeVJUayxAsQZQL1j/+bC8e/XmIwAwuO7xw58AV8zqeD09GiIQZCDYyK9YiKzFzWElwHFJdzaMbdL2MKHHXjebxzaOfojb1VSj1cAWGVvt6wPCWv5PWFEBckLRy1Umrl/fFg357UcjhJkCz3yQlJ8UM1a2Z0/v57g17MFdp6ESNBEzksLOluKCJiLv3aEAqqid4DrZtxUq1Qi6I0uow2ooRmjKz1ey/SDBCroipIh3p0du1u0NQpW+N4aby8wv3FAF1QM+Zp2K2pM9/vaBR6DGiQ6S7bigHrzx62vz6qsOZ+dzm9SCC19vEeXkhdLvFljMnrzWKjgOMZwzVmQGRnkeUh/vk9Fg2jLZ3KrMsaVkX993bfUhKCufpGy/PHNI3SqvlXABIjIUaWGAk5kbPPFA1G1GhrZjqI+MSHPt+X7ZMw+9vHnq4+6qa0Si02l3wYFALcksLr59f8yzmic0bfL4z5/A7/+xN923yeJUfWnFi8cmHjTRq9DzLJPywY6kfsYLMv7oJ5WURuUmTBv59AlFHJtPfUWv8lsTrf76/B9exTulYZHKw5E5Fj5H678e3lhXV9WOKCucB19blyyIgnHp9MEmnOnjA00b21uVDSl0D0TDVlJMlDpnupRo9MVYIzpOLys2R25mtfuL/eKEchhI1jK7DX07xIrSvua/B4fU9/hazjv06vlf+BweZ/8iitEbtwNKU0qE2gWwdBREEaNjooOhDCmbVITxHyAnk1wB+N7cy9UvthxlQ5seTo1XFbE725G6u6ucoUDUVUo40A6F456ianbQ2riu5Q90Y7Gm1X+tFoR0dLg14J2tlLpnUlJuG3LVALaBdiEpaIBfreaGLMOUEoXcjRyZ5midzhgCXGE6RpEx4/D97+2Pjxx8aP/zj4+R+Fx5u7dhbb34Oo+fUxErAwDuF+Nd8Qky9LsHEuMXiwtERgHAqDbMk5UVOkt2j2492SwpmADTe3AUY9FxjmaB0fxn6mCfbQy5fxM5d/mkAQ2xsgRK9mrsBLCGjM9qNiUnwzwoqzv0bmXj/zoWtAnzmSJ2ij0jPkln81Ivk8aRTvbxERjqNMUGWSsOjOjWdsnwY+DgBLLQhKa9YPF4OL3Nwwrg3b+Y+X7nx9r/BcGd1ZeRkg082UJAGTlR1tG925xn6Zw3aCSvy8sGvVpw3+SKztqorjCJkJ/Me+z4/vdx6t16QCi+W2voYs6ou411aoN1QyKouN6kkHum6wBuQoSHv3gpqZMckC4b5CFdp+0I4KLJAtWdxTpKSIZiEnuPdED+LETCanGymtBhN9PqeEOP0UBDNJa73Y2KS2UV2Ga3ynoFPAKA6Mup3nS0KqObk2bZibsBFyZhgYp4x6XK5AJ4ROip2WupOn0PrGfrzx/viDnz/vhBYILbJvG+XY6LUSg3C7rVbhi0JIggRmj9Ovj36RgFmPmZEQ1c/cWWmUc2Of993vsVddm1djRqVQ4Uz0uylj/mrdMUgZZvI4WgoGyGq9We+eKD141aCO2d9MkkWC+niXYH26g3ibM1/P9TuIquF6HTwfGKT7MPbqfZzil8879ssn8WPkTV9SyyLeM2cGeyEKTTpb2w2IBtDD15uTF8CHfXZ9TLXV9TWwczGHzCKZl3TzmaC/8ff7d/7x8ht/v3/jJS/cU2ZNafYbDmOoKDL7cYfxyvjvAbLOXDFMMGj/5nHxAjzlUum0loGr/HZ8XzorpUNJITpzxQFCL7SAv79w+hR88ni2nbe6cbTGVhulXcfeGJi0+d43cl4JOdMVailsx8G+7xzeDyhiSpmYEzFnYsq2N30h9275gqrMkTytKuWwg9D2o7UmxbCQ40oXa0XRMHZFwnwkgqm/LD2hVT/HEJJ06uJqGu8/jxI8Jnj725ghJnbWSFVkb9APy/s1oj1AtDy4BxtXR8SNrayA01VI7g0xLFO7YH2WX6zJUzVhisurMkZ8LemVlJprd/ySKwHOHAkTPqy78zw2/OnKUz+zhv9QUPerCOfanZumGyZi9JyqRfLZvOhn4RgR1VpD3STw5EPO3GPEx+EpIX7/Bfx3+T2+ENm2dNQrocVjpvkQjLnhgI90vF6k8/FlRXSaP3yC+D9cSIvjpABLEtYlsi6WLJptvPd2qs1hM7e5ITPp55sSMN08kxXovU856GQjZSSJfmiM3wOz+f8v7MRlmQzGiw8BcGSblsCCJeW3deF+u7HmTAomEJomAwGfN2kxKcYhxbWvtm7NPEjROdok9Pbp8p/JD6OfKYLaJhprzwhPZ2uSAn2y1bNqH4X7y83sdHLmXd6tX7SOwdPjGwfL/9UK4HJ9/E9fDKSdh9aVrPkXw2v/R3h0Vd73g0bjfT94bIU1LqxiLnCiHSGikow9DJEYrEcmhUAPCQkZjQsSrG+yq5DqQYoLKe7WYxyjzTj0vuEebFAwZLJLt5clsq4GWlMKJJe4paDU2KFVeqq0WGhqjffH1ji2StkqWm12VBQlpE5aOi9bZ9vhKJHeQWik2ACbeQndU08HhDVR9s7zKbxtwl7FbbvdxbaDNuX9587bnw/e/vnk8aOyvzfKo1Or0Cp2zb5KOsbecVkKYSRu3QyVGK6yVpWJMdFjIPpcu9FTk5OB0JYSvVVaNXfPATIHaOu9TTB6PVi64iYK3r+Ls4k60arHl5OoujrAnR9osOndjAGAmwSb4h0ixIUSZLKPIUQ7Bp1/O9sBbOvMjiKx9Rnk4+uOvlfRcxj5mJ/62WNUWcIFJIykN6U0md7rgTiqKr0rtRR6a8Rihl5LVjQm77XSCRSnQ/m4Tp4EDuOFEMxddSbgk4qWGVNlsMMxzOp3dVM58EpdCK74sHuCJwTTzE2tr5qR2Iv4mK/L4T32vx/cbToGni6u13NjSLpNAjzkleOO/XK+KIQ9EFJEYqLHDNKoORLuEaoS+k4M7+iqsCR0iagEenqlhhu77uyhkLlT8gthufH4trDdI3U15+xXMj4pzsegZHo3dYD2gKr/fcogkaaFrhXtBdWCSEVCZVTbCeIAzPaPdFxuDcu6EFKgVu9zxgmcLiAR9FoVws21OkE6IXZSNkIvBFsr+/HGz5//TpaIHoq+QHnYLFMR5fV+4+W2GtUsVulWMYfzzx5DRq4TeDXrqXcpuWr19RU875JJ5AYHFCLiMwh1VinNUVPZj4O9HKAQU3dO65TJ4kAmSKC55tPchaMT7dZiQS+T6EBPWSx4dST5hvW8a+zPlJO5V6dkcu6RA3m+YstzJLJ9AvPx7A6K9ZeiwlnZkAtYt5FFQfonudMZU1JKgFolKgYqzSS5vXrsatTulRG1VqKxzwc58Cu9DfiYG3O5TRK5pxuvl0ro319+52+3V77fXnjNN24pscRo5pgDiIYBRt0ITVz+6oLDDyNaBpCYAP+U2RoQdfXK+Dok2aMXdPx5OuWOv8f/Ts+UaYBQkSnLHdd9fP3q8WiFH21nL41tL5TWzS08RnIyH4d1WZFgTrlNhe158L7tPLedfX/SevUWl2ztc+tKyguSosXO1k3wMbyKBEI3tclxKOWw6r5GwUaVJFJc7IymWGW9dTQ6dtA4x/jRLHegqu8fpUWbRlFztfFPyWY9xmbjkczC154G5Cxf6Ai1KRwNZKc2RZKgwQyWJNnTfGcgdm+FqkBVkgqrK3WW8Fkm7vvTlTq9NVoIpzmfnO0oqOUu17NFfU/Nc8TPtfmP+JnsbvIjbqJnewAjDxGr7KsH5THHM4weUD9z3Q7+BI9cgeNQapjhYkxnYcWKa1bl7bXN40zVVHbde9zxHGoYQAKMGbzzCFSo3X6mXuLP9JEA71X9nFD8Wpobgldr+ALUneAois0Myimw5jirQDFcBi67ycPo+dI+0j/mh7EYIGcl4iIVmQN3RYyRVTs45cIA2vscX6/9T1dme7BSeEA4L/S4oqp2OCx54bas5JS8mjFulFukj8Uil1lL0aqiZoIwBsWOqoySv+oRnYFpmC8ETzKNbZ1A1D9DTNEZWNfkD3YtCbeX1SohIVBLZd93Y0Y9kQjXezl+5y+57Ec3zmvZYHzvYPX++i32+4bsUQep9T/UQ1V57gedyHMvPPfKPXdCMqODPmwOhtFJSHMWbpfofX8JjRnpgYaSOt7An88ejBh9Lq4QAzZH0gOauUrbnKfbksgORKNXeVroxNrRpVD3Qomwo7RS2ffG9qzsz2JAVNSAco7kvfM4lL0ItUZ68wPeewa6mGTPzByCxeyqlL2zPYTHQ3nsWEV3SUQJHpyV588njx8PHj+ebD8bx7tSnphRQvNely+A0UczECd/PJjbfEalABoCuS0TLHBJlJKDlCUmWkrUakC/BkEmr3WpHHoFjglGvRVVzVmv6ZAjnckQo8p3AbXnny8fyA+Qsb8jBkSjjP5TYRfogzT3iuj45bPLc+Dd+byCT52v8aEKqmNmcOAvm2++PflAJgIT8I1E9/rvg/UdxGHz1x6SQUvcrYbc54Xww+gDo3sC4DH39Tyc6nmYycf3Kn5AxwHcBwHprO0Ao1cp7ofkephFjGpvHKZHJ3T0zT8PyT6GgHtC/5H5PgF1Q2jSzpv0xSOUQDgCmo3E6gR6SrRbMEa/HSgPWBTNCc0rPb7QlxeqwNYzTw6SrNR4Iy4Lj5fMdo+0xcbp3MVUE70J2gPBbGwNSHo1QyQQUibEDrXTvGdUaeB92RLchMjvQL/wMGDgf1myVSmCu2N3l8L6GavTPXpcNGfMpRODosmAqERQOkd54+19IWgktEhsiX4Eaj0IAsttZb2txJSoWqneJ5vS56nKIDfUJbG9neZCZ3y5Vka9oiPxTAhjQtz5W3HpbDfjv+M4KEcBEfLoReW6DE5gO8aWOUvtFZ0hgXUl1CdrZ7iFSzzX/+iBt37m0y18OvV6DPhQxYAZF0ZluM1WJz7kRMOzaeyts7BgRODXQNRMGA2n2Z8bjb3ulHZQ2sFWN7byRCdh9vWW+QhIxc+kRA6Zl3jn9+Ubf7t9599efuffXn7n++3OPa+zJzTF4b5qBO9w6Q7+WT/0iE6AcJF7TzA6Emv/ezGiRT7IcX8BowOEXqqlY5QVg3Twez7qH4O+8lONYdAn1+//5fHohbe6s5XGdhRKVZa0sEgix8xy/8a311eUwFEbda/stfLz7Z3H82lTFrRZu1hOrDmT14WYMxKCrxUzE1KviAYRgqeupShH6UagL2EC0fGs1WbgNroRKdGNBzUMe3oHo+c6Nfm6KQVidlwQA7Hbk6BID050Te0BHbUYVCq9w1GMMMO6CUg5EJdohSC1YlFskJr1TQdOcvQrIDoI87nmYZ4jc06y9sGFfrinqH6Q78+vXMhZ399jLum1Z/yU63vvuA4PHOvLT5PctXxIFDOocMfvQb6P+Z7d8cEg44J/9jiJcaBfi1mupmim2Bi9raejtt2HcFG2+hKf39MGAL643APkYMq/zx5fAtEsKxp8MKCj77nBR1C3VJ2IWtWiL9AXtGZasT4zVSvtmkQoErAqx7xYAxYKliEO3VwPSDd3RjSgnclkqQiqwSsbOtlwwN3pLsFnZElckhYZlVH/FxVEwwVgCUcxWWNviaArS7yzZswoCJM+puh9sQGyCFmERPDkXn33XYAoiujnlzyGxJruiFgSJiE6I+T/Pq89U0MftRK0UrUxLJZRYwY0AVXoe0eaOYSNqqgwZjXKJTH+kE7M4+Hs5/hYCZD5M5+Hzym5uZy+Xx3E/8c87H29vr58cagK2qJXAoXnQ3mEhsZAi0KiEzETlOcWeO6RrUCVSBFzQxNtqM/val0ptVGPRt2VXgSpgdgTicwiiwHLGKkpGRCNNg9tCYksyXpc1HpcwCVu0umSqDHRUqTlRF8TlEzUQqZOFiwG4eWeua2ZnFZE7rR2oxQ4SmDbbYZdb2JjG9rC0W/UktEWEU1EIImSA2SJJE4gqnSWqKy5c1+BuxK7skZozfpBwi/J/PVhfYB5JltjBpnIMBNRc8gba9LZPvVh7aJCUHfsCws5rTQflI1GYqjUWC2BzjbaIqeVFDNRMkEygTSjVtdA7VBHwuKgdxx+BgLDByLpTEFHAj7+rU/w2Yf03Ukq+yiKaqJppKjPT2b0x3vswqtyqpjthv/PXzKoErUTeif2TkqN0OCo/S/XGoxo05Bco7QQ8w0EQs5IGlVbT6BGfxN+3A8C0SwN6ASay63CiDV++ppMNlivtAYakS6RJoHShaPZFJzSzLSwdaG5gVeTiJHmZuQVuiUsXWw2belQVKDba6rhKlq3F+9B/HeO32u/o4t9v8B0RZ/XhfN2dq8CWAI+jsmTZDPzBvv9pQtVA/VCxP36eGyb3cnc6NnE33n7/7P3pz2yJMu6HvaYDxGRmbXW6u7d+9yBpCgQEARcCpIgSNAf0P/ijxP0UQOgTwIl4JI895y9dw9rqKrMGNzd9MHMI7LWquq9zzmXJAh2dOeqKYcID3dze81ee+1GXhdSKYSqxCbWn7OY47qoMGvgpnAlcguRiAVXgsBNG7cqbC6w0UKwTb+I3yObS9tWqNXmpkiid9gO4ndPCilODOlMlOyB3cNR2Aen23jfK1OslFAotVGaklSptfcsjAx5YspnxjRhjItIU6FEqFVQKc4aEnK4EBihJVrxPbbY7I8xE1MippGUIzR7NK1uI749epCQZnRgdsfeHMW9JcHuD7hw1F3NdghGuQ0xk1LbhYdEGjFBGmyfS2nw1ljJzsdRvHhpUXCqZncuuQtg2dgeiEwcmQQP3ChqjmHvk+wCIuICOOKKoEpnN3ggy22SejZWrahkDw5JuP/Mu6DT/utm6qV93IISmnrv3W+PpsrzVtxdM+2ApULRiJIRGYlhIsczjQ0otocF3bOzaC+rMuti42KGMhLJRAbJ5HwhpRMhThBGWsgUIqsaq6QACSU2Vwd1p90ojUc5k4HRzpZzHY7uSHe6bZ8f4fAfkXpkQmMPMHiGtAPQPRtqNYh7K5c+P33v0FqgFv9qfoO2SnEAsdW6Bwe+PnI+MY4PEIzRlIoy5MyQR07TiWl8YBrPNBVCqKhuTGPlNBWE4KCmkVNgGDJjzgxDZsiDsbS8RWFr1cRC74KJJjaTiTIQQ+J0PjOdLgzjmTycbK0CGUWolp2MgSnDeWxsZwhlINWRLRdn08AwRKZTZpoyw5QYxuSBjULKm9kE98t7dOwgxMMuYBijkfuiBUZi9tr1KHtQuYZKkkqLlaDm0wiRnIdXxzsGYfpq+gdRKxXwwLLRlzmCFvsa36fIrkDbg30GRC1pF13X6n4f8tbTu6Cq0gNFSozqrTGNyhx9bzDsb+spirO7RPfOAUGU0PN9cnduQTl0dfwSfG02Z6I0Z7KY2n/z9+4B4PYyoQX+Oj8P27I59kkrK3nrkP/qv/qvXp3+7dUmI/0t3/j9HnX/+ln6zXO+/v3u1ej9z8e3rwGet2qj/tqZvnX+L9+7n47utUdff5589YO8+MtbWYpOZfrq8/Sop7h/7698qG/ee/cbXruGHhF+Ma7/8zosgvtWKfTLrMrXUckOvHuk6EgCyd0zDnjON8+/33jvvr54//6NfPXz8aZ71Nt/t4s/vHLze1BH5DB8RyZ9fxHdkenv84JuxmvzjuMz7zKGryU/LWL+ynrdgdzLC92jxXr8eh8N/177Wd2N5cux+fZE9rG4e6/7cf72Xv/W8bcvIH3xVe6+6+fz+vH2Ocg3P97PVIvfvWVvXs7H/ttvb8/Xv/hqXr2RIXn5DvLNfXjrda/RieWtwbmLqv7m8eri+o98dGzxxp+TK7S+OAftIlNeJNND6fshx5y5f/P7uS+/NQMPg7GDoK9Oel8t98Do/qVfXeNr2/fr++2xmo5bdM8cePlZsj/3oCTe2zVboq+d1Fs39LXr/duOF3bhNRuyb5sv1+8360fvv/2Xb7Ty9fzh1R9fHN98al/zr77/X7Fm7gG/yoKDg2p4NzqHGGQHmW98+rdD/M3779/v+/GxN39bj/f2IP22CXjlr7/5gjf++LUT+M2hr3779ZWrstclf33UVl76Dvv6vBuTu5u6+xq/4W+8nX995Qru1tfhX8jdWtUXe/f+Gl/Th5vyuq+yvw2v+xO/dbw+/K/sZfrtE+/7Tr94tvJmUOCvL55vP/71VfTW8VtvLq992V/21Yz6jfd55Rxeva5/ui37rftnPunrf3u7RvSNFOpvn8VbJyNfP+Wb37/+8187/vvyNr7+DHlzAP+jfYpYXck/78X/cc/lfzaHdprTS4fj9eOtTea3XyP3X//W+/TVW7547T/xXt+Dy7922Kb2Nzzpn3l8TZP/9u+v/PIbh+Z+A+SfNq7fvvWr379xdv+8D7l77e5w/wve6cUb/U1PfcN5/qvHyyf/LZ92AO+73735wm9P5u3L+k0U9lsn8z/4UerbAdzj+Buv535A/ipy+Or9v/p5Nx+/vQTfevk//fgbX/MCE//TJuj+Qf+8133zNt8652/ERV577d3Z/MvP5Y3jnzSl74DKm3/+zde+fQ6lvc7A6L4S2Dx79W3+Bbb6dfvwV5Dtb77j/zSOGH4jlXR//I/oB36zBP8n7JOKWAL87Sf8Sz/hnzv3fgvl/VNP65X3+o9xz/6Z7/FGte7vx+/H78fvx+/H78fvx+/H78fvx+/H78fvx+/Hfz/H70D09+P34/fj9+P34/fj9+P34/fj9+P34/fj9+N/0ON3IPr78fvx+/H78fvx+/H78fvx+/H78fvx+/H78T/o8Sb5vNbeffS1419GJv6X1HX9rcebbOr/kUsDQni9psV67v33MSj6Sp3W66oe8vKfb17/sn3EVz978dtfH96/Xo359fG1PMFr59vrBnvx/gvBrDcFU9p+SrtYyN2797e4q/D7RrjodaGMr1SZ+8e/KPfSl9f1yineVUH+7cddwf5r49Mv4hA+eK0gtV+D3I2dj4LeC6K8LArvYxFifPWsTZZ8/2D6dX9TXiJfXflvSNu/eN5xRv8kEYP93t9dxy748M25He+zf/tXNTnu5suLM3k5Mfp73wtz/C13/61K5d5k+q2z+mvr9ZvPljd+3//8N9bqHevpNdvjs/WVt/qt0tgXiuj2i2/nhX4tJPbXDZbeLdr7p76lKnq0Abs7t7t/X1Q8v2KGv6l/vn/am6Jn/drfGDv9SjzGxZ9eG6dvrudvqlH99jpe+eHNz9Gv7Me9CFtfNyG+LoD2wq69eeir3762dv/juAdfz5luZ+4n0XEPv7Hzr9WrvvlJyt92i/6GC72fOm+pn6v1Xz72xru99q09TF6p678bfL37569VO7/47V+xR/ryn2/+9i/1tl57/5dl3frV39/c5O3bN06ovVmT+9W57G/5xs395tlvfODXf/5nioH91eM15+jFB99/e/gu9uXlOb1mGXab+NXAvhBfesOmvH4vvl6jL775zbM5xKPe2nP0lan69TUen/Vbe+FfMehfz9Z/0vG32Nuvr3H/WcS7dXx7vLqbqir/9//n/5un5yu9KbDQmz97c3mR/fuXAgh6d8bsxir4hNjl1L2faHQJbesR57LE2GLaG7P6e1r/P+/9p9Cwfli7UvqdUle/juOr/e1+CIXjdd8Airvzv//L/dNevKZfti+uvW2J+LX4HPrP/7P/hB//8P03Y/7v/ov/lP/Tv/tfsTeO7bLf6N2H6t2pHQ3YDdz6h6vStFK17X37aimUbaMU+7566xzrR5pIMXp/qUTOae/j15qyrRvLuvH0fOXL4xOfP3/hL7985KdffvWvn/j51088Pd+4Lgvzsh2OvIg5EDFQW2XdNrZt8wa7ut+vbw+bUILL7yNEsf6HIQgpHL3WckrklDlPE+/fXfjw8MD7dw+8e7jwcD5BGmjnD998QqsbTz//N7TWWDZlKcqtBK41cauZcUhcTpHzICQ2IiutLqzrwrIuPD8vfHlaeLpaX69S7TyHFBhyYBoi5ykyDd5bE3NSq/e6w8c/CHtvzBTj3VqIR5uBO1VfvjKiuyFVX18xeRuETBoyaRgYxzPn0ztO04WtbCzrzLosbNvq96OCr7eYEikPDNPE6cMPnL7/gTg9UCVTNPLp4yd+/vM/8unnn2jrDHWhrAu365Xr9Uprjf/9/+a/5Hw6fTPm/9//33/Dx4+fe59qCEKOkaHfxxjJMTLlzGnInMaBMUWGZA2vo+D9WK0FQ4xhnx8iuOy5Hk6GG769n+Q+hseaL6VSNpubX643Pl+vfLleebzdeJpvrNtGbQXVxpAS45CZcmZyGfwQZG8YrWrq2ja3zXqtpfK8btyWlWVrbKXSGkx5ZMojMQpVN5punKeBD5cz313O/OH8wA+nd1zGEUSti8zuuN2DLuFLaXzcvhXJ+cef/5H/6//r/4aqWp+3/ih9Hja0N71X7Q1VrR+i4vre1hYojYk8JFK2PskhWOeXKNaoOkexvn4i1lheggu89YBLb9WlRBoBtf66UUgx2BwYzAZZg/ZszbejtUhYS2XZCutW2Upjqw1FvLF64sOH7/jh+z/w3YfvOJ8vnKczOWd6+5tlmblerzw/P/Ply2e+PH7m+fbEuq2sZTN729tw+P7UmnJbCrdl88+1dgvDeOZ/+3/4v3wDRlUbTz/9e7RuR+uI3rM1JZ9vZbfDxfuz9WbpOWemcWQYR+8pHJEgvk5X5nnh+nzjep2tJVoTgkTOlwuXywOXy4XLw8T5MhKjtRFprfL09MTj4yPX6zPbamt+SJmHy4XL6cQwZO9rJ7RabM9oFW3V9pKmew+5Y6+UPah636P2ha3yddkdtm7PgwOT3ld4XVau1xvX6435trLMG/O8MS+299Ta+F//H//PfP+v/s03c/w8jZyHkR5c2PdIuVf21pePfjZy/M2atddjb2rtxXrr19edsHbf47xjqv7+vWduKazLzDrfWOaZ+XZlmW9s60ot9hyba7af5ZzJKZOy3Y+Ukze+jy964Vrv1MJWCuu2sawr67bt/Tr79YlgPQK9VQitt5Lr16j7dQniNtX6q77/w9/xv/x3/7tvxvt23fj//D9+IsbIu3cXHt5duJwnptPAOGYINjYEIWdrETKOI6fpzPl0IueBlDIxRu81WK3X+TqzrIvPO/N7et/gvWehHC0Eg9jaz95jtbemsXWoNG1s28a6rGxl817Suv9t9938M6L3ZxSg+f07Guv6/HWF5z5namvmT3kP2m2zx7psrOvGvKzM68KyLNZeJx4tY6w1zwGWQhC+/ztr6/H18e///d/z/Hz1VfTC4lj/bWk0UXC7KijWzad/NT9dsf7Zzd9Ium+O9dsMQGjWGVjvHuYkN2+D9dInB39/FX/0OebrAVCVoyujKBoakiIxJyRHSmtmC1WtV26IhJSIQybkbPt8tF4ny/ON+flGvS20raBrsXZnYs0hu+86nM6cv/+O8/ffMZzO5HEkxMR8feL29JltmXl4/57zw+Wb8X4YA3/3Lr8MtgTHOxL2tjFpGBnHM8N0Bgl7dw3roR19vth8uz0/8fnjrzx++Wz+n9urPtdKrWxr2feH4q1+Io0oSo6BPAzkPNBUrK1Zs6BQaTvOs16nMRBTIiRr81W19wQt3lvYe4Jqe7EutNvQPjf8/aRjtyh7L+Pe1zjEfSJZe69azS6t2+7vb1ul1MKQJv4X/+a/fBX8v5kRneeF6/VG8Ka+wfslCd82C94jeHLX4uQuWtUvqoPX4Asv+MVZY2lzYKz/jtiC2uXcLaLbsH5ujQ5GrX/a0ebvyNTRDQbHgsAX5r6A+nK+j1bc//VuvF6C0VeiMjsQPS68g1HpYBSsR9krx5gz7x/O6N6I1oGoR9hfbLL+gUF6PyHZJ42i++Trm2GphbpFtm2jlkD13lUGRK058ZDtkbP1dwwxUmtj1opWIdCgFWpZ2VbbVG/Pzzw/P/L4+IXH5yvX28K8rHsTmt3gxkBplbVvmH59/X69PI4IgBlJu74ORGMIpBh9E0q22aVMq8V6ukYDLmOKrDHsBva1Q+vmjZWVbWusJbIUmKvd+yFBiYJQgI1WV8q22PUvM7fbzPPzyrYpmwPRMUfKENAaiURr3C74HFZzQEqx++fXpimgMaIp7pLitiaSb8S2eR2xnsOBCH1xuSWKPm8QCN7rT9X6GR4uVZ+yZiRbq4gem782axAvYpmfmDPIQCMhKaMSrWdja2iplG1jXVeWZfWGyq9H2rZtY1lWA6LBGj+T8t7QKKj1cVTfdGjN7A3eqxjvACrHQ+SoL9jb7joS3W0PR9fPfuW94bN6T7e6FbZ1ZV0W5nlmnmdutxvLttFasXHKCVolaCMHIEZ3qq13XVPr6CiqHiQTaM3evxTKVqyfb/VG2wS0ORClUGuw/nLVnEbrG9qjZ7pf32531O3KGxHrUitPtyda+wqEOhCtxTaoVr1n6A5E7V4E/+gUhTwm8pisYXi0npDJgWgKd0A0CEkCaQ9SejNyUWxU1O9lI4mQUqDGADlBS8SWSbKhYQASaLLmZ6XSykbdKqU0SjEgqtHnZFsRqaQEQxamMTLkbPdHIWihbZEtClEa6EYtfT0v1q7MgWj0/ak1ZV02lmVjWYsB0dJe2v1XbcoBRNFgQYTaQYo5GM3vs7a29zxtorQU0CpoyLZGEEQrogXRAlqgFb9vgkqlbgN1W2kl02pCW+KuzaW1ipVmNkArWjfrRV0yWhNaxVokSgAqSAUqjYKqzXdVm9c4gBERaxTXAyI9IOT/9cDY3W98HR4/B3dwaRtaV9q2ULeVum6UZaXMK+uyUnrw7pWj74Eg9Cbz+9Ytuw9tAE7v9s+9uaztq+KBkv0F/n2HorbS7H4coLbtfwUHdmrnWkqhbhvbuuxgdJ1vLLcr27LuTqGIOd4xJZsTyedGzmjL3ifRs5O+/qs7e9u2sWwb87JYwGwPgHXbJ9Cqz7Oyg1DafYD7SA7EFNEehC7bGxMctqXRorAOjTIoJSs6iPV83BGMIGoWO4ZMipmURoY8klImpWhzOFQCm51Wg1ALTWyNhRCQKN5v+g6IBgt09UB0iom9Byi4/6SIRltLTfb990WgX2QHhuZXJAOiFILbgz4H+gzW/v6qWM9cC2L0ftetCHWDskJZlbI0ttXaskhqSAy21qr2FqSICC1qdxi/OTbfX/dpe3czes/HGmx99wROaB2EemDRPYCqFhJE+vqEiJifpBBV9x6zzQM1thf3dXK3HzlIFwKhg1EPdkj3w/VIGDWgBQPNkiOZgSCJ0hpbKVRVYovWKxPrER2DoBKJHoQvpbAtC9s805aNtq6EZsHQJEIIiRATIOTzmbJVwlCRantOLdWDz+XNTHMQYQjwgjWy+9gQk/mgOUULTI8DIsGDO3d+r5hNalppWyIn2x+b20ZVqBiA1woVRbTZwwOBQrU+0BKILRA1IBqsX7a6z+FrTsJxr80Pwb96c+4XX9tu5w7WS3thFxRFGnviUDUcDxTrmdz9Tz2uVQu1bZS6stWNtWxspfBblaCvZ0TBs2kVojlMPfpuxtBOvLlhvgd0+zu0u8nqRzeOL8BpOMBo7MBUDnAVukPJfYSmwxTptuKrEI5/sh7Pv3feXlzra6ASdvB7/CxvP/8lSj2AgTuPxwl++/n37x/EGlY3sYaz6qGrDgr07tp6trQ1GySBo8m8dKfCN+oYaDGQU6SWbMC0lAPctkpdG0vZWG+ebW5wW1Yen658fnrml4+f+enXj/z06yd+/viRX379xK+fHy1L+vjMvKwsW6GU6hP3WChh37jZH28Mgv/b77hNEkVoPRsvkUoEDWYpfT3J1gi3lSZX5tJ4nFdOj8+cLg/82w8/vvppQSIqgkizTxUDgZHoANAyQgZm7PMVoVVo7ti32midxS6yAwPpxrtHmPCsXe9orOqbqhz9rPz9+3xtHiUUEUKtLzKighm8ducE2hytL8ZYgSCJKzdrQq9K0bYDpeanaedcKZtH0LWSTmfyciXnATXv3AxinkjjhVY36nqjtUIIMA5mmN5gX7izYFmwGAMxRcacmVK2Bt2eHZ2GZFnH3LOk5iiIGNOg3a19+sba15729eFx29ZQqm2s7kBYBHtj2wrrVlgWy1g+zTNfbjNP88x1mbmti1Fb3WBHzJEeY2SMme8fLpynkSFHUvToY7OIY2226c9r4cvtxtN15rpszEthK40cEzlmUgrENBESTEPiPGROw0AQYauV27ZZ1DF64KAdWdfmja9nifCaxH+PZAYbiyDdcQ9m3wOUTan0cfWN9M73EJRaQUq15zQhJUGTWAP3KBbxblClejbUg4riQNTXBaIEjkcUSK2RI7aB4Q5xDKRokyiqIjGirR3r6S7g2ESd4aEWDU6RNFhGfxpP+3mEmGgKW6nk2w2JI01ubLqxVLUMqzd+j0EsM6HKvBXWUtiqNZ0vrVmw501Dfsz14ADCnNWjZ3F0J8WyQj0g59nBdaXWSsrbkRUViDEyTRMhJKbxzLIU1sUDG63w9PzEWlaWsrBsJ06niWkaGXJiHCfev1eGnJlvN+bbDfXo9fPzs+0Fp5FhyLbnxoQEoZQe+MDvo11bjHLYl1eMubrNOiLfR3aywR446QFX9eBZECGniIwBIWHhJ2Er9XWaKMdteFEy0IPKwt4c3oKflvH0PI3PobaP/REgPXwcC1DL8Rru3usuo9C0GRBplebBubJtxjyZZ9bZ2DTbulBL3d8XsXVkIEHZWqOVQsPapHQQumfjsHPdPHOy3GVEa1NfInq3g6oBAyzT1ZMAMUQL7PbsTorOjkrEFLlczq/P6xA4ne1vrSnP1ytKI0YhD9GzaXajVS2g2ZlZ27Za4BQFkptVD5CKlSe1FsCBaNOGmGHaIwtRbH8m2N7cuMNvd+uoNQ+2OevgnhW3Ryn2t7Y73NR2FvWEiQa7t7KPa/Ognr2vBVYXlnVlW42tsa6FZbGg7LpZEqDUauwmjYgGtEHVBk2c9dR9ntcPj2P793d7HRBoKI3Q6m5fDXw2pKmNX3/40GsPwvg6tTWzRznt3mHZy5457ww92VfDnV+vAWlh/9zQjoyoLVGDyE3M/2hRLTAxZvJpsnMvG6E1YoiknhHNmTDknfUmquh1oYh4NnqjLqsFbf2+tRBoIRrYv07oaSJpIy4bEhN1uVGWlVbqm0BUOhjb1+iBZEQs2CMEojOKKAViMpjV8Y0HxfagY9kQVWd05X1Nl62whYJI2G1ZD7yrKAnIWNA3oITmTCC3GyKWxFNscb/IYnLcryAg0Rg0ifBi9+p2ujMFmjZ/VNQz4BY0sc+SYIGdiu3JrTaqOkOg2V66tUpRpTb1v9nXt443Cl2sRrSUitUK+Jm8eIrDUAdJsi8O3SfhvinsSNvffJ+enX7RN+1j8zbn3Aa8G1Bxh74bkj3S2vrG2I317pPen85+bfi5vrKFHv/2S/nKPtxvvK+C0Q4Wdix6RB/169fcHd1xORpDB5sYuP3YX3YYhaY+MO1w8gV8QgZSCD7OCW0ZbdUiQttGKbZR7tTdWvcsyboaDe7L4zN/+fiFn379zJ9+/oV/+Pln/vzLRz59eeTz4xPX22yZgs2oXM0jrSlGEgkJ/VrMmB3ULiyS8u0o3H21u2uGoLuuiSYGB5oKVYVWhQo0aRRWbqWRbws5PZNj4PsffuDf/hevfZIgkhBpBkSlz3XLZEa5W8zuwGsLoJYpaUVpnl1SB8QSDgNmUahgQQQNHvk0Y7NnB7qT7HP9PthRG0D1rOBhLPqmJA6gpWfEOxVEi4Oh6oAFtAVqg2UrhJiN7tg3B8Sjah6SduBVyko8ncnzA+QJGSKaExIiKU/k8YGyXN3Jq4SgDGP08Xp9U+3U+5Qiw5AZcuKUB07ZaK5DSv6I/vDsd88I0PdL2VlTR3Tj5Wf1jaMDw3KXRVg3cxTm1TL4t3nltqxc15XndWPeNrZajNLlDnIUzxA2paaBKWV+eHjPH757x8Np4jINRgdzBkJpSmnKdV75/Hzly/OV59vC87yyrIUe+Mg5cZoGpslAacKiuyEE1lZomxLVIqEN9XXaaaJ2bTqeYPrWlO+BPw9MabBm9C02WhOKuMOC0grugHSX28exA76tEptl4Vo1hzFHWxMtQAHW7uwG2QFpp5/vQUUxIBKAKOqZVfVIvf09BiFHjNKuzTJyxTIOlrlVz+qIg38PRYRASJk8jIynE6fThRyM4ZHigCqU0hieb0gaaZLZ2sJtg8WpkqrFnOpotnTdNpZS2By4ldpItf01HLoDse7oVc/odaruPfjsQd9am9H4FFKK5CEyDIlhHJjGgWEcOZ0CaOB2W3h+uvH8fOM2L0bdexJuy43bcuL9+/dICIzDyGk6cZpGyvnM89MTzzFxu11Z5oV53Xyft3MehkRKiR69Vhzkq7qtdHhzB/ze2tN6Vgs97L70Gto7mm/TA4gOKZNDIEdFCKhCDOVtIMq9n6E7sOwz+dh7Dmpa90dUOz3toKm11vOe3dY4kFX1aL+Dm+o21oFOK/47Z1eUdaOsK9u6sS0rZdv21+D2GwkED7IiQlGjUgdVtlZ35llnnak7JrWp2ZhigbQ+R412p87M6MBTiAGjzMdephDJgwf/hsFYRUMmOyU4psRwfnh1tEMIXC4XajWG0+PTlVoL45g4n0fbp6UivWShVVozWxq3g65oYLnDLw8iuQ9YmwcAxIBUo693aCEakBIhqgX69/i7z4Ha2k55rG4fdkcQ+uZ75yva/K6qu4suwd/YAYG2Rqtmf7fNfJ5lMdbgbZ4tMLQVltXowMu6UZx1JoIxRFQAC6rV1kAgNtBoLJOXfKU7W8IBQA/2iwFOT0eYn9GBqI+XNJyObcFC7XPa17qK+2H+B2nsAXR1kF/cRqmD+Z5p6/674kBUgwHfpoRWPRvn5yiBJoEWhBptWFMIpHFkench1oJsK6UWojgQjQnJiehB6tMwILVRc2JFDOxsG21ekFp319GAqMPzcWAbBmQrEGcIkdA2YlkR91ffMClI61ig++04kDKfNEilRWOEaSnGbjM65x7J1dZoZaVtG23bEG1eVmQ0fJHIFjfCth1AVA8KM0HJCJlyF+CpqAeTLTEQiRIseHLnXLr1871WEV8zRjllp/v3JIgE8ZIi95XqylYKba/X6fo2HGuYvidu5ouosVRrs4BaaY2ijaLmC6W3xpvfoOYeNSG8iModYMEXhhwPWsei9zQIj0i5Y7zXXqg5GWaP3SH3WoCdnhh7dL3T8GSP6vc8ecf8zVPE6pER8027sZHdDu3Uhq82z6995x1E6rd/7H87vvf36L/vGdG7odL7J75yvAAbPs4deKsemYUOuA+zpcf5NCxK0mQHNpZRDtBrckXMART2Da81pXhW6HqbeXy68fh845dPX/jTz5/408+/8qdfPvKnX37lL58+cb3NPN9mtq3sjup+HU6TCtKozSgCTXFe+gFGX96CDrLugwzB36dTVSPitIvdGUJQCWboELaqRlVTZSuVGIVpWV4dbxszcSDVa4SMNpiDkoNFpYLCXQDRMogVr5tyO9/vSZ/7rfnfzOHX6DWfIZghl+549azRsdXsAZsezPBB+haiO9W9WRQwqAPdPuNDO9ZGE0qDVJSYK2kYkRCP2i9tRqlplVY3tBakbKy3K8v1GdJAqArFHC5BSHkg5cyWIjEHUk5GC3GD9doRowGvYUhM42B1oHnglAfG5NTwngGNQvYgVQ+waAfqDkQtmP4yE4I7jT1C12up7LG587axrAvLsnJbFq7zYtnKUphLZfOa2RCEFO2chmjR/k5PjEEYU+JhHPn+4cKHywlo5qTsQLRxHVfLoIbIFDNDnLmm1etJYBwy37078/7dBRH2Wu5tayzLfNTNRKP+dCBaevZFlUES4/RbluUuiBd65kEcDBgwqE7VqeadvJiLvcTBMgty1OLGQEw2Fj0I6T7eHavFbI5RP/uqdsApEKvd526rrWZaGFKP6SnR15zudDPZ73tttt7nZeU6z1xvN86nC1utDoRs029DYxgmhnElDxMpT5YVZWZtwm1Vy2CUlRiFMZnt3IpnQr0+tFYlpPqmJb///X3N2lFPKN887jOmZos6WGr7NdSkFqhImRizZWyaRbFLLcyzBUFuN2g0gtecDslqbodsWgBaLVOCqtXmtcXWxLpazU8w3YDg+4dINHZO3wu/vl7VF9fy24e+8A+6rUQP5k5AUK/VS6kQvUTkrffW7lN0oNj0xdj1z+lZuVKM7dGcbmylCe0ArDtYsc9rXk/ZWqU0q3Vq/j61FgM8pe4lFy+B6EbZ7Odaq/sgBrCDUzQFjO2iitwFHbudvzsVN2+2V9V2BKRWt289I2HUac8wh0DMEUmmqWAlOJlpGpkmy5qP48g4jYzDQMqWfdI08RoZOoTAw8MD22bO53YtzAHLAK4bWRIxHU4r2NjVWli31e+jreNemwkWKEsx0rRaYmEHAryw8er+jGVD/eFAEvXsjN+TUstdBvzOLfOve7KAu0x9t1sECOqUeisFWFe7xmU1yvhtXrjebtxuM+taWLfm9XEGRBX10qcIoSHB7kvxej0FYmo2x6OAZo6d/n6S39VderpyL8kQRaQSqD53nIHWBVV6yljtyw5Uuu3BwKi747RmtN6G76F6ZJg7YL/PtNn5BX8o0UGraQw4EA3mo6kGn8yGJ/KQGacRqZEWFCliQFRMG0Ci6WQMMTKmRBSlhMgmQlGvSSyF1CqDQAZqEzYRWgxs80y5XW1dxwwhkagMbSNqD1B8e9RaWWajpqv7Zh3Td9wRQ6R5WQ/FAmXR17RNWaPBSq3otkGttrelSEqZwWtWOyMheFAqiNBWsWx8hdQge1lEwfxoCR6c9cyvBNl9o4OC3hNWnYLrVHTBs/Cm3xLSUa9sNlShCnWz8oz7+E1zDEIPzGhjK14HWjYjhoslPaqzhzYPyBf952RE/RDcWCQTPbl3hnfA0DEh7Ea/VaOX1FpM7MBRs0UPy4uJ7e/i7+XGS+QF+rasqIPQDlp7bWlwymYw2qZ4pACPCWoHpz0Ddz8Yd5to//Vu9P2ft4fu5Ti9PPTuL/LVM39rs9bjteqZOAxc0g04fq56GHQnqNh4VjPWWMDNGdJ698mGpqIYgKliWb5lK3x5uvLr5y/85eeP/PmXj/zll0/89PEzP3/8wqenZ754HehWGiFEUuqCE98CgdIqWnRPg3Ta4osI+v0w4Y4PBqg6FTbG5AvWRZRC6kOBiJBzsoWdE0OODDkyDl14KfLhw7fF6H18V3cQLGpdTPwjKmOEgUi2s0C7E1Kq1dd5gMY2MwE96LGtmQDOFgNbFVKzepacR6NGbwUpXgeIOdcm3AM0+Wq2yG48dL/XR4xD+4bUnFbkG79iogN93jc1A+FpWZCAhEotK7VutFKQZnVoJmBjlIttmZmfvphzFq9oHFlLoK0QQ2WcIqITdbocdWy+Rl87xpw5TyPjkDiNI6dxYErJqLnR6K0mVmDBpx2It+ZruVNl7gxitzndCWmW+ZxXq58qm2Ulat12W2Xjp+ScqO7MaBBCCYRSUXQXUTpPIw/nE9M4cLvNPD49ERRKLVznZ67XzDkHSgqIqNV16FHfmUUZgjClxBojcwhEem1HYwyZ9+PI3z080FR5nm881sbjcuPXL09cl3WfB/dCG7GL4ITAw1gYX5/irn7ebey97fPAVIw2f/tmpc3GQ9X2sP4yjwa7zoKdS2yE6jV6creMd0fl2BsOsbq7jGkwylENgJgTHkVIsZKivUN2KnDD7JQxGZoBMc9yl9YI4RMqwQIBy2bO/3cb788PyPnic9zsXk6ZcZgYhxMhzqgm1g2eroXbPBsQznZdtTWK0/FKteCGxtcdmD7oX2cK77/v2c97YNXBnNk3QfWoiWsN1rXQ2sy6VnIeyNnKKvIQeAgnYoQ8BKP1Omi6XW8EEcq6cjmfOJ9PDDmBBKbTeXe4c0q7bb7dbvRsYYzOpvFyiIOa+xJUHwHqA2Tf/81/2O3VNzuqPy+mRFIoKG1zG+pOjukKvL4TN20mJtbURDk8C9cdpX4/WmsWuS8mPGaPumcBetB9p8z6femArxRztrayUT2gZWyiugsP1Z4VvQOm5gu1l+cvzaiM0nxhhLv5cAQeX/hbx/RyMGqOdK2WeeiB3j7GwRkJOSdOp4nTNO4iYOM4cDqdOJ9OTKfJadwT4zjuGdK5wM/P3455DIEPH96zLjYG83wDLGAzzyshCcM4Mo55F95TLIPL/fzAgnxmFwIhWY1mk0bRirRi9t7rL7od6j6huM3RplRnDrV21OeW0oWn2l2gpM+ZO5ArR3CX/t6ug9Jq8wy4Ms8Lj49PXK9X5mVhno1Vszg4rc1YTK0Z0OwZqeb7l9QKFGpRSrWaOdVmYMBFX1pLX91tv+etoHXzm68vNAEs4NBsTqlDpgayM0f2l7G7jXdgFLEsFg5EgwPRos2vqe0iPD3YuM/T7vfj90nZ95HA4d9rC571jwQx0DXEsO+xoKYT0Dzx1EfBgzNRlaFBVigIxbOrHRuMIfCQhCEIqyqLwiJKaRtlW6ghmv8TbM/QshFa2VkqXx/ruvJxfvLJcY8vAiEljG0Y0Wi0XEkboQUSpl2iamMqzbKoos0THAEdMjkPDNNoQnspkjb/GgNbDNQo6Aa6QapqFODdxqnbLQPGjUqTuNusHuzq96ypixVp2++7IAStBCyTHVpwIIqzrgpLWVnqugdydp7IDqOOEoFtM/0Em1+WJDD6eqP0UiVVfmPX/A0g2oGZF9KnPLhTcYDHI8reNxo36qWygRkHOIqRy0opq/P2e8rfIzL0Sd0Hy6gG4gA1cGRNe41ZSmFXTUvRFOZiSEY9DDbxD7KC7OCSPtF5LZq7w7WXEWCPln1ziLywHS9Nt9x9kW/++vWA692//YV7kbR7dd2Muzfo0WDxidfrnMyqHODwoJcGd0mjGC1T1IznvGx8frzy518+8e//4c/8N//hH/nTz7/y6+dHPn55YlmLb3iAO7Bd0KircGk9gGatXtBf2a+rByBejM0ehmC/112dLIhFj1JX2nMRpT7XgrDTisYhcxoTpzFzmgYup4FpyJwu794YbVh9w1pXE5WoKmQ8IyOJZLPOaa6HauZRi9MDKB4RFKOp1lYpUdlKJFXIEglpIA4ZWA04tZ45bWYksYCD+3r7/brfuHVX3/WRs4CoA7Mj/2+ObdjrQBPCoV5i0bMQAsWdKq0FWkW07gIqANs8E54fKaXQSKgkmoy0OJEkEcZISqNnNQrSCoDVNL5yjEOmnkYmB6SncfB6y0R2p8XAiq9Yv9Cm3RnpVO3ulfR1ak7Y5kXxt2Xh+TrzPN/YFlP11VYsWDFkU6N0u9brKkIMpBpJpRKCcBlHHqaJ79498MN3H7icT/zl14/8hz/D7XqjtsL1duV5SDwMiS0nr9VwdVi1TF7CgOgYg2UnRHbaEmqiR+/GgR/fPbDVCrVxZeY2L/z06RO/Pj77XDlsgyCcTyOX04lxGBhKeX2O+zq0yXK3znawYLZUHIAq1T2V6nXPujsvquLUN3f+GoRi5c4SdM9c76urOy3+9aj57zWgJnKUglg2YAesQoyVZAU3XsdsGVUl7gEfAa+p3JjX1RzhdeP6fKOuJk4hFWJRBok2XVqzoFDMjMOJcTwR0zNKZivC863w5WkhBhM8SjFYJNyDa+aYKZL2quRX7cprQLTbvf77rzOIBkTFQZ/csTQa61JZlkqKhWEoDJ7hzENinBLDEJhO2Si615nrdWaeb5Sycr0+szy8o5TCw+XMOAyMpxPJM6QpZ263K7fblXVd6VQ0o2nGO9Vu20P2/YVvgefXj/3a+qw9fCWbS/21noVVNdXeosVZAcZeMEXY190YdcqtqroKcd0zcJ2ma1jAMmS1liPjvP+914keDnsPbpUe8d9WU1hel521YPaz7sEFE75rrhtgVE5U96WAZ6BEZM+09N91aLQr2dJP5M7t6Hbjbk7u5Re65/2OteZZp9Np4t3DhdM0MU0D02nifD5zuZw5nc+cTxOn04lxGpnGiTxkPj0t/Pz86zfjHWPk/P4D87Jwm2/kp7xnmud5YZxsXk3jyB0csyB0uQNQ3Q8JgZj8q0TL5tfNqbMHEN1nUmfIiJForTZXD1q0z5tSrfxhL/lytl0f484Ekbv7sHshEhCiz3cTeLvdFr58eeTzly9cbzPz7AJRpZcGuM4DwX5Ws5sG4KzMrVVBqJ5BWqmtHYJMKaD6Oh3aBM6sxrDXU+++oBgYjfeF/WqZXBov5nWTw7/uqvU7rNx9SEU84NaV1e8VlsP+mfuEREOgdkCv1esj7XUWzrLxQSEQTdwuRAZnG6lWthDQEIgqRItA735IrI3clEmFilA9mB5cFO8UhA85ckrCrTWeayMEuLbKsq2UmNGUgWy2YdsQp5O+dizrwvL00QFo2sXEYszkYSAGA9BaC9QNqZGoiSRq5SqqFH9rE/m0IGuKAUKyTPA4GK4qiZTLLmS0RacvB0WlEbZGoFBVrCbTA8Rd+aJJMHvWBdv8tvSgWlEvIehKGj4xTeHYGajt3g5ZEmktK0v9qsNFXyP+3k3VQaj50YevcDBqazNqbrdVbx1vAtFOx41OizSBBbvKwP3GYw6uIKCWzq0CqElmx9ooYmnqtkcX3Wi3bhT8fT1hE4JFeQLd8RFK28M4HskP7tBEjyakvdg+OCiV4IqL3npGezqkXyPsUbpwt6H6vbx7lkdJ9WX9WxeP6SD65QDKAV6/QbVvHXpg1n2xH2BWjm/t2U29FkPsEpGdtmagSPco4U617oXkTbnNC4+Pz3z+8sSffvmVf/zpF/7hp1/47/70F/7+Lz/zy+cvPF8Xbutq0bLQpZsTIUVU1SWai7WLEdlpqVbf0a/qcNCO/bUHGfy8+zwLYZ9PMRhwGMeJIQ+ukhf3e5WCWLT3NHE5j1wcgF5OI5fTwGkaII6vUoxUlevNaGnLsrIt6x4RzVGItRI8ktZaZWvHBtc8SgjmOPecEz5fK43SLABj0uTKVpVQPbNSXLG0WERdbdJ79M02Fqslw+pVHaBJ6GPogygvp9VuhOCgekk9mAg10UKxDdOkPNmFBzpFzR8AZVuR241QKk2DAYE8wVAJeSLERhoy0NAa0BJ8g38biEozAZVpyEbHjVYTEj2g09kJZjbbTsG1KSv7PNqjfZ4NKLWao7hZlHpx+fBAY0iBHCwTO469PUImxLw7sKVVU6AsG0GEh3Hi3XTiuw/v+PH7D1wuJ4YAdVv4nCLn0QSFOv133VZCC16Do/tmUL09zLYaZWt2cYsYTJglOw1SPVh3W1ee5oWnZeW6bszrBh4wMmfTNrVaE6hJu79VPdcUttIdrsN2dCi3r8d9TbqREfH6btkFofrD7o0g1a6zNafhBQOkh3F6eS49mBaCbTod4PXPDqL2CI24mj2uWtgKDNn3BONGHyJhxcd+3SjVZOxrg8vpzLvzAw+nC/N4opyL1Xi7Y5RTZBpGTuPENEzkPCCSqE1YNquFLFWIoXnw4yUYHYa3a0R3mmg7MjGv1VN+TWnt9ZTiTjN9/rew2+6ybycWFVcqKUUUJeXApNkz7WLsjdYo28b1egWUsm1cLmfOejahqJw5X05+r60+FeSu5AJS8hKJYJmA1oplxe/i21/TZntNo/RIke9r3QkWB2XdeIUQ0ChEBV2N2r74Wu7BpbeUuDttdq9HrJYh3UuCHAXu+2AHiXpkTXsQt5dn9BKiWtveOmfbVqdmLqap0FuhdRDamitT+/7nDpytmb74xP244+djb8R9CRv47oXI/rKDIQZ9Tvlr21fZBg8UD0PmfLJ64e+/f8/5fDIwepo4nXtG9HRQdIeBYbCSi7m8bsMRs1utJaZp5Hw+s6wzrSm328w0DdTS3E978TK/Is9Qq4HTUjeQ/nzx7E21TE/XFvHNruvf94A16owPVc929wCBCwSFQJIEzqLq4xiC3Pkh7ONZq2WPpBVEhVqMLbUuZre3UmiK1fgNGQmRln3e0MGxeMCjmopKOM5VPbtaavH3agS1YPdXcrhfTXIDPKqK1F6z10Ezu7+oDkS1GRBtDkJ7sMIvlX1SuYCRiinyN4vuGYisxv7axbu6c+GBVFvf7mei1F0PxNReo7ZdsMeEiowxFDT6PuDaMHIEqOjPd9EoJBizqBaGUhk9kB5TZhonHs6NjcAlwoccmRI8lcpj2cgSrDVM3zMc2Cl1v8dvBbdsb/I6687GaoqEQ7yptSPpE8SUyVP0wGqzsdHWPDDitqNtB3sBJbqAXm9jhRhdlpQImjF9kQIt7PdXWzWVZA1UbTQiVQO9XZx22+AsxarGMGi0I6jj976X8PXHsS5dbGgvp1Sv0z5sVWdCWj2p2co9UUL30dgVmr1e580p/iYQjb0XTTxaSnQhkk6R7VkrJLuR2BDdiFJ8SKx/Vd0aRfqCN+DUmpj4hNomKLiKYlZyhBSVFGwQtqI4zZrSBK1CKcFvXLjrK+nF9tHomjHVuz5cBkj1Dtx1ylsQU/SCrzZV6eBC3vKt2d+tA9ivAed9iGL/+TeOvoH3m3ZnQOQocKVnORWczmUqr6o91hiODVLVahtmo5H0dPrnL0/89POv/PSz1X/+6edf+ctHy8J8fHzitmw0EcZpsuhTCHtWMsRIqZUIUBtaxWkD2IZ6B5yPs35h/Q2sevYzBqM1xJTouZsYI+M4cnEFyDEPjDmTYnD6XOLD+wc+vH/Hh3cX3l1G3l1GLqeR8zRwGjPPq/Jf/2X9ZphbU748X82Z2DbqtpGCeHQSQkkoidIC2w5EN6dbVaDtBpV2n23XPTBZG2xFWddCSKs5KdtKXa1FgfX082xWr4t2o5BSZNDM6E5gDwLc0zO7J/JiQ+3nsTvQugtyWOsHMcNGMAqpb0rN5+599qZsm20GW7UaDwKhmUKdhGaR7DGADNTVjJ5WXJTh22MaMolOe42kcNTI7vWfepxzj8Y1z0T1jbULdZTiiqZlYymbA9DVNngxgYj354nvLyfenydy9n6kKZKi1doFpwIDzOvCbVlRVS7DyHkc+fDuwg/fvedyHomt0MrKw5CJiK2HGKmqLJu3wOn7u9v8eatc54WnqwkWfXl65mlZeThNnIaJPIyU1ni83fgyz/z05ZG/fHniaV4tQ58Gk4r3e1/qhrbGlCPnnDinSH4jA62qLptu53Jn9dhBpjjQ75FPcCBqzwrJa2N6qQn4Zufv58rL0nRnftPfw7/apx3Pr2o02x6ZpQlbE0IFcSCowFaVISpDqpYljRYc6plJmwNGnUUrVVYkRm63hXleWBYPktUCEkGbAdEYOY0D5+m0g9Ehj4SQUY070LX9+g4s+AQt9S0UyrF+9Mh8vna8FKHpYAmixD0gE8LhbBpYNCfNev9urKs9Z68zCpHL6cRpPLOt3tZjWSll48vnzfp0LgvLunGaBgvMTNbLNqXIsix7D8RaN9+ng6v3ZkKAUg6nvdu6++vsQhby9YYpx/0/HGFjDrSmhKC0aHZz3TZuy8K8rsZaqeXNaHrvzdydtF4X1cfUxvVeKM9ZW/W+9q2L29wprXqN4bYaIC6rgeLie8AhWNTVdo+Med3X0+GU9Uu/myp9RdzZb/V11f/a/a2DTbDbS3+z5gDH2m8dz0vJ7u3l4cL3P3zH3/3xR8uA9r3Ua0MHB5/DMOxUQdMzeKWhpQ042ioBZRwH3r17IN4C62y1kuM0sMwr27kQktWgSadvy70wH8YyqkrVQi8e32rPFm7HPifQ2wiKz52jtro6RXC1Ry17ZjyKiW51ka2dXScg3fV14FNLo2zFH9XqfDdr81FKYVlXjNY+MZ1Ptr96LZwFN8x21tosiLIuXs8XXIG6sa1Wqta0f/V109U43zociDqqZE+I2M0+9k8HoF10q++ZVTuw6sJxFmhULBsrYkhKa/P2iHeqqQ5Ej7lqfmfPdoKVohanwVvpnVHSg1ajCCNUCQQaQRPpzqKai607YyE00y4JvU1kiC5gtDESGRDOeaBdLmge0MsDlwDvsrVcedxWPq4ruSmkSImJkANbVEpoqDQaFdX6YuXdHyEEJI97oi2ItdKTaGKN3AUXe0nFboNjoGlnaHjweZ65zTNzWVhqsbK2bDiFcMc6UU8gBKMAo41aE02sXUttXusO1BAcjCp1F2jqmiDtWBs0B6zqpU22nnYNmdiTV+xU9q6x0The10Gl6qGpUr1WvbTm2Vr38X1ddV+C4K0K/8lAVNjBRqc27AaRo9GwtVRIDkSjqzNVNOCTzgr7a6psoZkKIn0O2pl2Nb4QlCEpwwDTAENUcjJ10nlpzNpYFGoVSrXsSMP7mXo2LcVijaBTJudKztmzpE7p7FnRHr3yyIC6cYKXtCLVff3Ro3L3x24kX0GpLwHpy+zga4feLc5jgXJ4dq56tVN25OUZWdStR9Jxh8mopMu68ny98fR05flqtJLbvPLLrx/5D//4F/7hzz9ZTeivn/j45ZFbqSy1WvTT+3QOLtiS9sBEtMh5qWzbSi1Ckb6Ffg2QXj96ZsYMoy32FLtKCaSYjHLrdXrn0WtdcmTIgdM48OMP3/HjH77nh+/e8/5h4v2DKZhO48A0JH7+MvNf/+U/fPPZTZXH55vVDtaC1Go9vrIQqyDBMg61WQ/UrdZd7KY5fVU8GtadybZffY/62r5RqtWjtqpUV1DblpVlNkcR2BkIvV4kZxMuMICukGyeN22E1rOwB+jpS8p+dwRFdvqZ103ZV3PM7fx9I6NHsQ66GsXugwSr71EJ1k4jCJKUMJqwBTFCi7RN9nv32jHmzCDiNaCyZ3o7YO7xmqq97snp4L0+r/YsxeY9aVfm1dVvN28evq6kGLhMI+9OE+cx8+OH9/z44Z1RH0PP7BvVZsyZaczkGJiXhes802pjchGld+9OfP/+gdN5QN0xHSRYk+atAsJWGtdlhRr2eu6+qczLxm1eud6WXeTrtm6cptGDZYm1Vj5fn/n4fOOnL4/8/PTMdVlpKgzZRJ2mwSKk67ZQauE8Zk45cHJKz2tHa9Yft9uDfd3pfSDOft7FY2B3GNV71AXp+ogOWncTc9xrEbznGA6k2J2lPiXMppmd0g5EnS8mcrd2MDGwNTbG2KxHaWwMLuzR53op1etQFKVaxjBYFrlnxLsaeIjWXiCIA9Fh4DKNZlOccRGDOa61mYJpt++6oyi7hlL1TdtmmbdmNPuvsp77+H8FTru9MEXKsDt4trfZXhf0WM+teR9Vj8iPw8A4TQYo8kjOA+uy7Zn22zwz3xaUY8xau5DShXMeTAQpJ4Zh4JEn5mW1rJa5PDvIzTkAzemtd84Yd/PDf96vsN/zvlv1QOt9+Cy4X+GOzFbN8e/95zZXun19vCuV+mJsmmsR2NcjONDZHv0e1Z3K23amVu/329uv9GzGAUDLzjA6MiPd+T+yT611583vm9/nvm//tc1RvG1C7x8aPTgUYvD16G/UTBDvCDRxBDKHgcv5xIcPH/jDH37g4eFiQGoayTmTh+z+kjnF4u3E4K6+95tDabWAKmPOPDxcAGVdZlMiv5kI3LYWsgghZ/e9oLea6IJFdq8sUKbBHF7zWazPqjm+LrISu2+zew10BWPrVbiyloXSyl4WlIP1P+/FWaGHSNyX7Srh0oy5svY92es/63Zku1Wsz2oejZ6ZckYQz4y7doTXrOc5cA0GUqXXAOO+w56dcqZKsLKQ+EYwEYBaoKy7oi3KDkDpAkASdiDaqgWFrWWGz0nMT+1A3BxXH89g42vtuWBDaVRovcVJN+rsfmxvnQMWeLG7aLWMeKmPNmvl0jA6rQZobdxf+bKcyGu2e20rQpBk5S1SyaEwBUxbYBhMLXaCqHAOcEmQpfFpWUjzDLWwiTAHQXJgycKWlFKUEtRUad9YhBIicRhsbLxUovcnDR2IYnuQ1Y1acLuLAAF0le5tW5mXmefblds6c9vWfX+1Hu0DKQ/k5G1qoikGx+BBvbJR14Uq1taxuZ/ZbY1LCrkulZXbmWp02YHoPQg1xWn3ATw4E9yW9G4L9jy7562LH3FkbmsHol6WVx28dvtwv1larMRaIYX0lk15A4gKd9G3cB/m7n89PtJAlmPxsBFlQeJMlhtTvJFlZaCSpZJCQdQUvlpptNCIQclZyAmmSThNMI4ORIPJ7V9vwm0W5hWWDdYNtibUai08bBOqlHpESGu1aFaXI9/rXcJdhtcnFSrej9Gynz1SfWfa9+9Vu2jDMQ62yI/jxfS+Awq/dZgc+qHw+nU0dD+l/tF6/7PsNJ1aq2eGFp6ejHb75fGRx8crj0/PPD3deL7eeL7OfPz8hZ9++cjPHz/x+emJz49XnpfNMhyYmMCUBqZh2Hs5xl5rEQLagquAJUq1nkd9eb84Vxs434BfOnEvgb9NbA+S0ZvR5xg55YGH08S7y4nLaeQ0ZR7OE3/8w/f83Y/f8+H9gznnU/K+jpZxS29sqKrKzRuLp9aIWskCXeEZn1tVmjlGpbCWjeLtakoppkCpbc9+iZpyo6oiIZKHiel08brEjGDqxNZrrG/YHYjGPVosYhHUfhilPVNytA/q9S13c+EFEHWv3+IS3qrdI8nczf1+axoCruLXgSCtYS1t5OiPJYrWjbbN1AASEyUUJAq6brBafcmhNvDy2EUmfPupHoGzk2Z37Er1DLRTmJbNW6+UyubfF1dqW10Ftz+3tEqKiYfziT9+94Efv/vAd+/fcTmfWdaF22KR6hQtK9pOIylCjgM5COeUIDTL2gYhKbYhF8t4Js/ez23jtq48t8bT7UYK4v0A7f4lr1/RZkEICcHa1QwJxHpnQmVZZ5Z1BlU+Xmd+/vLM5+sCVckpM8XI+7NldKExrwtbWclBGLoK8xvWpQO6fVJ0D1i/clyl/+wAVYDoYDpYu4Em0CpmzJrdqxcfq0dgrhurzorYv/p8ta1UwAMqNRh7oEYoVZy+LmxJKDEwRqG5ccm7/ZCd7dF8Ew67nya7OIU4syfGuDs9kztol9Xp/M6emIbktEMDWvXF5noASHllbvfDagYL0sK+z9wL78G9SezBF6f67+C/O2d6MB9EX9wvq51Vz3pXdF4skzuwZ0R671Fbu2GvF56XxYPJtm/mbKJXeRgYT2cuu0CSgcKwWQ2beKP4lIzqWEvFynGOwEOgZ9rv9s47HLpHJBSHr105X32+2WTpMY6uivo28C+Uth4ZAA+6dafpnkrXlXOtqX3xoGJ5CUK92X3d1au7QJE55mbz1eyCzzMFqtfp90z4Djy7bb6fSX8NhOJwS8zxttIjo/EP2dgxvbSpFAssNncg97W9O7tWujR0tphnXwB7D+PYm7l3+yzIm/Vz2pRlnunZ19M40WplmW9sLqy2zBvPTzfOIqRxsISFM31s3gGhHe1v9KgmrS6uotL2OdODpT0pgli2pmihtI2trpS2WUBCFEkmCLez+ZwjbBnCut+jVru4kYHQdbF64LoZAJNowXCrpfesVzoSNJaJr1YLLOq18urBTluDu72z3ihItHtKtPuYx4Fh7PXYrxsWaZ0uDKgr+bfuFDaahL1Momf+u9BQVSdB9TGMVourEQuapkDIkZAz1GqfVQsUjCbd/QLElXZ9ntB9VKUKe+ub1AqRxhAgB8F0aqESIAXrj1kKrWxQqtXtowwiaAiuC6EkAlmEUYRJ4KTKuSmDBMaUSSERFJIKgyiTKIHKLIVJIqegPKTAnCPTaaReTpQhMz8FbqGyzuqBtW+PECLDMNkq7Hol4WDtSUwgce8JL57ZZK9bNrtaa3EatgVKbuvKdV3MJLpA2ygCMRGDBW3yOFr7KgGphRCt132RYGCYSDQE7Osp0UKkinVGMHXazXV5jpp/dsFi2RkKEj0jHtzeattLZo5t3Pdy9AgyH5bMghp3AHwPbvdotBs8RU0s743j7RrRnqXiFZ+yR2d3vpZNVtEFkRs5XknpRpQbU9yYPbIdpTqto1kPnqrkDKdJOJ0Cp5NyORkQzTZv2dbA86Rcr43bqtxWmFfYirBu1rKjFHtoq25AbTPpIkY96tdB6U45xiIaPcJxAM7uPblhl/tx6Q6/W0n/0uNG+tUTjz34N7wXDEDO87IDThE8Em2UzKC9bU1/w7vN+W6zW2vjy/XG5y+P/PzrR/7y0y/8/PNHPj8+8/j4zONTB6RXHq/2eLremLeNda2UqntT4TFlznnkPAwus97DYTbJ6r7RZVLr2r0eHZc+oneTsc8b3ZcHnTKDYtQQLT6/ILhAShZhGhLvTiPfv7vw/uHEw+XEh3dn/u4P3/PHH3/g3cOJFIyrb8ER3WuCXjsMiJojMkhjEN2du9YUqlJbYUNMkn1bWUqPlFd3AEwdFacy9IJGxVoujOOZy+WD0TBCoNbCws36tM6bN8LuETLvueegcXMBDqMNZbZcGHL0aKbu/eHCHbBTp0mqz2vzlcz4NzGgZH2kEhLSvqGY42LKa4cARiN6c3E4qJoGRAXRRtGElmTR6mpjhgKTvmI09oXBUeOpnqVQawbv2SvLghjIvK0G+ObVerQt2+ZZHa857zUXre1ge0iZ796949/+8Q/8+P4d3z08MKXE8zzz+enKvKzEGMk58b6cELzWUmEQz5jiysPujBLwuh5zbJet8DTPzMuyt3SodCMeGFNiipnR+6CllDiNA7WNDCvkJNAK18XUJq/Lxpd55eNt42ktnFLmYRh4f5r444cH/vDugohyWxfmdTGKd/F6hRfsi5dz3Kb/AXhQ9h5p3Xj0DENvJ0TP4nV3Wl3hUyzavhsdp10dnnaffHegU8wx65tSC7johuymtbozU4KwRQ4QWk2Gv6V74HzQ0vboMF5aIeLz3ByEkBIhZWI2299cUL0HZtYte0155jwZEB2z9UjdykHJfZHRld8CokbHqqXs1MbQQVev/74LaL54YGqVKkdd6k41BbpStNw51up1QsVVWstq2bwtbzvoOJ1Orio+7AG0dVmdGWE9pc+XM5fzmZwHplMgxMw8L6YQOs9QlFiE3ibPaLoRYfXshe6R9f7fPmB3gPSYprJfk+VpPBsc8CCZOUjH1HobubVWqNttz4hWz3rWTk+7A6Klt/Uom1Mut516WUqxDJiD0Q5Wq/frNTVsddqgCap0rQIVm1NrF/2StjtzB03Z18pvXMsxUvYKE+6KrvJs7I3Ra9OLn9+Ct0q4g7p7ENuZazutFcBpyEXZs8IhVGMM7OqgQinb6+OtjfV6swz5ODJOA6qNZTY6eAjCsmw8PV1JQ+Z0wcBv7J0OxGtHLWuz1c27KxyZm+4EdVAcdiCYkGCZu6qV0gprXdnqaqDJKRnG1IukYJneQPDyA0V3NWMPKG9m38tmIkKttwoSUyVP2fqr5mTB5BgCXWV6XVegOXW87j7x/pBOVxRUKxoc3CZX0k+J6WxtdFIK+x77zbzQA4g6Q99nkgDBsu+4aFUzobOq6iIx0Hp9XrRgUoqR1tXKYyDmRBwyUsUDNYEKDqa2fV/THkjumS5fw/0/yzo3kihjCJxiZIxGKzW122jnuW3otkKphFpJigVVo5clVCUiDBKZJHCSwKlZ5vMcAqccGHwsggpRK6kZ3T5pIDUYES45UU6Z+v5E+PCAnka+DIFPFG4R8hvAKMbIkEYHUx5MlEBvwRdShBhRiWhIx8Nt3NG2slCazfGlbMxl4bpZsklCsLYsaSCKMsZIHEeGywNTzgwhWpIjJiqBQiSGbKUb2nubm8BTC4kCbM3UmUurVDWKuJlhtwUput0Ku9goUZBoyQppPm+1HvfZx8RzGsbG6EFDF5O9B6Ei972P7+2dMsT8pl/4G0D0cEr2V3dA0TFaA6Tuyp2o1YgKGyls5FiIatSIgClJbcVpFTWgVRnHwOUsXM6B00k4Tco4sPcOXaPSG0kTFYlKSJYVDVEIm21i2tR761lkVKgUCRSn6+aUqDmTnW4QUyKqOm3k4Nlb7UEvHhcfSx/oDkL3wbzbVF5EgWHn8feny5v3wJ7uqfzjhtpnxXh8hv2+u0cGgHoUzBpbFx6fn/npl1/5yy+/8qe//MQ//ukn/vyXn/ny+MzT8+3uceXmNTir1+C0ZptrcArEEBJTTJzyQBDuajZkbx2V3aGvqofozuE17tnCe3pUj3B3dVfL6Dq1tfdba1BFaJ1K5sBDm9VnxgA5Wf3SmCNj6lRT3UUjqjeffuvoynAxqFGDlL3I28R7hKqwOQCy5u+2eWn1LEankvTv0Z2WHWMi59EzCFZT0hqmBrla9LWU4sbOjNOhOlydkQD4nG7V5e7pPS5lp/Tcg1DvRufGxlR5JVbrWZZ8JnnddHB1XeKGSjQVNrymRI0qKNrsZtMMQJTN6kHVmjlLiO6EumjZa71E8GxzKfv4dqpcV+ptVfd10FsmLE6XfZ5X5mVlXre9KbzeBTfAKU7uQEzDyPk0MQ4ZRFhK5em68POXZ56vt11xey0bndRyTplTiJbJVKWVyrqC3oRQCk/XmefbwtO88OU68/HpyvPtxrzOrNu614eJBM554JwHHk5nPjxceJcNkD4wWo/KFAlRWEtj3QrP15mneeN52bhtyhAseHEaMpdp5MPlRBCsRVGKzDe41crWNtIbQPRAhA58uhKuf7U/4I6rBx16Bg92e+Z+mdWBii/qDjL3TCs7Dt3fu8f0tAc27QdzaCxwJR6sq8Hsfa3QklCb9TrVZKD1oHvqnlmp3bnUe9N7AEiX9fA2BV6fFiM52Ymehsx5TFzGzGVMXKbEeUyghRiqCT3toPoYkyG9VoxhzzOAUInB7bcCSTxDemzMuz28A6MWtQ67jTdanL7YOzpAUc9yCro7xlWOmuqhKcMYyCkAvcZ8w1hrZsNuMtu+KpGYBiRmJCbGyaLw67Yiq1Egt1IIQTx7GolRaDUSo11D2O/BMefup0K7m3N6H7jwa+pqqHt5Qgh73dzb0A1vPzVziBYdtZ/3NeatNQeXng3dNmvbtR02/Wi78lW9qNo8Tzi1W6w/Z+q+kVr2PBTzOyyI05whc190c6yLF9d0t377HAvuPA4xMaZkJQTDwDgMBAmsYu08SvB9ogeAuQey4S4Awp4FrFLRoFQRQrVWXiHGnQEnEijljYyoKtu6EpP1gBxyJkhgu5g4Ze+KMLseRatWYxiC+2vBHFjtgJ1C1bLXpnVF3N4WyFhhvVOCZ1PFQGvVQtWNqsWc5GBUyhiszVskmhCQg+5WrK1g2Tbqtu6BmbKV3cdQLCMWXZAoe/1sTlaGIiKWNV0LXZ25tm3XVVCxfqEheus3n8AhCYngvR/93g4GRE8nA6IhvB40l+b1loqpnfococ+pO9vXEaJWdWVVf24QNAqSAqTILrkfxVkjBt5b9Eyf1/Fapkz3+kDVQA+nGQ44FO6TwBQDD1F4yImHnJlSpChsCosKiwaW2gilEUohlEqiMapnin2vSRIYJTBJ5CyBswpnhQeESwhk/BKaP4CiQqwQqiWxTsHapch5ZHh/Qh4mBgq6jgQtbhu/PUII5DTsAVk6Zd2VegmBJibA1CQYCBUTtuwElj5mR82lCQCtnmEOamU8SStZ1YIFKROHkTR5qQgmeBm3itTmwNuwgnhiwcBwNK2WUlEpzNtKUzUVft/bg5pqP319iXcN2PsZWwb9RS9jOe5zr7nfy0rcqBkmkd2XvMeNR/93s0tDGF4db/hrGdHdwPGCbhLcLxVVrzcyB7w1Q+7ogLbRs0bVHAaUGBvDaAugq8APWZhOgTxaFLQoaMGQiAOseS3MZWNrRtmIsZHUmP/75kdDtrbX9uyZlp6lar0eJJFqIbZMbB4xuxM0sqigg1CP1fZ13n/79ThxZxjuowj3Ag7H898Y72AOdI+oqBrdQb3eoVYD87EbuYBT2JRl2fj10yO/fPrMTw5A//TTT/zFhYh++fiJqzvy61JcrKhHTjyWpb0+0ClfPcIlkORQmjOvDxAlBqhJqDUgmkwkIXSxDR8zv8+11r0nW7g3bO6t9rdW2Osgamlc54VPj19orfB8feLXT7/y7uHE+8uZ7z684/PjE8/PN3748M7pdRnQXUTgNn8rVNRvxJAtS5LUgEi/P+ILT9UMulF3NuZlPYCoWm1JdzZ6H7deF1Q2o9/Oy0yu2Rznvfnvob7bOupWMSXSPTvCAdxbo9VAcdfaDBGeET3mZhfzqS6cIBKRGBjHjcum1Coo1komuTS5hmj3PG7U6Bty8BorV9Pr2MNxBK2pj5fNCVNL9WytvG7cAeZ5psyzZXk829NbmVj/yOgqoBY53epg0fkuFJWE2oSkyUWGwm70zdkRn4PCvMz8+ukTt+uVnDK1Kn/+9Jk//fqJ52U2CfkY+HKbeZ5nnq4zf3x44MeHd0hKRgMuBd02wrpRI/z0+ZE//fKZnz8/8enJxIduy+K1w5vX4xiYuOXKNVdWFcTZGGMKXMaRNI3Waiol1tIY4sgQJ4hX5vbMXBazWWpOzrZZ9lxEWNbKUhpLhaXB1kzy/rXD6iG7QFzzeg9egtHdB1bP7DSr5ZFuW3Wfc71+R+9AxB50MrT28gTuAWqvT9jX193L3IVuYvVLrQlNoDRYis85zzJtTS0AEyzwQnO6bjOxttgUKZW6rqyLtTG53q4wDER1IQw1YbwhCqcceRgTH84D318Gbu9HnnJj3ixoCj1zK7tj8nDOb9rx4vTxGpTYTCk7ubBDvNNb2Cmc7ZDVt56Hh9pu6PT5vYenHc3FeYTufB+1fXYORzuTGNPxHDHl6hSC1fQ48J/nFeWJZdnIg/VkliCMpwmCtVTR1pjX1dZuHry+23pJ05wZpX1u9BpJF71QNce49WAf9PwgYGJJOR7aE+4Y9/rIgz/z7VHrxrZePfvvLSfuvu41TbV5708LTm53mbAOQls9Wlb0Oig80xoxAccxBMYYGJJpJnSSYmvKUiprsfW5NXtYJsnWxi5a1JfFPTC/P8TpqEG8biwzhESWu7Xe12I7xnynxe2ZULPf2lyIJ8U9gNd1NdAjWIxTI60f8hugCM/UiukXGF14IMbA+Xzm+fmJp6dHU7HdKsuykkZTRw9JDlVxaRAh5ojEvuV38R4PStwD0RCM/YiiWvz5BUIzgNpps2LgU4hotf27lubiQ/0+294rYloMOecjLtL93jtA3GhWr1wtAL163fDimgRr9fIaD9CHHBjIJD3qCXPLZBe36uAxpWC03PzbNaI9qBHc3+22qDOcQkxoyDR1AaVmWce6qSdwBMmW+aoJ1uBAnopoIGpEWiOp3dshJGoeqGNjk8BaK0trFIUqx97Q/cOo1jP7EiM/TgN/mAbeDwPvxswpJdamLLVxLY3HVXksyqiBcWvkuRCoUCuxNcs8EsnB2rqdYuKigVMVpgYjSm6V7CDIHR9UfZ+rakGC0EjaOEXIWZhGIZwC5Ra4jpG6pjeBqAQh5jumpPQ1bJTwvoiLVhdqEhcOCggBFWOdWV2p6UCEFJFozAB1m1Dx1pbVyo6KU6nVqdsiAdKI+qOljRYLGrxu2rO15sNBoJg1Ck4dFrNLtEZoeIDEssiIBWtCiF4ffIyhtRX6Fqvswb1gwazqe1Xo+iahB5DCEXjuRgNIDG8m4/4qEPVQmm2U7MRLdqEJ6aRUzyu0RCNT6kjAaui67G9MyjgqMfrrEVIWxjGQBos4FIVtdZBVTQhnWxdW7+eLgEQl0SPCdqWCeJbWNx+8pgnLcLadyleoNRqXvQ6k3ByQqrd9kRe+1Z4p7S65byoHAGaPHCA9QnCM4f14/tYRQiDl7JuoK1+5ghkVb0BrkfaUhZQDtViPueenmT//5Rf+/d//I//tf/hH/uFPf+If//Rnfv5o4kOfn64GPPfopEUNe6jUqF4epbz7ahuiS1MHQdTC/OYsQVKoUajZNuQQgvVPkgOPdEpM6ZQoherzqPXoEYfwRXMQKmpZzZsDl9vtSopCTtZD8d35zIf3Dzw+PXG7zjz94Qe+e3/hu4eLbR6e+b4tr0d2BZjGRN0gtOLZnvvMC+6wN1fNcyDqQhaA0RywjEFzUN9r1Laysa4z8+1GzYWUovXI6xLztQcBPMDTveq+1kToPcP6nAZxZ6uCmrEI3VHrgNiFfbqkPCEwjYVaBNVIjAPj6CtZIhIHA36xUGOhxZ55tntsWSsOZoBHQUNzo6xWGyNeI4m87sAALPPM/PzsQgZ2DTEYqBhyZkyRafR6vhB8PBvzOrMsPUtmhi57lLqPXXfMBYhBmOcbP38sBI9UrqXx8+MzP3155rau+5z+cL3xdL1xvc5IhYfhQo7CvDWuy8amlRqVRSt/+vUzf//Tr/z06ZHneeH5tlovOQ9yKVDVHKjrUJmGSnFnZ8yZIY6ch5GHaSBHu86twpg3xrxSSHyZC19uyx486/Lv82IU7ttWmLfKXJSlWq380F63LSLGGjDqltU89wDQnj73h6152Z3Z/vr7/i29pvEAsG4oOZxh/Ndffy/7Zu72oVNzxQBwT7q3JkYb8526qz5WDByMrZGDtVjqta1WuWjgLqmCA9FtnlnmG7fbldCUUSI5hO4DMwThlIIB0VPmh4eBZR4ZU+O6Kst22PneNkNEOJ/fiOwqbE4tFwmE2ojBaKKxqbUbc5G/3b64DcDXmEWkZS/LCEH2MYZ7pVf7OTgLxYfC2SBGJxU2c7aT9VpOKVkGaxyprbGsFpS8zSvLWkh5MZru5UTOkWEayWNmmW9cn69WRqAKGBCLIqScjR1STSmTu2BHvZP2P1Rqjd5tiqF23/JgWaLodXO9JnIH7d9MquMwQZAbvWedCWi4eEy7y2yWQ5DoAKJlb69Ua9vBsvtuHjexwIUEsZq1FDnlyJQTY06ejQzOSqosa2GNzeZBtSBDF/7o93lfQr5o2r6eDp+D4IDPW9OlYCAreqB4V0jtr3UfROTIeIRgDJUOwssW/TPUqa54Nlv3uRiaIKG5Mvxrh1ECYwiu5p3Io7Vxaar8+jFbsPV5o5TGumzkZTVRljHuDr32eslg2ZpuF+4DP3uHhp0e6f6di1IpFRElJAsqD2k0v8aKIu1el0pdimW/V6MB95RKL89I6VClRwwoNI664uICVZ2uvSwL67qyuXhVV8eNvSZcAtnrqTuwbmpU2a6LoNpsTuVkpVexD8C383ynrnOozBO8pjJGZMiQxx2IlWo9JrdWrUXHngkValADEs6iCK0xtIS0Rm6YWm1IaGq0USkhcCuFW62srbHRhYnMdgdgUGVQ5bs08MfThX/78MD3p5H348ApJ5ZauW6VL8vGEDbCrRA1MBYlLdZiLTRrdxODBaSHkBnzwCklLhXO2jg1ZWiNoenBAnImWFUxWnJR6lrRWEnNdGbGBBfr5Mc6Ck9joKyR9Ab4Fw8m3MdWjxIK2f2tos1rMgUrOIxer5tAEhKyYYpeDpgM9NGTeqJUrWzVWIlbqxRtVARrSZAgDWgaaNEfaXPfzJWoXfdGe6CiYdo3wXmoHTyKEqopzic1GxG7AFMy4VZrARMIzdr6iTt+Ha737gu1ORAN1dkK4W6/umMzhGNdKxA1HZPnq+Pt6tF+7ADBHMyAGi2z4U1U/WkIqKX3lYhaowa7PSJmLHx87a2CG1oDoykZ1apWywQ2KQZstTl1I2BM5WqpZDVnovfPofcY3Bdysw0S3+DdaQ8uKmA87mJNhr0WtkcZ7rOje8pJ7p20OweF/c/71xfTewepd17YK4dNrOh1giYUs29WLjdfa6FQ2QrIrMzzyvPTwudPz/zDf/eP/P1/+/f84z/+mU+//sr86ZH16Zn1emO9zazVpNIVi7KSYJdDx2t/fIymJJwH4ZSFKSmjNLLYvY93Y1jUvo8oS7DsTIlCyIkweO1gB6Jb8XYlqxvj+5YcrvTGnXiND1lsDVmtvUqTxkajXDPr05XleiUpxCaog7PRI5w9Qt/at4bdrlc4D4kSQIvSNpfNjiadrdjGJ6bQYnVGtfnmZufYpPf8czB9LBmrB51vBK+hjTFCq6zzDLWyv0q6IVV3SDy71w5KWXfgcOqddgDf8EiW7k5XF/Qp9WgfsK4VJYIkQh7JpzOpqKllRu+zNjaCGhW5lkJtK4VGUHOmjY6HK827ClozV83qBzoYkbd8Rjtpp1YHN3RG7Y4MORGTZUC64y0oKZjzN+W013sRA+Ngqo/avnLOncb8fJuZlxvqAGwpjc+3hc+3haUUC7C4Y2N1yIEfLivzVsmp8bisVk9aV1Yat7rx549f+POnL/zy5Yl5rSzuyHaxNA8lIBJMPEAt8zCkZE67wCknLh6pCRIdENv4Ws2Z2aZaC+sm3NbA05JcLVa4rRvXreytarZayG/Qz1MIvDtZNrhn6gpOSW99c+XgsGI1Tt1M2e3smSt9abruxHOQXkpwd+9fmQP3Lz+yQeogVV445LRGdWd8C5bNb0loVdBkQdAc7JEcsMUQGELgLMrYKrEUWFfqPJujkDIa0z63gljvtzEHTkPiMmXenQaEauyddAChe9s/jenNwGLr9GwHzjVYtqAD0RatV/JuLVT3vSGEYGsq9DENR914DxD6nqA9bCAHcDEw2xkuZksF8ZpCBypJ3KENzj7A+zk2WtsIcUYEhjG7kx6JMZPy4IFgcZCr1u8Or23T4LW/dvMPu35kKGvrSrN+30NX8DwC3zEGsiv4mpMeiTG8Od4WrNk889koHsA+6jydkuu2u/S+vsXbczhAbb3tRbevboju6bhDCpxyNFE8F7eyzKNloralsKZA2Rpb8bYyewD7qJHt9/AoUflquewBYlfJdVVOy6hYu6gQIQyeNQ+ZUFxYLljg63Q6MY4TKWVUYdtWRKz1VYiH+M6949hBjoiwzG+XtOy+jm9E5sfZWEzjxDiOrNuC1Zpa5jnXyOCzdqeFBkwlWgA57rHu8/pQeu2+VkMPcSkv4UChtIDUaD5EabRNWeaV+bayzJvTb81WhxiISaxlTfKA/B5IFbrSfMVKH7b7/qSb1fwVLVRpaMREX0LYv0ZXBu+DZURt9hpjA9PVPvae0vTWeOP7brAgQAhWo0g0kSEZRmQYLXFRlehMxFYrUSuSIqRgfrs0rB+AnUNACK2SW2VSo8MOMbuqaqCGxHMsPG8bt9ZYVVk9IRSC+eAjMCr8MAz8OJ7543jmu3Hk/ZA558hcG1epjGEgRSWPikwjp8uZaZqwFiMWIMiu+m3B24EpJR6WjUlXctnICqmZTaVbxt4zbW8J1utH7XmTKKegpNA4JZhy4DRY7+LXjubj00t/OlOw+zfWYqvrEURIGWJ/RKvHiBXSSsgDMQ/EnEk5kYqB/uZzo+FK0c6WWzevW6+VINGDsEJFHOQG9zvt/qgJMNi54IBS+oxx37LZfnew9roP2RMvXlgliSA922prtIvW4oHeFhqxNiqFStkBZ5T7rGhv0xT20IoCQd9QseQ3gOieZWm28Luz0ZeGhEBwBC0SbAL0sLcPkmA9+iwKLAx0MNmL1l1wJdmk3rbKtjVr9eLRZKHt52GUHkPu/aNCFONHS9gzl5bh67VoYv0DswsVOY2jRyjVVSdFjGpiLRWGXTRhT8/v4/JKxlP3fzx6dfz8G/blq8OoTjZ0SlBzmHrhc2mFulmD7VJWtm3h8fMznz4+8uvPn/gP//Bn/vIPf+L542eGWvm7aWLSRlYDis/bxm0rbE2tjUU0p8XTISSx2tshBh5OkYdT4mEIXJJyDhuDGC8/ISbsEkxddaJx0srSYEWoEknjSH44EcdhNwxl3diWmW1ZXQbfVQw3cxSquDPUAXgfu+4IOsgAkKXQSmMuyuf0mTEkhpR4OJ/54ftGHsR6RIqQ2gbcvh1tgcuUKJuySWNTa/EQciYNA0qgVUhaSXH1zdqzDp6dVOlUO6O5Gn4yJbhWC/PtSimbvzbaNdSVqI0xeBStKZtn/nprDPsMpbhjFYIS1COi/nk4GyD4xtxV8raiLJvVHfascCnNXCoNhDwRTwsyFU6D10h7xH3Ig0X55htzadbWRpvRGHMiqZWX9L6bRF8DYtG3xrEuXztyTjANiCrR33ccrdVOSNa/sbTGWoyPWV1MJcXANA6eqbA6RusJmiw4oLpTnJs2ylaZF2tc3ZoZ8tKU2ekv6lk2RdmKjdlaGktpzLUSt5VP1ys/ffnC87qwtsKtbPzy+Mzn5yvP80ppSvFMYxddgQOc1dZYq/K8LASFum2g1enUgWlQxmytQJ7mhefbzHWZTZm5VhYXULINIRj9pzae55Vn7wW5lo1aK6cP37063kOO/PDuZL3tlo1lLSxBWKmsrdomtYfu9LBjrv55Z5pefit9Wd7bP7PLx88c73ef7dG7YGEHvz2pgzEBXLTag4e2r2gSqAFJQlITq0hJmIJwCsLgAY0pJz7EwHuBc6sMZSNsK8SEtyz1c3cwJwZgc7SAwZQTtWVM2TjsgPk+WTH+hgy97RdygA2nhobWiDVQQ3VaK3sG66jN63tnpwfa3qpOKdIebL07p+PeyQ4UjdXzMiBUSvE67EaNVhMYQyROyR0hy+ysizlCOSfvOTkhIXI6XRjHibIu1iPRnfoeNxIsMK24cid3f8BvPBZ0iNEDMZ5FytnAZgimyDsMg/W6HEfyMFOcsvfqob0l1Z0GgSvf9hZLHXyWcoDUUgyY7nRcZ1XswRkCQdSyW4KJr6TEecxcTpnTydo+RQeiNKgpUmOkpkotSite2CPHQOxBRO4ZQX3+H1HsvpQOkBPd8w9UhCUNLE2ZW+NaG3NzB9KzbO/OJug3jlawv6yrBRDi0Xqvg+h7JlAXEFtaAPLrQ65Ac/bNthFipDUDeBKE6XSyIEi0QMS2bdRqbC/RYCjB7cce0A8e1O3zn7s1AqZN4IGNujW2tff43GhVWaQQZEWrsi0b21K4XWeu15n5rjwnpsg4DYzjYFlPccXjIvttsvthfYq3YkDUhPRc4TeChEgi7ie4t4QROcrCuLu5zmAQDIBH9T6tigdB/IdXjuA2KobgpWQJyRlJiTAY0Al5MJBRGkXEmBWtUZvQVRyLNFaq93ys1kdchdwKY608SOBC5BwNbMWUqLHyGDYeSVxrZVZlUXXxKWsdNqkwIXyfMz/kEx/iwAeNXJowFcgqZEkM48j4MPIuT+g0kk8Dacw0qolUijCMI3mYjDIdrG/o9HjltD2R50ICIg7oYb9h4ganl4cNwUsXtJFaJbVC1moKu0mYczQNmVfGu7bGXF2Ju2tZ0NdIhDQ47TYShkwcJ+J4QrLVXJoDV2Eb7bl5JA0jQ1kY22Ylcc5YE1ETNdpWtnVmnW8sLnBINT2Rzp4zEaoeiHQE41Omi1PV5qwifbkPqXqQtDZTV+/sj2prUQKudSJeh2z2IEgHmV5aoGqUXLW1viu/t76jNgfE2rsD3a2BV6c38FtAtGdC1SY0tXnkqhusLjbhDogbj+BRLKN0GoUqp+DtP3o9ZnBAaDfCajIb66rMcyUGc55LrAi+eRZzmnq/mh5I7oXNwaNZBnCtY1TP4uYhMo75AKIhGIWp+eiI15d5S4eUOxA1Q9O4i+DfOSQ7It1DnW2Xn+6/f8Mnf+UwWCHS636gA9Faoa7miC7zytP1ieenRz7+/Ilff/qVn//8C3/5y8/8+pdf2OaZD6cT76eJcxC0FapWZDHKC9XFFIKTDBz9pChMKXAeIu/PiQ9ni2ZNKJMUBnf+BmTP7lRRRhqTVjYCmwRaiAynifHDB/L5ZCBNoS4b2+3KdrtR1rLXbJRYKMtGkWLp/upiOR4t6pnTHsFRNfrbuhTWpfCUEikETqeJP/7xB6qCeP1dioH8Jm1ROI+JEpTZxyHGSMqZNIwGrDYlNlPADD2z3YMiWNBT1WW9kwHR1jYQA4HLcmNZru6g27idk/V+jB144cq7PscMIMn+ObU2ajRqX6eIBQ+QWEin04GVptb0uHhmdKcBFwWsoD5ON+JlIZxX5NTI4u0YgvXV5DazauC6NiiFUDdSMGA8uDFLyc4xBavGUY8OBvhNY5OTGe6AkmjkEDhNEydvEP54nbl61lyLN4xXJYXANORdUZcQLJMaIwWlVrxW14I2Wync1pVl2yzr3iODIi7kdIx1bR3027xaSgECn643fnp85Gm+sXj7ns/XmcfbwrwVukZgj+p38CZuT1TVGAhq/eiWeUEQV9DNnKpyqvbZj7eZx9uN2zxbRLQVN9xWR9sIbA3WWnl6vvF4W9xBMvDw47K8Ot5DCvzh3UgpjVsKXIOQVAhNoFoARDvFmg4QzRYfgTX79r51Sc9Q2P/deQ7sCrp3DtiOZ7sztv/+DowqdHVYUbX2JXJ8lgQDoaHZ+XdhkkzgLJF3MXDKiWmwLNW7FHkQ4aLKUCuyrmhMtCDUHQTKno01ABQZU+I0ZFQt47f5PoL2jKQ9hvi6WJFdjnct1IPhYASXZnXiIZD26zqUUSMY6NQOSXYPd990jgj9sfXs25H2+yWH2NS+LTVTCkVosRFDNWr7lMhjJlYLgOpqNPB121yvQBBJTN6XOQThSWFeZlcGvgM1YIFbbS/8DpEju2X7dc++hT3baS3ALFPc+1+O48YwGLul1PamoqixILpwnFPH7im4a6Gs1e2hUXR7b9nei7U3aO8Ons1mC/wlgUGEKfZsaOI8JU6nzHiyetsower7QzH15hjRomjp7qsHGfRYBnu/Ub9rBxB1+9RV8T1bh++tppIZWMUes1g26ubPNWpz4HwaOE8DOUcUZVksQ6nSa4vDCwDa97Z9+aYRpu/fmOTuG3qLPAmr6QZ4r89xGAFlqwulrns2snlmxt3Iu6MHc8O+t3W/oRsRC+pgIHSpLLfVxabs/Xtv4roWy4LeFp6frzw9X1mWdWc6jePI5XLi3E5G98eyX3YaB4MOwfuCGhC9t5MSw96Xvrdb269HcTpk3Wt4e8/Zvio6j04Vp4NbGcx97O/+6FmpLqIUc7ZemuNofVqzUUC1NirV6uRTJORkzJcoEGABijZMVNT8+kRgaJWpNi5B+SCB95KsawWmF3EiMmnkOVRuqsxq9zrmSIqBE4GTCB9i4vs88EEyDwTOFSZVNgm2hoaJ84fvWd9/h55GZIiQhIYpzBIgTyeGaSKFRCIQq5KqkJ8WIkJUa9PlBBDa3XhyF1QsnjiQdgDRRCVLY4gw5oA206T5+qhamcu8BxLVyyVEAlEyMSYIYpTbPBDHkTCOSEoWiKiNFgc0rpAGJGVCHqw9lq6EGiit7Qr0ndWxrQvrMrPlkS2vBDX16t7Ltu6Y7IjvaVMTHnM/uetUmJ3p+hDOmtvFXO9KJIIeKvrNHyaPe9hpp5v3Dw1Y3THN2DTdhvpStuB569EB2RNI+tYE5zeBqFN7vJ7LHG/vt+nEQvGbr75YUtpIcWVMC9OwMKWZMQtDiuRkNDSjL7sUfMCFTipQWOaFMS2sy7rXucyxECkE3Vi3Zu1aqu4KjO6zuNyw1T/27FUMZvZ6qj/udSeBGDsQjUcz2eTNiodxL+K16+t1kwBHBP+wk12owa2JK/TsPeCOUX3zRpTSuN02kgs35Bz3G28AxzbQ5+vML7984ueff+Hx1088f/zC/OWJWArvh4SETosYGFrlGiNPUVgC3KKrbqkZRhFXJw7wboh8Nw18fx75/v2J795NTEEQb9waqws2qBjzQIWsjSRwjhHySBjOpOkd0x//wOlf/Uh+uFgtS2nU64318Ynt6ZmyrJRlY1tW1riwykLdCrh6qtELAlVgq0aF7ZRdBZ5r4UtZmVFGH3MVyMPA+d2Zhw/vGLI1B97it9lQn7bkPLg6o7V5GFLm4d0DD5cL69ZY22LUnDuql7ZOKw2kaAJT43hinE6EEFjXG9t2oxQTNmqtO2yRKUZ+GDN/GBOTNto601blJnAT+7qqA4SgJG3EVgneSqJ41Ft7BNYFHRS8D5kB3DQMDOvGupqoghihnnVdeb5dCV8e0Zj3DGMeMqUq21b48vFXvvz6K0+fPkMtBC0WUMqzr5FEzomcM9NoWYthGAih2ZqR8KbBaWp1KdDpLwYaw7pSauPT4yMfvzxRarFNR7DmzjEaHVh1V9jVlNBg/T21WA0PaspyEVObFLz+yoGB9myVTyQBHk4T31/OfLicSTGwbCtr2XiarzwvN2aXQA8IU0q8GyeGkOkuVa8aYaeUm3Ho9SPdUKyt8bQs/PL4TFNrBj/kTGvK8zzzfJv5eJu5rbMzUPD+zCBhRRFKbczeK7V2eyT7P98cOQjfnzOlNE7RgiDXVHhOhVtKRi9ejbK7R37vKE8v3rkD0A6idgAqDrzv0gkeSFFVD1R+NR/uMCh9v+qvwd5L1CPGwamkOTMMA6dp4OFkNZ0fhsD7IfA+yw5ET+PI6eHE+TxxGgdSMlX00ip1W5BWdiGX0uu7xFspjCPn08nPwdXY9aDE9rrB3+o9vx/7Pql7crI7NsWHzllQHC2TbGwV0wiIre7UXPw8TIWxhy0dkWq/XweoeKl66Nma/v7ONpCy9WFHgBQDqgnUgEqryrpseyYmZ6OIjuNEiVZ/2sVXon+G9vslFngTqfR+lgb8Za+ji66Oa0DUs6Otkf1ep14/F+4c/a+HmbtMlOx8K6sv7sCzVMrW9iyAurNlrzORNY2+V6taSwgREsIpBFs7ITB6ALbX5VvZkE3i0L/eB1D2zJ5n9R2FNsGZGt2XUDrLq681vVuDdmu7Fof5YDknxjQwuJjRyZ3g3iJlSMIQAbW+4tfbxlGPrHtgdQ809VXv15FO77m8BkR3UGiZznCb9+CgXbh9RopeouWCPc11Ikg4I+AAY7vZoLPdjDnXsy11a8y3ldtt4fp04+nxmeenK8uysC0LtVSviY0mLrgZk8ZaEM0msiWA05bndeY635imgaH38cyZNNj8tppN/3yxLKoqRK+Zsz7qnbUg+z3q49tb0Cgu1tV6jXKnp+MZZfWWQbZ3fPf96VXj0lxAK3gmNqaBNE6kaUJioNTKut1oW6EuhbYW8FpK6PR4RZ1OCd6KSOAkgXcSeB+E9yK8a/CgSlYLFremiERSFqYEcwgsIkiKxGRrdyIwSeCdCA9ivT97HWesXsoXAkgknibG79/D5YwMAVKg1JWtLFRthDzAEGkEb6Dga0s52kNJ3x/2SYkBfGNZZQ/WqNgrkoq1AmyOF7QzzF73U2qt1HU51oVCDIkYEjkNTOOZ0/kdp8t78nQh5IkmmbVZEGJZK/NSuC2Fea2sxYIoIpboQgNiXW/NYqsJJ+YQzOfpwbVi5YV7IKMdGiLqNqFDjqa6z5Nm0XXE0qMeBHkxVEeisSlSG9JkL6OwNw+7DbJKSt337V7G0PVfqpdDBRVTA1aFvebZfa+mpmDdwelXx29nRFujiYFREUv5dnEWsGyEuOGx4vqVIS2cpxvvTjcepplpEEYHeSFYgXqwkJxHRysSCujKkm/M6Zk1r7vAwDU2okdvgjRYm9WYet/HY7isxi9Gpw8mE0FQNRGEvR7CaxGap7BFEjFZliIly4bmYbQedLGnn00VcDc0eu88KNqC0076ROmOWAeoeueMvT75y1a4Pc/kITGJReiFIytda/U2Dzd+/vkjf//3f2L+8ojeFpgXzjFyef+OAXggckEI28rHEJiw/ohRunNlQQqLxlu097sp86/fnfhX7878+P2ZHz+cSVqZH5+YHxdzVCvQxJQnm83NMUAcEqfpwvnhB87f/cjl3/xrzv/JvyE/PNDWjbqslC/PrONn1vSFclso88KWZ27hyo2Ehs3qqJpaoXWMNIHZxVm6IIAG4dO28tNy47MWJJuzmYbE9HDi3Xfv+fDdB8acyDGxvjnFhZgHJEajJE8w5ZH3D+94d7nwfL3xuGystViLG5f512aUyRhg9FrFy/nC5d0HYkpcb088XwPLYqyAUhoxZXIeeTeO/Osp859NA+9agSsolavAU1CeQuPWGldVVowC0Vo1NkBtFAneHNo2OssmmMjVMFjGf1JXYiuV+TZzu82U0mgqlFq43W60+IWtKXXbqMtMStHbGaw8fv7Mp4+/8vzlC6Zmqw6kzcnJKTEOiXEYuDycedAHVNQMdVd6ewOIFp/DUVxaXqztwVqsNc5fPn3ip0+fQeGUB07DwDDAKEZ3UaeCKUKKiSiBViy73krZkwc5WqS2kd1hZ19L+6l5tO/d+cR379/x4eHCOCTWYiIUz8uN27ZQWzOxl2TCHKc8stWj8XPPlOHKhqgB7rU2VqdWdyXO21r49fGJeVlcFTTStO31nretcitO2xH2xGTwOpCqJgNvJQmB3mpqF7/56shR+G5K1KasObIOmetQOA2V57HwfNu4zhvzWry+rjroOjJbHVjfA9FjI5Hjezkcsg4ohV3abj+0A7NXp8gh4tPfU12cKsaBabrw/t2Z7x5G/nAZ+W6KvMvKuwznHKyWeBgYLxfGhxP5PBKHjMbApkbnq+gutKJN2VqDIKSUmaaRh+3sGcTNeua25hl12+uaKq+Pdr8+G5MORhTunKaeJd0HyoMlh8qsqtHTY4yErVMnj4wiPfsiJg4oXwc6O3PjDgBFMBVGjrrzWiu6LpS6WfA2Rm8hMTDkvN+CdVk9GxMQGYghcTqfvQXMSt02C0LE4HVlYoyUYPuxxgNQ2C0Nuz3pGbDYGVIu6jKUZvWpsQeV7+bZ1zNGrG5OxALlGoKpcCoGRr3PeO3O0y7U0bhvb4KPpTRr0xJVGIApBE5BmEJkFAvCqpcrraVT14TQIJZG8Po1xz1ue+xxAEuzFz27sY+N3t/ou0tW3AV3gafeZmMYGaYT03RmG0eXURcXiSyIbizzM7d54Xp9NMHGu+B4Vyzv33eQCnD5Trj83etzvKlCrWyrZQp1sYBEQ8lDZpxsT24h0lJ0JWwLdJIwSuluLw77otrvgzuwzbJL69J4/HLj86dHPn38wqePn/j86ZH5dmNdZmptDNnarKS9lZiybtZ2bd08mNwqEgLX29UDqMnOd8ycLmfOD2em02htWyRb2VdIxB5Y8GSH9v/kCBSYRkHzwKfu4NpKY1xJ26nirXZac2VbNtbV9q7/9D8fcQ/+xdFZTlGBEAkpk4eRYTrTaCzLI7frE+W2UucVWeve9icEoWp12FNQqQRpJBGSRM4x8p0/3qvwoI1zUVIzv9uCUpGcBk4xs+bElhI4qytGqysdCZxUOZeNoRRiq+a307xVnNe5DgPD+wfk/QNxiJADyzojS2AtKzUIRRRaIVb11iWF3INYexD00ITplFARa8WXo9kB9RKmrqMsXia2K06/4Yu3Wtm2BSstDCRvCTTEgXE4cTo98PDwHZeH7xinBySNNIleD20Z+dt14XZdmeeNZa2UAmggSfJgg61TUwk2jDTEyBCi2xMHng4qu3ClOR1eGqamLq++vqxFUbVgffHXtrbvEV9jwB3jAYhY5rWY02GVFL11n9dP90Cal3g0D6YUF2sMKoTW0BZ67NSTaPZZUeKbiPNtINq85YmAFPs5iBVdm6hC9YLUZDc0CbCR4sKYFy7TzIfLzDRag/mcdH8+YhlM6TQpaSiFHFYyM2uYXWDDiE51U7bNxnUrVp+o7hj0Q/pIm/oHMUVy9o2nA9BOkRFXiGoBEacLe+uIlBMpD8RsKlchiAmseMPirjq5i+3sYjL2fr3Q3dGyTx6jabwx783YeB2XgtFptN8au6P9827LysdPj/z5zz/Tnq9MTTkBp3HgPA4WwV0r41qZFc7AhDJgFR+dUhsUslivpYcY+H7I/KvTxH/y7szfvb/wx+/PUDc+lZnPV2WRZjRIv4ymSpTAlDJnybx7OPPdhw+8/+EHTn/4A6c//Ei8XNhuM9vzjXWD7baxDhulCqXCWpQhFnLckKSMDUY1irTGSBXhmY1r2yih1zMGIsJSC2tVKw5PtqFMp5GHd2ce3p0djESG2+pOwMtDRIg5EzS5QxI5DSOXywOn05m1WC1i7Qp32BYR3cMYk9EBL2Pm3cOFD999TxxGPj8GEoUrlZsW1iZkr0t5f5r442nkPz2NfF9XQt2QbeaZxpegPIry3ITnptxQZhpzg6UpK8LqHnzz7B45oM0CJkMYGMdMr5UutXJ1lc552ZgX6zM7zzejoW6Ftq2U5UoKQllXtmXm6fGZL49fuD3fjPYew50TbHNzHBLTNBoAjaZ4maK1VQqu4PbaYfVYZQ8zmgFtlFDcWbry/Hw1IRVsbgWs5kPFKJGDg65RhEG6eEOgxqP9Q/CItoSw3zNxpsJe1yZGr3p3ufDh/Tsul7PVpJaV53lm2RaqZ8+mnDgNk7k3vhd0KozZZmsELd1Qa+O2VeZSmLfCspk8OyjzVih12zM4XZW51GK0GuyeBbHM7n32IAQLBARX3usbzDi8bsZzDHx/yrQG26CUUU3NN1fGbLW3wRtab6UQKm7HujjDAd47CLqztmad7upCj+r4Nwxdd7pfnR/y4nsDcD7xNBBDZsgj03Tmcjnz/v2JD6fE+0F5P8Apyx4YyqcL+Xwmnk4WYRpGq6GpG2utJDio5CGQUmYcJy61uthVo2wrrWxU6XXGavVW8ttA1E7/rvYNXjJjPFBhYL3ttsn2FnMoQmsvBGT2QFCv64tHGUwvnXzRs/ruVu1gdK+xrHtws5QKRUjZW7yESE4Gzgw4OIXVW52EYGydIQ8GhDrlV81x6RndTg0W0V3szzKFh6z/vahFv0Zxh6oMxtLoGdEYfyMjKnhm08Cj1SaZMrIvVDpfTQjdB9wBaHC2hQnTmQBbbpDU9swRYRJhiKaaG2Gvj9RqYn1NsJZ2zVr1BGV3eg08BsvGuO8QXPX1KBK14LX6+HTBEYtXdMaF12w5DTrFRBhHhvOZenlPPV8ciAJaqduVut6Y52eWdeHx8cnb+rQ9MyuOgncKLH2aKuTzq+Ot4M6rQCl7AGVzdsHURptDTrVG0p4d6erR9vlyZGZQUwAWo0A23x9qadS1crvOfPr4xM8/feSXnz/y8dePfPr1M8s8s60Lqo1xtHrmaRgYhsSQot0ji55TqwU7FSjF2ELG7EmMY0ZRUjb/L6boNsx7LPpckdDBj/kER6bpCO7U6rQJFWqprKv3DF8KxWni1qu2sa2FZdlY5w0J0NqPr4/5bj7Mf47ZWHvDOLFVU1FdbzfKdUZvm/XozKPpemiwNiOtEKWSgjL5vj6EwDlGPsTI+xB4V4WzKqfarJVKs2BkiOYTT8PINgyUcYQUCclYDRlhkMBYKuN8I9Zq7UKaei/yTlDHhCxPE+HhRBozkgM6wyYbrEY/XbWCusBbbSTv9nAf9NzLH8Bbg1nkKbiwZtvXULBkXjXtgd6rXGu9q1V+eTS1rHoMkLAseQ6ZIY1Mw5nT9MD5/IHp/J44nGhi5QPzapTx63Xl9rwwXxfWZWOdXVHcLNCeLNTgujQhMg4Dk4szGRgN7NHupg4q1cok2w69vUTSA4yl0kpBS0WqKSKHpohhSe5G8MXc6sGp+zp5L26k4UHpXuLWwWvT/WEK5dZGyQRrjfYr4vuCA3+R+k8DomanehuHStGNfhmCFyl31bWYIQ6ggZrLUdBNs9Qx1obBJmVANBPCRAwDMWREVpQrtIoQMcEeU461uCHW/05cUtvvzR5FPLybI4+OOo3BwwV7lFj7PHbb3z+horqhFJBmWdsohN7LrNqHqqrTcmwRxNYBYvP2MI2mJpmMU6qslqLfw8ZbO6opBsadalldpGYPY4jXrBLZtsbtuhDWwiUGppQYvXBcVKlbYbktlJtHx6oBvIlAFZfKD7KD0Hcx8a9D5kcJfIfwLgrnJBQxCnULsIkyY42JbUM0quJpmMjjmXQ6w5Csae/jI5/+9Ge2nLg9X7k9PbN8eWL7/IXt8Zk6WyR9XVauy43bMpNq4z2BByKhmCJcBb6sK4/bQmm6008/bQsftxvPWhnkxMlrgMfBJbm1sq4bS23Mt+fX3WKBYUh+T23TzMno0LVZ/NCaTkcezhNBKzVHwrIQ1pVzSrybMu/PI999OPPdH79DxomfU+EvbeFjXXhcrjzXytAqJ5TvgvAuRi4pcaGZk+X1E2OASxRmERYRZnUwqiZcs6qwqI3/qkoRQZv1SotbZFg3cgwGzIM1kSYEEzUoShVTTW5tY6s2R1gXyu3ZVDW3jbKtzPPC7TazrJs1rW/xcIQ9iLFJI4TCMm/MaUE0kFIhpuxZvteBSMDErrpkWcCUXVOIhAF+fHhH9ntxGUbO48g0jExDRhDex8CP4wgijMNg/UG7M9zaTrvfnfUge1bC6lfVHTv2epvT5cTD+weGceTT0xMfv8zUdSWinIfElEe+f3jHh/ODq7N6drK9FA5QOcoEams8ryvP68p1Wa31z7qBtiM7222ZC1tprdZXTC2S22tdsgfIckoekQ/0XKMLT/Lh4fLqeOcY+f7hQmu4amhjzIUUN2LA2BGeY1+2QNis7KHVYCDbRRq8cupr9rHbNN1/3r/3rEB3eHeHs2c/egnqgc12oHZvHfvvd0qrK5/WamwYiYlhypwvidMQGJIJYg3nd+TzO+L0QBgvyHhmQBlcIn+njaruGfVxvDFk66EJSiubqVyXlVJgq8f1vlWvCOztiO4u6SWId4fyaIVjV619w9Z6tJLqoE16f02vJ1Wb302ccuaBi3tl2b01SG1OIzwGNwRBNOwZHQOAdoG6K7cHcur7vLU/M6c/gVpNaYoJGaZDFK1VInd95Py67ctxHSHeBYzugShCrUrORs/Nqav2vq1SjNdB9URUD9CEDioVVITswWaJnXopu3psiNF80tIIpZKqkmojt0ZSoynGgGUqcHCpnlURLyVxINqzYtXrrSwrcAQkdgFI9V6l7ggaDd1FiSQYTnMxEK2epUAIIZGwuv4wjMTpRDidiadLj7jR2oa2jSIzTU0Eclk3aikdbnr217/HA3U9K+kBwrcO9ciUeClIxBgaram1LXGnOCQL9pK7HoiJWmqFVo7SpdbunNvK7tyu88p6XXh6vPLrr5/4+Mtnvnx54vnpyrZWIDDkgSBGVU7BymVOg9XHWp1+ZS2F65xJaaE1GAYrixiGbOyeaeByPnMZJyZvc5SiZSZLbwNU6l6rZ76tjVcXe7K2aSbCSLP5YKJ5K8u8UtaNutadimuMv0NEK3bhl9dsSkw7W28YRvIwmKBmjAStpBBM6yFGQoYUlHNMnMVAYsPVVoOJvmnE9DBCYIqJ9yFwQZhEGXDhSsz3NOVmIaaADpE2ZnTMkCKSxP1cMZuG0mKgRdnjPxGhheNRUdBKbJWqgeDAc9PG2iqLKmuzoO7g5U/W51K8hHHvYG4U993WNYSCNH/0lFwz3aB1rehcWJZiteE9I/ptApookTFbneqUB8Y8Mg5nxvHMND4wDA+kfIYwstZAmY0dcL3O3K5Xbs/PXJ+fWW5XyjpT1hXRjRgqMXjJCiaENsbMOAycpjOX05nz6UzOEzllYzth9edSFDan67a6a4l4ztko4GVDt4IUqxMenIvh3YwOdob02nDZ7TLYXG4v2Bj3qIl9Q3uxhfe9vam1E5LeOsraTdm7dOT29r75Oj5VXInOFZs2Q7wdzsXQ+y9lYm5IAoiUWjxN620mMKBWPP1rkcGBGE+EOCEyIbK4Ad9QMtZmIu5I3WpibALvtbR0A28nqygG+7sim9V5+LB/dWH21WrZet2hq0sxQDC1N0m+UXXBCpxyGI733DOjtZoQSvPNRaxuRlAvdHbH7G0cegBRS/daEfD/n7N/bXIjSdJ0wUft4u5ABJmZVd0zMiPn//+sXZHdM9fuqspkBAB3u+l+UDUHmEX2rBykoMgigxGAw9xM9dX3gt3n5q7lTT+WH3o8CmtrpMvKJUXnlxuVpR6VctspjwOOTu7COoRNjci8hsgqkbcY+CUGfomJf5XEvxD5FeP5b1E4bH+hudD9AezqRQUgKaHXC+nLF2K+MELg0Sr3P/7g83bjo3e+fX7y8fHBcbvRbnfqfWdUQ4hKbzx6ZW+VDfirZP5CIorF5zSF3+vB73Wn6iB3Q48+W+X3snMPyi/yhfccTe+RIymCjsbxeFCPwuP2E40oQl6SIW8STmQKsfwtc/2zZjW+bVyTIGsi3wL5Bl9S5Ldt4be3ld9+feMv//oLbBf+mx6sx511/zQEvTWWlLii/CLCl2go5EXtM0sCmwiXoHzBmv8mQhmwj8GucKBnIzqfBfua2kFbJRQv/HJGEuacJ8FMDGLnwGgTvXdaqSA7fU/sN9sCem9nvEFt3dHrQBp2aMUARNONNRkEsUb0EU1LYXtBt4noqybhdbMRR/2ZFDNrRNeUDAmMkV+vV5+0J7aUXQOViEEYl43xtbsefRYL3jDpc/pjUxlOxsW5ASse2O4FfYos143t/Qopob3y+++dXo3Q/bYsfL1e+c+/fuVfvv7CmrIVtME0Tyf4jb8ZsXXVxuBjf/CxP7jtB4/j4LGXU38xtUN9zMmIyR+GWji2Es5Im+z0p2nkkqbMADkBXb1cfwi25JT45f2doRYn0VpnyYUYhCDW9DRtqM4G2/b4mSDY1Z2Az0JfnwePF/7PGJZn4/X656+N6Oufy+u/5T86oqxtnxqz2sw7oA+FEMnrZpS6VUgJ8pLI1y8s16+ky1fi9k5c3yxOZ5hrskx90BimL26NeqxG612Sga/HTm+FWIRdXghgvn5+8lLPpmo243OvmRPSZ5Ou318z3FTCC7WzgXuZHMYRSKoMLE9Sgmlykv1gpurvtYE3bFbOolK8YbV7Q0+kXIfd8xoGqIWdp5SJIaFTGtIblv9r2YsxRPKWLDP5OGzqP+9DN2KCWaz7tYniU05jJMQ46cdmADW60vOwte8Zjyn9vBG1ayjnOpOBTwEMKFb89cRAWixGIS+RuPj0K9oETAaE0pDSibWR2iDWbsyv3szLIjjV/Fzb8/6fa9vuZ5lTjGHasDC/3Ceg896fudNnI+pgk+BUuGBF9Gz0RaLnNxsIk9aNuF1gu8DlYq9PlN4Cve7nmmptUKplEs9pvQ0GHJSbq8ZB9u/u3x9d87lig0kkTE9pf2P6PRitG5CQM2GJaFIzdiOgA3rzJlTd6XXG6lQDkctRuX/cuX/75OOPm9Fyf/+wpq7Z5DG7sVXORv8NwfJEr9vK17cLiMtUaiOngxRNprAsC+tiDKJtXdi2hct143LZzO8gJyQm94Ywptq+Hxz74eZMtt2f6zgEkzb467IYFSilsT929sdBK+b0P9yp+alXdoZdCi8V//ePlJL5nCwmG8vLamyuGJFhZ8MSIyElMomlw0UiF4lk1MBLCeZ065PMyUjIErlK4CoWw2IVuNFcwZhXEoWQAyFHwpIIa0LNPt/WnGIurWqRKN1N4cw80ZqbEYUebKjURyf2Ruy2Vx6jc2ijaOcYg2MMogZysNcq0SRZNpSyp+AjJHUJHJ2gDdEGo9q56KL+3pRWOm1vHD6RVs88/tHDaLgbOWa25cJl2ViWK8tyYVneWZYrIV/RsFBaoNXGfj/4vD24f964f9553O6U/c6oB9oOojSWNFjiHDCZ6/saE9d143rxRvT6RowLIgujm64y2BuFNtBqA8Khc4Rm92wfg9GaGUy2TnZpzRBPDYDzfDj36BdwEDCn5ZNZI/NLv2tH9Z+e6jJHtTNJ7OwIEolizAI7fl5MpX60xn+21ViAr1m5l8Nu/tnYpZjQvqCLoj5sHtE/8AqlwH7APVs2aJyxRz5ZQSycvncXmGtCNdN7ovXIUQOlKKV09h2OKpQGpYubFdlVeFL01QvB6VqpL4f/s1DyK+z/yC7691b4DXUfNRhPJNtH/CJ+8pzotp5ZWkxU4EUnMP+91XDuwPWTzWbmp9kkJ5yv+XzCack8uvHBGYOoagYKVt7bJKN1xtEYpZO78jaESmQEeBPlIoGLRN5C4CvC1xH4dQjvXdm6knWclKMmwoFwV/jsyt7xSUwgSjRtyvsbXRYeZdD2O3+vjb+Vxt+PnW+3G99uN459px0H/ShOaTZUuNCpDK4iNGmUkEkEZATaUP5ohd97oeogqcUAPVrjsxcagTcZhBTIyTj39Eo7Bvv9k8ftwf1Wfni9RWBdFlB1l2ebkgQvAEIKLEvmsq2MIBCteE+tkmvl1xT565b4l0vmL9eVv7xvsF3pnxv9shDXzLZE3pO5Rl9T5GsK/BoDlxhYRjCdhv/sgFG/hj+rKIfAIcOicdTyuwrWhB5gm7ZAb7ZJ61C0NkjNpndDiR20z5xA0y5WL4KogR6nEdIsjua6FruzZD5tDfcBtGGT2dg4UiNIYmgkixLjz7UX12Ux8zMfFYSgrDGxJnOf1HUFVZKIWbf7tDTF8DKNcJfTMPPvzlv83DxnIey94XNz9Ub0DGFOkXSxqKEeI9+2lbec2fNCDwIx8svbO//ply/8yy9fnDZjP1d1akSNAoSEs0mro3PdEm9H5r7v7MfK4zgotVFmhuEwgE7EMgqzH+jN2KEsObGuyWJz3BQip0gO1pgHL7pF4Y8Q+ccPrncQo4WPSetDqS2wRKMarlm45kBf40TVCECVqXUfpko4P9HvQb2XvvO7hzI7ZH35J+Ldp39gap/X2Sy9fiP959/33jhK5fbY+VgiawpmyJIDeYl8kYVLSEhYyPlCvLyxvFlDmi/vaIh0nXmz3fU3Da2VUSslRgOOxuBYb9zWjT2vBsj09izMpsPmTx4xBjf9eeqQTl0TerIx/RN6eaNy/oXO//FraPjFeGmGB8M1wjGG+WHDjCyY59psKCRAGKaTOqeVMutTTodf/DMf3jwSz/cNHo3SoVfbr0JKTmv1Kah1Gv4qrVaYZ/452XWqrelCfSrq41pj8pp2+3R1fTnDf/SYxZSKNdYSzPRjCzb9NPraMHrhuli02JZJWyIvHjYfI9IVHgWCmzOJhbWbs5R97jP+5/XVTIDrtTp7UtrVP3U564TpG/EdGHHWL7PcODcun1K4Y2WMSLLcyLBuxG0jLou59AouG/IMydFtkjdMG2kRX+O8pnMv/f6dPPfQnyLm3kQHn/qHKO54bEyr4ZIuwSbm67IS10gPgxGt/unVDYVcU1dLtXipo/izcjwO7h93Hh+f3D7u3D4f3D5NshWCa/bywvWysi7J6tXRzrP8WWibJCy6lleCRT1tObG6D8G6LJY/HiIRQbvStXEchc/7zudt5357cP+8U0t17agDg9kYK89ojOGFOdTSKUehHJXeOngTOvNqbR2YovU/2lYu20p6u7Jdr2zXC9vlgqzWMKOdNSd0yQQNrFFYhrANuChkhjfpmC+BG47NezIRWAisqmcTGl4oKyo8ZXQxICnMYh714Hl1lvnoNvXUIOe9Mp+Ibf0dq/uGdoYGggaKDqtt1BhfDd8HPJYv5XSyUGwn4tQ0n7un+7jIWZOLzaZ8H+5tmCnfcGaBPCUvf36EEEjBGFdrXlnzhWW5kPKFlDckbhBWumaOPjhK475XPu+F2831oY9C3Su0Cq2RQjMDoTRcxuQJCAhJAlkCyfWs4hm001TNmKTBJu1OLx4T0GJiXtaIam8wOkFxHbBQxaURfv/aL36in/uNMzJ6/+Fuq3NfAAM9VZ7/7rsBgKdIhGhDEGc6nM58P3n8VCPae/Vsm8pxGBJk21RAc3ajm2SaFntL9B4oJXIPyXKSqnDZAusWWFfIaZBSQ3uhV/Hsxm7ILJHaI/cjcr8HymNwPOB+CLdDeBzKcUCpSmnzA3qiwMwbZkx0GGscmZXqs7efj2ma7hAhSEe12U0ypxXEaYLrlGA/lE46ST/Djqdgf/i5Mjfr7jbnRnX+8Y4TYiCvJuKPyRsiZmNryGjrJg5GXT8GBDU+uIbAGGbOpMPMmGQIl2FOiFkCb8l0nhvCRcX0pQobneveyblZRmcdFmWhymPAbQifXfhoyqMY7TmqkodwpETbVh4Naju4f+78r887//Pjzt/uD27l4F4sEqB7FpfdQL6JBGvYVQJRlCZO70LoArfQuQVrntCBNqX0zo4ZaLVgDU2go82opkPg/vHB7fPOff/x9RYRs5k/d1E7XG2zziwMrnoBMZfLNpo5v3ko/cgJcXQwLNHRfeE9Bf66RPKa+PWSeZSVtC4sW+ayJr7GyMWnWaihVZNycmqDvPAQB1SiQDpbAfvck2AapmGHeu+DXhpdpuOwEBEyQmidWCvrpPmiVGBop3dxSqgdAA3TV/Rzc8EhDjnBljaMupVyJzclDSHiweoxcZrO/Onxl7cr25bPYgkd3nAaHdeKaFvbSWZMkBUQ8XwtfqjOyCZeSvmzcJXz4Hq94+VlPzwpgb5ZSxTe1sXowQSnHiXe36789es7v71tRn+a725W8X69FTlNokIDzWb1viWlrpFSEx/3nT9uD2qztRx0kGLk67byvm2gUNzdc2px1zWxbZntYoVSVnMBpIO0Ab58//GDZW6TUItWaN2miaU1a4R7R9Tou1tK6GIX0kiZYlIJFapPfee0REWnG/trR/Wn5nFOjl6uvo2sv3PInV/73b+f9dl8GsJCaY3b44Fqp/fKfX/wcb/x949v/O/fr/zrb1/5l79+5V/CirxFtrSRtyvr2xvb+1drSpTTaIVhbsv92BnHgzQ6UovFT4XEEjMpZoJUK8800FXoXhj87JHcLW/a6s9p2evlGt8tWl+vvn4Vnmv4u+PKzpuuHpvh5j6xP909cb3jnKZOPGA2/irPxn/KM0I0xs+p1fPrPYbFPqn2s9mL7kCsfdBoTwBW1RqRnJ8/axiraEa0PHWuT2fX07SIedZ5w+2AgbE0LCvyZxO6EIQ0tZFDQZSYrencwFwnu5r79uaN6CWTrwtpTYi77GtzA45q3hchmemQakA12Lnu4NacKiKT4DabUetSRcOp3xXF6NM4jXeEsyEN8pxIqsfZBG/oDDayJjTmzECI25VweSe/v7NeryyXDXIyM5ryOLWAtR2U405rB71XY7dN74q5r+MTap6Ana1H3zd/NoHG6hlfkeANzuKU1u6xYapmXLRtK3FNNDpVLA6llGpOvvcH9/ud++3B47HzeDwseqUUyl6o57NSS6MUc8e1iJ+V67rxdrmw5MThDvSm1atMt+m57z32g/vjIIhND0UXwhxddjN4oXd6NYfz0jsf951/fLvxx7dPPj/u3D7ulFKN1hqNFbgsySU94g2mW4p4M6oOus9YDPF6czpeT3pkjOHP5en5+Pr+hkZlvdh+li8XNCVGjGbMta7EywWJ3aJOGiy9s7TBipxAZkiC5HBORGMIRBVSh9hc0/fKO1ROA74JjijqUjnxs08YHuU4xP/uOyjaG9rXDf2U2lndU1U4VDgIHq8VSDGzpZWrZPK2GzU4YFriue/8CcE0oNn256BO4dXzELEpthhNf2So8uN9XAh+H0YkeG5rsKeKxeANPxOO1nmUzuNoPI5uOtGq1GYeN7RhT+kWBWjh9MYaCEanHaXSY6GGQpQDV0bYNHmI1VVhAUkMDYah9sk0fWFVuKmRDByQmTKJcH4GYw7ExgRl43d7grU4fnC8NpsvTNC5LkT19C2YrKqnj4Htq2PuJfP5k8fPG9HW3EnTsm1KaY4k2EYaY6J3c8ayT282ogkZDVqkl0CtwpvOCcUghorK4TztZuBKHhCsEd1L5HYP7DfhuBlIeW/C3gJ7UY42qN2arDO6ZR4Kwxu48fq+vz/AzkPeEU7bcIMjv4aWa2/02JCeDcEc+tSAzKnnaB5y7IdlrYZK+E8UR3xFhN5cOztd637wiDGwLJHT7EHEG2JbdHXmolUzm4jiwb5jIKOhI7pVOHOYgTgdN2vkGgMl2lpaz8lnJzYTg6+pk0qH0iwQvCsFeAwxA50On1W510EYgaiWK3nERF0XqlY+28Hvn3/wP/7+O//ff/+dv93u7E61aI7edJmqNLvZlmiTDXWTnSLt6ZoHNhWMUDFqnoX7dpoqWYRmdx2ig1ELdb+hY3D/+MbHxyePGjDLpj9tNiJkn4hqqxY+HqzYiku2Tc8pKsfo7PWgR29EU0BzRJZEXBMhRyQKKQhvKTBy4G2NtEum1UxcF9KWiYtPt15ueqNXvOofTh9DW6d+aCWfakUsD3NBqAqrKlWNcliHPoONgSSREQIZZenKVYdNUrHPtgz7tWGb8qQFN4SO+DWw/8JE9x3NHR1qHbbhdkE1IpJtw/7JfvPb9cKvwTVlrdn9z7PRjOE5+TSQxWRPPmsxuq08pyDz55xC/JfNTs5D5jkdMh2Unod/kOekRiTwtiz89e2NS8xmqrAmrpeNr29XvlxWM3Dobn0fAxKTZxZb0XjUxkP9IMiRJUFXYYxM65kog/3Y+fAwcUFZYuLrZeOvX78gKhxHpdbBkoKZQl0y7+8rb+8ri0RiU1JV04qUDl35Vq2x+vNjjMFRi8kjmmksS6uU1qnmjW/ToxxPKqEV1OYOzXgWGXPqpOJNAz4dnBMdTKsHcyLkn83L/fZ86Fm028HnIMe8IUz445uEFXG1V8bRKbXw2B98+4z8/WPh335f+fp+4f96FGpI5MsvbD0ygunn1usb1y/vhJTsc7JKGnpnlEKPybTwtaLxQZNAlkgK2T0Mvm9C259HYq97ihd9jIixmmf8izIdUnVeY2/s5fyXVug9pzn2p+qfo2p3h/Z+XpvgZ8wJwoIDe+Fs+s+eXnwqd94f3//7Wdx13FHX6bhjNKMGuv57FjAz1w71fTMEYlgYw8469c88usb5u+bTm7RnlqWdV9MAZgK8xspqpm08BcrfP2IQm9KcIJO6i7ibecx1HSNhXYnrSr4u5DfbkwkOepZqedaxIFGIIyBBjRI4/R7Ei/VZdHgjEQbfN6N+gc/8R/8705M6oKrmPn+aEvm1ip5Zrf45aQgMCWiIxMuF+PZGfjMzrryu9Bhow9zPa6+UXqntoJWHNaKjMtxoccqF5rlieq7nhJSXlz/pev/8sIkWw8EmgZgjy2pat1Ybx2HF7pIz67oSl4SouSsb7bbx+fngj9+/8fvvf/Dt2wefnzdutxv74+AoNgDRroaQur+IaUKtWV/SwrpsXNcrS06MMdiPYm7xR/V7xhrR1kyruR+FFCJ9zW6iY93i6I3RIr1G6IO9Vm5H4R/fPvn3f3zwt3984+PbjdvHjXJUUjKNaV4y65JZllcXYE9k6LOhMjnFzEWdTb/6/X2aiUUvzn7w+Pr+RlyFvF1ZLm/E9UITn3RpJm4rqVojKk1ITVlqZaGyAusCyypIAk0C0fSkKTjFv3jn3KzeUZ3Ge9j9fX7y7tKK+pTTXruZrFtT9GM+1LMJNVnObEut7mkIhwaKGqAkEVLOrMvKJRq7TFP0BvYpkzjlD/6LzOGUhu9f/wuyGUNgSQYnPzT+eC8X8SY0vjSk5r1BiAxJdI30IZSm7MWaUWtCB6VZXdRdKCtdETptWC67KC6jwyJ3YqGFTJUD0URwtHtoZHQQSYSQgWigWDctfe+DM4/4NX5Npw+GEIavscmQGU9358mysbc81+8ET+fpw9knPc/w8H0jGq0RnTR1eX3CCdj/R4//2DVXn4eOjm6TGn/T5wviSfVREboG+gi0LtRuxUmKsCSI0k1Er2Ca0MCyBC4pkKJNtuwjC3QNVHf8mgv89T6dxbqXlX5TOxde5uFqXzkpc4aKzGnTbGInemwFa2+dWootghaQ4B/w0DPD0A7JyvCcyN6bU2Gm7kOJKZHSQozRTSjsxvvZIwTXLPLU1tS98LjfuX1+8rd//wd//9s/+Nt//x8cv/9BrGZpHf27DvSMd5i2zaEPUhtIN4fP5ojx0geLF9Xa3D2vh3Mhj8lcU6NiNtcilmZOtwElBaUOy7xsuFNor9xa4bMcfJadz2OnqlK9puzy8vRrEQRSCzRVjqD0aBvKgFNj0IY4ldGbLH1SW5pPe0qpPB4PPj5ujN7549sH3z4+eYzMjxpREGKyA0nFC7UQTdOSEgN12pZroaZWKwXCElhzIC1CyLZxqjggj00rh9jkMnsTFb3IPCkh4s22ON2auanMovX5++8mTxOBxzDzoGLI/dAXJ0Y7SDQoquJB0LCgbGLGUwX7tSpUxKa+sxFVPG0MR9y8mB42PTXphRD7gFLp6aCK5Yv1aiyJHz2WFNiiF50RdMhpmjGvUfL7MqgxLSy82vP55nQhKDNT7OzoxacRzGLbq/15ywkw/F5/Beh06tA7UWAJAcmJdF3J143LZeX9snFdF0JrSMFyt0KwItYb0aFQVcFzTUMUluzGI2PQe+Qj7cCcJlsW65e3C7/++oW/fP3KqJ1PHuzjIAchB4sIuq6ZL28bqwTC3gkYiGdN4gyp+edHG4OP42Co2uHYB5975dte+Nwtu7V1myKU0ah0unSISsg2mc4hIBnm5Bc4TW70lEL4RVU5X4np2ufF9v1anoirOmg20dypmTqz0JqxH6TZd5vZl+Y/0Kk9UHrnqI17rSzbhff3O1++7Fx/KXw5GqU51TyYE/c0eprrYwSnlvE0s1Kn2JXSLAtuN9rV7WiU3jhaY5Ef05fmY77Xs8305WguwNYsqa/rs0ab9/YJlL5M9b1RlPP27qhi8gxVWgjEYNppUauXXovcIBhFUeRspOz/c5ocnTJLc8mxnycGHov2Ezjwg8zPVzm/fr5e0wjZe0QmZGHMopl7bPpRv8/9HjynHMPAXWs+1TKMY0R+ssYlBELK1qxYpWWTxZycHWSNTIyRuK7EbSOvC3ldiGt6UqXDYPj9TLDpizWiwZ7qgGewF/1aaBmN2U2s5rXEjT98fw/z0olp58491c8BRwb8+fJuxTVcp1YchGHsn/1GA0ot7K1w9ErRSh0G8vVuzuijt3+aKE8a3fnamQ2SnH//w+stgXXLdiaumbwk4pyypWADAnne8+q+BLU19nrw+XnnH7//wT9+/8Y//vEH//j9d7798cHj8eB+f1DK1IB2AuLRG4Gz9++do1ZEDmaWfEqBz8eN236j90Z6GP17nol9PIEgWcJpRHpUo/sTMN3oZUUlcD8Kt6Pwx8eDP759cvt4uItq5rIllmVxnalpTJclvbhLW/Zj75YyEVJwPbX4BNwBN/WbyO/7lP7MgHg+1jWR40paM8tqmlu/bU4ToBgCGhSJruvv3T/TCZxY7WesFhz4CCQVdNKzZnP+hA9/eN+9foVNgmf+9HMdPf/V83cBIcTEkhc0LycIiAYbTDdFAkTfw9I8j0WsxkTPveKV7Dh7AQPyA8PmxC/v1W8vmaZvkUQg9AD/jN9a39MbQ4INmWJDpRFpBGmk1Ol50IOaVHComxfqKTs73eb9szYgaNh/TenBgISDw+rzqpRDyUsn5g1JFZHFJJGKNcNi/jkQnKkxnqDtbED9Ptf56X1XazocMGueoSdg84yj9GSBF9TkpGa/1FvmT+B6Xf8au3ZPB2lwNmhrtNpM9/6Tx88bUSZK+vyzZ11hTZ+5vM2oBLGiyx261LvgmGBdhOumoJ0+Dmpr1AatC1ci6yWRYiClbrTUGCF1NJrDl2A0mThMH92Dn4vTUng2nyd6Ec7O/rzgOjv/AU7rM8OP50odHoY8tBJacOfd+gxw9YZz9M5oxZrR0ZgwfndqXuuDlFfWDVhW7yNmHtqPkcYQbDMC8VG30mrl849v/Pv//jf+13/7n/yv//4/+fv//N/c/vY34n6QEkQSIXjjoHqacYTeiL2T2iBV0+X1oIA5lqXRTpplR4gan4ejqlMgYLTJXvHMoK5E7xzaMFe62uzQO3rjGN04/6K08DR0ea6pZ+11TrVdp1SDxybhKA9OM9bgmtLpxG/a4zDM1c6KxsLnbeePb5/03vn92yffPm9UWWH7wQUXbJ3hKE40l6+QMxKTXUcfwcVg084UbeKRl8B1EZYMISmEF87+mJMP0A7aFI22OcnLpAjEQ559g3DB93QQ7NNFcDy/93SMe+J77r/qjVg40UnbLdRHIkFsgr7ggECwa9kUqtifNQcIGpxT0abQVGkMml/zhk2GhnhuXikMoPSOtkKIptf50UNknFNNs58O1nB4XplFJJ1EPc7MRfXZkV8rhl+7SReZ/eYr5Hz+lT6bAqfCzWaAeTSM5sVKJzIgwrYmtuvK5brxtpmRjRzBF2A76bioNeuinDmntbYzVzUE+3CHU6HUtbjrkvnyyxf+8stXfvv6hV+/vHHcD9MU3S3WQ1SIMsgpcFkzqwSkC1KrZbBiayb8qcicjzYGt2O3HNE+OOrgYy/88Sh87NV1w3qCjWNYbvSIds1iFBiBOOS8F6YD65xMn7+fFv1zondq/BwUlNOyzQ5tLxCrH+LVJxetdpohXmhwxFb1pCCLKm3IiQT3YbT9L9/u/OPbnV//uPH+64Ov9533vXBxSUBMVuT4cenFjE+ShweHu2nKcVTuj8Ln7eDjbs97KR4Z1dloP7ze872N2RTJazMuni8ZDITxPQIHSafB1/wobfnaWo5+lo4JgoqcBja9K7ENeuiGsie7D8Qd2Ce7JnhDOvsdKx4sCu1ZtgDB4w50UvW88RkmWWGe/dPZ3lC8c29H3LHawYrWuzWecYIAr3WEnqZVc3VYdI4VLqKQg2nIfzahkxiRnOy8woxiJEQkQVC7X7UPUrbsxbxtpDWTloWQ4pmfO5uwc+of5GxCR7AziKBIsGsr0RuvCY6hEB1RG67XlDnh9sbOv4dN2KehozAnS8P1ttbAer3iVGaSmImiNLQf9IfS20Hpncf+YC87RRsHnSbjbIpHPWyK/gJ6GEbwvFfDCYBw/npO+P58vYNwebsSQ2DbVvJqMTvhhVpqFG+nkDtY/zh2bvuDf/zjD/7t3//Ov/373/ndG9LPzxulFEopPo2315pi8rr77GrN5VotI3QvO7d7Igg8ys6j7LRR/Qh40s1FAkteWdeF1a9zR07wupTq+acbKsLjaNyPyu1xcLsfHIexAq5fr958rmzrwrotbOvKkjOP/eD2ced+3ynYe44hkLPRk1P0LEuZrDqn7Pr5HeOPmz6wyLQlJtKSSN709wFxPAFadXManWsJ/GwzY7fgbL4uVpeEYJEr4kCEvlQWp8aS6X8wn5yNnd/2TNInjKf51TwDXv9T3LMgk9cLY9mowbwu4hCoMIoNo+w+68RFSck/Q59efzdvHb7W3CipS6Bhz+7331kH+L4X1SJThiph/Ph66zCNsKhQKOaCMyLSI3FkYqyk3NAYLYlAxc2a5rV41i0TlZzAgTrYarmiA6rF1+2xkXMjpYO0XEj5ag2pp4gEwstkNtnePNNJmNwaf6NeD9p6mH3ohCWmEs213sPjwnCd6QuFn/Dy0b+cZfr8dic4J2PWbJ3eORk13fOGW22kAHrlh6v8p43o2WX/CPv1NzYPJDl/PybEem6gKRs1YFvsUBrFjCdKVY6qxBwZuhJCQsJwUXRCUkcWEzPHMEgM06JFW7hDZ96UID7Pt8Y4WSPnBb13POg4SSn+WZkBkZkQmeJS1bKf+qjmFBYAiefG0Vt3Gkdl9IKOAtrMsj9i9NBWqKU5Umc6I7sehmL93PrfNoPJ5wZopXD79sHv//Y3/v2//Xf+1//7/8O3f/8buu+k4yBfEmkW6TyzDcPo5oDVO7F3cjPqhdGC7DaV0Z7MNwm2AH1TPJsoZoOEF31ON3B4t3vDVHun9Wb226NzaD91iK9A+uvS+u73Ph3p0c7q4UV2B+/x9UkJVX8talOz0jp7qXzeD/74uPG33z9orfGPPz74+PxE0xvpR40oOC0Lo5XN6KCUISVC7zh/jOCudDFFliWyknhbIusaiUuAKIzwwirkWVxqG4w0TtqjBDF3xDHQnGFZ7LqfG8dLMTSbqtfufZZsblyl836c72f4Zj6vsSjTRHseHrxcw+6vuYkh+LPRbEDFTJIq4pNTqPKk7soYhFps3fdOKcUokD/RQdsdZwXwWZi9oIjB39eYd6fq+dYHVvDNg1axxSXP7mJ2ROcG+fy5z0nQd0W3rUCGDrqjAWZuIaw5cr0sXC5WdGw5G7hVGqM5KOCvbZogae++RwzT8cZETAFGpwtn5mrw2Jhf//Irf/3Lr/z6duHr9cINuP0RmFqdSUnOKVg8EYKUgc7JkgMTPyPR1TH4KIU2TNKwt85HqfxRCh+lnMjtLCDEC22bRMjLxCueE6DTeOakWRoa79wYN4Kabqjz8JQX+31rPlu3fePo45xsHp65J/uBBqd/ub5K8V/VQTHEG1ihdOWP287vHw9+/3jw6+eD231nPwrFtfsGdgSfLg4DFd0xd9I/m+tnzXyi8OmF6O1RrBEdjToGI7TvSQovj4kuh3OtvRhFyJPeZFM4K17o6kYz46WYmcfsE1ixM9Yp8r5R6xiM0C1yJ5iefIhnbc+fea503z1OXa6j6rN4meWMVxazSLViubv3QTiLkFN7pKYNE5Un1T2A0h0IBlVzuJ4w0yy7xYGGuV8ON9YZLxrmnvJPGyMboSRbWR2GDKeLYRQ9d/SK2ZrPvC6kJRsbJgQDkh0AUxE02vRRCdb4ML0iFKJ6tJs1AzF5c+GU4NGCGfIMO8+YVN6JAPh7t7PMY650fr7BKbmBWSLMaVaYk1gGqtaI6qiM48FRDo7HneN4mPFfNFZRSBlJidGKGZh8t2Bfp+Xi26U+u9DZOP/gEULg8uWNEAJ5SSyLxeycFO+XZrS7f0bXweO+83m788fvH/zt3//Bv/2vv/P7H9/4/Y9vPB4Pn4IawDPlSbhWb36/mc9ee2NXozcm99IovVJ6ofXp8fEEQ2NMvL+bdnhgdVIdg30v/P7NKMEpJ5ZlhRA5Smc/Gkft5jY8lOt24ZevX/n65Y3LZeWyrWzbyrau5Jz59u2TiDkCCxXUzHbWxZrVnNJ5rU9quzfdYwwDG36yxEOKpGHrLSZzv40O4hhe8ZQAIFY/WdlkZ1tz9yQdRr1XzMRO1SjDypRkvNQN8LILff+YgOLJZICzV5gAmsy63HcdsInoEiJbzIyQEV8joQFVTWoiCmEYLXZphGh7gZ57+NzF9KyDZq56I1BFqBKoPjK1206ft9kJlP74vdlbGbReXUYRQAOhO/jUEykWUipIjrQ23DPhtaLg/DxkNqVzxzME0K5dx6JrRifQiLETYiHnxrJ28toNPMsL53c44y0NCJ9A4PNze/Zs8/OTIM8JstdO8z4IOgiTuu/6/LN0dEDOzvxn1TT72vlkXmMGY7gPQbe/MIZppdVqIOlzOXz3+Gkj+v2C+sHvZVJxnvSfGJSUOkvubKty2WxqFH1TEbyYiUJKdviKRFozl93WTGsWY2JdbQNPuRKPxrT9Ht0u/JyOMe01ZgRHnE68zw1/NjE6r4Lw4s4XCWJ2w0qiazj7b6OX2Y1v6FDzm7Z58ZUMGVwT25porfHxERB9mDugf/8Yk1lth0CMP77k+77zj7/93YXwpsc57g/6vsPjQG4P5ONG/LghpRJaY4lCmJlIk14xNwieo3aL3jFtilnZR1I2nrdl8vln6v/8dLWel+tlsc2p02txM8Qos9UnL9Unp+d00Avm0+VL5JwiDWwyd6JXbhQTHQXv1fK2umukzqf/zEdtfLvv/PsfH6SczHWtNv74+ODz9mC5Dv7rv/7ggqtlK9og36ZVISZrEmfmXLBiOsVIzJllW7kEZUuB65K4Xi6s2zvL9kZaN0JYLNImPN/vObFS11JtG/HrVwMKcmSsC7EcaK1G6XRDK+lmQkW3CAHpwxt/zniAV93Z6Or5g9200ueG8vzflz6M4M2v1R8TkbcGxOKShKzKqsGpu4Eqhjp2mbQzvDNoJ9Im+vMJ3cCmrs+DAMto9CJ8qNGZI5xF0oz5ms2n0W1eoE7UNcUws/CedbW/xzkp9cP2BA29CbNmak6PfPsWnIInZxM2gYkZbN68yLam3huQSf3xDMQQxKKYhpJz4suXd3rO/Ot//lf+83/5z/z2yzvXIETxiV2UMwP1n56Ic9mDxUvlYE2iqtnt/vMSd93wsNdKR8IgL2bvLzop0dPGXZ6UZ5Wn4Ya68YFrCmejaRmP8ak38ggki5kxA6oQ7ODUMKUb9prKsMb43ir3WrnvB7d9tyy2GPz6lheHcJ4bk3+AJ0ihegbEl6NYgLyjsKNNOYURtgbCKIX22GmPO+V2p9xu3G537o+d++Pgfhw8jsJeKofr8mdsTOmdmNp5X/35MYFOmOwH9XNEnnsp4pTUuRDFgVOjydlZ5cX3eCqvTpr+3K/9Px3Qm+foqbpZ3SDGQYjjeV7LUx4QeyB2JbY53XRA2d9WEKeBnqj4WZ6cz7PQgef0yZERA8SekzUdnd4AdxWe327WvzPKwiYxBg6bI6/9+rNp0VBhDI+VckArqoFvMdj3CkEZyRzCq9jPktqgy2lm09tghISsG5KU0DEK/pEg7DACISqSBjEHYk7E5RmjpM1oeqNZnmrHzqezqZMnOKfhCayee5kqT5kQTBfQqJDEsh1TD6RhuYImYRJ6r6CNIJ01wbJERppA7qRawqTNn5NQJnBkYMN5feVZ7f3oEWPkl99+sfUxTXBkFsNKkHZOw1Brulq3+/Jxf3D/fHD/3Lnfdo6jWtyJznrSCnS7HOpGkOIF8tnh4sWZaWfV1vWUi82MXBHOAQKq31GEj3IQg3C/P/i43fi4fRJDIueCiGn/uhs+BnFX7rc3/uUvv/Hbb1+5XjYum01YF49RSTGZ9EMSx24uwCLCttrXxTjXMdacv1AX7X3pz7YU938YT9BwnjcO2Gg3OdYJ6utsQo21pt3ySxlKD4pEoUu3mMGg0MXOUAemdDZW8sygHILrM+f1nyDmC8g+t6dZ88nT+8P0+cKoHd0PhsTTkIzbg7gX8mFDkiAD7UoZgcejIh8PemkmDVJx4NWmnl2GSfkYlCg8gnAXKKJGhVavi/qA1mkj0LobAf3kevfRGbUQQmd0aFWRqBAHUoTMRmIlreI1og2tBAfSWqM2y+0NY5jXRUiEbJP5JQtrtv21l0Yv1ViHvm9DQ8S8dOx6zqHPlClyyslMEjYptd2fntzh95SMaMOJGF9qmbns5mTepqFz+hm8DolnHruct98TIHt6dYjXgmN0BDn381YbdWq+84+vN/yHjehzK/quCZ2IAt7Zv/xdDMoSO9syuKyD68VouTahFEwnYoYtikKwwq31wGOHUm3EHlM0G+otkpeIhAqjWmHU7K6YQSuGOdhEM4ZkuVYh+Q35Cu+8HO486QN20CVEEmMEtBvtgbMJfRErt4A6KmnvVVgX+PK+8eVto9ZKEOi1gVjsRAqBlBfSshKSZbP96PG43/nbv/2bWUavGzktlNud/jiQUoyKe3+w3HZCM9ptzgGpvhFFR6OmFsDR3K7OnPdrEUUIKRJXa0Tb0ehNT7TudEl7qfnmiP4Jwem5+NTNTDpK7S7UPjWpc0I4v4YnUie2oG36ZhuVDFtJUTJpuSApckihjcNQctUnpcl3vUet/HF7EFKiKXzuldoaH583bvedr78K//UH11uZjagXhSHaND2apX9ozTU0Jm7f1sxVNq4pcO2ZLWfy9cpy+cJyeSNdLiARydEoXb5BvDajIgKXjfjrL4QQ6dsGb2/E40BrgVrcJGYQW7PX4JMaOZ+d0dxsZSjBY1lCs4JdhiCjwzh3mpez+0RYJh7DSc2aTFcvS4xu4tNwAk3sOUJEnT6mdHBDrTlJ5T9oRDtG/T1pHiIUEYofnFltQ0rYVCC+oPYvMIs3mfP9PVE6fIk+Fy8vzahtujZ1VUeCx0kZSkFoLtFS9Q7NOzWjmYbnaEI8N06HFb9eSHdMo5PCzDlNEMz4rY9BSolfvr6zfvnCf/4v/4n/+n/9F768bejjQX/cXRArzsZ4Th5nIwpyyhVIwfTJCKH/eAI91DTcNlQ02m1MykYgZUhi+1MO4WwkZc5hVc7gdRuaOSiTvMnOyQw75q/JnzGxpGgZgvN7hqdco+M5uGPwWSsf5eDbcfDtdiPf7sR8A4E2fF+rwzMVjYLl2IMju35N1A7w2hqlFGopJ72zt2Zugr2fhVo9DsrjTvm8cdxu7N6Ift4f3B4H973wOApHqZQ683WfbsP9B03/fFjjJmfxC+oU/BdEWV7A3LkZOYtnAm2TbTKmT4MX2ue/09dG1Ng6OgvuGGjdG9HQzzMbnsVDjIHQhk+u49n42X4QjOEzm8GXhvSUbzy76nN/maerjqk/fQIoo5thnRD9vnSIyQHjKU2w+ilY4faSR/ezCd0YUJucrvJtDJIq2beGmBwEz5EW7byqo0MxoG5qmFSdcnuJrrsXQld6sterLXgg/SDlQFoS0U1qzAHTqN21mjTn0EEZ49TjPRu8SdudAMPkiczpku/X3UwIU4CFwaLDYpe6aQ3nNKRrA+mkCHGNpGtCU2Cvg0d1cxh93jszbucsIM81NRew/8mPLzcxRn777Rerjdx4avj667U/Kfxzzx6Ws26N6M7j9uBx23k8DmpxKYavMdujffI1i3qUMSZY4uvNGzKCAxb+emM0t9Q5retOZZ+N/uidWgv7brrG2/3O5+PGx+1+rrkYEiLmUhqjgYnruvL1/Qv/8ttv/Ou//oXr9cL1spKXbCZDYuwXHUIMmeMwZ2AdvLhG23VHbapcaz2p9jMZ4WeP6p4fY4wT6O1jeFxMP6P8TuaIPsHRNsyoTrT5+WJGe51hDrdRkQ6M8HLA6gn4jrMZnQZFetaJZi4mp8+D+HRuUlUHXif4FFBVGKXTbzutuZFUbcbwux/k4qCKdvSolNJ5xET4uMPe/WcEGgPE6wkNNBlUsZz1R4B7tJi7gBt6qpsMtuBsHPv1Z14WYwyOdhCINCwznWCMQkmQxsoyVpa3yLqtrGv2YdsL4OHnT1RjR+WYCEsiXyKXNXPdEkmE4/HgkAe1VD9vFaQjUnFaydlYttbO2tmLN6+th0eTdXRYZ8QcNDgQ96xx42kSN42fhgM91pN5zRWd8TFZUPPc9fVljShn3dhnZ+USrjFlNrVSDjuT+QkVGv7/mIiG87izPzu3A5mHqm064pQSOZ3lAmD5gqUtxLqgYnSAjtiHGpRB4KiRMgKldpp2VAy5FzqxF2I87OIx0b3ZCOn5KuE5sp5oTvDXOZvO1ynhOcllZqA9i9Wh3fIORyOM8ET8TiQAj1eIXLbA9bpxfduoR+S2PlhysqKcpxg4uKD8Zzv8fn/w93/7GzkvbNuFNa8c3z6pjx09KnJU0lFJpRBbJ3bTfoY2XLf2bCxmseKgpF01nYpCewMhRkcwlUg3nctw4FYdzf/uM7bL+pxc+kcBHpoLDaUyXXGf1NHvKKvoswniqS2yfsKofDmvbJcrMS/AzYLSe7NiRfX8niJCaZ3bXpB4x6LgTKP3edu57zstXn66+HXokzo814pTcaOjnD0nFs1cdOUSAm8j86aDnDPhciVd3pDt6hRbMUddORnFjJOeoZZHuq7w5R3NCy0GahLasdBKYVRvydVQTG0VLQWtlkUlrRLa99NS6R1pas5sfjBpd2rSLBq9uJ2Oz5zmAo5iwlPX/VLc2/UxDUTCtDUnddhphfN7Nx3uphj48QrHDiPxQkwNxZ4B1hYJYdEk5ggtxMAZmZL8fg6qZ5RLwDbBuTOEFwDl7Lbn2ldHLHXuX8MbLr7bJ8JcWyc87fvbNDGJRsVG5Fy389egRlcLCjlbETO8qFId5Bh4u2xccuLXL+/88uWNy5Y5eqXvT2qVNaBz8hh5xtQoXZwGOTN8JED52RWf8oNxXg1zaLRiP8fAGpLl58VICu7uiAGHPY6TajwlGDYJDeTzGb/L01tz5rouXBfTTi3eoBIShEiXwKFwDOXbsbPcb8j9RlflaI392M1tfPJZ5z4mwkm79o1torcmjXh5PTHan/k/YQy0dVvLY9D2QnkcHja/W3TE7lPQanphiYmYF9bRaTgdOlakVZb842NzTptiMNv9ufzkvPqv1NSXhtQLaZ0Nphd5HXVndpuynVMzscmFudp6g+r78qRRnVmc4fvz4IwtCiY1iO4MeTZ9zg5JKbJkWIYSHR0P8myU5/Ewz3r112X/3/T0THq2N+Z4w6kK56COKfkwV+c+Tau8KbWn/HRaNNSa0O7Tkn5iUC9Iqm0STLooXvgPheF7puCO6Wm6l7q8pzVIybTEc4NxMGo2XeJiuSGBhlBQHmPw6D51GvPfPEEK+qQZvjRu4jmM+qyrFvUaQrAzoTfTAvt7R43+PPeNlMzlpXY/bScQ6ffNk8EWniDD6xo9G9Ef7ykhCNf361kTIka/K1jjFYKxiULv55obfXAcxbI47w/2/aAeldFNfpBiPBtrdV2QgYb+WsMsiKPXwlb0phAtZ3ICPeEFgIRTo6aqlhW6LGZ8JcoYTyfmGO09T/f08x5wZsuSMov/mlMmOYtOCCdTI0hgyQuXbZDiwrJ0133ruTfMhvicgvJc6/KzBY5JLIYtcpuQv9wzozlg5zqRZyOqHjXFS4NqdUIcSo9KbyZxiMMrsbmJeJ09m9EpE5oNqKgB3mFe7PPenq79L30CTxmQtIE+dvq3D3p+8GidvTWKTwW1VhiNoZUqwuNRkBBI90IshdgnldQ+/5kOULzu3EX5RPlAqaIkjB2R+iA1a0TbmNNQl0X8cE9RSu1+t20CzwABAABJREFUes4d2wB4YmIJD3q8ozGTUyCsyc0on+X9vD9nb6ExIdmj/Nx7Ygkgkhk9MMbOGNV9aKwZ7s0iM2caRxvt1JWruInacJOmE8BU3+ejNZUMRB28is89y7ZU64UYVkPNQcVsPsNL0yqCM1ZsQU3DvblkRHh6mvROLY1WHBj2RjT8B0rQnzeis4HDF9X5/+V8YfYiDJXCc3VaF44SiGJ2+Z2Nqu/s42oFlcwGzazhCYnACiNT26B6ALOOwtBKKTtHS5QROHpjr5W9eAMRxLWXdogOnRz9qQfz15zssDX0tZ/F6GxOZ5tkqKq5+7sHN9LKdwZIop0gSoqRxXP+JCRah9KtsSZGM/lplTruDAaEQeqZ0d9+eL33x8Hv/27W4OuykfPKeOzUzwetVLR3K8LVxcUnfdNcccMwDV08dVnTeno22eLoCqjT3XTYxhQ6M0bVtKHP3pbZ6j+hCN98ZpMpHlIspjPsIVjYerQcxkl/nOvo9e4XZoNhhVFIibQsXK4Xvrx/Ja8rAei1elivo5sn0GE6saM24mGbVleltsbtsXPfD67Hcb6L79Y3EGWK/af1tQu/g2XTLUsijIVF1MKBezaETUBygmWjbxuyLEgyQ6Vp+jO8/B8GQtrmFAK6JPRto6XEZwl8PpTqbsGqVgDmmBAdNtkpyXRs3SI1ErAIMJTUG7V1Uh9ON3nqmLUbtQsvZEbrz1+9We3TrGZubvjmPAu/bgXTNOSYEw/EdCZzOq7+OQ6Hx37Wis6s1TrMfbT0arrA2hjNipKoVuxE9YyzEHxyZw2p7TSz4HedkDeQ50E51+xZ6NsSkGE0HdvPgk2pX2hF5yE7EfezlhUkBptGJkGH3VNJwklHmtPpWG1/iYuj/F3PzyEKbClACmQ6WnY6nV4O16ZPdBIkBJsqpmT3tB8atTfatICPPi2OP7zcZg4hka5yMhdkdI9nAmlijs+exVuDHzDmPODaXY+ccs2VdCH0QKienev03BgM+X9bN/7y5Ys15jmxpcR6uRDzSkwLGpJFCA3on598tk643dE26Ic1iHUvtL0YbanbxJ25Lu0DsQmIG7zlLFwvC1+/vvOX337h11++8PX9jeu2WmagN6LNjeaqTyxKMT3o4bb7tUOXQFo33r98ZcTEe93Z68FeDh5lZ6+FZb38tFCPMaDDQFkVPafwNpmyu0WUk5L53FdfJ1T2Hidw2nqjVpuq42t5uC57jKemBzi1/pPi6N/qnGDJlKPE6I7g/vTPMPkUKKfIku0Zz+gVzvvdhhzx+X1PAM/2TiGiMZnRh+tKrScUZvTH8KK5dZsk1tI4jsZ+VPbDPp8ZO/Sz2LOJcs7svBSixZmpOdibxgtUO30E6M74GM/7dvgE95TziBiTqE8jLyu0xxhGBYzQW6C1gdmImOPn3gZ7G9zL4LN07qXREAb91LZPAC36/RnDNJEyfaoGL8mC3Wum6rNpskW1OUVPPerLQTyb+CkUkyqUxvNMUJuanBPvqe+OT8rdSc99BZ9/9PDX/ATvA6LCSPbzZzOvI5qZUwh0haMUPj/NzKceBR2dgJJjMNDipQ7zFsgm82LmMillUja/jemYv6Rk8SkpubRGXmpMYWa86xinlGCCeriBXwjC23UjSiLGbOtWrcBXtaI9CtRS+fj2iSDOBMkOmBnG0Jo1L6oQxO6fqXmeGa5TItBao9bqJo/ddJLnnfXPj+osjDAGCw4aK89p6KxbeAIKzyxwZ6MQQS0bWhFa92d4AR6CMkJ3d1Ov/edwx6Uaqavt1QE7J85GzY0yT5qnTW2Lmp9CB7QUwscHEgM9RYqD0Hu3+6Z08y4RbW6qGNhFyEcjH5XoXicTYJnO/lUGlc6hjZt2bnQaSmaQxyD3QW6dWIPdMxpfatofbCkKdbzUveo7uPiG0ypSd3Jd0JEIZKIoKfqZnTNxWaz287XMkiBvaF4J64XlcmFNgd6FVtWzZwMM8ebP2vw+Gq1aNI7tg7gRbDTgJSQDAcRAbxuyGVgeIgTtiFbEJ1U2SHpKoRiKuf4L00dDgung5yT/ee/PwcY0NXLAyO+j4XtTa41SjY5r09BKrZWUyo/3FP6PE1FeJocvf8az2bMJXETEpp+tz6lkttgP/ULhN1b9SopKTKYj0FFBKzoWhl7RsJkJxbBQ5tF2etspR6a0QOlwtN0ye45uU4MzmDeikryQtsJvbqQpTpQuM7Aib/S52YFX3GfhZUGxmMC/VfvA/dOZSFmOgZQW1mVlWRbEbZyrI0ySIuo0kK5mPE0Y9J4Zvf7weh+Pg98/D2JM5LySUibUhpRCPyraLL8w4gWzN6H0Yc2o2satjnaLU5RtxG8r0HRGfvi6tpRujmrhaUl7OrzacNQRX16mYS+ojzWj1oialbg14pKssTxPfJ0IihUfk5AUCdZYzMNmWdguV75++cK2bYxW2e93Sjjok1KAFVZGkTTDIjkqilDHoNbGfd/Z98KjlCdy8+fFH2yjCPhNNYw8HMQs4decSLqQxWJYonZDiZKDDSlDXiBnNEaURhOjaH4XezKvlQhjyYzLRsmBj1vg72FQZNBFIYkZ42wbAWhlpx3BGkun5cSUyDkSRWi1klqjjUEb8mxEqwd0qyKOpk5Dll6bFfi1EZqb64xx0kvVX6xJFWzd2vpyN805lZLZuvryst0IQjzNNv78CN6sHKNTWuN2HJTaLWbDG14BwpiFUiCpU0cJWASaNZ7nM0L2hnTqZ0S90EOeQwz8V9cNzf01Osp3NqLYDHEWQ4a1GcXQjEzsXgozSmEW1gqxdXL1KVUIdn472i2qpMC5b2Xt4C6PrRSPgHpOqkMInt9o0z2colndnTpisRYx2hTlx3u4kLD9a8z3NZTR1PKIHR0aAXcr7BDkxCFUZ2OsJz10MiXUgT5eJm4iwi/XKyoWh3C5XJGUWLaNdbuyrFeImUOFXeFQYbndjNrYuoXXP3bqflCPQivN8lJfwJFZIs3DL0VhWQLX68KvX9/461++8tsv73x9v3JdV5YYrBGtzc4XN0+oxYxIzucYrlWPLNuFryGxvr1R+0Frhb3u3B8P9mMn5OU/bEQZPvn/TjRln6vMCRXWMMwG5ZxEeUOKPCm6tXWKuzFPTc90zT0/E+z+bd20rAYgGMB2+jmEcAKUISZiMDO9GI1GnqJRqo1uHc9fY5waak465pM2PgPMg0+lI5ojUTIMM+iLL+tDHOzqYzI01J3PuwMDpq87DqNFmxHe9832dw/FpzOvxdk4He67UySGCtqbn4HycizZ6zkNDgMEnxJIGx4Sbxui7Q+dEIyyG6Mxip6NqPKoyqMObmXweXSPN7PdZDbiUYQlWjRSTgayxSBojOB5kjIM/KILYzS62vcy/4DhjBvXlI3nfU21vcbynT2GEz33bVMY2P5lk3Cx/e+5aXA2Jj/cUzj15NM4pasQo5LioDmQoeqT0RgYqhxH5fN253F/UGs1+YnY6zgBGN+8Z70ZHYDMIbOsK3lZzGDKJ2JbXrisC5sbJuVkRpVzzGvT7uou7raGhteXrTfWHLlsK12VFDMpLkCglE497L6rDtbWo/Dtjw/q0c7prN0DxnZLaSHlxUywxLTyGtQzH9vpE9Dd2LG65Ka5xOYnPRFgjSitkYY1D+rNuEVduaeEr+uX2wJXjZ8TNNRBd49WbCPQRrCzXYLtOUHQ0F2VYrW9O0i6R4syZLhUwqvoYD+ru67ZGFImCwn+mrsq4yj0jw9Gr7RgGs9pgliGOHDUEF/rB5AQlqYszSab87PvWK1tLv+DKpbW8GDwEGMOLShZB+swZk+uNriyY+vnzK2hUJ1mPBtRPfVpirRGqDu9ZegrgW7+ONElOXkhL82ADD93Zclo3tC0EZYraXtjyZFWBuXwZrOL1wsTAHDpgDYsntHAJ7Da4ilDGijppOgGXJOaxJrQDmg7C6EJAuroBsrZ+Oz0zZl67ejO67MWsL3TDY38/Dl9ZySANqclmwN2OQ6LYyoGvCxp5UdDIfgPGtHpgjjD5scsOCbl6ZzJ4p32nKiY1XnXQNdI04063gjjjREg9u6N6G5NEYnRE53E6ErvHtjaGr0leo207qHiwxwSSxuG5opTcnEDkWF2/tMKH4Qen9qZoRYT0Hu3OnFyn+fNq97R137y3NHnYaspE3ImpM0O7XVj3bZzA40jktdBXgdtFMKo9GrZqaMKfTRvdv75MTeO3jp7vRvNpVYLWr/duB8P6qj00AnBac1O0+t+Y86iROfB4ho3Nyc9f1Ib3dDWiZaKHVQ69aWOOHUmAoIX60+aqU700ov4RYS3mGl5haUR1sZ7D2ex9MxW8hm0PkX1Rid4FmTTqKD3ORGxJjyLGQrZArUDRwiE4YfOsBvRMGRlBP0nKvF8iMC2pBNMQYy+wGiMdtg0XBsRE3AThD4iFdiHFSD0DmKfUSyW13a0ZlN9fWbKTk3LnJL2AIcqt175o+wcx3HmRb2nCCzkIHQxh86uhvCBsK2BdF1YY7B7o1VqV8oQylCoDS0V6dForbOJ6c2L8EY5Kq3YZMzMXGZpzKnVGgO0dUab0R6OKTAhHGMH0Jv9P0kg2ackPylifINT1E0jqmks/aAc3ijhU6PgzUHDDUi8EY3Dp6EhkFXJIZKCI7jq5kPW1zvd1hsXP1iCGk0+xogkK6Infc/WtxWd8BwOD98DexB6DGgKhOTvVb3hDO5W2CedycCZJSbI2SaMPp1axiCU6jSnwazGJmUQOI1ldOhpumP3qx2oIyS7nvHH4JaBbqZ5r1U4qvI4BvfDJoE5JTRHlhycomlxXDjKPyfDYwwL3q5P04Q+17NfHyuy7d/9Ut44ejVmizxlCTnYlKz4GqsKR+s8SmU/jvNZS2PUP9EyeN7H855NSciL3RPXS+L9feHLl5W368K2+vsSvxCzEI+BuGTyZTMnxRSJ60IuVy6lcBTLV63DYj1aO6jt4LHf+bx98nm/ocRzkvRP1/xFe3SekahTmXyf87vt9VxS/7ddTet4VIuk2t14aWpVrQiY+8p4+Z7WUE16ax/OetH+vGhBMGd7C64PQU3zGAc5DXJKlo83Bn1Eb2qd5hzMuMJQcouxijES5YTZmODNXHzDC0DrBYXweg7pjKgaxoSqRtHb98pjLxy1vUwAfl6l5+1CjkbpVBqqjbY/aPuNUcqTKucTAJ192ySM8ALSdivSrLZTa0RdFkHvJxtKHajFpQvW4Pj3e9HIdTUsr6kbB/k9ncTyMZPMBtUaMmJEk93TcQSCRkIDqeNcJ9a0uPzFtqpTn6fD8gVnDqztY0+gyKaCyQxTlsySs8mFznP9eY8ld+r85z1Fqc1MfUIYRpc9mRN+s8oTvDvFxRignUNkyxnZNtuDU3DJkjONXu7vE3SMiWXZWNbVGlGf7FzXhbd15eKN6BITiND05f7ACufZ/M2msGs/V6ztJQspZUaH2+3gU3Zkrwytpwb22ItpIn1iNRkAMQbWLXr2pbMEJDiai5dJLyxAHUh4uqgnTR559ON1vu8HejzIy8oYnelUnmJEY6AJp85vYLrNeRuabMUnXtj0OopwDOHRFWSQVUiOPk9m2NmIqkdF9UZvQsVYi0OmNEXOzzoMJWonokRR7Chx06Iglh/fO60Whn+OXYQugSHmrWF3xpP2ra4tnakXtpfZU1zrnIIbpTKQR0EeB107cRPyJoQ0GNKpdZAyxGyDqTDiZCF///Dz1dqjBWUBFggrIa7uvm1syGVNLItlzbc26EMMEIuJtFSnmttEXmOiaqCqxQcNBPWhUYyJmBKjmbXsTAMYaj2NDTfC2Wd5sYKIpztYK8mMzeTMHFVcBGy6dKejD98b1JbA+T0l4AM7n3zK3LS9fdXOdKWe0pCpxTbjt2qgaavUPif+42xkf/b4D6i5z0JoLvzZiD7/3DDcuds/i1SbkEpISNwgrWhcXas66KMwRmN0ixDoswHsLjDv3bI7u6LNUBjb98cZwq6C6dF8MarfML1N8wF7RSEIrVViMf5a92Ytpen6GF42gGFoTau2qJr93KnVknW1PK+gp933cnnzjQmIB6UFti4M7sxMSKN+FltI+uNGNOREWqJlW91NS8FxEEqBx42yf1J0Z4RGjEa/iklpYSBhPJ0xhxL1ha4higTXBnZb0OroqerMlXREM5mr2iJq2hTGU1d4UhZdP6B2uAc1c4hVIiln3taNL+vg13Xw0GionW9wYMVWVaWoso/BrRuVovoKUh2UVrk/7pRaeTzuHMeB9s4mgZxWpl5NBVqAamMa2xCjr4kRiOrTyx+ub+HtuliZ6AeXVSkHrRQY0xSoob4u6dYQHDp8QhDM2MjaYXQM48PPIsqb8OjXLgyjr8TWKKLcd3Ptuz92au2n1mjJkZAE+h3pRluswzaiLoG0rGxLoCehNSF0a35aN4TQNH2DtGbeXEivbm6wl8Zjt6JP/R4LPFHuMTweYzaifTiy/IxZOfWmvUOrTg0zSiIh/PRAnc3eFN7XVgCbnoQY7OdMEw+fmpgrnmAx1XLKBGbjY9SuSApO4xJH0kX8z7CJA66LGnYQawhGl1gMwZcUTh3i1LlPUKZbiet5qzb1Px2Wg0XmTMdPohV06q9RYiIsSlZxKrTtP2uDWLtv/+qFqM1iT0Mun6SN3mglOJoZkJghRIjJ6N7xx5SXMYTSArUpj0O57YPbXvl8HOy1cl03wttCzG7StWRCsrUnUbyTNc3HroXeDmo34OMEW8Qa0mmIsLZM6ZXWqwFvfWZ1GuNg9EbpcGuDj+Pg2/Hg237n43hwO3aOw4yGrMrm+Txv3DnVUVIS1iVwWQPXS+TtGnm7Ji5bYFlsT5Pge6FEe58SkJRI68rW3qwwnQVqn7RHo6qP3il1p5adj89Pfv/jd759+4Palb8d4YfH6pxIvpr1zEI/nMCtTeeGGi2vO0WvNnuWNtiPwuOo7KW6KckrwMo5OVd4TmgQZ8EoYUSGNDPgO/9zOYU3MzIGXTqqs7AetBEIOqx2wYrn6PTJOAJJjXY41O8rjyiK7oYbY/BaAY90guZOqva67Yzqfp1ad/pt6y+T0U6ZVGQHr342MtrevrDm3+wu1Yb2Qrl9Y/8WqHLDNDJO7R3j1KefWlWdOEWw7zG88OoKtSP1gFaQ3ghmoGA0SgepfUk6zjHBe3PMjyHaNOREl/yeDg5wq5Xd0c3CSAkWc4sPGu3cELX7RztGS8X2BJ8y4ZKc4D89aEA0GiCnz1ilOBu6vLBuF3dz3cxs52Vijzek63b98Z6ig/t+J4jRuGPMaDen+tasyQNlJiogxnbKMbPllbZdyAgtZ5/Aew32sq9PmvA8l1KM5GU1w8cYGcEApbdt4cu2cl0XByMjvQ8epXC0ioRIzBEJsB/mht36/FmTfpjc9TaTYvJz+JNaGrWYdlhdj1lNz+CMAh+BTMOkWe8Gm2hPWv2YQN5k+o0Owuk4Pp35Q5KTjvnnx+N+pz0+WdcNbf1kw2i2M0hFaGN4BrsBj0bRt2vadYaB2fQqOhgbutLorqUUo6K7bEfcq0FQiyWqBqbUHmjxJJzahXTtYQDiGEQZp2zGYmncNT1GehJ6gOH5sJbVmyBkZxxCDupAsRne5RDJmERnejRYvq81ryFHi0kLcL+ZI3Nt1SIgU6eVO+XxQS07MUFKmSWvxPrjRjTESFoWIKGyomxI2JCwEtPGdr3y9nbl7e3NjasuZnAaEiEupGUjr2Z2Z9N3O/+GOg25NvbaSDL8fsGuX4zElM5Bku02gzMqbg77fNMxgCk8gQ+JGAVXQJJTsg1VfvI/fZDkuuB539l3M5brSbHt3c4CB1Nn7TfOfq09PQx6p8xJaKvmRD5BVtGJLv1wfcP/aSI6UalgC0m8mItuePCkEdmePA8bcUQhxMWKJsloyE71tAvRR6R3oU/3rNZcSGyHLi+UE/F/o+pRBMM6qBBeDVScmnQ2oo7siNBaMUTiFVInnyJ1cXRFxKeirdJrc1c3RVOyQyLZzWwjeFusebk4FUSIGkmr8dlzadRUGM352b0bqjN+BMHgwdxG47jVwu+fH+i+E+pB2O9oe0DohAWjQfaArgFdxOzag02O7D1DcD0b2U0AmqFSMpQm3mQKNKf29UXoWdAMIRqiNVFFXJsyheK2OEHoZyN6EeEtZca68cum3JtySHLAYTay1og+dPDoykdv/K1WAwd8DQ2U3gr78SDUg+N40FohMLiEzFvMJJmqK7jTudPp+IQ7iTWhI5K0E/OPN/cgwuWymOOXazAMvWnnZmxdmSGMw1977Q1tzTQBbuphdLdszV4pjrh60TPvCWxaN51/myq1ddc8V0oz/eu1d3NCVCFoRbTQtDOG0CSa1jjDtgo9Cr0J0qB10wWFAVKVEAbrFnh7X1hStINxDHLpyKMRSrciZswixYrNoTYAaE7fHq5DeU5ahjMXFK0NrdUNE0CbgmvGfvSYlJBz2t2ax4HYYV7haWTke8UECcS+wWlGNKdw9roHOdpUNIVg6GgIJPVGVdSKZrWpTJLA8OmDZqPDxSBo4NyuZ/ejYprfBq67sYB7Yibm7NRcK+pFQbrZtc+tJiDEJCwaTetbbG+KQ0mtGxUwiNFgvDBxeM+KUAzE6a0xrSUlJiQme/3ewP74egutR2obHAX2fXC/d26Pyl4KkMmrklTOwjIs6ZlXh6Glo3V6E1qZFLBBbVDVtDmdQQxKjFB6pQ4rSMewZms6QVsjYM7aj9q51cLncfB57NyOg0c5OGoxV9phuvdxft7qw0XTsoRo1zVnYV0D2yZcLsGbUMhJT+qkLXQhZMsJTvBSgDwnePNGnU7SQ5VyPCj7g2/fvvG3v/2Nf/z+zn2v/P2/f3zXGM7X2LyZTDFY7JdMSqq+/H42EYYUtzEPcdNM76XxOKo79zZ/hfOgff7M0/0Qu06nqYsYKDZiNFOWyUrBCtWTgP5KUZ3f9HT7mkYWdj52b6rtax3U8aie1yY0zUZU3Ml4jHO6wUT3vQmdOrnWvDkdam6aHoEysMnapG/+6LG9vfPll6+YwU1DW2FPiTDMubbXwmjlbEK/e7Pe1Nkfd78mwYC1NqB1pBYzievdAN34Pa5/7kvMmcQTuI8h2lk5ga3xpFGLT6isxrKvlRghuX5XDVDW0dEWUM/lU+ZU15rROW222uwZRWdeBsN1luGk+i/LxrZduVyvbJeL5Zy/gF6zUE3bj03+VIedzRJJaSEn26zn+TlGPwvlWRwGMe3ctqywNXqIsK7ksxGNJ8Bo12bqHW0PDMFqrZRXQrYpYMiR923l1+vK27qYjwCBUhvfgiC7EnNguSy2foI5cdv0M9rPzonses/kU6l9rxx74xbvBjb7Rj7UmtEQzB9B3ejJ2lFrQkNMzOjASSGdv5/N6BgdCZjhUbBYOANzhBB+PKTYHzvl88b79Z1ejUWTRHyCHqkizuZTOtGNMv36+7SxixokIVYzRweumnLGHc3PX+XV9Rr3FxjGzBoWl3KyFESsAfdBQMI0vdEbWXPkD87cCfQlmhO1M5FCjGjMxLQgMZGj0dZjMqlWTNnPdps6SrZ7hBitgY2RvObTufZ+e/D57c5RdpTK0MLj4+/UdtD2B0ogxWSOxz8xPxcRYs7ezC2orEjYjAmZLqxXu3+u1wvX64XLZWWoEEImxpW0VPLidd2cDpaDWnZarey1cdRClmBmWhg4JcG8Veb9qKpuIunMkPOuOF8oJ/w1TeFk7u8GPjgx+Nzu7GN2kF316f/ne4k43f9p9DUn9XpOQuc0dAKorRuQWNxZvrb2UgP7/jSBqZ88ftiICk6Bwww5hhsS2fdxaok83Wj9/RvNDH9qN6HsaGivaCtMmoaOJ7/dpJiBWs1IrvuhwGiYlfOcxOEUFM5RMX65RazgGKETojVH03hmTkUJ8+OY7o+G4pssw28IlFwTLSXviqzAW9aVdV25XK+8vb/z9vbGshh1pZRyann2fef28cnjdqfXSgpCWBY7THQqRX48nn6Ug34c3B8Pfr9/8HHciL2xSmddI6tsLOtXUtsIzTSdeVtJbxfC9YIRIuzqy1siyUa8CtQILaNteLzHQEb3yabRGDUEwiUT3zLhy4pcMyTMjVUGwQjULKJsLmgOPjlNdOJoLBJZl0C8LrzLoCSlXaObIrle0W+uW+98ts5WI+OAWoyjPpLQE6Q8CFLs0MidyzWQuvBrWvgaF5LZHmGRH9ZclyQEb6JDgDiM8jIL6n9a40G4XN/ORnQGak9QZHSjY2nv3hBYAd410IJP1bwJCI4iMUy30EOk5wW9bGi5wrogORNyQpaFZbvwliK//vZXjjbYD5syBRF+va785W3lGhphV2TvPNog9UAh8rYtbCmwxFmM2JpSsealZqiLEgd8WeA9w5Kt2VGCaeYj7DXgUg+nP1kROamBrU+Nzcz7mnb4RtvtahNTdfaCPW1/eKTwQ8bLoxQ+hkXu1GFGB0EM6ZQQzxpxUkLnnfJn2pj9xXDaiv+BDoYILahPRsdJ303+nCyOFOLpxLv2zqqdrPGkm8rLnaq4fX0QRorossCAkRM4FUzOjclntml40WkAVOhAUDf0URhepIqbSgQzlliWxPWy0t8ubNlMP8Qr3Qn0BdeRmf7K84njj92KRNwJVN1EJEdrxqoVto3B3itSD1roVGlkjeQcScP0qUuwqJbLZbVJc07EIyKH8GhegI7+MlTR82e/orXTCMtl6Vbnn1jjy2iKyeLw48IjByY2MF1Z5xE7n5N+3no57+M+hrFwotGo45JN38kseF/W1Mu+PEFW1XHSirs7f7Y2CPFA+PjhNd9LpZVKz5GhyTwKnG0waZK2/0TSYp/P1NOH3JClE2onbp1UG5fm4e5iMofjKNRaiDGyLBYx0VqjloogbMvKlhcCyujVwAAHAAYGoGgwI0EzyBByCqcmdF0i65qezsPTQdEbwpwsrseMXziNjKLviZMyOCnRloN6rki7X1xW86Sm2VcMtTzU1gapdEQOR9TbT9H0vF24/vKbt9YdRmWNiYSwx2w03bJTWzH/AO2+hw13UX5KWmwZDHARBe6CZDXGzNj7wfP57gjitZNTmZME/5YKanplmyRPQH8WkE4lHR5KN9lHzkD6TmN7FqB27ROmN10Wq1NCMnfqqkKM3RoFScS0ki9Xti9feX//wtuXr+SUT+YW+jS60vATcEuhDgNizTcgGsDg0/3TLAunA7vp2mVZ+XK5sKoyckZ7szoyhifN/SyKn0iB7QWeVex1miRjN7xtK1+uV75cNtPbEjhKnYgAkgJ5ywYwHsE+/96JyfbOFE1Xukyn7RjpyT6fGa0097GZBx+jZZzHlCyuKi/kvFj2u0TbtBjnXubE7XPaZLWo6Wut2VpIOTs19/HdPjQf4yj0x0693zk+Pjjy6nU0vl6Gvd844RCjB4eYCDoYwUA5ZLIcwxP4tE7TPq9hQCpDmdRjSQkWZ8tkM4UaMfDc38X2Ls+NtiDFKZiDwHPSRwx0z/OVFIjJ6aju8UIILDGwpAk+pTNuJHjjTjIm0wjB0zcCaV1YL2ZM1/MnB5G2R8YoMCKhXgjLRsy7yWmiNdg/LAyxjzAmPQds6oOdEA24SNlAkZQ3v+csMSFQZ2Vqn8sQRjfA1qirhd4PahuUCkUifZ5Xoz+NWr32UbDaPKwk1Wnh4vRpPzvBZXnPaaWoOQPrUEyo5iwF72NPR/ognAZFs1kdVueF3qh1NpDOcBmTIacna6735/BvuJTCbji1zy/0ZwMdfuKqyP9hIhplco4DUeKpt4tePIYwTSMgTPMSnU1osIlOL9B3RsuIo3UwvIDtjKb0Ar0Os19HfHpmomXop4OlNaOzc1eC9pdm2DLTJm31XFQyixv8U7DpZ0xKTJYzZgHsdil6zR4ObsG6IoHL9cL1+sb17Y2393e26xs5L+gYHPuDUitHKRYF8PnJ434niLLEyLou9F4d9e0/RXZvx4O/P/7OcRQ+Hzfu5c5FLCYmpcz17Z132Vi0Ic2quZAzYVvQlClVLXNPhBAX8jUR2wJjgWZW6eouqDP2ww55IApxS8TrQrxmwltGstgUlEHSTvZGdAR1eray+t9FrSxBeFuEjYTmhbEJoyY/XJ9OpKrKR238USvpKJR9sO9GX24h0KIgcRBTARHW1Qr4lcBvceHXtJJ4outhgPbBPSiaMcRajXoNRoH50Y4jEtiub4TwRHNtmmEZraNVo522xhALCm7a6EQqppGQGAkpWjHl37dLoMfEWFf0erXpak6wGgUyrivb9UraLtQuxOVKbYYyRhHeM3zJsI4Hcge5dx51sPTEQeR9S6wpkid11BsuwZx9e7ePPAx4y8qbsb2IXhCv0ZrYo4XThTmKa76CGU9Y9rPSR3g66w5DXG364voGdT2pzuGxIXH/M8cfNqK340BLp5SDNsY5DUjBNd5E01Cq0d/Gy33PLGzx492bHvcVMV0Qdh1sn326uZ006uDUwWh06STKpUf66FyGa5PVqG72g9y4R2z6rJKwCCrQEBnOsjgjq0IixoUwOqO52ZlyUklF1EOl1aefkR7tYO4C67Lw9naBBhklRWu6pnhKvBAL2EQ0ukb0Z5SuIGLmMSi5J/LIpF6JPZkzYRwco6JFKbgxVE/kJbH2xHXdyGuwaJawcFkWtiOTHsHcdnfTwvf+OsHANfXxWTy4hmXq5uY+P9fQvD+tiMfNk0CDNaQaXLc3zwB8oqQGvaF2nrRWn9SgbiZeAzvMxRvRuJjR0Px+55H/2kRjB7MOIeWE6MqyNrbLG9fSUYneGP2paFQ4qr2GRZP31skmheI2/mq0w+SIfwiQ+kLrlaUNlj4oTdm68uaDZMszTNRS+fbxjc/PG8uSeXt7Z1kWbp+ffHz7QPvgsm388vZu+sNeGKM+3ZhDICwbYdnMc6HZ+RsD5CTkHNjWzLoli8XwKec8tIKEc4okMvNxG7Omm01Y8tiW0dsp8Z0SHglmtBYQJFkMmao6E8BMf1rrlKOhYkYtA/0pyyKvFy5ffnMWBATtbDGzeCNa7jfK485RHhytEls9nUrHMO3YGM+IhLkeRExTFTA/BsuB5mnmMcF3HCfx23ROkqKzM8Ys+JwPLCOcwN/U206waWhnNLt/JjATus+wXzrfswlwJkOMgRwj67KybRdCtBiZoysSKxIyEjtx2Vgub1y/fOX917/wyy+/sSzrqeNCp4TGNPz3/fFP11uxCf40dYoYZbhjusuZjmogozWiS0y8rSu/XK8UEbTauQpen6lPadxH4nk/Yp9BcKqzDz+Cv99tXXi7Xvj6dmUJgSyBoxTzhggGHoY10dTqoqPb1CbnxRut5PKNcJ5D01dgjnVnfEz0ZirlfDr45rS4g+5KTNno8WKdyxOc0JdBjYEHMVqDlWImL96IBgH2f95TgFEKY99ptzv7tw/L1swLISY34LJGdIr7RcyoJmowo7skVs9F+/sQnm70p4eCGrU2qEMcDpBZOsACa4ZsE0iS7+/zuqXkcXfxvJYzKcCm4fY+iTaZ7QFCiuTFrmVHzCBUxBtRu8c6Vmt4Bw8+VdXoTajTkcO2slwvll+NEFo3cLiJMdrzSlxW0roRckaimOPv7Mz+9DDGzTxsbC1ZhFXwz38hxsWAnbywrhkBknr03gj0CjWYudkYDpC2Qmu7m89BCZHRDlovNGcSNTe1UgedxM3kAmKDkWbUbnPTfg4jTM4zsOhJT4ca4v7BBrpZjeJAyCnd9rvVL8NQRfqgibn/n0AZcPoTjGfM1hm91aw+NMaSG5Cd4Ku1y/+RxOLnjajf+DOMVuT7DWZuuvPNIC8I3mgGCjWly87QG73b6DqEDHTGOBi92MFTG/WIVqj4AR+0IBSgEGiuM5qGOX6DnxNRt+3GqDNnlXG2pP6/J6L+RKeiZ0XlbEYrowuqgZRtyhNi5Hp94+39jcv1jcv1wrpdUDWqR6sH+77z2Hf2x4P99uB4PNjWhbyYq1upgDaaduQnH8TeDv5x/4NaKvf9wVEOwpK4BkGWzOLZfJuoUYe6QkpIyowQSY+K3ExpGVJ0SuKCsMJoPoWe4wjzdlcd9GDU3LQm8iWR1kjKQsxC7BWLJVOWAJujbhItOmELsAZzLV2WwJYz1y1ATXbY9HZOhuzAtoMm1kqojXEUHo/I42G5YxWMZjIpIWC00i2wEfkaV77GxSh7w+y+1z5Ye6TJoEXMJVH1eSP8DPUSYb28EYKcGrGZz9p6Z9SK1oNRC12rue8Nb3J8o5TpchhNp6HqdLh1ZVzfbMEti9E7U6SvK7Ku5HVjub7RNRCXiwncfUJ2kcYlNHK9QVJI5sZKTywjcMmQFkWcxiOY8+uqFuZt4II1WttitFzTUVpxNcCoOUlJallbYRaPwZqFph7d0dUyt4YbIbix0OtTfdplaJ1NQv9NAz+yz7k9Dso4XCvYQeW7QlVQNyBz2ojI8/5VzqnvnFfOIdo0URqME1U/Aahga1W8CQ069VfmrKvNPveUwklz8x3w+ZO8GWXmW6q/7yBn/6KBk94kapPM4bpsF9wxSbezbTQlkRdsUVhy4nrZPCKlEbSZ54BTdiwDLKJECM5U4eeb+0Q/jd4oTmc1PVLIggalqTlyN4y63EdgjAQjs4jSXXaQxCZdIQd6DdZABzGjDIZpjhSyPyNW1EzYdoIZp5v0/NzFroupCIRFbLLW56Q4uJOjgwSieOzClBzbWQQTLPEYHDAJQ4wG2DkjIeb0bEQnoDGnF6/NqMLMfBQ1F2Ar9Ddq1x9ecQX2o3DsxUAbR63TME3lsxGFEM1hc1niWUD0oT4pNloVEiG4o21K7PtOzOYOn3Pi+v7GkhdqrUi4wVCWnHm7bOQgaA+M7lRBAUmJfHlnub4zVDzrrSJiE5MchW1LbFs2ADRaM8oEDESsCHcd03E80KOZsclLwZ5i8knLE0zidBl1HZ2IZyF7I3peUKfktuFFk38YP3ks68rb16/EICzBmBDFgcs9rxy3T8rtk/24sx87ezEX5N5d09hfDWy8GVQ9zcbmGTKfz7pimuFMYyB9NuPB47/OncRkAtaIGg3SAMGZwxtO+qi91+53tbG9YjCnbdODuwOqNx05RJYYLetyW1m3lZASB0LqSizNJvhiBi15tWb08v6F919+ZV23Fxqe78aq7Pv9h40oYNIphRYawSdq7aTmqtdZtl7m2bLkxGVdSKrmMN/b6T8xxpwG28+eA1G7i+1Gnz4d85lTZEmRJZtZzBojS4iEKBxq2b9NgBRs6KH4wKCyZXeq9bUZ5ufmjfP0QHlOQ3k2o34vzvsgJaf1TrM3r0qfyJw/Z1MrExBNZwNnOtWfUxeldaQ2dD/o9xs1Z9K2wbqialTfmBNIIsYLxI0cEovnApMtW1aSu2b7FNptPp+/zvc//RNSgpwI20JYF2TJ5sHh08/ZiGZ33I5zKur3vjqYuywL67ohMdK007QTc2JdLWu6duXwadqaAquDp60rdTgVOpg3g8bAiGLoc7UJnW4b4XohpUTYC6wL40h0bdQRaG6SJylZDNvZcf/83AzBT6igIMNdce1S5mgAb07Bfu+DAKQzpHJoIWkhjAMZB/QD7TtjPBjjQeuN0pQjuFyn19NMq05/G8Hp70JOGcFkUxIMebdj6/tkhvGyN51EMZnuFuOlHnBg5GRizP7o5fcNB99mIyqclGGfmvaup39B793JG/OeMUngXPcjyNNo9AePn/+NI/EnRQF74er32LwQz4wk57+PRqdSSzNn1tIYUlC5EZ0LbpbXO7DTq9KKUEtwsbV441IIWojS6KES1LMUpwmPw+PirozBpwZxbgT++tAXgxW3UxafAKkmJGRSWlnWjZSVIKuFEav45p3Yto31cjFzotVQnFIqvVaOfed47JTdnq0c9FYJ68K2LLxdr4Rd6b2cQvUfPdro7O2gtMreD0o/WMegETwSJTiqZQWGDn1GpIRodN3UjRaxJuJmrpE5Q0pyjtTV6blhDF+wdpOnJZLXSEwCbvxQe2fNNoGrMZgtv4oJ9WPgLSeuW+byvrJersSwgmbaUSn7Qa+NuSPZtNx+33SQxuCtVX557JTHg7U2ShuexfqkME/NYCZwIROJtNrZy2DXwQEMNwgYQ2nFdAxmXz9o9dnq/Hl95/XdIwiK58UOknjtXAv9yPR9p7YHKp3oayEv2ZE/iJNT78XvWBb6+xdYVsLXr4TW0Gpa4XbZ0HU1s5SUWRZlc6fDSb/L0kh0Qs6YGPQLqTaWqtAHIapNsmhoKIxQeLqbCSFVWApBbRLbcmJI5+jmBNxUqJhOZIhTObzwV2/8BG/eHM21JtuaLSuUhwVUi32Nzo1HHMkr/AjY5XZ7IMfdizrxzWqAdlIQTlKXTtDrrBWejyCnO+XcgCdD4vwHsw4I4nuVNUk6fOKGxUSFruTsGrWmhCF2LAeYObVPTMvpTzwLRp1I3ARPUTOcGoJ6PidipEgD0prleJ78VBgJOyRdR7Wuq+2btUCzA9EoTGZQ1D2mxyYXHZVB7T/WnY8xqNUOOYuHsUPJJrIO1sgEiSB1L8Z0EF1b2EujpjvqOc29d8JRWI6DSzVTr9WvUxjC1waXquTSCaVBqfTjwEOaaFFd76IE6aSgrEG5CjQxuvQMUO9iNPgWzSyqYfQko4lymuTESVNOPilYFuK6kbYLadtI20ZcV59CP+mx3hraz1OfWOtcMbbep77pDPn2IvXHD+X+ONj3x5kRmGuzgtXp0+rmDxJNo26RExYDMXU9g2iGF8vFDFr8598+PwkMtJuBkYxO2R/Uw84cy8TtruO3xlzcbEiSubxfv75z/fobENgfO8d+gAchxKgsS2JZjaY7i8sZcaKIrcWYTv1Qd6+GFJKf7673EiPLBr+Ppv55ZnKrQtNq5oDOjurDHL1rqRzHweOxc5SH0b70x2t8W1d+/fLu7plCFKXFyFvOlPd3m4jebxz73eN37pRjp5biuq2DWo3uPKM1ujQGzQqpoA4kPfV+2i0OaHi9kVSg60nlzjmwJTnd5Bs23Zla8ojp4JZg1zn6s89iWyDqsBirDrErMib4ZSy14dq/HCNrymwps14WlqsV/BZdoaTSLE7uHCyZr8GSM+u6sG2rTYd7n8ei1+c/vt6qMKobkLTG8HHwZFzNezd4rWjTSUePYvA4F2MQjTDs7DubQtvs5+2lTvMNIuc0MuboazCiQG2NvZrenWDMlbBEFl2NlipCHBbDU/fKvh8s0bNHxdxWcwTBqejTcCvOxlM9TszO53DKDeQ8I54XzZ/igKOY9GKed1Y/v/77SXv82XjCHotfkGXMPMxqn6kb9OTFGlDJV+LlF+L6zhIzOWSCBLqYL4gkN1dM8QREhVNQYpKVZKZPw+UipEi+XEiXjbikczI5508BnGYez31KJFijUhtjKLIsxG0hhGjRHm2Q9Nn4194p3XN/g5xKjOqO2ubQ61IZAYi0odRuf988qqhHA9GbQhlqWsy9UI9qjuPdwHcVW5P6vTbjfMxex/7GQnCSVJJUshSWWFlTYw2NrAehufnc40673Wn3nXZ7MB4HlIL0QtQHkRsadlSTrVtN9NoZddBqd738M8UgiBKiyeiMFTAlFsNNVydMPxs+218JHabp4ykz0O/eoXiDOBldExAa7tETk5rYz1lNNh/0PfCcgk5J23wtNqghnAIUY8BGA+ty/n/aiM6bRGyh6vyYHBk8/1OzRg9muUnHaFG0QdeD0m40zWfWUs6BnBopN1pVWoVWxLRpiuciVYRKDB2NJrzvHlRtBbJffnE0NtoqVUd4dNIIna5vMkVH1QP0EVASQcwJa1kugLAk6/RDTDaCdw5/XhYreJxCVEql1crx2I2e+9hpx0Erh5vZCNu68na9otrMdCfUn6JeTZs3oI2jF0ovFrCu0VDXmJAshvA5ZSskQ7uCJGIZ5hwGRrN9yyzXhcvVqFajW2OmfZiRwcuiVIGUTScUglp+ZXlQSmFdEmsMtBRtOqdy2vm/pcj1Yo3o8n4hpisqK+VRuH8ulFKf0ymn5sLUXQlX7fzyeDAeO+tR2A8LNJ+5WFP3p2Iub6kLoQuNg0dVPkfnQOkTfR8mnK692wbV7Qb/8fIOpPXNPk/ZgUCIw+goITBKocVEJaCl0+QgRliub4Qv73ZzutitHjvjeKAofVnoyaYuRmGHdr8xPr/RozDW1e26I0teGGrURRHLQIuYtjqwoes79EaolaVUxE2buljR1sNBj8U3Kmcp9G45V2MwAtQgaN/p1aOERCAkzqgRP0gHdo3BzhpRo6jKRAbVmj/UN8E+7EByQxhxyikCUv/cPdrj/rnTbjfXK5r2UNUcIfPU0p0wF2c0gh1A9jpFbJKnfq/7SzMjLH3+0OdBP6elNvFjiLncetlfcrcMr6wOkk7jjIBomIgbE/ySMOzzmtrFs2ryrVfVCrJgjYyKd8Da0dEs/3cMtGHTjSZoss8/JaObJY0+bbR9L6VEzNnMBxzIMVKEXYefNaKqSqnFmBvNXWzVJAfGuHRmCN3iboaSq5BHI3VBaqOHnRJsxxgEK6Z7J7fOtTfyGDTwiWjgSxeubbDMRvSojKXQnc7a1CaciBDC8EYULsEAsXW6SEpgBCgRCsqBcsigKhBs2pnidD43rVFImZCWk4YVt2czGpflqYkSngCDPH9Vtb8QJrigEIZnLrrO09HkH19veOwH9/tOXYzumL0JjSl6FI67C68J1TeP04hkj9DRYMYnl+sX3r78wnp5O5fYH3/8Qa8HZb/xebt7FFOhlt2Mv8CM5VwnJMPWWkw2ebtsC7+8v/P1t19BAnfPdRyjoKMg0klLMFByNvnBvQfUmEIhWmFiNH3x6K1gtHQ/L0MyE69IPGnMp57ZJ+wTjOnaKU09AP3g2Hf2/fBm0YLQLSvxx/v4ZbX3NCdaIqCLySJ6OaiPB3V/sN9v3O83Hvcbx+POsd/t18eDsu8cZX82pBLMfVQFDRahpTJQJojUGc1+VvJJRRh2v4UA2Se+MXgTKq6Zdx+BKBiV1PWT1ojGk52kKDICYQyrKbt9lnYP+td4U5pTYk2JdcmsW2a5LJAyGawR3Q/Tlc/907W+ZzO6ZIaaD4D4uSwhUNuPI6FQo0+LuurYjfXmHigOeiBGsR+25doUKgJR3KEY+wId9nezPpDnZHAOOYLwbETdHCtGoy+XVtmLG4MR7PsviRwgdAOIS61oG5S9st+fjWgKYl4Lyb5XCJMy/Tp9VeJLIzpNV8Jrg3m2ks8J0Px1pkyM+XXepL5qfv/jNhSyfTcWVWtEXfahXSBE8hIJ4cry9gvrl39hef+VJa0scQERDs+eJk6dfJqjmpdmFHcxtklvR6ld0RjY3q6s1zfSkk6Topmti6/5mSmMmJFRa412FHMhXhLJJRGlN/ahZDXCV0QsxssNEc091jbno5mh4xDz45j9h7hhqcU+dVqe56EY0D6UYwwetXHfD9pR0Gp74YKeOag/u+yz37FB1yBII0olyUGWzBIKa6wsoZjRXxv046DfP6ifn7T7g/7Y6bv1AqE3oh4keUDYQROlVbQnRoVRoTWl1uZxj1bUxDBYcrb6DrETWIf75jiV3gFCPaf3wQHwjorrh50lx+tqe7nPmN9jDFprGKRuA6CY/N+EeJZCFmdkX9vbTMWY/ZjwbC6Cg/f2M/8fNaKT0vUUbT/Rg/n5zamoIa/2dUGSGYXEQQodbYpiyOeQxpDKkGi6O7dFPHU/OH1TIMVBSkIMiRSsCMx9mF5J1UfWxow8keyzasX/v1XUwYWsIm4THRej217fuFwubJtnVImHWqtTkDygeB6+5wTI9RStFsrxoB5m8T96JzlN5v3LO19/+YVffvkFFTVK0BhnI/vPDzW9Co2mjdIrZQi1R8qIlp/aDTGazNw4+tmYT454V8t5OkawyQY4KmZxC8r43oRiUkWS0e6CKJHO0EZI0QTGrhVWZwQN/6yGiFHfloTmxBEDQ+H32vjH7cH9UXxN+JTBX+tlTVy2bAeeGN+/dShF2feOUTSN6qU+mR8Dm5a2wWdp/H4UPo7i+Y6BhiFkpbcziHq6ef0Y98KiNcITrbd1Hx1VGjjB0A5YtU07pUReNjvcm1qh0jxLU9XtyM2dMyzZi19Bm00u8ULMioLo9ubRHA/DxCbjuRFoVogFkYMQDgTTNTE6XRaaVIROdJrFCKarPi3/dVBr4Xh0yn4YRdV9dsyZUU+K/StGImrovRUI1uioQu2Do1rEBGGchU2Mg5hsrfzJTPTle2KZVWNqSjmRTZjmBjIhyRNsnrjf655z5tuiDkDNu8gbidk8v/xsghr6jpwI3pjfR4I16Mm2RHVr+HPlOAdYlVNfMmnJ+vzhDqDYHjEPB/Vi9UUxYPvMmC/Q91UJxAhkgZ4Y3QEWsX/fMe1u6YPqhlJ94I7L//wwc5vqbne2FywxMJaM53rbJAlYZT6VVWAJYpb5KqSBWfw7J0hFzIo/BvpIzwJBhOu68SUlFjG9Xu+FUnd6UGLoVK1G90VI4+ASBl+XSL5krm8XR2MbIXd6G2bm1ZVHH9xbpwwLKx8i5CVYAb5kM43YNpbLhTwnoas3oClb3M7U2sL3i32uEZ7r5fyzeWME8WGpT25+8ii1UGrxIsbo2W1EYjeuziysj2Nnf9x5JNDFdFcjmqlMiBkNEZbF4nScEr6GwdsS+OWyILVw7+ZZvAS4ZMvfi0GY3C2bgD1dWVMw6lxygZBFHU03xMbQRlNFGqScyHllSbZPikQkmEa6k7y5WCwiIQY0LAzJdCwTXPAmzNe34evRwB3EDf4CbQTaMMfvo1q81H4cHPthU3xnQek/fTL2yMkM3M5WQDAK3raivdGuV9pRKPuDy+PO/rhz3G/sjxvH/cbjdmf3iWkpM4D9MOCmFBrBs0CF3is6qpmyVXfaYr4/pzfGp0PtGr25/FMjGjAaehLTChuIEv7UiA6kW1EnMpt2Tq8FK6SVLDbRS84QMF1fJC6J1BZ3m7UGToJF3LVaOI6dx+POSehTJcbA8EZv9PbTNZ5Ctt90p/I5HVfRU/MafPoZckCq0HVQWqPUwpgZ1vqy/85dZJ6NZzE83NE8+Hlk+rOImbTUMSije2yI1a0kAxNVOtrsbOnd2CH7Ucj5IOXEtmSQwLKY6+q6ZCbtPXxnkiPehHoYzmw0z6pV//T03cTfhwHNw8FNNwKSeLIDzvi/nzzWYJPvLRjdO08JgpqJl+ktE/myslw31uuVddlY8oYC7TigHOauvq7GtjoHSLaeBnbfxCWjKdvEi27T95iRvBBSsrJaAQdmUD2BQYtVieapMIYL63CDQCEQbLzkaRh9nmmqfp4NUleyUzxNf6gOaKiDhC7L6R5B2Bz49bpiMqiGGrW3+EBC+ziBCeX1MP7nh2DOv/j4TegwDrQJncHx6DykEMeNVBfCsdBLYf+8cdxu1P2gHYdlEOvMHy6EcBAoqDSLPiGiPZqmdLjhlw9gZNLWe2G0SNBghq+juslrd13mOPdHiVbLqgyGeOYnlvupDBi2FyEQpnyFOeWcFPkXMN/B17mnzSzQEYzmO/xaBjEg6JQoqEsm/WpOnelkBf1wT/nZX0x3LQ3C1FvNwnD+AAtvBukDicHoOXkjp8yWYc1KrQXuO6FUYuzEJMRoNtjTTSxG00GHAMMDgy+Xle2yeMSKW1/HQBmKRHU03BE84dRAvrp32tjZBMYSs7lcrReW9crlcuV6uZxZWim6qYbOgtARuO8unhe3TkVutVKPw57lIITA5frG9frOX//1P/HXf/lPfP3lKx3LjGx9/JQnLcF6PoIVBm1YOOzRIkcJ7CnySN3yIr2Ij0lZ1KYzey2UahQE9k7XShmN0hvrYdmotRg9OKVEypEc3fktJfue6kkQA6f/RBqBQ4VDhV2FovYF0gexKwWz9jer/MrjqPyPv/3O//3f/sa3Px6GjIenJisK/PJl4y+/XFly5I/7zh+3O3987nx87NzuBylEtpwMQXEBh6plePba+Xjs/OP24HM/TK+QrDAqvVHGsxHtcyL6s05Uh0/WhjVxjtLrMEpvq51a7KYfwzIfZXjz5qJsFWgSzvc3C3VrNN3S/dRM+YRv0tlf9TBhUmPFizV96i/FQAqDxhVC8kY5gVihdjqn9UbHaZijMkbl2AefH4X7x8P0NSvkrA4COVVQBiKm055UdrN1N7KgekfYPE+ttnEeCiHa4Z19mtw3fUHFno9tXaBv1lhFOSm/XU0gP0+R6VQ68+WCTD2ongfhtMeHZ0+hs/+cmjL/fuOk2ShtNrdq/1AJz88pZzNmAMjZUNhZdDgd9jRvAmaW33QSNrqxU47EdJUiyYC4YSNS2+gNfLDA6UkB9kbnnLa+XJ+ulGqfcWl2uB5N2as18kf/cSPa++DxOOzHBSU78LGQ6Lr6gEJYgAuwCVzEfl2ZVMeZO2fo9eu9NKncp4ZWhLSuXK4b6xKQ0OkcHCMQWiXIQR+J5l63S3vwJQziJVHblcpAl0w4GuHotNLZ2+DROrfS+KyNR+tUtWzXmKJJA7aNy3Xjcr1yeXtju16tGV1Wm86ZU9c/7wEC3/3hK6A5i5QXhGbGh/Wf0ERBaaPReiV0y92U7k1XcNdVVWJQHvudb38M9PhkjTaZScE8J0NI7Nd39i+/c3l/Y1kX8poptZD6gy9ZYA2EHqAGwraQAFFhzdH2NUe8w3RYFqfD1sbxeDAUjrv5GZT64Kg7tR8Yn6mTcuZ6eeNyeWNZLuYWmRIMmyoPMpIgXcxIY4RA0YiOyGhG5TLjITeuGBDicBzONLOlCbUFyyYckaaROoSjD47efAo6vOj98SPF4O/5+ZFNJ1bRhb4sjEuj1Svb8UY9Dp+EWlN6//zg/vHJ8bhRDpvEtsPpuvvOETJFA4VAObyI7u5s2Qbdl08Sp4+6JlmWBZa5h9g0R8cE3tWdRY0qG2JAXPtmDCD9TluuTi313Jaz4pZo+tGowQzM3L1bg5gZTk6kJZPXzLIsiEBrjfv9Ts6/A7BtKxNEskg60yRbk/rPjxAC63bxat9e13ih6Im4Rtabo2XJtFpp2rkdDx63O3UvtNI4cbhzT7Fa7vWeE4EUApfVmogN0AiSAl2Nrl9VSWI68xhcX52wTd7ZWH0MSu3spRKPQsyJr28X8pItD/Ji2arE6o2oN4iejzzzPk9Krvh+zWTtPGvkuaucGlNm8oQ+G1JnfZx01p/NJ4DN3fYvKZq2WKCI6cohGlCUk7vJmvFdD8JIds9XlL03VM3kqbkkxhINnrrg1DsryqIWsXUcDUUgmdu4gUpTiqdunT9O3xAZwXK0Y6T0wdE6R6uEtpCH7XttGOtRXA/fXwDpNvScbIqquc4O95E4G1E/ZweErogXrjLgPOUdK1QHi4eKsRz73LufPjE/eliqRpqoN0pntJ2ihXp80o4/2D8X7uvKfrnw2DZC7zYBPgqlNXqr5/4lMpBQCRSC2DXt2hkaUY1AMpaQm/NNx+wA0A966RCmqaZNTWszWnJXa+gtBg73+Qg2tVQbKPXRGTJOQyrFajxx0OuM93KgPcRX7xyTkcVgrIkRbJjVqgNOrqmecV3DTeDsYUOB+TXpp0O4nzaifgOJRRc894XXKoQT2R9jIF3REAlxJS/CdhEum1COh1H5aKZ3isMdJK1jF+wC5gyxGwUopciX940vX98IOZ5h312CTU9keCyDIU5j2MRsckBsT5vW0pm4GDq+Xt64XL9wubxx2S6s20pK+Vxw4Hqgaa3tqJi6/fLpKudKYDNdqYbajk5Mtqn99te/8td//U/85V//lS/vXzhK4dvHN0ptjrT8aPHjgnW76bp26hBqaxw1sJfOwx027Qa2ScUQo9OW2ixsvlkpUbpQRqe0zrJUO1jLjo5OWjJpyax5YVsG26IeggwpTu2AbegNoQxvRBEKnj2HkodyKLRgxdajVr7dG//973/w//rv/8a//+3T0fhwauhSEP7TX75Q++DtsvDH7cEfn3d+/3jw++93Pj531rzwdtnYNmtyjBFoWYq1Nr49Hvzj/uDzKGTXWooEt8A2zVxr3bMvfxIWBRh/3gLfTxMVtd9XjxFobYbJTy3dIAxzmgzYRnfOzfQ8juwRgk9i5lS5P3VG89fztdhtC8FejQiKhxIHhdCc+4+hTyiIucPZBmJ5jVUaVRt9mBFY7437Q/nHR+Xj9wc5ZdZLYFmMijH6bERtY24DqltzZxkkGURzbrHawx3ShuesihrNc8mddTF68Vh+3Ihe15UkVjgUlIplxEnwid8Y9GYI+OL05iDeiIrddmfzPmZ0zZygPq/j/J16XeCML9wS9/w6wZvUYNoZ6R3yYmshmkX8kKchUW+DelSjAw2jB7Wu7jrpB1iyw/6yLqRltaLbs93UKWk2tY02ZXo1HBKjQk/6ooodwpbpaoZCpRsz4FEHj2oOq0f7mUZUKaWZEdISTY+YbJwg4UzAYwXeEK5iDelFhA0PJBfXEM1pDPJky4Tz9LPrFLCQ9cuKrImQYEijjJ3QGyKFMRLdwZalFyQq67bY5xojcrkQSieUTi2Ne2nca+NjL6xH5VYqZQzKMMrsti1ctoVt29guF9aLNaF53fj/cfZn7W0kS5ou+voYEQBISjms7t135///pr2f53Sf3V2rVmZKIjFE+HguzDwASlRWdWMVSkOKJBDwcDf77BucNqLY4XKrK2P0pAO5eNeQ7vDGPvm87w/DDOnne4qwUuoeCC7OgVb0xzJYRYx+Kue60q6GaEQn65WAZY1nOxxY375xOJ1YjjPzacFYg68bp2hgclCkEfU9EIylNTV3U6mMs2afvKDFR94St8uN1sWQZltvrEmeW1lZS2arCR8jTwVy9xyIzFYKUuWbS4nhPcFNWvgJRbs3T2si6am1U6oVwMpKMzrcu2VdW3Hm7o7aPQ1PwVGaULj3rxv3+AcP2SvsXov0Lg298zL93VH8WqlF5DRpE1+C9XZhXo5M8yvr5UJaV/J2I6+bTEdvV1bjuDYFihpKRYOuzWjTorZbcZJ2qvV2U8RNEeOc6jrRTOqmWl59GsNwsmx2GKD1oQaQyYYRjamA7aIBNnp9xICtiTxCyh9Zc14yKmOMxGlmmjec99RW2baV81kKyzhFaYhGrmaMBO/Yto+pucZY5kUa0RHfVUxW3ZjUc85avLeEIM2o28Sk5rZtvF1v6qmR76Ctfr5G78PdKEoL3OAlWquDMNuCxfeuekBtRHsXeQHjbLx7HnQ9W3KtUoOlhNscuTWc95IFqay4gsHtjajRZpT3Tei7aajsELKP3E/xXbentbTs8W1/T4NGOe5PqdE/XuSzl8zq2Xsma4QwQ6cgzs7GylQUJy7NReus7mXSJo1o3bOFvX3IimxN40AaoVWKkX+fU+W2JugWFxNhlgZq+MKgU016l+z2LjPs8Z5TrWylsOaKD8LGo9l9+mksexMl52gTaZ42pgYzvr0648teLA7SaNRMh9IlZrChTupy3fs+KFOndtU1jgmiUcrqx2tcJqK7gZbmnpcsbvhrl9d3CYG0HCiHgyQ5FAFmSleXcgWGjG1YUzGmYEwRN9sGvVnoHnHHcAIgWYQNYZpKeMR5HKMGQa1pukPb0xaENagxOU4oizK4KXIWdYmEGqCxRZiipisgoc/xGPE+4uzu96zfWhXkqIOWLvvB6JMEpDe6D+hwg2EAJoDbzx4/p+b2rjox9mb0vlsYRuZVq4We5dYrxlKMoUWH8RNhjmA8sYj7psGoeYFkvg2HNVBaohWdUQgTcXliPr7gY9RRfwf/Su0Txr+J/gWZdskUx2CMJhhZzXoamT9xwU8zMUruT4xx7+J7FXpCa313u3MhyOvRvCSL/L2hQ2s07zgdj5SUcMYKnSdn5uWwT0J/++13fv31N5Zl4XK7cvz2TagHIfzN4h9i+SHIF70QxgsFLyOUBKUiWic3KwYZx9OoiIlEb5a+ZZnC3pLmGmVADIFsrqQgE78UK/NUmdvEFB3eyOSy9E5usHV5pm4QcqgUuWvrJD0QbG2kAmvOnNeVL+crf3572/VeUtAKNTBOjuMp0Kmc143zmjjfNl5vG6+XlSk2tc8AFxw+CI5Ta5cGQDewhkwSrV4zozo1U2TB99b/xljkYTK5b8ZdDy+ZVt0bhTHRbZotWhiB8FSJjpDr2/YpVtPv3R6a3NE87Ygi74ikSnkeZbAcLtYGKmCqaPwYiDFgraP7DrWoqbRmfLYh4i/UXFiThCuvW6FU6C7IBlYVROpjY+mUZshVPt9iGkHXgsLCOtUbhmB1bwpz6dCLTEt+ssH/+vsnnqwedL1r4SpU+G1LvL5duG0rPTdiFrff6ByT5pfZUQgo5Nn2azjuAe0t3vem+70+6ByNQWUXEwe8xYYg02Qr+vJCUyt1AR5M7bJGv105X29sqbBlmb4Xnb4bK+638xT57fMnfvv8wmw8BUMxTrzrjCCy3ngxhxgxJ37QFmWd2ZxFl1Fl0lBBaU1WdDDdsFXYihzeHz28d7w8HfDesSxBzHGC2wutkfkWgIO1LNYwG8NkxL12WPC/k06Mxn1QypyRWICHYrp6S3MStm6c8AatdTL1Qaz9XYPooERoOGxYcAeJToqtE1ojpcz5tnJZV15vG8frxnlL3HJhK1W17Y4YxYHUDdo75mFC9r0O6wFMfWxAu6zD+++18C+VmsTk5HK9cb5cuVzXn7JzQ/TEHGSab9GmYpjfsTcLkjEn94BFdNZYiUmzTrRzulIBoXM6a6TR71CKMhNyo9QESZDoUisgBdjIv62lUFonNUgNrqqb3x1j5TDBuIhDaLzOR6xbMG4BM9ERLaEU4kpP1MvdH2ldVpx+QdaFxSGGguj9IZpe2Q6dPMV5CuO9Gp9ZYpqgZXor0MUo7qOHQHf6qSqjRPS8dpfBdAS5d/YhakK1mV01bTYEppSpOVFSpiRhOq2HJ5bDE9fXV27nV67nM2m7UbK47w4drjfIxKEZTO2YLMUkKh0aQNiIMqOrTMCwN17dGKpF6a5SkbeikQ1Z/mzUsdY6aUatNzgjUSAuTLg4Y+aFYBvNVQ7d8RmHmxeMcYQg2ZdTjLjo9YyRQtOqqyjD8OSDh3OWl88v0KFkuV7ptglQ2Jt+vlb2Nr3OXgtZ60axHHDuDhoOdotQde+U3XHOlSqO8mPSGnvY2UKlCRDX10xBtJyg9GUdkJQ+nk2eranhXtv7qdI6pki8i8QdPewNo+690wHfAZ6Pf3pcmN9nKRsjzRF7M6qsBXPfGz56xBgIszjMOmtHm7VvzEaNoLoVAKe3im+N3MVUMLUqOllrQIGR0Yi2Md1HhkPea7NThfrZ0fzwsSfqm+v07/vv+3Bq3ztleNCKuNtW2/Z9yxijIG7ffT1K0Z+rQI1oQMUUTPKopB+x3dBKo+VCS1mi0h7uqyGjaSOSL4vMgyq/7qkTP9nEBbxoO/DTWpFBziZ1/mA1tBCZTSc5A9ZjW9+bwN6VyWEUxlRTQGHRdW0M686upBnULgNTK1Y78qrGm9bIGs4ojbkJG6AZKzp8himFpbSNnDehwSNO9VhzN3T8fulqYz1AMeeHM7TX+C65HrWJ03ipec8MtlYYN955jG20KjT0aqowZbnXXxLd+fHjJ41o350oH3AduZGsUkd6p7ciZhu6cVgc2ThKsxg74+ORbgI+G0LxDMfAVgqlbuTc9zG4BALLIRemmTg9E5fPxOUgLnzWYfwXaUTdTKsrraxS/COnu/Pz7jY4zQtxXgjTQtDwWSlmgd7JaSNtm5ghKF89BIMLUe2t7dhPhAbs7pOv3gVNcNZxOJw0/qOyHI78/o//wm+//xdePn3m5ekZ5z3n85mn5y+UVgkhfnjFjRkHtcX5QAhqUuIjxgZab+TcdNKkovAuFLdBE+m2aUMqxXrJhXUroHQwr4dir42WMpsrJF+YQqEclH5pIs1JAyKbWCe1ztYgYUhGMgBLh0UbVeHxy4aSSmHdEpfbjdfrdQcfLEL1m7zjdAtcbhFjO7dt45YT15Q4bxtv20bqXdA8Z5hMYHIBqxOxYa7Dg+mC6Jkkg7LTsUnR1spPJ9CCYGjRNjLldmtBuamMG9oynbIr+NJL1kJKG9GSxSJeG9FmBNVquoHvzeeYhCoVYpTEO5VUX5bpfdcZ+TBRDZi6YarbnWU7ZjdCENfCuk/uWx0UjkJOWlhlmSZ3wOVCN+5O+UInoghgVFTDicYHiDbY340arEFq5QLVgIbE5yrF13B9+/7x+z9+4R9PM82oT2fXSX6qfHl945I3rq+y4ftuiMZynCYsCy6MzD0rCGKXazwO0Q50JxqrYQJhRzGgxal5aESzHtSZRncWGz05OzYjdFvfGlmZDrY1eml8u2z8z7++8eeXN663lettY8vl3ogaqeFOh5mtdsKy0GZH7paM0qa66Csm65hVdych2172HGexRvTnxll6Zo8lKTgB+7CUjkyWFZT56DFFz2+/vBCC43ScOR0ntcwX3dhoLkecxOydaEOtJQxApSpdZ6eSGXVGlPvPev07Z3YDrNzk+la9nzoCYhilKA5b/moKzUQIBQ9E7sZFizPkbeP1/Mbr+cLpeuV0WXm9rVy3zDVlchWjE+us7G101d5q4aRV5gBVdzCV+6/j0o05xnCIRaUeKRfSdm9CX9/OXNdtwB/f7+LMU6TVuBeb8j33IIrdFGx3gWT8KiDYcEJ3ylrxQX4NUXV+CpBNqn/acue6yWQjlbzvN8IYgtqtjhgKZHExNpfbjp47pYBbzcSjiUujDxNxfibEE87PGBOVRnZ3xhyAT5ecHsSsR2JCBLBwYgBn+g7SDGMp+eIExotspk2EKlOpeZkpaaWWjVq2nW300eP9pzkKevOA1+nn0OV9uu5UJy8FVNWz34YobrhNGr9aCjVtrE8vXJ9fub5+4/L1G9PrN9bzmW2VfNKeJW/a9obrQsUmCfjQambQOKVj17pJJ5p310tZTdWgQQvapDYBOUd+4JimArtngesWZwLOSRPq5wNmOQhAmRvdz9j5wKJn4miOhunPHrvhRpSINqY/YRJZ73j57ZOAj9tGWjfJLVVDNKd51N5KMxoGxc8Hgk5ojbqTS2Mz8giLxr+opKbW/R5rTaZ4wRriFKRJtGLcVBr0XMk9cUvKQNCpmTPyNVnB69KH83ZXBo4A26k2yALWrFsmFYl7afu9+fgcUHF/OHt+/K9jKre7mw2ADN6tTfk/89MmFCRfOs4zQX09OkrvpauyQzS0QtSTIY9rBa+mdqkUtpL13i3CWlL2UWv3iqLZrhRNzYfU2noABV1fq6xl9ibLIMMaowBgb1pj1kYbESul0V3b2Y3WGGk8m2g4c5a/j2Fk2oojcspFzazUGFEb0a4AYc1ZJ/N32rtR85xaGiVVcpYGyhR5TZQm8VA/M7MYNVprUkdpPvW23cgpPQzpGnmKYgKoIINVWvEOZhoZRAhILuvA0JQd11SfrwOm8dpyw5ZGLxVrdf80jWIMGdHdlo5mcQ/qv7ib12pEA55Xctr0gB9DuvH5sddCA2I2sJ8JQ4bhvdNkg77f3ylndRgfCSZe99MgzblrYshYGs2K8ZIdd8Pf8M//diJq9YaVG8fcb6aOXEDNvNmjW7qH7okxUpoDO+OjZz5YrJ13jUQtBdYbnRVrJWfIjymkscRpYT59Zjr+wnx4IkwL1gWaOVD6BP5ASWdKukgxjHxdmA5M85FpPhHng0SuhFkRuEBvhZbFjCDVJpzulMRSW3McvffEOO0GO06bpzimMvpxztPM8XAUxEYR4cPxyC+//c6vv/7O8XRiUS3FcpQM0nXbdmfbHxe/IksomuuGaY7YhNQmTWHXhnVwwR/Rafmg+j4QqHqD11KJ3kCUTCzh6TeMqWRbSb7KdqKGBoSO9V2pE53cxiYuBhSlQwFyv98Q4qcgC3arhVvOXLeNAWM4IxzxWj3XlLmlhAuWNWfWXFhLZc2FWy4UDHi3NxZ4R7APU4yBJmoB7L04PRprlXYodvK1th3R+WCvEY1FN/v6bd1qQS0Hsjj6CEWzGlQQL8WBFJRo8VJEEN6rTqv7/XtqRlvV6dodXRxF72AFPKB5vQEOZwXBNr3SktM8xeGRYUAntqIXvdNm6qCSaFZezrKhp1zls/JFXEyH21kfTZvoMyQ79MEYwBiMEx24c6pv0c9jvNyu+Y3jI/ro8fm3F/7bP152J+TaYV0Tt1vCRsfX6xn36lmzRP+MvEZvHbYbLZ72D2+3/R8Fy/An60oTGtPm4dy2d15IHHRBAthxFuvlc956J7WGrxWvRWAogm6+Xjf+/cuZ//ffv/B2vnK+3NhSls+0CQ3HWXh+OnB8OvH7P34jxInUJQ25AkWL5G6dGsjIBEJ0fEIhbZKgvWvLpCaV15xtJ3XYaled6N9NRD0vLwdi8JwOM6ejMEKCj3gXtBBsWGOYo2eKnui95M5aKwVCqqon0cntsOp3VhoLdVf1QfIQa2vcbpm+JVpuYqowzCR0il0UqRbHZAEjY5A99jB5XhbP8xwo6Ub85ggRXDTiLxAg3AxuRSbSTYwZaJVSxEU2pbzHgIQ4tGsDyJAVupcgA9gfBVTrGnVVKSlxu1y4ns98/fqVv7584c8vf4l26iM03SBrVHM2e+963ytQa5BDG6dfPyjZWqQoRdzFgNVplWT/WWVqKKXKul17bp3kig7t9phajLLYKmgjhbUQ+roRM75lnrFTlAl5kIzAAntjtswnpulI8AFngxq3qImLGfuqbIyDnTDYPEPS0ntXaqMweLyTSaTclB5sxnqhkJVWmepCrUda3ShJiqnWCt5PH67xYZAh17Hv13MU9nsGnjH7njUM1rCWqYqcw3q/F9RiKiQmdOvThcPTM9enZ5bjE/PhyPXtlfX8xnY5U7eNnjZ6yUoKGO7KwjfYKZx9XK6xR2rx/zANHPIVqx+iGe6AxoNrYu6oQNaIKwpRPC/CfMBPB/y0wHSgu0Z3HRM74dg56b03mD9ybQaIo1mW9j69K/ljsyJrLafnA711tlUyiWurhHVjU2OtHagaRoh6nvogeegOj7cjXkKan1LFxyIVCzZDQQt1lHUh4LOxRrMsPQ3RzbVclLYo388aUQzMMbBMEk+Tm9BDq4JCEuHV2XLltmZSlind9ZbYUr6zeoyuK61//25y+W4j0NPnPhW9N6L7Lw+N3d99y90xWAFg46zq+CTab1ybZtin6WPqW7rstzlLI+qHGVXr6n0xSK8Cfu8+K8MPAbPXLOO1i5TePIBxOqh6APH6aEJzkafSNUsuZE1TyFXOhlwqqYjkJdcogHbvam6V1XPUYrqTRrQhUpUsvidFBwH7RqfXoFZpQkcNbPTcqUVe288AczE6KlJDFl2XOZGyUPZFj9rxQC46HbQirBDthdV/o1TszsPaMWrSiqzC0YyqtKo3eZ29NCiVahpV9bHZGLIRKVw1I4JvNKKSpgGGUhI5i87dOJUaWquoa5dr+QDKGmSQJUMGt9+/DBBCr2UphVI0bou+D4Ocuvpb3WOkeS5UYx+07T/zVZDH3zSie0+jWjh2Q4pOp9ciN3XNKgp2FOdITpzBDsvC8XDkcJh5eTnif3X7zSYLJJFzFpdWvTlGo+tDZD4+s5xeCPGIDYLIHlho7kQ4/EZOV0qWRnQcACFM+Djjw6RIpHDkS870diPfVrbrme0mDnl5ExfRw+lJBOvHk2hyDgfVBAiyPMfIFILSc/UDUs75EOZ2IMTI8XTieDxJLqkPcgMOd82/+SBqbVo8FYreuBWxwU5GdHIGED24UuqaIL2mGxwyxWh6kKhrCkOLbrSRatxzVQdFutQuSHx0wsoxEtS7H5cD3RkVzhi1K516TCjlZ7rdeKeZ+0I3Y5Jqhq6DnWK7TwWMIKSlVbacMCt7s4l3ONMfkJw7IglNfrw3uOjAdGr3dFOJs/3pJt90IxpCbTkTxDyre4OLhlocPViyE82AbPjKDlCkq+1Ui6b0vi7c/pREgL8lapbojFql4CqtUqq4BctnqIWyahfMTuOV6y5Nfn84SPUaKMJbERJf3YvO+6+ld7bcuW0VWw3VFGKz+31ujcU7oeAOdsP+1M2060FDBxvAjaLYgPLudDLy85N6Pk4cPx1kDzFCK5/zxCFV7ORIVIiOL3995e3rmevbla01/rpeeTMbMQRiCPhB49dix8kiE7S7QaXp++806yTT0ylaqRNSr02etxKxY/Tfp9JYU8XZircF5wrJVwyO65r5dln56/XK6/nC2/lKLmUfq4nDHPhQ2JJOpTUjbStNXG51KhE6d3q5XjPRwEpOa65CDa46HXdeNBo5NS5p47I1zmtlzfWnOmhjwUZxu06tcF5X+nWTyKzCjvo6b3k6zpyOC4cpMkXRhWxrliiSNAzO4p1q5x0hCBshRi+ZhNNEqY1vbxuvb1fO15XrdeN229hSIaUs6HSViZMxQjcN3vHpOPP5aeG35yN8OjGHQO9uN7MYdvE5ZW00N9ZcxJQMw9v5ypevr4TlK/gZ42YwgaZSjWmaVPPi9snQoJdJ3SI0yFrqblpzu1z49tdffPvyJ3/+8Qf/+te/+POvv6SxXv7BD5BLR6QOScHJ+sCKaA1vrdCVfWdyUSdTd5MZvJiSuCmC91RjZFqTklB41TCi1sZtFWO4NRVSqaQqBm0SNq/MJau5k0iTjRYaxjriNLMcjxwOB5m2qJtmQ/Zp4wLBzwQ/C/CgTp8jS/Xe4Omi3dfc+Blm35+M7qvGoBRNx15ZGI8Pbd8T2fVblVrSbvph/obWNYC8Ps65PvTj+uG+e5l3/aWsAzEmJMj13SUACBg/HxbS6cTh+Znj8wtPn3/hdn5jvZzZrhfyulK3lZazvnZlkY1i7mEvvFPj+gOFr+8NlxCx5UQz+9dwpxxy15WiBkdunnDLAX9cMIcDxEWi3jTmISB5pVinAwQFB/QMtfp5OY02GnTRVn7mmttF+zYGvTrwG0im+GXKvlZ73/0VrBWH43mK4A19GQ27dDZNtWylDrlDYeQaGmOZY2COUYzJjkdCjKScuK0bt9uN81WepVacEynVp5cTv31+wXvPpntPK9KwWGPJpfJ2vvIvNaSstbOlwttlo9QOWgNad6d6P1Jqx0d7h0LlbBmf32jwdgrt3xjk/N2j0GXi7gJuCvjJw+Tok6XGwLtoDXZuh1QkOtUruUgNVjzVub0RrVUBAV1X1Reac0LnL1mNftS5ujcB7lHmiZpmjfrQaCPY6TqxFHZTjZmeK60ZiTxMG9DJJVNaEVPOlEi5EHNgqhHTYCuZLSdpkppqDF3DOAE4U9pY00bKs64XBTfHsKBUapb3XotM6XKWrOLNQq0fsxNrrWxle5iIFs2FbjSl9JoxJWyN3BoBYQs4Kw2ZoxN6U7hbfD+M0TujdwZt12oMnLFaRxoBveXfNcbgZQyZRo0sf25Sd2mskxYT1JZ1sHIHtcZKHZODrsOMfZrfZT8qtUKWnzG8EAagKNnRsrf5YJTpMBHmQAh+P0drGcZ8Q5urEhfzc2+FnzeiDOuUoV27I4t0aURbzToeHjQGabjocDwcuZ2eOR6fefn0Cy+fXkSzoQVAq8P0YThYDQ66IL4+HnDhKBoVO9FNZAkv2Pk35rRR8o2Sr9ALzkoR7VR/gDGklKSgWFfyupJvF66vr1y+feV6fpPGo3fmw4Gnpxeej088v7ywHKURFec9+Z7LNDHHaXfW3VGsMWofqJe9uxQ6J4daHkjAYzP3waPVKplwue5U3wLkasmGHc1vSOHsgahr2iIZiV7d2dBG1HTEYW5HxptuIF3Bo9FIVwk7Xh3OG6IP9MnvDd/9qX0oEgkwsqN24xKH2O4O04UHNLphRKBu9NlHA6X3zwA5jCBwW8pC9dIpnCVgnFGDqnFbjZtK6AveG3yU6JXalcI2/5ya25vqN5uaUVkwpuGcztK6pRZHCQ7rLa2NMPH7ZEWmGdKwNd2owUAVahe5SsZUEX3uMDsRSgqUwh2h74adgKxThr0hHHSZrk0WlpENVbWpqdqw7g2p3pelw1Yal9RwtVBtpfSqjZxYq49icf+09bqKI68YdYiEURr1ZkWvMcxYGgO9118/eEyHicPLQVaQkQasagxJPEyY6JmOM/92OvC//L+Ta+V6FmfPVjpLnPQZmUNgjl7MsIw6cyKTsdZVS4xYv8uGplN5RKzvdHoSjJP8QV0HW2ncUsXZgncG7yNLrFgqt63wel758nrl21ma0VrFXMlaqxl0lmlqenDJZ51rZR1GDF0KsElNFPpjM4pRXfagLEkj6qy4T6bUyCVxuWbOa+WyVdYsRggfGtJZI41oh7Vm1py4XbO4U1+SGnpVQvD88unEL5+eeDouHBa5vpfzlW/fzqxrIsRJpqkxqKlJIMZAnALzHDkejhy7I+fGn683/vjzjb++vvHl6xtfv505X29cLjfWVWg9pUjBOAXPMgX+yy/P/NffXki/fyZ6x8vpgO1G7xG5nillti2xbRvrtnHbil4rg58uxC/fsOGAcRPWzxgXwQlaKwskajE5tuSxJ0tRVnLRKeiZy/nM69cv/Ovf/hd//PPf+Ne//p0///yTL1+/0I3nH/+f39QE6P0jp0padUKjGqxBd/POQvC4Di10nYR7jOYaGR8wIWDiBN5TDGIGsya2LBOFQTleU5FGNItWORWZ7LkOI2NyRBAJyCcmWNZ5nA/My8Lh9MTp6Vmchpcjfpo0asSCcbLnmjEpHFofOW/G/au31t7s7SOjh07KmNGQCj3LDsMX07Gu41Uj5lu9+yTYO1OF3jh/+0pK24+7eGef1vRR85u2xw1gGntu5WPj0Me2II2omG5ItrF3wlawqq+ttdzddq+SSbpdr2zXK2m9kdYbNSWZyoya5geQ4uHw189wFPH7VBQxoZHXNQRR43Iq5VTP0R38DQ4TIj0GWvBUH6jOiht6r+KSHial4t+NkIbGcADKj1MQMKT1x2u9v5UBg5oB3o7PXKOqxpmkkoLWBcz03sI04YzHaW6yV/AbvQdqUwCuth10AfDOE5TiG2PEWsctJa63jb++fONff33hX399JaWE95YYPf/XP36TCe7xII2o7sldgajRiLYqWdIpi05RDG5GTcfOBjIP9c447h4/5of50n6N98/vu+f75fH33WnuMiGMzuLmqGelpUdDCZ6qsXntoefoKBDbxzQrYzDUEKTRbCLdqvXu4G+NfL9QnUy/cpbvWyXbfazXUTtJI4qyEpAXYJSBkQs1ZcqaKJPqODtk3cMBsrK2ci2S+pAKU86kInKyrciZJVIn0ZcbL27+NRe2vLFuKylvlJppXZvRwT4r9ya0lIoplZwt21bYDKgN0A+P2iq3tKoRa921psMxf7hWl9o0PqgRjeSwEqLE/BmgN2pLhJ6hF/bhSeuyH5vhDcAQv6pMS4cao9rWe11gqqZDwb7L9IYxU++y/dRaFHB67NyGRKXpZ4XsH9yBlKo6W2Eo1DuDaO8D5DFc2K21+BB3Rut4b9aKadnwWOitUXP5P21E398ejxurAUU+2sPmqgYJ3ZDXjdvlxvnbhdPxifrSMSbgw4TXjKZRDZjR4XPXe4EBN4GNdCKNQGse60Q32dE4DOswLUsjavtOGeq902oibYXb5cZ2eWM9q87j9Su383nfgIMPeGM4LAtPpyeenp85Hk+7psxZyxRF3C9ZorL7DLOOgf7K1HOgm4o+G0O1VWkpYoVsH/WA766vjtDNmIDItECE6Gbf4HejGBnF6VOuP93sTTKo29vQFLSqB+D9MGpD39kHPUKRn+YGkKxrcKBAI+hXjlqLva8LPZD2CelembAXQmNKNWg0tfbd5OKxQZcbAYxRcXSpVG/p1u+N/7jWg87QWtXmzGF9J8xC3wnzQN/fPzoyeTJdRfNNrvBAqI1uUuPMMb2L2H1bZbVaMXuhNWpaaTmJiVHTG5BCtWJqVNYrLSeMhZwS2+1Gx5EyqpOW7ECZFGgurPeSuVkbJa3cLmfS7awTUV0LGgJQa6akKyWvpDWJPf62UXKipERNhZqb5G61hnVF15sUfDiLM03unfZAzekVoxz/YZ/e6UKVMV0LVN0sraUbv2tkP3q44PCTZ6fJYvDNELo04t0YwhQJIewi+L/+/MZffON2Xbm1KuHzpbLESqqB2QcmpZNaJPtSCevYAQzoOheUkX3T7b0/aEtUM1REi11toRqILrGFCM1wWxOXNXG+Jd5uifNNaCreGbwVammMVqjNekCPYirVJtGD+vrKIwijxXTv4hyYa1PHQaE1ST7rOGg6NVdKEm1tThUf+LARNRjJpNTpXG2VNRXO143X1yspS5Edosd5Q4hOkFlkP3i73Pjr9cztuhFiIsyJGKNk1gWdgqbAUma97yK5NM7Xla9vF/78+sYff37jzy+vvL7JBPk28iFbw3vLMgWOy4SzME+el9PCLWdya3gUeBl661ZVU1NVTybFQWlwvd2wX79RkSiqNVUu15W381k0+qcnjidxxxwbQHsA5sbEdTSi1/OZ129f+OOPf+ePP/7JX3/9wddv33h9/Yb1cZ96fL+r5FxJaWjd6v7auyIOhUpR2nPVXLvhCjVkDuKQ2iBnyPXe4KmZUu+QNXNzSzIVbh0wQjH3Iez3kHFyHhqdiPog91dcFqZlYT4cOBxPLMdn4rLQsYrgC9qkZNWdNvoI0I99dEyHZF9+KFkGki34OgI6j/ZKZCLOCxvIFJmUey853DK57jv19na5Shbi91dc77HHOCypD2CYzY2fy8M9OQyWxKPCaVEVpB54MOoY0QZVr1U+ybQ8rSvbumoUzI2sYGOrUkTbUUDyvpYaU/jRjL5noLS9Kb23NfJV+6/6nzr9fvwbK/pza8QETovm2poAdb0LU8egNcKo2eR1jPvg8fGziagx4L2+o+bFVGaSpnJMgYU6K6ZoIQTaVJnniWWZybbKdAutiaJQ+o2XWkWmo4OyOxh9Zqf4jmzP3oHLVcDKdePb64U//vzKuq2EKJPXw2Hh121jmic1w1GXWPmOYriYxO8hpcy2yhRW6tQJayVFoGH3DF63M3HGOn53dfb7c1+Po6no7+6M/61HUdBgsobmNevQW414VzaSfp59/EY/YNn7CzVnMIaaM2Wn5hZtvHUiag21BErxMgVMSRhVykoQKQWin9c1izbArQsTchiQtlzJSeINyzAUAmrJ5LyJRGwMXEqm5CQ02pIptWC6aERzEbMio5PYYoSWWqumRNQkDW0raj5198mQWCFxuy1FjL6SSsC8heKaDE++e7TWyCXv9UF/8PvYP8b2wDwbr8lJFrCUHMo8pN9fExmJ1Sv79XyA/vfnmDi31qnGUJSJVhHX2iHP25MljcHsbF/ZFx6N4YZBm9DmzUMDel80HdRvR76fMCXurIVHwEqGQ2poFAIhClNqJKhYFEA1nRFzua3bgxnjj4+fNqLohGQcMCgqx4P7nx5RcqwYmco1LLZ18nXl/OUrX3zE20CvluV0YjmeiPOMC/JG2OkgYzqgO63m7PUm7p61ikh22xIpbZS8UspKb0Wbt767avbWuGoxIXqOV9a3bzuVptcKgwqHGCzEEDgeFl6ennl5eZFDVbujIegXF74Hzr95OGzMWEb3Q1kOOUsMnmWeSYeFktOHYdHee5bpgHdCdbauM6tjaLSe2ISKO5QnFpmgtSo0u1rFaKY2wy7fwewTq3F4DWC297t2SO6rhyZ3HKJmlAx38M/q/TIw3910Qa+V2b92vLM7Wt16V/tnmcTU2u6NwLirR79g+t7UjU2dcQ8pQtOHiUtRDUTpGrAKNor2OCw/9eNSNzJk6qKuzqY0sBXXBEHrQzReKmZdabcbuQuy7xQdza1Sm4Svt6LC/CaTCdMNNW/0nOjOkm9Xrq+vQg9ZGzl3UFRegA7hFTjvSZcLIS7UnNhuZ/ImsQsS63E3q2qlUMoqTo5bloiRlKhVzD7qumFKweuHbXKjU+jWicbAV5nUNZ2AqkYOpXfJemh6j8m+MIq73ckWWRwdQ9o/9e8u+aBaPayRsbE7Zzkelr0YXOaFT59e+Ld/+xfL8d/544+vXM4rl8vKJWXCtjG5wGmaeFpmjjEwecfsPAaoarZVaGqco6YIRszSq2pK0papZegz7hpGk0WTuVrHzQVq6dzWxKrZlpLlOWKCwJoKxhKCACDGiCFLf2hwSxMzEuesmGyMQ1yNFVo35CLI/JYKt5RpKe0bf6tSiHoMriNaklo0/PfHtsgYizeT3Eu24Vwl+kb0meClMCkNodh6bVr0+pQmDXGqna22fWKYMYRe8a2QNXOy2U6cI3NJlNJIObGljW1b5ZnEwS+r87OYNyiiO+JUPXTX74ZrRsK4u5EnpmKs7vMO0YvWuzlESolv375y2zLny5U///rK0z//ycvLJ14+feLTpxc+fXrm6XSSNT6oVr3v63JoYbIyaW6XM9++feF6u5JLplH1WPoYaemdPfJJdKEI8Kf5sQP8K0oR27aMM+BF0SDgXsrCZsHcCx/Ym9DxOReN8clZml1rLcE6YpyYF8n9HNFRwwUTjEyxo5hWhSiTMh8icZqIcabhcMhrlig0874J1c3zo0aUe4ujBQ0CXpkO/YFbpU11t1IzSJSb7E3OepwL+EeX3N53B9zvH0IFu5vcjKJP0nFh5DZ+/zWt3puSwdTyatax6xwH2Ny70nYlEsVPE3E5MKWN9XbA367CvFL3fEPf6wU3irfvjTrGNPSBul3b8BNoDw32AFvbA6hR96JbaPyFXO5O5EXXmZhHVXLueF/0urf9vJZf9dDtg14qn8PtevvwehtrmOeI0DgdNQrQdTuvOC+yIB88cQocDgtPzwemKXA9X7ldrlzfVtIqFHsp08U52SOxLINZYlU7jx0Nrr0PATBUTSCwzjHcc1OpbLmCM4R+NyXaJ4O9qkngoDhKDSjGPAOcNHq2y4ChaxO4a+P1zLuHbplRjuyAPb3/8Lm9zw5/PB1/gto+PIoVr4xkOxtSH9QuTJCq07VuB8ihYMWYUnbRvNcsjvslZFyxwkQajag2lsYabQ4LOUvD2Hqn5qQgS9jf69C9M5qxO86re1whK3tlN7cx+v1zpjpLl8JVZEyl0BTIEb8ZZU3WtusXWzP7dZQorUbpwu6qPDSh6pFRNTVgMAxN66TauJWGcZVsP56Idhqtl3e15z71fQAEjXrT4BzdWarpJKquJ6GXp7qxlY3SkpyWTXM9x7pQBq5cz7qz3/pdf7WDDMUI2NRRo8Aga3HPStWscYXhqbYJi2AY3VnpDYbDdUNrbGS9VgXnMOxU/c49emWYmQlzJGjOqBrqKd27jQhF0+m9UEpiW2/crtf9/Xz0+NuJ6L7qtAkdON1O1eGBoojZRbOuQb6tnJvB4bHG06vh6VOjVMeheabZY4zDGc8ItusDtRxbYpMNZzh+pk0yqNbtRtkd9QrWjAJZp2W1cT2fuZxfub69cnv7xvr2jZo2aQJbE/pol3bKO8cUI4flwMvTE798+gQYRbTH++eh8XzcPPS1jmukhfWg63prmaIYQ5R84HJppI8aURdY5gO+JLptWF+J1jF5TzSeUMEX8M3gu1JjkWlPq51auVP/5O0x7GZEQM0DQvfQjI7fjxE/d0rt+P/jf4+kyz5+P6qrfkfLd9+k/ercf/a4SQWxujeiu8hcfzH6NUMn0u8XVtacvp+merNSkBynUqWgCHLzhfnjJd7RRtRyz67qXdzUbKFXaUSNisZtqZhto95upNtNblYfsN6RnVV6TBctRCoq0kbRQ5nkmODItxvX129Yd2NdK3lrUgSpwYdV91rnvOid4yTo5HqV9WsA1QR0jVKptVJrohYJCi9JaTUtSc7tumFLxY9rW1SNpChD66JhaAw6lOTDWd3wxWQFbK+qEVPgyYoezboxiRdadn4oSB8fY5MdOIXcL/KZe2vxh8jJeI6HI59eXvjtt185HA7gHdUYtvYnt7cL65qwXSi5L0uVeBtjCMZK5Mswd+mwtsqtZm69UBH789qleDW9k9NoRO8oZKsdKNRmSMax+kQrfdfkbbmyFWnSSu2YKoY/IXb6oPoN9kSXYqHUStYcLil+7L7k94yzPkxnGluurFumpqxOo5lSpemSRrRjdY3KLv4jtGtwODMrQCCNXXCV4DcxwbJge9dIF/uQ2SsT26QH91YaxVZcEXfb1C2+VwqNSgPbWdJMrolaGilvbGllyxtbVuCwZtlPe7tH7Iwg9HEEuNGMakPaq67TCqZJHpuVvtupWYftYJr8zLIm2tuFL1+/EeK/WA5HTqcnnp6e+fXXT/z+2698+vQszWZKlFL2ImwvDju6NxVy2rhdz9zWC6kkWpci92eNKDw0ogPgZkco1bOhq4lcYUsJa7qYQzmdErqyn02Dnth1H5EPVXZiSSCwMmVvSnl1jhjj3mSORrRU1QB0dCIad7qm8yPibDSiltqt7sGyfi13I5377vmwzgbXeezLj299UM32ymonnHI/KZTR0rrGfkiI+v3fGX6mER3apVrbPmGhi8kgoJTT/u7f34tAjRdwGg+ispqB+t/pqnJ39eAJWmxV1Y+F6xV3nbjdbjiVAwGSJaqT1aDfd79OH7yW3QxEDeaq/r7VsgfZ9/F7zeorFTJiDriVolRB9V3Qm8xYh7dq2tfBMFgA90ZpUBl3/RoCcHz0MMYwzZJw0KNMjGopxGm4Ols1fIwsh5nT85GSIpfzhevlSiuSUVlq0XPR0rsHPNb63XHXeY+NERciZrgsj/qqgS0FFzSjG5HzZI3TcsVqBIs2+zw2o0p5NIZ71NqoM/p+3ZxzWBE0SSM6JkJm8MAeqNOjGdV7Y4/+eFhno4H6P3kUZZptBlYjetGmQ4faDM3eBww8PgfAoPtZNzLQqdXJ4KKWnZXRWsd7t99LrUoTISBpVrbXfU2Myb5sTSozAehGz1Cty1KWRrAJVXyPfKx+d4QWap5MCiWHrj5MlWXPeChUx5tjRBbe/1f3WqtpNFXJwqhrtUFrpGq41Uqv3PfU7x6j0d07Ea1dGYMukEVojICGThgJ4siscpxSyCWRy0oqm1x3spgSKYgktY9VsFInoL2/a0YHSZcucqiqQzDnPDaoDM5ILSEGjMKXs1ic64Qg96L3bj93m0rEaAL4CnigNUit+6BRTB/ZmaH+cQrqw868CUEmrgIcQCtKT6+Fkje29cb1etWJ6Ogi3z/+diKKvogdizVDpTD+3u5/z+OhQYdSKKzc3l55tYaWE9fzmfPrV5bTiWlemKYFF0RsjSJbez2gP7S1+wY90PWcE0NX6qyhO/l6OTicmidJYWysw/sg6K+1GHVqlEXkWA4Ly2FhXhZmDTWOcYIO1dV7ITAO3/293m+KgST2+7/aGyZnLcty4JdfPjPPE60W0rb+cLmtNUTvwVSCNhpurAgjFuiLD0xdEFrXIQZL9KKxcM4IPa/qxtuErlWape0Zrk6a0iYTBnmNXV+u6vtUA2sx2mxYiXOwgrrQlBraRW/nesc20TQK4QbR66KH9+OV6X1vZh/8DR6Q9vtDUJoH1Hg/KEbfOmgSilA1qLnRN0FBXTO42snTT3jpHeHBN7NTmYwxaj2tjVgRK2pxltX3mTN92wRRcgmcIztHspYM1FypWQ/28bbpoqfpnfXtilbhpK3qgW/2wsdq5p4dWX4+CM0hJVrJd7AAQ1cKqKDpmglY5Oe3cdA3OQxMNwQfFE3z6o4mNHkxcQn4INtBGEwAOp5OsKPplNDz6B3B+50p4J2X+BHVUK/OfQh+DXrHmIrsU9GHP1tnmKJGxTjDbftMyhmhlDlqgW+vF7ZVXPauZcNcO7lm0jSRpomDDwTnCVYM0ry1zHgKYiJQWqNY6L3KPda5b/wDEVcn2BiihFsjEyqhVPb9OgYjCL73juPpwOnpmePpiXlepJjW91sbEtrdNTttEnrUDvUYp7uKUOlrN+QGqVTsukHv1GqpqWObfC7RdIrt7wrt7y44xnrUTk/o5QMSVbDMmXuMxyiUa2/0KvdFyjJlCM5Du+8LTbXSzYzYCW3wFWkduIQPljh5ao90A7HctecheJbZc1giyzIxTUHcyb2yZHZAbzztXhA6Kwet7wK+tTIo5ZVWMrkjOrlW6SVh6kbPN25vR5k8KRX03oiO29XshWMtlZxkqpvSxpqFBtbNz4/NMQ25s4hg7HC7akF3xIG/1S6yByEsaENqkAm1VYDE3pvb8VplGjgmGxkzivFcwDhsE2AhF2l6exPaZimS9xunmWVQFbWR1awm+btRiGA0LuTnDfjose6xNPpnQHRjuiDeNaKydzerGXtq9iNA13Dm1bLffPyzR8yV0XzeO9XW7Q7fYyI6GoE9X/ShyRyNqHtoGvc9an+PTrW2Rqakzu46cNHwN0hiFCImWmVfU25nTpm9uGV8hmMSXzSvMCXxuEibOIPmTC15Nz+7x42JnlL0wTKJKV0aA2MF6Lc6cmkNaUi0uX1cTAOCHtnwwor5eE8xxhCjuiJXWZsheAEjDRgrWtAQPNMcORxm6uR5ejlxu15JW+Z8uZFrwTaDZMmqt0ETl39xni7YVHGx3iPUrMWqIGiPHmv356Dvi5/pfS14p9PNvbHhPfVwP4dgd+jcG82B3hr2bs+Yh2jD+2PX/43r2O6f1Z5T/n0z+vNban8UO9gDHZszyXS6M3Kreo+ZDdZ4XBCH3RACwbvdxyN4kVFgYJ4m5nm+M3HavQmPU+R4PDAvk75dqbuOh1kd1d1+bcZn1rt83s5JBvK4p5fjgafnJ4x1PD0/cTgsOO85nQQAnKbI6bBwmCdKraT8xJILT8cjp2UBDK5bovNiPeHEsG/xnsV7SpVYFx8Dp6cjcY7iMm7H/nOfYg76O8oYSFrhjhzt7x/i8xB0kzUYZSzVXCimyGTz4fuW3nBNgG6a6l6LNPK56ES4JdGwdpEooIOzsZ5kACTnQu0a49QUnO5irmWswQaHiyJxcpP2OuhkvBZM6bvniDHo1FK072ON196giQbfVnUh7qLXH/eN17rQ7X2V2dc4bRhX9fshZgTwqFnqzbRtrLeV2+0mz+sVb/x+K33/+JsTlfthOqZQ944UdCrSH+4mOTAEOTW90ksnXc+81sR6eZU4lWWWjM9pFoquj3sR2/UAHIXp3r1XGWnnqlbNNKZZM/GmCWNnKeSsw7ggmZkh4mMkTrO4x1kDrWD7SIeSG/n09MTheGReZsIU8UFCnQ1A1YPjXcO5X539743+V9Mfm1Ft/pzleDxg7W88Pydev33h27evP1xr2TBUJ9cMJRhsFbpswxLCzDEcWazDtoZrDe87PoCxjZwlNy7bRu2WptqprJuNt4bovE7cpKDsvdF2RzePsY8W7uAweGOE8uW0mLADsRENl0ME0LaJiFwa0L7/t7tbsAHT9+/prTxHAay+T7Aj6HfEuLY7baC1sdlrfa2NA93SCtRVCjOTO8ZVjuFjrUtH7cstigKKfbstlWbEQhvNnqJ1bEPokL1LcatGJBVDMpZkDFnzPFttu0ulQQseg5iMvF0pa6YDOQutGJBJi0ULbUXyrXwmtK4oYmXQp3dxelOaxXgOOksTLK0h1wNdQ6LhGVEcbs/1C1HWvvOjQVVTLIPGeYgOaOTCye8998ByQcUwhj9WQeZ/XONWI0oewKvB2ENNzHqVdeJEM/j55YnehDHgjMfi+Nf0hS/f3nh9vZBqIV0TbzfDZZp5m2aep5mneeY0T3gnlMVgvTZLmh1nDKXLBNUOJoZUIlhlSEhzFJmiZtchaG9pDQmHF/ObeQrM08Tz6cinpxMvzy8cDgeC6soxZp9wpSobfS6W1iV6Q0xkHL0pmGShGUdphlQ6NNH60h21Omy1hF6ZjKybYiRO6cf9Gy3ANEoDs58dQxNmnXmgDyKNVOsUyp7jlnLBhEgwuiadmHdJ/qlTVHYYZcmhZJzBR880BQ7HCR8c0xwFiR1ARxhskcDpMLPME1MMRCcGUnctlt0bk70gtRLl4/vd+W/Q7LFj/2r0spHXzoUC+cr1WwT6wz0jr7s1zWXbG72+TwNqzbt5Ry6FoHrHDx9mmPIo8KJgojBFdL8cDar+v8FsEBdZh7eiTxwN010j+7AH5kqpbQdqU0oINVwoU6V2rKtgHVsSV8pay15gtNaZ5oVjkRw7ASb0GmsxiRkZcIzaafxpX18Pb1z3VeChGZVZglNqqmo1x72vEm6rja4kuo8Q9PdN5M/qdadT4NYq1llaVYdnHx6KqHsjOs6UYWa0g+rjHtCi67H4+v6eGq/GqcFR8JESCvYmP1+AMzFkGRME538seR+pubUUUtrYto1tXVlvN27rjbyt6jad5GxplSFTMUY1oqNwRb0DjBNgWl3+Ba/tlCyO0LXkveF3xmA0+7NrMzi8Dj4ynTPGECb16KidVpo2/HIfWoOcHcERJ898iNADzy9HtvWZy/mG9ZbSCqbrZF8NyVKqevbp5+EdJkhEkVfg03svdQxG8iOLuqQqZZk+QHFl2XgnTZk1ChLp+9b6Qz7zuxauN12b5uHzaQrkPfx9N3fp1r7y+33SPLTsTSeAg56rHzw/3T8+eBTrxP29dcnYLpkRa+GmSMASXcRxbzqDMqy8dUwxcFhmrLVS6x4WBUg1HkwbkRA8yzLLmTeJL0rvnefnJzkL4zB90zXXZG2N1AuZIotwbEyWD6cTp9OJ0/OT1AeIGWb0npfnI8dl2QGgXBqH44Hj4QDAEibSlsEajNdz2Vkmnb7FeeKQjxxPRw6HRWp3b8XYZx/iPNxvyB6fdV+J5uNG1DvPwS96iY34iORC3grZJhJG1gVdqMGtYIqRn6sDjlyy6F1LppSkBkKF3ousN/c+TkzwYTX6As29bcL46eCsY3IBFwNh9oRZ3JPHUMZo1Iu8Q33rGq8mjWjYG13JWTX0Kj9PFTJ7rWqtIWiG9QBqBq2/VSgoWD/mrwrMyDVKpNvGer1xvdy4nW/cLjdu15Xg5p+u8b+n5j7+ah6puXpT6j8Yv787vUmX0Id+YbtytYLWjEykEIdGZTSiXlEBRU0HH9DoyJ1KN41OEwpIf2IKz1ij+UpecrWsla7bqfaFpcmE5bBgkeZJmKqiEzg9iVvu4XRkmmdxl1ONjjUG09R9rz+O6R9WNveJ3x150RPWiEPnPC9MU6T3xn///378YXjnBIUplYwTemOHmiXqpAePD7MYObSG6w3vGt5XoJC9Y/OWUsXhVFzruuofpXDu2DtNVz6wdxPR++Gvn7ARCrC3EndRpd+jNVl8HkWGuzSfbjQu5j5F7Yryd9Mx3e4HgLeSQ2i1Cb3Di1rxDNR/UBZau9MWHpqGwYenW1oWHWDPQGpgDeuc9YP6rqjoiCi+iTHD3ojaijFKW6gNOyabVrV/Torv3kbGaiP3RuqiUxlUYvmaAajcr3spme2W6KrbKrXK4aYW3mPiI/EHOqWWC3EHsR/AqN35t6vP2gMlqY9Clw7W4aN+vvvEwGHH/RgiPorwfDSl3sm0LzhHVNfCgZL5MRX1QWhoijxjDO5//gtS/nFPMffiGmPu98/4vPs49BWgCI6nw4IkLzrKVqlbFTfo3kk5c7kWrpts9FspXHPmVgqJRrWdQ4zM3hOtw2O0YWoC2nQ5qGldY5MkY0waX888zcxTxHkxlxlFrbWOECzOR0IMHJeFw2Hh+XTg5Xjk+flJYjFCEB2xNjgjuBsQQ4j2cO9ZpwZU6trYDLkZtiLaptSrqvciBo+jE+XGA2s+bETRIlOmB0MP1fSgFChUBrb3JqJpZdLH6y3S8ESdsjgfRN+vdF7nJfsSKzS22tvw9pP9zxt8kHVhtQGiCzw13C3nKRLVjde70bSMPWhkV3qND/FY27C24RwELMP+3ldtRJF7ztqO6wVyI7fMJV3Y3F0v3xju3ULPL7pn3lkH9wnH0BW22sDUnbnz4yVvDF3iXlQ/NKVj6ode965NkOy/mi3rPDF4vPNYa+76NnVtrLVhTaEhZlnWCBjYW6OVLKAFAlBinRqxbJRa1F3eEryXpqTWe4HM/QzHDg2crtFdF/XdPrqXAQMx18Zn/1VW1gAZB4Xf6H3fW6MqeI26g46p+72J//uJaAie1gSgaE32p7EnjUk6sEs8HtH9x8nnY/P5/ueN33ddk3pEWSm+YwjUEvZCuw/d6lg3vePbfSLx+BivSfKes7qKbtzWG9fLhW29sa2SXyiAqUwzjTZOd92EOiQbh7GdAWqI14LkQZacSetGTkno7btRnWeYOZldtPbx9TYGfFD9mBG9v3VijDg+551NEoPQeK3h9HxgS4lvX9+IU0SyvkW/WGqH3HdwZvQQViNqrFfH3BCIPtBilJzjLYkJThMvAydvR8zj9OwaT7eDQexO8SOX83EqOp5mX/n94+vx/QbQ79d5N8vZf30wLOO+Bt71ST9DWoBqHdV6am9sKhcyCjuE1pn9hJkrkTtDQM4d3WedY44T1lvmeWaZZ9nH1aNl6Ne9d9LEBs8UI3OMdDqn44E5RkIY7YpQccf0USbYVmsABYw1T/iUC/MySySiGk5NMRKc5XSQ81WMPCOldaZpYpqFkbjESskVRUywzhKtEXZeq8Q8sdTCvEzMy6yT2UGvV6DdyxnVrdBncY7uA80H7TV+fDjvWOIsRraIz0dJhc0kLJJdS0J1qpVcszBXKgr8CziYa9EcUvUPaRLh57zQz6VhlLq77TRBATmquUfyQScaC97iJ0+YolDho7/LeipI+O4+ZAVGPWlwztCxjBhOS8d2p6xFPau12RxryPshJ9B1q2ucXtRwUda96Z1mLWnb2G4rt/OV2/nK9XyRZvS2yh42pZ+u8Z82ov3hprw/3v/lmHbtN1ZH0OA+DjCj969Qj4atcHlAcZ2Vwn5HaPTgGNMa44wEMztxdYzTxHyYef70mefPvzAtJwgTxkWaTolqqeIeGAMxOI5T5DBHorMEbYRQBG9eFn79/Xc+ff6Fw+mIj5Og/B2hgdumh/Cgb8n7Gxx5uSryvQaNQ6ZV8t+76VgGr9zq+/zxMc0TS/jENV1o50xqK9tWWdfENTVMcbTqeJ5mjsFzUFc/5x3OOJYoUzpvLFtpbLXjjWyyuUne4phaSDSEbo6KbtwzxPTQ7jJJlZykvtMwRoN6p8fdC0XXLcF30dvOM6fl8KDVkELJWg01d2r24x4PVL0ZtW/sO01mdCyD2nIPyx5Nc2+oCU2nma6ZTJC3/FEbSqcLnc2w05WkeCxygA/KTwdChMOJgqGGSJ+PkLNQg2qlaWByUdOMVu/uY8N6+zFTbhS4ValE+3tVVKw/vq99Wtd3Cc+YCO8Tkn5/Dtdm0eTeTzrFwgRscGoC4R3Ge3oIECNmiphpwk6TaMaCJwQptIL3AoJogbzTeUdzqlQ4APPPv4AfG9G9yhjvpw+zHvaiVVekAF+tU3Ii3VbytmF7Z4mB5+NBA7rhdY7E65V13TAd1t7oaSVRecsrT9PEaZo5ThOTC0Qnh/TkApPxhG5J143X/sbXr2e+fP1GaZ0YHE/HRYoWnU4d5pnn05FfXoocYlamMcdlZllmjvPMcZ44LQvLFInB3ydKTbRUOQtdr5SwNxYDWCmlsW6Z82XlehNjpFSgGYs3wowwejDqEPmB7vnB1TZgnRoR9EIqiVvauN5WLtcbWHBBzIlizEyz3APea0FN10PMEWJgmmbmeSHOEtsSgyUEoVI7O9GbI+fCugr97vXtwtvblfNlvVOa+9g3RZs6xUCtnWWKXJfMbSvyvnNDjPAD3i84X3G+4Jw0oM53POLy67qhVpRmpk2RlWmPc3YHvoKV6XdVtDkr9azVrg26UK93Bkx/WJd9UH/Fof1nD6Na1v1E6F0br7uMZY+B0HMuhMAcAocpSjSR9+IErY052sTt91CHLWWuKXG7bZznwGV2AhgET4wdY6si7BIubr0YxRktwGcLwQqAaFSjRa26H2sDd/+J3LeS+2L7oSnVRWe6uYNLo5AZdcBodEejr1NIN4AxnRTYcZ3G9PRvHjuTQffNu7vqPfex9wdK7mgIHprS76m4Hze+oyi7g/LeCw20tZnDQXTQMUbVHwtoPlwlH13lx3cflMHaGiVJtvq2rtxuV27XK9er/Hq7XdX8S+i6VadtvXYETe1iDDFwvnqfYgx6MyXpc6Prmdtx9Npppu17nXeBXCFtP0NbpPeVc60Ppr98DqPw9RbrRWrhg2M5zjzlEy+/PPP5tzPX28btsrGuSQ3j1CAP9ug7aXA6rkHPjbplkcE4hwXOb2+iyW2N6B1Py8wcPYeDZCIvMUihXSvOWJYQaVOVe8sanEEZYkO/rNfKInF2w2+jmd2sxbr7DK2P/ymzQtnhok9s5d6E9roPKX4AOAzv7rUP17ebaL4ADdML0vFkTCtQ2eOPcpHJuU+SgWlrJSehe5eacThqSbTitTlXZ2hd1WN6HLzbp2S9d4JzcrcqI0umcOaeg90bvYsbvHEe7y1Wo7JqacRJzNCMTs6cEaBgmuWMVMSO2jshRGIIgKG6RvVtRw+sZWfStWalOa2yfwbndJIXmZeF5XTkuCZuW8KaQrKZmhrzYeZwPBKnCdvjhwY63jrCNKk0weyT0Voa2QqbQDLhodQs/gEaZdR5iC1qd+mHkPekGcQ6BVjVzdaKwWKrlR4MNnRsrpgw2Blmn4KGOeCjsDbHoKaqmWDdndirsj06pVhStjqMkL2nap04cuCd0nhxVrtYWZOS4XvfL8dCacaII7FJOOfYVH603VZu1xuX85Xz25nL64X1ulKSeDH8H5kVjYuqezwPvzy+pv17j+3Z9h3L5h7ga9SpqaMVA8UUrEn3g3kcOOaeT+O9dP3ipuaJIfJ0PPD86ZmXX3/n06//wC9HCo6CIelouNSKcZYQPXMM/P7rL/z++TOHZWZSeuF4Qz4ElsOB5XgUk4cQpVnsgiruXXZ/34A+NqLAbsow6Bk7/a2PzUbpvj+pGpd55vjJE66O1G5c0plLq1xumXRNlGzYCmyHSj0e8TEyeYv1EK1M7nzvTMax5swtFWlEG6wPH6K4gko8g9RII4fxgZ5nFNnpbXfPrNr8GG0mxhRHaJxezHUwBA9zjBznhadlpbQR1SIGD4a+6wutE4MU8ygcNYZdp2G5/76/1+Dudu6qeett0EVk4lWN6NXS9jca0Zz1hpNDQ1xhK4YsGgBt1AmRfjzR40RdTvSUJFqhVmlI1422btSUd7H/aEQfEf1dH2QepudNJ5f6PttD47rTmrvZC5ZhqNP3JlQaX0HnxvfVYtrsPf2O8jYn9xJOmlDjHT1G+hRhithpxs0zfl4UeZNpVQxjaqVuaSPiwMtnL7b2Snfz/8/H13zsBWij3O6NaNMmtCnQY41MFtKauF2urJcbtMYUPE+HhU4XuucSiefI60WaUXG2XXlLK87A87Lw+XDkU208T52nSQqtyTmhHHdDumxst40vX9/468srHcNpET23RWjtWMdxmXh5PnEriAQgRKY4scwTyzTtOprjIbJMkSl4maob1Ea/ajZbJ+eoGXt3qnkpldu6cb5cudwSa66kKsAEzqgLs1SahQew8CePkdMobILClhO3beNyWzlfb+DAF0c1nTgFplREr2+Erjv2ZqeGB/M8czgcmebINEeCd3gPQZHo3h05NW63zNv5yuvrha+vZ97ONzXH6KpXl5cdomeexWRljpHTPHE9Fm5bZUsSJI+Z8L7iQ8WHgvMV7zuuNJx6vHaseFy0R+odWvAY+ZyNJRhxG99qZa1Vsn61Eeul0YoadTWZCknemzpT69HVese5n5+oxjasaff7Vs/Eu28BatJ0p4PGEDjMswCmIbA4NakL8twbNEXSrbWklDVHceVyDZwvnpTzQ5Mnn3ntBm8bwXeaM/s+PwdLNKLxH1KDXovsq8ZxHxZ8334+NqDvF5/B7M3I7qs7OtIdULw3e30nmzxMU3Z5iCL0Zt9GP3w86u5EU8o7XdO7vfcnY+zvG9K/f8j7GRM0h8WYoAWesHCmbRPDodYEtIsC5FltsMw4ZB9+1N14T4y01vXGut64nC+8nc9czm+cz5Jve7tddg2p5CbK+zJOPRhMx1R9Pzs12UBZoWxQkhpuWXUtbTTjBLzXSTK5wfYBmDgaJ6OatvExj3LIGNHzPZzvPljmw0TvneuvL7y93VjXzF/uG6lkyq2w5UzaZP1GBTjFq8CL/0PPIvfoXYvjxnqTGB1aYw6e5+NC643DYeZ4XDjEIPKgWvHGsMQo/1YbUS8zIpFr9bbLF4bGbhhvts4+4RuU7nHNd2MbKfjkDFejnKHj3R1z0ZqSUR9ro/Mf7OPdTfTQQY14aFm+oMlZmVvHlUIqGZ83bFqxteKs0zipRM6J3hwleYoaaLkQCXYMi4yyn2S/dAjjrXdpzEzv9FIpis9LnaVgWzX0plPnECWOJ0iDCOzyH9DhppqzTSEQggDi1lvdWwPOqeO865K3rCC9Meo/YkUig7XYWmWi6uQfxBCYloXD04ljKqylYI1MM8vaWI5Hjqcn4jST10bZftzLnXPEaVYAWWUDVainzkl9Oj7bXBKpbHQ7fAHEOGtEMaljAjvb0xiVwN3rZuc8zaB0WXC+YYNK8HTYFOZAXCJxUZq/NqK1iXN/VpO8UpuwurqS9a3B6PR2yFrUUgWMAM2ma6zL2N36iJy5m4TuAPJAnPTXUbq21rhdblzPV64XaUhvl5W0iYHmqHF+9vgbjahulA/8gdFU7jSch+f4i4beavfAq/3rdlqrdHQ0xfjpevCo8YkUPqL/tMFJZlJ0zPPEYYn71OF4OGLnI5ui2mY0AEh4uJ8nno4HfvnlF/7Lf/2vnA6LTnYGZUcbMSfB4taJwLuP92+R1wbsV1Ebgnfvh3GAddW6IL9qY7pfx/svP34QIXA4zJRW8WHCGOF/b6Vw3cSkRpRJUqB577BWDm5vHTYuHFxgigm/bji34nLF1YarbUewKqqL1MVoDTqltIqGSQZbo5NbZy2VW6rccmXkxMr7bGyt7y59VjtHa4UKEr0nhoCtVanBiJCFfgce9vVlPrwuj1NEufTvF/NoiuVHG2wXnSz7fdL3G+z7x7uJ6B6CfM9F7d3cKTUYoXMYR7Oe6sXJtqq5RDGegiWbu+vcw5uQ96f3k97W+/sZb6g/6MrG2uz7axlPdRCujWb02ZSk04z++YG6vN+3Wp4aIxRQa2nW0sV+VEw3nJOga++ozlGtpah2o3pP8Wri4T3GB2wIML5GJ02D3vWzMn135B00pqavvz8YUOnL7gaJJlLhe05CZ3ZOdYVt0n8v19d5zzVuhLixJvn3KWfOOcNtFeqlUljq3KVIsU6iNNpGaZXz+cbteqNby7pubOtGniMxSnE2xcDzYWFLyDXwgRgCc1RtYxCQaw4eb61qe4erc1bqXaK2xrYF1jVwu/mdff123fj69cxfX868vZ15O1/JKe30suHXKG7Zeti0LpSjD9QucqAoRZC2T92lERKn5KIOrilXUi5CabR2pz8LRRL5OaWJGZerFFcVdJQ4qY6wEGrt6nBeWLcs4eGpIObYZj8shhlR1WdpEhlTtGEtFZp1SgeecT5h3YpxiqDv94lSEAeTois9z96b0OCcSAWkbcCXKqZj2VJbJpt+N7GrUpQa5b93xnRvACjsNNUfHkbBfYnARNxsOzuDxKkJkTW7QZ/zgXk5iI4qRiZnmJwhOkcwdtfUOwXevNPvg5r10fCmESyk5MR4rVRhHdWmoI7Ew6C65hAjx9OJ0/Eg4GwMD1S+QU4ZbKc7SZF9S/moLb03cjtguf/12N+/a2D1F6eGgq13vOYp24fPmB26+I8f7xvJh03wh//2d1/7n/lZ2lRbodYFY5g1ozaEsOdfjwzxkU0qxm7vQekxNN49EXIR5+ktcTxdOF4uXN6eeDu/8vb2xvVy4Xa7st5u5JL3eAoMyigzYnfYCzSt4DuYXrBUyYxGXfCNEQq7NULHXBbiPHG5Jr6ev374tke8zHDZLAoyt6E7N9KAiu5SjBRj9PQuLrqff31h27IytCrNdOzV6lks36MhWeL0TtH9R5zo1fW2C8PEGMM0R154IsSAMTDNkWWJfHo6scRItI7TsvDrp09sW+LldOA0C+PHKp266rMbz7TMxHmi48BVbJCM7UH1Hp4ScpIrO6m2ffpfNYJEjJPuQIlgNB9V438/EcVNEm/VNcuzCWPPWHVuVRNJqqQG9Jwl8tB4Ace3jZaSnOvey1nvPT1k0LU4XuFgqJmqyFtHzDGqgHKIqe1ej3TQBqtLrIO6sWpHI//OGDHH6dBrESd/DM0Z9Zka1NVhACXXo9WmUoh7IyqortRmVfc6axrNWzXoMarbDoToiTGQo6dFj6nq5jwtTMuBa1kp24/ZxGKaqNfYdBFi64BkZ5+1qpFwcraLPERAptaVQXg/7PS1ybQ9epGhhCAxVd458Q/tcp1qaeRisU1qM+cdLjisN+Isb/Rcb0IDTpq3OiIRq+Ztg+QzW2UbWtXwMvJEtXYepm2jXRFgBWqr957PGB2syfsfsThNP4OaizaiQsVNGiNYNR7IGvvTWhz+Q2ruaBJ0ce5HjrnfUAPsHFjsuPZ7/3VfWka1cqP5c4oyuSATlmmZ1b12Ed73PNGtIXXJq5ucIXqLqRlqgpJpOZFrZyudtCUJ7q1C1Yg+8Hw68vx04ul0FG68UgiHo9h9EivvoXcEadLXblTbt7+xHYG9a/b07Y81R9dwX63meGg97kjxD4tfjEAwHrqjNSfFG+K+l1rCFoPbpADJpbDmhXQ8UM3McVo4HANTb9jLBX+5ELaVuCVmshqJGFIDh+ghq/L7nLVMwXOIQg/zXm6ytTTOqfJ1zVxXQdcbhhFy1G+RX7fCNTWW0ITu03fCCiMSRFWMQlHhwV2z3Tfp/TqO9YNRoTjDv2i/gvcpkh5KFlyQ/LLZG7Gx7pXaK4fj9PEV72pqhGzwrVVB4O//eafr1SZ5bVU3xqpaMTGJMGzGshlLtlZMI0YxNprkO4Ck12U4+I331XekV9bdQG/eAx4yDa27c+I+FW1t//0+EWVf0jv6OmiJNItt90+mW5R6ZDCb2d01Jbc3vIsiGDmEMcQdKBj/05dKyR8bRJUsdPz76206DVXzpf1WMvtEdKc79/F6Bx1Irllwjqd5Zg6R/iyb6rYl3i4XzpcraUvSDG1v3NbE67TxPC88Hxael4XopRATdLMyDH22beP8dhZ02BoWIy7Rh+B5mqMqdMQtjwKNCibg3ISn00phXTfSllQjsZI2zRpsjdsVvr02TE9cVzFFej2v/POvN/746423y43L9SrGJ+b++VkjyHN0lujcLjNA0efHR+2dTS34cZYwRQ7HA58+FSyGNSVSTrJNtUbNjeIr3jisM0L7EyEl222lt6+s1xshSjbZFD3T5FmmwOk44w8LttfdUVLodV68ALBg1f3SKN0oWGZ1zp2XSWzmtTgUSrsVgNA3NX0a1Mq2g0cSbNwY8gJrhq5Zrs8AHqMLxKEzTQm2RDcbtRm5x53e36NpVHAFHN1I7msujVybRq18sIeDmnZY1N8Eo47nwU9S5I1pmgsYF7BhYj488fLpF45TxLWKbRXTR9ZyJeeGtWU/rwTjGLmTBdO7gKvdY3qT+KEhJO+INt8IRfL0dOLp+YXTyy88ffqV46dfiPNRoqK83yeJ7Oc2D7/KXmXevePx6yhmvm86H67P/lfvm0Np1iKYURcI2LADjX9Tpt+/Z9dr/hD1hdUSZvz68ev6vrF+gNb/5t/e9+fxM7z3TNOMc6LLdU6o7kI1HeHy4SHu6v33HHta0wnSyHs9HI48Pz3z6fZZXSjvdN3bbWVdb2zbSs6ZpO664xzmoRGypou23YyIGokNi9PMNE+cnp55fnnheDzx55dX/uc/v/7w7nvvpCSTy5orJRXSmii5MlztMcNsiv1aGis0+XmeeHl5opaOD55piTy/nLldNq7Xle0m7JRtk+zKvAkzYQBwg7JtrdU814mjgU86wRn7SgiewzJzOsx45/nHr7/iXCSnzBQsUxiuyjKpmiscKjQ8YVoIcQEssQ4HYXULV7lIVndkFFQdFQ9DF6zuw/cWdFw/813N8x+DHsYFpf1qI2rcXevqOsEGApbQjOTNj2iSXjCbPNky3VaalSi0aq3EwtSy1yXNe0yZMDFKg5MSvXfmw4S3M059XLyRoYjpomd0puNMx/ZOL4WyrdQqsrJSqmQbTzNgZM2uN3GZP4h3SkqJ27pSayPGmRgF0MlZ4ldGI2qt6De9s9TaWLdESoVlmXl6PhGnSMuJXrI8U6ZpE96KRKfINfNEH9nsR/IhYdQlzTIVAKSTaiZpeoeYp2pgTBfQj4auUFQmpiCeGyCiykR02BND3HXszjlaaWraZmi5kr00eXbQ3zVyJZcC1qjLtHhbbKmQc92b0UEHh45tldpkumpUy21Vb2vVLwFtcQZryTSUqfjY+7EPQUrKYqak3gNp3cSgSJ95K3utjJEzEceHhm3j8TfUXEN/cEyy42DqDwioufdn8NB86ju7H2VCiTJWjVKGbiIGwhQJcdKN8Innl2dOTyeWw8zhMFF647LduG4r5A2XV0zLMBabSeTS2XKjZFlwtjeijzwdZl60CT2dTkwxIofTMMuRhfPIqx4UiuGmNpqJ/jDd3Fm4qBLo3YHS3k2AzfieO3flpxccEHpba45WpVGseyOK5GQiC+66raT6TDMWEyb8cebp6ZnZGayLYjJkLFNHGvmOZDF22cSluJKmxFjD5B2HKbBMAYwUOmupnFPh6y1zWQsFiUqgix0Ja+R1y1xTxU4N54c2tj00oV3bHTWc0kZp0Bf6Iwo26ofBzdf1NiYdvcukdtBam9o9diu21nHxhIO4g5VWpBE9TXy02XfEOEgaUbFbbzsyJFPFohrZVIWenHdheHtAhwwJI/EtVjTOTSli9+as37UC6lA3EMU7vUEPbDMKvfcF3e74qIYVVWNlvreGv2dg7bexHOJWqEbDwt5Yo1paKRKyomRinFGxKbFtfqdqGb1fJKdwJsZ4R0UF9twvrLj0/vjIRYw43jeiipT2fRUwYjr2jMA2aC5daSV3MCI6R1B92bwszIeZLWX+/PqNv75844+/vvLH7Ys0puvG5Fdel8SvtZI7LMERHBikyRi78rZl3t4uBG+Jk1CSnZFGNE+iyUkjAzdXWhNU1EWPwwtCeG1iPHK7sW03kk5qS61cr5VvrtDyjTiJ6dG3txv//POVP/5643xbuW4bWx7TxFG0S5N1nITKukSxZv+xDR33sBSNxlniPHHSCJboA2/nM29nQfDFtEua0WbEebtXoZVSG9v1xnZLuwGE9455CixLJB9nPM8co8O0EcFhdNIVCdHsVGbr3T4tCd4wOcusbJeoWjrr7iH2WGGrGDXCGkDUsMK3fZgDedWEGgUhhdY6+cDkI1GfzniM32j2RsWSW5f4C1vxtlKtUUaHNLRdDcNK7ay2YnIl+J8Hmew6Mi3CpRENu+SjDW2O83JN4sRyfOLl828cp4mWVnpaKWmjbCstD7M1EKhGSxyVLYwGKzqPQ2iBmYdGtAmSZxGw9+npxO+//87zp984vHxmPn2SiCjjRbtkd1Wz/sTHd/o9jPpBI/pu6mge/v93iC0DpBakPhgBHQZ1eHgV3EHinz3utNv+DtyUp8rP3r/G717Hzx6DzPTTLxm0Y9CGM+wmcMZYSlHjxSE3UtfXd46843s+1Aa9931/HfEftd4pluu6qX70wuV85nw+cz6/cb1eudwubNsqU7kq5igD7LQOIo7+UGSKpm5iWY48v3zi19/+wcunTzQC8H9/cE36TqEtqZC3zLaNTF79PLizegbaKnR5wzxPPL+cMNYxzYHD08zl7YnrZeV6ufH67Y1vX17p3wrXS2LLiZKqxodpZJiyIPwUmKfINAWm4IlRtI/Gyv4jbu8KTvmJp9OLnE0tQyt7Ad6NpRpPIdCMBxvAeXq3O+O267qqpbBpQ9pzp/eidcyg4A5KY7uPHR7XjepIH5ld/9HD2KDUVR1HKnXdGfC2i/69W0JDG1HRMLaK0KvXBGuiOzXteWxES75LfHzAVUkMSCmxriudhrNH5kk+T9sHJCDRXV2TEBxgW6MXaVLWbeN8vrBtiWVeaMcTxhjOb2fOlzdCCPRypC4Lt9uN8+VCyZVlOXJYjnRg3TZxA6djHErzFk+KUpsCvIlyOhK8NMQtJZkI50JPSZ5ZTK16qxgM3orfhfuJX0vrnTzAHKXsJKU+v2v2jNSxpRdpRE1DUvoEWJe+STxcpPkUA6+o54H3fu9DSpHXRoMSC36zlKHd1BpSGlE1XNThSE4SsSamghIlVdswoGvYbilNpHuOew3hg5PG0I73LK+/6/oSDPCeqWyM6EJlCNPpfRU/iOvK9XzhdrmS1vsUlMFWUimJdVb19B8/fj4RhfskhjtlDkZxy2DYMlpTqzqxkT/pBho49BHBY4O6Ps2CwoVJQouneeL50wufP3/m9HxinmWD2fKGPb/RL45ybfS6qd6qUHOmER5CxLugks7y/Hzil5cTv3z6xNPpRIwR5/1OGzJOIxN0c8k5746dxqDIpdUCfqA/6OnUFGnu+yb/cCQxWtTxN52mX9/3a/X943ZbaX9eeb28cb5c2bas0yD1oDSVZiyFQmoWiuGcbsRbwIWAmyJ+mTmEQGmGSqSHhkf0tk31aFPNONdxtpFrp3dRAxy8OJJJzqLoQ7fauObKORcuKYtZT2df5Esq3HJlK4W5in2+iP/labtQx8YUwOgCn53dtbretjut896C7f+jw4gsaP2OPD6ivQM8GFfbGEV0uvvpZkMXzr9MsOUGFGqp6jC7mJ885mwJHUSdeZsUeuL6J5uTaI0sIWqot+opcxH9S8qJlEdAuaKpXa+XHthGbzBj7rEajw3taJJtN0ptt6LVGf+tDXgELYCMuo3KtejIpBGDOMpZizEecNDFybBWceazuZFd2TOsjDWEkEmxEGK4N6K7UFzW/rC7//5xp+Y+TnDH5/44idBPt/eHiYnDV3GJHiY3XY2hWhXgaI6ewxQ5zDJh/PT8zOl0ZJ4n/vjrKyllSqpc8oa9WHJtLNEze9HG5Cquh8YKSLNuhestMV83vPPUVPF0Fsd++DYt+E0zmGrp2VK2xorBFpnObuuNkjd6SdASplVyalyvBaonJmlE11uht4YPntiiTtctTZHhAdYME6oxGfgZ5dAYjfMwwg6JLsCpUV6OpNvG2+uF17c3tm3TIllNYyzYVvEGpuDo1QtaqrQrUyyGhnFgisEUBynRt42eMq4UQmvM1lC9OPO5EPFxwgWnNKuuxhMQHQTb8UZ0n/Y+95azZneelaeYKMpvxME54H0khll+9WF/Bqfh2y7ifcQYj7cbgajPQDQT1W+0ICwb7ySfWejQsh+VWgkps+WCD/N3Ddf9sTciDJaD3Y3VhD2gh7wNWB/x8cB8+sTp8+88LQstJ1raKGmlrCs1y1TCaKM1oiGk8pHGVPbAKsHzxVAdEjnTGpkmmiQXIByw0wk3P+GXE34+EeaDOK5yb7qHcz37u9d9lf7wq+zUdzfRx0bvo2tjfnLJ1MbJdqEr6/f5YU3/pG8c0/URgSN5ovLYpQz97ox6d4Xv+9f/7z0ekfeHF9a76gfZpxx3cPABjGxtB/ff/ezH3z78/f37NEII1DozTXnXax+OJ46nC6fLM9fbhev1wrreNI90E/rcoD5WLTR7319jnKQJPRyOvHz+hZdPn3l+eeHr6+VvroGaQtamDqH1bkQGOw3v8fwehirj/XvvmJaJJ9NF8vByouTK5Xzh9dsrr1/feP125vXrhct5JadKSUo5z5WtZKqMobBech/jFMU4zakbLiP+yWBdJwYxsmx1o9WsEDkquYlUO9OMlz8by4hIk0ZUo5KS3Vk9pWi+a8nsuYoM+dBYX+x7xS650UnoYN8w2FE/u9rWMYwKKxK9ITWBByqUTu+ZZhLVrNQqVM9aO2VL1MuNdt2wXu7trtKcZg2tBjmHEZ18BWwV9+2epBHtydE3JwB2FxsjO+ozwKmLu9XSGFdh2zBbwmwbxjqsFz8YmxI2CRPNpCyDqZyxKWNLxfmM9SJFs7lgSgH6PUpFr5ytDVsKtlR55ozJGafPkDMhV0Ku+NLwiuba1vdJ588GQwJ2yr+XKWAl10Jp8qxI7KHuvvuYZZgbja4I1dpbq+s9RuYpEsKkE1FN/LCG4ipU6KWRQyY4R7ZayfXhlt4xVabQbRjt9Ucd8vi9VsNmr6R4rJAH5L/Tc61RnSfyerkze5zzu0t2zdIn9dJZcbSqE9k1sV43cpLatjd0eGFU4ypxgC78n0xEx80xPrDHO+VxLx5Nqbm7qHrndw50jFEazzjhpoDXJnQ5LiyHAz6KJsTHyKfPn/jl1185nU54L+j25XZho3Erib55ilFaUm2CwplMKfIheeeYQ+C0TPzy+TP/+O0zn56fWA4HiXxRRH1vY4xskqlkbuu6b5LOWbo1eJQi1AX5oUsB1Qf96N110Q9Z7fl3+i7jvBoT1Y8PvrfzmX99+4vbtvLt/I3rdSWlJIX77ubWMbbTVR+41cTr7SKNiIVi4RBnMRoolsktHMPMbDumJFpJzHklpM5kNYeuS+rn7A2xNyiVisRFrKVyK5VrKVxy0UbUgL7HW2lsueyUhdBFZzQMAKQJlQvQraEbcTY7xcAxBpYQyKXhUlGfIi3UkAJu5FG12imt0rpXXeBjk99357BSCmZDnJZtFyvsn242kvckn5Uc0IMOKsXLXbtI06ZaabmUSq9649cmFJAsGsYQJ+YYOSwLx9OJZZ5Z15XX85nL5QKtUZNMNYeJAdwPcfQ6iPOjE5rkaDY6FOMwZCpS0D8WOntDrs2KdcOZLaihkNzue/NkOsY0ObjVMUpkh02Xat+b4kHRKK6RQ93RLTlz7wWo6UIX+miVjwnufl/sxdgofM19D8cI5do5YvRMJagbnaP1oBQbx6aIfFc9ZquF+bDw/PJEmCK/ffnML7+88G///id//vmFP/78yu268e125e12Yw5+ZwI45/HWE5ynYUm1c9sql8uG1amYrY2oJkDeiGnDoImbutG2Rq6J62bIHnHBvN3oZcM0CWbqVFqprLdEL4GcKzFXGpZlmXFxZkmZa85c143zdYXrTSiYwTMHxzJFlilItpv/GGzxzhLmheg9p3nhOM+andYxtXK+XDm/XbhcxVQgpUTJmZLF1XyyHRMd0RpKFkMEMPshNXkroJIBVwvtdpNGNGXm3igGbDDMTqi8YQ5Y73Q/E72X6RI/H1rB1Yyp4gZpuqi2JCKi6Vrte/RCsJI1GpQmPk0HpvnEPB1EH2RFf+OsxxqZPlo30YwDs2HMjLULwa3EsNFmMSDzVSiwApKBp+O7UK1TSuSUsD7+rC+SA9c6nXqoY4KCSKOMkubJY/2En47aiP6Dl6en3TSo5kRVStnYiLqi3a1WahMKZqmSU5dyom43SnZk70h1IzWZ9DoXcT5Sw4nijxR/oLiF6iaai+8awMd78fvCagdXd5mKeTjP/n7a+H6yaH74b0aF0j8AtR9+/4frrVED4gcwGs/HBl33mz4o4aN5/QlA+X/4uDe3Zv/+xti9QIQ7EAeyHpz7eWH20fe31j1MV4UGvCwLT6cntrSxbSvrKs9tu+2U3bRp/EvJEj2hE9dhQLYcDhyOJ56ennl+fuFwODHF6WevRNZLl3nfXRrSd5DfWrMDwONszrmQU5F9ZksKAhumGMQ9VV2ic87cdMry15+v/PGvr/z15ze+/PmNL1/euF5u8vWlsKVAShO5ZqyFafZEHMaJTGf3qu5m3zuqNXpWWG0irIB9dqa5A80GKoaC2c9VmYw95INj5OdvGyWLi/Fgwt39GIZZFnsU28h/vZsQyv/7j9hy3QjYXHtV+qTkpIo3BBI/1yulGFKxsAo4W0pnS5l8u9HWFRM83Tm6xpl0a0V3i95dIyyiNND9GNuxaaXfoNWMwWOMMBfk9re43nBVzkRrxRTH5cxUG7Yb5taJVSZ+cxfpkuuGqXZCaeLajKEay4xh7vf6wBknZ4XWBN4YfBc9rzEO7zqLMcTW8DnjcyamQkyFqRSWIvKqptim3XW0akr34QVn30eEkTCa0EpRiVBXDG4Y/1ht+vZRihn1E7uLdAiBKU5McSaGiRCCDu0MxWZaabRc2fYkAnN3xy5gfJfMFDWYEjxD2DF3oFbOyfGh3unxuo73+lD6mAGQCjiqjaixcl5HcTAOIWCtJadE3hItN6y9CNiRGyVVpePKtHQAfv5BeunUCO1nB+ffmxWxv7v7jYVssNK+IA3S2BxVRxaiTDjneWKahS43zwt+jvhpYjrMguQdD9jgwUjG3OfPn/n1t984nY7IQVLp3jCtN3wIFC86oU7d8/CaqerGKNmh0zxxOp349OkTv/32G8+no2zgVt0sGvuGgPwUSq1sWVAuZyVt1Le+Z7wN1EqOmnsT9ACs7pMt9oNbbMEbYw00Hr70h8f1euWP13+Ra+a6rRJArllkxo7JADpK7zQqW030rZNboRhIdJbpIPlA3fM8CRBwnB0+b5i80jdLsJ3ZCpopuk9Z9KE2es60Xig0ceJqjdI7uUueaW33w30rla2KWHoE1TsDzkiRHvZlZPcyxzvLKQQOITB5z80Vzfgy++RNkEwxZwF2GuZjE3p3ZAYUmDBZPh/rDcYbMYH56WbT5VDWRpReZUOxVgAJjdzpqlMVHFCLUjUzGa63piuF0QyKc+T5eOTTywun45Hz5SKbQMnUnMjW3Oml/XuujtmvlR03szpJgsGaisVRrTr69oGa3TcYMWtWqpiLOBc04D3Iv2sDPcv0VrBGCv1H9Lq3gRebHfk3BjGpSWV3trvTh83+yk+H4Qz5/SX/vuGW/zdo/6OBHtegN9nAY/SUGnbkT3RAnjg13GWldzHIwUixPgXHb7++8Muvv/DrL594eX7i+enEf58ipTZK+cLttnFbN4JzHHJkyZHDvHCYRH+Tqty/fiuE6yYFlsYgRNtxSENU1Sit1optHXKj1kTPhmylYClpw7SCN5Vu2+7SWApqiiNLIEyL6JrCxNYaWy2cbxvx9SxodmvM3r3Tc0/eU5z/MCzHOS9FZfB8Oh75dDpwjJ4lWIKF23XlfLnx9nbh27c3vr2+cTlfuVxu1NLwDtwUmEInB9EqAqKvV9OoKXgma/GtiZN0zoTeOFiLjZ5DEDgqTBNxnrDeiUFJL+ouWTG9MZlGoOJ6wfaC6UWBqI4osds+CfVWjNU6nilMxGnmcHhiOb6wLE8EFwkuSAOKWOVXE2g20HFgEtgVY1dsSPiYiCVDLaLRVDaCNzD1SuwVSiKvKyVs4PxPJ2nWOJkA9Pu03+jaZtwqCAvB2oDzE3E+sTx95vjps/6TLhOsrLFS9V4MlyIapVySGnKtrNtK3W4Ye8W0iG0BYzeMK5hSMSFiw4Q9PGGmZ3o40sJC9xPdBXFXGgfiqK4e7kN5tL3I6ubdm/mbXz/60/cP2V8s96iqfapk/hNf/dBUGtN1/657gwT3fWf8u+F8Oii9Pxoc/eRPo77b//n3X6dX6KEmGvvdYxM6XvePP/tv3+mDp4UnBLlGj9TdnDMpJba0qZmRxL9cb6InFZBJJkzzJNmLy7KwLAeW5cDhcGBZjszzTIjx56/EuP39dp2kjPVt9L2NSWRvXZ2AM+ua2FYBDnMqGKVaTnPk6enI09MBO5q8deOPf33h0y9/8W//6w989ORWyTWxpcaW092UxXQOh0ldiwUM8uFhatfknjKIeWFv0J2V5gcjE1B3oPsD1UTGJHeXGfVGL4VuKzXL9DOlpE3+SslieOPUldq5kSig1ETVLhtj7+6hDzm7/6FsS4u/jqF0HboYxIm7IQZyOVEypGzovki0SBEAoKRES0mos14a0WZE52lLkKtkoNtCzRV8Bm3Hre3gRB5mUsCYgLWBoeGXXPKIsRWsF4d3Y7G14FMR4DYVvElgDDEXWgVnGiEVvDFCo9Uos1gFlO0Iymv7ADjkM3Sl4boAIKaB14bWpyx12m3F3VbCbSNumUmN+HJR5lTpUATMG87H3z/GRLS3JhPQKoOWIfeqvdG0dpHtsu8GjfrXKKo2In4FFFb3eXlOQg9WRofDUH2l+kJwfvemaOoLQgdTwdQu8Iob/Zgajhp2oNDQlXVk9jQKnXnvBpyt3fNjH92bje1ITrro02OcmGLEWUuyAdMd3ieMTkRLEXpwzkXlamDcMOd7SFYIwmr72W73cSNqDHGeKbnIDZgjvVZtQsWBMFpLUTMK7wM+3J/TNLMcZJObl4VZXcisF2quj4E4zXu2UO06ifT+jlSOKY9qCB2CCFof5IB3Xg4ua7BdkZIQhIM9CTVvfOhoEy0OqEqr1AZ7NNDTNO2H1cjN200zdImNqeh9wY5V1x+yRgWNNdok2CbZdDXfw40/ejiNm6FCRKaSpRZilYPDuaFZ1Ykowk3vVWz627mx5o3gI7Z5LJ5Px4Xy6US1BxZgcgE/yc0RFLUqRaZ6JoOthb52HAVPZU6dFxf4/XRgcpmtdtbSyKWQi5S+rQuVV/X8OGOZvOcYI0+zWGBL7yzXxllYnCMikxmHaEeCGlFNwdObUtyMUVffQccTUbzQ+SzdW53mGUwXfVut+gOdAQfb/LEgHdgpqkNjqV5LekDcp6lWD5doAnPUW72r3rO1vQCgt33NTXHSoki+iXeOaZokwsYYpYKr4ZCuc4U3lF0g91XwYZ8Og1CMQhTszZq7lqqp+ZBgLXLVjQ1CAbReswGdTnylwKWKML91RQ11yrsflmasfKMo2wNViX7fdfde9e+LqnHwvmekPdCyDe8059ZJePrUIxgxW4lTUIBEEN/DYeZwWEhbYgS5GSPrLHjL09MBYw3zHJnnyOl44J//+pM//vrKX399k6KoVLbLjVsqXMLGHCeWEDjESDNWqO+hSm6mIpWmN0xrOCta+q4Hh1MK9EAoixNII1ihdxbVEOmb17Uln/V8nDk8PTEdj5gQwDtSqby+nvn29kZJGdPkcA7OMqlZ0TnLYfD9I/iJl+dfmLzn6RA5HiaO0TKHTrRamFspyLZSuaSMSYW+Faot6sDpcOrXG7sU2VbZL8FJ5lz0Dh/E3c86x6fP4lxZa9tN7yS0XMyKaquUJjSftGVqzSxT4Dh5jsEyOfCmYVqmVy3+WsGZLj9vmmjGUrG4MGPigplfsIdPuMMLLkx4N+G08ezd0nGkbtma4WYSNzOz2UT2mRKEvkgTgMCiBykQembuBZdXqr9StxvdiC78o8c9w1cLgT4MlmSSKBQzYWDUnCljCl0qtfXdMVbMmbxkfHaEmtt0zbWKrRlfCr4kQk5MaWNOG4dtVWpmJhcB6KwLOB+Y5oXT0wunp2em5YANM936gQixMxuMeXAG1vNNmSo8yksM2myPf/f46988Pmrk+n0PoP+HW8mHD6Ho3r9wOPiOPfhO1b03po+N4PdN4eMfP2bW/PiXu6eG1hGPP3f8/ntA7j/3eE9tHq91RNWMdeO9MtFCYFH67qr5ozlnSikMDeoUo2Qw6tO5QAcFO34C4BqD8TIRdVrLueAx9i5GGs+RWV5z43pL4qh5TdxuiZQqPjjC5PFRJiVWnft9cITo6Iih0eEw8/x85NffPvHHv/7iX//+F1/+/ErJIocJQXKNp1nALu8FDBr14/CUqHrdxSzMIS7/cp9hA9UGuecQDzQBeC20RrN9dwtOOXG9XThfzuS0UXLCGDnjhxTN+65RPfYubdnPUJ2SjwkVf9+IDrdV7J0639XfoZuqIw8otdDTJjVdk2lp1Wi3ITtqOVOuHZMLfU0U53Yw+THj3SpbylrgbKlBzimZhg4Nv9G9KuJsFGM5ZXKJn4W8x+w8aI5uqVUig6ylRPn72iq9FKld/EZ2N2nyWpfzTotIUQxonFmXppTawN9IbxeyNdzON9bXK+ntQnu7wNsFs16x2ypMm7lii8E2+1P389YaJWd6E+CvZAH+ijL/Bv113JC7jMywy8zuzIC7e/QA3sde27t0qgaLNcLe2VMwFMi4A/SSfNG5X3dhkVgBSxxU2/afYfRnWpXDdURak7KslYrU7D50HNJ3yTY5KvY7GClgiTbFVYClUqrQ5bMyBdRJeYAmxt7lj9br828YID+diMZlEbewqoukjZwcVf+HAOq4FueFaZ7xUazhp2XheBwI28ykjohdEQSMwTjZLFqTxmZ8/94qrRTlQBelCXQsMqa3PtKRGImuY2XrLQGruWvSCIR4b4zvFfXd7mHQJqw1xBj0UO1CiXRWb0inE9G+767vhpoPiK3ZP8T+7u+aaZAyNRfJEPzJBu+D53BaSDlLfpJVKkaTqZ3Zb8Su6IZo7WqHVA23vGHOr9AtplkMjrfnZ4r5heobL3Hm2U8sLmoMQKC7DbNt1JowWdDzXgveVoKpHLfOryFyfX7iGBPnUrmkwuW2cmlCa21d9KRNOxdnlR49TeRl2S3iUdTW0Fmck0y/LgvQG/BWdFlz9PRu9mxTDSeRIt8IVQ5nqN5CV+65QZxeNSqmKVW5G7gt27vP5PHRdkgSnRDqYdEfEFFUJK9RHT7IdPGOBksmay15bzLlUPLQDTmLLbnTRtQaSwwj8LzutuW1qdZSNyZj3U7PRXMM6YZg7b7Zey9GLoBSOIQKOKAbUBMSVd31jppYZIpN4mJcxayg9grqeAqj0LkXP7LRKmo21vfj78YG/HBP/OzR9+/H/tz1ubAf2AYIwWJtkIa0BpZad/OeWg3rlllvauBxu7KuN8ygc9I4LpHjMvP50zMvL0/8/vuv/Ns//+B//L//k/8xef7151f++vrGt8tVoj2sYw6R58OB5+MBVDbgY8d4cZm03mFqxbQKfTQv7JM6N9zokInF7J1YyPe2R+voHHwHxIy1HE4HXj4/8/T5heV0YjkdwVre3i6cz2du1xtpXcnbJqZAytJor1de0/WDPWXm5eW/EZ3hODmW2TGFxuQLwRaagYolNfDrhr2s9JCoPlNcAWPkcPQe5yTX2VqvjuPSnDoLwaD5c2IYsRwW6BVrujbnqBOt3Fe5iixg3TaVIGzSWAcvjbKHYGRS2kuipESvSV0/vZiBuUgxHtxCDwt9foHlMxw/YeOCCzPORhqW3kUztZXOpTRupnAzmc0VchDdWW3DXKQrOOKwdGJPLC3j0xXcG91fqL3zl/m4dtxzfsc0dJ/2S+QVGM3kk0l5Wm9Cndw2ci54NXiQ3AuL2SOvjX7eKntQs7eoe8hw0K06Ma11OGqL9tJoXl0IolFyQdZxM2Nu9AgGDXDp3lw+thlSv+k+ud/vP2tEv79KH+0N3//dj//mP+pL3+sqLVKrWm2o7pOA8W+/b0Yfp5f/+7rRH1+LewCxv/++j83oD1rRh8d/tlk1xopraQgCogfPNEVqPWjGYCYXBTtK0ZgcocoNycd4LcKGyT81nBsNIxhcCPip4WPQOKgHQzkjIGeuwmy7ritvlyvX870RnebAYibCFER6QwNNNfAh4pzlcFz45ddn/vFff+X8duGf//Yn/+O//y/+5//vn7y9XrhebtBhmmfm5UCcZ5yWqQLSt/2zHzpW0bA6MedyHmsCzQS6Ea30+KzkGJJJJq3RKBq9tXG5Xjhf3iSOq+QHM6pADAp2KDjQrJXGx3Tw5g6GPDCZ/m7JPTYeRutvmcSpNlr/XJuwcaDo+1CdK0juZIeaM7kWmt0ozknjtAPuRh2eJQbPS3Iidad/GujijmC0wZJaRKakzqoESM26htyqYShDm631fzOG7AxlZ07JvluMpeLu+5F0d/dGDq3bdPjju0wkN3WVvV1vXC831qto7LltmLSKZpWGPTZsNdj9Z3xw3zU1PtWGtOQsMX0lqWOu+oGMdaK+OANUf+wt5DqxSwKAvW5sVT7DMeCz1uG1GbU6OJCeRe8r7T+MUUd65zWmSRzuixUfCWzXJlDXjca3SNqC5oo38ToJvRMxWG921+v7XPU+cKFrTmkuMgFNAiSXXCW3tHWlait71lpx6dUG1DonhoM/efy0EV2ennFh2pH/EQtqEETMhoCNkWk+MB8OTPOikwNBpg6HA4fDIm6Ik2Tx1c6DA6Zo8EqRgqfVujtl7q5jOur11jGFQJ9mQXVKxcUZvJdMnG5xqOW+lSnaWBx2vwG0IGidO5dbLpwPQam77AeTsw+oD7wbvcttwH5T3Q/k99b241YaeYh53Wjlx8kFiHFMdAHjQMJqCrUF2p7l864FZlAsd9qqmra01ulNX5Or+DcDAdbpxC1WnkJkMYbZTbhgZdSOh9sG20bdCqY3XC/MW+MTjjLPHK3jXCpvIfNmDK8YDtPEwXs8MjVxXbj/0TgOPpBj1M/A7HmKrTdBfBTll+Gl0ULUsWgjOiYv4vonRW6whmClUJJGtNOV9ltVr1lqpfZO01D5nOqHbejjEd/fHQZm/+99bHjGaKMcmCeJGBIESYENNXJpVd2AdaN618wat083nfe7cUTTryttxA9Y3YDuB09vd/rTyKITkEXysjCjEdXJhREiceviwlyb6GFzlcgLQakzOW+kbaWWld5k6mRAUdyBdgoNs9s7VRqjVBGrWl6rWrifNPyP17yP32jD/65xfahrx6EjGy607og9aDOn+t0GU4osy8TtFvEejGma+2mwpmvEyISxYuf/8nLidFokxsAZXPBUYM1KH8uZUkWT3QevxoqBRe6dAsxxTKqa0tAV/XQCDvix4ZpOa7L+/cPEAO75mXWsP2OIU+RwWHh5PvH8+RMvnz/hY+B6uXK5XLldL1wvV9brTRwx1TTrWjt8/bERtdYTpxe8BetGiFJlkAZwBhc9YYZpyUzHylxgbZZsvBbUOpkPEyFOsi9i9wLGSqtHMOLgGJ1hDoYpGKIzeA9B92SrjBHJCe2sW+JyW1m3TUAmZ1kmz9NxYp4cqNlOb2VnsRirWbbWAJGqlLrkj3h3xLqDNKduwblIw9G65Wbg2iuXVlldZSOSrEwhq2qiMdyzFbGS0dkSoW1E6zBKwy/aUH70GOZmQhgY9Dtt4FRf1ui0kqnZiTuuTkVrUcq71+ZEtUD3G0LWtG5aMkvZ6YMKsfZ7cSv7moH9DLybEO0ap31N3sGlHU/d/+7x7Rr2YmD85d9ORfu7vfbH//7d46e913+mOXycGkrh3xVkfGw+4a4Be6TsjiLyP6LM/qw/HHuZFKH3emLIPeRr+w/P8bP/7n397Oc+MrYeacoh3H9WVaBlZH62pqkAxmpEloLk4wzr7eeNKDKRMoDxbmdBmGGsMoCKAfrr/Z5LZUuFLeU9bsIFJwD2A6hjjNFBgCFEz+EIrR54+fTEtmVOTwdCkGb7y1/feP3yRs6F55cnluOBOEcYrqEd8YloMg3NI6tyn9p0mSg5Aa4bSg8f694gTRdNAJsBtBqR1OzXtEhMzwB+xv+qZjLv56gVcKLtr2/8y7bXGx/CNAMAHkW+eXBTHbFWVoCA4ebPmLQapJHT3Uh8LcQYp5WyJ13Q+50JokZGXb1SoO4gWu8yhbN7I2pEAqGZ9s551eYP5szYZBR0cU6vA3dto1V5jtbSXbXp1jh93hvR9/eMgGiSmSxgy7qubLcbeUuUlMV1PBdMFkmP7Q5nAs5GqbM+eLRWRQvZBMQpOZO0IRWzq6bAory3ETEo4MWQmZld/+mUUt8VEKu1YY2cm06HmiJOkOGcsfK+zfDtYIcA9716r4/3n9X0GsoePuo2qyC3fHZInyAFI92IeVPr8tN3LPJhL+pd7mH0a8swKMtFaN9qQPZub9L7/138y2iIf/L4sBE1xvDy+++0WoWCZe9RJrJwlK7mPXFaiPNCiJMKd6Ugi0GQdClq76/PGuhG0HT63RXOGrNTYe9Nogh8l/kArTOFyLYIyoeLGB/FtKV2dbiqsmhSEkSjisbSGScfmn2PQPZ9imdVXH//II1+gGMSZEdT0cfW8dGZKSd41wiOgS6UWkjrSrquP21ERXQstDsXIDTL3CSUwfu7A1/ro+FUkbc2XP6B1izNaAOfeL1+JZUbf9qF2c6c4sKn08Ln08LTFDmeIos19PNKtRd6v9BvF/ptJdwKL1vHF8uLCWwxcAuRc5g4Lwem08z/dXjmNz9z6p6pGGxt+ArRWCYriI4xqsXoyBTJCB3Q6s0bnGMKon2bY9WmcBj0yDX13hCDl+gE1QX3ds9TGjM0Z51ON0fEx08u98PvdsOcASzsHRG6Tt43pU4pUEbNI8bm0PqIV6l6QKmmq1W5CbtuVF01NBpL0XwnaCO6u1di99d1n7KgWVQSfRG8JcZhwjV0T9LIGqRRbs1I5uyWaHnjtr1xO5+5Xt/Y1jNpu1DLJg2/vk6rGkCnTa/zHueDTsYczihiZ4eu9x65IIVcfHeF79dRKWpay1ozNrmhDOWhCX0oBo2UA7JlWClumrgChq6fXQ8YDkKfVTpXCBZnhbhkTWWaLMbOwAvGNI7HiU+fX/j1l8/8r3/+xZevr3z99sZ626g0vt1ubLVxSYUv1xvHOXKcI0v0RCdZnnPwLDGwxKDbUCf4vm/ou1vmAw1I9gSZFpQm+wU6jcCghm8WZ0WHOk8OSyS6xhwt+RjVtVkW55drAv784XrXBtetYU0n2crVVibfmEMjejDGgwmYEJiPjpc+4acT8/Em5m37xMbutCuhA40GRBoz1zvBdoLpRC+v9zBZJm+I2pA6M3QsY42LS/E4zKzp2owaluCYgyVtG6VW1pRp1pF7Y+3SKN+ao5iJZg40cyTXmW0znFV7FEJW6aOnG0dqhlvtrNWQu6VgKFYdp/V63du0UVTIVN32otpPAXnGJPqjfmR3N5Q/3du7vdjumKrTh+LUzbTc4wX6mMncF8v9NfZ3B/5dWzYurJVzhFG0jX+5v6t9fxtN6INVyX4P7n8aPScP32f/5vrHh6lof/ddxkr/WfFh9n9iRsH89zjWf+Jx/wZj7xj0tscm8yN67GhIH5vSd6/2vuT/E69hfM29ORwT17EHPk5oHynC37+muwnS3zWrH7+o0RjvU18F2Pf7Gp3OtSYuqmqGVUtR/4SPf1bT6dUojHdfgnEOvys+pWm1zuugouMLgFDsp1m0aCFISgE76+vhfRkB6icTeXk58V//22+E4Hj99YXX1zPbmolxZooz4u6pWapYiWsyhZwbqVaNmhFGhrEeG2ZsmPGTwU0R6/3+Hva1iV47J/XoYTnw/PJM7431emW9OW0uZV/vmsBgS9ZG1O3TUoPR6LW70+ldBvQ3i6sP2udw0gfxyVAKZHciT7MSIVTUrKg1vceHYRNdkw3GHofsZ30wQaRD7MZSNTJLHMCH3EwYWyO6RabfYxjQca1SANeGTvh+SxuAYvemZDSy72ir3WC6aqzNaMjk33y/1odcqQ7z0tbJvVHoVNtpHoFJrZxx1gXc8Ug4HIjLAbeeP7zUtVS2clNn5PL/Z++/tiRJlu1AcIsSM3MSEcnrVF0yABo9D/OT+LKZtWbNL8zjrEY3cO/BIVWVJCLcjaiqzIOIqKp7eNQhuBdPabk83cOJETVVEdlCtmhEVFJ0cxIHMIoQh0qf0SKAnSGlgpY+C3dRPmWkXeBNrlH7O2dy6kM0O9QBVd9YZNLsHJXf6oivZGEWTFFnCmnUv6aF6z6YIM4As+u8MM6HEEBZGJ3qfVF1YeSrpRQlhFQbV7t6NO4WUicoVw4UezYn9GvbqxHR+48fQM5hjBHTIE3tTY9Z/YMPQTzl4wjvI9YtY00buHAroDUU2iECB2HOclqAHTQi4HWBiQSQaRZDxH63kxq7aYc1bdL3jQmpADkxSD1MJSehLV+W6mHmIukeRobjnBjnQEuNafUcdDFYNZLKZkgYEAXAFi6/1J5W6mIRNtaJvc4LltMZ+RVPo6x/BnmGD1KEDRJwmWLs0ksawCkkni0QaiG0MG2JcbOtCY+nL/j1SwFyBJUB+/GAH3/4gB/DB/ywmxCPRxx3E0o8IWcPXhj8vIDPjHDKuE/AMYtQytFj84TzDjgx4PcjHg53eAgTJg6ICUDJCIkxMGFQIMpKEy2RSij9NLT3EtV2CWOU1NxigMrGVQ3UIfraTD56mVKcpKmw5OxLSpbTPFRW5fDaVpU/WlqFTXK7rdUbpaCWIDWpAtC0NZHz2gqIVJELccS8LMAC+CQCQXao8wni9fXe6i5ZI6yEwt134S6EjffS3zBoTW0MoiDN2HXqURMjQzyk85yR1wVLeUKev+D0+Cu+ffmCZX7Csjwjp1UtrKKpHF7rpAdJt4/yHOKA4COcS/AuiAIk87y5mkHA6NLhu83qdMx7CDCc1ZsqSqlKq2HQzhssQqUwg7IQLDHMOxgQ4w77ndQI7XYjYnAaQcogAOPghLVuDDgcRnz88AYfPrzFh3dv8f79z/jX3/8R//L7P+LPv3zF6bTidJ7xOK/4cpql5moI2A0eB20TcxgH3O0mPBx2ABrLcmau3kAAtaUj6QVxkSL/ZdNm2ATAEVIRE0/qvUjTfRkuekQXMUYg72IlPTFj8l/+9PXm/M6F8bwq0Q9vcJwwBMYUCdPgMA4BwxBBkTAdBlA8YHdYcLxfsKyLRvdL7XtrzvZqxOsbjgWERmKM0WG38zhMAbtBI6NB2rR4lbXWQ9NAC7NBU4bjLLU8JeH5yWFeE9x5ESCKIjWeJeBUAjY3gbED0wFzGUGLg8sZPiT4uKo8FYMzw4nOYHGEFmg0weYbehAqHmLHGQ4ZjhWEo4Ga1zbOapjo3oisfYiCRiUn886h+FBZcrnWqDKkOk4ip2afmhjrxVkv26zeqY9oGhC5vEJ7ku+5CiAvN+q+ppOt36keg9rfF+v91nu3Bqv/Pt/64O/cGqqVqL7YLFlbbLU2Uk2u9iy6t9N0r8/xxuVcfWy2RSmlPhv47MmLDCBf7ovr88v51p+Lfe/62NDrZ3h1lgoRI6qHnCHlDcX7ei45l9or8bXNZjcDLapu4B4NHBkQdQRxakYpcYgZICrSbmWaMEwDgtaPXwNy87MIUzfh7n4P7x3u7/Z4ejrh+emM0/OCdWVsG2NbsuphgLz0TiXnwfOKNUuK8Pm84LysgAsIww5xStiViF3YY/Dd+ulG27LkhhixP+zx8PAAsI4tE7Z1wZaUOXQTACMGvdbThwhLCzaukMIFpC1Fym8sFSNaEjVhRI4KRJ2m8EN6VY7DhBgiljULY24qgLahsfRQMrwP0haEXJ1rZsAW8iAXYI431O9r5I4KiITVHGSyTmoPRYZX6X4BRo3S0zmn9hMJtQPZMbQ0iTwcBSVSBGpXpmojtL1KdpRGvSHdI7IXrc+OwBxAHODjhLA/IuwOiLsd3NOt7ttAyRnrPKMUFiCakpbWlRoRlYNCvL0dECUdP+dQybKcOm9Lztg4AexBmuIcnEfxQQCtaEAdSwGj0N/KGmstf7ho65jSHtVvQxY59y1IgEaO5bzXFGolsQzS2hKUwLB5Cw0g6sFYyyY1s7G1bTJiyyYTDBfVYBDs+fXtVSBqntKsD4MFRJa+AFAFR9JJZ0sb1nWrTIgERgwOWZvQkgET0oQuck0pGOmLI21oo0tQPTHCkgitM02al2yNnhfMy4a8OuR1gSsJ54c7bBoVZedBvltMcrc6A9cEYCcEzQKGAkpury+XgW4XEQ9N4eiEqaXPvnY7rBsRKINcgffizXKe4IotdANMgHdAToTiBfUOQ8CopAFC5CJNbrey4rSsyJtHThHnlDE8DRgOA8LgEQYPHyX9oYwT+CgpB4OPGPZn6Q24rMjKpJu4YABjAuAycDhvmL7O8OcV8BDD+tszwrJgSJv2QhSBR1k8/iUB2wo91yIRzSwsaOadY1bmNB3txJA6gEzqWSrYkkTGSnGNUlvnyN9iy9CFuDTv06VnOueCLSes24rz4pELCxNYChItCmKo9qnl1/uQhyigmj7uVPAGwKKhZsRWpWCtSYrB4oKcVswlY90WEzHQ6mdVGEBhEZrLMuP5dMbz6RmPX77g6esXnB6/Yl3O2NYZpWyijKAOAG1BUdKAkgbwMCLnUXoT+gjrS9pHT/tG7lx2MkGv57gC6gs5ojXP4qlFBWUv8pSqopLNEcBOosLiGPDgErqosZIueFHYgPar9Q6TD/Bhh2kaNHsj4rCbcNgN2O2EwfHnX5/wy69PmJeEXBjztkGahDugRKklVeIq6XyptTBFCvcpt5M1wgwz7JmBZM63EAVoDgH7wwG7ww7jNEqGg4a1jHyJgjhafLH0H/GYhlf6cxVmrElqtErawHlFdMAQSdLgJ49dFgZiZgeEiOBGTCEhTBKhq8QM5vVkzbaAGTBibAQSFvUpOhxGh8PoMUaSqGhQ7jCtFSUnQJRs7hPBam05Z5RtRd4WsC9IbsVGIzbnsPmIFBjZBRSOYLcDD0dw3KN4rYdmByoEl8RjTSyZJsISKXOOQer4aDrNQKglQ5n85kKVor9GxX5TmHTmlxn81I0hy76dD9jtDzje3WO3P0jdpg9NHnQaRuQa1blT11M7KCxdthJwdCiy/19+14Npc/dxM/LYrv8lGLVokTjqqNN7t4DoX7E1C9UOfuOM//7NIsPXdaA9aWBPJmR/91HKy6gkuu8Bf2E2AGjAtgeXfT/RHgTztdz7G67zlU/a/yS9j9nmtsogc8TLs0PO4rC/tZmmqa/rHzq31XSS0g6JjDp2CEHSaYeYURKDkLWMoS+p6ufu5TXYWMUYsD+MkhUUPcYxYhwXPD6teHpcMS/SH33ZxPkYnIKA6uQVGb2mBCYg0YbsNvgxYbQ68XpL25U6IkCds/vDASltymovRGDLLJ0OpLZQ2HztnvegnkBY1gHDOkubmSJZbq7cdgjJbxSiEDTV1amVYEQyUi6QwRJQ8wSyFBRzEpOH81QBvVqUMtSlk+UMgMUO2Vj4JVo3EHGgO3h4zwgK9GFdHUjL4jqAi0qiaFE1ASXkCD4I0zC6Dggij+WFqyfU5JBF9pu9LvaagFGP7BkcIUi0ZG1PE8A0gOMefDiCpwklDheOyIs5zuiyDiXzkIvo8c4bW3VhSUlsMCMu1LIdsNyzZFlEjsAugdjBaWZczcbUIIaAN1ROD8uGq6AzMxIVMAujcU5F2q1tqdaAAgLczUcgMRq1C504uo3J1iunhXOkWYYJSVnaS05KvhgABubzGcssbSVT2mqKeZevU2Vl+yeObKeg9LXtVSD6+O0JpQg5xKh9bUConn6v3p4YhaDIuYgtJSxbugCiQwzYDQOGMdYUP/JB8vGh6SBG3JI2lLRh1RogUQZVHaM29Nabn7eMdVlwfj7h+XSWCKr3yMsZ79/cY1sWqaVSI9W8PpaPXnOY9aaDLVe/q/XsJPyFWqdreUnVe4ceBynIlVTHS5a+y8lfkMumdOQZzgm3lYxP84w7NWLgPTho/RQzYgiIUWjVeZNy9VoH5KUXJ7uMVFac5kd8+UrwtIHzgmU5Y6IRQxgwvn3AdH+PXSnA+Yzt2yPWx2/IT0/Iz0/YzidwSogpw88L/LoBz2eUQEiOkTgjP8/wT2fEJemdU7NKBhk5O3CSOoSlAAsz1jUjrUm8ieotNC9KUWDoVDiJ0BHhI4X6HsUBxf7p70xe3N6onlfzN6IuqV4rCDNwBtYNDGDVWi4R6r56mMx4MQ+3eIxSW7AKQkvJYtQp0PRei/59EC9YNc5VBWndaU4Z67bVQvEtZfXCCgFRyZuk/BQ16IvUhG5pxbosWJYFp9Mznp+fMZ/PyFnWWwPNYgRxJsA5EG/KXLrB5w05DULyQJY6Y4aUMQUGJSB7e3PEJaXW1qD5eoSltJghTLaSutQQgsiT6mCQe+U6WcT9+2TNmI2tEAp4LU9JUkUpODwcJkTncLfb4f5uj/fv3uAPf/6Mf/0fv+Bf//ALPn95wtPzGafzgkBUM0GGccR+f8But8MwDvAhAhZxKK01T0ubKRfAwfkAN0h7pemww/64w7t3b3H/5g0OxwOGMYoS6VK4WuNquVd9itxtmaL9d3PWPn4bnBJ/xeCxWwm7zWMcSJVRhKMIeIb36hKhommzktJlaV3y3Nw3Tsc0egGfU5CsheiF9MKBq5dYasyat7dFaYq0jtJsl7kknMuCE29YXMQWWWPbAxwGeDcBcQfECUxBHQJS18vOd/VeDdCZ3Fdr+QKIXjyUIZ2VrEMi6yq/gFdGHLUmh2rm9GUaKEM80sNujzfvPuDDDz/i4e177I93iOME72M1spymvFXnml3D9X2+eq666GK7Ap6qv66/d7F7ZflFB4Trt0hP5gKd/40Iqj8Bs5he28dvRKFfOfvupyYvGhANIdQIZa2l1EgV6Tr/rVTdv3brAbDtuz+e1Aw2UPp3HOHvOq92fqiRO+vHKoDvdrSo32pirkXVSkv5dJWjQ+ZKCB5D9MhDQE6yOLxT6aVGe4sH9e4RBRvdCYs9RQiDx5CFRd2dEnIB1i3jvKw4Pa9wDhiC1xIQSw+Wzg1uk9rxwo23xOqt9cDdlG6lYyNGHA9HOCLEIG04plF6hc/LgnWdJStPHyklJTLMwCbjFII4bQuAmBJiGuGCZMrgBjbSwhspXXACBj0XkTEKdDlt8nkONbsmIwOOBGzEUep5o4cLHbkOSwkCLKKmodmUHbbskYtEfMGQkiJNNx1HD7/zCIOTII9j1ROSMYaiGWm173GqHBo5i67PnjRKiwY4LRNOo4FMTv15ouvMWdK4X6TIko2FliPAA1xJSihYAESAJnDYIR+PWOMA7wPyK+tNgj0anCHtT0wMR1JfaeVV0OBSSglFNRNI5HtOHjkEzZABSmCwJ3Cw38vU2rSGFOyUlTdX4slSSYXEsZESgbw6snIBNCB3DUZRSMdO1k2AZEZIWxVpieej03kozm0CC4nlOks7S3M7OCnFAgjLeZHHfK415dV2tDTxumZQZcOF7YLbEusmEGUGnr49YktZ8uKVSYs0b8m8XUK3HRGHEc57pCSeplIZHSVSt4zSUzQOksbrfNBIAmk9XRJjKUgzbmED1dC9k1RE55ywoqaktPcJ67JhOc84n57x/HQCcUH0Hq4kzOcTUlp1MRhdthkZ1GoYqiLtakcupmQb1OvJainGNmbVaOh/rcey8fptZaPC2Gmo25VqzMricLAed14joaV4AEXTNb224qjTAFpbDvbiXcnYMK8nPD4VEKR1wrwtOO7e4LgLuNsdMe52GMYd3LqCfv0V5ddfsf38CzgV8HmFzxluKwhrgd8y6OSQXUGigpUzyrbBrRt8Ksg6dGzInQg5OWwbkImwsrRCSCkjb1r/mgsSa38083ZBvVHS7RPWjoTIAz4KKQEnbUfS2ij8JY/1xaeVLbe/z2hGigp9t6zVUWIkNRYRlGJ9iRaWcmngVJBYz1GL/wGZ78okTVoXYVZnKeJIIEgkOKUV5/MZz6czTqczlnUW0pNtEcbptEl7FlYAXIxJM0lT4k2Y/oTYoMA8rmYM2FAUZW3mIu0tct7QCE/MS9kcUiEOanTdTuuqLJ4wB6G4zxnCBApLHWJ0NSGoxhEIWpNGlVBJgKams8A853peFVVYJKLl9xgZU9hPOOwmvHu4w5s3d/j48R0+fPiK4/GIYRyxm37Fz79+BdGj1kI6jMOA3TThsN9jt9thHII0UFewUrho3UpLwbIaDuGOcRi9Q5zEu373cIf7N/fCmPtwh91+UoIDgPUetn1YhbpJG+qu6+XczkUcO8smZCGWYeJdwZwDFs6YMmOITlihQ0v9lhpVrf/0QPQS+XRO+tiZk6AaNZAxj44RnIBXr88SbW/WnUUoxIalujZyJmwZ2DJwKglnnnBGwkIFWyAUcmAa4NwAuBEUBsCPUo2pVNnFiKaIOuDWezUk78i8+FU0Vf2gw1sAJkZtkGCONC6XE7TbGokE13veK2GQgyePcXcQIPrpd7h/806iosMIT5YC3OSPRSLtnnYHu/CZFaBFfF+e2Y13bn2TUcOh9mkFrXTxDIuM6mvqftLr0Jsb27XpH4wObP62zP57NwN7l5FO1DTda/Ii2/4aMHrTGcSXILh3UvYMvn8f4P3bxuo1h6ydk/cOzEHPVdjBf/PQqlqrijU/Jmtau9k9ur6i9oMuSdq5gFkjc1xtxeYIqnlrMLIWuQZ1VjrLepFMkrhlOO+kg8CWcZ43PJ8XiUbFgOBJojzklOsgwocEFI1g9YPErV6T9C0RGdqaaxAuCWmRo877OGGez5iXWchyljOW5VzfszZtWUnXjOCpgDEMkubog3tVjjuVnUxAtNYqRSKVQkYlgRnvgJA0K45FD8EJ8I7TAD8McINEwqojmUmLDdXxprWK20bYVocliR3Cpcl4Tw5uGjAdR/h9hAsFzkurl+AEiHLJ4gzXVn8lrUASMFqS6LJs/csJ3bOV9zgU5RIpqiMAIARXmX0rcZM0AQTYwVEE0QCwtonJBUwRxe1R/B75eMA2SPZJeUWGi7xz3flIiUWdmSquWDPVcqLWgUF7GWcfhBTKkocKQKFlu5g+NCcQwQkRkPbWNtshZ32wtJ0hL84T0pq8nAWI5k0CFTkVWH0auwJywo3DqqctIOa9gw/iCIDaGSVt2FaJeGYlPnVwcE47QKwbtiVhnsXZ0iKiNm9bMAFkIkH/dc7YW9sr0obx+O0R87KY41iNOhNaXvslWo7xokCxKDOnpt9BIqpznIXJMkSJmmg9XYGyOGVjU7X2Bx4+uOr98ApEc5F00zUlLGvCvEoEdl0THBdMw4D9bsLbNw+4OxwxDpP2PlIPjS3sznCyiIIRP9waKivEvTQC5D+blHqIKpOb/aNFwyHAVbbHl5uwsb5DLhvWfMaaZhCv4LSBOMmxyF2ct7BxKjj1EnHIhdXTqArXFIInoGgz+OgxDAFEwHk9Iz9mPJ0WRPeI/XjE+7s3eLq7xyFGhGlC+PQJ+8MBw9t3yI9PwPkkj2UBJznHnFesecOSV8zEmB1jcRkrAyszNiZsADZQBZeJIKQhIBRIa54BQQx+aA2uqShNYfDOwQepW3Q+IHHBWgqWtOA0P2FdVvEqmffNbspv6PffUuW2dhgAlaIAjUGFQJTVkMiQRtYezm3icIDl5DO2ddNUhqJtFiSmwktC2gjOBakLJK1TtpNVIMvaoiHlhPk843yecTqdcT7POJ/PWNdFPFlplZqzIuc1xCh1nuNUPYgpbQpEk4CcwjXiJiBZHTdQNOi8FpdI7QSQK1OzLRhyVLMZvPeaunlrLBWIEiQ6TgRykt7CzkGJUaVW316rUDMDhQ2kNgsYAFdFYYZLa/mrVpMZT9cmMpnR5LDbDa22k4Uc7d3DHf7882f8+us3ScEpjMEHvDke8ObuiN04Sq2udzVyC/AFAEUnO+GEBGq3mzDtd8Iuftxhf9xjfxCCJYt1yumWWivYu1XMYdYoQ25tBPLSjzeMo2QPFBlARw5+nEBhD/gBxQVph8LK0gyp6d4KYyVGyFz7+DrHlXzIiH3MPeFhLXw1glpdjnJFlkpWyR2LOo2KtRsRZ+OWMp5OwLc14swTFmIkJyRDGQGFpO4TmcG8ieFilaYk2TvsYP/phFBFaePVRUIdLK0MNtlQSFKoV3Mq5ATeNrmnw23V6UiuvxCMCxNGxhN8xDDtsNsf8f79R7z/+APef/iEu/sHDOME54PM8R48Xzxfi7EGFGUumNZtZvwLffTi9y/BqM2supB0AdZvczt258e9OAhd7Ovl++0L3X46UHv7ev+e7XoM5SB97SaAi/rNHij24PQayF4ehXTvrxgRuATCt4iLajowX/6mf379+q63q3G/+hpXkHxdH0soxb8aERVOBy+lH1ZCYaAaLcOMSGrCa+ZcCCixoAyMkgo8EYZB7JAYHMJF9tvltVX3hzo+ansI5+E8w/ssbVi8B4OwbgnPpzM4NxI0SYKQqFkIEbsdUOClRCBMGIdB0pFLS6O3U5A6Q9Er1uIEHDEMBWmXUQrgg0eIA4ZxxLZN2LY9lmXG6fSM8/mMtIrOtc4G53nBlgtiXOHDjBAdmA8372cUASUMrEpCiMyAk5KKsonDLHHBVjZQVkefV+AxRoRJgkBhGCQq7HwDolbnV7gy9K/MSCtjUVJI4VUhOE0nHXgAxT3ifoKPDB+KcJs4QiAnQDQJT4tbF9AagJTgWMqphIl2xpakB6uU0JjVJOvIIE5GS+v0RRjovdoHMnVVghOr40OyYxY4cWD6CTlO4GGPPO6xjXtQHJH9a84Wc5KSTm9Liy2a5Sb2ZSEpT3MJtURFbp/YNiUTipeIMPtuXhVpMZgzsCVde0xIW8G6JczrGcu2aO9SaaVUOCMHB2dkj3IUiTJnkyFGDISKO7ySEoWo0U/NEgMV1bWsjhLG+XwSe3JZ9Jpt7QmZ0rYmbMuG8+ncsk2NAAMsWXQdQ67T+WetZMjTq9LqVbfXt8dveD6d1EWSqycdIAzDiP1hj91uL73l/AKQq/TgtQ4GVMlVjMaa1Etd74kZwEU8ZN7ZgHUUxFprIMxYMhnWJBTgIIc4jBiHEXf7Hd69fYuPHz7g7Zu3cn4+ioeam1kKmPFkWhQ1/I+LiGgzduu71ISj6eNeh8rPOkOHSKJcQcAoveKF2U97HN4N2NKM0/KI8+JB7IBCtWQORHY7UDLDkZdWHt5JUbfLoJxrymIzfltIfvAe0zhgt9shOJLmzPMZaf2KtBCCG/Hx7Qd8ev8RH96+xfuHB7x7/wY7/gifCmjZkJ8fkZ4esT1+w/L4DevjI/L5hHWeMS9nzLzgzA4zErbM2MAKQoGkj8JAYiCT09otwMeAMUgdlzGGiXfHyWfDKKkw0w7TbocQI57mE57OJ3x5/IING8r8pEBUo1Gv9G01B1Z//+3W9a/luQc9RmPeDCjr35lSVo8Qtd8zq1fLeobmyk64qqcU9TikYJXFk6eg0PqN5rxhnVcsi7RdWeYV6yLeqbyJ0DLDMg4DdtMD9ocddvsDxmFEjINERbdFgLGNU3dulp2QS0IpqKzE9mxguuQGXAkOnBNQkhCwvOL5KuqlbWRFAu5hWMEkTNFUEjIwSoD2hq0Gqww5gALmzkDU6KnVUwPcmD2prWMDIOBSUziDd9jvRnjvMISAN/dH/O79A/784Q0+//oVy7xiWxKIGftpxGGcMESvDhI552bYNw+vU0eaC6YUInb7Xa0HjYNHGAJiDHAByMaqRxYVtTR70mtoArSfr9cbaWSjMEA+IA49iY4Xork4woUo+yUna7K0NDsbKwNUliZmzkkHiWx7ZnjWFFyDhCzPsJQ3izr1qcv6d2UE16yDXArmxDitAaeyw0KSxpQBZCYkJpmPLAQLrCnt4jiR+lBRb0Xqpdgi5wwj76gYqwNRNRoqP0FCwVISKKfqbGFmcBxeWvdAjQIzt/GyfQ/jgLu7ezy8+YAPH37Ax4+/w7v3n3A43iMMmk0AoEOi/d28fZPRQFADoS9Tcysgpct3qdbD98/dISsr7u2zaNixOfxegZ4vfkT9f3bo9ubFVfzVgcLLk7/9yY0opb1nqbp9yq7Js2q/XOiDv/Js9Bh9enAPRi8IyK7A7t+bFvyXzqcna5RnQilyfq9FRAmS7ooiGU2N7EZlNVrrCkcCMF1wKKGAhwjWDgfBJ8QhYBwDxkHr+Tu53VxEl/PW0jEldZJVTwQpK/Aix7aUcTpLG4+SNoALdpaVF4OwhMZBwGsY4fwIHyYE5zqHrN5zEjdarZklzUxz0od1GAaJHAWHECPGPGoGUcayzjg973E6SSnMcpbymJSyEhkuWtbjEaJHKTvcys0NrmXfRXIo8DKOuSAXj807bETInLGWBM6Ac1IC5waPMETEacSo3S3iMGjqtNMelK0Wsigb/WlNKJywpqy8HBAZCgGC+yI9nON4QBwZfmDEIC24oqMaDc3bCgpByjGUyZjhcJ5PmPOGJWWQYwTrpEEieBni6MgQgJW0B2yA8HM6TQUmBWaSKBVULxFy8ZgzcM4OyUfkMAHTDnnaI4070DAh+9vOFo1JVbKdXMSGS4pvhDG2gBwLF0ECvPh34axMqHfuFwvOMazYwrITASgQlFaD65oxL2csBkY3AaIMude+FFgaLNDwUyMVFEEq5Unaem0QPhhnhLykzt+8ISVIO8SUcHo+4fR8wrat1XaV2ljJyNvWhLRumM/W9i91QQtUGeIU8L54vBKEA34DiM7zGafnZzAnoGzKQEpAgZIrROx2qvjJa02ZGpPMLW0OmoKYpXcaW/1f6YR8FfQt3bGmTHVuslx7N7XncRyxn3a4Oxzw/s0bfPr4ET98+oS3b95gN00IPlyoIwJqSm4FDBUJvJiSXQTiUiFzLx1v/KbBVQFVzkuKBLlXgOjugE/vJ8zLCcPJwzuW1LAsCtmiIjmJp4ozaxQuIvoA55OOW0EMGSEkrV+U8WRlzgpB2NWGOAAoyNuC03LG+WnF6WkDisOybThvCQsXYIyIb+5wN+2wCyMG8ijzM4bzCdvjN9DnL8DXryjPT0inM/J8RlokTZS3DS4zfC4IzAgstatJIyJZhbxk1AlLGDuj61bGL228PowjpmnSxw7TbgJ5h1+/fob/8guWMiOchLQo90bEq9Gi/o7ht8IGer/NeLDbzlefSyTMHBo9OVHzNmaknJSJbUPSyGRtNJyFlS0lAYNWYyH9Ro0JWX63bRvSavvYkDUd11jSQpA0lv1+h7uHBxz2R+x2exStGc1pqyBUBKtQ3tu55SxRqUp6lZPUoxqLHCU9J127YCEHuDE2bYxQo54OlmDKNeXaqP5fPhRcXhCCcY2aSssKqj28mkHepbuZx/LqfMzTbnXcgSQrYzeMeHN/1MjnHl8ejjidhHExbxljCBhCb0ChPio7IVE1NIQcQDJC4jBg2k+Y9hPiEOT8XXOElZKQSejdHSxjo4EJG2FLPX8N+DvnEMdRv9+S30QdeqGz90L3T6wuFo1OwoCijVOtwaG6JwOinhSEsgBS0v3AwJ6lfTEUhJb6DI0amxIVuncgwyGViI0DUhCFSEzwug+wgGWrO5ILFnRsXlmj/hPnJ+m6pVo73+YXGVdhEwFq8LLTh3fIziE7pet+RVZ41zKInB7HqTzb73Z4eHiLT59+wIePP+Ddu494eHiLcZwQQoROAhQFdb3/+HVfss2LC9hW32/P1yUnDXzy1d9/C8C6tVUIWJ22FyfSqU1qxDCmiw2I/ptgL7p6bmfXgzuvbeN60HkLiPZMuj2BUdv/Lfkin4tceFkreg1Ce5Ike+/lNfwt1/7a1u6zGIgMZgPKkH62t/ZK0m6NSSMv3LJjakSUyHhyahZT8R7FM0oMEnQgQrSIaDRn+tV8uTjXdl0VpFZmUOVpCB6k3Q9KKVi3FctJwGjaSQ/RCkaHoNFBAaGAELIYaCg1PUekAxdzIFhwwekxI+LAAkxj1GwgSTld10UyB8cBp2HEOZzhvESdtiT6lLYNIEKI1mv2JRCNXpJPi3Na+w5wCihUkIJHCR5JSX8kkqggKTj4IcAPAWGMwoA/jhjiWFsaEgBOSqSpQDRtBc6vyAxsmZGSAFFmgmOIHOQAuFGYaEcgjNK6S6LbBJhNEQIKSfajy1kJSx22UpDxiHlLcBJvkZRfXftGPFmIkEmiomw6/oXkFoc5c5b5AEJmh5kdFgAZg7RwCRHJeazkUeCsqvPGbJMIqAHQnIWLo7bjyxLgIBbWaZc1I64r95CSLaokXDULk9oxpGxr08AEY9sy1i1JnbFFQ7Mcj6nVs1cJy03ON0lE6iSJ0tJoHIT8cPAAMkBFSCwVP0mqNCOnDcsyY10X5JS6DgjQAEVBThu2dUXS73CxACVXAOq1tNLSz/tA4t/cRxQQsOaCRwAjgOE0dJy2gn0c8P7tO3z86Z+w2x8QhlEaw+cmVA1UimaVC962LtTcpcIAasCpt4mIO8DaQuGVVaqUKhCOhyM+fviIjx8+4MP7D/jw/j3evX2Lw+GAMQ6Xkc/O29qDSPMhN3HHsHhAb/paT8tK3MCX35D0r6bUCajRPWOqeu1m7HdH/PDhB5zO38QzmTNKboZ7KhlZ+9qVVJDVCieIdy4GhxAlBG+LLDGwpYJ1zSjOghLm9QKM4jmGgDxJ+5CcGEs645cvf8aaZjydvuJPv/wRD3f3eDje435/xHEccNgPGA4fEN894H4VULRtQqKzbCvmddXFW7AlLbpmeahTFH0zawGiGk9hTeF0hGE3ymMcEINHiAFGPLOsM5byDZ+fN8DNgEsgV+C87I+0fvP2ZgoU1RnCUEO8u6u9jV/ZlLl9w1IkzYtatNDcUnCt75JFNZN6uFJapdY5WZNk7T26NSAKtoip1TgXBa4JRXs4ISdQyfDIcE4Aja89RgOmacThsMPd3R2OxzuAzMjqDK0adbW0SDtHA6NJMhCS1JhKXy2JDlkE1UShGVM3R1wBh2NRPM5Z+mKBsJ2Wxu7WqRtX7WMJg+q0sVXZIloX6/tyzYIYzK59pXoUuvtZgOJUHjjWCGkElyNicDifF8znBWnLtSa7Niz30qagglDXIiC+9u2S5xDEaIlDgPOaimsRQZV7AFf5obO1RQ4VuHduspvj7X3A8XhEjaKi1WSWokrcyB6sphHoHvY7lvV5BY6sv6UYCRIpzVZLWYFoaR5iBZAXDkgjO6jeIHl2UC8zy7ONiLEKMjRCz9Zjl1Coi9mqLLl8JmVr17RCsjmmCUj6NzQC773HOE3YDQQaCCkQ8hRQcsL5vN4cdctm94BGop14pWPEmzdv8cMPv8NPP/0TPn74AcfjA4ZhB28pdm0v13u9eX+5u/2VMRy2pq6BaP/60rB/sd+60+6NG6fw4vqpX3umP+nlx1cATfZF9TumVsXwVGfLvw0yfbH1qa8GSM2GuQaloksYle28Ri/1Gmx9EGBZYbaJuGn1oD0YtRrVVqtJF+f277VRvU+sWSXyNxG/emyC5RmI4wnFIjJNdsiiaoC0t6EMkIcAhOg1QilZcBeRYJPf3Qy6gP5UD2M+IzhHGIaAw3GHt2/vER3w7ID5BKS04evXb3h+Dph2A6ZpxDBlDBMQB7E55RSpM/gBdk4YP50xH3fLwoAqObgAiS6yRmnBUp8HgJyHdxExTBjihBifEfyAeZmR8vZqSz/bgiNEouoQYyIUZBQ4UPQoMaAMEY5YdYvXkrko3AXR18wymJ2l8tA8cjUbgwDHAmSh7VlEpqj+UAeAlD+ozFV5KfW2rlvLkpkS4ojIgCsFtVDDnbDlgvOywgcJRgyOQFFIs+ACGAKWfQGEvFPSwmMQHo6ghJFbLlKilwpSMdvXY6WANXgUPwBwQErAOqOA4dcZvC03x5u5yH3RLgnGq1Gjk6riHDrnrBMAZo6VGKRsMYaI4COiHySl3ewakxtqy7IS9ZWyIbNmznHHWo8ma6rc0eirF28wHBhMhHGYcDgccbi7kz690wAfCLlsSHkV8sqyCm+I1pWmLUnJmfeI3mMYRWcxAyVlpDVjfp6FWDJnrEtz8jsl7AxDRBwHhCHCRyEG816dHZr1+uocf+0Dp6h2dMDeS1/LBQlLZhzHAR/efcA//tM/4/jwFuN+j2EcNEqZBZVbCwiWItq0bVhmKeDe1lXAZclq9ClDoA4yuNQ+oOu2Yl1XLaDVGwMg+IAYAt4+vME//PQTfvrd7/D+3Tu8eXiDu7sjrPl676WrEgydsdUbQL2kM3Vs8ompAk0xalFZqdrPVYh3Qh2gCup/KzX3sDvihw8/4fFpj5QSlnUWj4XmkK0pYcsbuCQ436UfkgNRQAgECX5EKfJ20sZlWRPmOSHlouyUqEBUPDYBMQ5gCFhe14xlnvH05Rmfv/6KP//8B+x2O7x9+xYf3n3Axw8f8eMPnzA8/IDjwz3GOGAMg6Y/y8KQaN+mDYCF0SuXrGy4ueafNzIhWWgM7cmVkjT+JWB/t8fhbo84RpA0CMW8PON0fsTnr7/i8zPBxQ2FZoA2SdmwohBWIPqKPrd7bzYxMVfcwt2EaHPEQA1V4Ao2SvLSwGQFnAY07ZGQNgFyAkINjKYKAvOWOiDa2ARNDbTUITPgBdgZBToFgguuUttP04j9fofj3QEPDw/wQVl53eW6kIitCOBtMzBqwFQf24Z1WbCuK7bVevWueq8FnEo91W/QomspJwFKZag5tpr6T0VI0WqSIamg1+VHKC3qyde3VtcmOmPXDFsGiAqsJY6iPHFB6WsbB9u/94RpivBe6kfneZH03C1VsqPWU9lrPRS11HgHSYFSMiv7PlFj8xXvK9U6FNa0bcCroupbO5TqRFBoCpuZt7YQPA53R5gSA0h4KTJXMoKSoYDO9mgGJdU1wAAaMcSlWWgwgakgk9WBsk5NA56oABS6zsBtTl8+W6Z2R9lTjc5m1RIUihdj0WYkk20MZcOUVN7CpO/p3xBHSJ0iltrdHYNJSkUmv8PBD3C7gDQ45F1E2lac5z91SLBtUhcj+/ZqtE3jgGm3x5u3b/HDp9/hp5/+Ge/ef8Ld8QExTjoP6MXuzBanei8ut14s2W9fc09c15228eWr99tb/f7pxglciMW6+25+1AhXRZsVPNT36++pnmcFM6/O7H+rzc71MkXVtp5V177HrKRyBBBdyjmrYbT9XdeL9kC0lW80x4z3DqV4deT9+4LQ/tqbQ4C6v18/vrTa5Jo90VLr224tBbCBUa5z1CnBXNTsrBhCdQIANlcv773NIZk/ZnBx1XtOHUDDEHA87sE5S20oxNixnqMAsD9OOBx22GVGYQdmr6meAODaPScBpV6zWqwNRQ9GNYICqd7UbC7oeXmJ/nkfEcOIYVgwDjuEOMD7CH8KmOcTZi4X6+J6i54wEASEViDqkNkBQYFoViAaLSIlQCgMUjvb0dTDCAeNtb85TmWAXRGiTJAXkETmKLI1LfkjtSuD3FWYFGeLWpIHOYYPwEBO8AFE37DzAkTXFYG1jjAGiYoG4f9g8pAWj4CXFgl1vgwxKrleUEKoM9Yti81bCBsFpDAihUnGjCFkSSxkj84R/DbfIilGKQVbzQpbsW5LtYlyymo3aFozVJY6qREexwHDMGAcBMgFF+CdtLwjBe82X4lMVkvrRmYDn/L6JXkqKvGpkU1BE3TqinGEcRxxOBxxf/8G027EOEY4DyzbGcsq+ZVGNiS2uvZHZYbz0n1jf5DSIRRGSRnbkqTNTBHOEwOYvQMvDgOGaUIcY42GGlayVjivba9TozkH8h4hAFNgjCBEOAwOeHN/j3fv3+PDDz/h/u1bTPsDxmmE0Q0TIBFA1/qEpk1Cv4syLlmdmXnIiBrVNxcJA4txu1bjN1cjjHRCRrx5uMfvPn3CDx8/4v7uHsfDAdM0SQ62CshmcDdDxu6c+Vol9Q/tc/N2XSkEA69ivHL3fp9CJ1/gTnsTuj5ZN7ZhmHB//x5EHuf5jGVdpHCcjbF1QcqW9lHE4CHLydbIi3q8xsjCILdmzGPCOhasyEjMcBAwLB5QjxgGBOcQYsKWE9yyYksbtrJgWxPOyzPCyWPeZsxpxlwWcChwk0cKjOP+gGMgDHEnNWc+YjBsqX2PSjGDUcrPixbFt4hIEQOyiIF8noWEJ+WE3WHEtB/gIsnCyQu2csKcHjFv37DmZ2Q+g7ECLoO89tqCMGi+Fp2rhjKaMQA7pe79omQ+NVULZmSX+nkpXeTeookKzLZtlchh/9g29UYlqaOwukz1UJXUisBNQSlhtc45VrKfZthVT5k5PcHKgnbGfH7GOA6IMcDHAc5pdM7qsTWF0TkBU3AeLkREjc5ZMXzOWa5pFe+gpAPLOhVwuoK5vBqFNoKampLbo8RqpBY4ZRI2u6iQZGRUUNbbzt1uCALK7e324tqJYB/qwNVMBzXPLcWXZG0N5JWtjzBEjy3lBqosJcV7iZD23v0aXTXmvQb+zQnTZYDJGWqqW4EobXZcjbnLVNwGGX8rNXeIsV0npFdYFihWf+vq8LjqYGm7JB02mVg1Tl0/52oQwlqcXIBP1LHqPaI9nO1BKAE1CtzmvaX6Oc22VUZkGy9W2aGPVKCpVag1r7kASZ8zGAlGgGHgwSxoPahjBCfp7TFGeA/4siETw68B5ozqNyLCfn8AiGubAucDDvt7HI8P+PTxR3z48Du8f/8Jx7s3GIYdnAsX8qeBAtu9pc6+tjUD/wJ42jO9fA865m3Ur/d46yjtl9fvX75zeWf7T18e6QLBdkbtX1NQ8dds3bp/9XM9ep1z198XnSRrtbFfA3J/GrB8uffrPV3XplrvPomOAjm72tLFe3RO69+6hn/b7bIG9sbnUEcRC3ld2kTX1SABm7zSR+eEMKeKUzpz731tZVI7GNDlsW7NsP7zF/qPlFFXuTDKYQdoauG6pJpauSwryJ2l9RsTnEtCOggn6YpcqpORozgjuQSwFzeZiAy1EbWkpJFNdVkeASDrvUkBwcXqkDAHpnRTKHgN/FtNviXemq3pwPCQiGnxAc5J9wTvXeUtsNTQPsXbgihi32orNghJnQNAnkEuaRptVvDUfk9qL8jgs5LUKAlOdZoJwaFzQT4PAY4ZlKW1HJxGLiU1DomFh4KJQF6CNhJ19fBW0w9X7f4xRozjiCEKhJmXBUCRfvMMLORR/IgS98hISMsJ+TzDIcNBunocT4/Y3xhvsetSzWTLxouh+MYpMVLvdCMov03QiOig0VAX4J0w+pZqW1qWJFTfFjgWB6bzgPfNoVkzKLs5E2KULCtyyLnAkTDnWtZjHAZM04T9fi9AdAhCComMnFa1M0rNxCta5+mDR6CAcRQ2//1hJ8GJNcFhwRpXnatmq6DKMR8ChiFKJHUYAC/2T834sFLMV1bzq0CUNfzuNEVt8oQxTOD9gHfv3+PNuw94ePsBd2/eYNrtEMcB4MZu5ZTNVVLKxJCtPZWy9VXkToBQJ8yFFpnVOLd0XqtdAqAkPR77acLd8SjtFoYBIKeADbVvXPPm9JPt0qtVwWg18LSuqBvw3vYyOVPNQVVQhVrxblOq3DDXK1vwI3bjPUoG7u9nbDmjMLClhHlZsawFJa8oWaZ9MBIom7CknigSuuUxMHZjwbpjlOwwuw0rElAcoo+N6ChGuAiksmJNC8gz1jViWVYB0swoVHDeTqBvjFRWpDLj+fwNf/r5De4OR9wd73Dc3+G4v8d+d4cxjhjjiOADHHl450Ha78HsNzbDVL0/KQljmEXkns8nnM/PeJwJ4dGhYMWynbBszzjPTzjPj3h8/oZfvvyKeXsGkxS9e0cowUmOZVV6r8xxnQjVECRSRlxLgbS08FxptS2F1T7j3L5TrH5SwZnN95JT9zBioKIMty3CyaWAuMBTQWvk3BwlNUW1M/ZadAHVWUlgcN4wP3/DF0dYlxlPj9+w2/8ipChhUI+pprdoqovT+lxTsE6JdoicNCMfBozjWK+Xi0RtBYCnmnK/JPWO39iKAU67A0Y6pO9LabQoZYv0SksOSRkyBYf2kYwDM/SX6COpPdDsRgoAtzVTlaedle6D298ghg8OQAB5kiyPLEmpReuCnAO8RputRt5mGrM0AaErZNAltCleFDllkU8iYSmEGkAvI6Ld729sduVcuJ6rtXSpTjMnaUZWoVuN8h5U9POOL/cPHR9SY0lSjDX1niXtrzrvYHIWMsfQz4dmxpiyEzIkaUzfG1i1vQ2gesciWFpjquyPAkwFTKTMwuxeCjYYCRdqX9CiHm4JGEiLGtPAEMoAAQAASURBVCFdgtTrUgAooFC6CQ2ICG/evMduf5CWCqUgxAH39+/w8PABHz/+A96//wHH4xuMwwHORRgbZSPTu9Iz4Hadr97hq5tyY2v7ZNWJuLyn9fPb0de/at9AIwaDrTu6+F7Vp6CLv1mjiRJdt+/Yvm8D5ttncj0er5k+L2F7laXkFAhK5hBAdd21CCnDOXO6afaVXXc/HlSHvD6b811SdOXYVrOVappmc55Tn97x7779dXefmaWv9bxiWVZJ7VO7TtJkW6/H5ryycdaokDrwzHH3W1tnGtY2Syahqu9AI7TbumGZF4CB3bTD4AOCjxjjhPM8a+pjwrpuKCQpop4GOLcIYFAdL2REI1AmBO9QcpSe9AAsT4kMhIG0pQg026vUMzfiGEQBflAQHmPEMEqaMJBfzyQqHZuzssJz2pQgsMABCKqvPUOJ46QlmitKLqfjBg0KoN4jATQODuy0TVxh4eigBjCdZpgRoHX4qArbOcAFiWoa07/MWy2PckGi08zglJCwAQpQoTWvRR9MJCm+GvUThneJJjonaaPBC8/COI0YhwEpbwieJIWaGSsTFnJgPwDDhGV+wunpCfPzz6BthssLiBP8MGAfh1fntwUdqNoUTUaYaOOrvzuviOh/Bw1IdZkPFCAtkrxKwSJBKtWXWVNht5Dh/aY+ZEmBjcOgQQUBo3kr2ELGtkpZV04sJZUGhvUZyNLf1bIYUkFJAhAJ4uQNUaK40zRit9thmibkLYMTQNgkMKbtFUtu+M2HIG2UxqDEi66KbCE+BHDR5uXl9hsRUYHmzjOiLxgjIcY9fLjDu/cf8ObdB9y/fY/j/QPGcdSL7cS+AUwArZdCu7moyxmoHpeqwypSqaxTpWR1uJe66OXhlZXX10mSlUkLtSdRm0D1JFHlYv2QLv+rz1UhcvurglA9VUttK8xg6itaLCWtpabdvBEhYhrvwEy434SxNKWE8zzj+XSGpw1cFjBLcbeL1juUEIJ5o8SDGhxAgTCNkhaP4hGw4lxWlEQCPpxHcBHjGBBHh409fALgMpYlYF6CJAwokc68nbHmGc/LI87LE75++xX3d3e4P97h/u4Ob+7f4e39e7y5e4/j4R7H3R2mcac58kGEkZIKAJCyQLaaygQqGxhAKgXzuuDp6RHfHr8iuxXsNqz5hPPyFaflG5b1JGkGy4zn04x5PaMgyXzqUyP5t5m6+rQoaWvRjJdSSgVXW9L6gG3T9IyWapuVfTZ10c2sKRw5yzNrL84edDY0rg9dI5JB0yKhL5/pao52603/YioCRE9PSCnh9PyMOH5GGHcCROOIEAfpARwDYoyIUVrihBAq5XfU9i9Ro6gxxOoxZ7UULVLXp7H9/g9/Rtle1r0UAyQ6U62WDcb94jRbVxec1CHVW6KYtdLl1mtWvQfDrTKWfSTcQKfuCGj7AF9oF/Poo4vAWk249wRyAS4TVrAaNEUzqAu8J7Cl1HbF+eZ0g2UG67Eq8O1AiD3nonVjABCabGu1va2py29FMKrcZda03FJBksmzylZJlplyxSbKba1c4mY1OHQMiYxpUBqBGyFdUTDablqLOJvxTnV/QCVDgpEhCRtjCF57WlNHbqJVrPU4mmasQNRAaNZa9ZQy1lKwloxV03kTs7SFYagjQ+a2J0vXk/lEkBZL7mZCl+i7t+8+Ssq9ZhMMw4i3b3/Au3c/4O3b3+Ht2084HB7gXRRnr0ah61zo4L9p0zoPzFvTzxbqwVpbLFR/3euuq6/V96/AJ1+9vJpeL86w/35FzXR1V/HinOS+UX2Dgcao3wHI61P+y9tf+vZLENpvwnx5DY4YKUGzQzSToGbbSAQToEs7Q89c7D8BlH0UQcCoRM5NF6Zknzs9h7Z2/v0BaQ/ef0umiPxJKSmDu7B7WlsyAZlU6/1tdyamBIhTV18vtbeiUm4c99ap8JVu1LdLViC6rPAEjOMIv5sqecvz8zOeT094PmmqJYAtMQgbHAVlCJVspSFGlP0BBCDEgDwkeNZsiCrHXHXgOo2MgiXzwlI4HbHU8JEXO8g3x24cJLInQHS7fbFGeKjzqADgnCSyWAocQ1lni7TNUhBKhSXNtnSZQjX7op17BaK6+JwrFURaZJudZpjBMgyBmhptTKnOCSdAsfvotGbegYIHMSODlClf2u+IMYta5lYM3CnbmzjDxZHgXZDsPSWGMsf4skRtWViQmbECWOBAPgJxwnx+wuPzE57+/Cdg/gZan0F5wf2nH4F3n25PLrPL0OlBqE2gr80J3u4YXehNsqixphCYymWSjNEQguqaovWecm+GLWMbMuKq6bAqSS0aOoyjgNEQsW0Zfkk6d6Qln3wvSL3qILwxtfU1MzhLGVkFoiROiXEYMO2m+hiHERuvSE7aRzJb39RcbT3nCSF6DOOAYYwYRulTW93kuQihJf22THkViI67HZgIg1sQXMEQHQ73Dzje/4B3v/sJ92/eYdofEMdR+p9VF0mz61rdDS6lRXf7+u/q2gZgFUodIGWuvXpknjYDqq+oaOHfi4NdzLE61/QPg8T84iuXCrc+dNGYl98INErt+WeNZAnQlgS1TcErN4PIw/uIIe5w2N8D4Bo9JhBCmEB+wHl+BpcNzEnSYMOE6I2Om8AaoaKcMAZCHgkoAY4DKAeUBOymPXbjQSZpkOJ6x6LovCeMU8TxuEcMG5IWMieLTm8JyzLjHB2cYzCv2PIJyyIsy1++fMFuOGAcDoh+qPPCqKRDCE0plaJtQiTaKMRGGV+/fcGXL7/i6fQNhRYUvyLxjK2csOUztrRo7v6G83nD+bzifNqwLlKTWnKXOfKKp5WZcZ7PDQxrdMsoxFs959pYahWAJm3lIGBTFEKxBs6l0XVb7SiUcAhctD6u6D1vmrmCSbJzaOffP6Oul5uzCPbDAmDLGWld4HKB3za4eYYLES5EAZta7B/1voQoTgMh1AnqIRvq8xCHjvW5pYSTZj+QE0Kb14rSSylImo5f1MgXxuQGTjU4KvdPbXQHCEOuk+OabLd1WQ08GwIGLAH4heCp49R/3ht4llnQYGEzm9s98Z4Q2KMU6oiqCpK296iK+doDdrFf07rcGWnt+61WCTBmYKsCZI0AX6Z1Xm42tw2tmCwOTlOy9Bys3sQo/V39vF3+BRC9UL1Njls+iREICTC035q8bEZc/aGefwVcukYkGtrScr0yqlu0xdl80NC4gzmWqAJRVxiZGIkciLKA11LAhRp5UrHzsxonUZwFwFYKZjAoE1g6FAmD5I3xJnL4h5/+I8AFmaW1UYgj7u7e4/7uPY7Hdzjs7hH9CCJfnTIXIU/qdNnFzi+eUDVcnU+MWh6CNqdMw9khmsajCv6u9/zaZnr1+tovQWxzLvTT8gJ8trOv56E3Hi1srk/1z986v1vr+7fAqHxuALEf/H65NueVXprOfZvTPeMtcytzaJFMGweur22/lmYnabniliuapQAY8yXX3/apkf9+W3+XXtebSVlEl2XF+TRjnpVpU0GK9Q+VOSfrK6WMbUs1Ddl714hYbsqvJnP/0hkDph9FdqdUsCzStmXbJFrGhRGHiD32klQTpPYQzoPhkDZGWpNGU2esy4wYApZlwbYuYDBCFOZz8r7WVJJDBXlEqE6ZS0K2zhYx+aXR4BgHtVkziBJeRd0mI9GcFlwykDMoZbgtw1GBcwxfCK44OM4IlBFykT7Q2gvaUesJrWS7cKRlIpoqSyzlMJIpI+RGNt61xIwaQ7CxhMPC08broDqOTclX8C79tEMIGvPy1bYwwj5PBERNdx1GeB/AuSAVBpcNtAEbJ5zmE9ZFOCtS8Vg5YfUF1kZsywnrfMb8/Ag+fwPNj0CasT28vTmnHEk5hjiDqDo5i90n1V/Wk5Pcpd4msnIdp4RK4uBw2js0hIjgB0nZhbXA46aHDdhreitgbddkPOVfK2e0uV/XGzQDqz4IzEqImaz8q2g0lOo83E3S13ycJinjIo+1AGnNWM8rFiVrXJcVKWdIlljEuBtxOO4x7EeMuwgffXXEbhthVbs2RPfqin4ViO72e7gQMBVCKBtC9Lh7eIsPP/yjANG3bzHuJhlkSK2DGUtMJsT5YnHKSHaqT+cs6fvVGO+fARipyGXDN7OJGLm92zzs1Yuhu+i1bhUW3Z+mqEv3tfpzqt+7gJJqNcv7AjgzCyEPWbgd+l6NhN0eb/GcBcQwYj/dwZOXieKcRKuGHUIc8XT6hlzOKHlB8AFjnBD9qDhHwvrbtoFAKJ6wGzwcIqgEIAeUDOynIw77o9So8IJcFhFsnEGuSHEzBYyjCOd1TViXFfM8V8UrRveK85JQeMaynPD4+BWBJhAGEEdwEablLSU4kskeQxTBpOQ4uSSULBTmRjB1nk94Oj1iXp4Av4LDCgoJLhRQUOKjXLBtGc+nFaenFc9PG87nhHXNSslKls14cytccHp+1hpIZX9VlxUzC/hcZiHlsfYoSdNrU9LzltpQWMo4N1Ovj261iJHTFFKZTRfG1cX7/VyW5wtGz85UtaiUEQowhMkOmsKDXEC8ATnDbStArqXdkNUZK7OrM7ptrR/V6Kgw8MmzIyE+IHJaD+mVrXlAHMTxwOy7c2xbLpIeSdr/zRHgitYYQMiqaqYuGf2BrHty8t2iTHw2wpcw8cLMNvwma9sind2Kqyuau/F84TW7Mpj1fJx3iBSUGZmq8lzXFURbG0vvL8gFjKCALqC0TR957ZyrfXDFscSAEWF0UfvLmtEbG7Okf6viJDUQHRFCkGt0HQj1Tujz3QUpkYI1A5Tdvm3MNbgJI2gxX4sobi1ZaDaZPqiTv/odDWXa79VuUydHA7skto3ZNfXZ5L5NIjsvRwRfgRlJU/RCNZU3O9a0NbsP5miUE86pgDdG3hh5ZfB223Z25PCPP/1v2rtVWBDJBUzTPabpHkPcI8YJngJkzXbjSdcv+GoF6US26wQ6ENpLk+ZeLdUw6ev+uAHQm9Pmet32gKBbA1df7+dgdapc7cXeuxDLdPmbpt6rm+RvgF7X6/svf5cuiCH690U+tPrP9h3L/jDgyAy0snjLyLneV5NBEoGQb2ft+50Saoo/AJlDpQehf/0o/M9tJhdvbwxUMsFlXnA+SX9MAaK6Xn0riTGOgS0Jj4BEkgmAl7YUvSOtyucGum7e/apmTddeAiSpAZV+2cTCJj8OI6ZR2r+54DBMA3KB2q7A87OAz3me8fz4Dc9Pj/DeYz7PWJcF5Dym3Q7DNMLbhRLV+yPnYLLcMvm666vRte4aCKp7Q3ftrwy6EWSy2JqS3qKskymD1iTAy0kwwUUHzxmeMkIqiKnAO6srZXgq8KRZH1Avb2ZpC5iLPFgCFEYeV8ea5FqJ26OvY63f5jbvkYuwqxfZi/BTaL2jY82ak2ZlxhbrHIOCg58i/Dgg+IhtEc4Y3laseYUjxvz8hLOSoCZ4JESkkuBLRuGEnFekdUY6n8GnZ/D8DNrmm1lbgEQrYxzhXK4WFoPqudvDKz9LrW1W5nnSaH9QUqUYBrGFHSMnSB9bP8A5L5ly6jw12VrrLqscMcepzKmW8mNO1Ma6z4o/CifksioRImopWUqawpsLOAM+OElbHyQd93A4YBhGkQLMKFvBOm+Yn2fMzzPOz2cs6ngCAXHw2O13ON4fMR0GDLsBPjikIu1u1kXlp2NtIXN7e61ZFHa7PXyMGLcMv53hY8D+eI+3H3+HN+9/wP54L4anE8BUtPirKkgt5qULpcRNnhquRAOk9lr20aXtVsWL+sVSpwhkMaAJbDGIqpnUGf/tONdvmWe0oIk3bhZOXVT1c503ZkwUWGRU0gNIOlIAFiUlNJbdm0MuqRvkxRCMIUj0QusUQhgRwoD9aYctPSGlUwWiwY/I2lpnWzesboFDgENCcBnBZSB7lORQEovnY7cHqGDZMsq21nvkHGEaI8YhIG/AuiSsS8KJTppm2tqUbEnqSFNhgD2QPTh75JWwrcC6FJzPC87nBQAJEPURKB0QzUJZ7b3HMEyIMSKVDds2I/ECihtc3BAmxjB5xMmjMJAyY1sLTqcNz08bTs8bljkjrQUEBwpcIyS3Ni6Mx6dv0lLF0mlLrue1LQvW5YxtnSsAlZrOJM2flf2XjfFOx048YF4jhZL2YsY8wCC2SFxTXDIf+4nJdS1UwNV7xKuxZt9tnzFIWfWopowKW1l/LJvT9b8a0awpmjXSaf2gJL26vq9ANUTpxzZOOwzTBO893jx8vNmHzryKtc6/t0qLKLHqM9P3pWaUQIW0PJTgNHLV1qYNQas7ax5k1PHr7R1LT7Id1F3VMZHm5hdGoP2Edby0tqlQFnsgZSU1YBmz7GofUQH3vQfTIiFNFl0Sq+mYWasWhqZKNcAHtgjgi6Gu18Wak9On38Jay9QIqJMoBgkQFfIKGyPdv4FQ++9iDjYgauPEMPDJF6/LxWeoUVOrK7VIpdXnW3SlRpqovzo7B5PF+r7JZhPUWlRGjkDcyBbknA0lt/tvwNnGfysOJRNSJuRM0jD+xmiTI/zu0z9hHCfNjhEXqfc7BL8DUZB5RUZ40tb6jb1Vc1zOS66yOrgUZb+EjYRmwuvY2piowVPAN1lwm1zqxrdLqb78tH2pwoErBHo9Ly9scKr2dbdL2YeBwGby/aXtGki+DqRu//YKBXefyTD3jjUSvgpu5QgXv9A18DIbwmSQkvkoEjWnn3OtTR1RS//9y+f+b7HxK69vfNMiopvUWC6zREhKFj3YshZkXM34tXRZZiEAY2YMSbkVitVZXh7+N10QV7ecqv4SghuGw5YKtnUBOKHsCSEMAgziIGQ40AhqLtjWjBPPSNuG8/mEp2/fQETSqzttGKYRdw/32KeDEnHaSTgFZQoamLs52+XZqfxl1kiXRi1DMOPcv5gv/Zizdouo69iAbsnApg8ITwYViWI69vCuwKcCl/VBBc4V6e/uGF5BKJGk1ErRvKX1QqKiGtFk1dukOtw8hgSJsraMFB0PNN3UnJItozFoqxDnuZFWESSjTIUsBQcXPcIoWVxrWpE4Y9tWBWMJ6/mEZV2kWwESMmm5F29wvILLKvwqmwBY3jZg2yS1+cYmaaojUk46/qjrvU5P1cctItpNRzJbUPt5xgHSOk7AuvTuHkAg1XtGWgZd9zp/KilIEbmtabEpJfhNnMVZ11AuqY4b1yzDTQnQLHCk2Xxq54IZjhyGEDCOI3bjhMNuLzZ4EiIyzoy0bJjPC+bzjPm8YFlWZfaX+tBxGrE/7jEdBoy7AS6QEJ5uG4haS8M2119ur0ZEh2kCpYhIK3wZNFVkRBx2iMMk9Mo9Abxpdn19rV/qC/sKdTKn/azTez067eVT974epHocbbED6FOIrn3LQPs5uu+YWWCe+3aSFUa376kWtRoXImHBEqPNVZTNrPn1MYo95F9hca2XbUoqYhyF00sUVZAah/M9lvUR6/YE7zzGOMG7iG3NWOYV6yKspuu6Yp5XnOcFDgs2zwiUsJEozlIynAdi8CA/SFPelOCZ4DCAaESJwOoTVr+BlWluSxu4MLaUBSV4UxhZF1VCysCaGMuWcFrPOC2zMEjCg+CBLEAQxkjLWT1IUciTPOA8w0VG9JBC6IGU1MAJnfRaMJ8z5lPGcs5Y54y8sYIvRuKMQixtYG5spWR8/vlPsjCzLNyeil5SciXdAxbNNk+U1XjazNG0wRiFbeywPyLGKHUQcEhJGGXztupxhNTBZpSBzwqC/oL90aeRy/c7rx03wGevG4KQlVHXAzfFwATJtDE1Wg1dZUvtmF+hrTx8CPAhwseIODwjDgO89zge3t4Eos4FOB9hNbCOuEYPWjsZd/WMCs4uPqvno6er4IiqNdPkABS4tsiERtVqGqGNfTO1X94C3VsFsOa5bE4wIgcq7qI2smiNNVGpBCX1QayEbriw2gnmKfdVsaekDOPar7QClMufXmxE0nxeWghoLVM3zjUK6qiLhCrIrinDNjd7QNIDUTtWp4z5Uo62aKiVMDRQWljZzZVYSDzD7sJg6Rk4yUn038CUSWbbP8NaQ2lbmgKpEc1cI/JbYaxcsJaCjaWONDGQWR04EF0iol2Mo+wDso/YfARKxm2KC8IY95iGXZVrQmiimQSwuiId084Bcj3rjCzDwAh3kfAeqF2DR9uXrfZCzSAUB5UakeasrYRct67GBtgcH7f1KOn5tpMHLO5vhnn7Ml38rgcfpm5t3fZA9LchlxpvdDmGf932132/6WVGbza19Znqa2v30deR9ufWg1WvtWL2Xe9LTesHunr87nd/67n/9dtvObXaJv3ii5KWyCJ3IATnK28HOekHvqWEddkwL6swm7KwA5cixCbDJuUhIUgk6uU1Xt19m4Zqbxr7K1QfxGHA8XiPt+8J8fEbTqdHLMsJayr48u1JZJzTGtUQEYxF3ovtYUynREJaNM8zQITz6Yxtlcwx54AhBs1cceDs6nxFUe3MBQQPpgI4TbtU288nsWVScEgpSHlPbUv2cttSAjiL3HMtW8N4B6wOQbjWGYVIenaykoKqw4SK9KFnbRdSOCtgBNhIkNBy/szp61iiahddc+SyNHVX31Ng2npGmr51YKd7NvBsAFYjf8E7RK+6iNAeTkAuoZU3WcoplHujcBHnnvMyD8GISPBlgUszYtkwOGAcIpAngBgU5d7f2ryTmkeXRA/lXFB8QQmtU4I4lFixiWYyaLZWbw9Umxe+Rpa5OKQNAJXKQSJZd9LjczPA2JG65pyxLAv8s0POG9Z1QIhBW7FpL9BUNCqaUcqGUlYNmFvfeKkjJRKCKR+c9p0NGGJjvQ1e5FHeGgAXAKwtBlOu/B7iAJJAhXNRnwlEBcJP7xQn2uP2HH8diI47uFAQeIZPUYRjGBDiCB8GkAtaZUW4TJmleoJGw3/tveqfq2f06llmcEtl4Kv/qX82g1WN7CryXxOqfPFUVXo1mqB1NmacdgLCvqM6Vo0WaLTGw7MUjZsHqIAB70FjlOLl3/AK2MAIQ5gYNcFHDMMO47DD8XCP0/wN5/kL5uURznmMYYRzAfN5xXyesczSdmXbNpxOJ3h6BucnzD7B04LEqwimnOG8pA9ED/hUAJeQi4d3I4KfwJkqEN3WhCGcMZOrbL5wBBc9PDykpqogM5C03fLGK9Z8xpxO2JaMkoCSCZxEgLIJbWJVEFKYPu0i9oeI3RARo8du5+HHzggt2prmXLDMGcucsS26EAuAUpRdWNIQ0E1P23LO+OXnPyKlrQlytWAZEMICIwSAGkYKeKiLXDlrexICxmmH+4d3ePfuPcZpgtXHns8nnJ4eMZ+fkdMqab6c5LiaD2ggtAuIdsC0xU6q7oE6Obq5CzPwAbnHXcTsMnrazWedp1Z/Xc+jc7j0aZTyqab1+gDyQ03hFSp6j3/8p/9Ne9pebs5Lf7NGxsSW4aSKxzXQoQCpRn4cUHtZXjygCqGOkJkEdf2yiSg5i2pct+9cbkzUpfTal9SgR5NJNifggwBSV+DYS5sbJQMouSCppPSahuU9wQu9IdqZdK/r9YuhmrQWGSB4hji2yGTg5b25GG+SNlfkqBrHdd7qMbzVW5oMZb0u7mVoJ9O72VMVLgBjzbVLuZw/feSzA6RF25yU3ht8KZydORCurrGmCev3C9SpVaQNgLVvaQC0pYZvzEilYGMWIMpAYkImix5qZgEI5AWUFx+RfET2AyjnK0XVtiFMGMNOU3ONUMqUMTXk1Q3iS3jRp+G1v9v3GeaovVKndlcuVjvbNbGcRRGlCfM79QmQAjivr6rf0+XR6okZYL44jxuC9+Z7TSpVfQo0A/fmL/o9avyXr8/zr93679/6vfwt8qiBJSLSiF8Dobdqtl/UicNMCqp1ogBazagzp6v+QvXNywjpb8Pzv37ji9cGdG5+kxklWdsyTbVUtn7vDYSL7LYa2mVZsCwL5nkBmBGjRykZcfDYtogYxN7x3nczsV0jX/5ZASh3qQ0WER2GCcd7B9AeIY6A88jMmE8nLOdnOW7wCNFj2u1xIGFgDT5gCMKDIDV8HouSMeWcMc8nrNp70TnCMHh4H1CyAxffAF3RFatstkUbFjvvtGUaISWHED3SFiSKl4Rk5lUguknWGHknOeCExk7LrE59AZkOBYWk1Z3TkrCiz8QFrqZvWgkZdWuPFMwKzCAlW5LoraWmir1CXbTUQKhTRnYJwRlzPgG+wVvu7CxiVkZ0QvROSDerPdDVsEIzyTjroygI1TpZqE4MAb44RDAYGT6vQDohlhWjA7YhAtjDBQ8qGTHeMFIg92p0I5yTVj4pJJTsUbzXDCXhBFHPg8hQknI8A6dWt6l0e8LRAsnIKWwtxjJW7c+e0iopxGlF2hTwdQSQJWcsywxGxrZFhCEihiBrw2IkVRTLfClZgKjLlrqbAGQQFXhvrcmkn68AUY9hkMy3kjOSyhxpm5gqCE1mEytBqmTIBS2tU0jJQrbGLACUYa9vbzeBKAES0XAMvwWtKbO87gDnOuYw3Tryu6o56OL9Lj++/2lnD/a6XX2wN86M2/4u3m/P/OL917cejDZTtv9923f/mRhCnbI1g4IAcJfqAEhBiPfVyHx9a/ujLoohoXxhp5KJA8Qg92NQIOppBrGHY4/oEzafUBKwxIzgFmGstcXBTdFYD6CCgFACQIzoI6IflGxJrLMYg7byUGFVGLkQCrvaU7VBb0lLK5yQeUPKG9a0IVmNVWKwdpZ3tZZLxlpSPyeMEwEuKlj28MEpMRSERTlBCAY2RkqMnLjHdTDK8/JKE11mxvn0JBFPZZiroI/NqJVUZCuuFw+XGNxObyXBlKCArGna4XC8w263l4tjNVi0zlTNcEmBQQM6ZIBRU2DkdxZxb0rHpogZyn10tIHVZshaewAzflvCn6EsOw+Btxe/1agVd8/tnB3IBzifQT5WAgbnXB37F7PbqO4JOo4NkLaQmglvM9xNbhDwChDtQWiXPI8mXPp94+r5hmHMqB1fLj65uXQtwqjH0Oi0K8LjXEnKGIDXc7Wa11s2v+1VgaLVoTUvrEo/apf12/togDNYf9MOiAYjmqImT1vwre283oP6uoFQk2vUjbu9KjBARR0YFemeC0BZduZIWvRwj0RkdNs9qcpWx9OyTtDI4DI3cCsgVNL4+16iifVRhF9A2HJVtpBFRO2wWrvsPNg5FJ3Dt+AUAXAU4CnCUenAKGlEsvtiXY+4AKN2WUaC1+Oi/pjNJfC6JiwX87vNEqe/drg08n8Lxv098O6v3ejq9S0z4e/b/mfP+CXwk+CbEfXxBWdCv5kjqQd0t1S/EJ/5+rqRNl5+uREetXP5t93++rGqMq1LDDI96CxdkSTtMJdS0/xSSlWvSQ9VS80tuAS+t1ZWO0fu364PjUB5j3HcoeQRy7phOJ/gThG5MM6zEA8OQ8CQA3wYNFtF9bc667xyKDBzZQjdNmnDJuUa2u4ieJFZhaoDj0tBTg7JEdgLkJMoufQ2rX0Yu0lOJDLxttbULhCa+myA27xUtTSDudpljrhG0lBBpzDpmkvbsi0KFy0fsnevRl6vi5S059rYqJrabBaLipoqBrc2igQYA7BNHCElND1F17dUX5ttVroH130x1H6wNjpFUo4dJ1De4JG1J7QHlSjHzBnuRtYWALG9nTiFWhsiy2Ky0qduEOy1DkJbp6T/ZJSM+glFnACyNoSgU9r+KaFQaWVf5tgqXCRVeJP7nFnK2oismEnsJiM+q/YrZ+1WIFFwmN3lxDx16vTqWyldl8Gw1aIWTU8urPrerrHLlEMPwC2lu7+rtzf6L//lv9yUQAsEbVOaQduM6IDD3Tsc795h2B1AwwCKw2u2WT3otez8S7L01v6uzccXUJH6z/92AX2pjC+9z7f2d628L97hfkHrJMqajlAYn//8Rzw/fn2xz0+fPuGnn366eSRma6ibkIqE8FPeqrFKcDV3POeWipFSwrptWFchCpDc7iKNd72vrFzkIDnlRQSt9G2SRWr9zdZ1w7zMWNetGoDOS3jfexkjU07FjMBcsG1CbCDEPlDvXcNUNs713pH0VxoG8VqGwSFE8bDamCZrxbBlpE0UXcmdN5rrjcB+f8B//o//+cV4p5Tw+9//NwVNTTDWkTdvoxl61IziOud0MVo9aAgB07TDbrdTAgLZdUqSLp3ShsqqW49pigEXMq2fA/XtziBtp3vlMdZzrkqq2+FLc7XtnboTaMdrwJO7E6hJgTp5eiBGRPj0w4+Smny1vX93j2k3dHt4OQdqlLEHRxfAx46Del8uB+1SNqD/68Vv/oK0eGE5Xvnrqc0HO7LNwd6bCQViVpdZ+4zauF2r/6p8mvwwhwK5yzEBgC9fn/HLr08vTn/c7/H2hx/qcfr602rU1DGmio+6E/mtq785RNdXc2vuAm1uNsdHi8bfuHMXy5O535Pt18bZwG4XVTRHiv62MNeafrOXelKKdmFUDyhZJJLGj5IQnn99ITOIHH78+I8IPlZD7+WZdhd1MVcva0JtjF79/fWurl6JXOj21UbpAti2z+nirxdH4Ku/L759ucPLDN6XWvny9Y0JBH5hK3z5/EcsywnX248//ohPn6QFw63I49+23f79y+Bg15qoJ6RBW1MGRK/Pq0U57fkykmr65taa7X//8nz/Z7aX1/rt21f81//6f7745jCO+L/9x/+EnAvOT2ecns/Ylq2m6B6OOxwfDtgfxnpNKWfN0pIyGQMd1jrMB19bubwWFWxn2ssLYy5mrGvBsmSkZG12GOu6YFlmbS8j5TEGLrwnhCD1ot4HpJSUmHHDMktruJyk3IiIsD8ccHd/h/3+gDhK2xWnYNUGzeSUAYpKfgg0kE7qkLOMJX0GM9h9A27AUZ9WiQiS6VygCrecpZ9oTpCIqAI4bYtDVg4TpLxOGH99BVet1lzkj2WmLBtjXgq2zUodqMpdIsY0BewPAdMuIIQWzTSOjQuM5lp2pPGoLOuC8/mEZZlrmqjrdBs5DxcCXOjb/lHrV57NcV5qb8ucGRsIicVxCC9BtLSt2OYTtuUsrWOKpAUfph120/RivAsSMi1iQxvTbNFU9GIRZblAC6QI6U+QVNcgre68tkmUsgwHVuKgpveK2t09w20De7ko58uaaqZElS1d790qQ/XvGCPGccAwxC7NX8rUamqtEvV57csqfUflNxI4Ebt6mWdhxj7P0qppXpBS1rlIGIYB037COI2aESfzUwC19ZiX2vfgAz7cf8ItufUqEP2+fd++b9+379v37fv2ffu+fd++b9+379v37d9j+23mnO/b9+379n37vn3fvm/ft+/b9+379n37vn3f/o2370D0+/Z9+759375v37fv2/ft+/Z9+759375v/0u370D0+/Z9+759375v37fv2/ft+/Z9+759375v/0u370D0+/Z9+759375v37fv2/ft+/Z9+759375v/0u32+1bCPj4ww5xcBeMij0HX89cWJk39b/2m47RsxLrdUxPVF91B+9+0DHLNca/ay7Ansu0neuNq2rHvTyli0/767g40kvqvG4PjfEOlf1RmcbsnHW8vn1NmE/5xZ4cz/DlGYDRo0P7P7H22+zP85IFtbH0UWtpUa+0Y5Gt53tjjHo6ZmOMJFR2UunjKGyfXVPGxmTajWTPENez/vWMjfUc++/0zLTGLohulintZeuPec04aL+R82cQUiE8ri8ZXAkkzLZoTG2NJfNisC/G3qFnPHXaS0lPuKO8BgmNPbrx6Qgh29YxfV73UGxjgptMsRcsoEqtDX2v3k89/sV44/Lzy3Hpzv/ijcuvSl+72599/vJn7Xt5uX08ZuwHRmPEvZw7lTVSx85pCwBjpuzniuvH3q4Z3VwoXBkPKxNjJxv69VxlWf95ozuU37vOZ8eN/l7WhrY1KkaZzt26aHKrZwJmve+EtnbrGLBNJ6oDS0Bl8SvKyGvj8rwEPC4vm3Ofn7/gl9////T3Mm9yBnIq4MwYvMMYCFNw2A3AFIEYGN5LI/HiID3pAGS0/smeSDtSObjgtS8q1d8RF2lHZC0esrRXKhnI2nIpb9Iwu2yMklAJpAtDexET4uiwv/PYHRzi4BCCzImcMvLWGAyZi/TYC8JJL4y4pGtDG4InVobtxuhNIAwhYAgBwQV4cvDklPVbZK/R73PPkuojto//GaBLPy45wsd/+gQfW69JXM6obuv0RPd/+3admLh6+crG3fcuWduNpfHFd3p2ZmuD0F9P//+FDO8YgbljFb+65guR2hsC3J9DO/fryylsLQyA/LSirC8ZRd+9e4eHNw94fPqGn3/5Gb9+/hXzfMayLtIuBL1seo2R9S+zz75gq+3slIt7Zi+q7rjUZ/1XTBdUOdjpv0tr6/o86PIULgTzjZPn/pnk/mkLDQLgyCN4h8PhiHtlhs2FcV7WF7saBo9//ukNSimYlwXLLN8ZovQ1tHlVtKdkUaHhlPnUh4gQpOdgLtKrO6eElDdlJzXZzShZ1mopXPsE93pw2zZs24plWXB6fsbp+Rm5ZITgak/WnIsygGr7GCJEPdcQpS1ciNIqz3sPF1w7VxfkPedh5OalZOlAoCz40oLG2NFbS59c9YDoBmNTDTEgeK8P6dkYtF2MCw8vZAoA/Id//An7/XTBTC/3v7O/u/VdZUmn915OjzaHLmYad9+jq+nU2RCXb13aUESX8svmurEHX0/L3sIiWxFmX5FaXfp3/U5vP7y4TtOlV0e6fMJ/++//J37/P36P621eCr49FiVO7+xhO0YnU02/ECBMxR0Lcb1DKg+E8bjZPj2Fdm8DVvuytlZz1SbqmY5BylJs/WKztRuU9kLetXHzjhCjxxCkV+gQA2IMOqdF3y2rdNjYUkbSteO07VAIHjE4DIEwxIBxCBjGgOCtzSSpXNfr0HWbUsa6bUhbwpY3/Prtzy/GG3gFiALAT/+0x+EYX4KJzgiTfjW2ALi7cegmkfVFtJtigtl1N7mfR53YNQBawUZrY3Bp0Yux0CbwtTCn+q0WBKa2OOzTXhGQgd+mcF+qBhU+yNUgMlp3ZqAUd0E1zsxI/8fpJhD15YQh/0kFmfS9KynLI5eusXff8bQZqy4ExBC0ab0Ztiz9MfVemeK5VHiiSg1kXvdoNMpoD5LJ7QkGRIkAR672obJxrf24vL+gsbcx6BuCC5W6r9Tt13T1dheKzYPCtc+S9CBrVNS1RQOUyJwczlu4CURBQPTDizlzYfDpaZj48yB4cggki9xpXzBpyETaFEsFkRegRNqkuxocLP0jbTwAtObgbEaavN+PifNo46N9DLWPtbTJsT5U1cjrhZmr9/d6nK/p8vt7U3GQKSS6/NzGq4FcOffHpy83geiPDwkf76wvq1LI6z+GGhyca+9Y50ko2bfcenrpfAm+9d9rMgnggkYbnnOdYy/mVWdIv5gYnSEv9zJIS9jumu2eCSCTY+QsLYVKzvVcCbgA0nYuzPZ7V+nvm9wo6HuA2ninxJhXMYRSR2P/h2/7m0D09O1X/Nf/7/9Hfy/H3daC5ZyR1oK7wePNLuDtziEcgfsjsJ+AYWCEgZE9sHlgI2ArhK2IPJA+xg5xDBhIjLoxAsMIBM/wJcNxBm8FZbN2S4x1LljPjOW5YHkuWJ8Y64lRTqyNPGVsl0JYisP+TcD4jwPe/ThgTx674OEdYU0rlnlDWrfaK40GD7cLQAzY2CEVkj6h6hyY54zynFFOGesqD4JDmCbEaYddnDD5iOgiti1jWzekxHDs4NhXpZpTRhkOSO//E9hfA1GHn/7vP2FUo7F3JHQmIwyAmS67noO2jpit/UMzEG9trc0L1+8X7RloxlIpKkXVMjLHVdG1Yq+vz+NSPlIDr9a2pHSOI5urDYXJ77prkDUqL0p3jbeuydYws8z7W0D046eP+I//6T/gX/71v+OXL3/Gz5//iF8+/4Jvj19xOp+aQ8dOqH82PdiLwFfG+Vru9XbpS4Df9DKBqnFaf8dVSKvl4uBsnKuhfzlX7GD1evpzV7vr+vLMxrGHtDAmoLC0F0kFDoQYAqY44scff4eH4w73xwnrmm8C0WkI+H/87x+RUsKXL9/w+csjCMDxsMdhtwPAAihzxrolrFsCyCPGEXEcMU57jNMecYjY1hnLesaynDHP8ti2JPZPYl2njC0VZM7InAESO4QApHTGtjzh8etn/OkPf8Af//hHbNuCaYoYxgFpy1iWDcu84nyeMc8zrBXL/rDHbjdg2geM+4BxlN8M44AQB8RhxDCMiHHEMAwybsxIecPj8zc8Pn7D+XyWlhbaFsbmrAFV5iJ94J3HNA3Y7XfY7SZM04jdOGIaJoxxwhgmOBcQw1Ht2Mvtf/9P/4yP799KKw61lWRt6Y1l6d0Oth7abU32yrtOD5s/FWD1DiFGbevdph2qfdyBYcLV3xf7NbDWgRP0x6wWLNpKIBCp/UpBHQBebQV9rZ8TeZD1zaxO6Q786VbXDjN6OcoM/L/+3//Pm0D0dC74/R/Xpq+dHUfOu6jsKqpbcs5wBPgQ5P5UsAgwEwqbrRvEHnN2DR2m4uZc7u1n7+T6pd2iPJNXR6dz4sjJGXnbkLYVedvgnThYDQ945wV4jgOGacTdYcL9cYfjfgIzxK5YNnx7fMa3xxPWPGPLG9YtISDAxxFhGHCYAg67gPvDiIf7Pe7vd7LWBgGprO0ZSxKdnzbG+TTj+XTC6XTGaX7G58efb9hcvwFEr41VIjEWLyMYVOVrnbAXCviFZNR53wlQnZKX9vAtbdDAz6XbRl70i+zCuOb6o8tTMC/F5Rf1Gq+O8eK7pBPb3mnglkj6LMnYUDU4DGTQDY+XHd+M0+veVC9eGGABYI2uxcN/6YUjsDQYNk10sc+XAER+Vzog2sBILgRfHHxp7wm4YYmC1Ou/4bhQI/zCi25zqjNqbgEj06W3gKgBUL4eK5sPVbi+3Eop+PzlV70n3fnaf52hYU2dPQkQjaTNf0OAD17PT30sZhRok2ByIjRqY2hDilf+lupgUYfNBXB0BOfVUeCa0DUguqWsnqxUATlgoKc1Yu57tRlQugamZkzK+70cuFzftiz6G2Xq53b2AJBKwZoTvPMIVaZk1aUsTgUuYHLwIEB7prW+mwBIDOrCJMClOoNQn+UcLFoGUdKgTkGYawC1Obj9Xm5/L6+aV1Ft6ouxuhgjdOOn9w/ojNir8XJVt3XRKVVGlw46cyoI+A4x1uOXXOCDvzneRID3uAQzbK4aBjl5uMDwAxAnYNwRxpEQB8KqUYmUZYxJJ7o5P3gRp9m6JWwrYVglouogDcU5A5wlKroVxsaMjQpKADA40AR4jYBIe0453laAcyngVPC4JsSZsFLBacvwBKxzwnpOyKkzvBLD5QKEjI0ztiL9+kACyFIqEm3pB4ht7Yk8KI61PxzUGJJ50zsSrSX87c1kbYF48ZvqMTXUSyp2tu+r1UQ2FR16x9RvgtGrL1TnTAWjti7N8166+dZk8MtJhA4cXY2FyTKi6rC8UOvdHG79YiHrjdt5tXXXX4w6ERSIbv6MhO03r7+Q3B9p3V6QbJ7bGXG/Hrs1eSGO+cXfNiyk10T2Rx2bpjC4fVQf9T2z7u34zAAcip1lv2/039Xjaz/GHow2ENoZKPZsDV3bMpEPM0smgt4Th4KtJM22kKgK80vQD8h9TNqPcNsS0ib3JG0JKSYQmgOhaE9zUj0TfMQ4jNjt9hinEWkcMKYR2zphWXfau7OofJHMiS2J/ClckJGrXgSA+XzC6fkJd8c9HAHMGeu6YL8fMU4D5vOCx8cTnuhUdSwBGOKAcRgxTSP2+xG7w4BhjBgG6WnK5ESvbgVcEkom6Q3pAxwYBA8uDpwJXBxQHMAEYpaMKQeEQOAsEVxmQikOORHSxlgpg/OKvAEpEFIAvIu4nxh0Q5R/fXquTm8DoqS+b+9IHJme4B2pL7zpo2utUyfp1R8Xtm33hWrXdf+/3Ie9ZTO9ycjO+mxvEF/8qq0FtRHJoaCAWcAnswcr8CwVhKpdZcDUqb2gdkNb3dSOU0/KJMJtgSp2pjg9CizaCTi4tizRliaRXG8pWa7De3gHgCSSXqOkdZBtREwe6RjfsJsvA39qOzfvP+pd7hwB9QidnUkwm0TjJg4qt+Tb1Z5XW8uishJ8kqioD0Gi+D50YNnVZwsYFcrquE3Ytg3rov181+XmeAOvAlFVLFfplcQEpl5KO/TTzL7fdtOBjzoc+rNOS19Oimuly3XABOBdKuwXS+UaAF9bzHTxVI9xS/H0v+kBOJglOnIxDk5BaHdFbM+oqU9mqF5vRb1pzGhRLW6ABOjWL1M1UMzYLrkgu1xTFptR0EdQX7Nk7B47EPrG0lR/5zzBeQnxOxN6CnCcRmCdgh5bQD3YqUfqjPhrg7sNb1t0YuSowaiNhC8BqH0XABEcJJXQ6fjQK9ecUsK//Mv/hZbuY5E52xmq0WFC2BMhkEN0kmYzDAN88MilIJWMzCy3hgTguCBeLAJZgB0okhbZ5JD+oB5F1oUjVz1gzlFr+GwNionUgAaWdcN5XrAsq0TSizhJqjdN0zScc/CuFx6XD0mZugSqRK6BYGrA67VNIpu3jZg1bzhvG2IIYJ0S1gC7qBGUS0ZEhI+SJkmO4AKBi81ijfYUAUY21+rcgqTzZs5InOSzLMPrzLvqei8rVTFRuubidv9r42/XgdhOhpjAZ2aQc/AIcFR0PbS5bGPSPMm6h07xmAGXu4iq3CsR0855xIHgQ6iRPi6MeLotU5wDhqAOiyyGPXRNOAc4z3CxwI+MYU+Y7giHA2E/OQwD4TRn5FPBumYxwFimaoGAxbIQchEJE0dgHEnSZ50YSE12EXLJSCxgD4MDnKT0IhBcBLa5YJ0z0lJwTgVfc8Fp3cCngvVbRjyJE4gKsK0FaZE54BzDO4BCgQsM+IytMNbMgGOECPgghk5JqMa3iYWiUVN7eCo6dg7wJM3SUZC51DQsiTa+3ATUZBBnOKfyz5wp6OZOpztE3qhjpdkml2uqczx26uXqy/JpM2ra+4r99DU33WEGTjflb+sI09BqZF6ASbw85rV8MAdRB4hFnvdRih4AWnaDjTlwGh6xYH45NsQCQEncTZkYiQpWKtgoXehy4iZjm62iurQC9G6MwDUlW3RRu87e+KtOsrpviB4FtfQ6B32+ND5LDxBtH05eOyvtcAB6e0ztJ+rn04VNRW0smTVQxnBF9CNlRlmATAXYCgpncGYsacWWN6QsKbK3NmbGMs9IW8JynjGfzyAQBh8QvWS4cMmaEpuRU5E16DzGYcJhf8TdwxscjkcwMnLZkPOKlFakbdP54cDsUArVhzlVqshkxjKfcD6f8PXzr3h4uMNhP2FdZ9zd7bHbTfj65Rv++Mdf8Iv/Fd4FmNI57A847o+4uz/g7mGP4/0OYYgI0YMZmJcV87xhWwVYOJdx2O0RD5LC7/gM5ICSAjhlcAr1njoCoi9wlFG8jkNmlOyRNsICxrqsIKyIbsUQNox+QvARx3cMdwOI/uHPv+Dr87PqYl/1QvCEaYw47icc9yPGGBCD6PguNHN1A7vnF1/pfqXr+hLu2Brq54OKs/oDRrkCRGZ69kjgxQnpeoPav0QOyGJzgBwcPARgtkho1c3kxeHvTFe3iKNlSoroou4Kb4pavaaCnDbAERx7EBc49oDTaLTKAMfVFAdzkexFAIEjXFQJUJ1Erl5tk5mWHegAtDIik0NiHzspc4Fmj1QA0+Ey19n8JJjMZG1hhmfNxiIgeEJwBEvkK/0undr4mmrrHMF7hxgChiFiHCLGMWIcBwyDZELFEBGDR4wehQpSyiCIPbeuK+Z5xul0wvPTE5ZtfhWCvBoR7e2x9p6agnz9ebvRBmpkIIBeINoACsDqaiu4A0t15tajXj4ubmA7fl0w10CUcQWe7SNu34Ed+hqs9fttp8Oy3qr+ALv6eR9yt31wYbDmY16msXZXyYzMpc1smF7RiWaCo7BO6qJRJK3HyASJZqJOSKfoxyZ9f6x2dqgHcwpEayoCxBjgarg6rQXzUodhkbbqORHQw94LEPUeTj2ifSpHTeFyDgSWqImcWFcXJAMsDhFXDUBbXGYgXDhK9P47ttnCcLe8/AByzvgff/gX5JIvfl/najUe1ehgA6Ie0TkMw4BxHBFiwJYS1rRhy0mOSwApgDAgCru+VMRTyjavRBCRphLXNFrnq+fJBYfgndSvqFeUOiA6LyueTzPO56UBUSKpcdG0DksnDqGBTnvEGOvD675FGMk5vBY9vZi/3dotrxgx87bheZkxloiigIZzAeeMYikmOaOgwEW5bpu5TJZZ0CI3vdcQQAXbzIwta+pqrSPUlHEX4T0QvAcCgbhFOsUZ1EXnHXXKq8m2CtRVzlkkQeafABjL0i6F1UF1Ja8aGgWAizRJS5X03gGwVHuNsFMACOjrpGPUvNarzREQI6EUAY6ZGUARuUAM5xk+FPiREHaE8eCwu2Mcdg7T4MDEOM8Jjgs8WO5ZncqMdWPMs6TdDiMwDIQQHcjmWPTwWodVCCheZJcfAjwi/EjwkZADI7sMFEJKCWcueMwFtDJ4LthOWVyeCeDEyCuQk9yV4LV21Bc4x2BibLlgKwXkgXEiTDsnda3ViGKzmcAAMjcgWqigOuPUMy4ReAGjuc63l3Nc3slgJFnTFCTqTK7L2m+gxTwZhR0sC4brnGjfu3S26G/Rm41td9SvUaCbdwoi5eZdnHE/ty+uq1ObnXO9+/y20/Z6UAyEWkTZnAEXnv7uvwa8uY7Ln8JtU6W3DgqxAlFGQsGKAqY+omkr2ZJhnY0IGM1wgxl+5iS7KAnClS5rmRa1toupOSJYqzYg+thVoCn3t3c8V3+kExDqvOp+T/Jw/UPvbRcsqEhIAS4zS9aI1qwwA8QOnIs4V4oDlwxKGZwJaxYdVnLCK75EqQ19PmFLCfPphPl0BkAIzsFDzTsdt5TlASYgA54chjhiv9vj7u4B5BkgqUAvJUkUCgQiD1AAIQAIQJcWKfNLZPq2zlhmAaLTFBADYVnOeLg/4nDY4U9//Blgh23NKIWQk8yF/e6I4+GIh/sHvH1/j/s3dwgxwAWHbU0oX77h9PxN0v83uTGeBxxGDx8DHA9ADkD24OSRU5bT07XnCXBBS4dyApeEnBw2kihpLhk5JXg4jCFj9AUhRJRcgBtVRH/4+Ve4YIBL9H/0DkPwuDtMSG/uBFgQSc2eAZ9OVgDN7nuR+dBlNhI1uUJ13ehcuxIbdeV05j8rKOULGdd+QKSZNSb82uqTdWc6vh0Z1T7S50tbqQeiUtdLltJq75teBkFXoOz3FduQS0HOG6g4sCsg5wHP7YwN8FWZjsYPoaUK3iswVr3NaADTZFzNlDIbkBpAZTbboVwEd6rT20622mMtixE65KXDHTI9SR3bjdMBUF4HBwkweVcfLst8ClHrSoeIYVAQGiOi1pnGKDWkGXL9G4l9vS4CRM/nE06nZ6x5rfL2ensFiDK+fn3GvOpNU8HbPIWowlo+NyXpbCbXG9btUm9cGzjnZL/iAOTqgTE128a6A1MXCp3q8XX4BUr0C/DiuvnKI3n9BVt5crK9l7OdD1fAovW58r0+7efKSIcjMWq4NwyuvqLFxKYwZCJB/25WAOsHXJzUwIkbuA5wu3QxHOupMXVK9+I/VVBVnYOzft9AIVg8cNEjwCNAPM+BGd4RMhE8GEHBhShefSYS8hKt6yAS9e+Y4TT953pqWgqujLGD07lWFKzLord7oUaemhV6A/Wzl3ZRf69TXmodYQ9EexlqOyAmFCJkOCRHSEjYeEPIASknKcjOpWZDQRc9qQdNrTG5LouIVuBrwlG/ewF6JCLpo4MPDj54+CARPWYCs0PKBeuWxJHhHJwPKpQ9gnrxjGTJaiy9N3BpgssimZZGrQa+s1RtE2S+kk30gNSi1ADjNNMNWAT8+ZcnfMYjhhAwDhFDCPB61cxWq5YRYsQ4rRjGsR6jlIItSdF7Ya5ZAnbuABBCqNHDXKR+0qKnADTCvMH7gBAkMltTblmEZ0rCnOPU2SJjhOqF7muaW+1zu3ZC6WRRaVGW6jQxW9HVaOEloG51pICl9qunkeVeWEpnUSfRa9ELIuHvKQDgoWjegb2co48ENxIQCRuA57VgWAl+YDgGaACmOweeAooLYO9BYYAfJrgwYFkzTiephyKX4HyWetkwwPkBw7TDuNshDJOs2ZRATAguwruI9XHF088nPJdnpHnGmTNOG2MpwMYO0RHC6DEdHRwXcMrIa0EOQFrF6vEuw3lLN2LAARQYjqWuehhI0oVJ3kPRdE0Jp8OHAkdFnHjg7iHDZTrJIv0pFbB/xUpnYCkbuACePHwpCkA6Z9mVE6f3ftebVp/b2nxRS9kZjPZ9IoCKOSGp1R2SgK9rndekpZ6TGqQVAHf6oQeN1XOj37iyd69PUkGW1ayi2QvddVQDpTNS5bhyXq8kEolhrzWJWTMamAAEDxeDyEQjYuJOvht8rfbMVQYrmzbs39dz1P0Zb0OV1bDxczVLqHEt6HtELcVSLUGJDEPSbhVoOk8KmDW1lQlO9USLhKADpQ2YMkgJfzpwyzI3Cuvw628sK1xsjFKNj9f0Zto2/OG//wtSSnh8OuHp6YRSGM+/RAwxyFzN6lRjIBfGME64f/iC+zdv8fXLV3z7+hUPb99gGIOQkEWpkY9ewIY8PHwYEeME5wezpHVZeJkTNCA4gPOGd+/e4enxE5b5hONxh3EccD7N2O932E0jzsOAIQ4gcni4u8P79+/x6YcP+PjjR7z78BZRs5uenk/g8i/4+vmM+XTG6XnGtmWgOOziBNrvQOwwxgmL2/C8nnF6PEu2ia4N0uwxZkhdeS7goGswEEoGSpYocQwT9tM9YhzUVni5/fnzV6RSILWQ4hgegjwejnvlTyAQA4MPoCHUrKm6DnXOs9kh/QGqjEDDjsVkjjjH6Go/EgwotZRBfB5inyVz5Oi3JR3UyoPUyU2N0JJRajp4Vs6P/vfVLqppVGofmdxSYEpw8D7C+YDghRQr+AhSPgpoeq/TKOtr6eeyILQIQ/W6sbpY5hOpM1eyi+TcJLtOvpNzBuAaJ8iNcjd0+2y3ogFWsxksc7DqDSKgkNpNTU6S83A+mEFfcQCrBPNeMIZENSOmaUDKACijMGHYAtbBI6aAVDIKMmJ0GKKTqGdw+vCISr4l9drUbFt9FnswoZQEcFb9+tp4vwJEGcAvvzzCR750XFRFouNh/5sQtJnckbYYiDUB3SIKahQT1Vz3Cly6id9y3lEFrtMomaSFi4+jndMlGKlnWY0KS/XtPNMvrr5CgfqqPbjuTzBwbzhcbtU7YQr7Ijf+cvOeMHqvHlJWoNVBKRMgbOQnBS6RREJzrufV4Uv9uyn1qnvVOAB0IpvS5yJsvZquZhMLYPF8EFAcoThCKBId8SzJElKvyPDwcNSezVtMXNpriKenjl319lNbiPV61EghiTVYRKKopeCoiIDRPP0G5ZqT47WNHEDcOUCozZ/qGayylzUtsYAhSiaXArdtSo6TahoZAKAQcoZG1brLtHTtpvPltRpcEuFGjXYzM8gTfCBl+BPmPe8DoKmmoAAiDzd4hDDoI9bUXAcxwB1D2c+C1Ld2kU6LstqcKHrfmxfNa/R0wDgOiHGoqbsANAVJ5uXXRwe85OPCH/78iOX5Z4TgMQavjKXy2oFUCWVRJMMZMUZNBxcGxHkWwonCXM+9rW9C0KiuZWQAHcCjBiZ9CFWQklMHBKMxKwJS3D8E8S6jwIH1+kNNYfZWr9spclLlBGNzBSqRi0RNnEQ8ANj/AsK7lFD4Ogfb2LKkKmmdGGsUT5Re+83F/AYQSNhvKWjdjMqWTAwfHdzowAGYM+PrmQFXQCGDAoEiYXrjMboAFydQ3GHY3WHcv8Owe8Cyrjg9P+O8PCPnM3I+yzj7PXzYY9o/YH98i3F/V9OvwSTz00V8/dNX5PI/8Pj4RyyUcUoLnjbGnAiZPabBY3eIeHgT4GlF2YrUVS1AWqWe1CSsc1o+4KAFMJpe5Au8hzgIVKZ5ByQvQCJShqckadsKRp3qDdMedk/NIcA+v9r3bGZJj/fk4LMX8KDKwuaa3VfWtWaKuxM8aILHvlMu5KLNebvR1K0Dm2eiW+3RslLaCXB3jTKPax266QhGdeYULu04F7MMl+fMF19ANVwZzSGr53EhY690MfUhmVe2UkqtWSw5a10widMphhrRbKFHdRFVJUgNjHZjY8CTDa3Z9anuKVpiYVHH3jCibrzt8syh70DwwSPGiBCjrGWzDzTq6YITkiw08OlYM2KsXMFAKax2jWr0A2j1sqz6rer97p4QSYwJIDhWYF2V0u1B39YV//pf/w/knDHPm6awqtMvF5RUhA23SBZKIcIwTjje3+Pu4QFv3r3D2/fv8fD2DQ7HCYfDhP1hwn43Yr8bQeRF/7HDOB0w7e8QxwnkvRS8q6xVtATvCOM44u54h/fv3mFZdhjHAO8J0zRhHIVsaIgCTGKIuL9/wKePH/EPP/0Dfvrnf8APP37CMI6IccCvn7/g8euC//5//QnzKeHr52ecns/w7HE3HRBcAMFhmnY4nxekLePx6zMWIywCREcPEo0znc+DlIZ4kr+JpWb2sLvD24f3GIZRdPmN7efPj3heVljaqXMCCAbvcDrPIBCC9xh8xGG3hxEkXRCG1tve23u6wHsnin4tU1ZbsLxYguK0FQZ3IxNjZqSSsaSMtdpCMq+FjM8j+hY9i8FX9mCzpUrJSDkhlVR/q4uy6uhWV97EDHMjRPU+IriIoHXAwzDC+wgysiOLmpITufDaptmJ7LiWAYGLREgrYZQ66A0MI6CQGD45FxTe4IoQhjofaolTb9dfg1DbWgcErkC0fZ8qADH9IbfRVSBKnNt6ZwaowHvCMHgMU8S0GzHtJqTEAEk1/ZoShi0gDQmFPYCAMXoMwSEGQlRSRasZjUrMBIbWg9u5FMkkMhCq5TPevy7IX813+frtDCYFOIpubAKbTK6hZZW2cuGk3jbX0kjQvHjmCbFojHeW2kn174t/1IPPq9978/6a0O8iS1XJKfDR4m6q3nNLr0OdFFX51sVpnxGaaxH1u6Zl+nTg+vuriaW64OK9fvPeYQihKuxS7BzE2K9pFcVYEAtydsjJoWQH81jbxON22wzDdu/rQq41T9w8GlpLtnVsigxGdgDgaz2M1bGY54VJSGYYkpNuIKBAAShQDRkq5pxo0SBLdxQPWTcVq8eNkdHSp6zmltkBrOl0QK0PrfPyNexPAsqag6IiTlQ2uj59vJq8mlJKRbzL6hQoVzQmBozVSVbdG3WuuAY2JY1K6tFSapTzQtZRBIhGSXsMKSDkoEBTvX8BiIMXZ8EQMQwjgo+ojMYMiQQVbjTywbf6JSJIaF1zHIjEUeAkfVNSOBneM+JAGEbxqlmNpSkmA6KvzfE//fyIz7/8iuioAtDdMGA3DfBOGeBKVhAR4IJS3AcPLozT+YTT6QQurNFPq/EUwy+ocddqks2ZodFIL7LDFGMI6qXU9ZGTKEJHJF7DIcIRg7OkjcUYMcRBgKj3Wi/tW10FtewOAaJZvMDeotit/taAPYAa0QGabKu1peZ5LkUjdHKQwka+U3CeJwD7W1McvtrQBHYQheAcGAU+OsTRwU+E4jKWwpgLYWaPyQXs9gHjLmDYDQjjEX44YDq8w/7ud5j277FsM07P33A6f8W6PmFdn1AK4MIRwR+xO77H8f4TpuNbmetaA+/VgZHLH+D+fMLqP+MMh1MBzlmioUwOIQ443O3x9v2I4BaUdEZaZ2wLCxjdrLa4qKMBSuikbWWckzms69gp+U8F9gXwxSMUh8iaUgczbjrvEetazSytb3y5CUQZjLVsKAy44uBRaup3jTiiyT3ADI2OtMfkqt1BldNVRr8wXJpDtdfLDqTtaAhGVFajc6avq66ieo6SgeKabAbq/CulNNBq50f9ueBC3jZHbNM1VbT2NkEH4C7H83Jsb23FnIA5V4PMOQcfAwIiUErNorFaSXPIyi4rTGzH4ubZd/3Ym/2TM5CBLP+B0YxuQFRiIZWDVe+yRlIlc6MUAptRAoAd4BSgwAxklnovM4LtAI6FzMUpRwe30GzVNc0eaCjbnNyuG4NmFts/+/uV8U4JX/70J60Bk/rxdd6wLBu2Wdi8LTrNJNcYxgHfDl+wO+7x9ddf8PXXn/Hm7Rvcvzng4f6Ih4cj0t0RuDuAyGFLBaUQxv0RaZkxTHtQCEAQIMpqn1nN7bYJe7bXligAKkASeR+UaMVhGCLuDge8e/MOnz58wo8//Igff/oRwzipg2zCYfpv4OyxnhOeH2c8Pj7juDtgmReUnBFDxBAj5vMCAmFZVsznWZxUzIhjRMwRPgQQBPyUzLWdFaD6ygcMw4TddBAg+ore/Pr4jK9PZ0kRNSDqHQZPSFvC4APGGLAfJ9zf3QmxpNeymurYb7qEWeyKVGRd9AjUVqxlB5UKNHUVqixMKWEz5na1SbeUMacVy7bVMioAiFFskyEKIdQYNc0zRqktVAd0ytLGZzMg27tNOhDKV8Rqdk5gCBD1A4Y4YhwnTNME7yKgQNQ7Kc8hcljXlzXntkNm0cdcZEWRY1jU0ymRkvNWL6oAs2ZIia2LDBROIGZ4EIh8zUS4dav77C/ZT3Ok9++BCJRtlZoukeM7oiorHLir9ZQWQjGGLs02wnlGYSnzGreEbdiQc0DhBNaIaPCE4AVIBqdp+MY7Qk6BJwsYVX3GxcqVCoKTtk+cMuh82yR/tUZ0W4EqjkwhcY/gm/CzPVtAnQGtXUD1wlYAo6BSAKW97j435VbBBFCVLUk4GtV4FiDqLULqunSY7tnZMX1D9BIRkf5ZfXSjnjNZSNuO79APoYDKfhK1860csnpNZmNcen8vNx/EU8GAegQ79tvmAtR9ad1K7sBiZ9jUR7035jFqZ98Aa+dhUra6eRHFsiwb1m3FljYER6AQEcYBQwwYolcyhdKuWL1EqOQuzUlgSg5MXaS125zMn6q7dTBZvYwEfV2a50WUraQAyf2yVA+5XwxCfkWhEjlMu7tqXEEXMPMG5qSCyFJV7bo8GPKoaSF2g4N9V+6zCYCLmjBuz+ZsKFm9i0kejhJWTqDgEEEASUpuHAg+St1diB4hxPrw+ux80PW0ASUhqfEsk0acNLEEFI7I7Ktzp695CiEiBgF0PhY4v4FcVunpwLyhsBBMbAWa/qo3kK3S+7an8du3E37++Suid5gMiE4CRB0Rlm3Dum0auBDBbURKDMY6L1gWYV4zIFrrVh1VwgKb4a0WTYZd2uloirE5skAgJs0WlLEKXoDoNARwydi2DSkl7SsX4X1o89tburSDtLJUQEOoGQHeGJSrzGrgVICRtGlClYNGOGDZEcpAqfPLUhtNUafwCQgvgaheNizSnjKQsmQVgMSxMe0jjneEKTrsQsbxMGD/5oDd/QHHhzc43L/D7vAGYTjCD0fE6QHD9A5xvIdfZ2D4Crf7hnV9wrY9S1pqOCKEI3b799jffcK0f1vrolJasa1nLMszHmeHr6eMz6cFj+uGMzM2T6Lkncduf4eHtx/x6Yd3iHFFyc9I6SSG77xhXTZs64Jt1X5+KlecOm1idLWOZYh7TMMBwU9yDtuCvG7AnEFzAa0AbQTa1NApJBGBnJFSRkqafn0hR19uWawieHUuEXPN/KBLJVGfq6wWIYdeNDb9ayjEdlE9aGiAsO2fIfLUXkt03soVmj6pGovFYVsgrIzmnMGF8afREUabyxotvCQxMeRjgLfLTEB/yqoVambM1e+7V69FL2Q5tPpM7yQ6NMYIdozABfkiRR5NIHTjaLrZrpvRwKfZP3VN6lzOSUh+OBsQ1dF1BKesnpyVxGTLErndUgXKcRzhgu9qQNHSctVeEZll8q17UHcfS4vey1AKeHUWaRcUoga7GJ1QYE5Fxp8YcO2OtLl0tTkiHIcgNdrbipwLIgPBR2CKjWBKtUAhqQ/nUpBOJ8yecA6EwRcMbsVEG1basPGGxJLWfl5WaR0xTnia9nDDoBFRhwTGlqXPoRbTYtsSvnz5gi+fP2NdFw2cMr5+fcLz87POHVkL3jkMMWI3TRiHQXp4FkJZM9ZtxXxasJxWrKcNaclAAQJJ/8VpiEIKNI2IQwSQ8fnXI46HHYITRzIDoqdH41eQXqFO6/IIBU6dgd4DKS14fP6GuI6Y3r+tdXv9VjZGXkutGWbHmrUGzOeEL19OCOQxxgnH/R2O+zvc7QPiXnRnytJ2ats2LMta28vM6yYg3sADM5QBUOZ4Th1vgQU/itorCWkT8Gi/Tblgy0m4Mpir4zRo9DNGycaKQ8A0SGbVEAMYeoyS6u+zped2NqpxRJQucFH1P/RY3gh0ImKUzC3A2ihaYEfW5s+fP9+c40JWJD1nyTn1LDGKE2c+g0GloJSOjFPtPEvJpkqu2Fq1lSJZObUskdyFrO9rRo3MU86ngVF7X5z+Ga1+2mSYpA47OHhijMFjGgL2e81k00w40ztgKHeIOArGcajR6ZKzOrILUBKIo2IptbdVL1jNNhfhP5FoqDycA8YpIgRC2BzwqPby1fYqEM2bu1CCTZmU6mUzIV3qZCmNCU+9dAJCVWGocdYAqci7a+9yFf7VE6OTqEnaWuAvRp2rUQmvQLO2vNBiYa+eMYkciTdmGoKmbEiqgFcCHvJOr9OBqKOV6jYBTAYyNGccjSy+1R1CU+lMCb8i4IPDsBsqaEW/D1P66MdcbnyuRoKOXOnApbzVzr/e/6Zxm3NBFFJKBfG0wp8WMM3YSkZOG4pzcDEgTCOGIWIaPJwDMmcUzmhHaQXkrT7KmXyTeaO07hI6ILQeUKxeVNQ5Zt4WsdFUWKp3GWY4FTn/op6pQg7OMQo5qRG6Nd7ksNs/tBpRAOCElGeUPOvuVZQ4B+ciQAGMCKZY7zNDPE9UwYfNSTGIvL8E4mqnqtdInrctY10TtjWBeAVLSYpGLiPiEBBHhzgIeJF63YAhDohDlPRbFYaiKAQ4beuGdU1icJAoxVwCMkfE4muEsDlfCBQmjMEhjhEhZAGhTtazpCbPKGVBygO2Vc47ZyhAk76sr9VePD6e8Msv3zB4h10ImIaAZYqYd1IDdJpnnOcFW2ZlK1XSJgWXOakhR8IcK2DU1VR9qSE2JS0Rw2LOG5magG/2O5kBzRJlEM8fYQwO4xgwDB45JcznFcu6QYiDAoiCpOxVIOokuugdoid5OIdoDi41IGDrl1A91nZdlrYq86fLcGDWeyqkOWTNHlxz3j38EPHup59ejHdVTwyNtjNSArKUG8FHh90+4vjgsB8zdmPC8Thhf3fE7uEdjm//CW/e/Qcc7n+EH+7g4hE+HOH8AeR2oO0EHr7B7b4hriek7QQwEMIRIRww7d5jf/yEYZJ1tqUV8/yIefszTnPCtxPw5Tnh1+cZz2vCGYzkpfmLLxHT7og3b3/Ex9/9I4ZxQ+Fn5PyE+XzCfD7rs76eE5YlIeUCGgA/MuIUsJt22E07HA/vcXf8AbvpAdt2wrJ8w3p6Rv42I32bkZ9WpKeEvCYBk+YkStIbNqeO7fo3Nvstg+GowBWTbe2etD/N8IDODZsh5vi9Oli3Tk2J9sbLxa7191aFXywaqzrrGhw3vUSanqnnwqgg1Egymtmjx+d2HkA3RqqvzTZoNaZox+zVFLcRuN7Kb9QX2fmYgymEgIECOEDbCaACowa+CTVz6kLP1tHrR/Li2ZwTJSUBmtn2TFrH6OBJ0tbympA1WricFnGUuIAwRMRpRBwC3KhOKeqIzbQu3RxoZuja2YPMmWxgVD+zsVUDyRnhUrGWVwTKqGnKYqqRiniqzMKvbY4I9+OIzSXwnLGVFQ4kumiMKpNknDIBCYQlbXhezjifz1gdYxkISyxYfcLmEzaXkCgjsQCm8+mE03lB8Q6IAQhB09gIS844rSvO2yYFE+SRUsG3b494/PaIbVsVsEl/xG3NF9E15xxijNgNI8YQ4eHAW8G2bchlw/nxjPlpxnpekZcCyqQgL2I/RRwPIw53B+wOewAZf/7TEcfjDjF4LcYnUCC4aFHJCO8EbJWSABR4Ta11DljXGY/lG7yP+MD/qAwclxtnBm9i28Ez4GVt5wIslPAVz8hbxm7c4c3dAx7u3mCIEw4QHZMUPM7LiqenE55PZzyfTng6nTHPC7aUsCXLLNEGSDVymqWvsurebbNIaK6syDWLj6W1XtYMFXJtTVoWUPz/U/avbY4bS5Yu+PoNAMmIzNRW7aruqp55zsz8/x818/Spy5aUlwiSAPxm88HMQaaUWWeG3VEpaUdGkIDD3dayZWvFQEyRZZ44LTPzPCkQ7aqGKrUpEH3CEwcYNgWQyLiPUQnzoa4MnpR05CeEeIwmaeb8MM6CMWt6f7//cI33YVbkHI5heGTX38mjvnH6mSTYCFTQxouI1vzdytRnVZM/mLChfHrs889zoM//7fnfh1KjoeoiJa8e+xhmjBdcIAaY58h5mbicJ5Z5IqWo7xFtOo33kSJMU1LCoWnN36rW+M6ktk6akesDPjzhh6fP+PhTgegSJ9yS8PvPBlr+GyD68fWDAYQH6DwOlCe24rmrdnTqjFk55u3G1wFCH2BUQfzTETx+Vx+Hlz2MwjFLU1un5mLFoWOaVJLIZBKkEIzV4QGQ/cH3qjtb99AdvamZRY9yANHBRD4OKUPM7uAdHkXB0wIa8xYPeeMAz8e5/tfiwl4hBNI0MQ7/Py/MR2ftcS8GO/RsMf9n45PvypM/M/OMa2sguisQFXGaD1gbsSRCq/pg2wOeTFrhg6P2wojzU4MMT8QTXSSKP66fswcSA1+DvDhCtg8ALse1VlBzvEn7nE/X8ThL+/G59NoL3TucV9v0H76cI00vBOlHN6x3texuHmW0xIE0fEh4P+H9hPMz+Pm4lqDOnQo89XAJTuc5k3W9xkbpcI81OWS5Tdi2zLbu3O8bvTnyXvHAlGaWZdGg7UWBUYgqO0wxMM0T86QgbmzWuaslfjc7/FoK6nMQ8S7Qe6A2z27v1ZkqQbsJnk4GV+mSde7OdbzvhKA6/2lOlLowTbMW6bWBeJyf8MzYCP1PLrnNBjsYmSrdMtbE6eZfWiaXbhJlFIgamFcTDDXIUuMNbwqJgPOjW94PEFq7yo9aE4vfeMxNjcVjE1gE55hCYE6elgKtBXoNlFq533fWLWtUiQR1OTVIqDE9SnpNNrejYDSQfDiYT6sVGRExg/XUDks/5h0PFcVY84zB/zFz2nCo8UAYJM7p3/jbX3EoHMyq7dEGpLyHmALny5kPnz7wt3868XKByxkLe//E+fIrr7/8H1x++X9yfvmfiEt0Eq0HcnHUWti2zLpl9r3SG0hTUiT1GZGZaVrofUHkRC4r93vj7X3j6x9vfP7jD/7x2xe+vt247ZmtNQpC9Y7SFNDl5tnrRK4XlpfI+fQrPmS27cp6v3J9/0rlC33/Su4b9+IoubJ4h18cc5oJpxfmlw+cXv+Zy4d/43L+J2q5s+9fycsb2b2T+zt7udLXO8VMrlqz6BbLQX2e6f7vwOhtXfESDgLUj7EKeQCsB5j4/vzA8TRb9b1q5PBJONQ+f5pDfCK7jnNqnCPf0+7H73z+ezy9J44/R2fUirCn50aJN9vbnTve0zhz3OON2HUzIPrAu+P/fFdkPf/5/Oo/+G9PH+oJZNu4D4Eo3Zye5RGzAGa+4hjdhGcTkT+9Nb0Gx3s2gqAFQqv0Fh6kKjq7rfI4m9HD0/dKjTrSokW9yfODzoKGKRCnRJhs33yai32c/RxuyodkdhDTT/URRnI5BHq3AnKQvjazOdQfyoKaTPcJnB9kx4+vtADZMkS3nLlvO70BKeBT0lnFpGMPDTMyzDu5ZlbpSKv0Wui1AJ0YlbijN9q+aeTD9cr9fqd5h8QAMeiMe/Dcc+br9cbb/U4REAK1w7bt7Nuu59Fx7QK4oHt/145bLjrX/u3bN15eXjidL0xpRnC0Llzf3rldb9xvN/Z91RgPabSWyUWVHNOsIw1CJc2By2UheKc5yAI+6ldINgcZI61VSsVICyNLq6NIRronxO+VEM+vVgo1ZwVEodF9oBnIayVTd8+2rpzmiZfzmXmeaTZOskyJdV25ryvv1xtvb1fe3q9cb3fe73clfosBUW2R86BtFFyUUhWMDiBaqgEWPbcGoXOcVdKVjLB1NNQKw+8hmET6ZE2N8feaNIvC60/u2nZ2t0Z/2nh99A+n/6iNphAtaiQ9uf07r+e/dXX1GuviDs0fYwHfrXERetOOqBeV5YrXFAG8PH7Gca0ez+wj3uVRCR376mMjOfw1tLM4nnP/3XP33WjfM1k2HkQ7V77fy5wRAOj1sFo9pWgu/HLM1Rdvz4j4Y2t39t4e0ltrtIgC0KPuGCX6aIQNsqBWWh0O2EIM/hgb+6mxAj8Bos45/u//63+yLPPz7VES7QA9j7mIA5Dy9OefWMRxLx735OlQemJR/9yKH/+7iChzkyvbtvHt2xvf3t7pApfLifP5zHKaORnL2LoOPXfpx8Fy3CTnQTy9ekoXWukUb3rqo0vknpgGjsV1dM+eNuxnB7DvAOifryvQWv3hjRiSEb0GHIe2O0DZ4/p9L8PtOlAtD3nFKHxwmEPY90Dv+8+hP7RbseVp7CEQveZlzinRRZjTRHD+mD1KIRKiw7fhQonNJHmiBCKewEOeO4gE8aIHlDidQTbA//yQ6v99WFG75yUiA4yOCofHGmQU8+b06jut/xiIOjwxXR5Ffh+udGLgxtMlItIUxIWJGGZCPBPDgoYq6xoY+UpDrjyc4eIh/w7HTObBaB0zZ00Phbcb8Ma+N0CdCEOIzPOJ5TRr4PasWWdjg1EjhkRvjT3vtLrTm3ZY1bJ+sGogooxzaR3ZlfUcEgv/lCu65cS6vtuszejsCCEq4D6dJl5eTpzPixkOqOlCDEK0eA7nfty9eH2d+fWfzhp/47XzqPMKAUEP4zh19twppVOrudeG8JifESNtksXOTCr5CcF/lwfZukqFcq3krK7GuTR1F+6grKiu5eh1vU9RHeKWpB3RZY6UFmwD9uTaKWUErOu6FNcYDpUVh5MA3WvXxCnIHSuzdZ2jqa0f+5vuqSatc4+5p6NsPrKTDfqaoY4aBijB8ffy4z3FOTVG6dJxXiU0OjMVWE4Tnz5+4p/+/q/8j3/9G68fFl4/zCynF6b5A9P8idPlfzC//CsufWDfN9btznq/cb9dud+vXN/fuL5/Y1tX7UQFzxQXlvnCsrzw4VOlVscpZ75+/czvn//BH7//J59//3f++P3f+fzbf/D162das/xAVMGw186aM3+83fk//+udy/9+43+5f+Z/Xv7G68cTaXonxDf28g9qd3y7bnz9Uri+Q86d108JYmI6nenuAy79DdKvSPiV7v8J0k50F6S/0tcvtCniAnQplHrXmIcmJvW1++IfJOPTwfXdS0T4/PUNmTjij45ZyydZ2Z8Z8IdLMnRpD2XRuO9P58r3MUp/BaVj/Tzg5eO9HecGY8sd58BzR5Pv3ps7mNSnrwOMPr2n75y4/zxS8tifny/fc939/czXXyvy2n+8pzwj2+NHH0XaD+oQh85h+idQZ12WowYZ7/P4/u/eqRKoti9KcGDxDDiH+KexFDx0Na2KFkfl1a1Gz2zXFST7bkDzAQDGPPGDkHoCpk+A8QDXyLHWnLJbIIPAOih4GOSuNMx1QYthde77b0EoQG2N/3p7p+TC17c7X9/vSHOcUuM8NV5OCx/CwslrF9N7nZUOUyLWhE8JHyN+iiwvZz787RdeX1+IArULe2vstbDXgsThMjxGUiK5F1rbuK1vlNaNltM7P82ONAVac7QO8tSNL62Sc6bmxn/853/Sq7DvhdqF2oUQNKfy7f0b79evXG9fua9vZkLUuN2+8flzxMfM+/3M6f3Mtu20tnE6J0Qa25rpxRRWweOjEFInxobvHTzUCqVU9r3jfeW8ROIy4cPPGa68b6zrTdeVD/qznY22Oc2EjMERrXlc68772994//aJKUWu1xvv1yvv71e+vV95f79xX1fu286ey3FeDiXjqM2dMR1jNGEoc7QLyjHvGoZbq1PZepd2/Knf9Ofa2GqjoF4V45nTsk6OkQLgkJqPZ3J0WX30hFKIMXynfBwmhGN0J/iga/4ogL+v4/0PTP5AiQv9PB28juVIEO1Yjz0Rb59T94QgggS0NnQeeDQgvB+Z8H/dH7/HF9/vq8/79ugqO6srRr75ME5SNeEgxDh+1xgTEwOg2e6rmiDp7GzvUMsYN9DmTHBPjZVR047xxmMe1erZOkYPMrUWZHRPQzhk2M2w2I9W+U+AKPzf/u1/8uH1coCh5739O8ADD1qOsbkPsPAksnFPPxxswY+//sSECk9S31EI6L/v+862bby9v+OI5F2Dl1/OH/jw4QMvr2culzPzPJHLzp53SisMG+rnMG0ngjQwAo2CZXD6B4PjTGs5ANt3h/eBn55mXZ/MlMaBJcjxfYCasfzg5X0wPTtW2D5AhF2l777/YUTgDxDqXT8+n8DDLdG7478jPM0FPjHxTYsvGkQfDGwGpjSBUylo8DrTpoP2gRgcw+DeOZWwBP8nIGryXBFrQvduEiChN/edB9TYivV9WXH2VDypzmEsn+9trh8AXEWzzut76vKTpr9zhHDGOdXad6oVE6iU0nl8D3SqdUMTISzM6cw8XfA+qtG895xPC+fzwjynw3RLH9h4DIinpOY7D7Mpk4vUxvztDecStXau1/U4QH1ITPPCspyYl5l5mQ5wm6Z4ZDqVkim1Iz3TqlCzspciI2pIEGlqrV4zuewW2KyHzpD6phHLYn3CboDZOXRoPQVeXmZyPVP7iZfLQppPpFljQsIgTn5yoH74ONPqheA0Li0GdWJLSddwmoRphz03cm6UIjZLGc0FUNdrNNdJHbiPzLMy8L3LkQnZrcDYdus2b551zdxXBbnO2PLktbucQmCKjik55hRYlsgyJ2qLR3zOulWcr7iic8mHcZY0Y1EdnU4Vr27WokXSAJylasyOAmKVPDUBrYrD4arnvdN7g7KxY19yTjTOwYnO3JgB0l5/vKcMIKoz1DBkYVNyXE6Jjx8/8U//9L/4l//5b3z85SMffvnANL/g4ws+vJKmT6Tpb4hE8v0fvN8+8+3Lb3z5/J98+/xffPvyha9f3ljvG0s6cZrPLKcL5+XC6fRK3ioijpJX/vFf/87//t//b/7zP/+3gtHf/pP77Rv7elPDC1HhccOxtcptb4S3O//+jzfmlzdOr//Cv/zb3zm//DMuvCHuG/Etstcr397/4PPXG29fhbyr+mU6Jc6vJxqvSPiI+E9UPlH6J5yrEC+EdMInj48NfKbJVbsWBkRHE9CP6BMnP1nZjz3585dv1GDqmiPv17oHfazNZmDCzIGCNwMpOeILOkPKOsDBKChGITP8D8b/9vA68OZ38AwCH/nMD9ByAFc7zMZRc5Ai1s0fonI3zjQzwxh/L/pgTt7hr7Pb7tk4TB77/Z/AzqOE+PEVbvLjNW4r/bsf+B0YfYJqx9Y0wOjoPhpB+9yFfna4l7+43dt98eO3eiv+noCo/T/fPCRPT54QHcflcKIkloFRb54UYnmKgMlt5QCj2P3CqfJI7MOO835Ip7UusC7oIWccdc/4rB3MB6GPQt0u438HRmvv/Ha9knPh6/XO1+tKb47z1DiXRvUQl0hys67/EPAIIT1AqIsBHyPT6cTl4wfOry+0daPeN/ZaFYi2gg+R4NQBN06BZU5sxdG6Sfxt38AHltOZZTlpXZghF6G1QfapCc5eMnVv9Cpc3+6U2nBRo86meSLEyLdvX3l//8r19o11fae2hkjntjo+fxEaK6frieU8A47aKss5Ultg3/V3Bed19CE6YurEZD4eBrLaXlm3jCOS4sLJCS7w02ue886+30dxqvf/qOEepIijQS/s243r+zfe335hioG3b+98e3vj7f3K2/s779e7nou5UGo7iFLcs82HGz5aZpr4UHENAKoyUD2LUxScdxqb1iu1KSAZjRc3miFjKR813ugCWr393Tw0381E++AefgzN43xW1cmTR8wxzhQ1XWA43I+RlzFn690A0n99yXGmK4EvDSQKkUf9jzeTHuHxfAEBZ9fQ3r9zOGeyXe+/2xsHufmsehyvAUJHowR4AFk3uq4PMIr9t0GIOTfeg50bTtU2pRQcw22/G1kaQRzFZth71f39YXRnIw9+EAjmy4PVQBahVYuOg9WSka6kd4qeeZ44nRbKT7AP/DfS3GWZOV9Of1pEo/jX1TQONbt9PHPGtt9997/gxj/bf7VEcUGeFqmBUWMwhPFACNu+s04rELi+r8zzO60Lp9OFl5dXPry+8vr6ymmZyTWT805tlaN7O7qGNsB/mPQYUJXx7tzjoLb/MP6/oU/bsw2MjqbeKBSc185nroVWy3dskLQf7zbOeaLXHK7uuw1F20X87to8wPTRgR5fcDCp+jW6ofY1fmLXzzgOMZw5SVYFMMP5TsGtsjmgs2ylOEr2lCloMS+WOWi/0xvI1x+sTp8qZXw6MMfFs8X8ULk+HfjHN9th3Me9epzTBzk/QOlho//0Y77rvD//D0LL5WD5dJ00hmzc2/yJAzTa4fuv4Eb3U13Y9GtSs5rgjuHvlKLKaW1AvPWqHbU+mEKNXFGHtzPTPGvsgGsHCJuXhcvLhdP5dJAyOLGMskbOO9u6s+1ZTaaygp1HZ1/JA5u5xzehORsyP0odA00iB8ivZqIEUHtkkkgqgVyVAIpp4uXlAy/ni7k9eqQ7vP/Gj/JbLq8LuLPKPEQjUVJQIOpwLDVyLjM5N7a9UnLTqJVpIlpANEcHZsQgjNnZgwJjNARa70zZM236NW+ReUv2mZS1TAboUlRJrXb1vNqcT5FWO37zpD0y50rZO6U1TO2mne3eGI7QRzaoRfC01ulV3VZrbzpDIw9DDyWMBOe7GVg4QhwdNQiRh9GFGyWDHIdC8NpV/tHLe880z+AqKXWirwrkvUqH53TmdPqVy+XfuLz8wuXlb6T5Av6E8ydCOOHTWWdYe6Xmle32jdvX33n7/T/59vkLb1/fuN827mlmSgvzdGaaLszzC2/vV76+XVnOF3777T/5j//4P/n8xz+4395Zrytlb7SsfgS1dEru5L1Tiz6Te9759vUb//jHP/jbrx/557//ypyiyXK/8dt/vvPlt5W3z5nrt8Z6FUqG+zd4TxBdQ9pO22+8nz4zT46UbmhXueHKily/Ie938i2zZ72vtcn3sjNMpv/Y5X54vUWE3/79N7JUJXZSUvmcydhqU8a5mexrqG5GZ8DhdOa+jxGXZ3fI7zujQ9lz5FPaLPVQNjxLuMbPOkDYM6D1z87ZT+eM/WXBwIs8gCjjShyzXxrLEI4uxJ9Zf3sj8D0QPUjpZyD5HVo8ru20/zwy5/Ea98ZgoHiO4Un0LBgge2TEjr826pUn2tP+N3n86EdBY/f7+bNYbWMa4GMedRTudgYPUn9gxYNcHUa54+2O2oTH2e4ddCMfxAhzOd4b39UEtr3bfxvn//dn5vHvPMDnKF5df7oGTy/vA/PlAxI25FrZ+12lmuIoHXU6TxpNMM0zaV4oImQRchc1gdl23PXGy9sbL1/PlJaRvdL3zLav3GshS9cc4ZQI80xMCyHNhJgJQSM5NM6342PgfJ758PqCcxPr1lnXzrbtVGtGlJopNbPvWdUOpTP/9hvTaaH2xumsZO/bt29c72/UvoGveDcaFI0mmVIDoQquNrxT92IXOj40/YqdEB1pFv2aOjHpfD690qlaA5SmYANVG4WfVuLgnElmD6WRgsARs+QMUZW6cb29EUPHSaHVlSlG7vc7t/uddd3Y8kaTDL4TJ+0sCh5xGCmmEtpRV7beNbu5NZsp1LXsQ8D7aJnc5hDsHc7ORWj0Xh9/Z9QYR+3qjjpx1IZ4jt+v0nWnzYwhFR3dOFOFHX4ZMVgkm5Lzc5p1nCkl0pQePhLuAWodkL8V8vtf1UTBB+ZpMoM/zTaVpqTxMAxyYXQ93TEPioEyBXfVvifgfCRINCVmMOLgCdTyVyCqtaHwDFQHCD3UMIQHCB3dVR47aO/DdApK1Vo+uOFnw9Hkc1YzDdl1NQmzc+qbkVI4vHSCNYdarexdAei+75ScVdnULAHAaSrFiBo8fEx+8vrp8n8AsafW8TPzKMaiPR1Ow7QF3BPZ6Ayt++ft/WB7sYvwdAp8930ODptkHxLeRWoVTqcz86xhvqfThfP5lZeXj3x4/cD5fFLQVLOagDz9zu9nKnlIpuzP58/zOCwf70i++wc5FrV2l4bMCvZ9I2836i7fMVi9//hmqORV3UHpCpJ1gdh1HnNe/Xlm7M9Xy5bi85l+EAADxD0WIRhIE5Nf5KpOuTlTaqX3xujoigi5Vro0UnBMyYPEJ+A2AKi+Ly18htxHV0rHPe7B0VJ+eu/P60AGQ23/aZAIPwSj7vgPYh/WHa7k3/+O57WQ1/tDbtI6uEYIzULubbM004kRDIStGZ2Bfji2afSNmeo7j5MxK5SgQ+2N2hp7UYKkixxzDCIQU2I+LZZnlgB3GG9N08Tl5YXX1xdKLcqQ5p0tZ4r9vD2ro+y2Z/asZgLBYkq0WNSNRQ2XAg9qXg6gM2YxFUjpmlPApALTZtdXRH/Osrzw8dPf+fT6kVagWbajd1d+CEQ/TMT5pHNVreKkayfSolCwwPW8a0ZdzlXjaOaZGNPhBiVYVxmxWRydyRnOuaAFXRcI2ZOyZ8qBJVfOWQ/H0UU6HLSN5VPn28H8BVrtxC0w7+mI/XiwwzrzMxjj1oURydOqzrLn3OhbpvSmXfqg2bs4leohY0YXzelKgSl54qSGFnHSwzcmryWsPRDeqyrBe8f5nH68pwTPfFrAFaatkuz3BafZv9GfmOIvzOmfmaZ/Ypp+JU5ncBO4ZBIwT2NH+k4vN+r2Trm9sX37yv72lfz+Tr6vZDw3H/B+xocLIZw5/faZ8+s/SPPE1y9f+PL5D+7328NNmInSO70IZc/sa2XfFKyBUEvmdv3KH7/Bf31a+NuHhZ5v3K5X3r+988dvv/Pbv3/h7Y+N7Vooq84Vb++dd5oWtu/vvP/RiOmOc7/h/HI8t0kaS99Y2orbbvRNHZtVpqRFmB4B/lHQH4f+X1+9C7/9f/7BVneSyZG8ZeCOOIRc8pFVq47vj1kn7/0BPjWepz3MH6Q/nZlDujUApZFjYcQdRd2tviNgjVWP4REnZJL8wZrjHlLGLmNfbOZS3o/jQklXBaD+KQ4qxvgEkh+geewzY9ykO1ES8iimHwz/sVlbqTH++t/XMyd+tM7HOTLQoAPR/Ve/wGhthtJkuHmKvdfxc44z8ngXZhw0PjjPn8VuBbYnGbjVLE9VLnQcrnRE4/Sg8zCJEtTttjuNgPFKdkh/Vi89Fek4ZMyE24w8tm8cZYA8n5fg+nOsm1gp4B4g91mOZNfkGDP6Sc0YQuBvf/s7t/vKt2uluzf2VrTr2Dn8NaoI5w5nH2m9s1b9olc2qey94CePhMbHlwvROYI4LWxboSK6RueJuJwIaSHEmRALabowTxfE7zQaIQVeXl/45W+/4NxEulZ8KDQR1rxR6k62r70Ucw52/PHlM3jHdb3z8nLh5fXMtq9c798QCnEyAsA74gQ+aI2Ab+Cq3jPfESr4jIuV0Lru3bNjWiBOnRih05C9HmY+VToRM51LjjA9MyPfv3yAEORY3jjRbms09R7enKw7uWxcb+q+39rKlOKRj91pxAlOMbHw9MwYmPI+HNFkrep+teei3hV9NaJejShTTMQ46YxmGLnmIBIQCeQy/CA6o05G1DRNexQKgLHokCEh176BgqbovZHNJs2e4iM1wL5SCszTzDzrWN5pOXGeT5Yhq3uwNgLs2Xmawf+v9oXf37/95XrHGDmdzkbyZ/as+2exiLUQVIqse6eBQVHzqJHYwDDsDBHnI6nPBOchBJxo7v1oYA1y7MFqjQfa4b3YcypP4xejk+wfe59z3+1b0lXkX4tQQqP44aQbOAzRDFQKjd5QF2QzTnRPYzzDTTfZ/t57JzeV/qtKdWXfd5yTY35UzaO0EeMHaP9Zy5//Boh2aTRpg1vkaKG7AUg5/hygRr9vXM5xUUfb2B8b5mD85GArn8Df00sllu6Q5YkxDjobpwV7F2Ge1dTldDpzPl94uVwYFuvSn8wGBIbr1uiaPLe/D6ewA9Q82AV7l8cB8fRB7M3KwXDjoNeAk0o3G2iCt4LmZ6yAOzLWBrB6HHbQmzEcAzgdQNT+tjFacrAotmmZg5le8nGwyRF/Mg7VUjQOIe+FPWeNrGj9AB8aFt6pTTRMOTkcyYx6TJ+OHm6PwGEFbGLOw909tPqHFOh4ydPllMdnewaexz87+56HPPeBth/r8meh3ONa1H077Mhb73hvYfZhyKm9dU+erp+olFdk3EsrGu3nOJzO/Rz30Wl3pxb2vLPuK+u+gUCadCMfLNo0TUzzRJonZSjN2j9OkdP5xOXlhXVbtbPSO+u+cbtdtfNfK7Xo79iLSmKSCwrODGCG6Iji1RyIMaDerSB1Blbt2cAe22HQYWtUr1DAucQ0v/Dh9Vc+fvibgghXaUXnDn70Or3MTJczvaorm7TG5IMa/JiZksdTskqXFIhOTMtCShGxIqx1Dc2urWjhF0WzVqMW2LpXKJhOJVBrZKmTzmdW7fQPyc8IZx45oGDMsFP5W6+duETm3J4KOAOj1jVrVTufpXaVRVedBS2lqTpCPHXkBgbwCcaMqm0NeCekZDOzczhce6fZbO+nYJzRwzUwBi3kX16WH15vHwLzcgI82z0Tg0eaEFDiK7qZFF6J8RdC+AXvP+HcCXFB3ys2RyYV6QV6RupO2+/U9UZdb7TtTt3uZgwldIl0OSGciOkzaZ5xIXC/3ri9X+mtcTnrTD8tIDXQSqBmKLtePxHBe0AK2/2db77y+38t/MdloW53bu933r5e+frlG1/++ML162oAVq9NvgnX1ijbzvremJYdcV9pXWjd4VzEu8QSAr/M8GkS5p4JpeGsy127ZvmOGayjq3WAnh9uKlz/eOe+ryzLTFtOBDMqabXpnPK+kzUbzToQwTL1Jnx4MpYy4mpk7I3s6LF3HrOZ1g0dIfbjnwFkRHsZyeq9I5rTts5WmfmZZeE6P4CLhtXnoudANydF6WK/z3Jwk3ZD4lM3VAsc00Ad8sHH9RHv9IwanTc3SDHdK5/EpXqZrX75EBMn/2PCxX70sd860W6BP+ar7brZtT1mqwg6JqKLzWTT/egwjQLaDR+hcazwOENxSqA91sXDJX0YoWkmM0Q/EfwOOIJLaujnEtFNBGfOqm7UINbFNn24dowcWDfGB09gzL85k32OzNMHacC4LDwtW5MDd4anAk813iAQ/lqP6Z4S+fDpV3y8MZ/ecCHS2JDeqIDfs0o0gRoikiYE2JqQzTTGtaJANDkkVG73M3NMzDEda9CFQI8Ros57i090mXBuJsYz8/xC94HaM2EKnJYzLy+vOD/R+k4uGz7caVLZ607pWc1wpJKrozWQN0dulbf7Ox9eX3j9+IJI476+40IjLZ6ROz2fAhpH2RWIBpvp8g1n5HWadc0vZ8/pEphmrxFoUesLF3QtKpFqt9YL+DHD/+NrPs8avyGIPTsKltQBdRzYejKLFPa9cQ8d7wrzFA/lQoqeyQhG7WRGW/u6dhWIJryPlKwgdF13UrjicdTabH+JpKjRKDEqaf6olDtC1NxJr9njWB041nG3vbR3VVCp8kpsf9FlPuZeU9LM8mlWMBSmAUCjjSdFHY06nbmcTlzOF15OZ07LiWWZmJfJJK260Ee+Ze+d628rv/MDIBoCl9OZWivOSPlcKr3p17h5TjRj3REQTMJ8yJadgdSI9wlVMTl6CIj30FU1AOGJDHu8tIaBIb9mPKfH8/mQ5A6V6Xf77CAzm6M2vcYpBquZH1E84360ZjnqteFE/UPiAKJTYp40h9eh5HuthVqqekesd/Z9V1XZpJ3pI8HEwOuDUPvx64dAVAS+vX+lu/2IGXhIbobs50/s4LgcbkDQx8b8jPSfpbyD4X109h7g7mhKHl1Gr2CpZkq70/pGp+hURc+0nuk9I5IRSbb4mz3g3zOzThTEjANGWRp/HGZyvI+xqJ5uszx9BkG7gE8bvfN60WtRaUCJSRdk1M5a8D8u0nvXIuwANf17kH7MF7URLj7gwbiuIK5/994ewsvvQd+ztFcP1G5FkmaHbnthq4VSFYg2GR1kXaBbzcTdIa4zxUCSQLSuYUcLAa8omGOImhHL4uzotAfsmZ2Qp+v6p+8c98APQvdYO/34OxwH6PM1+W/AqNONfXADpi6lDxA/vq93RCqhg2gQpRUNFWkR3zqudVxtCGqZ56oC8NIK275xW+/c1zvbvrPlDecc02SbedCiUJzOls1LAif4ACKNLirpGV9N6uHit243ct612DU5eG0a8E1TZ78uXkOum9OfJXI8w+Iebne11oNpE6uxYjRTn9ExdAHvEt4tBHcm+Fe8v1DbnfuaKbk+mYx9/4pLIvhFOzxthtaJzhHxJDMNCi6Q5kaYJkqtWuCmhI/BZrAcXhpUj+ue7hriBBfkMClwPui51x2S+tGhHN3vbs+s86Oz44/OtEpq3RixAi9Ek1gN+9QxE9GK0Koy1r4GOhqPIij546MjETkHnVls1vEVvAZvH/EzQnBCjI4p2fzvHA2MRrOp1+7nIF3Ck/lB8J9+eL1DiEwvLzgXuafdCBrRPa4PObvQWmXfrnAVfJwQFIiq7MkhfceJY57OnM4vnE4XltPCvp10jxDItUCr1OY0N7FvKvORHZwj50xrGbqZdWyFWhv7XjU6weS/js48OZZkphxB6DVzv9744/fPtNJZbyu3653r+437/U7JOyIFP7J8Q6f1Qs6dLvXIyitVTTm8yeiZJ3qYSeeZ1IVeNpsrM7LLDTdI3dN1b9Yi5LHLPF7OOf7p4yf2elJS9HImxaTnVtb8vm3bjizckUM7nDW7cIxGVGPfuqDAwz+b6A1ToidZrRVMtTUtEnKjZi0WxnsLIcAMvjskdJyrNsum81SjS+qDJwJdNGxeWkeyPj94LYRV0mcXYZz5ggFHU1GNjFE3uggGPoMx+EYs1vpw5qwmXW7dukVBP1/926/wY77lOA/UHVMQ8QQ/4dykJJwPtN41IsuK6WhZySklYopI7+x5t3Vabc+XQ/o3Rm6eZ90QOVS1glXPRmpFH4ne42rH1U7dMu8sxBbpwHK5cHq5MC0z0zIT0wNkq7tupdRiEVyZ2qrFrChpNwftAkXbG733eu+NOHBGyDrcsW+Ogra3yu6u7PWKtJ3Yu8merU4boP4HL+8c8zxTamU5LZwvJ82NtL8v3pFFWGsl7BmXdpxXU0gJ0eo5wUdPd469Nm77xp4z0QWWZeZ0ubBczvgpkXuHbSfjSMC2dWBinj9QxJG3Tt87OQs5d3CVdd243W/c7lfu25U938F15rOCpp4dvXRqK+S6EzK4e6PIDq5TemY+JZZzPMz0QtRoLx+dAkpXlST2QkhK8CznCRHHfEpMp0hIgCsIBZGgqrMS2PdCiHrFas/s5Q6hPdXG37/+5Z//ideXs4FQJXGGV4SI6HO+qyxSWsM7eH258PHDC5fzciguDvLJQKh2M4PVTbrfOadFUC6qjtu3zLpurOtG70KMEyGo4mKMv2zrzrputNaMkHK0lig1UduiVaHFngxFYq2i4xilU7KwiyolQlBn1smMDOdl4nw5cbmcOZ0Wk+U+wOg0aUTX+XzivJxY5oXTvDBPs35eokr0uy3tLhbD5X66xlNKfHh5pdbKnCb2eWHfVXFWSlGyEEGGarD5A4LLwfg4pAe873TfaQ4040NMvloIaSLECR+T4SrrpB4Iys5rU2U8SL2n9+3Qa+t4TDKIkVlOwJQyKQWtKZaoY07oKEiXBylyOJOP8bJDljv8KMzwqHf2bWffNz27W9VG2JGp/tjrB0CXrLLfn71+2hH9+vYHuc1H5mZKk2VtxocTKxhDy5+A24Nde349g1BrLRz//QCjB8AYIMOkjvjjkM31Tukrre96kPWdWjdq3Whtofdo8GuEwP+JxbabNrbmMH71439+utkPbnMAItW3618aPNDxo006WHNinhJlSsqKxMmYzB9f8t46ORdzVDUGelwtGZK/h9umDBfB7y6xybqM+W3Sj5mjUSAcLS/7uQPU5pJNllvYcmUvldK0y9FkMNRCEEcoDh8EcY3WI51IcwFd3iZLtesmTh0BlQSz6+2cDkKPq9cfQPQoaMZ9GutpgCYZvNtD8iHS9J44YBiLHL/v57r0Yy9yHIe1Ohg+3qtgcxKt4X1XRto7xDViC4iLuDZcrxriJgg2E9YLDni/Xvn29o3325U9Z3IpBkRNUnJaOJ1OWlhGz2RANERHp1Kl0IxsaT3TpVB7JpeNbb+x7zu916OLooYBnV7dwYiFpvJTjHE/yCTrvh/SGGfdKLTwTUk3LB+8zr+6QHAT3i14f8b7C3Ai553brbHvmfYzIDpPuOlkj7nOMfkOQYQoTo2DTMqYlkptDdN5jLahAdFgzldBHfqoYAV1Gpv6yMQTTAJn8xKmetB5MTmAqO4v0Cp2SIqBFkiaIADoHHGvhZKNGfeCa0pqlaZkUDcg6gKkGJj99GAvncP5eKg4UgoE382Z2IyYotdonjkdDGNK8WGC4vxBEHofuL4tvH396/UOMXJ+eUXEk9I7HmeOwRgYtc5b2VnXxt6v4ANdAqAd+mVe9NITWJYXLpePnC4vnC4Xci56zXC4kqHsUNRmv5VCk0IvCp5r1acWPLU21p61S7hnSi6H5XvwnWmOTGd1J9R56sZ6u/P596/sdy2Otm1jW1f2daXUHee6ztNGh5NGp1Gqp3VP2T2tdXLROacQEjEUJum415llmkgd9tU/gOgz8zzUONYt5Sd5os45/uVvv9KkcXlR34KUkhYxmxrtrUZGje8f5jPOeWqtrC6zyo7vUJ3uR9OkHYE0ijADproeON5bKYX77c59L7R9Z1838laMrAhISgSCygR9t8KpE6eETAIT+DmQQqR70b3Q6/PSuoOqIFSzeNVhPnSP7w7frcso7nFW2kWKPpIs9ivEoEoP5474p71k8p7J66YxHLvKlwcodh7qS/0JELVdumsuXqsCok7eLkbSNBPTRG2dOzuuZ1JMzPPMPC+cTgvLMtN743q7cuNGyZmKgtEU1BAu2QzccMEcv7mP89E5sM8Wk3b3Ukz4JvjaKOvGJLMSViKcX185v74wLyfmkyq8xlprrRlhsXG/3bm1O1tetUDsnsTEKb7wcrqwnE46upAiJRf2faeVaqevuSqb/FqUnaOWzLVNXDco2eFdwR8mguPc+/HLOcdsJOHptHB+WSi9HvnNTtT9dq0Vlwuy7aoKEAEfrQuvGcbigxrK5YI0Zf4+uI+cPn1kebkgzpNbYy8boQvBVEcwMS8f2Eql15XSK/va2DYFc9fbaqY8b9zuV7Z8hyCczhPBR7ZrZavqIl97JlehrZl1v+EDONdZTolliZzOC6cl2dmaEbSzKa6CqVKCD4RLwrukcsQpEOcIvlHqRq1OSSwDX9vqiEn3otoya77SXX6Q6n96/eu//F1NLj163vgxtqM51/fbnfW2UvadmjMIfPrwgV9//YWPH15YTovGwKVBfkYz+4tHPT86cM3qz5wb2XLIS1FHVOc8U9LnSdMrdu63O58/f+Vzq+QsZiA4gWv0PtOl4lzD2dBys0ZKzpVt1QiwjXb4KajhGczJs0yR0zLx4eXMx08feXm56J4wDBvNjOi0nDidTpxmBd1TnB7qjD7mN/WJ7aKRjcOt/kevFBMfXiaV5i4LJRfWTXNwt22z65JpvaqR0fAhOSSyVlu5pnW67zSEYvFFNWVqmYnTpGaPCMRJiTerc93RPBtoZCg7H79roKfnfvTAUCNi06PXaponliVxOqmhZm/aBR2k6hibGMShDzoOlEz+HGOwJpB2Q7d9Y73fGe7CCkIfCpkDaoDlt3ZKaT/dV34CRIWv3z5z33Q+TTXYKumZUtLDwUDZmFlU2cvRRDZ25Umq6/me1TW00Z8A1ncgtI/OH49OBXoo7vvOur9T6griyGUl5xs5J/YcmfKjNX3INm3NPZbeA5wOBkI7oSO4W/+OR2f9vB+f2T0AkjyWyfgdY6ZTO08KDpRFbdql+dmtGJlfT8ZJj2+VgZwxVZOCJjja3iNnsB9Atpsxin49WC++m4sdgcE5FwNJlVwbpTdKF6ro17iEHUfojlCPhoG+B7OA18Uvhx295riZH4MtzBg8yRljPKTTnYc0+amr/tCWP1zBdJbAHXNPoxgb3YIBII+1+BN3NC1XzULfvnVMNo45Ap0Z02LDd8it4JszEO6pEulSaD1SW7Fc1UnXi+h9eb++8+3tG9frTVnupkYFpWn3Ei/EKZD8hA865N2aztfWXillZ9tX5i2x7SvbvpLLRi4bpWZqy3Rp1j1t1pET6+Kg80TGAh737Hgg3AEMBxAFOWIgDlfO456gIKY5ShbWewHZeHu78eXbm4HiH1/w5XwhXvzxzDhxuNqhCVHEgOiYtxjuoTyIAQOiTTqpN8187Gr+4JwYaTZp13YQSCbVQ7DB/XGNmpEZRkiJY9/MTCh39l2Nc1LypEsizQFHRaTS49jX1Km6N0fzQmrC1PQJGIeFN4ffmKLNi3h8jCyLuiGnKeBdV1OMo0PrSFNinlRVMdz/Qoh6L3wwMKWFXe+dt69/veYhBE7ThV6FNE0qoW/yZBwg9F4peSVLR/ZmDKZKtzWK5USKEWS3bDBPjOrmPC0LKTemKio3Ch4XKsowaHdLjBQJAfzsTCWpETpNGuIqPqihhzP0frpMnF5nut2TXNQJ+u3blfWW1Z2vFlrN9FY04zZCnFV+rk7iDkcgOPXvVoOqSnWdGCdimnTEY55J04wvet9qHWqTsZd8H0yuZl4/3sOdc/zTL7+Ah5eXF15fX0kpst437uud9b6yTolt2+ywD9+5I2571nzc2qCOuVB1pV1SYrHcvWm2gtIkd4O4XNcNWmXfVuiNXip1zyrVjaJSc19pWm3rM2bngOv6HMQQIWlB5MRpnnITWlEPge6F4PWZpQs0nTvtseHNPEQBZHh0EP2QkqeneVhHoZC7Em1SOnXN5PvGtinT7kMgJG+GTz92XBxlmPNeAeZ0Inmna3NZmOYT07RQW+d221hXBaIne/6UBFzovfG+vHOd37UDWdXkcJpU3jfZDO+YpR1F1ijcuz3rPkYFoikxxaQArzb2+0qQSM8qT728fODy8srl5YXLywvL6awZ6M7TamPd9Trcrlfer1fW291KFiWpXl9eeHl91di6ZSFNE6VkzdIcQHTMklmne9Q3Oe98kYmQYW2ezh3KzuFw/N8gURGx61PwAeYlceqzAlER6t6pm41F7TvNWXSZlU7e6XnUzJG9NiXtWtExprhsbDmzFT0ntz1Ti+DrpF8u4pJDvJKFe9Y8029vd3z4Rge+fHvj/frOtt/pUghJSTm3RFLqSNspWQHlkNo2abQqBLwC0GXmfJ65XBaWU6KWzJaF1go+qgJH41l0tn9OtvbihLeontYLLitR6lxljIXhnSl8unobhK5S35+8fvn00TpMSm46P2IGPSUX3mNicoEtREqISBeTqr5wOX9QsuW0ME3JjNGiAcZkZ4qe7a2rq3tR63AQj3eRKXZkEYKPTJN24fctE5xmnMbgLDKo4UlEr2SrKsc9mkOujtDd9qo9OMunbDov2hzVuwP8zHNgmQLzFDhNicsyczktx54Zgj+A6BQjyQW8aKc7V21QDWXhc3NmjDiICPf79sPrnWIgnmZa78ylUqfClCJzjKwpsa0bm/fksmtzrJtr/gEurF71/mi69mrKwlHXmEQY5w+iyOP0DGUgiu/bXEd/5hlHjM7M0byDwzHb6Xvx5mqebC/zQCk6YvZncKujkE47zpO3xAdNJaDrmV7yw5fEOZ467uoVEEKw+rkf/gLSNfrpZ6+fSnM/f/kDHwbDMRui1q8YvQETeQTd2uxVG4e4dTGdGYCE4JnnxLwkUgxHl6vWZpKZal1ovbADTJWiXZaSK97iHlpvvL29sa7vOBfY1sB9dswzTDM4l7UbOGZkGDLgxzLhO8bBmIw+GBubjXU8XA1DfDqEHpzv82c9GBGB99uN9/sb1/WOD9oR9T5Qa/7hjXBeh8817gH8kApzrDO7Nw8QeSxytIvTmqgsThrdqSRAZMh15QCstTaTwslxgJSitumlVu2C0mne5AYWToyByuaFanNEpQaNlPCKkjWDqhuAVJDXEA2r743uYHIRlyCEpMDaCh43CiIZV3d0JMbc37gGqnMX8fTu6KLg5cFIPeZlvPwYiApCbll18uNOGhcypF4iHFBl/OxOp/RCr7pGQnVk/wiuTnvSOQsDzNK7Bkpvd3Lb6YdrRVSm0I/wZ/uyXyeIzYjp37++vyOiTqLrunK/320tdZunG41uvWbC985sA6QfGxbjOYXnLrljrGWDcgZEgYO1rFUz2b59+8J//OdESrOa0Xz5Qs75p46Lrx9+4fzLJ7sB9jtbh6rB6tFp1xV5zHYN2dsBRp0C0dortSkQlV6BzpQMuB0RNDqgr6SRWu2rI3Q9bOZHnEbNja1u7LfK9X3nfqus98L5sjDHRDjPeJ+AQvcBJxFPpHqNA2hecC4Rp4Vz05lVF4bZgtnIWzxOiFEVJmlWcIiuieHurXhMJd7iA/LkyORCxPmEDwkXdJ7H+R3466EaQuB0PlFzYZ4jKekBOaVImpLOr7bMvl9pe9HOuzSTN8rB8AcfFeyFzr5eyaXZe5hwbsf5QIoL3k/E0IixMZVKaZlc1U3vUC90MSDZcFUIU2dqTlUsTZnY5XxiuZzo3bGlzr52aoX1lrn13fbzTghih2UiRisMg8P7SR2s48yUTkxxoVUx6WcnpkScZ16WiZfLjJ8TvRVqxwCr/hxwR+bvoQwZjNUPXg7HLx8/EILj8vLCy8uLyqK8x9PNKbrb7I06PIZgkr1aiX6llqYSMAd0lan2FpCmc0YpBk7zzLJMTNNETPHwDbhNUbvb9xt79HYtnognO1drqVr8dyNjbKZTVQXe5qzVJb02nT3POZM3PbuGYcbIAhwANMRAnKwomYw8MYl17EJ3ouepgeheBU/Tvas1elUwIrUiI5LIofOkPwP/+oaYzMH711//TpwXXj58ZLm8aOE8LbQmbFsm74UYtKCeJyUj5ikhvStZsN4P13gRq3/mSRUJ7tERHZEuXSwT2ulMtjMDqBQj0Qfd31plu96gwb7u5Fx4ubzy8vKBv/3tV/726698+PBJ91m7R6UUcslKYtxvbNt21DBqpqJdoGVZmA2ItmbxC6PgE9v3zVRlHBL7vnLxE1N3fMWxOkc5jGhG5+CHl5vaKr/9/g9yyWz5TkyO02Wyottxf9+pZWPfK7Xv5CoW9abrw3udq4sFfJhI04zzJhEE1m3n85fP3PeVvRTu207NndAmQp9IYSKdFOxd72/crjfWfNc4ma9viIO9ZPaSEV+YT5Hl8oLO3US2qdKqkHMjeMd0UrniqOZi9JyWidNJO0gxmeNnDESJCl6jzoUqGIU4OdLkmebAlKKZVymBr8ZnsG2N6/vO23shZ5V8T3Pk/JJ4/aCg0P9gVhDQjnwafg8jHkSVX14cJU3UadIZS5Q4Cn5CJFAKOK8jCvp7GzFU0tSYpk7w9fBHKUVB/b6rWWUp7QEeRGxdK5jd98x6X7ndbtyu7+z7SilV39uoSay+SWk0oR51TgiQoqPPgd5VhRMaJoVWt9uYPN5ZHdAb3QwOxXtE1NhTuvox9D2z4dWnwfLCd2uuVPNU6e0RnafP0mFB+d3Le09MSbvY3lGjGhouU+JyPqkaZ1tVsmyeH6WqJL6Ze742sUB85yHcHc2iChVwnlAzrdqIjrOZUafv7Lsmweh0ysMQVl1Nsdr3gUmHG/HQAh77dYjqRQBKEFfR59ErUNRRfY1lnJJ5VKQBLj21FSW7skmUWzvc4ed5tjz3aPviY4TQems6bviT1087op+/fEYkE6fElGamZVKG6Dyrg6PX79v3zHrIadTMRq+GFoNqBqKzT5eXhZdXzfl0VujmXFnXne045PQdqMxGLbivV7WeTilwPk1477i+r9zXleAD98mRJkiTEKdOZ7NIDjMnkQFIFTwfN2dYvZtZQmuNUs210Y2HZ7gaDjMGc7k04OmsY+rs8w756Pv1xtvtndtNgWgwyWD5CRD1Hp3HYnRVH2tsvN9xb55Dqrszpr44WhYrZrt1yJ5AqLHuTbrO2e5ZzUVQYrvUZvOFzRzlRdWP9qXFigKX5joVR+mdUBtehlTMEbzO9ohtOl10srHQyFKpdHCzSSsCgYAXlXe5plLNo3XKw4xDZdS6tvTPEfZr2nZxBwPURWhomLLrTsX5f17h8gCiA3Q5p91e6WNu0uSbRzdZJTalqTvnyG3zNqsVvLlWBpWGdulI65rzWQq1luOQ977j/AO4W8/40c20+1VFWNeVED2lZUrO7HmzeQUFoso0a1dPh9h1IMI/F07PzJoM3D7Avj2yxzp7SECHSZkMY6+mxfGed759+0pt2vF/NylUrZVfXv6mnZU/vV4//MKnf5o4mv0CUpsWnSIE9zRR7o6t9kHQO73HrVsURqv0VtSBl65diKTyq/F8DxIDcVpQ232oLdNqoRT92uuO1J39Vrh+2bi+7Vyvmf4JPr6+ENxMCIIjIl5BaHBRD/LQaaGTJlQP4HRQ35ukZVjOx2AOg1ENDLyPtqasE9uqmSl1BaEu0J3Kv8VFxE/gFYASJlyYdUDVdX4ERH0ILOcTJWemRQ92QOW+U8J5obadbb9ah32ltmLzxk33oa7XUGXCCWlqIiU+gtMvR7RAdU8SIbVCmSq5ekJRQsUFBY69a7dZNkGaElDKAUe802dnWs5Mpwu9epIXomtc31du6511zWbt7zmdAqfJc7kkxemu4YJjSgtTUkOT8+kD5/mF3t0xI6iSqIk5BU5e8/cad2rXrNfg1NHaeQ45bu0W4v7D0mXs0fDx9ZU0Bc7nM5eXFwUCvdNLhlZx0ogek2ZrtzmXwr5nENHMWx+0WGhNO0VmlIFobM8yJc6nk2UXq6y01krwsN6vvE9RHZefZkjdIOhaoxrRpWfIk0mKmaBEA12DsCy16r6zb0cR54SjI+ttpCDEwDTPzKeZeZlJ88TEhI9BI4vAZIUK0qpvKk02x3HtimlUgmrHjEgbEvsfXnQ9j9M08fL6yq+lcX79yC+//p3XDx+JaSakWaXLWYGamq3omZ4s9kG6dgp13r4dZn5aFCsRPaS5gJ01cnTJ+9g7j7PAQuRrR1rj9vbGdt/49vWNbV15Ob/yen7l10+/8j//5d/49de/M4iPoRJrXaXrm82nDZMR74NFU6i53WzGjVqYmyv9Y5PXPfAZiK53pu4gV1wtuJq57veDaOdPnZjnV6uVP37/B00auRdCcpzmCZ90Nr93uF8zuTWdVdgK0Ycj81kdOxtBPYhYzirX7lZwb/tO/lJwX79w33du60YtndgTUSaWSUmqaVlY853r7cq6r9T2fnRXffSEyXG6KNBbThFHQLonxULeK9uW8d4xDyBqzQUF+erAOk+RaI6rnkAkqpFVEAga0xKMI4yzY1q0cNcsaxuPakIpsK2N9+vO29uOQ9Uxp1PifJl5+aDy7x+Z1gAGCpJ2RcMjfxIBiWJreaI3Ud+E0PE+0ZunZKH1AUKfu4mVadLnb7jqai2v8vhSqwG4xlA2BnNqD9aJ1fGIjev7nX3bqNUI1W6A1Hcz83nUcEgDp6MoMULvjtZ0hCI0YVqi5rHHaOpJQaTRWqGWooWy97qn9kbzniawd6HWzn3dua87t3Xndl+5rxt7UT+C2kxlYnLU//HP/8I//frrX6538J550s5yC9r4EkkgJ1WubBvbtnC733h71/NbhrlcexA6Oi6mKgRVZZnRZefYC1uLtJroMeoMNcMo8/EUPuIZDYzSjWTi4XNiz+tQ2PoO3T+aN84Fk2QrEG0Vqu94p2ugmywYsGx3ja87zIe8I0u3Eb5dM2J7Jzl9ZuZ5PmJyxDq/Q100yNtjBvUHr5/OiG77RusboQS2uDPlZPOXi8rJbJHc7Yav636wEUdB7JQJi9EzpcBedvacmSYdGhfhAKL7Xh6oi+EQq4H0t9vKuu1M0XNbEsGrC+R63wkhHm34Uht7LpzPN9qYlxtSvD7mReXo9DxnnTnntMCthVabdUOddWHNMCQGZZnDo2s0HG5EgjmA6ZzK9Xrn7ds7t/tmxiIq7WllwqZS/7r456gA1AoesYU17Oatn6UFa3vkzTVp5sYZiAYEXVUyVkab3jqb2instlkOMyJ0XgKhmXmPDJDrO92PA01Bihco1r3UbqbFTsRATBPR4kB0Xq4yhqcbjUqjhkiPHUn6cz2BIA5XByZT4ODGOjKQ6Ef22RM7JKLz+6OrqTyXZpsG8bT2Y3MofWgrI/8R1KWoO5DmDhmHGAMXxgypne/N3oMDXVvWhezSNMTcDtYRgeIC2qmzM0Rn/BzOK3lQa7GDqx5dsVEsllrZts3yxzS+pVhYtAg2ZzYsb+36OI6O6OPzDlJCr9Qhq+ZRuDzPxT3mFJ7qEzDHtcKeN9xdv2/bV0rJJqH78YajJgnTo3srog6tvh/XUjNpx900VnE8B4zNuSnze9xzRcrSI70HC6t3FqVjpJFAa+oYPNz6uvkPdev0lr2yrdnMcHbu7ztTjOz3QlkbosQ/znk1QQge7xI9NHqyzrppnw/5lJmCah5de9pv/DFrr4SGrenelAgT0ee2NzN3asTQCUFnlYPrdpBE6v5jE4AQA5eXCzXvTLOaZ7QmiOvqJrndub5/xkVhzyvbdrcDphnhYLOd4pmXhXmZUWnfnbyv3N4zt2thvev8kPdaBOfayFXzyKpAM5MVzKfTOYhJWYdHxIaCG5ynVdjXBuZ+OqdImRpzUlmuklwqPfLeEZI5PlvBsywnLpePvLx84uXyiZfTB3Kp3K537utm3fVGrg3phdIK7T5mrZvJ4EQloeYu+lBJyE8PVAHWdWXP5gTZlAF+f3/n/e2N+/3Ouq7kkpmmidOSiQZESy5c76p02LadfdPORC7ZHuvHMyrSDwfeaZ4VXLbG7Xbjer2zrTulqOLlgM3jATpYdb3+moc8ikSUjM0Z57x21mx/GXJbGaSu7W2HMoXhdurxWdUALgWi0+280im9sZUCbiM4pxK3+8q2b2Z4I3iLqzqiYEZV9n/xCj4wp1kzxS+vfHj9yOuHXwhxIsSEiALrXrvJhKNlQOve3tojIUBJw/pQRqFzgNGA6/P4RzWgXtvI3lbWc5CAdAWiec/kbSdvG/u2HQX9/Xpju93ZT3d6171e+thv9Z7MKTLFcGyrbgCCqKZLqgjQeKvRjRkrdMjdHSNz0jH7xPXlA++vH1jfX1jfF9Zo5mB+ZC7+/FpH6QTUcGjyiR4cBE93nm3MlAWvTtq1Ir4Tgqc38yjomt+9rY715pAeMVtqLdyrPk25FFrTc1GzJBs+FiXpcKgxpUbKjTEs3Xe1s5kmdR9floSYXL/Vrl3SkxJN0+JJ88OHJAa9ltrZ8bSm5x3OKYnoHS5phzRENRfURrZ2umrL+rlbZ98L93vh+q5f92thWwvzbDnVcyRNnph0pOBnl/x2f2fbDZY4/bMbYZFzUcn/3Yxjisp/WxVKbqQ0We3GMVfuLZ4spWTKB+027nvhvm1s+24NCdsr/GM9D3JLJZqFsme2TXPMdQ7fPBdcB3Q2NFnHWFUmNvJkDsq1du3CblmlwTWzZx05wRy6t31n3TfOpxNzVMn7lKI+Fykc5E0plfuWua+Z233jel+5rStbNsK5Nh7mp45af/nh9R4dSY1iMmLecSjDgnUMdeZdpfj3deW2K4ivoxN4+G/oyIt3j3oGpyRvb5VeM62q67nY2j7sg7HrPxIijm4oPCj6P51HB9Fv9VEfTRMjpWxfGD453mm9bsbCKk1+irRTUNyPOqR39RiJRrSP2D/1gugM48tWmxEyevyU8v+vNBeVYNRW1K2tFkqNYLlAU7U5UedY18ztunO7bybT1VBwzTYzuY4h7C03bveim5K1ynOpx1C0mFW51mR6EUupbLt2MoJ3pOuORwFs2SveB/LeWdfK7Z55v67My2TsYTvAhAIO7dLpweqOQ2jo70W6Olr1xsja0U6lyZCSytpi0gAE8OpIWh21Osou5L2xb43rdeX6duN+3zky15zn4+u/cF4+/uWah6i6+FF0P3mKaAH+BJapmg/UxyHYtRAMUyBIoMdKK5VSHb0U6iiinh6CcdJ0UclZwwCoG/OeKJB0jYZuxN5shmvrOugtopJa75njRIwTy+lMiloYNhqtbdDrYZ0vTpAo9NjpSR+yEAKxe1xFhzS7dfdsDXgZj84AInI8e6NAHOv28d9UEFHLz7gWQUQlndpNVfDblbB7FJwiSHB07yFY98bboWH/5zFLaey4yVnGu1bywqzWbQ85Yok89F4th0k3zDHX7PTxp1uelXbMVB5RrUOiP8tYWx8PwPh4f8N9eNz9caBxvMfvIoyEg3H9LgfQiJBx6LZejM0zC3gRvAu2ef74SJUm2iE4nvEHoTBu3mEscBTN+s+dB/HQn0mmYWAhnVYaJYNzDY41YwcJHF3H1nW+sLVMq9lcTTX6Rg1llOld1515TmzXle19Y5q95pZGLPIiEgJIGvL/p7U1pDg2lyrS8CPnMWgGm4TpcPTsXTtCzebTuvO04Kn2d6J1UYNXUwxPwpFwBLb7cbO/e8UYuLxeKHljWhI+AK6Zo+zG9faNr5//i1xu9rlXah1ZmjZ2kRu9OwOi6hZTsnbmt/vKtq7kfdc157wWYLmw5YwwJGzeQt89ukRsPtw7e96VCGi1mVlQVlMh31mmhSkmTmYoE6I69JZe8E5nbFTWrMSEJzBPZz68/sIvn1Ty+HL5yO2mIPu23lRmumo3PdRMKBl3v8F2x/WGi17ndo+C3IonK3h+Jj0XEf7x++9oJ01lnwhqgnO9cl/1eu05H+HrIcRDvbPtmdt9537fuK8b67YrSLXxlG3bWO8r7+9XM9tRyWi3wnfbNt7f33l7u7GvmVoaQ92gj1o//j14MwKy3EdnUTDdQJO3GDJvUto0TSozDAVXtHN3SPf9w9leBGrv+N6YnEOHgz0NYW+Vunc1a2qizovrpnLVWsA70qxSWMBqhAEwfmI6Z/uEM6AwxUkVXNPCNM0qYfcBxBN8RKJ970G2cfyuVhXcb5uB41I0umDWDu/ptOCWRWegTLWS903vq7kh57yjsna9xqOeWe9X/vjjd75++cJ6v7Gtd9b7DY/GJJR9I2dVmvQuKu2Nei1Oy3KslXAYVY35Ou1uIEYC+PC4p4OEs0/p0bxmiYllXricL5xOZ+22mfPu8fWT+JbgHJ+WSc8AL7Sg5HVByL2zeMcpRbZpgl5opTGMPpxeaMunrWwrXGOjVN0PvLl1+ugsO9Oz+AnvHMs0s6RJDaCCqn5KVzl+bI44qcLER6/EVPIsp2CGPF7P9q6k1Tx7TucITgwkYfO0gWguo45okXmqLIsJ0mKS8yUR547zDcyTQVVCm8XeaRPgfqu8v+18+7Lz/pa53yt570zTmMFTMnpINn/2+vLld1rfD9f3antltcZPyYVSRo2l9zzZc+C9zetJP55n58xcxv75QW5V1l2bQv3opj/k/d6ryaRzKv/trdHM8bqWakZStleKnrMi1eTYo5mp+8Ugo3sfGEDVaWpG5E167HA+PGWELpxPC5fjz4nzosS2Pr+NbMZKvWVENkR2et+1o9rqQdoogPp5h+4Z3I2TxfvRwJqZkj6b87JweXnhdr/zfrtzu9+tq6ymlGIpGN4KG4eYw63TGrUXWgvU8ojhihhAROtEZzXnoXSwnzTe3ajzRjdUCSfjscQUk02stjJwOpoB2D2xui94HX+MwT2df/04P9ToUmuLiBqzabZos/OxHSORY0ZX/WqEUn4gTbTXf58j2utR6Ndq+n4nmidkbf77fed237ndNnXaKtp61s0sHCAuxMB9LYSgErJWm7KItZsc1kwihvTHyvgx0K4ZjR1vB08r+hB479n3yn3NXO878/XONEe7MU+SR7FuqDUt1J74kZ/og2Pk5imTI3aTOL4nTYHZohVwGtzbuydnKFnY7p37TZmv23Xn+r6y3TMjd807zxQ//BCIepPzwfCW/CsQxTmkVe3mOKF0ldPmVswRbVbzCwPZ4iD3ppuGqItuN0DqvAevGvsuA3jaAh8425nWW30xDwlAM6Co0imP7yqt8Sla5uMAooW9VFxxNmxpD1GUx5fJTRAtUqlgiFhltfbUuOMhEut4jR8nB5t/yE+HFa5AlJ93RNXyzJxZjwwXA+P9EQZ/bAvOI2HYRo4u9eOBdWDXU4GQ/vdHKHMIlu9n79OZir81m9MQZ/bg/QlI6iarLD0qK60az+KOomG4qA42+6mAHkjO/v2Z6j54NRFGeP0DrHL8nCHh9aN4PYpzJXiGU2bwEQvw+eHl7lXB4gNg2pUY2HgAUCMC6Bzk1NiEv8tYbP2IbOgih+HPY+Mc9IW3+V+zp+qF3tSJuFeVw5baKLmS92xW7ZsVyhPrbWV9X+klqlX/pBErfg4KWoLo2j3AcrP3pcRWbTon6ZyjGhBNqSKp4Vw8LO1bLgryzFV5FIUKRlX+71EprJOEkwgSKHUBzn+53iEEzpcT23ojTREl+fUa1JbZtivv73+Qy437feV+X03RorVjzpV9V2Jxmucjk1SLn36YFtRabL06Smusa2bbC84LcfKEyQ7UYPFEs0r1lCDR56zVqhmsWY3T8t6YJ0d61UDyKQX6knC+4XODYhlufpAAJql3geBnluXC5eWVl5dXXl9fEYT0FvF+SNU2at4g7/i8E/aVVLM66aLFV/CYfH6sVVtnP+uIivDH56/UVo94BBExo6L74bq4G9BLMXKYDXUxB1k9Q/c9s+26FryHbXPENXC/reaga2HhPuge3WzGa1MZZ6vtwWZiRYTT58lZlzNYV22YMoEYGVC165YG8AmkNOlOm3Uv6E8dxDHCMgBQR4secQ4Xdc9sTp+/nCtS1EhJO4RZJbm9g3dqaGTXpeRC3rN1K3/8GtvZ6HJGkylOaWKKKl3XTsbwtRiVhXUrTE5XLVrnfr9zv9+43W/kfSdNiWWeOZ0XeruAdOvWaoG33m5cr0o03G5XbrebxlgcRbwpRraVP37/ja9fPrOud6bblfuy4ESjVtbbTTs/95XeH0TGy8sLHz9+4PXllTTpZwvBZvbRc1yzCiMhRYuEiJbtGkYDTc8jp+Sn2IysGqYth5GZ908A9ict0eA9Hy9noNMC9CBkaawlc8uFNTiWFJmnRCuNbM+FGrtZ8dt1j6wF9k1NxFqwOJKkMV7eYnMmc1s+n2bOlgkp4mhNyBVihFAViKZptngPNDprcYe0tne0CRF0T5pP2liJSd1BtUOkOdbaPRcbq9GzdjlFM86KpATzAs499naVdmfUiwBqc6y3yvUt8/4tc32v7PdGLYJ0qz+jzU2qz/ijfvnT69v7Z/btSnlq2ihJ+Kibu6COCJbzGX0kan6MEbb6873VdbpfW7PFaSxeaY11z+y5GAgdxIQpgex5G/UWwhFzJs1Gicy1v9ZMbbs6DUsHpyrDUaeMcThAz9+ifg12XB/1rrd9aIqJZZn48HLRr8uZ+nKi10XHkozMLa1bnnRFZAcyDo11RBrBY5JTvf4/ew0Q9/zv2sCymX9TRZzqmZfaON/vzPNVZ9KvV5ArQ80mTZ3kj1l8N36+o1dPs3vQXKA5b2O0TidfXFBfCOc0dtIApxi5OHxFFAzKoxNqv0iEI/JRmnW47ByQ3jULdahjgrpAp+iP52YotR7Gr4/Out5L3WOG90ytxXx2hjRdu6ODoP7Z64dA1KGmBeKGo59euNoa920nm5UzzrFthW0rlKKhtL3xcGV1goinSce3hux28fuYNXvMYox6+c9fI66k28SrDr82WukmoVWmoDah9E5ulZg1wNa7h+Wxs2J8dHW848HSHGBU8CZ9815MNinHRu66J/SEq1oAgEfEG1iFEDWbDQOz3pgnLeDdscn/6FVq43bTG6VdSY7CZ/RXRKC0yl521pzZ8s5mzl3L3FGny6ifMZhrFyrHK1Zs96aFVkgJQkRaM/lfNSvnDgktsL0QJGhBL07dg81F0WAIfTjPepDgIHmYvK0sYbhOSldZQHA6O+eiR7yj0llbIUgj9CFZVAZqxFV40YOkN5251OfPMSQn457y3f0eyPr/ivUyoOnkAI6qmXfQtCgfc1beO5OaW06SLaijByjWbzCp25ihilbMDfnCs0RWLG9VbFMvxQxKpB0H+FFt2QbmvNnwGKs5Ih3CyLsz8Cgmdzp+3xOzNTZ5b52GGOMhuXs46A4w+jiU5nlhscDoeT4xTwpOpGda23H0x/v98xrfG9ut/uWeDOirs2D+Ic8e8069MaSJDzCKSmwPnD2kMI+ojQcQ1XVyZGeKg66FhxNl+aNTcx59pjnmtEbn7/Z+Je9BO6LJk+ZEWibSHImzJ86Bg/RqjVYztWjnVecui8nLCiEUei20vONcsD0RDYg2R8pgpkbqdKuHlboVg3SPl4iXhCMi4ROEvwJRjXlRmZmPHh+1I+CczXNOEEPHu4r0TNlX9r1QS1e23QzQxIp2vfaeYoBR52t1VncUUaW2I4sYB6EGfLa9wKnh0TR75skOMCMZNfOy0Gq3ofRIb4U9r3jXFTyWndYy3neW2TonTve32jutOopvvL9tzNM79Mi+Fu63VRn3WtUpd1n4xSuYkvVOX2/092/0rw5pTZ9b65gF5/AWaTRG6H6yvEFgz5XcCqHq/DxizzTOzKYSPlo3rQtikk6d09JrXmo/zP+e1+I4J1tXsxUfbK+y72lmelSK6B5txO4oHn23/XR0o50+i2KEo543Guvigyc1BbxieaeTm47nach2HRyA1pu80wVHmifiNMBRJEwqt2tZDfHUlV2dr8V1XPT6HFq+rsOpNFOUsP6ZHHp8njFqc+SdP+1b4+u7vyfqzL1tShLcrlfe3t94f3tj27RrXUoxIl1n9OZlZpnnh1+Ed+zbzrqt3G83vn39yrev33SWtqkrZrD3VEvh99//wbcvf1j4uzpw9lqpOfP1yyv7pt3VVptd08jlfObDhw9cXi5MadLsxxgfnegQ8WEipMR8OjGfzixnzVU8nc8KXN0wNTMC+dgfRtdUr+RxkD0pd/78mlLk//gf/wpOR3aa69zyxpfrO65fWX1lCp4UvD4vtki8Q9VnUYGc84nTOXK6RGJyjBzsLhjYs2zb5JmmxMvlxOVyUiDdnfmROO5rZc+699emZIYmHIC0zr43clUzli6YwqNZvRaZlkiaApo+1dj3RsuZlqEWy2XtjeUcOb9OXF4jr1WN40Yn1ceJXgeZJOS9s+fG7VbZ7pV9FVoGkWAAREyJI5TqmVrA+Z/XKbr/dLy38Q70yzs1pQSxmJBo9YbN+UXdx6Tb10CO9pzr38G674HUHbiG903BhNRHXd4f1dJRh6sNh5KAY58SnW1WM0FzTpduDR7BmdJkLLDx946M0bGp2EbrvDuMhnByxIlMyTMVz9wUPDkHEpTgENcRr3PIEwFiIkw66znPE6dFlSRp+rHKQms9JSpUSTiIOttLjCjRZyaYGZSSAdocGORd0tiXbVNTzN6o0vGiNZ7vaiwWzHV3XJOhvInSCZIIDvMs0LU9SPY+mi/HjKg7anUlG/3x32oVM4YteAc1V20K2M8M1jAc3dDgR00lRxPQ0U1eHY55eed4KLqMBGhmDqXjkkqeqBnqfhCjf379tCOaksMFbyBiuMM16mZSRrBDtpsboYHQoWXuunr7GNQFmyHtZus/upTGqAZzuDTnOIbt7+ie2MOmYMSCr0s1F02hdKFII7dKKhpAHIIjjOJhgIaDLHjMJPhgDFqSw/QIOp5m8lT9+11URud7QzBQ5bSTF7x+5pw6e+jEqKYgIoGR+zQkET965Vx5fy82D6oYqtOti2k3tndyVXfbzZzh9pLtsBbwChqTARSsSKldyEXlnb2LuYtOaBNYwxNbBapq2V1yuFkBtmbEKxj0EtR6vTaaa0N8qLOnXugBJDokeUjW7ejqbCvi8C6CF0JKuBA1J6w3jTPBEQkEk8d4F828RtlsaULuapVtVPAxtzAIBfdEPowspp9lRf2Z8RjrUCVrwXTwWOfRHbKSELUbFvxg2K1AH7Jyp4egZvfZpnQURWP2+bnb+tiMVV7ycHseCE0lKv7xHlEQH0aGWRhafdsgnD+Q8XBi1T+twz12MmO0xswEcPzuETukANQdm6uGR184ny7Mk0YjSHf0FqjFUaXxs45oXhvr+3j+3MOG3Ng7LwEncsRGYPuOmMR+7GLC2Ge0wvHOM6C2EXhI0+gnhxIgBws4uu0SzMXUmxGQ13xUImOmtPdGqZl9Xbm9R0JUgkjZdnVvnM4Ty2ViJhmB0jQrLGumW7NZ3tbrcZAE63IqORGObl61TbtWlRBNMkEPR6SQdm6UhPMkApPa5Z9m0uUHF9w5nEs4F03yhM0jqdnJsgTm2ZmhRKU3nWHbtsq+V2NWNQS9uBET5ch7Je9KbFWTix1B5U27XrloyL0r3fYhm5X2XouIydZbt258ydSSQTrLNLHMHpFK3ld63W2PKwiNOME0uYPcq02oBdREuuHdjd7+YL3vvJ3V1CdY9/B0OnF6eeHy8oEYPOX6Rn5/Y/v9H9yq5jfqvhPMd1nUvMjJMbbzUyAK5NrZa9Pi0YhSAVxIhMkRcZqfaIqg2irZnOer5Zy2at30rs/FMSJQ1eyid1HC00BEfzpzRxEjjeOsHOefnkGe4Kt2KLvX+WYRdUu256xJx4fA1CZab8Q0EdKkZld2gB5zzFh+rwEHF7SVHKdEnEZ3Lto/B7KoREvd1LuNfYzxl2Szk1ELXKfERin12Cv/usQfhFrww6BJvbKPfdcITesdMCLaeqvc7ze+fvnC1y+f+fr1K9++faWUfIwqHF0j/9jTNYNRi9lmtch6v/PH77/zx++/cX2/sm0rJe82izfhEG7XK9frO7VYtmvw7Oud9frOvCxsBmpLKQdBv8wLLy8Xzuezuj2PmATLEY5pIk4zaV64vL5y+fiRDx8/8umXT3xqnzifLqS0kKKSpB13dDeeRyIY1+a7r7++ppj4f/39f+kacOr58PX2ThBH2TJXX5h8sMxpGCkIQ1k2TTbXOnnOl4nLywSuc7tfud0yiD8SFtKsmYTzMnN5vfD6ciaGRG+OWjp7hjRl3FrpHVrWgj74CKLKjVYKjQep05r6ibjgSFNgOU9MU0RaYauF2zVzfy/c3wt5L9atfwDRD7/MVFkI04mLUwOmaGZcxVyf81653zP3a2W7d/ImtOJxEgjWvSt5J+fKVCO1RrtOP17jKdmoEpqBSTdi3GnDpZjKKAQhJTUGnafInCY12UKJF+0aVpNPVpoq95kXlZm2poZ764aBBzX5OSSaoylkwFBrFfRBxVuX7mGQaSeyGVE5hhO+nt9yjGsNp+bDrwL071unTlemo1R3uEnvNVJapLSEO7qs9h5bUzMp55hjJIo/iKxp0m59jIEp/Vgtpyq2CK3R3DCRNGBsGEVrWac4wnVmWRC8yeejuclGMyRqZMnU4f9QbRSiRlpqxAFETf449vAuQsLAbdDRAm+z4l3AjSbeUyzQA4gOEs49PDCso+5FrKteickip2Jgmky55x1OmjoUd8tFt/pr+OSMlToMLI910R9d0FKVWN+2rOMwrRx398+vnwLR4HVuznXLVmxqbV9KN3QvR6dLGdmn+S57g9DpDTDHwbw39lxN/qU/wwd3dHOCDyYBcNCMsRmIF2sx10Y/DnEt0ToQHA8HKddJjEPIqSHGsbE6ju4QGp3hu7pMacHgVM/tGnidIXQyDvt+dGihHXM13qQEaYJpdsyLo/UA6AyZM6DtHIf89s+vXDvXtRwmJ6oJN2apa25eKcq277WSWyPXTK6FTtessBzBQ3ORKQSqh+a1u9ed49gzgsdP6tgZm4bcB99s1s/hksdNNoTfhNBtFrQ/5LIqlVQzj+Y0zmVvhXtVg5cQPM1VdhrFdZrTmzTAUhcht0ov+nB6PFNIGnzuI9EJ0UU1RXDamdlaYS8FsE046IGXnLfrLEjoj66zc7T8s6rxITsdMxAjyFdlSrbu3FOm5uhAWocb+5bHod6PToqC5HDIqB4bzJAtqEZigNADALYhgZBj9lSlEIPBVrMoxZGDfTPpt4FKb2yiPmPOetdin/nRlT/keRb+PIo6fS/u+P5nIDo2WjXfCjjCUeCJSaJ/xu3W3CmbewDR48kWDnMqY/NcFwOiVnxLfTy+o9uNHVTeyJA+7NnNqr2PzrpKnXuvSMsgFSg6Y2VFeitOs76qAoExBthNcrWud93UEQiOlDMxT8x1ospMZSIGCL7jpFHrTi1qrjPMf8b9bEMZMe6FqLKi1aaGE9bOHVmfo6tdS6XshZorgYnoG8FV/PxjyYtzgZgW0jSTJu3e9m7SxWmyPEqL2LLYCee1UKql6nOmNtY0tJBo3aksbMwoNVWjjMNTJd4PaXQ3IvFh3iOUVMm7rpMBZEdUSHRaUJ3suexiSg4ZYH64hup7LQ3KPoCodm7Xe8Fzp5XOer+zLBPny5mXl1fm5cTl/MKnT78wp8gWPKt0/O1Km2daTMTQTcWAOiJ7Rx3ytCGv+sFLgL1UtlyP4m3ImHTtOJWKBjkMmrQFpAy+eEDUTVt9MnS/VSLGgc2g0/tTl5qjy3/UsUMu140gc1YmtkHQCN6UJaN4HC7rg/QUJ9Tm8c3jQiQ6DsCnBY5pvKx7GqKCTR81Fy9YfIt2Xp8XJQ+XR136Chpj0KgXI5WaWHe3auH5s2xi/WxDXvhstvO9Y/AguLUIhmEQt95ufP36md9//wdfPn/m69cvtNYODwybE3iQeYjFv2i3eNz4bVv5/Mdv/PH7b7x9+8rtdmNd76QYmeeJ4AO16Gz1GIFwOPK+s28rKU3knG3OVOMzlJCKpj6ZNfYmBvszmvxbQei0nLh8/Mjrp098+tsv3NcbOW98eP3E+fzK+fQCSfDTGDsZ3Z4HbPj/5RVj5Ndff9FOiDSKVJwP3O4r3643lqkyp9FJNpM/MUVBgJgCy6IGQufLxPk00anksmnklYcQnQH4yDQnltPC+Xzh5fWVGCZ6g7J3rrdKDHeQ9TCj8QWbVwt01yg9U0X3MlUJPVWCxzOtXR01F9p5f9u4ft3ZtwcQnbfAlhO1z6SlcXpRrwAlaqOaA+3CvjW2e2W9FbabdkPLDr3pbLyP2lnSKIxGrRhR//MRohgcEjVrMwZHDwCqIPDWufKIgvYpMs/RgKjJ3HEGgBu9Bd1rq6NUfRa1y+h1lKJC8KLz96LRaB2tFYQnINr7se8jNrZkA2XPernxb3LU0M+qJsMA3mv+MzzqdDd6fO4g0FvTUbQt76TdM206D1xleCioImXPRX1MnGGY4IhOzwuNLlMjnp/F5WgdqKZBvik4GGuna0l4/IkR3SHCzMMIaSghjwi/4MklU6p2eIVOb5aicBBC1sHsA7zr/ub8Q03pxPYleRCiMs6K4wqaYs46ol3MzDVX9i3jUTKwVTPmM5LVjc1MhkniyKbXNdvFogbtlw4spISEHGN+zcjDYcJXqrrV/ywLGv4bIGoNRGORhFI6OasZUatyyPhGuxrr+DwPNw4WZDC1MvRyR+fCpF/GpEcrdL0fOulxk6xFbHbyzYq72rTNP6RTMUKMQkrClBxp0uFbMRdWwwp2BIxh6Iddsl5f0SLcdaSqZHeAFrH33IcmoVnxbe5SMQaWsw66p+SZJ0/eHywyqAziR68mjr3rYZq8AnORSm9ClcbeO1tR4Fl7p/ZGNcOA7mCjQlsptTK7xOSiss4T2jUJ0JMeQiFF7VgqOawRCtETa9BCJyogP8LCxeS4tSFZAUUvitV7hO6FrWS+3d4pkolzIMwBQmeXzN53COrQGLzGvtR9t7mmopb6zrPMC3OamOPERCO5ptEueEpt3PPOumUcxp5LZA4anCzB4UOj+zEwrxe8/KRqVFIgPCIC3AB7ekAhWpwfAHDIInAHWzU69t2cEZX5VYmvigDa98TM+F7rTj7W3ciXMmDkbWb4KPzc4/ly8bHhPBVZ/iBFtEsKapgw8lSHWZXzKptSeWY8OqJ6TRR0itiBMt57H2HMnZwrIew48eRQ8H6jd9i3wp4LvQvnJfAjRv3odNpmaT/9YOZ7V9ZLR7vHgVUQdoT69P0GeMUYVKfO2CMntFuxrSMF3mT00Gqml92iMDSTTOWykdqE97c7t6s636lxgh5eDVUiKLjX21q74MuIPMrkEpkXzzJ7UoAudYjWLf7DyNPnez4AuD1nrQ1CQmeZkqDgZYANp0W+TxB8JPpJzYvij4uYECLny0f27cbl8sLl5UwMgRQvpOnCNM3oIEpgXi58+BTwYcH7O/jVruVwSc3QmzHDQpwU/DeH5ZbpB1NZnScmA0mmyvClQtZum4g6qLb+kKGKzUi76FViFifL8FNStPeiLuA0LSJwtObYt862C9J1fjYE7QCDNwlrRaTjQ2SaKrXYbOu+0ovn/v7G7dtX9ts7vVVS0udjTkHNnWzdt9bJziRK7iegSES7Wvtu5I17GJl57USpk6DOpR+AYpqY26IHetE56mHo0m3mqh+qAH20jv3kAKJPX4yCzlQbYjv5kxu2d2rYM/aLNM4Lc2EX7w6pLU7svXSKub+2pp/BOx2h6FHvt7N50jjpXFOvjeLUaM0Fryqm9pgXSynh4CDD1HAkk/fM/b6qA3D+b4CocOwf+on1c4UnVdBRotkhX0Vnksu+c7+98+3LZ7788Tt/fP6Dr1++gMM6nukgmXXf6UYI7WwHoaa/N+fM7aZ5irlkctF4LTH3u2QqG7EOio4laWcumuGbIErI96hrBJXTbfumppEmkfZudEgCISVCmkjzzOn6xuntC5+//sHXr5/5/Plv/Pq3f+LXX/+Zv/3ydz5cPuANwBzmgU+d0UN9Jo++1F8ut3OUacYBVSq1eXpaCKdXltedZYd5a8xrIW07MekMtAtKuDhTn/moBGlpamqm1zxZNKDXHpTXqJ9pmllOF07nT6Q406uQfSOlDYiUIqz3zG3bEGnMUyBNCqzEC6rOjHY/HyMrJVfWG+whc33PXN831luh5GHGqMS8dEctwr5V7jfH7Rq5vut4jgLQTt4q67VomsNW2bZG3jt575TcAc2WDTHiQ0a6NnZ0SkaVMT97DTfV6prSvNLV7C0EUgzU6Km1a57jMitpEdIhsYzeEZ2Hrk6t0oK62xZvWdyd1WbXr3c13Bkd0YNANSA0VkUToTutPQ+sMICndLqriOYwHP4jI0ZtUNCu631QIt0dwHAQ1TLqZiP1Ojpitu47Guui4xrDf8M5A6J7oXXR5owZfEWbm+7W4GrB4+fOj/pCzntCnNRPQcvho+brpv5pXQ7lmT4yemWGJHdhKCk80zyp70TW1JBsf5aq0ufeirqwuOFebrW3DBWS+uSkVomtaT3jBun/6IgOQtI/eZgMYFurES3BEdAYJmmN0JydNdB7Jmdt/KhaTI4vh3znTn0YR4qYqdeDhNZZ0SHLNhO5OWiaRHm0H55fPwWitvea7r2T8/hSJnxsytolwbojf0LpPH5GN8Cp0rtHF0m6urYCmsUXNe8oDEbTbrKYFKAOhy6LHwkukBzWWYUUhSkK0wTTpIy0NJU09K4yXqN4FGQ8SzoZmmjThYuBVscR3XHciG5eEGJtdhQ8nk6BKU3KSs2BvIWDrRY0wuNHryaQxassNSTClJDm6Whm4t6FtZq7mPFNDaF56AF2bCC4FGaXmH1SF9Pk9eeZc7F00+gHc1IVjhiW0AJR0NleJ9/dQ2mCZKHtnbYLrYAXHedqAlvZKdfCNXvC7AlzxE+obj92oo+mrXfqbrqr9feeM3sphBC4SOPkOtV1mks01w28eHKuXPeN27rjfWTqnQmByVioKHTfcb4aWaBrsPy0f8GjW+n0Qw4Q+jD78fr7/aMzCConRPr3XUwrlIIVdhJsI/H2IB1g8CHJ1edssITDkczkt8F/160cD683ue8oqkTGBzCAZ3EMGGD+c4EarOM7AOizLHe8n6ODYAyo6ENsWXkV53ZVOrCB+INxayNDWE4/vuDd4dp4n/rsGFo59ohWB3Fl19RlxGWE8nQdYdjxa0ZwoXaLtSlZ7ejtmTuAqKBy2X2j1TJaRgSfiGmii+Pt243r+51tzXQDot6r7Cq3AmZkIQC1w16IxVFqYM+el9eEZ8IvXt/XAKIi1CcfKMeYfW8PQmIwv7aOouhz9YgsegKizpnzbiL4Cf8TcivGxOXykbzduLy8cHk9axclvhDji1r7+4jzkeWUSNOFmDbwb+CCRpFsmzkkN6SaYiM6YtKoIy9AG51sb4Yz6uw5Oi3qwKhOilJ1Xqg3yE3UnKdqgeUdWjD5iI9DhqhFSm/GJIt2CJzzWpBucL91vNf9dhr5rHh61wiDWiGEzLKoGifvhW1dCXSub994//qFdnvHt0KKnik5ddv0mJytUaIWdUco+w9eAmzrzrpt5jvwTHA5k8Xr+ZFSIqaZmNQjUQuSTs2NmocLpc3N9moFY7O97VEMjLO0m4x9zHIpcWVKB4FDrXEMOyhgiz7gkzdJLTTpVNpI0FK5Fwrc6FgHb7OuoRZ6LgSiqZ68D8RJSQRxVpz0hjj5jv3XNexBogFjVS212tSx+r6y3la2daPkYo6cP7rouhc/wPYw5RlA1POQ1R1FjUkoN27Xd759/cznz7/z+Y8/+PLlCzEGzucTy3IiRCME3Tj7+9GpraUeSpraKrf7lb3satRiXyIBFzpItP11PAtKnPnqqS0RuhogxRj0ejeV8vfW9YzMj/zxUaiPzo1PGiGRloXpy8LpcubL5z/4+OkTb//8RsnVRl004sbFdNRvcpwRj06HjMX8o8t9AFHtmFccfVoI5xeWUjntjeWemW8b0xyJU4AKLqCg0MsBRDua2y40nBfmxRxxR23ibIxgmpiXJyBaBO8KKb7jCNQqrGvm7e1GqVl9HII654ZJ38PprEV+Sp6hXiqiz5WIcH3L3N4z671R8yAIbSxIOq0qEA1RuN8C1+uoZYQyaRf0/p5Z75VabFZ00xQFjVHR3z3PUbv9Ha2Jxc5s92PyFsA7UwuOsTURNTtKSkq3riSHAtGFaZ4Yc9HeOSZvdaVtyNL6Afy2DFvJrFljGN+uV273u+0/SpZoDNmYLde9Qo9tsfoGs+MYqgGN7es0ZDjYm9ruud7wpjAIVu9oU+lRg4ixtmp+poR6qfpzW6+UurNu98MIVDCDvayzxjElgsno1fwrHbVaCoEUGnP66/V2RvC45h9KT8tVFZPr+iZWFz4+jzNiLqZJ90TL+j1fzgpC951t37jd7lzvV3WpL9otrKKRWc5kImL+M1o7NIIph1Lr2qwLwZzEH02GAUSdsnwMF/MuBkRz1c65R0l4VOHUmhK0XSq9F7x0nUt1euaN8cYuI4nkuQ6D0SmupR4AdDg8g1MpvvPk5nHXH28tPwWiYrJgRbrj6+GGNPatsREfbe6n/65mIvZukaMFbOahhvYfG2J3uskbtapfwjEb2szhsrZmRY5dIZN9aH4UpKggdF50drNbPnatgqsGisfB5PRwMPLg8V6Qo5OqeZo8ZuuOov9pdjCYTCLqQhqzLsEHalWL9daect3+9ApJ581iiswnlc1RVvLW1fAEYe+N3NW4odNprlMtXmVIOKsPB3sT0CBndXvtyGSLxjk7DLWzmqXSLJdPGcDRchd67vTS6LsC0Z6FXjEgooCvO6EM4yIB3z2+N3y3OS6n7f9qFmullsOdNFdt3Qc6sWVcDQcwbL1p17k58la558xWi0ZmBA8SCFLxXWNXaGoXrl0M7ZiV/SdMozHyxz0/zmFRFtvu05C5js3mEXPSj/iQURQOAbh39vw8r5knIDpW/zj8xzPgeMjfhlvl6FY+TCYeA+hDJnN8oEGe2M9Sh91qDHA7zrmHSYV7fPYnkNxN0jfm/p5X7QEYnXXHpDMUBjGOfN0fX/Lr+xvb2p/A7vhGLaRrHTIPJZmkN1wo+FBwvqFGSHpv1bxqRLKok3DOOotQtRX8AKIhgDjKvlP2nV7UmEuNXJT4aQJfP79xva7suRJDUOlq0sLosSJM7jP+uaNuwFnngPSgMxMl523W21yrmxwOdsMMAtxhFuG8Ggp5H/BhopNoPRz3pNt+jABeSRIx0uRHq9yHxOnyCznvfPr1X/n7//g/yHsmhVdivKhxjjluarxQ4H67cXr5zOn8mW9fv/L29QvtqmBC3dIFP9kMvqCO2I7jPSr48WZ25w4lzOEsbaY/eGXUNerjMQ8taPxHLp0YtGhXJn6QQ/oMOH24dC0WIIi6cHdRl8LqaeZG6ejkGNnXlW2emCbPNKuoPOeNUnZ6rQTrODa0a6YO4lqUTOKZJdFDR+bz03t5fgnrunFf72bMMpym9U+9Tvo7nPf4Vu1/H5ER7pHZbCMlIQY1iovBSJeRjW1AtA+5rn32cZ5J0Ghh+x5EtLA4ugTRugRmZBWcOpibZ3sfG5lD94IqNhZTzeBOxmiYYjuR4+u4GuPfh7zJja3dYb5e0ETNLlCZ3r7urPeN7a6u1WWM8nT588U+fkdr2qE4DFhEiR3HmE22GSab59y2O9v9xrevKsX9+vUrb9++cr2+s96v+OBpTSOOwiH15dgfVVZZjzgC55SI27eNfd80l7YrCeVF66Du22NsYzwL1j1qtVJ9Ngm3P+ZDtcZ5Vp/pnqPP0ZDe2WfuDdcKvgVysQL9Gjidznx7+8bl8pVlWriczkQzodT3/lBkHJFXPwGhAC4Epk+/AoJvjdAK/fRCWy64ywc2l3jPnfdNjRTvuzpTK8lRqQSqBBrezmnBe9GOZdBZdo1fifik4ybiHLk0breNGNT9s2YFkc67I5NzniMq0xItrPuIvNA6MNjYl95TfRZ77UejpeSuaq8xh2lgVD0DutWi7vjq1dEqFISS9SvvQqtozVf02XFOCAEmkyV3mWgIaUHNr6KSij/eU2DfMsWATMnWpYyRKekI1FgfMUXSpNJTXV0K7LyH6PSTDFDYesdZHb2Xym3V3M37pqqzMfeHqCu+1nIal+ORI83h2JfdqGzMe8VjXW87A5VJPeTyygmp2kLf4/jT3nNwOANbTTq1KRDS819oDUo1N2bfDXS5oyPacUzdk4jmADuR4qJZ7kek0Y/H5DBwhTNjSpdowROfvDvMRtL2IIzo0vrNMXw7dAxmaY8Rg33PzPPCNCVu06RZyttm2ECQVugu0Ly+x3DUiTrSM6JWEMP2zx3RAWK9aDN/gNAGxQt71rnPZJ420UGtFbeLSsQtScDTSc7rnPfANuOMHzO+XY6fP6TEj9ptECzR5lv1OVbnYH6IRH8KRFvTD9CqMje9aWXnbLEMuWDwNpt2zGAMpGzdDgwrOrtysVlX5Hu9sDAedJWiCl0Bk6JV68xqSKpavRs783RQBK8gNyWYJzgtGhSsQFTUpayozLib5GKYAzn/6Ij23tXLyOn3eLRdbQSufqbh0Be8SdFsttAKAW9D+mKzOsW6PTHyw0J9Wk58+NtFh4ZPM3EKyP2NtVfafqc6dZgt0mhiUkRpFCrVdYKZJ/WADhoTcKIxFdJQiasbUjGtMWpv7K2Qez7Mw0fB3IpQc6dtjb5XjVWpDqpDqhxmEt2pc55LAWaPnzwuOXXPTQ6JqtHvTuWMvVRKLuxlV+mHdEYrvUmnNHX1QjqFQC8KfjXWQSgH6BMCndwarkDpQm9Z86Oaw7UAEujlx0y6Q6XUzrLCtJunxYoeHgMoGeiwzsAAEiMyQc24rFAZbIaRKIehzsHFDLZZ/tLZ0DX1mMM8cvn602aHdmOH3LbW4Vj6YOO8LwfAbubICd1mdIZcXguR9vTDD9A5iscnxksZ+KFQMIMuHyyd0+JjYiKGpHIq/+MN/o/f/0Gp7wwpsTMJnTeGVW3cLQy5V3qvpElIUycmnU9wXt9ntVlONS1r5ghXzcVVJU8icswSI466V8qedU10UzWYY21pnffbnet1pfVOmiaW06KHWOjW0dFIquCCzYA4QlTn2eDASwBzKNSCUeNFcDp7V4qaAI0Oj+ZiBk7nhJ8m5kmzeFWuqGx8qZizrMlnRDtPqev9i1LBddIPdvIQEsvlF1oXfv0f/w+dNy+dGC/EcLGDwuJkbObtfnvj4z/+kz9++w/+69//3YLOM7Xu2tEUYfJduw1dCw7dMz21ed37YsSGrOlOO7tjf/HeERMag1O1Q+L8UMwAXWMJbvdMb8IyBXXY9RXnbH4S6KJrxnXB2UkotapCw0xUaF4LU4QSPds9qFomCfPiSMHTez0ULwV0bMCKSy1gPH5emJJDJk+qjj6dyT+oGkVgu2s+5Jj1DyEQp0hKxmBbDVZLOWZxU5pIadJICut+je4nDnwMRB/tmS9Qi5qPWEeUrm7i3siV3tXwKzjtfiKqRAoMOXAgTMkY+6T38JiF0adagbTHxUDL5lhcbW/EGVv+pM4Qd6hDam2quHF2f50Wld7rYpCuYKJnVcY0A5oK5jL7qvL4slda6dY5+uGWoh0Di3PSmeXvyfLeuxIbWbvg6nB7tU7oF377XbM939/f2dY7uWTInVJ27jetmsbM/uC9u9UIzWbcdKxCu5jNIgxG3t5wpR24foChGMY+oX+vZP3h3nlznGzfE5eDvPNOiYuoXdCHI3bUrN/TwnI6sSwLMSW6dNZ15du3b1xOFz6+fGBO2hEdTsPPYNTZWfwzwtzHxMu//Kt2+M0Z+FQy533j9X6jxplrqbxvd7ays+4bcjeZca/k6kjNEZojOkcCjcSYI2m2zE+vc8cxRVx01N54e3/ndis6Z2mjQvf1Sgidy8uE+DNxhm2dyJtmzOtZF+g1Ugvkvev5NQdCTAhm0NWh10Cv3vYh9yAzxKCo81q8h6gZnXEhxRnvooFV0M48qt6zdeudI0Y1V5tnx2kJuLjgQyLNnsslscwaO/QzBvf9/cp6/2rO2gWcMC+LxppM8UGEm9rpKEPgaFAw1qLlq4t3qsI78os37uuu59NT1vcgKAbB3ZvgedRsoLW7Gw+Hsx3EeVurnW7u6/QRofggFY3eP+oNTOqv919nz5s0QlWyaZyr4cm3YpCfYxMe/huORHAzc7pwOX/k9eWiqhZnTTH/g3Yog9zqeCc6BhLVnR67JNUAl/ojWI65qch8CAco9wjR9o+pN5auc+/L6cT5dOJ+f0Q/7dtOaWJd10Kv5nBuG4fr0TpqWk+Ia497It12iSEVfjQ+WneU+tT8QEHjHD0+oMqOtoPozKr0ggdqcGZ6OjxC3DGrqkBUz7s2ZkQNfOo+bT4BLhhGs7/b618vtr1+niPaFMApi/9ULDs9pEZb+tnAQKwTNSC7GAsyOo/e62zIUKkdQJUhc7VDarwHcceBq4tjOHrKMbOn4cYGAP0DjMYE0wxxQh0EO4RshaHXYqM1Bc9HR3TcwKcuk4g6Cw47/DGfNqRF2s3wxOhMxuPwXguE3qBVR96Nxali8pS/Xu9pWnj58ImQImmeCJNnlwbrleqcsm50sjR610K99EqWokDUabEizeF6wGnLkmrmUtEHzVnz4ZA/lF51hrPtymx5BU+tCjULdevUtdG2hm/ucM0Vi+gZ9u0tCCGhTrtL0K5wQIuR6OhB73/vylaWUnQGoZbBUgBqGFCqdqtaUCau7ULdO60os9xEN6LmdALBSaXXjq+aBddyhubwLWmR2v+bAekY9Gc9y0Ht8B/A7jBwGoVN68dcxYhU0MFwpxqGwcXbaXA00Z87j7ZZ6iH46BCqBCxqHuchq5BjA3z8ff27peQHKz9MlPyj+zLCuJ3jcMwcpjLOGZMAxzP1iG8ZV0gPIX1vTsGnM7fGkBhZwTrrNZPSpFLWvB2dn+fX58+/8/7+D3tubXYjKXOIwwbcq8WdVLpU5gWWk8nsgxoptG4SxtK/+9JIkYeZ2tERHS6Ku7rOKhB9mp2w37uXwp4zIen1n2bNsOyi78U7b2YzGpejMT6i+5p0ldI3R6vaqdTbZWYBIuQqrGtV6a/d+zQlwgSzi/i0MM1npjRrUZ27RQgoIVhbNxN1lVA2GlEUCP/o5UNiOX0CAr/+fdeYgdYJ/kwIJ3QYXOeWTsvMvEzcr184nU5Mk6fkzNs3jaRwrti+q+s1Ri0ulI1WVrZ3s9EnGAuuYLkOgy4rjmLUoqxGc5RFiYVeAZM+rmu2PTci0gmx4kMj6NSsAvWufw7A5XpVgFNtbxLt8DkntOzIm2NLwnIK5D3hUkJELezFO6rTYITa1YBp8jClxDwvJD8xSaJLpMWF392PTLmEbVNZqeamanD9LBMwWbySFmzNzGi8rzonNqTE5gopMs44BR5x0mxsis6fO20x6P5ghho6FC5gypvgg3r/inU23CM7NMR4gFFxg+l+krh6LQJDjFB1A+ralrBC04ivQ04mZmDSCbXqXhjG9u6PGBOx2eBehbo3yloUcFq3suzaNci7mmn0JsjPt/Bjfne4yreRmWfYsRvY39aVt7c3jWh5/8b17Y1vX7/wx++/8/XrV67XK+t6p+Sd3srRXe3dJIrIYTrl7B7CAN/WsbXS59h3eRTctpseHdERHq/XtVJa1yLceSOD2zMLCIia+RgIneaZNM+WA6v3ajktnM5nlWdOM2lScLPnzPV25b7eLQLpZJ/HHV3YAT4PCPpjTIQPkfOv/4J3j8++tMq5Fi77ynvOfPzyB5fP/+B8W1huE7lp1nBtlSqO0gOhBxCPF+u8TIn5NB+zozj9vOIw05NK2d9B1EPDO0fOG843zmfdO+dzYL1P3N42VsmUKlTx9ObVUVsaTjwpqiu/4GmCRsJ1zYRXkkTPhlG7Pmo9z5QSU5yZ0kwME8F5ix0DJ9Hqvkavum69c0zJM8/qH7AsgTR70uRJs2c6Beak5+HPov2u1zvX9/ejRx7N7XXMWA9j0AN9mqpB19tj5OhgUqx71kQorbPXyrpntlwordlYkzvWq9kqHg0AGSDdaubjXbsholCQKKOx5DTO0HCmNULcQdQc/jGMPU/HLybL627dUQOWX6/vI/gRixcViOKN6NTPDNoFDWEmpROn5ZXL5SPYKI/0jnoJ/PXVDYi6oDX9FJU4CtalzLmxl8qeGyKF2szpf4xFOYf5BB2fUa+U1lfn04ntfGZdzyzTxBQ813Bj3XbWXZ3haUVrCO+hBYgVBhg9fvgggeVoRrgxOiKP86GYOtoZLvNOxxgjeg61lum1IK0gveIdtBhoYczuGq4JQclJp2OOImY2WDW1YxACLgSCT+rX4Ae5hcnPf/z6ORDtCkYxG+DgjY0YTlD2fYN11K2Sows0CvDnwdahH9dCX2NTMFZOnhhV6aP4frrADkKym4zNb8VATP443LWrAiVD3oWQhNkJMbjj+0aUSs7aHdViyg5Mk9m64G0eSAvfEIQQTV6G1w3UDtZoQFS7oRF6orVEK4HevAFXY4ecHCzSjxZ/GUxorTg8ay7cc+a+76x5Zy2ZvWbEOqKlVXKrVGmEUew1tA1h7raDIa6+E0JXEKDrgtbUYCabQyYo6OoFehYkg2T9ZyfKfgfnEad5SIdLcRBIDj97whJxmn/wKEZtKJ+um752phqtqqQCjxaOtVGDUHwnOovWqCDVG8Fh4NCKHAmd0hU00zUkXUrDmTTYdYeX9sNF7pzNmhEeG64x6d9VmMdC1irDO4jBq1S7awE2ZjGOXE4rUjtjhkuLmiOO6AnwymAd7ZmDMStqv7arVPpg3xkkTzeSaLCQDNGE/n3/+JyH/Tp2MNSqoOHg6jnAG+jRMljyQTZFm0k8n868vHzg8vLClLSDN4DzCKn++vm/qPWv4GhdV96v1yMjL8RILJGYCs65RyFJU1bcoR1Q0TnL0dkRaWgAeHva7I1t1Utom6NFkKBFjzTo1ZlKoSMNcm0abVQaxZg9etdnqxSCzVB0aQTfiVGItsmLE1zrdClApdRIbU1l9Q7EabSIgtzGvhZlnEszUkafx2GuVGsju6Kyo72yb1Vz76qBK3QGmqC/c7h7zuHnrrnOn0gTnF//BcKkxi9GzI1ZlBBUq6NSWTVg2ksm16zzfQiMbuSQUDkFlMsUoJnLazfDpdrYNmdmRDZKYYSQynycdd1gSh7nAq2hs/zdmYqzmqxI2EvHVXU69k6YUmOK2t2YUsC/6LMZbI9LUUgJLVRCJHjHNKtszR8gwiNOTUAkTPS40Gc1VyA4nbtbZs4vH3h5fWVeXojxRIgnsng+/385+7MmOZIsSxP8eBVRVTPAl8isqq7qeZ///ztmXvqlaYimp5t6y8qMDHcAZqoiwts8nMui5uFAFHVrpgbcHYCZmggL873nnuU90P7UiX6YJM3nDVuCk25rrtbT/babY3Bxx3leTrdFPKcmy5sZR3IwXccZOk1jfxZPxVgBM+vZEkztPTCS/smM7fNz2bSE0U4Wzyjt/JpToykWg31F22SU491FeXcHg0HsjZADIQerGbSf1dLY7xv7fWd/7BwPOUvPs7/VBl3N6/DDJogfXe//+JqsnHN2OK+1Nce1VPZ94+39jd+//Mbffvt3vn61RvTLb/z+5Tfe3r/xeLyzbQ+O/SGWiTWTM8pKjMbJwFLkgWiEOr/kgtkt81AT38nw6k2SFReek4phDAAV4P28ntM1+KRwz8bXc1LcQoq4aOeg1+S50Ux72MhIH3e53rheb1wu6weHbD7c/Ukw/LuF/COOKFqf+1Fxzln272F62YN9f/D16xtfv73x7f2d7TgUdxc8KWaSy6QUiIv0ldjnLhXchtaqXUsNLgRyQqAVqEXgyiUlUgrW3O4MV8iLI62LJs0F2obVUl3T8lLBi4ng3Gr6bTU39KDpdFedceZWdn2OGCPrJXN9WXj9aeHlZWVdVlIIgLnItukarv3vOIrpNh0xJa7XxHqRJMCHOUXXHmyt2w+v+ZxS+/mrl978KIcBgB8lOnoIwgR6Q1SknmUua/I1KL0qOilAtBgbFyDXZBq/dhrVzUpcOKw/B0B+Tn8mUu6etfpJwR0CmIOxm6PVzMGmbTKiaycDZGYcxxTJS7Y9eznrmQlYWWNg9HQL2hrOoqQyAy9wPGdS0DSzFuVdTzfxH/mfPfcVTq38MDqD915+KoBvMJxqA/B4OoHZG/izCXPnPdR6ScGxpMAlR5YQWJfEy+3G+2Pjvm0cpSvqsju8b4xxnB43s7cSWBTt0Z2g12Sscup6bZZgcj7mTbJ1ZPu89R29NnqTjpTeGKefiKcHjx8DPz5IJjHGn5NUR/XGlJTFcxp6ruEfMOXgB43oQEW2Ihy8OPwx4LtpAq0w1kSo258bnNzrzrm3nZk4c8N1WnAajdvFmMVwNT2mUesUv8BTFDyMJgeKWTHEYppCtOaoBTYGinSQfu1ycSyLqKLKWhqKK3HKP9XtmVQq8BFyktY0xNlBeSvCvDUvpgGNc0KkuJZWErUkyhGoVWgcs/GOT3Tk71+1N7bjwDfP0URtmg5m748H933jUTYOheUxxqC0dhZ6k07bymBUx6g6wJq1/nIeM3MFW8i9tdPGeQysEHEo98UxyvMtKrJpXvtguKJ14js9DkhIO7bG05yjdTlAlqJ8zF4HrahhbEWNwInYOXOjdA7v2inODyMK1Z90zuCNMgbDK+i+FZmguNahgh8DNxoeCD9oREHUNbwZZ/i5OVmh0CcV5Pl2zsx+nLQP8896Q5Q9z80HazK18fWT0isLdW0JM2ZgUl8ahsS5CgZ4jOHodVCaJr980DNP8MBPIBQ4aWTdNiM/6diz2Z0N56TyzlwqFUanQ++85s6bniyR08Lt+sovP//KLz//wnq5sq5Xgo+mmdLB9fXLX6H+uTnaDjlhhphEt+2D2gdhGmjZZ5wUoxAjIVRpRJG43rmOdwr3DkEItzOnOHeCHYUyhrlrY0WlwxPxQ0j4pLSc2rY+NW76GqVUHo8dH6yg6U3B9smAhB5PzV4xg5JlS2xbI+fKjK1o9pxWc4g+jmrPm0T4E6DoFtEkivjO/ihs90LZm4qk5vARQhqErLVZnNbDy7p/d4Wrk1nwMXC5BWJ+Yd/e2R7vbNu7TY0bVdxkWne8P9749vaNL1+/cn/c5fw5RIuVI7T0PM45UnC41WFsOmn8dsuL3oWulyaH8xgcKbpTvqBmw5EtRLtbI9u7OyN0HFWUn6IDstaCY7AugcvSWbInZ8/tFlD4eAUGyeIfYoqkqHdMNn3PiRATLiSGT3Sf6aEwsulsQsKnTFwX1tsLr7/+hZ9/+Qsvrz9zuX5mvbzwOBr/w//rf9QE8u+vuFHrjVn9ZAxF27v8pKjOKDDMMIUTwAohnEAWs3mdBZqXzrPzBHhnA1Nr4/HY6Gy0oeZutM4sdfW/yvWuDMIY5i9gBYTDmMxqLEfVZFAFipqlybbAJiVz6tGrXKjb6JReib2SWViCFd5dDcaxF97fHjy+3Tn2QtkONbknsq1mNwYVl250M6H7QSNq/3tKbNyktM2aorA9ZEr0+++/8VeLV/n27Svfvv3O719+4/39G4/HnWPfOI6N3qppTWcRbs2/XUU1oCryCVrLvTVJXFqj1/5BOzUwbYyaUDtTWjV6cv94H6fkyZ/gxUeDGB+DnECjJhME6E7ryHUZqvlayL0RU+L28sLry2eu643b9aoYmeCY2Yd/KNTmcfLfePU+uN8fMIYo1I+HrlvZ2R53/u1f/41/++u/89tvX3h7v3PUAt6xLPK9CNGdewhmfrJbLJ3bZuE8WXFnF4Dynz1rzozLypVMbTtH3eijkteFvGSij5R7Z0udfZfbctkVgdd65djNifs0+/GMHsAmtGM4M82rMOzPmXnVzz+/8vmXK7fXwLoEQhw2UTLJTvuY13jgPFxS4vaSuFyTjCyzO/X2w3lSc4yRPs4V/7ynBO1lE2z1Qc3btst9tZk5zGRPOTwpZZaUyXkwsq6hs4izZmul0XDRsayJF3dhWZNqtioq+3GIcTXZX2eEnWnag9HtVd8LsDzlX96dTrYhOIqt/yVnliXbvqwYlWHGo7OZHlZnyek4sKyZZV2IIciR+ihmpoQBZP7sPSS1EZPRmf9BjAKTt21nAvVjwGX5fic6nCIPvdMeXBkGjDl5k0SBpcTB8FDNLC10z0DxYjHOCap+bm8AoncwgmfkRFsylyXx8nLlsT2MHv3g7f7g7f3BYztoo9O79sg4XY9tIKYaTTW0bR/GoJGuM0TzEtFI5ARDJxvjBCCByWhptcnZvusaxCi3Z6xGktxl0vlt+hkiLkQD5aINJPzsvjWJdfMM+v7rx2ZFJ8ghyqAaBW9Cdlv0mLHNyT/UNx3duMP9ozHHB+t7U8P7D3SBWVs3+z1Nk8Zz8c8DEM5i3IV5UZ+ZYVNEXgq4A0KCZdFdmu53MZzHl4qCSbf1Rv8LQ+67C4o96ZpaCGX150Kf007wjBEYPVCL59hVh7cyp1yTjvPjRrTUwv1xhyD93fDw7f2dt8ed+/bgfmxs9aC0p3torTbFaR3XRFftTYtlNGl8uvZva6UMExl6bMdceE0ouERoovb6Ln3mqAO6xvIpRVJMdGS73vxzKtrdMHDvY1ckAXM95BzXjELZqyaXU4vprTuef03F2yD4IJdho1tPMAczVmoo5L6WIie4LiqaHrtp8PBjXtfze8sdrNskoHcZZ82G/0S1bNE6b2vUP2kqcw3PdTUF5uCYusvT3dJ+bq0L46/Z6GTMjbTP2+x0DS3kfgIzc4rvDGXSZ5zXcDb3HzRAworOzzHGEMon/ipn4PScOhvNJDhNQ3NaWPLK9XLj5faJT59/5uX2yvV6I4TEvh1s206t7YyP+c4Vl47WRmrOe0P0RUGZm2SMRl06gRvbNybtxLSXXkgDDlG2W3hSgzAK85mlOMKpr3J487MdKH/EGUtZ/9zHoJTKtu94b8CYIc8TBBDtVAfcvm+WAVg59k6MsxF1Zl1vYNAQPcUnZ1Vqk6X/NAPoYhq0Ctt28HgclF0TfjcCcRg1BsfMVh3YdPU7L7O/wrlIjBd8iJp8P+7UUijl0HR8TDOhwe+/Kcbib3/7G9++fmPf9xMVFzXaJuXmgBiSgJl2UqMHvTT2w6ahXXq54ISS+rkOm6Ic/nggqiEVqDEjFKRzqVV7yOgDTyO6Tk6Ql8D1GhkICGmtE6I0qDlH1nVlXRd88PYzBJgTug7DeU1FY9beExNhXUnXK/nTT1x+/Y+8/vN/4tNPv3J7+Ynr7ZW3+477f/9/gD8XMifdMaCzOHiLEdAU7YxL8s3YU82KWHNN9GoKcabgOJuT57MM1ohaU+MMgQ7BtNJ7oXtp34bt+t4+bbMf3PUm1kgL0nvawp6a6RlK3sw8UPtOsJnvU4/VxjRLgjEabkjn1Kxwna6z3YliNLPsHo+dekgvPfqcoAiAik7yjlob3ld6N7DvR6/zXHjS/U5zuWEazDJjEx7P975R63Hq0WV6JqMWJlXQPhdY2WIGNsFLUjCdiHvT56yHsYumJAlOoLF3zn34yRx7NqNzUqFIubkfems81YRiQCxTqzX3sYFF2jWbQkaW9aKp6OXG5XozXWGw6dKEOv6uGYXv/Pvz1Xrj65ff6a1zN33b9nhQzCDp3/7t3/jtt9/58u2N+2NjL1WJBilxua74wMloEY1ckpxapJtv5pvQGToHG2DX2/tAXasAvFFpvXCUDVwnLZkYAz2Zx8J0MzXAsZnTMXS2R5TBUYfgEzOmZd63wbB6FZ2D0bOsmZfXK6+vN5aLhhS4euYrP2PZ1OQ714nRs14jL58WlkUNkQsNhuUzzlqjjalO+u5rNn+zPp3ZxM1YcOWoJ2thgsw5VUpurHnQVg2WvHfGRxSfyAUnYyMvKdiMDmutsW0H97vDH850z8/IpZllq+zOYNpoG7jY5wtR0TLeO46oAZBjsK6LZCA5kVMiRTPjs3t/GnPZ3hFj4Hpbud2u5Jw49mJZu+Y2WyYN3+6f05BoNqS9a0/odk5rT9B1rT9y4kZMkTZr0vHB8E1Llua8/gyWLWoDnz5mU2hMIxNTaqDqn+ed1zpb14Vrrexl57pt3B8by7c3QvyGj+/sRz2dpUc/aE21n2QwsweZe94E6uW7oGH1U+7oCKd0y1u0z7ChyaTZV7kWiZ0UnNW/tq+a74+YUf45nIpZ4K7zmD229qYxzs+GNeI/en23EXVomhJwygoa4PosZt15GJnJNuf0xy76jHxptf+h8J3+0XZmPDtmbOuzA8QbbeIsTIN/GkfYTQQVeB41LsEoC8GpAYtZuk3nPa05jmPIVMQotzl7nF9YmqEMI2gjoYHTRjmRWtEjp8OqFvdEmUcH77tpfRq1FGrxtBYYPTGIYCLm8PFw+rvXvu/89vVQ8eqFNn97/M63+xuP8mCvB6VVitmNczb6HyZvozOqA1foA7wZZLgg2nProjRMypqcPboZEMlBTtTe2ZDqsAoRlkvk9nphzQvh7hiuc7SD0wQmenYf1CfYadubNknFESgjr1bLyatqHp/32TSOFk/xcfPFdYYfMj3pmpwH5/RzNdGUvdE5UojINU/mFYz6g150nDo9fV4T+c81ZM3w+UCgBmh8WPMnqGA4zPNAmqCMN4Qeazg93nW6FZRx6rW8FaguSBtoEyEzQ8RFTVK6UXafGuynBnQ6N6uhN2qTOz+8ilIblg6etFumxsv+qDdDnkmLil76z2W5cL0oe9I5Z1bd0k/NKU/O6UPczJ9fn3/+hE//ZEYbUc6IIVjxPVtoywNO0jH0ETiHE6hpGjY1INjeMWyNjKkR0wQvREdKUVoRn6S/ddLUlNKoZRjN0dG63Pl8Nyvy1nF7ZeIE3kCWjrQ1vTZKw4rcZhT4Sm/gfT33Nh8jcUmkJbOumXVdWFKQQ13Z9WxdM/mS9VmaaPSjDmmf6adLXl4c6zWQLzID6iMwaOTlB43/aLT20LS1vHMcd97ffufr73/j65e/8fbtK29fv7Ef+3mwfP3yG//1//g/+Ot//T95//qF7X2nVkPZQ8RH8ARGs73FJvLeD1wYON9MRyqa7ASQUoRgGb+1wShYwL2QW2n9ZfrkvCNlb5OJiXobgDkgLTKwShlSFoVLUgvYj07Lg+wGeQks1yufPn9ijM62Kxu1loNj2+ipK8qHrvuMgxCISyKuC3FdCMsCKdO851EK9f7O+2M/d4G/f510JO/kWhsDPpkeMydS0rNei+XSHth+KF9maY7HCWT48JFAr31/0vOxPUeAixzln6aCmkgwwSZ7qYFtjCraWenNmAeW49mnMdbTht97b9OLGTHxLL5d1zTgrOONdtqKjMG8t3OkKSOzN9HpfVScRDQQLsz9JmiC7Z1TZulx2B7z/T3FO8UM6FdOcxbnNX3PKbKuCy+vN34uPzFc5bJmrpeF65rISbKjYPtmq6KTTuM56e6j4m2ELBBcIvpMCovyrGM0iq3iHjj8aeRzRnH5mdlqOjfLJXa94w3IVwOErR01nyHaPhmDJjJ2O6VhheeUQ/v205tA+5rzkbSsXG+vrNcbabkQU8J5f5ouDdPNjLNNsfX1nVcthX/5l/+FWipfv3zh6+9f2LYHtSlO49/+/V/59v6mGI298nhUYvRcLhN05vzqU17VWqU9Dpm5Hbaf1q4m0EXz/RjEMNh6oZXO/V3Z0q1VM+GruNEox2B76HsLlHKsq5gQuXnbxwfbXujdkZMjuHCC4iHCOPmYGLNONSG+gZc5YOsD50Rydw58GLjQCKlxDYH1emFZAq+fF15eF+17tXAUaYFjlsEfOGo1+vflfND/uI2Peb3kDJxyYjrq19rofZfMzOruXhvH0Xk8CintAuMu6zmVTjmKiUJk0AXmm9HWzIGU9hjC5jmOgj8Kg6GaxSa02suiDWrk/OKjs2lzsN/3HEfg2D0MNV7rupBTJie5xT/3MQO2+qwLPSE68rKYgWOQ23mMrJf+Ic2j2XUYTOBVxm+N42gn2wvTp8/0j88vn7+7xjuOOpyiTejUITPM0BreD5vEyrW34hlBUpzmFGfkBqdx3ITt/NRO2j47G1H5KUSGizi/kPKNlK+sl1de73fe7u+83e/s+yFzqWPTdDRBTB3vk+mLAdeM5aVBGWZp7j7UiIo2MjO62YS2CdRI1sFodJNLOucJzaa8wUwpYyKmKFlWjIQo0zRF2xnoNjh182iborYfzj1/PBH1puWR7aEZM5xfdxay9m82aZkU3GZNaJ3uWxOxNEru7EQ/GrrMhlQ5bYDv+OGNGqEMpmgHZgjeGtyJNpig3E+7Ybm3hqSCvzXY98FIAxLkCCnogR4jimbXohZ0O2jtkFagFdNxzEmwLocTA4wxEIXMNRwSeYueAY5kG5VC4733jODFiPnOHr8dG9vXje7M3ITO/Xjjvr/xOETJLa1Sjdo5Jz3nkTHmopIovPZB7NFc9QKtiobLAJ+d8jeHpsdUJ13FoU1smNbUO4hersDrJXJ7XbmuV/CD1itsgzKaTCdcIUwDEVvgo8uhuNTZhIqSVIpodq3Vc5KtnNNEMmqrqBnBvla3I1JmHK7KP8OfyC5qblbHukQ1uw8hpj906hqc5ldyXjMUek4P0WTOfpITWe3mWqxFraZ7bqK9PUN9ZfCjjF1nzq0ex/DdhPJGH4xRm3LWZnscjWOvZ15vO4tk/tgQ90Zt2IGtyaoMieaK6Ocm8BF1P6e3J8Xcn8/hRP+9D+c0OgRpLtb1wvWqRnQMdxpO5VysycYQ0s6PGtGffvmJ6yejeUfTvVkjOjCN+DA7/wgh9PNnrAaUtGa6BLtn2lOEQveurK821AzF5GQ2ky+ktIi+i6e1ST2S+1xtjlIdoTtqcwJ5qlD3EJ055z6pJpInmElKq6YNGzBEQ5+T7YEjLQu3mFnCwvX2iV9/+cTL7UIrD479HUYlZEdI0v201qm+Q1PzHYzC5sYgr4Hri2e9JvCahUBXbMH3lrg1orVuPB6/8bj/xrcvv/Hlt9/5/bff+Ou//it//dd/5f3tTYVviLx9feOv//pXfvv3v9HLjutNB6sLdk+0RkbXPZNBgfZAAXKSPKgRlT5fBbiKtakZL1VZeEP8VfNfUOMVs5gqvUnrXw6dG8GYLDmrGY1ZiH5KSc9NgftdNC/FwwTyeuXTTz/J2MscgMtROMLDKJh6VrwbENVEpiUS10RcEy4nRkyUAce+wa54gx8OjSZQGgSUiUppjegiA5kYI87LkKj1bmY1Mi0KfeBDP6lv85FnTHrrdEkc5xk0ECAlcx/TWjknOjACWKcr9jw3W5M7vfceXybNzmKHhkC6qRVLVjSnnM6zpnXFd/SqKei8INNBFhp1F5XaWVGWknL8cAJoghVnzgnkSFHFbY6Z4BxbfOC8wtdnjNWfLjecmXf+fBu4GT0pJ9a+8NpfgE7Ogdt14XZduV6zgJLRrJHf2be74mlQXSP5TdIeZXq+6BLBqRHNeWFZF7uXYgEMHLUe0PxJMYwhnBKJ3mUcJUuAbiwBrQUnfYTAxyg9aMjR3ENl/jXgpNWH4CU58MGYa0+9XO+AC6R8Yb2+slxu5GXVOeG9rYv2YSo6fQt+BLNArQf/8i//C+U4+Nu//42//fu/89g2QHFrX7594/3+zlE7+9HYtkpKgRldN89WN4z5EgO1BratUcpguze2x8FxNELI5BhU/0UHUZrfO8cJwOIGKUXcqPghcPFxr2ybInQEakY6nmeOL+z7ISnKENXynFoFx0gCaGd9OXxn+Kq3q08zG6/r5U0253wj5M4a5WZ7uWSuRsvdtp3jTdr7nFdSysQYwTlK6XiTrH1/H9dz60NgWeWIPIHD46jUArvTlLWWwXFMM8VBCIHr5eCyF26vV16jZ/GLNcKqF1pXrTQzIEuR94Cal5lKMezraUCQbd+NIQgQNUexkOQdkFM0Krbn2D17Vp20LovFl8RnbJnVJMPO1T4neNawyRRQ50SMkeyNFWR7UTlkMliOApbJWqru9ZQLyRApUKqa00mh/t6rD6jmaF270701aRCTPWYRcnUERswMOs0JwJiN6GiWkeq8OciqaZypI3rOVIM4n0kZVgaX6ysvnw4e28ZvX34n/v4bX7994/54sG0y6EoWTZQyFsll9alpXyeVfVJ/pot69FEZu1575rnXm/RlOn6P4IGA9zIb9GMQJzsuL+Rlsb3EzDVDMNr3B5mTSSutVCa0/xtmRcFHhktwUr/aeSBOhNWZs9Z0Q+Tj4TinoDwnChLQ6qGd1AktPqMieifN1/wQFpkSo/7eWRT6QLDO39HNqVZdfjR+tE8KNPZRJkHjNHvhzN5zImzTXcSZi9rMXRtG6elD071zgKu1aPlRljk1N3EzY2KomIheDUJyUaLxEambp3/HW2QYJeJ0xeSjG5ahqTEwULEvcfzUBYyzEZ00rgGndmQUmbe0Q5tF80MGQzime8UwnUOtzTRrZvIUEmHxpGtifVm4XFfqqBy1yDbfJpzOO1pq9GRoFlasl6kTlTlRLUanrRJ5d0NqXLeD3nmhj649l9u8tka1ZK4nP7nwQVSEMHARbRhxaHU3FD3zD16TfvusLuf03TbAMfWDav7mOvKzMZmTCmeb1XwOmGLuOR3VAYzzp4ZC1AahTCFEenNUP38+zusTplDeEN3WGu6A3mXwMCkXzj1/hidFeJxr2E86xR9ySp/mYjImis/P5gM5rSyLAt5zXvDeM+OUjuM4J60wDZ++T3mJKUO82K6ETS0yIWZw/gQGJPTVpPtJfw9CD8cHKrKD7ppRzZr9vBZXExzRRy7ryu1247LcAOlJlSW4sT1krrNt0/TIGa14aC9yT/ppzGayEKWBkLkCmqYOZ1pUAQR0GEbXV5ZkZlleuF4/cb195uX1Qj2StJF915Qx6l62Ks2eqMSRtvQTGMhLZr2u5EsGHX2M0cn+8oN13Wj9wXG88/72V778/n/y9fff+fr7N7789oXf/vpf+ff/+i98/fKVPjx9OO73jd9//8rb13eiG+ToydHrM1pW89S/6m165wgpO5bhIHhCdnYZTWszTAfXn86Ip5YlKOIgpCFa7Vz7QWvKucFI/lxnKaip1cRX6P++N7ats+0NnHTF+67D/P3xoBw79/ud9/c7rQg8WFLWxNGeK8kyzHOA2YwpT7JPymnrbHv5cdGIPbN26J0av+ko6OwAtOn6NPo5qj5TaF0AloFUM4d70qfPYvoP33MCJONkJjimHGSyYfoJkj3dwc0R0z6rC+YAyoAumMp5LwpqVNbssP3S+0H0ig3Rc2crsskw5zwTmyhfDBm3eft6Y3EWfyXabQyi6aWgs9IxCCVYtNMHWc4PLvrJSBmDOd9THqyysmuX9km5pu40gPIx4mM0IMayfC27Up/3GRExp4yqWTR9Eh1ayLScjp9nx2wefBCt1s2KjCE3zGDX3P6z8llNixeVXzs/G14MND/c3GrPqXdMWRr+vBDTSloupPVKWm96X/QO+cIISZE3Q1m5c88df/g/A19/eL0bY1RK3Xjsd+6POzMK5bFvHLXadG4YxR72rbA9DkIY9FFxNHLO0t6ZfsjNA3tERoPWPaUhplZC5o/0E5CfZ2hOEGjQD3od7FuldU1D8xqJ2Ys9hFydaxOwKXmL9NnOVULsLKtnIeGc7l9voqSm1eF8o41dBkgGds2asI+Kj7B4z+WSuFwWrtfMeonkJYIfZv4mp/RlyfgQKVXN0rl5fOf1/tj59vagmxmPM4A4BM7Ioo/vYuZMorb7CUsTUmRZF+plED7UIU/KxfSrcKQk0z01/Gq2+xjnZF8gujlhj6HpmUcJEskZ687bGrVnfgwDncU4GqNRmvasP8qb3POAxylGslXc0U/wfgJnYlBGYpSG/Uy1sK8rwx5nwII9k15GUT/aUuQoPPWdnPX1c+CDrhOOQZSsyAkW1vYpaVwDwlBMEXOo1zUAmkZObfjT9M55b4yghA8ZH7K50namUVGtc+Kp/PTQAr1LqN6agPjeDkYvtLKdQ4gQPNktZFcIPeGqtKbb48G2Pdi3zYZDzfYjY3GmRMoCD5ZlJRuQkBaBcKq9dbY16c5O9/bZC+lyjX+4p/yDieiC79C73Aq10RuNY3DavJ9t46ScmAnR8I4QJm1hvoc5t8K0DVfEyaCixlbwoG3Op3OmGsd5UdVw6d6q+RwaN8dhNN6hnLpkWp2hKZKzmAMhhU+u/ugyFVKD4ZETTjPXW/QgOpk+TAOYwXPEP5tu5dzJ1MO5QAhy2fQu4N2CI/PWIvt3GtEQIjFfpJdzouD4iOggTlOxUB3NNFdjqBEoRU2dHuJZfNgmwHRcFYWySxT1FJ9b48B4Xtt+Tv6MB54d4RqJt0S6JfI1k+vCcsjB170fmmyaS693z1xXfSLLlivVtF/mSGhB884OVG0amqiAtCijepsAfDQR4kS+Q/CQZRilYWynjCLD4OCFJrsI3/NyMbRv/ssztuTZsM2mbC7x1psWnXwMnmvYzIg+2FnoWnwoQM+wcOdtY5/RBxLwdpvMtFNrMnc+d36OmMQGkFlBBVQo26dhftBzIDnmL88pQYqJnDMx5fMzjNlA9iEKRrRJuv1+zsv5TikrL9Qax23bFbVgdL5Z8H7vddTOXi0jmG7TJ8+CYl+k6ZAxTW8HvT9gFMAy9ZqDPo3CtAaaL3aZ2nkJ5uEXzGTi06dPvFxfbTrkKEfRVArPtnecU2alQ3/H23Pkgj5fXgJpmRTqZPuTWdKPaVrVzuZ0MjxEyc/k5YXr7SeW9RMxXIAEJJyLeD/OZmyE5x4SwiBl7SM5K44h5kTMkZCE7p/6y3KD74FbdHrfOcobX7/9G//2b/8rX3/7nfvbzvuXO49vXznud/b3B4+tct8qj63weOwce2VJZibhvCJDArjUcdH2UsOxxpCBUvaesGYuHYv/UiMiFkTnKN2KHCtWkjN6reK2QpwN5gSHxIbxXo2Jn5qX6ul1cBwFxs6xDR6PnX1TzIMMM+DbV4dzne3xRquN+/1OOQ4uy8KxHVxWBYvnJZ00suiDDHLKwfG480hfjW2QVNy1pp/jB4fqYEYgOfyQwZ7rygMeDZpFBxXTzcuxWeyC1hreNTPCCcTYLLZGkzU853RzQs0qxLwh7UFF7roKSLJphp7Jap4C0lYJ8FERmqIyZKPptWCcTorDqLnBmrM5LXPek9Kz2Bx2PitSSm7L03ExzOiwmGxvVAOhCa3282hgi7auSbE359ofAFugs7xaTmFpcp4vvVP74KiN+77z5e2dr1+/8uXL73z9+jv3u6Ja3t/f+PZ25/2xsZVC6YMha1BmLrqTtb8V8zqLSm10dgNBdsKmKugo5lcwZjLAidALTGDGSslbQdIC04yh+0hvWvdZ9LfpAdClAdKU3JtrqRX4MWo/z3kl5gvXl8/cPv3My+dfuH76mXz5hM9Xmk8c3VN7Ya+do5rr/DBKJLof/6hkDDHwl3/6C/u2cZTCtm3gNCk9yqHaw6mxHOanUbqotCEMm6zJfO5yWWl1taZdzrrrEvCjEZyme7Wqdugt0KI+oxxFlfObU6ASeNw77dgZo3MUSSqWNXJ7VTPYh8yK2jk10prptdPrho+DvHTcKj3osiRN22pVRM0a8bFR60YvivOawP8ZvxYceclcb5nbLbNesiZ/WWX26JBTJYRMigutO5nvFNO9/uCq//7bN/79b3/jdlO+7u3lKvZYjLQ+2B4yLSpVCQp9SAM6TXRiq4Q648kq+64zM3UBb6r9bMJnkY2g30s5mlRCe4O2nSd76nSqR3tNNAMixqDs7RyWTK+UfRdwOODJ0nLPunWa45yNpvfGsJQGO8Rw1kJxTlTdlAtGu69i3zmcQK0kHaPziX2rhFAopRG/F74NajK71YbOn6DjE3t0mjbCmZV8QjhOe3/rjjAg2DCt9MHRO6k11RcfuuBzEOL6OSlVm+PJ8cLLDRyR4DPBLzKRMnCx14NqNY/cq1UIbEG+ORM4TCEwtpW+XzhyYo2eFDz7Pg3HZOTEQM7WObGuioO6XS+sl4tN8RMp5ZOOOyVnquPnNRvnvj2z6eHHdSH8sBF1eLfIWtkdzGkf1ghMdHNORJ0zNrKTptT7ISMUZOyiqZWaUOmBzH3WeWoDmIZHzn6oSXcYp6ZgIo6zYBegqD8Xp11/hBS6FTnSH3nvTiR00haFzptgfijKQjpRb59ZG1fv3kTeA7xFYrin2L/1Jv2o0Z28G4TUmdmCPnZihhwjKa54f2F/b+z3P284MdiG5c2Zxzlc5JwOhqgooTaiUUKQM9sGHEJ5Z+Nw0pfbUPxDmzb02jRmePhHWulJLx0zUa4L6Vm8GtHznUglk7eFuG+4hwqdYLz+5+TOKVTeVaMxqmkWfWI27E9PEf1EAAD/GElEQVTga9L7NM2Vg2fr2lCFTNpG0B1+bnrdmlD7It116pDjrAtO2hp+TAeYjejHn19IVz9/XzQ6rfPaw9kYA2YSoka0ITqizYINwPBMPfXskqSpczbF98zIkzlJnDbwwyaqzqm5DzGQczRufhANtRaOY7ep6NyMJ/0JTlfEgdHC1FSu64VlWfX5vA6NZo5/M5sshHh+9pxlVLQYpWh+7tY6vcnM5iiixrTefrjhlDrYj0EbjTYqOFhZrKAKJ92llMGxHdRyx/tGCHrOp1bbO4dHRkrMqShP/bUzs4ScE+tl5eXlhc+fflKY93DsWwHkzpriAeaADP7cXBUSL9OkZfWkVXol75LtE90mjg7XKgMVoPPezYM6xMyy3LhcP7MsN5xP2m+GXLYFcokaOeEEHyATwAViWrhcX7heXwgxmq+G2Bp1unTe0/dZFqPT+sZxvPPt27/z17/+73z77Qv7vbJ9O7h/+8pxf3C8P/j69cHvXx/sR1OUilYqOTkGFtLtB/axcMmmKFbUueTJMXBSu12glsaxVY6t8kAO5aK/aUKUkpPWcxkCEaMarKn9mdQwhyjuMegw2B+drXbR0o4dR2Pfy5k9WTw4r8l6OR58/T3S+5Ptcawr9Si0UrheVjwr0YMbieic3F/LzjEEEM5nvRbR10oDxvLdNd6Hnrr5tLvpFNegF1Ere8NycJvAudo0RWoNPzqORg2B2DqhTidup4JnjGeTY3tITImII4cgt8x1sWJOe7EkJ9IA7ab3asbqwBl93f7OdHPu081Zi2F6bpz7pfeivaYlq0l22jf3PeB3qFURHzO7NIZoem01UjE86cLOiTbmnTsjXJplNf8pTuvvr7etvxkuX1vnaIOjSdP1vu18eX/nty9f+e233/j9t78ppuXY2LY7b4+Nx6HGrHYYPsgAbcx7aD9b5yyoZZTTOMpxAubPaSfn+fHsQ41ObcVZn6N9b5PoOdmZwMXZiIoK3XqzaZSa1ZiSpCgx6t6nRVEVy5W8XLm+/mSN6K9cXn8mXV4hXWg+cHTHKIO96hqVPqi9n6ZTNsf44SWPIfLrX9SIbrtYBn10tt3T6aaBUx0lB1rH6I37fWcM6bFbE2W7GjC1LJnRHTEsrFlWXMF17n3n2DerYaBFgQGlyW19dEXmOSK9DPaxq8bzzRrRwMvrwvUl03uh9uP0hBgO9sfB475pUmvnRkqRT59WXj9ddWYdxSicqllab5SqyJopsfHek5ckI56LNaIvmWVN5/ROTVtUs0vAuci+d8bYKUelD/+h0fnDLs7vX97461+/8NgOjlJ47DvLsrDkDI4T4K82bBgn1KvBQ+mN0CpHVV72tlcGiqoJgRPg72OajKqZCl5Af0oByH9XK/Y/NJKnFCmGUwN/7IVSin72oJ9Pe1E7QTFJi2atFVgXaUhTSvp6PnAchW3bFQNjkoWU4wkiKttV/hStmR9J1dqKUS7pebmIfeULOLnxKxroBy9rNJ/PwhxUWJ0xaaDGrnxGSFnUXB/TOJ3goHhFWsWGaUbdaaw4fz1lVQYyMgIpXrhdk3lcJKJPStLY7uzHzuiVVnUfjuOgHBoMzchA7GunGBjHhXFcKDmxxUgOU2KlvzMNqEKIqhMvV263F15eXrheZHboTybdR2+PeS2mLMs9I2NGO8G3+n+9EQXvo6EYOtBnMPs433P6ohujeySTCv3z4Lmd2U10Hn/qhqwQ9+N0UhmTFoRNQf3kPWAUWW3yc4oWokwwZHhh/ZtN49TPmbvocPThNRW1cu9sfAj6zOqk9RmGUaiGNJ0hmPY0DkIwB9d5KPV5CJlpR7TPleQ0mvOFNb2w5M+EeOVLfAO2P13vJa98+nRVIx6FPuddfG4fYC+erQw6UXS/CKUurEemlCdVbCITznlqaTjLp5OGwbp603iqKbXDEaOaBHdOpl32hCUS14hfAiNCD02RLWFAdPjsSUskr5nlsrBel5OugodQPD45fPOEJhOnOS2aDZsKiQ5FyG84Y0c4DRrwKozxxnP3Qs7ykoXmpyR03j6/A1Gj/0E+15y8PKdYf/8MzDXqzV23UVvAUf+EXj51lv6c3gMnSwBs0/HOHACfSOq8Bs5N9GhON/+s13H2uZzz0lMtid7Ds7G15n6cP5v+tjfDrJRFs12W9UMjzDndf1J3RZELXofD9XplXS9GVebZhIwJcvy3i0bnVgFTrolhECAvL6T8iveBcuxn8/J42zi2d2IcMhQJor2O3ugh4JM0sTQv061uU2dz8+htPE2fmt6aqmIHFScKfDrrOs5Je4jBKLnmDDtNpXwCwmnII7qXwBD5W4jyqIZ+IWehh55AORpvrXF3jdE2ettxrhPTIBWIaSGmhTWvZCsq1/XG5frC5fqCD95ANTOY6HL4vPPg7e3+p+vdWuNxv7M9HuyPg2Nv7NvB/f3B4+3Ott2pZaP3g94OWj1sUuaNHizU9Sg6XH3vpC7TpOREk3sCJypsvPcsWTROb0ZdE/iqBY468LHhu9ZxctpfU3KkJKe/SZ07wacxbJ0aPbI1a1Yghk70lbR2iI7FAuujmQKde5zFK4yORekoJzbGSDwazlWdM2UYDTXI8C4dxHQwnBfYUgq1OcbIPMddH/YMAzCmGUVrjXJUxtgJsRrQ4aTJaQLefIzKQOzyRXha4ak49EbvD87WfXhqrP2MUpiNSTRwbHT6UZmmQnVSc2s7J6reCsS4ZMVf5KQ2ZDKfrBmtpZnpXHva2ZzMmWbgiUDQRMSFVXpH2xdzml9/ERgwwbHez6b93OumBAOdRTEnOcb+wKxIDbA3EzFNHvbaeByFvhW+bYVv94Ov952v7xtf3zflCxNwcSVdbqzNqKpGkXb+gN7NrA/VBU7FfZsmQfa9NRXjCZrM+oNhjpTdMil5NqNzI3cY1VZAsvPTKM6bQZGo2R2T2Fiz2NoH9kcIolCHyHq58fL6C59+/gsvn39luX0mLDd6yBxdmdy9d3ppPEpnt0a0fdC0f29Nf3yFEPj553/i2HeOIqlKygtfvv7OcI73R8X5TeePgRetmZTpUE3Yqn59eNUntaCprj0b0prLAHI+C5MKPZi1YAADBr1L9FrNWEvgf0zSMeYcWFZdx9YHODXLPgT2S2JZI9t959g75dAUPy2Q8jCQJ7I0mcJNwnfvgdazeQOIrbMsySi5iWUNpKwmDzcHH6rLvHPUMih1Z98r235wlGb17w8OT7s/zTKp03FYfYxFhOgsjTxrALwmdeBIORKz0dyRFrkcctUOzhgcXU3DfKbPmsXW5Tmp6+08I0LQuo22/3j3dCOvRpHetkMShRDUFBszQ42omtLZzMfYadVRK8TQdJ+cDJmOY1KNFW8XYyGmYqZIakSj6RSf8XgmrUIa5T4mK6+c2tHvvbxTNNkEZdSMTi8bsMfV9oD5yLg5vjiBKNV+pjm1InP0frqUD9SkzmZ29p/ze+AMDCCy5hVu8uHIy8LyyGz7JqOvYa7TdGqv0IrqpN7OCfYg0ounHo5KJ4xORedjisFM3VbzArlwu80MYmmS87LoDHbuBOdm7YrVu0MX74zUO93Lrbf6v+yaq+shq32nsZxuBGean7nKwZjTHg2CrEDXrTv1Lafg12mjDc4aLGsIDVURuunOiYK+xlO/pgZ/WK6YPyefITprQjk/q66/0UsR2ji1LIp/EA3M0c+NQkLjYI2bNB19mO50uoFZkzQXGmPSOKfDq4DOmFZyupLTC8vyiev6Mym+kGLhe43oZbnw6+e/mFZHjeiyWe5WgPuONAruUIG0zPwlo932ZhPaZ2O1Gwd4DOkrehqcAbZ9ZqVZUWHxGHOy5PHKBV0icc347Om+c4xKcZXqGt0PfA7ky8J6W1lfVi4vK6e+9ujE6kk1ng6/Mi8bZ7Eja2kz22idEsZZaIXo8SngkxVdSIieYmKJWTRTC6oPyfR40Tj4ATk9jx8v/qmG+dPanw8QH3SC3ltWnbcHz1rF2Xx9oOjMTUpFlZOrJPPPzInxBy00H6ey8zPwbPjsOkkzPCkgcglelkX6MffcHJ1zZ7Gow03rM/poNM/1QyMqVPCcmE89cogsWSZKl2W1DekCjNMtd0405iEbwgeE7DuvEK5EkujtSXqStFzIy4XRB/XotLKxPwqPtwfb+zs5QV8EyAxb3zFCWBMhm+N1fTajbji5dhrr4dhFRXpshyj41XHsReYYx6AWmJI2FZMGFkRPSMGMigzYip4UI86ls1gaVPbywfXXbmCMgWWVqD94HZDbY6eUnVZ33Kg4V8ToSJGYB7eXldflhfX6M6+ffubl9WduL5+5rDeW9YbzTlq3XtXI9CKK9vYvvPH9RvT9/Z3HfaMcg9EirTiObed+/8a+P6h9p1N1uAcZruliqJBptbNToXTc3kmL9DMDsQNalfGNGlLlXLoR8ER6dRbZ1CiHY9/hKF1a7tDAe5Y1WBGiTFAfwDc9v83MzZTLmGSaVwOlPItanwdpGSwBmy5FYkjEkIFAKzPOq8s1cXQY/tRmltI5glxny96IoZAMadffNw2gkzHIfhTTD33/FZNYCwzTxRqlrByG5pvxxmzonA+aKhpNLAwz1KrNcnB11okmp8nlusr0KBiddkbGMMTS6b1pkrMf1HKc59sYVk4Pzjzm6YCZ10xeM44Z6SEJDr2zP8xJtlQDLvVs0R2jDqJ5IIQQiEskni7OKmCT7SUpJpwTa6I3Y40YoDWXnXSjeiCnjn3+8/dfktIMCm04jjbYSuN9LxR38PY4eHsU3h6Fb4/K2y7dXM7aC0dM+LziY6K2zn4UivNQC6MLnJjNcR/tnE6edaiTB8VsiJ9F2gQE9XzMGdU0bzzRcuegz33HJkoxmsYu0HvHj37u5a1pTfjW8LXRh8eHxoKXMdfPv/LzX/6jGtHrJ3xcqUQ1gn1Q3GCUxqMaq6BJ0jUB+NORnB8U6SHy6fOv0pMNh/OJtCz4ECi1kr7ueP/OmZbQn+YuYp1Bb3KA3zdJB2qByzUSVnNw/wA+qa6aUqR+NuzBS1ccQtbQxKlJck5yrRSd0TeVU4xT5JEPzuiyiVoa+2Vluxbu7xvv77vp6QaDivOBPKeZPtotGyfYW1tj3zWpm+7M65rJ2RMiONMi6r7NWKTBtiua6/E42Hb5Z7gflinOQCbJV9TY96cr8yl784woACo2ff9Q1UDlnFhyIiXtFb2byaTRV0ef9UdDqZkNF4bqYz/B9Tk4UD0yG9QQPDlnlmUBvIwW9yrjqa3x/v6MpRo4TUPb1JIb+O3AewOHa6Ucg+BlgqganPM6cjJCwAc15DFMY8XAdI9OMbKsnhwiozvF2/TCthXFoh3VtN3fWeNOA64xLKpl7p+cpZ7mbO753+aJoH+fhdh5C5lMOvU6PA3VZr1hC8DxYTDSp9O0M4bLVXEvl5Xb7cK+S9+57RsPOq04Ch0/Gm40/WqDwjgavleohW5rxWFmaF7DnJeXV15fX7jdXrher1wuctieiQ72kc5rMWuF57BFzaZsTAyUs3QVhvuHE+gf++m6MC/7iQbYxJkpCFbXpR/Io1pwmlfMhnT0QXcO10F0NFEEp4McQch3CPMrfrzps7izJtQmmhI9W2GYzPDCW/PanxeKYe2z0YQHnM6Dfjaifsjhaownk3EihGKkERP2feaU9ewShFqEGdQ+6RWOGLKhfCs53ViWF1J6Jfh//+7lTmnh9fZZG22QVTt+0Eeh90Ifhdp3GtKtpSXgghWMU6hsLoetiaoEzvj1jT4nWV2ai1br+TPMzduFiB9GH3NDerQc8FkasULD9UIdheYaRIhrZPUL621huWTSmui9Qe0EPLEFUgs04oksNXPRFfJt08Uum1D30aApmG4gSS+jiVQkx6Sw5pgJNhkL0eGsaXeAHwM/BqP+gyHddxDIj46vzgoGP2nPzMiW57RSX2b86WvNqaQWlR5GZxM375/8fSY48uGpwTaPie9gReSz8RvMrK68ZB0M86f8cKD1D02i7LeTNaE2ETXEcWAOwuZo6VCBuiwrl8uVy7qqkEzpbFjlgiid56TnDO/Pf/7eK8QbyUPM3rSXkWh6g1YLx2Ond8uk3PXvVE8YQDRNWRuQBs07updQf7TAsOzc8WHK6VpnP4TKxrjRm6cWKHvl8TjYt0otzYCRSQV9MilkZPOxwde2GByoAIba1KzG4OlBDt0TnJqugKN3irn63e9vHPtG8F269uQ1Ec2emCOf/Avr9Z94/fzP/PLrf+D1088sy4Wc5e1fe6W2YkhopffG/d834H/90/UuZee3v/2Vx/2N97d39kdj3wqP+4P7/Y2yH7RewMuoI+Vhehdb3zRqd4qjsClVarPQtmau2oS5DXpV/rLmFZ5WBqV6avWU4ijFcRTwfRBA1DBjNsTgRHH0Kucjs/CxhqUDIzBGEo2s22btwKdBzpgvgHTh3kV6CxQctTu6lxOgM5fNmIIZf0TG8Po5euUYsF70xMZYqUehHjvDeQEwvYl69Z2Xc6ih6+Xcd0cfmsBVOVGGbs1oFP1bemvZ/4ueGXBD0SU7jn4UQ/ZlSrOuF663q5ggWdmJs7FpVVl5Wykc+8Hjfmd/bPbZ/LP5CZZn5ybVUxFDec06Y73OlDlNHk76R3foHIVuSL+iDZRL/SHoPj5N0BjujGQJLpgZxqzkPkxAxxOMAzMwOSmN7pRR/PmiiyUDMv2QNrRz3yvFFR5HZ6uwN0cZnoYMx9LloizDdnCpr4S8iLq8H3jvqcdGL/r5sUm67MEsMusEDA149HMaJMMi7aMG8FnE2FQBSo0hILIbcKctxT3NjcIs5J4gw+gTuO207nGt4UIi907HEfPK7fUnPv30C5fbJ+Jyg5ipQw7UtQ2q60bNVRNaO5qIngD+U0byvZf3gZfXnwV6YxEkzrHtO1++fSPlb6e84VxzKE7ibES7/AAOzHdhFGLsrHm6/Xajh85G3z2HBUYB9SmJcZIE9I3aqaPYEMFAbD9BYzsvvaQWl6titFobrEtnWSqSmgytcw8MUctDnDElWM0pmmOIgVorj0dg23ZSDCxLUpObTOtu67vVQbX9r5TOvhdzQC0UY+b8aHkDRpNcLTnCDK5skBPMlfw5HNG5H6onVHNuT5E8a6jwZGy13hjN6oTO2YjimuRlcdj3mM2RM6f4aQZo51wSM42uaa9kQ53jaOybQLwpJzvZLqOfTY1kePY5WqMVo/vKOYbT5A3Hk95uYJmTzG9K0lKMpJBYVsBH1fiumzRB+ajbViy54ftU0RDgkjWEqkNsibP3gROnHWcjZqZvAxvSwawROZ8s2yecGZoF7Np6kn9qRt2YMi3rm8ZTnjIZF62tlHrhOC68v7/x9ubxozHqQT8CBU2fR3dnTxU8RKeYqughx6D9Ly/kJAnT58+f+fTpJ24vL6r51hWYaQbG2uvPdJTZXAs3Gs99zdh5/tzD1Iv833LNnRdR32xO3Ma5aHX2uZPyZ+PIEzHprRqyadl8TgVi7yrWxnA074yyJdT8vGnnjZzmCHZAOdN5ukm/tQ7cisbZgCprclC8/o4Hi6PxBkXMg860DA5DO2UVL9qeKGt4yyQM5t5rdMaJeGoCagY9Z+PsntdtFDqFbkjTpDz8/as1bVAuBBn/BG8F9QfKzNB/2zdpioKZMmmjMFotXpSqIcHz1H04b3bNGOe/K8D9OXm2ZqerEW2jaRLpLYQ87DjnaLFRWoHQiWvA5YXctckNP9jrzixiCYOQPXmkM/9sAOxmPlONHub48HBCSlF0i8XMkS5m1DILHR+I/pnNdr6jmldGZzSZIvGD682HveJjZAs2D3ZngfB80P6eOnMae4xp8mRkjgkqW5E2z2Ot3flcPTcyPqz5WSuOoDgRJQaIBicU0ROMRqqDMpx/77yfTgXg1E+pEdXUIi8r6+XK5Xo5ddoy3ThorRi48kTtZ1PZWqeY/bBzXs6c7o9U5Pn+UdEY48pwUfmOl8iyRmZebCmevGSy6c6WdaXXi/LO1kz0KhSc7/gYwa90MrUN6Rx2x3HAcUgnpmIEam08tgc4R62OegxRVB8H+2Nn33cYjWzT9GC0d5zAHdVl82EXaux9tGYInCssC8jNWgZo0qd0aj3YHu8wHMd+UGtl33dqKSQz2kg941ww86gLMb+yXj5zuf7E9fYT19tnA7T0DPkeid0AAXPpzmn97vW+37/wP/3//pX9sfH7X3/j93/7jbdvX3m8fWPfCr03hu+EZbAMIHrl0dVZMIhiVdvciwWkHEHOO7V2y/1T9Mjo0pC14qi7UNDWpK1uI9gEJbCsmcs18+nzwufPCy+vSQ6c7++UtgtMCqYdjJZ7RsKz0EumVc+xCzxpY3DYsg1DDouqGiqjDeoBrTi8i6S0cMuZl9cLL5+ELotl4emlUo6dVovMmOIAXznqG+19x8eMi5nlkugj8n7nzwiXc9w+vUAOpx6+lsY0AgtRNLJkmaIxx5Mu10dntIHZFtBqO9HyWUR7Z+ZzVXFZvQ9aeE5Ee2scm63rx87xKJStfjgjvcVleYuWki5rmmWFKMfg6TQPk7KnyTSIJtfqpM4K1Q85WMRIOB1eh3MngNZ6ozT5RxyWhV3qk8nzcSLqgyd40fyY2yM/pnV5a0xO+iBqRksb0ByEhXz5xEvzuLiw3j4pWuO6kHNUnm8rXG43ZlzE+5e/cf/2lf0OrRTNiM3N9glEnh9OZebc/9C6NBev8+92fVhOto012G5OUSeTw1k6QQ+MMFllWCE7dRcTpLfM446mS2N8mGgKeJb8QLTlOT8YHZr995mZ6YbH8/Q0cHz/euteJIIL0qPeGuv1mxzRnSeExLqK2nfsmnoeHDrTTDohM7FxumM7lxjdU4pozNt2sG8Hx6Gc0OEGIXqZoaVIWhZiXljywpIvdh0bre5M4Hc0z741vn15sB+7DNGy4zISeZEBmo7vYtdAFM5pOPgcvlj+ugPvhgw8DeSeWdU5x9NE0M34QT09NgVFmar3yraJkh+8Y7F4k9oczsUfArifPr/Q+i5zt8Ub3Tidf/+Exicw3tVQ70U1QLQInJw8y5pYc9bn+hCzWGtjtEbvqttH64xjgrM2ERtd8Ya9KFInO5qZa02vi6MUcweWGNInSdyY5l9W6zhsCvgBnA8f3u68/k+WHrNGsmHWROq9sbgEjjpKG/S92NmgmmXWTzPfdporfu+VU+Dz6yJjsq79pNkw7DTObONs+mdDfepJh/tjbWdNWjRH9pR09meb1qcwQasJNmE+Epz7xey3dKM9g0RrC+sS9V4T65JYc6K3qnODQS0HtewwBktOLMvCy+3Gp0+feH39JEAzaqJ9e3nhenthXRbToRvVeTjTm5qhmpu+LQKMJkjtg+0gznHmybu5dzkz+Pr+6x9MRJ+IzrR/1zSEc0fTxh0sPzCcqF1vnuoGY1QV5sNZp/9sRFtzNh1rxhmvpyHFtDYGK9atwH+2ZFMgLWMkb+hQb5xj/Opth3YY4uDPCYefRbYXUieHKk2EyqH3YAN2Qix6aOywnuiMnz2thyeK+Gy2RKWstH7oPTTV/FG0RavSb7kQCEk6Jdk2G1plm2WrGB+8EDOkReHv3jZCHzyjDpo9QLNgDUaj0Fsay1NTaJ99BlyXaQNNwznRyjZkBd2SslUJg7R6slc49qSQ7sf+BKnDIGaP8wk8Z2OsiZrDdX3eED3RmoAUvYnQRWtcbyvLbSUtSTRJ23jp3fLrdO29U4Pqg5eA25rpf/T66Hj3RIE/rO15oMwmc8zJmWNCYGM8r5syCedGa8WCm4jfhyb0wyRViOD8da5N7d0+mD7MCtXaGqEFau+koD8czLXsXNPuuUm3Jl2MNm5RFmcjer1a4WWHR22dTjl/vrmpDmfFjoVdy81zitrns++ZTr9TZ/q9V0wXnF9Z1sjlElku8clKCINjS6Q1sewL7XKBfhPFdcmi9NdObTL3IWQ60UxDAvvu2PfBvmu9x+Txw1Fq5bE9qL1SDii7GlEV6Wae1RspOnzyhKR1K71FY8bQDhy9KWtw2sZrnQxyHoQgWmNvjWPILKCWg8eAYzvw4ZvpVhUXsORMXxZwmupnFny4kj80opfbZ9bL6/P7DRhBnKGndniQ0/eNc97ff+f/+z/9Dxxb5dvfNt7+tlP2ItfHJjM1H0V1dtGRV085uhr6ffDYmunAnMVqBRqDHdN7HpXHdrAf1YoMTwqdug+O5anFgkDrnj6kt14vVz5/fuHzTzd+/unK9Zb47bd/5/3tzvu9kFfPevXKC03aE6JPRLfSa6YUx/bojEMTp+PQOg9NDVRrjV4UvdALjOa5XiLX68qnTy/8/OtP/PqXn821s2mS+Hhwfx/sexWtLQ2cL5Sysx2duF64vv7C5fpCHxF3PzkIz/0Ex+tPr4QjsW+7HKWPw6YIjRgjy7qyrAvLstieFi3DrdJKox2auglNfk4Dp8Sk9045ily6jb42DUJ6fzaix+OgbIW6y3XXRWt+sFw77w3YczY90vl26sm8YzKadJ458DIhqaWdWa3DDbFSkmheT/bRs4kdTYdiw1Oqor+OVgVW9+mC5OycNQZMjFZLTBD6+0W68+48+/DmbjvUiLru8HFlvWZ8urK+fKa2nZRUyKfkVXj3wuXldjbsv1t+9WiFApTecbWd07l2Hgy663PuwZimi8/zYlLW9P92T71JmyaQZ/XRaEN7jh/0qOZrAmDnZHB+3zl9GTILrE1OsgJDp++AvnXryt0Ozq6RRU5N5hemS3aYWdJps/K9Cw4gw8SUL1wGrOsLIWQGHh8T6+XCy0vl2DrbXfRm5+QqP5zOaoS1G5tNRnWldOpReTw2tsf+wbdAms9lUV2wXC4s60rKKzlpEtfrwbHJXJLh6c2JAXLshPfOcg2sF4E21xui2nbReTV48DDUiNrBd2rbmfpQA2hd60iyZjr3HM1IylgdZ93AeR+Oo/D2dud+P0SFXwRE1eZpzf/DRvTz5xdCaBo6ZGtkFjWi3js1jebY7qweCYdqu9Zn7efI2XO5RC5rthzNplrXdWPXFBqWKXnGhmD1brCmfKePQkqQq1eevK0L5zz7UThKsSxvMVTmGutdZ73r/Uw+OKdnzlkTGixCDdP0PwdPnCwy/wT73WRYhrN5LU0slKMU3P1hn097UK0yiWutGyvwz6+cPD99WqQ5Nzdu1dPYXj4lKcYOO80leQ4Y5oN6MjxMihSdgAR7K7JKUwudRbPxsymiF1CP0zSYMfA+mkEcXC6J6yVzuSxclsy6ZNwYmtp7x/Z45/7+jVZ2liWzLgufP7/yl19/5edffrHIp0RM2eJZ1tOgT/tIO6NXJh0bJ5CvD+mNp046YDX1HBad5oVi5LVWOKc/f/f6sUZ0Fucfpx0feP7eqYP3ky7itNl4b82hTSlhjmrNgMZhTYvuUTPHu9bGKZnwfqIhMgloRj9VqLnMiVKUS26Mz+zQBjr0UOHvfT+b1BiNanf+bPb0zJbBPSNRjqMCO85XpqHRRGqwTdoNTAwOT/oJ1owPum+0XvB9p3ahrjX8g0a0NbZ9FxXEyRxJk0wvIbjXuL03KE1TyTaQENxLc+GGo7bBtinQed93Si300bRIQiDlIE5/XoymMe8xtrAasaowEgXQUGsbw0+dhQ9Tv6F3qYVtk3X/M+9VD8u8B95C3o1EDn7go2J2cg6kLO3OsqhQW9aVfFnI10U0YcszHE3Oe6M+i5h5P53lIZ6B3sP94EidE/IPa/28h1ZU2EHk+qB7i2mZpjzfe148Kiis+HgaBdn6d3M6Ov/+8+t4r3Uv1InzWfEacAuRmw9+6+fzJfvs5+F3OuEaSu9Gt4NEBjIpZdbLhctVroCz0HwG2o+TYgfQW6O6cqKSDizz9GOelzPkXbrJH71CDPgUz/iOELs154pC8UEOve16w1FIi9w2lV0aBDQ1FXSnfoSEK4PhK90VGrsOAx/M9GtQ2kE7KvUYlDIodViuYMP5Llos8SzYu9GEzmfZapExRCs9D08/TRYCMQV6S4rnsOB7BYwflF6YeahjGBqfPM4lgl/0DgsxrsoBzFdSvth7MSBOJ91zLT+LluC/v42X8uDt/X+jbJ33L5X7t0Y7gG5F/zCUP8CMH+jR6XrOSX9HsTnWdI+mJr3VoSiArXIcExUXLKzpnVeDa8tBhXK3/SLq50wrwa9A5Dgib98GX79Vrrd4FsUeR9TDwdQqTfCoD0crMIqdOyZV6HVYIwqj6ZmMIZ0I+JwwhqBGZLgOcRBWT46Zy3Xh5fVKzoGj7hxlJ60rr59fefnpF2oL/O//vn1nImomdWbYN9zAxee+kZKK9MViY2Ky4vMQYt+bskKHsQRiDIwWz320m6xiTLDHibYVgoChbnrOYyuU/Uk7d47n5Ms9i5t4TkT/Pk/w4xltZ1CK5FW5mCGa1tamP+GDOdSc7J4h8q0z3Jy0TUoXVkg+pzlu0utOCmGgVZSt+Z399rzk/o/0RJ0vk4JixVAIpKXTh2I3YvSkHAgRRq/0VnDAsW1Um4of+86xbYqsQfpPfMZH07fO6cVoTKfhcT6nE5jsVtBwrl3vRbudLItzsjMnC2PQvWP0yBjBzlkBzXhp4bDP1IcjpEyIC3jloM8zq9kU3s26b5zH2of9w/3p/57//YdXHJwa9RgXxoC8rMS04IOiHdZ15XZtbLfK9tDZ0aoYNx4vWrrzBGNABe9MxydTrFI0nNBZa+ZpXqDU9Zp5+Xzlens1KZQz/bWlNZwGSU7OunRcnE1RoLfZcMqMbVKWh2nYtN6fwxddrq4Gag5HtJJPsPqsabsM1Jw3cAF3rutzUIFiZ9ZV+dm1OUr1yEH9+1f99dMLitoeYNcsmoeBA3Mm1ecI3p8NgZ5Hc5R3aoCimWniZtP01K5K0tXoo54RKK1x+k8MjIUzpGn1sROqHLLlkm1O+sNEWAYSzQHRhE6fLrsf89FtGmpNL0PWUP2U+s3PbGtz9hRBTai3fObWJPFqozOamDsns8TqL28DpUln/vtXioGXa6afjehsbhUdVGqnukY1vW3oz4HEnIg+KYADRicaEJBy4LJE1ktSIxpM1tNloFfLjNLTZ5mgv5uNKMpyjQb6hTBr1SbDrtrwDtPkKwM80KglcFkXLpeFn3/6xC+//MRf/vKLPCyCXLi9Zdrj3LPBZhDM0dlZr0Eb+GBJDcam0PPgjW3zYTDm5+BObKAfvf5BIxpn4heTOvI8pcbJ0R7IMMN7Tgqv942YHM7pG089qHSW2oC6PQDnmeGERooCq41hmL1c70IWY4Qlw7I61tWxLkIVzoXsBt5ylHJ2pAVyHsqqS842KNOZuefG4FCz4BA1oZQDGYkoOsLhzgJqRrrMA0fNgpAeLUY7BChCcnqk1p1SDqDwI6eu2iv7sZHIMgnyarwWl2lu4XFE8LKSmE6Iotaome8W8nwchfvj4H4/aNXoqaOLwhFElciXxOWympPZdD41GqfRQYcHGnibZOQse/IZlq7/V3EtClCnlMK+bcQUGEPFBENF0Jw8KA/KbMbdbLQdMQezQFd+0WJOXSEpRkTopO5tr5VaFF3hpUTFu0F3g+Zm7ACM7kXP+u76VjSDG/1c17PwGvbz1Co34kl37aNTLXh+OOnIpksiY6Ji52nFzL/zbm6yz4xVbGIgtEyTiWg029nExinqr51SmyFv+m/OQ7TYD9w4G+Sn866t9a5mYxotxZhYlpXr9WqHjabfMaVzo/jYiB5F6yhYEdRlGX1ujLVqc2zt74uHP79CrJBF6240jjrvlTkijk7MK1f3M8tlpbefLbdqkZYOBctrvQ1arbx9+Y3uI0f3hDpwR4VRCFmmKSECvjNcg6Csyok05uTpPaiY7P0sOtvApATDcKqpZcNc250dyk6fyQ7RZUmm9xGyWa1x7qZtnU1DSiuX9cbr7ROX2428XlksozVZk//35keaOH4EXeY//7hk9N6Ro4c4SBFCmNo+J/OyAdSpCRQmUIpj22DboBwCvuhCQr01m2M0+zxyuE5xtsfK/UzJsyw6nIRMS3ZQSiEEOEpj3xv3R8X5nbRXvn7ZeftauL91OZUPDzUwDie3v+A4QmP0wr5ZsVrkAlv1IdUIO3STulVaTROOR9iIb5M6V2ltY7lk+ii0UQVWpsTl5cpPP//Cr3/5C9frhaNsHMdGWq68fv4nbp9+ZT8G/+P/9D/zPUOXGU0AFiAf/QkO5ZxPB8J5b2cW9LbttNLw3Z9FZErJJjNqfKoZ000q3ARCgm/UKCOhYz+oR6VXYyLN5n1qQm0KoUloeOrGPDbFl/5YhbWxoFq3s1rFvA+O5DFjnUkN1josR+Eoh0XlCJiQHn5quQQuuQ/IuEOFS5ifladLainFJg/f31OcAZ0hGo07PrMIU0oMIp1o0gnJY7y3zFoDuSW9SXK4v7yyXt9Zr3eW287wCVzGp2rNhTcgVLTRumt9tLKfZmrWjjLcPB/Med0AAG9ZoC5YdnnrjDoZZyrwnmOVJN1ojKS8EBcZK81wCBcSIS3k9YIPidYlVVhqFWsodOl3nce7QfROGe9+gsN2Jn2gDf94R5m7jRpR5yM+dGJcFHq/XljXTS6npfKyX6lFObTbA7aHMnJzXMx8x0Z46OeuRU6qk5Iokx/LnbYg47x6MSl++Yl9O/j27Z2jvFPbxjTa6c1RkemjC5ogxZjIMVuMXoIR6b3Y81qN2RKtNj1k5liHua56AebuI4NrGgfVMy5jTr7GUEa0mqxEzonrVTKHEAOXy8L1tuJDYjvAHwMZknz/ml9vN+Ki/NfailHdtdeMIb+N3hrBaeIWo9zx18sF52atqPsw6Bxl194AJyMidk/rDt90P7zpYb3R/s6MSAKDeCZI/HGoIw3+NJhyvp+TvKkt/QjOTz15DDPzeNLDVVN6Z81dn/FCz2gasQuk83/mWQbppr05xjoz5AnKPJ4Nn4CkzrJ8v/0J3rMuid4hNogdYpV7vKPjRsN1DAyFKYOb4N3H88cZMpKTZ10D65q4XhK3a2ZZ4hnj0lpX3I0XO2007SGSqT21vdrv5vBpmLTog2mgdexT7x2C7RvRc7tdeL1d+Pz5lU+fbry8XEl5eQ66DOwVy0L0cwGGNjRAFGvnB31EBuCNKdfH+CD1eLIzn/Itm6b+4PUPG1EV4FFdyURUcaf723RtrbWd09ApY0j2sJ6om9MEM0QhV5J6jvOAG97h/bApp01Duzbk5kT2iR5ydlwWx7p41myh2vagdNfMFmaQ18GyDvKiJjRGR62G6Pez/TynSSpQNGmr9cC5SgjKCRUip5s1dRV6QPQzhDhkYDKbumEaEe/w/aA2TQoZch/83qu1xl42hh/Enhg0c+lMLH4hPuL5UHej4EjULB73fhT2Y+O+7by/b5bb1YlBcQbDImp8dKQlsdwWoc6tnS5srQ9GUwivArfBd8dAmYyy4M8fGilNoBWRIcrY9tjJLWpPjU+aUDP69XPC+tRS+ug1FV2SImAu2kRzzky4o7UmKq5TsSQ9VyW4ZKHBUxQ+To3s6A5ff3SsOsVqnKinFXymu5OBzTTwwRrRJ9X5aaIR7G/zh0Z0jIHvmjBO2smkoPj5hycl1xDOuZan3npu3sdRGWBB2uOMfVCz6JlNbeuKNlImJjbN60bhfaKky6Is0VJExZ3TzZTS+Wc0kWiUclCHXNtcTIyRsC7kLJyaHealGMjQvz/BCKnhcsH5nT42hTGXQT0GvQW8yzYRXPHh1a6Lwr/PX0M2OubBvm8Mn9nbIB0NfxTcvsMwx+cc8KECFUYTEIMMQUjBHLLVWCnr1mKE7DkYRj/BfWiunYMPzT4gqkz0ZNMZRT+U1bY3emsGosx1kMjWiL7cPnG5vRByIuZVTeicMtsoYzp0OpuIng3oP6oW5+dyjpAjNDhSJcVB94OBP82FGtZcG9xfC2wP2HcndLY+9/35mRizGJDOyyU/GUgnBSwvntIq7TjYj0MRMJbtVkpjPyrhXmi2/3/5svP2rXJ/7/iBzIpaoBdHK54SByGo4Nv3clKsjqMpimBM86JxAj8OTdQY3QqkzhiV3neO8s5yCQzfGKFxfbnx+fYL159f+Pk//jP/4b/77/n06SeOY+PYH8S08PL6K9fbL9wfB979L/yJ+D+mx0A7J4UpJKM+JWN5aA8tR2HfD9rROKwRHbWTQiY5oeB6zDxlZvTOTE+eOdzSzMsJdvTBcRTLXbQJuk2np/5xvr1XJFGywkHU76FYg6HneuZP+4+NlLfMz+DNMElGS7NpENAogEteIiaBsT3NGxgm3Zka5OBkOOedXGK179STPtjqj/cU7zhpxSF6i3MIZwE3XGYQbYJojqDOjE7oyL844F0iJTWil+ud9XZn2awR9YrqSCGSYmI0gZT12Hncv9Hf1OT2+seJr57Teb3n1NbcPS0iqNdGraJaj2YmgnY9ccP8NyDESF4vXF5eiPkCLjKcIkycDzYZlfavlmprRXXWnGiJCTDUiIaZZf1hWnRuKz+eQMOzsPT2TMWY1cSvF9bLpuauVFrRQEHa5krZN4IPotemi/ZVVHO1pkiRucanvGOaoowRcL6xrIHPP934p3/+id9//8r7/Qul3ql9R1nOg9a0rwdnzrreE4O0cCkueJcQfXfqJDXhyznSu+MoB3upkjSh5ywOgaBTohWj9lCZEZm2snerfx0zeiSGhI8Laxe4knNgvWQutxXnAu7RwXV6Dz+cQ19friw98jg2Ho875ZhZu/ZrbfSq9TkWPadrylyvCzE6Si1yOW7NBgbHae4zvU/GCLTmKQVmqkRwT32nY7LnLD7RN9PxY3Xpc9KpjMmOs3zvGTnUJlvRuROUmVKfScudMr65CgOcNaNYSTp7HWZANaNjgp4DqhoQP+b6HOQUWJZITqL7j6bzXM7of36F4FlzYgyozZpR3/E0HE2st4Gi4+Zk2QZET0adN4M9SciWFM4G9OWWebmtrNYIjzGopbJ7z+4/6PDHkGdGTmaQ5Qgf2BS1Nt6DV6M+G8Im2lQ3hrkPypb2LnC7XXn9dOP19YXXl9mI5vPaTb1r7wNvE15nU+vQdXb34cAPEhrm+RBOivJT+vfcVzilGlMC9/3Xj3NEFYKkA/0U1v95Uzrf5yKcKMo5z8caa0KYKIqpSMLz77TmWLJjvUAKTpPH6nFjUIun2vSvNzcNVo1mMnkn4/xIs2jypvlw55+BMSZVwJzczFho9Hq6aJ7UR6/cujkiHF0BzaKWyx1rfh8XdOBEN80TIs4nvM8wNBGkKwT5e6/WC0d9MELDl8E4qiY5vlLbLpF4O8y+3Qr+Zl/XeSvKqgwyquIdHEM0w+GMcnzo4Y1RhUXwZ7ExJ1rVsuZqm8X30+01hHqCCmCTnjpopbFtO/u2c+wK+U4pMmwiqqmoNUYTFbPpijPdLo6Tiz7MLbN1fZ5SrdB0tmnb4T1as1tjk+Je1UAYLWn0TqyRl++tb+e4XV/0sNraVdOnrMBuT/KkRA4mGhXwLp5TsNPR8JymPlG/53H+1JM5P5+pKWh3Z2O4LAvehfOz7PvBvj81t8GyrWaeV60TqbSNvs+M3b93rn1O12qt3O93vPfnmtDUoZ0NaEpJv++K6XAVSzGRucGgVmVY1pPG3c6D7kcT0fWSSC8ypin1wX585Xg0tnujt0gKN2K4qRlLnjg8bcipbbTBqI3uFV9QimzilS0XcCHhQsLHfDbfw324B/OaGC3cBVHZJ8gwjXV8dfg6oBj2eu4rNrmPAcnhn1OayVAAHaYjQihyFQZRrSOzSLYgbjtgcop4m4KqmVARX6yxz7VaA2v38+M+/N9oRvNy4efP/w+2+0Zyv+P7F979wfYuM7nRncEY+roDHRw+DoJRkYcGazJVsCgbnbWaWIUqCtc8xFSoyWncGfOFaYATbb+PjdZ3HnvnKKITvt/vYjjMsGwnoKA3RewIWGrn+g+G2IcGLVjEi32GGIYV3+6kD0065nqJXG6Jl9eF5ZogNEYYvHz+zK9/+Qu//tN/4i//4T/zyz/993x6/VkNRz3wIbFeXlnWV1yU+dV3XxMJNyRYRbBAnhN5nuDc1GHVqaN0ViBGvGnVRh/U6s91Nl2z7cjVxNQb62HY/nq6ZjgD5wWq0cF1ofVxRCs4n1Ow+fdrq+c+fTrUW0M76XmtD2otzNGFg/NZ8W7m5I0T4Bm1U6nn18Q5fFSkVLD7PZ3ER+/QJ2jjGKGfgN/fv7QejGFjdNhTn2nv7p5SoDlnVKSWmDPCKgLeZ2K6slw+8fJJMT2XzSaetZ5WPq0U9v0hrLlsuBg1fbMCWbFhsxd9TqHnlG+eD38gxM4P1odhi5PhIoZKzpnL7SYX7esrPmR8ECUX5/Eh8vLyidvtRVqvlFXkB8/wgWFU2OA9w1dKDJJIhD+ydP74/tFLNd80wcvLyuvrJ3799Z+IwfII80LOd3K+452jlI1te9N0dupkx7M+7Kf49VnIChAp4KYMxT+lLTbBvN2upvOHURs7ld4Uc+NMnz7TDOTkWi2+a9ck1EPOwdatsUR8xAU9H7PpXBZrZnIiRSUiqNgotCbvE11Cydd6l59Hbw2HztjRNawZlnIwsPiovdFHYNy+f82dyZhG76ez83EUSz8Q6DTaoGXFuAXvqTUY8+xJ6YS59gZPw00xIwaQeqO2aBFQqo9hym6mS/6HOihgZknW1Jt+UrIWdza7MeqaOPfUnM89cO6Ds0acBl4T/NJ5J4nRPO9U6+ladAehD0JoOB/kZWPW9VPiNCeiOccPYIuAh++9lCMarbk22ZTrtuYdim5zlksLU5t+YsUzNnA4mVqhRvRyTfIqWDPrImruTEKYswmHo4amM22ME1CbtUNM3tgiqrf2/eD9fufb2xvv7w/e7xvKqm2UFBn9oNdC9EgTXGadrz1c2bMBHyLefxxwmSmX9/QwiGPItKkPkyQG9T/VfGnGeIJa3gDrU4I2WYc/lm39sBENUQiNNw2Ym7vlPADPUTxWlBvfP5q+zRbsMIEvfQihsBs7KY0xqrkb+JN2G6NQ8FY9o8O+dUb3tANKgMM7ctSD12ya6uZh001MO3naXW591C6krMlGvLX5HrR6iEJ2VI7DaEjOn8jG6JFuOqlaZyM6NLnyA6J+lhA90bjqjoxzGe9WPEkHez3OsN2/f/VRZeBQDsZ2UHggEVfjaDv78c5RN+ndWrFJlD7PcKJuVhvPj2H3gDmpG+e0So1DY9s2vGkihi3s+XuiL3dbB0I5WhXa0sqcA5iG0qJYHveN/bFTjmKRFcPWohVmtvHMYuUsgGYTilyGayuUGvBVkRGa9IpC48yue6IQWoYe/Az11bsX0/G0Qcbz8h1GgPOeT68/nRtxDIHaGvf7O/f74w8I4sfiyVm2nfNPM5EZfSIr+mnc8/xeY6JMSDMWLHxZdb/ncrlyu95YLxfTOjiO46D3zuOxMUY/tQ2nK3W3DExrmFWITROvbs/gdJObn2PweDz47bffuFvhL1rSkwo43zHK0Ko4TZaWnMgpqxEdNokqhXKIhncWgh8Krb9/3V4WLj9deH+/U7/tHPsX3t937t8O2hFI8RM5bsS4WAZcJLiMczveGzUXXd9qzIXHdqceT9t+FyLOMi5nxIefzaZN4LGMp8FTQ+68I7RBqOArsInZMCk4eE/KkSUrB7XWQm31vLeiq84C7Zxhntc2Bk9OyYoZKwLjs0HzZ4MvZ91j3zmOXfcjzkLdf2hC59P9/OXvX5f1hf/yX/6f3N+/saT/jeA7PnxjIPqc65NDYE37mI26DpPiVQD0qniUJQeLD9Bze5TGw3LjZECnDD5v75AdaYlcOuxHY9s6vXtRtJ0K/DJzRveC84NliVb0BUJy4IYh6dLheWu6YnYs2t1OE5FSB659QNy9ihjvBIK8vl74+ZcXfv71lV//8sr1ZWH4wfCDl08/88tf/jO//tN/5pdf/ws///xfuL38fII+cjZeCCFT67cforunWZibVMcJ4mri2GuTy+lRqYcMisZpKOaJXlO3jk3Sbdr5h/s9Cx44G9Pu+gkc6Kq4E9hTQa+ieNSh7E/LcuTDl2WChdXkK6DPb4Whd97clDUtKgZsejPA895B69IxBhmGaMJZ5WRpkWLg9OfXAJZnhzUjvXI25TlmlrTgECPje6/exwmCTTDV21noa6NTRUUfID2naNxzPfVpOFIdkAjhwnr5TB+emC/K/S1iNNVD+932eOdo1SpUo4DGmbsOjJmu/kfwfqB7oH0oEPywc+wDLdaacQxQ9EET5LysXG8vfPr8M7dPPxOXGyndcF5MKecDl/XK9XKz94UlZ0KMQoS8P2VPvUZKDuwpSmtoee62oGyc8g8a0TFrP9Fe1+XCTz/9Qq0H18uF17evfLvduFy+sS5vMDrb/Y23b1F6c9efLBSjmxvUe+qVnRsMGr0HoJ+O+YBJgGQa9/nzJ1LKBBcZtTP6nX1v1KMS7DyUUYqYFP6OZXy2Uwp2uaaT0dHHIKRE7gvyJPGnM+6yTDA2E3wWmDcKvR0MpuGXRY30YOY2O61ulp1bxCZkZtI63u+N+70xRmB8Hh9NAM5Xa5XaD46ys+8b9/vjbEY14LBnvlfFcwQ49s4jNmL1T9B01l5z+j3BMvtvE/w/vQHQ8KWWRhmN0Z81WLDYpxCkty2l2zR6nBOyKQXSGdytPtW0Dzs3JyOvnkOdaI7ePKVMQtrkUWPgcuudVg4oBe+PJ5CLPX/e4dENdm7G3XljgOgs/ZFm0dkwaQ4fJpts6lpj7KSoPcXNhuZ80tV3uG77HNbYJs+6BNYlkBcxUbx3516uZll7aDAX46fjcbBGOhFToBTlWc8m9OuXb8YO2LhbI7rlSI5RU+leyWnqNR0pL1yuO9cXAawhDMUfGiAZPCeYF5gGsPIDKk3DoHNk5B2h8wEcPU8mASBjboqe/1uNaIwKCY5xCuY1XZTzFed4WkLUp74zBDNbMfG4Dh8zufEfqTRCLOYBKzG1Y1lFf2iHox6OViTOdcMzGtQDDg8lQynjRCdOtNGa7/YxUxBDeyu05ukt0ornsFynUqSrmM2HVrO3wleo2szl0VQW+8xjurTj0OINMRNCxrkFuODGBdoFWvhH94E2KrRCc552bBwjWCPaOdrBY3/jKA9K3VWEt6LNr0AbmojWOjeA2YhqEYw+KE1N9m7W6PeczHFVP0utKoyKxQ1M99MUhcT0ooK05hm+/MdGVNPQchpkCIRzc3zCjHeY98eZOc8ELcaMKBlybQvNKMf7wWOil7bIw5zQOkezIm10x7EplL7NRrR2CCvc/ny9vfO83D7pZ7RIhVqKObY5xWxU6T8maoUXnTcIbbGCDxyeMgquCwWa12dOBgfD7P0nNU25es7oKOu6crleuV6vmgTZ4Xm/P5hIpvcQnaP12fjIWKpZwz9pIZOIIOqdASpzaxjSFPTeeX9/P7UjMUZutxs55z80pN0MXTwSv+eczomdqLgH+7GfJjDzevzodb0uvHy60Hrg7b1Qyxv74533bw/K7lniQYmHUXGT6UIzIE3PRM5H7yowezG2wK4Cb2BTRTXLtXWCTWzC1MnN5mVOr4PDJR18DEfoHn8M0zXLLQ8CzgdrJJfT0ZQD073YFGcoA/Os7idgeubhWuZolAxBXZOh2GHSsZvRjne2x0YMEsZ7p3rSndFC81v8eCy6rC/8p//0n3l//w3vKoM3+qjUUinHIWbJcOeUqOFxDZv8GgrcoZskYl00VVRMkifuhemKXqsd2mEyXzoxKyfVhch+eJatUQw8aW0XIPYo7FtRQWSHcV4DaVGBrMtqetzJJjEAE6MKdVvb0sq7c28J0RNsQnC5Zl4/Xfjp51f+6Z9+5p//0y+8fLqB6eFvn37ll1/+Cz//+p95/fyf+PT5P7Jefn6eT08Elv342L39/b5ingpwjt+GrdlWOqMVoHLsB8d2UPZCO5Tnp6U5pSwfvu+Hl801zqHVcNPQwyj68+z6wIoYTlTqabpFhdSU9/w0IrTSoplmsT/pv35OKMwMpxaZ5Z3mGTaxS0YnDkLN6K5B77QikLeWxplpnAYpZaPhmR+End/DtK0xJnJKVpj+YCI6nvKAj81orQ1fGh1Pm41o7wyMqs2Hn7s7Rg84MiEN1osjpIX1+nKa7Ozbg/vbN97fvnGUA7xXO+scBIcLHm8AmOiwTnvBeE6iZvIAzRHCbA7mT/IELnDTksXAxCgn4XW9cnv9xOeffmW9fma5fMaHdIIeOWXL2F7J6UI2qj8GmkYbFAwf2JOiI+LMRXcfV9c8qP/Bawik8A5yXvn86Se8G1yvF97ebtxuN+Ufp4VaD75++Y2cA+VQIzOn2NPUCmCmEsQo8LQPMWUGTdqzGGE4uXU/Ni6XCy+vr1wuN9rR2O4b5ZD+uxa57HgfVaf1yn4I2I95EHMn56gGN0WdqbXT8SSveLCzgTFtdEqizHuXkf/JYAxPa0+zrOADjmgT0WF7+cHUXToPhZlMAI974/Hodr59//RsrZzyruMQSLnvB8cuR26PzrcWHb1XWvMcZeD3hhx5bYW5OWmc02UboDiZQY0RaT3pmZoRi23YVFcNNIxnfWEmabVALeN5FtoeFPycuko65V3noNBbOeuVSW+eXzcEGNYXuCE5yxPUO7mNnEkeo5sUw7xibJuO0dPDjOgxCiWD6eQ7G9fvvZxzxCANcPecILf38lqJrZGbpplPd/MJFvqzEXVWowbnzviclCazys4pkT90njpvk+aODwL2vZkZxRSIWTm1zabKpVa2beftfufbtzfe7xuPxw4DcoqkKJlQcJ2SJnOvk1Lmcr1zuT1M5y0GwEnPd1YvuQloyizTtSaush1/c9D4nAZPRmB/1mrYXvbBUPN7rx83omFleEeMd2LMhJRwvtkGOk7QbB6Us8k8qYHnotUklInAeM4HcjodTlQ1Z+mLZhPlgLw4ltVRDs90sqzFse8Q7oNap0vvzN/Rw9x6o+NYmv8w1XOU4jkOz74Ptl0ubbUdtKrNwnmIyUS3Ubb03mJDvJdwWQ+bLrhsyWfDFfBuIYQL0X8mhs8E9wn6BddXGInf4/8B7N9Z/B0XRENpA/usB6Ud7GXn2/s33rc3tv1BsUZAGVQa2zdDH6YOJdpCnpSHbkgVY9COQdmbPbw67Frtpi3R5FNui50eOi122t6pe+Mwp8ez2dKwm1YlII/hmQE32ji1tN3cDx1zajABCzOqMOfRlONpiKE/Y7z4EZ9alqEKzw0M0X7mGHrv8SmIBpghu8v3F7hzplXypJTJKekQTJkYE9M9tvdolC61nC5EnBPnXQWyUVZsM3cA0Z2TlNM9cfTTdSyEKKdT27h6F21i34o2IS9KosOmp8MKydHx/UlB5JwQcoIw0zBsNNOLeuk/JtffOXce/h+pxM/3k1qbl8zlspJOLUeglsK2qWGSPffKLEZnsfj1y78bbe/v95REzqsVSqvCyMMD56o0RAV6rRSXRRdxidGjGAld10R7TzUHzMIYFZBDdSkPaIpjaaPSa2UkrNHM1tyqWD6qzHN6Vcaf75CiTSvDgLYzqqOUQR+eTkDOhsmMm+zApJ/g1BheDuB1osLmIGi0s9rA1Q67olPwleEatxhI6ZVkz1atjfv9wXC/c5TC9bJyu4q6nXM+kc0P5er39/CUef3pn4k5UdtXOt+YAJv3QXtfEQNCvsWoKG9iqaQgvXg9BtncFjXxmY6gnRhlDGfDITOOGZo4REgZQrLmNkmDpHD3J31W60jFe4ywXAZpNfrT1L3QhMzatGyYtMJZbJPOHe3HauwdKQeWFFmy5/XTlZfXKy+vNz79/Cu//NN/5qdffiHkREiZ9faJl5dfub38ynr9iZBWcFMX9fdN4Y9P1DkRra2qwWQQ9sIRZGU/m8VjN2dWo9jNJq3Gxh53KwaFjJdSLa+NkzrlrHBrYxZpRh3znEwNbw1qo+HMhn8Ck612OZTuB2oEByHG5yQjaMo215rWd7NJrjSAc6+JUU6KI/fTcMg+7DmxHacRz1yvYsC00axxt4IzeIJLNtUwGvM/uubDwJSuoraWDiZTIagR7TOi7bmLPwfBZhIjIyaZ/6SUab1Q686+vbM93tjGneM4uL+/cX//xnZ/Z98fkih0G0l5MDcwmxfMNYHdG01p1GRZTrEVa3ibpASxrJyFwQ8wU7kJOnqCz6zLjZfbT8S8nIV6DJ7oZQaVQvpAu3XnZCcYeO4NHIXnGTAbUfePl/iHR0A0yhgTl8sN72BZMi+3K59eXrgsV9blQjl2/u1f/6sGRwZ5jXOiqgZpDLn+zkEFDhYSsAKNnBeCz5YPWnl72/B+Yc2ZmAPLcmVZVi5Xufavq4dgfiOuSLYyOr2rkUxJBjliec08zYb3g/USWddsDWyzdS5gsvcuidUYBqI1ahmK0PPJTIw8tUA5Ko9NU8yYZFSTs+LXam2UOs0EvVDGH7xaK8pIHYVgVOLgM0sWazEFGQmm5Mkx2JRbzb7kDtOxGWZ839wjxBn5sFbtrvZhhns2xTzp9H7GGGo40xpGL5aGMMb4dANH20A5Gkdv4KqAVKP487Gumv87NO10rVl0nK1LJyp/4A/YDQxHNHA/nvR4Ned+DIYBu9OkKWVFlYQQ+Ol6JX+nPDyBQKcKa6B+JQSvWqyHsxmcJjx/TCuwZxmMSWJylaBG+6Su2s/gPJreesTA8jIEmnTX4J3isWwoGKI/jeKm8dlA9OliJnFyWDcDV9fYA5RysO0P1ZFmOnm/P3i53VivFxm85UhO0v6nlFR7e0/ASRMbPC4GQu1EAx6mkdWseYf55EwZ4syYLWVT8/odvOX7jahzpHCB4EnxYlS5xAgOhug2M0ph2MRLf21YE/rE2O3LcTqzYUJj+7NTTzTdFmMyd0ZbZ6l6ltVTiqccwxom2Dct0HgMK97VgbeqA7pag1T7sABZT6uBcniOw/HYGo+7HP56P/SQx0GO0azdg9EyvIXcazENa67bbIA0WBetjYhjIfgbOf3Cmv6ZHP+C5wJjwRH5r+kL8Pufr7lvuFhO9Lq1xmO/8769c9/ubPvGduzspukrpSrqpSVSTWc0SvBRhiShGwoshLtPs5DWqa4jMyY1F95703taNpJRs8YYNO+ovlJjo6RqsSx2qBplUUWxIVMxnaLz6RY6CypsWqsHnQ+xLrrOKStfK8V4UsPlgJgIfhC9Do/RG73Vp2C/KB7DEwghiVfv9Q799r2+X5uEj9ZAJWLMDNzZrIwBMU49q/6Gnh899M10tUN+7bgP1Jzg1Ry2afhhQdGidkSCl1nH3GNr6WxOE6poE1fRV2R2AGgCSJN2uk/qr9FQx2x8Nd1vrarAGw7ftenps1nO3xTbz43UmZ7rRKgFIi05c71eWVI6TZa2bbPi+MD7zLK4cyKSs8yO/rf/9X/+7rYSQiJFxXYs+cqSL+T4RvSdnc0cUDfoxkLogVYDrQpEmvldvRfaOOi9SH/pNWEcRrlzXRTvPiqMSAgJ5xZivLIsFxWt/cExHmIWVAEA4SrDkpBg1EAv4EbnqJjtf8QRkSPibIQUZcKQvXutQ3TTMwO4P2mTVPrYaX1jsFPbA3xnvb0Y2q7r11rj/X5n2w/u9wefP70apXDI7CPl57TrH1SMMS68fvoLaYlqQsM3e/5E2X6835U5eRTZMAz7et1Dd+xBNNiyDYLd/xlz1ZvAlRBE29X6wgAPNaneO0KCtDpid6QeaAWOXft3DJ4lR+rF9ELaTliWQcoC+NzUHVV/6h9H1xizD9H2nJe+RfuK0Xctr+16lUHEp883Xj5dub1e+fTzX/j5L/89v/6H/471+sJ6vZGWKzGtxHQhhAUf8rPgOfcA+9cfXnFscugYdcjBtk1dvUkTzLWx2h7+BP86OMd2amRtUoiauW6g1wwQn5/rWTRNOrI/6Y2YgZvvldplMgj2OZoa0X07DEjpxCQWjDcXyylDGGaa1mql7o2663PLxbfS44fGM2hPfVLWp8HbMHRcrJFhRjUq9AUoTCaInwC3TVda/35k1rn+jfk0C2dMdzd8ZeDp5jB7SouwieUHNpaiC7KifAyWaW3jG4Nj1960Pe68ff2d929f2Ld3ju1OrbuKLmfFvBMlmqFmc4IXzjv8UPMF89pU5gR8NuFumidaATjN6fZSbE8B7yJLuvBy+8SyXGzi6exkmmwhRVp4K6hxkoZ4++dZo50GfR/kLt79eRL/vZf9ZMQQua5Xlhy5tSutHez7g3VVc3h/f+N2uyDDc9GjB9Md+uMkGD5S+7wXbRAGOWczqvNsjwpuZ8kNXiM5Liz5wrJcaNfCegn0EY05VqldEXbDEhVClASA4dmLeYMYGywlx+Vy5bJewTX2faOVYTpia+6qnoVtVzxNqYpkiSGRYjKWXWffK9t2sG0bF6eIrrxk+i4Dy1o6DJ33/yhHtNeDVnbcqKQAlyXilgROuv0lZZYctTONdv6soj9zrimZ6mmyO1vOYTXiBCXmu5tJ4mTIjTEZbNpfnFdMHmVQjs6+VZzFJeW0qEFC2wLjoFY59RpSZrGeek68e4JnAzU01cwpW2vPYYXpxAe2H3cNJVKILCmRQoDeGK1q/WCNaK8cx2bJG1HGXiGw+J/49L05xWwu7Z8xqIwPn+/pHWF9jfPnezIBn0OXOaRT7/DMk2duRoJ0TO/vhqTfYzIrJrvHmEjemtA4o65iNGmPclJ70yS8OocbDUYluM72kNdDNZPKWiuvb2/cbjeu1yvrdeWyrlxvV27uZkZGAR+DfoDmcS3gW6Mn0bDPKbsNONpMxJiDunn1nOMojx/uJT+ciK7rKz4mai0c5aEiqm30vlleTac5m54ZR/h0LZWc2EbB00rYmsuJnPtp9S/aV8ozWHsKpGGOc2fWpJBBFaSlaINtXRuLRtlqjp2TVfZRdEO9G1Q/9STTFr5a+O6Bo+Jd1xg96rP46fxkiRoniugHISpXakobTtQRGR4EfyHHTyz5L1zSf8S7FecWHIEYvz+hUzrfrnDqUSmtcN/feXu8cd/umuDUSmnVaB3V7Kw1dQkxEA3dHap6maHMcreFUTGt6+R3678LPcOkM3oogn2dWYSMVhi10eKM4DGnwwAuemtKgyGcjpl5Nw05xHmfOX52MIfndQ7Rn0YuMSg7b8wJr9FDo48EFxgu0K0ZHq5SkVOh90FxHz6RQyL5iG/pu40ozKbQCj883kVyWrisV5ZhaO00I2KuH8uRqhU3Kgwv3afRnKVlkXh7ugS3WqnV+PcW9isH5okiaSI6uowPUjTNJ2oecUNxIsM/tZh4nIt4Fz9MBJp933IalkgDGw0tvjLpdVPXOMzWfbrpSWutoiSZw24LQVd4/JHCHowulVOySXZ8FsbfeZWiKVCr0lMGF20NdLwvpoXZ6DXI8KF66qEYkVLMGGsCQKMwEDAyUeC5lsYQQFCbYmd689AzwV9Z8icYjlI0Ae/twT6jY7zjkoPFKhQcCTD6YlczXI/ZUIj+3xq0+uf3MNfSc8pMFw2n6Rkco9D6TkyRT8fDKFW6Pt1FcAd4x3IcpCg7+bYuxsLgBEf48Mvfv0JIXG6/ElKijzvOb4zmaUUmZ2IDN7orohJhSK5p60dVdIqfU12byKmYNFqmf4JLs+ida6gbdVZntn6/uycYGT3ExbEswaZ1pukKyvIbDaPqGwBRJ1NAh5uKAnc21hMcmAyYmCJ5lUPlel3ISyTmQFoWlssr15dfefn0M7dPvxDTwoSnxwi226Pi/A8w7j8u0OcsrJmTYS0VoeRqQmud+0E9zUZGn/b/ExhStMe06Z+ou/ZY0b7+2JhZgeTBJeVOBws09x5qLfhaqF0Fmihx2p/3rQgAq52YmhU3A2LAm9FUN6prOco5Ra8WNzK6zIB6HXTf6XTlbVvszJm77Kwos9iYkILMrFynY1mHOAOorYpoXYZ0H5vvP1/ws5ieQBXmtOuqnrthua7OgfMCwefsb5qjOLtWLjxBdO+HXE/d04G5loN67NRDVMneP2SDO05J1Kx4phnjxz1xjGFxFM9nh+CUm+sdePDJ28TD8v2czr7gxKZJIbHEhTWvAh6CZzYi6rcVhHF+X4c5HotOHJyK65OV+6EJsb74v/Gaf2DgnfTcicBggdFY1/VksHz+/Jnr9ULOkbKXEwSY1O9JEZ0N0/kkDY/sVLSXxZBwLlDL4P6+c7sWjqORwizaZUoTUsZHT6kaOhxFEos2huWVR3LO1mA2jm2w741jL+TseXlBVG0vynavzu6t6tL90dg3+STUOlQzuWDNZKQ3OVcfhzw3xuhW7yrHu9aua+ZVD3p/wfl8Tpb+/tV7pbcDRse7QYqqC5SxnZQPuWSbYso7oTaZM81s2qdJ0axXT3MOunM01z+s04+Mrnbu308ds38OGqY8qxnzcQhMOpvGDs4FBoqZ03UwCjsTeBjMgmWC4c2ZP8FwBKJ5zvgTzJo6Tg9KlshZBkOt0p1cmgXidWqvir0ZDR8jMVUxgj7/mbUFc3Dmz38ZGDhz0m8n6GT/47CJ84eYm/FxD5h/tPM8IeYfegKJY24gODvX7DyYMrag2kRDm0ReE2mRrExacEcbqpF8U9oIvTJ6wVMpCgsgRc/9unJZF0ZvHPvO4/Hgul05Xq4MBilnLtduR6LDhSADOu8geNOMDqubdW167/geznqHD/ubc44l5x/uJt9tRB3w06d/Jq2K0IgxsKyZffvCvv1OOTYKBRu5QZcE2xnCMYweO9x0mtXC9cGoumGQsmNZHHmZjShM5xo1m53jGBwH1Cq6qmSHbj4/z6mOVzM6UVTvIWcJ88OkADtlCTq5j4Ar4IoQ9GCbxOKI2RGzmldthoNSBo/HIFn0jHcdH9VUuOlyaPlgISRCMHpuuBHj64dGNOL99wXSrVXKflcWaDvYa2GvB3V0xsl709TTD2e24jDtz/uo1GbFmSHQEhTOh0J6qedeZ/Ta/hRdS4j9DBUefVDqcbojOis61awLWQtR1GVN1GwsT+eYqMu0GDfAYjo1enPXNODXrNajTT9l2DMzPB3WUFswsnee5BTp4SjgNRGNIZN8xk+6a6v4Vn+4yKNRVDDaDTjWfCXHhRAlDg8hMl2Fj6Nw33Yej43DHXhXLDrBncXAPFBba9a0HdTiKUEN7XQsnlSZYZvV1Hy69nTUHdi1mtMCvInIAbyZJiTA88xZdRyl4geEmE2Y/sLnn37m0+efcczJYqMcu8w4mprA++Ng27TBpxh5f3vjy5cvoi3bQdaaiujeO8uSmcXLXvbzeWmtfneN//77X9n6N/b9C9v2Rm0V6IQ0CFlr+ZwDNU29mmuUbs7JUw5gTIoQhAhLdzERTGl9nJMupLdBr45ePZ6FHF9wPnAcT4r+8TjYtx1KZRwHOQbq0SmHaKS1OqpFubRacE761NanodWQbnxokjvzTr2TPGA2z90NA31sndDZtzvvb9/48vtvHBXSuhOXjZAyMWc1b709aekO5E7x355YeJ9I6WccmXYVaHI8Eo+vnftlY38UcO/0zkmhHwMNhGzCNUGiXvWMTBRXEx7NoM8t1dwpe++M6hmbCu79UGM++qAVKMegHPIISAvEDDE5QtLPV8qgHJVjH2xbZ986vXoLKA/nvqGaYOoUndgUaYjVEKMmAD5JR4ej9spRHuzHnW17Z98eXG6fdc9ctOLACoMPkyrOYn22Sz9+ldY4WqPRFUkWJ8jlzADOnWdkd11Gejat0mNte/zMeAxzwjmnpHp91HbOHGjnHSlJV5mijC2i9zJ3Kbv2o1aNyQH16DgOWmkqcIwhE6IZhVlG37DipplbubIehwF/9k7PP6/CUz+PEHJVZT4F0pJZ14WY02mE2N1AEUv9nCaMblE4Rfmorf/63estjWg1p8+mPXSef8Omr/NX26vOQnA+T7MZBPveldYOatnptRKczJKWnLmsK2XPlPLQ1xkTcMc64nFO+oJNqadr7uzw+hg407idU22tYpGUTRcaUmK9XLncXnl5/czL9YXLsrKEIO17O3AtEnwmnUZmxjayxn8WsyC6egyeNhJriOQQjWVkbAcDiP/bO8vH5lW/fgRGJkvOh0iK2XKrL7y83AzokiP2SQ91WPFqdH3/dN+URGdmhUdK7ez1YN8L7+8Pvn19o5bK+/s7+7HRRyVHWC+Bi18ZY7Wpsnw18pJ4edG0p1cBHeVw7I/BtjXK0VnXg5Q3YlQzV7s7taQwKMfGt68HrQ1z4150Dg9vzryFbd+ptQgozRdJXFLW1DQ5LovMj9b1M+v6WdPf9n167mwIBfy0069Cq9ayKIMS1cOcnlXROFur1jDO7NtAa9MsTy7eU1s9zI1edNBnVuoEnATKTvmb/+BrZXW2A4dMmYY59rYuE7lGYNjwIpkfQPSqgVo9KMdOLbu5CT9zWemD7hTXhZs0dXUb3kerGRd7R7orduYKxBynA6w+q+ucenjGdy+39gXzbJj1mR1w9nx9mJZO0OmkwA9Do84v9QRorRm3J4bTWvtElj++vX3f2RjzYWgTWdbOpWpdXS4Ly5IJUXRbmdA5+1kFyg8GyUD7JSfWnLnkhGdwbJsipLrkFj4EluuFS73hUpJfgBdwJ7nKlFsaqKkpDVP3O5hN+zNxwzH3wO+/fjARdXz+/E9crp/UiKZAXiJvb4E3V7Qg+4wAgOHEv3fjeXNHlxOuDIMMIbUDIcRBSrCY/nNZNIXsXQVfbZpc7rtjP6A066nMWENn1Qd6oe+EyIfN3xGT3MO8IaDeS1t2LgKq6LChE5LCzGNWYZSyTkJZWHdKhfEY1AxL6qQ8zBo94L3oerhgzehsRFc1ouFFiJc1ohK5//lVW2E/7hIgl52tHkI33BAKYW8X1IROq+UxFOg+2nkOnvdwUpymcNr7aaXiz0ZvmgZEN3WamgrmrBiMbXPse7dppq5jjJ5sVuYhSdupqBU0vZi5pLVbYLT0ANPFddL4zrwhN6l9yt3zH7QxDk6j3F4HVDk6xxzM7VQUzg4kn4k+S5t6KFIktj+l/dnVMWMBQ/daFW9+XVY9qOvK5XIh5WwxJ4X740H8+o3RvyFb+EgLlZwTy6LnZFJiStV0qxRHCZ5QhBjFqRWzRvREH23Db64hKGs2ot5oIR6LcFJ95cO5AWMNaquN0jrbttPabEQvXK8vfPr8C3/5yz8BnlbVVG+Pdx73dx7bO2U72PZ3GZUgzYK0s9kMGDQpmNScGAN9XBUBRJOJwmGRLj9qRH/7Kzw6o++McdfkloaPg5i1gboh7oFztqm6gzJ2jl61bw8dujJUCmRbf5qGdaMwTu22FeoVRUGRSfFKCJkjO/bkcGPneLzx7Uuj7ZW2HyzzPvYhbVDTgTqOzoZs+EUNPp562w4xruSZaeaaDp5RjZpemfb1YTicGYLsjzvvb1+J6Xf2MgjLRlo31suN9XplyZnRuwqMMNfMnF5o/Txt0v9ujTs1ot5fwAWiv1AejvvLnbfLF97Su0xlxmAasSk/tZ/+DtIVOf277ZyT0TCMcaFJhlFSmfFandrgqANc1xS4qhEVhXKQV+lHY1Rs17Lqx3n/NtgfakDv7437vdObx/WgiUCCnKS3gc7pbjnD552aUO+C0XajDBcsImvfpfs79ncD2Z4arTH3TJuUwbzeH1rQfwAClC7gpCOdnzfkPjjPjCmgi/rmfcO7Tv/4ZYMHc1EOaTJPTFduBhtii4wnzffMn3TklIwmn1mydNHHfuD2iHM7HDu97fQO1Rx7BcraPvyhIY0pyfXSwaT/yyBN3ytZDmmM04jrg6O4FSatC5icBil5Say3lbxkTQX7fGZ5av2HpqH1KFSLvaj9+3vK1CPNJrT1hv+oe2c2of05fTknb7PQe04tnAFp9dg59o1RGwFHjpE1L1zWlf2ReYRgDehTXzfXihpRTwrT68Cmfmas18bA1SYd3Dywx5y62EQpSst2uShv+PPrz7zcXrmuF5aUlFveDlwT4JB9VOk6nkZV3j/XMpiGNAQanSVEsg+kYO7S/llrPz0gvv/6+Ft/LOifBf5ADWRMHxvRqwHKZuhirqiDIalNNyfbOCmekZQNbO2B0QKPTRmfx75zvz/4+vUb5dh5f3/n2Dd8KIQYWS+BvGaLIgsctXKUAx88t9uFlBaKK/QeqIfj2OBx73jfyXmXJCh77S/e4ZeIZ2HQOfaNt28HDHh5vZDjSopiUbTWOYoo7300LpfIeo1cLqudpeZHMVZCvPLp8194/fQXgs/89V/EpvnuGp9N6FnoeabpluYUz/1vjEgpWnvH4RQdM55mXnIBz+Qs2YqYW14sp+Cf6zeKwttqpVGfn2WeBV11PnBqGRmdUSX1qM1Ru6M0k1GESEwLKWWWlFhyJAXH/niX7nrWNs06XK/ntbfZ4Nhgow3kDRCJXrKqGBdSSjL7tJWoz9lt77J+QWUMhvz8YIFr6gdWe/JsRmft/KSSz78yPvSqz7P59M05G9X5F2Yz+vGB+uCwbnIv0ejn19D3CSmQXebSO5frynpZyEsiRH2mbs+gs/11+jl4p2dqzZmrTdFrbzz2jbZZXOKQa/T10ytHbYTWIQ7Cuc8ZcGRN9/QsEDgxzt+HyQRRvzH7jx+9fqARhSVduKwv0lnR8L7jKPS2GfVN04Ex5KLajcrIpLIa9aQ7f1JFnX+ic0JZVbTMfDNRcyRYx1BYUQzU4HykL51DQm/TkWg6U6Nohencaw1XrVW0VKcCJmXHOiK9WTGUIKVOitqMRnOmn7CN0kwFgkd2xcFQC5viCh01W/LRmA5jT3TDsvF+sMMf5fj/E/dnXXIc2Z4v9ts2+BRDDgDIYlWfvtLS9/8geteD3rR0paXuvudUkQQyI8LdbdDD3uYeCSRAVvVpyauCmYiM0dzcbA//gZf8hWSY9jXnrQ0uTuFMOAjFb4tRs1tpUs+bP5nhtlvQoxNeNix6m/06dfQixS4WHxyh10Sz1kqVSHXZkng9x10f6UeVMnfGGa3ZKtlNJfnuXDURmw2+0D6HzV0VSIG8qqk1ViHNxexYGjG8aFJN1verTru5uZgqM6ZOm+/4efV7q41+Hu0+WsXYBYZh5DBNDMNA3/eEEFjWhLCQcqXrVrq4GN9W57iTJkCkfM1cwEneK0GmFIk4xJJfMSVIlQmv2/m750m0wkK1BXBfyJrokfJOWrekdFrAWZeMc7OhGbotONwWPJuzOnaaJC2myEfBHq8dnCSZjEq3l5I3ZdNSA362ubk45vmmfBqr3L53vF5+Iy1XqCu1LtRytSp20S5QEHzRuainpBI66NIdbLSoopuS/tm69GLTad9cGheukpbCTOL1yxXvv+B94DrfuM1aCaxVYXjK/8msmCBSaVZGWgjLJi6hvLaVaklpS+S6qIqJoYp2AOt+K8WSYwEymoC4bLZRV663LxQRQs0UEfqxpx86jseJaRoZh2ErCtCuHWlX8ffmt4qn4SD6AzUmuu5E1x/px6Mmu+PBBHMUMpqrXTfsgymCdsxqWz8V3VKKijylpHEDaLW8tCppo+WJWGe6ktdKWlVURpyQkxYgKyjMfxOw0wS33m909rl80BPujBvcBE/aWlsNFpoNkrUmR1e8FQtB3ErlSi6v5Hwl5xlfFFkgpnrbks4tYbkf1++OOFqYI1CrJ1ji6Ux5Nqe8PbdYUudKVThotWAleiQ2HlDjdGmH1zfupjia9VJOCVJLtkB8q8a3IOFrX02rbNvvZWuuV02Ia7HutXn+5YoLrciqAjBiHf1ondMQGozUrBGcIKXgrEu6dQ6cw0eF8PsubIFS0pb89n4b0irUzV/zu4mRtADvrgt438BoMYdB3BrMLTgMuuxUNdT+7qQqIqgGXA2QNQHqvHbi77leLeFrgaO2MxX+utmQYN2+YteqQRbFEsBmeWUP0J3ZO0KMdH3P8XDkw/MzHz7+zIcPP/Px4yfOD8967Q69+RFGerOPoe2Dd4Gv2HXRxIwyhT6ovUN0jSritkT4j2c55sP6dTyva3TFQVUHgb4bzCN7UGXlOJsomnZ4glee94oK7dHOpRMT+OmIoaPmQMlWcF49bhVKWbnNr5Ry4za/MK8XonXtnFPE1jiOKkC4LLhbsERZ4b2lOILv6DuYQ0ZQJe95TlwuN2LWc6S2ack85CuXy8r1mokhEsPI8fBA7ATxmVJWgg/alQSGseMwdQzjSN9N2h2VHqFnGM48Pv3E4+MnxEV++/f/l17PXx1d7EF69W32KlzWlKRb8cdZXNFiGYXf2/WNMx2Mdr16SzjdNtalWMe8IcFM2brLmXVZWFcVGAqG/NsVdcE7pXlpXK7UjV1QznYo8Xsy5QUXVAm2i149xBdHWlUkL4s2YFo53jvROmFT8XaaiMag38lbgrPBkAU28a8qeAxmTaCJCm0Cad+d4F8lTRt0wm0/tw4od0loSy7bDtLeZluU3JZ86sOsM3pXMGqCTlvyK20f1jjeCYhxfePmL+qNb70tt7a2efAQvXCYek7HgdNhYhp6+hioi6ECUsKvK35dWFLShL9WUounpWXvbF3x+1vLPbbk8+uhfdMk+/b4LkdUbVkCfTcCD4hkSp7JaaYU5b7Myw0vyXw0rQIXGiSnbN0xI4MY/0GhKWtqXLStCa1VbOfwYh0DMLXXahdV3eaIVs7U/0aTUE1EW9XPuQavbRX4po+vfNNROmIM1OpwPmt12me8WxFs87YLmaLdXnGQkvmcuqZZqkI9VarKbKcZH66kfFO+W52RGqnSbRYe7x3LPPN5/V15CO1CssnYRICiRDvJOvmXRf20YCGXgiuVWmXbWFQdMauiLjT7L010SlVell0sNQjVpLNdEHyvY9W5CLFQi3IVFfbcWQXGb9H/po5oG5QTQXxQ9UVpfKs2Ga1TBarqWoS0Vm639S7xb9YCAtXhqiVwuiIpL6FUlrIy11kvGoEgaqHhyhapf/eoDRZlFa4YtRN6OBwIMSK4zRcrl10hLISIDyuyLtY103EGtgQm3fu6lla0AMSjnmPKF+m6DkR2pbOcFUKT8lbM0RET4xBpl8e7gHMdKpzToIgNCg8x3jbF4VJhXmZeL69Q9TutS+JyvXK5XrnebszzzLomQlD+TB8HhTiaqNKy3iirQjxU8bEwz7N6p1JVWn5dtgD2vWNePnNbfldYa5rVf61qYQuDF4WoG1q1oGioOofyEGmKrg3mWazjIqVQtw6/ISdMVTUXqDmR1xtr+pXPL1ec8+YvmJjXKz4sTAeF3seoVeaS0sbxSU0UK9nmXiuCqgBuwgUVtEvuqQFKTqoUXdo1b91CU9gs1bpMFFJZWNMrLnvIjkjPMASenk58/PSBp6cHjscjwzCY2l27mLjLwN8/dIVytKKZc5EQe7p+YpxOnI6P1FKZbxdutwsiiWLd5FKrWRoILgRNSJz6qDmvwjkpVWRRxdKCrtMp698kQHAg5rMsrmxFy5QrbjX+7yLEtZKTrunuDjXTdaLQ9gVbx3Qddt7UzaMQg65VpTpKdqSkHpakzLxkwm2hHwdcODCMga6r+HBD5IVSX0jpi0LZ3IBz8S5430fxTx0CwzRA8tsp2m4F0rpu8UyuBV+SzSUL4oLH9Zqk7YIUweC23YZoAVgXtc7JxfZD33ijxTq/em048crNXkwcqewKmK0w2KCjW/BQKxTbeyWrfUgIhC6aPbd9ZoOLq4BG2IU0vMeVQsyZzuxUqu3nznxom+Cdx+NsPRHzYy6lqrNRUAN3ajUO5LdHQ9J4gxIHf5dY7dXqTYmyFa6DF20+2+MbPNWJUKKQe1hnCLIi9cY1gJDJWXmhrVPmq+imKYJilXa/dDCfRBtz8X4TgMJp57k6Q3IUtg6rSMUHR99HzucTP/30ib/99b/w8dPPfPj4M6fTgzoZeIV6Bh8JLmzlZT03Os9EgKpxRDB11Sx7IhqCehz7NkbbfvjDab4fW9xtwQXY/PKa5PWVYZiIUQui+nfdT32IasMkQiqVah36XDzOMP+KvtKOaMmeXAPDGliLx/lMyhdKqdzmF5b1Va+t7CilswSsI4aBnJRVvqbEXBU+W5KniyOn80BKmet1piwqwHWbC6UaIsGrZQx1Zl0KL59nllshHiLDcObh4SM+FiozKd22PRwpTFPPdOhVuCke6Psj4/DEOD5xOn7g8fmTJqI4/u//t//OPH+biI7TRFfRIqnps7SkJcamqbF78eZc1bf5um7q9tpdDpuooDfV1KYKXNGGUoyeWjtLaFVV+DbfmG8KRe9MIEdtnFRvJaVswkutKLgjZ3TnKZZrCZV1g/NqhclbF7sQomq7vCn0OKw7raI5za8a28tUQwNySRqflEStyg9VAS9FazSOvYpM2hrzvXXd4o/2O9YMcHZRtebC2ytCGz5vrhu5KxNvySi2VsAuniZ3P2V7qL5Eu8DufsJObzMxVR9aB1LXHu8U+hxM4X/oPE+nkafTxMNpYhx6oveslthu6I5NWI5Ntbjmog3Jhnq6S0S1WXKXhLomAqcolPvY5HuCc/CDRFQ7k4EuDFY9rKR0Y12vrOnGbb7g5y+44mj2KWrHoe3wNSn8xCXtcJasFigi2hlPJjwiQPSO6CsSdQC9czhJFmvJhu+utW1+5lUXlAcavGxBt4rFBBU9cFhlXCEJquioFVw1sx3QFu6KyEplgWom9VvFWLmv2mWTtzcRtBFYVW1PVlJZ8OlGyjdKXch1QWpS+fy34tNvjmVdeXl90apyjLgYtsDDNdjs5umqc9L72biBFoxb8tU6berrVLckCtmFVprZuRZonJpzeqs8RZCouXBwHmK0wVfOWAyB0IWN99QUdlsSIs1SwGnC5X3zgGyLQNmgjzULxWmlkZsusirmYCqhttFu6mGGM282HmtZWXMi16KCPgJevEKNW9T3naOUCm63kVBupJqHizjjRGXWtSUjGsC1zkQbz5yLcRgb1DnbAq2BerUkRTf4AKJc4dgNDOMIaDCSc4ZZBatUYRVLRK3DjcLAnUSc6O+1Kr8thkG9f7NWKr2PhmbQTX9eZl5fXwBPyQrLu16vXK9XbvNt44+1oHccJ63sGoeklERKiy48ljQvq3KBq3m/anex0Lnu3UV+WV+4lV9VAG2eyWkleE04NCguiHE9TTNVVWI7r0WhLJSkKsNNNKWwQ1HedJGrFmK0m5lZyszL66yv69i54C4T4krshOAhmPdxXfQ7rWsyrm+2TdDgqM0yCpv3gMjKuolHZe6tcGz7UN68QDUsXKWS60LKF3wO+BpBEsMYeHg88+H5kfP5zDQdiCHq+7XkxtoR35/htmlunb6ADz1df2CczhzNA9Y5z+vrbzinsLO8QnIaPOdVq90Nouu9bnreq6WYxZasq26ahdbtq3hbc3YudKV4XUc0GVU7l2UWYq98LHFVO7gRuh76VQyupl+6lmqfIRM7tTLoohgSwZm+QLY5WVWUbp5Rr7+RrnOEWBB3pdQXSv5CSl8IucdJ3Ebse+P5o0MQhmlEStxepSnS1qxaBHq+Cz4nXA74WjfKQogBP0SCFfk2MTCD2qpiuK2fVNa8wsqOMCm6+RfrLibrTGgxZed264pi3UAXNjieCDQYILBd6yJC6CL92LeWoJ4L9Jrbk0Fv3SAVrOgsqPEpWcGqEOKeZEto6puFNSUkQcqC5IIW8t2GcnPhO4moGJTY/PYaRLvtF019Vq1otNsefCtay/48C1SdBSilCClALTfWxVtBtVJqUgSFQPCOIh5K1SRUWgNEVclqzeRS1CaqZPXqC0GL5gaBrib6gub+YAF0DCoUdzweeH564uefP/Hxo96OxzMNuifilG+5Xek2F1unRawzxB6Y5pq1G2r0Io257kSV/mDf3Ob7my5HK/o6rOeuGg7i6PvWEe3xPpBE7YkQpVQhglsr1Xj9rXinMHyn639R0bkuC13v6bOz8b2RaiLlC7ncTNCvt4TeEVwkhp5ZCrWqVVJZtMgbnDPv1cB8m3l5eTVFc1P5FyFUT7EO6rpWlrlwvSTSqqq+06i0F+8Ta3o1TZOVnFfEZabDwHQYGIYDQzwxDo88nH/h8fEXHh9+5vHpA4+PH7SB4P+v747zOE5U8QoZX5sAUrUupsK4XeNl16LFwLWyLPq4EDwx9nSd8cdj2DpXW5WMqh3q2CybNEapFcJVk3FQXYgYoxWzs+2PmdVrAV73I0UyqNaZcsC9ls10TWzq/LVQqwdZtRlk/pnirPFzJ26k1KdoKC7d30UC6lhhr5mNBCoVPLiqAj/BUCXeexZTCk9W/P7OzGbviIpdTwbJZUelSbte79S431wKW/IpW814S0b1Rbdz0JAI95fe3gltL1zfvLa3RDR2GiM1n/KS9VqPwdOHQN95pqHj4TTycJ44TT1D321idrug2v0QtM9tarjtvG46EA2O25qItp/4to+gE6Du3dIftUS/m4huSrficc6sD7oj0/jIsl6Yly+saTC8eduMtENZqyMmWJMJDyU1/dWEvynr6sakmX2DstjiaptkiJ6+09XOOzasuICaEgdwAcS6bqV4luJxyRkHEd3k7xPVoARn8AYh2VV975PM4EE6U68KmKm0mtIG4320zh2bdUQAEs2VTzct3bgaGf97R4NIeJtAm5jDBouy2x3EUiGhWq1uiejGMfEecfv7FsPzW0NGKzxglWPtLvjocEEXnJRXnEMl/xsxGYU/LGllLVYoaBBYsyAQ6/40KWvXWrBWYa+26QreoNrKrSiFTYlxgxRZUBE6IYoQs3a+pVa1uKmVzpKOXAVfHa6qWqBrxvD1/cWm1sq8LlpwMWgL4vCvLxYQtABOg7h1XZX3aZ2/NSXjP6nUeFkMBq6Douq6ayUlaJBcb13QGHu6vqfrVHBJ+Z3JOqBWeKn79adBlHIP21jVooI8etE7xCqNORfE5kVJypNlgdv1Zt/KU4t2lOd5Zlm1agq6qcUYiV1H33cmkmQyKtI42fss3njHd8qHtRaFT78z1X2AQN0KESmlrVrfIIdOaiujqg6NWHRnMBtnASo4g3CyGWfnZj+Ui8L5V+XiVZPTzlXFc5wXJJrZdAd91IqrqlJ6E65SefqtoOKrJsJFrYmUZ2aq1fYezjn7t/rMUZtKtELttjUoNh8whSoimow6X+iHwOk0cjzqbZxGS0IM1l8t+/yTh+59Du96ajgwjR/IT4ngBw6Hnziff+X15Vcur//g9fUfXC8v3K4Xbtcr19eZy+vCMmft+qCcKWQl16SdMa/Kt4N5IMaldUSVGhE6Pe8lqzeyi5hFlW5sORfmWzWevrO5XOh6TUpdqHRDZZlhnRVd0HeevlfBDW8ImlKEjO4t3ldip+cnxGqerasGolm50K+X3+gvI/30xJhe6fKR4iatS+oKcTeC9z9/PNjn04kVsztpitlrYqVSHZrIeYFgfsdSN/5ng6z6TsXvNLFrcFc7/2IBAUZjseTUmULxVtmuCpGrBVI2pEXJFl+I6T501mlt0Y128KRke0wgxMgwDQzTQD8N+hnuioG1auLkxRt3WykbCISuox8HhRAXFSDp+45+6DdEjXhvHaiZ2zLjUtqKlVs3GXDyfiLa9k1ndJQGs/XSxL00qHzjfQ1bsTkZdSWXskFpsWQ/p8KSK6lCFgc+4GNP7Ed6wzTXkg0+bBy+nBQNUVUUSi2HFNmzCYTuV+Ye1NWqXFLv6PuecZo4Hg90MZLTysuXL/TdoMWoUuj7gb4fLYHW8XlTQrmH/Nle0gq5tYkTbYnzV1P+btz/1CFtTZK7u9zWAR2GkYeHJ3766WdKzvz6j99I6VXjRt128WGvdzsTnwyxebqL+u6uimDJ5Upl0f0karyjaveVGL0KA1nH2LkOamCZK18+37hcLpuOwDQU/DEydJ7pGHhKE+Nc8WHFhVVpHwb1z6lu5zHEjungOJ9OnE4nzucTlZnbbaFU1VMZS4/zcDgoN/Z0fOY4feB0+MT59DPn8184HT8yHU70/dH27ffXGBU4LJvavve7D7jy/jpi7KzIpJ+373Z6kvpTe6i753izWnFOC3iNP+pdNQVcRVqpc4EWBCqFLup1W3JhjXuRXulhzTPd0DIFUhG64uhRl4CUC7ks5LwyL7MWztNiookzpSxUK6DLpifS9s1gCaHtRdJs3rgrCBcgs1nWSNNW0PWzyqKJrCS+y1lsDQO9Qt8koE0ArF3Be7JpKdl9UrrVdO6ea4nm27/vl9F2//a+d5eViN2v/3TeMY4d5/OJ56dHLi83bq9XbtcZhwqADl1g6CPTEBlG9QWtFrO2pmDoIkMM9NPEcDgwHSYGW6Nj9BR2jm1jEYB1Um2d3Sxm/B4HVuMxt/XkXxAr4m4zM2VYl+m6I+N408rP+hupjKS8Qs2IpA0iC5p8pqRQVv1pfmAWhELBUSyR0iDEOaeBaRWC83QhUAd9za53ZgOiyU+Imoj6wBYMl6J+o7U4q6irPUwIOomj4dLVJ7J1LoyHVLV7krImw76rBOxCaP6mfjdcbuItzdZCvdEsuZaiQUA10++acUXhu99rTztTKdMKuApOKC/UWSDstqqMvvNd0hmCvn5tHdEG4ZQtiWjS9q0z4Yom6T5oYt0WfOfVby7lxSqelnhs3aZyp7JWNwEZTfpsAxK3JTFUFSkpJtCRczHhBk+TfZam+loqibKLX3j1dO0GT3RCLBBVtWrbTByOIF6Vf3NAiqdmZxxfvlv1qrVym+dtw3TObwHb5XpDecXFeMpmQ7OZWzeTeeWjpJKpxu1oMIuSFX6ekp0jiTjXEbuJcRzpu96UJj01Ja0XFg3gdS23AMo1PmjEuaB/zy2Z04KObpItkbeqpOiYrutKLglxWkRQAR1vPmELaV21gOAUhq1iJ2pmbCARctb5fm96Dpq4Nu/QkBMpeGqtrNfl3XkeO0cxOxURDcByBSkq0KIVPn35KmVjWe88Ew2CFQ4ohGroCCvNLzWpjYSpIC9L42YVqKKmUhXw5n/loesc08EzjjYfq1OYEZ5avRbX1kpagRKoNVpSptXXZkyvMNzW2X47Tm1+hag+uSEGZAvAxM7NivOVaYo8PBw4nQ8cppFhUDXAtmPtgeaekP6grqvvLx5ch4sOd/B03YHT8Sfm2+/cLr9zvfzG5fXvvF7+zsuXX/n8+698+fIbL59f6YcL19fZOvzFrAGydikbRDYonL+bDDrVKqhStBgoWpBZE/ibfXapm+ft7aYKm8HrWtAPWUXshsIwKgRMIbwqOhWCVyEYMWGkbESOqkmF2nlp17rrKrED5xK5LizLjevthc8vQhgGhuPvnNYXcnkgVLM3uQ+ovzO27463CA8PZ5LAsizM88w8z6pimJS7VEQ7zAQHJrgWol5vreioCtx+42NtkNyt24/NhQ0MSjX4WzXYmwpqGW1goxa87b72Q88wDhY4mFhYSto9toSoH3qGaWSYRrqxv+uY7e/VghFxzYKrw3vZCk652Y2VbMJu2p1RxXWFDjuvsMrVO0tc9dptCdH3ghjr9++3u8+iHH23fd6Wm9WKcaF1zkgxUbwW+FVNJvOaua2FOUOqDnyHH0ZiWlUBNEal7ZRKNYGjdb5Rc7biolmftbPVEuLGY7bz1fy2fXR0MTIaPeR0PBFC4Ha98vf/+I9NwGmZZx4fngjOqyaGc6at0lZsq1e1va9YImrB4x47361TNrF2HvGPjnZS3p4JaArAtjZZrDQMI09Pz/zyy19Zl4Xbbeb18qLJgtPCUYgQi1jiI9o1juot730llxvX24XbfGVZr5Q604XAOCnUtGZHyR3BOwbrvgYfravnmW+Jz79f+Pz5izYKpFBPlWGIuClwOHpCPLCmAHKjys0oaMXQe8anFLXS8lPHw+OZh8cT5/ORlIRSA2t2dCVS6QnRcTgeOZ5OPD1+4vnxF54e/sph+sTh8ImhPyt/1XfUkr4e0O3wTm18iqhSdbFEtBT1/Y1Rv6siGTKtU+590OKTneNW9MhZE8sYVWBR1XS1cJKcWbE4RV6JqJNCP6hCvjduc8qFGJP5VjauoHU6c7ZYqhV6PFUCKRUutxu320rJiflWWShGY0lqPZOzwUA1cfNNPdyg7Cqg1qlIJa042qZlc27QJKvZDLaZqV3Ypv4uW6Hk2zVF49d9ir+1IbnLC++yR2gX132yuCWecge5vUtAhf017i/ZrVvdEty7v7Xney+M48DT05llXpivM+tt4fJyoeSMlMrQB6axY+hVGEqksuYEayUVpQbEvqcPgeFwYDwcOB6PTNOg8zwEbXBUKyabVlYraDZla3/X7GufU7nxjrag+PeHG/hhR9Q2PKsoOtcTw8jQn0jpxJJO5HrUiVN0hfe+EMyTMq1sgiLOGa/HJmdTWnQWNCjG2RlMBbNCsK6o8T1DyKyr4EQTluBbNa21lR2lOrL53/mgpHlxqqDb9ypfHIJOTlrnqdTtPVNV8Y26Zfgm3hM1IRKRfaM36CjWMdxUs5x1kVvVRnF41qX+/vLefKZCUOuMLoY9CBGnImnWKq/bPmALjvNmfGGBbzM0l+aJB2Bm8CbtXKW9pzOeSOsgQ61JodVWjtkFpjTIXJfEuiwqZCGCQz9DsAqWVqat09ksNKxT1Sq/Cg2zRaK+rWi5xlVxYuR29Yl1xaAEFZyJorRkvBSoq1AWhfWq2inId4RzKvpdRKxLZqIZa0pcbzdLQM16xgR4Sm0wjLbwZprRfONFti5wqZgSnXYoISDS4f1AjBMhdncXbaXWPTixXBs1BoTG13Yu0MyCS4NbV4XgObfS+EVt4WyDq3yOjJOkf7fPq9+tyebLZhfhLFGoFqypAXn7fkLjlnnf1Dxbpc94rq0z/PViEzzVB1LMBB/xsifGtbg7Hr9ypnRja4IHokUZ2Yn8OtZqWU8upCXrNW3etdkM4IXcLpg7xW0VItP1wdH1Bk/DkYIKqeXMVulLnSC1RxiQGqwgoYI4zf4mre0ztJ66IQ6idrf6caAfB7qh417J0/mCD0I/RA7HifPDiePxoEqLXWebqWzd0G1j2rbYPzoE5yLUgO87+v5IPSTW9ZV1fmGZf+d2/Y3r5R98+fJ3fjv9O7///h98nn7j8/g7L5+/cHm9cr3crCgD86IiO8FXnBWwfBQCraPf+Nc6H50H8RoSpbahUUmmwpizI63aNaU6KzCycYdidOROeWLBaZJWMqyz0kB2pd8W3FqXpdOb8wovX5P6P65pNWuqmZSvpHQl+plcFpwLtCr4D5hE346yCA/nB4qHy/WKc0KpWsgSb96g0eMJdMERevVVi5aIIpa8lV20rBQtiFULKLXDVihJC06tC4jzm0l8SypzUXV7MAqGuM1qRRPMnnEctgp5zonqKjUbL2vUjmY39sShI1rRqUUajS5z//2dWZmFGAyBpHNUg2TtznSxp9usvzy3edb9isq8OBbnDEZcN9jqD0/Clp1vOC7riDo2X0S7Vmqtis4Re5p5jHKXpDV4qFJYHM5HQtfTDSPDeAQqfdeRhoGmZFbWhdurUHMmrytU7tbouwiy9SDfFA30byFEhmHieDzx+PDIh+cP9P2oSUbOphT7St/1HMYJSmZrsruvC1V7MlmdFom/TkLbFvH2tiezP57s2HnZ4459HkArEeCEvh94enzml1/+xu165cvLF15fPxM7p0Usp+KRmJaEiMKmfaggKgyX8syaLqR8RdxKiJnYe/pBGHpVRJdqIkVBkzvvTPU1V9Y1s8ymZot23IY+UsqMuJ7Yg49hj0VExSCXubDMhbRmvFMaUdd1DMPI8ahc/hirKUOrPWCIDpyqBR+Pjzycn3h6+omPz3/j+emvDMMTQ/dknvJaKPmOuD/Q4Lc7AqEVlxp6rHVKQSkT1eIi7zy79UumdcibKKI33/Xd19Vr8XBTpY2G8gk6WcVEsDAh0ejVB9k67s3mLqfE2mhNyTRiJLCsmZRgJpk+RIPzNj2QrA4ccmeB1KD2dgtBua7eUI3brN1iVI2PxCC9wXtdg5Pa6YkV+dRK8gfFLdGKuCaVeq3s9mnQYLNbItrWxS3B/LozKnfJ7N0Ft/2dN99jf5/9QWLnrz3eIYxjz+PDmZIy622lrIUvw2fmy411numiowtaqKpVXRUquheJQOwise/phoHREtHT+WhIrKgFkKKNq9Ti3AbnFd3TG2Wnda9VUd+WZFeVMlKrwbvfP95PRLcstG6LqMLnIjEODMORY3kEuZJzR6kjtV5AFoRFN7ScSc0CIWsXB3TREd84R9rp9FF5HGWFZSnMN5jnwrq07oLopKu01buV/PYFVCohWCDeVfpeO2l958xbTqvkGgAmFXwRh6um+mhO1MpxagGoV4PkYN09m+ilNCJ1U8vSINm7juAmYjgT/Yngjng34USJ8z+qMu4dUU28qdXa65ogFIMV3m/8rTLeJu5WqcAS/UZcFiVftyqpQ8AmjvqIObyo4iylmP9SsglvnVibBypgotxOCgY5Ne/R9r8GyUULC9WSUO2gVjZZbvWE0AG/l7+mCeIktc5ZoHhHJSI1mIeqLpwNYpxLYb4tLK8Kic1JF/dBHE/9t+MtIvRDr0m5dSGx7mbKjRuqkNwmONES0a0SRkuElTPrTTRABUISpV4t4NZEtKLiWKW4XfRG7L1FrX8qCh1J2bir9yGCbR4EhZ5v14AVTnQL3SXdQ1D4nYgQO+V2aEXDUyg4tyoHtCS045lJaeE2X7TQUnVsGsxws9iJ0aTflfPcusZpTZty3btzXILC/L1n6CPqq9KEqCoiyToLK8sts8zWbWkcrw2avsOEqbpZlJLJVXmsKa2bQIhudFopxmmnRBX/YFngdtXimRDoe08fDVIaM7FP4AohCqUEvBsJ7gC1I62rwZpXcvEKNZKVkrR40WCTIUa1Eeh7ptOR4+nIMI0U1HYCinYEgvD09JHHx2fO5wemUb3utBDVFvD3ks4/myZtE5+GP/V+pEaHSIfzB2L/SDd8YDh85PT4D34//w8Ov/53fv3Hv/P3f/87t+VCKivzXLhc9NJthUbnjSbhrFhG8xvT+ZgL1vHXrmV1Vf1jvc7wfqjEPuG8ljDSot82JRUfqlltmhwBcRFvgUJJK+us60TaII66nmi3UTvxPiisuJRCjAOn0xPn87PaVOWVdX3Fu9/BeYKfcGHAu+8bcL87tAiPD2cIzhLlZHyxXaMgdJGhFEJQ9EEI0ea3Y1kWXr68cnm9bHzO0rp11YKbtjc37o2w+Xe22SAIa1pxi9IIALD9bLN26Tu6QTuTKZsydlWkgA/2mn3Add4KCHWDDzaf41bI3a/3amq+K33fWTFlYuhVGLALgRiCqV0GDWq9cLleCAaTu1wCTm7MdWatek1rofv9qZ6TFkXTuqrAWy54S9CD98rJpgWpX6E6RBNNvSzanmL6GEH3yM5Xxt7TRaAsUBZuY6TmlZxW8rqSl5XleoFSSOtCWppCvrPgsb2H7AWG2gI0QVwgOGGajjw8PPDx4yf++svf+OWXXxiHg+pa+EjfDfT9wGE6MnYD0WsM027bAG1JaIsG2YpYdXvffe2U9tmsW+6M1vO9Y1vdZRvG/Q65e5StW30/8Pj0gZRVmf22XKms5KQ/a13ovBC7CGLqACKIJG7zF6iONc04nxlGoUqw7rsnhIK4hJdgVCUV7wlBPRvXVcWlvKscDh2V0VAdCzFWkJWcFQGVjWMYYtmSGO9UYTmvC8vlRvGVrhPGUQhxZVl/5/OXwpou3G6/a6IsntgNTNMDDw8/8eHDX3h6/IXT6SfG8YkuHvEhIk7PWX0zbt8ewTyBdz/QQi1pKyInClhhtPkEA1YIciAqZNXQXI2qlXLBpWLCec4KAIHqFEXjXGuEtPjMivpSKTkrH1GDFzTWMyeH1eHXzLIkRLKhvKzbU1QBVPM4c8gQTYqqU7pRloKT1pjRNSMYAoaq710rFn+3wo5+Bu9U2LOpVjsn5HVhXVdut9uGENMC1PtxijgIXuezWKHlPt/cE0feJJ/td2n3t7vssU2LpCWm7ZKptKS4Jbp7wvt2Yuzrluq1OPVyP5vcaxG60PH3f/87f//3/+C3fyzMy8zt9oIz4a8YPNM0MhwmDqcz03FinCaGaWKYRvpxZDwemMbR1mil7rnCps2jll+y5T4aA4iJyO6JditQiOUz4Qct0e92RLeUdit4iXLcfE/tjlSe8GEl5Z5aR0p5JZdXSr6wLDdWt+iCV7LNPX0tFTTSileMQuzNyNw78qKV9tutMs+FtOgF06TIt823qMIrtcFBNfgQb7xRr2qL/WDGva4SXLuQ1Dhbuamm6VUFyW7rNpa2IUfzq7RkbBMwqoXmTepc28S8JqL+QOfPBK/JqHcHhB5NpL+/2mhnxm+Bp4mgW5LnSHWHV6ngyX1ZpU3i2iKWbdKqy4xYR5U3yWUjF++VHu0slay2B6BcgXspaYXaAlms5tm4dQ2Su99U8Ta/4Ya2udU6UtQGGdt5wggKi8mFshayFIrzyhkTwEV9P+sCqMppZr4uvH6+sSxFE9ECJQb4TiI6jKMGvab6pqI8utAvBoFaltV8ttKeiDoUQmew6CF0dE2MwWkyOt8W1rUwS2ZPQr0loe0ivjtf4pQDKs6UogvVzs997br5sGq4uUdnKopj2bTZhITgEaeCETEqZ0aTS0eueUuca3WoWXVLRCs5LTT59RbE7BywaLwTDO7TqqDrbkfw3hwn4qRXOf6+qHRX1s+j9jA3Sr6Rlsx8E27Xatwh0evQBTMVx7repgBq3115WWpcXqy73kQdagWHbq6lqjhWAZwUTZZqQYjEIHhf8CERukXtMEq0vw10/oTQc7vduF5vrKkVFvS8LW7ZFLaV7x0Yel34Tw+PPDw9MR0PlNrUNLMpfsPT00ceHp85nR4ZpwOxWe80ftzduN4zVf5cz04TwLaWq3jWgI+ahIbugaEmpsMrp/Uz8/Ibh9OJ4eBxXeY6v/Drb8W4PZnrRT3vqm3SPioftLnLaGCrCBYxYbTCbrVUxXihJi0fu0qMGR8rpTrW1ZOTsCyFdcFQFxqQi+/wEqkUSiost8Sa2+sWFSDTS8qSL28ea9pNiLHndHrmfP5A3/WUoomoc9qVrF3VIJ9+u77+zCECjw8PSFSI+jzfWJaF5t3nQ6DaNXw4HDidzgzjYBDNwpcvL9SCdp5TZplX0rps3Ku2EijvyW9e1j4Es3MwmoE4tWIyaoZ4K6qaP/IwDNpVCAHxjmK2TZswkVNuqO8CLqqQnQbqmYaIKLUhFpp6YtkCquYneDoemIaRh/OJ4+HAYZo0qHTBxN4AqXx5fQFDaDjjsRXzC6Qlu2/IjPuRc2ZdVg0wk0LkqYrw8M4ZAagpCtssLJbI2/tr565scF7tuENwERkCMDB1HskL5Jll7lGEUWK9zczXG5cQSMvK7XKhqf/vrY/2w8jvLc4ordCma+o0nXh4eOLjx5/461//xr/92//GYTpqYuVUH0AQYohMw0j0gSBuE+ar0oqR7ZKv28+WftPg1He3LYY2dFErpn5/on+VjH4VLLfEtl0UXTfw8PhMjJ6UZ27LC7le+fLlH1xefmNNlegdLkScNCoQpJS43L7sTYzATq+KbOdTC692PZjCs/cBamVNN3LS4uLh2OOD+tMvayF2gCRSueqem7ImIdERO4cQCCGquuj8yiUofLTrYBgEH1aW9Vc+f34hl5k5XTVB6450Xc90eODh4Wc+PP9XHs8/cTp+YBwfcS6i3vP7Pv697hygFKXYrgntIGYp+xyygn6zYitFkw7XxDutMJbyyjIvtk9rjLGuZU9+2BF4TXXaNUEbh8XPOualuK3jv60JpbAunjU4nFv3abEagisnyAplV5s4ExKzvYJa8S5RnHHUDXEVY+PJO6ohTJx5jrdOcK36+b0Pyg8O3oa3UJbKsq6KdLtDgX3dyW+HCpHdX7ctXmun7G1ncktG2337r9tj3j6/cT8tdmuX0t0c+NZGqTXkbB2z1+r7ni729LGjCx2H6UAXA8t84/Pvv3G53Li+fiHnhaHvGMaB2EdC13F6OHN+eOB4PjEdD1qY7Adi39H1nRVzNP4rTq1VSzAExzffr+UfFtfaIrGvBWZB+b05/t2/bEHLPjBOIsEPVI5UFpyDUiZKPVHKKympFL7UF3K8kLsLpWoForSF3y68fZLrLK8GlW3bhYgloHbCqnVn23n3zhTvghCDcoFcMHhdaByDine62GYzEBdXrP2vKr96frUDV9sivlUH7fMB2IInDvMxDISgAYFIh5OOGJ7o40904Seie8a7I056Hebagsn3FxzvHb2PW0UyeBNZsqSyQTKqFVgbJLZxY3QT0mBrgxjZ16M2Lie7WqLXYMAFDRxEcS2WlDQ/1LsUaKvm6ALh0ECiweS82xWLY+iIIQLCvKz4sKjqaNEuUBVUsOOO2N3I6DGYCbh1zkVzs70zJDpfxKmIT2thq9hRZllX1lUXSp1T70NznROOxyMA87wyy8Kypg0StiX4IlYhFvZwum5dDGnnyxI05VY4UsjbZ66tY2cqrN4vVOImna9zrRr0WDcoTQBhSzTtf2676HceblPKKxsfRJPzfYFgC3Z3FSDbwAWFbsle/SulkEg6V6tuTFplDvRdRz8oL0cFPRLJAgHvAqqNl96tNvbdga4XbmUlzwurSn7aedUx1zWgbYZW4Q5a5W6dmGqww2IS+UX0mrbJYNe2JrHt8dW6JN66og1+l1ZFYKhCo2iA4dVXuBehFIeS+hzBCdEphNytBfFqOSHSxrNoR8XsIVTxMdD3kWHsmaaJw/HI6eHxrvvg6KJ6kJ4ennl8/onHhw8cphNdHNhEav4TjjYP7F/gHK4GrQ439U4n+r3civMr4hPOJYWduYT4QvObq0UFobJ1IktVFUwXreDIXWfGinbBGZ/T67rTRy1INhoHtVBWYZ0r66IWGuuiVhvRQ43azw0ipmBswdy2rmpQHrzauoQmgle9KS5nLTLdZubrRedATlqMdB0+TMoV/aaYUvdx+8EAnw8HfB838ZrgPeMwcrldtVtrxavT6czDwwPjOJo6d6KPHct14fp6MzqDdhiwgkqrgjchP1W4jrYXNUsng64HRxGQFpC+sW/otAhr1504UV8/4ma/oo/vFOkhezGkKYM3G4TcqA+2tzuTyyxFbbSiD4zdwPlw4vF81gTf9AHamubFk1ddbwbr+r32E9dl5jbPpJyJc4R3mnTFVGmbKnDKmbipWFuRddsjHVqAafC/BrezMXUmjuedJjxeIe3OFQZfKcsZ0o1lGWm+ysswsww3+hDJ68ps3sQ5K/QbYVfV9tLaIoAilLyJUXX9YLeRrusRg5UGHxjHibEfaUKO3gX6rie6YAlj2yv2znRDtOn6t9N5qt13n0nqON0nHvcdmT9z3AeK31wUeK/+3M7B4+MTz8/PvLz+g1pvrMtnckXnc2e0EKxjTFNi1wTRifJG+yHQ9Y6SM+vadBzMaqL5sYrSXRoyyofKdIh0PSxLZVlFxSc7M+AriWVdEanEvtuSGi89nkiMK8E7klcHCecypczcbrPuWaJFRedVkHCaTpyOz5xPn3g4/8Tx8IG+P+P9yL3f5587WrG5cTx3nY4GXd/3uU1ZQccssHXCxBmdiGwF+EItq51BXWO9NYkEczzYOl3VGjXWjcTQWXfxSMlC9UVVW72nRtRz2MQ7kzfBJdFOaItU9sQXJESky0YV2ov9KvZnSeeWR4BUhf6qDVWj8nnVerCGyu2mt2UxHQ/nCBbjf+9wrr6Zz5vQkLN3borUtLiYrx6//3x7a8nqnsnVuyffX3c73HhPQmt9m+w67xDzkqXqtTZfb/z+2298+fw7ta6UspKSYzyMHI8HHh6feHx+5unDB04PZw7HI+NhNM6wFihd8HvHXsDrso6rcifo1z5o3fK0e35s+56tifU9wTn4oVjRXUNUMEuOgEMIrkIAJx2lnqn1RilXkvvC6j7j+J1afgMC4i4gN5CsnLlSVUzGksBagnYUbPHzsRIHMcyXeoA2Y14sD3FSlUDd221QYaIQMV8d9MXJG+E8p2ykeA04ETYIl3btkgXylvRY10kvPw12G3RBxBN8TwgDwQ8Gv52I4Zkh/oU+/Ez0H3ByRFA45J5YvH/E6BgHbYV7pzwbsepwLrrhq9hQk5oP6l0qXiXkWzAvGxtGu6el7tBY420F19SDNUhpRGOdJxmfHG51CmtsF7yYMioNorxdOrQqbdepCmPfD/TDgBPHvGgVblkUHrEYbDJXXQzb5hejCt/0XbREVBdSvBnciyOg9hbNS5NN5EiNkEvVhFwMkiKiC/B7h3OOx8cHqMLr5YaTK+IWreThKVaCV85TKzioFUiD6W5ci2BJvfEnqhHmEZUiL0WFXt7yipUr2vfRhKjUziIGDS6kTfa2yRTt9hRn4YgYfNw741HuFj26CWPdXVU3LrmQZO/ua5U807xhlYfK3lWxhU2M/9vF3rgxPcMw0HWRnBLLuuDX1ZK8QK2FS3pRY/qvjsP4SDgc+S1/5vXzP7jdblDFginzqiLjPfSdBqyq4qsFmjUnktnM5KzQpNi44m3jtc5csY3eUVmrqcNZAiXemX2KnouUCvOcmRdhTULonHbruk5VjLPa4tSSWMuFnGaWfCOlmTWt1lHXbqyTQgyWhEah753aDXRBjec7lfKfDiemw5FhHBn7jmHoGKcD43RimM70w4EYhzdJwH0q1Lamf/ZoHm/7q0Ct2QToPjPf/p3r7b9zvfw3fv/tv/Pbr/+dL1/+g2V5ARJdB4ejBuvzVbheYFl0HrWA23lFuri2LIl25cSC8JgVrRCCo+9E7VdM4TEtsNzg+ppZrqK80VXwAikUUlBhsJr24CxGO5e5UBGCjwyxowueIHryS4YEzLfEl98+8x/DfyOtN4UhHY7kLITwwDg2EYy29muQ9mfGWoDDMNBNA94JXRc5n05cLldeb1eUJxMJMXI8Hjgdzwx9b8JGC74Ky3VhXZIWfqwLUEpSjqg0uN2ehIZoiZ0L2zyxCiEER0ydWX+ZTYsVnQp3HHeqwf+6raCmvpx+5ycXsbU2q5+hmaCr2uzOPW0qxqrI6cxJQYusY+yJPprKtWx7lAwVHip97Hk5nHm4XrjcrtzWlXlZSCXT/79f4WX9ZsyLdYHWu1tXsnXHdS6qxkVLsDze7Ygm35BBrtm4+C0Yd9bRd1LoZaCeTriSmOerXvfrSu5G0pTo+4GUdT3MNamXa75Bwsa5bqKDLRlVGLT5No8DIapn2ryu/P77Z4L/H6xL5uMHx9BN9F1H1/VE3ykVxqmTOUWUtgOwXd/lbdLZivxNI6DFd3KfCOzz43+u+PW2aKONA+Ujdr0JMZ2OXC49X6LDrZjWgFoUtcRa6gp1IfmFXMy/VZpojZCokIpyv3MiJ4WxDnlg6NWarxYtrvugarZCryqxpduKEdV8RddFC5v9GjR5dV4LEVZYb7SpSiYX7cKXWlnWYloiWvAZhgPn0zOPD584nT5wmJ7o+iPOKTLubRIqd7f3j5yrWhutynNsN7Wp2vfZvbPW4mSD0juNQ1zVNbdWFXfMKbFWNrZbU/Wv0UFn6wUeqcW8JJvwWVuL7pI5izU3OoFoEcr3AS8F7zK1OOY5Ebw2p3KFUqzpI+oXHr02kXwTJTQtCtfQW206W/xVrSngfdwEHR2i9nTzzPWm9nS3eWVNxn23jqnXtvo3h1jMv50f2cd0P1X7/XcP2+Kvdh6257bzcnff2/P+9qd8PUWgJWLb2+/PNyRLDAxDz/F84PnDE/N8Y5x6jqcDpSTOpyPnhzPPz098/PSR5w/P6lHb98S+M1Gs1mD5Gml1995ff67t49jZEd4WcqV1/d8dbuCH0Fy2xUuTUUEIiATtRqGcqVob6fhGcl/w7jOOCWrY2tDFgsxlSapyWKtBgdQOIefdO9B5CJ29qdNAhAXqqoums4pEtGrW0HtLRoXYYfAwM1ZPxYRLlKjug3JSIt4CebaMu8H87snfDX9eLXkQ1zzLBmI4EsOJ4M8EZzf/RBd+ogsfCf6Il3Ef4tq6Wt85EcEzjpHmvSlObSTSamqqDaok6s/nRT3MmmemfiFATMxGr9ZNJKgWhSRpN9q6yS1w8G4zxkUqbtWkNJe0bVq6kXuaMNTWnbIubYxRBTCGkXGcmMYJ9W3SIGueZ663G/52U/uXBIWywWn6LtAPHUPf0Xhn0iAhDYpaHa74DWJJFVsgNbCtrfISdlhH9x1lNOccjw+PAHhv3EmU26OTzSps0ZQehw5xyr1qFfg1JfU1bEGXQIMaq3JbtkWp7IIBaNVWE2WDyFkiKmulefq1zRgUVlZqUfuSwptktD232Q7pQtA6hwo30o0hbVVMZ0k1NWk3z6pVSjhvAYkGoK4qV6PrOsZhYBzHLRFt/LMG6YpBOeG314va/nx1jOOJ4eC4vmZK+QfX640m0uVcharcDech9l6h+1G5rRUh39LOzUzKR5UghM4KF81bOMq2bokVgIpokSpY9bCYWJCOUWGhKCc4OfqiFffYRVPZc6yraLJZrqy5suaFVBbjxmbWJZt4l6lfdm192pPRro90fc84Hnh6+sjT80+cz49M08g0DYSoPnvOd7bxRp2PyJt1438mRNwTUBsh0cAq5Qvz/Cuvl//By8v/k5cv/zuff/87n39Xe5d1eQXRRDQ4z9AJF9/mu6432arxzjvC4Ewx1+aHF0tGVV4KMTXGXjuXeS2kpQleVK6XyvwqlOSoSbsQ2RdKTJBNkM4DUtX2xTb/UoUYevpuoose5wpSMiVlas4sNfPy+QveZdblhePjmTU94sPE4bBA9duYs4/Snxxa4TAODNNE30UO04HbPHO5Xnm9XgD1Voyx4zCNTIcjXQjcbjPX6xVXYLmtrEtu5T9AyEV9KJ3DYIlqkRJDMEuDu72qGrUke1wXqCUrr9s4mapgmw3CrkU17ZhqUtt1HbEJZLXIweKAXLXLm7J2ldesCUCMQT3CnQb80XjkwXm8qZr3PjKGnngnjlIskAziiL7jOB65HG9c5hvXeWZOK3NayaXw+9//HyzfSURbdyi1W1E161bLa/ubFmArQSreFbxU3Qel+Y+aUvEWBFtQKoXOVSQfiVK53QZu88yyzIoEoNL3vSkyX7itV+blwnWJVFe1k1vLXszdNzZ8jPSD+knHvsf5QMqFL68vlKK8+sN44OGkvOJxmOhjT8110zVo7ISq2duGQtCk0+Zw64y6vcmwT1tb91sH+cd50TfHfSr0zdOse6aWYoG+H5gOR06nE5+/DAa7dMbtHKwI63QPDZq0OVdZ0kpNup/6oMKTtWi8kkuygrfOddUAySo4Y36TXRgYhs7oKgFh0LmyZpZl0essa2FGRe4E5TAG8HET5XNeGxy5LCxrRVJGXKYfOrwfCaFjGk48nD/w+PCR0/GZaXwkhgmkCez8oCPxzpFLhWSCS8tqcP+dC0o7XWKrxh2c1km1CLaYiJtQ8er9uWaLkZXDH7yqnGpsDwSHeL+JXOYMa1JkV6O1GZVSY9tSqFkbH4J25/DOYoxCSkIIi/qeZlHIdQWNu6IhAxxj33x77xSwDenRktBiVIGcsyIYosKoa1F7u7xmbpeZLy+vzKuudRWxda43EcDvpD9iO64GEOxNnvussu2fLXHcE603P1shVhq68y4hfXv2aPu8vLn/7VyRN4+3wz5aCB4ZhOPpwNOHR0pJHI4jry9HqIXHxwcenx55fHzg4fGB0/mkRf477Y2tCyv7O+6Fb9neehNrevMh3n7QWvfh+qPjh4lorW8rwtpwEcDjpNcFQyKVrP+WiJMRx4BIj3MjTn5D5De8+8zNL9xEK4m1JNZFbQAWV5DW+21VPJQYq+12oXSina8CkOk6R985C0IFFYHRioy4ap0Wa6x6zKvUKi2+qYTpgKl59EAoQFOiDQr73WGrleA7QjgQ/cEEic6WiJ7w7kRwDwT/gHenDZLbKpIbP+s7/LkQPHEa7CGmPElhzYklFfPm00Ulp5Um0IJJVavCrKlSFiV0N/n4ZCIOxRJZl1atBFLMmNOrfhCeJlog3u/jt6ktKpy0LXoN8pxzUU7ENDEMo8r+91ahb4PvPEUCVXQRillhHa2y33XeBC28dejUm9aFJsGt51iKa6Vdg9UVYAW0Oxj7gODoOxPIqIO2Qr46nDjlc4lYJTYS44XL5cpFboQcyF1HpdL1UUnhglq+uBlkoVZIJKvKr9qVtIpgWpWLHIN1IHKD1ipPuZSFkhdymskJUl6ZTRVxWW6kdcZ5Ry26UVObcqaArGQfNqVe0I1CrAuwxxGm+tZEw4DavFaFu/nTFJKbKq0Gtk3d2JsvrXfKfdPrt5glQ0FQ0/EGvfj9t3+8O8dLUijVbMH55fKqymzW2RUlNCt0vpVtJGl9srDJvBfzZsw5QzHVZq8VUhccoVNeohcI3tNFtfMRF2i49c1T1GGBuK4LTfCBtS3GztAYohxln/FdIZas5k2SwW41VKToutJ1QhehH4VhdAyjZ5w6DoeB4/HI8fTA+eED5/Mjw9DT95qEtiBVzN9lg7awndR/sRv67TPuk50GhW5+sDT6ggUvMTr6XtUTS1KuiJ4TPWdrqqy5qI1LLwyTFgXEhCgUQaBn1fvmO63v3oootThtXZM1offVCgli3fpqRZekXYiiyprqO2ixvaiKZt8ZGkJADHpcK5S1stxWrq83Qif0k6eUSOVCZabW9Q658M+NssBmO+ad2wSJuhgZBiWqN6j50ClyxDunxR5x1KQKuWJWP61Dtaw31nWm1oILDhdUIyDVQs1Zl1eBzXR9s9MypQHnNlGeXGG1omZBQBT6Fs1SpQUk2XifOg5GAvEe8VkFxoJSA4LDYLyRvo+M/cDY95wPR54eHnk4nzlOE13stPtIYzoqLLZWHTOJsq0xXewY+5VUMqspls/d/4flnTFvUGfvw+bN2xLIDS7v1IdcOy6tWeyIdp8XZxBu2Tun3AeMTiHG/YAD+tgzjlaQLIk1ryCFfugJXVCtBztPDgc+4KrSIrRgYOus8wzDwOmsMO2Hs3K2pnEi+kj0KpZ1uV759dff1Ja4OupgYjJ3fNNms7YlodyJSG2JZ0VMa6Ihet6EI5ZQcPdK/zlH67I6uthzPJx4eHjmy5f/4LfDgZwXYpiIYSKlynzT4nUuM7noNamuDGrrtnW+pGyiOt6ZnZ93hsQoVJJqjEjW2LFqvLrZf4lA9ZTSMfSZfNDCRtd1OAnaCMgzOSVu803jXF/BafHb47Sw1HmOp5Oew8cPfPr0Nz48/8LD+SPjcML7juaXvg30P3PU1sUuloCuRjmqW6KDsDkgeFOFbcX8UjNlzdv5rq0FSisS7nYvTrTAnwusq9kvlUTJDW5uyB/viCng/T5PSlGRx5wsb3C6jiYTLlrWRYvHttc4tP7f6G8t2dmRH4oK2YdL9vldK8UrdUbL8pmcFoulhHlW3/dsMb12+jxdP9IPk3Eg3xEPaeOt5qS0Yu129/35e/vj7rA8pv1ts5/70ZlvKeb39um7V3zTFd0GDucEgmMYex6fHvDecb6dzEO+cjyqNcvhMDFNI93QW1PCEtC7F/06BdZ18L2k+P11QnPGP7+G/NC+BSyrteRQu2BtunirwAQqGbzyJL074t0B7w8Ef8a5v6sYhp/wcsXVGzeurKuKGuWSqAqyUJ6QF7MSaRLeWhXU9/EWzCRLKDFOgaivnVUq2gIsBmMNoRg8Q60afIOj2ubddfpdag0gUbu+7BuRMz83Hya6cDYxogdNRN1Zv6874N2IkwEvA6Lu5dsm0S6e756IGOjGQe1Rki4cuSj8aV5TExtDcLBmSl63zcZhFRlni21N5vlnZsNmrK1JgzCjthOhJErt6IgaxAVNPBoz1G3kf78bkXdxm/+l2sKTM33XM00j4zhaQNHqcMbnQuhwVPHEohAL5/R1h763QKCp/EKT7w6NHyDOfBpFq8G5sibtsm+LV9CuU/CBcRjUqzOP8Pu3492guWpp0Knke+xwTpVtk3WDxYlxq6LxVmQreBT77iVnlmLnuGj3U5PETAymepztGjJ+CazkPDPPnpRWE7+5crlcmK+vpJQVdus9tehNE1PzD/PBBEwwzmPdFjpLLe4Wita1Klv1PN8tNfq4PenZOah2c3vFLKdsku17wNIk87u+3+A07x3zMpOumcv1ldfXL7xeXqnopuC8cmsF61ZusvPF/FEh59XEz7J6jq1ZUc51t4nw3iEdeJfJDoiiu111lOxUkbiU7TyFoN3XrlPP4UphWYtuxJkNGaHXl1IHxGthSoLZhPjK4hX6JFV5kDGqQXs/CMPBMU6aiE4H5Ykej2eOxwem6cGCK4Xl77C4+9u+Jt/vPbz56x8d93XW+y2i8YFMjCmMdKHXW+wVat8pdHhdOhwKhUw+M5RCLTpXbkuBpeC6Sj8K46Q8W7F5s8yVZS7bfqJJZSEnrxzTJJQVatYiYQwVOqi+Qmgq4Ao3q5gydtHTG014Lka13Bp6tHO7cYQNLWCFzLQU5nmhnz25zIi34hIzpS4Kha2tlfTPBY1eGnVCiyPRVB+HfgBDDjRhIe+8cvZjVL4fDnGBrtc1tFa1hXi9eK5XYc1rQ+vrPlEKklZ8UPsX7WLe2S+xq7M2waglZZaULSA0HlZUa5IYo3LZS+Of6fXnfXt94yMRVASvOHzR7mffd/R9z+l44OF04vF05vnhkefzA6fDkT7avlH3Tt02A0Xw6PrmRekJY98b71i/x3//DozOeW9dXO3MhqjJqEjZimxOip2XunGNoxMTJDJu6AZLvVPIvH8fcXTdoF29wTpnOXNbrtyWK2u6EbtglnKovoG372VFVC2GWOBsHcJxGnl4fODTx488PT3z9PSkfFBDcngJqqK8ZLKtd+VY6Tu9RhW6bRxQaZir/b9vobmKfmnWH8W43XuC0hKeH8cq/9JhNI8Yew6HM0/rM58/P3I8nsgpEfxEcBOv68zlcuPz71dKuVFlwYdEP0A/GBzdRdTjsuIk4Z36Yjq7rmJUOo3axamoVMpKuxBXtBIhisxQH87IODq81zkXozYgUircLldu18wyX2lez01TRCTQ9RPH48Tz80c+fvrEhw8/8/T0Nx4f/8rp+IGhP2hXtdn2vLti/3istzSkqsaGUliwjqdxOH0lRr959GqfXi2rUlpJaaUVlSyiR5yYA4GpkYs3yxuNV1bUfiVnRSClbIr01hENQYsDW2xbjX5UijVHtAg+zyvXq/I0U0oGmTc9l7vKuX4/Ex6yBlHXR6iYFVU1ZObbMcxJY2ZFqqk/9Wzik0qdingX7No9MExH+r4n8H6cosNdW19sU4m9f/ibz3CHHLH+jO7hbZnbIK12JpsTifxz5Z6m4bFntHWbIK1B650wDOr3PE4DyXRPqJWuV30AFZvUgoWJ0PzT8cT3k0zZ/v6+QdT7xw/EiqwjKmwTYyfNagInJkchJqWPH/C14mXCyYh3B5wb8X7A+xEnLwivCF8oRVgW5W+uplYaola16HQh8M7RRU8wqKWOtorgNHx4LeYCodgwGk554z2K26oFzov5iLbKpKXUvqN3EWSwLm6/wU41IevwwRRxwyNdeCC4k3VCj3g34mXASQfbuMCefO4L+/fAuc45FfhJibVmUlbo55JWlpQUW1hFN9jmM6knwi4Ep5WXaj5TBnHLm7KhwZWq2qbk7CitG+ZAsiBZF6ZWMW3dUR9UuKIfFN7SdrbWFcs5K3Rz6hiGaN9TFXidz/haCEXIVWEh2nFTKMXQ9wxDr6p/VTt0LbH2tknE2OHENtxSSS6TyCq3ThMp0DH0xnFSmG+PW77DA3DC6XgwQn7AGwyymHpjylkvcCcb/ykXtXQJ64pPAecTLimXNrUkqaihs5MdEuapVPP3alGOSFES+XrlNs+8vr5qEjrPJjlfbZzqDqcqzR4hIylZcGVJTJsGW5BnJhpiUwftxNZS1d/cxlhs7jSkxa6S264O65BZRTblutnZeLd7iQYLthuE5r1jvl2oZeFyeeF2vbEsK+MIMXb0/YiwIrKSFu3617qquFVtczhRjS9XzK9MF3+d+z40Pyun9iC+qKqzCwieda0sK0gqahqcK7FzDIOnHxw+mHy8XTOkavzgap03/d3RClTGg/Tgg2zdnuCcqnUHTz8GxikyHnoOp4Hj6cDxfFKBgOlAP0zsFi3v8yjut7Gv+3T/XLj4/kag11qEMNLFA113pO+PzPFKjJcNCtp1qvqs9ltNfVSDdHzRbnyErqt0fVW0ilc4VSmZdWFbuKRWaoa8VvIq2u3JQk0ORyaaKJHqarUOlX5+La6lVgYBUT/CrvNE60THoLyk0jx3KVuArXQNlD8thRCKWn9tyupfb8t/Phn1Yt1Np3z1IBDDXsTaig3WpZJqBTQTvvNBKQ65ZOZlZkmLdjUoMOvPvHnYakEoOoev3rpDutfVJNuEKUW9hmutrEn3W1CouviAjx3BAhTt8t3TQTKIJwgqbhU8HtXy97aoKWy/5zCOnE8nnh+feD4/8Hg683A6MfUDXdgLmBtmy35vtinYehaJGpjeDX0M74cqru1PMWxid6EVml1VfpqoaGFwEMQ6ol7ozKcwSLO/2mGpb8+4IFZAIKoHsIiQayFcHfU1W1zREFiqgB97Rf9A4+yb1oXpbQQfGIaB8+nE0/MTnz585NPHj4zDpPDQlJlvK/NV94c+9AzdqGraBmf+5vpvwerdH+rdv5vH756A7slr+5z3vdX/3EMUujodyPmR0+mR4+HMMq84RqQO1FqYb4WXL9oRRWZiX3A+MoxKDavVU7JyHYWokPXg8S4b8s1g5aIUmVIgl2azxZaEUoPeTB3X+2hCharxsMwrL683Xl8WatW9ydk6AVoMHscj5/MzHz78wk+ffuHTp184nX7mdPxE3z/g3aBNm3te6DfLyY/Xlw06vXXs3Yb+aPutd55g9Kau6ylFdRSSUYVU9AxN3t0uliRO1PXA7RB/QZ0hSqr2XOsupqbNkHGukkyNWJXyVbDPsRcNxel7L8vKsi5KZULPle4LdqsFqtqY+aYVY7F6F4NRDZoXsWxj0uCwS1VV3JRWlkULyUtSulLjj7rQE7qBcToyTidFQK6L+oR9c9TtmtkacmBQcCwufHvWBNkS10bma2e2frWP6NInb1777Qz4g2tPvv7F9hbdJImd6hBMdaLpxCBYU0EDxXtobb17jT++6n+QgL7zJ6nfLKbvHj+2b6HtGTuE427/2LPyrexm1QoJODfgrQuG9Dh/xstngvtCDL/iYyDEym32LFaxcc7ULjeuV1E/v7gSQ8u5BPBbRS/nQqqJZg4votYs3gQdNIGBe5N5QeFgaxG7+DrETXh/IvoHgj8DGrxCUBiIi3g/ELxCc50bcAw4p5Bk7nhF26mtfPXz+6c5p8Ltpsqtl+uVy3VmXjTp2LpP7eIziLFWvAvNoqlm5ROkRmI3fkyLeKp5eZbaIDqQikOywFrIqFdkKklN2J1xthTfQhO5eesV1P6tiYJCyKwzaAmEKtkVxf13mvR560J25knpMJN7810Wg+HW1St0r2JJmMJglzWxzAu3y8JyTZvnbM1CEViXgrDiU2Z4Z7wFIRqkK/XRXrtnmXvWuWdeFlZLuFIy1VvjIwkG53LascyYaqjskLPWGQyt6LHBH/SmnBMs+U5avacohCzo4G48MLup12Dj7VYw/7CNHwTsYlWq4BqDx0klixYlWtXuzVgIgPI7Sq1kFEGAFHDWIxcVRGqVQI1LxaBAGlyXRlr6zmL15eUzi3zhcnmlVhj6Aw/nj3z68FeOx5GUXlnXFy5VWG4zOSfr1mHdcPXdRLJd54WG0igFXBFq43cZTKtxoAXwnRASrMmRsqg4VHSqwtg5nNfXVDGKbJt5C2YUTdHk7F0UgjPUQBTKFHDVuLZOg8QQOvrhyOF4Zjo98fD0xPnxkdP5zGDIAV0tfiSH8+eToO8f376Ghcf6uzi865FQ6bsn8vgTJc/crhnnXzVYEBQy7Qo+FJBKKHULbHtQ5W6v81ewgsZWtNVrptZKXYR1gbTCcqukRfnPvl0/CH0vEFthpKmbtkRUb1CteFnperVU6CKIJKpcyUVtRupmL2Ics+iIg6MfO4bhwDA80Q+P9P2RGJXn5e4Klf/MGdgDJNm9m82aoO0+TeF3V7jWm3eiNJEYOU4Dj+cT83IDU4mGypIWclIRuVbA6DqT5Y/N1krIa0bqyloqKVfzz2vJqxVRgsdHtXDR1UQFdZTH2SyJ8gaR814LzxAItWxr3DgMHKeJ0+HA4/nM4/nE6XhkGkelSIRgARBsYVd9W5KtaHFCx1CHy92P/He3zh1CHJzQBc/QeaYucOiDFcrkLgFVxEIw1WbfgvxtUdxXuBYwin2ojQfWAlHrAq3LjXm+WtepEIPnME0IRdFIG7JD+ej6NTX470OnUN9u5Hw48fz4zPFwonVibpcbL18uLPPCNE10MewKt5ZIa6HSEi/Rrle1Nbw2SLx1kpRqIdY1h1YRqU3bYIvn/rMPvbJVlKan6yb67sgwnOm7G2l1poCbaSJOefGGfMjEqL6h1ExaEs2SsNaO4AKprmRWEz0zBERVpIdzWKJlfuzLot+3KPWlZBUoUzVbNvu662Xh5eXG5XUmhKoaJC0Z9J6+Hzmfn/j44Rc+PP/C89MvnE8/MY6PxDjhXIcQtJHThoA3v/BnEv4QO2JnTYGoNizt9fSndjljiDgfgYbGE6geJ5EQWuWrFSqUvlVKprpKcdVikmCoi2rF36zxYElaDLtP9GGjsihKygrwjRNp3bZS9Tl97+l6Re2J6aBoYaHpZ2SiL8RQN+4wmD2Y12u05TVaa2/FlF0xv5BMTBJ22kFHPx4YxiPT4cThcKbrB8qX3yjvJqL3p6VaSd/S04qu5xoSb/S1AltX8uvdfFtZ5P7+u0rbmw3mR/Oh7j++3pTk7d/amqVFrz1RrbLTLL9+x/f2ufcjh+991q/Ld+2/f7yD/kA191t4Rtsgttff/nEffNpyJ71d/D3en4nxRvC/E+NvxK4ndJXQLcQZbvONZQFl9ReC1wp1CIUQEzFWYmzSz5ocpmYSbglQqYlNkt1pF7XrAiF0WzUqt26OEbQV6uoJsSe4ieAe6eInuvjRurrW5bQunnMR7zpdYERVbWkqpLitpvDmJN8loz9a39eUWa8L87zycrlyudxIpVrVqG2KTWq/8dkqNWcyrVNVyPY+Co1X/lzrlFWETN2SUSq4LEhSmK0rSSu9lnQhmLVAtkqPzovm97lVnU21NOcVUBhwg1K0Ko1UDbRUOKMjxsFsXrSCTamIdXOxBZSicMq0murrqvYny6qE/XmZud5m5psKxjR7m0xlkUQtEPP6fiIqmP2Pp++idlpTYp575qWnUsg3VYfMVk3UKmGyJMzELYKhAWxBdCqrp90z5/euoVUBWzK62apY9VXIOFdQWpvOqc7sFu7hyQKUpAnSPf/zvrLd/Emd00TUO0hSkKwBW+tybhXxqhO0mDcXVa0OqitU521zr5Scdr6oBabeoNsimODX9+f555ffuaS/c7smwDENZx7Pn/jp079xOk68Xv/B5VX9+F7lMyklRByhLWZbMlEM4twm5R50UZ2JNSg00vvWJVVYZswQsyNnTNbf03degxzriOWSYFnNtxeKZKtAK2+lie84r0UxFWbTIM+J0wqz7wmuYxiPnM4PnM7PPDw98/D0yOl0VlVprwGjVKfb3d36+p9l2fKjY9+QHM73CkvvE7XOUDKvrxec/w9bgzCPzrwJQzXRiFK1607rAnqn36nY/WIiaaJQrJygrDBf4XYpzDftIndR4bTBi1k5QIv8nQhiBQUVjhILcFTYrBtgGIWuQ2HbaVF+kMGylW9ctIgXA93gGaaeYToxjE8M/RN9d6aLB4LvFZL9L42p7PQGeX8rrtQtbpDtpt6XwTn6EDgMAw+nE+uqwiTLqsJYuWaqUuIVzREUjjeagJgmVbC6BBlqKuS0kNaVNWWMMYLYmhRisHlYzV5Gu+MheHLSRLQJ+ThTTdec0pvZvOd4OHA+nXg42u104jgdmIaBvus0id32MCwJlT0Wq/VuLt6vH/dVs/cXlaa2LFW7KV1wDDEw9ZGpj1ZoNvsfJ8oLdcoP9M7t6pztDLXk865wuFFfWnAtaPfcimOaiF5IaUZ1ATQR7bqg0DgTxVnXxLpmU7BXKGkX1P9vjAPH6cjT+ZHHh6fN5uL19cLn4QuXl8umXK4d3/2mW7mVlqSFzC1w1sTsPhEt3m1CgPaovXNiBYL/3FzUxrYK4iwRjSN9d2DoT3TxQloX1lVt3ho6bF0dKUFdCzFmQkiU3LQ/qupL9J1SWMqssQ/aARXz6m7ie957o/dUU51dtDCQNcbwhoyqCOuqCv/X68LLy5XrdWEYVFjKuaCQa+/pB0tEP/7Cxw+/8Pj4M+fTR0KYUJuWANVUckX27tB7icQPjtB1dIMn1EhfenYOu52r0tiDOqdUU0HVgiveaBdNWd+QTXU1sZ9Csb20YuujRxsJJFLNpJrINWkB3XzSsTmi1jkq+FRKVgsYQfdga15UMWeBzmsTwgd86BQyG6Il/smsZFakJqVpOR2srQHVKD9iSXI2EciaUdi5Il9K1c6rWIw6DB3H44HD6ZHpcGacTnTdwGW+cXv98u2A7321LZ6pUrfCYoPqNiCiAUTs3O7n+H4Ll/Y3O/Hb5dXqAn+iIHH/AbdX+aZWZ1nIm3l29572Xb76FHfP/NHxdRL61aPr/WO+Snf/IJ75IUf0vhuqQVIbYfZvtX+Cu7fWAE1EqzHaORwRPF6CaddkQsz088htuTEvV3KeyeWGsNB1iRAToQUnoXGEbCfdvpteWOIKzX5CO0iD3bq7ocnWXcsm4mOftVWwg0fo8W4iuDPRnXBupFWYpEmmN7NnS8b3If5xb+NHR1oT8+vMsqzMt8SymJrpBiXW7+tDgxeLJotJseyFTK7mF2rcvm3al0pKjjUJadXgQuEVYlwWDG5Stin+lsBs3pJJOavaJTYeoVUIqapUllf1jC2t+9aqr9vrarAWWrcQ5QOaQ7rZzYgVuPSnlEpeC8usXdBlXZjX9jOR1koyNWZ976wcB5fo6Th9Z8zV9FxUga8LpKFjnQbrzrMlkU2SvFTlfOVSCCGwGLdoFWGpKNzQzH+3rqjBvtprOecQb+R86za3eatJoyjkSMRUMRufTOeVt2q+WMDv7bVaUUK5IVpEcGJKlg6qE5qXbauG74loNfiiVfmwSp80ERSbG1VMSMUbHE85wZ2pbDrvtyT8vUMTbOXvDl1HF4/85ed/4+PHvzL0kVoT8+1Fr6/KlhgrkNBRJVsXuQVKsgX0NEh6tmKUNxhhVDl457FkGlzGoJmm0h21g9rW7IqdM68CaLpJZMsYCjiPFwfOAn8LYmKIWlzxHSEMRD8wDI8cTz9xPP3Ew+NPHE/PjNOJENQj9C4T+f/bod9b17XgJ2r3RCmJvv+Vvn+k687EbibEC7DSbG/UHqvB/vULFKxgnG0lqbpflLIzRkhCnoV0g3SrpBsQMHEp67RHgz3bBuYs4RQRXBT8ar6n9po+iHY6O0Ua+FBVSKkaZUFLSzgPw6FjPAyMhyPT9Mxh/IVx+ImueyKEA951+xr/z0aNvJ8ybSrj9oD2qvevLii0N3rH1Pc8Ho8G+9fim3YzVcAOEVO5jRwOE6fDpIJXtt6mJTH3K/Mwc7neDGGzkEVXCBe9coZ6VfHtOuPfeVW9pWpCX3I2iy9LWA3t0tanLkZOh4nz6czD8cRhmjiOE2PfWzfUb53ubwOu+53z26GusHVJvxentSQKdP50wWlHdIgcxw4VDFTfUo0jdP0M3hANYsXar87VXizUWwuqNRFVeGbFbZ364D2HceLp8ZGh7zaLqXledE+fZ+bbzG1eSGva9B66qMJVQzcwDROH8cDpcNyU+6OPePEMnVo5qQBWZ0rj9nm2eLR5LGLFI93PWwDdZF2KdVLfqORuBUxbjv4XrEdarPOIj4QwMgwnjtMzL+ON60XtvOblRq1F1aGXgJOgolUr3K6ZddHiq0hmHB3UTm1ZaiV4TURd85PGvqdvugW7D2axwrPSw+qmZi04haKuK9k63IrQ0zUpRG+e2j3jcOB4eOTh/IHj8ZlpfKLvT4j0IJFmA6Xv+/WY/vnEox9OjIeOWjU5bFDWN/t3ZSsY16yoQCmNQ6rCYjvNJaGK/paO2H3Kz1R12UpGtVt0rJ03ixBLwjehyNL0J7LNeStbtsKHM0XuEM1CKphVVNjuV6i1p9QAJdAE41qytF+H2iHVOMW8lVVaWuNM70yzAaoVi31waqcWdl/pZgfzIx9RHZf2U4Xdar1LRi0eb7lXbbFSy4CkxdDWMS1ilijv7yby1S/fKwR9c12+s2a+l4xuUOw3j3vn/f/08YNn3L/xn3zhP4DmamDduid/UJy0RXD/49ZRFV10veupYWKQJ+3WxI5xuLCmmXW9Ma+/My+/kssXgr8Rwoz3xapZ5plV20VtJtTBa3Bco1W+AsF3xDjiLfktNVGryrqnrJ3RlNQaRj9honLDuSshXIj5ipfRJpuqnQlbCfGbWaKfR+5y86//Xr+57+tjWRIv+WL8TrTzGpTzqH5uOyfNOSWo+6IwOZ8LPmd80iQQS0BEHK2un1NUkZE1bfYjgmxCKbqp7fy+alXhFpC3hKglw7FTuKgmKyoMkHOiZLPtaIlsEXKr+jR7BxLJJbsodVFtP2qGkjw1C2or6SBZYHVbuN1u6keaV9ZsfKYKtahxdS6ZSmWx3Tm7nndborTzZJ0IL/SdZ5oGoNJ3HfOUmJe0iTtsfq4lM99uXK5XbtcLN6+jvFIpokrQInsg3oRxFOkq5qOHjguV4LUruyH47hYzgFq0M0tVKIwusGp508WIcr9WHcai4gxIpWDKivZZGv/CNYJD3QM59VszRTuDtDY/0f13p+JSw8g0jZxOJ86nM+M4bEFarRX/HT7X+fTMwU/0/ZGpf2QaHzmfn3h4eCTnBRGvHYRVVQGFO18ym4+aoHiD8JsacW4KroWcKqVYUiwmgNKpumpezcy71B01WlWNepuklrI4D535opaaqWYboHBg49Y17zvzFB6HI8fpxDge6eNEFyf64YFpemIcn5kOelNPudatMc4gO/T0f83x/tajSegWvSIScG4ihkeG4RPH46/Mi3pglrwyLwWajD51g8uHokIsudjGvbJ3WETPjy6DKkZB0Q6BoxofSJMEF1CbF+9UFAq7lnxFvCZAXio4UfGpbMuHCFUCOBVXUnitt6KF8uILCXGF6TRxOB2Yjk8cDn/hcPg3xuFvdOEZJwdEOlvv3+jF/6lRNjaqDmdlm2fNzOgdgwulStj4t67o2HVwPCjMNqvgRKn6yrkWxDv19B0HjscD5+OBcRh0rXZOr4W5sC5K9Xi9XLlcb1zXmVtaQCB0kdAFLShNoxaITJxKKuqTmVa12IrqvYcFu4oo0Y7oNI4cDweO08TQaQLalIPvQ71qELE9WHp3Sr6p4m8hx/eGvyXGmEq2E4boOYwdp6mnVhWf073MxMWcBo1a3JNNZfj+c9wHvy3ZbB6ber3omhRDZBomHs9PdLHjfHowhNesiJ3rlevlwuvlwuvLK869MruZnLRQ23eRoesZh169by3xbIrlXew4HY6M3WCfxdZk87fe5yhbIVH3btOtrFaEtETUi6NmZ0gR877eOr0tcP5ftxbpdaVWLePwwMP5J15fZv7x9995fX3hen2lFLNo6TxDHlhW9XC+XlYrUDqkZtLiqSVSi6o2d11EXKayUmsy4UsT2sNs7EyYre8dpVyNDrWAqOCRONtbAnS9x/mBIfdqxTV6K9hMdN3E4XBkmk6Mw4muOxD8YGuHp24xo0Y5d1Oau+rpPuF+cIzHZ47no1kuKUKimm2WpmV6leWU9ZpdE44ZqkdYKWWlaT+0bmoIkYryRRuSTIvN+Q0Nxova00WzzGtxQLY4r5ZqImBK6SlZY5Ud2eMYqvrEakZUKDltsQ/WEHFO56ag0OLmQFA3Wlibk3eJaNE6Y3BQfKWESleauJEiRpx3BCnk9cbt8sXOidc4Ln1rB7Ufd2u4XUfqOtCS0bt8SAQn9c6xQGwNqVteIHqpWgpxB/FHH7c1E3+QJsgWH273/OA58vbnuznh+xDiP3X8+TrKnzr+iY7orpgL7cfbTyO1bTRtq2klBe0oOtcRRfHiMXYM/YlSZ3JZSOnG9fZ/8HINLGvrthUVHLGKTgtiFOrQeBLgiWjlSqGz3vXK4XQqz1zrTM6zwXkbP0xv6jNVQBaCv5HTjRRvhKZM1hLgpnpW24Zqg1DrNjZtsXkTbGxVlW/H6/5Yl8Rrvur7bZWjoHLwnUKNfdDv2wLmYnDKUFoi6s04u1XB1MNNZFc7XdfEsmjnFRovwG+JqLtLYltFR1yDorq9e2cCJqJKOKrOtlTWpVXQvb5Og/pYQgHgSAS3WgdRBWioINVD8So+tQoloc4sq7DeMtfLyu26sKaFtSpspEi1xqmQzUJCYcFmLRLH7yeiVkl2xsvsawAG83RVxbi0muhTLiTz0Mslc71clGPqtJpes6rF5Xaya7lLRI2fK4IEti4ptYJzRO+RqEbvWPegqTIWg6Dn3PxAmxK0p4uBvtMObS2JLPq+xTonIgVX/OYnBlY5dK262OZmExzYYUw6J7xdY37jJQ1Dz+EwcjweeXp65Pn5mcPhuL1WKeoN+97xcP5AmBzn0weeH//C+fxxg/q8vPyKd2EzzMYW7VrU101ErX5iF8GS3RAyaSmkpZpwlvKwSoXYqy2ReKcdtKBJgrZEleOoQVuhVGcY0mLXc7MBMJhT1W6a9yZU4bDrcySESS2duiPH0weeHz9yOj0x9keG/kjXn+j7E1131Fs/EeOASR6xA+b2NePev/H/N0dt/2fzh44wDh84Hv/CmmZVTsxX/JyoOFNgzuR1ZV0rjctJUun/nJsgStm9FFs92KxaxGxZolfUiw8aAO7JaBsPEF+1Km9FOPEG8cWUYXEgARcGhunI4XA0FdhWsV8pLCCF4TAxHY8cjh80EZ3+K+PwF2I849xE43TvJ+HPb9FNCAZaYVj2AOarqMGuyO3fQkMjCK7r6KIWmpo/Zm7WUDnjgzcF5onT6cj5dGQaeqL5eAoCGXKqXC5XXi4Xvry+8vn1hS+XF1ItOIPmHo4Tp+OJ4+HANIxMw4BDWJeZvK4EH+i6nhDjm0TUO6eesn3HOI6M/aBJq7/jXLaxoMVM7d/fSfDvAyb5M5dAtb3XqAitoNhHjmNPRQW2QGMZ11RxTVCFKptC7fa2dx1RdxcEt6RUMRJ63cbQMY4HEDidHqg1syxqT3W9Xnl5+cKXL1/ov3zGS6AWcDiST9RSLAkdmYaRvlOf1WAeziB0IdKHuI1TsyFq3fU3IdldEtoGsoliUTXQ93LXEfXaRWqaD2++7z8Xlv7BIdvnU2SZ4H3POJw5n1c+f74g8r9zuV643l61wO0dsfOUMgDCslyYl2QK6g5KpmSlfjkphKAK394X1nxV2oU4iwmdihVZ4uFDxPnAumrnbV1vKpJpSC+NOzWR6XtFiviA+VoH+m5i6JVrOI1nxlEh/d4PmkhtMeM+jtua/k7c/EfHdHjm+PDMus7My42U5m1dA4xrKaRlBblR6xVVR3RbgTNn64bT4h39LM4pv1O1L7RkpnxNLe6IIcOcb2Joev5W0XUgSzUYrXbUc9bifTFaS+P7DhZr1VrMF1URNdSkEH9v1oDicaIF4O1zabZ2VxwxHQtDR5VSCUYx0i6s0Dx4xXmQQk0zyxWDVnemOfL9RLRdWxVb07FElPvrX+9ssF3ZEtF6V8xqeRRYbXPbWlpNqz1vv0bYEtM3BYyWQ9wvnffX/920up9h9b176/7jR1f6tzP17sN8lRTLV4/7Z3bOH3BE2RPPpsR5v0m8cy3p4LVKQt0/iN3XqmEO0Yvb9Vu3MvsZQRXM5tBT6q9UIsKNJj2vCY+zLq12QuWucxP8SPQHvJtQdV2vfK/yQikvKHldYRVedPJT48bhi+GM9we8eaLKHbTizZDWb37Z/3WXcG6n7L4j+p01SC8MLLFWUr9zXuE4To22Y/C4cIdNt0uimChCSklN5e8hRQY7qiWYImxinj3zoqJCLeHY/ENdU2L1Vs3R5KaptoXg6SwxFlFeYEqFZV6YbwvrnIw7WRHjZLQFE7Tamr0mF07ypoCqs8Mq6NVt1V9xWsKuHv13Ne6DSdbvsPu6XaO64FmA8YNLoSmHOcNPhKA2Pt57UtSkRpObsnEhStWE1ImqbmoFsldvzZxZaXmoKi9pkqcLe6XQPOqcQWodIEG7jhvMsWRqrtB4EE1UwIoe2lUVKxJlGllfFT/Ldp9avWBpzm5LoINWtoVdBMW1sfNeQyuExLgVK0IITOPE8XTidDrx+PDA+XxiHKdtlBVq/D7k5dOHv3L6cOI4PfBw/sg0PZCzFUfmC9N45HR8IKcLQkJcUrjW7UYpZeO0iYDLmewdQjJ5/kpZs1ofUYiL4BdBgkeCp4qYyX01uXsbf5vvrsHfbfNtPpdVDN5G89n0+NArn7A7MwyPDIN2PM+nDzw+fOB4eKTvRrpuJIbJEtYBH3qC71B7qD0p0Vn6zjy9v6ver0L/GUHi11X59p7K4/J1oO8fOB5/plLwTui7yG0+s+bfSOl3uvhCcC+EcGW+ZGZXkKWQTMG8uApeNgXZWjWBLEGoJmYtQSG2IULsKj5WFY3y1QIl69I0WwzRFY9ajScs4IVhHDg9PPL4pEbyj48f6ftRBadKMlsWTUS7YaIfjxzPP3E6/41h+ECMRxVs2mwW/rUj1cpa7/i+0sqGbaz3DbolZrrm2b+24ENw4umIHKaRx3SmVOXnKxTeMUyKTDgeD5yOB8a+Vy9Br5YhVF1/r9PM4XrlcDgwvY5MryO5Zi2mxMDhMKm/nHU0h65X8biUzFrDOqJe/XBa0VWhnWq30nybvWsdRDaf43r37fVa2sKu74zit/d/P3Q38RhRpEnwjug0GY9B94rSim5StyDR3RWT7xPf7R4LELeA0r19XIMd9l3PcTrSd509trKui3afrxf6biD4Tgtu6J52mGZA156fP/3ET58+8fT0xHE6EH1bG8SC1lY4vEtAi+4mu8/7/uHfalTIXcxmr3oXIG/ryfaH7QH/OUvMN0eDAQvOBesqJs6nJ06nJ06nMxUtIueykk0TAGnrtp5ffETVcgNpzVyvKibkgypgp6z+oz5owcw7b9Yjev3H2nQHihagB0/Xe+VhNv6siNINrFseo6frVRn+eHjkeHjm+cmKjuOJrpvwvrMY1u2JyjaU9W3wfD+Z/oCQG/sT/fiEiysu3ljzYoVji18sflvmGeQViCReoVYrYCeaVY++8c75Lt6TfdoSvnY/eGo1sSDXPMKFkpSOkbLZuJWCAlR2BX/vW2xVjafpN06yNd5p9oyNZuakFe9l+4z6Od5amlU0rnGSjXIEhNa4UoHSLmth0vmIc5EqkSoBcT3ddGSYDsR+4nZ9ZX5/mmq23q63LSG1oqKdQnR6aBwsd2YlcnfuW+dUbBoDTXV7v+T27up9l/U+Ed2ex9ePe/uxv792vofFaXvQ/WvWu7989Wry/dd5s3exj9GfTUZ/YN+yJ3+CtaLrvsy99+J3Odge5gibmhRblcgM2+kRTPZfEl3sAFWmXctIyo5aX4AbauWAQQhNdat6XI14GfB+IIZHev9E8CdKUVPuUq/UGgxKEHC+0HlwjDgOOHqrgHpiONCHJ0I4492AXoz6PUS+P6T3ok73kJbNsuXu5482VIz/arInlkSq8IdKbCuHR8WKvAomuAqiXaQ1G3zL1CyhWrV3N4AoJRI7T5xb99T80+z9NdmMxKABf8lKBm8QXW8JsQ+ikNG0msT8wnJdWedE8IEctHunkF1NwFTJOKgnaioUUZ7rxiezqrPg9fya/5PznrU61mVlnXWDypuwjiV7LV2wpNIhVFcI7v3u3H6+dFwcAtYZ9l45yTmpCJRyYzOheE38S6GWzDJ3zDGyhsgSOnIwsZ6iDIuWVGIcDmfnIpsSpQ9aYPBODdArsC4ry7In6DklTUJbGKdfD3GVUhMpYxy9hBFqaUlvMd7kVphoW2JVGfQGtxcLKBXqHqzbrb6gXdffeU91HA4Hzucz59OJ6XAwUY5+m/flB4noz5/+Cz//l19UqKI/EHzHbb5BuRBjz/Fw5uOHnwihEI0b/uXlM1RhTQs+KpTQCfjibLz1/LBo1zLnhVwFPxfwaduEOjUD0TH0ClnXJDRs3JVmfbHZeEgBV3StcuobJxLxYWQcnrRjePiJ8/kXzqefOR6eORweGIcTwakdgKo2RkTiRi+QuguI6ezb6ub72qEn6v11gj+3uP/x8X7dVLnwQtefOUghxKiJ3vmB2+3fuc3/wW3+D4b+N7ruN7ruC6/hgsgF3IIrGZcr1aOKrCLkRb2EU4HaaXbmAsSqW5sPhRALLhQa11vZEH6DsrfgptZWbNHiVOsOPn/4yM9/+Tc+fPo3Pn74L4zjkVwWNWMvC7msVAohTsR4YBifOB5+pu8fVVzEed6Ulf/Jka4oySN9vQN/VTxum3877wXdGbdCrj2vCuCFfux5qGe8Dwx9z/lwRJzQ9R193zFNI9M00VuC6n0rPyp6aBwWpmnkcJg4HEZOl4MiF8zyZBxHDuPEMAxEg9sKYirrZUdFOPU23X2694RMOYduu3fjw4p+kbdlj7c+tu+N4589WqLmjK/fBIhUNEWTXqUMWCDSAsavz7PIm0+yBYpv2hV1K3yKaMG473rVEaitc6OQ5qG/cRtGgg/7Ti6eEDpKTnTmn/3x+QM/ffyZj88fOB6OhGZzc1fsLhnrdu4Ngm8RVm8DSI2S3/uT0BLypgXazuOm9Pzm/PwnHVvEq5/P4ehiTxlPnM5PPD9/4qef/oK4ysvLb9xeL0olMjEa56vCQ7tA8GoJ2FBWt+sVcQuZQAiFUhcqiyG31P9WlV0VgpuLIxa1r4udw3n1SR5HTW6dU/5kSupXrtYika7rmQ5HHh6eeXr6Cx8+/IWHh2fG8UzfTVrIknCXOLTs4uvRvGtM/GHhS/DdkTg8IiXh80LM6S7mgYZe8/EK0lGxglFeSKJ0iXVVGK+3PU6/p36OUrzFKexznj0BaxlXzoVlSZsCd7MK1C6/JzihBgcEmvieOKHroq3hdaP9xOg3VwBdD7SoXsxvtnVbvAsGiW9aGMqTFVS0KvpdyyPWFgWK7dMdPvSI61Bz8Z5uONFPJ0IcqC+f301Eq8F3bbdRDZba0Df314d1mG2t35PEJgj51SonLRazM3+XqMrddGkJbFtnvk5G9T3u4oA3v3/7bfY269sSYPP6vAev7KvgXjxsd2kK9B61Yn//r1ek+/f7kWvID6G5+rNllsK3F9R7z3v7RVSBs7K3rgRQ/ydoC6xVREKHk5HgJ+bkWFIl545SX6nlsiWMTQhJ8DgZ8E4tVTr/kS5+IrgHci5ITWT5YvWphMiqHUfnCP5EdGecDBt+XpPZI8EdcDIiBFqa/0fQ2u8PyNtk9HvVL/1ujYfauKhWFa1K8vcSCKaUGKI30acCrpJLoivqdVlyNduJspV0WuenUAmdJ3ZexY1aBdSCBSdiSUcEqnlHNa6obMI5TiqpZnJaWZabJolLIq3FxI8VlpuSdmq998TeoEFrJYeiVfcmICMaTNTGBxbz9yxB/dtyteQt4ErCFY+rmdYTdqDdcUwwqGhCGPwPrXK3OQgq5Y8IAVE4rq+EXFl9wgf1VwWzOMkrt05FPtauo1+VHyt2jkUqKeni2p5TciFVTQSFqgtobB1IU6LLhcV+lnarFkA5LFlqgVTR4LoCZl/knHaPKCYyJ/vYhqba+5U4xxbIeRPD6KJaQgwDwzDQDyN939P3A6fjkfP5gdPpaObZnXXPtROS895p/fr48Pwzf/vl/2yFBq+eejhyygzdyPn0iPNJRSEMii4+Uqtjnq90Q6Dr1ci8GG8u54pfkhqNu0IV7a7nmkjZkYs3iKjZNATjfHsHVQPDLvbE0Om58M6SfPUxxSXjhVZ0g42EcOQ4feAw/czjw994fvqvPD3+jXF4YDALEN2IWpCxB+hv4DvcW0q9M2ZbW227438qDf3+PnAXsdpaIM4R48FUWUem6cCanrjNz1wuT1wuDwz9Pxj6vzN0/yD4X/V5HlJeSSWpnYtzVHGKsC9CTZUaNZnxtS155tUaq65lSeHw0DjxlnDYeGgiqoUdVUT1HA4jjx+e+PiXv/Lzz/8nfv75/6Id97KQ80IpasReakG9rQ+EMBHjkRiOxim+G49GSvwnhzrVSmqJ2laU3ZMCC5NaSWh7g8KebLQnVwDvTITI0/cdh3Hgdjpt3YsYA715MXcx0gRsWnBagZR6pnVkXmamUa1Waq1bIKjPH/T5jRPZpgO06JQ2a78usLL9he0995Hcw5P7JHRPZX9w/IntdgvkHJv3eOvKOjSx2l5KmnqsrZ/3kVL7tZ12uTv/whZEbsGhBezed3fdUH1sSom+6+k77bDXoleuJjMdIsLxMHE8Hng8P/L8+MT59EAfO6IP+9yzhF6LL23M335eDU9aSmL31/37fl0T+XqA75PQfWWSN6/3zxzfX2Pk7oNp8hRCxyiO0+mRDx8+8fnlb5SayGXh9fqZKsr3RHZ/0Oh7+m4kxon5NnO9vrIsCzi0ABkKIiviMiF4Skk47xQVkc1ZwZB04qryQDftg523D2qnlqRSi6ieyXjgdHri6ekjnz7+hQ/PP3M6PTMORxOfi9ZgqTt9690k9OufPx5rHyd8f0JKJtRstIi7q0issOkulBoUNVgSJc3IMoMsameDUK2op/xZTJcibwXzVvCmojBwpEl4GFy2sCyrdeOF1jzw3uuscSruhAnLKf/fE6KjeYMG7+iip+vCJv6oMFzdEDSJNWqQD/b9WiKatpzEiSrcqTYwVnQKiI+KPoojIQ4434PrEd8T+wPdcMDHnst//B/fmapCcc32cZN/xIA+hsQT2y5l4/+3lUZj6jvZ0vp2HrRLrYkbyd2asv3dtetyf3x7rD5mnzdbwivvRhFvE+I3+1D7vHrPex3R++c3ju59Qnx/3M/k+vUf/uD4oVhRgwJW++D1Pj3+/hP3X+8/1T2v8pvXagTkQHAj2tFZceLI4YFarqilgKcWMyFuvAYXFWrrB4J/wMkjjiNVCsEnELNWcAOQLJj3ZtdyxEu/VX7UnqVXjqn0NNWzDaH8x+P51ea831dtTL97CG1mKpx41Y6McyZPnivVhDl2fR+DrpTmVZYpqXEbdx6P99pRDV5XnuBV8r/YwqOCtXuA5w3qUe+wQKWJgmShuLyT3Ml4V4mdw9NRIzgCriofhmzzx3h4JVXyWkmS1Uu6qkosLlBDBIlGEtPtNVftCK4W3Oaa9Vx5pwrMouIemKWEOOVzrotyH37cEW1J+P09etW7jVReVXI+a/c2VxUsikEX0mHoTY5foVaz2bSk5Mk5UEowaIyeNGc83K7rGMeBYRw3PlW+S2SpdRPUcFW94jSudxtPY4es6Jz2wRGLp1QtIrQuQQieGMyT1Ct8RkR2GPBe+tyhudYBbWqCfT8wjROjdU66rtdqvxgPZUu0vn+VeNcRfG9FD4ULR98xDgeESgjQ9VoECaEjdiPD+Mjx+DvLclMF3CjktHC9vnK9XdQLN2ViTYweXFRY+XQ4ME4T06RCLP3Q3SUxoubU1TH0Bw7TWQWG+s4ELyopX0n5Rs43cpnJZaUUT62B4A88nH7hfP5Ff54+chgf6bqJGHqCC7y7WjRIzt1i//ZRd4v/1xvC1wHzP3V8Hfx872gbm/7uXECqdrtVlbDH+YngzwzdR6bhN47TPzge/k7f/TdC+G8Ml19Z040l3YzbqBD36pRPpJebegyLE0LniHFXOEQgBy0EGaWcinLZu6gQx5o1qNQaj1oKTIeBYerop0g3DoRuInQnvK0fGmzZnuY6nPQ41+N9p+iSO/jm21H+dmv9UWXXmE9b/rJ/g21099eqbS7I9pi3Z8Jex5Qnozh65zjEDmTvAgZLKL3KDG/XYnsPTFzLxYqrQmfFOe+9wW7DG26ifPUhqr1OvfvoXx/1/sH3X9Fe6G1yev8N/+eOYggThSBqd2bjim1JsQXUbQ8Xu/LeBF57ILj/vXU24I2H6N2/75PS9u28iHkJe4au53Q4WiKq4+yccDodOR6PnI8njoeTCk25oFoY8nb2vHe0IX77Fe6iWdiKy29jxrtkkPs9RAt0zS7uXzs/35sg3wa3ai+m7zuOEx8+/EQuCzEG9WsO8OXLb7y+fGaeb9snil49hmPQ6zDlSiFRamZZMq5khelKBYnq8xwcrqptjfOVrlN6kTO6j/PqxdsPPYKnqSaqgr3GpY+Pzzw/f+T5+Sc+PP2VD0+/cD59YByP+NDpWrmtIft3fDsmX//8c2OsnHxvRRXVNHnzTPuHjz3doLQcR8IZ/UZcoOKpNRE8eF9xolSeamr4Om92JmSLCxvP04kjBCF2Rf1EabQJpcpVs+vKBgF2uuxY4+dtE2O3HlIBMeWTGsWoNo0S2RBKiCIaSq3kignitQK7oTfszXwc8XEkdge64Ug3HHG+R5wmo6HrLTkNhG58d7xzhSXZ+xWlsxpTSseEt3XK+5rVntDJm0uRu3znbUfUYkzeXvZS7hNQ3qw996/x5ve7HOXt3+19613ySVuV5e3n355X39ynjyl3FkR1/6x3T/n6O1tUqIifH4Qff9gu2ngIdwtt++/7l5Hc/ffth9LDYIFv7mxf2iGuJ1hVNviRUhWWS00IEVfV1xOK+tqJ8kWdBJyMOCagx7uKcwVXNbGM4WF7b/X6G9i8nuwzKCzUhHoI7PLbWLXoXziEN9/1+wVDDfZKLZAzuYJIwYtKTtdUqAFNRhNKkPYZykpl3dRF05pZlsI6Z8X799G4pgZbCsar9V6DJkusUsrknLZkSGrd+J0NimoRCc1DUo+MD2oY7aJHijelW4faiiZqskHIQpGqnpZV8EkQglYhfUeVTmEUJm6lMNhMTYUlr6SyaCIqKloSnPL/xFTufBR8ENZl5eoW5ttKkB8loncn6avfVfZcFwvvPdU6oikn1lTMpzYyDL0t1o0foRXWlIIKpJRVeWpJudBi86/vew7TxGTdiZQSc501ZKpvRXNqu8LF+CCbGJXQoGktqWnKjlql1KS1C5G+08p9ZzfnnHoLmoKySq/nbXH3IRBDZ16Bpuw4jtoh7Vr3pQXwtrzdwfben+Jq57Q9rqh6n3debQyGnmk90PVayez6A8fTC7fbK2uatTPpMtfrC7/9/g8K/2DNmZBXOkn4ztNNHX03cDw+cjw+cJhOjNORvhuUj5pWRQuYx+Th8MjT4yfO52cm+37OVeb1hXl5YZ5fmJdX5uVCSqroHMOBx8e/8vz4N07HT0zjM9Nw0qTGBYMo7qlFW/y/jhP/MAz5lxac77zUH/CQ9mP/kGICcZ5gBbEjITzQx0+U8cq6fmZdf+N6+Q+67oyPkf6lZ1lemNdXbrcbt+vCra5kV3CugGjhI9esAXuEbpTdYkEEn9mseBQeBy5E+uFAHwcoGSkKX1fhHMfh2DNMkTh6fBeQ0OG8Bhq+rb0bKsfUihuyxu1z+H82QdKquUlRfSX12gq6zjaFvZPVuqRvi5jtqhYRFW9ynhoj9HuFeuMvNh6hvdFGB7PXduLwviMMXhV5YUtk79eS7YPSwlH73fa/+6LqNzNK3iY+3yaf3/7+Z4/vPafZ29z7g1P2RLSxztrn+zoY3KIl6h6wfRWY7cHf22TU3T3u3mZGakXp0U67pRxVYdjrmuqd43g6cjqeOEwjh2lk6K1AZyS0Fm99bzZ+HX+1WXQ/j9u5aM2zKloQolbj9TUNiTsv9CpbsP2vHe8lXt+JFEXFF4dh5OPHnxnHgX7o8QHEFWInIDO42RDrQvTqFRyDqp3HXEm1kMvMus74knXvC6b+Hqq+jpm6eCfKB+2aMJFeB12v0NstES2VGpVCFmPPhw8/8fPPf1O/0IefeDz/xDg8EMIR7+/0RKxr9K0ybvv965H945FWbqJ+h61dxj4vm1uFCx3d0K7r5qGtRf6Cp5Z1S0KpiVIWaln3Yo2hiVQKSP3Yob1eAOeItWzAvRZfaBLqaI4WFbNa3NAs1eguO0dUqUA2S6uKLapCrq7L6vygndticzIVSKWSrXAuTsA5E2vSGDIOJ+Jwpp8eGKZHhukBFwZLRG1/9ipi9L1EtBSYMxu9L5X7JNRQFnf5kNytKWK/3Cd131zJ0lAZ7fY1n/g7ief2+m+TxvcSye2zfJVo7re7ZPSuk/puH2HjsCrSb18vtwfsa2e7y6a1opbqvid95/ixau6bO759lW/vke0LVhG7Fus7z/k6Kds3VrAuixek9oAG8NSCk4hHCeHKwmvcOdBKUUAhv0pFd6LPcdITqrX0jXzupMM1vzi5+7bb97TT9M53+DPH1miz//zR64igqOOyB/StY5WTwhD9qh5+6ifl1AyRlSqrmftq92GdM8tc1DvJVwgCxRlcVjuJ3mvXsVAopbJKYkWQmii5mhWGGnGntamw6uZlg0vruDrrggY6ApG6OuriSAKuJlxVW5mtilSEmhy1qtmy9xFPj5cOR2ebjn3PXLfvBpYkoQLpSMV1orCPaF6CAWbnyUm9Rx1/JhFt5/vu15b77asLzqCkpapq8DB0xon0BK+eWI37kPNC8+Iqed24nhq0CH3fq0DIQflay7LQzXFLWkIIeg6KbQcitg81L7sGn6sm2GUcT69JZJOtb+bgLRHtu55+0G6mii0l1pRI60LKphSNvVZU76+hH+j7UX92vfFuAj/qfr57GP+jCQ6AVqRVJdoEw2JnG0sgxIk1XVnTjZwWiknRv77+jkiPiHJAYtczL5cNYj/0B86nZ07HJ6ZJOZsxjKS0siwrKWXrtgnHwxPPTz/x8PDREtHxLhH9wu32wm3+wu32SkqQkxbIns5/4eH8Fw7jE313JMZBVfq2pb5uc0nerG93IeR3PSm+mo//iccfldPkq3/JRoWICBXvJyQUIJHTIyU/MXQPKK/G0Y9HFhu7y+WF1xe1rQgyI8xQZ6tsJ2IH/Qj9waw07hJCtSISclYUzDSeOU6PjP1ISQs1zRq8mDr18XxgPIx0Q0+IHeIiioZp3MU75fM3Afv9N/96bO4f05LZH4/v3lP4iv1Vv3NG6w7V3VMIzFJkD9q8mLaySCNu7GMl+35a6n3y2H4xWLOHir8LZO6Tz7vn2X/f7F/2ei3Q3BJe+xiyP/Ht17v/+XWC+t6A/JNbba2VXLQjmnJSgbmUKEl9PCtmKbRFJu4u4LvncTWoof1+/1MssmlBo+z7e9se9rBUk+OquD4tlsZOYcK1BfaeaZjo+4EYO5yhdkpRTmL5apLd4ybuY6Zav75zDzG35BMsuVXaRpVKasXH1JSYsbXoDt3yw7Xp6+P+2//o+PYiEJQKdHRnhmGgklnTlVxmXMhUrjifVNAwVyuwVnAr4hPOZ7xvgjyrFSsjsXP0fWQcevphoAleOo8hhEwt2Ggp0VABGkN6gjOXhxDph4lPH//Kp49/48OHv3A6PHOc1HNYRL1qf8z1fC8p/fNHg4RuUNgWnOgAbjBdcQFvwj1Si8bREqgEkEgpK14qIpmcZlK6UdKMOhesSFV7MyFboULfIHjV6qgla4Lo9bpp9j97EmpXVbVE1aE8VGk2M3snV4tmbZ4JahtWLJZpGiiaRIM3EU2hugg5I1JVmCxoxxeJSOjpxjPd+EA/PdJPD/TTA84P4Dp9zB1twfn47ninCrfVKFhFb7r+GZdVhDvhmzf7+9uO5TcpKFti2JJQ7pLGHySab7usd8ng/mb2uPtYY399e/b9KvjV3+7e9+3Htc/bXrfFNV8JJ7353ttDKALeuqgN4fTe8YdiRfrRv66/tUe8+bzbPa0S9/6rvnnC27/d4d6VR9qhXkh6v6veFgoHqCzz/jJtITW1K+FucQ16AW1fQ8C88Kj3o7PvlNsJ/xcXj68Dlj/sSIhKyyNa+ZaqwZkKEa0si25wIZmlS1YBFSSBpA2WlHIlrwahFSEnR17FKhKa1DmfcEvBeYVzOufx1YjguVKWRFkL65JZ5syyJlNrVLGYLnhiFxCHeYcmvESi64n04AMETw5CFwp9VMXZjPIbrJClKmdhIIaBEDrtjvmglh0lqXJs9sqRFSEGB10gV+Uz4Izv2qu8Oq5SJZMcOLciLr3ZxN8/UV//It9O7Lt/a7IX6Dvljmg3b2XuEn2/sC4dyzpo0ukKYnLoGzzXys1d1zFNE+M4bkWHdV25XC5cXi/c5hvrmkjJKpYGV2kdiZwLKZkfrMgGqe06M6k30QuxDqca1QflwnQDsYu2Uelr5pw225R9YdNAVXloGjQ1NeV/5dAgbQ+gais42O+qlhyJYWIaIYRRIbF1peSVNd1Y040ungn+yDQ+c7l95jZ/ZllvYCJoQ3/geHziOD0x9Cf67kjwPat56Gp3Wj/QOJw4Hp84TA+q/NlFxEHwB/r4wNhfWdcry3qzoogWsabpUeG48WBqq2YvJV9947vxbFSHf3VN+f64/rnX++M1aH/c1+d4TyS0p0cNiAyIQAiOw1RARqbDX0n5QsoXXl9/5+XLr7x8+ZUvn3/lS/crr91nuuGV65zxoTJMQjfIZvfkpPGNPc4NBH8k+hPT+MhxeqQLPbfrZ27X38hpRih4L5yfHjkczwz9wdQrZUfz8HZ/2roW7ySaX4/sP3tUQ5LgvhV82avULdnUYG9nEkurN23JzWbnIlZApQWkb8Og5kDiMOZxvfv0d+eyPfabzy2yWW21vf8+6dwS0e3+9jj9HtXG9OvZfT8371O+Pze2dx/0e/GEJcdt/ZznzHy7cr1duF5fUFij7X97VHU3hnfB4l02/V4n4hs4rp2v+0RUAy6Fnudi/P5aNwpJF7QATC2kdWGRCiWT1mCq6dU+69dZ+9ff++7vrRpwpxJf6908aAmwqNfquqii7+16Zb4txrUvFt+qzYv7F9f473za9+++a9eK8/jaMY4nnp9/otQV8RmYiVGYbzPrbdYiYk4s80pKC5WEc1U5j2hCOY7DZjF2+v+2d6XdbStH9lZvAEFqsf1sJzPzX/Nv58Qvk2dbC0mgt/lQvYEEZcnWczwT1DkSSGJrNLqra721Y1R3XtZTAY4ksLf1mxlgTzBv77dQwwDTDei7AcOwxe3te7x58xG77Tt0ZgeRgYkuVVb45hhfOmeZOHUqj9GqEOQxyw6WzM9Y+ZR6w+spNEAdpN5yvixxSJ2zR0zTnpVRXyO3kKpYKMrlWhKYIgl4NyHSPXwEEDkcOvqUr9rAyRKLZimfMjlVWvNc7vdkWAd1UCZ7BdPkEhIQBlEYCNlByQ4kNI/rhA3AiLvcRggNIQ2k2UJ1O+huB2UGQG5YeaUc2pwcZDEDep6T9xGHKSRsCQ4HBhKvIYBDLgTaPNCWJ+QUnKIonowJShpgyztaxTO/3/a6+fNc4eN3npHAi2qT7z3bIgXd1zDgcu90LaoXnvGzwgoS2Ftz2Lwt5fnn61sEF2XwT0yHp8GKIgpaLjBfwE6vmadBCR1uk3XPzsnM9oRmh4s0kTh5v4A8xDyQz6dwPPlSQlUolQU5m/NpmY04b+uZ0PYyAXIJPXehlc3xPLZZ8BCQxAo1RUadDcFjsiOkVdBeQ3vNOZEJ3ZMRhZlheQfEQAhBIDiCl0k5DxFecG4ACYLSEV1noI2EDIAPEuQD4gS4I4f3jkeuC9V1BkZKaNFxqGfHiqhzE5yT0ELDiA2M6EFeA1YjKIlOR1gTYZ3jPE+fvRgM1mPUBp0ZoJQpNSVdtAguAi4k5HbJ9VCVgoyBGSAY0t30Cl2vQYrgA+eRsidcca5BXEZwze8le6rn7+gkvh9F5CpKnzGs4BltYIxFZxymnmuVOecAcN1DIbJw6lOIM3t6lVQc5tp1BWU2hMAF0A8HHMcR0zhisjaF/vIA8YHri07W4ng44ng8AMSF1bXR6Psew2aT6m2iLFAEFmg70yXgIUbE7TqTwmty/mQNvfOpdiEROHdH8d8lVNxvUurvWJTRpIaGfE+e71oNqc5crvfJholx3OM47tGbR2y6N7i+esDRPmKyD7B+YnADUui6LbbDGwxJUVRygBQGzqZyO86XthjVc8in2TSljCKgkze7lP6oxh5Aci6o6iEoA1QkyP7MOCk2PLFR7E71nx+kl6pKl3TRs/F+dlwyTEaAeTMB4OdXssd22KDrfoOPB+6vOGK//yfu7z7h7u7v2PT/DaMUe0HHiH50gPQwPUF1Ms19/pNSQ0mNztxiu3mP7YbDn7ebW0jSuLv7hLs7BTs9QkpAKoHd1Rtsr27QdTso1QHFaJOMqXT6cK8paFfKIVwC1eByLmSglOaYKZz5j/LnHL1DRUktHqvmujHNI1YyWaHMvzctQJlvqPpLG6lTFcX6/iOqjJlAv0tftsfwPU+V7xMllBq96VlU39O3zuG0FItpnHA8HnDcP+KwGQCkMhyY90dFEWcPSfPkVaDL2+zpWFRCGw/1iXyU3wkfF6EEQasEnhY87Dgieg9nGcwvo5BW73T6fyrYpE0BjIloaqFWxOK6TYqoyIroiP3+gMPhiHEcYa1P+iCVMhzfx+OzjNTKSrHZd/ocNfibEmr7ZnOFt/gIYwRIWkQcIFXE4/09Hh/usX884OiOmOwIl9NdRMKMAJfv6HtWQq+vb3FzfVPqXEfEYuT2GZynYQwsk/TYbm6xHd5hu+Vzt9tr7Ha32O4YmEgIA1E8ocz7n+6HdvtyYvR7foLqqacqcKcNj+nkPZQCousg5QZCDTD9NUJwIDjEyOXSxPgIaw9wjgHdvLdAcIjBQ0kNrTsopbN7B3baw4UIcg7BH5HRywukLGLKQ+QxTJzyWWorp8xSZEAo9kbLFEmWIwOS75QIMSpEoaH0ANPvIM1QlH8hVSm7JoQCCQ0SGkL3EKqH0B2ENIA0qXyTYH9sM5cuOeh8iDhMvs6hGIuhrRrpOUIvgwbNDFSNZnmuAWVeUiNhzvlHE/Y640NVt6rHN8pwGRenSmhVPnPSkGgU0eLdpDaN4XRf08b0uXpTYzmh9Ec6TFACkiKuL36JnswRjYnR1vzQtrOWTmgFmqcgwPPLPDsdjcif9ovc36ihM/ka5wrDEvNebDLVYy95zc49P9/HSArwzxPXKIpA8tTG9C+kPKiYLDhCClivoZxKORA1RzDnVmYUMy1VUvA4L49DbH1ZQIOKgCOECfCO6zna0WE8WM7tOo4YR4vJOkQnIMlDEudgCCmgNMfzKwko0pBCQxLXgkVCOoupagZbvpBCOTgHUgqJTnXoVA+tTFICZIG790JBgi1zwUVMk8VEbLkLcICI6LsOm00HoQjWW/5zASSOSUB7+r3QbJbN33mBMc/GGEIC50k5DiSgBIeoaKXQO82oxTkEV+bwllg8Jbn+FyNeMjBPXvRjjOi6DsMwYJomTCmHsyiioFLPdJomLgC+P6TrpcLRfY9N38N0Bpz7k8Z3Gn9aa5gERMTgPB3XTwXPxxYRkxVRDyDliaTyPdkr+nLPKBV+UgAU23ma3j2RStEBmbFzqRoOszdQsocxVxjsEdbznw8u5c8qGN2j766Sd6yDIA7n95rD3Hn88T2V0FA61/cUZYHPqMSQDAjGoA684EZwKQZBPM5j44loBY7KqNOzU7v9ccp3+qbXv6FL9z59l0uKaeG/SbomcBKQTPV+le4RYMFFTCyU3EHJLYy+RqevselvcHX/Do/HP7A/fkYUDroTUIbzF6UwEEInS7xC393iavtX7IYP6MwOndkAMSDShIADrFWpnJTGsPuA7fYDNpvf0JkrKNElgSflG50qZa/0DhY6kkOMKY3zmSCQlUq2EGcBT6L+3gYQc35N9pRWFZROnyFtswGJp3v+sZUaqFERTpTEU0ZJcyEpyxAZPD8rlkUvoqUuvfQLnbTgKXr6fWmtsdkMiJFwOFguUxEDxvGA/cNdXQNiq4giMbs6b+ueeCb8tadkIbEaEcrsnrWz9E+6WIwB1nMaRExKe/bEyYTimo1jQN0CFxTR9Ht2EpxumXsR8tqT2y0Q4dyE/f4ekx0BAoZhA8S3ePv2DW5ubnB1dVWQn7+fmsHBDZvvjvVDEaUFG1Q3/QCiNxinD7B2DyUl9rsHHB4e8PBwj7u7ezzc33GN6XHEcRwRrYedGBQH0UCJAcPmBrc3H3F7+6bwt+ADo3o7WwytIeT8RYIxG1xt3+Nq+wHD9hrDsMVm2KLvdimypkdWQGOcYyQsP3+7Pd2Phd/PKSbjVj06v2swnwFbh7KzhUCAJMZJIQ5vFdKw0hjZwEqqg9A9lB3hfFZEXYreCmzY1pzCQzGCE/U1lLUQqQZ9NpokdgdCTFgiocrygcdhiAlQiFTyXnaQqodUPTrTw3QbSMkgi+xBJXhIREjoboDpr6C6DYg0KIF6VeBGmcJzJUhqQBqQVICQiCTBAFxANtgVnnVhiEcAPkdWljlJ5RzK4lQjF2ZOQmVu5ys1bzyvBWX9zBGnibc0w6SMilj3VUV0PnTaEVQMZjjfEiJC+uzBMs6ce80V4HrNOvjK/emkGe0y05yeynxDgqM1L9FlRbQ1AbZ3OG/n/JTazrOjls6JizvqDzmc9mzpKi+69sr5Pb+pCpcvp8LcS4XspUFdnCALoW5L53sfWeAlVn4QAoL3yYqX8iSJINwEOUkOk9UGSiv2AJKAJA5vlYIVjs5w3qK1E6aJwxKRRBovItwhQgiX6n06uMnhsB9x2B+KEmpdgLcW0XNtLec5LKPrFZQUbDUjrpcWAyH6ADiwVzNymI8UEUom63NaxCVJGGnQKUZJZY8WFyMPSgMxQqsOWnbwLuDx4RH7uIf1I3zk0OTO9Bg2W0gtYZ3F5CaMk4cQD/Bc2QaX0kSXlKklRbR8RxVmouBwqyg5ad/o0CAPZyvvfAwUASONhwxs1N6HLbp9gwSZmToBERzinBTR7D113pcByPXpehhjkgczLZYlPKvJJ1UqIdel0iaysewmK2ZMoeu5r/K5rcX8qT5b6m8RBQLFBEcFtPOU+DEbvpCXEAElCDAKSnHos0+w81yWI4GNCZHQKQ2U5JCcLHBKYuRE5NqqSPXUKHt5G85VzJo59zwWR1qx+c2E+0srSSOsEsrYf1V6Bq/KfX8pPPdb/GlxNwGMzCkgwGV2OBSMEaL7zkCKAZ15i+3wHrc3/4n9/g/cP/4DD/t/IJIrpaSU4vArITSXXoqETl/javcXbDfv0zwJcH6P3t1jCjsYp1LJrQ2G4SO2w39g23+EUjdQcoAQGmyMqe913vjvoyfHeEXoKH2ejao5zFbmvzQmizKKRqBBHn2JW58oPkXhyU1pFBj2WjbeHqpe1DxOixe1yGU1iLYtXdKO1gAGWgop5HkmX3+jO+ejvq6+z1V3Ls2avu9xc3MDKRWmifMdpSBM4xEPD1/T+IzI8mfhODEbe1sFPocHVt5d04VySzNvp/K1QEwQhxvyz7m/+Xj2CiXgv9xxhMbAQLUdqO/kqR4pn2KOxKAiGEfkLbeBoxnYt+2dxf7xHtaO0Frh9s0t3ry5xm9v3+LDx4/47d1buB/VQws9daG5PEeIaV0y6DDgavcOIXhs+h3seIQdD7i//4rPf/wTnz//E1++fsHXL19h7R28szju2cDtJgnEHn33Brc3f8WHD39hZT+NXWcnWGerTOQ59Ugpia7bYrf9gN3wHn235RraxkApRtmOkXlKREpRiWIuiZ9NiiUlFHj2xAEKWM/snZ/cMX/IoZCtZ4xxPWSKRGOkXKEYWdx4C+9zaasqb0ipoCUDEkbHqTEBEmocIdU+GdQ5Ykkm4EgBLmsXvGU5KPMXqkooI693UGaA7nYw3Q5dN6DrttDaICbAIy6XIhAgIU0PnQAMudZzLRfX1hzNKEpRsPExQcYhoCkZ9ZzcZxKMNFyY6anmWuf+zDDXaqnl9db75brtjfrZ7EOjjLbyFM7X7Nmp8+fJMkoFIZrLVk1P1H108XJpaGee1xxfl5b58Sfij0DKFSbAelykp1FzL91t6dCT7XMX+ix4nl+pfj1DwQYwszYlRjAXEHj/c9Ai20WuXuO5gsolwa79/O125CLuEUBMyd0xBATnEXwFY4gAyBFICRjfp4klOUSNk9sgBddG5HqQigs6W4/guKwJRfYQuMh2J0QgevbYOWtx3I84PI4YJ/YuuhDhPYf9hhABCiAZQNRB9F3xDlGUQCBEz5bH6GOyukgIQlFEKSUyKaEZSVCawvRISPCw5EWpNwN6PcBOHvACfmI7r4sESFZE+26ANgqTcxBugjkcQaRKmNwl+pYiWn5rZmqdsPU4pWQRBF+L2vGSL81eSjYYTJPF4XjA8XDAlMAnvPfQmoGJTNcVlFwhRGGUJYcNSMI9gwNIJZPSSott4Ef+MRUqC9SlOzN/b/Zl63j1ZrNxhoFyBITQ/D1dJwNt5DD80zwuDoPjnC2Ok04BQqU2WfaWiWa9qWy0KhOYsYSZYWEmlWdm3XJCqj/9YB+2tLDWPXHkiQD97KsD82er/DbfPPcfpXmbScgNjLnGMFh49x7ePeJ4/Iyv959w//AJAY6VUK2gNSuUghScYxRvo6+x237EsHmHECc494DRCph+i03cwnsNJbdQ8grD5j2GzXts+vcQ1APUpfY89xlfh0jU8gNoxnq2ZmeEWkkERaJ4RmVWNGODfZq6utT1RLNWnSxTpaxAZC9Eqzq1UsYsNDcJUmWaRzQOVGrG6xwlopbgfO76ipNB2k6kp889f4Y5dV2Hq6srAITj0cJaByE4DzIGnxRtFiYLP4m5NAXzwhDyuK7zXCRIXDYsluDk8ycr4fpNn6GGgtd1veHnJ1OrLZ/1LCryTmo2CMjgVpl/pvHHEbuhRFwhcmqHHdkTprTApr/C0Pf47e0bvPvtHW5vb3G/P7ygQWeNw/kDLfTd2fHEKUPE+ee77S2EENgOV6zceIu7u8/ouwFKG0RIjEeP+4cRwR0wHnnuOCeB2KHTV7i+eo/f3v4Xe/aERAwB1k4pn5hTWybHZWM6o9H3O04HGN7D6A1HncmcepG9a6wA5bInpaTF7HGf4i0v4zsR1bvd6A7Nlu9fTCaJgVASrgVkUWgy6mmMAQoMQhm8TZFcoZwvBddxJwDBTvB2hPMBUj9AqA3IW5CfAOLqDEaxsZaIaymX0GeKYIA0BRIGJHsIvYEyDCrUb67R9Vfoewb846mQkXIJAQJSG0jTQaoELipEGee1NC2lfqqfSyoBMJu9Vfa49B4IINlcMUUV5FfQXIhOldGzl3eyXpY3Wsf9aRJjXmmLTkuZF80V4flMO+GphMTz5vetbDhifsLs0jOayRlUWfmirHyyPIkkowmK36eIHvZf5tr5M5XRU/aydExLeTzE9nt7XHqPs7Do2cWyMpEX/bpwtovPYluofaGNsPgdjGLpFtVoWkeptcfFa0gYdLhKLC5bSLlETRDs/VGxIqgSCBoGKvRQvuMSC6QgYVIoIucwxCgRJQGTBmwHsunqOXcy55akMAsKEjISNAlE4SBUhAocRqtJQkUF6TRo0ohSI0QD7w2INGKUECkvNVogekIOi4sAfBRFcaAIeBJwAKboEaSHEJlRMtsQQgDOIuqJy9KMDtYGRi+NAALBjhHjwcM7wHquoeongggGBhso6hb723uP33//HVozclr1Yr6+cPoalHlQ9pJa6zCOKcfHJSRY77ncSgr5NSbnXohZyG1MglfO0+CyPmyw+NHnZ+Rmt7jv7u4L/ucfn0qoOQvMrcLN87hdWPiItIzEXFoaZaGNBa0viWGVFaAgTCfrbQlRA5DDcIsfKrYhfOkGSILdicGihs/VFlZqmXos1yg//Qnja//4sPj7OI749OnTK93llEMD3+b2GUPWI/gjgj9gmo542Ds87LkflQaXWFABSnHagHOM2K3UiOn4iH2nWBH1e0z2AftxwuGYvV8RUjqMhxHHwz36jnlfBRJ5fbq/v19UwGKM2H/+CjfZZAihJhcnAda0HtHkreDQ3KxQnCuiPF7nwgdQZV0Wl2LNxcrrXpbGqM4PtLPqVEmbLb5VES0F3fNMjO1Vnkdt6597TnucG+3iMeM44v7uHo/7PcbjEdZOIAgEHyDFVJTz+XNnz3GTMoH2mbNSmY8Nc229eRZmSzHpsVT5ErLwW/ltzLLF7CXWKJnnU71PK0C1odsxvTve1UTqRMabcJbxGiRRMnJ7HMcJD4+PEELgcb9fvLNzDp8+fXpmDmkj/rehuTl8+ExwIgCcdxiiwzTtMU57WJuRXR0eHy3GEXBWAtFAiAFGj+j7iGHL5XK02gHoMU0Sjw8OX74cIFPNay4LxSkvk50wjmzEVSpi1DyepvERx4OBVseCqstIxOcxCyXXmObPsvRp/pxzstamygDnfXi4/wNSn8sxpz6TWholhf4nBSm0wzczlcw1YgZT9DPE7RydRgQEa+HdhOPhDtNhDzda+IllLgRGmRWReZx3BOeIvZl5flGqTSvyah5AZCHECMIB8ALRRVg1IiPpctopezOl1BDapLIr2YBM8yF1onAWRfTkN6AORXt8XOhvNmLdf/kdeY2PybK3xPMvRYPN1vkzZwe/NGr/t2pWyyKoVSXn+Zr1skva44KSOHv37faJ67S/EjBD5aWl4+brlCCU0mD3X/9YvD4A0N/+9rdFDlgT+Fd6TcoL/4U9T555TufCyXzXbMV7vgRwerfWgIP5wFz49UW0NF2epkZoms2FVshCEa6e6KHvB91Z6UlaXlCz8veTG/NvQJfqt35fHu/PoBcK3YvnvkQhfn26OMafyVN+xbfyHHrJm3vV+8bldfNbIee/Kr1ma58zls7u1/QXzRfS0p+X+vTnr5vzdlRDYLttj8tRMXMh/+LV46nc/q+ZnU+tm78Ew8j9nb80NhmaH3KZGuGRTndUEe7COa9LT/GUX11Q+bVbt0wRYHyOBbqMmhuXT1jpz6Jv5Y69cOidza+Xnf8svvwKq+mCX+FFJ1+2PH47F+8S41/pzyG2yv+rW/HvQ08Jk/936Dntv2Th/fl0aaE9O+5Pbse/C/3/GOM/Rj/69HG+kH6zP3+tdZMueobOFdXLND/m1xpP2SP3y9JLfByN0SCe7rh0kZ/87JcU1F+Jfu3WvZxWl9BKK6200korrbTSSiuttNJKP5VWRXSllVZaaaWVVlpppZVWWmmln0qrIrrSSiuttNJKK6200korrbTST6VVEV1ppZVWWmmllVZaaaWVVlrpp9L/Amuf+Z9witUWAAAAAElFTkSuQmCC\" id=\"imagebe7545f6c9\" transform=\"scale(1 -1) translate(0 -270.72)\" x=\"7.2\" y=\"-22.098787\" width=\"669.6\" height=\"270.72\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p31c65d4520\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"270.500662\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x800 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["def visualize_exmp(indices, orig_dataset):\n", "    images = [orig_dataset[idx][0] for idx in indices.reshape(-1)]\n", "    images = torch.stack(images, dim=0)\n", "    images = images * TORCH_DATA_STD + TORCH_DATA_MEANS\n", "\n", "    img_grid = torchvision.utils.make_grid(images, nrow=SET_SIZE, normalize=True, pad_value=0.5, padding=16)\n", "    img_grid = img_grid.permute(1, 2, 0)\n", "\n", "    plt.figure(figsize=(12, 8))\n", "    plt.title(\"Anomaly examples on CIFAR100\")\n", "    plt.imshow(img_grid)\n", "    plt.axis(\"off\")\n", "    plt.show()\n", "    plt.close()\n", "\n", "\n", "_, indices, _ = next(iter(test_anom_loader))\n", "visualize_exmp(indices[:4], test_set)"]}, {"cell_type": "markdown", "id": "eba9a987", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.033178, "end_time": "2023-03-14T15:52:17.372232", "exception": false, "start_time": "2023-03-14T15:52:17.339054", "status": "completed"}, "tags": []}, "source": ["We can already see that for some sets the task might be easier than for others.\n", "Difficulties can especially arise if the anomaly is in a different, but yet visually similar class\n", "(e.g. train vs bus, flour vs worm, etc.\n", ").\n", "\n", "After having prepared the data, we can look closer at the model.\n", "Here, we have a classification of the whole set.\n", "For the prediction to be permutation-equivariant, we will output one logit for each image.\n", "Over these logits, we apply a softmax and train the anomaly image to have the highest score/probability.\n", "This is a bit different than a standard classification layer as the softmax is applied over images,\n", "not over output classes in the classical sense.\n", "However, if we swap two images in their position, we effectively swap their position in the output softmax.\n", "Hence, the prediction is equivariant with respect to the input.\n", "We implement this idea below in the subclass of the Transformer Lightning module."]}, {"cell_type": "code", "execution_count": 34, "id": "cb2fb3fd", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:17.438991Z", "iopub.status.busy": "2023-03-14T15:52:17.438372Z", "iopub.status.idle": "2023-03-14T15:52:17.449758Z", "shell.execute_reply": "2023-03-14T15:52:17.449057Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.047279, "end_time": "2023-03-14T15:52:17.452036", "exception": false, "start_time": "2023-03-14T15:52:17.404757", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class AnomalyPredictor(TransformerPredictor):\n", "    def _calculate_loss(self, batch, mode=\"train\"):\n", "        img_sets, _, labels = batch\n", "        # No positional encodings as it is a set, not a sequence!\n", "        preds = self.forward(img_sets, add_positional_encoding=False)\n", "        preds = preds.squeeze(dim=-1)  # Shape: [Batch_size, set_size]\n", "        loss = F.cross_entropy(preds, labels)  # Softmax/CE over set dimension\n", "        acc = (preds.argmax(dim=-1) == labels).float().mean()\n", "        self.log(\"%s_loss\" % mode, loss)\n", "        self.log(\"%s_acc\" % mode, acc, on_step=False, on_epoch=True)\n", "        return loss, acc\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        loss, _ = self._calculate_loss(batch, mode=\"train\")\n", "        return loss\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"val\")\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"test\")"]}, {"cell_type": "markdown", "id": "e6eb307c", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.034999, "end_time": "2023-03-14T15:52:17.525644", "exception": false, "start_time": "2023-03-14T15:52:17.490645", "status": "completed"}, "tags": []}, "source": ["Finally, we write our train function below.\n", "It has the exact same structure as the reverse task one, hence not much of an explanation is needed here."]}, {"cell_type": "code", "execution_count": 35, "id": "bbd7b730", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:17.616062Z", "iopub.status.busy": "2023-03-14T15:52:17.615356Z", "iopub.status.idle": "2023-03-14T15:52:17.626678Z", "shell.execute_reply": "2023-03-14T15:52:17.625952Z"}, "papermill": {"duration": 0.054825, "end_time": "2023-03-14T15:52:17.628181", "exception": false, "start_time": "2023-03-14T15:52:17.573356", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_anomaly(**kwargs):\n", "    # Create a PyTorch Lightning trainer with the generation callback\n", "    root_dir = os.path.join(CHECKPOINT_PATH, \"SetAnomalyTask\")\n", "    os.makedirs(root_dir, exist_ok=True)\n", "    trainer = L.Trainer(\n", "        default_root_dir=root_dir,\n", "        callbacks=[ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\")],\n", "        accelerator=\"auto\",\n", "        devices=1,\n", "        max_epochs=100,\n", "        gradient_clip_val=2,\n", "    )\n", "    trainer.logger._default_hp_metric = None  # Optional logging argument that we don't need\n", "\n", "    # Check whether pretrained model exists. If yes, load it and skip training\n", "    pretrained_filename = os.path.join(CHECKPOINT_PATH, \"SetAnomalyTask.ckpt\")\n", "    if os.path.isfile(pretrained_filename):\n", "        print(\"Found pretrained model, loading...\")\n", "        model = AnomalyPredictor.load_from_checkpoint(pretrained_filename)\n", "    else:\n", "        model = AnomalyPredictor(max_iters=trainer.max_epochs * len(train_anom_loader), **kwargs)\n", "        trainer.fit(model, train_anom_loader, val_anom_loader)\n", "        model = AnomalyPredictor.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)\n", "\n", "    # Test best model on validation and test set\n", "    train_result = trainer.test(model, dataloaders=train_anom_loader, verbose=False)\n", "    val_result = trainer.test(model, dataloaders=val_anom_loader, verbose=False)\n", "    test_result = trainer.test(model, dataloaders=test_anom_loader, verbose=False)\n", "    result = {\n", "        \"test_acc\": test_result[0][\"test_acc\"],\n", "        \"val_acc\": val_result[0][\"test_acc\"],\n", "        \"train_acc\": train_result[0][\"test_acc\"],\n", "    }\n", "\n", "    model = model.to(device)\n", "    return model, result"]}, {"cell_type": "markdown", "id": "392af697", "metadata": {"papermill": {"duration": 0.034481, "end_time": "2023-03-14T15:52:17.699719", "exception": false, "start_time": "2023-03-14T15:52:17.665238", "status": "completed"}, "tags": []}, "source": ["Let's finally train our model.\n", "We will use 4 layers with 4 attention heads each.\n", "The hidden dimensionality of the model is 256, and we use a dropout of 0.1 throughout the model for good regularization.\n", "Note that we also apply the dropout on the input features, as this makes the model more robust against\n", "image noise and generalizes better.\n", "Again, we use warmup to slowly start our model training."]}, {"cell_type": "code", "execution_count": 36, "id": "963db602", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:17.771492Z", "iopub.status.busy": "2023-03-14T15:52:17.771003Z", "iopub.status.idle": "2023-03-14T15:52:24.253308Z", "shell.execute_reply": "2023-03-14T15:52:24.252629Z"}, "papermill": {"duration": 6.520171, "end_time": "2023-03-14T15:52:24.254833", "exception": false, "start_time": "2023-03-14T15:52:17.734662", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True (cuda), used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Lightning automatically upgraded your loaded checkpoint from v1.0.2 to v2.0.0rc0. To apply the upgrade to your files permanently, run `python -m lightning.pytorch.utilities.upgrade_checkpoint --file saved_models/Transformers/SetAnomalyTask.ckpt`\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model, loading...\n"]}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Missing logger folder: saved_models/Transformers/SetAnomalyTask/lightning_logs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [4,5]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/usr/local/lib/python3.9/dist-packages/lightning/pytorch/trainer/connectors/data_connector.py:326: PossibleUserWarning: Your `test_dataloader`'s sampler has shuffling enabled, it is strongly recommended that you turn shuffling off for val/test/predict dataloaders.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "ce5047182c7d4a8384c808ab082bc971", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [4,5]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "2d1fffb5ff504942a7ffce3a74df7960", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [4,5]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "d9d68f961f694c259f922f2ff85ced95", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["anomaly_model, anomaly_result = train_anomaly(\n", "    input_dim=train_anom_dataset.img_feats.shape[-1],\n", "    model_dim=256,\n", "    num_heads=4,\n", "    num_classes=1,\n", "    num_layers=4,\n", "    dropout=0.1,\n", "    input_dropout=0.1,\n", "    lr=5e-4,\n", "    warmup=100,\n", ")"]}, {"cell_type": "markdown", "id": "c14d531d", "metadata": {"papermill": {"duration": 0.032062, "end_time": "2023-03-14T15:52:24.325979", "exception": false, "start_time": "2023-03-14T15:52:24.293917", "status": "completed"}, "tags": []}, "source": ["We can print the achieved accuracy below."]}, {"cell_type": "code", "execution_count": 37, "id": "79441e6f", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:24.392401Z", "iopub.status.busy": "2023-03-14T15:52:24.391970Z", "iopub.status.idle": "2023-03-14T15:52:24.399217Z", "shell.execute_reply": "2023-03-14T15:52:24.398293Z"}, "papermill": {"duration": 0.042615, "end_time": "2023-03-14T15:52:24.400646", "exception": false, "start_time": "2023-03-14T15:52:24.358031", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Train accuracy: 96.45%\n", "Val accuracy:   95.94%\n", "Test accuracy:  94.42%\n"]}], "source": ["print(\"Train accuracy: %4.2f%%\" % (100.0 * anomaly_result[\"train_acc\"]))\n", "print(\"Val accuracy:   %4.2f%%\" % (100.0 * anomaly_result[\"val_acc\"]))\n", "print(\"Test accuracy:  %4.2f%%\" % (100.0 * anomaly_result[\"test_acc\"]))"]}, {"cell_type": "markdown", "id": "8a0f9d00", "metadata": {"papermill": {"duration": 0.032079, "end_time": "2023-03-14T15:52:24.468271", "exception": false, "start_time": "2023-03-14T15:52:24.436192", "status": "completed"}, "tags": []}, "source": ["With ~94% validation and test accuracy, the model generalizes quite well.\n", "It should be noted that you might see slightly different scores depending on what computer/device you are running this notebook.\n", "This is because despite setting the seed before generating the test dataset, it is not the same across platforms and numpy versions.\n", "Nevertheless, we can conclude that the model performs quite well and can solve the task for most sets.\n", "Before trying to interpret the model, let's verify that our model is permutation-equivariant,\n", "and assigns the same predictions for different permutations of the input set.\n", "For this, we sample a batch from the test set and run it through the model to obtain the probabilities."]}, {"cell_type": "code", "execution_count": 38, "id": "286a1794", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:24.534258Z", "iopub.status.busy": "2023-03-14T15:52:24.533807Z", "iopub.status.idle": "2023-03-14T15:52:25.042371Z", "shell.execute_reply": "2023-03-14T15:52:25.041414Z"}, "papermill": {"duration": 0.544135, "end_time": "2023-03-14T15:52:25.044766", "exception": false, "start_time": "2023-03-14T15:52:24.500631", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Preds\n", " [2.7652273e-05 1.8945755e-05 1.7359460e-05 2.7821090e-05 1.6118418e-05\n", " 1.6986007e-05 5.7171139e-05 9.9977809e-01 2.1328320e-05 1.8650126e-05]\n", "Permuted preds\n", " [2.7652244e-05 1.8945753e-05 1.7359458e-05 2.7821086e-05 1.6118402e-05\n", " 1.6985972e-05 5.7171132e-05 9.9977797e-01 2.1328318e-05 1.8650106e-05]\n"]}], "source": ["inp_data, indices, labels = next(iter(test_anom_loader))\n", "inp_data = inp_data.to(device)\n", "\n", "anomaly_model.eval()\n", "\n", "with torch.no_grad():\n", "    preds = anomaly_model.forward(inp_data, add_positional_encoding=False)\n", "    preds = F.softmax(preds.squeeze(dim=-1), dim=-1)\n", "\n", "    # Permut input data\n", "    permut = np.random.permutation(inp_data.shape[1])\n", "    perm_inp_data = inp_data[:, permut]\n", "    perm_preds = anomaly_model.forward(perm_inp_data, add_positional_encoding=False)\n", "    perm_preds = F.softmax(perm_preds.squeeze(dim=-1), dim=-1)\n", "\n", "assert (preds[:, permut] - perm_preds).abs().max() < 1e-5, \"Predictions are not permutation equivariant\"\n", "\n", "print(\"Preds\\n\", preds[0, permut].cpu().numpy())\n", "print(\"Permuted preds\\n\", perm_preds[0].cpu().numpy())"]}, {"cell_type": "markdown", "id": "40cc2aa5", "metadata": {"papermill": {"duration": 0.032282, "end_time": "2023-03-14T15:52:25.113835", "exception": false, "start_time": "2023-03-14T15:52:25.081553", "status": "completed"}, "tags": []}, "source": ["You can see that the predictions are almost exactly the same, and only differ because of slight numerical\n", "differences inside the network operation.\n", "\n", "To interpret the model a little more, we can plot the attention maps inside the model.\n", "This will give us an idea of what information the model is sharing/communicating between images,\n", "and what each head might represent.\n", "First, we need to extract the attention maps for the test batch above, and determine the discrete predictions for simplicity."]}, {"cell_type": "code", "execution_count": 39, "id": "472a8d30", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:25.179904Z", "iopub.status.busy": "2023-03-14T15:52:25.179006Z", "iopub.status.idle": "2023-03-14T15:52:25.189632Z", "shell.execute_reply": "2023-03-14T15:52:25.188909Z"}, "papermill": {"duration": 0.046161, "end_time": "2023-03-14T15:52:25.191823", "exception": false, "start_time": "2023-03-14T15:52:25.145662", "status": "completed"}, "tags": []}, "outputs": [], "source": ["attention_maps = anomaly_model.get_attention_maps(inp_data, add_positional_encoding=False)\n", "predictions = preds.argmax(dim=-1)"]}, {"cell_type": "markdown", "id": "dae4c830", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.031833, "end_time": "2023-03-14T15:52:25.263293", "exception": false, "start_time": "2023-03-14T15:52:25.231460", "status": "completed"}, "tags": []}, "source": ["Below we write a plot function which plots the images in the input set, the prediction of the model,\n", "and the attention maps of the different heads on layers of the transformer.\n", "Feel free to explore the attention maps for different input examples as well."]}, {"cell_type": "code", "execution_count": 40, "id": "27e333d7", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:25.328980Z", "iopub.status.busy": "2023-03-14T15:52:25.328251Z", "iopub.status.idle": "2023-03-14T15:52:28.960872Z", "shell.execute_reply": "2023-03-14T15:52:28.959935Z"}, "papermill": {"duration": 3.671076, "end_time": "2023-03-14T15:52:28.966201", "exception": false, "start_time": "2023-03-14T15:52:25.295125", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjg0IDEwMC40NzU5OTMzNzc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nFVQy07DMBC871fMsTngeB0njo9pS6Nya4nEoeJQhTQQ5UGIROHv2QZEVUuj1Xi8s7MO19XnW1nt8yVWjxReWTkRoxHU0GgEZzByQU1aWEdJaqW2c2WtlXWx95Fc6Fv6SnSiEU6ZGUniVQKnlY+1PIici/FR4Qk9wkzcJxnRCM5inuM20PjXfQngWJn037XsEG4Z6wE72mEUvb7xEU6jLKNxJ/FgrJX5EZsYqVV8TVJ2tCwo3DDYoDjNqxYvdMAi64fu2H6jCsCJ8sbpNLocLL6O3XtbTRh6rLabAJ4V2/hXFTnby3cEeEbxQPcFST76AUwVU2oKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoyNDYKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMjM1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW4AMQi75xX+QKWwJ++Zquqh/f+1hlEvAwPY2CTvwUYkPsSQ7ihXfMrqNMvwO1nkxc9K4eS9iAqkKsIKaQfPclYzDJ4bmQKXM/FZZj6ZFjsWUE3EcXbkNINBiGlcR8vpMNM86Am5PhhxY6dZrmJI691Svb7X8p8qykfW3Sy3TtnUSt2iZ+xJXHZeT21pXxh1FDcFkQ4fO7wH+SLmLC46kW72mymHlaQhOC2AH4mhVM8OrxEmfmYkeMqeTu+jNLz2QdP1vXtBR24mZCq3UEYqnqw0xoyh+o1oJqnv/4Ge9b2+/gBDTVS5CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK4MrjQANRcZBQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7I0VTBQsLQAEoaW5grmRpYKKYZcQD6IlcsFE8sBswyANFhpDkxFDlcGVxoAv4wNVgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QS3IEIQxD95xCRwB/4TydSs2i5/7byO6ZbJCqwPITcRwTZ/OICKQc/KxhZlATvIeFQ9VgO6DrwGdATuAaLnQpcKPahHN8ncObCpq4h8dstUisneVMIeowJkls6EnINs5ocuOc3KpU3kxrvcbim3J3u8pr2pbCvYfK+jjjVDmrKmuRNhGZRWsbwUYe7LDPo6toy1kq3DeMTV0TlcObxe5Z3cniiu+vXOPVLMHM98O3vxwfV93oKsfYyoTZUpPm0jn1r5bR+nC0i4V64Ud7JkhwdasgVaXWztpTev1T3CT6/QP0wVcdCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA4OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TbkRgDAM6z2FR8CPSLwPx1GE/VvshDSWTp8Rygdr5AGC4Y0vIfiiLxmEtQsPKvtIdNhEDWcVJBPDryzwqpwVbXMlE9lZTKOzQcv0re1vgx66P92OHAoKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTUgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE3IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIDY1IC9BIDY3IC9DIDcwIC9GIDczIC9JIDgyIC9SIDk3IC9hIDEwMSAvZSAxMDgKL2wgL20gL24gL28gL3AgMTE1IC9zIDEyMCAveCAveSBdCj4+Ci9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNyAwIG9iago8PCAvQSAxOCAwIFIgL0MgMTkgMCBSIC9GIDIwIDAgUiAvSSAyMSAwIFIgL1IgMjIgMCBSIC9hIDIzIDAgUiAvZSAyNCAwIFIKL2wgMjUgMCBSIC9tIDI2IDAgUiAvbiAyNyAwIFIgL28gMjggMCBSIC9vbmUgMjkgMCBSIC9wIDMwIDAgUiAvcyAzMSAwIFIKL3NwYWNlIDMyIDAgUiAveCAzMyAwIFIgL3kgMzQgMCBSIC96ZXJvIDM1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTYgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggOTMwIC9IZWlnaHQgOTkKL0NvbG9yU3BhY2UgL0RldmljZVJHQiAvQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMyAvQ29sdW1ucyA5MzAgPj4gL0xlbmd0aCAzNiAwIFIgPj4Kc3RyZWFtCnic7P1LkyRLlh6InYeqmbtH5OPW7erqAojGyIAyi5kfwAUp5IYUrLiBCH4P/lALhD+AG3IHUoSU4YLYEBiyp7rqPjIjwl9mpqrnwcVRc/d4ZNatqgY4hKTeuBGRHubmZmqq53znOy/8N//m38C38W18G9/Gt/FtfBvfxrfxbfyXNej/1xfwbXwb38a38W18G9/Gt/FtfBv/+OMbzP02vo1v49v4Nr6Nb+Pb+Db+CxzfYO638W18G9/Gt/FtfBvfxrfxX+D4BnO/jW/j2/g2vo1v49v4Nr6N/wJHev0SIr544a03OgAC+JcP+FOH/yOd5x9huPt6azcvgsPNJb788zpe3QO+fNW/9Nbbz/rCOfGtT4Dnk/fqzV+Y1usbnl3R8+P95v/XH030Py0zyb88t69W9T/OMLM3Pug/zWcBfHllfGVN4R874Etv+bOH+4sHgYj/ieb/zY+Hvsku1/DGR2PfSv2Y58fDul7+Ma/57aXyj/wh/3823F6uy9t1EovoSwvHn/24PcWLI+CV+PqS2vqTNslXxtef6Buf8mJ3vJZj/9iS9vUnPNs1l7/2FYp4uSnEP6LB/tE3TowvbJ//1JvnZpX9AsX9bCB8efFej/hLhoO/uqr/nJL2f5rjpfaB1zAXkf6b/+5/u91+uCzwN8+EL7/j67/2zwQA7IvlVrqgA4CjPz8+tkgsX+yIy/vmuz3HzdFwFRI3D/hLT/o5bHt+ostS/o//4d/9/NN/uD3g4P/w4P8DASIiAbq5qbqZqooJAAAhMuZhHIcx55EpMSXmnNOQ8pBzyomZsSzLMs+tNgRExz41Dm7u5qpa5rLMSxMRdTXggdLIwyZt7/L2Lm22wzgO45gZMntCT97AGoAhACGSuZubuYEjOhCmcdiOecspEzIixYwS0Zg3Y95K0+PxeDqdmlT1CuS73e7ufsc5iUoVeTo8fnr8+XH/mGD8K/6vbufk/v7+X//rf51zvjyj//wbLNazqplpa1JKqXVpTUREzVJKQ045DznnnDMRxZV64DAHRCRCIubEzPynXr6Z/dt/+28fHh5uX/xf/m/+d//0n/1X7m4W5tJVZXjMfv8eppQ79OMQERDcERx9lVbrLnRzczNzA3Bwxz4IAGFdSOvCvm6f56DBr5tpfQ3i8Jut2bXUX/Ak/1///v/x7//7/+vtK3/7t3/7L//lv/yzTvaG5HjrMAMwADVdTJdaj6fp83l6cJCUiVNKPKS0QWQVE9XMd7vtrzabj2ZV9FzbYS4/zeUntca0S3S3Hf9qu/3rzfgrxAEh/+Ver+Px+Hd/93ettcsrlPi//Zf/6+FuGyYAIcaDJMSESIi8fhHEXwHdb4RnPN/n4vciTgDcQ6jEU49j8PJc18Vyuyj8YkUj4TqnseBWdeoXOfz2uKy3ONcfORrg//l/+ncPv/vh9pX/+l/81//8n//teZqeHg/H4wmROSUmvvn4fkPubiE53d379sFuU0Hc+rrLoDMB/U4cvW8PAHDsWmY9HtZrX2fql+GbVV8Bet9C/dHEvu5z2K/YTLU1aY0Jt+O43YwfPrz/7uOH9/fvfvjpp//L/+3/fnvm77777l/9q3/1VaS73iaul+rrg/DbvWMOaia1zqVOIoubusn5fHh8/PT4+Onz54fPnz8/Pj7t98fD4TQO+a9/8/1vfvPr/9k/+9u//dt//pvf/JY5EZK7izSRVmstpYjUlFPOaRx22813283HxCMSEpEDeUin9Qsvz+mlnfJFbgcAWmt/93d/dzqdbl/8F/+L//39d3/z7AHc6H8CQARCYARCQAAzcAMHwD5L7mDgZqZmaqtVRUSEjAAmTaWW+XA6/Hw+fpJ2sja51SHxwIzgok2lmoWkdwN2ZKRMPFLa5OFu2NyPm/th2A3jLqUxtq85GoADESfKA3FG7Pv7hnla1cPlC6+/r7sLfvz3/+7Tf/zvb+fkr//p//xf/Hf/K3C4bv3ncAdfgqZ1qi97//qvFYfd6gS8HHiZxnW14c3Zbh/kC7WK69J8ieheKp2b8/kVGL515rhOQiDE4/7h//x//D+8MIreYHN3d7/a3X//dVPkOcz9IsaNf9/ejd+8F9eNeXM/l8d91dCrEH5t97+6W7y9ri+Nl4bZ7V3Gp+S8efEegVLggIAESIAOZq5mqqai4uCIhEAGI9EWuTlnxwxp4GyeHQajITMjegNZ3Cs4ghME2HWArpGa4Nx8LtqamJgnToMnxDykwceMW6ON8+gJITmSoVW0BC4dFJm7uoEZOoBBIsojDCPnlIgYiRHAwYhoMwybYSNValtKIUcAA2DPGxzvUs6pCqAYFzeqFabXop6Z/+Zv/mYYhsu8/XKY+4o8++J4BdRe/ALuoKqqWmtdlnmel9qqiKhaznkc8jiOwzAMw0DMF20WvxARMzMTp5QSv/6sr9+RmaX0cgd9+PirX//mt26hzUJz+rreO8x1iJ+hojX0dQgVd3RDv+yEUAvYdeMKcw0ACRGRECkWUkzJBQjh+tabG7qC7hv4sV7URYIhfGXj/5Lxh//xf3jxymaz+e1vfws37OlXx/Wa1+9fgrmXs6m7uDeVyeQ0L5rHI2c0hzxgGmhIKeeMkERUhIe8ub97d7f9aF6b5NL8PO9PE6liYk6c7rbb+/sPu833hFvE4U05+epivjZ2u6cXawkR777/uHl/1+2VVTEzQCJixISYiDgsaLjC3IupRFd5d8W6IU7U3aAbRg7ddlpRMd4iRV8tP3C4WTsAiAauAKH+bd1yX3OYwHXlXIT6lw6Pl/M4vHh9sxnff3iPRMvSltKIeMgjp7xyNB2JruAWzNzN/GrYxdKPv5pfEQJ0U9ABYrfFDEIQAqtgcLtqb4TrB/5xpHvlZQIA3MJcRwRwu8JcM5UGCO6EwIlzTttxfH9//93HD6fp/OLUOeff/va3RPyFj77inyvMhcAe/dmuj8XMRbUt5TjPqdTk1kwr0bwseDopUTGbajsu89P5tJfN2NoAeD+O9u5d/tWvdillQjLzJlVaXQoui7fmOadhGDab7f3u3d32u5y3xMTMAOxAvmLO5zAXnjNOX4O5tVbmF7ePu/ff33//Ty5vfMbLIRAAUYe5Xe11mOsIDmEIgcazUBNbp4qJmRICWivaCiVsMtV2AEwKBAYpQU6IACiO4GpG7gaOgI6EBJSQM+cxD9vNuL0bN/eb7X1OGwd0R3dQQHPiPPAwchqQGJBiwWDsHQcHsFVZ2A3GvYpCh7y9f7lUhu377/4GvOueF0TLlf3oM/YcPL5Aule/5FUndOR7O9UXi+qZF/Pmt5fwt9uVb+iCFxKy/3C8IOyXIvT6HkJgREJ4tU4AviC+151xsz9eHdFVFl7/9fbwL/0xlP+zO11XqAetdf3b1+1pjzcAdJv+2fS9qRRfXmFnc7/q8iZEAiQkQgREA3BCIiJmJKDElFPOaRhySkgUh6hY9eaAiqCe2UEpUYYUj4eIEzERmZqKtobOCmxYkJs20bxJm92wuRt2d8N2m/OYicBcDdRRgRgZycg9vtDcRV3NwB0d3JFVWJsjkhuZmZu5gEOtsqQiTc/zubSlaVVv6FbbsizclJtKldra4i6hg9+aumcWyDr/zx4NrDqisyXupqZdA7u7rXbN8zO60zou59R1hAEOHbGBqqlKrW2e53meRcTdAWEYRjNT89oklUqhwByIgmuglFJHg6Luvi4dD5AK4Ijx+RhXAr8Ayvv1Rn11KTms7lkPKXalE1StiTSzeG6ipmrq7rHiiFNOOXEGZHR0QDcz044jEAkTYSKKjYyrELEVt4SgA4eLdsGOaeNysAOeuLaLR/JPxrk32+7L2+gXGTbPD7sClMvZvduFujIjJjK3OrV2WubHMj9O8+fj+efj9Mmh5ZHTwInHnDaIyR3ccBw+1HYo5YmJAFV0LvN5mc4iS6KWUkFPzAMiJX6f+B3RiCujenPDv/yOvnCfZm4WwqWzHHFvZoioiGDuiBQLcbWT4osADJ7HgtzAXLw4BZ5zDAg3MvfmTxcr54J9wZ/xuFeX2lXNvhStX8EsL2/8jd/6KLWeTsfzeZqmaVmWzeYuD+Nms4MOOPuHrCIFbu3ITj1RX4vuBgAX9uhq8pnfqvvYj+uNu5lp7N2rP6RrlZcW4utx2X/ekW58/DrTHTKjm4qcTwdXr3U5Ho6nw0FbY0J0n04vYe4vmcjbK3j1aPq6NXMxaW0+T09P+5/O56dWl1bm43H/8PD58fHz0/5pKWezSknHDW42kLICltIOx9PPnx+YiRGxw1xprdbamohwopR4M96VpZZd3Wzu85CHYWQeiEeijEAAwSPwy8XzbI2+uGx4tvdf3Spd/nZlHbuPGFdqAVawH6StuyOYg5k11aba1JpqM7OgJphz5kxErmLSpBy1nU0W1+LewEXVmiuCqzYzCYcHOiB6d6aqG5igExpYc5lczpKGWLfmaEAGxHmTx10aRsQUbps1uAsBqFNqHQET0I3wuYW6r5eE62qzrZvkOXW7YtwXhsELYLraxC/+/uxdfnkd4QVbuV7iyp3cys0rLQlXZXNj/NxexvoL3nzi5fAbfE4QtD3mt4zBt2DuqhhfKL2XM+oX1Ya3K/EN4Pryj124oN/I1+vR/cMu4vdFnNDzczkAoONF9rwi4X6RHrp8xJeQLiIwIQERMQMBmSO6Oyd3d2JOQ+KcOREzUpez5tBUVUXcBVzdk4NzJkopZCcnHoch5WyirbVaibLTALxQKY1aGzd5dz/u7jfb3bC5yymhu6kLARqmRI5M4GzAqmACaqjmouZm4M7kpBUlGwARI7Jqa1JNlZAZ2NRrqbU1NTEXIKeCyE6NxFqTWtrkJkzAb01MMIy30347/xcXI4QksA5wpUkTlUB0pgBADEToFxvU3N2Y+CbYANy9rqO11kTcO+UpHebWaZrneXL3iEPYbETNmip1RyYAOAKmlIacg4cmYkQ3V1S9IGw1NTOADrVTSsHaxg2+8DO8nhP3K5l7cfZ25HuRwmHKgYrOpS5NltZKk9J0aVrUBIkJOefNdnM/DvfMI+MAwCpqIt0p45B4SMkThyF2kX0WQNDBwANiI2IiZEByv9kdcXVdMdzYiX8qzr3sRvgqzr0I3+fjGVp7xqk/O38HOG7mzaEZNAB1aMvyNE2fz+dPx8MPx8MPp9NP5/lhWh6dJI+UBmIamAeiTMhEaTN8nJef591vxuFuyFtwW6bTdDy1dk58TungZkQECOOgkDklImQAxquM8hvj7BdMz5tLxRTMgNCdLpLO+ubx0NEGyAAWoQsABICA5Kuc74yLP1MSF33QmfqLgvAVh72+mtXcucGz1vmkWEOrBXjVX2/d0WUJfEEJP//ENzDjsiz7/eF8nk6n0zTNw7Abxu3duw8AYbnf4Jqu+J4BpismvVHhK+R8RkXdTpdfb8mbNBGxNS6IiIiYiNaVu07Qs2V+i+4R/QZad+9zEMYWs0/o0io41lLPp/PpuJ/PpzrPjIjux+Pxa9P21fl8/svNtTk4oJlJa6VOh+PnTw+/e3z8cTqf5vPpdDweDofT8TAvS1mKWeFkmx1tNpgGBVyW8vS0/4PjgojooGaqTaR1zsE9SPRx2J7vpuluurt7v9vebXd343g3jvfMDpAQ/Ip0b8zW9QterZfL/np7lyE6Xdf3+kixL1bC9f2dQ1cTURF3DedPa0urc5NFpYlWU1FTd0spD2lMnMANzNpylHpUmUwX8OreVMEU0N1NO8aNheeADo7irmoNrLkuWk9WNrpsU8qhAQzQnA05Dzvd3udhh5QAExETMSEhMSIDJaQMnJETImPnxcGf4Z1Xw81NYNU5NwgMb0Dn6vQAeGEpwyp+L9gUb4Hp7WxfN9eN2dI35BXGAr7473o2BF8/+xm7DNfz3+zL2+28ro5nMBchBPQvhrkhX7Gr4wvH9caUrvTALQ6/3fHPpOn1EsNUtou6RaeVPL6hBl9/3Iv1vv7b4dkFwDOl8uWrvxzxBmp5+ZbuVwylghDoCAAQCRA5pTzmNGQkR7LOpUUAlpipABqTMzszckKkFNop5Txuch6yCmF1KA5skB0GxAWw+rhJm7u82aVhw3lgJBcxlYYEBEkpRdyRO6p6E2+iTUW0rcBSURIQG3jsIpFWW1FpEXln6iqmoubmrkAOZI5CCcRFtLW2mAs+UybP5vnCvt5OZzzgkDfuYG4OruJNVJrW2kqV1pqIqDQAJwYicLdON5u7W+K02WzGcQyYq6pLBCUspdZSanWAeCiqJmattmWZ52VBgAjIFRU1zXXoYj7IMKRxHHTcdDYZoAmt/G2/4ghHQYSUUs450N9tbNxXON3VAez+XIK793uzQJ9ogG4mpUzLMi3lvJTzspyXdqpyblqImDCP493d7rvd9uOQ7xJvCQcRkdpM1d3BYMibcbwbByNmokC66iDuzaxZOOMUADujSZgAGbobEUJsXpjsdRf+Muvw7dv/Ot8Vc/HW+66x+C/n8wrC3cDMrYmdRSexxaGaL+fp4XT4Yb//cf/0D48Pvz8ef57Kfi57ZM0bygMRJ6LElJkyc94MH6Zpf9o+7La/utt+ZMynw+Npv5d2JoKUyAyIM6aMMDK/Y98GsPQrtP0iyfSnTJa7GSJewtWCfrfVmRZ60wEowC4AIVDHTIgI1Fn6C3PQp9dvxPDNI8WL0XV7Fa+4iGtkjK9y/LKI+1v8Bevw7IT+y9fPq+NardN0nudlWUprAkjDuL27f+dA3WZE9KuaRlz17BXcX7TvqmX7QZf3wEWTh93Uzd/QSSFbzJ2ZLyYuEa/M8Ro6sRoOV+PuAmmhh6KFgnMHu06eEwITtLrUZTkfD+A+nafHh8+M/u7+brsZp3n6hZP3xiT664fS7VZ3EGlLOZ/OT49PP//88z/8/Pl35+PxfDzN0zRPZVkWETFVNUWyPEAaHLCJzfPy9LSH2s5hDZmrqarJuiz6ZOa0qbWVZZmXD/d393ft/d39R0BDcqYBMa/zTs81ub/6DjfnfXHwdRACXdGPryFancNcl4WDmZmqiNTSWnEXcHGXWqe6nGpbRItqNRXR5mYpZUljSjnAUyuT1JPJ5FbABUDN4ol6+EwoMC7FJ0dcmYGJeQMr3iZvg9WBmbu7AMkhOSZrd66zDjsINpeYOTERUkLKyJnShvKGfCTOiEMsZoMrrHythRCAwGKjrwvwCjEvbv7LdrhshudnwuveuVgbz9HtFTE/A8Hrz8vrN8AaOsbFSxLCim4vqBpvzhymu1/P/BzX3p4zFkOK7/zGanmr0sKzifnCEnuGyvHF6xcQ/jY2AgXUbtU4EJBjQqDui7yeJlzl1OE8uIMZ2LoRMEycm4/pZutVht3c0C8ZFzLy9VvcwQ3UwVzVgZkSMTOnlDmllFMaUhoSkgGKg7i7Gah0foTIKDkn54SckMNyI6LElMBIldRIPRkOwEADsyfGlpgBWMQARb02RAijU8GcUNFR2FvShrVarapq6mpuiEAEBuQSe65xyomTuTkpJHNxdxPXJtKqWOxdBIUqzpQR0BzNvJmJr399PWO3s/0a/CFgpFiJaq1tKa0srZRWSqu11VpareaKZAgRiSBmBubgMAzDdrvdbrcAYGattWnqrszWRFTcHYjiqRlAMAzSGiImSa2mKrWUJeUUm5qJIvISwBDdXUud6UTmHrMKq/IOIieltNmMgXFfx+B+ZRVhbGJzd++62CMSV5ospU21LWrNrKk1kaW1ZZpPx9PT6fw0LYelHKvMCIzI43D37v67+7vvxvHdmO8Sb1pr0pqIhtNlu7m/v//ubvdhGIacM5GLFtFFZK4yt1ZM3RQIh93u4277YRzumDbMAwJdpFePY3gmRf7M8Uve+mUb4eVfvYs7XxOiqvvS9DzNP52nn5f6JDqLTtP56Xh8PB0fjofHw/7xfD7MyzSXysnHLY1bJgIiQ1TChsgnkqdUMj/dbT/e7b4b0rjM+2V+0rYgOjOKZEr3efww5gIrsffMnv/6PTwfX2K3sSfHXIPgrqZ7jwiNh4y2Hu8OFkoCnIAIAX0FAl0pRLBSf7v1C3iGHnylXMJ8gBu0dnOeZ2IV1sCAfoEvhWznl/DCffSXvzQl+PW/E1HKeTAcN9vtdrfd3juQebA6eInAufGI3gQIXrmfVwD3qpXXm3PTbluHH0fVoIkBQsqcI6g/55SSrwe9uNQLWbrOc3gpu2Zen+OFX3MmYPSWeLvdbbebcRxSYkTwi7vrVUmBL4wXuPD1XPb7vFju83x6ePzp08M//PDT73788fcPjz+VZalLkaaAlPMGvFWrcRWq2poty3Q+OyKY2VKWDp/Qe7xxRy1ITMwk5ufpsZZ6ng6H43a3u//48dftu/L+XRvHuzHfMeOKXC/g9TXG/codPRuEuMaR+RUlYbfaeyC2qUqxVlqZyzIty9lNEBQh2NxJQhRrNRNzdVdpZJSImJAZSaVoPbou6ILoiOQYHpEeGkQRXIBAYBF+jYA91pYcQcGWVotcoB8x4oA8WINqUsvk3mUMM6dESAkxIQ9pvEvjfRrv8nCXcEeUHRMjX3bg60hCJtwOHKZyZOgArGkfeA26e5PNfSb9X2yZ659jtq/G5BUoI6xUyXogroD55gjqFiWuOfhXxfMcxeKFzX2B6S+k75UhdkDECO/gt8Ir31TeFx76JX59ddizq3w9/PJtvV8HA1D3CijuhmCGOdwZDuqul3wdxAQwXASTg7mLu4S8QCBEiLBj6L6slbboE4M3G+Zr4+bq/YvvcjRHN3c1MM85cyamPOTNMI55yGlgzgQkIeXM3MyE3F3NnNgpGSdLA6Ww01LilADR0MxUUZTU2GAAJoLEkBKLu5uDNBMXVmBEcFczY1BDZxdobI20eim6FDFzJ0cEYkpMBqzi4irWMowGGRGAHcnd1U3NW5O61NqzRQmaIysmQc5IDGrNTNw1/vrW9N1oS7iZvwv37mBmolJqnaflPJWy1FJkWWop87LMqs1BHNS0qYibAgA6juN4f3+/2925W621lno6n86n81KWkMN9txEgUo/gDyFMSI2YiGuaUwpWhpByyuOQx2EENERXFRFRkSYSicMAgEBElHJKKW82G3cLRudL0Sxvzsfq+L9iZgAANIfWZJrmx9O0b21psqhW82Zez+f9w+Onp/2n8/R0nvalTuDgTpvx7v37X727/+5u+2GzeTekbZNWaxPRIP3u7777Tn6jNm23uy1siLzUU6mnpRzn5VTKWcRVMPH2uw9/A2iAMGYkTnixnlcqdd0OuN7Hnzm+YN5ez/8VuvelB607lRzdAMVgMT+KPJzOf//49B+P5x9rO9V2nM6n0+l8Pk3zeZlOZZrLPJdlkTTgrqGJEyuiIYZtgGaT6t4t7bbv39193Aw7k+JSzBqYIaLDOOw+7O7Psq2+EkU36uD1FL2QG5c/fW3ZUHcRXc8Y77iIIV+5QAIwdHCwi3RDYPfACx4EyYpxAVd8fIG5/cxX9g26prlc6rPQMEQHRwK3fmcr8r2yQ/BM96273Z9Nyi9YQm8pFUQgopwzQNpstpvt3XZ7Z0DWg43XCbiu2FUABd69pJBdAO5LmHs1JswtpACYqaqBN7MqQkQjUhqGcbPZjMOQkpmHB+Xm2nGdzFuG90Lz4y3MDdDlDozO6CnRdrcNmJtzYqbAZRpc/p85Xs1md9KYm6i1aT5+fvzpDz/8/Y8//e6Hn/5w2H8yNVdDSImHNGzcSmtmVk1dRAFsWRxJzUxElmUOVRsej5SZKBIIMGEmTuY+LU3bkWjIadhstqXOgEYEAJY5ESVEvqH7b5Hu6/Ga3302CCEcbN3OWZfzalQYuLo3lVnKaZlO03k/nY+ujcgIVLVIW1SLW3MTAHVQB23e1z1TZkruKnV2LYhOUT7CyDsjCeiABExA5I7GPcwn1mh4XkxEWlNTIyJkIs7MjghqKrWoR26JInhKlBIhMWAmHvP2/bD7MOpHBEuR9EYdz8c3evXAmXA7BOxwDS9qN37pCkihT9qNdrrdy9AhJF72y3M4uL7jGdKFmzotF1CL1416haT9HTcFON4CkSu4vMHh122+Hr+KoTB8Izz3LTL3C2zucyn+trR6JeluLmEVmggQchi69Dbzan5WO7kX8wquBAlhRGAPwgYxCukwbol2CKNDPLUmtqjN4WBFJPYN05YwrU4KwpXiBeD1Af4ypAsAnQh+W8YEm9tpkC6HmVPinPIw5DGlHDAXgSCioEwVyCJyh5koRXSNASEgGujKEKuaiaqomBkgUkInSsjA5gZxv0FouYOoqaqoVzOyBsogJM1LkVrEATARJ0JkYAYGx6ZgCIbuBBZyqZuURkII4KYqqubmaGhAAiTADTlDq1JbE1FG/eoUrg/c1+nqRJSb9ryq1mQpET5by1LneVmWuSxz0+rezES1mYqbRrrPZhzVrIm4uzSptZxO5/P5tCzFzNQUwB0RCIiYmZCYesoY9N2BiL1kGDFzTnkzDHUYShmWYSYiaRHlKyKiqhg5X4mHYRzG0cGZmRNH6EJECf/xApbogBaX5g7m6mpitbW5tvPx/LA/fjocP83LeSlnkYKkgDbPp6f95/3+4Xzen8/7eZlU3dSHYXM+Ho73j3e7d9vd/ThsA5hrVI1zWpYn1VOrT9vtdrPZElvA3FIC7E6qYMIp3QEoEpipbQyAEg9IiXANZfIOdv1SzOz2sf7nHhFQbO7ioGY1KoW1dmjtaZ4+PT7+x0+f/+Ph9GPtmL4sc13musy2zLbMWhetBUyBg+9kJzJA6FEj4iJuinWudS7jsEFTMHEzMEfENN7ffZzLUqQ1t/ByQmwAXyUArPW+EF8viV80b/Sc14K3pNULVe8XnhDQ3KjTtt3HtaK6LgvX917ctz0gyMzUDQGuOZ43pE4fsYn6fXgHTC9Uwqr5vFN7fzY+u/lYRCZmdubk7kEHcMoIhI7u17iRG+7nxn3YqaarkUmrc5ZuFPP1Vk3QDRxVtLS6lDLN03k6R5wkZ86JLSfASD0GXwn925no83zN8IhveIt0oafyAaEzOYDmlFM3wlfx3o2av3AaL3s3wLc3afN0PE+Hn3/+/Y8//O4Pv//dp4cfnx72p/OEDgSYmGgg4gyupqxKDgFJzRRa1cIVkVUtLpIYhiENysyICMzkoEgDgJbFy2JuTMQ5jw5AjO4mIuC42XhOztw9zK9cIr/IOLwM6pjGL7h5lV+A4KaqUrUtdT7WaT+f9/NpP533bpLIicytmTW36qbg4qAAIXMiIgydklM2U2mlSSVES8TYs72jZgI4IDkTEgGSBckd25DQ6VKtzsTM3ImAAYhQwRTczETVRZqqgJszGCMSAzLyYHGF2sAbeiPeIg1IA3JiTohkKi/mhAk2Cc0xaqSZQ0e6CNewsBsT98JpXNfxzR65OEPgdrt1XPviT89PtSLUyyt480sceJF7eNlQbyBdRFjzRdbvL2McHMKgwLW8xuvxRVdstxnWf726hhdHX+4s/n1rZqwT6NWsqJ2bfm72yexkNrsXMAbP4BxTS5Q4bRJvEr/P8JHgzszUVXSu8tRk76iEQESJ7hLdEw4hRIgy00g8EI4II+HtTP+R0Y8J/7S/dafubk5IyERIOSfOiRIHTli/EJmjymVEAzkbEFM2BCRGQ1NHNDRxbZHaCYGfba39wx2xhdlI0KtGQVCSZiYKKqpVrIkJkCeC5IpVpbkgUTg90kB5pJTI3cEFKTL1ETABAgITJWR0pkbK2NQtQq5MDdCgGRIgu4q2KiLG9BWY6zeCCc3dDaKWglp3w6mBiJcqy1LmeZmnZZ6XWpZSFpGqVlWbu5qqg8X9uyPQbOZE5ABqsV0JEM1d1cI52z0biARmSEFgRRSdubupAzATE6XEcwrdEtoFVddo4HAEM6eUzRISEpNIKnWhmZg5CkOmnKKq6QVGv7VS1Fwum0BqK2Up5byU/Vz2x9Onp/2P+8PPx9P+dDrUtqSEKaNImeZzWc51mdvS2tRKlVqEudRZpvO02z1td9txM0aIathP4NzKoZan4+EPwzgMw0BkokuTWXVRK2rNjNxSSndRlaw1kXfuwONwl9MGGJ/t7CAGw31y5S9fgLZbJ81lB/0iKIyRw/fy4FsUBwDoru5iXs0mtam1Y637WvbL8rjMj+fz58fH3z8+/P50fmyyVFlERNSbRjFrD2GYkNDRGlVEYmM2QFPtnJw7IYCqlOWsbTFVF4nCboRpe1+WqbVFtDaXYjq7q/uaqu1OOCCOxAPTGDUZAGDNGb+wBFda8c0RRXD6Olpx4kVxIMCaWobdCIm/r7XjQiipamR0QsBWppxSypk5iOIrCWNu4iYitdXaGrhziqWdUkqJGV9dadcl3gM2/CZ78XprkWMOr5bJG4//j74AhFHF2pnFPPyyvS5fAIs1APbKSAS+xO5Kjmv1zqXdrC27UkcX1eruaAjqttR6Op/O0/l0Pp/PZyIUjcyk5m4YWa1R2M2vkOCGxwW4Xcd+o1QQwG/KPaxBKo5g7j1Cyy0iqQi/OoGvPudmIvH136Ok3DLPnz7/9NPPv/vhx7//hz/8v3/48R+Ox6fTqZTi6IDgOTkYWMJasFXUxsjDkJlj1wCYsgo2jJqGStSrohEBkhNBdwYil2KlmCmYI+GMSO5eay1Llarv3sndzrfbzJHn0oPGEdCf3zbeLKYvTgeiUzcMzKNU2OXdACqlLnNdTuX8VM6Py/lpno5lOoCrsjMBoSEaggaPi64OhhDZoOAAaGbeVLSWWmsB9DAJ3cgdzSBq2SEBERJDj3JgZFoD5BIxIyAhJbQ1j9TJDUwdEAkgRVnsKCLpvUKeg4IpAriJt2J1kvlAvAEakQbOYxo2xEnryzBuJhgTuLsYqEFHuuA9ce3CzHaw5ivTerOmOzUOsfsJ18MunC52CnH9p19PiM/tz1sUeA3nv/C4GFVhvgxzb/ngS1LrDf18I2jxGinyxlJ5C+au+vsFTnz99hUQ+s0Rl6MubwxG2dVUbWl6qPJTkd+rPZqd3WZXNCM3RmKkxDxmv8twD1iYwNA1RLMcl/ZTaZ8cKjEwc6L7TO8ZN2FaMW9yus94BwSMDMB/FOM++3vkdPgXaqh5JIBAkII5p5SYOKoXAK7MTrwCRGDihMyK7KTubuBukYpg4AqhadT8tlAIIkECIurPEIkImZGDriSSpgimirVaXUSLMefEhk7iqi6MDMyYgAfMI6dMpmZmhIBRRRAAgBCQMTGzMyaqjIzQXE1MVURBDcTRHK1HpJmn9CbMXTkKuKq5XrRMXERFRc0cwMGaWK1tWeo8z+dpWuY5xIdIVa2iLSqhAPTkj7A+VS2UcD8/IiCag5qbW2xeRESMDPXQhxCJFJHiZq5R9q1HVF/Yq1WYIkb6Fuecclb3gZg4cW0cwV+ceBjyMGTAeDq0ltR8g3VQa2oFgQEZAJrUeZnO56fz/Ok8fdoffnza//j09OPT/mH/9FjqMoxpGNMaRNHqUtpS6yzzVOa5AkKZy7Q9nnfD9m4Yt5mCqgMCJ3Re5mE6jzmPnDgxIXlUIQAQZAV0gASQE9+bu4iqOmBiHh3AEQdEWGu2rtu1m8YX798qOlZUATc//SKEfgnOfX2gP/+9wyU3VS9mU5MnkaelfJ6mn6bpp+n8cD59Ph0f9k+P+8eHaTqHtecIQORAamDekTQhg6NUNAFKztkQTdRUHBAjkMVEqkp1V1EVMQN0ZhruzmU51zq1thRps7azWlUtas1UzY1oS7xLfJezIwYh9+xuVgl62dpvTM+Fyl3F6PU9qza55uxfYN1lv6mZitbalmUppQACM+ecxnHcEGTMvRZep81c3JpJaXVa5mmewT3llFMax3EDo+FAawxFLxBwpWt67C1eSqn0jbMqqHVpIFxAKPgvXBQv5oQoMQsbM4kpYrSoiEzWNYEuoP4l+OUZurysMgfr+Gm9jgCfsfO77opC46K21HI6n/eH/el8Op9PSNikNiluggCMOEQFZuI3FvuN3Xdl0C8ofL0kvxBdvU1PWCreYQ04guG1yu8fHa8Pe66OHcxM1ZZ5/vz5x7//H//DH374//z00z98+vxDWZZam2rAXPAOcyFgrglnTuMAnAxREMWdVQkA1Nw0EhvA3SP2FKm3wiFMtWqt2pqLWFSwbFJrXaSZGZoR4TAMdwihO9e5vE7N7b38kXkgMEI1szBBfV1xwXBZK3U5z+dDOe2X08MyPZX5VJczuKYEljAxMCOhA0RFmp5yGQy3I7hZRGu0WkspKzTAjnENIvU5JCgx5BT+XU6JUyLLGIV0PXpHEQbMdSczALRQQhwMcI8QclcNnQqITUXqLOnclmPJW+QRaUAe83g3bO4oja3OL+aEEcbkZsAIEYOsndD1Fbr2ye2Is4uYGwF/LdoOCEArPw2r8X2leFdO94qAAS4fcct89A1zKfTml2t4ExZfZGbXzv2oqy2Et+e/gHO8kVgvxhdS0NbbAby92pcK6lY6r5cC0JP8rIfhdgklTfalPTb53PQH0Z/MDwAFvJqDG7kTeAJn80G1IE4EFaEY7c1Q3dUng0eDvXtVMRFoMBU4EYyAhEg53zs0JEtIhAPg8Pr637hZXAXgWivK30K67g6uHcshXOpSGgSicxdVINSo19SLl3S+1uESLoRgCKpmpZRaq3oYiLSG2pAmE3EEiMQvJGCmxOBOOSMSc8pDdhc0QTDlaG+AhAk5IxKljJSiQjWlTEoeOf1IEZuobgpGUT4+4lJVI8HWVkeH9+Ywrt7r25rgS//IzeRcpXVEsIm6iImoqAbtam7LEjdda6m1lFJKa7W1qtrM1HviRZQiTikxJ3ZANXUBNQMAUe1HMKESXgIQDRAjG42YkpkZRNkGUO0VcMNgVlOnAMSrLYeAaGZE1CsvxKMKUFhrXZYhQhpEdLfb7e52wzCEcziovRez8fD40/AD57QZx7vEQylLa6XU+Xh8enz68Wn/h/3+p/3hp9PxcDodWqsqWTUTxtSp1KbNTBCM0AKiREhX7HN1i7qICIZgJK1JLVHyigiJHMAADUmhO9EYMKek4Mm0f0opy93dd/d3HzbjfeKBORFlxEyYiBmdCekFSX+78Z+H9gQgeuPIL+y4N9fQBRm4m9V2rvWp1Mdl+Wlefl6Wn5fl01I+nU+Pp9P+fDycj+fzaVqWKqpi5hR16E0biqAqaENrqArRa4Mz5ozI6EDmFugPKXarg5tGIpKCqynodJ72D4+b8QfQrFW323u1ploja9BBOe3ycL/ZfLy/++u7u9/kvEViJIY/Im+ejRTJ5+vXDQV4raUTColgBY/QqUFVK6XO83ya5tPpdJrORJSHPI7DbrfdyXYchhANYRa5Q61tqWWel9N0Pk1nc4tonM12c7fdbTabzCmiRMO7FLW0kAnWwiFxAbwm0EJvsBC6wOGqFG6Uw5vT8eUp6pTtSpVFCZheYTvcxNeqYiu6vALvK7XzTCNe3uCuJmotknQBXESWsizLvD/s98fH/WF/OB6Pp6OZ7vfDZjOev/u+lGqi9/fv6I4GjhQaX2VID2NYBYevvPsFR6yfv/qdXoA5X8FuVG/7U2Du863UJ+OmxoabSC1lOZ6ePn/++ccffv/508/TdDZ1d0LIYKQmpiKtSpuZgo7hPGy2W97dJU7mXg1qROcRo6oINUTLiROTWi1VzEQV3JnJa9VaTcVVARxqLdN0YiKmEYHBmTkqw0BKwDysNklvX3IzP39cnpjMWk+qTVTUJLik1c2GZZ7LdCzTsZaTtsW1ggth70Hm5trFmIfTEdyR+u7t6hrCYW6cKHuOurpm0fzURKyJNtGI3SfCcRw2mxGR1lJLCkDm0Jk+inSIsDnNVHDVRAC6lvKNhBldO6sVB0SaOA2cRqQBcAAeh827cfeO86bW5eWkdBANDs7r5GEPWgiPv184HrgQpleh9Vw3rg3kbrHsCg1vMeKN0bv+8tJsuazXtfwDvrCWX4vOl7Tt9Q+3577YSl/CuPCVFLTbCXhTcl8/6lKeoB8VETwNvDlUdzFXtVrap6n8VOvPBg/mjwgLY7hp0Mk8cAgyoppX0TPA7H5Q2jlkAHYUxCPxWaWaiqqZnl0GgBQlDwb7gGhERDgC3V0e5Fu39/LFm1cutdxejPArYe9XFgUEENVFIvLIEAUcO+kgJk3EVsRMwal0/eGiWksptbr7WgeKEJGImZVYELBLPURm5GTjgIhMxCkBbpggEdaWGlPilIgozhx3TASUgFJEMLiqISCBYxSKMFEBFEWhVlqrNWKDzKWXU0BEp+hWq2am6m76haAF775TV1VREzURVzERFzWJB2WqpvNcSmlVWpXWpEXWl0ZEsjt1oxiZKQ8554E5lDuIiUvHrQ6ATGScsquCmvqa2+GGxIk5R0gZgIETACE4dfLuxm7E6PKxLlk366ULwNxVvTZNqTJzSqkspdZWS/3w4QMAuHWvvpm9Tov+8effzba/u/vw4d1f7XbvRbRpq1KP58Onh5+enn48Hn4+nj4t81yWYqbMSBURwdREVaqaRAIQM2dOvBnH7XbcbNJmQ2lAC95RzRRdjMiMlaUhAqBTeNAIAc1RHAyJkCQlMyMRba0uy3Q4Pbx/9/2H99/f330ch+2QtylvE29T2iQcmbJjXuFsB7xfGhdY8+dwd1cZta4mN7NW6+F0/ul0+sPx+Lvj8ffL8rPoU5On6Xw6n07TaV4mKbPWaqIgBhbFowlc0AVVUBu1BaWhCpgBDygDpYzIRtS5E6WYLrgsBkRXR1M/n6eHz5/cYDnPp/3DOG7NolVSNa8ANmx24/b+/t1f6/c1p5EIGTaI6YuC9q07T4AJcI2TQl8ZwFtaF24ZX+9sqiOoelnK/nB83O8f9k9PhwMl3m432932Xb27b3W7GVOiREyI4OTm81ymeT5P0+F8PExnNaXEKae73e7d/f1ut9sM42YYCFBFTCTEKifurAVEnyGMllcZM1/0lft6Xf3m1oeKL9bOLzACQpJZUGXqpg5R7767haDT9b01wKWJWXzeJTwAVsXlGGS0OxhYqctS5io19ou0Ns/zNE+H42G/3x8O+/3+ab/f11oRgJhOvz5Kk3gem3GTh+HCQYUF0UE54I135/LortzuenPr6zfpdCvSXcmTX7iA3p686w8Da63M8+l4eHx8+Pnnn3/YH57MJPPgzK5q2FRVmpppAUWoOedxHDabzf3dcP8uczKxRbVw4pwzM4k0kQpow0Ap47JYq7YsRRXRc0rQmrVmEeWBQKrWapmmE+GDCiDkzfjubvdhdX0SRE08X9m62wXyDPW+catST215Emm1LSItKjZCL4WOdSnLfK7LWetkWsGNCTyRu0W8dKTEuJuqqgpCXFE0hHeIECBkZMxj4szBdLQm6hGK15pIrS3Kb4R6yTmnhKoQRrM5JvFORa1B8N5VmaJ3lOXBBIKa976qKhfmyQGIOFPIZMxIw7CbN6XmcVfKS5gbeYx9bXnkRUXYAXS4252BF/qz49kVI3Yy/IL+CPEalvA84qGfspt8N5IPn/30568+h1c39ig+e/HFD1xv7vnN9vPfLpQ34dtbbO6q/nFF9Tcfdf2cLlUuAcL9tcB51byYT+aTWVFrostcfjzPP9T2CfGEdGLSXgwZ0QndQuGYe/XeJeuoOiQeiTaIIwAAFfJFsZq11po0lEbgnHJKNiC56Eb93ryGD2j9uoW7V1/SS4ujU7nwTCqtI5I6ESEoBo0o0WCrRdFg9VNZONMDxJk79o5bzEgEpKraO0HUWqs7pNTJEezZID2NCsKQImKmlJwwpRSoN3FffhB7J4Byt+RXLMiJOBEndgfi2NqAkYTiagZgBIqiTV3cLShfAMDu4VwLm69RAL344/OxNumOWHqrtZXaQtKJmEbymZmoquk0zdOydEK31dZqz3GO8mcYhbEppZTzkIeBCKM8Y8gX0yvOjiMd2AHMDADVnNAdkDA5xoOJCFoGCB81I636eN3WF46nx7tG9WC1JkrUuGfocCm1NqmtmTsSq60JzL377rPx8+ffP830/t3383fz+3d/FbkCtS3TdDocHvf7h+PxcTrtmzQVAwRtIogAoKIiKs1VAAwJOSdKOY3DuBk340A5U2Jv5hp+BDETMHQyN8Joyxr0PxEBmro4KBFR0iAsRFqp83k6DqfP8/y51V/X8t1mc78Z78fh3TC+G4b7we8y7jLBqq3RbkLtr0LEn/3EP8dDfcG4VwLKXcyWUg6n049PT3//+Pj3+6e/X5afHc/qp3map+Myn5sUkkoiJAZiZOTO5hS1ClGVpKE0bAVacVFIDUzQBkwZMDtytEsOdyIAIRhFBSI3ULVlWg74ZK0t5+Px6eec81r2uJlXIN3udtv7dx/Lfsjj/d3HlDMgIWd8llH2R0awuZciWR3urHJ2lbzX6IUemupu4FFf7+lw+Pnh4dPDw+f9I6e0u9vd3e/mVhapuzLmxDkxOoKiqZ2n5XSeTufzYToeppOYdZh7vzuV5b7c7Tbb3bghQKlVWkuchmHMOVrHGa4l7DfjuA0PK9Naq/m6IMLswS5GX66KF+vk9Uz5OtHSE3NN1JoaOIZFiZdqVr2H7psE6Bo14Rd/HTi6mZVaT+fTXM5BE9da5nme5+l4Oh6Px8PxsH962u/38zxLa+6uTXLKm81mu91++PDRVy4XgvawNWJ45f9Wf2x85mVtx4PrXotuQPrKRHd33/r1lw7vkNmktPk87Q/Hx/3hcb9/mucpJWbKoW/AzSNXSczUwIX4LqXtZjtud+N2NzBbU1BFZko5M1FikkQOmhISAwCJ+LIooiZWVRKxCFeIqCcUBVRzM8VSNPHm/bvvP374q5yHyJIAYAByYOzP6maB/LGZaMuxTLlJqXVprcQDBQBCRqRWaylzWxaTxbQiKJEzY/QKdY/4PDHtsDIK7DDDWvvWGZipdxpKiE0iRcRQwD30UhMV0+i+QyqDG7iBYQ/bcTB39FW5dYHqbiZm2g2xKzuo4QSOspi1p0aLGRDlaCHhOCCPG0P1lMW01dcPH8zgkv8Y4aqdze2FzwLgXdtnXP1JiHiNWwphfwkGgPX7c04TLvDvhVVyOdav2yGOerVXr9+/JDlfL4hLPZW3pMyr8eWgBbxhrt/8vBUKXy8AAyxU1anpscljlccmc5PSZK51v9RH1QOnJaUKbJQMMTq0cVRFtM7Yq5owBZU2pLRNaUvEiMKsbmZkTO7s4elOaYgYM+YN00iYAMJlcHsndPnn7U3dSNwIWlg59ecj53S32ZiDqqtVb+yg5kyC3JAifY6CCDSNHoKiagFzCUEYCQA0Slf13ggNACPwFHv7k57/htF9hzGnBENiYhGrVd0gQjOBLA2RkgmIjqDrLaEZIWIamHNKOQMYQo7mD65IyFGtG4QgIzI7Z8zKDVixKYqrmLo5IzpRShkgAfqGxzeWDwbaA1EvVaZpmaZlKbUUqVXUIiXI1FRMy7JM8zzPU1nmEjWxVNQMwTuZFvccfvdIr7Go+KO11mjh6yvThQBInIjdXdVVtJoCKoKYe+/piIzkCBR1GBCDszW0HpkSdJB7GN+OZGxGZEQakddERGTxQGIvq9rpdArzzNxVXpLc+8Mnm8r+8PT54fPd9uO7dx/fv/+oWswkIoABwMwRKCUGQHCUZmYuLdB8ZM0BMQ2MKTMTgqurWzN1CM49ovjco3AG87Xxnqu6iHoX1pAyIqEbqLbwZJpW04lgBjss07th2I15N24+bLffbXff3d39arf7zrcfiDJSRmQC69LyhrB6aXP/RSMksRuI6dTksCyfzqcfDoc/nI4/nU6PtR4dF/dSZ2nFpUH/il64jMjgTEDRhiRO2VGhOoiEoQPB3TqtDngHdzRANDTVqMBgEc8MBt5UlnkyqQshr9aeOAiQ1fdNTfIwnM4/nKePnHwDQkxEA0Lq5Xv+2AijNmLfgsqNYmb+XGVcuEEDcPfS6lLrcZoenvafHx8f90/70/F0PiNT1bq0UluptWw3Y6QPuLpWa1WmeT5P8zQvcytzK46QcspDVjMRW5YyDsNmGNBRWlURZs55YObAnoiYmDOn3XZzf3d/t9tuhnEccjSJ6yHvl8f5jGFZH/MvQjCd3jYHMS9Np6XmqTqwOyEgsRMBEzB1Fd6b3l+VkiOQBwtu4GS0ptgYWJM6LefD8Wmaz/MSsqiUWuZpjrLcp9PpPJ1KqSrqDnMp87JM87zU0qSpKyEhkIjU2kQE4VLKJTGnG7ESChFWKhncQrs4IEhU2FHv7unuE+sm9y/ZM2+NC34OyVSW5XA4/Hw6fXZv283WzTzai7dWSmmtINlmk8DdnNF5t8u7+7TZEpK0FgiuuQs6qboDARhxCEwRExFF5JRGogE8mbKpq4CIqoiqDwONWzJVUxLB8+4wTYd5OUTfH4cBe8gydfuhZ8hcQNOFPntjzOcHTk21NY0MZls7q6A7moi2ZtJMqmk1rebiLuYSuaQi0qSpSETpIWIkQF5j8MQaOKExMxGruFoUMcD4hTgNGT0FPUQpp/Xag31KnBNzQiJzFLEenNArnUTo1GWnQMAejSwBjS5ArdQWqWvEkHLO4zCMd8O4G8ZtHjd1Sq/Jp64fHdYQjKjIiBEVQj2tvUcjXLEs4g0Ihs5wXgIVbsT9i4exRhY4vrHj+wsXtHtjBPqz0755F88X9nMwe2FGEJ45QN4+3xdT0PAyB/HmW0R+Pd9KPFy3tqnVpudSH+fyw1x+WMpxqUuts2hRnRHrMDR3QQAiJ3JauzlHfJyIRL9sJuREKaVxrESCNESRHCfnBMkQwOKick7DsBnyLqVtoh1iRoCISV9bafPV+vC16Tg8i8fwa/LuG1ImD+l+t2tN5mWpS1UndSblXheaMSXkhKYeADea2QZciU5p0SxSRESqtOA3DYlyNk2JSFdPM5gbIEapGR+BmCyBqrXa3IwjcJ4gEaZMUaLh+tAQGQiR85BTzilnIiQED5O9mTNBYldCIzBMA9OQefTUkBtyw9LcRU2dDRCYVs54hM1bE4PBaIh4LXKelsPhdJ7meS7zUgM7hiRX09paLaXU0mqJSImI8SdcrVrq/Q4hklzD7lUX1dpaKTUChQkxksOZmYkBsSytmpoKQAPvqRJuIW4SkhMzMblHjUIHvLSKuRlmiChEhErETEZkUdsoloeKiWigAYqPBpBXMPdwfJj0EX0AG4Z8/9vf/rN/+k//dhySuUTGDyE5IFEUmUNRk2bSNLrCQa9wgMxETBGQAq6upg1AwQxAEZ2xV4gJFcsIDhgmVmtNbOWtAZETuaOrqIv34lzJ9VCX4ZiGzNuUNpvNx3fvfn1//9etzQBGzClto3O134QtvB3R8xeM7ngOuOKqNkl7WpZPx9MPh/0fTqdP07Rv9QxUAVotJg2tsQpGIz/MvZg6sAOCmKs4ICA5sEUyuyggkjIyg5M72eojjVkkAIwwG1MLcoPc0QWslLnMPemZwltuoMSgpoA6bobz6cfTeZcG4MTZtwgOQOj8upzE6xHhwd2r2PsbvUF2YoT7rVz3VOvxdHo8HD49PX5+enrc74+n43megGCpZVjmWpdSls04RllTaVrnWuY6zct5LqVWBTNwyjyMQxZtoktpQ55y4sQJ3SNogZgoZWbqteYJM6chp/u7uw/L8r7c321397vtdtwMOY9hwMHavejm8p8/6ue39lqkIAKRA6pBU1+qnpdGUwFgdyZCTpAZE2NiDG8grSmhsCJs7NlnUZaFvCexuIM3qfNyfjo8PDx8fnz6PM+TROpnrbXWpdQyl2jAFrZobW0uZY64JRUxZUYGr60ez+d5Whg5pTykYdxsxjHaAj+7YV+jfyw6nIAxkIpfkG7AM+jxx38JzIXODHtkFizzvN8ffjqePwPo3d09OAUJ0YqUZREp4xY2m8RM4IyYtttht0vjiA6ttAYiSFG9Bg2QPUK10d2atNqKiBDyMGwTZ4DsRtFXohaZ51qrbDfJPLuZCEqD83Sc5uOyHGu7U925bwNSOdjawfaCmla89uUxnx8AztHTIRqb30jzXrHA1UybajNtvVhKTzgRVWmtikT9SgKkcPpFaKv1ukOOSJGsZh5hch3mOiBzr08CUTw45aA2EYk5c46uUenSh829ubXYyhAq2zrS8kiGCe+F9kLupcpSmipSQmLeJt7k7bh7t9m92+7uc95Y2rcvTE6HqYi0YtyIyQ08sOYx9w13+QqXNVKPI4EX6O8L9VZvud5bZ7g/Q4t/hHL9M7yBv3x8oW5upxRx1WtxH35zub6+6r3jBoh7Ey2l7kt9mpdP5/mn8/zjXA5LWWot7gqoiQ3CQkIUBAJwAicDALWLFaNNTNnZwEGjw4qDhggzM3Aj1MRA6ACekjMDogGI+aJGbkI4xcJFzOwD0YDxfHuDTII/ZVpzTuluU2pVF9Gm5u4q0i0YZnRDNzKLZHYzdVfs8Ml1NQ+tB6SKhAnPDIS+dkLqd6dmSGhGzICITJyYe6qHW0+3SsyJmChyaXtX8f6QusPO3NXXLQjkJM7RIRSikQoBmjANOW0wNeSKXBEWs0VMelNCTjyklBJnG+BlWmekdLiI1SZzadNUjqfpfJ6XpSy1BoWh5mHat9ZqLa1dZkDDPRkXaO4YLKwaGuCK3UPhiVqLjDYzQhw6qxvBTmRRTlgcyYgsUAogI0YnOACCS/STmCG4wRoUtaqVfsb1H2tdRABAM5Cm7sXMW5OooZtSRoTXsblmolqXeZ7OApYQfdyk+/vdUk5qLVBNaOfEyZ1QpKdUNpDmhEBrYZpejwbcRMXBDY3QDExBFVVB1BOvMgu7GDJzVfOActEtyykiiV0lMCUiliiDg8w8Jho320NdSi3NnRKPzNvNhnAYCPNVLlzolj9/vPFed3BQcBOdWtsv5dOyfCrLQyn7Ws6tLq226JvYiktBqdQKlOqAkBJkRkyAMVEEEtKVnQdPCizAFpUoASLPr3cgcQCMKQAAadBaxNgBM1hyFRMSEZfmpquccndXZOBEecB5d5ynz9O82WzHYXw36EeAxDwg5l8oXZ4xG9B5D4S19dsNlesAat7MpqU8nU6fn/aP+/3+cDieztOyVKnuXlurjc1UVMahV05oVZapLFMppS61NREnBALWZL6W0VVrrRFgpEKaiqkSUxC15uaqgJiZc05zLVWkSqtRFTFEGREyU4ctoUMuHOszTqT/hni9/2cTgiHr1KGJL03OS8VcEDOgM1F2jJaMYZ84kqPR5ROu7lroOcUdhqwxRm5q1lo7TafPD5/P52OT2mT1EDeNJoOm8WYurQb0ncp8XqZhHiLWbjrP+6fDdJ6HNGzHrW+cOOVkCJHVCCFEruEIIZEdycHBRM3U1uw6AMBr8MNfFrbg7u6qWkWWuRxP54dp3jvodruRZqWIiomqagOQnNJmx0NOhIkoDUMaRmAOpmkBUM7IYeRrdHKKiq3dW8LMw5hSIqbEnMBDD0Ijd28qLmLSVJjcminO8/l03h8OD+M4juOQh8Rpx72b2drn5NnOuCyZN8YyH92nUEG9albkaHRnXYSpoZu4N3MxU3eJWoyRdhaHBjtEUSwJrmX1olpfJG7YmgQCUcQFo0wRcidHQwSTu4toaA9zMhc1VBMVMWsADb11CU/ka8RCXy0Bo9zXRDdTNRUXA3AnNxYfNRjlqOBmX1griGv5c0JwRINrdwjqhC5csd0zmOs9ZhXhKoCenfqPrL7b46+o0S+E7ioAnoUBvHjiXxgvbOJAoJfi4F89w1cKiq209UtO129P6m7uxaw0PTc91XZalsM8H6b5cZo/n+dDqVNptUkjMiKH7IlACAkYPIMlwuhCFzVbXRVVkxs5upOZoYhXFJJe2xy8y9FAAwiKVB0mNa4C5gtCRkgATJSJEtMmpbtEO6YNwUg0ImTEjNFC4kpI+5ow9tY0ZUrbgRMCOjHWprWZaC+45IprUQnEwK5h/5l37431QHcVi/J8EVfGmBLlzFGUNSGhmIoKUlDUabMdt7tNEDNIFxjjDsicc84RJuLXHNAItBJREsEsOuQ85Nyro7jFssfeaJh4INKUBFmQK6VKkExRvPT4d044jDzkgSW9gLnu0NQMtFSZlzrN5TyVaaq1iTkQc/Cz5roU8AD/atLtgKjf4GbmGBsRrLmodvcJIDOnnJkZkN3ZjCL5ChzMUBRb8pSMiGrp+X4OEaiwxpKurmB3bWEoi2ovOXuzLcJvE3G4tAbkIidOQ8652+jgPXhKiCilvFbWf7lU3t1/GBGf8Didn6bl+Hj4aftznuZda6fWTrXN4MYpRennCBFFYHdzi9KKlyApBAzfmYdhZ40JQRREoGf4qaesqqYDITmyApiZIHpEhBMzp6j12Au9WY+LsGhRycSJNSXRyqCjSSa8z+k98zvwIfEdJroRCF8SI3/mWOWWmRazUuvjPP84Tb+v9cF0RjAEQCdwNlEzlEJSoBUviy3FkR0HSAS0tmgILGHoNCAPgBlxwKEQAiZEBDf1UiL0DsEdyaJ6n4g3CZsZc8YOkgQQE0LiNdMI3RzIzaVBnW2Z6jIf5/lhWT5sNoc2nmHYIO1Wm/OP3n7v6+De40svRbi6Hrgyexjl7IvotJT98fSw3++Px9M0LWVRFeyuNG1upRAiqhgTEpE0qVVEzRFTykisrtL7NKqSMDFmIERTE1tj4VVTShmQE4bocvdGwq1FYFmTJqIXZcDEkCFjRAfdhO7Bc4buGpp34xC9GcE4OaCaV9WlylQEB+FYywBgjoZoHlQYIwCtbavXCr7o3skr9x4FYoAE6o6YhmEzbnYpDYBURc7n87ycpQPPnkHbc5koV6lF6tLKaTo9Hh7FBBzdfJmW03EqS7nfvSPkPIyRaQsRjukduMI1R7enyQbHHD19O6kHHSddNe6fPxzQTcMBNtd6Wsqh1hMA5pyY2cxaa+6aMhDRuOXtlscxRX8jBHCoambeAAXRwg50c9WYEU8JiXEYck5sI7qxKSMwIIHDMIjowFzBE0FJyQnRDQ0cQEtZDoeHT5+3xEAMQL7dfBzH2Jt4U3z6F+0faQURRVqTRbSt26Zjupwy5Jw4EZmZIahZFWlrJ0EABIq+I5SYMjMTJDcGJwJiTI7i2MzMFVbFhASUmXHIbsyR8ttxIYpYE1FrDuROkQOOxOZqqgia2BL7kGnIOURKL6hws/yJGNEwqqUBR9laN1TxslSgqSm3Zq3pMG6slJeTsi6gC3YDjJqlvcZDzzLqy+55TO0lWmR1FHYnCH79eVyQ6xueqMgv7Mb7Sr1cpNuN6fuVzEt/+/c1JvjmAl4cfB1vp6Ct35+xuW8aWu5ivqiea3tY2uelPEzT8Xw+z9PxPO+n6VhbEVV1TclTxghTZSGChJ5BM6ACioN0r42BGbslp6hpCCpQXQA6QCKGlCjnHgyFqGbF3EXVvDTZg2NwWcyZeUjpfvAPA39I/I7xnuGeadsdhuuiuGDcL1nSiXmzzZwRGTjTNFWHpiY9AQLQFbRvHwrnBxCaOXhVNIhu5c1W6dZlWqKUOOc05DwMQ6ZETVtTIoQ85mFI2+1mux3HcYx04ih7oGrgSJxz3gD07PS1dW1T1doUWyXS1ETH6DqBbuquUYvaiTARZyciNjajJJQap0qK0qwaCDR3cU6QM4+bjPX1UnERNYeltnku07RM8zLNRVUcINqJcWY1i6or6qa9RoatPLdZZ3xXJjK4DSRETGnYUkqJERMAu5MatBZtLCApJDZORsGH6lp8G3lVtBjuGnNtTZuoqoSFfIW5K5zs6DZ0acBDxJxyHsYxD0GPaA+qUSIdBqeeKfxye757997zWKsjPs7LcX/glH2atwAVobW2AHji1En1buBaeNOjrVX0Lg6s4Jd49Sg/g9wa1OZNvImKah7CUUiUjFgjsBnJiXsFkt69ydzERVyKRqlidGCkRJxTwFxSydIS0X1OH1L+kNP9bmsX+fGPN/zZj76Aq8ip1sd5+Wma/lBKwFzFHmBCJiQNpGAr0Bassy3FMQHvfOhxHj2FK4KvU8KcKY2QNqSNQAEUVEAnL9WjRnNMfiBYFRcBJBxG7AU0zU1gGFLOWyJ264F5aGhu2rAuWua6zOdlflzKd6Uea5uI3zEr0x+jF9Ybv7ioe417izwcCkLm6jgDMHNRK62d5+XpeHx8ejocjufzudSy5kF61ACMIgKqyshE1HPCTQEpZQqHe28HI4qIOeXw7aib3DQFNAdkRqKIGdTe69ajUkqtNUzU2HJDygTRc6arygsJDa/oW3/+z2cjsEQvuGPUdCgNh5ZzyuBOgAZojgpRRQXJ0Qx6rfEOdHt4hN+oLQQ0MDBAysNmHHecBgBqTadp2h/3qhIPxCIuCAghcfLaaml1rvNhOo77zVxKtGusS13mok3RaTNuwwtn6ghmV5gLvbfZCnMjnj5AvLn3GmIXkAsX4uXPG2F0xIMttU2lnOdyqO2Mvslpk5jdXaQBaM6YBtpsedzwdpuGIeecW2ulVGnNXKNpYhj/6mYmwXqYJ8YULSHRk3t2Yzc0Rzd3EHdNXMETQgYXxE6gAmgp8+HwyEzEkDJwAndgzkzZiQnTn+S7llbdvZRlKedaCyJ0wUlMxD5umBATRWt3QDVvIsUhCl0jIjIzMDFmphxpQqCEiIyI5EANiMRaUDS0Vq/PnJgI3Ag9ysoSBuFtqlKKNPUmbk4OUUrC3I3JNwNtRgTPzJwB3V3Vey4awMXSIWQABUAEDvtdHKW5em16XkqEt8m42aRa3u7vdbGUcWUt8RKN0MFuiPWLpbmmwt5u2CsPdHPeN8KM3njxOY90sfUAHKjXbbvIhzdP+hZz+6VD/GbRvL14vlBQ7Ia8ueFwolKYXftwmohOTfZN9kv5PJXP8/IwTfM8zcsyi0yAlZNSCvYxvgAcVakaiDiBOaiDAEjUQkJEdAwPGLMTO2CHd61JE02MAMTE3nlgV61NxL0BzhGYG0m4ZImMk+3MDpb2yT5kes/8Lvmd0R3jlmgkHHHtDHxhc19LmmBjPRqBcsrZc3MVMMTwfwe150Fv92kjJAv3hDGSRrpJZxqZg6xMQxoSD5lzSpko+sxIr4mgpq3VQj2e2ME8eBZ1RcKGHt28orGKmZIItOq1ips4IFNtVWptiYnIqbtkkAkNVEGI2K2n6gTixP4UwN1UtDlWaojEkvnlnPjpfEbi43E6Haf98XQ6TfO8iAkAIEIe8uDJ3Ju0tYSuuhsiUkoIbGpuvVhQk96PrAeU9m5wOeXNCNxTjSY2BVGNnhyOFFVTiCkhE6WUh5SGiGbtQr/nf2Bve+gIwKste7PRYtvjutvBfS2THXVgmDl0PAC4u6iUWuiiUm/GZrPj7bg7nsdNZKlbrcvMRiiEaw8CTNEoxxBIAMmQjNgoOQc+Y4hlb2rW1MTBghsyNRLFKKQlFhcgZjhsYBidGCgRMRCt6b0ApmDq0qBVrwvUBVpxdCA3JsiZhowmzayCl2GcN5vzuD2Ow2mzOTNnjizJtffbK+H3bLN8VUf5q18AAHtAv8y1nWs9lXqsdWpSpAWe0lpMBLRyXWyZfJl8qVArkEErWCuaA5EBusoakUzoCJgxM+YBrIGJ+2IGUBvIAq7g6oRIFCVWCDwjQDTG1kbFQMWjCkhKvKbSOyAhOq3tCt1RBaJHdTgrX93gF2clqlivBcZ7nWnocdu9jAohmriZzUs9nM/70/nnzw8PD09P+8PpfF6WRaStPA32biZI6GvGt9ulunMPKwBwZ3eNsk8etnFLAmARnIHARAjAhBiFl1Q1KoNYRBlq9CVjYlyL7KKD3xlttpkTwC0pAr2YV9jZvVFdOJi9vepWGlVJRaSJ1iYsJupqQA7kSAZqQAYSWzUa2hGRe7TBALhV3t5LP1nvdqimS51rFdUOZ01dmtZSVcVXEdi7i6C7w1KW0+n49LRBJFPbbrZg4IYExMjb3Xa7226323EcU0pdpKxr5cUyWB3FK31747WBmz/9pXwumEid5vPxtD+d99P5MM+nxMaISDKMsLvL5goInCRlBDQHJTZOJqoOVa2KqoqyIVJmvoIwwsSUEg/MlJjdyZXUUVQjmjkl5IzDmO/umGlT61zrZNocAAhV2zyfmD1nIFazVpuq4f0dbEanoTeYfDV1b5NP4Qy0tRpPvBi1w4m8YWNicHfQvtoRONqC9pmPZ+Xm5i49YpWAo5kQAhMmRmEUaapOTJEwAxC9RS0CA2Nm1uA6F4HaW8iDOZqH1eaJMbGbsaqLWIuuUZGDsrKScUlqHol9Hr4IMqtiETAn3qQROqOZlC1iessfckk86hT5qt1WHQeXuCK4tQOvnYohwOdLhjaO+9pD8cv+i9vqBnHtEADA85CHPOScUmZOvH7YM8b41anfWhLPBMwNYH9rfKXSAvQYDQw+OnqNiIMAqFkzm1XnJvvSHkr9PC+P5+VpXg7LUpelijQgGTfaC2RdOg27A4BFGzpV116KCkHzQOPAOVNKzglTgpSRE5jhtbFWNU8RUWjEzgYAXpssi6ohQATNYDhW0B0VlAezg9pd5veS3md7r/SO6V2i94nfJ35PNCBG7Xh8BVr6EBGbZ3cwRwBk4iFlzxQtQgEo58zMaibaTMXd0cyjLlQid+69pdeQspxzHoac0iWbao0KD6isUnsya6stpegJGtFCpmptMBOQCuM4DsNASNKwVZfitVhdNHLcAGDISx4iIY1zYibHyA0WYmaEKKdL4ACO0VU51JKK1qUJiovX0ganzfM5MbOn/R6Ajsfz4Xg+neZpmud5biqm6uDDmMdxAIRSSmtNtampgSdOOSUmDgXZRGo/IHhe5IQMDJCZN8OwGwYbx+1mU4j3Zlhr7VXUuIONSKpmTuMwDsMAjtHQDVZH8PpUo0Sqhz8fAc3VTG4OC4djJCG4GUd/j8Qp5cREoqrSzL21pqoIb8TmDsNm2MJue3d3d3+3O8fTMXUHUxBXd2N0IsrMmciZAcmInZMDYk44jJQIRFqkpmlzaW7NtakbAmak7IDm5A4i5m5qRszjyDlTHiBlAIiOlK6KJigN64K1YF2gFWyFwDxKhQ0DaIa4QkQZt3U6T5vTaRyP42ZPhOM4IozMCQjBObqxXETFRS3/Mv28mgq3dKcH4bjUNte21FZaK7W2WmspdZ5rWcQaqPAyw3yWadImXgUZsCxEZ4oOZ4i2mpjgjqrETJyAEZVM0aVFu2NsFUzQNdpyhkWNKRElTOwIoGEVkIMDrtRsj58kJ4aUadjkYRyIRrPRdAMwEo6EjL+YkDM3MVMzMWsiS61LrQCQOKWUh2EYh5GJmrRa2/F4+vnh6dPD44+fPn369PnpaV/qUltxN2aiFPE2iXpG4ooYovp2z6/BRAQIbgzOqhApolpLRXAVYkqEQNlTz1gnQFB3UWuqLVq+aI94QSJAFZXaXDS6z2VO280WVppkTb+K3B8tIlVqbdIssvi9tJcpNKraam01ImZ1TfBndzInc9Iofhjg2cHIjIAJyJk57rSvNAQwt1pLrUttLYpQNm1N2zKXVsUU3MAUXNzEzNTcoBeZA0R00nman572AFBLW+Z5u91lyjnld3fv33189/H9dx/ff/z4/sNuexcZcbC6ZcNhu655XJ2G0RWenIlppe9WzHt1L/3ZA93dm5Tz+fD09Hm/fzqdjtN0yslyUkff7ZhoZ0Zq7FCBmkhrzfKAySFiWNVaa61VCQ4lMQd6RKacNiltE+coc9GzHVqd5+V8XsxsdzdsaUhpuLsbx4HPJwr/QBhsblbK5F4BRXReynmpKgqqCO845x1HBP0vG+teJ0ImTFFQzDQgELam4KU1IXYiR3QmpoFg7dMZ/6uGGShMmrMTRf0EZibLqIqq2ARUgZhyZuZogwfWK5I5IHLQLh4OOhbxZWlmqgrqQEwp4oeQEMkdpCl4hZtoU1+9sm5hSKdhYGJgAaQmunhdRM2hoVIiT2RmJect5BdqeeVvQgpRX1uwGlCI0FtxXDGuX5ndy3LFtRrul4yMy5WHdg3wtK53BwADNytLORyOp8NpWeayFAC/u9vd39/vun246RlIv0hz4MUV9Ozz+/dLPNQb1/tmbC6spubNRLg6VPPqXg3EbFE5NjnU9rCUT3P5eVoO5/k4z+do9+duw4B5gJw5ZU6JTVHEVVyaq3hrLk2luUhTbQC23bIbATixIxpFSYHAh9HcVT2Mf1Uzxd4Pwb01KaU2iSYokAfeADMimACKGpsfxTbC99nea3qX8APT+8zfOQgiAd4xYoi23nXw1ayLqE6lZ6wgE1LmBJkraKxLTjnnAUTUzEDBoniMITozgpEncmcENHAEynkY8hjgKaoYImDvPWGqcZ/uQq1SufSPAICIm5cV5uoWYMdM0KrVanXRumhZpEltIgaamFNK45DGzbAZcxi7awuoWPNExgREmMDhYharWKsNDKRZYt7SCPnZnJjZ0/7gDsfj+Xg8n89LqYFXq4io6VBzrSMRVmlRBzD8nkSU0xCBxW4OpdQqIlWC2oLok5GQMvOQ8shMI/gwNlFblmoOQXPxWncbiQk5cYpyjO5uLTiyG0sZCNYoJSZmYkRUre4AQQrBGj/XHSykGOHENhCGVdJaLRBVm6uZuoVYfb6jUsqZNpvNbrvb7e6CkotwnE4cKIIxcCLKDkAccMwYAJlyxmEgxqjnaK2aVJDqrVgrqoIpU8oJmQyi8lpIat1siIhy4pxhGNycVMDMXcmEpGIrWmeshaR4qxCZG+igg+sI5gBkyDpP7Xxehs15GPbDsEFwvduCb1IeiFPEuyOlDgVWL9dXbenb4bcBVetvkRgkF6ovwjRErVYriyyzurA2Wmadzj5Npo4GaERcEGfkCoCGqMQYmYemqBaPAyhFWo4BmUEP7DZFb2AEnhARI6uQEyIYgKlqq2bgiMbJIFIbyZEcCShh3qTNdrPZ7XLeIezANwgDYkJMN6rhazPiAM0sqTaRIm0pdZrnaZ48KiQOw912awA5pVLKPM+Ph8NPnz794cefPz88PD4+HU7HaB9I5JBT5Nom4pRSKNSIIbaQ3O49qxIcERJhpM2KurqqQAN3kzwMPAzE2O/C3RVMew1b660AFQGiprSb1VJarQSQiMc83O3ugqm1SCnqmsOaSJU21TKVZS6lSKsialpeFf400zVwIoKMPLhVBzJHjcJP2iuEq4ESKgEzJMaoe3cRpgAuJktdpvNpWeYo2a1g7j5NvT6YipmYS3R7jjbO0Q0rYDIs80J4UNFa2lKW+939drO72+7e3b3b7ba/+tV37+/f39/dj3l0BTMHByLwC6cB0IFvZG6EeYBrnXS8gPLLcX8Rm+vgAFZbOZ2PT0+Ph+P+fD7N01kHs0GJeLPFcTOIQBMUgRp5d2yqHClTvhYsFpFwxLsTYvRIT0wD4xCaws1VJYj+ZVlOp5O5crobtzTkMQ0b2IzSWmR7gBMhA7i0ojo5lNrOS53MGSgTjcOw2919IIqEGb4BK1+ZDQSAnmfCCqpiAADu6AbiplqpISfIGVOi3lnTYV3HfrkLU3D2gLBMkDLlnNzRDVUhi4sCR3nH1JuLqVKt0CK/CxmQspMDiQBx8d52wtUBMAFTt3OiClATEe3FRrGXqI9QeTNjzkMeOA3ElBI6cqpCCGCqpg5eyROr2XCH/BLmIgLQimg7DX/BuG/N5hoPEBTvFxGnQzRJuJl5vz4j7yFCfv1beE+WuewfD58/fT6fjufTGdw+fPzw3XcfPnz8AG6JKA2ZmIHoWdbt5TQ30Qq9q8Ez4N0ViAN8vXD726EdV4obOuevVlRPYiezxaCYzSJHkUMp+3l5nJeneZmWZSlVVNRBkRx6kgukxImjnClohda81Sjf0+0qVXf3Vp3IouadA4hhFeSom+QEQJxwcCZ2piAJLnmpiEgIFg07Obk5cK8iQ24gram4p6jpe2Y8Et1lPpgXhzbgrxA/EnCwfW/UuAGQZsvckIjJiCNhJNgRMI56BqBgGt5L13jOV2utV1b0XlIcejo8oDpHdhCIAYBVKbVVNe0mBlqP04TLQ0YEBBOwEl3qtSgS9Sa6tdVWa2tqKq4OZpFvEhEDoleYy47shMSQkqeECSIuNIqNkWMPknBXVXJmeQPmPj05wHRezud5WWo4a2qtrVZRrbUs8wwI2lsaedx/5hQxuL3kAKo7mSNA+GlTzuM4bnIa3ak1NTNEuPSEuc4CXiOxqNvT0FPb1qDHHjqNPayKVisl6uCqmbu4RzbqpdkmKBC6g2Cpdd1XbqYt8HqL7h8SjZBfLJV5OTa2KhMzbrebEIIIFiGdJtqqqmhWVwMkMgdOOSOSqpkmBuYIWkEVkOqtQiveqksDVXc0RyWHyNEkcibMmXNOmRMRmUpdxBxV2RRBmWGTiZSKYGJqkBRcmolYM+nbCMgoG2UtpZayzPPp6YlqK4fDp81m2GyG7fZus3u32d6P490w7nLa3BR4+FOH3/6KQIm34/DBrRJIooS+Mx2k4vko7udaW52tLrZMOi/WWrRYYgBSwbag8hqnEJkwaGauholNRswZo+yIiTPjZoeEKBUsARGmREPicZM2Y0aA1lqrLuqi7mBN69LQmXL2lIDYmSGPfP/+3fe//v7j999t7+529++2uw8pDxEa84VIstdz4NOyCME0z6fpfJ7maZ7P8+QAzCnnfH93f//u3TiMtdaylIenp0+PD58+f37cPx2Pp/N0NhM3RYTQ3zmlIefI2gxSOdgVFa2tijRmzjnCznuQQ2IOJSutSq9z0zglTsxEAIiG0fIvJXaIvEYlJoiG5i6umjmJ9taHVessRVzX5tTu4KXW03Q+z9Npnk7zNC3zUluwqXme6fmsxFblHlq+tp9wdAOV3me1oRE5oUWeO/cgD0usTMSM3JsOWa3lcDrtD49lWZpUaT166nw+7Z8eT4fDfDrXuUhtGkaWmzEQk6MFuypNyrIg4jhkbRtCvNttf/Xdrz5++LDdbpnZTJeyqChFU+7w7dMlAxxDncVvUUugR5hc2LNrGvElMOprA5/99Mu/wpZWbbUs0/l8PB7naa5VVU20kSJ5b/ss2lorTZqZR0qAKkozVXdHIh4yM0LivBk3Q94AMBi5k0kqi9ciEUoFaOHRcjBmJIgqsREj1ssaqLoqgjNTzgk5KSVLiQGstWWaDofD53G432zud9t7Hy3xlnl4voHe3kzhtnVI7oborUkI46iZEMS2qiGRWcR8EQKbW5SAcIdIxIiiBZHwnHJUwTcAIzLvdcaY1Hp2ZYS39mA5RCZTFxM3qNVb09aq9A72chM96mpaCpoCr63bY5lHoJFDOBNjCZijsCNhQkwpp81uNLRSljDO3Ftr4CY63r+SKrDWM+iU7hWa+iVJC1cS9MXEdrb0wouup7z8xNUx8WyN+uWdcRIENwjL8HQ8P35++umHn46H/fF4cJPjYX98ev/d998t339fv6+b3XYYoxtUuGixB02uV+grnL5E4K7f/HYHxF+/JHXfClqgC8aFaKZiXtWOVR+rPJmdzSezs8hJ5FjqaV7O0zQtS40OWFHsJboQ9OZypETsDtqgFavVajWztbJkVEpybOJY1QHVXQ24YZQ7jQYKhJgSJw5aRSJ/zwzdKXqFobqrupsbQbeMGZ0cQMXMq4lonoUPiAPhmNPeoQI2JCNKvVdnL7/wcojYPDUiIrbEzsRMiZGMnZ0MwMHFVGIHuYKbR7m6jlFXr6ECkpuBuoGIusUNIRqSuVuT0qRapNwjEfTS5mZu6oDRiIhBwcW0SFukpAJA0VtMRETNXB0BImRXTSA0mLUqxEgEyEDJMFkiHjEjDkRBojNCIKcuEV29ubpbzi9pywhacICy1LLUUkWjXlqr4XJ2v1gi5uBrO+Ms0ZSLuycMgMHJjRCJKaecx3G72WxyHtyhlEYERB7tYcw0bHDA8FCGRRxLFswcQNciR3Dp9RGOXEBKnIkTeNfTCAJOZoCo0YIcgfuiNIxOT9ZLROggdc30Cw9oi/oWL6blPD+5zUtpSL7ZbN0QDMFN3BzEVGuRUjRlHcRTZiBMOVPioDMTGGE0xgATlAateI2eCNI7LwEqggM5QHegjxschpRyIgBpVqSaIdgQ2iXRjnkwXpSTp8ooRKK62KJNWmRIABll5ay1tFrKspxrW/aHz4k5DzRmvn//3Ydf/frjx7++f/ereyLiFH0QboMWfuG4FpaBTi9mvuMxZc6bYbvdfmC6B8+t2f5pBti3spxPOp2sFpOmah7gBoFMQYrjJd+ZHAjMvAlIA2aomYYc4XoAjolxd8c5QasuFQghJ8opbTdpMyZTF2ki2iQ0vjet2BoyUcJERIlT5nGT3n14/1d/80++//Wvh3E7jNvN9mPOGSLTbQ1Q+/qEOMB5WRbQ/f7w+fHhcDxO8zwti3k0Xkrv3r378P7jdruNbfX49PTp4eHTw+fj8TRN07IspuomAB6RvDnlPKQhZ+aUOEUpFUSstc7LXMrCiVJOKVr15kzcFUuTFqW8qXH4RHKOHCOOeSXGhExEbJa0NyF3jZ4lqCpBuSp4sTa3RTwTddnl4Kfl/LB/eNg/Hk6n43Q6T/NSy1yKqv2TeXP/XAcRhcBPKaXMKcU1OJh675sCCii4Zv/g2jeSiRNTYkoJE8cTt7Isj6fjw9NjLYu7mkottZbldDw+Pnw+PD2ejsdlmqQ0VXEzBydHc8NeedJUpIIToOx2YD7m/PHDh9/+5jcf3n/YbjeIHkUSE6VhGMdhRM5IGEF6UeXBnRwM1jILayhgx7s979p6R0W/aPVfOq6rLAKxRVopy/l8Oh6P87yImBlEH8ngLty9VllKlaaIjpjASQVb6/WhmXIeM25S4mEYxpwHN7KoYCheq4lKrXNrJWUYx5Ry9LlNQJASMQOgqUVBsRb+TQRmGobMwwbyAEhmoGaylPP+8JDzbrd7d3/3DhFxJGbuRSGv1N0bc8KMKUH4MYgAenuq6M3H4ThbNRC5ExhFZd8oc4ZEKfU0Ygfo7aiYOPXmJIBO6B4qMaWVq/Qe0Em9CK2LNdHWrFWtVaMxvEg1U0AkgqjRJwImVhcjgrjClBKnTIlX/gqiC4+BSW1EnjLmzJx5S2MeaF4QzwpzQxBpplL1dWh7j4pc58ywR6xfDrig2KBA18z7qyMBr+e6MqoAsFKAfukseD0O+rLt3dbI3VrTZamn4/nh88OPf/hp//R4PD5pq0/3u/v7u+Ph+7rMIu3d+/e7u7vt3TbK/HNKBABMl4iOlcq8roL1wy8xDCuWd7/0S38x3k5Bu9ytg5uL2lLltNTHpf6sdjQ7mZ9Nz6pTrXPpNKJKiza4gLyGmri5E7gTOsamN3AFi0wR8gtN6Qaq0MQBDcgNgSQCLnEYYRhxyMQECQkpFIm541qTJcxoRYjahCEyIlmdw7Ospu7NITrzMSKb1Z5Zz5vE9+7vAbA3kH/F6Kro0oSJUgJPCIkoRz0A6l1homQTWMSlr447J0dCCuMKcQ2FBXc1dWU3DXiJFvC+t5XwSI7p0hEARCxcMs7s7D0nDlWaNm7uUKvU2laA58hEaa2xFESBuYpydL1NSK4EBuwZCSjSChUIwDUiRhJjSsnMQIKOeEG7gJkfj0cHkKbSNIL2fK2GG50+4qWIbacIMUAyVZEWbYyd4IJKCZGYU8rDkIdhzJkBIcoCA5haU9VIVw4rdZ1UBAC3qNioqFcqd027vnRI6uEQ7uga/vaoQehIjmDcuwize0g46NXPwuWgGfqyjsfU1gziZ2OpZ7VDa27uRL5WFeoh/91BH/VrERxTyokoMTIYoCG5UoSAO7mhK6maiKtCJAuao5qjWaj5qPi23fAwpMQJwLRBWUwVwRXdcgJKDJ7AEnhGMOwF+MkcVEOSGFal0iiXYZ6H6QyMUf8NwJg9J/z43V9XrQCEnMbNbhi2TvznELnXCVtz0N3ADYEIM9OW8Z5wR7QhHMEHN1bF1rwUVTEPZJ8wBQwLxtC6gHZDRxeFVrwUJ0BJXhPkjDkTJ2DGnDBnqNVbdQJggsyQR8gjSvPex8UjjcjUtImTQDLOzoCZmPLA43bc7na7+/fjuBvGu2F8n/OWKAXbc+uI/spEHM8TNn7Y7z8/PDwdDtM8z8siZuGJPZzOx/O03WxDoh0Ox8f9/ng6TfPUWrW1idZaMc8i08aqJRbhxExMjEi1lnmaljIHEsxD1q36xnNOUYgD3FW0tQqCSJRzs3EEgMQehenDw+4ObK7c42/cPcq2AKC5ienSynE6O0JOKVFiCpgLx/Px8/7h54dPh9PpdD6d52kpdalVRP8q/QbomQ5iptTrK6aUElEnIHuZUHcDNQh8toJGoLDMOTKkNIrgGYIs8/nhcPj09FjLjGBuWpelzMt0PB4P+/PptExTK1VbZzIBwSESihzMkcBUxbUCtFJaLapCCDkzIrZWz2tNyZzyXQRJU/SZujBpaBdn7/ptzfJZ18FavbiTeW90VX8xrjzwzWtuKqUs03w8HvZPT09Pj0/n09yqqQLgKnDAwaGJ92gQR0BQwVou9d2JkBKPiceUckpDouxIBgzgrdZ5XkpZljLXOo9bBtgwD0SchwERmNkhKpoVqVIjOMXAjMyZedxsht0dq9Uqi5nVWmA6DMPn+7v3d7u7YMIT8xr/89VuguFnJ2AmN07JVBnRomIOWtSt7zjBFAQdYG0ypjoQpcQpR8YkUG/JG6RMFGiHSwexIMsj7gyREMFWvSVmrUmt0qo2sTUURs0VV6awF0lWMVFESJyYOeUhD86WwpZEjNThqF1oaBLqMDFm4jwQoIhkldpz7txNX3JPAJE+dEWEdKFxbwtxd220tiaLoJpLEC864tqv47rcfGWIbxOvV00LHseHQG9FpvN02J+eHvZPj/v94+F4PJ5PZ5Vq0qQUAhhyTpy0ibQm0obNZhiHPI5pyBlzcFQOvhaXjitZN9aaMHdD7YYv2v0tnPt23dxrVp67ujRZSjmf56fz/En04H4ynwAKQhVpvUITATGQowOYRvlKN3Vyz2zOxkTDQG7sEVAYcbXhy0EHinoWHY97xM8ZgEccgPrgOTskT+BIEcrNKhSpPb6GnVFUkBJtGNUM+n0E5o3qy4gK5GKL6Knpvukh20nszAgXXvDl0jEXFYjmstAbURBG9+hL9IvDzZf37kb9UYQXRx3iC8BAXIkSuCNFujcSEUbwj2NPaAAH9CjWYgbuUaAX3d061atdWjlFgIf1xEPEyCFxAF77qAeapMTMidMAmXmAlCARYPRKi+LryDhsh3tjqa6CqrCh7Ys5cfdlngHQIupijTmI+LPE3ItwgV1WU4SXuGktRUWZGJFbE5EKLgCAIIiJyNL/l7F/W5IjObJFQb2ZuUdkAlUku3vPyMzTeZg/mP//khk5W3Y3L0UUkJcIdzczvZwHNQ+gALDPTgFLyGIVkOlhrqa6dF04RKYiwyMFdQphRCicliSn02hytT2vB4zMnctvBACCIuOCdSCOPJUIc6zPbPGIwEAkFqnLcl3qAoERYOpDu6mqav5uzHMyymybcFfX796riGFxZLLUsRuk7QwEohIPKVaXuV9hcgBzB9DAE3pOS2gAJhSRyoJEmu82pUUEZXeBLCALrBe+Psn1iZclRwjQwaMVHWEe4UPwOOgG0MfovXe14ZmD2bOhQg9A8zEGHkdAAKKF7/vdwT1mmyuCDijrZVk/rJcP40MP9+mCfw7V3+y2/hs46jGC546um3bVQ8emYzuOt23/cr9/fn35+5fPf/vy+fP2foSycF2WsKtGTOkTCc5c1WmRGoSIQOZhUwsRGGEa3qMjLAvFynUlrlhqSAkuUWrmvxsBBp2qfbGyADCiPzKOIxx0+OghzLAgEY5x3G5fluuCJOvlT6U81/pLLX8Sfjp9keC/B7gD4OXtFYTe3t+342iZOduSwu7usd331y+vUiQ5nK217X6LMBEmqqXKeW3FWUenZ5WqWgYcIyYNo/emXQEBCHsfo2s/el1qXZZSi5mDAabSNxQdGNlJYGFkTHFsjmjuQSn9isjXQYTXpQbAduwRft9vX15KESlShCUDLu/7/fPrl9fb233b9nb088r4mR0fMHOpVYpKEidwmjEG8leGGhBS3hrwuPEyEjPcbXgHN21mx3Z//fTly+9fXlq7h6nrsNG197bvf5gW4qzb8852AErPmQB38wG+bbfXN65VlloA4nK5ChXhUutS6/J0eUKiuiwkBf/o2x/fuuPD11bikaw6MaGI9Cz2n/a5f9zQ/viXCGitvbx8/vz57//1n//5X//5X3/76z/G2MPNA82itTGX2Ugi9bJWCEqm21DDZkBeCpUU0jgaOIRBaEYilrIQ03Yf91u737ehTU2JGaIwX5JDAugApsPD+xhjNGytqZkZ9BHtgMulLvXXXz48D9u3/bWPAwJHO7b76+vbP2rB8JHahVKehK9E5SyqPykpqiN7SPM4PXxS78XM7I6AMIXCFiNUhyJCutgmA4clTVTOwDQzC0Qid0FCtJjT1CStuU3MBQHQPVRHimBG1z7MHQIImYEpGCHAwSNdlB0g3IaZGiIZu0iJpEFQypHzNWekM8gBKcBVm3uG1QMh1lJ9td7HCA2zH9+fB3KRjw0R3HE2J4+mcLa5Ey3Ccxl3HszJkcRv8b5TIjnfPzh/H/j6ZyXGOLr2prf37fOnl9//+eXTb7+/v93NvJal/PILgBehUliYtfXb66ubHsex3m/r5bJcLqncxidEYo/phZKZppBLkNMlnZJPkgz6fHPDAEB/1vr/0OYizG4/0ZEI8zG0He12u7+83T+pvkbcATZiF04iZOqZgBgpwAwiMxAUFIEhrDjIbHMRMIOuQHHufNHhzHU/+R/ogaaoHVNqdlqsZi9LQoTA4GQwWXcQDhA5uECEDccAqPCQsp4yIAxApABQ9662DXsb9qZ2M96QBLHSz1p/d9dhACQBk0genhIV+Lq2jQdt5Zu3cl7FFqCeUYOQHlrhQBFBEA5MyAjIGeJL87QBTS8edwzACLdwNIjAYEAgwAliAgEBMk1IKzO+4CHlhYlCujNjxq/XQrViYarBxRnn7WUOEejEsKy1EJuCDTSDElf44/mJiHa0U66Yvy8xsdDcfKaXzySx5ObG7cx3OQAwqWxmZjoicv9CCIroSYIkRkIYCqbmE1mEmdY8H/Xc+SXandc9E9daiDgtacMh0/lwNgJGwBDsKaHI+nhW/3W9XtdrBITDGN03H96zgAIAYklIOsIBiodbs++WjB7Dow9tR9u3rWcUNBOKgHBI9SWAOEc4z9pgbgg0e6octIMJRdiFE3l1yjMPNGkYiCK4LHi5yPVJrk8ihIhkFqYyeunNMlkeY0cMDHH3SZLOLOph7gFIeZhDh7fIONM+jvt9AYwAAwzmYAEgXi7P16dfnz/8eYyemZl5wv/4BH66NfruKwAdQt12Hffe3o795The3t9/f3395+vrp7eXL28vL+9vb/fb4UpCZakDAJAgEdksOHBO02dgOw7DoeAGhIHhpqDdwyAUCVmEcYlSHCkfB5i6DY30wQgLQGKvCyADKJrn7ggzNaA3qCUAkJDGaO/vn8ta1vUXIinlqZZflvInpIJft4D/7SOIeHl9dcb7tu1Ha6PnINJa732MoX4yv4sUKQUAEsGRQoSCiKd0dSaT5qWrfZiZq07VdoSZj3NHlNGCXfpRynpZrlcPh5kvHhjmZgoehcTZQgILMvO5XwekLEl5RrEUKbWUIgCx7/txbBEOELVMzyAWJuajHa/vr6+3t5a8NtN0dzon0T98UcbelMIsmOGW4eaWW77HPTwVtOnhmEhJigfDwMytt+Oe3ITfv3z5/PJy7O86mo0WZmBmvR/7ptp9+oj5rMiAkWuYOS2nwa36iG17R8x4HeijrcuFqZSyPD9/+PD80X71uq5PphJO4XAmoeX7Ed+SCqekYBbONC48qQsnQv/D17cdxdd5Mua8mL9H78fLy+9/+9t//td//a//+s+//u2vvxWBdWViGsOTnoRIwvz0JJenD0zl3W/7Zq0P9WFhl2t5eirM4gFh5gThGEJMq8giwGZv93t7fd0cFMDWdYUoQisAOEWEQhyjq5r25r350U3V1LH3IPIPH0otv3z8+O9t3CLQ/VVNR2/b9vr2SoQD0YWwMEcA1oIo86f/WU1R1bxL806JtHlDZCFh8RziT9j1zJ0zwCACFkTMOQ3dwSwjz8IsiNjJJ0IUj+bkFK6p5RCdXvWmNjTrqUdmZGT0Rapbwv0r5ufaXYcRkkt6rBKzcAhjyqkTvaZkRABARJIrMCIjAqAUAbgAkCmg/SRQPAIysyUxoJMfM9HciYVOi9zZxeI5Lue1Sumx8IfO+LE2yW4Cv7bLj6OYCnr31vrtffv8++vf/vrb3//rt7eXt33b3GNZ1qU+FUHCQHAR1jFub++9tft9q7fl8vR0uT59UEWmsizI6ccVppDEm/yz0xWRGImnESycIHLyG1S/J3LAv4yHyJ8t3KPr2I/2vu3v9+399v5udgvYEBtzSEm0FVVB51/BHNwpIjwyUR1Mw8wJgxlcUikUM9rX0mxhus0ihTu6zzU/YhAFQsYrgA5H8HB2Z+E8apCCtWQMpEbeNNOqQgzYgolmLzrnAYpZ2iP13CkvPRVIP7+e3EPVAHGoIJsFIAVyJOP2UYTilAFka46IE3g3tzTjOQNuc03vcVrjTOwV09L/AXll/cu7jAgjF5op3sqAdHAIw+zeOVHxCPQJBEdyo8+jOm+WCf9EEDiHcxjnlWoOij7QPBCdMdeegEQgzt+1uef2Y9p8isiyLLUu6XqWzkOZqZC2hSenVQHmEgLBIBzAEY3JCQ1AI4ZbU2Umx0yTA0d0nLEw4DQfyxzB53Iq5gA6QSYppcyuesKL+YhyI8YQjBbERIgeeC6kAGKS/QDBzGm2xnOUN0vbBExzg3O1/YcvMxuRiaFdrREyslHCAoiIkUZ4mB+mpwUpZlGGNILGJDPDGVhBwuSYbS4HhJ99Bs40SzD1QMLwMaLt0HbsLfpwHQ5zB8Dpe52UCTOLuYmgE6sIH0NtmKtqk0PS/YY4vR14347b7f72+vbxl6k35KV8g1X9AQ37F19J9FfTQ3UbY2v7a9tf9+1l237f7r+/v395ff38/vbl9na7vW37/Rgjc+9CJDcBmKnrHuAaye8zDyRgAkQ0BRugPbSBNrQBYQSQZzS7pjwxPjRMY/QYzd1c2AsbAnkAMqQnc6Zs6rBsPBDBDQlFpAhNkJW4slyEL8wXohVpPs//WzZHRLy+vRlG670drediTD3HkNH67AnNZ9snuUqYsSTMJCzCggAzmQAiH5anXdd0t50rP4SvGaEz1CrgTP2E8x7OJJ8Y2NNS4tSAzTsw5uHLWpWFNNzs0J6haqrqbrWWZVlqLcmW7WPct+RaZMm3BE8jAPj7x5KQBGQu+5xTwzyQ4uv2dSIXQNPtgwCzO4DwCDCwCFcdvR/7sd/3+/v9/tbbPtqB7hjuqtqbqmaDPzfFABDfWETkbxyAAB4+Rt/31CxKADw/fXy6PqeEqCy1LisVCaLctk3jyfyg8YHEJiUCHovwP67/YEIN/+oFmqjZd7sjiPmpeGvHy8vnv/3tv377x99fvrzcb9vlUopwAIwRrc1G0AUvKwIU5iq0CutAcIOhzoxFIHlVYSbMS/VlxVosxxKZGAYHACCLVKIKsahq702tB/TAZmaqrsOTu+WOrQ1Tuj/13sBNIAqARLCO3nozM2FANCYmYDd4uo7rNdZFWSpz8fgJRGemgRpnLm7WcEIKsiB+MEGmjsJ13nmMOFMT4wTQNUtiivAQhSkQyVzdFDDSZsIyZkUnic09YrIHfKhb9hQYw3wYBAhyZHB4mLqpuUKkwTQABKKTuoibOaohmhvOExGJMEKE+kNjmg6Y8ED+PewnC/qISCPR85Qhzr/OCnb2uHBGncHZ7OZ79fCaygY5O+CYWO/jDYTZS32F9hBSFLHv7eX1/dOnz//47dNf//7bdttcDdxhlVIEkZlAKJiJAcGst9bG4GNP4ToQLet6eXriNNdyNAtzcJvfDDFGBAVypATrXC5NWxkw+98jLZyrbgtQs6OP+76/3bfX+/12v+9uHdGIgjl0QEBkTqYp6kB7OATApAu4oY3Q4cxO5IFo7n3YcVjr2nuiaXMzCBCEEEwRzgySwxkDCxCGqzczZZIhwg5QAySryNwMpA+vgRsGIImToJRk41EqHGkW/MAQCE71JSKnYH96YP/Q6mYJDwCg4YAkTMIYaWcFeIa+Zjuk0xQyAJA5yDl9QceYTo251HIHhNAwdwdHDEZIiYsgndQfDIRggsKMK55HfBJtw8PB59CVwgeEwJPSGxaee1cmQkZKDCxvAOy5OqdwcENwCggLbxEtzAOyjcfgXAr+CNIh4ros6SFBxMuyPj8/Pz095bpfdebED00Txt5ac3NFFWIqkt7zEGEWOdIgGiK6wxgBm7otiy91qRGO4JzumAiEMb3eIVSD2AGIhTjy4+NS6rospZQx+tE0wpGwSOHCl3VdLysCh6NpAopjDHPX4Zo+FaUvSbDL3vmEjhEmnBaIoapqI8Lxh35mdG+5uQsgQmEQ8Vz8+hyuzueXu4v08ddIfV36kyOAuQU4cohAqeRGmZQ2FygAEeSGvcUddHRgJEK2Edvd9s16szEs2dHulqqhs9XxcCdMdzCeTU4y2NXN1axxZxZioVIL80JY3Gjbxuvr/Ze3bbvvx3MrXKNkX5t3NH7DCvtj8c2XaBq27Pv2+f7+2+39n/fb5/v7l+3+5X7/fL993rf3fbvv+7bf23bv/dAIgqAAJ/AikAwlc+jNW4MxMH8+4pACzGAGZtAbHFvsWwCgCNVK6xXXJ6+rB3g7XEccLdoRo0HvEAZLzcjTjIqmWdcBzUIVETHZPu5CVGtdL5fnD8+/fnz+82X9WOSJeEUU/Fo4/m+7XIiIt9e3AenTZarqZrP9cSQDsIiurqbqMMyLcBEuDMGWigSk4OkBNAnquRt4BKGkfjX5TwGglgQfCDDz0bVRjzNBLGAGkjtBs/AxXazd/HTUAD/RC0YmpnAJU0DIAXb6iIYvS1nWtS6FmElIzY7jOHrPcLX8BvJ+DIrvHlUO7meRCzx9+FLR8CDkEQEnfYVy75udN4RjWBiZD1IGQUcd2va+34/93o4d3CD5+GZumtLYdJIKNX9UWJjALdFZAsH7GHQc9X7Ptc96ufzl3/7tz3/+97/8+d8+fvx1Xa8sNZAsMM42F2ebey4B58v2ENbg118PhPe/OzTf/Le84OFEbEKPY//y5fPf/vbXT59+37cdAjM/HBR0QG8REEwBAWOAdmdE4uWyUkTJ0BlT2Ddvh9to2lsp/OGDIeGydI/OyMsqv/xylQK5zLlcriIXM7nfjre3e2sbySDuOI1gcJofeXR1174s6+vr+9vbh4DWmqp673rsjXrnCYCy9thu/eOH48OH8eH5z5frh+v1OX6mgnC3yBM1Eyqn/uwEJkJNx9B2HMdxeFgRkcI0TWwRwMfoZnhm/JmOcAsiNwoATMdlgEimuJmNbkPzbfU0lEzKhDqYowVpqDmogUVhLrWQMNroo7cB3bUzdveAQLPI0BIz8+hjGCAhCADFCe8HGETCz5gCbSJGgNG69q5Df3Rtj8k0m6foYRGWJ2wC/5OTAMkRfZAWTtYCJfSGkPBbAASetf28CRF/8nmAa+z78fLl7Z+fPv/z0+ffPn1ue8MAQuwqfeh1Lde1PC1FWJYiRbibHq211sxDzbmU6/OH6zGk4qRi+cSKZ4tvGIEU8/9FxEdLlDPCDw6fAP8qHiIJru7dbG/9fT9et+11u9/2++E+mJwmNh8BMdSGuimakltKXrOdnM2cGZg6oiNFAJjbUGtN911bs/BIvBAgCMMIuTgEEUNhFM4aGx7TpQ+JRJw5x+6CkDqYvGjdPVRhdDAL4ECOUnFdEZCxiAAScQABJL7FGAwZeoryr3pcmD9IpErOEdIFlyIYWRwJI/PrZu1UzdcbAcOBGExdu+rQSGlRZKBo+FQkBQYhptkvCVciGCfGnKNVyjJyL5BNMwCMoRBhYQjAlN02EuIpxLJwSCdCopngcm54XJUAHCKtMZNw7gbUPXY3ixAgRpacAPAb7uXjnCCsdaFpASmXy+Xjhw+//PILIqVEay5he9uPgw9y80EdAYWpZFJFTgXqMYWSDjDcbQwzG+4jBypEBPAM4yYCwnDwCINTmpzEJpr2+FJLWdZaRNw1B3rMVJla1st6vV4RyA11WKI65t08EmzufRTpQpleMQfiB5AyYbNw1ZE3eqX63cWkI4bn7U8szBIiQOjncg1OA9OYPHTHMLBh2m0MY0ZhRkrtXBAFC5aKrhRO4WQBkM8BEAJ1mKu23YWYCdzg2Kzt3ruP4ao+5QoO6fwK4OkPLELLFOR5RmW7u9oAdSUghtxHEwLUlbC60bGPt7ft/X273feP+7GW1Vc/ja2zyMK/6vBiDoF96H3bPn35/H9+/v1/vr18en359P72+X5/2e4vvR3ahw5th7XddQBRYa7EyOJC6dYeo8dxj+3mRwPVLI5QVpSSbv8xehw7tB1EcKkZZxrrNUr10b21OLa432O/Q2s+eoTDusb1EuvKtUIRSMcVAHTz3iGJCsoEXghrKctlfXq+/vp8/dNl/VjKM9N6Lli/ewLx37S8b29vLSyreES4pu8RzjzbdLgZA8iCLIrF6gAFHtRYovDsDuawcSpA84jFSbRDnFIeAsAIm9BtaAvw4cQzavbhHBLq2kdW5pz1YG5RIyIeltVuYsoBkZ2EqpprRCyXeum9rjXjN9w9HfiyHYlscwEBwiW+k7Z+M8hnm5varPyBfPaN56XMiEIoGWo8lUHg5Ao0mBoBh4MN68fYt+N+3/d7uIEDQhBCJsLhzDg0JATz8yL/CmIleBDuwxwRt21jKb/8+udSl4+//PqnP//5z//2709PH9KxORnrnhpS+AqbAQQCYYABEJyt9KOqPtrdf/kCnX93LqbgKwo894d2HPvLy5d//OPvX758Po6Wy7xccuoAHRAAQYAIOmIMFwbCutTFTFp3BDdVt3Af/TjasS0LM9OylqzGgGVZ6MMva1kwZ6DCC9Nig7e7ffl9u2/vdbGyuBQUZmJ2B8QI8N7HsfuyrG9v72/vNyIdpjq8N933julLjaoj9nu/rfu29Uy1/TVMCk3Q+o9fZgo+pr+PJnsh7ztIrsJI47R2bPs9wuGysKyA6YuHCfQCzPneNE1OA9GZwx2OY9v3DSBqrbUWMx/dZi7jUDfL184D1dECh1N39Jh028KlLmWtPNqBIGGklF2jZjthScdRm8uVoDPWHua2FwzQ4PQoFOZSCjONnrIt/dG1HSICFKb96Mm2zRXl4xjFuUh47BkS8qU/lqx/VbriD7SsxxGOALMTzf395dPvL79/fultCLMwjyG99zEqwfVShJCKyFJETdO2Qz3Uo6yXfT96H9OgYE7YqZAIP1centGtkFGFU56ahfRhOvrt1894qGAWNsbRx207vtzvX273z/v+1tuuQ93NwnP3igwBoYbq6EqmFE4CUyEmTMJQa4aZpVGpu58u/PNdndRliOyGwSRM0SSI3NGmBwsFABAlrxYnMdmGOUZkopcRWebZnp/vN1x/AiInjOyTAjCQiQpTZV6YFsZKWB+d7o8fbynlerlC2thMW/6IFDeZPeD93nvvXWexCAAwD07Clfk8rpE5q4lAT/JtEObkBgqhYADabYyRe3QigCUokJnPON7pLO0w66W7I9qkagXMBTxlJq6zcF1kqSXgtK4BgnNZ7xaEiHNjJOIFIwSLYKF89lOi8d1XGqogpm9Oum2NISkeoVzBuJkioJ8tXmLLRYSFIswdAM0DI9A8son06eSFo+NpYpLrJYXJo03cIyBzUgMedZCQAMysRejRtn2/HcdBjMxIvCx1ebo+IZApDNHwtGRKsoR6+Oh9x024CElEzBSm0wwzDUoBYGgfo4f79I/69qjI0wJDeCzSzRpAB+ju4zQwRldyBR2uw109DCOzTqaNPwKk2DsC8ujOTxCBmRYpq9SFmBwswMbYe9tUWxGoBREwgolcBACI0I3ACDwdn9ACAD1iRm2JSHHP42qzSE4/FARP/RwylsIX4QvCEs7HPl5f3tflhZGL1HVdc9KZZK6f8+jinHk1Yqjurb1vty/vb59evvzj7e3Lsd+P465dXc3UtYdpuEFYmDoRioQxmINmKsoA9zng5xySVi1hkM8TPAhcGEuBukQmwzFDD9ABrUE7Yj9idLABAKRKY1Aur90g4+3cyZ2SnCgitQrzEk6juylDXJk+MH9geWa5IHHM9g1/+Nl/9kQitm1vNs4ZKkkloGNo69rVutow7+boiOZq5KaqXJiFVcSHWVHmzLUJzdVpApIW89wmoJqUDR69E2IydacljZqm/HUuHydFKi8MH33A9HuNBy2WmdJRBsPB2cPbfhz7pmrJwiLGklZgioHgcYJuPtcwuXKFCK/+3RXkESfbydQN3C2CPbJbmpyzeYNgeOIfYBQ0vdPVrGtvRxuj50+ZroXkEZPi79nvnaaLmC7MLBDMPDPxmCAmGTpZHxM4tRhDj6Pd7veXl9en58+IJaDszYQrizAVocIpF83+gR4bXkQgoXBm09Qj2Vy3+HmHw08r7Tcn6dGCz3/SI7nGvbW2H8fe2pHwByJDYFpOuSPEuasEccdEUsHFnXTE6NF7EHEpLFyUHEFPgQd4mFlX4wAl8lKxkCBiKKmOcfTtvh9HH0OlJKKSSXwkjMuCdXGINvqh1rb9/fX1s4g7NNVjP459OyDhDApT1B46Yihse7vd3m/b621/B6AfzbP2Y3ffVW3ocJukL5HCTOwEAYhOFBkPYQYRptqQDNERi0hmySQ3Gs0jW9iIgdjNoh370XaI6HWUUsxSxOhDTYdFRNIfPMAc1c/0dUBGQSxE2VQwQoSPMA7nXE/lFKRqrffhZp6rdiKqRCXZp3QaIU+AJMxQxxhEaOam8z79yRlJyUQiR5OV9K3JgkNyItL8Kx0KMtrh6/F6dLgT/0049xH+e7qQwVnuIocvN9fhvWtvo3ftw3r6bFi4Wu+gvXMYh2GYEBZJnVnktX9ydiLcEeJMz02REmAWgTnZTaetU3cUJ+cCfso6/Umbm9Wvjf2+v95un9/vn+/3z/v+OnoLddeEC5xomsx6oAW5oRuFU/59QigFlorrisuKsmAA2HQ9dZhUYhABSzpvZqESkgIrmGU8gbkFn2okZiJmc9ABqtHaOLq6AQtICSleq4ukQy0yInI8tpnMQBLIPtFcRGERXgpfhFemlXBG/p5P6w9ftdaPyy/m3l2HW3oLR4RqCnXnns3UJn0nowwCkcJwcgjyuMVsducSIQ8LWqAFKvgAaxDhvWlrPTzXauAjQqHUMpNT8tIhxNyc2ElCffDWshdmzKhDEVxXuVxXzM2muQ7XMaUXHkbELIzCyeZ3iIILUwWLGBZmP629uWPzCAgfOtpxbMyZP8wibDPgMMLGSPgzsRPKTJpc4geQO7ljPPIWAgnQXccAnwEG5y0wP148IZ1AtIgw9wAjhCAyi4jhEff77XZ7ba3VpSxrJYSzzWWdGW8WrhAaMcIVAfrobp5pqwDgrhCRMRbMvCzLsq7M1NrRenOzdj++U0Yv9SOzRIyI7r73/j66dov0a3RNGg/0Q499jK5JPE4js+n2RkQ0yQmUInIMEhDmWtcPH//08eOfiOXobT/297fXfdPt3taKFJiQfa3AzEUgRRXmScocAfMRR0AptdRauKiBQqDPTDycKQBTIYOATLXIk/BTdrpHsy9f3pgXIVnqAgB1qYUqwLkA+xkGkK/4WblVe+tt2+7v7++v7++vOnSMcM0ZAJPPgwBmlGapKqnbQzNUDTckQGFAIgrHOY0lfEXhQOhpoVoqlBpSQBiQ0B1VY3ToPXp3V8rJC5zdRAeGgXIu6FIgSExFRJa6XNZFREzh2LV3dFsjngifRT4wXwA5MFdMj073vAj+xVfb2q4tkT2cRGky1XH02ekOM52vnqqSKnbiIizMwqOMIhkGgUhkqq6e+vjpMEs07blKFZbOkruqHuFpT5O0p5i4QHoPEyIyph2hDnNvKSXAtOsSxmCMQHALT8O/0Vs/miX9iCh0mpYmumzJnvSYK2zzdHUKd/9gsPzx9nFP/m7+B08X7GTqAQFSEIVTmIMQKnFmZyMCYdjoYxyj7cfRjm5DIYCJK3PJTtc9L1SzcAwnxMJElMmIBMlAI86y4qoR5+2bH2ugmrc23t9uv/3znw68HXrf9eMv27o+Let1qetS15pesufbNIs1IAAJe0n+u2pXHY9ON2vxT1DLryfpAQydDe6c81V7a9txbGN0MwOIvAIiSDUAPBwRGRGImEggUIcjaFi4cTv0OPTYdV2XcrkUYTD0EYVdpCAhgKsNHGjeAwZxlCpS5Nji2I7be9+2rfceESy8LrVUYkZiLFKkiI5wh9YG4DiO97dXLhWQzXzs+77vDcCIANHd0CuYxX70l9eXzy+f/3T78vL+Qij6Y5u7bUPfVX2ougUxMUlElCLhgkREIIK1ckAZA8KtD/XgDJ8GWDMeIibHHHTYcfSkHJr56L2PDhHcBzNHgGnia2EWBJg1Jdst96w8FCgIhXAhrAgFgt26DVIFM8yIgOzNcizEjuahFohcBKRQFU67CDd0C3BTDzOP5CNFnBrM77S/eVBmGsmELDAipsXh9IQ656hTEwRnn/uQoiX/9vQaS1gu/5mY2CTGhHRh/pMTazWPHAZsWh1iRgSEhYYheD8QfYR1CEsBq2XfgngaESd/eDqjkzAgwrkhmQSm8410+wpWfwU2/7fa3IAxjta3bX9/e//8fvvn+/vv9+3lOG46WgobbIA7IEEGUHuy6R3dKONqIjzX6KWgFCCBSTaNsACAIJ7xjMYYlunH4Y5Jq7UM9U02NYVIBEAhQmYpDIqpWmtdt83MQgoUxepA9NV0iQhZggRKCZEgCprexX7KdDl33ISCyDj3QNmwfv9Uaqkflg/DlEaH0dPn08JNTUc3y1z6VJ7F6Z0LEYHmnrBBYMY+53WfgAnEqZV1yJQm6zZA3b0fo7esWU4E4FNLzMJceLa05w06Rwi182enDF6bHz8FCUjlZREijEQ7Ud3Upq0FAQUykAA7CVEACrEgByZL4ufKPDhflIAw0+PYI0zt4nGpUYeq2VDtiX2qDnfLnz/AUy33dQGHj+1bECIAhZsO04Fn7Z9yVER0nHgnTIFVnjomBHJMUZqabfv7tr333gFWEYxwQhCe/CdnEuFSRLVUq+7Dc+R3IyKASNN9EGYiFi5FlmV9erqmvq32YmZj798RpK6XX2H5ENEidrPb/a42blPUoeGKbtOo8titH4a5XGCuQlQf+9hTBwsAqVdgLJXXS/n48ekv//Yn5vp+uyPysbUIUSUTmoJdCuFwZ3c0g5kA5O7BFt0n5RKKlFKESRwcXed4hIhEaUGaQn5mKXJZ6odleeb6VMrFDbetvb3dnp+e922vif+Ux3Lmp5wfTwMK9V1tG+Pe+70d92O/7fv7vt3dwR3DIHXqEOdMaKgdIsI0iPNngfyhAFKOFpyFWRJymHNBchcniCuBmb9qs0w91uCAaffBiAIhbuCJzMD008nwEaFSZKllZcpURXCViJXwmeiJ+UJcEmX42tomDPKv3hsACNA+Ru/Z9kFEtlturq2PPmyoq7mePgCKoIqDSJRLmtrpkMFTJ0bJOUikx9QBgU/1Xf7Tbq7pTfStmmRCjoEIyMSZzlCKFAHAiNChFmZuiAiFMQSnzzFjBBCZmfWhY5g5ABCTDbNhRpZOvtnBJf4L+SmM8JGd7/dPxeNhvf1wQIA4WQsRPq0QPALBCVOrRhh579tIJGn0NtpX+iJFLq/8q28PuIUbIxJwsh6mcQUSIllEJG0yfHJxkp2MoUMB2vvtBiRDo4/oI7Zmzx/0wzNeLmhOtqQ4NBDjpJJ5vtTKbBymo6l2s4fJ6pw+Exb76XnJZuJxeiAAk7Jsar214zj2zKpQtfBMwAkND3AzgGBASLcW02htqAK4uHE7Rm+qGohS69NlqWFh3VhG5vqqamvHSFrX6Ei0MNdK4xhD235sfRwRRoS1lstlLUuKRGJZyrIuucve7gzhfWzvt6gLl4oAnqGdEZbZYz7Z5a56GyNEPt/u76/vb0z1RwV92vea2VBzD5FSxInITD08Ka6IabNNEdi7q44IPuV0SXGfLDIzGMNSCDWG6rCMAgIEHpQ+X3mG3cANiBgJOR1yZm+FkYzEVBQYmoJCZLuiI2nh+bIFnFKiwOybPUsQoAqV3K2CU5wGIjn+DRvuxiIihZh/flQmmjsPTXpsBgRO09azy/7qPp+dc4YE5792/g554h7EhonkRta1LBoAkPxYM58O+sPORD2IZOaEu2nYGOgMij4K0/XpcrlePGP3eFYd4YlkM2LankL2RyeL2PNbP6vt4834dmPy49ePaG68vn/ax/Z++/Ty+vf322/H8eU47r13HZratwg64e1kL0Wab0J8s0K0GMNp0qnBDCNzTQKYfakRCm6gA3zuxCbsDBk6r+gKA5AQ6gK5CGNHzziTyOADAh9uauCQgkR65LhiKsSXFURCKDDCFQaYYhADEzqlIrmbHWab0p3cCAeiRIzvHxMXWp7EjUsv2ruOpt3VwPJucVM38+wyOdMq5jbEPT/qKcENjziLOz64X4Fh7jGGmfem7q6jDzVI01lA0+hNw4HFaUxOrwcQMgkXDmU3PstyWk8YGGYHm4oLU1OC8xvLV4AAC5JAoCt00Og2ho0IDA6goCACZBG2nxwVNU3hNxMF+t627biVTWotnNeqWetj2/ajH330tM5W763vxBM+NLcx+hhdh6qOCMgLlwmnSQLiJEhkmFmEGYaHgwV44BRlIWTCjWFgqmB7O0y7+1Cj0enYbm+vL4iIQGl8MfrRRzNTYblenjBHH5Z1vVzWS5GCuby3jBeJdVlqWYpIlerXpwh/+/L6Xf399dd/Wz6W3t+O48u+dQJyRevgg2JgGIExGFFUQQo6V6IGmqfF0A1Zckwmd4qgSOtyAS4RONR2izHGbegt8KirPwM9XeXjc10Kaw/tpupDAxGRJT2h3Nmcp1bDYOa9hSVZEzCIiIsgBnMGuGci3fXp+cPHX369PP0q67OsV6lLqYtIQaA0OvijmAZ+tBmIGKovOu77/o99+/v7+/+633/bt9fe93AjnEcxC0AgJoJn0wpzVmW3k84YmMM8IFBqbktIBRIMxzA0xdFJuxMDYZhG28EMEGMMJKZlJQ8kclcKTy3ptOzJPd7JIgUREMGSM6grRhWWWta6XNfleVmuIoLgebWcez56dPu52psM1x+LL1EhTn8FNwsgQnNz1eQV2MnhiYjJtT3vbgCGsPDhivT4gyNO+yR3JEJXdAQDHza4jTFaz12+BhgRcqFSylwf8OTkiMz/ROQFbGqKOhNpItyDC8jpWs0RgQhMFBbmbm69dSIydZy7J+Tgh99NYFiIQQkOpu+tFvCUtNKj8TwJxgGnQCsA5qIVAWbY5oSWiKXWQB96GERXPXrfj6P3buaAkGrCx58WqcZzIPJ0zgBwQPQIdcvGfX7T4DAD5d3DaedUwJXL9fL88TLG6hBUgooCY+IC2fI40FdVOwiYQpiNpqNbkue/8iJO4PiHUvvNjXHulPF8YuGuQ3trx7Zt99u23XcIRuCHoWTOC0jgbqY+uh1HJ2QEQZChDhi1yvVy+fjhw+WyQNjoLSLM8Di89QOgBcRQVRulSoCzoIMRKxevC7gTC334UD/+uopA+nMTW0AHiLrA83MxCyTv4yApBQoLliLLUnUMVbvdNSIy4rl1PQ4NOLrZbduZS9j/+M6YIxEdn74zaX40g4bnMO9mafCjXVUjHOcdImkwOkb6AWXej+Znm8ZhY+THktfvuT1HdADL9jT/PhdEQkZyiB7JtLGmbRzK1JmYQHvvfVdr5prJP5gzJSFx4qieHVRAqI1hLIoI2TZOz7u5GUg549dfPx6UAHN4oEfzhfFHb31mQDxQz9nZ+mQGZJ2BGWoEj7o+KTdpKQ0nEjMzSAPUbPRxbO3Yj2NvvQ0zAwCCE3km8iCCcPc2dO99P9reOjGVulam69PT9fn6/PR0WWqVDP9Bzl0tnJrNAIREs5KTC5MON88AOeBD4v2HSvvj33p9/Y22+vb+zy+vf7vdf3fdzA7XYWZmc70WGa6Bkb9z/qLIBTtkfRzdItwczKEYMFPKoYRjqeAG2mEgWBab08oNAMLJB9oJSgcAMXABdwzHCIlgzGZ3GgpY2CDEMTshTPuDInhZUQQiBVlJzAqQAlAShRhq3WxXvRvdHJWwI7D/vM29lrDqdfFxPzZ3G94SXwoL09DhRCwloxdYhAFBXc0sdNpPzVj2E/+jsyeGiHy7wMe5JfNwR0IRDExbAHMDYifJwAVHAhaWIml3opy+/6ZqPvNbgCSbg1CzoYOBiRjiRJ5SSogAmdCiNsboQyPQyUOiUikkhYV+8P6JAHVjCOLChczs6Pd93yKCGfHcIqu7qvWRgcNDzaL53KIxMVFEGhdoBjEgABEX90DK+50SZUISYmF2D4SR8jUHDbC5iwwkUsIBkVRXH/0wH+5qiqPHthETjTGSqH5y4gwRSpV1XUoptdSlLs/Pzx+en9daAQIiWjv2bT/aISJV0hJUpAgC/K//8382aN8+ll//9JeP//7xfvvny8sY/RWAPR2gB4ZiGIURGFFwwQU4ppgu7FTpgBuIRGpqwinjrJGRJEgsoHW9Q+DR773fAI96sbLyh+fy68elMrZNjzu0Nk1easVlLSLZ44qZmYZZpNPfGBrTzTmQSViSy86MXGqpy3K5Pj1/+OXXP12f/1wuz7JckRiISlmQyDzhOpjLrqybP3x5jDG+9P627f/1/v4/39//erv/tu1vOnZwm3T5ODEvAlNMYDJOM5wUbUz3pDnMJw00WKKssFyxLHNetoHtiH6geyBB/qSt5daOiHlZgIhqcVPyQeHZEzBkrLyjWfSmZl4rIpI7u2uYAhQmqeWy1qf18lzX2eZGKCQeMr87n04Cc6v3c4CusCibD8P09QxDQE8Rq81QweyAUuWXWzPPvZC5UxhmasPZKMED8EOadP+wYYORCFR1aE/uUEAgSalc11KKcIrJi8xoNGYmNnMbOoZSR4hQHe5J6qXc4SEC4WRkJwphSRQ9Rjhot8wzJGZMyJwIgYDA0Zwc3Jm/v4DmOgH5tE+j030gNQCUEOnJN0wZN004CoNESBA5jsYe0XW03vb9aK27+9e1ZtooIEZqTTJqnAjRzxMbD7ospYVDRIRDpji6QQ43CJenj1s7nlUdEKWGVJ2AjkMqjgExTiUrBQMImJke2cLkPPWNuuBffQV87XHxG/wKMcKTt3Ds+3673e/3HUEIS+Z6PXSICSIBTkEIAjAXoQJIQLAs5fp0+fDxw9PlYqPv93vvamrHpsPSLScZFuPytEihy6VEBLKXGu6Zn8cfPtZffl2RojVvfSBobnBLheePtXdz86Eqlsu5UquoLgDR+j72hgh1raVy17a3fShs+0H8RlT/49e/fDcUnSY/SGQBgchzaephaZxoQ7WrjTQJz7kp1ZNEEgGp5J524mNyR9INc6hmTUOeRQMRwxERVM0mqEjEhYU50CPcx0gMOCmLszFNaMthzukxre8QiZlTPpmGYhERMfksFBgSpm49V6CY+4qAGWA1jcN/PCVx+i6n/+08OXN8z0Pz4DUCPZgLgHDaBiVqGfHVLgQBU1HpD3u8SXBiFCEEsmHt6Nt27Nux7621buppZUaQ0deUmRnuMXL47H1r/XK9LMuyXNbr0/Vptrlrktw5eT/JbJzmiACQECL5w5Y10qtoCrJ+mq7yfZUJgPv+io3eb59v75/v20v4gFBPAw3N3/ZcueN8aECADo4TqIyIBGPgHFDNoUhImcN0Fq7wSHNuhCACESgVpUzcLhzAI1dvzCDJWySMQM6JTKKUeTbSQ9dGDIqQSedFRGYkBANyTWUDAARSMHuEunfzfeh7o88QTLACLAhievxQfFloJXBhF9CItAAHwg7RwsARgpIQWUsVYiKhyC4vPOgkyfAMcs0HR4QiRMzhqU96OGXlGSIWksIinHRJyJVsDn5g6CDMk8jDwRwIamnbePqlmgVbvrraB5XIJ0M+awEgG2BEWJp2Jtc3HD1UHZHTHjjYf4Rzw00BSIAAJMJ6P+7bTTVNiL8ydwLQAf00blFVVY2IjKuJ9B9MKzYzQjAVL4Y0JzNiFuEipUhhETPrLSHW5P3POF4PRDBMRZpnokcPt8yYzv+575t7pBwyzlmwlELItS7Lsq7Lsi7r9Xpd13WtNV80poxMcwDMb5OJ4asXyx++lmW9Xp/GeGPOiJ4wxTCBEEZhYkAOYkGqzKYwyUw+zLvHSCQVCU8/aMBUnwkSB9Aw33oHdxy6me/IfWEnxusTLKsLojZDUkRHAgpiibqgFDIjNSQl5lDNZRi4g9JcyqahXg6KIrws67JcLpcPy3ItZanLsl4u9fJMLMi8rMt6uZRSiBi/uccfZfXbL7d+bL8f7eXt9W8vX/7Xl89/f/ny6e31dbvvvZkNSK7c1L8Zjh69+WiBCDwRLJq7EQfzyPRjxEmIYkJhFMHsht2nR7s5jB5m/tDz1YplYUIUNizkiE6UwxoETVo6JH3YVY3IhM3UeutHgWURvS6uYKo6jt7etxu4t7JcWBaWhagSLUgyxRrfoG4/flHm6szhnLKaMhMJsjEPIqaHbQtkAFzWtYfy4uFJ5B4P9zvE7PwMDB2CTCkQwlw1NY/J2GKUwstS61KkVinCM/z8AabGGUCRkjEDx4xzz+SZxw+XJLFk64WHqykgBDIVECRmAkZgnL7kSIgggBH8w12N6Yw4lWAsQiIkzA4UQPOqh+kslrdy8gpsim8ccCJ02VUEZs8szEWkKkwLw3lQ5+SU1TIQTxPu03IJJ4kxCVUGBAEU4DqIRMaU2Qx1HW7dFEay75FgplMyMgEnGI0xm2Nz06SInuK2xOl/rvX9puRC7kptuI+c4Xvb397fXl9f39/ft/veWu9dGYnQ5x96ouFnuXIzVe2QHgKllqUWWZbLcrnWdZVSJRsT1QyVGMP6GGNYhsIYEraj994hkNjrikgspZRCy0pSAtBZnTk/KSDE9UIiS2u67613i9AIAyQWrIu4yxgUM+x+jMGq3XwM9WZu3ojKv310/uNhIRbyAq4erubmRhbq4RpjZCiDpsjX49GWYi57I8AtYl4W03nXv9qW5RuU4zQ+/lam+hEHkefR8LmIzhI6VyduetJlJvL3MHDKBjPNP4mnQYjnPjyRLXOEIAx3Az9D3jmzlJgEA4LLJC3MpOJvz0dMQX/g1zMc56nOCQmSmpY5goHh37zQ+DX4bXIrZ6ueC7TMMMgfBIiQnRAEAUxtdG1Ha0cfratquBOiTBc0xAAQJCARKILLsuR9e316fnp6uj5dr9f1crk8XZ+WWjnPXy6nprOxpzcFQtaa5FJO8VrM3BtCxNG/xyjhZ9zcUNvDUXVXbdPYNkmnNvHgc0bJaN8ZAjZLQQQ6nLnw4AGZKWAeUT0AGVEVtcNo0Y5oRxI/QQSWBS9XrDV1SxQRbggQ65UuV1hWEgFmN3V0hyAPQiil4CQMoLnD6BYOIcCEPsAHAcPooAM8KJyR8rMOAAto5veunyOijw39Ar5ClD7u3z8WJ1dJOnIlwLWWclnXD7ftxtudcRdWVSWhWgsXThhmVlubzsDISICcKzymvE5SQGLmOAAsUACNEGZlrkXqUrLNfYxm7mA2dLiHSWGAwNMSyCywU3J9wcABnKfmY3QlQnCAQpiZLkPNXA1pbvLS1QFLKeEQhmrq6gM6BlWA5TvrHwBzDSBVYsb02DLTMbqfErxJOSBOcDd8smkTgRrhiS25m9tJLydMhxecnvzEQutSlmXNa7h3APRcRTlMfzTzdCVLp65TXeOBmL0bEzEAhYeZZer8Y32ZW1fCebcDYu/dzQ9mERaikbpCyz/HE4gQYQBQ/d7SxVyHtj6ONvY29qFqzgGr8IXkwljSBClc3MSNfLpAmcfwGAGGYB7axzHGEQjMwQBSkFgjQtWPowGAWycahQw5iIFw6Aj1OHprvQ0LDwJkQAvQiDBPxYt5cluJRAiA1IgGRuSOGDmZx6Verk/X69PT9Rfimq7PS4QIr9fLerler/l/X/Jzyc3RQ7bw3ZeO/v72+75//vLpt98//ePTP/75+9+/fPn01tvQbmqRLrERCIZu0DY/7m4tigRIHh9mZh9mpn2AalomIzGVwuGoAwBDFcbwMUAHjI69e2/au0GS8YVjncHAUxsVqT5KRp0HTFXwxE9jJiT1rgjupgRYhNZleXv5/cun/4TYZalSl/X68fr0p+vTn5b1l2X9hUkmIWkCJT9n6OafQkx1rQVK1gQ4+6rRR2vJ9FFVI6AiRaRANreWaleFiHMxCImuPlx40CHcDGH6JYPZtOEkQmChUmW5lFKXUoVZkkSnEUSORARIjAXFwQw0iCmAnUS41lrK1G5F5gDRmbmYS4TZiBKTcNqZTVzaUxTGM+rj+2eCAECemZpSsBQuVerCDuxB8aB/IGQfmQ2ip8AzLJs/03Ycu7sxy7penj/8goA7MyBgg3CNUPi6lZ299sTdcspPpJAZIiBN2ixfVEAKYEQEZqpFRJgYPKyN/ba9ldEyPy1hmcIsXOUEKSYuHeDTMRgnr4MeJLf4ia7ocV4AAEJttLa1vrW2t7bt2/3z5y+fP3/59On3+7a7A8J5z0wUzKfxTpqjYWT+cxruEsNCsl746cOyrAygQ/c+9t6Pfdv7aEM7UBAhciFkIEcsZtCapinFepEiaEpEEaD7cUcKM0UM4tzNU7iEs5QRYR6KGOZDNQKwCMYiHhXQRdjNe+vunhFl3cNcU3X03eMgrhxLDFAbR5v0A0SsLMJchHL0JYZM0iVCAAwPNQNQxBzhcK5Bzl/MXCsSsWa2WZr8UAAwizBirRTBEQhgozelfMFCh0VYysyzmCTN4IRTpiB7wsmcrNM4sykeViSe61fjjDt1ImAgIaqJ8xQqpUipzHxZlx/PyDQqiqkdy13u3FxmHaQzQhCTlIfZ5qadsPA07kRK3s3JhpqcqG9dXBCEOSkX5jqms5upZdXJmA1hFkJCJijCsVReV/nTr7/8x//493//9397/vDh+elpvV5qKaWWpdZSCgSYehKYJ3/dXM1NfU6eOJ0GkzN6trkIQPvevn8mPyUtDD0CY4xdJ13ynIs9IsFqmuIGnNwNms1+WPa5jx4XA83AzBE9ggDcGa2jduzN2+Ftd6SQAlJgWeF6hWVBypV3RLrurSuuV6p1+pQZ+Uw/Q2QqZdAY6bSK5jZ6WomjMJqCK+YVOAbOfyOjFxEA1aOlr87QA+Ml7Ap2hah9bD8cHgorOFVQXIpfybt15iWCAEhE1UbeHFwoJRDuE1fI75YY8l5ARJEMtJwqSFUbDKCQ8gsiKsJSZFnqui6lnrloyeRWb818uGaHgEAZnBCo5kg4KV4BCJF8eVPTuf0jIidEy55UNTeAWYQZkVhEJBxHMx86xggLV7+w/OXp+6diphGoCkQxkgSlY4z0gdd5DhBZCrOkDX1CJzEph6dZSrrbzgmKzFV9oOfYCcJYF1kvNcfC1FOYDc2ZPXmc5yIhs+HiUbowZdRCmPzUMDUURBHENO6dwtXHLwDore+2E8JSSi3F3VUt3MfQ3lMXONWr9kOCtlnPNrePvfVdzT0YUVg+VP5YZBUR4YJQIUqEnAF+5qERQ72r9T622N5GOKgxBxMyG5ECDNWWISzuTimwqEyMeXnZ8OMYrXczBOQ85xFjWgJpSyYABCIKCSPSGERMHlOFXaQuZV3Wy9P1w/Pzx/X6zFj70EU1Ilj4er3+8sufnp+fl6UuS03RwKzlqVD44Z5W7e+vv233L18+/ePT3//+6R+/f/7H+8vnLe35IzDN9NwxFEyx7dY29wG+BCKUE/4YCGrWe2SbywylULi4gY4wj97taDY6mJEZtBbH5sdhhEjItQA6MhAz5m1y8j/nXB7hkcFqkyEx29zRzccYBxBCrbKu9e3L75cVtH8BBiC8fvjzn//8/9Y/tw8fociK5TJJb/hjI/f1a3JymGqpmGTofJxAANBaP47Wjjba6G0w0rpclrK45Qq5I7Zwi+xr0XECNTQ3bCdPN8IdLLLTRctRGwiYWarUpdalShUiypVrWDgRIYFwYUZhB7ZgIHGgCBaRWmsRyd2/q51r0Nw5TVQI0mAXmZAfSz0dBhFYgOUrHeEPX5iyLWBGESqFauW6iAdbsD9K24l8hjvkqkbb0K7jGNrHOEy72SCmZV2fPnwEgIBwszDVcRhMN1L0k6d4cmPzkSFFqvHC3NNnxj3UgyIMwpwAhbgUYSHE8BhH2/D+SrmyRCoiVUotyyIIhTlpfknQATgz7umhMYfJMIX/nrkQEGq6Hdvt9nK/v93v7+/vb18+v3z5/Prp98/3++4GkNg5cAbYehJy3WhaVUFr4zhSNBZlQeR1WeXDh3VZKED76K3vR9u37di24zhaWfhyXZa1IjlxMLEb9q61ijDXQl7IjSMsQI/jQJrpm0QsBUUYoSAKMQ7tYyCQm/WhxlSkCKAELIiI6G7R+wBEyfw29Uy3+fFZkBSGCmjqcHRrrfc23JwQGWldyvWyXNa6rCySuCkgogeAebjmGEPnJw8nuSg9b4kCYriNfIlM08+UmaFUBGAzALChfu6swaaL6EwBgvB0ZgZ4MImyj2QphZndfUwuqH113IspvVSyZLPzpLdzXerlslwutdZaSmWhldfvz0eqgQCyD7OJZmebmFSlRDNO6sO5F+H5vWEtVAqe3IBTTH9q688ccU9GEUIYIRF5NutDbRLvghBFGAOKSBEWCiavQk/Xen1a//LnX//jP/7jf/yP/3j+8OHp6ZqulFMznzwPs3C3gGG5LrE5dfhJO47pXBCRDl4Tpt63/70210wdZiLobJjnTTwrwUTzZ4lCJ8jHkfonxKwdEQCeG0CLgFzKhzCakg7sPczcwYVCCtYlrX+o1PnjhkOyy0WAOZizTUQIMHE2DSAgYgGpVLT0Dq2Fdw2wZJYAyFlEMIEVxEltiZkk0c0MUQE6QiMICqHJs/7jG4UiyMxSay1LQY5gr9Z6170cqobYEYEL1SpcMMDUCRUiwM0Bgplw7gJFRNZlWdaFiSeBVXV0mxlB5oDTu2dZ6npZapJEzzZXhwGGWvcwOivkJG3RtJEADffAgNQX5WBJOJeBwsUqeCCzYNbbCIAggCRKzGBdZBN3Nbco+MN+xOO+vWOOayJqer/f933PPCS388ggmjuRTZddQDMLt6wFPpXPEYnNzG2sm2pufdm4scgh0z4DsLVuli5jp8m2n3zEqRVI/6z4evvyH3CjUsrT01OtNTmQiCgyXXJVFQEzuA0DrKpVIyRAYCmSKSHJkIwf8QUAgH3v+L4fh7oTy6UueLkuRbjKhyofSlnSrpawIlbCkiOGh5sNs34c9/24WYykH+VPwUJMThgQ5rkcA8jSj46gqThMhpn37kPz3QlEGzpoADnqGGbDY7qjTTTrG6QxOyLDMAY3ghDEgiAeYGpnQ1aSynC5XFIYS9nVPFioP8Oi2nH/x9+/7Pf3T7/9/fNvr6+ft/tbP+5+JtfM6cTMdaAOGEf0Bq6penB3RA0k791a895DLdKezgzdaXTv3S2sdTsON0NiIS5EUGoFSPHvcDUhrxxRJkkz+QJIlNVOh2uPMUKnQfPMm1BwD1P0cu/vdS/CLARg77fXwAiK54/vrVnLaGJA99xROKY7DJfebz8+mezRAKdJHglyYZGv8EecC3N1w8iFKca3wWcAcOpD8JtxDZGS9A1fmb2Z7ctEICwl3XeTB5avDRGRn3Qe9wgK8Imko1QhwSQcpIswEbm6DdNwR0jtegFiEYTsCIRmlnAgIUayrdw9ffgVEe3p43fPBCcSSilvyL+KsAPTbHMf0pgMNs6YTwvvOrZ9v+3b7djvql21a++9NRsD3ClgrsQSmjVz02+CoeCrFei0qyEkmjvaxxTkJ8Dl0yi8t33bbiT1aOO23YlKEs7W5XJdr5f1yVcEEAaCaWkTllIj9Qkh+cmaTNHLz6F/OJFr6/14f3v9/fNvb28vt9vb+9vby8v7y5f3L59f77d9DHeDJJSmuNPBIePvPN+l6H30poCTBJ76s8tlBYj7dju29v72tm17a11HimLJDSNQWErFZZm57kwzNWOSVSJch0VDDGZioVo5ewzmjBidRrYB5gFmKfvjUinBSstdCvjkmBTwbGKCf3wqzMVhkWIitZSRJlaGNuXVQAA5qpRaixR68DsjwGPqxc+kd38kdroDBPnczmfy82NnqIiBSKUS53JkLm2TEhmm0yI6wh4HKc8WIVKyC8820+eZysQgIEQUBpDcI+RFBhDEKaChhzoTAcPdFQL9x3QVc4uUZjsM82E2LFM03OOB5p76tSD0fK2BEYvgukhdaKlckCWjQH1KUbPH1elrwSGcZl6AYRO+5aXW62V9erqePzsuVWoRAkOwKvj8vH54vv7yy4ePH5+fn69PT5d1zQ4H8tXygFCPgKxew6blzBQdZVt4MjImYD3FdQEIpyT6D18/a3PVDNJLJWZBiZOCHx7okHwIwAiYIMLsHCH/3LTtT4qDWegIcx8V1LAwuoUZjeEGjuxcQdaoK5UFRSiX+IgTksyWOcPFUw5MHkSG7IyITFywBIbLcUR6wCAGwAAkyMaSgeVcBWFqMSMC1CzUIgBxEA0iq3wlIcGK9D03l7FUllLqulyW6wrsgdp0X+tey731no7nzCTCImhOYsSa3toBEUSAiKVILWVdl6enp+vTEzM9Ev9yWEnDyFyjI8Ky1nVday1n+xemYcMRw6xHGGdMXIodIOLkQhlM9D3pRuldIJxedYtIyfffwhEdwH1Kkzy5cAgsgr5A2HQDErvA/odn4uFvby+Q3SWSmbXec9/0FXKBAAA1Axx46gXicfOmSc4JzJyAEHj4XCIE5H7ZzHsfieenOXGyrCLcNA9pIgdSSknYxt3h2xHnhEmI6HK5/Prrr8/Pzxl3PgU/7qqKiClNzDY33N2i1lJrLUWSxaDnksnd8Yfqe7+1gdCHR6x1+TWeBqG5ivBT4WdOVpWwcEaTVGZhKu4+Ru/9oLdQP3CHjEYIV4S5Tkq0G3yOJJl2EgZmAOBmoAqqMDqZik2eYjpRGBHmhYHIWW7dKZfzediyyw/PrUsh0jE8MxqAAtkBUKQkp6outdTKCR0+GJoPLcMPVeY4bv/5n/+/th8vnz6/fHq/vfZjA+uSXd48Jxiq0Vv0HtpBB4RlGXAcyRJLrNt1xCTgErqBK44RbWjv42jemgPK5cqX62WpslYMj9v7/a2/tT6KaBUFECkgqXJiAsDhoD1ai95wdDSd8VFJr8HAXBIdR39/3xAh/QTWpxJsQPF821v3ow81AwTVLc8QcVnX57o+Hfv+Y/VNahMGROA3K5g0li4eXkxUuXcMcIvkw9BMB5523eeYMFmYOcYn8y48LPDUUsDUOzNT4SJSRISQvn5YyaqKKYrIXZqHJSlCRNJ6X0QmXBvRvWv0kRgLo2ApM6AE0ieIhHKrl1ceBZKje/TR87Dpr3/57pkQTpFQml/I+SuQHeRcxeJUw8wtaooMhtve9rf3189vb1/6cYzeTDX/hdF7aE/bUkhNsKqrxvnbnWMCTpsHZppLXXw0udkSnzB/9rjHdrtx+dKHsryRLIACRETy/PShf/jFPlja/su0bAzyEA/X0br2YRnxnT5Dk8L5U20RBuSeNuxo+8vr57//42+vL1/eb++39/e31+399f7ly9v9vveuGFwEEXMEhYDcIU91SoT3PoYaYqohFABKKcu67Nvx+vr6+vL29uV9u2+9qwcyFSKOoMwYWxa+Xpenp8vTdTWzY9/bMQCAAD1sqA7tgJ5gvC6SZ7WIC7u5ISrxuWTIdCcWZip1gWAdo/duPspSlqU6EKIRmTvjD4+FuQR6rbauwzxESu/D1DLmbyllWfIvdV2XUkgnP2DuOOZGHyMXm71ra70dPe0xIvDcwqbuLSxj6MOEiwgHEFmgeqSEWlXVp7moR0wSWPJvU0qZxnL58kwgcjJ/AzB9oji1V4WZMR+TJ0aWHRG6Zyb8IFDAKE8fv+vgss3NxAozGOZ9WPLHe0JP54A8SeAxKdy5kV8q94tcrEQUpG9CxtySt5asN/cIl0fxieBU+C1LfbpePn78MNRKKaUcRLgsZSkSNsKaMDw/XT5+uDw/X54uy2WtRYgIY1Ka4tS+pYVVotEpxnBV1+FuaSgQuelNs4Gk/KfpCsJPXp+fo7k2/QCmkw18BSICUosAyQABPEcR+Krhm7SFxO7HiNHDNEwh3IdgBIShqns4kBMDC3IB4oTOp0bBZsF8kEPgIa5AcqRgQkKCOaILYPRurSGRIxmgIzKQExPPbzLxraTLRJwDSoaoFaFgZ2aRSj/Y3DBJlWuV5bI8res1yAw6IBRZhRfhYq5GSowsJIUkpDircR8Jt05kMXHcp+v1+fn5w4dnZn6wcpLGO3uuOQ5GXcqylqXWrzi9hRV31z4Wc5XCxJS2oJDF5sG6yRnnG14WzwwCFhZi4VoDZrSo6hi92dCMbiAUhLSzmMwCauv3ba777f4W4dN9xGM6uk9UiQAme84tPHOHz3g0+LrLOS9pmGoJSKlsmM3Iw2kr2PtIt7gIMEv8FlOQNPdjNKOqAEINE6bN85T8iPwzEbHW+uHDh19++WVka3kc27bt+55jPTPbUNWBJ8zIxFipSBWOIsXMxsxa/Embu2/98Lyz1qUiQxQJN2FaCBdiIg4SSJ5lkSqyFK7u3rrwgb1XeofTo26EKwYT0OPdjYAwgEBwgnRqSOqghVqowVBUIw8AtEnKzDQFDACQpKkxR+BMpErNAoRbqAYEIyizjq6jWylKSMDpS0xlftU0msDT9XiiUf9i33q07R//+P+3XW9fjvfPrd1dG7myB1gCjRgI4eo6YPSwgaqYY7O7YSofwtVDLRODIAKIwgxVYSjse2y7teatOQuXwgTruqxLFSR0i/f3m+bmy7xk/nOB3NFEIDRXAx2hCqroTulXnR+vx3QyG92PfRAdAOHuyy7BFmxHVzUYaggojNrfRz96P6QsT89/vj79adv6T9BcjEBPGNEdzI1M2TmwzLwQSS02As0LTE39K5FvUktz0KATg0woKDzMk7yQUzDkMkfSLZqLYPJ2TjSDkhDLaDMpETA8ocBkrguXWspSIHd3ZkBg7hrTrntazBCfXPkADHMFCJ6hPIEUQKHWW2s5LX73TBCnZOz8UTipD9NR4Xv2apg5EuBIW4X92F9vr59ePv/z2La2H+5WuBQpYaYjgfqR74lr4m8zJjT7kMw/S3jk7AYmQ+Kkbk7KdXioWm993+5AdBxHoED+ImYp49e/IKJILXKpVYPMIRyZLIQj1PrIVewfLfl+lsGZP+nsYVxbO97eXv75z99evnx+v91u77f3t/32dry9vm/3Y3RjInc4de7pIDEr9oRUhpk6UpK8HRwQiUlU7fZ++/L5Zbsd+950OGFlFjpBcCIohde1rOtyuV7a0bbb3g4FACZ2tza0jw4wmbURDsiz0CeEi5bStBTyADqSieRuYemNzN2GM0kpFYjNUixNP1bamTFFXEu11YtwrXVuz9VrUmtKKaWWUkUm9XnmD59DbJyGr6OP3rX3kc13rjYxJY+J4k96Kk73dmIc2eOGRyaA2hgpAU9KG+I06GXhvKTxNDM4eeo+p9D8mEoptVaWQixIrGY6NMIzuNINTH2gTTdRj2tRuPzhmST8GRnJZtDVW7eWne4wtXioHFN7CY4YBJ6JgrFUViuTwc94UiVjDBt9tDa+YSNOgV0uNfJlEZF1XT88Pw3VNEphonWpSxUbx2jB6OtS1qXm38wed8YtJyd5omqRiRgzUCxQLXSk3VdkZ5p5hXBayD7Ys/C/2eaG6xkTMj1sAhDB06GCqDAXJEi7Tc8cbO8QiephjsdEEIEW6DY3y4k25VOLSM9ZCEB1GANaC+YQMQAkAsJUyucAnXMMWI2SGRiAxLMtOq+LFA+LlIowmJ2m5MnCAbJsnW/G7ALn9AyITJjJc/MOJ/5hcCRZylpKZSoErGZqmrMjBODkpBHhzB6ri5BcuAhxYV7MDNwRI0MqwsK69mNw2pA/VvcWSYT15C5kygYSzmX+eaEB5pWz2FIKSxGeGhpgDRZmEdOg3CNlMPKw0bURITAE+QIkjDJZFJgKAwRnJhQCoflMpn7NPdB+bGFCZ5Bafgo5+gQi8enVCjPqU8NOJl06T2cLfva68+ZK7gTRaZoyoWizUHUAzUsmbRHNfOQr50CSABgnYQEw6AwwPctNOHhqw2POpiNZtl9LvyoATH1AIleY7yk/mHM5nTMLsyS/hOj7o6KDAUUKMguxCUWRHPNcx+itux/hQ6SUsggXonzOYOamY3v93G5fdH/zdo9+RHRjUWLhICYECQdXdMUwd50tbuq/HNACzEEdYnoWTsVqJhUgIkD+WTG6Hbu2ZqozNCvbHMAwH30c+3GXwo5e/VIRRioWT1o8TXAla+Z/Q0AFAHD3Y/TerXUfA8yyRBBSMCOgJ+mGeFbODuGOlj1gEJ4sxpguQfnPg2KM7p3dAwlLLWSmqoOIi8hS+Xop1+tSCmu/3+4FgNYnWJ58udiyYl2oCAizO6tGb8ZiBYJYYobIZCJmhhowOi21Xq+XD8/Xj788/fKn5/VSLYaDsnA0uH95/0K/scX96VMfR+9HqZfnX96fPtxa9/jB0JGFOThrqCqMoe1opfbRxrIs59BFtYgui6tRYHjKSfvo6m5IKCXlbpC7UJ6WSeLugBEZSKLg7uQQQRGTOuge6R7N5hIpGGBBPgmqnorQFFzEGdg7hmJiSxHugTTHhKynuT0JiOS8wVd+PDGdRkoY+bbm//i+pkyT74xT8XQQpqFTiw6QNyBROsYEgAW4xxjjaMf7sb3t99fj9tL2ve27qXYgAkp+ZXIMtLUwQz8l9BNHd3DKNBx0A8tGzMPCMZAJIXF/5CIikjecqbZj9wjejwAKZGRhqWW56NMzQqRjFKTf6gx9TFw2L/KTc/W1ef9XPe7pN2Xj9A67b9u2b/t232/v99fX7fZ2O47m5hDaewuH09LeiSDFyr3Py2aqbYEjuHd/f9tLfd23ZsbCK6FBDAAgwvR4CVB3SIqnGgcsiE4EuQ/J6ODsgKaWKf+AyORCJ3VC81RiMxNhABNCKXlRJCSKx9G2+360nht2ImkNeo+fsqH2be+6qw23wRhUqBQKJ1N2NSaqgkyu2u7bIARzc3OcjGHGGbQaqrkQT5dqdIO5HviKe1qgMgcLULKrHzfJ5N3NnSkRAeQHOjl5ZpZ71tkdAE1tSnwNBJlk+hx3bcbXI4ZZQo7m6IbuyqYqwskXd4+PT9+7Cph768Mdxtnm9uFDrat3naPxpNpO9k0alQOEY4RFtmxmYWq6riXp82aWqSszywTAACyA1U+9GhFRqsiJqRQRoWREp9uVhqsODd12YoZS62W9LOulaBALEeeln1JZdx/mCUnk7GcWmrEd86eYNcR9GnDNdSfQTygL/yLs1yI0wAIdKDLUAGYU5AyOIibVMcZw76ra+0gCFlNOJsKMD4JILrHdQTWFjRAB6uGBHqgWrUNgEDuzB1h6Y6W1pztagBmoYjVQi9RLIk/BHWTOsEPEw2EjiIzIInfxBABTzIQzzWSuWU/JRBFamBaRWkqttfzYuzDzUlcWYRQIMvXW+3EcOhSmr+lDLwtEsEhZqCzrWsu61NFaH63ZGBgUDja8HwN9Z56UoxOoT7OtmXbu4eCe2yY8O3ImRmIkqrUABAuKcPqsRQBLMIuwKzklqG5h6oMMsU83SAszr+tSeOG0Gc5kRMZQgSAEnhJpYjdQU9AA/pFZCGYjJVyP6pxbv/SVRUQkysbWTjfgmIZl4d8cx9n1EkUExwnQJ/VmpkBHpNXTtDk01ak8g1NEL5IlyCBiHsNv2tyTwQgBoarHsZci2Zqr5lkeEZExAbmVT5FNvsL5TWYPjDO/wKc32XeFRhmwMC0EVAsARFTX0bbbTfv92N7a/jraTVhqXYgkk3UwIemA/f5+vH8Z91c73mFs4eZkioKFCAiphIUpaHdtaapokcaKTMAcSKllS85OVuoUQ507UfbAUG99bHtrh0YQBE9ADhAB3LX3Yz8IKCxsDQ+mzLEz/QZEhNPcYn79y2bXPfrwoSdWGghIJEgFqThJDtEgEo+UHU2gDcCT7zN3fWquyX9NxsQYTuiJIxKDR1cDZq4lt6vllw/Lskrry/tNAun6BJdnv1xjWWhZvMgixK51dD82LYVZMMAQkRJzMjSFMExn4fVyeX5+/vXXj3/+y5/+8u9/ulyWoUO1j9HHaPuxvYzfbNvqIn20Plpdrx//dHv+9ab2Q/1FEGEJ6b2rWi4HPKCU0i99XVfJUF/iUup6CWvq43RNGWP0MSmkuezkabZCU0Qq7p6XeCbDhLsTkH+9YzNLhYZJ8QhApNRxY6qYw7VbPzKlO68Wbw2QgOb3Re5BxCKQcueUgMxWXPOFOoFKJEJK22kmZqESUxf0Y1XJhDJVV1UcOlRxqEdOguExPEwEM1E2nc7cR+/bvt+O7e3YXtv9te/7OPbRh+tMqDx7d3XPV2bGeMyFUkzBBriBQ2gYOdhcMEESKoOQMMOWkTKnRv3YxxgZ+hqAVGpZrmu4WyfGUqb6NiA73dmqp5Tl/Kbg7Hh+yvZPIDft/9RcbfTRj9721o52tH1v99v2+vq23XYd3d3DoXnToXSq5omwFIGI/FBgZuMhoYBzO+z1y12VATBcankWdoSBAMxUBII8YJi7mvdhQ8l8ATSkYCERGaP3rqqDBYQl94bCc6mYOs7pSYzJ3ob0YZBCIojopsOG7fvxftu2rfVuasFchuJQwp89mu1239sNMI3mogixMED4MLcpq0L00ft+6MNNdlmWdS21LD4BfdU5TUU4QsokNNzsHMPcXQN02qEKnrN9vkWzO841ugibBSTnc2oXI4LM/Wz5GKY2NDflD9EQYXISTCmCzAFTmuapY4GwQdgZCcnyj3X/j798nwxn5nsbHjAshoFaDIuhPixh7pRafQVjJ485IG2e1dHAho9u2sZYj7QrRfdIy5fUXwGABagHkeblzURSGBDVHJD4TDN7RM+66ehdtWFYuBLJslxKvdTFODdMLMQyn7/HGNaHqhoSE7J56NDe+tQvRQhzhEcwxRQ74ikS+/EN+mmbmzrBSQ9FygM6O7l0GkAmtEi1txmoOoATITCaoUREzNSQZDyfeg50gzlPnGwH80ANJBgD+ggkl9wQ2kz1nEtwgkEACMx/MKLL7WUEIRAzlcoQAWhEAbmmsa+8K3zgoul6iglACFFhXpircBEu9BMaEC91IWHmQjgd/tIMGsKRQJCBi1QQQZa5bZMABCGqjHx4NHMEDAPtBtat+0NdmNO8uWuaRoRBOGAEJ6YSEJbpPEZO5BHBLMuCZ77xuZd/zGcThcLIY5tzoiYxwlUt/aYCipfMigqcPKSTqEaYSn0KcA6gn6C52eudrSROQ+WkyueYT5SbVjKaC8pHq5t60FPgkR9kagwJIKb5TrLhwG1qHDzANGuTRZymo0j5WuUHjt8A/VnaJvMFUi+gY/Tj2LNjBcDHkAjn/nYBSF+t+Qacsrb8YeeghUT0EydqG/nyoVcGF6Qgzls2Rm/7/X1/+3zcv4hIXSohm7pqZDcjxL3drd1A72gH+sDwMPAByJWxFCnoyRwzCw3TdFsxUy6FKgHNJGmA3P5O55eUGeVDyYySdozj6O1Q5ioszKUUQRT3MHOIsFDV1gfzKEWr6qGjjXGoNtNupogAM5H4mxs6wP37TTRzvT79pbPZ0e1oSubqEE7iXAjJAhJRzjytVFxMztXcpwsxk0cMY/a0lSE6USOesZCow1quEcDDFWIQFSl4WeP5AwfzesH1GnUNKcEFiT2x4mxnJvZAlIR+orCBlti5QhgtMxukyFyGLgRMId4he44Yw1uTSqlnK+vwKF3BQyK+d//JnlXHGEfvfSQvX6RYV226rEtdKgtH5hrMHyqXzqqqPNeCXEqRIpP5Tkl1EDczV8tQXSM3hQfIEDE3wXamrXlAPORfCIDuaGBuPnpKc8zdkrUowqUWKSWfGjOnBOmhfjux3iQvGPi5SYhgIJxIBMY3RfzrMzmNGN3cNcmo7qZqOgzG0GHNbJRKy1KkUPgwH9v9/f7++v7y+fb6st/e+n7rx6Ht0DYDFnM1H5C+FI85Og0hMPxU+2VRs/mMcmjHjKdJly4iESaZLhEpPgoYZ9OAsiwI6LVCOBPmPDAd3uIUXD7apAnnfaOs+znvJwA0Asy69qOPY4w2Rs+E323bb/ft/n7f9wPBMdkBwxWABVmgCLMUKQTAY9AYObQjEUaQKuybBmxHi1KWWiqERPC8wQlYAHIKFhBxJAdMLE9nULIQIqiqqhEBFZK5UyCiOMUpcBIzYpYmIpZpX5VAtXkK3900WlOkRmTqrEaI8mOfe3u/3+5vLMgVSyEE4SRr0smig3Dz1vvRDzNPEgwilwIR5B6moBqmYApuCLkTRqApBSRKJcncaM97Lb8AckjDs2OKM34GzHBOLRYU4eSE5ESciZaRfkqOk0qfBwIiwjNlEJ1SxX+mPhICTP9q8LAZZuEZvPqHLzXf9m6PNtfDHJKkY+O03fDJIfkG0J0sBg0wsGE0zLrqUbkIFyY4lzmeea4AasHqCJikWmZkYUTYj9Z673303ntvs8Fl3Lf7tm86WsYgAUopC6LUZZ3ltC61LjQZLTAJZmqE4ATuMBX6SWWIMAQyUASKJOmmBzqpfd/6w0/b3NknnTLkGdF8bqbdXU3BKS0e3D1hXIBp2JEEfpGpJDMOIlaCpKU8zuqDuzINPQLcMWbseJK0ARGYUASLkDAxJqp/Av2ExAjAEQzAxFQqEoU7uk/JsNmMaqNp/ZC8C0DkiUBOw1RhqoyVsBCWH4uvMK+XmhpjYBKb3C3EAHIWYJZFiAWkAAnkqQVP7wLg2WRQBJhGmI7QB76IqS6M8EyYDCPGupa6yHJZLutaStGmI6cpV48Q4bJIrSWXWeZm3Xq3dox+jNFUx6RATFaExmDojL2PWkfrbdF29KMshc9YGMa0350S4xD3mLRWin9Rfc9KfdZixNRmnj/XbB8Q49QnYe5XM9ApHL7KXwEJTuX/CaIgAMBsz04FuHuYJTyQDS7JvErQs1LAaUN/EunS7Q+RMia2t+PYC2HinZSOi0mgfjDjUtAuNPFbd++9q47zFvfzZ/+h0OhhZggMJB7Ta3+M0dvobfSj7ft2bPciDFaZ2dIOUKTgSrUIjVrUl1BDVTIHIiAMYbmsl3W9agWt0as16b307b5vpkPDIBiBBNOVlAVEUApO5T5xQuNDR++ttXHso3d1dxGSUpf1ui5Pta5q1ltT1SJSK5cKzIrQzPbe34/j9djW/b4KI7MwFwCYUWiz2EfX7y1dnp5+/X/+P/6/x95en19er6/b++3Y7u3YMvLbBvQWvSXci6rkiojJ7UuKDi4rl8qyoKwwOkdAOBSR61ovS0VEt1A1Rmd082jH9vZmgAfgfbhYbE8fvKyFBFgACcy8OQ4YDM3V29FHH+5Wi5cKUkAkmCFWCuMwsoE2kAn66G/v74E2dF/XlQAhyMbordtwJ7IBzCxlqcJUlnDet2ahAfVbwDsibq/v93aM3nsbY+h02JMADes+jiFVWHhCfhag4RozRMYdkdL3jJhKOrg+lNxMZraEemiuTwNzXYvA2e8ZGqEyptjfwiywW7gj5YvtbW/Hbd/vbd5wEUgADOkWhIDpHoPwqBpcmAkpzEwKuJuhPwzmAkNdY7jaiZ9+cx9881jOtjsQMtoehaO3dmztvt33/XYcW6lyudZaxH2Yjdvbl3/+/a+f/v7X28vv9/e3fjQb40yRm79mCcMZDZxbTjoTPf30e5lLXZ+O8B4Zxj5dtecTZooZmJdOmznnZcUJJnhUJEzODWVvDRxAGIIQGISRaT9zAs/ccjj7iD88FEjHnNH3fX9v+920I4SZ7vt2u922+7a3o/cuDMKPshxhEABEpaKUMusYIqaWyMN1ePhQgz6iHFarLlURqB1D1ZIsgQzLynXlulJZoCy4rsySW9/MWoIzZNdm2f3aEQJRMEFGGOUMM4YxExakoFNzk50D1lqen65M1SONq/owtH/R5r6+vr+8vEhBqVQXWpayLIWFz6ZtTt9t9N67R0x9V3fmAd5TzmUDVMlNcuoqjExSqwMAkRBxhJmROeUCYVlkXdd1XQEogkxxoIV1HZr26x4n8zYAINCDcqlJ5BROjhM5nc5PAPg4exkfQkiOltew0KkcLww55rr3rp3N1Ji/FxH1YS/vzQNGyhgiLGUNqS5+uGbBiebCCQHBTOxzQJ38N1OLwl44O+xHjYfIJEKy7KDwcUZdt32732+3W3LGb26aU5721vsRbkvV1s2c3Gk7dFkWkVKX5Xp9uj49LcuSnMDwwGlMAnEWBMpdOSJFzOkRQs1Ck26AiNTa8eOs+LM2dzLt04iJgihocoogC4CqA+qkSeQQw9ka08MOJu9aBjPOg57ayoivJQ7PGf+cLMgdPQANHn7daZtaChWhmVLobuEAQVOXkJ4wTCwFWQTVkjNqEWZuYMHhwNNQFTG9HKfDVK5yCYWx5C8C+VGsx8LLUoGImIOQNWtYOk04C8gqsiTDJCAjukzdHMAZT570mUOoHqmFiQdTNSIyNhjcIZZLLYuUWtZ1vVwutZRd2zAbh40+xtD1utRSl7L49GZw69730fbRdx3NbHgiwuFuoRlDhhQi1IuUJq0fchSpJRVphesyY8aYhUjQA9EhE2Mo4MTtfqi/E4uNmPHfj+3bVwj968HKCujhFMnu9nioAaZ9b7q6wklXwjOzcDKKZvBGuEHuac97hwgxKUUxX9op6oCYtJnEXyO8t+MQPhMROMfor335iXkhgAiXUsM9LRm+gZ9nm+v+Y5u7jzg8yIHNMka1JCu3t9Fab/txbJsXohgilDkFFAUkCJxplGIRiTHw0PkiFJHrenl6+mCGNrA3PcpxyGHm2350DYoQDEm6CTELSQEpWMtSykpUTMM0hu+9t/s2srUKz211vVyenj/86enp4xhj2+697XllSkEWB+xu2+jvbX/dt3W/L8JUl7XWSwBMCbOrhbr7GN8blVyvv/4f/8f/Z7/fP1///vv695ff//n65RPCGD2shzU87nG/+9AI4AgKYEJGnnWHK9YLXS5sgeugMXLtHML8fF2ulyX71HBncoJQ12M31d2jABaPwjWuz/6ExcKT2GYaXR1jkB8+7NjHGAPCCaEWrEtIAZEMei3hPBqMhjZgjKP1o/ftfn9ZllplrbIQwNRMKrgiuNTyvDw9AVFTO7Zmwd/X3oDb6+19v5uaDbekaAQYu3dX0V44CfQTeATEIHR8+Dwizd0nEuZyQGqRMj22zdCj+qSuWoCd5FkIDAsHNzQjm2Jjtxihqg/TBz/ux37ft9vhqdEGIEESwgBLflYwT9EwAKVkTpg4zF0UzC3lGY8tiYXaSDED4elD991TmbpIDw8EYIIiKBRu7dhfb69fXl6+3G6vtcr16bLWojbM+vvryz///tdP//hbu7+Ptls/Jr13iqHjIZKcFQEJJ2ltDtSZwZikSnfABJE49wmYaduSpg9MxOTuoZ64z2NMx4Q/CROUSbrlo9PlCAhkBIEIAp6hlgHoMal82eP+ZG8WMdxt9H27vx/7zbQjuOk49uN+u237dhzNxkDMzJe8ZzJvMzgAaSkl/6/MyB0QbfRQ9dEVu3ExPsay6FqNSdrRVT2pFkS4XPjDL/X6VFgC2crCzJCueYhOHEh+0jVpihkpNQzZ5mK614WrWYyh4Yn3ToEkThwUl6UgllJ82477trc2hqEaEv2kzX17vf3++0spVBZcFlkuZV1qKbnUyAk53GOodh0QKIUgopMjqmufu2UHNwovM8SIiDiIAxnOTGBXJTNmRhEstVzW9bKuEeSGNuDADg42LE+An16zJ+M6taHoFE7hySSDs12COSElXQamFowYCSMPHC+1XK7r5bIAopqq2nEMoj7GT9tcf3lrHpAZ7j5NXeFs+iHJjTFto8813LRSB4xIWx0LUIehUTiEnfGkzvjcBUEOOdNCZZJORj9u99vt/p66yPvtpqPnCIkREc5ES7XerWu0bm+3fam11Lqu68ePv/wy7Pr0tCzrsnzlQM5XOOtPlo14UBUpMb4MVc22tbfvbx/4F2iuwynOnx8FTXcqCIi0x02kdDraYAa8zOQMBDjr2vTuOh+u+4nqIZy//+QvI2C6YOoA4FwlIZ5IHs3ew8M80ocHfdJFU/Q2l0/zv4ejB5rCgHAG56A5cQNAEDmT0QzXRAg1VOeh1sbYIcR+wL3VxtHvgITMjri1+962o+99HN26wwAjVNYZlPXVcCoCUx+RbFs3j5mpMzEZmK3bDALLWYsIrRtYEGBhqVwHGQXDgLHrfhwYsC6L1Ro5qI3Q5uPQkYvlpm4Rnp+jnfj8CT9Pl0Dw5qaa66PKaqVWsVK5LMJBFEiBnqSFQLSfUS/x0enCg3pwLv++fp1kJpgI7aQjxDwH8fi9IAMG5mIV4OsokkgwzBb6cWs9tA5zT2o2+nD3819JWu6JuiISWZgNpi6MkOkADJDWDbm6Zojoo9NUbyJnIF9evF+b2znb+g/F13QbZuagjn1wrWupq3uYjRTvc+oSC1IB4oC0DSnTgg7QHJzcSYIYODCbglJlWZfr5eJOrtBFCQPctk2QKAkgNteJQALpx4pAGWMbTu5uFqopN3dLZ2XAZCkEgJSyXi+LL7WyjgVBiTTFK1KxFA27HdvvtxKEvffbuj6t6xMQqunMgXd11/14++6ZLHX993/7f93XV+1t317bsY5+sXHFoDZamOug1nBoPvJcrwgRBTqQl4rrCssaAaEFqoEbmmJhulxwXUF7uIUOE/FSImBmA+dxaF0XpsxDSg+1HJPc0nPFPABAEQwwMAgcbYSbKwczCRlEkuQxsS8zB9AACTdcURK4KsTEpRYWpoxQWC6BqNHVfuJuHxDH3trW5uEMSDHFY2oLBx0aevZpAAyc8fFJJAxHM1Wl0Xtj8jBxFeWH4VdAsHBdK0CIkEdMn0mYOZ65/TA17ToovSA8cwohvO99tOEjiYYBlKHsuV2AsDA315OzBAgSlrssj9NahhCBcAa3pA1XAqCZ7ew/bF3z48l5gxEq01q4VjkEChrFQG/e92F4eFPh3o/ej9vry9uXT/fXl9H20AGWjuXpbokENGfwSaSLUzQ8d025PWace2KPM9D4sY2ad5pPxe03xW3uqHA6Q6RlAGGY9mN7v7+/IRUpa0FkklTmFkQH7AIHAxPkZv/RePy4OQu3/f6mpi8vnz7//unz53/eb2+jHTq6atfzaonM2kQEMEBDMhYqhZeFpCBxxP/F2J81ubEka4KgbmbmQETwLJn3VlW3jMi8zPz/HzNvIzMtPdJ961ZmnoURANzNTJd5UHOQh2SLFJLJh0ySAThsUf30W3xJdefUr05ocHOH5F0iBgmbmp1oe7gbQLqsZKQimHrvMwJ0+jj0OOaxH8m6KYUQOILcYoYZAVLQBBxGhKaaM+1ayiJFIpIsITQInRCbmxU180Afpj+0QgU4juNxf7QmAZJiOCV93jILzvZQ1aEKgNUJnBGM0RidIH8snt9npl0hslPmShJluYzIxJH6csickIS6I5gw86hLSREHB4AykqGZmYOnWTIBEYhgESZaKZxxNjfLqwoRiREhQ7dX9DZxKbI1rpWRqASbOa1YSGP5tn5Ti70vVbLFl/WUBdeiWABGlgWrxI5Vd+fTX0EyYRq4sDeyU/zuX27AvBUj4ac5+9GPPvZ9f+xHaiP74xg6R2IS2QIWDiRnCZpGx/TY+5jMR9sPVZtTX45+vVwu1+s5YMbV/D0ZR4iIuKKM853YSjvPnkHn/0zYL0CArsjpk+ZJkPKfRZRMg1z4UuMmwQHy68yi39xBKRzVlqfYs+LB05w4025y3IVE4WgTFLK3AOBgwqcfjqeFY2SGXrbR67CO5SS6mnY10xnu4BxmwRzCyBxnBQwAgWhEQOzM4IUABJARN4gqPNS+nboeff/tz38BEgoHwr1/3PY/b/vnY96O+TCYbEgd1eacI8VM+RezVtepfZ+jT9cF2yRHHxnCPNA185R1kRd8qPWpx/DN2aliGTElGA1t2NgHAtRanzwOnabdZrfZdXbVkW8glU1BGMQkBWWpzXD5KSbXHhzBgtyGqsxmJaAWEAYKJAw0Q3SgGeW7pYLLPRvgq5o1ziLXPRNnktlylqy0KEdfamCA7M0SSc3dYwZL80jnPYJoC9U9wa3zL2UBH+Fz6nGMcDvlgOsNPn8SITnb8iKByMlDRHqn+/JEYnY3HXPOEW4IjpT8SABCPLs1NfX0Vv3ry+2hcweLGE6MbXvZ/JWQAoYUqJdidiF+FYlaiSnTU0yYpSCWAHUMB3LACHSk/O64NWmtbFuNoHBkRnOZk5YTHy27HDMHQ5yICMzojGYGoBCh0+f00afpiu1OJo+Z9t77McwUCVtr12tBsPAj/EB0KVKqlObgt/3h4fdj/+NyeblcX7fLKzFZuGccvQ8ze9xu3zwTFn55fXHvpSKycom2bXb9BMrWkcDDpxll+CciViJmrjXpQVBa1Ga1ekAwZ9okhiNT1GosGm5SVIqXGq0BEqEQCdWGROiOqoEUuIRNkY6Y2UoTO2FIsVLDFcJwHtgD1DzARJK9wBAEgUkM85wfIQpTEaqVFpBamNNcuQlXZmFAquGIMQ3hG8ZyQLqMphCWmaVkMuKSKKtnruB5pLjT0+MPADLQG2hO99A+dhY+12+OiBcZqdZamP2yLaqsu5rPtEEIcHMdcxwD0nEvNaoR4a5DfTqubIe8paRIYWYGRof0J/HsAJBqKbFtUVbqii1vCVxuoYEO2TBYKm3D43saNyShApwhssZ93Uq91HGUfinjUuYuuombgvUx7PG4PR632/uf+8fneTwyAQ9X7ghiEKFk9OV5Gj81J8umLz9zOqKlgeL5xpdyOam1YG4xwx1EIMRjydq+jC+Fmbm2wkwYPvbH5z/+lfZGVaoQlHpJ5UdBDmAtdAhWBk70YTUg8T2aa26fP/9rjvHP//Gf//k//vO33/7155+/Px4fc3Z3O4eoERREgewYTmAQ3rZyudattVIo87+WdVIese5EQIIBaSIXZlON0yojH4+7zwlpRDDV07cQMcYw5jn63B/j2Hs/bHQl4lYRUcJ5aLjPFfcGqbVLb3Jz99ZSCgGAhYWo4Bl8EO5BjG2rxFyK3h7do3/N9nmuE1VVHaUAYhaPRCQYdJLCk95mc9rIKHCjMGQsUWDJOZJjEylvxgRUAwHR0vx/jRkxEnc1W+ZFGb7tEYhQCm0XAaip6wOAlXqvONOxFDFXYatSaykiRExIqj6n5h9AXFZ/IixFqhRhTguHnD8DGBEKCyAjCQAzawbO/+X2cRgKEWCQir8Vb4Krjl1NwNrqX27uIFjW2ynJyTHDKrlOmfn5xxfY5J7qjd5HP479cTyOvmsq+qZOj2y2AsMxjSsAkZ0EuGB6lQDozAiXPqfu+3G93V5ertfry7ZtGUGSf+/L7P+k1Occ+AtXzk+Q+TuPQvi/kKCpwwBQAD8hQMiv2Zf97Nl2flFZP3vlyDkOGIQHEqnGHDHnF/r/Ml+Glbm7TLgw0YtIBPhpgBYZKu4QAGlgBuTJavKAMIJgd8riNWGPvG9zrGkUwuACzAkm4Kn4d6IQcS6RZmQIDPHhJkw9vaW+fh19/+O9A1Iq4PbxcT8+P/r7sMfQ3WMiBSCk/cIYHeFkqxEzs6nPoTrSQcEQkEtN/rKHRbhBgMG6X8J9uHbTXePqZCjBEsxBZODDxj4A4GiHrMQ9NHUbbt1tmE3TaYiO5CdejiJYazIUlvu4wVoYEQ6OgW6oxhOwLeoFMqJEpHcV8g/K3BMOfzK3z8Po3AYOcZ43J5r79UKDJ2h7lqrn/5oVcioA1kf4UgbD86+c3F9YtF2dNvpwt2yEU2vyzCzLd0ymTFnmwkmYjuTmM3M6OOocHWjOQQhMJKXkfUfwRIlPLOS77eO+m33kdC4QIgaRi1QA4wLtIgBbqS/ELhxEHk7gRIQsgOQIDu6Aq9IFAhYshUuhUrhUxqAIgvDRUQSYc9iW0xIADFAHAKQwITLUcLcZbnP6HDZGiorj3H9g5tH7GN3MAKNt5bJJLWhTdCLALIWlCoB53PvjMY4/kUqp2/X6erm+skj2j2pTbZibPfibg4WZry8vqnttzCVK5e16AWMb2O9ZlRcADbAV+QwkTLVwqSE1pJqU4OIA4RQuAZGZVsFkgADkSMbsIlFqStaYhKUgopsHzIgAJFfNKVQeaYQMhA4MLC7ilrXs5DF87zHVSonaotQQIRF28MB0rENmKiK1cK3ULnLZam0FiQGJi2TZmzoAImYD6N8WMKZm00CwELJIbbW1JqWkWWwfI9I5ec6+766GwAjrSGHmhD5VTXUcZ6dITCJFaqm1bttGrZUiXCsi5nRvquGYAZDWtieU20P9ZKjaybUGN39uzNPJVwiX7Zx2PfqhOhGQCK22bLbMQs08I+LX3UkJWUTy/c1nRiN8h+bmLJEghKAwtsLXWrZLHUft1zKOqke1Xnu3Ocfse7+/39//vL9/Pm4feuxuSue9nggWAa2wpvP6Weal2QbnibtsEBkJPRzdEt2LHPGvkVDeKfZkamW/RWmgKMIiUkRYmBDc+nGPPyE8aqnXy7VV2YpsXKtQJQykLtSECiNTviU/VXDfvsz08x+/9b7/8x//+Z//8X/+8efv+37f98ccPZdyasyJIKWTAJAE5O1Cr6+ttQpBEXZGJafVlQN4khw81ZDu7uoxPAApJGGzSGKD5S9zNZvptoWIxzEe9+N4HG7oBqVU3cCN3XAOnXMG5Ng8vWxG1oWEeBpdIDOVwkzIQsy8YAX0UriUymLmMKbF+v7+ulLC3BWwMFHKQoUFEW0+08giMcKhujg/QFYMIoiwFC618FLAeVqwW36p7n46kjwvqTU9VzfyOWc6SROxCG4bE9UEkABQ1dR0Ks2JqrbKXOFtK1trNVtZojH0OECnJo+5VKm11FZqKbVUYdZMZFhBXZpfFkvJ6ApEku9ICx4xLLLY8vMuhnNU+hxxxgIpYw1wAk7cCFKFlybVK41oDVnXjkpFt3uYW5/j/rjf7/f7434/Hsexw2q5Qh0dOSgCKHMVAtFJUCqVylKJGZHUdM5hZmOMx/54PO77/vLysr++vr68vESkYVi6NjCdTqO5MuEL8341p2fl8O3r+zI33Lv78JgAimi4GPun1f9SNMAXoqRnQQPwVY2S6n3EMAM1sGXOv/gETk4n6zx9khK0izRJzdPHMXgp0swdOTtyJEbKEF9kAE7hTUCm87m7RRiiczqnrrQ6WNpsJOA1+kZ0XMRNMsUJYTon7og+B39jMqymdkzA7Jdhn7dHv+/jMfQx9OGeOo/QqWOOOfUJcRM7k6XTOiF5BsRBOvkyIgCF+UlOWg+a0CGG2676mHpRBZ37nPvUruGxqNcZWB7h+GXmzsTCEakPQAXwFFPB6XdNmEoK5C/9z2oZCXF5GLqHO4YwsgeEuc3T9PjbpRJ+IjaQGwhzrOOqmkXv8rR3A0hudE7P3S25HQ7JJkA66bRxFqWZGpCwKxARpzZpMd7DVzwvRriauWu62gTEio5PxOsLbpx3l4/ZAcFMc+cEQLL4mFhkZtQqIQH4UaWWEhDCzCgspYgAYtWqm7n7++d/ftM8CkMr4AAeDAS1AJOmDwyCQ0HCZs0QJqAiTLcVB726jZgBBnhy4ddnnL33x+NBKAgEjmPovj96P04uBJqFmWpacRgmOdidmZ3IASjDEjM8D8FzHLfObzfTMcb92D+2FpftKiLgqfzNzEWLCF06V3ADJHncLrVtpRQqTILps+5uND8R/Pz1M0Fk4a3W6+vbr7/++l8LbXsbd95twvGYtesrMNTtOGbvcw4VQaKVz0MpUHcAzYEzYIQaqLqZR2gEmoar6fTUcQWAZWT5IjwGC1hJTTd6nvEGEZ5jeAQwRUSslYWbUCGmdLAgLiJlu2xvr9eXl4uZHccxx7xs7eVyuW5ba1VqIZEgdAROVLZdt5e36+tPxCU1DGM6fvRvaphn5kA290iAglRytk0BZsaiXJiV2BlSy5olFcvp6YxwBnycyCkTIYb7HMPN59kNmyfIZHPq1LkIN4hgDmbMYw0+3M0sbOGUmJMCSJ85DY/TAcPHHNkdESMTMbGq0mQ1m0OnJvYVlI76xBgASCthGL5HLdcnYAYmEMJCWJkq0yb82pq+vIBODi0E+6Psx/6g0P7owgcBQxroW7ZwgfyUx0EaCjMzC62gTZhp3egW5v6cNWH2jLgoScn7iue95oj4xUoegQBzm+g531+pllljTSXA++Xlcbk24UYEhYVro4KFdqHGWNKfHFbIL/4ItzS13377Zz+OP37//fOff9zeP4aOOZZyfk1cKfMd6+trQXK3CRAv1+362ph5dJt99GGjez9yYUNBzuYtwNGQPUSc2Vi0ihQuED41zLx3u9+7hXuo2bTwBSuo6Qybkn4FOjxijA4QkDy92rhtLKUwAdaE0hfDY06Dx0j4wg1rBSnQx9wfvXdjKiwtHIiwFnkaJH29Ut7erqN/enm9fvr08vJ6KaWWIu7Rj3FAB0c3zS1Gkd8sJV+sFmlVWpNSmRkTrnQHNESjUJvu6Xvi2astZONsndwNnYgCQtiJojZmwfOOAREKqBHpv7vk/Ek/KKUscjdRKdQqmodk/FmRNHFhOnFFQEDGGUvuH+CBNL137T19nn5g9XMykuJpbA6wMOo16Pf4alAPedUxISMUoiIkzMs1Bb6UyQkoeUCAm9m0Yz+Ox+P+8fFxu9+OnldvMDBzAcQCBCSRI7O8sgOK8Ot1e7teLrW0wpWwj37s+xwDANxsjMGcBhYRYaa6HooIS0nT0CUUPwkfEECAgBQUEMjfucHCj1PQvJv3CAWwLHOBUhoKYesf/jJzTlqppasfkIFxEMcJv0XEMzbzJH5BADqfbkeLxEy0ii4HVPSsbonUgD3YPQ90QiyYPPp0+WQADmNHtmQxuCIo0/roSevNMleS8EJ09mfnm3ExZQgEt/Ae4XNevi9zfRzJAzCIY9738djnY8zHmLvZjDwXbR2OsbBtJ3Jb1CNmpnBwspwDpmF6oOOJZxOuN42GMVwfqk3nNkeMcR/jccw+wuPEciAJMoCQjs0kJF7SgcJsmoGHhmeEErpTOAMUoZJ//YRcs0RezlMJc0IAAxcsGq5uNhV/NAtI9ea5IxZgAs8yFyLSt9d00Z2dADPDxTMg29QAgYkhMzkS7Y8ACHNH5AT2cyq4hGaICJ7XjmqWzqmd1+SHIULEYlOcJ8/qXLPcjRHuNuf6F5OKEw7EJCr8pYKAMVofHQkAaoJobWul1DXnivjv/yEAf6G4VEFcfpWAhCzCAoia9DsqmPndbod5mM70RDw7Dkzb+Dg77fDllvF47ETvc1jSbXXqvu/7fow5IoIIFx88AAyQSB0t2IxFirAjUvqzuM0IXWM4OplH4WajH/fH/Y9ti5crAlwAZrhGDHMIBQ/PNIExdAx1j8z3Ka22S6tbCYjU9Vfg7ZsyF4iw1fL66e3v/u9jq28f9cb03rvW+9508vV6Ndgfx/vn2/32EAKmQFD0pONDshTOABrwrv3QY9iYMXIEdFLHcuSsamomE1XRDKWgKbCk9UxGWLkuJlWGsBShUkq5bq21je84bVpYa7Vdtre3t3/7t7/97e+/6Ozv7+/7/bG1etkurTbOsonJAdSCCnJp7Xq9vHx6+fSrlJYD/D4U/+O/f1PZnQ5csTKZMw52zfTYg4uxG7uK1+KWQwhOW1wRESEujIi+kIfzYed9BjDHPGxgwjOM9swVX8YJy+jLWX1MYs5bLf+Mm0mRVlspq8Bwdxtj9JN7D5HkgwAXYSiroSWlMa33kYskIghJOLkOLBnEtizufsD2JwJmYMZ0UCmIQliZrlsLe2HwyrhVud/b/fZRGWwcY7+PUjohha8smwDkc0gU2cBLqbW0VluptQDC4/F47A8fgevKPJ9dHoXgoTMRPafAlBW75aQVPHJckMBVWpIqISIyDylTyki+CSHery+3y7UVuRaJrVDB2oSJmlDNMve0XCc80apvbmTTf/3zX330P/74/f39/X5/RJh6xqE7oCMGUgjT9aX99POV2d0VwLdWt616wJw6tR99HI/Zu0EwsZQqIiiFIoAyOYGD2UrBy6VeL83Nbx82x+y7IsTRNcCWoZW5micIS1BcbXY1jeNxvNORnG8A+PTTVkqVS6lUgOypJ55T51DVkcN0V7BLVI99Pz4+7vs+a91adSRBjFoZgL9/ML/8/MY0Xl6unz69XF+u6aMwVe+05/XuFo5OQGkSWEgqSy2lVdlaqY1LTS3diq/KcjYr+9l1jDHGcI+sT5jTqoFycuyUThTITKVKXZZqGhEsUkRO0ciT4v3XF1ELAigIyCJysoyIKB0D8yKTggE0NFTVw8d0gNmH9kNVTfU7Hury7oDTwWN1TSdUmRCf4ynXESZJRwlCQSyCTagKP2ena+SbewIzOBMsbOh+f3z+/P7xcfv4uN3cIYjzGUtt2fNyUSJOE5gsr5np03V7e2nXWjahwnjsexHZ9z39w9wTKQeAcFMdo7ZW61ZbK+GIAJB1LMZpcEJJTcqIGgjRbxFu+GGZ6z7d+hpqnEwmyHnxc+b/vIdhFQ8AS5DmAeSBZwzVojV/wdSSQevBCEGE4BSUGO/S00UgEqIRMgErkAW7c6HCkT5gSZpa2W4J+4UH5MBhIhqR47L9Pr9lAErRbmE8n1LqiwFKuJizaeic7o5WEb4Z0QeAB2CqjrJIM53pgq46wjKafBE6IMLzTRICORZCylhR8GAIoDzqAZAy6Q+QMR2BAYgAYYKBz8ccbYhLvx/Ho48+AULOSgyeubkEJMinyT8SzwkADhbnbcIQHMEQgliYzrsLItgj/Emtzm0ROdFyQk8bI4/vLAWeOOlT7IXru440uIPFUU/AZLU3SaI++RLmYXh6+sSz08xcDETEQIekFCLSk4OzflnMMDVM3DezzcycGJdSZElqnuzhtQzN3F3xjEV9LlEyNtI8bnL4OMbeu2SPghgi3FprbUvKfkTQ971jGPjEMz0Uw8GnA7qnW1MwI5EoccyVu4RoqeyEWJ3DE5qDFfFqCEc49V1zSZn5GKP3MU7J3cJ93VdwAhImCusBEsScgw4ApQyAYoCg5ZgMSGCq+3HIsdNxYC2mY5/94THZgWSVuVP1OMax9zk0z4a61evLZXtpQEstgOWn7RuLWCSirZZ4ff03IiryKvQnYOvDelcslUiQ+f7xKPU3ZgibDIFwJigGxjpJaD2TCeOIfbf9sL07ADCn5S0iogeYuc4IXzOVCAgndyAGZnSLOWJ2V3M3Q4BWhSsySW1yuRR3feysyq2VrdXr9fLp09uvv/4yZ8+7obV23a6llDzRAJKB7uIIxCy1tsvl8lrbJRHlfR+A//lNmYsnUe45Sk6fTKSFz+XwpQi7FKdYxNu8b4VLFSlCjIuedrbvOW5XtWmzHyOWtnIZTy822xqNpQ0fJFa/QFtbkcIQIcTZ9+YbTDD4abyVhyESEFMaNMY5Gphjjj5TZ0uIIsVYailYkCG71B8YZ0FSB1emJDJitpuCWJmtVtfNdZhurl17OZjkmVL4HGKeo60kLQEQIBCjiNRaWmttawAx58QdnyICyqN9HdnnP2ge7utzmbvb8oLxgFgGRudQM/KaYebMHMjBhzD1x+14vPfHZVwverlAE4ZSCAvBqjAWTnDetD+4kSN3uuWkijgpJCKaDvzMIJIk0XJ92UQiUSoRqYWTw+ah5kN9qqtwlSJFqBQSQUAsDp63AEYpcX2ht7dqM+YY+4N02iMc+/SU6HmouXnUglQrSwnXOX0cajrVNG95Zqy1urFQkxpSItOa3cMNuukYBjZtgs50zfVjH/ve9324IThxCQAqRTIO6pvX2+uVaFyvl9fX6+Wy5RCcB+vQ2YcxG5klXQCJmbZWL61trdRa8oNTShPRAQ0wPUnCzOe03udxjOM43CN516WWEgiyPKERI/OtKgoLsZA5ZBFQUUq6gImILMuNgNNsKulitKKIhFe+C+Wig1RrqKmmm8BCi9xMPTDcfc501/+BABohiNI/4MzjWMKVxLQgbechh+AEBaQSFgHGpAlBE6xl1eYBoB6aNitJ/zObOvs4Hvvt4/b54/Zxu9/3/QFUpF4kTZu4EgtS4TCR2rat1hoR5i5E10u9Xtu1yUWoMKbTUeQUIFZtpTNhi0TDLHw5kCACR24a8jjTP/0Jc6yh+Penyo/KXM10Fjj5KcsBPr46RRFPc+SVIroUeLAiNRbWnXzcFA3F84xNzfpJDtWpzNnkReDySswSgQmZUSICgzioUuZzEoI7mLnacNMIDs/jRgNUyJjjpNwYwjo3a4PWsC4KDbmjTdSJ7gJe3Es459SL49uzptXW3mquHUO470J3Cx/h6jSAOCDjf05LSwDIM7qwSMnIR2ICASwFAlgI+OwXIBCQkUkILOvLwAib0Xe9y2Ejbvf9sR9DZxTkyuVa6ktt15qb381xGLDhtPRmBBIizyhwWi6Gy3zNNBCMiQk5qavIgIxUgGhVY2GoPbppWMQgtkLx3VJBICZYBPpEgs4PBHo2kqeQFNd6OLUgqVrls7dN2g2Eu8HysEZaaUzurnMisc5kIsY5nMzrZfG8IY2TYsWUJwlv6fDOwUmOrSMgIM91gAhMcz6ApcI5TdzHpONgQmLmy2UrJc/HkmRrW5DYtwfN5z/eb49/ZSIfCyMzJbgLEQEsUAoyh/vhPtxnhCWtJG02VoOR0hkmI7Vs5W3MAUxKKIQSDjO98g+fI2VVy3WFmaTwuvyzcErOipAwmoNOT4ekDPAIIACkIiJhdtxvAD5u7+I6bB7EUS+lbgWWN230Hscec6yz1AwAzHxE1kvg5XW+/bXMRWTmC4JcrsjSEK8QF6DGcnl5/fU4diJGpo/Pf759ev3X67bf3sfjPvueYwFnIMkyNq/JLLIwjNMkO+9dxBDBTC3IjAhmEElG1DJyMU0oH1TBlHSGafZfIIAqMYdpmQBWK0RwrVgLEvjo++39c1qRCXMttV0uIlWTKmFpW+GTtfRpfcacaFoQpTaRWrjj9xd1SpoRwdDTrGJMQ5zhzqpj2phhjoBFOALT//ipiQI8+bjLtjRgceSXp/fMjFzzCPsy0ljRK+n5yCJ8RnPTQnsRADy9bd2mjlzhuLai2dJJIUDSAYSklbrV0mppVViGWoSbruwSADRWIzYRFSHE0cfoI0OZvn0kKxT3pMZ5yqUi0cjb7f77n3/+8efvH++fPz4+v3/+84/ff//zz88fH7fj6Jl0sSYUpgCAYQEMSBSkwWyEMzw0wo/9Pvo+x0ibAnMMt9CFwaW+JlRPXtd6YWDAl8EWe5wu8+lPhqvhdGXnNZYBJwhwnX3fHx+XSqMJFVmBGl9lieNXA7GvXyLl3//9/6aql+2nt5df9+Nw16mj/vavOePx2GulbRMpxEynwAggM1rDVC1CpUC7MHHUCxEKIzJnfYwiLFKZCcDMjQVfX+X1TWaPY5fjIX3EnKY9YVwDhEUkrUVKJrVaONrp4gKRXCAGZ3TBKIQZ0ZjJYJqb14bfu94/tLX59lN7eTUPpyhVCIHmNI8ppZRaFjvnr69lHOY6xgFgKWJLqnqEEYUURBQEzPTvy2Xbtm27tMLk5qM7zIjINMBpp1/Mvvf9cexHH2OMoRERzuEQkKk8Cbs4QPAEZpzDRjVmGqP3owNEkoNrLSYmIs+bMQsfyDfEWGvlhsBu0+YYCbotKoiqqQMyIpuFzoDIbqgQJ0Bo7iHfOS0QgmAgBtPqk3NimUlbc9owHzYAgJgKUiGojEJImOahFg6uDmvMBJ7TXDc1m6r70R/7ft8fH7f77X7bjx4RpTbiWupFZGMqKZI+GZKVqCBV8MBlUsrmaA4WIFmbMUsp7h7mECYZrcXICIQAbqoTBoS76uSMamSGbDbjyyGadYX/z0jQFk/RvsJsnwjlF87yOuCQ2H3lLyQnyd3hpJ/Giact5vLiN6QbuRNiGLp6xn0DPj20MR8PojMSCzoGsBdnJmwNhTFtt+awo/tUB8/ENaD0wZLI+On8cenuyAKtwXaB1pI/x2EyO4/OqmyTwzOAG9yC8Ns6d6vbT582XJsVSkH3rrq7DVMJt5xepfQYTjqOCNfcpcJBEIxJwEskIJ9IDgARkYnBAZ3RKdS9T1Pru95hH4c+jn0/uqJJFWmlXEp7qdu1pgufqYPMYAiGmAGLDVfCeNW5CX8DQiwp4qJ183IZZCGuhAyJUIeFagRoSiMkCv/IaIGZMyEPTow2xY+LK0z5rSzEekHcEJDQBWUCeI4YkimRkMniNCBiuLmzYtKCKb93d4SgcNRVaxqcznRZ2kZaX2rkBAcxGLKkz+7jfKtwDl+fw5z0zTsziSbggQgBrTUAKOslzKzTMzrt+zL3z9///O2Pf4hIqVVqoTMNLkFWEaoVRQBwQHTASZnYF2taDJ5nBBGRMBjhcFOdbhPCASZTFaoQmFyQ3n2OsBmW7i6EzFSrID3rwTXKYCJiNIMeCoEi3EpLqnGaWgSHW7/fx+P+TgAQGm6l8vXteo0rMbujKxwdj46zIzphkBlG+DQN1PRnvZZvadyIzHwlMpJW2xvRFaCR1JfXX/7+b8PcEs76/Mc/r9d22ej3f/Lnf+mH7TZsqjJAgUAOQH5Og9zJHbK/TcdTD2tBRFiEhQHLEuUsz41AV0g/tXAIxwjUEWMiODDgRJwCc9gsI8JqASYSoSKIYePxeIdAwggjIqm1touU6gfCdHcw9TATUuWhdXgfoFMArrVdrq/CFb/H6WI1IREYZD7VeCoEqBmRqdrUUKMAYkm7ImSGrzT562jHRUD0PEyIkDiQiCeemSlunvbvSRNjpsJSa125EsyAOHWq4VTIOThAmGqYZfn1BY5aEzVEAiDiIqXWetkyIZuJuA8ISIs5HRpJP0OaTEKMiKqmU91/oBeJAFswzcomDw83H2MeR//4uP3+2x//+Nc/3j//+fHx+eP98/uff75//vN+ux3HseKKciTo4RnCQAbAFGjO09D7nIPMbN8fo+9pYRHhgUCKkc0fUTIQwWw12rHSbWB5VoKtG9EhwZj1WAmSye5u7hJx9qwBYbMfx/2jV5lbK9DcPYfhWebis9L9vswt9b/+t/+7m/309nH7+Xbs+9R+9D2APz5un8vvViVCmIkFT8YiRIDn92cWYFLwwtI2WnoOB4BgCmbYmrxct8tW3OfQDhivr/LyxqPEfi/7VqaaDT0OHTpVpxSSIttWaq3CkvRLDzALm67DCYCEkAmdIQSiEIYwAJ6+O47hZJOOYxzHLIVSNV6KEJdWqpnPYeYgRaSQJKPm21MFCMDM+rHr7GlBZR46Z4QSRhEsLEvZ1VrbWtsaMwHik7ujuc00146r+bH3fd97H3OqmiFAJMsfMAKYI0N4ASJxeBGVIkQ4xxi9I4TNcA2rZqWIaB7tyQ5MfzFm4kIIUISBeY4xxpxT09HiK/8eRmQPMo0IIWTkiigsIB4AIPLtpYwQQs4IzFE4irAUYWJNhCLch02bCMAkAlgQKoEQpo1gmnAYpOaPAsMygHCO/eh7P94/7p8/brfb/Rijj2EB6Zwo0kQuLA2APBVyi2hYEAuApHFQAHiQOqiBcsgpUxKWEAM3cGTKyIVMfYIIV5vL/HSwlMJSmQsiAXKcQHV+eERQ/Z9zWsjTxp9I2uqtk8sVybsPXIUuIgYEP3cpYoAjQE6k/As8hrZq3BVbYPlDDJ/ldMZwMaMwBwMzpXSGKIRPUXniuJqokh2HqTpE8qmAA1hADcgg1iwwhajOjCRB7MTBEiIQDCl4oMEzyHTVambA/G1HXUp5e3lBIhIBxoAxxq2Pu1k3rRieUTgKOe+P5aFYpG2ltoaMtkBNXKThCAwwN+MApWVkEoRGoORorhZT1bT3oepjzDktOHIAzMuELaWHGAASbOBIyBIm6BN8QqRZCeGTPr/iQPEkcidAHbz4e0TIREEOhhphvmanQQQ/oLysIctzbudflk1EpP4aAtPAMgfyAIEZpAg5q1vA1JpmpYnhSTDIbZEaJAjADJ1EXjwNXsMjWJSvFdQHkEXjmpHlxXMKGNdTYIAIWE9h0WCfijVwCHAHC5wAEPux7ft93y+AYGbEMvocY8WkfvNEdOo4hhfPRUFnfEXW9i7oE1iAWYmVyYED8zM4uIEbhIXbssk7Sae0xtqJVKNCYHqJnIHq63YjwFK4bZUIzCzcUvstzOlW40GEUQRqLZdtq7Uk9cUj1H266dQx1Kam5r16ka1WC0k/bsGs/MIMnNApdQmq+U4xvgTJfX34njDV6SFVpGzbS62XFPMwIzFuTXwePh4+9n57v98IAM3SPB8BKXmBc+KYCbQhEhXBQFKDcEzClAcIo0gyAtwyNzHIHXSGznW2EhIRCDtQMC9bjzEMMdKH4DmG16l77DpVCrNwrQUBiFcyLoaDavThOsx9ug6AXsouLKpwHLHve1f4riNauAAAAoRCqIWqI6g5EaX1V3ikaDTdT9J3KrfEkwnmKWqIyD4SHBBzrGyn3U56X6/vgpfUjStLTS/XZCYweaBIkmnJ1SIzbmId7+cQFJMGQJLFcimtSC1ShUWIkIuUKrUUzIoP0hzeNNKCJ8x8uaF+t33+SjCCRZI7nVogn0Aa5jim0WQmCi8riIhINcayLUizM/Qwi4kGZggRpj5nt7V5LBYKnmOVdYTkj0lHnyctC1Ox6o6GAOoeKKkEYUIg+JLd+lSsh9scox87AzLiy2XTOb1UyD8FtNh3Tw+X717M/Msvf4/wl8vr2+s++jFm3/fH0fc//vzX5/ffUg8W4G7aj86ClNFF+b0D1CK1lpWBiwB5tgQhEAJvtb6+bNetqQ0Z6GFS6AmWrdS41S/nHIBrLdtWSymI5JY21dmALh+L8BVrfzzGvjEyS01X2ZN1CAzhpjhGmNr9NgnpcoVtq6UIhAGsjOs8HH7QJJ4XjZsbYam1FGTEUohQvABEBmPUVlurrdZWW0UE8zA3m6FT+5y99z76VHNzNR999N7HnAmTAYJ/da9hbszM2iQkQlWkaYSY+bYYYQo6YRQtMkUoPJYPIUQAEJMIl8pp6dHL6H30MeZQszD1VSUAxYpmonQ9EimVRaTBaSD/vaEYJj0RoCAUwsqZ60YUjhiGIQkRLf3+uv1Wabf05O6R7odhbmOmX1i/7/t93z9uj4+P+30/1MMDkJOZ0UQ2kUpU8sp2AAqC4MyKC6fnF+9B7tk/ZmxTCj+JmUMEgoRQGJOZyWtyFacQaQU2MBvi8hha2wchK4AfsCu/L3MRICNR07YgKThPRgIsVPCr0mRJTtcMOoICDJbDcDYwcB7F6WCdGwcAIiwcIMvfiEAhYorCBB4ZN1uxNbxc8HLFtiFhzGnuMIfPGWP4GGEGybAJANfwAHPQCcTO5MQhkjnSEEFupIqAAeiEThylBYC4yWnQ424Q9O2TEuZWGzFJLSQ09brvl94vbofPgxJwCCMOSI2vkBQprbSttq0Aopp7xKpQKSljoDrHTHsfzKHBKk8DUAMNAtzCIiOwE3ZzQkWY4MNNFAmAMGkkpbIwhYcr24B5uKvjyrRdP5gpGYwESmAAYRFkBqgUjIAkVKQwsAVbTEMncsIQ+j7GCWIFSrkvN9FFwYCT+b74eu6xGHM5+Fu8VeYFTiUfL48NCARyDMLz31qd1RkEwbCi2cCNpEj4F3mZu7pbLMT4+YIISHtCzn+HkfBk2SNBrtV1vyUknRXDqpvvjw/+k6bNWluRyiwL1wGw74w/W6sv1+2Uzko6DSHhWubq01zVS/FSnQnjWcI6ZQtnCjp9akwLC8uxADFiBs0b5tWc8RU5yjqVDkCEpchl24jBTT2MOd+FFGERBuBaKKJsTS4vtbYCCIFoHmPqmNYPQoCRaFjAovgQl1KKNGJpoq3oHOYabgDowIbsxMyCSFjKN8xcADCIbnrs+5/74885uqqDO6Z6cGmQWS+vb69v90+fPv54KaUScgS5E6xmO1SjH9AP2A/oA9xJhKVycZ7KZrayry1YEAgjfKpPswyDiEBwgiBmZuRSGApGAGHUwq0wIYxhx6HpGc8MRcKL+9TJJjxLlboVQnTV8ImOaAOt49yxP/A4vN+1l37cPsYd7n88Lm+lXKVcu+P3HrHZ90MgApDjcrVFRz6P3AhESEfdCEw/zsgdQfj0uMn49ydjKK9TM+992lTwoJxmnDZsjChIgsTLIzPAzCEpXul4X4BA+5w91M5qYvH+idIFVFiyum1Fat5ImPZdtZbr64WRxt67dNNTmWs5Ak0gbZGEv7+A4AxiSwJvfl6R0rbt9fXt597dvJbS2lZLAQ8dmuPBnHAu+Pfkyz4l4+6mZzBkzoyIIBgdcWkYUo7Dyz9X1/JPdUu2yBhwhrp5GDhEpHSaAwgIKJZIlqhyqVKF2aY+7h8I6OoYNF4/mWYHtarb72/lb15EdH25IECr5XK9zDl0jqM/bvufv//5P94/fo/wOWbvxzjGHCOdB0shRmAkFim1lCpAEOCp6M2D1CaaorBcWq1Flq2nTZ1gPo6HHkefc7gbMZYmAgzobZPX1+16rcSU+Hm6HyJFcqDDA8JV9fHY8Y/QOAwa1VYbBaQZX8qdsRRpNTx8jvj4GOYYznFhJBKuUoiFlonr92eKmU5NiECEGtLWWimSUsuTHYfMsrIoCxeh/IzuAg4KBjrGMW/3vfepy+9Wl8dCREBy53JJmRqldWN2MtlKmCGSQYBOnUMhQHWOHrtkI4zn7eiYVMzCpZYy5ej2cdsTgEwb6WcxhUARK3MggERqKfV6LcSybVvKQSOcvxNxYsYLEzKgAHAgeWA4qIVaqGEAEydpDZDcIUdh8OxlIcDBzMzmmONxvz8et8fjcd+Px34cQ8e0qZGJiMyVqCE2xBIgC47JZ5PTGAPTxNJOsCOZSOHutAy7cpcySTACrfBHZhHKDvwJyi2Ks6mZ5elFJLgclzEZRfFdmQI/RHMpg4QxPGIdR0nRPd0TcidHgDsgBXquQmR+pnokuBnJoF14wxppB8ITQQuPJH2YR6AxiQAgE5YSRFAEaoNtw8uVSsVwOC3ufUzXiWqpB0gDqUjlEWgMAKIoJUoNpJBs7sPMiTQPKxN24pASEaAzM/j8vDi+fVJM1KSwcGmVC/XRrpfLfmw6NiuNzIzUDfMmQUCpLE3KVrat1EuFAJ5m5qcDNNMC2Jl6rsTsr3D2pVYiBbcADwsNJ49MQUdyREWY4d2MEASBF1W9CGFJT7yY7BSqTLlrkq/JnOcGE5D10B6eHu0OoQ4MyFQEuSCC2xgGAUZsjM4Q/I1kJAA01WGaLvFrdHDSBWnBexCWNPbEewMQnZA4XUCQiZedWZAjEgRE6qLS4zscYcnj0isDkc4FlhbM8cS05rSp/rzbMNMlECPMLLNIgACWbJYp69hYPOJY/4GzGn8iwfvdw/f9kaJ6ZimlllIJ6fvAvK21l+uVKEcxXESkSBIlp6qam6XnXZSSEM7qFpNrYZ6GBmGW3V8goZSSFxYE2QINk/6CTsiEwmipKCcsIq1VETTnCMs3LMQiXGSdC0h+ucr1tbRN0itwahxd+qGYbkpumYSZNyIRSSmttVqaFm/V5kyHZjefDjNApUiphUVqqd+eKeEQh83bfvvn58//3dSZLoQNUAIZg4SkSt3a5bpdX68vl3YRKYgMQOFpd40eK+Nnf0TvOGYa71PdxAOm+lSfc+icK+cUwRyG2tFVFVwhnCQNc0iYpS5vH2B2YSlMOuG4+eOuSFAYSyEv4ObGmmL2pgUQioibghuGkk+ygXPH4w6Ph1MY03jw7fHZPm/MW0ANKMrNf/1/wl/kEav3R0T0RbWBdQDhmYMbeU2XWt1hmrlZLokUXWaNMecyJYUIh7StXZ59ZkGA6TyZ9zPlKDR5f4CcJ+Ma1jmCExNXYeEB6KoK4WGuHoAkslxjFj251UuTKpgaobPfKk0ILpXlEBbmtL4ytdHnCoV2V0sHke/upMWNX8bU+YkAgYtscdFXVzNCqrVudatcbGp/7Cv6CMF0pvLDTFMFu9LOCCLCTrOJFHkSU/pMWwDxSghjTrBgmXZgZA9O+btDgJkmdK6RUB95AAAjA58+ksjCUkQYSee43+/piCBUxpi2XGO/4LjrPH3+/s2NjHi5NERqra4uQWfv2+f3X3/95Zfff/t07Pvt43a4z6HqWmu5XCtB5cJM1ErZLtvlpRFjgkyllFILAo8OowMGrXoyfTkd+5jDxv7o6eViEUhUquQwZ7vIy2vdLhXAh7qaIRqkZRATBrq6m0/Vx8Onj+k7t9f2GiglqVNZmRCTiJQKOm1OHWOmoS1zSOVSKe0KFunxu1eiqrliEJGJttZaq1meJnxy5g4RE0sa3QJjUDjYtA4cCuPQx+147ElT0BPQW5MDInR2DEL/gp0swbXnYCMV0JGO9e5B5IR6Uugjs08Bluas1FK3KBoePVfpMiQhytogsQt3OLoeXQNo2y5tg9qciGqrEIuC/gMqRwA5IKZrS1Y6AWih5tPCHB041ToJk0ZMc1yCb0BYU6E5Rx/HsT/eP39+//zn/X5/7H0/ugcFCVKRQiKVeSPekCpgAeCF94MvN08HsyAKR895Zl7GWRn6wk8BcImHEIIRqlA5g/GWvZIwrEsfzMJczQLXqeYsBU/8NeHT75fKj8pcDgYgh8WtXNV3QHhSLXNuvv611QfkWBDPScLXIJ8/OViUizFHx4lDO6XNwuqQU6Dv9DRtiABzsJnLGlxhThwD5zIdy8ea+YsOeB4YGOningsS8BQoJW8jWcCBhOwUc8KcoZpVO/yI7A46xn57lyLuVSr7OMi1AFakmkBW5KgQkUnRuZKUnN1JY0ZAA0mmGCFxCnoBCSO4oqxsZYsQSfpXJoMzzoxvDfRFdc2YG5wQ5AZKhaAgyvqgzMjMBEjuqIYADu5rLsy1SuVSWRjIKJwzucPnjIz2laBC3AoTuTN4hTAkE3B2pfnx7Y5aeuITyl2w7HkQ5POALCuBEdEdI/wEMGIxyDNsDdfYLi0S4/RW89MrAyJpe5iuNOnCed4NmJQgIiHJf2KVZ0yUTAOzdNFar9Tf5N/Nd+5BEAsaThz57EjNbM5JAJE9JWGa8RRCEvoWjfn5l1+vV06iHmZhwAQBUy2da9VnuJYWtYWUIArECA8V1xmmptVUbQzLjJxY6DQTMQRq19mnzxWBbh7qMdXv+36/P5IUr1MxECmdOwIjPe9BIViSkBdcQCpKWyQNDxcOY2gFYxPGMDMPExERwLDQbgQaBoEiSBjGUCQSlvXAUqhWESnle9Ny1358ftz++ONf//s//vP/Y+oir8zXRBWZS6211vK4v//2j//47R//fP/zz2PfTTU8ENNkDs1QFczIPNa8NYkHyZXiJCOSxkmiGKAae4fewQzCgBBq4VbL1sqlSWt5GBkiiABTmIaHTXcGYmZAARJkQcaMmycuUra2vdR2ldqy6QJ3Mhc3DpOAAiABOB5Du8dtGk0lL9f45f/x17WCtbWmk5iStJ1NQt7reE4v0glLSjELkWKpDk6GjZmOiHDVaXMm/ptl7nNXLk5E6iVisT8WD43QiQzXdGSFY4FHBDqCRYADATGZpRo5T/pUHiMTiXAV4VJyvpq5ipk/RoxcuVgJcC6UdDUSxtxzMDOC4Qe3Ty70vOGyQoVF7i4VL3GJiCJl29rL5dJa0dmPx0N1JkohUoiRVpHsAHAeIxDLJGf5TeQ1NeciViekdOpI4DRzcUQWFmYBpPT8zoPhZArBk5qngeDBIpScbiJCTnwNgb1dhOWyXVrdSilEkp7uflbz56nzo3rO7fj8B2GqTWzqHON47I+PP3573G597+MY45jazZMqFsTAgsInBB3mOpQFAYMYCVCYa2mX1hAqgjAgeLx/fPSux/64H/1+7Mej932OoR4YSMRcaymbtJYDLQtwJEUyZM9faxBHkBNINY+h3O3o0icXi0wsS3MDRCN2kVTahE5n9lpdxMmMZxSlK6ZELr5/MtfrBvFiC9uDpZK0lPHGYufluHD1EutCymqFABlBiApzESk8VTHBuKUpohNcfRJKFg6y9PKr+vkilA5TD0/zqKyz8yv1J5UOIEA9upmjuU1V8wWUCFMIQATSUkWbqdmMQFVmo6F77/fjIKJAsNQ6fvNMFgoJ4R5jOqolDj7VM8fOw7KCD3B3PCl6uerD3S3MzI5j3/fH43G/fXzcPj72/RhqUx0XZbIAFyABEkAGEiReaZynIPMphM33RQDMWBiLYOEotLLWmIUZo0j4DFPCKEyF82RHzoKcESD9ztOFZjkfBASEhYGFZxoXIMYPghV/VOYyQyCwA/MTDFs4M2RLspIa1ne3GvB4ft9mmjnDCSgsNPg5OWckTtAuuS+5zzVW3etp1wzuoAZzAmf62MwyF1UxVdIrTQCTrRYBuNBOCkTPi3xN5nIPRJzSeAaIMAYADBwH9ANGD3NESnPNb+vccezvfwwp3I5Wm/TxiNHZXQIEsKAEUEZZMZqRJ5ReSCpyBSZkYALELCjAgwIJAZ0BCzJouIalzQScZBWTiBExIUbktIwQKJCdkjOatgQUBOvuCUISIWFGc6gOAVPVXSGCkQqXJqVJKSTBEAWG2P6YYMoIAihAlXgrpQhExQiGiHAKRz34mzI3AHSFHfly4OS0JV5MNjgHFUREQOEre3pdD3mhLOO1ZeOXU9rI7zStNlZCj3kYWp4VzMTIhCdrd9GPgVmwuCSRMzlkmcGhqqozwtZk7WsrQ8AA4DivnPVfWNRMSN/nRc1KVqSCqzniQMRPL9dv/Kj/9rd/J/olIYRnwe8OujBaSzSXWFmU2AAXocg97e3VsmwZc4yplqPRs8wFmH3MPnxqVisIDMxm8Mef74iwHz3c+354oVKgCGYDaOhuqATsUBBA0IEAHXP2ncVTBIKXgojSKqUrHBEWCYxh07t1pTSFTJdzdw45uUlFsBYS5sLfWrqYjePxx+39H7/9j//tP/73/9foWuSV+YW44ImtEsvjfv/9X//64/d//fHbb/eP25wzwpaptqNNdEVYqXjEQghMsCB5CnxK1t1jTlDzYXB07IMiAgGrcCny8tIurdTCtaT9hcISsTpQxLKw5Sw8uRapIowBhhjSLtv17fLyabu+te2VMYjumZQkOYYSbIWZ0dxt6Ji+99hHROvy16oOAbbL1SCIMG2lVuuFq9aRJXmsnNoiimqOAel+7G4xbc6ZBl6aASfxFTl+hZqlesb8FGs4AJagCF26UCdBpHST94AcxjsYhjogkjCq+ZP7G0bwJQcua0BHj2VlbRErJwwYuFHBwkUAIDy4cBZ+CX7lnPSbFxHJMlpiYcvJYc7ZGWlDFJbr5XK9Xl6v163Wcez3+0cfh5mNOQmxbbXWcm5xyHbaTFNnlCQoMx+jj94jQOeMr5TWEaeRqruaFxEWKaXljk4Wn6oh4GJIeqRlIpjbmCSS45MccqsaODILA10ul0+ffnp9fWtty7yuU8bgzyES/KCcA1e9/+P/xEwpMjv6cX/c3u+3//yP//j9H//4/Of77f2x3/voykIipUqtXCsXoWCAsJjHMJ3ESIJSmIlrKdz45fp2vf4sVMBSfBy///5+u4/3j8fnj1vvI8xcY9naMXCV1rA0BHIzS3MVYkM2YkdOxiLE6qgilaFqMG1MlalAHAQCqAEapMBBBdAiIqYGj+g9iC2O6TjKBo4b1la+XBlfXm9vr61GH70fR07VdGrOSCKChUtFWeMKAFoYRoBDhs+6C2Bl2mp5uW4r7MimG+YXkcLtzN0gosR4YwkwKZ7qn7PWCUv1IyHAV+m4cBpH5YyG3GCCm6uFq5l50IkIsVv6sSZ4CaiIFoAB053GeNwfGDiqUBFkQvdP3yyVhLoAQM1mqjxtocWnsvocHoQt9BHCIbtiU9Mxx5jjcX/c7h+Px2PfH/tjV/MAARSSitJIGnEBliAGTpN4SnUPRBA/AfGkziIiMGFhqAU3ga1k+B8ggEgRqUjpYzsJvFDSV5PanvzElFZAUFAAM4uDZXZHTrRMkZZVp/v3OVY/RnOBTlEIMZH5yUDPKsQxwXpYENuizizGeiSSm2iufSFspoMRM/PXZS4tHNdzcIYnFysczMAMpgIOAAiicEdXdAczcgc8p0lJoQEKSGycnBKvYnhaacKyQfR05aWcE1q4wTii7977irH4kYQG5uiPjyGFfVZtRX3EHBwmEBUZiDN0itEZzTlQkBmFuFFpKLxyqCktFcMztAYJGNPVMqZHYCjiqrM9rRfYHE+6h0FOIjiQHVnT+IHYmTLaz4IZBKkwYylgywrOwxm5kDQuTepWaiVBIXTspKDoIwi5IhWgRrKx1JIKQ45Trz+IvwFzITkty78jnujTuljidKtA4DUyDTJMOCpOJ74s8gAg/0Ayn5JLjif3QEE9bPVEcLKIFuqbooj1LVOkocPaY2mXBJD/L7ijg2Uy3Hko4FkiA5ySIPfzza8bZ3m2nksewmPaolK9Xi7fFHU///zr5ZrWH18sUd3BFMzgjJI0gBE0AOa6WwPCyQPd1X2qzzH6GMPU1pGLRMQQMUef/fCp4A7hTEVqdUdk6LMnl74fPYwEhVgAI9wyUC4CgFGAkBEFkCNj6yEsPcMJgwSLMAC7p9Vu4qkWqhqhgLhtRTbmwvw85iMiCn/xpvnmZTb3+x+393/+/s//33/+H//vvvcibyIvLJWlEEnGlzzu+59/fP78+ePxuCeaCxHCiEQRpJpuPggAtEyeKQJcHU6sJTvuZSqFMDQnP5RpZzl135pcNkl3f3c0xwRmEA0xd1dO9GnFzJfCQgCGGHXb2uVlu75tl7e2vRBYl5oJ2mnv2oiaEBF21TH6OHTf5/0wmP52JmLDufgu1y3ygshk1SUnXZIyEam1Sinp/Ao5FSEO9BRDm2vmCy6pcJxlbjzlHXGKY1ciXE4uGMAACEERIJyCSAgCDdJ3KGLJenP6LigKE+Ms6vISp6WCzUQzXAsMnpxIgAx1A6aAnJDiKSSKCDUFiO/XCmFecsQp1D5H+sklZOZWGwBsW7tuWxG+3d7fP/+577tOHXMy88vL9XK5LIMTXKbCqnOMMafmeFNNH/f7PVCnEWXpvXxh4hkykjwOTHJrwTWDNKITrUL6UpMGRAqsHagAApqmU1kgUuGybdvr6+tPP/38+vLa6pbw8JL9rOHRonx+X+eG6v6vf0CSsHXe9/ufH59/f//8r3/8649//fbx+Xb/eOyPrmqMLEUKlUJSSBiXH7DatK7MJE0gihV1cwK8bO2Xnz9V2Ux97POPPz7c8dj1fhu3j2PMIenQQkDsXKK0KBtJwaTGIARSsIAUkAIsYBagX4oBWHsRPNRDAwTJWYLWLxcAQFCLpBhNjTEcUTW6+qNMKFu0DJH4Dvu/Xi+tuuwE4b0HRKT7TdYdpRZYOzm7OWSCVdedvSBGMOJWi8UGkXCK6lR3ywC2M2iWkCi/noCTcPIUgKZQUy3WGDbQkfAM4ITgpMPniDkZkW6hy0AsIDgFjIBIi4lKK7wd3dEDWALJPPqYgPuMJgiCQvAjNJcJzV3V5pymqqqLGYW0+KZEWbqtXtjd3KbOMecY/Rj9OI77/Xa73x6PR1pAABAXliLIhaVyaSSVWIgLkRAzsqRUECAIsp/AlSqRP5tQGKtgK7TVnIIGAYhI20QKZ5mL4IIgiEyQdfC5F/08fZJ+DDpNUXOe7O4Q5MHEbKbfN4o/KHPXOUUggu5p+RScKWW+isS1sZ/9AQQiEGMggK+aF84yIh1b03I/26KliiMMIA6OEARAdzMjTMl5mMHULyfj03Qp439XHeVrHEB4vgcK4iAGpkj6wSLSINMyQUPKilhhHN6P0Xc79jl6vi8EgNdm/NcHQxAFjB3QJkwHn2RT3CuSi3CEhqmnDaujQRWpXFopjaVSSVaxTrUx55jhCyQAXFls4ZFsNRAATmIQAAEyUQUEWhZKlulasJV6ubTt0qSRNA6JCXPGQFwWmkLMbWtctlLHVCa6tK1Ja1wblUJCQEgoRbAhGxGwSClSGnJxEgOMnDCes8ofOS2YmrnnEz6nbhgRi1Pr62lnQwwYRMKSbaRBwEqqXtYhdE51Fu8FFrsKvsC1sKYKOZrCNc9Ex0R6nwDO2syxlHsQKykNKRapUTXc/Rk8c/6gOLuyLG2z8OBSpG211Uu6ubvjGHN0XTyNbw4aARTKdwYAGOBBnOQ/X3B+Wn8FUICsG24ZFWFAOvNkpE4a7IP7omEggM2hs4cphEI4ETOLGuzj+Ljdxhz9GGPMICHAwoyIK1lbiITKhbcX2V7kcuFal5LVIf3uInhJvhFTG5cNB2Kkv7xFBGMwAmOcdY+DJxuUzSYSINg354rpfNz/fNw/3z4+bu8ffe8iUYu1y2W7XMK1H3M/5v1jf3+/3z4ecw5TQ0CRkjPD8LABppk9nCwl8DB3UF20Do+Y09UiHJEIUQpHCBJauAE4h2NGV88ARzd0H+YKYVCzsILa4BIIEUjmPsMJQIhQWKTQdqm1SalSW22XiyD62wGZeHscqk4rmBqmWg4KNTGe7+S/CLBtLS+CdCZKJtNTl42IX6Ra7qpu02xaRjbbKqPUl0vfGn0/mUBxDktXV2mek3wk8rPyNbdwwGlgEBgabmFBmGpn4UIsyFTzHzBDRFy0dkSEcNc5AQGFKK2amZDQzXRqQlWqCoBCkJkW22WjU/Q5adD3LRHiF8/O9EFwM/esk/GkKaXXZtsuL69vP/386370553aWqu1LL7DMvJxKbVt18hOA3HOAYFz2OhDuAqrMBcphXM4YRBIKCIoXIULkywZiaqbhwMTLb9hWmZiT6kml1Jqay/Xy8vLy6dPv/zyyy+//PK3v/3bv//bf/v551+uL6+1VnwqXRYIs8AvPMv6vzyScOkHYqApuuLY5/19//z74/19vz/63kdXHWYWUQCdwDAMQgMrFZEAPfocfWZNkk/WVOccc+yjf7gO1xhDVY8IZYa2lVe/eNRaqBRasnzG0kiKU/rUBHKhUhkRw8gGhs0jzKZF3mroJFgabRe5vtTrS315bZdLa60WUSGqlY9uvZtFSGUZCIhjmkMAGWQnm9i62/f03CSzR6a0EqmHD40IVTPzMnwq1gbLaSZPkWTBu4f5mHOMoWbMdL1sWSsw0xwzQ8jWxkziAqD78rkDoCUfDKRwXyyIhcgvPhEsCmpABGH4yTFep2nitzm2x8JSq1w2uV7qZatF1pXUh/YxzYPSd6CkmJAzxU2YWL6dm4W7WVLhh+lKDkr+zxn5CYD47IhVM0yj7xmq2Y8+eh/96L33PsbwSHPLwqVKbSXnwbVxqfI0Ty51Dc2TzbGeB3osH9MEQ7PSbU2uW2GEdJZlZuZSCgMwYiUIAs82gjBO88+zzE28z+F0NURCUjJVNQ+z9GQb3+6f/2tDMSBEkQQ5AlGMPZxOROD5ewoEIs6ygBHWPAfxBARQMu+cmEkweVJp+pDTKCABIURMTy8ECDQD1MXRzypg+V5/tdRTwY+ewFukHSsT8EobhjPjBDM4ahlppU4icCruD7t/+P7AY8cxEDCXNTTW9tcHIxiNAsHYAkAxjFwlohFiKYw4TMk08nqCaCEvfLlIayKVeZjuo499WB8rsLcBNEECTAMpdVXTUGpIlYAWMIWShSKk4wLimg9spf78+unTp7eso53sNu6PeVc0dACLTKXAIJtqagRUpVTJLr8IZW48aXFuVHx5aDOzIIkj27IvghPq/LZyAYiAbKSyPwyEcAgKTwXI+t8RAXC52ufXmaQ4gjOpiIlS2JJfakTgsl1ehPLsUnClBAdAOBqqL+reuWlhuQLwUpgB5nGTfwCX5Uhyzd3NAaBklsBZqq6TyTNUMFmfRES1lm1rl8u1liZc3fFxP+5w5MX/7WNJQTskUI2xhniIjOyMibsviyfILLL80+sXLozySWtP787kKAFC2HSb4RNBISzf/5z22B+f3y+Pfddk9LIzUpWCiJ489FZkk3atl7e2vdYqIBwIRhgEzrneOBb1ObEtEESESF90pwmembMYCxDIZ69q0xAQiYICyWT7yzMx08f9/X57T4yg710KzgpIuLUCFP24v/95u70/brfj8ejJjCNkYkEuHqjTdHqaa8aXCfmSGgGk9CI1yxC54ogZgdDF0DTcjMLApisrumkggoeaK6IjhwAQY90QBG2Cq5lPD4YQIilVtla2rdYqUri0um2XIoI62ew++v398zE9PAKDCfq0MX1aDkPyXvzrC3G7bLAcV+HrxTx12in6TlRmzqnT3Tw/yGlbsKQted7Ds8yFdT6vozkj9twwxRN4TscjLNwNItWGYeauYchUWi1AQMmcS14kmuXEH2W1huBuc4yAKFyZi7QipZDw7N39mEPVfM6JgFiAiNJ2pEhJZlvu1u+eCiBSjnh8vXc3t/QfXNZWAInMl9auL28//fLLmDOFpdm7EiOcFPvUPjNT+p5kodyPQ4cdj6NLLTJVtAjXUpk4ZZW5YyhrXxFm9uk6LeV0EEEsrdba2hmvkcl0IrWV2up2efn06fXnn3765ee//e3vf/vb33766Ze3l59eXj5d2rWUdMunr01S8Nm1f1fnYkSdAyEIjFx5Hv64He+fj4+P4/Hox5xddVgEhKWnOISCabTKRUoE7X6MPiW4tUqIEeFqs/djvz0aC1W39C96AFgpdL1WLkgEl43bxo6evi9pPAFoEICAtcjl2kphcNZJNtHG6KgBntoYEWpNLtd6fWmvb9vrp+16aa3V2awWaW3c7h05VKM2GJ3NIO1ESjORlc6dq+Db7QNgmXi8Rm9oFjPUdBU7RXxOaANqiVqocAZOJmhrbplfOgOcq1xLk1KYqYhkfadT8/tJoo/7F1YQAAEwAgZQgFMgZW56nFTrWG6qHg4eQeTiz5kh5D5EJEZmLoxF+LLV15fLp9fL2+ul1gQEIctcNV+3/unN3Kq0ImlE8N2l7Danracw1hBwdWTyPCXMXR08fM5x9OP+eLy/v79/vB/H0eeYc9riOgCy/KXGrU1KLbWWupXWSm1SSs46PADyIQAFhDtSmiSdVClCEKFWy+W6McTo09auZeHChYSRMDAM3DGcTkzI87hfg9EwjfRNIgpjwokAkfLzMae6fj8P+VEKmsGSwAYQQsqRo+SFhqqZ1xMpUQA4fSLyxy5qNhFnvXNSuBL5h6+OnzWpQQYgSHvDLAqQlr6OzyjE5cgNz9Z3MSrzgF8BnsIgDESnzGvNyfIGeeY2Y2r5zUFn9B77w+93P/boPc6/Bj9dv91UwnitnPPxQOAARhaCQtiKTLVDR1fliX2ihV2kvpR2La0QCxBEdAtQh+kwDSKCLMgCIaOAbCZd3wEJybNYtAgKQAwgSiEzZXwGQCW5lu3T9lIaSyGF6TZVO2SSLThSFGahglySv5ulrRAzCCeNBUjIiaFUjuWdgwTIjmRAQRQIvgi2Yt+juQt3JSJ3RAzHyCs4aStpPOGEpx/dAkgJKOnUT+QizsH8smuBp4UCAMBzqmiZ/uruEAjglPrNlQYckW1rpJc4AgQ4BZ0Dr4TU4hQNeACQ+0m6AES0xSf350KjlYWbLjxAjFIkHEWYM1Htu4dCAtye9GTIWTomcRoIA8kQzv40YpmOAMAiGmfMKEJJMk6saJwM/QFE8Bmh4RNhBmjWLNhn3bg2KZUp80gRUy1FjIFBjOVSy6W1a93e2vZSzgNFVzxLXrtui/l62rchLvtGVSMaqpZpAnSSsNExJNCZoBAKQV5Nfz1S3Hq/j/7o/Tj20ffBk31yrc3MCHDO2Y+jj55EhQz1Jc5A2+aO4WpqhMbogY4clPkFBgn8px01caoxqVapVQDAPMxIZ+h0AmdKwMOWAVYQBAWEOUxzYmLBTUgJJnqY10qXa315uV6v2/Xaamullgibc+zHocxjjPQOmGpTLSJQIJ0f1MIM7OzEv3+1WjKi7yRWQQCYZWROeqFaJnvqGDrNDUxT2puGuJYGscyMkIoCBIDluJyYrkcawC6qT56htMwJE2jIP2lrQQamR/FZd5/cQsqgbjhFGK6awkaHoMqQoA8zMyudAaceboGQbhmevFsGqrW2WjGQvsvKjq8uiKd8+TkE/ZpIhMRS6vXl5aeff3UHllJK1ZTinRHfazRBVIpstZVSsjnaH7up61Qibu3S+1GEa62IuD/u++OuqonOXi6Xl5fX2mo/+l6OOkcKPFprLy/Xy+VazlBX4WTxVmlbbZeXnz69/fTzp19+/vXXX3/95Zfr9bXWSy1b4cJcfM6vqPtPEtWPVgmAm90+/7nylMDu94/H47bvt+PYex9zqKqZnSiigWmMrhDOjFIQ0FTN1InStC5MbeBEolruIihU3PJCvJsPIq81+UR42aRt7KgarDFz5p4hSmGniES4Vrlcqr6EK7qBCNlkD7tc5fJWP/3c3j5d04OsNSklaS5BK+jJp8Lo1HvEYVPNw7nCiuijZ6b9ty81n2nb4eGBmWE2p81hU011upMZW6UwMUaErL/S58PMppoiQWPmkl2NMBeWEMdM6KSV8xxrDEfZOBIsICoiU4mAERzBl+syQmK4EMvLBxw8YU1I7BeX2wECE1cpW20v2/Z6vb69XFva8xHWqq3PYe4ZmHJOO7OWXAXUN9vH3TSLVHW33MWZtyWMiLTM9sJVZ+9j3/fb4367394/3t/f34/e1VTNnrueWURqqdv6VTYpm5RWai21lVK5COfsO510zz70nI/C2XoDETBTbeWytSy3R/iKR0mrBWEmADcMo3AEx3AzA9cAJ8wHl/kClLT2NQ7C/ER28gq/ff2gzJ3qah6LZoXC0qqcaXvYu+7HAJiwOpv8yvgZWlBLuTi45W1iOY/NyfH5BhAykjiHt5BY3TqRADH7g7Kl6zgzAREs1+mviJKEjJQsBWQGlmB2oiB0AnoaK2dgsLAgpi0FJeu3d59zjaHG0NFtTdAJE+r7+lWrfHpbcqeEQ5L8lmO1adpnql3LMYa6Xrbt0moVoYC0hCAEIfRCAMUtEEDHsIhpNt3c0t4SYIZDBLmFqhsCEjC5hwXmxwGkIHIkB9IgCgwjMNIgBfQINLMwQGehIkJciJPKQecvPEPbybECMUt2DHh2EJiZw3hSZAFxfn/SLAAyl7U7AFgsOx8/q9hYjmOEbniyENKnPEerTuBGxOTPaWjCwHG2vbmlmUOnQZiBrdouVp25fOs8IoLpyXILcnKyr+DeSBgwzvEgPD2GntRG96QiZLWHuEQwOWnVqVYNgMbs5t3cA76NEqkXvrwWWGX90rUgQPrBJZQLEeEYwR6n03fEKRSIAFuCC8R8BEv/kFwfCvBYKm23lI+pD/MRkNgeYEJdl8vL25sUQgYuVLZSt5rHlNR1LodLRjGZSmaz5vB1ddhcCDlnOHNOkqpTmZmLPL+qKFBbqvsKQ8VgKJfvT9/w6a5h7go63NTCtB02RkjBAGGutQFiK9XNwwwASUortUUQkhGZqM6pYqsNVzU8Y28zBzeHTMSYZS5i3uukE+YANyfkAESUVlur1XxOneojwo5DSbxWloLUcvzOP/1y/duvv/7808+vby8vLy9muu/Hfhx9zj/fP4O77Xe73/T9D719uA7ELGrRISzQInu8H5y9CFCFAE5vO0DVOafaHNp7hn8SQCFEJq6iSKqh6FM1a12EjMrMsFZJX5F8A+FhSd1VC8QgBl5YYerGePlSEgs7xDLqBfdwYi61lFqA2M11iVKmmeVWTxaEqmZepYRLFVPVyQFgzjYVLDiQgRgo3ENNHYADOQAQA4QlynlLfb1SzurWMvYhTo7xGiD6+fDys8jl+vJLgHBpbbtcX/pxZN2Xer5SpNbSWpUsRJnGGMfRH/c7sdRtO/ZddZpauom56u+///bbb7+N3oW5FPn06adffvn1+vJyHH3fd1VNeOxyvX56e315fU2dIIssS2ERliqlbtfr9vJyeXl5fX15eX2pZWMuTMIkhEuB/FfoNs7fv10rQ+f/9h//zJm7kt+O/bf7x4eO3XWYq4f5cqRJwlPvc3Qnjq5Hn4UF5pxZTCw35XDOkQ8iQAhJkn/2/THH4a6c5laFkt2WESKNJK89nd6POabOacc+TE0tWPj6shVur9dXnaZzutn2Ite3+vqp/PRrubwUKRQQU4d7BDoKlCYXAHOeXY+uurwnDbGUUmsrGYHGXM666ctrzpjDx4yhMGao+pwp8wV3NMAxIyKVgIMxY3tPLWWqbt2QYPqUGWq+9370kVxWDyFcM5iASNmHJMV/EcxSw2VwNirJmYQFxxGcxgzxfCGe5zgmJyZd50oprdQqrXKtVBiIHMMDFTEYLUx9qE3T7AFardtmpcjb1b45ayM8Jz4ZFnq6VTqEhUNg1vjee3/sx2Pfb/fb7Xa/P+73fR9D3QORRXhlmC2goUrdWrvUeskaV6SyVCYBTDGpfemrn1TWWPQFdMR0J0cRIRGurRBEkmqJ0D2mWqJRwsgYyQRiZAQ3d1V3t5OTmLApJJQGAVBOkiKxiAwdn/uf3wC6Pwj71enTlgkjEUvly9ZqqYnw3B9HhJupexLNE3ghZubCyU8g4ghIo2VLP/AnseWcg1uEWYQvnAy+lDdUWqmt1q22Sy1N1vwKYiViJY+CkFdkGiaaC+gAmjGVywg9CUXEQsIsCcJ6kBmMEWO46jQDS2X7mETEHIjo9u1BUyu/vZZVQCXW8hVcoKbH6Pvoe5djlKGz1rq1KkSRh1A4ATBhFWZEM7dpOoeqDfeZjPfTYCDXjYFpaOKbFISWDA5K5y9yQAXUQHT0ADCcThq4ZIcmxGGG4pXLRlWC0QBzbhmUZNusNTmoEq1aDPBsvWCVZ3GexPO7qet6rUrUTyX26SYflE2BhaoD6nMyh4iMBMv40AGAkYywlEAQFl4L4RzhQ5rkBCBohEZu1mwdV+JOQp4WEbEksBAQRGl2CCcFIj8zwBoIYEQKqxKB/uJwdPK5E9DNH40RkbRIRB5jqs3wgNi+eRx148ur5GOMNXIAAIQzBjsiYFG36Jz6rzdgtmjpHv6cZRKmD2EeW+jhSzXs7qCeWVXRLWYmIeWOl1K3y+Xl7bU14YqyXDYKFyIBFFxvxS37aLPBymoTEdNBSUqr0pA4HNxD5mQZeV+eakNmzhENIwi6YAgGT7/Mby2Ww0PD1dVdQ2dkEOnl4mMAEAEIl62BlAruMIaNoe5QamvbBsDMJuJzDOGhqqlAVLUFmBNIIymAFEDBgq1Ja4KA2QjMATpgDp8DxyRAqfXy8nJVm30cx6A+jz4ni4uQMKCgMxaRn3++/v3ffv7b3//tp08/v72+fdxu/+N//I/j8+e9H32O2TuMA/vBx0P2h9gg4RKIwR5hAXa6Iv4AYkCoZTUUpZTw2F011Oew0bX3dKMTRkExJiWb7IM8Y2hzYSOSSELXC1FkZnc3D53a+0A0x7V2cj3ndD39LUSYJVMD1tcUEMhUirCImk+dI8Upc7iukZuTmyqlXTNTYGgrNhsxRwSahToGZAiFI1lEqFs4cKCk8BqEUgv5ozL3JCosV/3I6U2A+4mGnLwF5uvlpZa2bZfL9eXl9e3xeDz2x+i9VGm1bpft9fXl5eUqIogYEI/743a73a63um3XtzdTxYw7IiSkfhx1u6jHvj9qqVtrf/v73//Lv//Xn376+TiOx767eym11fr69vbTT5/e3t5qremGsb7VNM5g4VJKa1JKqSKlECWnnShDqU6SwpctAos19f0JO6b+f//xfwCEcxhHN72PftN5mA33jNj+2qlU1VS7x+yT++DSlp4PAc1ijKHOxKRmGO6mTJzf274/5uweKlRKIS6Z8gcsLE24LLP8fkwd7qbTLSB0MgQLc7lWvBYKcfM5p5tuV7m+lcurbC+4XYHIzKfOGZnyylA3JmF3Pnaou/URcKiHIbVSWq21FGJGph/gcWYwJ0wFVVCDqTBnmIUbehA4guboRlURAX0Jpp8anDXiGKrUXc32PvvQAEg+SVaIhKtiYQQmyFbLPYdIFgaEtrRdGXOK6YXHJzccLOn07onb5NVDRBkfVEqppbbSWqbDcyHAFMmhETmAu03th2a+7lTbNpsjavEmdv22zA3LhJQ4y9xIej5mhqGaq2rvx/1x//i4vd9uH7fb4/GYqnNOgJN7L8xcMq4ty9z6LHOlstQcuSOge4BrMnHXtAW/SAUwcF3BEYnmliKlFkphj1kkUK0pzaZgAkFa2AtSeMBIij9m4f1FTrPo2ujIvHgZtdZ9MHz+9rz9werJ3NxUdYnI1rbr5VJrYSFECggzC3ARm9PitDoSJikswklKJsqBsM9pY845LezJHUMAnGpjzKGa3nUIocPmUCLeLu2ybZeX7fKyta0mHyOW8YpnMZbEaskguyWmTHMrXVhvHsJCpXCtXIoklOtOhbEKVvbKeqm2tb2Vx/7oed8jYW3f+dsDpIok6xKA1Sjlok0D9kLsUiBghYCmUEo12bHhQYhxMlAdLDIxIY2c/HlQRdiacaYWI7dF+iUV4oJSiAkgTOfRwVJyYK6GSf1PqhIHFkBGDCQGzLLYFqlxvXuARFa+Om7jWRBmtbv4sQFJnP5urTDA2ttwvmkERHKI9MGg/Alr2pIxIgiednCxOCSRiKw6JOcC8v+j5JkwS1pAh485HdcphaccJuvwyPjxSOkoZo+w3tfz055cl6+mhGsGa2ZL9PascfPfdXcmtqdviAeQe5ibpiL+m0fCQlL52c+uSjfOZID8GwIRSzEai/sBYOkRjWhBAUSQ4ByskGhMz2p3tFQPGZuJoQM4US71lAR4bdG2bXu5XN+utTEXYEFO34WEgee6TiMCIudaRQjZBZmEEmVoRSoiL54IcSADCyIyMWWZJEIkhIWwEBQMQeDHg+f9rzvHrD/2Y+861RVi3Qsi5bJdf7q+vHC5SttVNclsc1gf5g5t21rbAFHHnGP24zh2mmPkIlOz0rh2CbQUbhMDpgKVnViTZBQUiCGEmbFZVApXqQKI5jCm925dYygURF8uAkgIXBxIPabqUJ1TVaep+jOpEgDS2ZYWizCtYlJ3mB3j4oTjd/UcAv7801uEl1JrqxBwv99u97rVctTSRxWWWisz55B1jPnY5370tMVEAmEqhXMIuF1aSq9EJFum3sftfr/d7uMYNt30i9oa164EjwC3xQ/9cpY+WcI+p44+dGZpsiiF6SfrQQzAtCpTz4ylzFBmYS4hdZB05NHHHDORap+GAGYZ//aDki43TbpVa/InTVUncqy4kGQKLw4XIHGp6a8SiChSSq1zjlLKttVt267X6/V6Sa6+RxALskhr2/X69tNP7pGhz7nNHo97H+N2v9e2bVu7Xq7//u//5b/9L//rL7/8bYxx9O4epZRayna5XK/Xy7YlI5eXfTMSEXJhYkyJ0BnLjiszdzlpqNvU2Xsfo69sHf+C+n3zTNTtn+8fDp5lrkLM8MN9d+9T+9SVTP3F8GglbwQmzJO+IpkAge5g02LqGOrT52GSRwPg6KaZ7ADmMdiYBdkQiKmyLNdwgCBTGN0Awhy85kVFQlCYiggEuJFHKRVbY2YEcFVHNA8Nd0JiERQWB3Vw595jTFOT9MhLLs1yf0H6IkX/6nW9vpVa0rVt/Zpffj8PXRapVWrO6xNWSxRlbYVz5Damtt6PMZO/h+vuWpxYyrm4h5vrtNReR4SHman7MJ+4pqVLBrTmkB5z6phqZshrf2WZW2vdWtu27fVyebleXq/b66Vdt4aZcqYGaBZGGW2yuIDiBnMiYbi56g930HnprN3k5mDuM0LN+hh9jNvj8XG7f9wfj33f933Mke76iCeIS5JGCiyVayt1k9K4NpbKqUwlCsDwcygbq45Y40mM8xrPVeiQrLsvhrKAjERonsGV5yQzApGZIJIzQoiYFsKBbm4OBYWBiEVy4rqITWuUYu7fq31/GPYrLIgleculluvLdn3ZapFs7ALMw5BA1aZ6OKT1DjMVoVL5cmnX61ZKycc8hu7HGH3G6aec4FAf8/E4jqOL0NaEEY99HvtIR5jX1+vr28vb28vlupl/5cC7ghTS047onCgjonuis4aYoVlUSvJGMjWO0sNtJSw7maFq6PTb7fH++fZ4HElEIWSC6zfVi6kdh53ctHMoftZDaV0J6hxYSBDQ3W2YmflKD7R0w0qho58LECOSaxuAlM4ri5KRyr2FXhCSAAlSZW4sjYQIdc7jeOgkJkiSwxlPSwhBSqSEhGFhaOCBCpg5R8ujFmlVXuemiC+zhhPdweVNFDFVAL4dRiPIioLJmjydUGCNGen5Da3aHsCTqAcIeZakM97ammZhOhf8icDMwiCFCkmrjVlUo/eelSECEFOtpVSRyYNwiXTcI9wszE8M7Qvx4gwQzs8Ki/0CC0+NVQek48p5ZCwuFSCRMBWWgogAw8PsR/pfZEJJ8jFEBCbufMY4IsNCoAEjgE4mohuCAVqQeRhBuAgXKYTpTZbp8wSQHsBkhmpginMiEbl5a3W7bNtlzoGmtF0vl9dte9tKxeS4RCYS2qmmAIDM4FizFJHCiPDFtJQz1vh0+UBkxEgvYsp5WxEpzIWpEFXGwlQR2HDe7n+Ru6ra7ePY73s/phsgMGOpZXt9/ennX/7L288/9X4c/XE6S3h6DEdg27bWGkDMsY++P25y/4BjX0WOuQ+dY0714TAcjNhJAsDNQk0hcroDAEESVahhQd4wCjqq6X702+147IeDO6LIkvki5ja1Mfb3jz8jcA7dH7332Y+BwK1earsguJgWG/ZRh7mOHoHh5IiRvsup50P4fjqPiP/+t78TQ9u2y+UCgB8fH7eP98fjsR/HGKPWsrWNRdIq67Efn9/v7x/3bHJ5UtvKttXr9fL6en19vV4ul8ul1VrNzdQej8dvv/8hDDfC/dEzGefZvsUKZ3IwICFKu9cipVUiTEdITReu3nOIAR6EGYZBwJSHk5w3XnKQGbCxpFaFAI/96OW43x53v80+dMwz3uKr2dH3NxBiDgyHjjn7GMeYnT2IIwDTQo2ImJYinQkTE6+tIWKpxcxKLa2WUmutRaQkuQUjatuAqG7bi72pGUDwsgoLcL/fbreP2+fPn1vbri8vr6+v//5f/9t/+V/+17/97d/MbE4Njy/XTt47gG5hEUvPnsZLIrD8WzAcIhyB4uS7BcTUefT+2B+Px56+gScR2VPM/5fbx+Pj6A6uFEZhDEFkgIfFMbWPoWZxnucrBFKYELdLe33btotk+UEIwIAYQ7WrhsfY7WBrpZWGUopOMkXV8DEtJjFKJansWLAU5hzWk80Y3Y6HAkJNUhU6ggEToxZIcC1LX3efY7iGkhpJMAEzEEurm1BRD3WHoAy7dUuRnyPCnD6Gb0ZLlvDd69df/i0hyqc4yc3H1GM/VkdtEQFbu2ztIlIWDrMM/M+xBiZkYGOMx3EcfSwXVIi8nRJ+Z0RV06lzzH6M3oebpxUDgAcogElCUMsoKd9PqHnvo/dh7lJETv4nEV+yU7pctlq2UlstWy2tSNa0cxr2aTHIJAvthOE8DIJUyRzNfsjmzso96840ezBV1alHP26Px+1xfzz2+3E8jiPbA/clzUm5WiZlLldFEuaaJmKyatyCyHEWDEkWhJy7Jj/w3NZfXbZJmcFVDDy5G4Snk8IayUIAEwpn+hhhSkYwLz5LGUYphRY/iMxcTU0NM2lMQON/zje3lmIR6UxeW315adeXVgonip97uxRJLVp4VgbMREWwFH59vby9XdvWEBGAxpiPRz+Ogefzz6nsvvdbk8dDauXrpTLT/XbcbzuTfPr0+unT208/ffrl50/Xl8sKC0n/YjeIhUCehdriwZj5nDMVRUiY8HgthZkx3bMWMkqITJm/DOABt4/H59f3+31PEIKY33/vx/0vDyu3QZxg3CpzT4pnAEQ6jAIKMCIOnzp0Jvk3eaNw4peruMIchnAWWhCWkQQLqkDigFhyd0ISpEJc6YwxQ3Cb43BnZKKgMPTAZ/pBkBFpghTh4OCBBngmI0IgEfuq/HJFBjw9OwLOzgw90tvN9Qc7CgHlNFEmxHQZxDgFkslmObUucRI9AoEg8+aYmXjhmeZqmmKK/LdFAiszAxFnuO5xjOcbBgARbq21rU4RYqRBc445R9p8n12mn0cbnmUunJBJfBGAZNGLiBhEFM9E6rPqx1xQpba6AeIYE+n4Ud8I519YE5w8gNGfieFP2U8yR55fyDKZSc0bQpQCtSATnYACJ7KrM8Z0VSdlRUYQCLfCaQdxvU6d6MaXl629bO2lsgSiRmRaULLRzdTXZyTKESsXksTNWZiFpBAJkgAguiEYSTCkk5MUlpIE+lLWIUhFuDI3Qn487gB/KXNN9X67P+77PNQUwIlEitTL5e2nn//+89//PubRx642NNEkBzdE5NpqazV8juPj2PmjOdMU8YykCohpPI2HRob8Egeze4QfrhZxKinz4bNQaVxbdeP+iN7H0ftj7489nfMpgiMoDIIC0SP06I8ImsP6MR5bN4PRp2pIEWm1CjWwFjYAbvf748YA4J58mLUrzpHG92Uu/PzzJyl8vV5fXl8R8HrZLlt9PB77sc8xWmvb5VKkjDH7GB8fNwDSjClyJYEkf769vXz69Pbp0+vLy/V6vbStuZmafnzcHGyMfc45+nyyvc+zJ+eiFhAELIIMzMy1ViSMMdK1TFV1Tl8HWHwRAyEgQt6BRYQR0II8BLASX9v2sl2YuXHZScBiHB0DNLFh1WyjCOkHZS4AALj71Nn7sR+Px37nWkUml+aeKQZGtPy/RFiYs3ZEBBZOgK6UUlrKp8nDwdcBhIRSKpXSEFdvnoJ6s1Bn4rdPn15e35jl9dPbp0+ffvn1bz//+rdf/vZ3OP10k5M15+xjzDGe3tJJ0k0SZ2BaypwDnYhknOWFjQG97/f9frvdHo9778MzdsJ+jOY6wF3dwGbYAHMhLhLE3bxPHVPdg04noUQKCYQFtst2fb1uF8lkPMBAgkCYFmZTp3mYhXld1El3hqBwzBkkIIixuFMBaciMAAwOc/g4fH8oEQIwQSA6AoSAMHkkSxCJKNeqjwGmMFUK1CrpjFykltLSnTuNXAJsjrrvY04jAlUbXVU5Funv29ent19qE0JETgOIiIDRx+3jdr/9/9v70zU3kiRLEJVFVc2w+EIyGJGRS1XPk/aDzne/O3O7qnOJCC7uAMx0EZH5IaoGuDurOrumb810NS2ZDNIJhwMGVdEjR44cOee11NJMbbc7HA/HNM1EA8V5OhJDSokQfZHnXC7ruq65Oi1l3SiTqVuL1FKzr8jzcj5fRDTFEGPwSYpEliaeZh+eJWa9jluLrDmvSxZVl2J6xZiIj4fj3f3dYX9wW5gwtNumJmq1CnAWyM1iEq7ChpWDhNaZegeCr08fl3V2rZSZ+aBMy+u6ruv5cn56fv76/HRZ17WUUqsBkhsBEhKH6/yuPgich1Fu4hApRHQE7I5JbtcNTsF6VPAc1WAzRBmvy5OhYd2pAF6kHIVcdYrPACAwalA1Buidel62EdHWKjNpr7i5N5RiAwBD7c3rVeLbpfIW5uLjwzsk8fmb0zTtdmmeUwiEBGBWajseai3Nm19cN+lOXMzIgXZzmndTjO54jrW2OdVaG/QuPHPrmlLqw13OpQamlNhMA528IWa/vzseHu7uHu7uHo6HvXpjpF5jQFdy9zJuL+v7w1Rcqgw8/GtoMyj0wwX70eOz/Mwg4ITKASfk4KKT9fnzCi9grirUatZ9W21Duv7R+uvyNNwQ1MyaQQMU8g5jzzk7z2oQECEAGXl6omqMRIbVyIs6fWjGldlFZorMkTkGioFC95EYMxIMEShAb5IOYEkjt9C1QaamgArYqXBAIOvnHfa9sVGaw3Sz56SdfDe115gOEROn1rGeVxCQye+A4zhvGXG1Wu8m946a3gYTYgz+Is1U13VdliVb7h1hit1XxBzk9cm1vbLC6I7r+8O+lLwskXkxs1q9Hbi7v/g+pMHTjvKxDTp1yzr96iUsMxrUujeQEzOnNN3dPXx4/0MI8euXL1PalVKYX++g8+krfL5B9aLQBBWY0N25rN+a0Q1OaIhi2lrr2lVpiJpCdIcjdIMNZ3MNhp9ua+rK9yYizRpFnA7x0HbAHOd0OM5xBoUCpmDNtLZWWqmtijaVZq1ZExMFGlE2RA7RB5LxcFJKRGQgQwusAIZKyO5u6L8ErW6jGRADwGujEhFdzsu6rDm3Vq1VQ2ytCgDFsNvt7uM8J92L+vli3eOXQggQGEt+Pn1Za1YCQVJ0+aeaqL8rqa2U1pqo+1moYq0ohbSr1Hq/KHGbdtT2qEr5ousiYpqmSMwecxmtVbucW4hGrMRa65rZlnM7P+cpnlSg1NaahpjilPZTetyFeQ6xiyK8NgFe32efpkuC8g1HDgM4XRYO1L0SiHOtpUlpUqqUKgJFDDnUVlttba2t+uhnROYQwEKMHCIyK0ATzbXCStVN7kUuS8651ja6FK17wHlhPYRgHjRNwzbYLsYQAyKKCgn7lzVGCADgUaibZ1HvTklpijFFjiGEwOSjf3x2taJiF20Qkf8jM5C3YuIYG/yN++K7+Hw+ff7822VdlrLsvn7ysqkq5KWUUplDitOUUkpxSklV1nVZ18UhCoC561GIga46f7NtMgC6YV1XIQZiEIEml9Ppy9Pny3LKOXMOIcevp6f4+ZeqbVj0aGut1rqu6+WyrOvqjdiBeZ7ned5Ns6tHkkgfB9r1+Z0G8MKW5Xz569/++ZdPf/vy9HlZLtJaV+W9VUEBMPPDuw+1la/LuVxOJRfkZkjrpZhYcJU8RW8NDZGJDElDxHmeYgyBSU3VMKW0O+ymeVpLOa+5FWWJQVMMc9qnkEJYopoCIYcQQjSEqk20Iei6uHaTQXm9tMu55EWIEKG5ag0MfFogmJnGaQpEbKqtNrGGLBgUAQVNEISsknbWoS9ISgl3Oz7eTSpUC7SmeanLGWO0mkzv7NUgHm9OGoYpXR3kLIP02WQ+GcFvBccYY4ohdCFnjDGlxEQu8qmlumdsaa2OVQQATBxDCBxKKctlOZ8vhE8i1mpLU5pSJAZAIbIYMUYkBlVSVRQ0Mx8z3wREoHfVJAvITD7+ZU7TPIahOAvOTjeb4a60Y2m51DWXNZfa+uAtPx3VYE7Tq6WiZt5DJ+Nq0lpt67ou67Isy3m5LGuutYmqA6ct9fVDEhzmckAK5F3IIRFHcHQLm4NrX9WO6zYZIY6U3g859LGSo8HHqzS1VnLlUu/h7/7CruSrFQsBE0bqXlkxxj6lTZqqtdZKKa4V6vLU4NwGmH2jbgbfgLkI7999iBOm6Cg3TVNMKbr2CNDJPR0wHgA6zO3iQQSfHOQ/DAE0aZtV/IDc8KBbQLVug4popRSVmFcDoN3ufr9/OO4ej/vHu8PBbExTg03/6b/fEAtwdTzePjSXmaBXZmHA3P4EiNgHcKEGLQAaiAOFhMQhnF6vHrXWukJGRywa3OcGcjsl6GgYFFGINLjSDH2YRcdbRIEDxe5LoMZYyYihlqYg2kzdisIhOxISOaFLA+ZSQOxysC7h7feFwRQhGofKm3eVefOVOoPna9MBbxcU2nb7pFtd+arvlCSOd/dipUDiyDAEqgSMxtT7SV3roN1Nm2NvzqceNUKI3X8vdqGD6ul0AkMVayAmYkqjSasLLfwdEiAxMfNu3t/d3d/d3a15CSF6TrUsa3e98fOsA+aR3xBRT3Cg6xUcbW4ZCwIaKirZWESI3VUlTY8Pjz//7g+7effr7i7Ffc75/PxlsyTz6+np86prF0p4MbcZm/nEGLCrRZL3BbnPmJhW9Q56P1e6BDAQuw2Z/w7mQ1SaqBjIKBiBKmCw6RCUdmGOU5YphTCBWFYRsCpSWyk1F6kqAlotZ1nXVoo42c4ux03RPa6J4zTN8zyHyIiCoDiUar2UZIiGoAhoAGIqZk2hoTG8mSquIuuy5CWXXGvRVsWsxVhNgDlN8zGxKDYFcGlP5GlKcwgBrQCU8xPk8yfTalpNm5rUVqvUUlspUqs4AbNNszcl06DCIurK+FabtgoIu6PNpZlRXqVkZZ52h5koOHWpVltpUhoHcEEzYgarhGugE2NsTR3mxpBCSg+HXfhwd//uSCaBIQbqm6035oIRtE0m8PIys89fn5DB+3kih8tyuSzrZc3Lmtd1JaIQVurHsK1rXtzOHgCYGH12AxtgbbLkXFXWtRD3Y3u5LOfLumZnY1XNwA2dEbzEj4hiTc1CDCmllFJM0Wu7QUVEY4wyTdDDj7fehxhjB7vjl0fZbhaG5G1/rTYl9aqBK34oRqoNQwAzYIawGZu/vkytlvz8/PTbb38DDtPXT2m3S9Mc0yxil/O6riWEOE/zPM+7edrtZlE5n06n06nW0loz05TSNE8xBpcYQD+RQdWad696E170FpuIoiiSz5dffvnr16fPrYmx283BKvnz188eP0Qk57zm9Xy+nE+ny+UCAIgYUzoeD8fjcbfbzfMcU2q15lKktn4eUW+aBjAwLWX99Ne//Pbrn89fPsnl3IX+W5Xw5RU4/PjxxyWv+Rf99HRal6IAYlbXZqJT4BSnlHZ+7CIBM3AAtwOLbtKECAC7afrw/v3D42ORtqylVaWWuE1MgRIBQ3gOYi0kvru/u3+4V4On0+n5dF7KKS+n0lY0BgjlopfnXC6NmG6XNnODLaUkYELfeqJCUQlBCbWBoDXQYmKtUiBkQkAiCBHmHd/dzaDh9FRLrkurIRqSpCT2u9f3pbj7B3Xm0T/o0mqupZSSS64lm5rojCgxwrzjeY4xxsAcvPcreWUUAKA1KbWVWmtppUpr3SeXOaSYQog5l/P5nNJZBNa1IpZpmqZ5cskOoDBb73wwUjNRqNVK0Zwlr17WBWfVp4nc9NI7UMmHtTJRDOQnY0qBI/S2QqutjxO2Xk7o59rnT09PX19gFRHV0lzAWaWVXNZ1dRJ6WZdccm21tiqmncYFsiHVMyADdM9S7O0ZiUMKYQgVOsa1McFgnKIdK7suoUOR3t3TD7qNDdQmrdZCCM1xZMeDYxygGRMwWmCs3N27UkygJk1qrZ4DE6FZQIxu+AM+ZRXBunnImx306u8I8O7x/W7v9dmUUrdiIYe50LNtf6zHzCH46l8z2BZ+Z61GHaY3ZfgnBYAI7IGjSb1clstZnqesBlM6zNPdPN/t5vvdfAD3L7fuxuAv0u+yXV812NZX2KUEfij3QvH2oFGgHiIwsJIkpTxFRQoUk9vMvblRvY9KFXVDfGPBdX9KrwNDr0m7gQRuF6CQOmZ1nAkwKDJVrzYxoFuZuiDS75/fpgiUKKQQUggpMhMFoG4u5rZpTrd05TIwYHAW2bqDiufZ/hEibLDYBaKd/rzqwwbMHXcX3opQATBgQHRdDYAZg3K/q6gEzmERYKAQKcXgjd3BecqU/PfEblZsxhhMAYxKKaU1RExxSiFFTkwBgawb1Rmze8NP+93+eDgysxm22pa4MgUiUbc1cErYegJmjN0PFA1QPTMa4tieK20Zkxh0zYXvX0aOtNvNj4/3d4d7MASBdc3r5fQK5l5OT2t97rjZgARQLRgkCpHIttIEgJFP7UMjFNOmUrWJiVoDAm/CDd570auCCApjSLl6AxsiMjMACgInnJE5YiyBCIilNkFopqJSay61FKmqglohr3U51zVXz1Lcppa5LyviMO/meXZRvjKZ12pCIElNpigphhhicN2avwpmDkRccgR4UTkSkUu5rMtSSm3NpBmC+FRGopjSjibG5D6DZMBTnOd5F5ikPrfyXNYvLtJpJUst0kota24ll1oK1GKirvlhbSDNQJGQCRM0kWolt1qsZvHBwFXUEGpVETgep8PdfjfvSy4l57wuOWvJRqwsyAHBd7VVwkxAbj4oYswxhIStvp9JDgGlEloIJKNXlnqNawStN8HXzH77+kVNj7mstcYY15zzsi7rerlc1rxCVwL1jVprW0op2sTUsx5FcHWygFVptLWOqapazuW8lCp6VXERb3K7EAMSkpGahhRjSnGKHAIygYP0cdKBt9k5vZ86MgghUKDtJ/bKmueNKk0QqqHLGU2UAAOHFKOKgEHos4KQkPht1dUMrElb83I6P1VVOgeKMU1zTFNrer6s61JCiM6e7nbzbjeryun5+fn0XMoGc+M0pxjiZkvcEzJvZwakyHj1coqkRq2VZf306bevz59VTUgFW9b8vD6naXKs35o4MXY+nU/n03JZnB1PU7q7u7s7H+f9fp6nGGMpNa9rq94HSd5t0W+vaa35+bdPT19+LecT1cLd5mVk2y8vIjoc74CYKNQsyzk3ZxDESDEy7+Zpt9uFENRETYghBIwJY+QYKDKwsgHs5vluf3i8v1eA0kQFqSWWyRQbtqq1tGWXJw72/v3Dx48fFSB+mgBZvrZlPa+LZ+K1Lrpeai0aGCWAEHgMMIRaxGw1c5dYp+6aqrALMREFANXWJq3kwBYSh4kNREUQlBlS5CnBhZqPACwZ00rfolng+XQxMCQAnwbFzEyttvP5fFkuecmtZDDIZS11rRKjuLcnKHUjZjUgC847ccCERBx7Jk99XDPAkJGOXM8tCEgU2TWsqr2ZU5spgIqIiuYsOcuaJRfJxZqPElZQIKTAUatYaVqaMACCBXKop0yIMcZpclmOj1Cxrq0zM9DhZiSib2CulJxVpNZaal3XZbksy7LkUnJeW2u9f6fzkkND5yQuDpOQEDkmDimkKfgAKg4OcwcK2CjHUR0dfHBvJOkiXfCJCNRpQRWRVmsuwIjSTHTTD/baqxjWaoQWGCNzICTEECIY1NZiqw5SSikd3OIgX7rBFvCbkALfFi3cvz/e7Zg3q0Em9pIxdNnBtuKw892wKU5hiI77nwYotvGVIV1Gb+5FrK3VUlrlwCfCCQECTyHMIczME/NsqobSO756G1t/jiGE3G4WjJ/tQx0VN0gMMDSTHSG7MgsAcqmltForkJIZIukbOoqYYoqmStKZaf8pKiqK2C0TdAtQBAQILtMyZ9PNFIapQTdLvaodQvfJYMKGQIwqXioGAzMimEPaTdNuiilwihyQCIgBXYzbRbmIm+KzC8L9nveFaMN6GLbEAAysm97ZrRxjjFTqapuBXd+slU4SA6ghGSqQGpIZgg/+NESmOIUphXlrCEwhTiGlECPHSDGGEEMgYqYQQzrsj2vOa8mImJJ7ysQQWFSlaVlryZUxUgqBIlNiTkwSqASeUtjNUyEMrj+t2MAqmjIhB2KmEIgZ1UT1ptXAR+T1pJYAUNVN0CwwQnB/xKq2GiwGF6Q0JT0eQgr2lzclEsmltcXHP4AqGwbXxBELsjbJtbbaKPRXY4xA2NSnLDUDUVIgQDEQE+okrnuNqFgfYWEKCIDm/oZE5EOwvSmOGdCsFdOi4HPLRVrVVkEbqIBbK0KfUqOqpqUtWoZBMwJQiDHGxExMxmQhdKeCKcXkn18KMTDSGGjnzASR6QeAH1/ck9aW8/NyWWot1sUNBj4ZgTmEedrt02FHIaqRIcfAMTJYvbSnXM7L5elyOS1u73g5L+dLabW02gS0sWn0FlhDLFalVjAIMaSYpIknoyIC2ERszVatISMgMvPusHv/4fHh/n65rJfzcj5FeiYTU21STcWYuPOUgQOTKIRJRIw4MqU4TQaQSzEtZspMrjL38ol3ehLCNy3uzeyvv/1Wpe7Op8PpOYZYnIXKeV3WnDMMHtUjg6rlWqtUl5yoqRTNUjhvjZ64DXQAABUtrRkxpykZYoyjUB94YpqYmBgACLy2wpGBQaCJarVWrQmIed7s4wvZjE1JichHPynqTS6MzcDEJAs1QiakXtJpJDhRwgkmjodJRL3JGgkdRr8IKb185TN+0EyqNLNcdKXCTS3nWltlCxVSlnSpMa1RTdd1XcvajTDAWuOycncn7CyHsyygYIqIhcHbrH0KQVNs2tb89euXp9MXNStYMqxTnWOefFwiAIhIraWUWnJeW65Qe6XW2rmoLvkiz7wEZnZtg8+sdipom8cBbpNzeV7Ks+oaTBABULtA/3WUBQOrpZZS1iVfTsvltJqZGUbiSDyFcEjpME/EtBYtRcxUzAgJNQUMs/eGA+5Tgib5fAkpTTGGKQWbgk2l1KdlyflZdOEgU6R55t0+GNAx72uR1mqVXGu95Lyec75IK4DmUwpjDF71TUia82W9XGqueS1Tct2qegEclE2wKYjJIqtKQaC0C2kOFEyhqNW8yLroumrJVaoAYKA0pd2Uprc35i9/+2VZV0AAMiDwgbimWtZSc/ZZ215eRrRclpSi03Z9Zt0oTeB116ABltJyrjnXdc15zWYYQgwhudiylnY+X3JtTdVKaSpiVVppWhAUUQ0cDFirWouUIqVYaSCKPvAAqgA3pYKniyIupbixQYghxRBT2M273Mqu7uY0zdOUYhouWg6xTF3OZ69VHABQW30+LU3ER/X2mb25iKoaAAffd1dkhjRsSwJSYPcOS35ETyEOVS71u9SlB53LHM3U2MEAXPmzTuB6/5TbZrQmJZeVlEGZCcFLtb227gtdTUWwVahMNUhwYwPmEGGeJgBrtXoWIa01JgTzYOJtqIgYY7hSmeN6G2Xg4f79w8MRr92kNDq9cLxFgxvR8Vgi5D3bcMWhQ8K66VivP70riBGxlLJCzisEmpmSqjFNgSfmmXkiSmqKINArzz1WbcrPISS40Q9sCUf/TAZ/3l/5YIF72gE5u/15BRQSQUKVb8JcNDVUIemdYmYmrKiigiI6Zmz1DxtHqwfCqLcPXfYQwva/mVmHuUhoBQS97qsAquq+FnNM+zTtUozBi4NjTsTQ2nrG2fuZhixm9J34gtwMFPzz2e7YJhfdbp+NWfBAm1sYGnxjDho4MQpqAIoKZNvdBe/WZHbj6ylSYna7rZjClEL0jj/3nk4xzWnezYe1rMu6rnk1sOSDi8xUdV1XbZbXkkubkhEyY2SKjIlRCCP3obzNYW5rDSCbkqg4bArRgSVUyaU0sOYpGfY8/Tpvz5v9DcCAgU1MRIvaKnoRPRmkGNthH6aIb5VALRexRcVHBWrsHjNsyIRci6xrKbXFYasJhEYgvRDfjBTYkKGpmWg3XDOQpi7ErU1bEzMDLy8N2yLA3pmJgIxkolKlNu0bwPs3BbShiDnMRSDnSUyslLYsrgAzUe+j8r2PjEZkbsyXUkgTT1NIiWMKMTIi+FJ2eRkR3d3Rw+NLmCutnp/XJbda1WsKZGMAGIWYdrv7w907TrMBGRKRIUurJz3pup7P56flfLqcL8vlsp7P6+VSRaqoGKtGsMScQkpIZLLUfDbUEMK8i9LYF0+rrVDQpjVbq40DpSnsU9gd9u9/ePzh/fvz8+V5OjORNi251QLSxEwpEk8xhpimEKdgAE1VFBAjYUwxGGIuGawiKDOqgvQI2B2byauybxxizexvnz4tZXFSMoQgTWprtRY/ojxEMbM7ayKhG+KqSbOmqkVVi/aMeSjjRlztPkjIHGaiwEHUAyAicQqUOARXp9AQHpCBNZNm4i77igpsPY45zO0uNUqk2nlcRei6MAPVhhUrNB8UhSNKIU6cEkc3D4I+5AYQQ/qWoyUCEnJADohu+eBEGYK4q5IaGpHx0pgKE6EBuBCxUwpgVZAMocENxr3eKQP0OTneVUJI1BSqylrOz8/n08kAMuRFL6lMMSeOYfBN6uJn191ZB/0E0KzVuixYetjvyj5VT+hg8Ad9Hai0yyp1RRUwC0C9t3loz14sFbVScsllueTLebmcFi9UhjTFKexi3Kd4nCdA0JaL6/tVCQmMI+EupRTCxJEDW2vr6bQ/Hud53u/mxHPC6XTW56Xk/NRkIZYQaZppmgkxHsquVSitlrquS75oXc91PRe0QBAZQ+A08XzcHY73BzP5VNvT8rVJ5ROFQPMc5jnMuxhiQAug0ESkaV5aXpo0mw5xPsQ0IQVFkrzKush6kZqbNGGKgdIuHac04RuzhT//9ZcvX5/cuw8I3IYWEU3UxCGlueeNSD2fn7umnNlFb6NMzX5gk4u0iR3mLks+nc6n01lEyTmJEJkDURj1TqtasFqtOdel1rXzetDbdExQFFWhVavSDVgEQasJtQYogKu0aVlCDJw4Rk4xxCnu87qW9VDzYbf34eZpShzdUgQQEdXQBzC9gbmltafzqdW25HVd1+JmriJDwulbns1AvHms15uZOCBFTlOcd9O0i2mKaeKYuqC8G7ptS3MU6MGol8pvVjlgLx4DYs/czAyktVKUUckkRq8HhdEH3qvNYKbNmlljqrHF5mUfiowAMxFnWtd1qS5F44Zg7FggQGBiDil8I6R802lhmtJuk1zcwHMYOLW/JfQeAzfPh+593GHkaPSxMah33B4Y6LMbgupwxJdmrlBq7pRYas4lcHADRRUZ3zgwolO5XeqoNpr+RrAcH8hAuf5HhOEO7WOuCEpbxDJgA0RAMcO3PTSAiNTHueEQdTolj0oO71Hh5qcPKTBehQtAVw3HgP/9NXbvLSCf5wjWyKB1ZyMixjlNu2mee37sMgXiMS0Cu+aW/BWN+zMEzZ5ijeRrpCtubAYbyvVXMvK18S/XauvrohEChpDEW9tUANXNrDcW37U6DsO4D1tmQvKuj+42uU12DkyMIfI0x2lOOU8KFkJk4lLquq5u5uLiIulzRq3mltfcagMFJp6nGQFKSaWUUjICgFoTDCMbxl5XHUMYrL9advk7DMnCcEXtDasgAGJWajtfLp9TMCnbTXvdmbeeS6mLD6ECVWFS5kbsuU7Jsq4llxZjmmYJMXh3mXrPhCmyUUQMaFXUZz07JVbFjfpLlVKaqFGXDbugq+ejAf3NklQta2ulidhwfPReLBUf+OmbTqw1bU1Kkby2dam1WhVrzcloAAD3CoiBotuXJ0qJQiTPHBDBVAHMUwVChN//9PD44p6oyHK5lLWWWt0XWQEUTa2JrqoXgANzDSHaKHshkVlEZAVQQCPGEIGDUQAKTJEiASaiPdJ+mg+7w5FTfP769cvnzyUvMYQQyUA4GjfjhKFRU65Na1UgDmm3v7t//PDxp59//t1PH0/P5+evz9NuArQq5XJWyyaiYaLdIeyPyW28iZNBBIxerkhgBywzlFAUlKwBCyp5Kx7QiIiI38AugEi7QBxhYk0oDEruQc9EgWMPH0wcUuSUiMjMgpmqBh0Gi24KZl2qRf3yAy24DwEimHqgNDce6R1jo4RE3Ov6rpMLKqHF3uqiCt1oz93R3Su5Gxxc9VhD4dSDLQ6vRBq0LfQ6SY/MIwKnNcE3/H96kMV+PrSmRcA2t2JFQyTxeZd97AUM374ewRT7Sdutsg1sm6DmwnJDUwT3/TLAplBUSlnrkttigFDRKghLo8bAvZ912Nv6CQ8ERgpIrpcRrdC9y68UApihjrPQTx8AULNWzSqbWg+a116PV3dDVU+nr6fTkpdLK9VEGTEy7zgcp+l+no/zdEhRzSpRRlPEEHiawv1h/+Hd48PxEIkisYqWVrU0aI1UGDSSxWBETWTJ+VTaKtDQQmul5BVJpVUwY6QY0hRnxospmGIgTiEdD4fHx8eHx4e7++Pd3aHUfDlfpP66rq3n0GKB2BKCECiboc/xqytczq0WaWIi1nYUEnCAmkGajUlShn0iUiCIb7fQ6bR8/vrcP2uEEAJHp4oMwWLgFDi6ZTAHRG5NNTftAsPOtPkJ7YYDIURmbk1rretazufL6XxpVdzoxt1+Ykz9rEIwE7VW65rzWurqp6cfH2ZgfZA4eWTvLrMKKAZVFZoCFJG11BB9tDLHGGLmNecl58uaL7v1PK+73TxP0zQnDq5iRhtoZ63l1T1prZ3OZ5G25pJz7va+gEw0GBF2ywyHZoAIQD6ymSgE98eNEzuP68PnXsavW06sx7FeIzcw9YI/4Nh86LVS24RDXUWpBv32Mw1BL1h3rBLR2qSUFphCYADwzrwYop8wrrf30aSqBtYYEYJ5CgM30lS/vgFzXaTpSBy6ySveKA9sUwV0uZNzYgMNX3FVT25GgR62cNNfARIiwJrzsizny2ldzzkvqrYs5/M5BSYkrW1tteaaXcnn0t4NwtnQqli3qewpRMfnsOlHPHIOUyfXonSuCppU4BwmAedc0M/Wl/fEtCvSUc1vCQCAuTLZNWo6JAo3N8q5gx7WkfrcWuizAjZFACAiI7n4rxZxCAKiLmJLMczTNE1TjNwHSOBQfLuDmMNwIAMgN77BfqhtBlyDyx0yE8831NBbsAcFq4ODHzeyFxXedkYgYdzvWbQ1QRGARlSBmoKfq8qm7B/ROAxtSF6GaQmiT0M2Ea1EyBEpJg6YUlA3mzSotbRa87qWnJt3ADVV0ZLL6XRytz2RxtQtmUrJy7Isi78boWqu0fZJXABaaitVWhUDQ+xgskP8LqvpJpQ4CraICtbW9fTl6y/SFjcYUAV7o2+5POXzeUFTVCUwYWpR0J2+m+bS8tpK1RBKTCV0k2t0xQT5QJOEFEBRAdWsV35zqTmXdS1rruvamqi7VgSmGDgGCoyBKAZKiWNgabqudfU6d/V5ieazQB0hwfh4e4mtqRQDZTMxMe3wd3NUxBIgVAlsFCAEt1VB5o4x0FwwzUR0//g6+KpoWdeS3eRWEJHMFKzqUtrnXP5WaitlNTwAzYAzhYlhBgtIE8VDmO/S8WF6eJ7FsnLjFDiFMMW4i3Gf0vH48O7h3Ydpt/vt11/++tc/f/nyW1kvJS/aKnDhWGNSVVIIdW0gFkI63j1++PjTTz//6ff/8L/94fc/Xc6n0/PX/f3OuGU9G1c7V6ww39Hde358N9093t0/PkzzQwzvQjgSAoBSy7Q80eWpPVG2UjIwAQTSLqjFPojFz7dX2wfx459+zFZjCDElInRz8GGr1/yMcFcEXyeuh9ANb40A6/GuV9/86lJp9kJeP5pGl1N/Xqbt0V6VMBfZdzF/h2ZbEax/k+s3RsOG+5F3pDui4la8uir2XnAl/ooNEKZ/Injd7tufo9eUfOAGmoECeYPhLQjuAdagT6CBvpdhy9g3fVY/ka5DxNF6766f02CqyhsV5RDFkM1nFJsZUlfcuGGS+tOO7p1uQjfI4+tP1B5mB7LoJwrQKLzZQB16Q03cXCLt82+/rMua1zOaTkwTxymmh93uw/H4cDhM8zzFUFVyoBKYAk+7dLzb/f7Hj3/4w48PdweoAlXyul6WJddCTSyXxosYKKi0S6nnXE65FgGtws/PJ2ZGTJeLLBepuaBhDFMKUwqTRUw8z2n34d373//h9z/99NP+sNvt5+fn50+/fUaIraCZIlqNoIKgDMqgAYnQGI3BzFqTarUgBQMEU7KI1hC97EUWSAjRFKSB1Lfnj08K7Z0L0GUfIKgOMAPFFHd3h/27+7t3j8cUwrquy7KuOZdScqnSayMAgIawqb+80as1ybl2P2Pw3QOtaakSQggciVC1qbVanTNtfSmOfKWXdIxGEbnrCcUA1EzUamtqTYWFg3CozKFy5mWtp3NO6TKlaUp97EtKsTM1hDgq1efn5dU9aa0ty0VMWxM1Q+LAHhW69BR6C7arqbmX64iRumafQgRiQ9I+m7izi9f92cGNyyD6CEHy4NGHb4wd6DvdUXSkmDhFipF8MIgrGAEZgVSRiQiqCKo0NW1NSkUiTJHVoo8TIcQQQwhhnrKqmImpqraqigAh+PBRfUvJfXOGnrQqMLQwNuZVWgeTgxbs8oybdw5bWOkw90bK0WunXWbQUSkA2JrXZVnP5+fLcs55EbVlSSkFIjNoOadS81rWJnXznvD/jCgMHZvgFv6GjKQv/u2CoY9CItiGFxgosgbvD+v1i9e3yVVnBlv4f4Hn0RDY/dasm1VrN6Ht7AZu5pl9AdDta4JeNkCgklsOjaqAqJoGDDF06dOUUgjUtDZRxT6EEIDQiIZBp2N+b5a7nlI4Au9I3rBvRwAEFLz28m0R2gzdb6tjoW/TUXGaRRWboDRV57hl5CACRtddPwYAimk3N+h9YKgmTQuIuqagTz9VdscoaQqmrZZ1WUvOtdbuqiKSc8YTSive+xQCp5RiDKVEIgBQ06Za0aTTy53zl1q1VW3tKjh2ZyxEJCBwD0lCQIhEgZD7EB4p+fL0FWo+B4qMAQzVXsPc83P58vnifrYBsQaMkcyslJZLy0VKltqUmGOIPi8PEZlDjMHFHDBBCKSDPnJDqDWXZXGT13xZaq2KwAgU2EkLTgFjoCnSPMdpCk3kspRlLWuuyyq1iQ++VzWfu03DD9JlLs7dotFo3YNO9LrjLzIJUNVr+cCzK/LGEiMwZnKf0mV5TdCpSllzKa3U1kSRiAyaaZUll89r/su0rmk9qx2Rj0iHYPcIBEZIieMh7u6nu8d9XqpSgQhhnabdbjrs5sNuPu52x3c//PjDTz/vj/d/+es/z3e7+S/T59/+9vm31ZoANwotTGZAYpCbYtEQp+Pd4w8ff/rp59//7g9//PmPv1uXp/P5GGY7589P57nqpRlBgd093H+gdz+m9z8c3v/weDz8vN/9fp5+QBCErOspf/6lfMILZFhDO4ERYEBTN9IB1EFyvMEuSPjxjx8bqXf+IXl7ZReeqcqIXJ2bBQAZ3YdXtOqhbkOrXZ87PCXJxwgi+hGr3ct9Ezn0b8Ct+jQIGH9SANjscWybEYjcfef6cOHNsfFKomCPOTfveSvpvbgP9deTnurrwLIl5mAA3mrphoiGgw11xctgMawH45vaFVxD1s25tJ066ERslw4SkJmpQOcKugWn+YB1YAC+5W160k8DuqDzPU4YjJ/bf/M10L3CFDc+16N01zBs9clxary8RNrz199yLi0vAZQC72Lcp/lxv3t32D8e9yFECiE3zYSFMaZwOOweHu5+/PDhDz/97uHu0C5ru6wnIKjNamVRLUUYG0Iglba0upS61NrEDITP5zMYIMRcLGdoTdDIJUspJIi4S7vDfPj4/v0//OGPf/qHP03zHGL47bff/sv+vxIkaSRiACYVQX1eTmRIAISmYF5LqtKklQ64PISoqH+wTOoDJlC9yv965YCb+cj1UBdAt+IEMEJAjPO0v7t7fP/u3ccPj4n56fmZ7Fkario151xqrs0nawD4uKl+SiOBGfRBZz3tE1VrItQkhqjRkNBdccTnI7a+QQDARzkiKCIBaK+K0yhsdAMes6ai1hSDahPh4HOgyUeeMFFwZ/IQvX/F/2nLSwkhZOaX1rkisqyr56tmQO6DHqL/+KuikLpbCnIgZGTnnJzujUBsfarAtRdqS2P9r96qDgCI7Hink56I4LwZ9jMeEXxkZgzudI2BcYsfRAGRwbAiokEFqCoi1kSwGKHVFtWMCINz6SIpxlqmWnMtpdYsDVqtCJZSNI1vs0R4C3PN4M9/+eXr07PfDRiMqd5UYcZ7tVuKdnuGLYdG3Nwir9zmCLRX6Ovi+vNl+fr0Zc2Lmp0uBKi1rUs+xRSa1Nqq2s3EKXQB4hCg9ZlwyGONDk05Xv/jwZE6d3ZtESanuBkGPgcA4tdJkqjUVjrWd6eCF+FsuxG2RSzd3qcBIJKqN+s46eBTNbaNob73XYljbghac6mGEFPw/hU1E9Om2lQQu0FvAPZTFMEIe5BU9UYlbyl2NHyLzXu5AvAGBIOH3lFRpP4FJ34QkYzfSDlMLZsZgBAqYFMtZlk1mxXz3nc0ESiNDJCQvUYomqssKQcvlgbG0Cuh7BSR3zcRU9XW5Pn5/PT8vCynWorPfxRpJWciMGsi0btIYgxqySz1CQQ+Qa2xWvCbAQaee0ZGmtiSdrjmE7zd5owjMXs6gwghYAi03093d7vjfo4UpHI2EAavIHkcuL0pz0/rp1/PgTAiJcaUOCVWszWXJZdSpFRtzYg4sBB1sx9mjil6C0JKzExelnbKQdwHvtS1lJzbWqo0A1AEZOJMFJlTwBSoJm5Va5XW2mUpl7WUIrkOEcKW0PQdQgjERARdH6UASbT65ExXNYwDvzPOfYaNbb/7SiQ0JgqB/Ux7u1BabdI8+UNVLFWXtT6fvn7+9F/3dzXn3XLZz/MxpLuYHubdj/P+Jw7HyO2wm+HxQ+Rw2D88PH599/S0LpfAMYU4pXmejvPu+Pjux3c//Lw7PECYKO32x4f7x8e7+7svn/729fMvz1+btEZogSAF3id6vNv97uP9n/7w+OFdSOEk7a+tPWv7ivBpN1/u76s2Y8JS6P7B9oc2z3lKa+RLCssu5f1czIrKufGz4HODC2EOJJGBFNXnqXoPqePRay3leiHihw/vNELXCzoMHV5Bbu0KVxSLHoUGTlXr6SpuKHdDrTQ27eaE4Pt7RKdBVdym/3j7ugZ8hpEnd46k/6Obe27T5ZFoMAqjcndD3dqIjuP0eXEfvvJS4A3MBbv5tVXkRiWusycdXQ5uw0F1L9v1J7mBuWjdnBOcg+38dmddDcyai9fVtT0AAIbdr3ob7TJoiYHgXStyvWk3FM/2/+3OCgK6xAk75Us2fDTwSvp/g81lwocpFUTYKRU1wV3a7dPuYZoPISZENAMVaGLSQASUyIwMrLa6rC0GUk3Mc4wlxMYBkEjNmrZaC2Jrgsgp7YBUAQzIJCyXZqbu+ep4higEjimmRNOHxw8/vP/hT3/60x//+Ieff/9zCAGJW7O748N+d3dOuZSipvN0fLh79+H9/f6wnw+7WurXL8/n5bkWNUGyAIbaUCo2IDRWxVZVBZnCPANhZA6mLmB+vUpimFKa+9QB2nzZgQgC4Yd3jz//7sff//Txpx/e/fT+XYrh+fn0/Pz89Hz6+nx6Pp0uS15yzsWbIKwjFjJAJDSHudsvH6hmBgjk7aiIKGqsppRCYNM0gEbHJ8QUKLjn2qgPwPDC39ItQxxcalfJE/eOKnLnzZ5NuuZHQX06ApoiktI3+mWwIx1An/cTfZLz2OgIXpUJgTkgsRte2U18UFUiHwu67ZP+5mxU07dI4pfDCUJARSQdaS2Bw6Wtv70Pn6aUgveWIzICj5YYExVooKZevGmiTbocP8DA57YdQGCmtTZRgyalVCTK5XUtEb4Fc+3/989/DrxlT68h283luc4ICddw1IfxjpDQn8kxsW43csQJN/2trS3LuuRsAHDWKvmyxnSOITCgKShgn57YjYuCO9q7dTOFwNRnsveO+RcYdwQc/+M4EEZd7Yo2+3tmOr+6LSpaar0Gx16kuwnvnS60299uFwNel3ZfGDdni7lQrDX3MNEqkmtZcjaCSZOBiWmVJoBNm8+oJFRGFGNBDsD9FVkX5moT9yVG6vwtjIm71oPzkAyiAQH6yWkdCVonmXv/NiKxvoa5ZtbaeTN2Biumi+liWtQqmCgIgrY+K7jhyDtj5rBSZD+FoQPcfnQSIvaF1Y0FdF3y+bKez5fasos1VGrOC6AoFNHA1V1QwtRSbQnMmjTses7g5KWIGQB5mSbSYCKBxhBCZp7SNM+7aZoQFcGIlBkCwzSl3W6epskMTLUVBk4QEgKbvd5UT0/5118vkWlmngLPc5gmMNDLWs9rKVVaNVEgUh/m7NuBib2FIkQOgYhQbHjQiIlq9bnRoqPWZq4gZ1EEDEgpUAq8rZ/W2uWSl7U074Sw3h8InR5EZup9rOTDO7yL0SdXq1jn9dT6GEbslATaKBNodzpUBEEwYgxESDi/aZ83M2ki4oV2EoVWzS71y5cvv/5CIX4+P/HTJ9ofDvPucbd/f/fwJ7J13n9MTHSYdtOP93fva23Lcrpcntb1DNbANFBI8ZDS8Xj34fjw47R7oLifDo/37z6+/+GHTz+8//M/7cHkcnomFAJl1DkQz/zhfv+Hn+7+8Y/37x8b6F+ev/55XU7L5bmunyL99nBcyWRKUAruj7qfS+QLabCC0CbSHRlJu7TyVJenlr9K+QpyIiixz3yBbitm6tWrt6a5AICA7x4faB5MLA3VmnlJvB8tHel6Mtz9O+zKrwyeaMtGEa+xCbc/bGHnhu+8pQA2tDb+dWDWjYd2JUKH0KM/ecPJg6DsPRPbYdA50Kto7RVaOSN941CCEalg1A3HKx5aKz9BB9IdsfQFibuRLDjYJ4BNegbjxMLRuqnVpKgUkWbaDMnnWBAquT804ajxbWnBq2wO/anGvfRHmQGNIGum3RcQx3thAiSfe3jFGa9vRSD+6f6+ljpbmJVNcBfnXdzNKc5ELKYmKtpKcetXZtTatNb1fH769Jlb3ce04zgxpxCmEDsMFpCiq9baLPC0n++TgQKJQi2trE2cku1MiVvMxRTTtJ9//vl3//jHf/jDH//w+z/+/uPHj4CkBsuS746Px8Pj+VQQFtF2PDy8f//xdz9+ON4f98fD09Pz6bksl095aapIxGhoitKIgNBYBFpDEQwUwhyIYgwRDN0V79VtSdM8z7UrvVypQ8iEMWCK/Lsff/zHP/7hH//4808/vPvxh3dTDJfLcrlcnk+nr0+np+fz+XI5XZY159q0dzDgtuhUzVpttUlzW+4mIj4pvR+LBqZGqjyUM46PCX0kLFGKcUoppgBdjKri/RE96XNxqHQ9EAIxxRhDn9yHHMg9iELw7hXq7qWivcYKQG9rrIiEDISEBF2W1B32wfor93G+HJgoOBDwnd4baxADkiPdrbowxEe4WY6+2KpmbifQHySKBIDkxhKObTanUkQKMaYpTimmFBEZjPxEE1USgur8gKFBMO1nX9MQnZ4DYgRgswBmqoI5m2Frspaiptkx5Ksd9Da+/PWXX701p8sMNsVQVxdtLrF9RsTIRntwow3mktOIN2C3P2EHyHAtT42RCmSEKFZLVbFSGvUpZuzyEmR2G1ZDQg4WEqZIcVhV8ciEYAv3QNca1kC021HgRwnAGJPTISAQve5gFJVail2PCf8eb6vY3B9GK5wObY4O6AtjcBuM82a7KVdO3F05a22ttFZqLSVzYKdwmkhpSApiTbSZAaEIkIIamoK+QLJqozdF0QhN3Vh3/PwB1WE7oQbpckNOjDOsE0VV3uSNpq2cVV3sAWZNZRVZzYppc98eYPfCE4MynC/gOtTLB6d5sds/ORxl0j57Ddy2xbtfay3e8lVbxXURq025Nm+QpRBDqSnVRNR3NRBy4GDRkQcYEgaiXgoKIRB3sOsBYN7tDvvDbp6ZgVmZjMiYLYY4TXPgVIqUXFXBMJlOBgjw/KphcV3lfG6JySJARJ//YIilQC1QG6qAetEUEN3QuwmihmYtGBchJiR0rYKoNLU++MY822MKPmwOOh1gPUc3dD1v/+Xnk8/bAeDOVDBzRA6cAibCGCgxRWIm9/ejXqWGnk8CgDRx7xEvltioWnRnMxM078TsHR3HXXq9Usw2HRwhNUfwVp+fnz99qszh/FX2sxyOu+Pdu7v7DyhLwEa2cjymcJzjDg5HwFTKZc1PJT/XurR2AcMY9jHs5/1u3k9pnjnydJiPd7vjMdzfRbT8/PnXT39NQlWhsVkiCiHc7cK7+/DDO5riuSzn9Xxel/OyXJbLCeW8SwvsayCtFdIkUxQ2tQqyaAuhcmxQSzmv+Us5n9rpUpeL1BWhMvsEAjQwlK5XcJww5GrXCxEe7o68uypkr2D4VcAa29JFY72kNB42zhbcNu2Lb4ShINikqrgB3JGtb8h2qLY6EOz6iO6TSNefcUNS2vUFv0zrr28UBj1wZTvGxW97xUcStVVIR80f1HrGsAUr544GpTsC/cYbX++5qZg01ebWNQo2OmSJfEyl5CprdR8rFSMzE/ACuzVvyYBhQ3kldgfHATh+3MZ+DP7MQLtxKJoiECpsg6L63HMYg047jfT6jjDRw25XQ8QKVEEbTDylkAIhqrVaBaABFB+NoV0SaAa11OW8zMzTkTntUoJ5auJvODAwGRMQhUiHI0M8CKABN7HT8+n5dDJtyECIZqiKChI4xBD3u/37d+9+//uff/75dx8/fnz34Z0ZNrHTeTne3R0O97v53BpAK1Pa3x0fHx8/HO+O++OhVQDly6XkpY6GaFAPOOKMCDRvcXNvHI5MiTESfgOoxJjStKPeWRWYkAlS5DmF/S797sePf/z9z//4pz/++OHxh3cP8xTWXNZ1PV8uz8/n59PldD4/ny/LutbaSnOZkG1rTUWqj1KorbraaqMZhobTlaFjHQ25AbuYnqcp7XfTNCUDU2nNpIrUbYqZ+Sgg2eCCe6pEt8olDIFi4ORHIzIRiZiP4PYSkRm27CL+64XuAIw4JhJ2qYSNne/TKGhT7QP623GQ59blW6vloDdfwNzW2paE+1eQCFSJyHBUfnoiSWZgAgooDWujJmwAzBRjSClOUwIgVUCx2gQ9ozTzua1kpgZezPSNqwCucCEgtgAATYSInXo3KK3VZV3fLpVv+bmwgCsOreP8rsndwpOj0q66t21Hb65jhL3HqwthXUi64awXgW4LCyMIbyvGmVkevma9NIHM5IyX5zq+DLhTg6NIN2qynZS8yrP6T4Febvay/Ia27WUQvl7SpKzFPPQDQNd09SPFBn8rfUBcR/GvCF0YbRLbdf1nczGQLWtdl1JzsSYEQKpaa82FVKAxM/omRC+poRmCkvg8Mzdc6GSzY0bjEZEBh6uRje3gcxLUXakV0E3sXh6avcUOka+mwNuL13V5EpdHIYKJalGt4Ia/YIqK0lwobFBvCOx+Wo0yE3aB38YCDYK4u3A0rU1blVKrt46KaqklFA6FQqQQmCMPJVNyde9wionIMU5C7KJl8kmWKYYQAo5eW3+/ASNIcGoBxmpixEAp0BzDRGiBRV1xgi50+e3VbTked+/eHSPzHHiOvJvSbpcQcbebcyk+rdUd9wOzmZVSaikA4NMzNumVh5YtAPXMyTM42ip1jkrQh9UTQmCcpjilYColl1rbMMoJg7WmEIgCBcJIyARMyAiMbnhBW6LjzUYA4AoGHGTFyH59GqIbWhsMlTMC0P7d66UC4KwmEYYACqAVzKDVtpzLc2rtIjWJLIaFQtUgAOVcnv9rSHeUjjHdh/QY0rHWpSxPa36q5VzL2Qw4HEM4tvpB5YvUd6LSpEpZIz4f9u3hQO+O8ct+4qUgVBPTJqpY1vPz179++lVjKirn1i5lLXnN2cd95lybWFNSBUQFrE3XArq0em7Ll0uKf241l3ppa7ZLg6XZqlD9zRMCEhszh2hiJmIo39KLAfiU5T7rZwN8L5jJa7A0MEDevtAx4MBYnW3QQchuQBk8IPc0d6ho8Raq9u+4AbE9kxnHH3QKY3zr7evbXiduu9Y2vcA1sF/fznjxAABA34C5He8N7VarrWYtCiYDBPadcOVxr29o08LB9gcAAFPR1po26bOPO/NAiMjeCdtEapPSaqnSxBharXUtJlKrm1F4238vcb341W8xwCDIb2p17upAhmAethFQkQyMDUiBAFylBRub+DrSqtm51NZaNhXChtpaudQGZu4Fo4CC6ICcpjke9ulwNx3u0+EY9gfe3/HhGI5HUttNeyqVYuJpppSACYiaaW5SXKVK3Kp8/frly5cvpRRmQITzefn69dTaCfvRac3nkpgaAUdGDhFwf7efD/O0TzwFWKAVKSJraZelKiy56qfPz1+fzqfTsi7Zgxon4sgUmEmY2ph4RKIAzYhwF6f9fO9Tx1/dFgxIqcc0n2/ABNMcHu727x+OP358+PDu+Hi/m+fgxCQRxBh2uxkRU4qHw3y/Hos3e/SRVV6kkm4a5xMqxh/cAEqa9F5e1SatDvtxD5huIeRjs6cUd/OUUjRTr73X1qqM6WpgeuUv1KwP+nH0iQhEFNnZ3I50wFDNdYjkFqL/9Z//8re//vLiniAyB8Abk5NekqXBWRH1gdxwgz56H99Qpo2JUarQUYov6tH/r3qLExCAegdfHzrrO91AVEDQQC2jkAmDzpHqLrjygpncCrY1qbUWv2qrIoEpAG3NcN6K5QEKzL3yTM3rYIzIqq3lqipLyW9Dyrc8xsIwExigbENpW8aMAIpDskFdB7DNQ+vi11FHIEQmGMYGiLDF2O3mD1AxOiiuz7dNWevRA8inLhN0dHt7s7dX2VH30MJsPOUo149Slh/YuA213Qjn14GmaVmLRxR1xSoQDhcD28xmfIi06DUa36JcG2tr3FPHx2PKnbtPiyeOJi0YoKrW1taMjbWSD9PseHVM5jO3IkLrx5RHfQYExo09wS5Z7j8Ze5keAEBBXMCgCAZESMzbp0nD0+Et72Jmy/IkIuOose68PnQzAAJoBgJQDWh82r1Mb96WCbAdUdf4boh9uhrIcMIS0Va1iXjhR82IgTOFSCGGkLy6E/vI2jiFOLlmnTkQY0rOtBkaBA6dzb2uHo9UpEI1GyoRJqAASEABcSLaBZ5CoGkCp+pUzMybDF5cd3f78uEhMk7MKfBuSvt5YsImrbbms+qojxsIarosy3JZzGxrqPd9wUO+sB3V/h93qHDJQQiEiK78UlEVIYRpivOUAFRbNZXAzl1H6o1JmwLMg6UzA0qIFGjrKKKhvQQAaSLSRgDErSYj2qc5O4ZS6IWMz5e7316rfjr2IcbgkzBFRbVVXZYaGStpYbHFYrPYCpRzO/9l2e/CdAzpOO3fzYcf5/37XNfl/LSsX0s+lXJSA+JjCMeaf9D2sdX3aqpNVJXB9pPe7+FxH94fZnteBag2LQ1Ebbk8f/0Mf/vLU+Cs7SJ1LVlq1lpUWtPW/NUigQlLY2BRqpkuF3pi/AXBZzeKNWNBbhQ0BI0RosdDAqRgAVjUWtUtB3h1eadjT+FpSPVHmnGbKqtukwt7FDMAH4e09QH3kNZd2m3g5b7B+lm3jSrALeP1eO5QraM2D19K1ifSj00KuHEV1xrQ9o+jDtAdS3qNZPtOxPHCb2Hut+7LqPg53ZVrza00Fxx0h4meW/XXDlcuYxNO3PAHYOCRubNx3a8KerXY62DmMinpvTUBoJVaKbdKnb4d/ejI2CfAsTepE4WRlTIOVLEFs+EW0Wdk+1AUIAMlARr/jt3N6AWdNC5RfcpZmmTRSlgA/JZIE9HmmN2IKIS0m6d5lw530+FhunuYjsd0PMa7Y7w78t0xAEKVpDbtDvPhPk47DAyBexbaYQTVWj//9tunT7/mvDIDgv7tb7+p/Pn0dPGPXkRrrWvO7swAgWKKHML+uNsd52kfQyIja9pyrctaT6e8ZGFefv3ty5cvz8/Pl3VZm4gZxCmEKYYQECtRSLEPJTAFNQ2MMc73x/uU5m/CXIwOPwAIkYEYp114fDz8+PHh44f79+8Od8c0RTLr+gtmmqYYmfbz1OcQq27Uk5MvPvdbZPRSa2exWmu1teYWBi4sbDW3qtrLbDGEGENyriWFKcUpphhZTXtYkVal9u7063K1wVSOnWTueIKBYwgxhWmapjTNhAzgvgmBiQGpXMprmEvEIfYNfYNxndylQRf6Yu9y9W6684KUBkDPbzfs4iTdJloYcPwKnl106A8z/z41AG2mCopK1iqB7mduNYl2GaqfI631zpM111xbbdLxCgUAUndBgA5w0NCc2XGMS4TEqrCWmvNaWnnLVH4D5h6OaThq9U3nHwne/m8TIW2ELW6kmL9z5N4yiDdgd2Bcf/TQF/TfB6sxcmEPFTSydl8FA3bh5lIFLz+M/gnfBs0ROgHxRlMNgxgZZllXbPo20IiWtWlflNDj/VBB95WqPsyuievVR4pw+7Ns40lGgWq7XATZfcQMCMmY0mDkDcyATGmcV0gARH0cA3nPLjquv2lCge7h5VScnzQ2EgzqqLfrGhQJ0YZQkLaN0n0/35xHZlZLFmlXhmekQDclTR1/M2JzAK0+q+Cq7xmkz5WnQnRFdlcrXpd1YFQ0EUXVjbv3HlmfqqICrVONVZVUQwxGREzdLNDhFvi4etuSMuzEkoICKpMKKTFhUAkqURo3ZzvdFa6LpN5YcgB8eH+cw7vIlAJPgacYpxgYyfGXM81hiGxUZVmWZVnMjHs2DGbojaUxJoe5HXeAAYAbnYZAo1OVEMAMPAojQHefQQNTBI2hSzR4lMevHPawuzIV7M1ofH3IgLkOEca+x+3T778h3lj/qpnJL/wK5lp3Ver7s6eUalK1LJAJQ1CICrFBRly16tIudo7EaUdpP+0ed8dP0/5dLuVyeV6WU23n1i4GQLzncJjPn9bLb/P+wXyKDmAIiSnq8inquidbGQpBQSimIFry8vzUfvvlxJi1rVJry9AKSOsnD5JbMIKQAbmttRK5PshMVbwvRyliTBAnMmDmjukI0R2tlXq9kexNWx4CJuSAwd3qqTuxjIwdcbvHauYatxsRWC+zqZt1v4SbGxLtoRg8/Hbx1wakAbe4iYN06ASDDRCtnWJ8yfze/KANIPhflMxs+B7Aize0vaybcAibXv/mvjgp0kcnOQtbS206Gt83I7UNTvdV9TKcDoTiEd1dLLqqXa9nACLqtU/DcAyK8/3Sd0czQ3AVqZmRv2bu7pNGnb/AcRdgHHL9penwkR91NZ+Ogdj7N6GjzEEqvQkpSBQPRxLR2DQKpIpTI4e5zi4iKmCa5+P9/fH+/vH9u3fvPzy8f7y72x/vdsfj7nDYz/sdIkUFA5p3x93hPk07DAH4euQiAKDldVXVXHIInBIT2um0BA6qJmIqWlu7LMvX56cvT18PX7/MxzlNU4zpnE/NCiWMc0i7mFoKKSBTUytrFmnPz+dSKvgW8XdO7tXSy0MSqHu92XUMR78zb+7Lfj8LgoMhIkoBE9Pj/eH9u+PHDw/vH4/HwzRFYjLVZmNiFxFS5BApGat6VoajHxzAJxS31m3EcMQvAxGprTVpftw3kdxablW68wnEwCGGFEIf9OC9Fkyd/tLWxK1rnDbuK8X68N4bNszdoQ2ZQ+AU4zRN0zzNTBGJEX2sSySk/33//3kbVZAYoeOk3svmRfA+7w0AwEzMTFTcc6TDhc5yDBPb62L0v16z7m2nbhiXBi9im7+r2xq57gesmZJRKVyrlOrUeB/90lyiWWvJNZdaaitViVQMFVAMxdku57a8qAikZuijhIiRWAFr1Zxrbu3tHvrGFLT37+/SNEIhbG/wxQbse+JKzt7+C4JDrY0cGELMEb0HL+AHrVvI3rCyA6ci9KR4A07Wg9FVL/AKzm6Re0SPjWf0gPOCA4AOsEaR7foRvtlRIppV4OqtBmDbs/Y2PdBOGaiPSfOXens+jIbL0cVjgxnr6xMIFNm4cxIAxj7pDikQcf8dCTGgC5U7LmE3ZaGO1YZ+w1UJtzfnSlb7HKJxHpGhbnQN2VW+PBIA0LfRF7w1GGEwyWYDxtx8MKPFCwOGyJGZm0i1KtDT6P5KaRwLZqbdy8TvFgyZKRgM30kEAGLiiG4lxj7fDMiMVKGpSRFruWXJnaVkwv7WGneD/JsrAHe5NWI3ARRRAK83o4iWUrG/TdykKa/E+ADwu4938F4ShynFFJiRwoieohpCSPMU0+ScqarWcii1qHYDbb/biOgaBkRPoDu1AC53GCN8QggeoA1AmrTWAMARsANZQvBBtTxALnaABNhFKtaNBm+CVyd0uwIGiBCAeirX/cVwqF56CmvY83IDC29V3ABNUdWaWKtam/lMVqmqGTDhNMH9jh73dD/TPmAtup5bFTNW48Iph+kU0l/W0i6XNecVsAJWIqRwJn6ads/z/rc47UxNW0PDwIkpLl+W5dMXypekdc9WE2bVi6hUW8769UsjEGsqBaRAq2gKXnpCcpwKBiYgxBAjhAi+hEBRmkkzn6DHzAqsRDoqdh2G9SYjCpEt8NsNNFFKFDfHgkFW+N6jwaB0zb/XZAaU8nWiN4fOFd1CR8IjTd1K66ND7eZzGaEHX/zmabiaGdlIZfrnONDh22AwXLFtYMuxnl6sA4Drifn2OQCIyRtv+lBI874E58BskyGM4RsuOtxC9zU0Y3+8b5qbgd5biAKAXmDybeGoFUfLLftgAQDsEjS/ib0pftC6TFv48ltHvTkFxrE1Dq7xu7vx+k8fvJcRgnrS+S1GIab08T/9JxE5ndfzeRHRQMzoJmhd3akGaZrvHh7vHx4fP3x498MPD+/ezbs4TSFNIUVOMSCSGQFQSLuU9hwTDOXTQHhNpZZST6fTp0+f8nrZ7+cphXXNbjc7ZvPY1+en+ddfKGKDel6+xpQ4huen06cvvyiU6RAe9DDv4rv3D8f7wzSny3JZ81JaCYmP94f5MPu6okAcyAC9azP6oDEGFTPQ2uplOX1BjnHaf/xAL+dwfni8uzvukBiI2S3DmR7u9j9+ePzw7v54mGNAMxG1Xscce/NatoURbV+kfopk9Dq1s96C103hTM0m1aYyprMAO23qY+t5Iw3cN47QmBhY8Bpq+6G2OdsPEtFnj7qlgw8+jymE6M1kG3PYJ0S93oXY1TPdaoW7lsAr4CNrdi8mVe2+gxzIXRdczwDbqvU48qKy9Arddt/CPkmRVRXVwG+8CJhPcIGtui5itbaca44lELZma5GcW84tl1aK5CK5NCSOVVOzJlqbO7dJEyECDohEfiAhoddTAFkNWwP5lkLsG2zuh/d3+0MYoRbgG0C+i1E8LvYAMzjTEWJHzOgf4E1xrT/K83GPnBthsC02HBQfArwKlC+52iul4M+MnRd80fO18ac9SFpvVtwG82xB0szg7W0SsVJlRFEc3r0G3Y3GYBD6vnq2tzMsHzxOXjfX4GpueRfXNvdcSs3A1MvTXhZj5uDZWQ+2vPFArrbxkA2dEBmqEdx+2pU3tp5D9AInIip0mrIz8+ZpyWg9vXXWvb2MzGx7za9Sbn8eRGTkgJQoTjyFGCtVAm4i6p8Dd118Z1QUvKQ9FkUfGzrOmZvMMfQBax5UEMkMVWHNdVnW1ko1VavQLZvYBxoykQQWaaGFEEKMwQwQiZk75EYC6J5QfrN8Z97mVNuOeAtzf/p4d0g8xThPUwqh6y16BiQppd1+P82Tw4JeARJVF+7d7DK3bDKz1lqT5hATAHyoD7Pr0iOO5eUkhFmXDw7Lpyt96wvCeuuYWB9PuA1j7KatG9rxiO9bmZla69+KQ0tNxMGzC0JAVLNgambBJ5fdLhOD5gLtZrVprVabmpgUkmywg5nwfocPezpOuGNsi61f5PkiDasgGj0DkRHmrIsP14gWE4RIFAJxiOlTmGIIrCLaeh01YNQV2kkxS7K6D9YinqsxiDZZLvL8FdHMGljBVkEqIkAIFAO6PTCgVdUqQgGmmeYZmdw1GKRaK4pGHCkgC7HZ1ZbShm8luq+QgQV+65s1Y5ww9fOhG9zi4Ad6YLipwl/hGY5GQI8nW0C8XaLjNMIuZBrEwNinN5xFD1QjGHkwxxE3beTCI+MdD9y+eVALdtPMAQN4msHAzS9PEuyZ/suLiLh3pDoqNW0itdkYXNNPBbSes4FXqPo9wu0HwUZIAACMODxUcni9xoyLXsbYfuv6jW6EPgAoDekCIYUh3scr3+MMLarDFQDYpkD0Ul53IbIeLTcA7PL2q8j95gop/eEf/rfa2pevz+nrMwAc9vv9bkbobYKuxUjT7v7h3f3j+3c//PD+hx8f3j1SQGJDVPCGYOi9BogRKSLyxjb5A0SkNlnX9enp+dfffs3r8lCPh/28LMvqE6hrrbVVaE9PT0jQrC718vn5N/cHWHP5/PWTQZn3gfhgenh8vD/e7VOK51WXvNaWQ+S7h4ONkocf76JaS6utMRH76zIzU9F6WU/aJIb0+zcDVj6+uzO6nggxUAp8d9z9+P7h/ePd4TCHQKrN4MbNeIO5G53qeGIjVzuyM783Y6shGBB3GTV0iAGKQ7o5vhdukhtEHDbPDsvAFJlp7D1fH9R7msYxd82lcGut68h5k4FvYnvCt35i2MVHAyN43oBOVXTPBxOnTlRxkCbIwX3HdANDcLOsAW8NFm72znYYOx7pcgf0s1Eq2NU0D5EASMRqkbyWNRChiUCuWoqU0kqVUt0vRImkTFrbwLhNW5PaGgdk4Gvi3lUZAZHNULbxpa920Nvb5E2OPdiOHB0AuhWGx6phy/UCSL6KnEjQq0E3zCfcpvF9LOKb19Aj47BCvMmFcSDdbeFeM6MtC7l9npvQes3kevhGHEUj6PPJOhHxzVvVeQP/965S2HhgHDUy3FbrCJQbSTe6hL+BGBHHiAccvKZzEuzTWXrNgW7oAzef6PhtKzeOrUlXmgK3w+9KtvQHoZkpoRptb+oFmAMbUxzgbfAl4g/vf/SMyo/JUeYYZzQgAjBgJA5IKcY4pRBCU6nSmip4jzGz54Ij+puJmWw1I8SrcMXvJ1G31ejzC4m6Z7IPA825XJZ1XYt3mwDgGH86cltm74cd5nRhm+r09kIaJNebBWEAuL7++nE3PewhhZhicpjrqllRUZGY4ryfUppssKNjgQ4EMj4gP4/NtDZqja5fH5OTXWDb838DJQoURsbYJYO9nfZ2p6L5sOihENOX6MiXY1/p/fgd0MB6VoO39wf6vG3YGG554/5jBq35OLdrYigKKqAVNZMW1IKyYkGgpnm1WqE2qGYVzLpRv3k9KjCkSClhjEhkxEJg3Co2giZWRRuoclW2jHohXQBW4abJbIdwYGTGu0DHQIGQEtoMkq1WA7NAyAzEiAGBoIoWNSBLCeOEaGDibmbqntQAY9M6KjLsdomdCiBCZdrmot1ueSAMjJHcesRG5Uq3QeowElTcZtK8IAf9NHmd9o97joYIJgAoA+AOcAnXoP4m+lp/ZhhBaMRcG0kY3K6Yl7nf9tRD0HglzW7oM/83NQBpryeJjIMLGYkBxxgyAKMB6P1MoV7/GgeDDjDpR4fC1TME+sEMTm/Txphfs4qRDY4iGG4iE9uSfP8BSOpwFtAMyFD6abt1kQACovYXCKNk4vSJms9XATGqSs1MgJAjYRyeim8ZBSI+Pj60VptBVQPEu+PhuN8joveBOuMV47Q77KfdFFNEJgVQadqaaJVWpRU/nczIjM3IbIDtwVaVvKyX85cvn/6P/+//8X/+n/+l5OX+/rDf7z799uW33z4/Pz+fz+d1XQyAAyEDkDbIl/wcU+DAorquK7LOO05TIOT9IXECo6ZQDQqQUNRgXf8EXqoyBRAkIVYOECLHgJCCKTPyFOLEHMI3VNw/fXif5kQ9p6fAFJl2u/Rw3B/285QCIag5uYjbWr1d8dekb1v7A1lsWZ9vnI17g+7dhOCak22d9BN7oITBAfvzIxoYIVqvPnQqkBHIx4DhRuK4yOiaS/kfOkYcL6gDx9d4BwCRkEOvL/iJR76TALpjXa+ieiGuGzJ47c/gxgX+dl+/QA7X+L91YPm3XxOJscNVhysJbuV4VRuwVVtTEbxOnm8irRsVN9FapZRWmApjiVQb18aheXt274YC7A4VKU1pmqfSoBFWvH6mAPAtmDvcwkhJ3SECruGrR0cDM8U+483fIY47st1wADfVxa17YkQkHCETx028ZRc8lhkimnkm+uajfA2Y8eY/L2BxP8tfPNqBZidIOtlgA+aqGsDb0VaEGJjNQMBMx4Kxrd6wZfFj4pk3j/aASVeMO8D2zebwt7SRL4RXTYYNwnb0j/TxfNfKpg+av8Ec8PIJr0j3NZbB7UZo913U0Q0HQ72mA5jj5kd0vUIIf/jDP4IN6m9I+vyj7rvQnD2gQBS4+2IogPjH3gmSjtmGjGV4nNx8bv7oEXa2eokLijoK6zDXoNaWcym1DQ8r8E7p/h10RWlbhnCbJ1DvlOyb9wYmvjiAfJ09n0heLpbEYRcgMAcKDAzIxi5zECVlZoaAhkOfrCMK9LP2BugCAKghd89Nux7Lm8LSZGgT+w26/sXc6sLD13Ynt34itG4MIh5coTcl2IstZOZFhm1p+UvdbhsAeJNk21p8VGuJANPtPVGDUvU696kzhapC2kgKlTOuAc4NZNWcYBWthha4J88IzEAMaeo9B2nCaYIQgNE6PaJgAs2oNmhmUkyyyALtAnIBqWrVWGwH8MA0TfxhF97dhXmiEJgAapa6Nm0KqIiKgSgxBKoKVU3BG8BNmtVVq+gWzwhxlBOIicSF5z5GGoixz5iDN9vHF6Yhm5Eq2qZSRehJpUPYl6np9q221V1vFiXenDRbiLH+BWdYR5p/c12Hp9+s7X48AcCmRhhKV7w5uPAlyNYri6qvTsfxSvyDV68nlPoG5m52lAZsGACTcXXHGL8DgyDrQGM8s7nMY3SiDTexLVfu3/0yEPrh3Ekr1xKgTwrQ8e09SI0nUIOtWeEmy4ErcAYY8dDvosEW+w3cTcwAFKg0LoqKASiFkEKKHEMICq+PPCJM88SNp12ZckGAaZ7SNCGaCouIVVFoQNC05ZJP55MR5ZpVSpNS61pKLiWLmCmIojRrAiI+j8Jb9xHA1uWyXM5fv3z+p3/6L//8T/+llPVw2M276XK6fPny/PXr8/l0uSwXAE9BwEgarGs9pynEGJFIzDhAiIEoMMcpEnBrqoYFQsPQUAXV56aYmvkgGnfpAgTiGBOnid0jNIU4hTmFmSnQmxa03318f393JGLsNU0kwhhoSmGKHAIBocINr35NFW+p122b9K1kLre+Lmvrn+s1s7vmTHAbXcdW88fbhpTH3h1Q2Tl1QmIC7mnd9gfsf+hjAnolE2+29rbKv5HfIlEIaUCJIchH2krOzvGBs8XoMJfM54LgZjw6FrN7Q8GWt9r2rFdYcQXcdvNIvdaz4HqUGpi4dE1NBNQVIKNDxMGusyUirtlthbGwlYilcKtcXVVh3LtjzIg5TWmuc23NDLgwvGmA/oZooQcmBSUnFl7BXN0oSVPrn8HA8njtpB0JTacEOvX95mdt5CluS2tk7begYsvJ+7q7gbJjvW5xpb+Jm5V3fWiHdgACw9/eO5wciWxpyOvV09UgpmP5201euPXIbvBoKD9HLz8AmI6p6/5ucat9QL+Do2ZxwzYwI4fB2aHdoi8vnrzCatsnCC+R7kbu+tf93uj4rD2p8RUmIt7xMlys4V8qpTHx7376/fZztg8U4AbmAjJicHuAbtfnnjGDjkG4dimO88anymN/NlMdCMz62sCNkhl3yy3rfGKtl95a85ZBcGDc/38D/V9R3eMcG3t3y//Hhh9sK4wHgvWKzIsrcpgDDoa5b29AU1I18a+D9zJ5x3d/F71y3VftQCCAYMiGrhalTZTSb3XvGN+yvX7PeunWWcCr0606W++2ZWbmBLMhgnXA6iunC39s5LT9hrvs+/WtU9VWm3t2ttZUtBZ8BXNNoTZ/4q4ONTA1VEGHuXWFHIAFpGhO1ggaoTE6kel2FyFgjCFNMUxhmiBNENjYhEysmtv710YFoaiWYrKInq2drV1c7Q2sMAMa8z6F97v44ZAOR54nZsay1LxgK82PfYxEO4YYmmFTbGpqKiplVWgg5WZqgTuyEXKXDPV0EY0IGNDIVzPgq4jmmwOADVANUa91bOub2IYee0O521+u2+HVk95GANvQbWdYnQAZkXxrBVVVEX1RFPY13hO+sXZGbo83EmK4wkjbwLfdvPwbmLu9uj6v27S9YXP9+VzASobBKAAmn1K5YdUey/Em7I/vHH+w7Qs3gHx8ZUP+PU76udXfjnVg7/cRu/87UifZ8cpO+17b4t/4OVe6DW7yABsIxaC7gzalZgQYAyeOiWPgQBQQX5MsiJimqTGnaUrThAAppZgiAgg1JD/PDBDFpNSMKxtCLmstuZQl52XNy7ourYk0a01r1VK0ts6jgXeHIy6X8/l0+vrly1//8ue//vUvpeR5l6Yp9irzWpZlWdYVsbeJGLVmS65xmmOaxhTHmGJ0C9iJEBCkWVWsSIKsyILsXVuqqk1KqaVXz8kngVmaaJ7inNKc5inOU4e5ryPtD+8eP35453QFEcGNHASh9xto51L0BtiCbT0zPuyzJ5Tg5Xrs2MUDaccxhteP98Y4+WY9bKTM4Hqv+33g1AFnO8nqbGrHtQPmdtEtjlLAhm5fLLoNVr2+J4jovrl+6gOiVxlutj04YdJLB0SI7M9qakDq5cvbDGA7jGwY19L1LB2JI26GgnbzeLtFNnDFe6YKoh3m+jfqNRy5y4q1JrW0wlDYSqRaQ23R2VwA75A1MGCiFKPMUxMxs176fRlyvgFzL+dqQ2iMQ1Z15XH9DyOjxbHPu0YK+rsdOcEVH8A1IF2f8Jru94Vm1zgx1tF1tdysmBGnbiPJtg77pzbWxXaNBele49eZdRub2y9pr48Ow6C0MzWjXnxCEOwjbfqrGd22CITGbMxGrA7Chg7yhs3tr3rL9G7u5SiTEyiiAknfdIAAqK637fJiAiJhNkKlLRBcw3d3VLguyi3i23abDLxtSxX9Vz/TABxtGqIBFX3bE91HCl6pkpHa3MBcvzWeW1gX2DlYVRwsiX8AXRXqe/cFzLUxLHCkUIjDacMAh4Wfvx016EM7r4pGl6aQ2tYqh4io4wfexgh4dSzi9aPCsUBhrFEHC6/uylrpOV9lVtjfDZih+/xxAyIQwdZwm6ZMBMzAfUTANR75JyJKOCAmbImK2ahBD7NkANgoZ3SLGOh4eOAdRCAyIlCxJthF/D0GkT+Zo5u+KRE5ALMHFi+wbPVYQLTWoFaolZqQCKtikTcZUZyOjz9ukKBVm/YiVQ+RdxOniXAPsoM6AURrwYRBCAVBDFQBCYV9ClOoHHwMjhk0NTIlEzNTMAWtZI2tRquTNneOQrPYc3M0ZMVkGO7Y9rGlWJiQmQlqaDVWQR/rKRgZAwMHMWyE0se+qEaFSdCUgnBUBMQ06TS3EImiURCSSqJNPQpYH7utFnev6yFml6dLK21jh+wmXo3PF67/G0SCGcAQqr6OcNv3Xp+gP83VHOk2/PZDZfMNve7svh/8hb28RiQZu+SKH7aYvP3gbt318n1bT6fBTN5sn3V9+vq0LCsYzGk+7o5gMMfdAKEDMgJc/46v19vtdQXH/e+jMDvQ93Z4vHgv4956kHL5HQ40f4s6Np7n5ttf3pPtTwPmAnjxQVWUAAPzFGOaZkCuTeTNPRG1r8+riJyXlquBAbEoNOh6es/qFQCK1NwwN1yLccitbVTumnMRUWkmorWZmzNKt0x3OSeUau5TEtN+f3iIqUxTjCnEqDG2NLVpzrtDQcB5N8+73TSFNHOaOE4huVts97JP3gPqN4AQY9hPkwGkGGqKvaFQRWurtTreICZKU5qmaZrTlNKU4hSnGFLgiYZU9vY6X5YUo/MJ4+PZ1rsODPCi+PAyJ7pKU8ZaMLCbJAXH8rgu9ysXsgGcm/V+zUdxIFTbflqHuV7+IRzuU4PEHbqFfqxuOdeAOtf/XNPG8/n06p4Exv1uY4A2EOWhezviCUdFbmA02M5KIkVCRPEjFjaYq6pmRMIExN4rYUxKLN0u1+dloRAJk3BoAsIEgSF2KCSEPpFUSpE1NIQMBk2sVqltUVnBMqIwNYI+861VzsSBC3M1yGsOIfh8JDDzsS8mzXIuy7Kuec31G+Mh8D//5//8+kv/WtD4X+J6zT6ML/+7/PD/xt3/9/9w/n3e9qt3tv3FXv33zUNe3RD75h+/8cB/06t5c71hqq7x8X+561/+qOBbN2rktH/vrf47H2X/6p9efCv+K4vnX71GuvXf9yxvAiv+u4da+1f+9v/I9eYlbPdkIOV/71f0/9T1ry8G3OieK0398nr99W9E0L/7Xv7rt/3br+BbL//2Sy8oz//m9XavfOsx/3PH2Tdx77/77XyrVHJzk/+lRfLtV/Dfcf3fu+83B/d4Ivtvxeq/96O+yQZur2+KFv6+Z/xf7vp/xab6j/vh2L/4l3/18X9/7P7/66t58dj/uB/Sv/n61pn0b99Qf9cN/saR/296nm8/87/84v/ut/W/EIj7u6+X9+R/diTzP+x6vVT+pYXzbbjw33v9NyD3v+054X80g/Y/+/Z5c8T8j3k7/9pN/n/FbrotWP1dj4T/26D0G7MWv1/fr+/X9+v79f36fn2/vl/fr//Zr+8w9/v1/fp+fb++X9+v79f36/v1H/D6DnO/X9+v79f36/v1/fp+fb++X/8Br+8w9/v1/fp+fb++X9+v79f36/v1H/D6vwBx5bZ2CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKMTA2NjA0CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iagozNyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNTUyMjVaKQo+PgplbmRvYmoKeHJlZgowIDM4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMTEzOTU3IDAwMDAwIG4gCjAwMDAwMDY5MzYgMDAwMDAgbiAKMDAwMDAwNjk2OCAwMDAwMCBuIAowMDAwMDA3MDI4IDAwMDAwIG4gCjAwMDAwMDcwNDkgMDAwMDAgbiAKMDAwMDAwNzA3MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAwMDY4MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA2NjIgMDAwMDAgbiAKMDAwMDAwNzEwMiAwMDAwMCBuIAowMDAwMDA1NjcyIDAwMDAwIG4gCjAwMDAwMDU0NjUgMDAwMDAgbiAKMDAwMDAwNTA1NSAwMDAwMCBuIAowMDAwMDA2NzI1IDAwMDAwIG4gCjAwMDAwMDA3MDIgMDAwMDAgbiAKMDAwMDAwMDg2NSAwMDAwMCBuIAowMDAwMDAxMTczIDAwMDAwIG4gCjAwMDAwMDEzMjEgMDAwMDAgbiAKMDAwMDAwMTQ0NCAwMDAwMCBuIAowMDAwMDAxNzQ5IDAwMDAwIG4gCjAwMDAwMDIxMjkgMDAwMDAgbiAKMDAwMDAwMjQ1MSAwMDAwMCBuIAowMDAwMDAyNTcwIDAwMDAwIG4gCjAwMDAwMDI5MDEgMDAwMDAgbiAKMDAwMDAwMzEzNyAwMDAwMCBuIAowMDAwMDAzNDI4IDAwMDAwIG4gCjAwMDAwMDM1ODMgMDAwMDAgbiAKMDAwMDAwMzg5NSAwMDAwMCBuIAowMDAwMDA0MzAyIDAwMDAwIG4gCjAwMDAwMDQzOTIgMDAwMDAgbiAKMDAwMDAwNDU1MyAwMDAwMCBuIAowMDAwMDA0NzY3IDAwMDAwIG4gCjAwMDAxMTM5MzQgMDAwMDAgbiAKMDAwMDExNDAxNyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDM4IC9Sb290IDEgMCBSIC9JbmZvIDM3IDAgUiA+PgpzdGFydHhyZWYKMTE0MTY4CiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"100.469118pt\" viewBox=\"0 0 684 100.469118\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:52:25.549619</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 100.469118 \n", "L 684 100.469118 \n", "L 684 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p9929f2e706)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAA6IAAABjCAYAAACBpL0LAAEAAElEQVR4nOz9y5MkybLmh/3s5e4RkZlV3X36nPvCDEgBFhQhFxRSuOS/hn+Na1K4IYQ7CDDgzL3n0ademRHhD3txoWrmnlVZB5cDyHBEUN4SnVmZGR7u5mZq+ql++qn5b/6b/6by4/hx/Dh+HD+OH8eP48fx4/hx/Dh+HD+OH8d/osP+//sCfhw/jh/Hj+PH8eP4cfw4fhw/jh/Hj+PH8b+u4wcQ/XH8OH4cP44fx4/jx/Hj+HH8OH4cP44fx3/S4wcQ/XH8OH4cP44fx4/jx/Hj+HH8OH4cP44fx3/S4wcQ/XH8OH4cP44fx4/jx/Hj+HH8OH4cP44fx3/Sw3/vF8b8p7yM//Uc9W9KQ/3nohv1r3/4/7lOk/9cRvKtETr+pL7x3ff++q2xrn/jX99/17/++Obd/4rT1e9McvM//3J+HO2ob3777Z991+BU2sP4j3nG/zFvqf+6f3x7NvOvmfv/yqN+/c7/yJN/Z4M0/5lunN/ezn8+FvJfdXznco/jLXO9/k/ssT+O7x3/2rkrf6eD3Mb6e2998/dv74DU/9hZ+a995n/7Yr9/+1//Qs7zHzvP3v6c74/9f6425T/V8fb+9D9/TGqt390f61dbxNt/9MbP/hd8VP/LP/WvfMnDB9T/H/bj/6jp2M3F2+P9JhA1Bv7r/907TmePMUZeGDlJlZM1o0/73lS5QGOQL/K+itH36NcKBiN/J294dWP7968/6/jSk7A7U2Y/p349DqbpJ9bft9PX9nvTn4zpT0jvrRmdbwawWc1KrYVKoZZyuE6jL15d+5//ZeXLp/jtgyhfCOUTtVRyqZRSybmQc6bkonfZpkTF6BgYDMYanHN453DWYayObdW/6zdbX92vefWT4/MwGGMxRp+jBWsNzlms1Xfp+42xWH1frTLM1lqsczhr5ff2a2eB/lnWGqz+XZ9r7RmY/Qkcx7CUQinta6FW/Qoy5hiqMVQsa3b8+TZ9M97GGAY/HeaNzpHjZmh4Ne4WgzMWh16zs1hr9aZ13unLWIOxtj8Lo/PfAEa/Vp0/pUIt7f7avOYwHvIMjv+u+v5SoeRCyoXc5x99fRlj+7M1xmCP5zTfOuFt0zN9TA5GyxznTpuJfajQKcd/+Jf/jm1bvxnz/+r3kffnotfgsHptqG2ptVBqwVqL8zK2OWdSStRadC7Jy+n86qvzsM5kXmRykXUj82u/Lxnifaz7kB+Go51XnqXDWNt/Xqn6vIqMqXVY6yg5kXKilIw1BmvsPud1vVor99yu1RiL8w7nHNRKqYfz6ppA10RKmRg3YpTPyTlTSuHDbeIvL+dvxvvLX/+Z//6//b/B4fmnWNnWTI6FS3A8jI6n0fLuDO9PMI0QQsX5SnaQrSEZiBVSAWMN3oF3hhA8fvCEwREChAGcrdhasDVTU6WkStkKcaukrRLXyjYXtrkS9ZXXSi0yuLkatmLYqmF6dPz0+8D73wVOJ8s4OpyFuCa2JZJTppRMrRkTHGZ04D25GlI1YkfVNmxrYVsy61LYYibGgsFwGUbO48ToA4MNeOvJKRNjpqSCwWKqE7ucMzkXajgx/9f/V7Du1XhbZ/mv/s//NcM07OsP0+dMO47z77intnWEabahHMz29730evx/PdjLtje1efX1nnqwo1nt6PHoe+XxXr7ai2UOH+wJu43Yb4jDfqvrrr2/fM8R1OvKmUpl+8tMvqdv/u7f/Nt/wz/+4z/w59/+zH//P/x3/Lv/z7/j+fkL1/uVdV3p7sBh32/3tI/3vx6AffP3pu77aN2fchu7bvuP43F4nrrzYtH9Vn2QV16HPvruX5mvx/iN8T7+Q+eQaRdXoOZCyQWLwTvHGAK//PI7/u7v/o6ff/6ZmAqfr/dvxuByHvg//R/+gZwzLy83Xq43qHA+TZymSWxYyeSciSmTUgYsLgR8GBiGiWGccN6T0kaMC9u2sm0L67qKz5PE94mpkmIh5UzWvQGD2kVYloXlfud6feHjhw98/PiBGDfGMRAGT06FuCW2LbGuK+u2YTBMp4npdGIcPcPkGEZHGD1DCPgh4H3Ah4D3AyEMeB/6sOYUud1u3G431nUlxkiMkdLWWS7EJD/r9t1ahnFgHEfGaWAcBsYhMIaR4AcGN2KNw01/jzHfuuT/l//j/56f3j3tPoc+b2MO/rcaUF39u+/W5upXc7z5je3YAVlt297ub5r9Pbst4JXfZPo1HeZvt0WH83eb+Np/6H68sWJzjdN9W/0E49RHtIe/Uf/hsE/KOQ8+/qtvXgcs/h//z/87/+3/+//1zXg/v2T+9Fvc/SfbfEQLRnyuo59RiuzX4h+7/j5M8/8B9V3M4fft2XRbWgqlVvG1rcM6GQNrxNex7fzWdn+z5EwumZIyOUVySjgL3nmC03MYS/CO0xQ4T4HzaeRyHjmNA1RIuRJj5nqfud0W5nVlS5mYEt57hiEwjYHT4DiNjstp4OEycbmMjKPHe4t3Vm18peQqazhV1nVjnhdZq9vC//jn/+5N8P/djOj5Erg8KBC1O4CrfUPbNzoOk393gHdgIxtPcwCbgbb7BO6O91cXUfeFVtVBK+WwYPrfG52YO5Dqf9N+31eU1R+b4yrYQV3/x98CogfnoVYBoTX3yfkaiJrDzyrOb2+Ot6kJW2Y9R8XkCjlTU6bmg4NQq7jtteqC1+dTPaY6jPPYejAWtRzAaOmj1YzIvi/vYyiLz/bxMMXgjMEhIKwZQTFmYhgNDYgKSPOudtBgrT1c/muQJb8Ha/f3trnQRr5wABnqWOZcdkdF50WpfSZSsTo/v+NkNPDHvsE3K1X3afP1BBEQaQSUWizOWDCW+gqMgnE6hq6No/5X67dAtEDpG4rMqwYebQOydv8eK/O8VCgFsslUMrUmyuF6m9G2BwDaQFn7eoy2vgKhzeE57mOm/Y3pP2/Bh/aztvm+dUyh8DjmfV6Yug+xOssCRMEHi3WQcyUmcViNqVhbcY7+kvc2B1k+P5dKzuLMGNPm1j6v9mfcHL2vDMFh1WMM1oGx8ubjxlqKnM85g7VQsiEmMcTWCCgD+vqXca99nORnFe/Bew0slHoI6NCfgTGGlGFdYYuFlAopSZDqZXnbmc9x5fr5L3rf8rzjVljnTNoKZXC4k2c6W2oBB4QKY614KqlAVHNZqpH7teC8wVWDM57gAr54BmAw4G3F1SxA1FQKlUzBlcqWC8RCXStlKZR7Jd8q5V7FOdZXLoatWHzxmIeA3waGwTFmh8NgUqTGDbMlakkUCqY6rPNgPKYaKOIxmFqgZGwssGbqnClbJm8Zg6XmCVtP+DAS3ECwgRQzbImcCqZabHWy76QMKVOGC6a+3hHa5Do/nRnP06s98AhE++7V9zSdh7uf1n/PVzbhe0B0//t9Tyq0/bnZzK/27QMALaVQchZH//UNqaPZnF/zCsC+AqKHgNvuvO5Oab+Pr0Do97MSsn6tXld03wa2AKZp4undE8/XL2Bg2Rau85Uv18/M87w7x3o/YvD1+3aN3x/WgwdBB4H7e9vPa//jV4HWDizt6/e1+611B6FY2T5oc+ZVeEH3qd0u7yCAr1DD4f7aCQ5AVNZGJadCSRmLYfCeGAYeHx6gZoJ3fCc+gLOGd48TKSVKWtlWuY7L5DifPAbI2ZAzbBG2WME4whAYhpHxdGI6nQnDQNxWts2xrpZlheArKWVyqqRUiLGw2UJMllwzuWYwBqdzrWRDdBVqIm537rcvbNtKzgNjDsQtsy4by7IxzzPzvGCM4Xy5cNnOxPPAVDylBioBGKgmUBmoZgCTMTZjbMHqnl9qJKY76/rCfZ4VRMceEM+5sG0bW9yopWCsgIhxGjmliVwnShmpZYAyQZmwPuOsx9WjT7sfl/OJd08PPcAvwe8GNpvHU+gLzBzW5GGet6Pv87ZNGt1z2kR5A4j2ALR5DUYN4o8cA9uv5m+l27na/r4DxjZF25kaEHUKRPWl33cwyg5KrZHNeQeiO8htn9/99aOdqXC5PLw5x1Ou3OfCnoSxOgYyMKUHvJuvIX6G95KwEZ9Yxq0lo7AaQLFG7+VrIFrEDyxFguzO4Yrct7Pyb4vD6diYIg5CrolcMrlEUqrkWHHWUKsHvLzDOlz1GDPg3MgwTEzjict5olZIqbLYyLpZrGt2PpKLxRIwdsDaER884+A5TSMPlxNPT2dOk2cYBIyiCbTSAkixMPsFi8dUy5tmXo+/Qc09OMDGtvn6xmE5AlHTgcTRMh7eejTIB8P5xl9ytKJGjb21X4PCfSv5Foh+vaqPm+Rbt/NN3HrfcKo5/LYNRju/7e+x1umE3zOi1iLZUsDa5ZtPhT3C0hduA+d6X6bWvhkeozu1Fmox1Jo0ar9nUxokO3gAX43Ka+PUQKjVRb5vdlWc7WRlE7CmA0fX/74BFwu1ks3r6Pmrp3AAP0fwbowh5/x6YMw+C0otmjHOPZLfHTbk/RLoaOdv9//tkUvmw1//RY3uvrn3YWrAq31bBYx7Y/HW4p3HB49zjgLk5vg1x6BtGgcgSgVT9FkcbWL7Ud2domP2zzrNHDsdZ0UopUh0LsbEum5sMWkWSM4hRlwziJqZPgYHXIu4HV7HAEF7ngKAj5uQrKSvR7atiu9lOWJOLCnhncMbg9c37M6tRBedd1iv4NmCdYZymIulZiiVqrZnd+jlKLVQaqbULAC2yHW3eb1HJFtElTfPU2mRzRbJPD4214NBzeYYI5FMAwL+7f6GFjXdn+/RZu2Z3Jbl3COse5TVWosPHqzBeY9P8rdhftuMGwvB6yooe+TcULGmYl3F+oIbIEyG8QLns2EaLcMASy7UKJkJo44sghlJFXLOrFvC3CzDaBhH2YydkTCQLFqoGVItxFpItpIHoDos4I1cZ46FFGUjXUrlmjNxAz9DvVWuyeK9vCeumbgkSirqdFWML9glg6/EArFIAMtYCV7kVImpKEDrD1iBrzoUpuJN0bVjqNZCMTqf6v71mx3oeMIMZAUWpu+H+rDpXl5F5u/XNtLstgsOAO4NIHqEUJXXTmyHMe16uyP2bUazlD1zWl+dX/9/AHJ7NnU/Z7MNb2ZE9SgHICqfBW/tD/uzaUBZArzRLyTeDuJWNO5gKsVUkikkKhuyl5hKH/PuPpsGmXfAV/VzOXz/KlP0ys/gcN/fPpUeeLRGAm6vAOT+jGs1lPaeY5Dv8PfdB9G9t9vgjhYOf6uPrDHQugNeBEiZtia3SDGyn8aaMTmy5aiMDmGgvDnWtbKtKzkltnVlW1cMsAVPcB5jJCuYcyZHydRYZ3HGMYSR03Tm8vDEdD5T8kbKx6zoSs61B6NyqqQswchCPWRE5bkt8535fuPL509cLifGMbBtC5fLiek0cr/e+fz5hS9fXsQfUt/gNJ3kOi4nLo8j54eJYfSEEDDWkmulZNhKJsXI5mAMgXEccMZga6AWR82Wmp0kCqrtdtU7C3hKLrTtvmRHToZtLdQUiUth9ZnRZwYFor87VdwbMdy/fvrMlpLsA04yrFYD08FbxsEzBof38nPX1+K3J2t+CMg8aEGUPoW7D9LgnPn26yG4XwFTdM6ZClZtxHHO0F1WqpG95FV+4NWaM1QSBkstjqJ7rz2AzyMQPWZK6cynQ1LqDQwgH/SWB9Mup1JyUr/bUqvt4NJg+/sa9m3YJOdELQXrHMaBNV7Mp5VN7vWofW1PjgGr3S82xlCrpbGqalWW48EnO/ruO7gVm2vr8VobAxGcBWslmN6CGs0/PM4vZw3eO8IgjIFhkAxpCIHgHd57+b13cr2pUIyw0bYYWZaVeZ653+8s2/wdDPldIGq60Wso3mBkoqkxr6X0QawayWlZlyPQ6z632c/dR8aa/ScHoNRHsr2jeUCIN/R6ah2inf2hHhdgff3t4c3NLzgC0ONmdPwcyToeNqhXXmmb/PUrAL6n5ttEsuY1nasdpVZSzvKeQh+4faPrM1Q3lxadFifC5EK2uU9G2993AKPfmwUo4Gh0h0ZHaBt1rbKwrMU5cZCdk7nhdI6IARTHuTqnoPs1uGnP55iVa4utP6I3HDNjzR7ZPzhPX7/XqFPbxry0RfvGkVLin//5f5RzHAxFj6A1h4DdnDkMwTq8sQwhEMYB7z2pZGJOpCIbZQGMcwKonJP362KouerG1R6pxMQb5N2fn8U6Abq2jbnSVY07ANEC67pxnxeWZetONZg9mmbt/tU5nLN473vkTYyJvL4Gpq9Aqm1Ry6+Ne396VCCXt52YLSfmtDIQqNbosxKKWKeY5EwwQbLvYs2xSonpTjRVo8+8mitWjXGlkGsmlfT699bhrNevCi6b01yh0+v7fNLncZjHRyDeIr+NIi7g0fWIvTVH598c3v96AwI6CG2vtgE55/RZyjWEIeBqONDSK+H69tOwBoZgJXJbK6k0IFowpmJdwXqDG2C4GKYnw+ViOJ8sUzDYO8SUWVLugbBqKrkKeEsJYpJgyDAahtEQwh40afbCYIVyVzPFgBkcxjucN+JYediWTJ4FeMwx8yUX3Fopc2F9SfibwVaxjXmtxCiL3FuDc2BdwfgKFmIubKWCrQyDIYxqu/Nhm2kBglrJRajt3hSyelXWWnCapad0aqA4xG/bFH2SmJoVAAvbo4GPo+PQsgB9TpdD6PGr5VWb7eCAU3kNRPtbG9Bpp+mBDv1Kc2jaenrrThoI3oGNrI8DcGvX1B2drzfW4/W3jEjL0LavR4Ct+9oBgLcAVQVewifeCuFWU+VFpRjIpgoINZnN5H5OU5tjqs6kru1+L2ig8wDY6SC92Z12e7sNaAEn8+oZqw3HYlEnzzR/yhwokabdtlxDG7fGfjm8sOxZ5/bvg7/VmTJqU177HUjgrgqTgVwpVpgKdUtK7StsaSPmSEqJr+PB7Silsi0rKUXWeWGdFzCSVQ0aMKsaTBOarWQTvfWMw8jD5YGndz/x8PQEJlNqIpeotMJN55xV59vp1wOrQB1/AcQzy/3G588feXy8cDoNbOvM09OF8/nExw+f+Zd/+YuCB0ctUspxPl3kOh4fePrpwsPThTB4nHfkUrjfF273RbK+JWNNol4co/d4azF1gOSpyQtjLZX+DJwxGFdwVvyxlDIpF0q2xE2yRhsbtVSccYw+MroN7wM//13hLe/wT7995OPLVXxxDR57ZwnOcjoNvHs48/Rw4kRg8Jo97PaF/rX7VEc/+LD+94QOsl4Mh7PswfSvz9HXsGKBeqD86qax24m2jvb/0Qzyq/nKPpeNceIj6Vdz8FMlSab3rIF3079Xh7DjAfN6XL7jDtdSSGmTfb/omFe3n6rbWR0fg8z5WiiAr0Gvo/TsZzXmYAPlw1/jBYsxDXiizE9lgZnd73kNYpu/WHafvQFR9UuqFYfYoKDSmX3PtM0vqR0wN//eKhhtvuIQBIDKa2AYAj54Qnt52eNTzQJGc2ZbN5Zl4X6/cbteWdPbrBb4LhCtWo9kMCZ3gw37ZH4dyaz7w1Fnqxnu/U/qYWIZAZTW0CqvTANMX2HRTj3QqEPfro/g7LBUvv7ZYRf95h4PJ3q9CR7OuJ9DncgqWa/OxjlEOGVPOGYSd8enbcavIuRfHw0JtU3OIgCpBQDaQjUVo2n8Qos2t0xYYa8DbGP1epOXse1uj/5N25h1cje3qqrz2gGoxXupa/MKQp0xOGspzuFqxelzstVhStGNes+Uu1oxWt+3P8evIvWNNqtRmorebwOjpWVBD7WlfQ7IU9RqvDeHupTMh49/IeV8qMWjT5V2We2cEuwzeOvwVoDoOIz4EIg5ssZIypliKhWj4+UViOqpixqsBkQ7CD1G8lpdrWTCnHM4LyDUOYv1mmU1skGXAssameeFedmErlsBbKd0OAXPzupz804yul6MiPca4Qrhm4ypa2DYyue3a/sajL5tF14f13ml5jtjCExjZvBeAlo597qinDNDGigYhJH+GuxJlLl0l/j4eQ1o11pJqdVr7nR+Zz3OFZwLeG/wZZ87Fa21TYla6Y6gq2B1nBsYt82h1GBULQdKrTpS+1h8NQjd7LTJtTsJx7rnnWFgMEZ+tteMNHqQAFHnCvAt+DdGMpRFKa8m1/6RzkqJow0VOxbsYLCDwU2G4QTjYNlKISwQ4u5kVWvAWvm6FgnAJKXcGsjVYr3HVqHjVR/w3kHOmJBxBbwNeBMoC6ShEF0GIjlGNlOYK9xyxeaKT2CTBJRqgrpVUoQcZaV7bwleKc9WbGMshZgL1kMqlkk3YSlZQEFis+E7JbyNp2BHi7GVYnIPfDTQWssByb5aA4hjXS0StnKvnQ27R71f7w/NuKMX1faTvZ65OW5H8Pl1PGhnMzQbvjtMb+1z/X1Aj9gfsefBb90BWvvlfs+Ht736R39/9wUUgDZbTzvnrj+xg+MjQ6Hi/NuuSgO2pVZyLWQkK5oNZAPVSFaqOWO722cxFPZatT3Q2YB60x7oGePD7bWxbcGvr2vvJdjVqN1ShmB137Ps80CYss3FrM2JkHIVJ8E66xWQutfgtOkGtHlFA6McnNla98B2UbCcKqVYSjLUDCVnKMJYybnVXZtvBxvZN6+fvxBT4vr8wv1FomAmZfK66T4nAQTRLagM4wlnAyFMxEuk5iK7XtsfTaBz82lZLo8xAWMDxjgdl7Zw5G9jXNnWmefP7+VZ1si6zLx7euBynpiGiXWNzPeFlCpxExv5cH7g6fGJn396z8+//sS7n5+U3WRZ1o1SPnJ92VjmyLZmagFbBx5G8IMXuiIDlJUSLWmT52eN/k9ZNGCpxVCy2IQ2NkX3JocjB0vxnuDdd4JC8OcPH6n2tV8QvGXwjseHEyVnTQhIva/V4OnXK7Pqou7rv5fJHbzdI/h8dUEHX7jPV1kj4u/Kz4SZcLCO5tU7+yM0+h79IBo9taqPt7vsbT+1tID90WfqWdFG4XVeAvi20Vo9e6bQilfY/du3B7zWQs0JqqEYJ8kMV/uVSCDJ9vuxzdYUvX5jqS5TS2NT0fD4AYB/bcd32yHXsCdaii2YajClBaL2rKy+s4+FVeC529t97K01ePXf28sY0WXoCSav/mayuKIBj+A0E6pgNASC94SWwFDmX61gjTy7nDMxRmE6rAvrOhPz9s3e047vUnM/fHzh5fZVNo6jY/XVZnZ0rNrr9V/0v+lc6W7I5WHao2/WF0mbvJWGh3tk0OwTum0ne0V+e0THo9Lsdb/mNwbGNGfAtDMcX3VfQMbsH9fvt72v3fNr8Py2eZc6s8E4qK0Y+ghi98tsGVA0g2Ky1KbVPrnrPpn16svxNuvuWLR/tGxtc3iOn99qgJ23BDzeeEoBl6FgcaaSrcFXrXU0lVzAGgGkLVJsO7XaSA0sImpygMa00ek0BNCYsho5JLPTnEIZ4SLZQyNVEp02wXFefOcwBWNakX/LJOy5ih5QQKZjxQgFtwrVseSKQwBoTFGc1HYnxZBz3DPLOuhVIgcH31K8kW7mKgcnQL5aZ3HB4LzQE52XDbxFjkuBVCvGW4J1WOvlpSDUGnHC20YVlE7RaxFa3Yk+h7YROCSjs2fBnQg5qAHqIE7roFuG7r7KNX19/Pm3F8ifGZxnHCR664wVii5Vs6JFInDTQhjG7lSXUohae1NK3etldS4bYzTL6zGGLiTQHFWZe99mgJvDXoGcRBgJUEPtOy3ZGkQMzO/j1ejLPchkmoiYotO+ePVpGmUDwDdiRqXI3xujWUS1bW1sY0wYzd5XDfTJfBP62luWxRihvhYDeIOpVq6vSObIDQY3yh8tBZ5nyZIaJxtvDYbpvcM9WqoLVBdwwwk/XvDDiWVL3O8L67qAiWCigHQ/Yt3IeHpgOl8I46k7YKYavBtwNjB/nvn8p89s2xe22517StxiZc2GjFDNTmfH4zuHJVNTJG+FvEGKMsTWZJz6fQJGYQAyDusgBPCBDgQoSku2sgC9LTibcSZjTFGbsRvMFmSuVA1UZKr9TroIWGqkVHDF4YxT0KEOUwPCppWz7KyWtuZeodRuDw8iZP3h7ntMe9Z0W2s6SDp+/+1ueLCVutHue+oODlsGs4HG3Rvow/Ttdn+40JYJ7ZnR440c36jDbsx+YmNaJvhtB6aUQo67cFeplWoM1jtc8OSmkaAGd9816qtyG/m1aX62ZFlbmUd7HnrDTaxE9BcOz0D/32yWteI0tzFtAU/rJBhovbAdGhClAUxnBLxW00s7+lfzWnOgCfdg62HuyF5ZGpNMfyb3BE2k4PjIjD6p/fX2kbaNf/53fyLnzPW2cLvN5Fz4bMWWC61R7HgLig7jxOO79zy9e8/7X37hp9/9mXc//cR0CiIYNHqG4BiC2ONaBWj44cQwnHFhENql1uo18GKoBO+kTvjpkd/98jvW5c75PEkt2+nKNI6MwyDOcxCA8vT0xO9/9yt/+Pvf84d/+AO/+/0vhGHABc/L85UU/wc+/HZlud+4vtxZlw2TLedhwlzEjp7GiXXZuMYbL19upJz7+rAaOK4YoRWXSgiSzbMYajGYYnE+cJ4eeDq/I4Sx7wdfH799emFLCWMdKJsneMvgLO/uZ7VpkiscQ8BOXusa7auZWXWit3Xd/s0hkN/mRQOEos1wnCX7utv3/BbIkSBgKrmXA2CkrrhRPp0TcNPEd1xjuxUtp9GA9AEu08Foq7eUyXzwzy2t2loC5wHvQheash2MaqmS1pWW+j07rt5mMVSLlFO1UFEVPQJjmyWRsZf6O0dRD1TuwciyLFVLe0Ro6EjnPwbrjizB9rO9fOLA/jPiAzjMLpCK2hwXaOU3bZ2ID19wzhAGxzgNTNPI6TSSUgUr+iJDTAzRkZKXkggyw+AYvMy3oKJEXv3Q4L1opNCCT4eAQi3Ukqg1Y4xQzvPbJhz4DhCtFT5+fMG45k3W/uW4efWJ0JwmHaS2e+9qU19HCyWDZo1GqpWL3P69Ry5bBNtooOnwtalINeDQNy+JqvUp3J9dPURjGlg7LrLjJKR//nER0H/TnJRvnYa+wL829LrBfc/CO2cZVSSgKqjjMBLdiLRFWyo2W2wyvY6mX309LGK9mBZ5b0aj+cg94a8Oe6szFTEg2WwrMFRPsYbiBGR4K5kWZ4XuU8R3xRUBoFaFSlr0yRpVoMRgTMVqZUxzUgymBxj2eaa/1zGTpbGrQEJVaoZ8b5Bvu/k1nf395iFvfT1/+nzhtfPTPqFQKFiJwGeJeItCa+4GBBDvX53Y3ejvz7RqfWdVylRttEMFuE01uRTNRnuDC4YQhBLhvMcYBZw24HzADYEQRkKYCD50aq4ByFKbsfP6vWb2GvXUaO1NmydKN+r0DMmOjqr+Nwyj1KBamVtd4blWPn55e0P9028v3J4/EJxEc0cvao1jEINWSiJr5s95vU/NyJaSVXBCBL0EDGrdZhUb4oNsPpJBr50G1FaDc2IzGsj03nVgWKvQtWNKGOg0FKeg0lAImjkWwPuastzraGnMjkItWeagqt3JdZVec99c+kZjQ0HK1yrTOauiaTI9YlfqrpKcsuMtU24Q8aCis85ioRZKBkzBBYsdLTUY1lx4nouIKoSCHSx+MExnzzlY3HDCDmfG03tOD78ynn9i3Tbu9xfm+UpMN1K6UwHrzjh/Ybr8xOXxF6bzOw3cZAwG7wWIfvrTB9bt3/PpU2SzkXteuG2VNRlyFSBxugTevQ84s4oyYMykFdJWyYkeMTNW69gd3WGTOpciAFUXXC0ihuU8UKQm1JGxNmNNUZdmN9S7gy6U8xQFiL5dYAFrEXp8k5awtTFk9uBpMwrNJpdae/aqGyyje0qz+bV0+92f78FYtavteyxtT9V91hwdoOZttpPtP2+UrEYREyCqDmep+6X10fnqWqC7C/veuNNxj9joSFU3X52vfU79G6AIGouh0Um1JrwB0SFQS+7OWlOzkynTdh/T7XLf2g9fq7E0n6LB1ib0VHI5OGD7ffdn0J5hD27QA2ZhGAghSE1dVZaVZjyt1yxqe7GDTlfcDmr7OZs4Su14uVQFolVBZ0Xr7LV+u+91OjdrRQkFvYzkrSNuG//yH/6d1IeviXXNxC0St0TaEjllchY7Xo3Uvw7TxMPTEw9PT7z/+Sd++vkX3v38nsfHMw+PJx4eTjxezlzOJ4yxCGHIMp0eKJfIMJ4w3oPb6YfN9bLWMAyBh4cHfv75Z9ZlYhgc1lSmaWQaR4ZhENvtPCEMvHt84tff/co//sM/8Y//9r/g7//x7xjGkRAG/vrhIx/+esXyz6y3xJdPN64vN7zxPF0uDC5gsEzjicEvpC1zfb6xLKuCD/BDIIwaLK6aySv08hipw7QEHzifHnj//hfGYcLat63Kh88vvMyLAEsrIHPwhsFZ5mXFGSOAXAWnjPk6E8i+imoDVEo77/XLR0aE6DDU3OzS/nOdOioimEk5dZ805cyaEmuKWsogcyh4hw9e6NsacAjBE6rHONv3uFzkfKkkFU7bV79RH7aB41d15VqiRBUWmncDIYyM48g0TjgbFAi2TKlQZ2v5DhBV/0f8tKoliQqybMG4cqhZ5RBYdN125FwoNSkIrTiv/kf/kGbVvrXpxuwCp+37/dL0YbRgYW2P1GgtrUGpd+rbKyZSnZcQPOMYBIyeJmEzWWGBxeSJ0QuTrIpPMQbLEIR15N0BjGqXjp6BzV/Zw5IpJUHNUjftRTlhR0+vj+9mRG/XjWry4ebr4ft90Np4Gg4p+QZC7b4ptk2w1VR0DnIHoPvv9v/oxrJtjtY2QGoPXxs1pm36dt/gepR3p7tIlkepjl/93et58poKddyh+t+a/Wpfw5b9b47729dR6XY4ZxkGr+BE6xtNi6jukaA9eqSRx2zVUW0G5hBJ6Zdj9p/LSfq5muJs+33OBbZMJlFq7qqKFKHgBif1XcZbjDO6WSvueqXyKRtf86sa7DRFAF4pbVI2Q6fUObtniWRNtZ2R7rDtURc5s0SISp9nYui1rPw7URhjjGTcsu+OkJJADxGlo4WwDerKVm5sF9CpSr/osup9Xuzzd58azdDwFfDcHb6UcwejpYoCa6N4SR1CwVJUcAa8N4TgFIh5QpBIo8zfrOPbAhUGeQht3MRQleacdYEkK068K1inNW+uShTTe7zP/ZwSRFDqmdJm3zo+fLzy4bdPBGcYnWPwjtM4cJ5GnDWkLECQFr3UDKR3nlKLANG7ANFjVrbZB+eDZIsViOqA9++sM51i3iJ7xhjNjNBrVa2BcQxM4yBjkyK1ZI2yBo2yit1pdBaJ7ipObI5eFZq89bswVIt6tkw00J23nV5jejCmZz41226UNlLQGhAqz/dH4OnbOY6G5IwSd7vDLfbZBctwcoxnscM4YPAwDtRpJDxMnC4T4/mEHx/wwwPj+Semy++Zzj+zxoX77Zl5+cK2Xtm2K6WCdQ94/8Dp4Xc8PP7KdPlZ5q2KKxlUHflLJdrfuBfDLcO9wFIhGVFTGMYTj0+P/PLrBe9WSrqT48K2ZuJaiFshp0RJSZ6y2iDnHC44yeT3QKfFGXEic86SwUgVlw0uiUKvLxbbA3ZiXxoAK7nIZqv/fstlrFS2KrTGXC22VM2B0PejZnu+prJ3NfjajEYLxKHRZd2DDyCv1XFRdyApeETsn1OBtQZGdw2Hbx2CFvRtCq79GluAsgXF2r3o127v+rW8Pmcbl+Y8Nn9WV23f5xuIPkTsXl1ffYN6rgMoNfdFMsot8OO9JxBETbnuDpKmOw8nN/3VdnC57WMrtmMWqe27WdoH5SJ1/2W3r3sGWkVGSlGnvrE0hJbqgwKAxjx1RvwTJ3ur9Xugyxzot0fQ30z7ninax8XoszMtAK3BTolpyP00Bff9SbwVEjgMdymk21VaHK1ZWimtmbjGHYiWpFleEfwqa6RskfV2Y5tvbPcby/0L67sH4rsHyrsH7PKA2x4wGLaYSaWyni6slythPGGkZ5S61S1LLvtVjJEvnz5xu76wrgvLAobC/X4n5aS1bjKuwXvOpxPvHp94//SOn9695/3TTwzDiPOe+brhzUDZKnFJbHNkmzfSlqi5SH1dGHHuRIwbwxAa8t8DEmojGnXaara4AXyD0f2iBUJ13L8z6Pf7wst13msfrSM4Q3AGU+EUBgbvOQ0Tjw+PPD1I9mwIXkqmalN41TYfuehem+lt7/pqkH/J/NbgziFJ0RgcLWibkggk1lKIObOmyJqi+GlIcDVoCVDLSg+D1/Y1AyE42RsUgKaciLm1w9l37+aftvKsdrU90K+6GN7J/jx4AaLDOKkui9O9VcAoxnK9396e4wiQqjRnVoI6so6Uo1frV0FouRZnXffhW407NatPU7BuT3wc/Xp0Prevb+8RTZenYFRPhqOPa3YdD6rBUrqfMwwtCKClWV60QsDgMwyhMoTEMCbxP7Utmne2iw86zWy2PdW2fUAZPY2a3IQna8lYKiFYSgnCtLq/DUW/C0RTsq8GokVRdoBT91cz0A0INevWwGcbXHYKvW3ZTQUrtq/FPVLw+npbFMw0715+1kGt1rVZ03stmcNE6YW3qi7WOM5BH0jrkdkAbr8GVVFsEWpzuPtO7e2/e+0Y9Nqgw0b2dW1dO6y3DNMgI3oQrrAdXMs17CCsKh0p9OhJe1ZHGlQbp2PEth3Hv0U3s5wr8xJZ5o1l3VhWSHEjWIsNHj+NSqMRR6/1UJXra0jU9sLxrqjLvvnXXKm1ASR6QKNyoEod5lUlS0S3ZzX2+5NFL+IuRR2ARlOoxpC/o/5njOF0eiKXTMtWUDOlbJQSAaEVQKXVIGAc0tjC0R0nvdpmwHeq+d539bjBt3FW/0R7LhVikmzLZiKmJjF8Oqe9d/jR4oNmJoPb6zr90DOIPaJqNkredDMRg26qUFK895TqycW/zuSp8Qsh4N1IGB3eF6zbwMbOcqh1pZSNlEdyllryUtShUiGu7ykuvrzc+fDhC8E5Ju+YgmMdB9bTijGGZdtYN8koNaqy1chbrZVt24ibKGc2Gm7P4Ng9CiLzQjfPbpPodVW22wS60TbVSAWJkR6Z4xgYB08tUnQfY5JNzEkWGg2AGTX01lu8NQRrurF2BhHw0kxss1vGqKiRb0BUHDjT7Jk5Chu0zLhEOHuAxLSVDfb8j7jLt0BUfi/rrmSk5UsWMatqDD5YTqfAw5PlFDKnwfJwGTm/e+D89Mjj+195ePcr54df8MMjdnggDE/44T1+eMDEmRqeMeszYbsxbDdqBecViJ5/4fzwK9PpJ412R+kXOL8wL8883+HzPfHxtvCyRWYKyVsqDlc8p/Mj7376e37/d78Sho2SJeu6LRvrsrIua1fulJ6FCpYGgxskODMOA8MwMI0PnKZ3DOFMiitbvJOWlXpPMCfqUmABtroHA3Ol6LqUc38NYr49ShVRKEelmsKrpdDt+OFnbZszh5BJ2y9ouKzSzGcPbjZAeZhTx6cOGiDsO7Oqs9Z9L3n912KnilJZW8lqr9dXOw9t+u12rQfbvh4Xte8NyO17YPvc8vp9BxB1/Gcb1+8fLUgtAYfWF7O6SqBqOUXt97Mrq7fx28G5Me3j9+vt3+tVtVry0oGo7r9GgpRST60iJSkLdXhLkjlco9i0IRCmER8cJoh9aGIoXwsVvXqpE2VahKmVdpTjI62djmzL66xtKUZLLKu8R21fa+3yPwVFnbWcx5HkEjatWmYDUxgx/qSD12adIRsjQmk1k5eZ7WZYB8saKqtLbC4SbSKSyDVRSuW+rKxb5BYG3Dhhh6HJfJJqYU2ZTamPWEeKmS9fPvP582e2bcMpsL/dZl6uV3IvAao4ZwkhCGU3DDgspEKskbgm7teZ+bqw3iNpK5hiRGgpBE5T4OFhZDpNjNMIJvPxwyMfH89S46lj7AaLC0K9djaoQB4SrKV0X9S5SowLz9dnvF84//4XLbn5ahmlSo0VrIhGoiIzpVTWOfH58w1bDafhxOPlicfLE+YxMA4S7CwKKNdNVEyXZWVZV+ZlZYtRs5Gtj7DMdVGwl/mdkwTu8uH7pGUs0stZbKaIviViEb+p+Xatx733rovbjEPgNI0MQ6DWQi4imhVTklrlruLdQHQTqtwzhS2Y25Nc1krW23stIZIX1SgYb8Ev2Yv/+unjm3O8lkJOUWyCbTRcfRWxJ6ZkivpntfcGVT+obxPKdFNA2piMzjVtk720p9mitoZfZXybj05T3y+QDUJ7PfjcqG3QkjlnKuPgOA2e81nYAV6DE9Rd18JZu/cLTSIYWVQ921lAabYQDiWULSjRbGrtTJHOQikZa2EaA0OwzJuDz7y5f34XiNbs6Ep73Skq+8B+BU67vL1G6cWi7fV2Yj+bUpSC0b6p9k/dwUfPfrWH0f5EsxdFfm/M6yJb39VFJfvR2l809acmQzwO+gqBEER+WOq/hFaFbQQtiYiYar+yzQ3Z79C5bWI9Ov3qF3w34gXgvNuBaN0/offztPsH9GdR2pjX/eeFPZqLeVXD0ifAMaLaQChAtaRU8LcVaz0Zw5oTJSKLTpVihzEwDWJcpY9ROty3LHRrnKgGamS4H53WJEhMmvMKSNidL6N03IrJwtU3oNElvdd6mCt6T9YId74YqW0sugm+dRhjmU5PurD1adZESvOuxqpRPZlDIp5QzYC4N/uY2pYJay/daFqQo9fxdKOkRkC/br3pdhSjmSrFQggDQxik2fboCIPMceukjcegTrZtIKwi1JYYiVmcnm3dKNVglcYbSqBUjy9eaYyatW5RfH9idFKHalwBq05FbcqrAVdWSAPbltnWKBRtN+D9iJiot4Ho9Trz6dOVwVlOwbMFz3ba2LaBaiq3eeG+rGxJ5kepe5DJIHUXJUnQoWVEG93WWLO34SgSUd83L80IdgG9vabcdBBqCEo9GYNK4g+OlBLzvLIsUZ1MDziqZsiNc1q/64QuZU2v3wlNnde1wMjuEH+dES0qU9my+h0EaMBJHIUsGWdTdvaIgV//6czf/W/+7bdzXM/XIuIpyatUEYrzwXO6DDy+85ynzHnKXB5OXB7fcXr6hYef/0ve//K/5eHpn3DhAeMfsPYE9gRmoG53snuG8IKLMz7doRqCvxD8A9P5Z06X3zNM70kpsqWVzDPx/kdu9ztfboVP18in+8o9RlYq0RkqDls8w3Th8d0f+Pl3/5bxlKjcKOXGMt+Y5zvz/cp8u3G/35jnSF4SJWYYKvYEYfJMpzOX0wOPj7/y9Pj3XM4/s203lvUz2+1K+nwnfrmTnhdi3ohr1IyGkSBRzqQo6p8lH4N7bx9JN+CCRJFbLeqrh9Jt0MHl1++bKE7bA4/vaQGzzkSyh/MdAhMNQElgWIKnubY4jdkDpYdgmjlcmMmmA0hooEUc1fZXrebUHDK+/ej7DBp4OwQ8vz5qu+9213S7fjy+7XH6ekgNjVklQeZkgqx7q+NguivZ34F5nWV8zYo6fP6r+lRtT9KAaCmqgl6FxqsBKmdEPCWvkbxEtnlluS+ULEqaPgTCNBDGgB89LrT6R23mYvfgIHa/ruZG1F2cogeZ90BFFUqg+mP0jDA0gTuyBElMQUSMlC5qOkh/+7DGcBkC0RiSiSxFbOjoBwY/4g+AOQMJmOPGy3zltsxEW9kUiG4hk0Ih+0q2hVQF4M/XG7d5kVIg78BZqgLRJSVu68pt3ciIrUi5cn258nK9kmLS1hmtvt7sPiniL3prGXyQLGWBHDN1kyDd/eXOcltY7xt5TZDBW8fgHNPgOZ8CD48nzg8Xct5493Th4eFEcK7PZeMNxjcbL/WKpWRS2agl46wTgTVT2eJKSc9YH/i7t4QVECBatoJ1WhPoVAndwkriS7kTt8RpPPHu8T3vnmaGMPJwkvldirR4m+eFl5cbL9c719uNl9udeVmIMbElAZ60wJUGnkrOxJj215bYYtJ+r/lVi5paRTBMOhHwOklkdh/ce8c4DpxPI+M4yCfmRKqZmOV1BJ65scT0OdYqY9sEFpu/Lwkmof461/qP2h4wl+wu6ocZ0preHu9aO0NJ2E1ObIAC0tqykUaowNXVrsfRAlulaMmSnq+1Uml9Qhszagehh/WOAM5dt+MATM2BqlvRcXaaC5PnbS04gzDPRs/pNHA+D4zjQPCtnErZjxo4kyBBYBhkrFOMpOQUdBYoWRleKvRH85GhdRt4zRqSjKq1EHzAuQG7fN+ufBeI/uHX32k/pGaSW3r+QFk5ANFO86z14IgehF9AQWhtiYtvjH7fQNv5tOBdHoQotkn2SBbVPK8UYPCBIQwigDKqSqMR2X0UGBgjaXNTRcY7J0OiYkqhJMgerCu9iFpoH6ZvUj1i0eKFbVM3vBKE2COtHL72W3xdR3g4nHWEYaAB/7bj9M88jJeMU30VITo2Bz9mQ3vE93ANeyR4H3+h7RiJ/sfCtoqq6RACKRdZ8Jrl9M4xeI91hlRAGNxSr+mMwVeHNw6P252dBsKMOv8lSZaqR3Ne77Q92t6uvm22PTiloPwQsa60xVxFacxYNa5vHMbih8tem1UrpWxYV2XuFEuxEVMz1gWcHbBuwNoJY8dX4FpqIEROvWX6G/3Bu9Y2ReZUC64UpeTmXFjmldt94Xa9k1NlmSNQCT4wTSfGaWDQxsGuKRYHL9mecYBaBYCmJL0YkxiSnKJENas4LqVmco1saQegnepuJcKY8kJKC8s60sRbrC04YUYxjgOn08Q4jhqgKho11ObfON5ScAWYJsfl4gnOMjnH6C3jaAiDPMEhQyxyrUmjj1azi91wO1krPmjk89A/LdeqSo1WM3+inppy1p8roDg4xK7XLWtApGdG95eGvsi5gVtDqybESF2idVJDMSiYDVb6zdoesdS6zlw0OCL31OqES67dpkhWv8ORnfFQC0bdL+vEoTLWcPrl7f6KIoyiAkWIvLwxdKrO4+MjP//8M7/+4cLDg+NysZwvF6bTe07nn3l4919wfvdfMpx/JRVLzJDWzLZ9Vsfmyv3+zLLcEEnbgreeIRiGwZLTCWNWal243688X7/w5ctf+fThX/j41//AH//5X/jy5Qtr3IilkDWDshWx8S9z4tNz4q+fCr/4C49P7xnGyjBfCfcXsB+5L78xb4WXO9xuhW3LnB9ksobThAlPuNM7/Pl3hPMf8OdfMcMdMzzi7TNb+oLZvlDnFzZeyHkjp9op81oqvVuiWvmeomit8OXlio2v64fRZ9zLDXT+taxmp8yi9Py6O1zNeabPjUbvbiyEtkcdgap+3+xmuziabd33hWPd6CtA2W0wes9lP0dt9LJ9n+y08wOoax8m5rX0+99xTgsH7UHFV9d6OL7HbNmfzn5i0wKCGHEgjdEWL/SgpVzbcfwOQYFX43AozzH7usVYrK0iaFLVT/oaiOJwxpAASiHGqEq4BtVLkSCVN1Lqoorrh9va7cBhSPZ4sukB5/2dbT9TunLz15S6XHpGXymDXV5l/8xvypSOz6EUvswzcYt8vt/5fLtTs+EUKqdgmIbApGwza0VQJRvw0XeGmsxpCEPgdDlxupykdUpObNvKss4sy53ipE+nCR5XpSQoxYXb9ZlP1yupimBiLhC3RM5SW1hT8zwl8lhoVNTIfb7z8dMn/uVf/qiMFtfnQqnw8vzM9eWF2+2ZebkR40wuiXW783L9zOfPjlRWtrxwn1/AZs7nAUMlxaZujrTFCobgRbk8ZzAJUq7UKoHnZAuDd5iwg9i3jhg3tlWpuQcWkLOGbTWs3jDPApRP04CzsMw3luXOGDz3u/RxfLle+fJ85fnlxu1+53qfWdZV2Fg5yxptRdyoIkatpCg03hSz0nGz9HvNRbKMmt2TgLWwd3rZjq6/ZreatoIkgwbC4GnYolRpkyX1pbtXJ4FUYQQ1W2c1s93UjqU0Z2c6em1jI+I/h5ru3TLispWk01dHVaqw1G9LMN5ai61esqMtsWSt9A49rE+rpTPN97ct4GWPdnK34VXL5r4Got77b7DCsbSn4YKehVXb0/cCZ2QOKuvTuxbMF+HDpgdijNQx51Z+UmrvEOHUxklZh7K8nPo1Vj3glojU4NzR7+y+xhgYgv9bU/xtIGqM4d/8499zPk/tB93p73zxnpVqUczdcWphza+jmt24GQWl+6PXCaBmtxw/Yz9X3CLbtnG7z3z69BnKZ0qtXC4XHi7SO+p0ngiDJ+VITFGVseqrizAYUTVNhporyQrSN0qrM33i2EOk4fXGbaBH/nrda/udta8+0/T/QS5vR2Gsk8XZxljzmYcT7JtkG1d7CABUe6yf3MOjval6G8u631971qAlNrmqqqW0KAnOMYaBWg1DGCS7g0zQ4Lz0AcyqsmfAGVVBxeGx6uTbnWqoACxjyBWqUS9PF2+LVn8bqa+7A6hATqhjRgE5h3koGSN5doVc3xYAkCjQRQGhCg1prac8Y+kdJVGdgHUD3o34cCb4M9aICJC1hnEYmKZBgKKCOu9Mj/55FQhqETCJRmmBf8q8vNzwX16gWpY5UutNFEFdYBxPTNMoYHQMCryE4jKMA+MwkHJiWWZilNrSFJN8r3UTUpOXqUUyRlkblhtTtfbTqiKsZ1494R5UaKHq30kdqveW83nk8fHEw0WUCYdBKTCu4p2a+e8oXD49jay/OwuF1VgGZ0SVbXCUanGh4IcqmdZYSKlK9qCr+spscE5agwxBGQ6DZJ5zKYeXgPw1JrYtCu13TSxbFJEbBaDO7nN98IbBW8bBMY2ecfISFbRSr7VtmTVKVtHU0l24WopknKohIYa9GEts0aMqJMSUi1JIswDlXFRJTih9PaBlYVd12b8adQ6sqUqnkZ6lS3zbphgjmdpSC9ZkDEVb+BjO58D79+/53a//xB/+4Vee3p14fHdmmh7wwyNheMd0+j3D+Q8Y/8B2F+fsdv3M9eUL15fPvDx/4eX5mWW+411g8IFxmJjGB6bTA+tPiVIsp23lw8ff+Mtvf+S3v/yRD3/9Fz7+9kc+f/wLXz5/VAdSqXzVsqTCvGQ+PN/55z+/cHr/jAmPPL7/Ox7fPeKHF5z/wrxeiKXw5Xrj86eN52fYtsr7YrFhYLycKfYJM/wE/heK/YVifgH/iDcPUB4p95E0OOkZykpMNwlWtLLD2hwteSYtLPHWUal8+vyFElTpWiPfO2WpdIfLtCCG2ucmUJVL1voozUzAK3D3ujfzrj7fWoj0mkLTQ6bfZCQrtZ9vd2hezZz9d7YB2np47eUqxhhtEyU0eudaj17b7xGafT4A0UPckQZE+8B+O8Lpb2RE96vW1/E8PXKp/9btBGtfPck9I1v7ufp1m/379tVQetayQ0Bru7prq3+1xeCKpSTpm2u9XEA1RV5WnX8rgXPRKKDXfe5PrA3l/sz0pzRvoVL3ey+1i3P1djndnMgzFJJhURMlPss+L96e5alkPjw/s22Rz88zX14UiA6J85B5V08QzqL8baXO31NxMeBTwAavr8B0ufD08088Pj1gFeisObOp4A1GFN+9E7rrMAS2vJLyyn15FuYMUFUtdZgctTpJMmTF4UgQI+XIFje2JfLHP/6JuCbWLUpQscpebazj+fmZl+tnrrfP3Odntm2j1ML19oWPHy3GrZxvZ6bLibhFcl45nYMovuaVpIwdo3bWhYIPGVuKUGpjZVsz25bEJp8CwzAhVTVvj/m2LizLfZ9bXROlMbCQ2lVbsLYQ48LLy2devnxmCJ6XlysvLy88v1z5opnj+7wyryvrJrY3l7r75baBR5kzTbyyi1jm2k2BaUq1qteQi1A6m4BjLbnbiRboMkiA1Fvf1aBbhr82XdBmOpqdUFGlVkNtncWliN2s2pu9Brir4jfW0cG4fW333vQOq/hLZAnTYBLOefBgjafpfLTgWqnCfKlUoYVrH1ejoNNhtCe8/9Z+H+zuq2sz5pW/CHRtiX3vUFDrLFI2Juu4JXi+zkjXWkgxsqlxETagtBmr1UgwJ0pPYQqqL2Ck9Z+RcQ6tfaNtCSZNqChVO8ZIipFaxL90zjENA+M0kuredu/r4ztAFP7+737l3dNjC2q25/MqDb8X6O+g0nQgymHj679kP+GuULrXN+pWUBrgVYEOPcuyLszzwvPzMyXDfF/JpfJwfuTd0zseHx94eLgwjgNbXFm2hZTjPmEawNXoYLP0NQvtECP9gEx72RaNrj2yc6TwSLNZuvO4izApraHRmYy60EYEUd46hK4x6P03VdhXowfHsdVxxyhdulSMbZmThkP3CEwPJFBfR611tZes26CtfQIKzUloqN57ie6oilqLmEjDXKEGeOPw1uGw+KpA1MimLHNH3TgnE6mYtinTHYT2vDsYrZVGx+47c4VXtPE2F3XRGmOEmoShmO9JdBusGQUMI421Sy1ghv5cS7FQE8YGrB1wbmLwJ8bhLHUfOr7n08TlfGIcQxdIaTURremv97IpN/p6q3vIqeDcSC2Wbc2E4YYIIxXZXMeR6XRmOk1M09D7inrvGAYp/mdbgVXqAGMhxiziCsd1p45HzBvbtpBSxJimprZHF43RNuwtaJCb4IBQgx/WiVxXMCesv3AKlnEKeAvOFDXSb2+oj08TOV9wBjwVb4wKLYnBHUYYN8u6ZRHASKKg2xSAmyiAc6q6N3gBw6NkRUvdhbwaTXdZN+Z55T5b7vOKmyHGgsTqW3ZfqPmDN52aO03SWiBlL2JDwbKsEbtkYsrkItmFVh8j69w0Cyifr/ZSxrGypcIWE1vMbDHLcypag2ycCkRptsvWPVDQBdrkZxZ9ZgggTeXt8W7021KTAgrZMIdgOU2Bx4d3/PTzP/Dr7/8N735+z9NP7xjGB4x7wNgLPjzhwztKscQ8c5sXPn3+wMe//jOf/vpHvnz8xOfPz8zXhXE8cRovnKYLp+mB0+mBdZb6o/PDC3/68z/z7//D/8if//TPfPrwFz59+Iuo7a4zKWYV6zKkUtlS5r4l7MvMn357Znz4zOP7P/D3//SA83/A+xPWj1Q25uU3np8Dnz4bnj9XNqWwjZPndBlZt4mYz2zpxLyNVDP0Z1+yIdWVwkypV1JxxIxG+9s+tAcg27M9wJRXR62VDx8+kWzRMg+PsVprWnJXhhSWxh7NbhoFIEC01Ws1ZfDumHTQ2pRtd8E+axQIHhk9IK1+mphEA4NwOOch2LrvMjsINU3psYl1aHb0cA7nVGuh0+Xdwdk6GHeg1zf3wONupGrf7N8Aovn7LXNeo9sDwq2Hb3o2Wp3tPZpJB8LsILtpL3Xw2k/a9ij1ebTOvOqzqQcQbjDgLTapBoUKJVYdhwY8JVur/x0cz3ZN9dU8eB2EaN5XPVwbVZheQjE/nOMA0Bv90miwo2p0vVEqv2PCyaXyZd1Y141P88Kn+0zJcIqFcyxUZ/BTINQBb0SoBy+ZPJwDKyJ/xYAJnnCa8NNIui+kvLHEyJIia044b4Tq6y0+BIZxwK8SHN62mTUm8duc4zJcOJ1HDIF1q7Ai+gW5UEragegcybFwe7lTSsWHAWMt4zThg+fLl4+8XL9wn19Yths5SyJjWa98eangFm7LxHSfJCNWCsPJsUXL4irFJMmGe4MLFT8U/KC1xKbtS4llWTGmMA0nDQa/wkuvjphWtm2hI88GMoyhsXUEkApjJm4z8+2F2/WZwTmeX154/vLC8/XKy/XG9XZn3SJrFGGazlu0zY9t659XQLSVE+3BORH/Cb4SqlxTA6A5bcS0kVKUFao314U4kTnc12y7JxUU7N/3/VD+7YP2uayWVK10jrAG4ywuy/MImpyoQG32sfvmakMN2NUId/Yti1JbNvYYENLfidCE+N0AlFdrVqjhDUcc1+yBOXLQ5mgGpidfTBubJnAmNqnbVR07g+1gF2NVLLZ9MNA/Vy4sF9E6aPWdORektY34bSkmUky9z701VvUumlKu7lWH4GRRUau4RWIUDY+kvdWcFTXnYZCa7E3nwlvHd6m5zjl8aKIs0Dfh3sunfvNV97PeKPzw0/39ByDa/6aDpwMg3cOjPSrbZP9zrpxPV8bxRCmV0+nC5fLI48MTj08PnE4TKUbWuJJz2g16450fxG6qouvaQa9eVzPMzTrsSBvdevbnrQa8TXJjICX5/BSjrnGZIKW8bW0k0yiiLMWUfUPsgOs16GpOyl6ry+HvDxO8GLDy80bjKYcNut1f0tYI25rYosjhtwVgjQCFmBJmhcEb1mCp1VERcYtOrlWlj1rR9i0dMovJbJnLPnDHQdhVFSlVZbPl36+fGcfgNHud0WFaNYxd4Q32BdRKXJfeG1AcnYS1SYvTtU+TZnl318LsYh0Kxk0r1qqGFtKzxuHtQHBB6vSKFvOnSExJsyJWnS+LDyKnLTLyQaNwAl7HceTy8MDlfKJSOwVpWTfmZWHbVm1tsrKsG+smVJo+H62oZzoMlUSp3bUUYCPdLnQD2p2xUgup0UOswRRLrgKwKo5hPPP07hceLw9SjJXlPq35gFQHvT4ujwPYs9Q5FiG3BmcJQUY3q3DTuiXWJbHF0lsddIXclu3Rjcl5SxisbPy6EAVECwB0m8GfDWGxjKvntCRS1lZCxqkkuVNZcqG7Bm8ZBgGnORXc5Air5xQzD7F04ZpS0cx2a92jzmfda9hTKkLDKkVUyI2oKYrQl6i0to3Ree1f6izWSxbatdY9rtlhWW+tpY61ltPpbTNurWOYRjCOYS2sLmKMwRvwxhLciXH4iWn8O6bpZ6bpJ8J4ATuBmbQf6ECpkVo2crwR52fWl8/cP3/g/vkT8+cX7veZzQ3MfiSEEyGcGYYHPn154cPHz4ynEx/++ht//vMf+fz5A9typ8SKyQ6yp6RMWhPbIgGIlLQtTVy5vnzmr7+N/PmPj/zu50dcjdxvV64vX/jLn//Chz898/xx4f4lsd0LKcL8DM++YMtGWm4sV884VYKf8f7Pqk1QsGnFzs/Y+zPpeWZdUs+E5tSUbA1g2XtK7qJT35iUUvntP/zGWqNQxIZBKOMqbd/o8zknGhC11nJUgJZeege9hVoO1rMFNHdq7h7xft0XuAXxKvR9r4MZ21Sx7SvnrMGatj+00g85Sd0NbN2DnE10a28J1coQ7O6I9as/BB27/T+C1QOQRIdbgeB5sd93VvrzaO+32jNXUZ8p+y20zy37R0lWk74/omC1fnP6Q/AT+j7TTD9FzL/pwLJArNSsJrXIH5r2hoKm7NA9+jjMO9Os6Jg32l/vSFCblsJ+XQ1075+Hzt+6P4cWYOn76CH7rQGP78RacM7z+O4XwrzwMlcSM1uK1BrJ1eDuMh8KhnGaGCdDLJWlVJZc2bZIus1kC9OHD4ST43q/QMwQM+uycE+RjcrgLMMggkV+OOH8iPMbPpwYwonCJuI/3nG5XHj//h3GDNzvGX/P3OeFuNzZ8saW5LXGTeq/C/z28SPhn/8Da4qcL8Kme3l54Xr/QmHDeVU5NeBCBdsC1pGMBmyN1CYZFzEu4XzBD5YwVnkNBR+EtluTvD9rUMraSrVgg8GF9hy/Payllwy1+du0ESQWYVTJNbKsd15ewJtMrQuD9yzLIrWgeQWbCaPofQzF61qXedTWrrW2J2xSyqxrZC2bhDysrC+nwn2u9RV3AekRbynVEqWBJg3p9ZyCbaWWzWey+9rLtQtOtrZ/Tim3gkdEBKqxwlqZUgie4KXd2jiM8hrHvQWbcx3MNnsCcPvrzP3z+sYcd5ymSTLpymCquZBKJOcsQXHnOiA1xkoHhCo1tcZGmsCl0b7uzgeZR1YymIYdE7wqn3sdDhR21AGo9uAhWgagYLOqnW1Iq1b6nhNTJdrcS+daeWTDYoZCKUaZdLErJQuzT8p4hiFIfamR4HuKkaLKyeuyELeVprRbtUa4dXGQgKzdsdQbx/dt+5Ga2ja/bzaLg/HrQLSqse1wDVWjeWW8j2JHHVW0s9b9I4xm5mTz9VjjSKkwTZevgOgDDw9PPD0+cTmfRWQiRREBMe28tQO5bvRL6Rt/7cXQh+s5jF2lAWa9kbpvlG0uCTUK5nlmzZBWkbOzKpVc81uoCImMG+lTKWp2+2cAXfmu9Rw8KuXqCdp0lUWvk7b2TVZPV6WC97VwRN0L0ZfItgpYylmVba2hSc/nkgjeMASLqU0NTq/X7OBZnBiNSrT2K+ZAEzNGqCqHATavxrbuG+WuUUSv0z5sorufVvvPGiD43uSvpRLv951yUjKYgvdFNiBBCGowDpz8us9Zw555KFkoClIpYUFVap1VVbiYiTmybCvrulKoeC91t7VKD8xxEiDqhyAbgwoTDePAw8MDj0+PbNvGsszMy8y6LqzrwrZt+lpZ1411jaScJSNrd/EkETXy1CoZuJbZkHYHDezIRC6lQq5dJKTNm4LWRBnPND3w/t2vvH96T96q9nasGPuZt4Do+WnEn07UnCkpQSnibDjJpDcvdVszyyKAOoShR6ubGpT00MzSrN5VbADj6c41xnQhKB8tITrGTYDktoncfGMKuNYbyzdqo5FMrVO6byz4xTNtEgCrCjB7y52y05Vyo9tmAaApZdYtkcmQpbGzcWCrwdvW0H6nVwVvCYMoUofBMgyilCyteVRhrygZzUo21xrD5Ty8OcetswzTBETCkAh+g6qUGwzBnhj8T4zD7xnCrwzDL/jhTDUejKeVnWBmalkp8UZaXtiuX1i/fGZ5/sz2cmW731kQejFmwNozxp4Zp79yuvwRNwRevnzh86dPbOtM8NLA3tYAuZCjtGJZl8i2JHKSe0xp4/ryGe8Lf34a+elxoKxXri83Xr688OGvH/ntTx95/uvMfIvEtZIzLC+Fl5LJy8r9+YXnDxHrnqn8CUyQEJNxDFQuZuPMht/usEbJABSIScBjo7wKHmtA9G0bXmvlt3//F+ZtYRgHhnEU1Upt9xFTIm6btCii7W3KbFDRsS7+V/bsabO9vZcoOxCUl9MehUKR887rXJGgUil7FtMFzVr6Blqb2JfWsNfa11frzdloxZQ9OysUb/08BaLOH9Ujd8epAVwqkv0zlWqNOmo7a2bPkNDdjLav/sPyDs9b87w7CjREeBTeMdrDUbIWuu8d9scGhuX5vdLEf3V6+V5+/jpQLu+vxmgMUh1Io6JgqYC00+vXVjGYYqAYajaigGnl2qXm9BAkr/Q9sjbBQqfvV/9sd8Hqq2CsKfJZ3ddq+LJW+ezmpR18ra7O+x0mtHOen3/5let15uPzSjWfWXMhl0gsovSOhVgqD8DFeUqtLKmwaIZyyZElrxAq2UTePVwIVsTdSi5sKer+6DDjgJ9OuCAsCOcjQ7gwDg9Uu5BJ+MHz+PjATz/9hLEDPkSsjcRSqOtNMor6WmOkZFER//DpI7kWnq8vPD498Ph4YYsr1/szlYgfag/6hEHBoM36SvLMTaaaBCZifMKVQhgqw2gYJ/BDwXnIVf4ua8YwlYpvQUkPLvwt8A/ONx9KQIT3Al6lLYyWbdjCFmdebgnqRso3huB7fWSh4gewIXSK7870kOy19wLcUpKa5mXZMOauNaTNF3KEMPSXdV6FeqBWR6lOlWELxrTOA+p/d1/OKgi1Ul+YNRGkONEZpRs7yxC8MMsG1YQYBIwKK8oxjSOnaeI0nbicTpynM6fTJMrI0yDt1TSAUw9+/r9ff3sTiHrvOZ3O5JxY2BTQZVGbrypC1VT7nZO2Z1W0H8Tn1WCYdVhV2Q9V2Es4Ly2llHW3w6mvgWgLG0mdJmgJoPq2RmvRNXvQ7UBHZkUYFzkWos1sRpIj0k+6dttX9ZpFVT9Jn+yiOhRGRIyG4JlGCTjIXpiJSfaodV2Y5zvruqo2imZMlcYbQugMHbp9f4334G8A0S2urNu889F1w7B6sp5q7ykrNfAt4GCOILQjhT0y2q3lHvmj/UVfkPtmYUyLDDWVXImUmFL7RhiGwDgOTNOokzsoV9nsC6FFiWWP7pt+26z3/mGHwehAdt9Qj9HhzmNRQ46BHMGZDWqUMahOo0nfaYWuALlLq+e6b95VxTPUoDS57X6RRqHXIZJpvoo+78yBAxhvP6mt/jayLhvLtrHFSMwFkTNAKY8ZU2DZLGE1QNBMUlML02hslayrRG2KBiHMrlxYD9f3CnAfgHe/4L2+tAU4DrHdr56VzpUGUI8P7+vhVke35F2ExthCseD6km6LVZ5JNplUMrYkMchW6IS5JHJ2pCzP1xjIxSn1NhOTANBlk8jksi5UKsMg2c9GmRNjK4Jb1SDz24owTRg94zSKM7oJhW9ZF67XK9smmf+UEuu2sqWowFqonY3OB2ILrDO4avt87pF20zYM9c/UzlXYKUG0nlwDwV84n3/icvmZhY0cIz28/8YxXQZCPUlNbpK+bMFaBnVCmtJk3DLjsrHFJMp444hvzd+tbOpbisScqLaAE4AnvSM1UqlzJqfCkAI5DSLKkCTaJ8LYzZbYHuw6tqYwSN2qC17qJppjeFiHJSkATdLgO25Cu3UpY5Oh2kqunmoKLlVC0RYKjdpkjPTpslX6fA1OIpCjYxyl/jVoDzB5NuJQO7v3Jn18PL853tY5TuczxqwM9w1nLTUXkfBQJWVnJ6w9AyM5B0hO16pck3GZnCK1ZpX+qJiSqSlCTpiSoAhgiVlqsktZKXXG+Rf8F6G+zfeZ+/VGLYXz6Yw9nyjJkKO+tkraZL1YIASDs5m0zdxfCp8//Maf/3gmryu3lzsvzze+fH7m88dn7i8LcYuqECrBv5lEjob1Xrg9b1RE0TYXMCZgTeAUPL9MFnsyjDVjUsFkpVVrZlQTAErRMh0cvG1UKmVOlC2COhvOA0kyrMRMWRNZWxAZY8A5UqzYDVEJ1frmkqW5uyhFlgMIrf29O+XMkUxT524R+qptG9o+UTHGEhT0eu19a3sfXPl3O38qWdolxSgKsVkytVazsE210oew18ArEG0CP8a2fUm+9r3IoswGu+8NbXmVnTUjvxZj9LvpxMW/HXDRodeXfIDF463R/nfCRmlCYQarVH+9b6t0+iz9fOthrBtVvoPiBqsbWJSHoWvGCsDWoLJQpiV8l0ughEL2mQqM4cQYTgxhJIQBFzxd8LHZFw1C5Fw0y6D1gWgG2nrt5S17XOv5XUsRO2abjwZ1/zMomZQW8gbGqNN55PyYHZx+Y1Os5fzwDkxgPH3CDwGzrBQMkcKcE25dqdZRQqCGEQyspRA1QJ1SIa+V59sd/8mwxZXBe0YXJJjhHH4QlZ9iHRlLLAYTDaV4nDsxjg8Ua9nSgjEW7weGccKYIGvOSAuQmDbWuJBr7PMp18waN7jdyBSWbeY2X7jOF2rNLOsNFyqT9co8sUyTxw9GeiG6Ajbr/M5YCmGCc/Xk0TFeAtMlMIwG6wvGimCgW3faKaaRagvFJAqR7xmWh4cTKT/SaNxYulifMUbaB2WhWZtaqSWpT5KoXsCEHYUy3+t2O4OhiTXB3p7MdRX/eV45TQLqGpXTWa+AVUDW7j+3MpNA9BLcHmLz1TQY0kpZsiFrZloYm5KBbW3VvJOSnWHwopFxEtVXHzxucNoT0xPGwHmaOJ9OXM5nLqczl+nMaZpEQ2MchKGhdONSxJbVWvktfHlzvL33PFwupJjERhjDtsWeLaQUCabLYsJqkCs31l7zQ40AUWODgGtrVMCQXSxIg3FooqMdwmhRWyrRI1XUPwT4GrAzrcPHbgxF8biqem8LEtMDTaAB9SLt97LWeeaSheFo6Z0fhsGrErGWj+RMjJG4Re3bOxPjJhlTF8SPsyJ+aTQBl3PVssS35/ibQLRW+PL8kVxnnGvFvxJ1bSnpBjZpGaJ9BLtB61HKZtUUbOyQVIFLHzz6z8TYtw1XNrgWUd7yjVQWctl0AkgBe84LOU+UIlmoStaepu06qn6pexShIlmVHk00fQyAfh9tkvQ71V2oQ6KmrqfGP0WhBcQtgHVYH8TxfKNPFEgaPW6S1u5Akz3jXPRnbdF/rahl9Bra30sGa/96xGU90tqi77XIpNqiZNS2xJIiMYmYSm7n0Am6xA23GaopDEWb5GptoUOivrZaDEWLp/c6lLZgOpW37ebNWWrjroDgOKdUKHe/p2bclD7WnR5DX5z1b9ABNIAujpFYYhF9aoBM3yqUg4IriKiDlXvy2VGNx2RxYrGJSgAbIFUqmTWuzIvIpd/nO8u6smzSN3MYRoZhEIfOOwoF6w3jNIARANqUbnOJ5LqR6ybUoLKxxYVlvXUgmrM2mdaG0CRRd03F4rPF6flqLQevROqLSimkWrsjC5od9GIkvZNMoTNOFITNhLNnnH3AcCbGwu0+azuX7xibccC5k/aYqlAKrho8UhDfwGgYMm4MjDFhvcN6iTxWZ5QiLMrXZEclU6wIhxzpgab118t7BjNrL7TSpVDrKzpSo2y1iHku4ri4sRJGpcsr/SbFBLEI0M/idAtlWVVPNfs5DFJjerqM5LoH54S2MmjNRcXZqoJQUosrCuCilBwGqcFromOSDXNd/KCWn3hLHNo5z3R5BDy3MGsrFyQbUncRnRQ35vmZbCPWB0q1VCPU5BAc1Iitlmm6cLk8cbo8cL6c2bZNRJcw2BQxKYqybiqUtIkjva1UY4gxUkXOkpQSyxzJKbOuG3GLpJyoJWFNwQ+O8+DUyYaaE/Ptzse/fiZvhfm+cL/N3K7SxiWllUrC+hZ4KeQq9quQSEmVNVXtsalgu9OIGU+Mw8RQIG1WqdZtaRyjuHSQiAbxvrYsxhh+//PPxBw5nc9cLheCD1Kbtm2s68oyL6yrROGbmIRT6f9SKmsUhycVsWXFll5D6lo7slYzZfaMBsgessW9X2XU/reGportsdXgtOUFsK8bzTpIllPpXlYFdaoqTiYRXGl1kcaJGI8tFlOsfDXsTKqyA2YJ9gjYNeoYNvp8o/9tW9TWEAKgpf2a3Gv69fffDZv3QGGSV61aK2tNtx2pVNZVnCfnPL61xlL6XqmFRYOEDXhXaq/137O9ulews6oKQik0TlqNOOcJTsRSbCqYVEjLyhdzwpeBUiunhwdODxfGaSJMEpBswX1x9DYZj3VVZdOooTFLcIHJT5xOE2EYNDvjulhI60lsW3C6F6wBVHKKLLwwx2dKXvAlH/bbFi1+e6yN1X0rJU7nkfPlRCy5Z1aMtUQqc4y4LWKWFessWwGsirW4qu1qHLFU5m1j3SJ3Fs7nEw9PT0wPD9hhYMuZMi/4WvFVVLErA+P4JJTfNZJKZl0K61KoRO0f+sL1+sJtvrLGO9jCdBEfLK2Q1kquiZQ31mxgLsSyYmwhlY3xFDi7gXGSftLC/Coi0OiKZEGtCCkJYBq5PJwwWIaTZ5g81lcKsl/XKt0IUiqs66YZzkoqG/N2pZjYWQtfH3//h195/+5RHScFojonaylsy0ZcV3JMlJSwBt49PfD+3SMPD2elqA69flvmv5dOCM2f73ZE9qgGRNdVeo+uy0qtRntzDl0/Im6J2+3O7XYjpYT3EuTKkwR/UzkJQDZNN0VLVqL4u9uW2YwA6GzE1nlnGIKRFmrTwMPDmYfHC6ezqCtbr+3rNEt6mk6cTydO04lpkH6ZIq7poOyBLgFfQh+WzOjbc3zwnqfLAylnxmFgGyeWVZhs27qJH54zNSUBejk1T1TcWNMU9YXFYm0hU4mAKRLYTSniw4DTl1DAG7bafbOW4GkIxOz/kz1I13TLA+3JIMn6GiPZ22EQ8cXTFASYt3ITTUZ06KN2wqo4pQ9uVyE2EoSPRSj0y7oIRbeIqvBeouF6wKWCdiyIbOltUUX4vmnn8/NH1iTOUmsKfnT0juDySFORDbqliw8Y37TNu/bPaKD0qI7bioRb3zIxj/KActam6HEm5TulrpQKKa+kJG0ncl7JuUlCC7W003A44jHTqSo7yFQxHZlNfXE25dce0m3/PwLR9kMjjv22BYbBs4WAsR4bBuWL/y0gGmVDbdTbduZaO/jsNa6lUW3kJhqFslF2S1MPrUph1GhIz+HTZLHls7Ytsm6bfs2sMRFzJZVCas/GgMPgEtgVAQE1AJ5sLR4rTmkVUIqK7lQjqqFCZRFqoO8iGPRwttG59Co21IIAje7QgXRra1H2eXd4zvt++n0gWhvYVMqTgNJKOUYsNRudc5XotjpG1SQKjmI8mAQmU22SOkBXhD+fBTg8v7zw+ctnXq5XodAm6VE1jCPjMHA+X7g8nLsQ0TAFqilYjzjSRYBnzhu5bKQSSXllSzPLemNVfr4IoiRV3tQaxiIUzZRVwlup0q/qsqpKdxswrU+U1niF0EQJhHLhrMWagDUThhOGM7VMrNud6y2xLNt3gagbB+x46gvGVGE5mVLxFQbrCdZSSyFkVd0Doa1ZyTZUa7TG1GGKI1epu2kOdQgBb1RZriqFDQNF2z+1ujvTDLXRfp6GlCQ6m2gUeBmLcTB4D4YkPSJzxKwCfrMFk9FAWZt3AnStM7jgmFS4pvHYrfMqPjUxBI+1RcCo1rx6b7U1jzjJEv0W22E00tocCmsdXz4GPvz2xnh7z+nhkVoNIQx9TNqrtsxbWihzZMnPIiZSLRXHGCam6SRtvKphHC6czk+czw+cLhep98oSEzbbItnULUr5XZuzqbUq0gdurNSf542cco80lyz8RWcr42iYLiL3HmMh58x8m/n44TPzbWNbN7Z1ZVV6ekqbtN4KUk+LBlukH50lYXutbs5Vevv5xGTBcGIcBnyuZGN3UY4edVZb0NdT6YJtXx/GGP7wyy+UWoRK//hICEGcmFnYEPf7nWVdAJRptO8pMSbu88q9IESSInNpHAamcWAYfZfjP6rjtvKSdd24Xm+kZSFvK9t9YVk2VbV1hFBxOAqZaiVgUmohD4E6iGK6MwpGbe3KroUida1JatpwamuztgcqAkhNoQeB2r5kEBG74LReqzkqRluFpcy8CdjabqswRpaVmJIqD8t9pvff7/lX+14mASdTxXmyITCME2EYSalwY2EpG94Hpknm9ukkgK6UzPXlhZf6wsZGQjKjgw+M00DwYRdOaYFRmiiZKGjb4DBqg8YwMPiALRWbEtu84MuASdJO4vzwyOXxgel87iUZLducUta6vpmbuWHyFba5B3gHM3AZHnk8yfsnBbLCaFqklyYHVU3fMhOSco5x5SUNmLmybQZrNmzJUOXZ/a2kv8EIeE8D02nk/HAi1kRSgEGupAw1Jcy2UdwqrShqparmgdPWJtU6Uq0sMVJipuZM9Y4H70TxGlhTYl4zNmVczkJdNoFxfGReN3K6saXIsmTme6IA19ud5+sL19sL9/nKGmeMM0yXEWcL9xpFIbRkUo3EVMl1ZV4N1kHwhuk8cDoNXC4Tp1OQ1jJxpZQkWVGbMZot9c7h3bC/BocfJUi6xZmYVMQnQYqZeay4IMGWVDbWrVJN3P29r46/+/2vsldZwFVlBgqtPsXE7Xrjfr2xzitpW6HCu6cnfvn5Z969fxSQdpoIQUBi8NJ/MwzqzyvNU8CltDrbtiRaE1H6heYk/W+HYcT7gW3buN9mrtcbf/3tI2lbMUVs1TgOGDNSSNSaJOtulRmQhZ69rpFl3pjthiVRs7S28U5ox2NwnLQdzdPDmffv3/HwcNGMud1ZkMEzjROn05lpHOXenO9+dsl0dmGtdP+5+UZvHcEHHh+EuRXHiS1GKYe6z8x2Zt02Vi1dKBlNdtH9/w7ojQWlAucqSvs1Cwh1ccMPI8N0ZtA9xragEeaVL9t5gA10QMcur4vbGl7Y6ccGsbfDODBNgekccMaQtad4q4XvGM6oSJEKQ4X28lYFPKU14LKu3O93ai09mN/F6oLrw1ArndYdY/quXXk7Iwp8+vyR6yxtO4ZBGs+O6hg1GhumZRo0U9cwHBJJ3gULUDGOJrCxg7lSSu/x14FomywNTHXhCBm4bdu43p9Z1htgWbcbyxpYFse8OLwXRySXphRIR6BHINp/0iIMLZKg8vqNptJqcIRKxAEo7V/b5Gn003WbVdltEZ649luUdjJvj7rUm9bOCe+QvRrluFvJ3B5VdRtgarVEmpGRfkxZHPWiGSDlwjZQ29QUc6lsUTKiMUa2XIi1kCgkIyLvPYNshIKzlYRNUn8o9WaAqTjsLndvKsUIWTMjRqAYpPmzgg5T1emqSqktDfo3Z2ZXBZNnJIvGVgGMJRuKNXS13JYJparYkfmOMlol1XToWdUmh0aU9L+iVLGWgU0lEctGTerkZkfOUdRok/SzHaLWYFSZ39frlZfbM7f7TXtaZgnmWMnghBzIZVCVOFRdUeW2U2RdV+7zHecdyzozz3eWVegQWaXSa81UdjqurXWncagDUkpVOtEeOOreoq5do2Ms1LomHKBroWpSMFdyLMzzwufPz6xL5K8fP/Lh0wfWVQXC3jjOD08MD0OL7cnzzgWTKq5WvHUEa/VaNbNYm8aH1lFZI5SrkkglU5SGZKjSkDkEvBVV1FdN2qt5BdQre5sM0FYdUST9lzmzzollzYyDJ7iRMAWMyVAjOe80tmwKOUvtTgNwTmnEGNN7vvpBlX+d1bY8AkR9cLJRU7oOjrWGYRgkkq1qxq12R6hCu1CEs4751lrHvz6cc5ynMyVlbbMj49AUXTFQSmTbZqEazeLIiWieJbiRcZhESKduwEbcEhWLCwN+GHEh4nwmYKT+xSaszTinPedaQMFBGIwG0TIlb0DB1cyg2f8QHBjH6WFiehip1bIumW0t1Ay3lzvzbZPMdhLREExhmPSeApKx0N5o1ni8DTgTBIjGREqF4Af8MPB0OTFdLrhhwmzSHzYlzdabFtEV25JrE+9B+7J+exhj+OXde4yDy0VquoPz3Oc7d+8ZvGNwliV4FSlqfe4k6LEsq7QT2xLFZHJN1FKxVajYg2+lJ0JRC07aH8j7M/N9pubIOlspAKlKISuIsIotIgxlJRCWa6K1STN6/c45qkRdJPObq7wnJrZ162ApO+kZl7bYBYuOL6H67nWsYDDW4Z1nCFIPa+sGGWyBmjJpi8RlIy4rW5TzlqDiKd/xGptt8s4zjSceLk/gPOP5zHA6KRCdyLlyvwkw9z4w6fo7TSOn00QumdvDlev1SowbKSkQ1dYDIez9G2WvR/fdSqran9BL3bcPQXpw+4DJBZMz6+2OK468Cfi+PDzx8PDI49MTD09PXM6XzkbJOUv2fF0k23S9cr/f+/2GYeDh4cLDwwOn04lpksxoihJMzgpExYZbjHPaL1MM+LYtfDQjPsOtWvL9RtnmV9n173mMpRRu8wvzulBKIoyOUxm1TUolLontrrVmyypsHN/EYoTVKhVIBh8gJtl/spZrzMvCy/2GfQ5sOTEvGykWbBpwaRS1+sGCg3lemRcpebEfv5CyAIymDrulBesq0ylgqgM8WyhSD6fq2i6AG9oNixhPGDyn08DpPHA6j0xjICapB82lCt3WVYyvuAA+GKbgGAehWVsvWf9UIBVHTfJMtyiaAaVUXSOWYXSESQT3vkfeenw494CMERPZ5+K2RRG8y+J7RSu0/HGYGMJEcBPOjVg7YG1QdqHHGI81g9hKMRXkVNhikbKsTdTdU8pdKFL+sHagU0oip0TOIlxTcqJmRy1OfBDN1LRSOjAUZ4T+SaEW118lG1wWPYQweGEDKQAKTtqqDc2uWGknEqyVhEap1BiJBSKig1BKVQZMq+0se7BKccHzl+ub4+2c4zyOgk0aNdU7Bu+ZxoFlXpiDZ92EqRBTfNX71GA1kAmGTLWWWhIlt4TXDvys2k5Zp8J4aJjJtGxKA5993+kervpkVQPg6sgWSeR1N9w0sScRc7IGNqQWtBSp5W2Jw5ZwEOqz3HtQpeKqujvbtorWQYzKmvPK7BOdAGtdLzGQ/Z6eYPve8XZGtMLHTx8wNhM0GzqOI6eTboJeqDXUqu0IWoRJ+xHVHUA4Y3qk/zRJFC0E30FDjEIBiFFoWy3j1VL/2xZZ5pV1i6rgJDf5/HxlXq5YY5lnyzgYhhHCWMGsCnDVCWrgFsn4QAOTO8faYPp7ROBIJpJrqoZKgzsKMMiGtIstNE+yVni5XXm5P3O93zHO4/wgFKHvSBjLAxU4KtSBXkV7oAnDkU7b0umt7qIk5YajjZ17rzKduAqMpCg5CcUAWbRb0ueYZOEmCsVAsQIeWxbNGCimkGohloJLBUfRbKsWQrdouixDpSUUIlkcOh9EKc5LraKtBnvIAqCgtAlYGNNqUNUO0oIVheqkB6UmsRGYVRWQV+x3gGgFthxJfXFo3KlqvZLZpbt7gY2xFCoxRwE/RusMowQqhMYVpHajBTZK6dHtmDdZnCpSIMX8tWcpj7XUhUrNksGblzsvL55cUlfIFV7+ChSUsSnjZmROVvY2PU0FsdE86sG4NZnw3Wq1udyMoukGsdAyaHIdn798Vup+4Mvnz3z+8plt2xhcOAR69uPp6Scuv5hXXRPIBZLUHjsVCmry4mpa6ZUFVkRBRM0ukbRnWc0JYyR70Sg5rQ2N0RdVi/FTlHparaEpWeobty0xp8x6S9y+LNyuG/M9cXk4cRpH3MOIdQWQGhlpTuRJVvpuZVuxTpQSc9mFpgSIOm287TWS3WrrVKCG3ANgRQNyWE81nmqE/o31QvluNSdOetsa68EuvAVErXNMpxNx2xjGIM4OCNV3DBgHOW+sy5VUN2LZtLZIG1sbqQGy1uO91O1s64vQPW3QlwjIBW9xbiD4whASW8oqErKISnFviVS0viRjU8UPlVoMFC/g0VnG05nxfKIUyxAKi8tsW2G+baS09Ah08JVxkuyxDxXr1Ll0I96NBG21NIYTJdOBqA8DYRw4jwMPJ48dPSWupCwiRYYqe5wxnaqbyg5EeWNuy1oy/PTuCeet9LZ+fNA+tQZTCqYWbC0EK211xmHEeacN4xPOWimR8Ctxk7WRc6RkR81Syxe84zSOTCdRhgyD13rlzDV4tm3hfvOswSp7oQWTZFqJ3H6UfUODPX39t8BJy1im1OmekoFee8TOKmhtokdtrgfN5IchiDBSCJLBUKqYdUKrc9ZRUsEaVbUvhaJKjDUlaO1aDCoz8b1YOgoeRh4fn/jll98zns48vn/P6eGRMEz4MFIKrLMwfpzzDGFUpldgHAZKySyL2NVGDYbaqbs+tHZdLXintqk5txooNpqp8k2ALWdImfv1SklCK1/XlQdV+f/lp1/53e9/5f27n2i17Vn3aBGLWbjfZ5ZloSn7e+d6RnecmkLooEJp0n6h2VcRIFJaP0CtrOudkwn4DJ8q3IA1R/Vv6EmGt46UE3/57S/EtLFsM85L7b9xlmost+eFuBbWeSPllXUrko1XO2iVOu+DwbqRMElWXYK9MK8rHz5+5Hq/sWwbt2UlbQWXA74MBD8xnAf84LnNEjiY15n7vPDhw2dhUbTgpC9CsfUecFAcy5CUHSGq8uNJKItGIwveOwGhp4FpFNVP6ywOh69e2DgOjMtYV7EqNORHyzA56QWPlPdIMkVYNsuceXlZeH6OxE2CzUPwnB8GHp+EOvs9YcXWps1ag/GaldcAsimGGAa2YaDmiq0SmHJ2oFZHjACZnKMIMVqH84kQMsMgfaVbICtuUVT3V2FtxcM6gNZiUHzhbduY7zO3253ryzPrOksm3lSoWfqimixJlSDXLC1qWh9s0QEo2VKKCBz5bLpGRhiCCAiq79qCyFSplRZRJKHIxi2SloXWC3PdNKC8bizrpj5t3tkuChqnYWQI4zfj7ZwVu1qK1Kpmx+glO5tiUn9uYp5nbvOd+3xni5Ett04TknQSlp2VJBTKDqyS1RfhdINLnpRCB9gG31tCqifUWR/NJxLUuQfDeg9W6IFSo6yeqvuSMRbvvARKgJIjxQrLT4KLVfBLrQL+g+pTaC2ys0buMW4dgJeScU6y6+M4Cl3cNY2Uytctf/LfsOHfp+Z++USum6Tww8AwDlwuI+fLSAgixADSp+8+LyzrJkqRuVBLA2hOe1EKwn54OPH4eGacRl10lm2L3O+rqHNBz860TOs8r1yvN+73hWFwnE9SV3W7ioF21hOCgDjnK94VclnIJXfl16ZAKIa59qzmLrzUCmrLXpCMbHDSY9EzND693VVUBcDKfYq4vG0BCa4vd768PHO7zdrMVibbFr9V6QJVzQyNDtqbyHSazFEGv5ZMqba1v5bsZxMm6GJLAkI1RKIqWpVUs0iZb8J1z0jdWEyJLUuWSepepCNHcXVX66NSjCWbQqwZm6XeyGl63joka3XYzKopJFOINbHWRDJS5D94Tx0cpoLDCrUrg4qs9SyWtYcahh6U06hcdZ3W3ZUFjaqqVoCC/Y5Kca2VLcsYtLloqsGVpjTcMnKl9wvFtJYm+RAhaAIeWj+p9V6SYRQRAWnboAJCbWis7Zuy9ILNcj9y851eXUplWRacs8QkUahtE6VcCWpUBaJquKql+RzHjOarXr06uXpApU0sGhxvKpa6jhVU01WbM9u28vLyhZwSGMNVqVApJX737le86NG/Oi4P7/jpp/FwHZWaJGtjigCVVpEn2LkFY8z+1YhQU8qyudYcBYhSGMIBiNLEW1orCyPNnKNQY1La5BWjNC2PCyVW1lvk9mXm+cvK7WWjJsP7909YBpyRmotqrCjf4XE2k10mu0IYJFiBtdJ71Dtc0AbQXrJBznmsDx3ggelKik1wKuciUVSMSiHIS0oUAtUEMAPVjFQc8HZwyznL6XIibivj6PFBxkHqAR1QiGlmnp/Z4sK6zaS8aesm7e2ZJcPYhB9qiWxLJBdLQWp1a3Xac8ziXcXahHVR6l5cwuYkdWFOgkNmqRSbRXyyWqknV90B5z1hnBjGMyU7HBVXMzne2dYb93mVTJuXensfHOeLw4WKMcI0GMaJcXjgND1yOT9xnp7IGbY1sqUs9z8ODN4yImyCqD1MUyq4w/qpufX+K5I1/w4Ibcvo4XySazqLgqPBENeV1TuSd+TgMNVJZvM0SQ2plkWkLRJUCZkqbZpSjKToyMlTszgR3lnGEDhPowiYNWGjnBhHEZATGv0OQtsaboHIZssqQqUkio1L0ZOix1hDTnnvE6eByqJBCmrtQNcc5vs4jYxxZDxNDHUAY/DFK0NHnKOWVW3si1okU1uy0DMp4kgZW7tT9bcG3RhDCIHL5YGffso8PL3n519/z+O7n6TlmwJR6ZMn7Rcahc97CSDWWkScaVu7z4CyLMIYpN6zZURNs0x0RlFpUXQNTlod+5ozNRVu4zMvn5/56+kDFsdpPHEeT7x7eOLXn37ld7/7vZxPKa6t5U7ULGfctp7JafcbggCYMIh6aQsydqe1VkSVrdX9C75c5zs2Fsq8UteFsi6k+doFKfU23jxyznz59IGMsK2GYHSMPdVKu6vb80IqhS1nKBFnteY9B6wtQMZ5CAOcotSwtXKjZV1Z40o1MC8rt2UhxYyvA6EOTMOJaRUfct6EHXRfZhGKS9IhoVFjz4+B6TRwOgcEiFq821jnyHxfhXlyAKIGq0B05DSNKtCiGXArARRLEb1JJ9lQF1pW1RAGiw9GhSXbWitsW2WeM9eXlZeXFWclCDmeAqfLwOVxUJbA26MuyZDDWrMNoLSEirSRc9ZRXMWaSq2WFCvLktm2il1S10Kw1inQGLAt4BRFH+R+oManLKyhxqxq/dF7wExr3u83CeDkLH5MyVGrUASIliJpXFeM+jnyd8aUrgjstY9qCDKOzhkwhVwSKUnv8+Ad3lqKdVQVwpHMs9joGDP3eeV2X7ndF673mdt9Zo2RpPNjB3XwT//wD/zh93/4ZrytkSBBLYXsLKVYIOh6r6zLyLKM3LRvvLDRhKKfs5QTmeZktSRYLSLyB/1lstFs8kbxTuSTNex+nAri8+9gdM+rSp1r0VKgnrDSnIZtf0bLikrZgEV0HKzJ+mwlmdGYnt5bFU4U6rP3Vu+zqP/ZGCP1VUa0Cbs1vzWlrMBfDPX3Srbgb6rmRhUB0kbAKVCJVJLWNYm1mpeF623mfl/1YWv7EVXAbO0RwuDYYmJZoyiFgmRUN6FfbGvsg6w4Q+petsj9LovDe8v97nHGsMzCMXfOkbPUEq1bYl5WTudJHbuD/L1GfpsyaNsMW52OKGoVzZjklgDDWqUL+NYvbe+TBpZarThjxZKzISUpxL5e7zx/uXK/L0Lt9ZI5sJyxb8jQO+cYhuHVRO1AtEVIFGSlbKgpSZ+nUkg1U23FDSIl7ZIlJ0PKmZhzz/D1RdgyTVWylVm/FiNAsupMrkYie9k2sCbgMqlghylVs5kGP3is06bTThrhVluoNWJa3Wr7zxWKLxRfQUU3XLFSalno/dZQcNUDBh2Jyu+aQTnWtFSMXBMGVyvZfEelmApVFRLRe6tC9ZVzl72PnjVQhRpTXgWLm35vAawYBO0r2R6etAtoys62f1RrnSCiHSJO0bJFVWm17WNEzGOl1KzAaY9IVQWU1vpXGVWO8YAORBsYPfyN2a9TaBotiHSg5L46GdSaRa4/bqyuZU+iOqjfsyj7pnmc4CKKsgcLemyvfrUGoM/bmo305svyvKo+s6hRIGsOa11mRB/HpHSdlKX2JUbpuRqj1Csuy8r9vjDfF+b7xjAE1tvCetsIg8Ha0tWvnbXYUHAuU0MrAWjqdKgyaKVWoTBJ7WLG1QxuwDiZN01SvqRE1k2z5kS1npIiOQVyDDgXcXbD2gFnNpzdMDi25TtA1HsuDxfSthImj/MqJFQTMW3M8wtfPv+VgqrfrXe1f6U7USlVatWegOMIVOI2s60z9+vM7WVlmTeanHwu0n5hi5FUogbLrGQrvWTfaxVBChHVNju9qFapKc2Zbd0wNWCKZ/AD05iJpwTNhpjdQTJdtdtijGcazzw+vufx4SceH95xOT+xrpHn5xfK7U6piXVNbGthyYmQN/LLF7ZlkSivNVirqsHmUIOoa8R+J7JbK3z+/Ix1cLvPXG93wEhvwpdn7ve79v3dtMn3hPNeaK8xcp8XvjzfuN+0J/C8scVNqMFZ5q4wiFau1zunk2bCiszl+/3Op4/PXF9m1kWeYy8j6YZSrt12m6HZe+swoEGmTR2KTKPriqBRIBtt69XM5mHh1qrZvJyxKeHqQHVSOpGobCVj1kXUNzEi3HRfuM0zMUuW1gfpOTc0xSiNlP2tHnSg+7QXyvtpOnM+XTifLjgn7SUqhuwLZdCaJus7kHbWyJ6vwLgpnTc7UUqmaPbUu0BTxq+1kmMmRRGFSjlpP+qqqrnqHZbC7Xrl5fmZ2/WF+X6Xc6bEOIycTyecUnJjFDp2Uzo3CmqDMxjnhanSFLO1ubxUxRQJgHV1c3QPkExlK3axGGypXE5C7b2eL9zGgZtvQlKm2/43xxm4eEsBkrVk68kOqrVkYHGWUYVkYk3CMKhQi4MqWgSlStZ2mQ33KxTV9DDNAXeo3cwi0GUcg3WMzjEGQxgLzidskpZrxiqDwVmsM/jB4gfHNO2Cb6J4LRTYYbKczjL3h8ngx9abUWqZnfNY46lFQI5RbQhh/1hsSNiQsV4ye7bt4WmjFvGPUiksc+R2jTx/iVyfN+63xLpkpilo3Z7He6Nqvt+nLT6/fMJcVQPksFc3cbJlXljmlRQTJYtPtCwb833B+9DXaRM4E9aIKl0bOqNi2xSIqiBP8xflfcLac1ZYjknp+lE7LayrdCBYrcE6g/CnEpDxwUgPUNeW817PnXLRlnPymVLG4rsegrWO6/XG88uL0NCHwBQGxiEwDYFR1abFd8osaxTmw7qyrVoet8bO9ut9jq1F+zp9c/RAjFHXT4N5Vvd2aybpE62Mj2Eaud9nbsvCfVm6n1F0TxP9A01aoP68qmTWHMlpI0dHttoGx4nX0pagNQbjbC9V2h8osm5MS1btYLT9QeUQ3KptBbfPl1NYFetsar4hOM1G2w6Ie0cRDdAJBtKWLloat7evk+RLTk1gVT47xrf9FPgbNaJiVCNkA2z46DHSRZA0BFXWs9zvG7frKoqZmzh04hwLV9g72xvQzkvietu0LiZrBjLLJImZmvcIQus9ElXQYksJZ+BmrVzDlombyCuva2a+R663lS8vd8Zp0PR77qJHldIXgTF0dS5nba/NA6XyltSddGnqKtTi1l4hBA9GQGgplpQMKRpxbObEOmeu15nr810jb1abuhp+99M/8Xj5+Zsxd94xTe7bjGifZAKYc87UCIlCjolYEjELrcsNQh8Rh9ZiUiRvFWrWuozmLGtUV8F3U8UtFu2F1r5WColMa4GjY18KVTjBmCKLevIVHwLTdNbWC0i7k1QxOarAh9BSBYQWaqgYNYquuKb501U9d4quLBRTvyV8dqErjQTLz0RRo1ZI32uXA2IoW32PcI6b30CnP1ekqZXTmkNJict19AWswQz22ts9QC5NgYWWafoniwBQaxAsbVcMkvEsRRWYNfJelKIuqriRFDfN2svg7MqvzYlAnZCDVTrQN/oYGh23Wvt6pM21Q/DDtPExjQ5StTYzkpPvtC9rXC+2f3O8VXmzZUPpVMc+LHLFhY4+m8Jzq78QulPLiOYuC16rREQ3lWmn9eujUfCbWFGi5KiiZhs5bQIEVDFaNvWZZV6Z55VxCMzXheVloYx7HaLUwhkVrlKF6z4nS7c/pSZyFJEj4yzetibgieClRqdnQGIkb5KxzUZ6TCYnlBox+F6FogKWgKkeg2O9S0udrw/vHQ+PD2zrzDgFYSwgKsxbXLhev/D505/ZtivzsjDPQktsLTTillk3yYwKEJ3AGKnlU2GUZZ6J26b20pKyOAPLGqlGnDXrVdTGFRWgEUVRgwHtzZpLllrEVElJBESCK5wnxzR4TtMojqmvrGljSyvGZt1FS7cXOMcwnHh6fM9PP/3Cu6efeHh44voiol7X2wvrtrLGjRxXrApH2PmGXe64mhVUl17X1gMjCkb5TmS31spvH/5KraWziKhwu1253m7M97uAr22VWslhkECqgrdti9znyLxI7ds8L9KmKEZW/ff9duf5eW/Y7r3vLIV13bjeblyvN7ZlI8c9yFb7vio2SVSX7a5ia6xmgAtxXSU7plk9aY02iDCgtZgoQSeJTdme/ZM+fdL6xVYp7cCJyFimsuZEzJmZlZoy27KyzqJEGZVZ4ceBQbPjWYNFLQv49qCLrWgR/8EPhDAyDBNDGDHOI3Vwok7dgl+2ieVJRLxTlrdVSh/m1pIgBKZpYJomzuezaF04J850rWxaxzkrrXddFqkBVEVkg9Rx3e83Pnz4K58/fZSAxHxjvl0xteKNYZslQLGsK6Xs9e7T6cT5LO0oWu9CZyUaamqBHKXypBSpUdW64d4HXkNxpmrAF0v1gWkcOZ/OnM8nmYe+ZXwVANu357izhvfTqAHlSnaVRCXWwpIzkzNMwTMqVTRp2QHIdlmr1BznmljmgnOJGL34idpKy1bTwdJJs3incWAaBimR0nrXLRfJpmWj5U++22UXDONJ/DXnRSG0FslgDqNjOgv49YOVHqEKRL324wVJcBTNCoZBen2HwRCmgp+kR2apUWvtkvT0Jkq1SYH7LfHyvPLlk1By53siboVxbEq7mvlr7Zm+c3z89BsxLWQFOP0VX38VM2W0vc/A4AeMUQCjOiEtsNGEt6zZ14AkilaWTfopN/XrJgnT1rmlKa7L3puaoFFLOFRh95SykUuUelGrIkvqb0NjQ0gP+y1KgKsFE1pLE2stwzAwjSPTNPFwOnE5n3g4TzycRs7TiEEVzVNm0/EoeaOWhVpWSlnJWfwn6yQbHYLBub8RNX+V2mgtn+S6nHMiyjSNTKcTj4+PXO93Xq43Xm537vPMPIuoUW9t00puUL/QGsUPSf0QR7aO1OrpQajMKnDYAopNnbozc9QuGiM08AaiTaPuan1mo8geu4I0Gy5AV9Z276uuQS45/YFlqfNUyjc0w9qzoEW7N5T93yqAVVQA63vHdzOikr/SbJo6VcsqG3NKuTePv99XfW2vgOix35gLAkjnZdNCVpSGJmpcWWvhqjolipZkM2pIu0jrBCsQX96XhN+8bZllSdyWjfG+EEbfYgH68JuClGZJrNatOgGZ1tGpACBpuVa7JxuP/D4MjpQ9oYgDWHGUYokbbFtlmQv3a+T2EgWcvywsc+zjYIzh6fx7uHxv1O0+txSEHEFDuxMRa8msKbLEjS1FWaxBorxSiG4EQKbU1XFbW5gKsuBbmr8UodS2ZfeVX9vafbTMWsn6jIrBknDVSYDceZWitzhXMURs3Kib0eCTrpJgqB6qr1QnANg2TqY1RyT8KntWmwPY0ZR5BWTaWHXVRsDVt6m5ch7pkipZOtMXNdVo9EezyEoz7gbBHF/NsWkLvEWNRCDEWhHpahl12IWm2oiLgI4AtCaSUVuKATEAvVYtxU6dlIhVU7SVtgutzsdotKxnQr+u+WlRcxoQdVib92wpeza1ZcNFott3B3ZnE1jJ9juvWci3ncacCmnL3SGuugH28GOhC1bVCuRmeF+/+lxW2mTJ0p/OGEhaeF9VFMMc/iuakWwKw6Ukqe/UFi85FdkUN6GfSF3cwnKbub/cyZvHDaomN0qdpQtG+id60y+8Fon01iw0pZQ20v+Xsz9bjmRLusaw5XuKiEwAdYbujxJFkxn5/o+hW0n3komSiRT5f93n1AAgMyL25LpYviOy+gD9S4y27KpThQIyY9jbffkaWoGIoBk9t8UKDRXi/MH+oHaSYISIQ3PDGIYNqdCzGoIA6YGNqHqUfgXw9Jfz7bzHdKGeMMQAF8DoAXAqUcuK7f4Dve+43+643VaUUknJ7aC1fuZ/p2nGNM8AmPNK+31SBkn1JPJSa8O6Zqw7c/vC5BAiWNg6so+myWGaqKPuloFXckfNipL5+1wapihILgExwTsgRYeuBnYI4A8aWkfvjjRiOKCzYWeUADXbIfqDYuRsvWkgOKG1wLfKwh6DMTNe5lZok9EDKP1oOYHi+4831FYOGpR2PZqUdd2wb9QIMvvQGxNHTRdIRlEunc6Mmc96FcW+C8K+Y9t2pHs8I9W8Pzb8Wir1XTkz93YAOgIDYumwCz0LEO+8/b2ycWgNWhRikhQfAkT4+wGIQoBeu7W4chSXztOhdXgliBvPhmczKkbXKhUtF+QtI287Wm18T8HoYyGC2X0ZqgN0+/h4XH/90OjHaOANNczAGU9x7BFgldYsLmbbVtxuN7y/v+F+N93XviMmNlXzMqOUHbXSBVZsf77f7nh/f8f77R3vb294f39Hq/XYysYUat82/PnPf+D7t69Y1zvWmLBO74AyuuL+/k496Lqi936kFTw9P+PLlxc8Pz+bIUgyl2/7HM5Rp+0D/EPmckyc1jjnOf0wWM45R1O4EA3MmI6pxmCG/buJaHAev748A9CjEd1bxS3vcPuOzXEiOsWGshcb2pzTToXAC130KSfsZIsYq4wmaXw/zqa0MQVclwmXZYJ3HqrUbufqETYHVy1mIiVmSQfSZWM0evTYNxSAdPgApMlDRLk+BZqb0RSDOvFWOLUdjt7zhRp9FwMijCrrSMNtlUX+oMfXBtTKRvT2lvH+WrHeKvJG480DpHYKynJGc/HxunK/v2Hb3ujHYjFHpXAQ0xrNl7oqGYiW8+n9jt28GrqBtmOvHbXBsdYZaFJbw7pz3eGzPsAorpdOjifnKK1P9iIOQIxDrIxad9SWMaIUxwDIOW/AvTEQjO3RrFkeDMDRiI7M1HlOWJ+uyPsVrVyg7QLofDAPBouHDMgCSKF5nm9wvsJpQ4wB0yxIkTmnn68ro0MfjR7PBwdXZEMBwDQvqLUiTdSih5BoBGifrdSKXhjN0w/du3LzEaBVns8CA8fEncadBiq4IwplMIrkwbhdMQw6KdEy+P2clByAQW9WuwNHrB1UjzoumAt0tCGdM2PLUdOq0bS9Hw05X/wZAyAZjCo+c9Wi7mrjnvbZ8WEjKgBC5G5NAJiLeG0N67Zjz/VY2Pe9YtsraqVFv3Yb0xq1oisbp+p48qg7GhOYEa9ixesYAQIYTjH9oQCFbbhcvIjCQITNmbnXld4Qij8oEyyMxwXD8SCatw6RGi8HV937ThTfdVL8jn8vcN0T7W0NZ+YPKQcpkeKQAx0jvQcXx2YPugVnn1Oxn4+cG97e8zGxZGbmoLOe1LDSKvaSseWMrezYckbtFUvjZG+KkVFT9gHpgqk0DzHqhhOHEBMkKAz2o610N9VpFIhNNWl3bQUHPFynbqoXBih3o+92B2suBRodNABsmx16F2hnsxKcO0KrVRxy79Ce4dTRuMi0fU4MhTI0l40FG5CBagvkcBo9r62eKDCEN9y/PQZKJQfH3YlDVzHNQz8mA86L8ecHNV3Oe2v0ezaZdKNxe6BRAdZY9WEmwcVuMOaYrzVoHdQdiH2mk/LJ98GwZPv+pnPygVo9sangQLFYZvaH54m/p3HOKIY7Hhu904XYIhms4Z3MKn1ZrpjSjCktABygO1pzaOhnQ/+v9/jWsL4PmsoBxR7LvaiDqDOBslhTN4Awa/Iw3iM4+R70bS4kGJTtPprYYXj1cO45aXdwPdhN4xEE8BLhJPC7jY2tZGzritvbO/bNETmMDnGOSHNCnAPiHBAmDzJGOrSTrldLZmbYQGOdoDm6gbZSUP0OJ96WOjH9RUEt1VzumPumTdBGc90U2gDRCI9EN8joIPGvjahA+Hkcs0xdEITITSTGgDQ7pAQETwCulQ37ltkUloFmggDMAbQ45r/tzQxViGQPc7VaG7bM/DkIZQLOk+6v4FqbkkNKLHa5QXZUa8J76wQ1JABakfOKG4wKXgtqz3CuYZ5NJ+qEETJd0QqQpeL79zu8+46a6bR7vV4PveW8LLg8PdHZuHe09YZ2e0d9/Yb655/orSGI2HuwBkcUfuwZ8untDSjoOlm5/pfGiWTtChVGePmuCLDmE9wzajVaZ+k2Ee7m3otjbRDh3wHMunW+GehoRYmZQ7AYwAnq9pPlMLKnnXPoIqjjeYdalItiaOOd96iJpiGw/PB0xAcJmm+HgdBB8wunbitMdCb2MRwvFzwqCp02lft1NZbMKFCDpxkKINCcUTtpsodL/L/e4+MaOWrkToMmdzivy4Fy4lh3RInU39cb7rcb3l5f8fr6A69vr9i3Ddmcc1lsDU0dXYtHjJ33jlPMbcf9dsP3b9/w/fs3bOvKgqw2Mq+CR68VX7/+iR/fviLvO4L3WGNAKxll2/D1esW27QcrwdnnWS4XvDw/4fr0dOhCvUVuOOfgAo0QQ0yMcrlesVyveHq64vp0RYozvI/wjpTiDjlqqn9dLeyE/psbHEgx4H/4b/870BG/o7qO923Fn68/gNZx9xXJOQQnYAwwmx/nWMA6HzBNDs7PWK4Bl2uED0ApGaVkNqqeruEhcU9LU8LTdcH1aUFwwQBZRamC273C7fQlKcVAdsdaotWGqh3I/WiWuK7RTCdEj2mJiNEj74p97cjrhrKtKJvtxaWgt4b5GnB5Tnh6ifjye4S6iGl2Jt1K6NV05K0jbw3bXnG/VWz3irwpWhFAOSDQzgidnDticUjNfzqB5vMFxGg1gmVcj1pZbOCA1k1LCkrhgvmaiHvY98Yezylv7/TriJYhXFtHiIq460NDpwcoB+AA5886HgbcW93f2XSOaKje9eF+41BJhOuiPjBNjpcccygDs07jLe+FZjklYC8BuQaU5g9QAE6PoRkc47wmCXAJiJXmRlOi4eow4/lsTfE+HD4JXCHH4j/Af4pag3RAHKauuHY2q87MylIMuK0r1jtBClXWdtLpOu5agO/Npu5nDzT0xaF3utMLGSxkKnCQ59Rq8+N/Y6+QYxDjrDjuHcY+JZXaQY86wzk5mASDkhs89zyBMbV0AJmDkkuJwKgJ2sFOswFB7Yc0Mh/AfkGueZR8fzk+nYhG49wPqmLv1H+UbT+aTTW7+9q4SbYOuyF5Vpp0Q/xo4lNyQy7dLKE5cXI2Dh5CaiL+YyPtxw2sAGlc5mpbayPlTYS24Z0GOqFVhOoRgk093UPTgoG0PExJRW0iSvF8moBoSBVAF7BuSFBXx6a60QnOQwzZ5r/XrtijInhFCDBtwmhA2SCMhuRfj5wrXt/y0WyQ+drOGJbWbFNu2GrGXiv2smMvhX/fQXc8EURzyVPnSKfqSg2t6XCnNLFIEAC1WuGsQK3oCrgocDPjMrwtNM4yzNC4wDNfzooY6XTXdUAPgh4FLlIz2btYU8DmyXs5ipIugtIaSqtwSqTWD3qMUAsMo4L01pFrR2n1oI044fvy5sg2dF1q11vF9IMfHueo9Wy4hnaTUwYR5g4OGsvR9MVwIEFi7nhq9NChxDma0Ifi7Wz0xsJ7FpojwmE80KNZHRRdMddiAnEO6vBQvPnTscyNBQj27Bg1XakvFlv0FDBHa38g7HQJHdrqfrxvNuik2s/zguVyxfXyZPS3xVzgHPIOQNvD3OFf7vG1YT0kKw8T2QEbjAmmClx7WJRtkjmuGn9j9BTHxR/HBNg2toH4GbChQlCCFK1B1/U0yhKgOwfvEgTMFOUGafE564rbmz8aKucFcUmIy4TpkjD3CbNEgifagF5R846ysxEdETujqffOobodw4hr6JdqbWYE0BhwjwT0wPgkAK3QIbDlDocILwkeEfF6QfqrNxQbSEdjJPEOLgAhmalMDJhmj5SEpkIgRSjvK7Z7wb5XANz4vA+ohhv0LqavbGaPz/Vw5LNVcyDOxWg4xYzgrLGHuKMRBXBQd0bj7tCxzAmX2UO1Ys+dOae9oXZy9+MkmMxtU4X5c5ym0hzG4Q6tX7HedlwuMy6XCWmaEFPCMs94evmC5y+/IHqP/P6K/PoDt38kvO8Z9/sd3qnp+Wk/x0ZU/6uNqALINtGUpgdVHgDgAxggIVDnqSmsFaU3ZKMtkVKGU1vDqhp0WhwFHV3NHydWapICHcVJt/vfzH84xBR0z2ehOf6ZdndQD6s2yx/mfuO8R+oTGjpinBCnhODCyY6wKSagRt2lsyysEfUpIozc0Bi43wRvVLyMJoqGTtaOA8RiT4Ib4Ivata02pf83jagxB7xNLPxoQuU0a4M50gJn4dtaxXq/4du3P/Ht61d8/85GspZyNOUHUIlRhxLEmdNkE28WXet9xR///Cf++Oc/8Pb2ivXOjNsY/OGIut5vWO83NprWSG73O25vb0hTIv1623h+bD+ZpgnX6wXLcuGkN4bDxd8HumCGaUaaFly/vOD5yy94+fUX/Pbbb+i94nJpSGlBigaOimnSB1vmp9P62Kx/fJOnEPHf/7f/HURY31U0fH37AWkd+33FmytI3hpRR0YB1OL7vFgsB9eAy9OE61MCpOH17RU5b4CyHpymiDjx3pnmCdenC55fnhBcZPxKUWxbR0w7nCuWY9rQ0TmRCpZTmwuqFgMuz0GIOGrh5iUhpYBeM+41437b8f4j4/3HTlO2UtG1YbkELM8JL/cJXS6I0wLvJzMHi6idLBOtHWWvWG87bu8V212RN0UvrG2Hnq6UHXmvmOaA2iIlAJ+ALTSxJOiqJl0aYL0TRbE9z3tFioKUPKYUDiqzgI3LoBA3M/qrjY/FNFPn2HpH3BQxwDLlCTbyORpwtpkojpq/KafJZtT50BadFZbtG0NzOhriUQeNGgM2hWQjalWBE7AOZ9RPKQV7ycg1ILeA3AME4dBHc+9vUE96fIoeAQ6zod0pBkzmyBv9Z40os75ZMyg9KeyZEDhAvNXaDiPqYTLAi8/m0NR7m3oW9H1MijkKJZPBIVgjqgbOj4HEeEWx4YZ5lIxarXeCaWpDKn0YaIi6oxEdoDrBzYa8FwiUTsOlctrsBDGcmaHeARbAyvUNdHyHUos9lo1Ra7UxbTXgofXhvWFyJ9MQl/55Vu6njajzgFcxRNw0Q7UxYLyODMqz8dRDzMi771zo9EBRchlIejuazDES5nTHH43jMT61h5OUUOqIen24qMKCGk7Y9BjNTfXRcMXZe3pwD7Vb/gh0hTKguzHrShybaAxuvYo9hESzRRqGPkacOYpFwTQJ6sWKXCeI0Zopz2aH9My/HrUp7tnMIQJNA5pSb1NbpWFUoVY2N+pC91ZQWuXiWzNcCegeNAtwHlkauhcgOCA6oHvqOqPnyxm9relBOXDa4ZJAggNcZ0PQH196oO29C7ojsp97xb1sCNsNUT1Cd+iu4d4yslZU6cxJ8mwKSqMerJWKVhscmJOXQkREQPSKIH20ChT/N+oXTo0TJ6zREcVR19FdPzWcAOqnElGjjmEYQuBsOD0BBnY5j9NSdxY2dheNvNs+KG9y0nQHvUTxiCSeE8dz4RlU02b0YzV3ZjkKrUGbckZNAh4bRLt2B2om55Szn3PHAcQ4o5WMae2Yio73LAK0NugdpimRh5iihw29oqJ3Oag1g/r90dEr0HYrcY7JtY4Fg6BVZyPKqahClXmRvMvGMibny3ZZxRDGD63CMF/iJB4CaCvorUB7gYDmQWONKKUhbw15ryjZjAYMPCi1YNs3nlMYtb82hFIw1YSiBaUnpAAEz9Ai0nGz5aw1c2cmcOFcP84t9axsRgdqOUxiSN08C8dmOV61NQTooeMbuo1/PZzzmKYr0nRhbumSIFCEOBNESMMJ3NGCfZ6NGqtAZqNBShGbSoICBCsG4t3UMjbHVNKoP+MeU/pMHoWLghr8Woee0GK2auU00pFdMrQ4wyxIbcMXYYERuVFgr2z+WnHolSL3nDvWe7Ypc8a+RVyeLnh6fsE0XxAjG9IYAiRv6KZPi8FiJrwieu5FPZD6XT2sQf18cgGAsQE5G90JPz2PaudKbUQkwRscYhuxsMATp3CtMZqqN9KOdVDrfl5PzqJgAMAnMn5oiQaYa3uxdawEZE13f4Spd07NMArPPtzD7Xv0k6Zlo1qbXHA650aWpt1bvG+MliYshsf3OtgdkCPuCGAAeisEZVgQ52Oa+6/HKA8f17bhbntG1/yMHvShMy8Z99sNP75/xZ9//ANfv33F92/f0Hs3FssoZvh+x3mgjor0aPsK7NuG79+/4sePb3j98QO32w3rekcMdEj2zqOZ3vcsPGHatYIQk8Xk8PPSC6DCh4C3VwIpg/XC2Bw2oyFNiGlCmhdcX17w9MsXfHn7BbfbG+73d3z58iuer19wvb5gmS5wSX6qyc62wY5/f3vDeY+nL79AQP1n7RV777hcbliWO+a5Y5oqYioGjvK+dJZ/6QOb0WkObOJigCo1Zz644z5wnjr8lCLmeSL4+fSC4BJ6A7WWbwXe3dA7J9N7oVtrzR45e4uZI1AvJmMZF0wwakrTFuaKdWUjen/PuL+zEa22LtXKmkulYr4Cl2eBs1xmqEPZG7Z7xXYvuN+oB93vDfvWUXbul955BPFwUk2a1tG6GwYInx7BG23ZOxQncKJGnQzmjg34AqNb85Wi5XB6T8BZHBvR5tFbRSnCbFR01jsg4Ms4MxroVPNPGIwwhVpJ3G2vV4vkGKuYfc2Q9dEC8+EeG/W3HJ4lXNLETCsfABA7tWPypkq3/FwLtuwQNmceDYq9eItXxBHdUlvH0GAc8qHj97YcfAIoinPwIQJNmN5hZp1dCZxyKuesRwAHNeJoDDU+o+lJB7aQtg17oeyGLvnWjLeKqscPJvtPH26Jh7XrqH7EmU3BOWnm7/lvx1o4aroxEc17wRp3eNAkttVGcJ1CUn5dtXhBbdSdKz37MXwvfmLWDUnTiGqxRtRM1wi2mnPuuKif3eOf3/48mFGpyJlTNX4AK1Cs0Bu236MuPKyh9KSBtP6wCT5ujI3TTKkC77vZ/zuG9NpkYiycvXbmX9aKanx05x0Raw9m3QUgRVIZUjKkxaYgao0qSwFnm+9JPRBDFZqhIHRexdlcKDDG9NwYBV0FAQ4aaOqwXGgqkpLHNDnknTEM42aK4eNTXlWwd0M8PNEU7YXFfm/Yu2Ib8RPa+PmhaJbzuUuFthWlVkwSkCQSUU6AkwQfBDE6aO9wIQDBLpEHpHOCGaonBcpit45iXwVaFb00aFa03NGKwjWgB27sW8n4/v6Kre3UXUweGhQFBUUzJAi8CwheOAUoFb02br6FZkvLNGPSCVNImKQjIrBRVDYK933HfdtNjG/5RYEmUOIV3XWIt4bFgIfyyc0vwoniuDSH3tONggZQ+FM344QMAYhRUszpVDkNHU65pIYpdbY2rR3vhw9wP9D9scYMugy1uLZpC/Vbzp+0yEdd6mhihlvoode0KeyYiPYxIbQp6KB8Hc6Lzv20aPE9jQgYPVBkUk4tQNvt0O6wOWq+u/153qv9rPjhoiPKe03GD7I/66OAHo7DJrCnZXm2V8VYcE8qkNjzSPOLMye0HyyOYwMC0EpGLTu0VUBpVOXGxK8Brz9uuL2t2DZOJIa7XlM6wXIzssK7K1ypNJNpO3IJWBaPZfbMR9OKjoaGjqqMyBjaDZEB1DUMbbIoAa5qRarviqZiqhAD+0QgIVAp6hKCTwguwseP0RbvAy7XF+zbDdenJ1yfLobWXpHiFWmaYcJRTPMVL78keL9A/A3i7iiF09neGrUlA5UURUiAOkUvMFq60Z09ZQjxofjoqshFAMlojYVK7Zzs5dLN2ZvrqRMH+AgXkjEPxMwQMloXQCuCJyDSGpC3jvtGVN47ul464WfqHSiZmmsXAtLEqWPZM/MiRXB7/Y7b92/Y39/Qa6GJSBBMyZ/PgBl57Q6QI+z4g0OVYef7fsgwRhEHh9OUqZPuP5xo0whPrx2tsAk7AIxmebe9HoYmJ/p9ouAj41SPIR4XM2nc1wiS2bNua4cXAljiPN+fkC7btEEdm0MJvN4jn7JYniid5QUjo9L3Dq/UEMaUEFKEmBOs7mQWiBO7l0gJCwwTBCAHc6SWipor8pYZC7GSWdD7xzpRfv5+mNo5UIN4sFHM9ORxzelQ9FpR9h332xt+fPuGr3/+ga9fv+Lb968QkcMMajS0I1JLtXMap3ccUQpCwON2f7OMvYxihTyUtMvogzECCAAMnbqrDqFGXgMhXVQROaU2icaeM2prx700mirnHHyM1IamCdP7Dyw/vuL67QXfvn3Fn3/+it9//zv+4+//e/zt9wZ9VgRxRtfs5xp7gBpWMI7J1UfnWwQ5JogohwEiaHGGuzxhftkx74p5a5juGXELCMnTvdkrgSQHSGBD2tFQqkJRIU6RpggfCcL3AeoGjzhNmJcnXC6/IPgJvSqyr4hxBeBRSqdp5v2Org0pOsRIGQU8IF4Qp0jjIu+OojqXCr3z57y97ri97Vjv1F8SoDGpiBJE2/eKcAfut4D3N043W1HkqSOvFet7xnov2PaGfe/IeydzpFBuwIm2I3Da66EthXjIp+7+gBcPdQFVKoaNpfcOUTzUwLOW+gEmErQI9gwIgjiE0eR0B20eOTj4LCjmT3HfVqzbjvf7Hbf7/ZiYtdbOtUxGgc/r00XxaMHBfcoaFqnGd2hsKB2MMmpmPF7hOpvUYZLjxgDB6jEdQL4BuB1AqQ3rlgF09F6wW6zLqGNGI9q6krbuAz1qQkSKHr026NQ5/Job4l8DLCDC5wrGKAzAQVPuraEphzcDbB2ANZTeODEm7tVWY83zjG2nSd2ed0YU7TsBNgV6L2gFEPHH+RlTZja/BGtjS4itPUxjrbbEMIBks8wmeyR78M9q7dhzwXqn92ZvDdobfHem6wVq68jS4Qw+HnNuZzTdEWc4TDwJbA7G7ADKCexUY62qkvo7+QDXMmT/WAv9aSMqAwwcfPzSzbyCP2wsXN4rCyNjtD2Wn4M33g+9yilabw8F8kA7ve/QoET8bMHke9BDF8rMo4pmmhYiDzh0njEoYlCkBEwJVsQIenVGseUkb9BsYDpRsb9TPfPiVAF4oyU4nCdfm/lAkIrZPSmlLgDzQpevKQVMKWDfWRCNyVT4ZMHpEBR4qPPMYIzR0GllhI52rLUi18wHAqTGNKFpwAY6Eu6lYHIRk6/w4iExkBYWOBnVTjdIdSdHHzqaUQ+vJ4Z1FDUdbLayou8dLQONEZak4wLYCkfv7/kdfvLwsyf6GgAEbsQiAeqYW5X3jLwT8d5LhvcBBR0Xx8/VHct4UQfpgr1UvO8bbusO5wIm7UgCa/a4ecE1iFQ+mlagFXxuVuSDp2icd+sDUmbOykabPJtRu1aGZg2HsDElAIDuPN3YDhfPsUid6NXjgzhE8We21jD5epxWGnYjZyM5UEI+Z8AxG7B/z9axWXHKawpQFzpovP/ahNo7Ov5s3O9QNaPzBikVgkydCtgMjqaPjePJOvjXQyvommsNGY7naaBxQ7I8/qwByFCXwazMAWCBtEKl43DvjArJmYs7nTa5/gx3Yqii5B1l39BLHW+YmW4poXfB248b3t9XbCufMedJae1QlEY9unabMtUGdUCoglodSnHQHuEdzQq6VkOGlcyGn+roMUUfjqDuJ1MNQNCUjAhn029OBZUbeqTWygf+PPmEZeFDxOX6C/btjqfnZzy9PCPGhBieEcIVPiQ4T+rucl0wLQ4prRCXAAm432/QdeV9Xi1WyAl8IhrdhesGGiDdWUakP1gFA0ds3VDyRno4N86K0oC9VuRK/YlzQBAHFQ/nWWAHM04Y0hDuOSzISwPyDqw3/tk8ebhoRT3Y2OfOYtf7iHmuKJlrz76uKGi4vb3i7cc3tPs7fK+mAadD+nADbM2hBIfgG5vTT5YUBajz2zbT3pzrxjC36VZ8xZQ4fY0Rg3nRq6JmNmLV8m5brczSa5btqv1Yf4aLL518eY4gapp+Z2sZFw9RPbSTJh7ghMZ5uMhJFJxwymX3LSXYQ3NdoQ18xkYEi/fMhw2e11i5p4YYEWKkNKPS2VofmvfRNLIpCEcBB6VZ27ZuWG8r1vuKbd0YS/EJNXeMD0ZTeOh6TS86JshcrXj0Ru3fvq24vb/hx/evRs/9E9++f4P3HtfrBX1ZTtmQyFGI1Uozs1Loru9EUFvF/X5DzhunmY0GZYoOqSykHveXbsCZ8w61RbrGC2nzXQFXafZFg8EMzT9//rFmOx/gzFQqvk9I84z5+wU/fnzDt69fcHu/QTsQfEJ0AXOcMKf0k/fGw1DF9in7/UenWxzqNAPQIx9bU0W8vmBpisvesdwzptuKtK4IyQNVIR5Q1wHP30sgiFgq10lxgjTHwwiPzYsc9OOYFqTpGSnMaLVDtCCEHxAJaA3Yt4L39xW5ZARnbJ/o4BNN5ZbuD6riMQjJ3Yz/FO/vGbf3jPXe0DKAQ75BlkWvbCz9qrjfMu43ynN6A2ru2O4Vt1c2oq3SrKjsNOerhc1xih7TFGyQMOTbZvRna9ZHB59WZ0whIsMhUrdM5hOnTjFFTDMlCKMJcQIkJ4hGVyfI220NBXTndOy+b7jd73h9v+F2u9szR4YWwUU5DEoJyOPUc9rDxV6sjV0PKs1Au9GJ2n4szmpP99CIygH6DDAcTh5y4blullbR9+EZkLFtp9uzKiVue6bELKSEEKnrnqaONqXj3o7BYQodHyQpWgMZAXGsbRRArXavjAGcHvKwkRowkiVCjARjIw3BLtcrct6x5R3btpmL+jtEgJwLemlsRkcjqqRiK2iGVVtDMC8FsjXiwYAbE+hHFgzfv+05Vp/VRiDFaQdTBGl9NGjapbCx761A0BEECGLTdiMSHLrf0YhavQdrgOlvYia09l5hbubRe0j93zARJdUKFo9grktjsxnT8wcqzL+6rB2sWvVg6cZCgxMiq8qs2z/0c9ZV244GHI3o4KSPD9lsg+Qoc0yy/NB6Bjah08IbvDfb5CusY4d5Isk5EXNEKmF0DVGFWp4lXcOYGTUKRTHU9dC4Bpt+RWrd/AOdsWSgFNLXBuDxr0dMEy7PFxPQT0hTwJrvyKuilR0VgqwNe28YguwqHVWoIx36j+iDOZqZgUvvsA4cGth4jmiW1htKr8i9sPiQbrpKcyquip4bWq7QrNACaCHFUhuYMQoaU8HxbtIAqO90wh3UZc8UoKodaO0I6SYFiYgcHN/L3soBCjTXrHkB8t6w5oLcG7wIRGkMs/cK1wStAKoZqjTDYbaroG6f3OLCcGYRHIJsGChis7rj62BNIHQ8uPw3Q0s50LChpTj0i8BRQA3Krdp0gn9qzWvr9ly5YwrKaBdDvtQeFgOGuq2mg4pKOobYQ9/RHD/XmBAq3W3MEOGsMMb77uM9DcpFH43xeP/nRHYs5EevaZ87Go300Ht8cHz//hWvr+VYsE/XYTOSqEN3Ys+40u3OBzrfYSBzA4VrsCapojRGiuRM6upw3pVjkwfKnjldKdU2dIWAi0ZrwLfvr7i9r8i5IqaINEUi64GPkNi4+phMPyzS2qzRbnIUGMaRMWCEdGFOGIdTONHmaC6XPoRjkuNDhCKiNX9sfqfswAxq7PlL+lF4C+B9xHL9FaUU/Pb3/yNut+/Ie0UMT/D+CufpKkqXRTpv3m83PP3xB65f/8C3P//E969f7b0W1EqaThBqRbqxnwDek62rNRgeLlix0q2BNlzGUWJDUMcP0MtkGhDAJkHbXiGgxkcj58InDclB1XPPaJ3nHuP3Fb0KmmOTTLdGRd427OsNW/JICUgTDRlqzaRK6dnc8Wa0vcM5+DQhScTiZiAqdLr+Zb+zBwrrfcN9vbGoCiOzj6ASbBIOAGLaK1U7Xz7YetEPraYKAE8miQvO7qGKagWiWoMpgy5m98fB7IC3ARwfWA9wghaCaTejuSkTbFMHcLfuXMfMoUnrcKmnBg5dDz33oNMNQHlkrfZuE5MD6TzBJ4KbSpZNbqeTY1fs684G9L4hb5nREMUisT44ujJObMgCWhtrOY7vSed9c2+sha61t3f8+P4NX635fH39gdvtHdu2sunsBft+P6i9B1ANApDFahFbfEl9yztyZvZ6PxxlhslaNxd1FodHNJAaPa+c62J7qLX4GfsBRAK2z/jTrEg86dB+0FtH+Hwr2LYN7+/v+PHjO5ZpwfVyJa3d2Ddy1G7n6/z/vx4SApa//QcE1O+21uD3Df75F8Qv78h+xq0q3vbdTBV3bLsCXlG1ovSC0h1CdzSpUjKAgo9IIbHhCXQm95FRNB2Kddvx7fsrgluBBkZu7RucU8xLwLUmVJ2x744+IlVNA+3QiqDsguA6xDSowUf6XFgGby1ALQRDRy419AwAYzOoNGyUYKZ2HtqZ2d6Pl0MtrDVpUMQ9IgaatM1LgGJCF0Gcgcs80w05pI/XFAD3+4q8M35q3+kiHRMNd0LwRw3yaDjDuoXMLtavZPiJGUdKbYe/ypYLbuuG233DutE1d0SiwSafpjZkaz4aUAHrHMt05p9xbXBe4G0PNJYnoAOUI3PhuKcEx6R39BTeg/e1H74srBOdTUcB6xceJE+qQKnKWtsGCN57OJmQ4hXLsiAFuuVSk/oxgDsYnADlMd5F9OjRW8DQtT6SO/lsylH7cA9UeHT4EJFSQ51nzCUjXzLmiZncy7xwLbqvdNknGmnZohZvBvYl3TEqsjfP+ByMn2176LggbBmh7jwvtQG5KhwaBB3RC4KjYq/WAmwVOeNoRB06ohMai5rskMTSsZqrGenpoaAc9F+yBXlunWO0nzP5j9d21NH/enzaiLb2+DLjDz3tnoeToj80Ge68MO3napUXSHkbh2bZpMLKbZy6o2DvJ4I+7m4rxGqtllekgFkIOxP9OitygjmMpQlYZsBHHI1oKYqcO4o3E51u78MmYGIF0aCriE1AhmFFd9acgk0WG1CPGJ0F9p5Nq4wJaheiacal1vBx1ZjmBS+/PiPEgLTQMa7fPO4to603VIHldVE833tjYDTYkHrQ7Ec7TKzcINrZNFU9rKG9c+iO6HhFw94K9rZb70rKRWvKxXTvaFtD2yukANIc0EjT1W7TUCGH3kUPTAI3ObjogChAECjtSNEd9WC9K7WumZrXPlxWRRhL00imVVUUVLSs6FlRjBpeOpF6Bz7ouTdIAXLr6DUzP6oJXAtAJxXjo0NgWUjNYJHh/NkaateHAsQdVPNRbA16XR9aKduqCLJYFWjTQh20jTEp1NFXnq5042AECqmiY6rJCRzw6LA7XC5roUYY1sRSK+psEjCaZhpuOUcbsNMoyYpu/bmIxJiwjMfXCqCBJjtzoXUP1A8nHiEyKsMdtN6/Hn/++Q/k/QeGs9yIsHCezTY16GYD3gu0V8RJkSZFiGrMBT6btZIi1x5y1BgfZVPqo/61RlQFda8oe0Ev3TSonNbVrii147auuN3u6ADSPGFaZkTToXCicwIEY1JCp23qmR0YA6AWyCtOqSMRIsSlFGwbLfips2yk818TwpTgI+MUYkgY9OMy9Be1mSEHG5LaiT0HbRDXPzQr8j5hvvyK3oHf/5v/nsZntSOEJ3h/gZijrvcRKSWkFHG/veLLr/8Lnv/zGTEElJKxrqshphZt5QQ+KpzpDHn/OLTKz+wfnoEupiEdt5ITxEjTpFANXBBbpywWqpSK221Hqx3LFMBooQpxbCoFoHFaV3NaZjOmtaI7HCYqsIw+EUX1gu3ukAZbZnZIwaP3am9VuL52SlEqgKA2DUukdcnkEKtDjxesHxSNCmBb77jfbkeWYwiORj4p4IxWksONs5ZKjV/kPptLwZ53PObOuUiWjGpHqQ4YZjpKYIYmfozBEdvLBjDpbVQhSudfmtxQwxmsmB20XJixjADMd7ZGoJqjcq82ITEg1okj68ZQfNKzyFyiUw1BiENf753lxhoQs3eUvaCVAc507FtmxM2aKQMq3RgSH68p3Whr5+ucGBOH5ffd9p35nfc7brc33N7f8P37V/zxxx/4/u073t/esG0rSt5B2ubK4ssYG2PTEBtKqY6mux8+AWoshzrYA3JOLg2TOqRC3VHzByjjS/hwQMRh5PHp8b+xrchR2EWbOvvAa+RCwLTMmJeFv04zQoho6FjXFa+vP/B0ecIvL18wpwTV87qITckHwI6DgvnXw4WA63/8HygnNu3vpRY85Q3P6x3FRbztO37c3rHlDfftjo5qa1ZBroLQBL4Z9dKahTgnTkSNCu68IMQACQ6tN7y+veHtbYeA0gR0xX17h/eKp2uC+AvCLNjuO/a1IK+VjBll8d6yYHd8Xvzs4ZMnANaK+bJ49Ob4HNkAQiCHA+nQYgYfEH1CDBNimODNZZ3PTecAsHX00qFNDKQVpET/kGUmA8GHhDg5XK4BcyK75bNz/vb2jvvthzGw6HQ7AzRyStEo+4oRqTGYWzy9Q7JjVGO7tuocKpjFuuWC233DfWUiRqknwwCQMZ9h8yGWDywg1dfSDWB1HO9zA5qdwPlOR2HzlRHTuPJeGwsnN2N+f8su9aypQwwEbOtoDvme2HcYWO8GpRVWt6hdvwjnElK64Hr5guenZ9YQaDYY+8jhj5+1NTUtLmm6wtsSAON9au381eiobESt1jDg1QEIgYVI7x2zmY4u84LLZcH9fmPkU3izzOhGhkC1STBgviUO4oPRxUY9Mfw/FCdbhMM7BQj0OdO0trP7I+grJpUTlFpRKmm62gu0VThRVM8YFz98U2ztEcuA7YoDCGi1ozarcQdo4/wh2xhGVEwp+Pj4NxNRGckeR/cLW0gHBWdsRo8T0UfkjsWgHH/A/vVsUtVG/Lxx+zmJ6d1mqHb+bDM4TRMGKuit235AWmwd9ZQaISZ7/xFwgVMhKUoErKmNss+YjIHM8APIoRHQ4wbng0DqlWdGXeBENBjd0Tu6m7UoqDT0YuPWlNrBjy5ESlieXvg95wQfHVzZ0V1AgSJrR9aG0qmH662iaMVu08wAjyY0K5LqgOYB5bi8tY7gzNzA+WMoW7Viaxl7zeS0C+khtSpaVrSto64ddWtw3RG9tCgVtSKUjagyK3By8Asd6+B5wdV+bYqjkDkmV5XUJhiI0VpDzgJ1nIY6OLRdUXdFr+DGAmowuygNkDq1q4KOljNazkBz8M0mBdo/ZtIJEII7rnkdlGyOcUyfYMHeNlUY1LpzEjommaPgONFTsYn9uG8e6bnjHm/2PQSPm8XQiwzH6rMpPL8Xiy06kzGb6SeTDnsImJnZz4XApkit9eP+5nN6is2PRnmcpIHeiwNdjyNinDClic+fsHGOkRl3zMy7HVTlx+P7t694ff1PK0rD+fxE2oHz81RDPznJTbNiqYKYzFjLGcqXK0qxmJHcUYoy27JwYTwiaGAaOHVomVSpXtUoStQe7+byuteKXIq53bEQ8kHoeqvDPModxWAI3ja2yvWyADUbc0II7LTm6OragL0o1q2S+mv3UEpAnAAVDwkTfFwQ4sQoj52NeStALYLWcdDmm3Y0VPgORP8x2OJcwDR/AeDx698KXExotcO7BU4mQAJU2OTMS8I0Jdzfv3K90oLb+xv+/PMPZkm6fKCvItZ8W9yVd4o6TIU60NUbWMI81Wr5xbD1OQTBlOiiObaLWo1p0UmdHA7f/MQB3nMq7j3vK/E2WRKPaMCfg02outJQDXy+4ZR5rmXDvgnyHlHzDA82d3AO3TtU59HEU+4AowinBWmZ4f0MRYIiovoJ2wPl8zzUsmd3GrM5QY2kTwmrkoMt0M2gqQr1aA5GobKc4EGDHtFfIXGrVmeaqQEaQSFNgdaB1iGtA01NK0l5y/haB1g2YzBjIWZPwhxsR06cHMAWKfwNNm2lLT5nQ2I0bDmjkUYWaq6V9K8gEG/roenSh964ZeZM5juZDK1xMsWcxIySC7pF2AxGz0dHt5/b+rmG6TDHsEloyfVoxl5//MDr2w+8v77ix/dv+PPrn/jx4zve39+xbXeUstPlUrtpgytat5zTYXZyeGLI0YyNiS1B9VPzLPY+DlAeJ33YGVo99LcwsK9DT0Mjse8ioHum56QwpIQ0TYxCs/UozQnTMmEeU7YpgfmQFeu2Ys8bzZK60WHlZzMnOdvRT8+3cx7zl1/ZMFuCQWgVqRbEy4rn11dcnp7I6rLmcq+e4E5XdKHkpmqFg4dX4drnHcEaz4k8RE2W1NDajrzvyDtB9ug8gmOUB6RiXjwkTkgXj3WOuH3fcGs7crGpaBVkEEgTBWLwIFNPTo1sc8frkJl0ngvnzMwsecxT5EQrzgg+HpRyXmPur72R3dMbmXEuOUyzwzQ5zLNDSB4xOcTJMUIr2vTok/N+v294f7/BChHulzAgwZv2k20La4tm9cijjlAOLgYTGWCSkU6NfqkVxdzPZWjR7H4dGcpcjcf6AANm5OH3NkG2e1bt/DZpx7BpxOM5m7IdDCdDjr0XBC+IwSFNHjEFdHVITdC6O4B0XhM61LJm4nUbrEiFY460n5DCgmm6Yp6fASUNVnvDZ7rcAcyLZ12VojuMMalDbdhzA4QZ24p+6F+HIdLB1BysLxDsU1Us84zLZcH1smCKEdE7pBhwX3es225GRWwM0ewD9Qpo4MTUnlWCwDj6JTGw6kTtFB1ieyGvjzOzvwAyEnqtZAXVDG0V2io1pMGhB/cT65OAF+lMA5hobTyjChFva6SH+Ajv42EOBcAkMx8fnzeiHZwYKhcr0hgd6Tb6MKK1InYsYTqmOA+F8zGFQcMQikNI1aUrpNHNOh9elX5Q68bN7kD3LzpRKcTc1cYkEraRlwq4nZmg4ju6EpEK0U6k6/BBkX2HZE7/3GhiraFl3hVH184KLXdEwdi0Q7xR6PyR4+gkQFtEKQE1B7Q6QpoFznVOuT6hX7TesdcCpw1VFK453Lcd93XFfdtwzxvWsmNvGdo5TamNulBa75tTaAPQHOklIke0QnUK79ph3OLAoiebWRCXjk60tgC9AFrk+JUoFFH9LiygVOiaq0GBKHCTh58Diy4nRv9lg3A47VZFyxVl7wxFd0TOu3S0wmlycR1eGhf56oBmlf0APYIjDdh1FFWUTJ6m1gYtRCV7b4wB0fZhIyoAFxZVSIDRsX7WzIxi5qDpyEm57ha5wWZnLKz+iOkZ/7YbheRoXPtwnTzHjbQJN579oY0c00oCGO0osOzJG89VN/qLyk/P29gcvJej4OBzzWazt35uVtbwnr3jOQ0epknBR4QQcVmueHn5gufnl2N6NwKcSUkG/vjnjtr/Gl687Ttu97s1cdGyyxq8GXF0KyghsAJLEEIHZDjm8rMLqAV2js8mgk2fuyM15JiaFnStEPVQtWl+H19rAnt7VWN9DIppqZWW4xXojSwE7wNi6OghEFlEByzjUrUi54BcEtIU7XSIGfJU5NKwbzR0qmW4hg+nOTaltRTs6hhWvlXsqzn4WkYzpAO+2brGWBhxgiV8EhQtDpAZPgLL098BF1HybvIEQ0bB9bb2CqmKbV9x3+54v9+w7utJ7Ya5uTqCeU6A4AXL5JlbbG+vVjrvrXcaypU6wtRJeR85j1AOLFMgjZz5eLw2zJAljYdTQi7sqgVOFCk6TJFZiinRrZBFUIf3jB+IkYWK82JFZECajIrqA+A8VAK6i+g+QeMCnRUAacU+RaQR9fLyBfPyjBgvCPGCvQv+84+C9pdO9GTp2FiSz9jh3ujM9MNyai2nuNWKIvbZlc6kRxPizu8pThAlWhN+7sODJtYaI7pKLtT0q7LggsKxEqHRBoyuynLHnnWbKvR2rDl9N+fDvRh4xTVOAvc0cQSSe1dobUMRgqYdoXEKHCbuGYOiXfaK7bZiv+3I64593dHMWXHEQog6eBdAC3tO1T+jLdqyc1THo6ly4LlspWLbV5uAkor7+vodb2+veP3xDd9/fMP7jU3ovq3Y95V6WGtER74qwOZf1NHHPcgBxKn4oyGlyZQZ0hlwxPgDu1CdzWdvticOkBLM0hgA5oDiReSgSDvP/G3GnznAs7jtaAb6EMiL2hFiwvV6xfX6gstitMQUzcvD6CAHT0HPTfHx1w+Orop13SEAigEGxaKXtv2OP//8iq/fvuH76yvu64rS6FiblgmTmxgRkTx8dARAtGMvir4qSiuczsNAK5t6AaTXtioIPmCZEqYYUGtGqRu6FsQkSD4hOIe+A2XlpLnYGqRZAekoJUDQ+Uh6x8jB7qFqbBbbG/uY4AkQfcDlMuH6MuP5lxnPTxPmaUL0NH0aWchDwlYr8xq7dqQkiCnico1YFo+YBOIIZkt1CD3yZ/+75t8ACDHWgveC1jnlb/3U443+Q4Q5mMFHxBDQI6CBrEE1PWnulR4cAUhzwKXN8NGTjWQuwW3kmSsZimM650ZT4oZrO06gxda8MYmFAtVXsqQUjHoawxsb2oz978xsd/DRI6YhWSEDSQSWk1wPfaJYNSugn0dMEfOsRyMaY0LwZBnkfZgcUd42xb9CieP+p7SMPggN3O/U8tslgGaqrXPqqJTyOSVjzAmBC2cfejSiY1IdnWAKDnMMSN7jMifc73fc1g33dcOWWS+UqoDr0J7RGuAbwXMWtLbW6aiJRg8z+hczm5OHysm+aAwrnIGaUDX5Y0OvlVKt7tCbmLkhpTCDeTSYcKPfIwVX2IAelFx/0v7lNHX77PiwEeVQSIyGaogQ+CG74gjubX3Q+LqV1BYDMZpQ4KDrqJlUWAgKBl1wXHiYC2IXRWty/FvgQcSsDhp4Wp0n2upNRE3RtqBmeyiMFqSi8FdmRgFCa/6o8K4CYIQIVM6LGAQ+DNddXtQxkR1ozphauZEXZCHcqgGtBdQcUbJHqw7NaMikKVgj+8FRW8OedxYdjRvw+/2O93XF+7rivrMRZSgs5yLVkKza6L7XSkcvClSBFp6fhqHRssIIYhsq7bDb0LqMKkIdKbjVmSZUoIVorDfaaGtjLtOhzlsjCrjk4KdwLEbMGGQx3UqnzXNp6KUadcVQNAc2wcIN2QkbZi8eXsw71408Vk9NU1DAd1sw6cArVSENVhgLnFYoGj4mYJDeQWTR0QHU0NFT5/TYMJ4PsZeAkxJh1BQrfsTZqoPHItE2CpuCjSiDMcGEkoaBTkMX/ryxMdp5NMopZBSOVqSIx/kj9af3O5Cs4foLWIEJZrHynFozrESAcTSg7qRz+4AQElJMuF6e8dsvv+P33/+G5XLFMl/gfLBJBqlD3/78T9QPzvi+Z9zuG7OroiIqHbO9uV+PItIHLuQ+wCZhCqBCbN2A6xDX4VwDgjNLCXcY5/QKlF6oJ68K7RWqDg4RTujSOSZ2TU/Dl+E82ruilGqmM5zUa28IoaGn0Tx6tO7RtSLvO2rdsaaIbWtIqWJclKFhK500zJIrWqVREh6Aid5J3a3WIO73iu2WkfcGdAfpjjmgE+ATzCK9Q6XjZdk/vMNpGTnBh4DlEhGnZ2zrO9bbK9b+fgAiaghe64Lb+o639ze8vr7ifr+hlIyuDSLdwLThMk6Az82C4ITUWAs4J8WoI7eG2mhXH4PDlIw6Bj4YpK05RNOTQolqV5t0wxomLd3WqQKoYpk8+tQwzw7TRHdygEg3oAjBKLGRRQ9pjP7IAHYhQBxD6dUnqK/QSNmF+giXJoRlwvT0guff/47f/vYfeH75DZfrFyyXZ9z3iv/L/+n/ag32z4dz3BeMJWXN50CT3dFU9mZsjs6JGBtPNnjeDxMKe9aPJtbyGWOwe3VQRgkS19YhbuU9pxYT0qir6qBmi2t/h9MOb82oFxqQjPJisDXaMOeozCMF7PNYEdJgA+jeaUhjpiKlVYRWMWGCBNLX1ZqynAvu7yvur3eUPSPvxZrPUQuIFXI2SUU7pCQfHQpwMiDAOdlzRx1Sa8G+bXh/f8P3H9/wx5//xOuPb3h7e8Xb2w/8+PEN9/sb1vWOnDfkfeNkwJ5Pq6BOYZy9T2fgnFh90GpH7hvKYD71Ma0wGYVTK/i4Pvc6npd+rDujkRZnucdy3j/iPeN+7CVmLtVlmFV15FbgakZqM3wMuFyf8fz8gst8weVyoSttsP1F/qUJ/f/x6L3jfluhytzQ9b4i7xty2bGud/zzH//EH398xbdv3/F+vyPXAnjhtHame78T+/lq91mhCSNWgteAcgh+DDSc3Qsec0qAzhBMqC0j1xVdG+Z5xrTQRXy/dayxYd85WS47PQRqq8i7tzqPkVUixh7rBLu10xW/1krgzDMb8nJZ8OuvX/DltwWXZ495cnCexlUjtmr8WkrFnjO1oSnh+TlhuUTM5qheW0NpBVo8YvUYJjOfHd5z3RKTMThHAx+6r2aLv2qmw+Q6MsWEKU3oaYI2B0weIsYc6A25FTQ0INAk6sktmJbERrqxadv3nfIpq/cJbJ8RQsGm8WzCmzE/rEbyA6gRFE9pnqhavMyEKZ4N6aOb+GianKdsJya6zi7LhBgDdjO4LLmaj4lNA4fH6xgQwNm6OEylKrZtM9Cez2KbP773FTTzHE1oBeCsXxFnNGwVSKCOv1ncmlcOqUa2uzfq/WDljahHBA8govUJlzlhf75g23ZKg9YVb+93vL3dcFs3VBs6EWwYw4/z8w4mpy0fZFpYTNJgHHXrFzA8W46JtNh0FQc4Rt07aeXdC3ogI0kVZBi6fgBmI2/VeXpMiHjz0OB74wIGyOOvnxz/lfgWm6SYJnQAaNS+YfzHsZAygYyTpd5G0OmZ7Tf0QENs7B47ewB0S+DN0XA67FKPNUa8Y4Hmiw555pxqJ4fTUaEl8XDiVF5/GUJl9VAISjWxo422ndH/gufLB9OTNt5U2h1aI92jN6IGzU6wNqDsalmpJnxX+95OzMnq4zNdSsHb7cYb1XuoAD/e34/JxJZ37DUzRuKYRFMT02onatzU9A10c3PB05jIEHRmANnNCmEBXKmhUebXAr1BuqcLZjW6F4hETlNiiLd0VDVaGYZu8tTMEKdSxu3kRophbtT0FUNdarUi6VG/wOtLCqYhUE7RnT1sAqgQoevqoB2Hcx+aIsCKQDWUDZ0C6U+PgSTJ4Y7cncJ1GIVIjCI3ihwY7cL+7XgGrDA7AJhRIB66BaIyOr7OzpCT4YDrjq8/7bDlYWM8p68DOR0unAeILVzsH5+xU+dq7w04Gu3Hzw+RAzgaGlARo91awZXihHlasMwXLMsVy3LF0/UZ1+sV3kfsG8OLa204bM3/5QgxIM2JqKhFPAx6/ZHxZbq6lAQhAJBsm2u3gpNUCXE0uRDAptM4KfZHgWVUQ7M6pUsoc4tabahO4brdf1bEQggKlNLgtsyB8aHXs6mE4z3YjLq37ztKyYwiyUAMdewKPLfDUVwCUgpwCYBWaG+IySPFYLlwZkpUOc0tdUet9jwqi1EnhlDKoDOdWsK/3t0PExcRHKZNtWDbbsj7jpJp1jMoND++/RP/+Z//iX/+8w98//GGbdtZhEBtHQaGJnAwAFwEauzYA5tVLR2lmjGTVqg2CILREWHTarWpBI5ogNO8h5sp6XFmztbbYULVAvcTESAlj8sloHUxIKQfz2mIAcuyYLkshtw3DA1Nb3Tm7gqoOCAECBJNX5YF8XJBevkF0y+/Y/ntP3D58jsu1xcslyfoun+6kA+K/HD1kODtRXfTYPrvVgnV6MjfNWqmc5x6HZv2oHbZ+Rkou1OgqyHupseBdJqdyXiG++GOLsBhbgXtkN4gjXqkM63LGDRDg20gH2xdcPa+uPbACshuIMIJcsH2AmceCmO/gXNoBsbkUg53RbKj5fBdCCPKpTZUx2ZYPllT5OHX4xG29foRFMSYMBqNW0xvPuiNfDRsCjqcGh+BAAzHVbqceokIPtmE36EFrgm1NHQZDWw/3thJlWQhy71MbSLRx8yC65h2mywQIOAE1AOjIfWDXmnsFlubBpuD9ErG6Ezzgnm54nK5Yp4Xc/SU4/3pv0xGFeN8fXy01vDt2x/oreH29ob3t3ds64pSd2z7in/+8U98//4D77c71jVjz9VofQHTPMF7BaPKwKJMKAGjLKMdBnxNrZbpgrF2e+/RpmaNP93Sc91BumrCPLsxo8FgE41CfTQErdGpdNsyeqdJEtQdP2dMcNSmOOIU4oGQPOZLwnKZkSa1ybKdJ1uHFQ2QBh+Uk9DocH2KeP5CLbbzCpV6gAAno9AkYef2/vM9fkwixainI2PZkb1zxCoOeY2ghI4cO/LUMc0dk8WRHeM5Wx/hAB+ANPlDX11bx7ZSluJ3R1ZEa9aYG6AXAkIIvCbGBMAYENkeHiKlCCVyLxcoM2HnGVOKSDEiBKMz99Mzo3c1ZiKdjy8XUlmnlOgtkovlVFKfeUiqAMCGRF0dBx+dTD9GYOFhwMXp6kcHxyGjJ1GbvtEjxps/Q1VGLlYIuskTGti3jORD1nXmLSFmWudOqZOKMmFjXjAvGdNywbJvSNON+cDvN2yWpdxUAa2odYDOYqDSwxBEBnuMoANzTs9BoROY3OKciHZrzIeBYq2VrBjn2PjioY6EnAMKRz0sdeqJNFxh8/8oScNxLvDpGg580ogKWBxQkC4WMq9ELXUUeqPdsEunMCpQPTayVgfad24EFjp3FvbH9+ACcGbz9GNiNBDukX14RF7YYuHHuFncYQUdkqMG0Dm0LkTHAvVbzgExeYgPmJo5MHajS2mFgsUTnTvZTGq3zbzThXesF70BzjXTrjW0IqhF0HsAOp0vYZuKGp//o2PLG/R1pbmNCJoAt/UH3tcb1rxhrxnlcEw8DRJ6J9p9UH9qgwppY75105U4K3ZoihAtX0mUaBbq6YyoTdlBd045BAofgGkJuD4vmKcJLghUOrWlKmh7RQkOu6MuddRovTHyp+aRjadohahLK3QWHDSOI7IkMPl6IG7OOH86TE860OowhZKDZuE8c/lSCMymzYz5gZaHiJbHQ03rOSaM5wOtRsHmpomjmFG75w6DIsFBpzv0cX0UyWLN3HCSNUOv3rlwOTkCysdEXZw3xz1O6nsDWlVE0yjo8QwBQD9MqzjNt4BnGQ2YaT1sURhFjurZCIvZlx5Cf1s8RwM6Nv8YE+Z5wWW5IqUJAIETvioGMhfjMGT5+B7/5bdfEOZKJkEk5UbMhnxwd1RhjAQCEr17a8zHtJLGAOqGNg1GeTk3UVJWG93xUrCCMR1uh9r5/mvhvdVVULvAq6CJBVc3bu7cWKk5hwymhqGMVRmtYWJ9OjDu8K4QkYXAmflYmhMuy0xdyBTQa0YrG5xXpCUizZFNcFNU10jbqzRJg1F/4uSwXB2mJUDFYQSGT9PHeCLXsDt6K8jlHTm/4/3tO16/fcOPH1/x+uMH3n78oFOoo07r7cd3/ON//V/xx3/+J9b3V+T7jlYBgUcMysYRHtr8WaALjLbLKbW4DhFmQhMYcQiBGl8F9SS9UPoSomkZ3WCNCJIHYhLTWtHkbVCDoUCclK/EdTymhL4rcgH2vSMlrheTeKTLBS+/fkFvDetm+Xg5I++rUZEKYFQ9BDokhykgzAlhTnBTAkJEBXDPO3JX3Nb9KNn/cgwAwhg7EjzjNVJEmFiQeu9RczlAj2bZ2KoGwvVTj/jQkg6UCwp92FcNKBEadw1toRMhjZOCX4xuUYUTem00giu9wvvwUNiak6jlwDFP13SJRwa2yRiM3cHdmOuHqgKtW8OZeV57h/QONTYNhKY33uQWBB8ZJRONuudELOKL1N3PnLiJITI7dEzqB7jpvENKEfM84fn5CaX9CvGKyzLhep1xWSak6OE94ITh7a1kurvb+R45w6Qhc730EuFdRPQTjahCOPaE1hQQb4VvY+Hp/UHVc44AsNaKLgLpjC4Su55HJJ13kODpcBwjfCA43QdoqNyrH6nb/lh7OTUZ7pVxmjFfnzFdrojzwsbW0fRs7J9jfzv2uU/u71oy/sv/+v9CrRU/vn/Hj2/fsW4beqdfwR9//oH3+w176dhyxbpWhOiw1JNIeTwmgY7dY7+rpWLbCVSU2uEk8Fx7Tmc0AFuvqOWO93eyIFpvLMi1QtBQdmWW58ZJnveCeQmIHWgmYxGB/T0wRUqO+MwQBOvRJmoHs65DHTWBkGJllhnR2UBlGNP52HEJHpcnRrU8f5lwfUro2umNURqc84dLOiCoxSaKl4+XFFW2M9F7THOyfFvum8ya3cwpttDcrjbse4NzGTFsWJYZ8zxjXib++ykxa9yxlmE8VLH8R9ZnbFY4mfTW/KmqTfq8sZpYR/bu0KMHrFb0XshGSZxG5uywb1wl5mnGPDOjN4VzTTmjHMkggDUu3gtiSsYy4e99jJhs2MVeY1CJO0Yma7O4kp4JZJkj5aFp7F1Rn3/5+HxDULtDEzaVVYHcO1ylHGh4BpWqqOqhPrJ5FYdqtTiHGXqAcE6onWRs3gOYZ7abKgHiJ8TpgpiuWC7PuL3c8fZ+w/vtHeu2o7aGvK+olfmnoSt8iBbBBijG0E9sAMZ7mMCWSSydR/Ags8bRoI8gL2n9pTASg/49XK+qo142mtt0SBExJGtCo70HGwDp2bsfEjF73kP736ARdYHOZkfoVzOTBH7bAxkFYKH0Q+MxXFfNTcoKZ7Fh0FFIG8p7NLRqCILjGFzM4cd7NqLRHLSo+3EHigKobUKnu5P3Qmey6Iw6oMg74RBJvAjOO0SJgEZoD+iNerVSMlrboVaM9oOyaiex2cm1xq/V0Rw0aw75gEASNzfApjdsdIRyqb8ce96xvt3RQTptU8VWbrjnG7ayIbdMel8n3aq3h0JEHjRDvaMXPnC+83x5T/SnlAIo4CZHrQKE2T5VoIUGEr2anX7nQxQNkWUjOuNyuQCOBbiudPEte0ORQrvuPhrRsUh0lDLs/8d/066+tWqaAGoCI6JRNEktCNHb/dbOmIdm4eXdehe7t3wICJNgmm1jQ0frBa7XjxtRtamIdpsUjYb08cWNi1N/03NpQ+tyfP0ovgalcxRw1GlwLfBW5DtxUNfhHReGYMhiSjT/8T4yB2sryNLo/Dma3jGVNTCHVM7MaZNRcEPwRyM6UO1RXBA1HGYCw2majTLGlEMNMXtoQoMPnIbOCy6X0YgKSqHhVEqF50/MKv3fNKJffn3B5cUKpzCmiwSEFKdWRJwiBAI8teFwxSWwxYKdD5WDuA51pKh2rUcBKNIRomBKCfN0QYrzMdVgkwmCU2iozaFUQW0C14ZrJUE0H0kdhVHhAPI+mmkf+fOozz6yhoxqpXBI0wQXJyx+xvXpC37//Qteni+oeUXZ3tG1wEfABTa3rdLVe0gjvOf9JwDSDFyuHvM1sYiwicYUP3P/a2htRS0r1vtX3O9/4u0Hi8dv377hn//5X/DP//KfeHt7o67De9ze7vjzn3/i+9dv0FbgraX2zlm8jKG5jRsVgQs9mlHxzYC5fuhVRlEjRiNsjaZSzBp1ZgohB/jjDPXvrSPvzOMTxyJHQMlETIoQBTFRb7zvtKC/36mXE0/DoTQteHr5glIYJ1HbxqzBdUWP9aBpOTeoVywSwxThpwiJEeoDiir2fYNuG9Y1n2jvvx5EyNggeDEqJRtRnxLiFA10cqbra9CiKKaT9N0MoLyHBycWHOaoTcGHzMXWHZzrTzVNl6h9FgkEy6y4GzFAaveZ9AZXBc5MP9xwXATo6GuMJkb70GUX9vNIxW6mxTybl4PiXhvqXo4myykYfdM6r3MIvPbWdIYQEX1AipyUMJt8ZYNd6qcsC4dDQnlM3N0DqBEiJ3FP/QpIQ4welyXhskyYpwAnBp7XjJp3bHcPNQCaLABq7cR5o/wJp6GSEHxCihOmeQKBTUUu5HJJFdRmE14D3QYoqb2xCQXYpI/9snEiOybpowkNiXTyQcfuVul1UXjxxgoLOCO/2Ix2dvyI04Ll8ox5eUKaZrq7i7Oa7WxEH6d0n01Fay34xz/+J+Sc8ecff+LPP//Euq18/9rx+n7D+/2GUhty7ti2itg8AYiBodrhvadRjzSsUlHLjn1tWO8V+14RPJBiQAx02kajSd2INxpePDEGSK8QrWhFsd7Z0HblHhA9DW9YqNNALWfWQl49JPAe5hpjNamj/lNVob4BrkFdhUo5kgVknKeHtc+njilFTFPEckm4XCPmJWJdN+ylINeMKS2I0cPHCIVDKR1iTK+PjhGHJC4gpRnLMptm1CHnipw7RGhCVYsyR9NcqL13WPaMy1LwpB0uBsxmvOQDHe5bpzkg5R58HRnjNjkb9Ryjb0iZjQZOqXoD3xU+sl5PKVCTHNiIxsiafZ4mTNN0yCZYsxhgbp9V+6CSDiahP1lN0SH5s25RACUX7PuGkivXFPE0+euNz6MxDnrnn+dMgK3WjwRENs+xAUNVkJJ6zEk7hh8H+1sH9YnnR4Bi5Zc0kwUKpSsqHuIiTeIG+wfKGgwN0cDXRRTLpeGpFqz7hun7NxvOvOH9dkPJO+A6mgqSAskNPw0bcmgz4N6ZHwbXDFFKKrwLNHK1Xk67YuQq0yiv2H3PfqfavusVgONem9KMaZrNLC3AmXdMU2PCjj7oGECC4GP939KIumj+bRZsi3bSvOyBEeUspY/R6/Gv7SYajaZNIZ0VGQMReAxcpVGKHIvoeMCPxtI/bDC2SJB+pKwRHUilddR4+ih0nvWD2jRQP1L5nJxNsq0k1jR6SKebIjVAYnSPs7uHnIjIMJYZDo+jCfBeDAEJ8N4orRpR7p6ByX85+LkFYEEghsY6WnsHjehK0bdaQTEaqW6uWRzajLG7CZWNwtsqX6KC7jt6YIFpztmUrA06tenWvOcC4meHeIlITwnTZUJuFXPJKL0a5bZBqnC6anQbiHCzNISu5m7NMAN0R3yF64x2IZ1huBGy2WjmnsPN8cEJ1YoNOhdbA+bA4twxQwnBxNrNAeXj0z3oBsdd+7ARjOn7oMKpKpoyekiHAtIaVRWFdJ7E3o9+xb732dQOm3zxpwmQ++nlzq8ThRwF/tBMjukTjlgW1Wqn2x3PlC0xvNt/YiMA3p2UmvEzx9RUu2kzjPM/3l+ME1JaME0LUkpwjrqWWhv2fcdh8mTNbu8fIC0A2HFEuiKD4BWnYeY+KN2ot8Ws6qu5y8IWVYdh7ODs+nVXoUL9KOw+gSgpc95hWWY8PT1hma8Y1Lpa6KLpnEOtinVtBoRx07OxH897EMTJHw1PMAqKKnO9AJihibnTqdmqK8GNMHmEsGCenzEvL5jnZ0zTcmThqu5w9M5hIyodThpEI7yb0BeFM8frOCVzo4xW9NP9MmL5+HxrR+8bcnnH+/s/8f3b/4LX79/x9v0dr99f8frtT7x+/ROvP15RTcqw3je8/njH7f2O4IApeqRIgFD8+aKFdjeGAB3K0yzozsMnh1T0WF4FZzFVO5tMBd1zQxTEyF9DYCHI/cKMQkwPE0dYN2CmdQTD8l4hKFjXgn2nm6G4AvEe9/uK19c3xBRQy47X11estzvKlNFyJfgT3OEIOGhvzinQG1rl5HRd31HqoJLSZRmfFI0/aTt/eu757Gs3/VGH6bVoppIrtZKuNjPBCwiho/dwINYigo6zEX1YyDCKMu89pnm29YXN2FjTm0WcDM+GsTbRwToY9RYE3rqHa56uqNH+3g0tL9emEW3wOEtrjcHvin6YUvE+GNTbgJi6AU9qkyhnsRgEv7zpsE6zp49vb3srJwDczYTJqJ1VFbk1bDnjvm80/9s2rHvGXgpK68wgVTWLhAEiGDhnwNxwySX75UFDmIsBkZzglFLOAlpojDj0vfKwVxw/y59yBAHY7HQ2QX6cc6PkHkYjDC855AScTnE6EeOEmBZMyxOmyxPmywumyzPS8oQwX4AwoSEAvaN0OqYen/8BTPi8DeW+O02Ja2wQQMZUtaF2XnsWoaTckrHZsa0F99sG7y0GCh3zlIA52RTFcQLqEoITNOeB7lEzDuC9RdZ9ZWRKGkVVm+AuHegZvXXsOzW+ITrMi0eYPBSn1m44eZNiOLSNDTF2G2gkOJfYqJs2el4cnG+ofUfPHblalJQVha1XOA9Mi8dlibhcJixLwrREpClApaPUCYA7gGdxgaY0pdre9fE5f3u/4/X1DaUMSYgaKOhpqpcL8jAZMpkUc24rXHPHPRj2hDkXNr4DLBPA9Fv2nCqcjNrPo3cawXnPNXzUlodW1LE69pYRGiyn0ztLQqiDem+O/QqjYBO0eaxb/vpij9FqQ0aDoNi6aOuE1WcsOUkl1j5aHzlqLIkO4gKAAHGsLUXav9Gdy7G3k0ZtrE09/x7WqHZEqGf6crNmlBIrQavsX0I3Pb05QY/ymOCNNY1W0wI8vzHQEPOyFNL9Oxvx0S+pAL1VtFrQvOPzV1kzVbej1Q05BIw4Su8dfJvhdQJKRA8O0Qu2dcV6v2HbtsNo7XBqjxHJJtjzzMYzJf7KHFtLTrBBxAAQDrHi0MlbHXpK1v56fNqIejfZBSkAitFBbCZtiOg5z4QJX/V4OJ1zgB8CZxjK3c9m1BbrsVixwbBmTIiei8NRcAKwZsQ0cDjAZ4Rgms4gCL7zRo10yqXDIJvFQaUYFx+gMJLogTPbZAe4YMYyxSZ8QySuVqjQLrvVRmt7HcWHGXp4AK7Ch0Y6m/PwMkFkwlv5uBENPkDSDIiDOrsxAwBHNM57UhZ7j5yEKKksuWSUMpoRbvbONnOFHM1lM7c0Gah162YGe07zWFCfL+cFkhzCJSBcA+I1Il0SUi1IeUYsBVJ3tNbgGq/RoKCKED8SNGpFC81sSiHtWaXyOh6ghNrGzYW/9obe5DSSsZm/9vE5uQknoc4AAjQ0FC0m97AcvE8sugE2GnKwsKyU0tHMcZELIRwIi+uND9zjv5dzgmZEOwyq6+DTwzQrR1MKTpiOAkWNcoqhqbbGzopMvg9/UF2cd+i92uKT7d4Dxhs9JqcHsn0WxjElpDQhRaL8YwrSG8+zd94a1XCYFaU0UcuQJsQ4mYO2sCjfLGTbNsKRgffRkatir81cHjvggDQ5TPOE4INNRAXN7MRbu0NQALN/1+aATndPmlmRSst1px1dz5gQx0iTiZeXFzxdX3hdTEsYPPPf9q1BZLdnw5oSGboxoc3+7JHSyHeNvJ5CRUhX0utUGfGij3oVcfA+YZqvuFx/xTw/wfsFXHYjN0cd4Jk5MJu2wwVmIYsLBACmGTFGuEizrq6NsTK9wZUr8IFfkaKj645c3vH69gf+8Y//CW/fv2N9z7i9rlhfX5FvK/b3Fbe14H0lpY3OqxVTonZV4aGusQmNHRI4cYQMMy6Fm4DJe4T5NN9oVZl/Wjpy7thzg1MgRSLyweK1YiLqGiIbUDWGDQsbaloERoEDg+JbJtXt1nbsa8e6ZWwr3/dYT94cp9T32ytaa9i2DSUXLPOEvGRc5hnTRJfjNEWjUFKG0sqO/e4RwqutqRHVjOFyGZq+vx5jvZJh/KY00VIz0Wpgk1szdfM5N0YHZZoLOfCZ9KEh+AYf6nEvypiIjp89JhZ+AJ50mpy9FWtm8Nb6cMJspsWjwYra94ghmqOqP9aNkfWpjUWrNwOdMYV1jtmVw92axVpHLhk5257gxZwxTX4QogG+dPUcenUHsQbUW2ahHsZuBHY+a4tsKtFGjAAbjKKMCsmt477t+HG74cePV/z48Q0/fnzHen/Huq24397wdrvjtu1YS0Hpii4UzdFcBaB8QY6CqqtCW0XPagaDZsAlsOK/HBOYR3R+TBrVpBsqysnnqJVAORQ6C/OQmBMKkWOfPo2vrAj3ztzHEx1C04KYZlyevuD6/CuevvyGy8uviMsLJF3QfUTuXK/22pGb5eYee77ttZ/e3YD3AX/7+9+w27O0bZut7RnIOCZ1w2hPu6D0jvttJ0PMdfRGU7HrZUZtymayC2KwKTU6vOPzQaC7ogVHzw3wfbfOei9Fj4KAVTvqvgPKJoxNYcDTS8J8icaWKWjaj3qnWgZ1yxkuKCKYLzxbEwkluNBqQ5o8G9FKplVXNo+P2m0fBDFGXK4J16eEeU5IacSTAVBBSg3eRfgwoTVgz5QvKR43jp+Pb9/f8Ocf33B92rHtGdd1s7i0gN6V2bt55/03nJ5B47DeQfp9q5ZRXLHthbW9mqGNAQe9A7XxeQJsD53oPJ4mPq/jfpYDADOc6KFOCcZYLHlkepuoSK1m2An8jiSAMXn1jlPWGKNFIdJMkdep8Jp7M080anCIxtKBgyDQGKx2tGLeJoFZ2SFOcC4i7hXeFZTSuB59dOigth7zPP5ez78/iw0y1A4Ix4DZ1gWlA94xvzl2GjOG1k75wOM3HcM8GaAQgO6RwoLrRSCIZGK4hG3PyONa14xqZqTV5FKctMoxOFNlZJHuM/q+IKdIgNkJ9rxT450tBlA4hIwxYpoWXK8XXK4XLPMFITI5IYRgdNwhxTK2p4A1sMjJwDFWAYz989nxSSMqcG7iCTMXTx2UoIFw6jkRHZ9YhYJeGsSxbafomHEqPjCOgY0oC3G61uqBZBDtc6Y5YgGidjJ7ByAd0keUCpGaEJQh6UHJf47239GoB7bwwI1mQ9kMHY2oN0MSo5o5OZw2e6cJjJNhfMKmejQPYwqkRu8SM1UZMTExcXFKYYF3C7a3iu32V2Qg+IBpThgnTJ3AZbDglcYpbwW6FmqlBNhzhmzCAhFDKyKnsL92FK20Ij/oN2KuiHwgej8baX3YiJp0mkYkZoOGS2RDegmIOSJuEWELkFWsOBoNgBmYiAAgRXUYu5CHXo5ie6BCBPS7oU9ELrVbNN5onMfb73JSShXQFA7EjzpSm2J7gUcgve3Te9wKqNHo8u0ca8NoRAcF13VD9WziNzZdAiPMRyPs3Y8JG/9nHGLIsQg5M7kYU1NeBrraHREyGJMEQ75DQIzUZ5BmwqKPVFSbtgpBHtJ3T2x7bJYpTljmBSnNxyIyDBOoqeHkj40o3/s00ahommaaXRiI1FvH3jJ6HwUofz/Oz78ezNIc2v/G9dwBIXGzoClYRSmKfd1R8x3OU2vonNr03hkrwppoAQTMYhzT7WNSEOjQd7lc8Pz8TNdtddg3IuelNHi/AXB2rpzREC3CI5xZb3HyZIlIgHYzIdCG1klXU7hj0VWFPYsePiSkdD3iP4CAWgWtCXr3/D6gu58IEESMTUFn15hmXC5PWC5P8CEcTuC1FdRGo6H27lE/akS1kYqa73h/+4qvX/8L3r79oCPvW8b9/Q15vSOvG95/3PHtx4q9EAwYBiG9MxRetaPbJBoOgLmX06BGmQPoHaJQ6+edZwO6FuxrhXbmvoo9Ny54hCRIqSNOCh9IxxZHIyM0Fi8cJFErFDxR6E076t6RS0PFDkE7cokZp1BQq2JbO2rZ8PZG6tgIVa97oXN3rdC+gMHlwkgwBdCI2EOBzYdjbT1zbgHVBUdV9njOzyEg70eLCtKq6NJZPDjTzpdmDprNgLc2VgP4rmi+wzd/0vIdF6ix1ooBJkE5IQ7O0aDGqG9DM9g60fJSG5wvkOLMZIjVT0osmkOItnZ17o8HOwZGGx0NlbEFUkCaEkaWt6LD76Ra11q4djmxKUYwDTnXTO9HvAzXfy+kjrVmAO/wQsCHp/nhHlc2oh2onY1Vbh3ZpsvvOxvRr69v+PbtO75/+4Z9X0nV3jbc94K9NtRuBiXOA14PRdJYnwc40rq950a9IAb4DhyNJVQPoNwqI4wc9CMOQ5ReBM4kBrbWilL36WOCj+HYO7sBVsOp31v+MhtQAoRpviLNV1xffsX1y2+4fPkN89MvCMsTEGdU8di7QEvHVjv20Yh2Y6g8TEM/bUSDx++//x37vmLbM+7rig7Fut54/X02Pe0D2611o7NTj91qgQj3HIXjhFUZtwEFSPrv0LZhbytKaRaNwtWyNDIrtDsz5wrYimLXzGGAZ700TR7X64TrSzLqqZj+kNdp2zLutw2bVgwzyRgDXr4kvLxcAYjF0xQMU6eOgtaLuYnrsd9ORjklHZeU3GnidaKjqEDUI8ZBe/RGo2S8l6p8cs4Vb293fP32yil+pSPvNE+YpgQR5m9Xa0wUeqxB3SKtmnLdKW2AXvR16CqHhlytxmqdkTpdWf9E55m7au9lgOSDncaccnfUMz6wgSy5IO9cl0d9Boj5KXAt4vs2nxBHqdI8MxonRatBHOnH27ajGkWfgBupv2mKRudPCJ4eG6U01KZQtX0j8hnxIYHZnw4iNNH6/HDHQzCqmceazGy6D+DbdsMDrELvh1bUC1BcR1BBaLxfvNVqXk4m41ELDxBLPaKf4ZZgrDH6XdzuN9y2O7Zt5T3ZqN8t+24gYD2c+DmfEMQQIGUByoqaEnLwiN5xXygZrTUC3SHafrDgcr3i+vSE6/WKy+Vi7JBhLGlsusHAM8bG+TIrNAMSVT+vC4F/MxEVCdyU+ehjMHK5IOPYxNSQHgisU3zE0/T4f7UdheJ/HEGpYmYcYxo16JFjND9g9/FzYRPR4ISIejwjV5zHQXMx5gt1hJCDVmRBGVZQsfFxfTTYhoQMJBQO3ajBfLHR9f6cJOpBKXZGP+62oJHOGNMFc3rGnH5B8Fd8Cz8ArH853/O04JeXJyLGZkxw2yPzlrxgKw6+KBpIQXBBMLeCS5m4UD6gaWOyXEtlo4GM4Q5oJ4HTFAAjz1DRmfZgBb1TB5ccqYVLgCSH7hVVGqo0NOnoHnDJIy0J05IwX2bM15nPkJIi64uDrw6+e/jeEbQb2jSu+dCSKheJ1qgfHNoEJ3TPPez8HYILCC4gBmoxYkpGH3OQQEMomnWYW+OHh1rTOZo+OzHHr+OZMpqz4xSMBi1yFmQ/fftz6nnmw8Es6cezOowl5NgQB0IrMv7NaKrGZBQ/fT8R0jhC9EhTgvZ2nK+jYNUxXVK73+lcyOkmOf6Dmqs69NAdw5zjaHz9aOaumOeZWqmxCVnXPrJJD0rNJ2fcucWefUUQTtyn+Yo0PcGJQ24bWmF+5vq+Ia83hKBIycE7mINqI1oaPVx00CNn1mFY8A/tdhFGnJRCZH1MJPa9Ihc9HbUtbgFiEoJB+Y7eqJtW8HsH7yOgnswHx+emtgApXAMHtY3ZlRNSmjhpUsG+FZSdjZP2Ddo3rmUxICZFnGZSoJcL5vmKaX6iQ/HlCfPyRNMxpQ6ktorauYHc+jteX1//cr5ba7jfbhaxQCO1khu2+4r77YZ9u6G2HarFisRik8eh8zUr/9JQtcPVjtiA1AUJDqRiqunVTdPqBJKof4I1E9TjCEoGclFIa3CND0+M/DcxCmKCTfj6YdY1rpmCTohopDyZuR9cUPjQMAWFnzi9fXR0JO2Md+SY3o5IsVKZ1xZyh6BCK1D2RlqkDwjdIcSCmgogDnvJNOhqAujHdGgfPHykbq+D7p5559TB50rNqHOonfRCiEOIEZOtxQ50SMbx3J8gow/upKYFuk2PKAX3QFej4ywzpod5WrMXp4YPUSzBI6SAaAYiXBStEbVzX3NF3gpqbgfy37Uf4KJ3Cg9Pd9EpYPYzek/HepdixDTPSDEZWGDrUtMzxw7UPQ3NooKuu8MMyH1WNJoTbYegdjYpe2m454K6ZryvGe/3grd75mvN6E0hLsJPDtNVcRUHFXfSBksGWoOw8+a9LWpTpqEf/bl4FAGcWlMJ4Ggr1PTj7WxGj+ba0dwDepotun9pNrt29AqINbC9NZDYOkxdHFxPiM5jmq94/uV3fPn1P/D05TfMly/w6YImEVtjhmwVPRvR2lEanUWHpn3UdZ8d3gd8+fV3lEyX8KZAnCZ8//4VKoL3e4XIetRGY4BA4z12SLWxWd/WDpEdtYATvhCNATfO6chi5B5VLapDMc5VgJMEJ5E0xXEvBjmiP8YrKGnbIno8M8seMU8R25Kwbw15r3DO05/A01TIeY84Wb0iHUBA14TeZ/TeTZfdqQldEpYlIk0eIYrFjvXDFJHNueVEl4xtq1i3/TD8+0wjOrIZYXKlUitctfXAhjaUNHhqzEctXFlLpIc8Tggp8aU0kxE5HLIak+F1UCIjD9m8A7CmltVc1nVErVk+M0x3bCZz29awrZn3qB+O7Q/sDJMJHI2oB0HEAsTQDrB5+Irwa6mn9XtFCIUT2BiQAqeo1JieYLQPAarOGmCyffY9I+f66YTOiSBZ0oSNFgBY/zH+e9SMtgaMCu9oWuEwXJVH73IAWc72OavVPq6brG5zAsBjigm4XBEC0yvmbcK2zwZA0BiuO0XVRup7b3RGH8OJrtDq0YtDc0CXCHUGVqYE5xyWecGyLLhcLpyEWs03TaxjjqZz9H6Qo1kfdQ/Xv9NsjxV4xzA++uz4vBFFsMWAmqwD4Rq/l0dUYDQ4zU6+5QFp5+BAYOJ83tDeaAyMZKEjpGCgZ+byaU0oNy3+nbPv7IzS6aNDiAxW9wEH53uM08VceI3YxY29Ayoj0Jij3aMZMSqVKh9qATeKYIZJh/GGIfNHkW/0I2cQqIgghhkpXjDFJ8zTCy7zr4jhGcFv+KwR/f2Xv7ER9R5dBGlLZvSh8JsCrqEjI8yktqnpM3qvZpwy6ExcbPa92LVT5gGZy5g20vp0TEOVaD2cQsI5xXMpwE+R7pHJobmOrAVFGN2iXuGTR+oJy3XG8sQX9bUV6hShepoV9HBQDlj4W4aicuEbhi95bCSeodc+BdMW0YjBOY/kmWmZQuJGMwXqgQOvDacu1lT/m3wu/Uv0hTWBMoqMk3bjmFthKNAoEK2BUTws2CclAjhpevwSefgsB1zOrxzF2ahSrCcez9EZYD8oIHSmm+eEEWUxfu4Qwj9mgzqLLmETulgjOgLDcVBohtuv956T0ETHvWVeMM8TkTfTn+gxveW/Cz6gu46HE/DT4fwFAROcabhD9EhpRkwzN8e9o5YVeS3Y3les7+9IUaAzKaLMYlX0CPhZEVSA7oyyy4ZDlKJ92v837HvFvhdsMaN3h16BvFfsW0XZO1phkaSdkgFuYObgHLnZD2CEDsIBIhHOdzhPg6S9DHqiUUpB6uE00aVw0BC3dafrXdkhqHCOmu8QI0LqeHq5IM1PWC5/w8uX3/Dy5Tdcn37BPF8xz1fACWqrh8th7ZUU7fV/xis+aERrw+39hvW+oWSFtoBWhJOg+yu2fUNtOzoKxDV43xHG4muOYKRSKTR3wHXEIrgohaIKNoyM6aLZdvRE/r0EtCqWCdpQsmDfgVw6UDpGpvI0mw18cEhReG/40Yxa9rA2qDr06tCrRy1AyZzbJK+IsxkZuRFxQAoT1KMWsQa8MwtTyXxpSipnqaQNa6vIG11O05QwzZxUt0RtvQpdlPdc0D5bUwR0l42nNmdo5kqup67J4ndUOEmOjlFGANjQwaGVhpKLUVzJMokx0QFzmdmgpWj6eCsMdGg0CxuFbUfJOxF6tX0AoMu6N7dY7xBSPHIebZbCl3UT2z2bqVI9JiKkrFRoVUYieT0NzqZwrp8w6m+MROX3oVm1KJ6xvh0/rh++C94ablUc69SHJ11oqdUgyK1jKw3vW0FCxvta8Ga08/et4rZVeC+YYkKaPBAiwrzA+YjSOrYt81zWMvLXAANru9IoZ6zTYmutODWJAydQYy9wYvrxOhpQMxoSWMFme8Vgc1jh7A1E8Z5SAvfAWKpm2ekse1nh4UOHikNaLvjy69/w29/+d3j68jvS5QUSFlQEtAoUUUShmeFaOvaqyI2MsaF/hZzsnY8O7zy+fPkbaqvocPA2kRXnkEtFjNuhBySTiQBV70KDM1X0ymu6bw29ZbQCXC4BwdvPVvotyHAadUYbNuBCvLFN/IjQCcxT7dVOrSOwFbmuxECBu4oazZRU9Fo6rpeKbSu4vW94f9vseVOoVogDUmAT6ByMpQcC3E7QasW278g5E2yZBh2X9aiYqWDvilYZw9YbqbS3+4Z1K9hzM7Oiz+oUMWAtwTnmOY6Im96r0SOpDR97ceusr13lv0/JJoaR7ArSV5uxEeWB1WepmdIgvj9EaznrA8ZzAJOvCHzwxzQYcIxxq9ShbmvF7WaNqPNQ4KDPN2OdjKgW54DqmF1csnJvtDidYQ6kY3AA1u3DrCr4ETN3Gi3GGDEvnNAyyrGitYxtK1jXTEbKJ/EtzgEpsHl0Sl2rgoRK7o6Kk55rAIOtnAMuO8cJegDUfPYJsvA+xuF5M9gTY543hiOjSR/GTsuyoFwWXPcL9rxiXe9Ytzvu2tGyoOAEvES7fV+HoM2MOwu0OqgBA8Fc3KeU8PzM3OHr0xMuy4Llcjm8RI6BiQFLYxAzWlAdn9gZ23XE4hmICoVJPz4+Ps8RHdo2yHEDHG9iLFq2CQwHq66gacthDNRtYjImP2xqT8qiFfwHCqaHRmhc2PPn29QIHephxTKdE4ehEQCgnxeyq8JjcNBNi2cNrvMsekT0LKg73SoBez9O4ZRFTkyW4eQeGlH73swH8g+LidhUiZqy4CfEuCDGBd5/fMqDj5jTFbCmR52ga0WpG0pdUdqG0lZU6GFcwwnwibq1Vu0hZwHXO1BCNXc0AQIL7jYyTh84B2q5nF0VhokhThE+ecAT0yjmclt7RZcGRCAuAQgzpsuEOEf4RJqjOoFTQZgcYg9miECQoJaOXrrRaO3nG+ggCjjbEJ2jrihMLLqG1ij6hClExBCtWLFmIZCm7GBOjV2HBv/j4+EvOMU9m8kDGP6pwXxAhMaDeAAZ+tM3NYbW4118fM/DqMu+/gRCdfS0R0M70LfT9ZIN40DOY4o445F+ens4nHLtXNIoZDYB+nI0oqrUYQzqhFiznGKi7fs80zLeB05thEYPGPE28D81y5+ZAPhwQfTUbqfZI03mChkiNcR+BWmyNDlopaHBoXsajDG3txN5DR49MA6CDcrI9qVeDFB0Jyi5Yt923P2K1tiU5L1iW3dsG+Nn+JmMMuNOTbsRCzBoN4M+Lm7oxWGO3vxMfRRc3aaqntORWgq2+4pSCu73G/K+UkLggRA9QnKIjc7U4p8wX37H08t/g19/+w88v/yGZJNSbuRE/luvaErH3vd//LUJBYA9b/jnH/8frLcbXr9/w/19xXrbcL+tWO93o5dViG8IsWOalEXYADEwrP3dYWbSujsa9qZiVCjTGDc9NJaiQK+CUgS1etTqUIqgVDJYRsOYYsSUIka0Sz8oufyaA+hQgesekHg+KdqN3q3wJsUIAXQOhYd2z/vBJigx0JBoniPmxXKRA7VDnLjQbZuO1gxBr2ZYBOeomQSnsx8dAsG8TCiopJeW4b7MTalD6aTYOTX1IZDBMbZSyKEpzZJxumWaLsryd+lYmExHGA7cp7WKzYzp8pax3lfs62brjk25uYk9aKEtQirRDGvka5KpNIoaHLl9kNNEDjYl5ASFBbr3Q0vtjrPibe0R5wFXH9ZMAyIHyDZGwDYtoMaei+ZnE9HRrECcUf5xNKPVVWwVKOptAjDBpQUxBczXBXOKjK1oGSFNpC7mgv3mUfYVLW900BWbGNnnVZuUjlbbdRu8d+UkxB0lKNSicLqasRdYfGLo7Q5wEbbXuPNa/cvec54nNmbSOySYu7EKfEiYL8+4Pr9gXp4Q4gy4hJHI5i1HVqtir0AxSjPzAs96b5TQH55v57FcX6zBYh1WW8f77Yb4/fuhVw1H/ePNgM40o7YhDzMX7ZxypajHEKK1MWnUs9m3+82ZQZaPZOpMaWL8Sm9H9qMY8ArYBLEw21M84IPDNEXMy4TeFDF0eF+YL7o3FJIfoKDcxXnKYbwnw4hu/mwKaq02fSVwnqZopnb8WqCjd4dWO2oBcgby3o+pHIGmE/D+7JjnGZfrBTE6xIkAdEgjQsUfbChGs3HNKNXBVdbpnBjaZDgS4Bh0ew5/BuW2AVqh0szLxc6ZhzGn9DBsG2kWHv6g1ao6QCpaHznETExQMBqnC/f12gwotsGEKeYgClTloMSZSRDlfaMRHjIqrjmcUrO+oemhsWF8xDQJ4AI9R6Rb3nzDtjFDtpSRffrXI3jBMnE9qTbF7BgNGI7mRA3AGf0Kz/7QdLMAtBLyZE3IYFwJWVPecZAm4/vq2b90B+/0qEtH1npvCaXNKHnG+y3i/ebgRSG9AK2gemBILMTWC+8cUnCIjrrqZY5YFmazxsQ67+XlC758+YLL9Yppmg1cwOmC27mv06BMDynSGDCJSQ0EZv6nRuO1c1DbJ5pc/LtG1M42Ubz+gMIoBqh3THiGFTt4tbRb3IaaI5mCbq226BHUE9NKNQumpQuZszc9FsRjCnSgCccPNzoLHXUNsDG6qeU8FW6YPtjG5hyCTZtGoUOuPDeM4YbHJm5D7xni6E7qHW/QEXvB3vs0ZhrN9XFzdrpaNi3HyzO158OzzeynTO51UMAzZoJNsthCTnOntlbspZ8GH+MqOoGDfY22I9x6aBm8c/zaaIDAeEjwQFtTRe0NTRtG0HzJBZvfWFTXitoq4BVxNodMTVyIXMdedsDMlOCVf4/4oJ1S26AthsUZxcaNRY8LbUoRcYqYLhPSMrEpfnBVZHbc0PS6g7pGw4duGt86tviPD3v4z+knMDbhoxAYRflPzaY9IYaQDK0T6TfD6da+twoGlV5M2D6az4EqDYdQAVF0NXqo88JF2gTstTX45g5KnzgikorHBe/ooDGihFjQEWlP04x5uWC5XDCC72tr6Lqjtmyonl0j+14KFumq+SgQU5owIjcIMj00ou7jojGEBSKkLk2XgDT7w3zJeTIA0kRkuSwztF0QA+nHDM6mzs+FALgZHdECvTP2XbBnYN/b6ajoaCBy31ZS9wpQsyLvDfuakbeMfdsBbUgGZPjI9UTB4Gqt51oEmzg5R6qtKgBXkBJw1QgvRPKbabJrydROdWBfV8sB21FrRQwBKXkk5b3LrLQLYnrGtHzBcvmC5foLluuLgVpcxJ2nk+ER46GKGOcPz/f9/h3/4//4/8a27vjxx3f8+OMH7m/v2O437Fth4eE7/KSYQZfpUklZZhGhpN+1UeQIWhZkx+liqQ17LkZ75robQ0AvgrJxbeyN+X2tkz4pLmBeJlyuE16+zPjllxlPzwHbfqdmtWycigZgBLjH4OAQ4TGj14jWHPIOu287Mj3lEJqabKJDWyHzwyai3pnt/Dzh+eWCly+kHTF+xKGVgryvaCXTxTgo4CpyeUd9X+HiBJ9mzJcZTT3e3/FXhEuApy9PkDlwIrkT6OimK/SBwFFMySaapMsdIFNToNJpfDhCnpTNEf2hR+xAaw0122bv2SjnLWO/79jXHXktKLvp3xyMFszvF9yg8lpTausNab9i69doFlmsAu4oRIeZFDynwD4xpsZ5NmKjp2RVZXTS3pFrQa4VuRUz0GunGZEOCrw1sqPgw6gJPljCTXIyqGAKNlelKhAFzk+Yly9oGuDTguvLL4gpYLkkpBjQe0FrBcv1ihFV8f79T9zevmN7B1rJxpo4s/j6X5o0rg0q1CBKG7fGuf+y0TRA2CrSwTwSM7PTpqhq1OXu4bo7QHiAdUYfUwg1Zprp+o7iHlYM6xgMAE2FUx3bJLSbb4aZipEJ9i/v55NGlPskcyxjWnC5VszLG3xIUDj4EDEvM65PT8i7kvIK3n/jpnBjijz8QyRCuzti3tZ1x77lQ0Oo8mBSkyI1sebgOaXJ3nNFs9oD5u2xrw2qK7ZtR5yAOAkumjBN4HSxc/LZm5jun0WkjNqzA4/mewpl72MZogo96hVvrtvDv2N8/dBe7nvF/VawroyV8cFhdhN8E7TmQI+Aj8/5y5cndM10Fk+OBn8TZUk+eLtBzumNqmIvGT4TvPDW7KToMM8Bc0oY0XqtkBWixRzqlSybXgd/AlafkZLbWkHrmQBscph6PepxwGHPGblkDhkc4CPN68Q0l90po/ceGWdWyw9jM2/Ni+E9oyID7NkTRz35cKIedQy1yY760FzQVLGbCc9YYxl30474tY+OFB1+eZkIwHWlgZMqQRubzI81vY/Bl52t8aweoBqfRgOmCU6n6O3FRjQaYH0MGjqBmjFEOFy1x2ACDkBE6wnzHLDMAcsU7TWht8qBmQA178h5g/ZmUXYTnp6u+OXLL3h+ecE0TYxkMfkVm9DpkGe13k0aqQcw5iC8R4bsY9R93sHbmuwdpVMwgJ8Z1f9/mxXhoWDWQ2Q/TGN0aPCsCQs+QCjignaP1pwVz5TAOx3CdbEG1C4WhIY6Fi3iPaldRHfsYbYLOmiUYoU+N2Y9TI3Gv1GbBAkDgGyzdKaR48UZRg9jRk6mFc0iirmYQTdAdoRA0wUuNCdiySgZNUqeGyvP+R6U0wTXM5pmdC3o+rOW8/GojXx6Fzx8B1wk0tgGZcloiK0CtVRUzQgJSJMgziN+gEVAhxn99CEq7w8ozHAwDEehc2oaYTqiQv6+kspWc6Upp7IRhQLwdOISi/gYn3fLxWjPwoUoOUwWWsSHVg+qiphrG/V4lhcbvFFnmM82XWfM14WNqFElRUm7ZPfM80/KNzeE3iqadpiR7+db6r9MOgcNZPzeAGvbPwclzdydOzAc0gZCPXKTxsM3LjUbU/3pmWLtojgm/da8iiFmauYJQzet2lGbwDcamfD7CVzw9kyI/XtzMQNpQM1zKffCZuZsRJ+OzSBnbvrdHrguclJM7N4YsQ/Bk/YSY3yIgXEPzXq3n//XI4QZLiyY5oB54WsEgTvXkc29NM0TlnyB9J05q1MiLbt2iFEAERI6PGpvyCUg74K8K3ImcBaExVVtFeu20iAhK/KuKHtDXivKxjxb0Y44mtAIwClzaNvYinkH9VbwGCE1ptYpKUKIEGMm7L0ejah2Rd52iIRDmwgF0jRBO/XUIQYoJni/IKVnzPMXzJcvWK5fMC/PD8AcaL41Clt7JlOYPjzft9t3/D/+n/9n5K3h/WvG7duOutPFGtrhQoePZHzMQZBmFoP7RuS+KaC5oVYBmOzIzR2NeXV7xX1j2LnBKIi+o+6KPXXTudGYo6lDU26q03zBy8szfvnlil+/XLBcI0r+A7e3G97uBfPisFw8pplTzhSFOiSZoHVC3gUxdfSd7oSaO903A2UMrRgjpApjXZvD9RKRrgkvz8/47fdf8be//4ZlmdEKnby39Q5xDbtUuMg4GvENte4ouSLOFzzNEctlQtcAef+ruYiI4OnLM1xO2PcNft3gjV5bG10a53nCNLMhTlOCt8lKqRUtV7Tc0NBQR3M4mlFrXHrrJ2U3m97cMid7I8Cyrzv2NaNsBTVXmgkF0r9cEHij3jNqYWiguRaHRCMQ6nkGA8PsH5xHtclo7zYpdGou9QE+hmNfHVrc3jucjHXTUZdrzWi3RhQmHxAxYyNbW9ic96MI+mwNH430AM1Iu1ZIE7hA3wKfrliev6C1wgJ6igjRQTvNZ5brFYNOGwNFQL1mZHCvOWJYnBvqowPkJEFMjs1i5H2O7FcFDCSWs2Ae9ZOYs7IKtCqaGCsgKOPHDnYO12o2wrBNyWqoDqsVrOm1JnQU8t0aT3XCPUjpmNoPd9CzARV1OJvRj044APEQYSO6KDAtV2tEyQRblguenhr2rWG7W/LAIIUfYKllDAfSfVXFtPxkq6zr/hP7J0RrvuYZ82XBNC/04YjJWOI79tVbc0G5xrY1bHuBuzXMF4/5QiO66xUQ8Sz/egMZ+9aQw//U0LER5bX20k0q2iEt8Hp4IMo5lRz6VuDcu3sHci54v91xv2U6Wy+k2obuUf8rjeiXL8/woVPOlgQxOqSJYL1zgm7u1iw4aEbJZwIWx0FPipQc5pla1mZRemVkcHdqDbtWFJse1qI29W7GnGpoPaNrRoyCqTl0DcezCzjkXBhFpQ1iOb59MCi7Mm1DOnMs5WF9G5I9o9ay51eTHY2RIggcHs/EqOU5HIIBda0ryk4ZBTDMMGFAcrc4lP5vGlGPX54nasabojQaoTUbcNVmbC0zeGw2LDprxbEoHDcS75NAps2UHKbJY0o0goqengAE+VgPjnnVofuHHBNIb5RoEVCXPCcs84R5SpjTBKAjBcqZ1vs77u+vqGVnIzonfPnygr//7Tf89tvvSNNsztvx8LRw3h+fo1c9mCAcwLG5hIGRrT9krgPnwM8Ho1xzmu2cQ21lXIi/nPN/Y1Zki5E88LOPLL8xeTTjCVfg4KBaATDMnLQ1W+TcSZ8d1vpnw2aogn0QsSZG9PFBJiXXW9A9+f9AikR5BqrbjGYrAnNhNFqtmRp9LJYVK+Sp4WitMhgX2TRc1AodOkGlMcrRc6idWwwUeDTv1dDWHa1l1FbgWiFN64OD+XQ7vAZEx6aMGzMLf59JP+K0tyE3WnA77+AqH4ja+KBs68jVy3TE6lxIxAMheUwTozhobMGfP6jXrTeU6uHqQ5ajnrlT5xSMi7k3J61cMlqpyDmz4VV/0kXGQjCsrsdkUJR0LotzSMkjpYhpTpinGWmekGainyExxsEFMeRuUEnMeXZMzgEcKUNNgP4pyQgjQ/Ok3Npx3HfDaICf//G/Hx6UY5JpFtLnt7GViRoAO3fuYTJq6LYYSOKdO8zavCNzwDlSnZvdcF1pNkJz5UFBejQZf6BYyWijzOXMB8RojmiXCxf7zkVkNJVc6Ki3AEDNBh5KFbthDqc8x2bsoIz1vy4y42C2r8BHhRsh4VCjCBWIE8Q0Ybk+w7mOtJDixelr4DXtBDCOgvA20Twmd6hvUJdZOPoAFwPUAU0LtNJJr3bQwl86xHcunt4jQgimeQJTIy4IIC2vtROQEAPWWHyQGh7g0VpErR0Cshe48dEqXnu24s5o0hIQwoQUF8Q4I4QJIcwIcTr+24dkVH49mCUnLDqu+LgH/nq0lpHXP1F26nW2tTI6qpuhl4IbTIAVizYJGOjveI76CQCiKzVvTY3e1NAqr7mTji7uRErtOe3AkXNHnYjluklE7wG1eKyb4P2t4e29oRtIJSqQzuREpw7dmb78AcAhlZf0PpqDKNQMjbRxygQVhFCQR2h3oetlCMJ80JbRJMNNgilMuD7NeH55QpoCctmRy440X/Dy6294+uXvqM3hf/7nbcDfPx3OszEMPSJqhwQ7HwrTLZHqTnM1Fhh0sB2MCzEqLql3I94AtjajwNajs5GhgRHXpbxxElsttF27mHnZk1riHwAA23pJREFUyfQ4pg/eWzzOaORG8d1s7z3NdWgcFLgH2BQXzvbrwPWCsVJDM9wOlgjgOAmRU4c+Ir4Ge2JEXQ2THuf8AVoOc7SPjmHCdzArghwTYucDgqOxWUiKSWd0bcc0x3vG0/Veoa3h+vwF+7ai5A3btmLfNnBK5qBS4EInANI6jhgWi1DS4Vg6ADlziuTzanpQqyGcOeWOAl5UgDaobry20ACv3rS8NJUSzzUc4o6JqIsJYVrg6PRl09Fm79EYZBhTpQN7P3+22P5wzp3w0174l0MA8w/xPiEkRYozM0xjQpomzHPD5VKxXwv2jYaJtexolWugi5ZR7XkanOO6XnJnXEsd60c/zqEIKa/LJeDlywXX5xcA1BvnrUCk4ciK76f0SMEJXEiM6IM51gqMztvUGCxgVBsIjDK7dziLjCbo9FDgNjjuSV7vpo07sZzRbKyRnE2YqN2cpoDlMsH7iFIFpbIB/qwRfXq+wierGZyaOZEDnLdmjWxDASmqzntMk3AaedQqgpQCp7YjijDwvLcO+EZDG55zi4DR0YietN/BXnisj8ZLxr455pgG2kobdb5NCAfoNPKb3TBwZEPpxRpRIbVZjW2Awf0aa8h45p23RpSskF65edFMsZvkRqyRkiMt4jPX3OAdLgvzbY9GtCl/XzlBrhBUx/fnbWJ4TESPRhQY4vfghUywAQbMEXPyx7SaPgKFngZmuATgMN5z7qxxvaORIqyXauZ8myyaz4mSchsc799WUaPHZU64XGb88uUZv/76Bb/99guSTT/diOzzAbAEgNZZT3dbe8XOc+smL2n+YGBA1Z7psRec9ZGYU3r4RJYI/NtG1IKTh4tfP7oJwDaoQ7zcC3n12mz61hCCg7jIZs0ufrSpl3M24VPAdS5EjEkBQmAMC5teXtBuzUvwwJSAeRbMk8M8OaRkTaI4eOlw5vYXJ0GaOK2Iic0rtWfDNtxGUOgARkFtjWjNEFR43zh9gmV3CZH9bhsHuonX3altHRQA1ooC6QG1siEEys9NzMPBRnRDlASXPILQBXaShC4z7pnIUx90n7FJKzV1tRbURhToft9xv9NRE53uZ8EmZj46pDliuS4WOqwH5Zq0Ihm9NhHlzpsypUAUP6WjeT0pLEThci7Y1g0xemCK1CIYUkQqRLWsyVMzI6Z3jdEjzURsDl3iNHEDFhznrev54PVa4STAgXmhXWBgRLMiWiDt48WdG2mEc90WWS4gbfDeW0dBtWmlTXRVzaSnQ+XUMQGODsH6gJIfE9ShPRwW53KcPxWjbfhhiDXQaSLa3fS+pTZzm+v2+duxIXrvwaiWs/AYxcfQf4ijDkNA44N5XrAsF05qakVozQLRzTDFUDgABBhqpf7CNBg8f2YeZBb0p1lWw2fBxT40IBaIb+igYyk1y3ypdoS0YHEe02WB9oIQomWXRlKExFtjyBgA/+MrmgTk7uCbArlCNMOlgDBRRw7foSimEeL5Dd6hJ+oIx7pFgE0s7kkQjqnHGcsycBUu0HwCRu7olCJ0EXjXSG8tttYYqj4KkpRmLPMTnq8vWK5PSBanEyMjNLxRKHlL6nFvjg3+/IN/VzCySE/RAU3PdbWY1r+yaEUFASH7N6UI9hXYNqBk6jzRhyQBOJyddYCDvG9HCUvHcIdp5rpRSkEuNI2qpXA6UJgld78XAA5xq3j9vuPtreL+3kndUgdUjz4LWnaIQRF8Q+90m6z1lHS01q0ZNXBrIPAKaCMKv7kV74FFWNeC0u6Yl4SmBR0VPnpM04zl5YJffv8b/va3v+N6vSKXDTlviGnB05e/4/r8O/bcIf+3//u4KOehpjM16uxwtx35j0OLM02TNfv9aIq3dUevjW7lFoMQY+T+1839tlhElAyk2aYIvqL6cDSidWcjMvRVzuhdI15kvB86ThJIIZjUaS5VDfo4mi0rSB2LWxeIioehc/Unq4bsimbrJM+JAFBxcGDRGEI8WBPsic5C9Fj/OmmadMtsnwJcbGZhtGI2siEGRIuLUYnoGux5DejaMPTdYoZcCoVzESldsCxPmC8vmC93TNcdcAnqElyieYqDAQutmiPyirzdUcvO7FOTI/F2OBk3Q4/vnTeKtId4R/M1m2h1Wz/HRBnKDEIE6m7jPCNO80GDVfEQH2gYNC1wPhlARBAZnQySMUVywggYHYOBY+KOgxkF+Qy4xU/Xi58pwLsGH5N5DyyYpg2lNCy5ID9dUCujee53xXanrCHFCTFMGPnsakySWo2Kq7D7w84HgK4OcAHT7PHl1yt++9svWO87fvx4JX2+rVAUKJox8niPi48mq6JhTwwzvBmZqd1jtTKHfTRqXXfUXuFUuQ5h5Pi6g2IZwvAyKGgWGzW0kKoRIvFwWfcuYqlk/8U4pAkznAvYdmDLCug5FPjX4/J0RZg5USo1o7aKXBWwWqTVjl6b6QDJKotpxhK5ZrfO9WBELOWyGxUbD5/F0w+gcr9zYpK2o6EedG1GiHl/mvs9TBow/CgoN2KdMrI9R836CLYR9HYHs0rsGWPf4OBGrXs0RoMdyWsRrHlilJ6HNAO4u8XqiTcWF9e78zlTTNPH7Y/3DssU0TsQOhAbkGuHK52WaCoHcNvNQ2LQ789pqJhVDnWaMTpSaJeAyyXhuiTMcxzDXcoqvEf2hdezEQAk+2wwzwy/slqyq2LfN1AO1MwETk0aIXbf0lcgRofrdcHz/5e2P2uSI0nStbFHbXP3WDITKFT39Mycc8E7/v8/QhHeUkjhOeRZZ7qrAGSEu9vGC1XzCFQBNT3zfYySrASQQGaEh7mZ6qvvcll4fb3ycj1zvZ6IaTLDK23kEas9m8MpCnFIwA5QrT5erxs/txsFfACbfgxextqxM+gHjx83oi4oTcNEwsfFRazzHxOQYmhIY7hfOaeNXyDZ5qWbnE4otVBu9q61Bq6OiallgQabhlYHvR4RC8G+7zQJUxKdoEVbvOKoAmKOvdPUmeZOmnQk7oNoJEDppnfBYjXECvdRVBdK3nFOacXNGnBFUwJUVFNgJ2xrelOKjf6HSJhufPuedQPJGXrWAuE7j9oKW16V6tQCjagTTB9IYloAKxaG42zrDx3gvhfW7c59XXm/rbzfNkVigiMGTzPXOPGCT4E0R9PdGVe+NnrVua7mw9pB18HjiFMkTomUktW/itr0auP5oi6P27rR20BwRri93mg6PXlYhA8swHktcGIKTLPSVuZFEdaGUq1aaersK81cITdqLnjXCK7jrKmTXhU5MrqEK/JDa5EQIiPvVsGrrgeZOSOOPCbG3sJo/ruhUabdYjQNPCaz/fExNF5Hhujz8LU/DoNoDsFqlW7NVq3IblEQ1iTX2kAe0yVss1Z7c45mdOgYHJ1hE+7MUS6lRM4KjIxsrkHXHgdEzerAWTtqrR/gkUc7AIxqOu9sDqHth2BLiBWZCshG6zdq2Sh7J++dVgPeTXg/2eZ4wQWIIRGCFi4hTESvLsHbvrOtdyqeda+ELeO2DUl3aIJPagLkXAEKnQJdzFnZI20Y2nR610y3arQbaqeV0WzCwcWDA5SAbgMxQVzAe1GrPbT5Xddy7I3dAAEvplWMM8t85nx64XQ641IipIkYRpD3YKIYODSewrHKxnP444dzjhQS0go5VfYIbe9KAWzmdJuNRyDq9ptzZzW9bc3q9IjtBwNEGYYtmuN8UAFsqqDTppScZd5l9rypHqmqtln/vOLumVpV3vD588b718z9XafUURyuenoRWhFKAO8VMNg3LVhraSalMB2mvUfemhoBzBIZt4O7dZBKZ6e2O9MSdIruK+frhfll5vzhyoc//4k//eN/5uXljbxrIxrixPnykdP5A++3HXH/D/gOs2tojwbNdLjSxqQ6nBFjsu+qT661abbfttFrJ7lkkxMPPQEae1NNvjI8E5w5UT4c29XFet+zUs/qAMHGdMYaDWNlHBFFVjiMRrLWZoXrI/rFyWOS561aPvSuUzRsulszkW3SVBTA6OqwP2i8KnMZeaKDkmdxNOIMYCo6qTLTmvG6v/fQRvThZj9il0JQh+tOVKMioHfPSMzUj4pOxxpOIjHOTPOV+XRjOd+5bzu4BG6itUr0apDXa6XknbxvuHfbO1qxiaadA8ZaODReB4PEzJzGHksFM3Dpdj5i/hMI1vTrWprmheVyJU4LXQKMD+fxIRLihMqdHlTNQdLRvR+Cg+6EMDRrB8tJjqL4dwDLt1ecIYVRFkIkBDXQWpYz22kzup7WbXQdaLSW2bcV75ThMsVFQQCLosrZcnXNyXRIH9pgC1ARqaTkuL4s/PTTK7/4X/n6VbOSW88go2brkHWfVADTIkZ8Ivik01AD8KuBvaMRbQ22vFNypXbdr1oTkMAwoNNIL2UidR4gbO/1AHp8CHZtA94n5lnB9JA885xYTjOYkVOj0tqPdbnLaSF1z329U+/92AtK1Qa02l6YQoBJ79M5TJxP04P1UbIZQOl1dqYRd14I3dG7SuqcV8mZs2aRrtpZ1WN27Qek41x7SNPEGrBRE420itG89qG1tcnaqINGrTEYFaJaaTG01w2qfa3GbHkA/Gr+KAcDxZkZWj/06aLMTKdU23lSYIqjfu5M0/fNc7wzUNka0VLBO2tCEehKjyriDgOyPlZDx/Y9Z15K2ohOyXNeIqdz4nKeuJwnZmuEe+vkXIjiCOIovtqUvh95qSEGMylVsKgDOVecOMtELxZR0/DdKW3YnOlDiHjxnJaFy/nM5XK2eJaZkKbDSE4bfmMadTOZNbZJaO3hru26No6ibLLRAA8NrPeDPWkbtMVC/ZEh1w8bUaWE1eMAeo6lGBMB3eE8cmx0YoLtB7pm03GgH02qMhB1o/C2KdYmOu1cHNGrQ2atgqyOnB00d0QE1AwtaRPULYJlZBoynE8HGqlvNUdWUnMMO/Fm001t7grrWsj7QF+1+cRuUv35SpesxcbR8jjUBVFk2Dmz7lbHXOdUTF9rRdp+IHy/fdRW2MuN7guyNZrPOsmRwlbu5KJRC6VmPfRa1WtUtCAc2p2c64PS0gd3XSd567YNSPNAMFp90OgUzW+HpklpVPY2dqxw56ClHNOs3FjvZpCxqaFNS40+KINWx/c2GsRHQS9WGCFaSNauhVBtFTGtwl5U86nUG0W0ai302lT34pRe3WvRunOYPLVGqI7vbTfOOS7nF13FplHQqfTOvu3aTI1m0l6EIEgQ/DhsTDP0oGJZUd+tKB47FByFlAz0zyjvIsKUZuZlYZ7mA0GqpbKuG+taj3vHOzkQQdVaF0ZUyygcFfkedvDjxpfjOez7zpcvX+hdkfPRQFajTWrwvB7edVCwO0dotA+OTiMXnbiXnM3J9Tk+6PuFzHJKpOvEnje2fWXbfmW7ZdZbpZVA8Geiv5hOTA+Y7oXqHcUJ3je802Y35519X9nX3aY13pDRSJOqxiFPr96WvTLtutKvjj+3aq1WcEVwpcPeIet6tEVCiO5wKdQwck0ZUzCo0ru3wlppqoMx4LwQZZhw6UdMwVwMg2VAasGpLo/ZPnZKTkexyDd72tPb+4PHPJ346eP/he2+Mvm/4vkbX/3G/euTNo9hPW9Tk66RWBpDg00VFQBMcZi0aTGSS2MvOkVrNjU78paD/rVuU7S4CXHTnxFipbGyboXNMjZvt5tOxIM2EcE/7q2aMXBppLo1cxweBnhmvGHPYQA9bjReaHM8L5HLZebldeH17cx8jnRfwXUur6/89Okf+PjzX/j5z/+Jj5/+E9frB2pVKq/zkXm+kOYzXe4/vPhiEUJiC240ikfz1XUfbLU9msvarWiRwxm8GerefKO6h1nKIf0Y+dtjb3Xf7q/6ZGxvGA1S69p7VfDdG5jwtKaen9dhUgF4AyLcoBnrdFb3ocpzfAxNC7kgniOWq3Va1iJOWUPqBBxDVG2p08iaQ2LRdAoffEImT4/tYGj89qFgTTXjI/OyqIOl0a3Qt9ffm4EV7QCM9d7FJiiJEBfm5ZXLa6WJZz+vCnoWjXKRDnnfYb1RekNCRIJHgseZj0U32YAuAfnmGveu046Dkjx2iYebn9Uxdlc6NZBKU2I5nbm+fmA+XfFhxoXJGlGdQl3OVy6XF5blxDRNGvngPV2UA+t8J/hOc54cVZ8WguoHH1TTUbD9W82oMnKc60zTzMvLGz///CdSjCynE6dlYZ5uzOkd54Sc79zvXw/zvuGc3PrwsbB7dtA0vTNQWBteb1N8xV3VjyIEz+V6odaGly9QOyvZQIyMBA8Eo2Jq4b6umTRthKhGmc7DNGsZ7BBaf0yZkXaAxNMUmCZzxg3a0GpD4qlV68nD7bg7evOaU23rpuRsv1bQIuedhmPbKutaac3TT9+/5moYqmt8zzvruinTZM/H/tFbp0XNYfVO3cpz1iag1nIwlR6mn3oeihN81xig2CKpFlqLVjcqo03ZZbomxGJTnHmm+KCDoFoMxK9233UDmXygR5WqODfMTrW+7taglqJ7kxuTdpMFDvB+xE/RxLY7o+tnlbq5orWLNlPteK6Hj425JcfkjUGnRU1M329/nAjRe5oDaeYrY+f5oPl6P0wjZRTEj3LPnM+lD0xJG9FlCSxL5DRHpqSsjd4bzXU0eSAq6JQrNei1ilEb6BC9xhFFfzhBl1JY15UvX9/5/Pkr7+93brcV59T3Y4rBTPt2god1y0zbzrrtbHshl2Y53M4mypoS0tzYV5Wu3YKxd5r6zgwWiUoW1aRopCWMfuiBnB+HEYfw9TuPHzeipl8ZaOmxUdkOK2NMy4Pe4cOIPpDDeKUP3nlFkRIB70azCj0KLap9+JSEaRaCF2pxlCz0Cv6u4vO6d4oTdiek0CmpmU5Op5raexlCf9CzxBrLRqteOedV0Z9S9QYqVZ0sh6OWOo0KEPWEb94moxrKPKhLY5ET9LUEP/jQHpEITAgzQqSVRmF/4ux/+6g9s9edmnfatpO5Ib7TfSPXjXV/Z8931TPZxlJrpxRFnIddtjahVoQdTWQ/KE65qDnHfV3VJAB0oyzahA9Tmlb1Jgs2bm9FMxxrrsfiUlpIp+TK/bbqBrmrI2gfFIynSfooQuDx/rsDNOsWkJ5Vo5q16Fl31bqqq3LTTdQOaae7hn60RtmbaqOMqtJqZxbPy3dWuRPHy8ubTuqtASu18P7+zu12O+hNrVrsQh8InOaKPQJ79UCrWPE2NvsxZcVuaqO2RdNBBR9A1KhhWU6cT2fm5XRMWLdNG73brVvBqFSZ4czbe6WYmyNwNIAPKpg8gUgcf+d+v/PLL79wu92OBlRESCkdBkQxKvJfnJnzdJhSZEoJDcBu7Ps4DPcHXflpCvy9x/kycXo78eXrV6U8br9we195/5wpuyeFKylsSsUd2ghJiGw4iWAmGq03qsUurOuNvBdDZLWIEIKCGseBhI1Oxv6oIENDcyN9MAfi2vEVfEYL2F6UXiOKCMcUmKaI86INeMlqCtJ1cqPiK38AcQNoUOqqt6w5a0SjZb3ZfqmFaaeUzLZt7JuCOinuEAOCNYF699jh94QMfucxzxf++Z//r9zfv5DCf8FJQVyntzs5F5zFNhi+rG6ghmI6r7mD0htNOikJc9JpkwJuwr4X7ltmE3MWLN0OJnDBdDFzoHZh2yvrqg68zlc6d7Yd8l5138l6f2vBF0hTIETTwLSGOo81myxBSMJkkGg36UbPA+SygtYLzsC0eU5cryc+fLjw8ecXfvr0wuk6HZO6y8sHfvr5n/n46Z/5+NM/8eHDP3G+fGRIF0R06qS6ri8/RHedaR3HFGoUp2Jonuo21UQo74WStZAUmzh7F4ghUrGIBWfmX8/vd398UkKHNZumLZLhqHrMkjrYBLxXnYiHElRe8/wyun69lWbnlDCocqrdcrRejflQybuBeN4dbApaI4iHALkVi8ApB91s+E54H/CzR+LDNXZICZrpelPU/Grdo78/vdC94KFTq2UAqhVXKg1nxjygFPxxfulePbSUtTjoEecXpqVy7Y6YFkrZ9WPf7Z7c4PZOLoUuqwKhfjSiVhv1fqgu9fZ8TE2UcmcA/2g6B8BkdZZOD9DC0PnD7fx0ufDy+oHLy0fidCFMJ5yLBoh75mnhNJ9Y5jPLfGKKCR8t0cB5bUQDdFfJKbBZzqbSTh9NaO/H9OD7j3Gmm0nMPC28vX6k1sxpWbh+/cyX85ll/sKUNFf89v6ZL58DrehCU/bZeO9G4ytGQbR6jkqrWc9JoycD5KzMK+ccr6+vTHHG46m50eo721rYW8E1819wntYq22Zmd6Ejvh4svOUU7aVr8R1iIPWEMj50Aqr+FXo2ep/wLtJqofdMq+ozP5pokUCv3vZEY4O0Sm+amqBnU6U2eL9VbjcFMfuHH8m2VMe+7xvrunK/31jNJK4Wnc65LtCq0ZBh2xreV0p1RwN6NPtj+m31i7csYgVmkoJXDbCpcc6Vng10MrDFO29TOh3WlNKPmvTIBxVvXifKWBv35XjOj7q8UWwCqhNkrwkVto9Lb9qE2hbYO3Y9K1sWnNuNFTIOSH3fnBjb44iYccQng8UQv9/+iJjrq9XR/tjLjb1XhFhU9z/YDgr6jf3ZGlG0ifUixCDMU1DH46Rg6+Gh0qA7bz42Du8f8UUDmI1xOK57jZiyCKD3253Pn7/wyy+fud3u3O4bgjClQIrBpriWCmB1SUwzp/PGad1xIamfDs7qC62ru02fg2GXrXdcreTSjnoddOrqWrfbV69Al8c+ogOsbtfnP9KI+qCaAv9441RPp5ttbyaW135UpwB+oA8oR9yNQ0WRr8dE1P6e78cBKyJmS61IS92F4oSabVHh6K1rHtMGOUHeGyNYd1CLBkhRCgSbYPYOzXWl+BZHrYGShX03p7bcjsajHgewUveUmqwUhW+Dde2mOKaFhn6HhA8JJwvCgvSFXk9QE3QVAn/v0Xqh9Kyhx/tK7hqHgmvsdee+fWXLd/a8aiZSzTSrrH13T5NQK8TMiQvM8r9qrM4uO/uaibftmMIIqm3Ku04ghz21c0rrDTHoJl86OZWjsRmNaC2NbdsouzVuQ2z9AHaPIqk3XT+HcY+BFpirbOvNomdUK5L3zRpRjdERRu85ID3T1DQhb5W8FWpuR0HlffnuKhcnnE9XnBOjqkZyKajRjL72UryZNT0aUS1GFYUWu2HhYZU/XltrHcfQUsv4i8hhLhIZOX5TUsrePM8HZQ0c3t8OwM3pboiIUpW76SbaM2WFcdPrwRRQdPH5kXPm69eviDWUrbVjAppSOqaiIQbT/3mcwBQ181ERzHI0YqWog6e+tgdr4nuPZUlcrgu5BL5+bdRyZ9/eNdNyFXLYyT4Tw3zkgQkJeqT3oIV504KydS0CStsVnCkZ1ac7hvV5LQ18B28HC3LoFI6Jt+tg0zsXHL6LNfyNVqDWsc48MURSnA4UuHeU0t7lqNvENoXnXny4n/ogBtQ1EH3+nYKTZC546oq658y6bdzvd7z3tJZgSgTM2n68pVa0/ugxzWf+/A//idv730B2Wv9C64WaFZCqpR/3qA7KVBMeAtQoOMuhaA5SgjQ5a6BH5I4280qBhyIWx+CVuhWTumaLF6ZdSJs2L0qH280lM7OuBSc2+YmeNGtenprJmNFFb0irBwjlvdCjow4H0Gb5sZWD7h+CwxtAeDonri8Lrx8u/PTpA3/+y09cXy/mRSOcrh/5+PGfef34j1xf/oHry5+YlzcY9DJ5tBVptc3/Ow8xLeSYDuo+1KlOJ9DNDuNtU2ruvu66b2ZtOPswYHpiWDzDOqNAGL9pI5tSdDra0dej7qejALD3qaENfYVUixVzQwM6AC3buw9dsLke6mLTiLNdKfuDoh1CUCArBCu+HEE0CJ7WaKWQt0LJ5WgMeoSWxhMWA5Ft8tGdrQfLinaDCvn7xzBXaiYPGQ3o0Yj2sUZGI6oT0bGO9EwSevOIS4QIC44QZ+bThVp2StnY1jvvXz5rfeAcTTh0Ujix1ADdK6XpdMAd+76+l9XAukdMwxN75GhEh6Df6qLDEC2QpoXT6cL15QPz6Y3l9IoL1oiKFtnJ9qgpzCTTluG0EfUme2riic+OyUavHDMdMaDuDx9jGIEnpZnryyviOssyG/XvzDQtpDhRys4vv/wrMTqyIiV69pgpzkBWhmnWcHxV1kmgdznM9OgGgN1XA3AvLPOJfcvcvt7JW1ZKd+04rwZmIkqf7bs2oGmDtCsVN3hPcE5rHhrShRDjQVEdoO5oBkJQoBNG7JIao4mxnNThNNCbDge2bddYPpuuOg+ldEor5ALr2ti2Bj388JLXmrWhzbv5jTxM11ptVgsNvxOTl5WuMSVtGEs+pETPcVCqaRVrGgMhVmJrZgonZub0TGfvD1qtUzZDKZ28qw8CDCBlZK9qL+BENaPauMPwZKiHVE1PMh+spxFNRxh72KA809phJjgymg96v4Huupydnv3Npo4jKgrT7Adl3Hx3aVsj2tE6qrknwK1VYrCIGPpBuX+AhQ96saDsOdWyql9DjCPGRZkBrWn968e9bvWB87pHeDNz0omoAiHV9KPFGHy3+8r7+43328rtviIdthC0dncd7xo5OAXemu7X83JmWU5a+BjD4TlFw4ntaQhB1DdDqgNXlatsQIaScmwi3A3cGz4rTc27Bjt1MC++t85/2IjGMNNFiPGuIcUxaPC5CVO7pWcwXsYDTOdAHM1AYozzFR3uB0IioqG5eoM6UjI3O3mgiWlS44uc3TH9KRm2leOmdhYBoSYz+vNLFWpvlPrQwdSi32ffhXXripzlQi07tarGwDl9Doe1vX04m14EHSHqNWjVmiOxPTzgZMK7E9G/Ev0HvHtF2gJthh75Jf5XYP3O4m+Iz+CsKKxKAdrrxrqvfL195XZ/Z93u5KIoswuOVCO+mItht0PL6bi/t/ZA+iyDkQ7Vd4ofOgHdkKpZUqvjnhZDQqP5RgmNtjXqVglhTHyO/cOQ7IZDnbEO17M6MpE0yFjdNwfaq03ocD7z1vCmKVqAtD6voR/QRt9ukG7rq3V67eRWjoLCOU9IUZuO7kgsP1jhQ6vkCCGZUY9YdEA0zrtmNvZR4WlHqAUjdl1RlP/hBOmfQBFzLzRdwph4BBfxI/y166a2bwVhN92GRvfoc4yE+GhqW2u4NgyWFO0bxekoKGtTjZVYQ9rNwXgYpwx99yiCHr9/fOi9p6610dw1g3PknFnXO6W4Iz9tINkhaLH4y9/+hVLy766494kYJlKcSXFhSgvB33F2QNUMWymUPSIScBLoLdBqoFXH0EOr2ZXFIRni13oh5xXKDk3pT5ViUzVDWYOaAQHs+86eFVEuXad4UwxMMRB9p9eNXlQzWZujdQ89IBINacXQXjPG6irw1yxiM2cY7poAvZFFtb2djDj93ChcYuAUX7TIEdV43W43Wodt3zifTpzPSt2eDCxQyGGQf7/fFIWQuL7+iZACuX6m8UWnI6hGbbirltr0KnYtSqhKxwoevHTq1tV63gxeugFF9ErwOi09QEavFGpxRZvBCCGNIHhPzrp/533IMnTaAEZ7CjDPnbgYbbQ2xAC2QVftRxzYQLvVBVLNKUY+oRCTZ0qRefK8vJy5XBfO1zMvH37iw8//iQ8//USYVJ87n144nT9wOn9gml9xYTqu7/Mg8g9wFmBMG5QlUXbNMXZ+P96zARrl/RFqXywv0eHI98w9ROhDx1uVzTL0O70ZVa3buas6NhmSFKeoOqIOmrpDVWoXRu41jeP57dtu17IpjQ6lyDGMSpzDoc6avdj0etfnNOjpLVSoXSm0zpmh2BONeIBmBxVYUbvWNSJMNWFmVOQ9QceCDDfo1n/bjj89jrWAMYQaki2CzZdjItqRb5q+Q5HXNYTcuQGyJFqaqE2L//v9K/fbmLStvH/5zPuXz6y3r2zbjVKe5DZKalCa9BMzRGwRaTaqXoNugN6B1AraMJoRlHh1/m1ornfOxXRjgpPIPJ24nF+JcTLdrxlXidP92kd1DD5MqjpeuvklGA/ikO+MPX80ojzO9z986P0RfOA0n/AOzSk8n3m5XFmmE/O0sG8r/+t//ndlj1FtRu9s4jimQNrciTyofRMRkZlOY0qJ4Cd6dWxr4cuXFedmlkknP1NamKeFfNK8zeXswbJKu+wMSnRoEeeTGROpli7vFsdR1MhqOQfmeUJcf3hatGE+V+kt01tjXTPbvZBLJ4nH+6g5yk0zq/e9mLxmJSVPTPpz88FM60fN8iMnC4BWMrXs0AvBwZw80U/UKeoAx2tDHYMz00OtVTsK0KisYxibWbTGMDBDHoU8oyUZlFn7MPdzRgMatNHURhXy3tk2BSQHm2p879a75ky3YmvLHfWTTXDsHpEDxG1NnZ8V5x0Ir9YYh/xJULCsadOYwpjO6rp2xkzolt3dWmHb78r6inqGfrycmE4v313VMgYNoHRyL9rXdqXGNnOUfUxEh27aplOW1nA49jo9P8c5qeAUA+PUZnvQ1u179j5AbLGILm/O4PprH9VhXMEmMTPNh1t5LQUnDUdj8519X7mvN1qt9v0bl/d3Lucz82khRfUymFIiTemIchGvzvVUnTi64PG1EcoY2umLGIMNZec8TCvHYCWX3/c94/Gj2TTBL4hzhHDTaIGU8C1DN0OSimbMjOIFjuZyZEZ1xqRkjN15NCGDpus1WiUk0Rsp2ptpN0QpStfN2ZF31NUvw7YpHWvP3QqR0fDoIq1NR+e1odEg0VGrI+/WiK7q2rjvO73v0Hd8VLvkmB629j46XHS4aKHM6PMeRjK6VL1dA48w4d2ZFD4yp39gCj/jmFGabiDFvwJ//f01dw0XyoEyl1q4rTfe7195X9/Z9p1137SA3rUR9d5TSlKTG68oj3c6SW1eC5du6FbLnZq7UW4rIupgF4M2PkpPsuzEYn+vQxV1QS6hkGM+GtGRpziMMDCBujd0CjQ6YWh11HCiGWChzrza3D8E5zFZIxqCNaIOX7xN53Sy4Z1TM4yiZjClNUou9KZZmcFHoo8kH4ku4NsZ7t9Z4oB34aCVeZ8UefVqY60GsnojjQLU7JBo6OSqUBU1EG1GdbPxx4ZZa6V5c1isVSe5zuvPtUBtujbp65apVU2BfAi6troKzRFommxJbYJvYo6thr4qE+LQTpaBFDYt1pXSaGituMek+rjdB2262SarBUpKifPpxJySFth01nWllIz3+aBRjYmIOioL/+X/7dm2319zpR1qIzrFhSku+l67iqCT/l7v0DzqauipxVGzV224We3Xli3PLGtDeKD6pmOxTLTaCqA0aEkTIZyY55MWCvVG2+6UttNKxvmmZkFxIYjQs9OJTRs5ijrxEII2tk7owSlYQ6d0ncAf6PBwCTQQokmnlULrG7V5Ghul3sF1TpeXQwsiIpRSub3fua87t/tdHbd7taJP7y2NePjjiWiIievLT8TJ0/iC+C8HcOaccHu/sd5W9n1Hh4la1EsXehWCU6Oy7LWB8QYy9t7UIp+G950kD8MYEY3OQorq26IQJyEkITWVW+xrZ3caUp9ioBq1raOHdEqdMOl0otYGxczKqnoPaaXvbQrtbXLRDORqRyOaUuB0ilwuievrmfPLSRvRt5/48Omf+fQP/8RyujKfLsRpwYcJHyacSziXrCwfsTl65P5BS2T3kpIyWzUH21KOg5rWDwfLYvmlpTxYJNg00flhzT+Q5sGA0BinofkUi4DSBvzhohsGvdHpjlVbQZrqmodEQo2eCts9297RCbEfQJje29qgtWpGRLlQtkLZlEpdm8kXgjfcudN9MLNBDp3+QQ0c07bD5ENBM/HuMEdxaFEgViAr06Txo4veAZo7DMFK7hAqYS/gqk6CcXSjSwMHVX+4yarEJqibqvkQIJVaN3qvbOuNWgvreufrl195//Ir+3pj326UsqlTrvQjT1T6UPKPH/m4X53ldrauDCMZhZwTK9K9MYUcuGH0p4ZWylYCJ54pLlxOL6TpdFDl3XFCaVasY5zNula81S5dGkM4MowPx3RWeGoK/vAh9j3MEGg+MaVIPZ1o7ZV9u+tENE28f/3C+bRojaY0AWtErYaQAeD2pwa44VxU1hx6FgWXaM2x3iudjXmq8BKIYSFFdR5fTjsznk4kV50e5qq5lt1MCL0/q2NqF+570WZy14l9jI7TeWaZTyCNrd/ZakO9t9rBtClZ2Db1FSm52TmmIHbeG3tRp/D1vrNuK85NOD+TpkQ1k7JSGvRo9UA87vffPlrdqWVDKAQP8xSO6WYInjkmphRROqTWRTptHn4nGn0nVp+EGI5372D2PQERoPf7vqvvyGAAPqKSLDu8Qema3b2tFZFBIbVoQN0S6H0n5466YVrDZgMd1RaOiS0HwN9RsyjXqu1H+nMHR6SLIFarxBCYYiT6ABbFRNc13ltl3zLbprpGH42N5j1L+Mjr6bubuIFG2lPa+B+QI1f9YKDJAHqeJqPGkBqNqLP775Fo8MR0GU0ookMDBNe0BLKn8mAJBH/UyyEqay0cDaq3KakZWNVGEUF6gV5wVO4B4rvKikAb1cvXd87nMyczL1qWhfP5jDjRaJfgVAPvHFSHVIerjdCUgj20vMNYrLZHE/poRPXr+3774W7y3UZUgPPyiotJrZfrBq7Tyo1aV0NoKsUcyno1F1we+r2DmnQ0qibOF51get+1SEkasxLToGZoU9fk6c12w/XWGoGmDarsekj70PF+oOb6/GtTKm6pDV+7NmZtBLCimsicyUUzqNTpS3MOYxqjc0WYtakYKKEKfLEpL338XdUGOJfwbiGGK1P8yJL+hMisWjc8PszffSN6r5S2UntV2kbL3LYbt+2d+3ZjL1mDhluhdi2yOx2K0r188ITujya8K3xuNCs0U7NqgYltN7hOaQ2LotSDEmcHhn9MymqjGtLUqkbzYG5nOtV+OvAMaq5De1MHsjbyN/vRyH7jdmgNYYojvsIbKi4WMwMej+9KlXZOqE7z3ap0cKovCCERXSQ4y5CrP0IaR/HhDI1UlC+lmfOpMYKDn9G70vR17LlSpCJkBIc32ubIxhqxOKUUNfIpzgpSjow8J16n1kYnVyRLG8rQORA3jQ0aZtxy2JmrK1xQ7eThnqyUjVwLvXQYh1VMLMuJ0/mqRbL93RG/ojVyZd83Q441mkBEjUdMMAJd7cK3bWPPu1J5XHrEjQyd0Q8e27Zyu72zb5tNbJ05XXbEF51k9t103I5WHXlDP7JRHC3nrJMBi4kKHgnuAEeg0i0Dt3qvzq8t4t2JlF6hCznre5+zsGXVjnkgeacGSdXTW9Cf1TAKlrBvxi4wF0B1+VSwpWQzUxsB6bZudN1XpfMN123LGY4psW03clb9WXd3chPEQvZyXphiIC+zGU484nmOWvEHNaPzifn0Ey5EWr8jstOKp2xC2fSgbjUbhdKQXBRlRqAloU2q0RlrU/fkB9vFuX4c0o8zW/cdzTQEKRyTq17FGBf6z1ISK076QUlUBk2lFd2/c27U4mi5Hwf8yNZ8lkUEiyEZh7M3k5d5nklzJESHC5gZ1kyarpwuP3F5+YiPk23wDrAcWPR5I8eO+eOLbQ9VgNkUsJlTsD3HZo6wI+Kl2ER+aNNGYaMAnwWZDy16cPhuU7KDzSA60bLnJQ58VKRcATEFf0spOIt9OKaUVbX9mxmz+dIe0Scx0ELA+YZ33tgy2jgPXWstYzJr1aMZJY2pIAMEHeYkoue4C56Q9Ge4IFpXqIrVGFWD9q4mRJoJ+GQa9pvHcJZu416s5kJbGlKrvhvS7NqqXOgot2XQxgajBcR3DF1EusZWeQMXpDeNaKlFdXtlN53gM6pn94CImpUcTJnHulGqeT8kH4e5onP4jp5l0eFCUDZaSMSQiD7ZpDMQnSd5ZXA84rbaUYA7HlNy3QzMnd1BdTp19jL0b+M5wzCy+Tf70OPF6j6uTBMHRKCSYjiAluv1yum8ME1JteCWcjBihQ7H3vEc0LOLrg2loFFrwUUQ0yPeNu43jXLyUg5qeQjqUu2DkKsOMPbiTHaVmZfENCtoWgyY39fOtlb2PROj53zWRlOcDi9qlQO8aw3We2W9P/mJ4BEJiCiAWktl34qxBnQC7oO3KLJELh3vKjGATyecPxn49QPZVi2qlW0NJ6q9H4B3mhKnaWKeJwXobV2Wminmjq50SK3lxvs78uD1+1u8mHeMbHW7uzhyXLH35+m+GwDWANK8AWMOMTNGmymaGRJOG8AgiQPWFxjGYXS9zwdtXWwP0TWmteYAtbTJ0+YshsgUVRrQq6fJbrRQ/T61VXLN1F7xOeCjmhuVXL6/qm2vwl55H9TgxwK1q8PjXj/uc/d0Lj0a7FF1ixn9jK1z/Ht9k4ZhykNvOpr04Qj+PLSZ5olpTsQpKZvKaaRLaVVNhgRomV4LQiEW6FEOD4ptVWOjmrPVdSf2vNMF4pSYmzrYe10wyr8TATOdck0vwIgxbK0hrdnZqXWCXgPdP2P6vs4f/oCa+/r6J9J8UiQqeOYpsa5/Y11/Yd9uh/sfXScCYj8UW6Bj5fYxleliuUPahMYE0+RIE0yTujJ2UR1msQJk27vqQSuUbgx1m74daA4gruGijFYXJ5Am1UN499CrSiu6EASQDKIUOeVsR8IEMTliGmizvr5chPtq0TKWGeoDBAyZ8vEIc/VmE+79QghnvL/gZMbJpI2qfP/NKDXTthu5Vfa6s5Vdm89W6QfvTTR+5aAyQZd6uBJqo67oVhtduTWiToTuPNJHYybjHDGgSo6NyNvUrrWmNvUlo4UnjDDlmJSz7oPmonX6ofloNPa8a/N2uDDauviGwvdAjJyI0Uvi0dgeGZ4DHdd9FCcj07IjEsBnm2Ymoks4E9nvteBr/e4iF8GoS6o7qVmR+jmddVIX1Tbbh6ATjFoto/XO7b6yy46TgHeFYVmtz1sL8doqOe/mfOooXtHtMIpL0RvYKqSjoCqtKgXiQNzM0Qyhi9dGtKMNsE94n5CutIxaK7XDvmeaQ/Pl0szpdOH17SOvbx9Qh7tmmuDVojXUACvnTQ9Np/Sdr1+/8Ou8aJNt93itj3ibeZrsXqxs25jU6DT/e49f/vav3Otn9v0z6/rV8harGtskm5h0LWxUu9BpUsi9kOuYqth75/XgjKbdUd2mIY21IUUPNtXoCa0oWyGFM+KCMiOSsK6N/a70qbZn+r4xRa+U1V0Br2xa0bWp07CINpG17Yd1uTZWOjF1BJ3MiVdr/mqTH6Oi0XXNZzrb/cb71y/8+svf2HMn3DfCfNc4lzThvaO3Zrl/7qD1II85/Y8eGknxASHRlop0z34P3D8Xbsud+20D985wnh2TdaW8K6PBGbhSbY31Pu5h00X3jhzNoQJGreoh1FZFTd2qFLReO7VoPmnZlQ6dZoizOuCGpIf2vqm+ads693tlWxutqBOldAMxvdUEBnx6L6RJdcTBdNzOmAfiAyDqTJ7vrPs76/2r5j+eX206E56u5JhTuUdj8c2f//iRayHXQqXRnaHYZkTULCYCOzvV3Vl1ng6dqGnep2lww5AuDP3TY6qHvRdDb9iaGjlF03IrRU6ZJTlntn3TvcjAsd7UKIqeLc4hM7JFtWhW2lfwwYBYm4pW/feNbhNTdXRU4xLL83POphqd2getTw1n0hyZl5mY0tFkdzG9mJmSgF6fmgs1FwM0v7+nHBIIo4vXVq0YGp39aISbxbVZ7TAmEXY9j4atdyv8d3K2bFcRUohMaWJZZvKeyPv9MZ0Z98WgTBsdL4g7AFcZBb7IUSwOfZzWTYK3Bkw1bAEfI/N85nS+crm+cT5fOE0zUwi6XsqOlEBwE/GJFnjAKQMctp+rDYyj9srsA8l5YxmNqc3Tdfg3Hk9wNsfgYVxdGz6I80/RLguXy9kQgOG/8TDCHBOUQS33x/RNqd7qeBDIpbHmjW3L3N7vfPn8hZJ33t/f2faV3jM+CPPJszgPLHS6yplqJqbA+XwmpmSOs4W8C9vaWe+NPTTmeSemlRCw3HNl/agRXifvd75+3qn1KV7Dq7FlrRontW0bJRdzPF44LRrb5F0kBaFNgXmKLKc35vkV7yN9D9/dztuTxnHk+najvkpXYN87p14I1rD4ojTO50i1YejlfVGZTFRpUrUarfWGyw+dbgj+YFoNLe9w0QU5ft17tzpbEBqtWoRTV0p/Lp3aPd0Pkx6dcEavDvNl39n3OyVvmo1KNlBL71eNW6z0+ojb6WgUmg4fJkJUl+gmBqyijefhTWJnWzcpbf+jZS7jftV2WezPOFgq9muOXx7NqMoO5MGikSHXsO+L+2YfGufLQH8eogHH04992kcUbJx64lQqy2lmWSamSRMNDjdqaYZL6drxNFz0xBCYU2JJidOUcHT2bSWbxKD1iguB+bSw1IKrke71/W3j2hwSSxvSNXt/+hhI6utVRsajEf2tX8nz4weNqPB6/cRyfiXGZMiy58tnQUTpubSukQWuK9Wj18OynA4Ns39+akQVxG0aZxDFsj5hmvT3tQmlirqNVdj2rs6KRSm2bTiRiuEp9mY71zWj1CvCp3RBrBE1J0dRepzB8/rZVdWoRo1WiAnipJommgrRe1c6cOsQU2dKneS7IrvWsGmelwnBfcD5hPcz3p8I/oxzCyJKzZU/aES37Z1cC/e8s+ZdkXUH3StaIk03Z8QhfkzG2jEBbU8TgvF/N3KZrEHHPW6kRxZsJRita2RMpjTRWmNdBdmGEL1ZE65FX5qicdXVlS6bRmc44T3nwGGIr7PiQ82qxKIuBv1AowucG8QhpSNKN5Oa3GlFrbjDNBB1Tw9KSgouESRpaPGuU73Qyg9UomLOtYpg1doJ3qsOb0rMy8KyLJa3qdPz99sd7z7T6mfoDoenukKaIvOsqFTrld4LuWT2TZvtbCLw1rpNRPU9dLaTaf0ynOYG5Vu3KqVcjbBhxZhcx2jVEzHM9j1UV5FLY103akMb86SmGy+vb/z008+AsyY0c7+9c7t95X5v7HllXd9ptdoEx5k5TzINSwdUA+ZHRl9vuKCUv23b2Pf1cK783uOXX/4F7pXeN3q/U+tOM4aBT1qIStdJW7cmo8lO6Ru5Fdtf1OAphKi6m2jaLu+MijS0aA3B7ouimZjSI8EvdghDDCB9Y1+/8PXXRt0Kfd9J0UO3jdWinmqFttcH1bbvOr0d5lxddfVpxFHIoEEbZSWrY+2AQkW7EbZNG9EQf2HLDT9txHllPp1ZzhdFusd1P7TZz5Nn4Slk9NsVLpEQ3nBuBvF4v7DdO+/nryynX0hfviLOH/tGb6irakUn6v2ht1R2pE3pxcyz2ig6+9MkC5u0q+P5XlRC0UeGc0b3iNJJC4RJ3aCnBeYZAy8b672xrY37rfL+3ujNmQlMJyUg6r01JrOqfdLu1JmOd2Q/iwt0QYPg88q+3Vi3ofErdNwD2LO1/y09sTOaUL2uP65iSmvkVpWW6Zxlx2oxPeQOY5JQndcm1Fm8iAh4UapqcLioTqHaHAYDO21qYbRv3WN18oRg55g2TWogFNm3HRna9q5shNY0dqu3rMwiK3gOc4wQVC8ftYkfGsthJDemPPGJHqbOpkbb60rpq82Aamss0pSYT0ZR7P3QWzUK7WnqrlPYhyFL/UHsWf9NkX5olA76XD+AaxkAjjFMxqhiRKsMEJFWKbvmhPZS8AhpFHDzzHrXrNex9n/zjBjMmBiGyaMxNYyWWHs306gxCRr3qxVsPlguaGJZzlwuL7xe33g5v3CaF6YYCQ6kZaRlAoHkgpWw8jTxkse0FT1fo/fUHplCVG3hMHlxz1PJR4P+3X3l8VJHOc3Yk/r4c2PsRGtET6cT58tJ94Zqhi42Reo0c6hXllkIGlORrBbxPkILtOq53zdWkyfd7nc+f/lC3jfe379qTmkoeB+YZ6/TojThfFCH97wjTqm3MSR2Mq0GanbsG6z3BtJI067mRJOCmxrv5pGok7x9u/P1a4auOvwU50MyUYtmOm7bTu+VZYqcTgq+pGixLynpZDOceXn9mZfXT3iX+B//38L38JahvRv59LpZKFNF6LYfO9OCekJXydGYNu97pvdMs3zf1lQCovduUIaGE0qtBnaOXPF+1EbFJG9qeKOroJkvh4DpIO3rNdNxRy2fm6PiwQV8mtRMK2qESQqO9faV27tjHX4iRq3VAl9/Xut6jgwWkoiysVSKlSxnPGrFOKjxtY+5q05nf/fxowUumA4PGXjW0XG6o6FksHcEBkvpMdHXa+SOf/I8VX3cSP3p744md+hoR0P3bdxOJ5gPydwa8zIzL5PW4mbo1ui4bsyLMV026dwUA0tKLPPEMiVKLWzbSjY5V6XhU+L88sJeCn4AH8c+J4/GWfqxx/fDMOjBwpCnPejZKPJ7jx9oRNFw53Sitp1ONgfFTGsbvalWoeSM7wPRMhGueTIcepZBBW3ueEM6XZGSrM1jVEYDg7KhWiTVBCm9VhfgcKkbYanqMKVTBh84ED8VZeufiygSX1C7bFCTkSl5OoFW7d/GToiNECrOqDzdmtHWu1oU2/oMYTTFilzoe6SUwdYGR78YhdAWKEPM/P03Ys87X8oXamvsrZBb1QtqDa4azSRCV11B74pi5VzIpappzjADMme0gbyrU62MOb9RJp7iRRS+UPOgIPjkifPIONKsvW5UYCcotWVWYfNAajoC9flgwjYoh8RxUw0uvd5uQ3vQmygNb69soaBGz920VKaf6tjmK9C0yG2izUuxYgfxdGfGGbUf3//HD91Eh1JHD7DFHP+0kPPqd2+oaFWKVExm6qQggFisyDjwO2OTk6cD11vRo9RiRYuD6UmtETUUXzfOQTUfG5VNUW2krFrToWdTamzsOnEqueH9ZkBBRMTRuhbigv8GJBhNtmqPd3vPrOi1zVALvEKrVQv+rtPKbVv1nvBOqR379sgz/c7jdv+Fst/oPdP7Tmt39v2u2jU36CePopDeSZPQmletkJkTqEueoY9HAfRb9Z4CYa2qWYKQ+fz5HfgbzgfWfeO+aj6vSCGEhnd6D9eKHdojysj0qVX3LS0K1PFWm9IxTVTkHi8K0j0btvSuWreBA7WG61qA5XJn27/QvbqN4h0nf+J0mnh5uXA5nzXU3LQ3jPU1CucfrW5xysCQRnALzW/EeCalM9N8Zl4uLMtVKXRGvWzDFMt1RVTHpM57QtIn74Puu2oQo5heb2pD0hqqN+12AKP79TBAG4YyJXfECyUr5bk3O9u8slecHwZE+jGomsc9bc3wcGsf4Fu32JPeGqVlcnHsGaamDWmI4EJBZKX1r7T2Tq13WlXrZBF/3McD8X4qvf/4IRBSJLp27LsKkOt9W42eD3pfu1pxB0yP5nUGjTTxxjZREzdzjzVnTnHOKL4FsjbSfSDoNjEf61fQAlOnhQ8KME+f9anbOV0tLqcXvbO6gWfe2C84fA+mN3PfNqDhMb3FOXyKhBzNmMsa8+iPD+lddcDN7o0hL2hWPka9182P6buP4Zo/ziEnckwgjhglo5bJAKWdIvzBmbnfoe9Sn4sqAS+RIAXXtQnawmAjKMCF0XxdF3pzRiu32kQesXejqVZprO773d5DP87i/ij0BAPSY2CaJq6XC59++olPP/8DP336M59++jMvrx+Y5zPTvKjjekqkEA4d/2ienqcR4AjeEZ2nSGMKgWSNaRgTSPdcKP/xmpdRix1LyDa2bvWQeILXJnSede/SeDCvdWHrNoF/vLHD9Gl8Px+EaYrEOCnlsqopY8qBrai8Yd/f6W1VYCm/k2i0rsBbCIFpmokxsfkdUOpiq8K+N2pzxDCxzMK+Ne6ya1bnnrnfhVLdIR1SF1zVIL+/76z3auyDE9fLm7LovOqmY9pJSanKyzJxOifm+cScFlI64dyMczPz8saHDz/z+vYnnAT+5X/+v6jfMfmbphnnM6U0QtGG3Xl1rdUaIpi79SOqpVVMEqU6PjXq88SYjrrjwQboDLZOjF6ZYM6TUqLWpqaZxnAb93rvKkMZe3qtGlnknTaPuqZHjSwc0Xuizb7G6BgTJqrBUog6cHKlU+VhmjV0kSKiRptVqbpxRLw5u8+aAcXSTSIgSHcECbjgeMTbjanjH6Etti7HAhe9h3j698cEdLSq49dHY/l0WxxNqPvmR4sBY8f3O66X/Vr45n0Cm4rijIkyPtzh0TBKfYcjuIBER/TC9TLxcpm5Xs6c5okUdIDUm9YhxaId9bwwj53eoVba+MY2DGxmiDRyq7Xcfdp7ny/tKN//oBb/ITVXG4bAFBeEV5xUWl0pZTUaX2bbbzrJGplSvmuIOWqfLU0pVVX0CTsvh7uTOoYZ6q4tqE7JnDaigjZSbWg9i0nVGIg8BMvF0lgEM8bwGobuDD2AgeiUo3FULVEgpkTvDnV4rDhX9KCiUUz7WqvSBTWEG2oQalWutP5Nfb1dgFrwdSPXO6Wu1LbS+o7rkY5qRH/0Zuz7zuftV20UnWgotmA6D0f0Rut9Ql/2fUfWjc5GE2fC9GGI43WTKOq4eMh0R/N3oMW2SLzoRwAXwU8AjuQCEhK9B0AnJGmKpCkdpjz0flCx+nATEzE0/+GSZiw63SybKc1EaE43+XUt9LbSeSDboFoRj6JAToxKa1l3e8tsbaf2ThEIYuvpsR/88KFaAznsz2OITPPM6XQ2B1Mz6mgDWbINMEbVF8t+FBqlGHhhU7kj17XoVG00koin2QYR40SapuO5KAV45O4NYxK7HxHow0DEKIdO3WW9j0az8fSmtOQQVivU5XBffb+9o9RcyFkR5ft6575qE5lLPqag0zQfeqTeu06SWjve41p1CjpouLkoDXk4NX/vse2fWfmFWjOt7NS6ATtapZkIv9uaGCgaSi9sJRpddGhcbarTmzrnCQdFrnVjY3Sd5LdSqXkl73/j8+cbzjvTpVVyvuP9zukMMahhi6BmWPuen7LP9HvVqk2EUFEH3PZY893j8PTA0bh3Mzs6bERaUzmmTQ0UlNvJ5R1XA1RHYmKePB8+vPDp0098+PDK5XyxeJ9RuA2o9g+QXfQw6k8HqHOBkCbSpJrh63qj98Z6f0fkHU26U2S0t44p0Y3yNcyp1O28NkXKZVeTuIZqQktrSsm1LNHhbO9cozm9fqU2XHHkXci7ukyW2vX+dbqvx6Qa0pydKoLzOABs/7dpeAwDMHG05shZ81h7qWx7xa87y2nBhwvzEkip4/yKyDutf6WUL1bQLAzTkG8JuH9nIwpMp8mo9Y+3acgj1CRCwfhqFPZuHfiYMLop4FPQZs0moSkmyy80WUXv7LvaZFHR6KE+XGGVBk5RpNqJN6ApW0SZTvrHehDneUzPxrqy4sIiLbRgVNdPHSYMhN5ANqMPOytSvfdIb8RSSVXvn5FZKpbZK160ARSP7+r2KLVSPQqoVnABgskUXPi+1l9MRqBsmtEUj5gKnS53N16nNo/BdUIw+qx3h7vskIm0qGd8SeBdhnrnHkCoahxTVariRsVns0j3gKZxVpRWm0L13jXiw3v9bJEsfThMtscUF1Ejr2mKXF8u/Onnn/mnf/4nfv70Z3769Gcu11eV/wyDHKeNw6Pu7YdXw4Mdpa8zeE8YjWgIR73k3YjqMRDmj2r08Yv+9Ht5FBj6x4OW25nnkzLrhtt3HxmJSnkFi8Mw4F5sSo5MhOhIKehEtDlqD8w5kFvAuUoud0ptrPtX9vyOOKEUT28Jbb4jMc7qKYL6H2xbZ98LvVj0zHUi58r9vqppYKms20rrOhn0wbFvhd61gX3/srGtlRhOzPOVl9efCKGpAV252/ldQCqn88zpPDFPC1M8M09XluUjp9NHXq6fePvwM28flKn0f/+//Vc2ft+ILqcTU1MTu1yypUfo+zpkCGKeGuo3odKG9a73e4zqLKw04qRUYrufBh2zo7ToED1zV+NGEU+tnW29s256H8YULUJkmDY1clHzst67MhLFsgScM8W9yfbQGrwZwN5teOB8wcdGyPrcFeDpjElgCJrh6oKnNovpwh0gPALVBkDdBkBNjLJsRlhjYlzrMBJsv9njnxe4GPUZhkdAN3mFNofuuK84LMkesqGnm+KYR4g1o6O71i/3p1/bvfrEzjiA5rEvP31WOvYTFdsPM1hjMTlHcFpnBg9LCrxdFz5cT7xel6MRzcWYkn3ob9sx8Osix1TVDVYj7ttG9CjsDQj0j73jme0Bz1PV3z9+2Ig6vMZwxNleZCdnnSDkvLJu74TtC62VB/3VJpQdIZemyIY52raK0QX0uZXaLAMJUnDUMETUpquQ8ng3nja8MQ31hqjoG8FhGORM9zecqvRCFh3nO83I816IRGBG8CAZ2HUpdaUI6XtuE6rRbJlNfGsWkt1GHWj0ZBm6sY3aNqXu9Z3WJ8RsLH5UNeacud21SPYx4VPQ9txQhqHbcX40TnqtmjUFTXTzHpM9573ZvTdDuPWmGq+h82gYRRziBdTJXnMVNSqT4DwSom5UhrSGqIWSoBPXVodlswnJjyiBQdUKB2VPp4h6GHWjdvTmqKWzU47nPDQJPkRrZp8WeucQoddWKC0rcoOi30GUyuoPSOp7D72RcDZPGCi1V0qaiDty6fZc1Km46kE5Yg0QMWfmRi6F1kc2Zz2mPsUms5gmZjSRzmiz07RwOI7VSt83zXwdy68roqmVxTBF0AYUAq3rn3uvGok66cTJuUDr5p5X2zeNaKtCyVWb0PuddVuPInWKEzGpuVGwyajqQrMxH4bRRiPnTrb8zlLyUVgnl767yefyztZ+0SZ+2yklE4JGg2i2WUeCqKkPqjr3Tul/NFTrWXVynvdKzvV4e4+ppB3GzdZVK6hzXtuofaN2W9eTECbB+0pIhTSbS6xlH8te7X3MZrpRrRHV6Z1zzYCuR5xGkYIvxe4zM1Uak47jZNGDEzMj6tKpPZPrHV8TnoS4yrxEXt+ufPz4xsv1yul0Ug1MH5u/HGjtj2vGRxHqTBYQwsI0XTldPpiBmBqBvKdfCEHYt5VikSLwyCY+nPvMXMp7m4bafu4zuM2QaKNXgn7d4v+0OLB7TpvWTs6wb0Ka1OxpoKkhqndAKUKrgpNGFr3vQ1ApR0pCSkqx1mLWUYpGp3Qp1ihn9l1NR8SdNB4sVJAbtX2h1i/U8pVaZiQkRsj7j6/njx8iwum04Huy98W030VN3sTLce+UGjR2i3acWyEG/BwJJnlwtuenlExfZkZFtt/monFfKtmQwxioGVtj6I1yNnMkcy7vPEx0VNf5QLLHPv7YJS1POkVtso/mawA//ZBVaNGuVF31DFAAtBQz17NCdjg+HhElreFKIRfRZrQOA70xudAJ0PceY/o4fv6gmo78vsPZ3T8mosGilwaD6tGI2dnazBDRN2qJ7Js/GBita6biOJOdgQwHRRKUHtCKMcf02teq2ivXOx45nIl7w1gI43pj0iWNELmcz7y9vfLpp498+qQf5/OVQf1XuM5bbqz9fIGHTkpbZOm2lzpH6TYJfW5Cx7V6amf/rYfVr4/fHf/EWR2iPiDTtDDPi00ngzUtBcTjgy2p3B/AXtdiVwEpbUQ1GksIxQwui6AwmRpHtbbS2dGAGtuzxOO9xr4IVUGqfUzOOtErRTRdIuu28f6eqG3DOdv7qzYaHU/J6oa+bY37vVKrEPzEabny+voR5wq5fmXbumVrZ8Q1TqeJ83lmni7M6cpp/sDr6194e/tH3l7/zNvbT7y+faR30Aib3z+WeQHxClLncR8r+8Q5jeoZnh5DTqJgs54VKXlC0In0mEof0+8xs5SOd7ruVFqiAHdrWKyR/t3RyOqk1BhVe2UPCrwON1zpcgw/DlOj3hEpPGI+Kq17OhviCuIr4uoxNVVCoGa4TikRUrR6Cx0giUb+KP5m5zDNajoxeq1KNhTIc6rfXXdyGf3FD1b2MTXV3x/UXOSJZYBNR/u3y3/8enSURwPK49f6j20iOprQp39n74n9NfuDp98L5p6r90eaon6OHlqze9szx8CUPKc58XI98XJdOJ8mUooPf5ZRV7sBWFtD7MyH22QgY3cYTL2H0/s4FoZhkzWhyBPbQ/5wJPrDRlQLYUFz2tR8Z0pXlvnGdnpny180m67qwnGuGkVWUYBYPLk4ajH6VR1Xd1iHN/t3Yv/O6DH2n7dokWnSN8oHpXd12/RjBB+1GXWjKWiBvTqKuIOuqw69AzUw7YvXIr7b1HW8VhVf6wIMwQx+EFwAF2ziGjRmRr+mFChcs7ZOY+G72OeDoju8FH/8Rog8dJIa5ZDU6CIogjq4+4Peq8WETj5DCIe1OAiH9b4IHdVHtTo2BGuem5YpYxEqOqn20DrR3lWb2YfrYLcms7Pvaot+TELto5axERmlSvSAVNH0Y4qlf2PkkRpm1oSSmwEGg3Kl0+uYHFGE2CDUrmYqdFxvNv1SnZvrXp0l+3A5FNPHfmd9d1j3zRogj3OVLlogVJtiqalPOXJbc9Gpwl7UwKnahFDjUvKxJrApaS4d3e8c4oLGl8REjJNRfydCTEplHZbr9h61kRMq3tB8pcfptcKMT9QAR3UajhaHfkLXSi06Ed+k4+/uuO696UR53zayabAERadVIzy0oQ6HM1BgTFyOFXvo1Yb+wFVtxKU+wKNvNpsoRLR537dm60Wt3IcRj+pM+qFZ61YgdyuABcFHp8ZN4YH+CZaNmM2YoXTy3k2Xp5rF1nWK14NOChGxhieQEseEpuaOBpZr3pbzDl+6ZZlqVzWyEMf0XnNiH3onLYa0oHfOESTqHhIGndEyimPUxqzvON+Yl8jLy4nr9cTlvLAss1Lg7T55EOr/7UIRxtmn6HEMZ06nT/SPjRjPXC5/5fX1b9ze/8b7+195//pX7rcv3G/v3O837u8bt/edfS307lD3QwWIilH1xUOcbNobHCmLGpQ1BSVD5GhaaxX8BkOzNyZG26o6fR+U/YAI09TwruNjZ5o7efPsmmLDlDzTFHSqZe6b2jvptXFedaQinZAqIXZwmdbVgOa+vvP1Fkm3hXT6wCl/JaYLvp+fd4inK/j8+Y8fLy8vmg5rWulSCkXyQRnTyyga/ZO8gapG04/j40F3HS7bR5HQRmiGUdTF6Toce11/mOcMer+CKNW006O4U9fFlJJpy7TpbGZoIg4tXFNkOs3M54VpmU3rqH+/2f6vkwedOowYIgT9t8ustC8DqaZJWSdpijZFdZRaWdeVdd+Opu0ZPBU4nuPv1rc86LjffIyJqLFdHvBCP0C+as+/ddXpihVmvVV6VRbEVhu5QVWXEHyaicuJma4RK48Q4cNRt9V8mMcN+toBqB+TchnD56NId06ps0NTeTlfiDGQ943Pv/6iMSk4yp6V6jkv+BCPc/y5jezPlD/bTIehzMMg8GlVd37z/P5olT998aicn/cksdpOnU7neeHt7QN//vM/GPX6r3wt+ZjeOKfAUygGarkhlxJrgqBsO9ue2fY7pd7obPigTZJzkXmaKYsQo+d0mm0CG3EuQg9sW+PLryvvt5tR/BvLUgnXSJwcp7Pnw08nThdwIeP8bpr+URd2q4e18A/O8fJy1Y/rhc7GbV2pzZGmwNISzgvny4nL5cT18pHr+RPX8594uf6Z6/UfuF4+spyupHiyc/v7a1wnnuYyLx7v2zGRUqA2Hdnn6oEitGlIeyrR2F0aK9JtGu2NRSWWO+6pXnNUW+0GmGu2unMYhbofutJaKzlUcqnUSYF3pXl2GxJ0SoPahNoV/KhNzZ9KzbSa2TdHK0LNqscudVcpYNd4ETGzr8O4ynxZxAYNgtZDYyqnLD/Nt8ZSMEYd6Ywx0FGTqY7Jpb6/qdj3fjSByhIYlNlvm87RXGozaY3l0UxyNHcH6+R3X3/cRsfng677/LQeyLOIDtSWZeLt9cr7T2+st5X1trLdt8Oxe56C6pTnyDyrlE5BTPXKaUBIiVNKTKcT8+nE+XxiWWadnKfwYHQ1Dj+JRwP6kEV4PzJmn2R3vR1hCj/aw+GPGtGurZMWPxHvZ1I8sywv5PLOXn6h1IVaVSslUvBeNxSlTpr7bRFKVGptbbYxd+2KnDRFBqOotf4otroaPKSo1M8Q1NCoZKWC9aZ/FmLHBTkamlo9NTt6c4qadVEDotg038hE8MEH6F4ngzbh6U31X9VwRe+AJKbX8PjkzLlwAMI2DaFrhyedLkrH0OlntamfZpk5Z83oD1ABdxhEBKak1NfhQChDeG7FiL6v40bV19PM2nroEZ13NGeNkWBNiTZw0rqN8Udh7IyjrxrRTiXXppFq9krHjT6CcjV2QBsUpcFaFhyDFuW/3fxqf2gqTZvjBh3IUJeCCsxC8PjojkzXODuS00Y01n5MXmvTSWYQT+uC1IC08KBw1qed5Dvre9224xo65zVouhbe73ce0TOmr7LiqJszsKL8w5Cj0nM7Ng5BdU85d2ox9FsCzk3EeFKqTZp0XXmvdBK0eK92szdzRtZrpdlXIoFmdMhmyEKn6vvaOA4DujYfvenEsrSCOJ1ID4v5VjubAQrDcTP4RxOakm7ydJAqCGOy+6hWvCGNStcslKr3637bvrvOY3I053U6JVqAlY5OPrwgwTSiosYE7WhXBsXFaTMaFBDSVYfaxrfOvgmVQq+69+S9GbvBGunjNaCFknekyXG+eJbF1mIXctYxR+966PvcKVmgBXqPYKg7pqeslhM7tIkKtjyuk+rmVOuXJt3c9X7uhkSiQIZvnE6R19cz15cTp/PCPE9GEzcE1v7rxx704xZp/Lma9kxq4HMKTOnC9eUf2O6/st1/5X77hdvtX7m9/ytfvvyNX3/9K18+/42vn78yTTfu76tN1UZObVGAZVBkA7joSCevaLytY3EdbzrPUiBn8JHj4NZInsa6VpyPBNsPpqWR5sq8NCbbt/Iu5E2BwuA90es0qFndoQQKvebeD4aOurOHpLKL1nYN9b5/JXyFME8sl0/k8k6rKz1YFMexZxyeiX/XQ0R4eX2hit5b27qxbpsCTZK193BdM+K8IJb/HGxSMfLgnDlwjynfAGg5Dnds7atUQQm0I+7AJpXtISmordve1Y314cz+P7Gc1MptTGpryVC1eJtmBczm08J8XkjzdKDl2OUe/gPaxLmD/ue9O/bK1iwvtVVSigbCPaa+e85q/iOd7JxGXtU63k70LflBIwqMuIjHhzs+H6YihsiPa1TNEK02nbQjRrA9GlF17F1zY69QuqOHSJgWUsmqgQ0RaWqw1kqh7Bt5W8m1HI3ocPgcgNBh6oU8mtA6mgpHipFlnjmfz1yuF4IPrPc7//ov/2JUyMy+7bx9+KCO4d4rYPPUiAKHK/Dxm/5oQB9vYf/2w+iSRgT7OxY8T3/Rru/xHAwwF/Vd+PDhI3/5yz+S9437/c7X9y8PzW5QwCo1bfrECTGMfHmHD13jWtavrJuy8lrfSCGynAIpqSSl10Tw3oy6JoJPOFH51bYWfv31xufPn7VZMbnYaUn4U+R8CcR0ptRAZ6WLMoGK0U9LUcaOc8I8JcJp4vXtyuvrlZeXC7kKtQdy0Ua1MxGiOvReLi98+PAzP334Jz68/oXz6WdOp5+Zpys+aMPceuFHO7lzA3TV86jWdtRiTpw1ouk439W93dlEsxzgeGsaqeWa1vUxJkL0dn7pPeedxpJpVrY2sCE65jmCmcI5UYprjpZta82tRjmOeqmRi9Y0HU+XQK5N5UB3nRiv1c7ZWo7IOHX+r8c+4/0D8PbeE6J6dDhnRpNWo9jyQ2PRNJIuGE1frAJotVG7KEuNEVXzvWXtcGKNqN0bD0Ozxz02mky++Tyayf7N33mOcXnO9j3+gTy+xfE9jkmrPL7X+LrT4diyzLx9eGHfdrb7zn7fuX290UqF1ljmwGmZmJNXgzMZqQbq3I13hGlSE6OzGiRerhdOp5l5tkz7ZlN2+uGV5ex1DfnXiGD8bSPKOCO61go/evxBI4q9wfqqnSRCXJjblVK+spcrtV9VGzdcWX0jeL1JSlZk69j0RHUfteoI3aEFSohD46nRLbWoCFqnPDoZlWjUW3PCbE2pYWNjeGQiDeqp6jdx7tASpdSJUSds3mmD1BiTOhv3FzXAUd0LNkF1hGQhwCJPBiSV0YwOwbFu9Da9Eg2+H/qRgcL+6OGMghBC0AMmPOfIOZ0I8XAO1vUoR+M5uOpjsqoIqVO6KF6bllGMyKAXOvuZuoDUHMR0A9nQcxm8cNPfNQ1C10laVwoUThe5Myt4NFsTm6aNJnQ4jDoGHPsQPsNAtBpHltVxw7ahE9fX17XYctZwOfHWwHWahX7XrE6n9B+4LR4fXcECQ8gVnd+OJvTZlKgPkwoZHPnKkQc33kej4KqdtRaBOI83aqTzEyEokv2wCB90JHdQT7SBEtvETOfggoENY8qnr2E4Z8LY3LptFLpK6EN/Wo06NgqgoQfoB0VDb6OHXkCn6MVoNQMBexTJ3vIKR+M2KBzfm/57i+eJoRFDIg+DMoJNrzE9drPJjOlr++N+FuThHG0r06N0RXYY2Y21NqU4NxD0Xh3D8eGiNxgE4syJ2VkR6830qdq0JzpqcUifEJmRHqzAV2p4q9loU5W8mR7Otk7nhvFMYFpmdQydH7E3WJyVD7CcZi6XMy+vL5zPZ5Z5Powj9H18VH7COKBG4tgfPUQn8t3jUyRNZ3ovlOWNvL+zb59Z7z+zrr/w5cu/cr7+b3799V/4fP4b8/ILXz5/5v3rjdvXuwIbRR3NNcrJ8nbtYFR9tsN3MxrCIADRvTV0nXyEahyR3qyRbEf2czcgUtfiI7omekev1tR7T6/CvjZ1/DNTKZ3Qqa7Rm840Rp3Otl6UQt4Kw4VSw+LvlHon1DvNrwjRaIrumznPv3mVRXh7eaF54f12w4k6SqshlTIGfAtEwMfAZAdCDJEQ1U292n4DGFDa6E0lC4Jep255pL3bjNx5gjPxhMWOVZqyceycdV7P8WjmR/MyMZ9mpmWmjwluLXQX8FWjVuKcSMtEXJQWN85AjJIz0PHeHwWWmCDY+TGpeeT/QVcn1Jge0V/es24r3gxHNr+xZ6dSh/pkVPeDhxbkB3o3ajelzh7T26OsY8hsdOBq4JQid48JofJlaXbfhJhI88K8nFnOV8RBmSdq3ugmHK/7zvou2sDuVl8cGioYdcDxcYAGo8zSxmBZzlyvr3z48JFPn35mnha8aUB7a+RtZ99WWi5qeAZ44WhEn275312246f3oVjn2w951BT/JgAztqIxpTnekFEwy7FHT9PM29tH/vKXf2Jd73z5+pXb/avmaAYtUGPUvz+uRfC6D0NWj5C2Uuqd1lecz0TXSVMnTTDPytyRng6qaggRzaQf56MycEquNFR2UMpOazvIZiZmnt4TyGA6FfatsbtGyZVdKs4JU4rM88T5nEgTOF+gZaAgUgnRgZuY5pnr9QOvrx/58OEf+OnjX/jw9o/M8wem9EYICwNKUd3j9x/eB7wXBbGaTu9bbVTRwcNwxBZrbpxzh6b84SitZ42MewC9Vx/a4kE5HYZe/mhEkXAMW8btX2vVJrZUXUnDHb7qkCKXSijVvDNU8+VzIe+wUug1q3RoAOr9UV9pysVg6VnN7gej0R8APqZAhUEzxmrdflB6g/cWpVdUunZQ9R//5ndLW8TO3AGB96d749FoftuIPv2aUYdxlLHwmCA+mtXH32d87fn+O77XuOH45ns695iIttLIW6HnxudfPnO/3djX1dib2q8MYDLgEQM605SI80xaJm1ET2euL1c1R4xR9ewGYIy98bHXfyvZGUkYI0ZKp6huFOxWJ37/8f1G9HnyYdWbNoWRGCbm6cKlvSHuTqmJ3hdavwEbgmq/mk3MehuNiBVQTgiidC1vtC4fHXhH3WHfG9sK29aMzz9KATdOEmsEHweMHjwdCRaw3tVtc5odU3LEaPEubrQeRZsmcUqVQhh6lIaeZ070eY1F78Yk0g6+EY6tjmMCTinMwZ+I/oXoXwj+gncnnExYStgPH86ZC5ZlUSq6yOHoN2iFTzv9gYyPxfpodLvdKCoex5kB0nGz6IczQbN3amkiHajt0BbqDTjcU+22bJ1eoBdtHIYxkhc7DHCMsGqGHrVq8aQukuNktkbqGFENjbD+JHV9hD13moPqTbxKxA/huHgTxmtTta0723ul7DqJrBVm5/g4//56iwjTPOl7bhqGo6mr7XARHdrJWs2Z2Jbd2Bw0zFv1FN4/ojtyLtR2R/vDQQUPqJOrxYE0a2o7YI2mHkoqyBenhebRdhjooGCK/vzO4OZbM8hwTYQYPJ2ECMSk9uaCMgaEhvdZTa1aRaxxLmVnXW/0VhmRS7WoAYob0xSb4Chg8Jgc55L1nv/BStdYjUQMnnmKRmsbVGrTj7RM2bMGjG+61r1zh9HHkalqDfSo9BRM0Ky4UrMdcLqOjlBuA3WaZRWzmdbcd4TGPHmmFJTOHwoxKX0sNKE3T5CF4C5AImd1Gdaf5TV+iZ2aG61UPeRFg97TNJHmidP1ytk2+WaNAjS8V+OODx8+8fr2kev1ldNyVuR3MAuOO/B3K/nvbpTG39e9LuD8QogeJOH8iTS9kaaPLOdPXF//yq8v/4PT5b8z/TXA/2qs6zulZba9cXu3BsQZIGhF5XAp1WzObuCh7l11gCxdJ95+mBkJTFMnTZop27ugzH+hFEfJHc2xsoxWp66met/v7FsjFyjNzHUAfDdwT0iTHBqn1hsxTlyvH3l5+Yk0TbRWyPkd535F3TbPeFmsGPl3XFkRXl9fwcDOVgslq/mJ0l0dMSVa60aB16nJkFxs28bXz1/5+vXdCidjKxw1zej8tJkYHeAw6nkUMeo54PYN2fM4IDWGLSWmKZGmRJomYoo6gbTMPQlmMhcDLnlc9Ig3U61aj0bzALNsDx/7eKkqYZinRIwXlmVhmSbTL2m2aQyR4IMWg054v78rxbijDTwrWGRT7QYa/OCtaLWq5jxnbaQVyVDasvOaTY4cbI7+NGY9zs9jYiEPMDkY1dwLpzkwRYG2Q93ZlqhTnJKpeafsO9v9Dk0dRrPfOaafotMnXR/mpIveAxwaq4APjtPpysvrK58+/cw//uWf+ctf/tG0+tHYKjrpOy9nlmkm+oC3fcY/Tar1lYJqYvQ+og/QtT/O3eeG1ECEwQ4S930A9/G9eRTKxxd+W4jrd09p5u3tJ1rL7PvGut3o7OR8p7eN1neSd0QiA2ZXOUvhvn6B7shlx4XK5B2zi+BGdJdKVDTT2x9OshrN1illozZNUTifJ+BELkoDDbGDZEpbGWaBSCPEqkOLNqmhlRPqvrGFlV4bKQnL4vAhs+df+fy5kuud+/orpa4ggZgmTqdXXl7/zE8f/4EPb3/hcv0zy/KBGM94H4/G49uL+PuHMuX8E1hnKQaWFiDoFEVNEm2vGU1C0PxVrTNUs9ys9tJze6wHpaN6b6CGU1deMW30+Bh9QWvaILYWGPVJM01+yQWXC24XRGwwoHoi+xh7mmmTx4rqDUfFu2pghMa0DZdfJ8OFutpAxSQLGMop1rBabJIfnjRVG9F1vWvGelMG2o/qFBFN4Hi8Mc/mbLYPf9N0/qYZpT+a3Ee5ffx7rKn95j1/akSP7/n0fB53ngE/I45lShj8i3Rhiol/+V//yr/8r//NX/eNbVtZ72oIGYMjRs/5fOZ0PnN5uXK6aPM5nxfmZWFaFpbzmdOyKIjoPM2Ba8o801zzx2sQ9xhgDE3vo2+W46wY6/iHa/yHX3mGOm3D9hIgzLTpTJc3fMjUNtHaQuvvtPpOrTd27hS3A7uCi1Z0o/2aOtwaFTQl1QaJc9Qm7HvXkHlrRLXYGV22NaBNdKLWRdE9awq9ueR6D2kS0uRJUYv2IN02V9WqOKeob+86hZIqx4HVBoXJePRjkx6beOvqijeiA9RExhPcTPAXon/VRtRdCO6MMAH+aOq/93BOCBIO0wSbAZnFvFPd1ZiCWbH3tPrRIkQXqEEXPCZjagDTj5vAme7UuPdONR0wgAPl8feuhaTy6x83Sa8gTQ/XYWrlZTgPan6fF2u8bSLan5Hto3ip9p4qXVct74222dV5uZVKlUbzHifJpt9RER3LQBSUErLfd75+XtWavViDGRP8oBGdl4UOlKxI6bCtrlUt3LfNmg2j4arGyhrmYY4RItGp+21KM96ppmtdd/a9skkFvDWhntY0X0ulHLa5i2gj6jVCojXVnXqcFYGPa+/N/e2wEB9NWdfmXjcpbZh1I4mMYPEQ1A2vV6FSTQfi9Z4y1KyUnQ2oZWfoph86LfeNjlS3iW6mPmqk0Fp7RkR+c80jXmZi6PSp4+n06pRK3Sq1rYp+58a+Fda7Mh9Ieig5p5NFxOjQzcyAegOsES071UK8BxW+mWGUsyxGZV6oPsKJxjVJ9wjRMkmtGJmyZtX2iPRIDDNTuECfWNeV+1118K0p3bjVxr6qzb1zmGZONXHL5czL6yuvHz9yul4UaGmPRjQGUQfFt4+8XN9YTtqIinOPQ+npuj4RhI618ceP/nTwKrAnbsaHCefPxPRK75Xl8s61fGHb/sbpcmI6CS5mbvev/PWvlVJ3tq1yvxlzxc6IEDshGf1mGJ+IKEA44rCkG1XLGtFDcw8xdmKs+KAIet49tahLZd5V0+udJ/qA+ISXREeb/rwVDU0fAJzTvVNdIB0xqSZXC6hOjDOXyweu14+kmGhtJ+eviISjwBAf8Ux/57V9XNW3l1ckGUV9W9n3/dg7vGVyOuc4X668vLywzMsBbn7+/IVW4f19pZRNm5o9m/ZqNFjaLAXTlYaRM+rVXdrbdGTfN3U9pB/6qpg0z3CeZ5tIaqHZs7rvDr3nYZyUtBnFPWJIjgbDGtHadP9utgcNZgW9c71eOM0Lby8vXC5nLuezRi44PeeGVvjL+xeo1uga4NwMwM6obv4YKP7mUWsl7zslZ5NRNGLnaETb8OwcADY2PRVr6GXcC1a4C+o2GYzKNkeEmVPyUDeoG/tm5oOtsq8r233l5r/oVPR2YzOPht83GnK8EB26KpKj+0TidLrw+vKBT5/+zF/+8k/85//0nzmfrvo+u3jUYTFETvNC9EHzv58a0XGPq2To+d7nMWAYTfDRjPJowm1S8kfh88jTt368uKPukKc/U5Bp4u3tI2nylLqx7l+p7c7nz//K169FY/yCmPzEnm1XZ/f7qpo+weq6qGaJIckxSROa0VYHwysoY6I3ct4oVQcU58tEiJ1104FHTIBkjW9q5twsHHEYDp2sRu/ZVyH4TPONFIVphhB2tv0Xfv3yhdp29rLSWiOmC3GaOZ1feX35Mz/99J95e/kTl/NPLMsrcrDlvgWZf/QIIRKjDUAsi7hKOxhqxYwfW1PaZWvtyRPF22TQWWbkZoCxut6KGOBgzDbnh3uyroPBDnRu3DPjXG205jkypMUZW86RrZ4fNWO2JAFlDzSkdvUUejLH0YzJjneF5u19GG7YZoCmwLdlzjadmA9f3t60/tX9cDJXYH3OrW/seee+rg/d9hi0fefhRNfaY8MZ0z+emsgDHXxqRI/O9NGHHX/n24b0qVt77jSPdfD79TCGb/pzu+gAYpoSKU0a4xQnzqcz0Xu29cavf/sbt9vG+9fP1LKzzIllmZnmmTAlLq+vvL6+Hg1pmjXfOU6TMmCCnoeuC91D850wWB5Pr/MxnBlTYj0jHldPxynB/xjY/XEj+s1GNjaqAG4mhQuQVfjazrR+o7V3SlErfOlfqeWdWm70ttN6fsIfxo33mGohopRTa5bEoZb0QQ6K4mhqBA4nxhhUzJ6imlP4YHxyr2ZDIWgjReuU3tSQwFWdgJhQXi/qcPDS5zg0p+qOOi6nGjg4m14FHy27xyOScDIRwwem8Gem8Cei/4h3F0RGbMsoJr+/4fjgmb2i425Y0TtDUKxZ04BefX7OJpBDHwOPKcQzj/1AP5X1oB57VrA4ozuo5bLqBHv3VmyYxfUYwaNvjICi5oaM60TVnq9XvWqMGqQOjrjvxD1ro1L1Oh9uam6siDFpU1qyG1bUtgYkNLXYN5E6NiFD/JMRklIpR/TJI+e1/f5io0XH9Xqlg05S1x32QqVoneLMqMZoLoFgpbyu5OGyK06ndIrcxUMfewSZ28Gq7omZfQ84twGqz1D0Tjf6UtVo6rizB2KPFe+DHuuekHunB8CYIA+7bxkgEtb0G21GKQBi95IWjt2NiYCxAvoIkHfQ9OfoYabZdmpyEvVnlkIpegD01mmumW7895v8nM70ybH2TFlXWsvfbGqdgX2ZEYtNZgbFD3k4uNWm4ECgqVGXmQeJ64gfU0YO0IOGgUdiWmstwmqBfVMNd0wjO061jJOoiRbNQ3dm9qH6MVwBsSzRJ4rROMSCmZql5JmmyDxNLMvC6aTUuzHdDd4Tk2OKnsvLB14//szb2yfOpxdinJ4K2v/jjwOcfJ4EOSvommajtp6p7U7tX21fVz0Wsh97Z4zCNHl2VLdfa6dIp0vDdzT+6VFz649yRpfytt6CXqcpOlIUo4Ppcyt7Z8+dvEHeoexKa4oBelCFrqcbFfcxzdLeQqeRMQjpiW6tumgh75XtvnG/3bh9/UzJmZx3vXdkIsSLTtDHWXBcvecm/scX+Ho+4eeo5jVNswZv9zu3dTVDGjUgul6vvL68sSwL1QzRUojs9531tkKHm00t9Kdr4eQHKyFE1WNGZWIEr27c3oALCU6R7GgeAOZUm5JGwTjTzTRD933wRFGDvCO7NAZjPqjmDIYkQSmzxWjwYwIgBniOReZEI0PmOHE9nXm7vBDHHsloRFWqUfeCIMxpYZkXTre7Zv1uKpNI9wTl95e8PrFXShlaVGOGWLGmU0jB4xngn3uKoBnmRnqOKS10uOrquoxMvtH2Fygb+7bQuxoT7dPOPq+kECkls20rpaoGrtRdmUjj+Vh8nT0xugyjKk+aZuI0EdOE94HWIVskRoyJ03zS0140kkE1kFHPRAMG6N08kIbOsx8TUQWwH/OFp0X7zTU4Ilz+oA/9/eO5UPzdTYHzmucprnF9eeXt7Y3PX96o7ca2/4rGjQVicgZijIltodb9wUCTjg9qBpQm9TnIReM4St1MKqEAFdLUNd3YRz50TudAmmemvZOzO4zqxKGA1r6Dg1S1ZnM+4GTCEUgxE4Kn5IxzDSeVWjeV8TQQp6FX3ut7cz698HL9iZeXT7xcf+Z0+kBKF5ybdKjxxOj7uy5vV/BCZSf1YUDWuk4GuhlL9nE/DjBUp3t6fnZq9Qzn7KHvtKpBJ8re3KSDujH7YUZotc/h2j7qTvMaGc1Gtf0nOEePyvASM/EsoeO9gt+uPUEWxyQeXIhIskGRTedDCGrKFQarUB7nSu/WL2giwchU7U3MyyBzX3fWLbPnav2DJ4jKB370cE+Npj5HvSce2JJ887VH1yWMCer47fea0CG70rf324b3uHOOr4/Grn8L88gAAXR/Pp31Wt5vN95+eeXL588gGjNXczTjrDMfP/10fFxfXjidzyznhRBVIqK50aP3sefb9fX35yd4PM9xreTx68crsuf6b4AtP/rC0C8I1hx2QSRoI+MgecFJ0kKFjdbuFPeF4j4j/Vd6+xvgEXez2ledLGuzKYgBFjol8jRreHyE2JQyK05zhUag/ChoXO9HkTfPQpqFaVKXNR9V4KybcLVg30rNzcwrlLKFaPGvRUezzD9bqPJoQBXxV+dYQfAxECQQw0QIM8EveDnj3JnoPzCnf2AKf9ZGVC4I8an4/xEGo65kyxKNEmHTsbH5NBWQq/GBM82Up7tGlaAuveaeeCA19MMVUGmxIyhcm8gYwiNzzYLhxQM0fHG47Kh2PR6H1ZjOyHGYif0XQlTaV7IQ62lBnGPfd/ZtZ98ze97Zc6a2qiie6UG9c0eQ8jRF07iODaYj3qhWBHw3/a1TRLEPIXVTN9Yuok6eRtuIP9hsnHO8vb7SgVtYcXJHZGd3GcQfk0CNwnG2kfPQBbahexpuw+r6qqY+uvFqY9QMqWwH3XnoimM6MU2REUTsi74vxwTa6Go69NOGi25bvgx+vk6i1ajIbnjbuo5ImG7W6kazlvF9KRw26TbRPjL4dLSF6iWCvbcT8zyZdjGZi/B+0Lm8D/TWeM/qOvnbx3l5I5xf+KX+wtdfN9b1jh5oHkGdhzsV5yFNeqjEqHm/4tzhWjzMTFqrdA8u6HVXnaLqzgfwM3SKtWJ6E20A1cFUWQAlNzbp7LOjZHVp9tFolF2oVZuYXjOl3Sh1Za8buSq6XHPVaXApOBkUGEdKzuILvLIzJqXpzvOZ8+WF01ljWeY5Mc+qD5tPV+blwjSdSXHGi+l0+LYV+rZJ+vsfQ6/5/Oi9kOs7+/4r6/q/We//jdvtv/PrL/+Dv/3tf/L187+wb1+BTJzgfFEN+3or3G+dfat6PZvZ23mNxnF+1Nz9oGF2EZLdr8EL86RRLLpPdfLWKXe4v1f2u1B2aFmBqRIaNRR6VbdFw+iOe5OiBX/0iSlOyoYRBSFaUWOsTQpffv3Mv/yP/0bJd6UhXa5cmxDTG4u1uY+rrIXC33OtBTjPM+k0E8Qxpcjr9YXb/c77/abFntfm7nK+cLlemdLEbsZGvgv7fSdvRbXXbgBNGgUyWA4+aJh7GoWD90bhlqNQScFD9MRlMlMxo7Vb/dOMyVCbRlKFEAgpGfCjxYgPWoiCIBZpog64VZ3Eq7JInLnRx6CNsObbBbyBAx5hcpElGp3UDYqq/iczyCvMaeblcuPr/cZtvbPumS3vlFaJ/+ULfNl/d82VjvhoQnMtlGb0Q8HMwLyC1wPAdQpQeze0pM4a/EeciTcTjkEvn6TC5YprhW1dycWmsFOh1gvTpO7Ae97NhTST66a+E1XlAWImVEdRJk5zYqdEWmbVCTthy5lffv0V5zTqRMSzTOeDdRN9NPmLAQRNnnwKDLIwneMx+LHNY2iID8KbPEB3Z7psGYXyf/jxLWgjDElJZJpmzucL1+uV220mBEd2GJiiTu1yNNYZ8GSvWs7asl0zT4yQ6VAatWX2kqkFgrepf58BD83Ru8lnQkBkojVHbZOez7aG9q4xXZ1OmYM2r87hXcSFRAir6lYddKpOQLNQe2XL7dAuxhiYpzOvLx95e/2Z6+UnzqcPTOmCd8qM699swPL08f1HrR0pkEsl73rmDuBlXG6VfVqbdjQ95sTrtA5x6BnY8ccEeGS69jb2JuhRHWnVjT4gZjrWzfSs1qJguEUmjicxHHM1b12M/WCUTlfpzbGumRCy3iPdvDBsyBCCI3plyAxfAM2j13r44akxhvrKePJmHOYNmJGumav3deN2vys9dS/kgkoDYrRp6/fbH91F2/G7A0g9Jp9Pf/7UcPL866c/O96P3/zZt+//8++fv85vvman0TA6Gn8m6hjd58TleubjTx/Z943TeeLy5URvhZeXF15fXvjw0wc+/fQTH376yHxadAqa0jEEc0pr+f0eIN8+0+P1Hr/vj/7jGe0S6xL+YEv5g4koR+N0vHyjFIyF49tC7zuNQmsrVb6Q5YpjYfDSEWemFJUdoe2KENKMnlI9pegzbF0Q3/EJom2Q4tT46JFXphc/JrEib3wIcTJjiqAujbU0djN22PeqE9MgRPw3i0PH3lZEGSrojgmcMBwyxTZT72eivxDDCzFcCfKKdy9E/4EUfiaFT3h3xsn8uMQDofzRGxEfjaiYzrDWTtmHFXa1ZrzjO3gcDU8QRxNvz8/pAWRUKYZrojWiSsN5WC0HKzSUV++MIt00VtV1i6HQRTUOqkeEjL1n5viXkuaezfPCspw4nU5457XI2ne2deW+Bpwd4lL0qg6K2WQujvNvG9GDdy7QHa55nQRL0Gtau8WeWBHmVA/mTaie3PeXuHOOt7c3egfv3tHxjXLiIcM4PFslTer06JywW/OVn9B3Z/oFEXQdtU7vBZGGE/O0tMDlobMI0SEyE6OCAWMN6kH8dP8ZOtx6R1rV7VE4fp5zgmZqjeJGJxz675o1bA1Bc7O8aXqV6l44JugyQpFHQeLVBdkO8Skl5nlmmZXal1LE56FgHXFLqjO7v79/dw69zFemk+P2dafWf+F+X23i7G0aZo1xgISHYI6iKdGBWjO1ZPKe1USqVYhi9LRm5jkobQuO5zaszEcjKt4/1LRdJ3pky0Srjql5y6nUnNZahFyEsldqu5Nbp7Sd2rXoLKWSs9533vVDcpCm5z3KM00K0izLhbe3T3z86c+8vLxxOi+clpkQk6LwLuKcgi2HCdvTdfw/UiI+N1jjt2pWc2fbf+V2/198/fpf+frlv/D5V3XRvd1+Iec7IlVzO51jTo7gu03+mhYVZgrlgyPOOlnGUGDnxZpRo1KJToynSWUaNTfqNoymOuuts92EVhw9K2jYQqMHoBV6UQaMoNdb6aNCwxF9Yo4LKWrovbRqxaNa7H79/AUnlVzeub69UtqdEE9cLjt0c1o9ToZ/x/UW4TTPLKcTc0qczyfWbdeJqDWiIeihf7bpeAyBbVUnUdeFfc3kvdqEVw+oappn57pNNk0SYFEKYmdWxxljACRUXPK0Nh17rDjUsMX0jcUcLp25XwcDfVJKiogfzIxB7dQGRtd7IddMrpWIPqejIfUKKgYfCOJ1gucTS5gsSkIOvVenEyZP8pHLcua6b9y2lfu2sZXMbrKIv/3v/yfbdxrRscfVZtIKM5ZrXc9KNSIbeaGe4DvBNbw1osEZq8e+PrRoKjPh2K+Ta0i9EAXW6c66bUq7Nvp/ShPbtvJ+f2fdb9y3d8IWaa5B0dpmMKzUyVc/QgxK3V9OpGnGx0jrnffbHfpfiT5yPl+o14pznnmameJEH3KnA6gcDag+XzVgenwdazq7gRDf1omP5zbOlX/PJtOffvW7f9ZtD3YOTyRNM6fzmev1yucvCyl59k0d24OfFQA1I7nuHT3qe7AXjUBSNpyen83omK1V9pzZt6LNhSs4bw6yljfpwsw0R5NaBUT6YTC3bRkxw6DW1YVeTfJs2iTBNIeC9x2kUhtQ1NxQcmVeJmMRzJxOL7y8/MTryyeNaFleiWFBa0H/zRX7ey70qPtKLuz7YHDUx6DAjfp/1ASPKDQn2lR1FMjSeEWnLujmClyrDnuC79A9Ds3a7V336jYiWWo/DBy91zQJK8MQhiGlDj60JgiW5dmBqi7IMeH9jnMcvjGg74l3nmnyzJOZVdk+MbwdRB7DHAX3tbbx3pFsatqbRnmVXFhvG1+/3thzpjQ1VUr2HsWkbsXffYiduMJRTx1v1dFR2snw1HV+04COz7aHyG++/qNG89vz5jdn9e++Zg97ij54JhEu1zMffnqj9cr5snD9eoXeeH175cOHV17fXnl9feF6vRJSfKRzPHeaMn6yPAHfj6//dvLJuF5PT6/35x7rjx9/oBHVAvipB388GTxC0sNPAo5KI+FCxMmCkxmRGecWnPwNkV/w7jOr33FmZtRbIW9FQ8ydHrKPn62/dgGSU1F0T8KIBhCq0tmSoul6qDla7VRnU8FuU6ZhLWxmGofDkx00iIb4TpNqVnUK5A8dq7OYBRHwPhHDhRjOqgENL0T3QnBXvLsS3AvBv+DdBScJCMchMKiVP9LPheBJp8mQHp3utdLItbBlbUKr2W67ItDbESfi6Icuq6OmHbWqzrCaW1wtjV5tGpfFFkpV+oSEg7aryIUzM6dxSD0yJtUF0ZouiziptZHSxOm0MM8ns+fX6Vt39iGeKmrj7asQmy69ZFl1KYYjYse7YVwkuGD0Z2yq3IZplWZ7lfpoeXxwlrkoTGkixkDqk/aVv3noRPQF0EPQ+0gId263O07uhBgUyaZbI5pAwG+bUTs1omTou3LZTculhXkuBXolmJ31kE461wA15al1p+TN7OFVv/H+/oV9Wyl5ZwjuNQbI0y2gGYTiw0HD0YN75PPq47GfNGUGjIXYHH1YmvdqDfPYGAfIMFz4nFG5beLpLBImZ9MRa1YiiFmqa2P6y9/+yvd4dKUUXIZ1Xbndb9xu7xb1MOt7bK+vH26+lonWtDDRjD41XKhmIiXt4drcuzVBpuF2ToGOFJWqg3i7Rzq1q+baOXPHNmq/vpcc3mi6HZkRjNfs2mCB3FrsmYuxaJ6gNG16UxJShGmBeXHMi2c5Rc7nmcv1zOX6yvXlA9eXN6U7T0rJ00LVctKedMDPb+p/bBr6+38xNDwHFdqFh/GYyIFKB2/T3TkAjZahBp3AtyIgjlw6e+n42EiTMC8dH+Gh+TYXWDRWZeRH967foxXLcG7gsKbLPyj23oG3uIfWMjlXaheC76ph8uqgKU6YZ32+yXShI2dz6PLyWljTqs/zHOlEkJXOTu9KtX5c5b//SgvapEdrZrxXTWsMSmkHTMMUD4aBdw43qSldr51S2qHRdE414tu+sudNgQ6vcV5dFJxspZte3YBfJ2YTIIww3i4P/4PSOrmagyJ6T/gQjRaqlF2NNVHweEzNHB68Q4KBgQa6dCdH/ExKidM8c5pnXs4XPr698frywuV0YorRvA9+K/c0mYdRdsXptHdJM7lVfY29c4v/H7bvXHNnsUghZJsWD6lJh6EfND+H4LTAjtZ8Bv/UiDp3NBsjT1TsTRUEXGBOMw5IaWLJWRkaVT86Cliq3MLhglMJCzqNfc6FHp/FBeZl5vrywtvbK68vb7y+vrAsJ6KLJm8Rbrc7f/3r32il6/Rz6erJYLTcEbn6DHU/6g37fQexHNmDXt0VtHh+HGZOfwCa/0ce451PceJyvvL29oEvX1759Xyh1kIMJ2JYyLmz3jfWddfhRtvo7OA63hIFdPIVVNsvCjYNKYa6uDvdk8GatUptjto9vg95hlaxvXligHmezUCwMU0JJ4FSOrmulKyU60ZRJ19ptA4eT4hqxHV9ufL6+srbh098+vTPfPr4F15fPrFMF7xTqu8wrfr3794GLjQFtGst5lfRrF4zwMU/mG7OIqy0UW/UXRlKI2Zl0B3FCQFPd3L4W4DW2SWrY/f4mbXqmq81q665qNHfWCtDqlNLU9Bb1Kk375V9L+z7bvnnSov19tLGVHWAXYLW7dG0ob8FYnUiasxH1VFBr2ocVjUqcjc5mJbMBr47R5pOTPOZNCV8SD+43FonY819H53e8STke5+eHtotdR4AwfinP54KDvD8R+f08R0Z7sfHX7U/HkkZ8zLx+uEF7x3r64Vt3YDO+XzicrlwOi0sp4VoEZEPhsb3X83jeX+vKf7tPjFe+xBU/n1r/cfU3PG5H28F8s2vBhXIpnE+4dykTZhTqqo2ZS84fyH4v+Lljut3da/KN7Z8px4OVsWcdLVAGTx178FNHkfAQl+AYoiPXUCLfdEuvj+iJlBkKBgKFIZJkhn0KJVSURKRid6jNmUS7T0ZxjTB9FwnUnglhReCfyW6F7y/EtwZ79Rp0bkJJxPSH9qNsbn/KEMUVCMxLQu1NvZSaFkRr71ktly0GLdMxJwbtQ5N3VPMilPjpWH3X0ageqlPU1GdgNRWqTGQetJl48AFbfaGOY44y10NgXlKhzZQDJVo/aFVmNLE6XRiWZaDLtp7J0ini1ARUteGNDZvxaW3IjwZ7UU1i6MB9s6MCYYVe7PrWa3RzoU9Z8bY3wdPmhWJP82zFvdlgV9+f70HNXcY+SjV+ivDvCe2EYeiwew6HdMbrNqU2TvNiG21sjdtBDWw20x0aMSo0+dh5S+HaVam1pV9d+ScWdc79/ud2+3Ger8p6ug8LTh883SvRkfDoMC5YO+notn9CZF6tBfjMZrRZmgix0T7AS8NGGJMVx/ux8eUFDF9SnkqWB55otM0H1qj7z32faXeK7f7O+/vX3m/vdPpTLNNAkUn3VWyHYAWhVKr0QJ3/XPLHMu5WMyT02xG6bjgCKImRN4BUfRe7I7anB5UdRzqjRAgTY40eaX0jvurqwzU2QGmyCz4aG7Zln83miDn1QnQdW2aYkQb0VmYzo7lFFhOidP5xPly4XK5crm8cjq9HjTIwTT4xuTk6V3sT3/Sf/fVf+sxvufjiDj+XJw5os+kuJDiTIoTMer9PpxWlyUhNEoo1H2ALoKIZ90r7A0XO9MszGfNlB6GFPvW2dZ23APeW1FclCbWstAK9KrAYowdqdC9UnYHsCCiE6hcNL4JhGgZZi7p/j5PMCXNN9X9V8GMZvT9khv7mtk3T2sbzm04vwIbrW8G0PT/UMevukhrauCgui7zDMiDxj4YJiK4kIgu4NDmZJoXnA8KvtD4+u6RO5SSD4CkNM3fAzUzCVELdb1fxaaY/eHOaoV5rpW9DOM1k2WkibQsxBhtsmj3WB33SDATL4f0RxMqzeFbU8BvSszzxPVy5vX6woeXFz6+vPLx5Y3r+cwU7Uzteh48A7IiQmBQ/TwpBOo0wCg9P/9b/P70wntPTImYskXM7NpMogZmykppBqxAcGgz6oXozZhoaCNtgoQ87pbn9zUlzfSdWzt09Ot+577dyGUlpqB0dNPmSTA5SwfXx6RPDpDJO89yWnh7e+Xnn3/mw4ePfPzwgWVezPtAQbbb+42yF2qu2ojWzpRmpjjr3j/wbRnF6uP/z32l8hVUJlKbUSmHidNv6pQ/qlX+Q4+up0sME+fzC7n8xOfP/5u//e1KKYXgT3g5U/aV2+3Gr7/caH0F2fGhMC3CnKLRKhNOIkqbLnjXiFHPjjGpc16s2VYjn1yEUEzjL44gnpElGWJiWTwhTLSmDubeC3lvrLc7672y73daz7gwGlGtt6ZJdXc/ffzEp5//xKef/szbh3/i7e0fuZx/Yp7OBhg8CeZ/f3H+8NI92pDhZfKoTcbkU1wnRs9sNdrIsVfGjg1/ug4yhnOz0l6d0l7FW3Ovus5WOzsVsRqy1qyOuE+NaAi6jx+1bR+xctpsNtF6adsyt3XnvmZyKUqZN93G0B5i0o5m+7WI1p5TSgfY375Zk8KQrGi+dTHKsp4NWzYKsQxZVcCFwLRcmJcz0zQTftgVdtunOCawNNRs/vHTn37zQIjH1nZMb62BG20m8CQb+vfBPTIK77FBjX8t1vA6BX6neeLNCafTQsnFhgXdBj4anRWiZjiP5/7vrSfkD5/56BTl6XX/Maj7h2ZFwxzlwWl/nMy6CDR2QTv0DjJpZy4zzk3qGCsz4me8X3DyBeEd4QutO/ZdaRClVmpvhGC0NrDNQLUu0ZpHRAXXAznRBWr00IqlqDebXrqHbu/4vXLknR86OUWMvU+IS8cUV2TWiZvt7hrNkQjhoo2ofyX4K14ueHfBuwUvM06iHjIH8tV/t7n/iJ7rzKVsuA+WqtEh2XQvw/ZWRKDV4+DRVaho46CFNuPyt9ofOZe9HZz6XpsBAFEXr0c1zUWb0dIqtavz5HD18zGSpsQ0TQy6UmuNYHq9KUXmU2SadEl1M0AR1zRfNkBLQpeAMEToauIyT2qTrg2cZl2OhiaGdBhmjJiVirlIMtziRpP3cDpWvWlC5PsFjBPhcj6bbkoRM0R4WKAXXe2WR+WjV0fGMPQFBe88RZw2TKYxbkYXcfLIodVa0IoCGXlfTaNK8sq2bdze37ndbmz7Rim7FgnSoVvGJhq5MowKRArBeYo5yw0w4oFmP5kRCTTp0HXCS39slsM1cvyzUbjbSfVoX+wwGPbptValdD+5d05pMur29zecdb3R68bt9s62buSsB0VKsxZf7AiZLF2pg12R32ZZk62qVu64zqVSO2QzfwheHbjHa+6+6X0letDmrHFArqjmRmonJp1WTrPDBTUza73TcoPSLai540M7pnij2BQz1dKsYtPDmUFLNPfGaYnMp8TpPHG+LjYNvXK+XFiWM2lanq7Z93QU8oeHxN93kP1+//72qw7vEjEspHgmpQtTupLSnRjerZkKxKRgiHNQpB4FsOqQzEE/QJw6KXVCUvO4DhYpIIqCNJAu9NLV7CiLVslVqbiOSopGYqtwuDZbAaUgm96fxj/DRw22T1H0Z0c1FOkDzGAUSQoW1crhgq1sGcH555iCcd3+fZ2oFzkmyoia98RgU4gngGfQXKUPirHR5kMgTROlFNb9zp43nWr0yrrrc66m66ojF9obe8U99k0AKSOPdEhPuurMlFakkyGjtHnTm/ZiWaZ9eBNUM/dANY7daxCZAY3QSSlymmfOy8LL9crHtzc+vrzydn3h9XplSbNSco9F+xtk3Rg26gMAhPA0fNB/FX+k53KPPSgGr8yaoKCzd5axaRPR8RGcTkWjt2mosX4O6pn89l1XUNYPvwE7chsNd4PatflVd1HTSEfN6Kt1yC76SK5A6ya97vM0c7lceXt749Onn/j5088s80n3tqwu3Ot94367M8c79/luk/RACqMQHQikVcLj6h2fHr8fjf2YmD5qkqc65fj9/9kPRwiJ03Km1lcu51dO5xelxvYZ6RO9FfYNbu+ZOjI+U9Xp1awGOq1qrnNvyszzToCKl3rkv4+zcMhaWi/alFVAVDcqPdB7tOmagkBKcVbmzb5l3t9Xvn7doBfEFfWsGA6vPrIsF15efuLjx7/wp5//wqdPf+F6/RPXyyem9IpzM/LbxIRvNvl/G+0SNyQz/jhzRXhQqQ3cimnUaEk1mEUTInrXPbPTjeH23Aw92DBiOnNB95lW9NqNBlSbUKtvqu4Tw2elWRPqnozADA9jf4pXEoc5dquUABzDhde7bgMJMUaiynZa13xpafW4VoPej0Bvnd0c//fc1Gn9oMMLEiI+zIQ0s5wuLOerOsfu5ob3nccAYp7vBGVVcdz/8pvGdDSu3wLFD4Ohx3MfX/nRCvh7773fDhP0j2LS83o5GcBktIdhcqrP//H69PNvAeofPX70N37QVT9FOv3R48cT0f74fDzp/riHHo3QgOOeLqcE1Ud6ISGIm/DuBS+fCe4zMfzNLLIb2+7Z8k4u5kbmRr4chNAIsRCiEIMW1boJBC0mbDJVupkBWFSAOMtMi8EaGEOGO4yxdqtCbjbZdRPiTgR/JYQ3gn9BiIhx+odmy7uZEM4Ed8K7GceEuqBF7ea+WRjfXsN/61FqZb1n9py53Vdu95U9D+2ZXV9rHMQmx9rgqIOhRjRZltOYyI14FgMLsIDwcS2kCa46XIFuxY5koRgqLg5raHUDENGp7MgNGnYTav7UaTVb/p81LeZwOmgk3gsTHucTwWuDmexDp4ka9SPdkLLm6EVjfWo3GnBRo4x9z+z7znrb2e6FvCl9uTehijoOChlfCt+3K5Ij9mBOkbZMZKPH7tvOtqsWqrRqE+iq+pFatWiUh1twtclDk3Gj9ycTDNvczS1x0C2VQiRGf9OAbTHdUozaGCpyFc2+XKl6+5aPInZMOoc+SF9Wt/dFm+EYPM51annkgH27LdovbB1BR/RNprtKF39srpiLMmBo7MMeXunHw4zp+wv+y5fP7PKZ2+0rvQvLfOX15RN/+vRPXC4ncv5Kzl+5vf/Kfl91DaJutbpkq75mo8OK0+ejoIdTh8quBa0LYnmOYpFI4BL4IsQiNhl1hOiY50BKqkcXrz+jGsCihl86kQ1xTIfBBbFoJU9IGt1iKbq2LjQuZ54vnC8vnK8feP3wkdcPb1xfXpjmWY1LeBwC//9/yDe/GqtGixMD2tIHlvlPtLqzrgXnv9Lx5rXWwDVcaAQ3DG/0cwWa070p+qHp/tbUzJuEomfNCS07bGujbPr1cAAfwpRE9aAGioyiC9SYKxe9ciGoi2+aYJ6EKYFIoXOnDgZFN2BMqjaeUUizZ1oS83JmXj4wT2/afMcT3iejqP37W9HDwdcosW5UB26cj+PAfhz742c4p4DrFCPnZebtemXbNjrNNE6dvewHHV6n9XJMI1NMxvRxlFyQJtAwLZhFUxndVuUqSgEWAwsa6sIYLCPYO6fB9RaHodTVDoyJrt5byzxzOZ+4ns+8XV95e3nherlwWmamlFQHf1C/RgH0+9JLftugHl/gR1uK7YWqe/BOnZLn6FmmyGmKVrhrdvloQMNgXg33cZtMH4WivpHH70ZxfjheWhFaO9AbeV/Zthu1WF5f9JxOJ/W3KKplV4BTIzO6NaPO6YRiioklLbycrnx8/cD1ctV7p3XW28rXLze2deN8OpOe3hsNkdf8wG61TbfRyJiGHh9NbH8S2riXbBI1rmHvD5D//9w+VI4PJ57gJ1I8MU1nlumF97hSshy6RRE1P6y7TrhqbUTL9qQX8q6AoC6LhHeB3jOVfLA0hsZTI8pQ2qk4eu/sezZGjFJzW/UMOQR9GHJl7redL19Xbu8bIWg2fXQm6/KeaVp4efnAz5/+wqef/sKHt7/w8vInlvmNEE6IizwSE74HMv59jxATMenPDEkzq8e2op+1poghGpPCQTdn3u5xEpUdggVAgk5Ljb3VXKe5bjVJRPyjhqutUVqhtKzAi5eDzomMmD31y+it4Ydbr4z7Rdem94Fp9iQUBMAF80HwR76pUAm+EXy32EUFcXSQJMeePB6HNKpbXUCno3Wa7mXh0L1PpzPzcuV8vnI6X0nTTPv8C/UHjaj+gPG/4TptU1K7d1SGo+BTG72R/LaxfJzsz2kWD2Dit43aH914f/C1b0yCRh9mP9/ZZ3n0hc/f6Y9+4u+X7G9BlB//7cdu+m8v/D/MEf0tPeMbRo30pzfq8flB75twLhLdrFrKsBH8r8T4CzFN/P/ae8/tRpIka/Caq5AAVYpqMd/uOfug8657zn49vTNdIpMEEBHubvvDzD0CIMhkVlX3dM/S66CABAMhXJjbNXHNhQwbZhwnwE0G8yxKOUgmo/Vi1fZBkpyDyzWsCbBSb1CVa84RmWPN5RRvm5CNWBdQ1Bsp4CtgpnjXAA3NND2suUVwn9D4D7Cmh0ELQw1Q8+Y8rAkwJoCoiHV1uUqmJtZKXrUb6/trgDQuGctRiH0enyRXMWVsisNLH5MVwiXJZ2PJ/yzhNkmZclkCk8RCbhUEaUhUXENyEgMxk6S3ISNmCXONWcKOyFClC2cNreHMurkXchvopsBIaQG0ZlTSPL+qf0CtXFrqJPhWynIoXT6y3HvKDKggRTaSNwbNl12ihuMqAdI843iaMZ8illhIgoAECSvJaYbPzbUyoiACvNbXy8GBOSDGiHlqMM8BXIo/pxJmK/eWUwQBleTJrTVCAM5SmgIlx07JoJySYJQ6qWYFcwwhUCGSEiISLWE0z9DBB8kVck6JrCAbZYoahVCAaFmvSk4ADdnxzsIyECE1yKiAHloFOes65lwsmyRh0MZCeNblJV5QLdXjbH3+YqEVj2l+cZ5/ffwFT/FvOB2lNEzf7nC3/4RPH/8N49jjcPgRj08OcZ4B+gUpRl1n0M21kC4IMVHJgZFNt4QHKemGVQ+IVW+XIdgM+ASkREhJwnSdtQiNhB6SloDJGnEQVWnMOYESS7iQE6OCJQklhBeGY8mjM+qBtbC2gTMN2m7Ebn+L3f4eN3d32N/eYtzt0badegsziI1aq1cZ8XuVbHmtrRuSgbEir5kjwDOYMx4fn2Dsf4JVtrHmwhrPIGbNlcXK2KnGFmuNGJGq3qMkaUQwTEgLkBdgOgLHJwnZddYgeAlpdpbgmiLzVIE1pgJ3UVrV6KDkJU0LtJ0AUalpu4j3qShlYJQSXM47hM6g7QPaboeuu0fb3iE0e/gwwNlGQip/VZ+SxglRtdpebsUM3pah05cYr7wxYGfRtw1udqN6Epa1njFncJwF2xoxAjVNI/XhQqgEH4uxQJKyFFJiScPijCpRRkKzrHfVay3lZUQeZ+uQrUVWVtxSJJ5IS/MQwVuJPhkHCce92e2wH0bcjDuMfS/pEUHqMG45GLkYtgomZ97MxYt9sv7hulAppakICkStRRsc+sZhaMTLAw3LldzQNS+0lPYxVIpPoN5YWdNbEFpkt+j9WYi6OGKeT5hOB8Q4A5wRnAMNA5omrIy+hQxtiVrXWMIPgwtoXEDrG4z9iLv9He5ub0XXIYPD0xG/NF9weDrKsSFIKHHdgwVwFHi/JSti1G0JbGTtEegsUqwey5tQ3Rd7+7c00YKlxEaA9x1CGNE2e4RwQFwmLMukXjYpmTYvVokqBYg6L8RxovwzQgiS62dJmHBZ8pqz6jQCYMRIajX8lHNWD92EuMhekJPmx2ulgkVLOh2OooudjjPa1sIFBzJeo2QsmqbFfn+PDw9/wMP9H3B3+xn78QHW9bCmEwcFWx1rnKOA7xAuzjcIjYSgN9wIoOR1nM8iwkjS17KyBTMsjAnwXsq8AULuBC0/FJOErieT4eFBGknAOSMjInF5JZU5wtJd9NmUkoT7zwtyjhIRYgqZYjHACzu0M6XesYd1QRm/ffXe5rwAWEC86BhLZxWjN7CasQo/iezVuRpJBYguIn+NhXWEpg3YjT2GnXjgu36HEFocpiOOT1c6fONXq4YcDTOWnFMGMlXgCcjWJ79Z5ch2C6/jXwwB23nAq1H4ba2Y8fhsHp3hjjrf1slWxCgTb785+/3r0/IShF4czdtjLuDuN/SZV3NEize0eEJXEIr1qdY72FyaAEjOk4EDqAFRC6B4FBjGRjif0Uw9TvMJ83yUWlBJymiEsMD5KCyYSjRkSLwdNZTQle6USWiNhOZJmE4L5zoForpkWeJPM0OJfDaWOgOwMwDEm2vNCG93MNQBFXCWQtUbywzzt4bnTW1ZIqanE5YlYp6kyDNqOIZVUKlhPwWIJhY9K0roZUauRBWlzqcpob7RIEZCXMTKnZOw7EpIGkClYDFUAJTfb8rYFGZCMpJ6L7TvejxDmC+RKhkCgHUzPzMAibJkSYG7kvxI0WMRMursk9SmzEiLhMrM0yxAVEvBTIvUsUxakD1DSW2iMNA2aLB/oc9rHqozCNmhazzmvkGMvXgnnIU9uerdTUpSk5Slz1mLyU5YZsICILIKK1C1CBbF0NbSKLYqflIbVtkblWjAaT6poZIfK55To7VdDcmxBqwhaCKgJecn1TAZYpacMycln60hUcoJtfzLCkRXRYQu7rtsKGV2GwPN3ZC6mF3fiQKs5SZk/lzPES1KyDgEjF1A8CN++OHf8OHhj2iCQ04zjscvKF4weY6slEUkdSpr3p+CtSKLmYW8ChkCrIQwREo6CSgtYfwmaf5nUsCquZ5VOWagMEuXUHkpjUT6rkq5UcpzVWK8C+vLdnCuRdveYrf7iHH8hP3tZ4y7e3T9Ds41alnGM6Ty9wGhL1svxVgkdXmd7cH+Bm2zoG1/QtP+J5rmZ8zzBD8fASzq3StKTSFukvNpBSHkpLXUFHXkzOtjJkKaCXEC0sxIM2CcTE847fsil7QvJA9XAa0DjKeVdZGKh09YSCUFQyJEoCRnkm8poXvt2KAdOnTDDl3/gL77A9r2Mxp/B2cHSdWoMn676b29p7l+2gCcAhj4TAepfxYDl4DRvm2QxhGcM2JaatkryfGLgJHc0NB4jEOPcejRKrO3IUJcEuZ2xtTNOBxPeDpOmJTlNYNhNHRUWHIlDzh4LyHl1oGYRTmMUdeSeBdLiQYyBG8dwgaI7scRQ9dj7Dt0TSvlZQqjeHluOgedZ0rS2RzVPLZqyX2pr7nmjlmS2uKtdxjagLEr5TK0NJUTb73TV/WI4tzoUDw5W++22QLRMq1QwhoFOI39iIf7B/RdV2sYzvMskTvTjOkodSeXJep6MGi8kFZ1TYu+6TC0PYZuEIWdDDw5GBi0oYUlNeI6yfOqtf6qPkrV0VL0MAaQiSSQBAQLIaszW1bSYiyqtVW/qTf+qiag3mqaU4uu2WEc7vH4eMTx6W84Hk+YphOYk6xl9dCVCIjTIWGxgqyJMrrOgHOQWqBgOEsACVu9PA9Vr73RfA3Bb5Krm5LqWpGlLq9vQDCISkBVWO6tU8Z1XzgzJJ++6waMww32+3uM4x269gYh7EAUAM21rGYm3vbp98H8ttuhGxrNXdeXsjVvjcm55P2qbkd5ZZ0VZn3RDwDAmHKMAlpOyKzEiOJWgJAFJpDJ4mwg0TdKClmKWR0HWT2ssvvGauwuRJcSFVEi0JwrzN+i3whwtkLIyPKOCrZxtg6l9xiZSmWIrKHLhELuaB0BSRw2xhoEV9Y7K8DV1LxXJ3kx0Je9Q5mcSaICNasPah+XvFda5dW6jsr6KsC86Ctbo8QGQ2xx1pV2fsu0seqVuy7/pzOwexlzVeTDr17mlzXgnv1NL/zGC7zBI6ouXdY6OmUXffHeeHOKVVEoeUiwA6AFa71v0LVHLHHCEo9Sx27+CSl9gXUnrd2UYbWUClWlAiAFhc5L7RvnvXigrINzAc51ku8Ji8xRcwQyUhRPqoCycqcRwAnGHODsEdEdYE2nBg4N28Bm4l7MlKIUr9j88u/ftjEuc8RjOkhuTpK8VXkuyU8UK1xRzqBMfAyTMlxKcClhicKGWOmuCyAFxCq+BLGML7JJAlSFAakFVlhFdVsrYUtWGMysNTX3UTx1SnVPpdByYUzD6snahCPUwtS8wJLTTFphNhQBCnAicLJKXKJDkwhxSphOC6bTJPVI0yI14ziL51gZlWNOKNZCECPbgKsuUZRxUtDnCKFxGFILAtA0AVMfMc+x1nEtIDTmhOl0wuF4xPF4wGQMTiAYVm8lRAUoAIlzRk609qd6FoTwl5XZVVgly6ZSQBEBZ57ZnJUB0moebBC6f1oWLAyhUM8RyAwDpbCnlYmO1JijGA5F4ArYlvG3phSY1pq2+tkYq6Q1Hfqux26/w36/R9d1KDVmM7My3T1v+909RjegCTv03S2G7ha73S32+1ukNAlT4RKxRGUF3AAdoJDYlLBmIEYBIzky1mLf8jzWCbAia6S2sAMQEzIkhIhVOJeQ5JTWGq+sgDsEh0IQAUgYqIQDG5DWIbNWWH+da9F3O4zDDn27Qwg9Gt+jaW/QdXfo+jsMw/2msLlHKc9SvS+/flv41Y02/weL19eaHs7fom0/YDf+gHk+QspkLJhdBpPVJSYRGTEm2GzA2SBmkXc5oho3YCTsviqBmYCkJC4k5DFSckkAKTkCWQOyrLJECaKshGJbrUuaolEDlCjbTA4wQn7mXYCh1XKfOYpiZTL6fY9xN6Af7zCMnzEO/wt9+yd4dw9DAyShxKiC8H1jIrb5EuJIaknfrLVr52MJmoMaEZ0x6EOAGUcYDY+NJd8Lki5BVtgR267DbuyxG0d0bVPrYHJipDljmaPUMT0ccTiecFwmHJcJTEqkFDy6rhWiuVa8qm0IUotvmZFiVDKyIDmSxQNJEt3irUPftRiHEUPfoQ2NekGdeO62j6nWeVV98cxqjlXuPeuil4ahKKMQuegtoQ0WQ+ux6xswrCjhIGUSLbmihRlX00DODDO07mEbY1wJD+eiWILgXUDXDrjd3yP4Bjc3t5hOR0zzhGmW3M7D4YDD4YBH9whDj5iMhFczC2t81wgQbULQfiseZELwAbuB0DUtCGtpOWtdTYkp914cMlJqbzWCFMOj1UidnFQx1woC4uVdwfe58fH3akWnMAA5ONui625ws/+Ep8cT/vZfP+Pp6RGH45PKb4ZvHJrcwswEzguOB0lLyWxBHBFnAaKcnTDbhwCy6hHjBaU2rBEXn3rPhJitaQg5nXA6TZjnCURCeETGwdgMm0staymjF4JB00ltYO8ll37od+i7Hdp2h+AHWNtCiC6FWLNEy9W5RTh/f6ORqxvuMd7stDbtjJQWjTzKq+7JhKyRIBELDM8Ai86cOYJzVN1Z2HOtZXgvZE+CJVdAKSz1Eu5qDEsUohJvWQ3RT1GIL0UfkVeC8kfEEkUGkDFoW9LIMar7CJW9lp3qFiTkORCjKJfxUlkjUWRrP+XCUZCBbAHnWCsTiHTJmXQsDSwlpOWI6aAYgixik1QHfr2xRhhKstMGjKrRRid1Ddst++nWoEMKVkmWq64zrDjtYnq8NB3OnIFnX149+vWTvfKL/472Btbc1SpRgKl8sT1Kv+Ky0azbrnwQL6aEtELrlgW0vEPOE1JeENMJx9Nf8Xi0mBfdBIwwk1oFScWSxdmot1DrSSKDiWGNhM4620iSODX6DJOWM1Ea70w1PA9sxYJGC1yckJJQhq/MZDp5i3WLy4aqnaAAvZS6KdaHtSN58/YyGF2WiKfjSQChdRq6IOEgPli19pd4b9ZLi0Uqc5ZcyBgFlBgNTyylGGCqgFiWYqUVJc25FWhQBUlaukM57MVBqqyJRgifQhDLoDrqhAhgFqruEkZnNMYfDBUsWqsVCclGRLXEcY6yUJVAIEcIi+ZCAkQXwnJKOB0WnA4z5jRjyVFygw0jkySm15I1Keqmk2B89zIQVcBnDOBAaIIDoYVzFt3SYVk0lDsVpsFca+8dDgcJSyUBoCy0rhV8SukArECUAJNlSyp16qRjlNUNAc6uAK7WxyvlSko9UCWPklp9kgedlEEzFkIiffZEkh8Ko2yQoEp8sFU0mFnyK7OE5kkhe6vFjTcMn0ZY+fq+x2434u7uFvf3DxiGoaqUOWcBgVfazf4DfG+w3z3g/u4H7HcfNGTK4OvjjzDG1XAbQDxjYjwS40ZQQhVAQ24jEBdG5IyYxbsck5Qk8I2rQNR4A+skYgAJ4tHTjUTCbViYdtQKW6jwC7NfYsk9MaYw5gLWejjfwblecytHjLt73N9+xH53h7Yd0TZK+tPsEMKIEAb40MN7YVAtr8JYXNqZEvh9xvNf2bjaFwkOxvbwTGjbDxjGr1jiSWq4phNOpwgmIyGiyBp6iOIgBSIhZmhNPs09M1w9MiK4RI6LoQxgJwy71gtxkLGQmqOFG8ZAQrGVKIQMJMzQADxLJIIYCoWUoutHDMMO3vsaIZB5QeYZMAld36MbdxjGB4zDDxj6P6Nrf4DzezFenlnLN3veG1olh6u/LuzmBYSeQ7CzcZenAIjQesmh994LcV0qBjHxiFrnlIFZ1uJ+N6JvG3gnRFnEJORPKePpcMLj0wGPT0/4cviKL4dHxJxhNEd0GHvsxh3GcUDfduibFgaEOM+Iy6JGLymHxSrrCmC2xqDV0OCuaSsQNhdG2/WZufbLtb4947Z4U7ez7r3i7XCG0HiLvg0Y+gCwEGxJt65ev0KoAuUj2N5K8eY8B6GFcVTG0kDI9Pp2ABGw2+3BnDHPUhf2eDzg6+NXfP36FV++fhHDSAYMHREXYTHtmgZd26LvBMR752HJ1rXineSREiC6jxpW1A6EM5XsEoSq4stGnlOikAi8AaElP3aNhMGZ9+n3aTLW0t9GjRgN2naP/X7Bly9PIPq/cTwdcZoO6jmzGk7aAAzMc8I0i6E7p6Tj6mEowlCG940aSzKWdERKrMDJa67zIjmRQCXXW9wC5oQYJ3hPAEnYrWGp1W6MBTXiiHCe4DzgvUcbejTNDsOwR9/v0bV7hKBAFMIXQqov1kxjorUrngn114V8N9xj2N9jiRPsfMKyTEo8qd5NLbe2zDPYHIVtGMIUTyBQJmGBh4hpqSQhyo81BjEJsyqpMidEkJrGQ7IXFoP0WkNeSTFpBaKGGEuKmJco1QMA9aJ6cFseXQ2/CkTBCeQcjJXSgNVIzlnDdZWgiC72RZJUG7aoQForAoqxJaMae0EMjjNmfoKxHsY1YIhH/KVW1xfUuMi01h6HhtZrh7LWCS2yi8D1fsXxIqR1ZVsp67MCVax48tLX93wZvjxX6IWj+Nq3vL69ttKfX22zL/L593Rx3PfsnK+SFRUvKK9aynNjzuVNV2Ij3nSmglkYgILYisiC0YBNROYEZ2eAHRge3rbI+BGZPQgnEOU6+FLCQ3KQyNj6MkbCyrwVMiGGB2CRcgTyV01eF+Ih77Owzlmp9Wmt1RpVN3B2VAbcUvuJNq/LZz/vBD7/3zpkW4/oC/Oo1NmTjcDAkJVcM2V0dVYUjGrBJKi1XUI0Yi6eJK6zt4QdAZKUz5kRk8c8WUyzBTMr2DBVwJRQYGPLZriGuVgluBAqf1lkqbL7LZhOM5Z5kXwLJ6CGNay1dIgxhGQFXBgCOK8EQEbvthSSlmR2rZtnoeynBsRilIBaxCQSgCuwXL1LWwbj563MSyFuMFLQWQv8es/KzingtpJ9ZC0CD1YLpChrcVmQYyoDXvMwhEinGGe4Mq1ZDak1gLJeWrDT0N+UEJOSPaWsTLyprkdrCsujsAGysoJSSdivITxisSwwpwi94jHeEg9B+6Cy4DopmyMvV7/vux673Q67ndRN2+9GdF1XJakwBl/v848Pf8T+YYdhuMHN7gP6fo+oxpHJt+j7Efv9HXI+wlCCMQmn4xGn04ScE6wX8oGyORpnQIjgCkCFyCojwc2AmQBYB3IGTMKIXIrcy2+hRhMB29IPXMPNxRCTNU9biz4bB+cahLBHE/Zo21t07T26/h773QNu9g8Yh1s0oUPwnYBVDdN1rhEyiMrkLELVXMqXs0m6Hroe9XsoiXzxXq5HAkZNi6bZYxw/A5D6lU0TcDrdIKafscSf0fhHePsI7444HSKmYwLNWfJpc5aSv1YsWRw1RsAS2BPUzifRFhmwgeEDw3n1fFYDSjGelI1cZZ4WeScNoW77FvvbW9zdfcDt7Ufc3n5A03RSAy9HZJ4FiCIjtD2absS4+4Td/s9omwc4V+r9lXC6X9ciMxbmqliUHl5Ns+sIFmAmMk//VdYolQgAj77vcavApYyDcVbAX99hNw4Yh0E8ok5Ym43GjXFm9N2EoZfw3f6pRX/oRYYVINqLR7Xve7ShQRtkjy6hubL2gxiYVOkDhCFY7tEhhCAgqjB5EjYkarzphzXi5uV+fv79S+pXCb80Je/T2so74K2EJOYijyq7fzHMybUuge8KRLFRKLdKsJqPjJHyEsOI0IQqP+KySCmu4wEhtHBWCHUkh9xi6GeRPdbg88dP+PzxM+7v7jH0A7z1FYQKCa6aqZSITWrhQgycGzi/SoZtthltdLZV8S0bQZUn9bvN6+/SNmGKxqHxHYb+BvvdHW72d7i5uYXk6C9IUULRs/KGELHIaGdAzoOUpCjGhNNx0lIiCdZlxHxCSpPoKllkl7C+ziLP2cCpbuMcoW0tmtaiaawa5mW8RdcUXcI5iyY4tG2HcbjDONzj/v4jdrs7dJ1EwFjbQAguJU+z9G3lIt0qz9tJ9w1jo293aPo72LjA+BNcXKqBDVDATAR7mgDzBOAJabKIWaov5EwaKVR0Q1M96uwsXLJILmLNH1adUeuViLFCHBdiEF89nzkVr6yFNVkMtBbIRiKTimGbVH4X2eAswfoS6qupR5VUQF7GCFloXX+kuCJnTTdCSViXtWWLIVsMk8Z64T0geZEJCP0ObT/CNz2Op8PV2sRFF0Ix+hRAylTtrQCALPZro2NcSXU3etUKPCG20vK9Dr3Z/P3cS1qF0dk8ql9vl+iZaKIywy7a1Vics5/LOfni2/Op+vJ5+MyIWGDQW8Ho6+VbUJR7dUXzMzF38Yv1OXhz0IqNNlYiciAEPS9AFNF4D6CFtwOW1CImi8xfAExgntXyofHuxmlNswBLLZxtEdwtgruHMztZfJmR+QBmi5wyAC9hFxYw6PVVyIgMvB8R/C2828GYFpJfUp7j5TCt56ROdPb99v1Ve0bJf4UCw8Jzx1KCwpGrJDHGmeopYMpKTR613lLBGlwHRSq1iYdp8gZ+tlKiZQNCRfkxGsMvdd9yjpoTpOVIrFWmVGFJjVEA6HScMR0XxDnBWiGcMmREMKQEMiXHQj2eUbyERXAI2Z/m4Wg9PaP1Q62zMGywzAvcPCPlDMPK7spJN+VSrkRyIiSMIte8xRd7XVe5AYFsMWgwkmVEJwXmY0yIzqhF1Yk1MidM0wnh6LE4eUUX13BElLDSVXuQjY2RlYlSwsitKClOhL4UfU5g7be4iKGmAtki3IxS0msRbvHgC6NsCRDMCkShwHydlyLwS3mmQuEuLLhS99AHjyY0CE2j3hAP7wPGYcBuv8d+t0ff9+iHHiGEev6c8os5op8//hk//Nsf4F2LphngbMDpdALyAcEF7IY94v0nOJvgNVTz0X4B4wuWZZZ5GRwMKcBOomjHmIBZcgBTWpB4gZkyYBLYOLBxCLAascESrqubjTFiHbfOVYXWlBxIknIuMEY9KRYgD+d6dO0duu4B4/AJN/s/Yr/7AcNwh3G4QduMonxaJ1ZZ0gLsRqzrxIUYqaiQz8NyZdlekxa/HxR9CYxKNIRHCHuMyFIHs2ux29/gdPqA0+m/cJr+C23zE0L4BcF/wZN7gqEDyMywKYm1umgLRnNCmYAEsBfly3hWI414Q73PICtGx6yxTGQsSgF6UmWFNYSMWcLMrbMYhh73Dx/w+Q//Cx8+/Bs+fPgzum5EygtSmkW5zQsYCdb18GFE295iHD4hNLfizTC2jsllf7+1NyUA+HwHvhzGAh7KqEtW88aQW35HACyhaRvc8A7WObRNg72G7HotUdX3HXrN1bZW+0tDvpmBrl3QDx2GY49+6DAenpA517Xedi2GrkfbthIaquRCYkTMNRqCbFHOVC/Q+7Rm6wWVV916SB7kfKZtywS8HXReb7pmScnjEgujOQlQ5griSPtWc5Uvx5nOASlV4LbRriprpuqqMGiCRNBkrecNMGKMaJsOXdvBGVfZag0JoM85SQh02+DD3QM+fviED/cfMA67tczNxtidGaAaIqh6BJ8dtPm8AflXlzehAPISJK2wV43b619+11YRs9yfgZHUrI6x29/h7v4jPn78AaCMr48/4TQdsKRFWPs5gSzDQRhgvetgTVujho6nA2AmZDhYl0VXxAznLOIiXs7ChEuUkbOFzxKy6oOBdQ2aNqDtvJQxMeKFS1HqlYMFYPnQoO9H3Nzc4/7uBzw8fMZ+f4++3yH4TgxZ5K6CiedjVf79LcMXwYURvr2FSQtMEMNaYYpG8dgTwbojQAHMDjMzcpwBOknKkpZvsdXIWog/WVmdhXxBchiLnrAxcjAhp4RlltrttSqC8nkIW7yHdwaAFSOJGolC8FpSh8WZYSUKLASn0WCF+V4qD6whzSJXqEZwic6ZoY6LGqlAyMbCs5j1ZM0LIZJ1DcgEgAJgG4R2h6bfwfoW+fHLVSAqRHPKFJ9lzetjIvN2fYixKBedrNgbClagc9BGVMar/FsjM8pU2YDOErFVQWj9XEDrBigW4Lsur/O5Vo7lcxPgaiBZx3uVgut8LWkRJayYL/6+1UkuZ/n2eq/VJv52aG5FlpuevnLR9XcXD6K/KxTW8rKbGyw09wy4AEPiQbCRMEVGyh45P4HzUSecAbIQBhE5GGpg7QDnRnj3gOA+wpkbpJRBHJHpK6RiUQLTrHWmLJwZ4c0elloNeSFY28K7Ec4MMNSCICxq5dHfwmy1hjCXbjgHo9eVy7LhKYV42URYraJcGDkFjDrnNG9UwtVgMlK2SNmJFTGxWsBWdrWS78cs5UHmxUmi+UXsPZGQ5ngtqRKjCPFS20nyLsQbyjkhxQXzMmFZFmF1XMRMRNloDSoBU2JNlxzTHBlpkdDVnFg9wQaGDdhaIdkx4gm22cFmi+y5gjdjI2xOSLAodc/Eaqw1JLOpifvuhfpz532vM1Et/IBYEF1mRMuIVsrZJA0tLiGJTRMQQsDSCCNl1pC1svZTEoAsnlEBppSAyBrapgQ/JU8XkHzQGdC8UlEEKxuuRKSLd0jDaFJedEoVJlmhOqdSQ0s3nsLguzJBriuYVIkzRlgwvZfnatsWbdehaVo0TYu2aTDudrjZ77Hb7YTgJCjg0vOmlM+E5Lbd333CH3/4P1GIcWR6EmJMaEKH3e5WScykVIoQ1ngwDKb5hNA4hMaJJ17JQFJi2CVKoXGTwUbCeMVinIQEgVXm1LwwA7ABsSiGwTfwvpFyFtYoyF/AQkElJV2IIeLSw9kRw/CAsf+M25s/4/7u33B38yd03Q2aZkRwLUDFG7/KPdKdZt0ElNDrGQzdTEw+F/i/BYa+sg+UI/SaspaCH2CdRdN26Poeu3iL03SPw+EOh8MN2uZHtM3f0IYf4exPAP8IMk+IeUHMUrgcRqTvwgASgSODvVjnjRc5IvlBDOsldFKI5ASQrfNd12YJo1RvAKlc64ceN/d3+PD5B3z+/H/g0+f/C0N/i5RnpCTpHzlJTVFjOhjbw9kB3svLVLYq7Ye6+35fH1ePKNbtkhWYlXFfx3vdqgvJ02rA1d3GEppGwvab0GBoW9xOO4Cg4YsOTdOgbSWs05g1jLQoGLGJ6GOLqe0kn7PvAWbJEXX6+0ZCGyuBjezMeouEEspRDCRVPyipO1WWnIOYrc9uhT0bBfe19gY0VAl2zJryUEmIaPW+lrzOwllAhfWftufaft6MfxnM4kmsL6kxTsZXRRIQPoYQAhrfiP6g7M3WapitkRrW4zjgbn+D25s73Oz2CD7IfrUp7VAA5/n7emvihTjPPa4FDXRCXTzmWQevIJRQQNG51/r72ssyhjY3JnuOc0IKthtv8fDwEV8e/4gMqR96OH6FRMItgEmwBI0KCwihg3cdpmnC8ThjmSeAxFtlXQaR1PyMySLlAGuNREUkIR8iNaqQYSE6MlbXkBgMpcZ8wqIs6pwNgoLQ/f4Od3cf8eHDH/Bw97mmYTjbaeqZgLuavkXnq+H555dHpzTjOtgwgnKG5bQapvWnJQyeqEFmi8wE5Ii8nEDLCaAZmY0MjoFGkaB6IoWoSFmgC0hmqOGDqheeWaLElnnZOJcIpZKF2HazjgEqe73U1Jbavs6ZWh80eJFfUpZPos1AhUHe1jS1Ut8UkLI85R7VcQujrO5iuJRwXKkbKhFJZAWMkm3gmwGhHWBcg8N//vWFqSo4Q0pea+4rS7mm4uRhKnqevtdR1EizreOqGI02ALToASVFgC7/pvJleyypkbIA0jXsewWU25lUZ1Y1eJePG+LA+vuLc51hgi345YvjrlwP5zP9LXL8m2RFZWOhKgS/JaAuJGW9w+0D8oXAkqllyAKmBbAHsIhnK98i5yOYJ8lKZqHELpuCKZPOtnBmD0O3MBgAyoBLADmASCxolCprljMDnBlhKNR5YoyHNQ2MCTDUaPdQ1UveIpq3IJQ235UN/MW27gPCjriIokpGrEk5KZlPhjDLGsl5YxYK0JwzcoqSQ6S5jQRaS63AwmndOauU/1nBdQZXpltmaO3LgmEZ4CzXzxLrnjWcV3I+E6yVZH5HAdkDhh0MHDiRKJ8ECadNEpKXZsZCSZ2ZJONpHNh5gIIwluj2mliKSy9pQcyL1MEDQNbAkYTReLISgmkAshIuvMwRMWa4Vz2idKH9FVVfQwFBgFNwl0lAfhZyJO8MQvBo2yAhn6wWb3vSUCArxoHkUErBSG1PIZwIQUh/uraVEGZA8jTKPGHJebJGjBBclK2ax7taQgEJz3FsJI8rezBKbodYH71zysrrlHCA1ButYFeFk7GFFdBpeR1RniQPrEfXCjANPkht01rmQlWaF0AoAM3hbnSfk/EVso8ehqQeZNMEua4L8L5F291iHL9gXk5wjuA8IcYJh+MTjscnpESIKSHkKOHbQYg8+mFA1/foe2X2bRuVaVnLesi8a5tBcn06Ca8LIcCYjJhOWOKx5oynvAglfnZwbsB+9wfc7P+Im90P2I8f0Hc3aMIAb6XY/DVpUS2iqz31ihAony42BLp21FsbX7y/1MpmpJ+NheVmtbjbBsb0cHaPNnxE3/6Esf8J4/A3NM3/hvf/G49PP2GJJ8zxJPmjibHEjGzWQueFAIoMwQcLF0jJ2JTVORGS401YFMMqW6jTkiIcoxJsEAw5DEODdggIvYdvGzjfwfoBhls41lqOuqcZCiBqYGxQeS+5T/Lwlxvx8631Nctu1td2o9+aMCW3sCBU0m/o7JjLq0ukgtRZDcYghQCghJUXtm1fDU316rpfO4lFB3nZYoJST1tlsfQlFN/YC6MIrafhervPQGh5LvlO508F4XKe5yr4rwM6ly2XvP1U6iIWfVu8kBWAFoMysK7BegtFuUK9+dWjQdVLVBXGjZJYPBXFAFnKpFllGG1Dg3GQHFJh8xdjwTiO2I0j9rsdxnGHru3ES6XlZr7VP6WLzx7h8nfqQT3XGTdgEGUPkSgkGSfzG4DoZuDP2nPlVlIgJA6g7To8PHxGygtC8HDewjjg69ef8fj4BdN0rIEC3kmJJu9kxZSUjIyIaU6wKcP5LMCVAGuzGDUzITth+Q+N8CtIuL/UGW2aBk3TAGTVOyel1LLKl9tbCcW9v/+Eh7s/4OHuB+x2D+i6EaXu8HkeaOn4bZ9cvr+tjzMMMlsBP0QSUXPZ7QCMbxBaCR41SDCUlfvDaz1w0dUkSCUr0E8agish0Gs9Ti3LxQCVaCkm+KAgmLjqIRKlSLWUV85cDeBSRq0QbVKt6y3h8wKEix7LNXWmeFNFxoGUjIlLiT9d40SSQkYyb2GsyP3Qw4cBoR0R2hHGtoARMGp9AxdaGOvgQ3e1vxMDUxSHUsxCKpny6hXlKle2YK78ew0/r6CRzw8694iKLLr0iJ4B0u13ePn98vP679XwudkdUJDd2bS9kIn1HAQQFycDbx6MViDLF9evAF1M8q/Bn2+6iwoJz7p58MVtbh56+/96qN5NtfLli99uF6qRkFgSd7zNHZgnye3hBInsb0Cw4LLlE6nFxMJSB4MeQANjZDFa08DaFsHf1GchMrCmhTUdDLn6RCuDZWHK3daAeos/9IU+RPn9K+cgsWRnof9EYoAgJWmytcgxgx0EvBmADSsIFc+NANGEGDPmKWGes9a68vBKWlRqWjbWgrQWVOJUSXhijBrCrCEHClLkPdX+KzU0pSUpsUMO5C1MtkCyQDSICwOJgKiW3UzIUUpsEBOyJRCpxcsGMAWQ8SjkVgwJG+GUMad5BaI1N0xyZ40FjFfmTS8MxMfDhOm0wNHrobna+c8+GyKpdkIAWwsHqWm6pAhEyS2RnJEGrCBU8muF5GlJFsxOctTSgpwiOCdRj4jQNgFD36HvexF4S8Sckwgl1aYMqXIOUW5goCE1xftbiIfkvs/KDVQ6cwvvPNogNeiKF1OK3i/Vkx1jlFxdEgungNdQ80Sb0Cpw7tAE9Z4UGvSqhPKrSjqRlfVWwpcziwLdWgX1DfplkLwq3yI0A8bdE07TE2KcJGSKMo7HR9hf/obMBjFlLGlGhIdpHJqeEUKL3XiLcbzB0O/Q9SOaoCUVFvVsZ4DZYBxucXf7ETf7B3Rdp/U9M6b5UV6TvJ+mg4RBRwvnBtzd/BH3d3/CbvyIvr1H1+7gbBDFpubIbi0cq7L7XNZfU0h+H0W9XqpEZnxDitFmxyOyyigqufUWI5y7RRM+IncnLMsXLMvPOB7+CyGMsM4hPDaY59JnE07HGTjOSDbDGKlDyiwEU44IxhNCS5U4BWRgNeQrRUaMwrgrBdEHNKEF5QRoygCyKC390KDtPXzrYIMHuQbGnisatbC8MicSFfKNbXjcS2Oh/feNTSAzJOUBEBKceu1181/zRLniguqB1FEqinddz5bEQOf8CiRo/XthPa2gsaIUBVNkYJ3sBW1oKsBdyWo2RqQKIs89n8UoUN43h657/xaE1ufnel/b31zt6hf696Vuz6xs7SkJQVZSbREasrcF1hugdh7aVpFZBaD18Iv3cgqzVQyBszIzxAzDgCUjDMQYpRa09fDWw1gj5FC7Ueqtdp2AIEaNEsHm3GefyhBtwuyKAnimZpZ5VeYCQzgljHxBRZEvDAKaFiQK/ysdfrWt43wdeNHVQ4vnvu06fHj4hK5r0bZBSMkowQcCaALMSe4XwvbbBMBZIQVbIiPmhJRnzMsJVst5WGe1/q0YOEveprHChh6C1cguMdiWmqRAZb8BZ6tRQg0eHj7h8+c/4cPDH3B78wm3+09o2xt4N4hXvPCJVEX9mvHvWsd+u6OlLrw8A8pYlbkKrtUqrGsQWnU+EEudXGMBcsgw4BzhDMOYDM4Lcl7AeV6NSKpHCDTMKDzyEnrvATIIyCCrc8dp3VI2NaqwzDUyrFwWUKb5TVoRacSCKTIwC2ElS5KCRExJ6pmxMh8zAzEDUevNl/kDo1wxqkO6dg/f7dF0N2iHW7T9DYztxCNqQmW7JzKwob/a3ykDU1QCzMwrCOUVhHIFmgUZrQC0ipbioTxbBrQarzb9cQnizj2heHbu9Rr1tFe/P4/CWvcYs456lYXnQHR7L1yfVWTlBogS6T63ngdYp79hBapFDr3QXq8jevXblxvrg1L9vP3ZcwArn/N68ySLzVCxwgcAMkEFjXtYBAWiSV9F+CmogQgTGUAGkQdRUAIjaB9KDpRYxkteUN09y91gq2B/bzt3tH0bxBJBWCILBbXmPeYsBcnTErGYWc7FWUItTARoViAqHs24MJYpYZkz4AjZsiR0WwNhDzEwsLAkhVktWa1bGYWynyUBPUd5xUXKM7CGk0o4hIwTkWwIhiAFiynAsgcWi7wYJMOwSDCQumlsSsiaAZLkEojHN8AhwFEDC1/DB1g9sTkVwiOxgDnS8GcDKc3hSetFykYz0Sw1TWOG4bcAUeDZZskbIaErNJPYGrN6HtsmSGioEbDnnEcIDqfghGIdEYyEnBakGJWNThTUpmkwjiP6foAwLc6Yp1CFtPceOWWtHah9boBSyw7FZV02dFMMDa6SC4mSaeCdlHlpgpS2aJsWzjkBn1FIroTMYdHHVwuoF8Kitm3l1bRCSuKlqPV3MysyqZEh1zVlyIKcg2UhyXJeWQeNg/MdluWkrK1zZT59evoFRA2IAnxo4ZsW3XxQYWfQNgP2+3vsxjsM3Y3Q67sOS1wwz4vM5yyAYBzucHf3Gbf7B/H4di2M4QpET9NXHE+PmKYnqVcbCc52uLv5ATf7H9B3d2j8CO87eZYqN3TNbzerap17DfT8MzURSgQLIg8Gw5gOZHcAIkK4QY63aPxe5BEZNN0O8/KIefmKw9MjHh+f8OQOcOYEwxOASQxMiHABaHqg7UXhKLnqosyQkmxYcHbouz12wy3a0CPHCRwnKYCu9P67mxHdIJ5v5wtboigctfb0Raj0s2d9JqW/f3yKR5Q3V/tGDz+7I9rMIoIAGgEN4p3ZwKk6xwpolJp30uq2pYypIIA1BLkqTnUNr1FKZyYLXj8zsIJR/Vu5fm1nXbj1BL9wyG9spb61ANGopdlErqW4qDdpG25adIX1HCuZIiqQ2IaeFUWQqxdUfQlVUdysaZb8Zlbt1RqLxotcF74AMQAUg55zXgww6kkq5ae2bRvIfW4Q0eueIfs1P7cCUH1ZkpDRZZmxxKUaH2uECErRmN9G2PVy2zxY3WOFGdgMOzRti8wRUzwi8QTjEjKOMHYRHSBl2ZusVDkARRibYK2ULMs5wpgMYz18KKXGZO8qOp4wxgpfRam5awzBeS/1c8mDWmGlN0bKQLVthw8f/oiPH/6Eh/sfhKyov4VzA6hGzr3WZ9dWwdubGLek08oeUrVrQk1PgrGwLmgKQ9Y178DkwCaA0yL9g4SUJsRFSJ04L+AcQapTAwnESgYE0kgmiewq+UEl39OY1SNanE3Ecpjko6oRfUPzU0ARo/yGxIDL6sG1QiBIxgIa9itGfgA2gJIY7EuYr+T2exjbwHd7hP4GTXeLpr9B0+/FIGk8YDxKBACIYF5I20oZOEVW2cLKNaMgtCLGFTluAR0VcHahTp61CkA3QLN8vz1mcyz0uKpPnMkv2vy9ONvOweXlPnP22p7/8lbrZlMMCTqHq8zkepECWMt1S/6sUcNazs9OX9s3yYqodP5Fd15bUts01ishxOe/u/LQ5/U2rYBKdiDdWg0bBZsKYmjrXV0FKRhrTVWxowFk1kgJ2d51M932zroT01WL1tvb5WbyTTBLEroGIrHwsOb6keQBzguQOGJJDk5fZDJASo/BkmspXgQp5p6JkKNBUu9lYWFNVgW2k7IwxlhYVtKbxMhzlhp0S8I0RSxLVKuhqyGevpHw3ZwiUk6wcAimhaMG5CzYOSRH8C4jeAmbSpqLQCR5XxI22sK7Ft4FWCebgTDHauhdEq+MIZJE+OA0JFhyAX1j4IOF8QRhOM2IhmGMA1H8Nljiyw90PuQX+qkxBs46NEHyno1xCD4ghAVNEzDPHsvcauihMNkKGYCET6tEW0NzO/Ha5JyxLEutOXc6naTea4oKuouSrrEASRhi47KAiColvW/E8+m8Q8n0spVN0ikYbWqukiHJ5S3jWDUsoHpJnBPPb1AylF9L7V8U5W26dM34YEDo5j2869F3gHOdhsQK0UyMJyzLCcHt4ewOfXeHw+kLTtNXzPGogMmiCQN24x3G4Q5Ns0PjBzjbivd3USCqoqZrR4zjHYb+poJsYxjWDAj+Bl1zxNAfhTI/iXfOUEDf36Jvb9D4AdZIIfSST372xJv+PKvF/Du2t8ZqfFsGrcddjnHNSYKGQbGUOjIkit04ZBB16Ic/IaYjYjrg8PQzvn79CY9ff8TXLz/hS/gJ4ekLmpZwnBKsYzQdoekKeYayZZcIF9NK7r/dYehuMfR3CK7B6fgLTsefkZZTVYh2d7cYxr2QYDkhz9pG82xV+apIvIygXvnu9ZaLt988J3zZesPLRq32pXX3onO4bICzvM1C97cqLbKCmAr1zHqN1aa6Pqdi/EuxdrbTl72/gM6iQp57RMtx8hxcFeTL8/Lm83qtt/XtZnxe0icUZBX5OU0Rp9MRJw3dF8NhueYmQ5dWgEebey+X3Sp7Z2G4CkS3CmTxVqz3lJVkJwuLPQuHgTcGwTnt/Iw4z5gAcEpYnKvkLy+t06pdVfkpo01lUPXmt0C04FVmCcm0xFjmE46HI47HE6ZpxrJISo88MlU25N+vvTB4G3ctqQ7Sdzs83H0C86KkQROCJ0ynE+bThLiI0UEiecTYawzDWIKDhQ8ObdtiHDuMo4Y9d31ZJaKo05Z9VNeVkWBuQ1KOxw8DQhjQth36fsTt7Ufc3X7CODygaQYY04BoC0Crxl7H4fU5fu0311upqCD3y/W9TLsCREn1WhBgXQdqDAAPMg2sHyrYJEQx8M4HAaN5QU6z6ChSzB2ehMivhItbMkhxAsMKKOZYDS6lMoB0r8A1o+CZM6DBt+s9lshDA5Fo1MCFdV2KELQABbAJkhJiG8AGXe8lVcQqEHWCC2yAawa4ZpT3MAC2AxsvNaZLBQW9z/zC8KTMOM5iLM+qV1d5V0A1SaTaM4ZcHZOzfMrLOXFNhpwfuBlnrO+XoFSl/ZaVuRgXCauuUdO3sDHHXVz33Fi+3u32moXsbXtfZ/dSZGo5t+5vFiKe0ivL4XWyIkZlywVwpmS9dM4SgnSNZfZsS+Ir5zg7XAlFFFXWZcuFUev5T87Ot9l8QFoW5Nma56pgPbvX0gFnN/d2xeSyTuMLd7k5Hkq4APVYKiDivNZWXAh2cfDJwyUvsfRGWVLrhgykKNTjORvkSEhWzsVZks2JBAw679G0QeqUZiBlC4oZPAPplDGfEuaT1O9q2oBgHZxpENTDRoaFMCYucMYjmBbBdEKv7hyys1gcY/GMJWqeZ1oU/Asde3A9mtDBu6YyuUUWDy9iBmUIqQw5kPOwSFpDKwGGpZB162EcEFmY8aT0h5Z+4esMrmVcyjifj9G5RUuP0O+Fyl28hg7BBTRhwdRE3RxbpLgAYAkZNqKY1FzMLJ5eZ2XDbJoGhWU2pYTT6YSjliyZ5wnTPCuWESCaktTMXOYFp9MRx9MJBBnLoAyYXdfB+4CyyNYwPyn90IRWc2ICgl6/sNaV9SCGDSlVQ4TKsOmcq/f7va2G9+U133z1/kPXu4N3QoXftcoCTIycI6bpgNPpgCY8oWvvsB+fcFoeMccnLGnSTdOjaQYM/R367hbBD0IkQUFCkGchrWFmIAPBC4NvE7pNKSMg+AQx8AgQlk1a8rRBFs428K6FIalXWsR88eYXshnCBbC7xD+/sX0vVHoJiz6b71eOYyi7tYJuoAGRlNsa+hZN8wExn8CYkfmEp8OPePzyH/jll7+ia/8feOcQAtBMjGZaQDbBtwY+CPW+MU6t7x7WerThBkP/CUP3EX13j6G7hSWPL1/+il9+sYjLU/VwDPs7jOMNmnaEsw2gRptqTKXLh/s9Fe3zU2fWxIJVP7hQMsomve5rYlrVz1RyHAs4pfoux6/Kj4xLVbPFa1fCsFcNor5vQ2oLWNlAnPVvvDmmvEi/L9fl9XjS5NDzaXMBQmk919vaOk7f+o1EAy2YpxnTSWp4Ho+PYJi6N8r9qXmOSk9S7U9U5e5c4Vs9ES8A0nKGzRKvofD1twIEvTNqrEhY5qkS/hklEjyXh5txudBHqmFIdZdSC7WEQ6t4kyP1t8I5AAGix0MFosUwR1D2YTUKfX8rOtJWV+LN37aNUfUvyN5krEXXjbinTwiNAZkFzEcYl/H09Suevj7ieDjgeJiwLCfEFAFOGsIpPBjeO7Rtj2EYsd/f4GZ/i74fiyCWfNKUlHl2cyt6e860GPo7DN0DhuEG4zBiGPcYxluMwx3adgdrAgx5iPossv/8+S77gc4v8p2tgCEBFeWd6jPVLUdBtYQmG7lP28G6Ab7ZgzkCHMEcMc8H2NMj5uWEmCaJOFJmYc5ZoruceOyLTFqmA5YMUIzI6QRmKSNTkyfBFYiCGaTM6VmjBHIhuiAdb1PSgILWgF3JJzMZMMSba7zke7rQAyWVy0h+u9WSamQ8yHoY18L4FsY1MNYDNiCTSNZcBFDp1xf6W4CoRK+VNcnbDZLkbMWgeW6oEuFejFPPEVCJRFlJ654D0dVQUkDdFqMX0FePreDvgiiJNmAUW/DJStqol6hGjW0awxbHbe5te1/X7oEKOJZWymQxEdKv84hCLaf0bBBe/sH25l6jAD/fSDc/x0bl179rlb0CFtfe07drAu5ckbp6y9tN54WHen7uXydIzpl0r59DlHSpcSX5nwQhCVotM6Xu55Ic7OJF2Gh4xKrOSCiasSVcNGhYBSMuUl+S9J7SAiASkgdyTFiWiHmOmA4LTscJp9OMaVowLREcDQwWDT8UkgznSErLWA9HqkCShFJAS9BYIZETIKWsrpwlB9Iai8YFNOoRNRrrbzVzJRsv1jhY5MSYpxnzvGhdwAgYVhKdBsYZxLxgiTOWmGHopAra6+Nyac2+RotdjTEkYXIZADnJ4Sx167x3iNHXmp8AFIjSZmy5AlFrbC1YXzZ9ZkbTNOi6DvM8Y1mEjZe53AsJo2iKmOcZh4MoXMyMUuambQWIhhBq7lfZqQji3Qze11zREBph7C37mtxIDXnLWckPzFrepXhF6cU1+EJ/63+iLD9XLol05EkFWBXuokBICaIA51o0YUTfTVjSCUuakHIUlj2y8L5F145owghrG1iScP0UE7JXz7R0CZwVYiRnA9YyRkWgllI4QjRVjDmymTglFtGwpDqHVoWjKrPl6Wn7/ttbudJL8utae+nal2N4DZjSdpIQgWDVU2/gjIF1LTwWAAmMBdZITWfv92jCDl17i8fH/xdPxx9xOP0ENhG+MXBBlCYh/fCab+3Qhlvsxh8w9p/RhAHBdyITMSPhgGWRKADnPPrhE4bhE/r2A0LYw5kGhTugWOD1yc7efvdGBCoEG3WNrOFSEmKrNThRM6Lq92sAMcGw5iKigNANEL3Ue7GuXdAKSFZWjXWmXMDDDSA9fw6zObaG+4p+U6bACkbpWpe+9A1trv6t9vp4+RA0vYFwOi2IMQOcMU9HPD1+levw6i1eT6Yzgi9OfBbatip8KzBVubQZi/pMF2PCm+8ZXMNhM3OVn6U0jhgDt4bRtYfOx4YvPlJl1t9eWJ63lHsptcBFrsZlxtPTI+ZF2Gb7oQfhAff3d7i9vcV+v3/Ve/G2dj7TnoXI8fqhuiwIkgrSDABF3E0fscQDnHM4jI847h/x+PUrvnz5gsevX3A8nTCdJvA0YVkSllmIccAeznTo2lvc3nzGze2d9DdDaoGnRRnXJVJLxkPGvAkdxuETdsNHJbEb0PWDGitHONuiAFDmQnJ2bXJWQbl5v/w7Xfn+eSv5ieVX9f/VuCLWoeJsIRBgqEaWoHBwsITdMkfJoXctbDwhxQVRgWjKkoZVgah1gDLqggLcssDMU9VlwBm1xrMaWMC5ShZh3CUlWzIgkhBZYxtY38K5FiG0CKGDc5L+IVFf8ptMFj70CN0IH/qaclGcFobWHFEoIIX1IOsAY8FkxRiFsh5WxeMlo6zs/EbXUQH6q8xaZ3aJI9mMphrkVo/lZsTLXlD3zw0YvZgmG4xX/1YMmJdTanup1Wj2/L2SIm0+V92kPM/FNinnXCffVl2my3ulc72BIPtXhmQHxleEystA9Lov+OwiV3+C7fL69m/42R8ufnO2hl96ENrsA6sS+CpxyvZaZfGWv13V1i6/Oz/3tUtVi/WVULfLxryW++AMMImlKSdhE0tJwn3IAGaxMN7VQuLipdIEbPIwVjwLIXg03sN7i2VREBcjytMaw0hHhjGSg5EUjJ4OJxwPJ5ymWQR8TMjqZU1Jihlnjgidh7dG2VO9sLtmknCNCHBkSMkWgjUsFjGI25cYsOQQbEDjBAyUMJBsBSyBAW8bBNcgLglPj0848AFLmpF4AZmMtmnRdwOst1hSxBxnTHMCmUekDBiG4OJrI6qKwOX4PFPKQQJGIUqNBcCGxXrMDGcMvC+swwI0q3App9pYuQU4mjMG3NK8l5xMyd2RMa+CE1J3VYCoFE0/Ho+IUcN3CQhBSjGUeSFjs5KYlJp7K6hciY2MNWdClrMYQERAiQVzVZ7M9b56ZZ5X5QsGmVjpqORahPMSFkIGsJqsCQbOAggO3rVIjYQ7J/Xayhgatay7Sg4CJdxhCJNl1lqIIlAl567U+CyjvT4HQVIAHCprOGHdPqjMjvV3lx/rDKoC/ntg40sdiXOj6BuQ7RkZza+55Iu6loTqGngw67vWsm1bD2sGtM09hu4j7vZ/xuH4N3x9+k98PfwXGAt8Y+HC6mEmcuo1JzThBuPwGUP3EdYYgBJiOqKNX7DwiBgdnGnhXI++/4xh+AP67gc4u4ezPYzxKORgz1DCb2ivzvESBqH9XV9Yw2xteYEqIC3vNXpBXwWUXnpDy9uGDwgFwIjXUo2ZdY5Snbv1OGDj+dzAtM1Gvp2tGRJimrchz2f21Zf3SLrS/98ahe2W+tKqadsWNzd7WOuwLMKIbQwJEP2q6hVjI2k24JlVRyjAuj4zJA+/AsESF7mG757dT956BKpKhxIVUb08OSOp/C99Wz2zerl6l28Bgrr+RBGl1ViPQqhS+rH6y0GckWLE09MXxGWCDxZ3dze4v9vjw/0dPn3+hIf7e8SX4ha/u/HFZ7r+NxLlWLgJPBr02O8ekHNC14xY5hOW6YivX3/Bjz/+DT/99Df8/PPP+OWXX7AsX5DijNNBdKY4W4BbtM0tbm/+gE8ff9BKAJKnu8QZMS5Y5hmzkvVZJ+zybTNg7D9i7D+ibUf44BFCo0ayBswiUxjK1sorWeDzZ6Qrz7x54LP3V3qwEEiB6ulK2KNi0HppUw6pnjmpCSxswAzSGuPGNXChR0iL1lpWwks1mNtCrGUMOEVkzbd20wnWHcWTz0JCZI2BNxK9KMSM4imtYfxEYDIAOZCG2bowIDQjfDOiaXo07QDvQl2fmUnyu2FgfQvf9HBBwqFXkjnayPaCho0CUIMtA3Q1RF0anq41Ei9riU44R66b32vf1wjzMig1LBRnG2ep234OX9dTr2B0q4ue45gqc6t4orOflFusuapnMnj1qK+/LCdU2XElp3K9HX4GC7F9iivfy96mHvX07NS1veIR3Zz1LYrO5U29cbOvDpvXbuPcDKFt82XZbJ8NOuE1MLpeYjvwbxUQZxrA879uB+QN91G9nhAQyiBhrI0aSpKkliWDQc6AokFIDYqybK146+AsnAnwvlHPl4ezhLgk5JixzEJKJCGrjIUlL7Dkp6RlwfEw4/g0YZoXLDELU1kSeu4k1bVBVkCxbRvxYJAFsQUygROUXEDzMWAll6wQkojJCc44eOvgq9CTkAsZVRGCbejRhgFxjkAySLOEFccMwGYE36Jte3jvMMcIaz2e/BFE7sySeH2MVtBR6+G9MNcvw+HOBtjZMwv297RnuXhboXP2uRgrZC7M84xT1+J47DAvsxJPZHivxEQKRkMIMNZWAMwq6c/BsLAMOvc8//Nb/fJdz1rW6FboYhWLpe6f/GmbcS5setYYGC9W0yIQmcVAUjfforQTIJ5UlnXEWeOkTb1WZUzV71YFtTzrRd3VjUAu+ewrON1q5Hw2P87mzu/Qj/Uy5eM3T/lMeH7fBbaydiNvy8ULzCK4s+vY0CH4PZgXjMNH5PiI4+lnfHn8K4bHvyLzouVbPIJr4X0HgpPawzEj+J0C0QdknrHEJ0zLT2i6AQsPSElqujo7ou8+ous+oWs+wFAHIbr7Fin87zQW2zNuC7CrybkMOwGVpdYSiRcZCk4LhOCVUqd0tdkYLy6BaHnPFViy5mVVbHqmKVRARgWwrsBsq9TWaBFdqGfqdQVu39rXaP3/2SQ9V8Be+zVv/3GlNSFgHHdgJhyPM+Y5whhgmSctq7XxMurZ8kYWSr3pXJ+nqD3y/OW4tb7iWVmlooBqGSGSwVJ8SOt46DlAdPY8XDpgi47f1Mq82swKBaG1x6lEsnHNzwNLPl9OEcs0IaYZzhl07Q5D1+Lh7g4PDw+4vb3F1+PxO+7n4t4APJc3fPF+qWfJ98aQpOGgw9DfwpDB0O+F5TXN+PrlJ7RND++EXX86RXw1J+RoMZ3kHHGxADdo/B678SMe7v8kpFBkViC6zDhNJ+VimKpRv21HjP1HDN0HIaCzwjwvnCIruCFlGJb9jJ7Pz1cBz/fJHdkBzzfMrZesXL+s+RoOrnut0RqfXOYvQbyeSHU+pJJ6okdJ3XHhmcjLhLRMiCnB+kcY14LSDEoLQEmZ+V0FOlGjqcAsBjEIc6+w1rYwvocLO/juBm0n6RRtN8K7Vu5Q2XcTCJkNrA+woYF1QYmJTJ3rRVcAr5pC5YOlzfK6nHlcP10fH7K61rWcTQGXZc2Xw3gd/qtLuILSa/upfL5MYiwjXTFtMW5VA+CFLoqtzrI5PXM9tp6btgc9u9mrysRm+6j7WJ1fl8debE+GlLCI+NcB0cPTj+JmfyMYvRQrdPav58eVVubDi2JKN5GNd3hzsjIgZeWtwvl5uYLLjt/GQ29E+gsb5vW2qsrXxrVaKeSGAADLcrp6JocGDfYb3jpRGjIlsBGin4i4uV+CRwOfG7jUwLKDNQ4WHgYBwh7skLNFsgSePLC0oEVrxRVpVVZoZlBmUHZSj5IsYKPwE2ehOHdk4dnBRg+ahIkt54CUPAAvoSpswQuQF8gMVGVeQKFRanjZOCMZLABMTkguap3BXCWFMQa8zMizRVwSptOCZcmIUROfM2E5MSYXET0QU8QcM9JEMDkgoIej5mp/p5TwH//xH/Deyxj9joDr79GKkCv5wssSMU0T5llJjaKUJZHQW6kBeh76W7wlXL0A4t2kGtYrIbe/7T5zzogxXv3bLz//iP/861/E6FLyRJk3S4eq4Fzf122EK9vumiNT2PoY21BhPRspg2UBorqLrJ4qDavarIV1LZ/LlOsA/TyETv9SHmXz/fa+rigtv7GVEMTLdjqd8Je//OV3usq3FMlrrXDIJuR0Qk4nzPMBj4cZTwcZWecZ1mU4G+HcAiJhu44pwdsTToeveGwtcp4R0xPm5SuO04TjlJEyw5oEZyJOzRGHp1/QNhZEAQSPSk7xO7evX79eBWDMjKe//YzlNFUgV+vEQT47onOvqHpCC9gsQBTAZs+jVQHY9jdtVwaqMbMaNDfzeKvqrN7BizV4oTSJV3ANUK+kReUMvN1fX29nRuJyL4w3/hpYpvnq96fThC+/fMHT4YDT8YhlnkBkkVKCNRsDYb3X1UspkYVcZWINy8cKxGtKxZkqq5qefsW8pm6s6RyrHrL+Htg8+toH3wVCy2lWOVLCci+B6HZ+rEBUc/+LJ9BQjYQ6ThO+PD4CIDw+Pl297rIs+Mtf/vLGHNJNn209LWdljS7liaRC5Bwxz0dM8wExnqR8XI54elpwPDKWxSJnqWsc/Iy2A4bFoQke3u8A7jBNBl+/LvjxxwOslbJazFwZ4ud51hzZBc4zvGecjhbT8SsOrYWzh8pIz9imYKyvcyPl+ozXPq3tucxcFgkVvtaHhy9/k3zHi1NcqqqloIGh1QtFkKjaYpzaknBKukkhU0zIdZZq1BOJUyDHBSnOmI5fMB2esJxmxCUiLxK9ZxgwWUBuTIQUlZ+kRALASJqCKeshgbCA6ARiB46MvCQ4d6qASjyiAEP5A3yAsb56Qs/0dzwHnFtQfgZEee395fh4pb+BZT7iy0//oWszv7LXn8u1q9hhK0/PvtpGuKyh6ZfvOBszuf72by/tv1f1WNrC0mu46Lpucn6pTf7rtWPPDPDyZEb3wa+//Hj1XgGA/v3f//2qFHxbeOq2VRj+hmN/a9taFP612jkz8MXfqhjYfvd6e2EaXv/jd2543xSh9Oyb5yf41sN8Uy8/P8GzR7jyez7/34v3+GtJd/5Z2pu8/f8NwLrmYF606iX672jfmsxvWRrl+O/XG69f8/dqxbhweSn6beG4v39TAPRsQ3/5Hit436p2Vy1/tDn2799eneP/uNv4/03jF0JbnhuIyvffON+zD5cnvnbw9h/XDnjpor9FYLylvXWyvXwf1+TES/vLP27fvLLf6/fAuRzYHrcaIgtgXL9/qwr0j5Qlpb0uU/67BcoFtP4VxpOzVsDM2w/+3RurYfra9f659s3/Ke26ngK8xpp73c/8zQu9/djf2v7e5//Ht2vL8jcth2dd9H1n++bRbxmCN0yZ1w/5xgle/f3rT/CS4P+f1H6Ntf3v1daci3+S9r238nvc+j/w8fkFgPrP116+x7eHvF+3WP+jW+3vf4Vu/x/QXix18lv7/5u//zX60d+r/fbrfo+c+OfaN8+9Tdt2KQ++Z078M8iS0l5zXvzLNu3ftz3VP/rZ/1X2zf857V/bJfTe3tt7e2/v7b29t/f23t7be3tv7+1frr0D0ff23t7be3tv7+29vbf39t7e23t7b//Q9g5E39t7e2/v7b29t/f23t7be3tv7+29/UPbOxB9b+/tvb239/be3tt7e2/v7b29t/f2D23/HynPhwHFeenVAAAAAElFTkSuQmCC\" id=\"image05da545869\" transform=\"scale(1 -1) translate(0 -71.28)\" x=\"7.2\" y=\"-21.989118\" width=\"669.6\" height=\"71.28\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p9929f2e706\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"70.950993\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x800 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Prediction: 9\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjcyLjc1NDE1NzYwODcgNzExLjQ3Njg3NSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUgo+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJy1nUuPHMl1Rvf1K2ppAXYy34+lxrLHFrwZi4AWhhfCiBpZIG2MBHjgf+/IarLz3BsZX2VcNhfkkHdYFSeroyLu6Yqv891vPvzvf/344d+//+7+j7+7vTv+9uPfbt39L+nXT/f2/pf065d7d/8+/frp1qa/fbrNS98s09hNa/rrR/516bpmXOZ1mVK9tX/98+32p9u7X6en+Vt62Pe3W98207QN6X9O89p0W7f/u0+3buyaqfP1j6zP69Z00+f68TSm/Bju5/vpIF2qbvOX//z1w/339/++v/t1v6OlS0+/ftkR78eLcksvys9fHrC/Cl3fNfN6/vQ/frq/+9fu/pv/uf9w++H+85dnbtMLuj9726yfnz9Vbv3czO2SvQosj8385UW4fZe+Lr/cfk6/t/d/SBj3fmjG/uU1nqahmba163eE23fvb+/+ubt37f39nx5fuPd/vP3H/e/aX93/8/7+t7d/en/74fZAuQ1rs7RDhsCyRBimZuqH6whdjjC1zbLlc4FliTAuzdxt1xH6HGHum3WbMgSWJcK0NUs3XUcYcoRlbLatyxBYlghL16xddx1hzBHWpWnXfDqyLBHWodnaiuk45Qhbehev+XRkWSJsc9O2FdNxzhG6tHD1y8naxLqE6Nq1abeKGbmcUKT3dhoqp2BdU6T1qdsqJuV6QpHe3uOSz0pT1xRD3/RbxbzccgostOnt0A/bZ4g0L7Py6Vuj6dM/aZtxHOoWRwy8zs0wTNnAR7k48No307DVLYkYeFubceiygY9yceAtfWGGyoUQG2qX/tgvfmCUSwPP7dwsQ1e3/GHgvm/mfsgGPsrFgbu1WfulbtHDwMOYVvFscqFcHHhIvUGvJtfJUoeBxzmt3dnkQrk48Dg0bacm18kCh4Gntdm6bHKhXBx4mpquq1zTMHDardo2n1xHuTjwnH7v1OQ6WcbYJg5N1+aT6ygXB162ZmjV5DIrV3//7UsH/Wj4bIddaH4Lzeztd4W2+FOxLU4PqWywzSPwXHKM9nGNP6Ft/sm0hmmn6tfx8cht+vJIvH69ff3+7Q//9+Gv9+7v7//y4Q9/vJtV8bM6UEvaz1pyS3tcWvyXeZhdC9vN6S++/pF1c0F4nlwm9lb+9R+kVX+bA07hROvnLyIBpyiP8RCL/qpYtKlXWafsNTF1vW+nDaZL745xHR4gQb3ouzQJ1i4HYV07TtpwEnYVyNmO2u8dSz5LTF2D9Hsns1SBnO2ww9JMy5CDsP7E+sZm2IYqkLMdd9yaOT1BBsK6Bkkb1LhuVSBnO/DcNct8MllZ1yBpw5rWusl6tiMvQ7POJ5OVdQ2Susx5rZusZzv0OjXbdDJZWdcgqetclrrJerZjp1WgnU4mK+saJHWhSR6rQE528CGtAt2YT1ZT19+oSF3pNtdN1hMX4W5jZGRLkzWrn66sazL1Ze3n9mWJj4gJKYyZgEKriaeIWAopjKaAQnuKp4goC/dt4ywHxRNpcRQhfyGFERhQaIPxFBGZIYWxGVBonfEUEbMhhVEbUGi38RQRzSGF8RxQaNHxFBHnIYWRHlBo6/EUEQEyvS0NCBRagTzF29lQqX8v9eNJPM5b+0/F1n5XqEpLsA8xRiRGeWJE/f6NwTY1Vy97UMCK+qtWlAZIU3tat8Ve77ilr8Hi6x9ZNxeF5zm3otd/MKddvnsbK/KftJTHeFjRcNGKkommJx6y18TUdROxf9y1jn2b1sQdJPyhy94+bTkI6xpkTW3V2laBnOzgY5vap+lklrCuQbbUVi1zFcjJJj52Sa7S3MpAWNefArVb0y59FcjJPj72Sa7GJQdhXYOkOdvNaxXIyVY+DvPeF+YgrGuQYWj6uW6ynuzm47jurWEOwroGGadmmOsm68mGPs7t3h3mIKxrkGlpxqlusp7s6eO+Cgwnk5V1DZIWtGmqm6wn2/q4rwL9yWRlXYOkbX0e6ybriRVxt6EVDXOarFn9/HPkOb0i89R3L0t8xIpIQSsihbYiTxGxIlLQikihrchTRKyI+zatCBRPrMhRhKyIFLQiUmgr8hQRKyIFrYgU2oo8RcSKSEErIoW2Ik8RsSJS0IpIoa3IU0SsiBS0IlJoK/IUESsyvS2siBTaijzF21lRqX8v9eNJPs5b+0/F1n4XqUpLsA8xViRGefY5UVpl53Xcppc9KGBFw1UrmsYx7W+P42r2oM88pa+jr39k3VwUnufcil7/wZKEeXkbK/KfFZXHeFjReNGKpim1T6lp9a+JqevTT2Nqq+Z+XNruARK0otSYpR1mzUFY1yDT3latVSBnB9JSq7IO+SwxdQ2SFq85fX1qQE428b1b2YY2B2Fdg6T1a5naKpCTfXzaklz1cw7C+pMTclOzjnMVyMlWPndJrvp8spq6BJnbpdnGusl6spunliVtOPlkNXUNklaAtLNUgZxs6KkzbIbuZEljXYMMfdMNdZP1ZE+f91WgyyerqWuQcVeEusl6sq3P+yrQ5pPV1DVI2taHvm6ynlgRdxtaUdpQmjarn75rhi797/Hl+65LzIpIQSsihbYiTxGxIlLQikihrchTRKyI+zatCBRPrMhRhKyIFLQiUmgr8hQRKyIFrYgU2oo8RcSKSEErIoW2Ik8RsSJS0IpIoa3IU0SsiBS0IlJoK/IUESsyvS2siBTaijzF21lRqX8v9eNJPs5b+0/F1j49pNYS7EOMFYlRnljRNC3NkLbm/mUPCljReNWKjpN/Q9oIlpOTf6ibMM6Umqnly5sCRw5ZfnWi02He5EOixx9Pn/5hQlN1HMe8DiwPj08jCvMecZz9g6L0Rf+KOI5BYFkiII5zCUHGcQwCyxIBcZxLCDKOYxBYlgiI41xCkHEcg8CyREAc5xKCjOMYBJYlAuI4lxBkHMcgsCwREMe5hKDjOHZ1Yl1CMI5ziULHcSwF65oCcZxLFDqOYylY1xSI41yikHGcYev3ReEzxOtpepRLp+mHtBmmmRGN44ztuC8FfmCUSwOP7d7FhOM4YzfvC0A28FEuDtwN+9c/GscZ+21/22cDH+XiwP20f8mjcZwx7fbpzZ4NfJSLAw+pg1nDcZwxWXd6g2cDH+XiwOPWjGs4jjOmni39Nxv4KBcHnlNntITjOOOy7G/jbOCjXBx4GZp5qVzTMHB6N05zPrmOcnHgdWqWJRzHmdK7cZ6zyYVyceBtadb5jeM4tu07b2dtHKfUMPuHVLbYNsBzPJcc43ocZ0pr0edHPpOJ/iviOLaFPU7NmUvlATxeEA/sneqEi8p8E6coj/EQi7k+juOmGOp637ZxnKheIHZjQVjXjmPjOFHJQOzGgrCuQWwcJ6oaiN1YENafWJ+J40SFA7EbC8K6BrFxnKh2IHbjNBh1DWLjOFH5QOzGgrCuQWwcJ6ogiN1YENY1iI3jRC0EsRsLwroGsXGcqIggduMWedT1NypsHCfqItxtjIwcB9uf2Ig72B4SE1BYMzkonqiJowhZCimMpoBCe4qniCgLKYyzgEJLi6eI+AspjMCAQhuMp4jIDCmMzYBC64yniJgNKYzagEK7jaeIaA4pjOeAQouOp4g4DymM9IBCW4+niAiQ6W1pQAjOaQXyFG9nQ6X+vdSP2zhOqeXPFKrSElyCh0YkRqmL4wSsKBLHMdeLU3PmenkAjxfFA3unVuSiMt/EispjPKxoqY/j2DnAum4ibBwn/qHLa+zGfeqCugaxcZyoFSF2Y2cJ6xrExnGiVoTYjQVhXX8KZOM4UStC7MaCsK5BbBwnakWI3VgQ1jWIjeNErQixGwvCugaxcZyoFSF2Y0FY1yA2jhO1IsRuLAjrGsTGcaJWhNiNBWFdg9g4TtSKuNvQinCw/YkVuYPtISsChbEiUDyxIkcRsiJS0IpIoa3IU0SsiBS0IlJoK/IUESsiBa2IFNqKPEXEikhBKyKFtiJPEbEiUtCKSKGtyFNErIgUtCJSaCvyFBErIgWtiBTaijxFxIpMbwsrYnBOW5GneDsrKvXvpX7cxnFKLX8mUpWW4BI8tCIxSl0cJ2BFkTiOPehznJoz18sDeLwoHtg7tSIXlfkmVlQe42FFa30cx56/Yl2ffrJxnKgVIXZjQVjXIDaOEz6QdsRuLAjrGsTGcaJWhNiNBWFdg9g4TtSKELuxIKw/OSFn4jhRK0Lsxr6BWZcgLo4TtSLEbtyRQdQ1iI3jRK0IsRsLwroGsXGcqBUhdmNBWNcgNo4TtSLEbiwI6xrExnGiVsTdhlaEg+1PrMgdbA9ZESiMFYHiiRU5ipAVkYJWRAptRZ4iYkWkoBWRQluRp4hYESloRaTQVuQpIlZECloRKbQVeYqIFZGCVkQKbUWeImJFpKAVkUJbkaeIWBEpaEWk0FbkKSJWZHpbWBGDc9qKPMXbWVGpfy/14zaOU2r5/UNqLcEleGhFYpS6OE7AigJxnL7dm4b85B/qJo6TNsm0QHyu48ghyydxHDzdt4jj4OkfJrRVx3HM68DyI2RRmveI43TJhtML8BVxHIPAskRAHOcSgozjGASWJQLiOJcQZBzHILAsERDHuYQg4zgGgWWJgDjOJQQZxzEILEsExHEuIcg4jkFgWSIgjnMJQcdx7OrEuoRgHOcShY7jWArWNQXiOJcodBzHUrCuKRDHuUQh4zh9+hoMU5aYQLl0mr5Pm+E0h+M4/b7UTlliAuXiwN3WJBGMxnH6fYF9PaFyDHyUiwOnpmiZwnGcfl9WxywxgXJx4HFo1ikcx+n3xXTMEhMoFweepmYbw3Gcfl9C81svoVwceE5vePlTK2Qcp98XzvzWSygXB17Te1z+oAoZx+n35TK/9RLKxYG39LaWP5tCxnGGtEJ2+a2XUC7G6tqxGeSPo5BxnCH9sc9vvYRyceBu3putt43j2LbvvJ21cZxSw+wfUtli2wDP8VxyjOtxnGHfBZZLMjF8RRzHtrDHqTlzqTyAxwvigb1TnXBRmTdxCvzEs7M4jheLNOWq8zhujqGuN26bx4n6BXI3FoR1LTk2jxO1DORuLAjrGsTmcaKugdyNBWH9ifaZPE7UOJC7sSCsaxCbx4l6B3I3zoNR1yA2jxO1D+RuLAjrGsTmcaIOgtyNBWFdg9g8TlRDkLuxIKxrEJvHiZoIcjdulUddf6fC5nGiMsLtxtjIcbL9iY64k+0hMyGFURNQaDfxFBFNIYXxFFBoUfEUEWchhZEWUGhr8RQRgSGFMRhQaIXxFBGbIYXRGVBon/EUEbUhhXEbUGi58RQRzyGFER1QaNPxFBHpYVtprAf5Pa09Pr8XMSDT3FKBQKEdyFO8nQ6VGvhSQ27zOKWeP3OoSk1wER4qkRilLo8T0KJIHsdcL47NmevlCTxeFE/snWqRy8p8k49aymO8aFFXH8ixk4B13UXYQE78Y5fX4I373AV1DWIDOVEtQvDGThPWNYgN5ES1CMEbC8K6/hzIBnKiWoTgjQVhXYPYQE5UixC8sSCsaxAbyIlqEYI3FoR1DWIDOVEtQvDGgrCuQWwgJ6pFCN5YENY1iA3kRLUIwRsLwroGsYGcqBZxu6EW4Wj7Ey1yR9tDWkQKahEptBZ5iogWkYJaRAqtRZ4iokWkoBaRQmuRp4hoESmoRaTQWuQpIlpECmoRKbQWeYqIFpGCWkQKrUWeIqJFpKAWkUJrkaeIaBHbSmoRA3xai3yAL6JFprmFFpFCa5GneDstKjXwpYbcBnJKPX9mUpWa4DI81CIxSl0gJ6BFkUCOPepznJsz18sjeLwoHtk71SIXlvkmnxaVx3jRor4+kWOPYLGuD0DZRE5Ui5C8sSCsaxCbyAmfSTuSNxaEdQ1iEzlRLULyxoKwrkFsIieqRUjeWBDWnxySM4mcqBYheWPfwaxLEJfIiWoRkjfu1CDqGsQmcqJahOSNBWFdg9hETlSLkLyxIKxrEJvIiWoRkjcWhHUNYhM5US3idkMtwtn2J1rkzraHtIgU1CJSaC3yFBEtIgW1iBRaizxFRItIQS0ihdYiTxHRIlJQi0ihtchTRLSIFNQiUmgt8hQRLSIFtYgUWos8RUSLSEEtIoXWIk8R0SK2ldQiJvi0FvkEX0SLTHMLLSKF1iJP8XZaVGrgSw25TeSUen7/kFpNcCEeapEYpS6RE9CiSCInrWYnZ/+OssnjdOPeD3+uH09iymd5nNdnuyhDmAS3/DOihxedPfuLBg31cRy8CEzjNEM5kIcwzpa+Tl8VxcHwTOKo4RHEuTC8juFgeKZw1PAI4VwYXkdwMDwTOGp4BHAuDK/jNxie6Rs1PMI3F4bX0RsMz+SNGh7BmwvD69gNhmfqRg2P0M2F4Z9Ebrj8MHGjABi4uUDwJG5DAqZtJAHCNhcInkRtSMCkjSRA0OYCgY7Z7N/gy4MQr9VyDiJ1JvFb3vTNrohu1KNaPJm/Jt0OB2ymseleT5wc9+d4rZZGTQvjIG9/KNM1c2oE2iz/cFRLo6b1cJS3O5TRmmVthjYLPxzV0qhpGZzk7Q1lriap85DfQumolkZd9403HKrp2vRS5TdQQrk07rY2s/xpEzJT03V7G5hNKJRL43bdvteGMzXd3qjk909CuThwv++y4UxNt7co+f2TUC4OPKT9Vf4YiUimhr3beUfqIjXnHa9/RFWLbP49nkmOcD1P06XV5/Mjn6nA+DV5GvahOCeHC0XZXA6e5VwGfNKl1gj0xyOPPxaHeNGCMZClMXMLURq5M9skTUwOmJchBGM00k5siiamCMzKEIIRGglhEzQxUWBOhhCMz2hPM+mZmC4wI0MIRmckhE3OxKSB+RgjrIjNSAibmompA7MxhGBkRkLYxExMIJiLIQTjMhLCpmViDsFMDCEYlZEQNikT0wjmYczqjZiM/DaCTcnETMKcvIdK8OC9coksg1CvFeYmLfAK3qNFiUV205x6x+DtHCgZuAWGtAyHEBEOIBjjOBC0cjiEiH0AwejHgaD9wyFEVAQIxkUOBC0jDiHiJWyHjJgcDE/MxEFEJIUQxlIAoTXFQYSMhRRGWUChncVTRPSFFMZfQKEFxlO8ncsUOvBSS+3yMOc9e+Y/VV2+fYDxGTFGXRgm4DShMAyulofccLUom0vCs5w7jY+pvIHT+E85ikO8OM0UCMLwy88cjGwTbAwm+oHHEXYxn3ggAyMhbAQm5jQMunBqMP8iIWz8JeY0DLkQgtkX+emLjb7EnIYBF0Iw9yIhbOwl5jQMtxCCmRcJYSMvMadhsIUQzLtICBt3iTkNQy2EYNZFQtioS8xpGGghBHMuEsLGXGJOwzALIZhxkRA24hJzGnNs/nAac2peOU0WIKh3GnOLlcNpzB1WlNNkt7ypdxrejAFOwxtYSKdxCBGnAQKdBgjaaRxCxGmAQKcBgnYahxBxGiDQaYCgncYhRJyG7RCdBgxPnMZBRJyGEHQaQmincRAhpyEFnYYU2mk8RcRpSEGnIYV2Gk/xdk5T6MBLLbULs5z37JkFVXX59gHGacQYdUmWgNOEkiw8MYMTarhalM0l4VnOncZnTL7B5zTFIV6cZg6kWHiCiSEWeYbIZlhiTsOkCiEYYJEQNr8SPMqFlAohGF6REDa7EnMaJlQIweCKhLC5lZjTMJ1CCIZW9Lkyk1mJOQ2TKXynMrCiIFxeJeY0TKWYA3YIq0gIm1WJOQ0TKYRgUEVC2JxKzGmYRiEEQyoSwmZUYk7DJAohGFCREDafEnMac+b9cBpz5F05TXb6v95pzA1SDqcx90dRTpPdsKbeaXgrBTgNbz8hncYhRJwGCHQaIGincQgRpwECnQYI2mkcQsRpgECnAYJ2GocQcRq2Q3QaMDxxGgcRcRpC0GkIoZ3GQYSchhR0GlJop/EUEachBZ2GFNppPMXbOU2hAy+11C6Jct6z+0fUdfn2AcZpxBh1MZSA05j3+g+3/wdAjCxlCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKNTkxMwplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDc5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA2MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCA2OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcGVxpAHGiEmcKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAxNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDMwIDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAzMiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDQgL2NvbW1hIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcyIC9IIDc2IC9MIDk3IC9hIDEwMCAvZCAvZSAxMTQgL3IgMTIxIC95IF0KPj4KL1dpZHRocyAyOSAwIFIgPj4KZW5kb2JqCjMwIDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjI5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjMyIDAgb2JqCjw8IC9IIDMzIDAgUiAvTCAzNCAwIFIgL2EgMzUgMCBSIC9jb21tYSAzNiAwIFIgL2QgMzcgMCBSIC9lIDM4IDAgUgovZWlnaHQgMzkgMCBSIC9maXZlIDQwIDAgUiAvZm91ciA0MSAwIFIgL25pbmUgNDIgMCBSIC9vbmUgNDMgMCBSIC9yIDQ0IDAgUgovc2V2ZW4gNDUgMCBSIC9zaXggNDYgMCBSIC9zcGFjZSA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAveSA1MCAwIFIKL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAzMSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTIgMTQgMCBSIC9JMyAxNSAwIFIgL0k0IDE2IDAgUiAvSTUgMTcgMCBSIC9JNiAxOCAwIFIKL0k3IDE5IDAgUiAvSTggMjAgMCBSIC9JOSAyMSAwIFIgL0kxMCAyMiAwIFIgL0kxMSAyMyAwIFIgL0kxMiAyNCAwIFIKL0kxMyAyNSAwIFIgL0kxNCAyNiAwIFIgL0kxNSAyNyAwIFIgL0kxNiAyOCAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY4IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDIxICj95yT45iHk4xiv3C6t3DCd2TpXxmUii40nfI5FNoFGMH1HJ3dHJXVIInNHEmVHEWNGC15FCFtFBVhEA1dEAlVEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA1MiAwIFIgPj4Kc3RyZWFtCnic7dxJboUwFEVB0vf5afe/1cyvI1nk3wiQ6gwt81zMkAcs39llNuyY9pYNOz6j+cwFFBQUFBQUFBQUdFfQ/2jJ/jCir/rtFNByoO1A24G2A20H2g60Hej2Da8Gemag7UDbgbYDbQfaDrQdaLsR+pEVrsbfs4YcFBQUFBQUFBQUdEvofTZ95DUbdtxlpwwUFBQUFBQUFBT0YNBh5SpbP7TQUwZ6ZqDtQNuBtgNtB9oOtN2BocON83O2/pTrrCAHBQUFBQUFBQUF3RQ6rDxk64e+ZF/ZdMRtBgoKCgoKCgoKCrov6LT8ldz4L7mLbP0hQ6CgoKCgoKCgoKD7gj5muWH+uX6TgYKCgoKCgoKCgh4c+gMpz+K7CmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKMjc4CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OSAvSGVpZ2h0IDE2OQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyMCAo/eck+uYi9uYf5OMYcM5WZ8xcXEvCbEC9cj1KiT5IiD9HiEU0f0gZa0cSZUcPYkYOYUUGWkUFWEQDV0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDUzIDAgUiA+PgpzdHJlYW0KeJzt2stKA1EQRdFW4/sRE/3/b9XxuUghHEgH1h7fKlZPi96+d9q2dGnRX5H2I+1H2o+0H2k/0n6k/Uj7kfYj7Ufaj7QfaT/SfqT9SPut0o9smbnLLuD+jbQfaT/SfqT9SPuR9iPtR9pv+8qO2UM2Lv3MZsdTRkpKSkpKSkpKSrpv6bxkJwd30n6k/Uj7kfYj7Ufaj7Qfab/tkBWWvmSFnaSkpKSkpIfCUlJS0v1L37LlyXN2ynJiuXMvOx8zUlJSUlJSUlJS0iuTzk9usnlkbP6WJdIhUlJSUlLSMdIhUtK29DV7z3LinC07lz+p7zNSUlJSUlJSUlLSa5feZvPI2HiAXyMdIiUlJSUlHSMdIiX9l/QHnniVFQplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjI4MAplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjkKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMzQgKP3nJKfbM5XXP0/DaVwpr38emYoiio0khY0rc44zYI00X403WYw7UYo/RYdARIdDOoNEOYJEN4FHJXVIInNIIXJIIHFIGmxHFmlHFGZHEmVHEWNGDF9GCVxcRQhbRQZaRQVYRANXRAJVRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNTQgMCBSID4+CnN0cmVhbQp4nO3bOVIDMRRFUTPPmMmAmWH/iyR/L5AjWlWcG39Jx5m6Sl79/EXf2XBgVYGCgoKCgoKCgoIuCX3J6pSL6DmrFdusJq6j06xWgIKCgoKCgoKCgi4KXWc18hQNr+s7QA+i8Z6goKCgoKCgoKCgi0IPs8/sIaob/lt2n9Wej9FHBgoKCgoKCgoKCjoX9DyrkRx4zWrFWVYT+dVQA6CgoKCgoKCgoKBzQY+yGqnreXaTjX/KZQQKCgoKCgoKCvpfocdZvZrIdxdX2Vd2m9Wxm6i2AAUFBQUFBQUFBZ0Lmks2NbIX1Q2/VrxnNZFbgIKCgoKCgoKCgk4OPclqTT7VyBv/tlbcZXVsPtXY4Y0zKCgoKCgoKCgo6JLQ/axG0lUDVf05sCaGnwCgoKCgoKCgoKCgU0F/AYizYHcKZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iagozMTIKZW5kb2JqCjE2IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDE5ICj95yTa4hjU4Rqt3DAfk4shjI1cKXmOP0eIRyt6SCFyRxhqRxZpRxRmRxJlRgteRglcXEUFWEQDV0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDU1IDAgUiA+PgpzdHJlYW0KeJzt3Mlqw0AURUFnnkf//79m/zrgODk4wtRZX6FaNqLRbr+NdrN18Q+q7yLtI+0j7SPtI+0j7SPtOyvp8+x1djdbFk+jh9nN7HP2MXubkZKSkpKSkpKSkm5Kupyt72enOPLvr2bLgvTYSPtI+0j7SPtI+0j7SPt+I91Iy+d00j9H2kfaR9pH2kfaR9pH2kfaR9pH2kfaR9pH2kfaR9pH2kfaR9pH2kfaR9pH2kfad1bSi9lJYMvd6yVSUlJSUlJSUlLSbUsfZyeRXs6WBemxkfaR9pH2kfaR9pH2kfb9QPo+u50tz1zPDjpeZsti+XcHKSkpKSkpKSkp6balB9/yT53VjZmNRNpH2kfaR9pH2kfaR9q3QL8ADm8KfQplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjI4MwplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTEgKP3nJLLdLJDWQ1HEaDW3eCGmhSClhR6ciR6aiSCQjCOJjSp1jit0jitzjjBnjTRejTdYjDpSizxOij1MiUJAhUU2gUU0f0YxfkYtfEcqeUdcKHhHJ3dII3RIInNIIXJIIHFIHnBIHW9IHG5IGWtHGGpHFmlHFWdHFGZHEmVHEWNHD2JGDmFGDF9GC15GCVxcRQhbRQZaRQVYRANXRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNTYgMCBSID4+CnN0cmVhbQp4nO3cyU4CQRRG4XZAQQYVUJkRFEWlHd//3dyff9HLSsg566byNatL5Ybqho3ZDq3YiN02tkbv7I9VQoUKFSpUqFChQoWWhD6wb1ajHzZjC3bJ6PplV0yoUKFChQoVKlSo0KLQe7ZnH+iTzdmEtdkBxZl9JlSoUKFChQoVKvQ4oVv2xd4QB+n6lfGOehevwgfizCoSKlSoUKFChQoVKrQkdMkaofHAIwt5l/ETnPgP50yoUKFChQoVKlSo0KLQGL7DwbWKuMaOgf6JDdkzign/lAkVKlSoUKFChQoVWhQaC8oB5Rmx4xw/EjbsgnFPJc7sMKFChQoVKlSoUKFCi0LvGM+I4k3iXaesxbjwHWcOmFChQoUKFSpUqNDjhMaOc8ywjYPzC4sr6GvGW+z4h4wTJlSoUKFChQoVKlRoUWgsKMdnOOHHA3FEyHuMS9D8MuozJlSoUKFChQoVKlRoSeg/6YwX4QplbmRzdHJlYW0KZW5kb2JqCjU2IDAgb2JqCjM1NgplbmRvYmoKMTggMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTYgKP3nJDm5djC0eiZ/jh6fiB+WiyGOjCd9jlwoeo4rc44scI4vao0xZY0yYo00Xo02Wow3WIw4V4w5VIs6Uos7UYo+SIhAQ4dBQoZCQIVCPYRDO4NDOoNEOYJEN4FFNYBFNH9FMn9GMX5GL3xGLXxHLHtHKnlHJ3dHJXVII3RIInNIIXJIIHFIHnBIHW9IHG5IGmxIGWtHFWdHFGZHD2JFBlpFBVhEA1dEAlVEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA1NyAwIFIgPj4Kc3RyZWFtCnic7dzHUgJBGEXhMStmBsEAKihDMGJ+/ydzf+4Cdl1FnbPugW92PV1/dbXFnlgfPbAD1mGXbILe2R+rhAoVKlSoUKFChQotCT1kP6xBCzZkj+ye3aBPtsmEChUqVKhQoUKFCi0Kje35FxsjwptrFt8AJ+wWTdkREypUqFChQoUKFbqe0Bb7ZleI8BXkc1ajWLDPhAoVKlSoUKFChQotCo2xijhxHqEYq+CC0TOjq26jGdthQoUKFSpUqFChQoUWhZ6xX7aU8criby8Y4Zx5nmwzoUKFChUqVKhQoUKLQk9Z7PB58B0zzgMW0GPWRfHyu0yoUKFChQoVKlSo0KJQ7rXrGMbmuMcbu2MxWt1jvKnjhW0woUKFChUqVKhQoesJ5SP9OHHmrW9xsUTcCxfDHLG15vUWH6yKhAoVKlSoUKFChQotCV1+4swfjd04Fwxj8OKccbCap9rNHhMqVKhQoUKFChUqtCT0H2HIvZQKZW5kc3RyZWFtCmVuZG9iago1NyAwIG9iagozNjQKZW5kb2JqCjE5IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY4IC9IZWlnaHQgMTY4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDE1ICj95yTz5R7s5Brf4xg3WIxBQYZEN4FHLHtIIXJIGmxHD2JFBlpFBVhEA1dEAlVEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA1OCAwIFIgPj4Kc3RyZWFtCnic7dxJTgQxEADBZt8G+P9vuZeFmiWlaYbIo1WW4uhDydv97Gl2Gj3MbmePs+fZ3ehl9j7bQEFBQUFBQUFBQc8JXU6W3kb7N/Z7HS0D1zNQUFBQUFBQUFDQY0GnK4F9u6sZ6C8DrQOtA60DrQOtA627JOgx2pbOLfok0DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtC6L0DnJxqnZTt7d1v7BxOzmxkoKCgoKCgoKOg/gR6jS3rhHyPQOtA60DrQOtA60DrQOtA60DrQOtA60DrQOtA60Lq/C/0A0oyTQwplbmRzdHJlYW0KZW5kb2JqCjU4IDAgb2JqCjI2MQplbmRvYmoKMjAgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDggKP3nJOfkGb/fJJ3ZOoHTTB6aiSCRjCKKjS1ujjFkjTRfjTVcXIw8TopBQYZDPIRDO4NDOoNEOYJFNoFFNYBGMX5GL3xHLHtHXCh4Ryd3SCN0SCJzSCFySCBxSB5wSB1vSBxuSBpsSBlrRxhqRxZpRxVnRxRmRxJlRxFjRw9iRg5hRgxfRgteRglcXEUIW0UGWkUFWEQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDU5IDAgUiA+PgpzdHJlYW0KeJzt3MtSwkAYBeEoqIACIqCickfuUd//6dz3WbCcKqp7nWS+sPqZGqje2ILNUY89sRk7sAe0Yn+sEipUqFChQoUKFSq0JDQe+sW4yDd7ZkcW7zZAJ3bPhAoVKlSoUKFChQotCo1LYtiu0Znt2S97ZXwTrlHfMKFChQoVKlSoUKHXCX1nMUlv0ScbsxitP1gLbViHCRUqVKhQoUKFChVaFMpZ+7hkHL7jO0HcERP+C5ugUDSZUKFChQoVKlSoUKFFobHRzYF+y1XjjlgloDHhrxE/jLqKhAoVKlSoUKFChQotCY1VLp4piWJfO6Ajxr3zeOYtEypUqFChQoUKFSq0KDT2tWMa548DwxXHUmLzvH+p+Fpxx4QKFSpUqFChQoVeJ5SHJibxL287FBcMGV/t0GWPKF6+zYQKFSpUqFChQoUKLQqNHWeeoljzZEbM73HHD4sd5ykKRYMJFSpUqFChQoUKFVoS+g+rh021CmVuZHN0cmVhbQplbmRvYmoKNTkgMCBvYmoKMzYzCmVuZG9iagoyMSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA0NyAo/eck6eQZ1OEax+Afwt8ir9wuoto3d9BSV8ZlMWSNO1CKPUyJPUuJPkiIQESHQzyEQzuDRTWARTR/RTJ/RjF+Ri98Ryx7Ryp5Ryd3RyZ2RyV1SCJzSCFySCBxSB5wSB1vSBxuSBpsSBlrRxhqRxZpRxVnRxRmRxJlRxFjRg5hRgxfRgteRglcXEUIW0UGWkUFWCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDYwIDAgUiA+PgpzdHJlYW0KeJzt3MlSwkAURuEIyuSAAuKIIINMgu//du7Pv+hlV1HnrEPXl91N6oZmwF7YFD0Ve2RLNkFxQZ81QoUKFSpUqFChQoXWhN6zX3ZAe7Zg7+zEduiPNZFQoUKFChUqVKhQoTWhnLUnG8bhe8W+2Rf7YdtSLSZUqFChQoUKFSr0MqF3LByM8GW4RuzMOGofWZcJFSpUqFChQoUKFVoVOmYxja9RGTpncbN8iogJ/5oJFSpUqFChQoUKFVoV+sw4fC9mKBjxapy/mHEzYxdy1mFChQoVKlSoUKFChVaFDlmsMHP4jkeAz2J8SFjzCO5RH9pMqFChQoUKFSpUqNCq0AcW6x2Ex7ger8bj48A4kzcfXw9eMaFChQoVKlSoUKGXCb1lcShnWq5ZbN7YK4t74xEBvWFChQoVKlSoUKFChVaFxr9qxLxefqHMPlisf7BY/+gxoUKFChUqVKhQoUJrQv8B0k+SsAplbmRzdHJlYW0KZW5kb2JqCjYwIDAgb2JqCjM1NQplbmRvYmoKMjIgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjkgL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTQgKP3nJMfgH7/fJLreJ63cMKrbMprYPI3WRIjVR4PTS37STnLPVWvNWWLKX2DJYFHEaE/DaU3Ca0nBbUfAbkW/b0K+cTm5dji5dja4dzW3eDO2eTK1ejC0ei+zey6yfCyxfSuxfSqwflwpr39cKK5/J62AJqyBJauBJKqCI6mCIqeEIaeEIKWFIKSFH6OGH6KGH6GHHqCHHp+IHp6IHp2IHpmKHpeKH5aLKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY5ID4+IC9MZW5ndGggNjEgMCBSID4+CnN0cmVhbQp4nO3b21aBURhG4b+kEEpJ9u1ERSqp+7805/O9gTWGOY8Nnu9srTU+1QdrsjW7Z1v0wkbsn/VYg1VKlSpVqlSpUqVKlZYkXbIpG7Id+0Yb1mYTFsPVmFKlSpUqVapUqVKlRUnH7I09sS/GYT/ZJYvp41fPmFKlSpUqVapUqdKjkMaZdsFiFsKWPEnHBx5Yn8X5vc6UKlWqVKlSpUqVKi1KGqfvXzZjXObYPqPYB4k36WsWw10wpUqVKlWqVKlSpUqLksbS8w97ZLFaHTJ2y25YbHecMKVKlSpVqlSpUqVKi5LGmT+WSOLpO/akVyhGiX8xDhi/YnXOlCpVqlSpUqVKlSotShprJ7HAHSsi8XrOPZQYtsviphEXi1OmVKlSpUqVKlWq9Cik8Ve/WIuOTerY//hDMUqHvbI5qyKlSpUqVapUqVKlSkuS3rE9i+N4PDnzlvDO4sx/xeLq0WJKlSpVqlSpUqVKlZYkPQBR+zNjCmVuZHN0cmVhbQplbmRvYmoKNjEgMCBvYmoKMzY3CmVuZG9iagoyMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA1OSAo/eck+uYi+OYh8eUc5+QZ2uIYz+EczeAdx+Afxd8hv98kvd4mut4nt91cKbLdLK/cLq3cMKrbMqfbM6XaNaLaN5/ZOJfYPpXXP4vVRobUSYPTS4HTTH7STnzST3nRUXTQVHLPVXDOVm3OWGvNWWnMW2fMXFxky11iyl9gyWBeyWFbyGJZx2RVxmZRxGhPw2lNwmtJwW1HwG5Fv29EvnBCvnFAvXI+vHM7unU5uXYwtHovs3susnwpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA2MiAwIFIgPj4Kc3RyZWFtCnic7dzHUgJBGEXhMWBCMSCIgSBmCQYEDO//Xu7PfYCmqHPWM8M3s+rq+umqz3psgHbZDbtmC9ZBV+yRVUKFChUqVKhQoUKFloS+slPWRn/siQ3ZDuMd8WpNJlSoUKFChQoVKlRoUeiMHTLe8sve2QvbYBN0xvh12kKFChUqVKhQoULXE8pbJnEJe2NfLLaLbxlX1i22yYQKFSpUqFChQoUKLQr9YJeMz4gd53hE7GJvs2d0zmpMqFChQoUKFSpUqNCi0E8W0As0Z0s2YkfsHjXYFhMqVKhQoUKFChUqtCh0ymKxzX7YmD2wivECzq0075hQoUKFChUqVKhQoasFPWGcKQlojKUEdI/x1WJwJY7uECpUqFChQoUKFbqe0Ngd7rJj9M1i6JkTzMM642/ECRk8Bq4jVKhQoUKFChUqVGhRaPyzLw5c44o/oDG7ES8f63WOahywfSZUqFChQoUKFSpUaEnoP2hDVsEKZW5kc3RyZWFtCmVuZG9iago2MiAwIG9iagozNjEKZW5kb2JqCjI0IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQyICj95yTk4xjU4RrK4B6n2zOV1z+Q1kON1kSL1UaI1UeG1EmD00uB00x+0k580k950VF00FRyz1VwzlZtzlhrzVlpzFtnzFxcYMlgXslhW8hiWcdkV8ZlVcZmU8VnUcRoT8NpTcJrS8JsScFtR8BuRL5wQr5xPrxzPbt0O7p1Nrh3M7Z5KV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY5ID4+IC9MZW5ndGggNjMgMCBSID4+CnN0cmVhbQp4nO3cyVICMQBFUZznCXAeUFBR/v8D3b+3cJsqzl13p0+zSlJpJi/ZdXafXWTzqO7IC+av2WW2ziakpKSkpKSkpKSkI0lXWd3zkNXL5aA1ZsGm2U22l5GSkpKSkpKSkpIOJf3NjrJaBLxnm+g7O8jqZQ+zuoWUlJSUlJSUlHQrpJ9Z7TjXqDW1TulH9pPVxLmeupORkpKSkpKSkpKSDiXN/eT1WVZHM96yHKLe/jSbZXVF0UlJSUlJSUlJSUnHlh5nNT+vRUDO+b+y2huvt6/N8tuMlJSUlJSUlJSUdChpnWmuOX99P7jIcopfY9YE/iqrn6Pn/KSkpKSkpKSkpKQjSeuISF1yl/17orvWEU9ZLRsaVpGSkpKSkpKSkm6DtB57ktVjlll+tFhjPmb19rUFvZuRkpKSkpKSkpKSDiWt/9k4z2r/+DnLIWpPej+r/5ar0x21FiElJSUlJSUlJSUdSfoHehEeOwplbmRzdHJlYW0KZW5kb2JqCjYzIDAgb2JqCjM1OQplbmRvYmoKMjUgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjkKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTEgKP3nJL/fJL3eJovVRnnRUXfQUmTLXWDJYCaBjiaAjiZ/jiGnhCGOjCGNjCGMjSKLjSKKjSOJjSSGjSWDjR+ihh+hhx6ghx6fiB6diB6ciR6biR+Uix+SjCCQjCd+jid9jlwoe45cKHqOK3SOK3OOLHKOLHGOLHCOLW+OLW6OLm2OLmuONF6NNV2MNVxcjDZbjDZajDdYjDhXjDtQikQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDY0IDAgUiA+PgpzdHJlYW0KeJzt3MlSFFEQQNF2QBwQURQEBJxQnBD1///N/c1F964rgnN/oM6rVdaLjFqdtr/tfXq3thftWTtLe+1fW4GCgoKCgoKCgoJuE3rbxmNfpqftW7to99tVet1AQUFBQUFBQUFBlwX91d625+lx+9LGUXbap/SmgYKCgoKCgoKCgi4LetOOW2+tn7TrNib8h63QowYKCgoKCgoKCgq6LOjPNib8/bR+wh/QtRM+KCgoKCgoKCgo6MKhP9q4pe6EP6BdELka0EftYwIFBQUFBQUFBb2r0HHjfNI6OI9FjK9tQB+0z2m8HVBQUFBQUFBQUNBlQX+3DvR7r9JY1RjQcZR7rd8EG0z4oKCgoKCgoKCgoNuE/mkH7TCN+f17+9BWrf/h2OCvGqCgoKCgoKCgoKDbhI6dkjFsn6f1OyWXbbd1p2SDq3FQUFBQUFBQUFDQLUL/Axoz0W8KZW5kc3RyZWFtCmVuZG9iago2NCAwIG9iagozNDEKZW5kb2JqCjI2IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDc2ICj95yT45iH25h/z5R7c4hjS4RvC3yK33Vwpr9wumtg8ktdBg9NLftJOcs9Vbc5YZMtdW8hiWcdkV8ZlUcRoTcJrS8JsScFtRL5wNrh3Nbd4M7Z5MLR6LrJ8LLF9K7F9J62AJqyBJKqCI6mCIqeEIaeEIKSFHp+IHp6IHpuJHpmKHpeKH5SLH5OLH5KMIJCMIY2MIYyNIoqNI4mNI4iNI4eNJIaNJIWNJISNJYONJoGOXCh6jixwji5sjjBnjTFmjTFkjTRfjTlUizpTiztRij1LiT1KiUBDh0cse0cldUcSZUUIW0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDY1IDAgUiA+PgpzdHJlYW0KeJzt3EdSAzEQQNExOWOyyWByNBmMDSZH3/887H9vZtlV/H8BPe16VNIU7+yHLbNetofW2TQr2AbrskKpUqVKlSpVqlSp0kzSF/bMAmyO3aKw7AEbZeNMqVKlSpUqVapUqdLc0kd2zAbZCrtCW+yELbBJ9suUKlWqVKlSpUqVKk0lfWL3rI/V2A3aZKesyiZYnPmVKlWqVKlSpUqVKs0kfWDnbIgtsgu0zY7YPAszv1KlSpUqVapUqVKluaVtVmfDLFzY5un5DmuwsNkp9s2UKlWqVKlSpUqV/gtph92xAbbELlHYbJikZ1iJSVqpUqVKlSpVqlSp0kzSV/bGKiwswxeH4aPgkI2wEi8OlSpVqlSpUqVKlSrNJP1gX6yHhR9vNFGQ7rN+VuKetFKlSpUqVapUqVKlmaQttsrGWDgcv0a77IytsVn2yZQqVapUqVKlSpUqzST9AzPNtC4KZW5kc3RyZWFtCmVuZG9iago2NSAwIG9iagozNDcKZW5kb2JqCjI3IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY4IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQzICj95yQ4V4w5VYs6U4s6Uos7UYo7UIo8Too8TYo9TIk9S4k9Sok+SYk/R4g/RYdBQoZCPoVCPYRDPIRDO4NDOoNFMn9GMX5GMH1GL3xGLXxHXCh4Ryd3RyZ2RyV1SCN0SCJzSCBxSB1vSBxuSBpsRxRmRxFjRw9iRg5hRQhbRQZaRAJVRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNjYgMCBSID4+CnN0cmVhbQp4nO3cyVLVUBRAUQTplB5UpO/b//8/5/sOYr0qfJFae55kJaObUzdZuWtv7TXdtt/tvq20XvShvbfhEFBQUFBQUFBQUNB/Cf3enttlOmhf2247aTup17gEBQUFBQUFBQUFnRd0uz22szRA19sAPW19OhcNFBQUFBQUFBQUdF7QzfbUeo4ButYG6I9W6FUDBQUFBQUFBQUFnRd0q30E9Gcr9C9G46CgoKCgoKCgoKDLhA4r/GE0fp4WgP5qhS7yKgIKCgoKCgoKCvoZoNML50no9B7nYeK8wB5nUFBQUFBQUFBQ0GVCv7XJjwMP2wDda8cNFBQUFBQUFBQU9D+D9pCdl9Z/yx21L22/Td7KTQMFBQUFBQUFBQWdF3SjTa7wh9H4apsejXdPyXUDBQUFBQUFBQUFnRX0Dwcpr6AKZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iagozMTUKZW5kb2JqCjI4IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQ2ICj95yQytXokhY0jiY0jh40emIofloslgo4qd44rc44scY4scI4tb44tbo4ubY4ubI4ua44vao0zYI00X401XYw1XFyMNluMNlqMN1mMN1iMOFeMOFaLOlOLOlKLO1GKO1CKPE6KPUqJPkmJPkiIQEOHQj2ERDmCRjB9RgteRglcXEUIW0UGWkUFWEQCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDY3IDAgUiA+PgpzdHJlYW0KeJzt3MdqQzEURVGn996c3nv5/8/L/JyBIYQgyNpj4bfs0ZXQ8+Q5m2Q72V32FNWC3ewhO8q+sgkpKSkpKSkpKSnpSNL61KVsLTvMLqPTbDs7y+rn+MxISUlJSUlJSUlJh5JeZfPZZrafJew4K8dJVruCt4yUlJSUlJSUlJR0bOlitpUdZCmto/By1HfZy94zUlJSUlJSUlJS0qGkN9lCtpGV9DyaZjXzz17RMz8pKSkpKSkpKSnpSNK8Q3K5ktXMX6fn+dia6H8w879kpKSkpKSkpKSk/0L6G5N0XnouR83Js293fGSkpKSkpKSkpKSkQ0lvs+VsPas3Di+i3ANMZ79xWNJ+45CUlJSUlJSUlJR0JOljNpetZvWY++g6q21D7TTqiL7/BY+UlJSUlJSUlJR0JOmf3EOp0/NaUTP/a0ZKSkpKSkpKSko6kvQbHqWlzwplbmRzdHJlYW0KZW5kb2JqCjY3IDAgb2JqCjMzNwplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNjggMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNy4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNy4xKSAvQ3JlYXRpb25EYXRlIChEOjIwMjMwMzE0MTU1MjI4WikKPj4KZW5kb2JqCnhyZWYKMCA2OQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyNTM4MyAwMDAwMCBuIAowMDAwMDEzMzUyIDAwMDAwIG4gCjAwMDAwMTMzODQgMDAwMDAgbiAKMDAwMDAxMzQ4MyAwMDAwMCBuIAowMDAwMDEzNTA0IDAwMDAwIG4gCjAwMDAwMTM1MjUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ4IDAwMDAwIG4gCjAwMDAwMDYzNTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA2MzM2IDAwMDAwIG4gCjAwMDAwMTM3MjkgMDAwMDAgbiAKMDAwMDAxNDMzOSAwMDAwMCBuIAowMDAwMDE0OTQ5IDAwMDAwIG4gCjAwMDAwMTU2MzQgMDAwMDAgbiAKMDAwMDAxNjI0NSAwMDAwMCBuIAowMDAwMDE3MDI1IDAwMDAwIG4gCjAwMDAwMTc4MjcgMDAwMDAgbiAKMDAwMDAxODQwMiAwMDAwMCBuIAowMDAwMDE5MTgxIDAwMDAwIG4gCjAwMDAwMTk5NDcgMDAwMDAgbiAKMDAwMDAyMDc0NyAwMDAwMCBuIAowMDAwMDIxNTU2IDAwMDAwIG4gCjAwMDAwMjIzMTEgMDAwMDAgbiAKMDAwMDAyMzA3NyAwMDAwMCBuIAowMDAwMDIzOTIzIDAwMDAwIG4gCjAwMDAwMjQ2MzcgMDAwMDAgbiAKMDAwMDAxMjA0OSAwMDAwMCBuIAowMDAwMDExODQyIDAwMDAwIG4gCjAwMDAwMTE0MTAgMDAwMDAgbiAKMDAwMDAxMzEwMiAwMDAwMCBuIAowMDAwMDA2Mzc3IDAwMDAwIG4gCjAwMDAwMDY1MjggMDAwMDAgbiAKMDAwMDAwNjY2MSAwMDAwMCBuIAowMDAwMDA3MDQxIDAwMDAwIG4gCjAwMDAwMDcxODEgMDAwMDAgbiAKMDAwMDAwNzQ4NSAwMDAwMCBuIAowMDAwMDA3ODA3IDAwMDAwIG4gCjAwMDAwMDgyNzUgMDAwMDAgbiAKMDAwMDAwODU5NyAwMDAwMCBuIAowMDAwMDA4NzYzIDAwMDAwIG4gCjAwMDAwMDkxNTggMDAwMDAgbiAKMDAwMDAwOTMxMyAwMDAwMCBuIAowMDAwMDA5NTQ2IDAwMDAwIG4gCjAwMDAwMDk2ODggMDAwMDAgbiAKMDAwMDAxMDA4MSAwMDAwMCBuIAowMDAwMDEwMTcxIDAwMDAwIG4gCjAwMDAwMTA1ODQgMDAwMDAgbiAKMDAwMDAxMDkwOCAwMDAwMCBuIAowMDAwMDExMTIyIDAwMDAwIG4gCjAwMDAwMTQzMTkgMDAwMDAgbiAKMDAwMDAxNDkyOSAwMDAwMCBuIAowMDAwMDE1NjE0IDAwMDAwIG4gCjAwMDAwMTYyMjUgMDAwMDAgbiAKMDAwMDAxNzAwNSAwMDAwMCBuIAowMDAwMDE3ODA3IDAwMDAwIG4gCjAwMDAwMTgzODIgMDAwMDAgbiAKMDAwMDAxOTE2MSAwMDAwMCBuIAowMDAwMDE5OTI3IDAwMDAwIG4gCjAwMDAwMjA3MjcgMDAwMDAgbiAKMDAwMDAyMTUzNiAwMDAwMCBuIAowMDAwMDIyMjkxIDAwMDAwIG4gCjAwMDAwMjMwNTcgMDAwMDAgbiAKMDAwMDAyMzkwMyAwMDAwMCBuIAowMDAwMDI0NjE3IDAwMDAwIG4gCjAwMDAwMjUzNjMgMDAwMDAgbiAKMDAwMDAyNTQ0MyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDY5IC9Sb290IDEgMCBSIC9JbmZvIDY4IDAgUiA+PgpzdGFydHhyZWYKMjU1OTQKJSVFT0YK", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"672.757283pt\" height=\"711.47625pt\" viewBox=\"0 0 672.757283 711.47625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:52:27.213033</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 711.47625 \n", "L 672.757283 711.47625 \n", "L 672.757283 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 141.5225 143.278125 \n", "L 141.5225 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p9c1d6958be)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADMklEQVR4nO3cMWueVRyH4TzJK4WCQ3Dr0EVTdBBdHNSMEVcpGRSXLk5+BHcH9+KoWz+DguCgk4siqFTsUKFOEgWXDklcBRGH/4HclOva8+PwcudMh2c72U4v94b2X3phOrF38d2P4429bZtvXM5+jnd+ejQ+wr3nb4w3niT7V30A+D8iJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMnbrRhZ8mB5hW3B/9zl+ejP3336t/ER7u159PxPblLyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSt+TR8/bKi+ONy2++nx/kYvZgeYW3jm/PR7aH843hF6tXeebrw/GGm5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6Tk7bbd/N3z/tlf442rf668xnuffzHe+PjouQUnafj99bPxhpuUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5G0n2+n4k8Dv/3x/fJC7R7fGG/Qc3Hp2vOEmJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMnb/frBa+ORu0cLTrLAweHheOP8bPbR1wcfvTo+w9GHP4w3zv/4c7yxwvn9X8YbblLyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSt73x1Nvjj+h+8uDL8UHu3DwebxRs166NNy4fP15wkieHm5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkbSfb6fjRM/yXzx59O95wk5InUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZS83VUfgH9b8VD4zRsvjzdWWHEONyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJW/Lo+dOHX4037tw8XnCSq7d//fp4Y8mD5f2D+cbF+XxjATcpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5Iyfsb1B1KyjyLqq4AAAAASUVORK5CYII=\" id=\"imageba8605a92c\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"20.5625\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"m4c73b73e6b\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"26.6105\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"38.7065\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"50.8025\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"62.8985\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"74.9945\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"87.0905\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"99.1865\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"111.2825\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"123.3785\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"135.4745\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"mbd1a81b6cb\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 141.5225 143.278125 \n", "L 141.5225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 141.5225 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 141.5225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_21\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(33.360313 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 316.200761 143.278125 \n", "L 316.200761 22.318125 \n", "L 195.240761 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p6554375524)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADDUlEQVR4nO3cv4pcdRjH4Tm7E2ORFFaKwUJyA0HdznLwX7E2i3WwsM7teBspDNFLWAlb2ImNkCVWgVRqZjNegsV7IB+G57mAL7/iw1sdzrJbLg6bgMfPL8cb5/fOVnjJcVi22/HGYb9f4SVzJ2/7AfB/REqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSN/8ydiXfnj8cb5y+dz3euHn5cjZwcjp+w+bNzXxjmd+f+5fvjjf+OPt7vOGSkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlLyl8qfnn54/G298c++TFV5yJJZlvnFIpOGS0idS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlLzt9oP3xyP7F3+NN3bf/zDeuL29Gm8c9vvZQORj4/0vH403trs/xxtrcEnJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRK3vLo2XfjL2x/+/TNGm85Cq+/+Gy8cevnX1d4yfFwSckTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1Lylt1yMf9j6wqeXl+NN7788MF4gx6XlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpORtN8syHjm5c2e8cf77V+ONzebFChszy613xhuH1/+u8JK5f74+G2/cfnI53nBJyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESt729O7d8cjNq1fjjR8/fjLeeLj5fLwxVflgeQ1rfLC8BpeUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5C275eLwth/B8Xp6fTXecEnJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJ+w9J5khrUJsWaQAAAABJRU5ErkJggg==\" id=\"imagee26cba80cd\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"195.240761\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"201.288761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"213.384761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"225.480761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"237.576761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"249.672761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"261.768761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"273.864761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"285.960761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"298.056761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"310.152761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_33\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_34\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_35\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_36\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_17\">\n", "     <g id=\"line2d_37\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_18\">\n", "     <g id=\"line2d_38\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_39\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_19\">\n", "     <g id=\"line2d_39\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_20\">\n", "     <g id=\"line2d_40\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 195.240761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 316.200761 143.278125 \n", "L 316.200761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 316.200761 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 195.240761 22.318125 \n", "L 316.200761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_42\">\n", "    <!-- Layer 1, Head 2 -->\n", "    <g transform=\"translate(208.038573 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 490.879022 143.278125 \n", "L 490.879022 22.318125 \n", "L 369.919022 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p03f895f4e1)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACpCAYAAAC/F3YRAAAD3klEQVR4nO3cPYtdVRTH4X3unGQUJM6oESKYl5GAjFXwBaxSmCKNYmFlY5FPkM7W1pCkshXSBCzUwioEggSMIY0vKSKBMIaQNDKZmQyDJnPvPX4C06wD+SPP0+/F4vK7p9rs7qtbx4dW9P3q/uqItrC8XDo/29go7zCG/sih8ozp2t3yjG5xsXR+ePy4vMMYJs96AXgagRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNH68999VB5yeHKjPGP9wzdL51/+4Y/yDrOtR+UZw0LGf36yb1/p/Hxzq7zDsPukPCPj14T/IFCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCiCZRoAiVad/Lw6fILy9O798qLnLq9Vjr/9erR8g7DdFqeUX3ZuLVxXjfu+r62w7ycRWvzWXmELyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoETrVr48W76ZuvL59fIiC0tLpfP/vL1S3mHPlV/LM9o7q/UZN26WR/SHXi+dn957UN7BhWX+9wRKNIESTaBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBE66cv1i+VtqH+Gu98e7t0fu+Pv5V3GN57qzxjcvNOeca8PKG17WMHSuefH+HV7DH4ghJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNH6V68tPOsdWmutbXz6bun8S9/+Xt5huF6fsf7Z++UZyxd+Ls944ae10vkRbgmPwheUaAIlmkCJJlCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCi9TsfPyoPWb7Yl2e8cvV+6fzw3GJ5h8msfk13/9UH5Rmzvv57dn3tInq3Z295h2H3SXmGLyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoETrXztTvxw7TKf1GTt/l87PHm6Ud2jDUB7RbdYvgI/xey5+U7t8vXN8t7zDGHxBiSZQogmUaAIlmkCJJlCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlWt/f+rM8pP4ucWubH7xROr90ub7FbP1heUaKrS8Ols7/dfpoeYcD566VZ/iCEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKtO5E90n9WWHG1XX1GdXXokfY4dL9X8ozfEGJJlCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCiCZRoAiXav+j9jgmlaQ09AAAAAElFTkSuQmCC\" id=\"image0585f609e2\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"369.919022\" y=\"-21.598125\" width=\"120.96\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_41\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"375.967022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_43\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_42\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"388.063022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_44\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_43\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"400.159022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_44\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"412.255022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_45\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"424.351022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_46\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"436.447022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_47\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"448.543022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_48\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"460.639022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_49\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"472.735022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_50\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"484.831022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_21\">\n", "     <g id=\"line2d_51\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_22\">\n", "     <g id=\"line2d_52\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_23\">\n", "     <g id=\"line2d_53\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_24\">\n", "     <g id=\"line2d_54\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_25\">\n", "     <g id=\"line2d_55\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_26\">\n", "     <g id=\"line2d_56\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_27\">\n", "     <g id=\"line2d_57\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_28\">\n", "     <g id=\"line2d_58\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_29\">\n", "     <g id=\"line2d_59\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_61\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_30\">\n", "     <g id=\"line2d_60\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 369.919022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 490.879022 143.278125 \n", "L 490.879022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 490.879022 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 369.919022 22.318125 \n", "L 490.879022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_63\">\n", "    <!-- Layer 1, Head 3 -->\n", "    <g transform=\"translate(382.716834 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 665.557283 143.278125 \n", "L 665.557283 22.318125 \n", "L 544.597283 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p32fe5fd2e3)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAAC2ElEQVR4nO3csWqVdxyH8fPmpC0mU6C0EAcF0SGTU4XiKOQGvAZBheIgXoOjOHgv2YPolkmwdmhBAu3iaB1CvAKn3wk+tZ/Pfr78hof/9HKWO8vd8xVckKPTk/HG1vwMuFgiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMnbXra3xyPvH/8y3rj89OV4493zW+ON67+9Hm9Mrff2xhtnHz7MD9lajycO92/OzxgvwAUTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREresol/el7//NP4kLO//xlvsFnP/px/iP7o6q/jDS8peSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IydvIR88v/joeH/Lgyu3xBpu1tbPztU9YrVZeUv4DREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSt5GPnuFLjk5PxhteUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvK2NzGyPrgx3jh78/sGLmGT7r/7Y7xxuH9zvOElJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXnL4Y/3zqcj5x//HR/y6fbBeOOH4zfjjWV3d/j7S+Mb3j68PN649uTVeGO1zN+wre+/m2+MF+CCiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlb7mz3B1/9My36ej0ZLzhn575XxApeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESt5nRWc0LowabPIAAAAASUVORK5CYII=\" id=\"imageefb644b024\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"544.597283\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_61\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"550.645283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_62\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"562.741283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_65\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_63\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"574.837283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_66\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_64\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"586.933283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_65\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"599.029283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_66\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"611.125283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_67\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"623.221283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_68\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"635.317283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_69\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"647.413283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_70\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"659.509283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_31\">\n", "     <g id=\"line2d_71\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_32\">\n", "     <g id=\"line2d_72\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_33\">\n", "     <g id=\"line2d_73\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_34\">\n", "     <g id=\"line2d_74\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_35\">\n", "     <g id=\"line2d_75\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_36\">\n", "     <g id=\"line2d_76\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_37\">\n", "     <g id=\"line2d_77\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_38\">\n", "     <g id=\"line2d_78\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_39\">\n", "     <g id=\"line2d_79\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_40\">\n", "     <g id=\"line2d_80\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_83\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 544.597283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 665.557283 143.278125 \n", "L 665.557283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 665.557283 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 544.597283 22.318125 \n", "L 665.557283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_84\">\n", "    <!-- Layer 1, Head 4 -->\n", "    <g transform=\"translate(557.395095 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_5\">\n", "   <g id=\"patch_22\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 141.5225 324.718125 \n", "L 141.5225 203.758125 \n", "L 20.5625 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p528acbd3af)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAD0klEQVR4nO3cvYpdZQCF4W+fOTPJZKIQBmKUaBtFEBvxDiSXYCdpBSF4AV6A5CJsLAQrEcTewkqsJK0QJAn4Nybzf872CqzWlqziefq9+HLyzq4+9nT3jfvzCG0eP00nxnT1SvT8fHoWn2Hn1s14Yz45iTcefXQn3rj9xcPo+fnkND7DwffX4o1VvAD/I4FSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjV1mO7zVfmBTY2mxd+hiUuG48p/5vffxrfIR/j4jJ6fA6fH2OMe6/+EG94g1JNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESrX15rXDeGQ6+meBo4R2dvKNwxv5xmqKJ36/m3/d+PDb8PdY4N/x2ef34g1vUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpdp6dZR/tHV7fh5vTOl9zvQDuGOM6fwi3kg/HDvGGPN8Pd+4DM+xwO/511v5h3i9QakmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpdp6zPml0iVM63U2sN3GZ5ifHccb007+N3/7q938HNf2s4EFLizf/+C7eMMblGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqq2nBb4IvIjVFD0+L3DxenX1SrwxH+eXnv+4E17eHmNc/3kven6esv+PMcb48tf34g1vUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqbYe5xcv+gyLmHZ24o0lLhuPVX6O1795Em/Mp2fhQH4B/Md3v443vEGpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqXaenPrRjyyOj6JN+bL8EvP2218hnGY/xbz3m688fCTl+KNNz99nA0s8Hu+8+DjeMMblGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqbaeNvmHSrfPnscb0+46ej6+TzrGmKYp3lgdn8YbY5XfB00/6Ls5yf8dpzfztrxBqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKl2vT+hw/iW6UHj8/ig+z+8ih6fjrYj8/w/O1X4o3NXsff/Ms//RY9P//5d3yGzdFRvNHxa8J/ECjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVLtX3cAlBfynHEAAAAAAElFTkSuQmCC\" id=\"imageb03800a23d\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"20.5625\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_9\">\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_81\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"26.6105\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_82\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"38.7065\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_83\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"50.8025\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_87\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_84\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"62.8985\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_88\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_85\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"74.9945\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_89\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_86\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"87.0905\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_90\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_87\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"99.1865\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_91\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_88\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"111.2825\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_92\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_89\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"123.3785\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_93\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_90\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"135.4745\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_94\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_10\">\n", "    <g id=\"ytick_41\">\n", "     <g id=\"line2d_91\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_95\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_42\">\n", "     <g id=\"line2d_92\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_96\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_43\">\n", "     <g id=\"line2d_93\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_97\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_44\">\n", "     <g id=\"line2d_94\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_98\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_45\">\n", "     <g id=\"line2d_95\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_99\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_46\">\n", "     <g id=\"line2d_96\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_100\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_47\">\n", "     <g id=\"line2d_97\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_101\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_48\">\n", "     <g id=\"line2d_98\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_102\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_49\">\n", "     <g id=\"line2d_99\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_103\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_50\">\n", "     <g id=\"line2d_100\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_104\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_23\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 20.5625 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_24\">\n", "    <path d=\"M 141.5225 324.718125 \n", "L 141.5225 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_25\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 141.5225 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_26\">\n", "    <path d=\"M 20.5625 203.758125 \n", "L 141.5225 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_105\">\n", "    <!-- Layer 2, Head 1 -->\n", "    <g transform=\"translate(33.360312 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_6\">\n", "   <g id=\"patch_27\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 316.200761 324.718125 \n", "L 316.200761 203.758125 \n", "L 195.240761 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pf9e05910e4)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAD7UlEQVR4nO3csW4cVRiG4TOzs17v2trEYIICiqCjQ4KCijTpERIFBZfAtXAjFFwJBRKCIFFAkDAgxc7GjhNj766HK6D6F+kTep5+Ph3br6c6mu6jL74aW9Hy62+rE61//73a86fn5TPcHt8pb3SXV+WN8w/fLG9Mbm5Lzx8+Piuf4cnn9Z+jLy/Af0igRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKtGH566v6yli7HNtaa/3qRe0IF7XnW2utn+zg//X6pjxx+ORleaO/2dYGzlblMzz+8pvyhjco0QRKNIESTaBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEG17dn5dHDoZp/SRdV3v8YFE+wvZ4Wd6YrOqXjbcHO/h99rXf5zCvd/Hx95+VN7xBiSZQogmUaAIlmkCJJlCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaMNmv3ZvsLXWxm3xY6mttXGveAfysn4Pc9zFB2zHsTxx/u6svLH8rXgftHg/t7XW/vrxXnnDG5RoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCiCZRoAiWaQIkmUKIN3e0OVsb6yLhfu7Dc7+CDq8PJWXmjVS9et9YO/1iXN27uDKXnZ7P6z7E92pQ3vEGJJlCiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCiCZRoAiXaMFzv4MZyF9D5un7J9/beUXmjX12WNzaLSXljLP5Jum29i+6q/nMElAX/TqBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEq04fyd2pd4W2tt0Xfljc1yv/T8dL0sn6H7u37pef3g9fLG8rs/yxsXH9yvDYxj+Qzz311Y5n9OoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNEESrRhrN8p3ckXlqdnL2sDO/gi8Ob4sLwxubgub5w+fLu8cfTTi9pAX/+bzp/WLz17gxJNoEQTKNEESjSBEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNGG4ap+Z2/cbusnqd7nfPa8fITJYlbe6Hbw4dejHy7KG7f7tQ8T96fPymcYP90rb3iDEk2gRBMo0QRKNIESTaBEEyjRBEo0gRJNoEQTKNEESjSBEk2gRBMo0QRKtOHqja4+8uCt8sbmtYPS8/3etHyGk0d3yxt3f9mUN2ardXljevK89Hy3mJfPcPzJz+UNb1CiCZRoAiWaQIkmUKIJlGgCJZpAiSZQogmUaAIlmkCJJlCiCZRoAiWaQIn2D5RTg32xLG9jAAAAAElFTkSuQmCC\" id=\"imageb8b3ae2f32\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"195.240761\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_11\">\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_101\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"201.288761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_106\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_102\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"213.384761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_107\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_103\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"225.480761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_108\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_104\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"237.576761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_109\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_105\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"249.672761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_110\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_106\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"261.768761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_111\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_107\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"273.864761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_112\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_108\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"285.960761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_113\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_109\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"298.056761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_114\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_110\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"310.152761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_115\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_12\">\n", "    <g id=\"ytick_51\">\n", "     <g id=\"line2d_111\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_116\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_52\">\n", "     <g id=\"line2d_112\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_117\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_53\">\n", "     <g id=\"line2d_113\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_118\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_54\">\n", "     <g id=\"line2d_114\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_119\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_55\">\n", "     <g id=\"line2d_115\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_120\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_56\">\n", "     <g id=\"line2d_116\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_121\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_57\">\n", "     <g id=\"line2d_117\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_122\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_58\">\n", "     <g id=\"line2d_118\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_123\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_59\">\n", "     <g id=\"line2d_119\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_124\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_60\">\n", "     <g id=\"line2d_120\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_125\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_28\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 195.240761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_29\">\n", "    <path d=\"M 316.200761 324.718125 \n", "L 316.200761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_30\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 316.200761 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_31\">\n", "    <path d=\"M 195.240761 203.758125 \n", "L 316.200761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_126\">\n", "    <!-- Layer 2, Head 2 -->\n", "    <g transform=\"translate(208.038573 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_7\">\n", "   <g id=\"patch_32\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 490.879022 324.718125 \n", "L 490.879022 203.758125 \n", "L 369.919022 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pfe058fea72)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAACiUlEQVR4nO3cIW4VYRSAUeYxEtMNYGhSg8KwgS6BDbEsFoDAIbqCktSUkApC0vJeB42+0+TLyzl+bq748qubWa6XT9sreAFf7r6PZxzma8DLEShpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJW/cYsqzzMdvptMMm0yV2+Nn0spzPHkO3x9/jGV5Q0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlLRd7kG343GPMedhj1vOPQT2eLu+Gc/wgpImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIEStq6y5Rlmc/YtvkMUv48P41neEFJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0va5B93jlnN6U+qe9H+H17Pvn0/jFR6343iGF5Q0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkLdcfP48vfdcf9+NFTvc/R98frt6Nd3h4fzGecfHtbjxj+/UwnvH04XL0/fr1ZrzD9tcPbDlzAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJ+wf+nTbLRFGaYAAAAABJRU5ErkJggg==\" id=\"imageb13fb781e7\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"369.919022\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_13\">\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_121\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"375.967022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_127\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_122\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"388.063022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_128\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_123\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"400.159022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_129\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_124\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"412.255022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_130\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_65\">\n", "     <g id=\"line2d_125\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"424.351022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_131\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_66\">\n", "     <g id=\"line2d_126\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"436.447022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_132\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_67\">\n", "     <g id=\"line2d_127\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"448.543022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_133\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_68\">\n", "     <g id=\"line2d_128\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"460.639022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_134\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_69\">\n", "     <g id=\"line2d_129\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"472.735022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_135\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_70\">\n", "     <g id=\"line2d_130\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"484.831022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_136\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_14\">\n", "    <g id=\"ytick_61\">\n", "     <g id=\"line2d_131\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_137\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_62\">\n", "     <g id=\"line2d_132\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_138\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_63\">\n", "     <g id=\"line2d_133\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_139\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_64\">\n", "     <g id=\"line2d_134\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_140\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_65\">\n", "     <g id=\"line2d_135\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_141\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_66\">\n", "     <g id=\"line2d_136\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_142\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_67\">\n", "     <g id=\"line2d_137\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_143\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_68\">\n", "     <g id=\"line2d_138\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_144\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_69\">\n", "     <g id=\"line2d_139\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_145\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_70\">\n", "     <g id=\"line2d_140\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_146\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_33\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 369.919022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_34\">\n", "    <path d=\"M 490.879022 324.718125 \n", "L 490.879022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_35\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 490.879022 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_36\">\n", "    <path d=\"M 369.919022 203.758125 \n", "L 490.879022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_147\">\n", "    <!-- Layer 2, Head 3 -->\n", "    <g transform=\"translate(382.716834 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_8\">\n", "   <g id=\"patch_37\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 665.557283 324.718125 \n", "L 665.557283 203.758125 \n", "L 544.597283 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p2281502e61)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAD50lEQVR4nO3cK29lZRiG4bVWN53pkU4zHEJDQsJwSAYsCYYEwSgcAgd/gQSLxIHEocCgUCgMGoMZS8mQAAliBqYHeu7e/IhnEx5xXf5787a9+6mVb7y3+eFiCI3r6+mIYXF0lA2YpniHcWMjnjF/fJDvcfdOPGN6dBidn//1d7zD+z/9HM/I/6rwHxIo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSbTY981Q+5fQsn3HzRnR8XFuLV7jeux3PGM/y38Xlzs14xvHd7ej87ven8Q5ffPZePMMNSjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1WbDSf5h6rCWf2C7OP4nG3B5Ge8wHea/i8X1db7HRT5j+0H4s1zP4x0evXEVz3CDUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1Wbzo+N4yLhYxDMWFxf/6/lhWM5/6zL2WDnJv20df/szOj8/OYl3+OqdL+MZblCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKk2G5bw4OpwkX9gm+4xzmbxCovTs3jGMkwH4WO+wzAsppUlbJJ5K3/X2A1KN4FSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVZsNK/mHreGM13+Qk3GPK/9emrc14xvX5eT7j9nY8Y2Uco/PjEl5Y/vThq/EMNyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFSbjXvP5lNO8peJp/X16Pz45Fa8w3w722EYhmG6zF+bHh8exjP+eHcvOv/cN0fxDt99/nY8ww1KNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVxnsbHyziIUt4mXj++CDbIXxReBiGYVzNX4qeL+Fl4umVF+MZi19/z85fXcU7fL3/QzzDDUo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFSbTbu38ikreefpt5jj6hPxDlcvPx/PWLm/n++xsxbPGF/PvimdlvBzvPntx/EMNyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFSbLTaW8HHs4XE8Y9reis5fvvB0vMP5bv6A7eatnXjGcP+XeMT+J69F5196kD9KfOejH+MZblCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKn2L3pJh8GUtYh7AAAAAElFTkSuQmCC\" id=\"imagea822b9f42b\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"544.597283\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_15\">\n", "    <g id=\"xtick_71\">\n", "     <g id=\"line2d_141\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"550.645283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_148\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_72\">\n", "     <g id=\"line2d_142\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"562.741283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_149\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_73\">\n", "     <g id=\"line2d_143\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"574.837283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_150\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_74\">\n", "     <g id=\"line2d_144\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"586.933283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_151\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_75\">\n", "     <g id=\"line2d_145\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"599.029283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_152\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_76\">\n", "     <g id=\"line2d_146\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"611.125283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_153\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_77\">\n", "     <g id=\"line2d_147\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"623.221283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_154\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_78\">\n", "     <g id=\"line2d_148\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"635.317283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_155\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_79\">\n", "     <g id=\"line2d_149\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"647.413283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_156\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_80\">\n", "     <g id=\"line2d_150\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"659.509283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_157\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_16\">\n", "    <g id=\"ytick_71\">\n", "     <g id=\"line2d_151\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_158\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_72\">\n", "     <g id=\"line2d_152\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_159\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_73\">\n", "     <g id=\"line2d_153\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_160\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_74\">\n", "     <g id=\"line2d_154\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_161\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_75\">\n", "     <g id=\"line2d_155\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_162\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_76\">\n", "     <g id=\"line2d_156\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_163\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_77\">\n", "     <g id=\"line2d_157\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_164\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_78\">\n", "     <g id=\"line2d_158\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_165\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_79\">\n", "     <g id=\"line2d_159\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_166\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_80\">\n", "     <g id=\"line2d_160\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_167\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_38\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 544.597283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_39\">\n", "    <path d=\"M 665.557283 324.718125 \n", "L 665.557283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_40\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 665.557283 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_41\">\n", "    <path d=\"M 544.597283 203.758125 \n", "L 665.557283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_168\">\n", "    <!-- Layer 2, Head 4 -->\n", "    <g transform=\"translate(557.395095 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_9\">\n", "   <g id=\"patch_42\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 141.5225 506.158125 \n", "L 141.5225 385.198125 \n", "L 20.5625 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p862f006aa5)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAADtUlEQVR4nO3cO45URxTH4bp9b8908xiMsHgIIUFIBhIRC2ANTrwAFmHvhwU4YxWQWEayiBACIV7D0AzdfQmcOzkl8dfo+/I+qp75dUWlMzy6/+fcihbvPlVHtDYu6jMSDEN9xun3+oweOnyXS09OyjPOSBmcZSIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiTV9vni8PWf/zsn6SDg9sh/Wqfo7Ll4qH6PDo+f2H+oxpKo/Yfz4uz/jt6vPyDDcp8URKPJEST6TEEynxREo8kRJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEm8bN/mef4T+LDr+X7bY8Yticlj4/Hy7LZ5g7bHoehoz75+HqbXlGxjeB/yFS4omUeCIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeNO42dWnjGN5xNBh6WtbdFhgO9Z+t8O2w9/zfH2xcdvXz9Hjf/Lv9qA8w01KPJEST6TEEynxREo8kRJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEEynxpvHzpjxkcXSxx0nqM3YdFgJ/qy3RbQf1Jbrte/EMrbV2eFgeMVyoP3p+cXq9PMNNSjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfFESjyREk+kxBMp8aa5w5bmeVN/ON0WHbZFF7c0t9ZaWxYfLfd4eN3hwXLbddg43eG73F6+Lc9wkxJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfFESrxpc+Nceci5V/WNwGfF7tov9SHPXpRHjFd/Lc/Yv/9QnvHXx3vlGW5S4omUeCIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJN61ffalP6bBVeJjqD6fnea6fY7stfX5887F8hvnoQn3GydfyjKHDxunfLz8tz3CTEk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfFESjyREk+kxBMp8abNtfoS3dXf9Tep8ziWZ7RF/Tc3HF0sfX4+XJbPsH9T/3su1qv6OY7r57h7UO/LTUo8kRJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfGm3arDQ+E7t+on6fBgeb+uPziurgPeH9Qfby+PT8oz9tevlGeMr9+VZzz443F5hpuUeCIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1Li/QBZUGmPIg0vswAAAABJRU5ErkJggg==\" id=\"imageec824358b8\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"20.5625\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_17\">\n", "    <g id=\"xtick_81\">\n", "     <g id=\"line2d_161\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"26.6105\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_169\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_82\">\n", "     <g id=\"line2d_162\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"38.7065\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_170\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_83\">\n", "     <g id=\"line2d_163\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"50.8025\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_171\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_84\">\n", "     <g id=\"line2d_164\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"62.8985\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_172\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_85\">\n", "     <g id=\"line2d_165\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"74.9945\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_173\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_86\">\n", "     <g id=\"line2d_166\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"87.0905\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_174\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_87\">\n", "     <g id=\"line2d_167\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"99.1865\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_175\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_88\">\n", "     <g id=\"line2d_168\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"111.2825\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_176\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_89\">\n", "     <g id=\"line2d_169\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"123.3785\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_177\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_90\">\n", "     <g id=\"line2d_170\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"135.4745\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_178\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_18\">\n", "    <g id=\"ytick_81\">\n", "     <g id=\"line2d_171\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_179\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_82\">\n", "     <g id=\"line2d_172\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_180\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_83\">\n", "     <g id=\"line2d_173\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_181\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_84\">\n", "     <g id=\"line2d_174\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_182\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_85\">\n", "     <g id=\"line2d_175\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_183\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_86\">\n", "     <g id=\"line2d_176\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_184\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_87\">\n", "     <g id=\"line2d_177\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_185\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_88\">\n", "     <g id=\"line2d_178\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_186\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_89\">\n", "     <g id=\"line2d_179\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_187\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_90\">\n", "     <g id=\"line2d_180\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_188\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_43\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 20.5625 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_44\">\n", "    <path d=\"M 141.5225 506.158125 \n", "L 141.5225 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_45\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 141.5225 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_46\">\n", "    <path d=\"M 20.5625 385.198125 \n", "L 141.5225 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_189\">\n", "    <!-- Layer 3, Head 1 -->\n", "    <g transform=\"translate(33.360313 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_10\">\n", "   <g id=\"patch_47\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 316.200761 506.158125 \n", "L 316.200761 385.198125 \n", "L 195.240761 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p6137e31a4c)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAAD90lEQVR4nO3czWpcZQDG8TOTk2kmMW0qVFqlVPqxUy/AhQv3rlx4HV6BV+KtCEpx4aKgaEHahcVCjaWfab4mk4wX8YzwLH6//Xl4Q/5zVi9n8uUP366G0ONHN9KJYff6QbxxdHQp3pjPF9HzJ8ez+Axf3H4cb7w524o3Hu5fjze+ufcg3pjGC/A/Eyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJvfPL8ajxy7eareGO1msQbB0djvPHudXZpebKzjM8wncT30Ic//skvom/NzuKN7649jDe8SaknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipd44jhfxyPFiM96Yjfll4clm/resNsILx/nd7eFiDRfA3989jDcOTvIvZ/90Ek94k9JPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfXGKzvH8cj+8yvxxvRyfo7VMv/Nzd5bRM+fn+dnuLP9PN748/UH8cbpaX5P+NHp9XjDm5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqN00n40dhhPZeN81MMw8Y8/xDv8mxjDSfJ3H9xJ97Y28ovkb86nMcbn279HW94k1JPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESr3xYjXJVy7WcJBpPnJxlv/mtndPo+ePj2bxGe7u5l96fnq0F2+s46vVPx/dize8SaknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipd64PM+/bDzfO8kPspFfep7Nz+KNwzdb0fOXdhbxGX58ejfeuHH5bbyxM88ugA/DMNzcfBlveJNST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REq9cTJZxSPLZd768WIz3lis4SvL6aXlxUn+d3x19/d44/7+7Xjj4DC7AD4Mw7AxyS+ze5NST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1xrdruDO4u5N/RHc2nscb715uxxunh9md1OmY3588vRjjjXV8HHlzM/+f7E6P4w1vUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqTcul/nl2K9v/RpvfP/b5/HGhx+9jDee7e9Fz29tZx/hHYZh+OXfW/HGiydX443PPvkr3nhw/HG84U1KPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1/gPVPZdJPamI1gAAAABJRU5ErkJggg==\" id=\"image6d371a685a\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"195.240761\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_19\">\n", "    <g id=\"xtick_91\">\n", "     <g id=\"line2d_181\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"201.288761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_190\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_92\">\n", "     <g id=\"line2d_182\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"213.384761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_191\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_93\">\n", "     <g id=\"line2d_183\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"225.480761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_192\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_94\">\n", "     <g id=\"line2d_184\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"237.576761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_193\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_95\">\n", "     <g id=\"line2d_185\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"249.672761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_194\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_96\">\n", "     <g id=\"line2d_186\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"261.768761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_195\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_97\">\n", "     <g id=\"line2d_187\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"273.864761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_196\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_98\">\n", "     <g id=\"line2d_188\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"285.960761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_197\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_99\">\n", "     <g id=\"line2d_189\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"298.056761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_198\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_100\">\n", "     <g id=\"line2d_190\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"310.152761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_199\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_20\">\n", "    <g id=\"ytick_91\">\n", "     <g id=\"line2d_191\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_200\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_92\">\n", "     <g id=\"line2d_192\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_201\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_93\">\n", "     <g id=\"line2d_193\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_202\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_94\">\n", "     <g id=\"line2d_194\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_203\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_95\">\n", "     <g id=\"line2d_195\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_204\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_96\">\n", "     <g id=\"line2d_196\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_205\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_97\">\n", "     <g id=\"line2d_197\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_206\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_98\">\n", "     <g id=\"line2d_198\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_207\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_99\">\n", "     <g id=\"line2d_199\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_208\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_100\">\n", "     <g id=\"line2d_200\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_209\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_48\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 195.240761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_49\">\n", "    <path d=\"M 316.200761 506.158125 \n", "L 316.200761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_50\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 316.200761 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_51\">\n", "    <path d=\"M 195.240761 385.198125 \n", "L 316.200761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_210\">\n", "    <!-- Layer 3, Head 2 -->\n", "    <g transform=\"translate(208.038573 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_11\">\n", "   <g id=\"patch_52\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 490.879022 506.158125 \n", "L 490.879022 385.198125 \n", "L 369.919022 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pe33a1fbf42)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAEB0lEQVR4nO3cvWrbVwCG8b+kI6mSkGM7Dq4a2gwJZMmQLBlC2kIGb9lKO/QqCr6GQksvobRzxowJJEspJFuhhJCUBhxMqes0duQvWdZHL+JV6DM8v/3/chAPmg6ndufxN/Mq9PmFP9KJ6lpnO/r+hz834jO0yyTeGHSH8cbm4EG88eObz6Lvvzz/ND5Dq5rGG/V4QXqPDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoZX1zkE8cjZvxBv1ahZvpPrN03hjrX0Yb+zPOvHG+VZ2jt3JUnyGrfFavOE/qNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChleNJMx650d2KN/6eLEffn5yV+Ayll78IPJ7l5+jW84vTLw7Xo+8vtvbiM9zpPY83/AcVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGj55cWqqo5m7Xijt4A7kKlS//8f0a2qqrrZzu/orraOo++X6ifxGX7693a84T+o0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKGV40krHtker8Yb5xrZBdvlzig+w1+H5+KN0s8vPT88zi8s16t59H2/kV9Y/vbDX+IN/0GFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCq3Ua9nF1kXphi8svz3qxmcYLA3jjXotv7B8vb0fb9ybZpee96e9+Aw70zfxhv+gQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVWumUcj6yUo3hjNM9eer60vBef4WgBr013Gmfxxnf/fBpv9JvZi9PTeS0+wyelE2/4Dyo0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaOVg/EE8crm1E2/sTpai71+/W47P8NECXlgez0q88f3FX+ONr15tRN/f6ucXr38efhxv+A8qNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNDKeje/A7k/7cUbw1n22Ol8AQ+uDjr5b9Erp/HGs7MFPCrcOom+fzkaxGe40s7vCfsPKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRotc3fvpinI83aND7Iafjw69crT+Iz3B/eiDcatVm88Wjnarxxd/B79P1o1ozPsDVajTf8BxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqtP8A0YyMkmeR1J4AAAAASUVORK5CYII=\" id=\"image38dd4d1e9c\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"369.919022\" y=\"-385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_21\">\n", "    <g id=\"xtick_101\">\n", "     <g id=\"line2d_201\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"375.967022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_211\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_102\">\n", "     <g id=\"line2d_202\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"388.063022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_212\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_103\">\n", "     <g id=\"line2d_203\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"400.159022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_213\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_104\">\n", "     <g id=\"line2d_204\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"412.255022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_214\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_105\">\n", "     <g id=\"line2d_205\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"424.351022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_215\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_106\">\n", "     <g id=\"line2d_206\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"436.447022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_216\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_107\">\n", "     <g id=\"line2d_207\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"448.543022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_217\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_108\">\n", "     <g id=\"line2d_208\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"460.639022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_218\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_109\">\n", "     <g id=\"line2d_209\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"472.735022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_219\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_110\">\n", "     <g id=\"line2d_210\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"484.831022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_220\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_22\">\n", "    <g id=\"ytick_101\">\n", "     <g id=\"line2d_211\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_221\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_102\">\n", "     <g id=\"line2d_212\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_222\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_103\">\n", "     <g id=\"line2d_213\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_223\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_104\">\n", "     <g id=\"line2d_214\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_224\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_105\">\n", "     <g id=\"line2d_215\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_225\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_106\">\n", "     <g id=\"line2d_216\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_226\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_107\">\n", "     <g id=\"line2d_217\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_227\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_108\">\n", "     <g id=\"line2d_218\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_228\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_109\">\n", "     <g id=\"line2d_219\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_229\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_110\">\n", "     <g id=\"line2d_220\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_230\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_53\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 369.919022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_54\">\n", "    <path d=\"M 490.879022 506.158125 \n", "L 490.879022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_55\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 490.879022 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_56\">\n", "    <path d=\"M 369.919022 385.198125 \n", "L 490.879022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_231\">\n", "    <!-- Layer 3, Head 3 -->\n", "    <g transform=\"translate(382.716834 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_12\">\n", "   <g id=\"patch_57\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 665.557283 506.158125 \n", "L 665.557283 385.198125 \n", "L 544.597283 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pa619c52ea0)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAAD+ElEQVR4nO3cvYpcZQDG8dnZM7Mf2WzcYBLBBAsJcYNgp4Vg4z2IWFl5A7kCL8ML0F7QTsTGItYpDEGRRGKMuNH9nMnsznoRzwpP8fv15+HN5L9vdTgrH3x373wU+vDGw3RiNFtO4o1fj16NN/443o6e3xgW8Rk+ff3HeOP+wZvxxu2NP+ONr568G2+M4wX4n4mUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipN1yZzuKRtXH+ou/Ph6/FG/uL9XhjdjpEz1/E7/nN3+/EG1vDy3jjwdHNeOOLO1/GG25S6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipN+zNNuOR47O1eGN7kr8sfLjIz3G2zP5u/5lvxGfYmszjjb2X+f/r7tazfGOan8NNSj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1Bu2pvm7i5OVs3hjfpZ9vHY0Go3GK8t4Y2f9JHp+dZyf4fal5/HG4nw13ji8gPeEP//rbrzhJqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHrD8WIaj6yPF/HG1elRvHF0lv9bfj/IPoJ7ZT3/GPDVIf8tHp1cjzfubj6NNx4c3Yw33KTUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVIv/7zyaDSaLSfxxnyZH+V0mf/NbU6yF7jHo/P4DMfL/OXt8Up+jn/PNuONa9ODeMNNSj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9Ya11dN4ZHG+Gm88n1+ONy5P5vHG4/2d6PnttfxLz98+fTveeO/ab/HGRbzM/tnOT/GGm5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuoN+y/X4pErw3G88cbmXrzxcP9GvJE6uIDf85Nb+YvCP7y4E2+8/8ov8cbXh/k53KTUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REq9YWf9JB55cXop3riIj+iuD4t4Y3OSbWxcwBm+33sr3ri18SLeeDy/Gm98vHM/3nCTUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKvWF7OotHZstJvDEenccbu1vP4o3rawfR80en+Ud0Lw3zeOPJyU68sXs5/z3vPfoo3nCTUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKvf8AzxWTuOk+OFUAAAAASUVORK5CYII=\" id=\"imagefd4a485e53\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"544.597283\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_23\">\n", "    <g id=\"xtick_111\">\n", "     <g id=\"line2d_221\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"550.645283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_232\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_112\">\n", "     <g id=\"line2d_222\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"562.741283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_233\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_113\">\n", "     <g id=\"line2d_223\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"574.837283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_234\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_114\">\n", "     <g id=\"line2d_224\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"586.933283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_235\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_115\">\n", "     <g id=\"line2d_225\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"599.029283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_236\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_116\">\n", "     <g id=\"line2d_226\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"611.125283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_237\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_117\">\n", "     <g id=\"line2d_227\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"623.221283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_238\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_118\">\n", "     <g id=\"line2d_228\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"635.317283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_239\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_119\">\n", "     <g id=\"line2d_229\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"647.413283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_240\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_120\">\n", "     <g id=\"line2d_230\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"659.509283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_241\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_24\">\n", "    <g id=\"ytick_111\">\n", "     <g id=\"line2d_231\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_242\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_112\">\n", "     <g id=\"line2d_232\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_243\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_113\">\n", "     <g id=\"line2d_233\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_244\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_114\">\n", "     <g id=\"line2d_234\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_245\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_115\">\n", "     <g id=\"line2d_235\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_246\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_116\">\n", "     <g id=\"line2d_236\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_247\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_117\">\n", "     <g id=\"line2d_237\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_248\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_118\">\n", "     <g id=\"line2d_238\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_249\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_119\">\n", "     <g id=\"line2d_239\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_250\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_120\">\n", "     <g id=\"line2d_240\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_251\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_58\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 544.597283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_59\">\n", "    <path d=\"M 665.557283 506.158125 \n", "L 665.557283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_60\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 665.557283 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_61\">\n", "    <path d=\"M 544.597283 385.198125 \n", "L 665.557283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_252\">\n", "    <!-- Layer 3, Head 4 -->\n", "    <g transform=\"translate(557.395095 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_13\">\n", "   <g id=\"patch_62\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 141.5225 687.598125 \n", "L 141.5225 566.638125 \n", "L 20.5625 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pebc3100dfd)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADbklEQVR4nO3cMYolVRSA4XrV1R0Nk0wwkQaKkSgIJoKRgpFrGAzcjktwBcazAZlE1ERMXIEwKIzgjLZ2v+cOTM4VfuT78jpUvfpfRYd7ev/JF5dt6PlHf01HbPuL6/GMm9/2+YwXs+v/fjC+he2DT38Yz/j2q3fHM35/53Y8463Pvh/PmL9V+I+JlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiXvOG7HO8/b8fxmPONqvl+7ne7nM/bh/vaKe/jy9WfjGe/dzpeet9O8jRV8SckTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyRErecb6aD7kc8+XYy91pPmPBwvHlmF1/nh9YvX3953zGefgc27Ztl/P8nazgS0qeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1Lyjm3BXuv9wwXbxgu2dPcFp0VPrTgc+btXbyy4kQUjGjvPvqT0iZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIl7zhfzTdbT9fn+Z3sC7aF9wWnRQf+tj+9ejyeseI5LgteyQqBVwL/TqTkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyTtOC5YGL3cLTls9R05sDexQPrp+OR8SeI5VfEnJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRK3nFacP7tktRXHKJ7WXAg8IrfY2g//Y82lhfwJSVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5x4I94W1bsSi8Ys93wbNchn/bFb/neclLmTs1bsOXlD6RkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOQd+918yOnlMZ6x363YFp6P2O9n1684pPmThz+OZzw9fzi/kciJ076k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJe/4+ePhlu+2ba89nS8s//r2fHH6j8fzrefbR7Prr27nv8Xn3zwZzzi/OX+v+y834xkr+JKSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUvH8A5aNjKXcWHcsAAAAASUVORK5CYII=\" id=\"image2f2389be23\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"20.5625\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_25\">\n", "    <g id=\"xtick_121\">\n", "     <g id=\"line2d_241\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"26.6105\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_253\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_122\">\n", "     <g id=\"line2d_242\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"38.7065\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_254\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_123\">\n", "     <g id=\"line2d_243\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"50.8025\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_255\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_124\">\n", "     <g id=\"line2d_244\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"62.8985\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_256\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_125\">\n", "     <g id=\"line2d_245\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"74.9945\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_257\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_126\">\n", "     <g id=\"line2d_246\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"87.0905\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_258\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_127\">\n", "     <g id=\"line2d_247\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"99.1865\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_259\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_128\">\n", "     <g id=\"line2d_248\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"111.2825\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_260\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_129\">\n", "     <g id=\"line2d_249\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"123.3785\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_261\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_130\">\n", "     <g id=\"line2d_250\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"135.4745\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_262\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_26\">\n", "    <g id=\"ytick_121\">\n", "     <g id=\"line2d_251\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_263\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_122\">\n", "     <g id=\"line2d_252\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_264\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_123\">\n", "     <g id=\"line2d_253\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_265\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_124\">\n", "     <g id=\"line2d_254\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_266\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_125\">\n", "     <g id=\"line2d_255\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_267\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_126\">\n", "     <g id=\"line2d_256\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_268\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_127\">\n", "     <g id=\"line2d_257\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_269\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_128\">\n", "     <g id=\"line2d_258\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_270\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_129\">\n", "     <g id=\"line2d_259\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_271\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_130\">\n", "     <g id=\"line2d_260\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"20.5625\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_272\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_63\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 20.5625 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_64\">\n", "    <path d=\"M 141.5225 687.598125 \n", "L 141.5225 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_65\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 141.5225 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_66\">\n", "    <path d=\"M 20.5625 566.638125 \n", "L 141.5225 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_273\">\n", "    <!-- Layer 4, Head 1 -->\n", "    <g transform=\"translate(33.360313 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_14\">\n", "   <g id=\"patch_67\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 316.200761 687.598125 \n", "L 316.200761 566.638125 \n", "L 195.240761 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p0ce4e612d7)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAAD+0lEQVR4nO3czWpcdQDG4TOZSScfGBqbLlqoomDEj4KiG8Ei4h10reC6K5fiRXgDghsVr8CtWsSNC0GLtKW6UNxUSRNrbJpmJuNFvCO84PPsz8vhzG/O6s8Zvfjeh4sh9eZ+PHH1qR/ijc9uvhpvjH7ZjK5/dOEkvofx3mq8sfHMQbzx9Pa9eOPRtbPxxkq8AP8xkVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfUmOzeO45HpFw/jjfev54eeV5+fxxuf3Horun59K38WR7NRvPH5Sx/HGx/tXYk3bv50N97wJqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHqTk61xPDLf3Yk3Vpbwf/n+r0vxxuk4+/B1/jSHYVjCoeevH+zGG6uj/BD5MniTUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKvcmDc/kx3cMn8xv57jg/6Pvb/e14YzHJrp/N8v/9aJ4/i6/2no03zk3/iTeG4She8CalnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6k/lafsD2dPcw3rh1fDHeODyaxhtD9qHnYX6SHyJfWcIB8N//PhtvrI1n8cZ4ey3e8CalnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqTVZOwgOUwzAsft2MN86/cj/e2Np4GG/cW3ksun40zp/n6TTf2NnIP4C7OTmON/7c9xFd/gdESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1JtM8nPCw5mD/KOvl8/8EW+MRvlh4VH43djx+DS+h8Usf56PT/NDz+vjk3hjGbxJqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKl3mQ+zUeOLszjjTsn2/HGw0er8cYi/Nsu5vn/Pr2HYRiGuw+24o2lHHoe5W14k1JPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESr3J+l7+ZeKL1/Mbef1q/mXiS2cP4o3b8+zw9Xg1P+Q7m+a/yRvn78Qb+7ONeGNY5F/f9ialnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6k/FRfsB27csf440r774db3zz8qfxxgs/X4uuXx/lh3xfu5wfWP5g53a88dy378QbTww34g1vUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqfcvykeLZ21z3I0AAAAASUVORK5CYII=\" id=\"image3f25d7be90\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"195.240761\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_27\">\n", "    <g id=\"xtick_131\">\n", "     <g id=\"line2d_261\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"201.288761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_274\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_132\">\n", "     <g id=\"line2d_262\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"213.384761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_275\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_133\">\n", "     <g id=\"line2d_263\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"225.480761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_276\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_134\">\n", "     <g id=\"line2d_264\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"237.576761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_277\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_135\">\n", "     <g id=\"line2d_265\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"249.672761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_278\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_136\">\n", "     <g id=\"line2d_266\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"261.768761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_279\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_137\">\n", "     <g id=\"line2d_267\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"273.864761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_280\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_138\">\n", "     <g id=\"line2d_268\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"285.960761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_281\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_139\">\n", "     <g id=\"line2d_269\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"298.056761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_282\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_140\">\n", "     <g id=\"line2d_270\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"310.152761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_283\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_28\">\n", "    <g id=\"ytick_131\">\n", "     <g id=\"line2d_271\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_284\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_132\">\n", "     <g id=\"line2d_272\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_285\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_133\">\n", "     <g id=\"line2d_273\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_286\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_134\">\n", "     <g id=\"line2d_274\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_287\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_135\">\n", "     <g id=\"line2d_275\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_288\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_136\">\n", "     <g id=\"line2d_276\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_289\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_137\">\n", "     <g id=\"line2d_277\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_290\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_138\">\n", "     <g id=\"line2d_278\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_291\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_139\">\n", "     <g id=\"line2d_279\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_292\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_140\">\n", "     <g id=\"line2d_280\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"195.240761\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_293\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_68\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 195.240761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_69\">\n", "    <path d=\"M 316.200761 687.598125 \n", "L 316.200761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_70\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 316.200761 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_71\">\n", "    <path d=\"M 195.240761 566.638125 \n", "L 316.200761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_294\">\n", "    <!-- Layer 4, Head 2 -->\n", "    <g transform=\"translate(208.038573 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_15\">\n", "   <g id=\"patch_72\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 490.879022 687.598125 \n", "L 490.879022 566.638125 \n", "L 369.919022 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pb1c2ba2dc4)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACpCAYAAAC/F3YRAAADQElEQVR4nO3cPW4kVRSA0ap2j0dD8xcgDWRsgogdQMK62A8SETsgIYEMTUAACIFgRu6x3V1sAekW8heck9fVs/z1i67e+vlXX2/L0Om7H6cjlvXlR6PvHz75cHyGu5e34xm3f1/mM36/G884f/zO6PvTT7+Nz/D486vxjMN4AvyPBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSdrx5O95XXrb7+/GMw5vZku56/WB8hu2wjmccHq7jGW8+fXc849k/j7MB1/nfsQc3KGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEk7bjskut7OXybeTi9m3893jZfDw3x5+3ozP8iLX8/jGQ/vz/4n27Pj+Ax7cIOSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtOMerwqv6x7bwsPfyh5n2MMerzTfDV9HXpZlGS4sV7hBSRMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIEStpx2WPPd4cl3YTIn7Fer+MZ0xen1+v8tek9uEFJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0o7LHmt/e+wObo39w4TAY7x7PGy8BzcoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASdvnAVt2tQUWlj1gC/+BQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSjrsspu7xGu/h6X8rlSXd9XJ56iMs283T/z+WxQ1KnEBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0o7LdT5ku8yHJJZ0Ay8bL8uyXE7PxzPW6e711ljedoOSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtOPph1/GQx5fvx7PWM9vR9/fnu/HZzj++d54xuGPv8Yzvvn+2/GMLz/7YvT9dj6Pz7AHNyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJ+xddjF+OVXzrCAAAAABJRU5ErkJggg==\" id=\"image5e61f9b9cc\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"369.919022\" y=\"-565.918125\" width=\"120.96\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_29\">\n", "    <g id=\"xtick_141\">\n", "     <g id=\"line2d_281\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"375.967022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_295\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_142\">\n", "     <g id=\"line2d_282\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"388.063022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_296\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_143\">\n", "     <g id=\"line2d_283\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"400.159022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_297\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_144\">\n", "     <g id=\"line2d_284\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"412.255022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_298\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_145\">\n", "     <g id=\"line2d_285\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"424.351022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_299\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_146\">\n", "     <g id=\"line2d_286\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"436.447022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_300\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_147\">\n", "     <g id=\"line2d_287\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"448.543022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_301\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_148\">\n", "     <g id=\"line2d_288\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"460.639022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_302\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_149\">\n", "     <g id=\"line2d_289\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"472.735022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_303\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_150\">\n", "     <g id=\"line2d_290\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"484.831022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_304\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_30\">\n", "    <g id=\"ytick_141\">\n", "     <g id=\"line2d_291\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_305\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_142\">\n", "     <g id=\"line2d_292\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_306\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_143\">\n", "     <g id=\"line2d_293\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_307\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_144\">\n", "     <g id=\"line2d_294\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_308\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_145\">\n", "     <g id=\"line2d_295\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_309\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_146\">\n", "     <g id=\"line2d_296\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_310\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_147\">\n", "     <g id=\"line2d_297\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_311\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_148\">\n", "     <g id=\"line2d_298\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_312\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_149\">\n", "     <g id=\"line2d_299\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_313\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_150\">\n", "     <g id=\"line2d_300\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"369.919022\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_314\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_73\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 369.919022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_74\">\n", "    <path d=\"M 490.879022 687.598125 \n", "L 490.879022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_75\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 490.879022 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_76\">\n", "    <path d=\"M 369.919022 566.638125 \n", "L 490.879022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_315\">\n", "    <!-- Layer 4, Head 3 -->\n", "    <g transform=\"translate(382.716834 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_16\">\n", "   <g id=\"patch_77\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 665.557283 687.598125 \n", "L 665.557283 566.638125 \n", "L 544.597283 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p04c901a7b9)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADkUlEQVR4nO3cTW6bVRSAYTv54qRCkVoFJJYBYsYmkFgG+2DEHpiyDxbAFhAjhBp+i9okjW12wOTcSu/geeY+uv78+o6Ovv2XX3933g29/uxyOmJ3cz8esTv8M/4qu+1xNuN8MT7C7uHVfMjNn6f5OV7Oz/Hp9z+NZyx4pPBhiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlb7t5/TgecvvF2/GMhx8/Hs+4+m2+9Hz4+3n0+ePN/H//9pP5jMOb+dLzu7v5OU4PD+MZblLyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSt72/vRoP+f2XV+MZt0/jEbvjYT7j+aPZW6uPh/34DBfH8Yjd84v5/bNfcI7dfsHzWHAM+KBESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZK3nbf5Uur2ZkHr85c0784X8+9y2qZnGB9hybM4zXa3l9lfzg/iJiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl522nB0vPF43zG/jQesTvPj7FmaXlqwdLzbsGz2J/nB9kf5q/fLvwk8L9ESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZS87eJ5vjN4up7PWPEC3P2CPcz9cTpkxSLnghEr9nMX/Cbn43E8w01KnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8rbz5YIpCxZsVyzprjBd9D2teJ4LlrdXvAx4f1pwkAUz3KTkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlb1sxZMnC8oK3G58XzJha8bbpFc9iyeL0fsFBFrwt2k1KnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8rbLh/l27NPdcTzj+o/5/vXFcf5dLp9mM46HBYvCK3aN5z/JmkX0p6fxDDcpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5Iydtufv13POTnr34Yz/j822/GM17czzd9D389jj7/9PJ6fIZ3d/O74+b+/XjG8epqPGN3ni+iu0nJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRK3n/kgHW2nKqzfQAAAABJRU5ErkJggg==\" id=\"imageca28e51bb4\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"544.597283\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_31\">\n", "    <g id=\"xtick_151\">\n", "     <g id=\"line2d_301\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"550.645283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_316\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_152\">\n", "     <g id=\"line2d_302\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"562.741283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_317\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_153\">\n", "     <g id=\"line2d_303\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"574.837283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_318\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_154\">\n", "     <g id=\"line2d_304\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"586.933283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_319\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_155\">\n", "     <g id=\"line2d_305\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"599.029283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_320\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_156\">\n", "     <g id=\"line2d_306\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"611.125283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_321\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_157\">\n", "     <g id=\"line2d_307\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"623.221283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_322\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_158\">\n", "     <g id=\"line2d_308\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"635.317283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_323\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_159\">\n", "     <g id=\"line2d_309\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"647.413283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_324\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_160\">\n", "     <g id=\"line2d_310\">\n", "      <g>\n", "       <use xlink:href=\"#m4c73b73e6b\" x=\"659.509283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_325\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_32\">\n", "    <g id=\"ytick_151\">\n", "     <g id=\"line2d_311\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_326\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_152\">\n", "     <g id=\"line2d_312\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_327\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_153\">\n", "     <g id=\"line2d_313\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_328\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_154\">\n", "     <g id=\"line2d_314\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_329\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_155\">\n", "     <g id=\"line2d_315\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_330\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_156\">\n", "     <g id=\"line2d_316\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_331\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_157\">\n", "     <g id=\"line2d_317\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_332\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_158\">\n", "     <g id=\"line2d_318\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_333\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_159\">\n", "     <g id=\"line2d_319\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_334\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_160\">\n", "     <g id=\"line2d_320\">\n", "      <g>\n", "       <use xlink:href=\"#mbd1a81b6cb\" x=\"544.597283\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_335\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_78\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 544.597283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_79\">\n", "    <path d=\"M 665.557283 687.598125 \n", "L 665.557283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_80\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 665.557283 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_81\">\n", "    <path d=\"M 544.597283 566.638125 \n", "L 665.557283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_336\">\n", "    <!-- Layer 4, Head 4 -->\n", "    <g transform=\"translate(557.395095 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p9c1d6958be\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p6554375524\">\n", "   <rect x=\"195.240761\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p03f895f4e1\">\n", "   <rect x=\"369.919022\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p32fe5fd2e3\">\n", "   <rect x=\"544.597283\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p528acbd3af\">\n", "   <rect x=\"20.5625\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pf9e05910e4\">\n", "   <rect x=\"195.240761\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pfe058fea72\">\n", "   <rect x=\"369.919022\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p2281502e61\">\n", "   <rect x=\"544.597283\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p862f006aa5\">\n", "   <rect x=\"20.5625\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p6137e31a4c\">\n", "   <rect x=\"195.240761\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe33a1fbf42\">\n", "   <rect x=\"369.919022\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pa619c52ea0\">\n", "   <rect x=\"544.597283\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pebc3100dfd\">\n", "   <rect x=\"20.5625\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p0ce4e612d7\">\n", "   <rect x=\"195.240761\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pb1c2ba2dc4\">\n", "   <rect x=\"369.919022\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p04c901a7b9\">\n", "   <rect x=\"544.597283\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x1200 with 16 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["def visualize_prediction(idx):\n", "    visualize_exmp(indices[idx : idx + 1], test_set)\n", "    print(\"Prediction:\", predictions[idx].item())\n", "    plot_attention_maps(input_data=None, attn_maps=attention_maps, idx=idx)\n", "\n", "\n", "visualize_prediction(0)"]}, {"cell_type": "markdown", "id": "f9db26ed", "metadata": {"papermill": {"duration": 0.04164, "end_time": "2023-03-14T15:52:29.053605", "exception": false, "start_time": "2023-03-14T15:52:29.011965", "status": "completed"}, "tags": []}, "source": ["Depending on the random seed, you might see a slightly different input set.\n", "For the version on the website, we compare 9 tree images with a volcano.\n", "We see that multiple heads, for instance, Layer 2 Head 1, Layer 2 Head 3, and Layer 3 Head 1 focus on the last image.\n", "Additionally, the heads in Layer 4 all seem to ignore the last image and assign a very low attention probability to it.\n", "This shows that the model has indeed recognized that the image doesn't fit the setting, and hence predicted it to be the anomaly.\n", "Layer 3 Head 2-4 seems to take a slightly weighted average of all images.\n", "That might indicate that the model extracts the \"average\" information of all images, to compare it to the image features itself.\n", "\n", "Let's try to find where the model actually makes a mistake.\n", "We can do this by identifying the sets where the model predicts something else than 9, as in the dataset,\n", "we ensured that the anomaly is always at the last position in the set."]}, {"cell_type": "code", "execution_count": 41, "id": "891a1acf", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:29.137839Z", "iopub.status.busy": "2023-03-14T15:52:29.137604Z", "iopub.status.idle": "2023-03-14T15:52:29.143249Z", "shell.execute_reply": "2023-03-14T15:52:29.142440Z"}, "papermill": {"duration": 0.049748, "end_time": "2023-03-14T15:52:29.144877", "exception": false, "start_time": "2023-03-14T15:52:29.095129", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Indices with mistake: [49]\n"]}], "source": ["mistakes = torch.where(predictions != 9)[0].cpu().numpy()\n", "print(\"Indices with mistake:\", mistakes)"]}, {"cell_type": "markdown", "id": "e061b962", "metadata": {"papermill": {"duration": 0.041246, "end_time": "2023-03-14T15:52:29.230481", "exception": false, "start_time": "2023-03-14T15:52:29.189235", "status": "completed"}, "tags": []}, "source": ["As our model achieves ~94% accuracy, we only have very little number of mistakes in a batch of 64 sets.\n", "Still, let's visualize one of them, for example the last one:"]}, {"cell_type": "code", "execution_count": 42, "id": "a9ff4d75", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T15:52:29.316597Z", "iopub.status.busy": "2023-03-14T15:52:29.315461Z", "iopub.status.idle": "2023-03-14T15:52:32.908184Z", "shell.execute_reply": "2023-03-14T15:52:32.907252Z"}, "papermill": {"duration": 3.639131, "end_time": "2023-03-14T15:52:32.910537", "exception": false, "start_time": "2023-03-14T15:52:29.271406", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjg0IDEwMC40NzU5OTMzNzc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nFVQy07DMBC871fMsTngeB0njo9pS6Nya4nEoeJQhTQQ5UGIROHv2QZEVUuj1Xi8s7MO19XnW1nt8yVWjxReWTkRoxHU0GgEZzByQU1aWEdJaqW2c2WtlXWx95Fc6Fv6SnSiEU6ZGUniVQKnlY+1PIici/FR4Qk9wkzcJxnRCM5inuM20PjXfQngWJn037XsEG4Z6wE72mEUvb7xEU6jLKNxJ/FgrJX5EZsYqVV8TVJ2tCwo3DDYoDjNqxYvdMAi64fu2H6jCsCJ8sbpNLocLL6O3XtbTRh6rLabAJ4V2/hXFTnby3cEeEbxQPcFST76AUwVU2oKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoyNDYKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMjM1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW4AMQi75xX+QKWwJ++Zquqh/f+1hlEvAwPY2CTvwUYkPsSQ7ihXfMrqNMvwO1nkxc9K4eS9iAqkKsIKaQfPclYzDJ4bmQKXM/FZZj6ZFjsWUE3EcXbkNINBiGlcR8vpMNM86Am5PhhxY6dZrmJI691Svb7X8p8qykfW3Sy3TtnUSt2iZ+xJXHZeT21pXxh1FDcFkQ4fO7wH+SLmLC46kW72mymHlaQhOC2AH4mhVM8OrxEmfmYkeMqeTu+jNLz2QdP1vXtBR24mZCq3UEYqnqw0xoyh+o1oJqnv/4Ge9b2+/gBDTVS5CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK4MrjQANRcZBQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7I0VTBQsLQAEoaW5grmRpYKKYZcQD6IlcsFE8sBswyANFhpDkxFDlcGVxoAv4wNVgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QS3IEIQxD95xCRwB/4TydSs2i5/7byO6ZbJCqwPITcRwTZ/OICKQc/KxhZlATvIeFQ9VgO6DrwGdATuAaLnQpcKPahHN8ncObCpq4h8dstUisneVMIeowJkls6EnINs5ocuOc3KpU3kxrvcbim3J3u8pr2pbCvYfK+jjjVDmrKmuRNhGZRWsbwUYe7LDPo6toy1kq3DeMTV0TlcObxe5Z3cniiu+vXOPVLMHM98O3vxwfV93oKsfYyoTZUpPm0jn1r5bR+nC0i4V64Ud7JkhwdasgVaXWztpTev1T3CT6/QP0wVcdCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA4OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TbkRgDAM6z2FR8CPSLwPx1GE/VvshDSWTp8Rygdr5AGC4Y0vIfiiLxmEtQsPKvtIdNhEDWcVJBPDryzwqpwVbXMlE9lZTKOzQcv0re1vgx66P92OHAoKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTUgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE3IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIDY1IC9BIDY3IC9DIDcwIC9GIDczIC9JIDgyIC9SIDk3IC9hIDEwMSAvZSAxMDgKL2wgL20gL24gL28gL3AgMTE1IC9zIDEyMCAveCAveSBdCj4+Ci9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNyAwIG9iago8PCAvQSAxOCAwIFIgL0MgMTkgMCBSIC9GIDIwIDAgUiAvSSAyMSAwIFIgL1IgMjIgMCBSIC9hIDIzIDAgUiAvZSAyNCAwIFIKL2wgMjUgMCBSIC9tIDI2IDAgUiAvbiAyNyAwIFIgL28gMjggMCBSIC9vbmUgMjkgMCBSIC9wIDMwIDAgUiAvcyAzMSAwIFIKL3NwYWNlIDMyIDAgUiAveCAzMyAwIFIgL3kgMzQgMCBSIC96ZXJvIDM1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTYgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggOTMwIC9IZWlnaHQgOTkKL0NvbG9yU3BhY2UgL0RldmljZVJHQiAvQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMyAvQ29sdW1ucyA5MzAgPj4gL0xlbmd0aCAzNiAwIFIgPj4Kc3RyZWFtCnic7P1LjyTLkiaIyUNVzczdI/JxHre7qwBu+AC4ns0A3JMAwd/UP4gE/wEJguRiQBKcDTlAc6amgeJ03dc5mRkR7m6mqvLgQtQ8IiPj3Lp3uggSjdQTJzIeHu5uaqqin3zyiQj+23/7b+H7+D6+j+/j+/g+vo/v4/v4Pv7TGvT/6zfwfXwf38f38X18H9/H9/F9fB//8uM7zP0+vo/v4/v4Pr6P7+P7+D7+ExzfYe738X18H9/H9/F9fB/fx/fxn+D4DnO/j+/j+/g+vo/v4/v4Pr6P/wRH+vZHiIj4tzyH/3MPePPZ/NW/f81jf/O5f/NJ/qYL2f/A3d3/2at6/RqvJs392/f1Hz38v8cV/c3jt27/t3OC+K2b9C/9FvE3n+7l+9m//ktL91/6ZowXfvUDRPyNVXn7i7/qjXz9sDf/5PWlIoxVOGbhL77S7cFvfvsfM35j+/wzT/6XJ+W/5zv766zJX7kw/ob3gG9898acPC+V/5jx22//X8AEvbn98K/75s338/UP3F/99C0j82JJ/xUD49Pt4f72UeNvGui/1uz/bVZuf/N/1UW8fXA8/yn+BZP4V45/1gTdHrC/mRcv//qciwn+5y/tb0QVr4eZvX6T8Feubrx9+v+7MU6tt6ylv3rQW+OtleDPv/z631d/uv/4b0c6f/F5/784/tKp+nJ8u7xfw1wi/F/+z//zDx/uEIEIEQGRERIiATACAbiDgqubugmouKqpuoqpmqmZmhsgcEqcmHPhXDhnIAYicLcu3rv21luT1tzM3dwdERCQCAmRaD+n3UT3YaZuiMjERMRIRESIDhirwsAdgZgpMafMOaeciRmRApCNteMAgIAIyEAMGB/kgODogP+n/+P/5d/9u//25bTk5VgOd+5gCq6u6qbmjjmlnPNU8jxN81xy5pyZEK7rer2u1+t2XbfrWtUU3AEhJ8qFcmJmTEyqvdat1dpb79JVDAEBsOTpsBzmeQEHVe2tnc+PT+dHkcaJUqKccy4ppRSXg0DMTJzMXVVFFQAAHQk5MTMDopm5+7Bb7iIiqu6OiISYS5mmMs/z8XR3vLtblkOZplwKuKuoql7Ol//23/2/Xs5JmY7/0//sf0WU4v6bDXiDCISIFIe4E2JiTEzMxIyJkSk+Q3wgQrwvczD3cYAgEEI8jAiQkAgIAQlw4Ci7Xi/nx6eHh4c//PGP//SH33fxn376+59++vtpvkMqSLmLdVURE/HxDsebdHdzcAS8nRo7MvxqW41fjDnb524sIXf3T//0X0g7v5yW/+w//5/97t/8HTigu6nWbV2va93WWtfattaq9NZ7NxVVld62bavbKqLxArHS67Z9/vTr50+/rpez9Kq9gTshIriameo0Tx8+vHv37t7dt1pV9Xi8u79798OPP/3d3//9v/43f+/uj0+PT09P27bWbeu9xcWXMh2Od8vxNM2HaV6Ww/Hdu/fv3r2blwOnzCnF/XD468zY1wYlvvuv/qv/53/5f/8vX/688/vz9D8GBzd0BwACIHAyAzM3AzVXc4vbA47g4I4ASIiIhEA0LAMSEOIOj5wAECEz5kw5UWKKNYMIRMDMKTFziuWo6lvt8bFW3ZqJgRqqgRmogxmMlQGOAAgeL5cS5ky5MDMQOZGDO7gRIDMmIhqviERAjMyUE5fMJfOUuSTWdv1//z/+D6bywtQm/R/9L6AcEQnD1H6FBGKV+fgafbdeCONY9N3mmZm4Sxhkd40PlU3qY98etJ2lX61f3RtYB4SUF04zp5m5UCqIjMTuqNKkdzMjZCTiNOWypDJzPqZ8oLwwT8SFOBMnJi4MhW1KcMi4FFwyHjLOGWmYV1AHcxAHMe8GzbwqdHNziN30j//F//7xD//4cqn81//1f/Pv//2/zzlP07Qsyw8ff/zpp59+97t/9fd///d/93d/f7o7EQUN4zCsBdwgJAZFg7FqMI4GM499b+5mLtJ771++fPlv/uEf/uEf/uHx6dFgWC1AlN6/fPny8OXLVjdwB4eS0zQVZt7WdV2vrTUzNTNARGLmNM/L4bDkXBAB3Fvv67q21nLOpUyn0+nnn37388+/++GHHz9++PH9+w9EtNtJfMGqjL3j7ufzl//wH/7h5ZykPP/wb/4n0zT9/MP7n378cDrMiZEZEcDcnhdLzAKMBUWISGMqwoypWRdrvZ+fLo+P5+t5bbW11t2diBDRXM2k1vr50+dPnz8/fHl4enq6Xi+n4/HDh48fPry/v7+7v7ubpwkRAFxEam29S0rEmQ6H5ePHjx8+vDeH67Ver1tvvfWec/7p5x9+/vmHZZnfgLsD6r3xrUPcBOi9/2//N//r8/krS/t/+6ePX7YCz4jthSF/9o1iljElWg55XjIgqJqo9m6tmao7xI3A3Zr5/oEIyAgZIZOXBIWRCLaOW8emqAAKN0/11QW8/PzV1TqAg3lADUMGX0qfsyR2cHKg2mltVAX9+Z3E+ridPcM5/B9+PP8P3l9fPvtTPfzp/J4AiIARmSgxMTMRElHOfJjLsuTDUg5LmaZUW1+32pqKuSh6rJ7dJNG+gmLPEYITOSMSJJJCPZGnlBKzQ1JndQY3cANwAHJkBIy7AOiIjohESDyWJe6bdpCruN832P8MX34eH4F4wgLCs1kMAAmXp4f/6//5f+f+lVP0LZuLHz/e//zje2IgRGJESIgJgREZgAHMPWBud+2u3UR9QAlRFTNRUyBMOaWcuUxcCpcJiAHJ3a01b01qbXXrNampm8UpTkRM4/PY/mai0kUClokZIaY4vCjuHkJMIfiAuSlxTpxzKlOeCnGmuGVwO5URHAAJiIESEAMmQHZAcHKA5TC/mhRiztPkBqZgAkgmYO5AnJlzSlMu0zTN05RKYUJ0JxFozYgUQMwh7r0BATASExMxOljgb3c3M1VFQAAydgBkTPGOEdDUe+utt6wExoTAjMA01j8CQEwEDIsODuToSE7PW87txVdmpu5OhI6E6MSUcirztByW4/E4zXOZJjcXERVV0ddzQny6/5k4q5iEg+Pg4z4iIiB5nP05UdohSE6BejExJnImRwCPLb8jjLBPTJAYmYEJiYB5YBcAd1czfXqcCLH3nnOKczOV6XB6dzh+QJqQpi5au7auIi7dVAPpmZkHon5lEeG1Izj22A5vvwa67uCOyK+m5e7+3Q8//gzuAXPX63WaLuv1sm0lb7nW1Ftqrap06QJuCB5fu7uZq5mK1rpdL+fHhy+Xx4feVqkVwQgQYKyTZVky6pTczNZ1E9WEIFMG65nxMGcz31ZkNHIFFzAJjEmQEsOUeZ7ysszH4/Hdu/sffvjheDylUlLOsUn3CfjGPLwY3zrN8ZN//Md/fP1zTEJ37ugAbghAAAxI5qDoBi7gCv4C/zi6jY0NyIgUn8f5/cwCEjgRcCJPhJkpISViRkJHhJQ45ZRSRiBHAjWCBlZNu3TpqB1AAMVRHdRADQIMDROKzoBIkB0V2ZFT2AwKY2ME4ExI5ITEAAjI6EyQkEqiknLhUtJcktTpGzIEYfnB5/uAxt8E0V6cuHj7FsHxBT9pCOquYB20uXW37ibm4qYmJLZ1YREUNAFx7+AVARQ4YWayxBBsARK7gzh13U0joiemnKhMVBafTlCOkBZMC3HhMO4JpuRLhuMEp4LHiU4FDwV5Bx7qoA7doBl09U1hFW/mZgOicpleLZV1XT9//lxKWZZF1U7HO3dPKR+Ppw8fPr5//46IbibT3ccht5+GhIjD3Md84u5BeViN1lprTdVyLqpaW/dndOOttfPl8uXh4Xq9BrCYSlmWOTFfr5fr5bxtVVXUFACRmFM+Ho+tHad5jtertZ4vl23bSs7zsrj73d07EUWgXKblcErMX8Nc3GHusH2911dzgsTTcndY5vv3P/zw44/3p0NOmNOLwOPzhkUc5jc2C+14AgBAVJvIVlvOM0BCyIkrU3M3JCICM1UTcGRObiBitfb1WnOa3JyQSyrLvCzzHGijteaGCMhMKfM8zafj8d27d+6QeCVKrfbcepnKxw8ff/75d6fT4Wsuegez8JLRjNN5X+IODtBqY36NVZ5a/vwMc18Y8WeLToGwEKBY0lLMCiCIaVepYrWZSBwDL2D1cCDjWKVEMJEX8slRAchxFbw0rIoCqAAO+IpUffZOb5+fsXvcLXdwNECDBN6BFVv2gLm8Nr40XBv58G8HtIHdNt4+qr4+fdRo6yVAGxMwsyEnZAYiIPbkVChNqcxlmea5AFXxTaGbAhE4BOZDJiJERhrWAYFwnMrGhAkKtkKtsOecckoGWTzvMHcYEQdGpH13BswFZmQmGq79cEsBMZ5/3D+A27ql/SG0uyxjbYQtHOh2ZyUQiAgRXh1Nb4gW3NRUEAJF0ZhocDdDQHd1F3dxFVNxUVeF4EMcglmlG7lqrl3MoYsZoDmYmbamrfW61W1rtbopOBDBVEopBSgBDHo2LJmYi1oXqb333hMzFA9DBoDo6GBgN18O0BzVgePFHNEcEMhfbKVwk8wBwRUcAQ0IHXCwA9+c39OU3r9b3NAUTbE3a1V6V3A0tdZ6eM/u6p6YUU2DTEUCJAA1czVVBEUgdzJlS+SuAMBBOpm57TSWgxmoDnKXKBExETMxMTMn5syUiBLi7iMxEzGAM+/eHxoi4H77EAxw8JfukBIhMiKmlHLK8zIf9jGVKTGDQ6Db3nrvvbf2ep0A7BSJ7VzuvhE9CBe8zfjNJXMHM1cwU23e3BohMhfm7EgI7PtiH8/m4xgwAyJ0B1Wp9bpt1y9fPv365z//8uc///LrHx8fPjsk6Y0AEhHnRJQAUR0GiUsAburBX7+J0HC3Iy8v8RXQw5uDjojP4dAXw8zMNK6XmctUACBlnpept6X32lvrrda61nV7fLTPv9Zff/31er0GyiMkYpbeW+vhOai6qAUg3nkDjGtQ3SMhgDmlZV5KznVbf/nzH3uXL18+Pz4+iohq+DPh1kdkBt1cRLt0VVVTG3CBwtj4s13+m8e3wUl3UH2+m2M1RvgFHMgZAdl3G4cABkYAPuhbQmbk8IEZiRD2+A8hEELJVBKVzClh4uBWHWFwwACx3qyJNZEm2lV1kHzB4I5ggvu3Mbz9EDZXMzQcwMrAHTH2KTkRsAIRsCInt3FxwgCJ0Bjc9A1qB78avxHWxUHlQpyoAwSgG4IgiHsF29RW0GpSTauZqIq0ta9f+vql1ydtZ2kX1+pWAV36xnnlNHFQs5SQGAFVukp3cAp+V2eQg/WDlAu3SyqnVI6pHHM5EixIMwMlosKYh9c64n2w71+DoHKhKVSFTWATqArmoA7uoG9MCRBRSpxznqZSpjgWchAbAdyIyMHCG3k21zuXSy+ndDzhACLsJNLNVFUAjJhKyZyYiLpIbXWEvBCJCcwBnIhi45RcbF4AsNZNmw3UYcP0IWDJOd6lqrpZSomJwL23dr1er+u11arS09iG9Ix6zM13v9mB+bUSjInu747zPC1ziUgg7eef+x57ebluHRx8sA4v1lVt7bLW6/X69Hi+Xq/beq1brVuzsTgtGITWmkhzN0IoOc3LdDhMyzIflqnkRIgeJIlrb7XVdatbxD16vSKoSEWkrfZaJTZXySlmyczpOX72vLmet4bDM0pEB/8q1PbNUiFE3p/sxfOOL28kIOyon5F4IASknR30G3q6AVPEG0c+noJoGJOY/MF0AtoOOl6yuV8z0S/eOgZD7AaGYekQCZ2H/+6A7H7zTQhuMDeMgPvz5+EA//MG2nccBe5qJqpdpPXeGjNhF1WNVY8+4psv19Ht2+fLRAjix1y7gzk5EAASOLszPE/FV1KM26158z3ffgfPN3unbvcbCfjiRj0/HMPUxxMTvG1E34K5Kq7iQECODgiGgSIDdpiai5uYdpPuKqCGZh4IwhEdCSg4+eCmrKtCFbVu1kWl1d5a22rd1la3wBc5pdPpeMeJEt5OcXdX827WVWvv67bWrZacCTBzgniduIk2YqGIhGZgPrz4OJpgOHUDxAybguAIiGAKhGBoONyEb9Uqy5x/+HBwJ7dkStuq66Wta2u1t9ZN2s7HZvOUM4uoA9x2A4Cpiaq4gxmqkibKOYWhYubEbuxu6BZ0O5q6iMXJHsEHokSkiYPLzsw53YhqJIQA1MYe/o7G0wyaGwBiNeyeECElRmaepmma5uPxcDieDodDmeZSJuIEDtKlN6nb1lqr22uO4UZwxrDxP/igmPfow8tDBwEAzdVF3Wpv59bOzDRPp6kciTMRInHcJEcwR1R/tWy79Mvl6eHh0y9//uMf//BPf/rjH/78y6fPnz7ncpRaETyofEoZEPdjyHygGQd3HeZimA8f5ux2Kfvee8E67IfF88b329b9esQhysRIzMwTLTlPB1vMxLWrdumtt3o5n89Pj61utdY//eGPX748BMk8TfNyWBCx1hZYTNUknEkPb5gSEyK6g6mGEUPEkvPxcJhL3q7nP9b1uq2PD4/n8xmJEuecc5mmlDIRIwaT6iLSexcRNXM3QMDQhTzzhW/g+JeT8spdeKZRXi8UEHUIjwUQwBEdwQzMwQCdGBIi0WARRuDBDRGJgAavj4mJGDl0Sm5BOjJhTpQz5cxpRMTG4kSkEECoWFeroltIQFQlSD4Dc1fHwLg+DhaPtzCOwPA6HVQBAAmQYi0ZuAOhEzgR8jgFPSmkBGZqagiQGTSB6mtlIUBwTTdgRl+tpt1NfF5o/jI4agiG3tGb29XtjPIEcvV+VdlEmkrvdWvbU18fpV6kXaRdzaprdTDivGsPMlEKIIcIYOoWF8mEydKseeZ84HyidErTfZnvy3SPh3cZ32FChpQpZebCWBhyTAIOGZIhqIEYNINmsCmsAlfxKqDm6gAO8s2sECEzMXMpZZ7neZ6meSpTSSkTj3fKRGbgFLyA72zes6G5Id34JaKH9wjgtW1q0rU7GDFOU57mOZdyvV5bbzp0XETIwA7uxImQibiUEh6XmbXeLZYODqKYEKdSDodDrjUEdkTIzA7QWjufz+fzedvW3nspJSXOKQfTYu5uX4WKmL6BuUwf3p+mqRyOUynMKeaZEH3HVM9c3/DVDBzcnkEiOsC6tsen8+PD0+V8OT9d1uu11dprE2lmYiaEgIQiIq26KTOWKQHOx+NyOi2H4zJNmRnRTbSL9lrXbbter1fVbipPmet2uZy/MGc1cMeUSs6Tz2Wc0eZGQLA7bF/ZiB2pD3s/KOpnMPqNLUJi5LQzuc9w+FmKNjBqqJ6CKkqAjuSAhghAAOiICEg3MAnguNtABGB0IiRyZuBEw9kmJCOKLfx64B5g9WceZD80fMSgaNCQGHEnImIiByB3pnGok6Pvh99gc+ErNvc3/OL99TzYxnE6GxiooYi2JjlxzZ0QmqioacTRAMPhR7xFkb42STcBAQCYuXd3BXJndySH7LBTavuO9LH6AmqNn/v4+GrP3n67Oyc3V2V8pmevZcduwyZiEEA0EM4bZRXehLnmqk7ujkMnt98jN3CzCBnbzuaCGepu9f2lIwXgYKbdrKvVLrX1rbXWaq01Dvhea1B/JSdH5JyByCE54ojhqrUutbWt1nWrdV3dfC7TviXiNTz06Rjn2j6LaDD0nnh7Z8/YDByHmgMRwRzNcYQJvuX6ppLe3c0A7Fbc0palcE2ULrCahMpSKjqAOmZVCoVlLGVCCHoJIILlgb3ATJlDoMHuaAbuaGLmjkDuoOoAHqoMQAxry5xSyinllEoaFAcjYlwkODo5gNt+SIcbOpadj51xWzul5GVelmU5HA/Hw2leFuI8IpgivVutdVu3WutbMBfMxnTtutxb2Oer/bY7ZgjjTbq5qfTL+nS9/MpE/SC6eCmHXDhRujkibmCEoPv3AADQe79czl++/PrLr3/405/+wx//9PuHh/PlfD0e2U0SY06UE6fE5i7hXnR3Fxu3Sgdn/8Lzf44kvb75+zr+esPfLuzbOWmtbdtaciGaMiVmwkKITm4IZtqlt9Y2AlDpibnX9vDw8PnzJzMHwGVZVJQTt62qqKqpuIiZGZiNyE4iRHJ3EY3ZDJiVEyP4ul5rq+u2rdd1a22aZp7SNC/LclyWw3w4Ho6n+XDgnIlTSomYhwJ2F4kOMv4NMvvZErycnVfjrR8iB+L0m2VyAGc3JyPwlCiI2MTMRCEdgAiIIgTA5USJiFMomgDAkTxOnTTu+B4IA7cYjuauboBuA1zZbqccCWA4gC+565Cy+M47ON4oN7MwsUbkBuboNlAG4RCaM4MymAGYo6OwmpGDjVf6dqae7fhL1ufVw8asj3POFbyDd/ANbAM9gzyCPno/W79Yu2pvvddeN9musl2kXaWt0lfTalrNFYlDjxtfhFkhRACLex+/IiqcJuKZUsDci/XVtTGqMWFh8ikhZMJEmAiYQjg1DuGhynVoBjXYXPUqsIlrmDsA+8aNSikvy7wsh7u70/393f39/d3d3fF4nOcp+FEebK6jDr/zhnRvi+95MgfPhsSYOCIVQ4GKhNNUHHxZllxK7x0BTBUAOHEuJc7OqUxlKiVnyylrRsBa24BBt3vjQETTNJ9Op1JKJJPED5lIVbdtW9d1q1vv1X1molKy7fzMM8x1AHBOryPRxHR3f5xKXuYp51BaIhEgEO54x28n24CLDgGjAWA4aX5Zt8fH8+cvD+t13da1bbXX2luTvok0kcaMzOzuKg3MCDHnxIzLMs/LNE85JUIwMxNprdVW1/jorfZeiVBl27ZzSgWJifOyHBHB/XDbkORuL/mDXVzyeiHshO6N3/vWqIS8EZ7N8SteF59FC7ECKBEnB0N0JNt9zFg8tGPcAE82IJQ7UsjxgRg52NwRcycCoBeq+a/5XN/tyssrG660o4N78PGEzpFohA7ADrQP9Fv8zsmDrnrmcQHA4S1It7/QcyKSDz2Mm5moddHWJVVCRBEVGTDXdrM/pEDxEh4h2AGVdo2Au6pbVRQjdXIndiw+Apy3Pwf8ap+88NPfHl8Ba3xJ6MbnG20bzgQ+3/b48Vd7/8V4C+buKHF/LYp14kgYXC3gDsnBYkoDo8FQGY/QZ+jjwNxAzWpv1227XNfr9bqu196amUZCjZsxk7qL6ul0PByWw7wAuJtKl8u6Xi+XrW7Su6oVB0dCSkDkQBaiOjHAXXcPxMQckbjbeW07WeO7exPuAAKSAXoQw4Dur9lDAAAmmnJBZISCkEpKpaRlLvOc5olra2qqZqLdN6kN3FzdRFTNkDDlhAQ5MzNGogwzJ6bAF+hA2BEYsSuqgFJot8HN1A1UxVQdjAg5cSl5mkopOQ+bRwioaqK+B1uGjoEYUkopMyLCC/yGiCmllNNUpnkepMk0LzllM9CuvetWW93attVt21ptvb8WLQCAO5qjGd5ivuHHEuy6hR1eu7vZIArDvKjZtq0Pj58AfNvattTT6ePdXUlp3vUkbnHzCMAQCMHc3Xvv23a9XL6cz5+eLp/Ol8+9dyTPJZWSSg74T0SYwiqhi6zr9WndttaadEl5nsoh5WlI68MffMY6zxjuxfYaX7jvPurzPvtqPD09fPp1Ph1PhO+mSEwB3+nRoayV3mut6/W6rquqJuZ5mnafnlWl915rba3HErKbF+mQkYKBM3PpghiKa2+1XZ6eYKQgWS7TcjzmPB1Pd6fTu8Pxbjkc5+Uwz8s0z2WaiQiIUk7H093hdMqlcGL8irV+6/TZqe+X334zXk9KTvjulH0smP2v9r9lglLSVDinlBMn4v3EjtCeE0UKI6bEIfIO/oUwmD/kkZS6H/WmIiIKoq7qYoFZkZAQmBASEZMhGg3FmKMhDnoZ/Wbig9fwcNcNBJ3JfKiXRyoAODgQug0/BsEQAVOQM4TMlFIye41dYD+9dwbyrQn02yS7m7h1sO7WwCpYJV/JNrerytn6xfrF+9X7am2zvlqvLqvrBtYABMH2c89VxF12IpmYEqfEI7Qf5JYiEqBi74iVuBPX3JqrglsimHLSiVyOYL4TbSGvHz/YM8/iw8Wgm0vk+e3h0TfXzul0/Pnnn47Hux9++Pjx4w8///y7n3/+3U8//XR/fz9PU0q8W5UxM37zTQnAAAGcaKc1g5obQCdOrTjsAWCep3fv7su64pBARAqCMvMyL3OZiTARTaVM85QTS++9Nze/Xq9ExOQxcWGBE/OyLO/evZMu7oCIYcOYOOcM4CK9t1rrJv0A4MxEuyr3dpfjm5y+yQtHXJa5lFymnDIz70fyvogA4uBCR4gw6ohbAXgkMYtstZ/P14eHpy+fH3vv43AyMzc1ExGR7k43p87dEZGZiYEzEQOgmYmIudlWt1q3WqtqRzBCSISAbiJtW4U7IhNnRp7K5PacFTHyoOOVHVLilFIchHRDNc8U1otA9TerBYkHzP3ayYFns71zwQjEiTghJQBDckSLyC+FyCa235AtGgAg2H5WAZJHngnSEJhSQA0AugWBdoZvf6txIbhfzQ0zvoC5DgjIaESGZM9sLt5g7ojHuzu6AdCNSgpI/i1z6Q7mThFTfQ5QIjqOn8TeVOvdCEXNerC5wRcCgTvtMgeDPQ8iLvNZjmEuTfoVsQkUAnFG4+I0fU2N7NxirFC4uRLjIna4NcjvF+cO7JzIjWeKyPe+Pm5E03iugOf7ZH8z3oS5YMNNGR+IQc+TEwAQKI1fPTuRhrFF4GY8R749AhiKuLXer9v6dD4/nR/PT2cVCQpBRUQ6gnfR2nrtXc1CRu9uvbXLdX18OtdaAZwQFSKJOkVtBDNXdVEHhAQwsgGRmVIEZ3HcbcObvztu4h7NCu/trbDIbTBSSZmQOWWmPE+wzN4OOk88TXS9XtetrlvtIl1C6jLgtJkSUaaUEiFGPJ1T4ohMxCJ1cyQG6AjUXNwl5Lbg4CGUlq4qYXcSU86plFRKLqXE+e4A0MVclBzUHWAIHRJNUylTISJ/oZ4N7mGep9vIOXPKhNRUpPVtrdfrdrmu27rVrdZWX6UuAgAEAR6BZ0cfCWSAjuZRkHmYG3ew4L0QwJAIAMgc1ro+nr+o9K3UdakAaV7eLeFzmAOOPJVnLZK7ofXe1+16vjycz18ul0/X9bNqYp6mksqUphLgH3GkmiKiSb9er5/P56etbr33w+EdM+VSbmnIv3Hjd7btqx8BPDuN+C3OfXp8ICZXXeYZj6dhrmHAIlMb5926Xi+XdV3NNKW0LHPOU+LUu2xbjdFbk/C1w4uweHUiZiQ28y49FHrgFLFRMwtu83Q8fvjhhw8ff3j37uO79x9Pd+/m5TQvx3CPUuKYXkTknDiVqNQRcOCG3l9dm/uzv3+boLem7fUPcqLlVMLCusM4XV0jpTAlXOa8zLnknBMnTrFTwYeB2T0WSpkC6XLMQcjVhxiXED2cCOlSG7RmXVzESSKigswc2cdMjCgAihgEyaB2NCRww1cclhfdYVCP7h61YCJCtLPADoZOBrYLjxHJEyBwAIWcWC19Oy83InekdzxP9Ms1GZDFwMR1M11dVrcr6LrD3NVkNdlMVu+r9dX71drVW3VpaB29o2scz3H3LMLqw2GhxClZceZBUETiHyBAd0cAJmpEm/YObghWEsmUrSWfAJTAGR3ByZ3MQSz0gxCgtht03zHuSPIbx9SbtM7pdPr555/v7+9/+unnn3766ccff/rhh58+fvx4d3c/zROn4crs3uN+jAO4uZO/vDHuO/KgGwcEAOZmhLDM87t39ymn1tpWNxEN2S4TL/OBiVLiklMpZZ4KM7dat7qKSM6FiZw8cUojoEYppcOyvLt/F1JHgKEdBvfw+lWktbZtm0gH9Kh+M5jYfU/FSPn1oYyE82Eq+QZzaZBMcVH+vBVvIUu4hbcd1LyLrtv2dLk8PD59eXgE89AN2zgMTVREOnjiEO4PFILMBIycCAkcVd29g4ps2xoaDFNFcCbAhODuJr0qYAcg5JRTVjkEkwXmbh7zs6NqL6VMEyRIHCV1bqviGSl+/e1X24cxMnl2W/w1zr3BXEBEohRI18FADdBGRSdz2JWFAeBuBnu84IC2hkgBeW46XdpNhYMCGOKI3T4jXScYjOHOdoQA+gXMRSQiI1Iidx9Ai4iJyQF9vK+wSjevaIgf3jK/g8Ebou0RyB4TFuvRDVS9d43Haqi4kRwAyfd9BGjuFIABfZesDqICzaRBuyKsBBNBh5IUFkN7vk2DJnFweubZx6694X0IcwmDfnbcFR+73AGGRb0ZjX3VxyMiKO+7K4HP5MlX4w2YO97KSNB4qXcGuIUCHIkRnIBRDR3dTEUNwBBC8gJIBIjdrEpvXVqvtdbatrrVbdtUJXFiIhGR3sxMzWqrXXo4fYkJwKX3p/Pl4emptcYRZE316bICECMFylZRUyHmUkopE6WUd2p3vxjY3ZGQQ9kOcwEAHENfFyDiLS4XwNS1GiRK5JyAiVKCUpB5StmnGcuV0xW3GmpdMbMIjsZ6JYpaWpQyR87DcF4jh0GVsEdyuSm6wq6PcbdwxbuZABiRU2R7JI7iZbGVzWL/GKIzI3FKiXJOOac8lZIzIqqpaZzUQEQlTyXPOZXEmYDdQLuKa61t29q2trrVXkO6KSoGYG9ESGyXMd6kjT6kLjcg9GJN3dZ3yC9DmGGtVm1eq5Ryur/f9Gg3Q+cAz8kAAI6OYCK99bW2c23n2q9dKyHmxNNcpimXKWq6kQMgqGvr9Xq9fP7y+ffny2PrYmbMfDy+o2FXYxF8RXW/vSlejL/wkMvTg7swwmGe51I4DcadEAhcpNdtu5wv1+t12zYVSZxOp+M8lXlaSimXy/pET6bSEIL6tREy2qkOuOVKAjggIQExEwG4KgLM07Tcnd5//PGnf/W7H3/63f37j+/efTge78t8KPMhDx9rAAMf7HScCPQy0vQt/MevxbjfTtTger+Zkynzjz8uDoPJM/OoyoTgCJYIpylNJY9EI6YXN8R3txVDnPAVzGVOiYhHhpG7taatqfXqumpbpUsXEwWHxJiJE0+UUyrJE1Nizcm2pszexYP9NXO7kSBgg91xDxkQetgKfm6ss1tEQk8EJdNUeJ7oOPNh4eOSlzlNUxLgt6QcI8T+4ua++GXk4DgAmJuaNulX6U/WzyZPLheylXxDq1FjwaSZVpNm0kCbWwPvUcQCwSgMOJIjA6iphXrHAY1V1YQTEQavFgjBR9DUglsiTJqKpNK3ua1zK7ll6IV6hkaWGAkhUkhDLyYGfSdxxSACoxAVYWAwdN8uIRyFLHE/1CHo8JQ4PgYpaAMdhNgLXmDe4Aq/muSvF2U4PGUqh8NRVXvvvY/ECSQqiZlyyXkKVfA0zVMhouv1zGeqteaSU0qh1i1lmqap5BylIU7Hk7mpKiCGzNfiYDPPOaw+EGHiMN30vAKGSM/cPX8jWkDEUkrKiRPjEMC98IReuNrPEGMkK4EBmHtt7Xy5Xq5rra2LUojwAc1Axxv0yAxWNnCyOB9hwDZHE+utVwJAc+291q21TdXQIOIhEWzbWVoEILI4mnUP893ujovItlURaa3X2nJOKeojEXGIMoZFetOc7BdJ9JLNvUWibkw37j9CwF1twO5IyISh+zeK9CkcwjUHB1ePjQMWPu4IWBq5M0ACJCQjRgJjMHMxF3cDYMTBFHxVAAAwsrQGmAuECxbxcUajUTYqMGTE9IiIB3W8+3DfwtxvRQs7D357reef3r4bac1kcAN6sKPxW3DEwKPwHe4bK8yROaCBqUu1dgG/MnYlAZqcTu62g7/dVUJEMBzW0m8RsoAC47v91LgpbeMKdjYX4Gvwijt1NC5ux9NoN+j8erxZacHdHNSdzEAQCJCBRj5aPG1UkyRyjRJWBl219633ZmqRYBCOigGouwSake6msMeiTdX3grimer2u63VttYXjm1MiQjV7fHx8eHzqveeUc06iutX68OWBEPGWS+Q+TeVwOByOR8ycfcoIENlQu2/l+zr2URcAg7K+uVDjyNq97JejNzk/rrlkPwAicgp1DgBSLmU+0HLMp22+rvV6besaTFxXtRC5lZKmKU/jGMc9PgiuJqLSBYFMXdmNzZKZ2vi1iZqYNQfFvXICkhM5J0wp0u1jCsVMCSGVxJzKVKZpyiUTcaRNQBcHCbUTIYGhiQuqKwhrrCQza11bk95FxQgpcYIcWmHtur5aKbfYo7+MbESmgUX08NkI7yYn7A4T5ZSWqZykSm1tXdvx8H7brr035ggH3IjDyGkN0y2iXbWKbuoteLiUuJQ8z3macimcC4GjGZi2Xs/r+dfHz7//9c//eLmekZhTMbtHVB6SluHv4vNVPVOV37K5/+y4Xs69V0YoiRFsXg7TtJRSSmIikt7P5/PDly+X86XXToDHw/LDh48AcDgc5jI/nZ/mqTCjar9eLiMzLFz+sWAhoo0AyClnplDlziUvU7k7Hj/8/NOHn35+//GH9z/88O79x8Pp/ni6n+ZjKlNKGZluAcC4Ot/PhhGiG/cK4JtE3hubexsvv33x29czNs/p7//1HYQkFnCoEocUwxCAGVPUrrnx6+GPDRD5LIwLgMuENOQKyInCJJpa89rr03p9vDw9Pj09tdZV3ZxSXlI5pnxIaaYp94nK5NNsa7XrptumW7XajGTwnGYW6g8YX8AwxUSACd0RaWiiArgQZMaS8LCk4yEfl3yYaJn5uKTjIS1Tav62aAFDPY+Iez4FPFv24G+CcOkiW6vntn2R9qDtwfoT2Uq2kgtiUDejlnmUhI5YG4afgA4IROiYEFyFuoOpq5qaCymxMCVOceCOouSIPAB8SCgB3NWkS13b+rSlVAgLR13EiJWZesmRYoQYBRa64Y5xEcB5iOAiXQH4m721rtuXL19aa4GEzCznPM/zssxEmBKbhbaT46AbORA3/dBeVeV5joMd2j2GKJuQcy65lFKIWFXrVkWUiKYypZRLnuZ5Ph4Oh2VZ5nmeJ0L48pDMbLpcSp5yLoh4WA7zsuScc0rzNM3zvCwLIpoZEcWxNlKPZYjxlnmapqlMpZRCN+kBIgK6u5qa2bfaXETkzJwICA1cHQhuCODbLTcwAO5ZJqq6bfXpfFm3zR1LnhCQidzUAST0dg4O5IAahQ3tRluAu3XtW1uJjdxRPchYkQ7uu79nbjoq2QyDPWrkwIuQFyECETuYeat93dadM44a93mapnme5qkkTpw4Qq37NX2zfYiR0mv29itGdwBeBAw92IC5Q1sbggR49gpcXLtbNatuDSOLklzYOYFi0lQosBkjAzoIoIB20+qmQLMjRgwnvJGdGCYECtLRB5wLyfTIJWA25sTsBgRGmAiV0QiejSENOhVuUpQgOV/D3Ns173MBLzhKAIigq5uB6ghX7dyTA4Yqwt0NIk8Jbo6jR20XHMIgMd20X8HOwp1ZkBdIfXCFL1AruiMR7qJDDJXHSCUKD/65E+8ITA4+ZWzd4avh/kH7YW0Q5bPAR2jDXyCRV+NbmOsjPofm4g7gZJF6Boge9TuGr0VADGBm6OrifW3bul4jedtGKgMhESA5QK1VejMV3+tmheMXTSUi6bv3vq6riLTaSskpJXd/Oj89Pp1FJCrLbLU94ZlhwFKOowLxcDiIGTDlZVpsWPqv94ftjompWRzsYfrGR5gboG93Va9yftymWQkxJUTkxMiJUkbActBy7FabXS71/LSd83q5bgAooilRyrws8/E4L8u8VzsaCE5Fe5PW2iBTu5omVUcXd4/abWbdrLsLoiENEQYxJEZOqKLmUVBYHZQpAvfzvByW5ZBzDjwh0k1hUP/D10JVB1cBBQQLm6wq6iIaGX2ElDmHjVCVVzB3p1D22MPw+Ybrvkc8Xp5jN9wY+zAlnko+XvFS63lbr3d3j+t27b26l5QGAN0NeLinBi6iTbSqbmbNXJEwJZ6mPE1lmlKeUs7khiLu1np9Wi+fnh7+8PnX/26ta5mP8+HOrCM5MSFQyO1fCgVfQLe/DeDGuJ4fER1dGRFM7+7fne7uwY/khXPurV3P54cvD+v10nsnwsNy+OHjR2Y+nU7zNC8PMxKq9sv5CdHdFAGI0JDIhqMb/TgQMXEqmZmwZJ6mMk/ldDz8+PGHf/13f/fu4w/Hu/vldDfNx2k55DIRR6uUOPFDajYCNLfKkf7iqp/joS9m5i+wuYg39vH1mCf+u98dB6uBIZAE92cTMODczVKFln4HWSNESPF1RPV21Jsokq3dvIO51d7ijv/65cunVpsaAPCy3C/H95l8ylym2SDlAtMMebWUlFmJBKEjmCCgmqG4iZkYKpi6OYxzewSMI++TmZiQGUrCKeNc6P5U3t3Pd4eyTLRMNBWaCudMaG8kiyC+6GTwYjJfQpahBnIxbb1f6/bUty99+6TtgWxlXQmUOGQY+59EbUeIOJzvVK7jgLreUMBHLRcRBQREIu6BLVJKnJxHeiyM9zfocjNt2ra+nivRxlQSpajsSOiACmSYAMkR1LEZdBvqBTNAAEZghETADJG392pE3dzr9bqu2+VyYebj8XR/f//u3T0iRKbcDnPjasc6ghvZZeZ7eW0kGtTW/h8SpZRyZDbkTESiVltTNSIqpUzTPJX5eDze351Op7vDPM/LTMGJblspkRVREvPxeDwejzFR8zwv87wsCzMDQE5JVE1VNIpiy/EYsHme5zKVPJWMIzV4BFLcTJTMLPE3HhECJyZmILglX0CcWPtOvS2Y2xIKU2zuorpt2/l8XrfmALmUcG1NwAHVVNQCjpqDmke25lhB6AbWtW99BexojhpeyyijhrDHikclBR9uRXhug3zcxQMAhOQEbt57X69b7713RcRccs7ldDrc3R0RAAoQ0UA2vt+/V7MSMDd0Kft/+3y+QHoxyzQMhgEwMpGO1HB3dALAUFa4dZOqurptCIqgRKYG6iiUVY15Fy4BJmwI3b2ibG6CAIAZbug5jiyI53f0oE8RRpIrACMaEjkRJ3Zmh8iAMkJmtBvZP9Z5THIs88FfwhtWBW78/k5K7gtjCHMjnqYWJ99eenrfIIE/93jW7Tz3KNqKjmQO1k2q9QvY2bgrK6U7tB7hXYjirOjoHtKOQc8BgNsL1hEBAMz9ZWkRBByVD/AbB8fjCRAjJORuAMPDB4y0+7+ezR1aEnMkCE4MVAEwqFGHIeeIAknS6rau23qJfJptqxZe7At6PWIZ21ava922bdtqq71H9ngUXXVVtd6ld1FzPF9UPZecU0aCdd22GtU9vXeJuoGJqKRUck4pMXFiKmVKKeEwcGZmEDXOnhkiGK4OEQMNpwxvJUEcPcobvTFNrcnT47W1bG6qMi25zFxKpMykxITIKcQMTKVwKVwS9d7Dc1yWclzmw2FOiaKbV9RLUtHOVBhBzaRbFxdVBBlKV0NXdAFXAosTgnDEfU3Voh+HipsieggVlmVe5qgLVohZxcAVMLbSUGMBRG8zg+f1HD5bbAAAQKYUxaeYk7l1adft9bT47rH7Hix5wQHsT3qzPfuIg0mkt9Yjy21d1229Xq+Xy+Xpcn1aliPRIeqB73R1B1Tw6lBbq703kR71Xt0ckVJKpeSUR7VKMVPTLufWPvX2K+N6WDDneTrcL8cPp9P9VGbmBE5m6DTKy/yLjMv5UfrW29brtl4vP/74k6miu8tkpazXy/l8Pj+dzYSJlnkhwKlkRCw5R16Dmw6/xTWcbEQkv3UGcFGVYGAAorfNVHKJpGgAk97W6/Uxxb/TvEzLocyHMh3KvKQ8kmb2uOWL6/5qDkIp9dWsvGJz3+C5X7LiLwYzLnOK02aUsPZ9kZiZjkj0KEi3m449eD4qk4/YPoz+I7SXko62UoYOBtL6erk+Pjx8+vXPv/7yx23bzACA5uV+OTwdj+fj3cfDXae0iCf3RGZkxi7snb0naA7NoSN0gw7eXcWkR2lvh0RcECfGickZkRlLplLSPPEyp+PM96fy7q6cDnnKOGVMKVhqFHpjXm5qhVeahZdfUpCxHtHckvLkOrssoBtYM4MgcY1kHCTgbuIqkVlkIes3jVrORHGIDRAQM7mznW6mICOs7GycohUhESqgghmYQBDG2l16PHmomroodXUyRwUEJzIHcVQL+gYSAeyNNDNDijpx3xzT1+vl119/KWW6XC7XdT2dTj/++NP1eq219t6naYpFGDc9ygLYKOgeWa7oiLbnEaM7APmolKQA4AZEKRrjxWEfq46ImDNRqEUHls0p5SB9Eed5QNlpmkuZckrLshwOhwhBTFNswRwJZymxqkZjHTE1tcPAzcfDYZmnKec9uj0+wMI5eGtXAewaPAwcEeWbbyVV9633cvkE967auqxrXde2rk26IlLJbAOBD8ECohMj4V5xHQwJKAETEEUxNlOV1o3MUI0ACEMoRQgcyhbwhIrOceKTO1pUiPdITIRA0lErq0x5WRZVXVcya6JamzZpQIlS5pSROGUncFM3s977t/7z0AICPKNcvE3g8w8GvN7LF4z6YBFSpVFPP9xARENXdwGPRM/uLopK7F2BoTApeFcUAGEixE4ooNWgmQlBZugEjChoCGju4m4OCSA7ZMdoRIUjsBn1qRE4OSdIFDAXUQmYwYhuMHcPlkaKmO/A7q3iWc8o/7Ut2ZeJGSgCqesOc6POxIC5N1L0+QT3yE4L+tXAwURlk3YhO6ekpoC2gfdoCxAmOoSdt6oUDlHHZUDcF8TS66qUQ/S4kyy3T4HTg31380HljmuG50f9lTA3rgsxqig7GrkLGDqAI8TpqyoqXXut2/Vyebqez9u6tVql993VAYs+qxopqn3dtnXdtlp71yYiGmJR273x6BkMZnaF1sVSzjllYpLeuwTXaA16Zp5SplLSlA/LYZnnnDinVEZKbCakwEbuiOzkSESjekcECXdCeuf4aV9Jvtf9eT1Vrcv5vNbWu/ba6lKn5ZDnZZpmnyaKko45EROWRMuU5kLzRG1rgSqnKR3mdJhyGi2aYHRFZiyMndFVrGdrTTsKxapSczFXdCVXRgeCiOLgXkxVCFTVRDyq7THN83Q4zIfDwpyR+Fa82DzwUFYzkwDIonEPzHwUKL0VJkNEBkTitOe/ItU3rK/vXWrgOS7iBlHTDe0Gql+C3FHtSXqr27ZdLpfL5bKua63rup7Pl8fL5YmJS5lp+EhgKmrVrAJ0gFbrFiUIZBhqB0BmTqHwSoyE7iJae39s9RfTT9MkP3xYDOfp8NN8+Ol4+mleTinlqGqEZkCjIji8KK78NQJ8Dfjcv10mAACXp4fr5fF6OV+enp4eH1R6SpyYTBbt0+VyuZzP18sl57TMU5qnaSral+jx11pt0TmiriJRtt1232CPAjqoqewlGBCp5DxPU0mJEU36en768ku6Pj1FV+hpOUYRsdO796f798vhUKY5T9NQNO2n7O1Cx+W+ZBJem4dnsPvyIb433vj2zxCBEzwT+fuLRpMHcwq9fKQcPjPKz2TXLWdpF7sRDh0pERGZejS9b1Wul/Xhy+Ovv/z6xz/8fr1e1RwcynSal/vD6cP7D+d3W53me+AFaJIO1gxEURt5Ra9klayBNfSG3lW79WYCDhmwgC9Ezj4aoBemecrLko+Hcjrk07HcHdPdgQ8zlwQ5Oe2Byx2DvpoWpxuTjq9PpAi6ABABOaSUpzIdEITRGFwQBFy1u4i6BpWCECIQA3dXMRGRriLRjDtKEkYF6UCKzP58lADAzq6zmVtyB4hq+sCG7KNXnaAruEX7n5C4qZqIERuQGioQOMLgfRwckBGIPSFkgkxQCDIDI2R8vYUu18svv/ySS1mWZdvqxw8fzuenbVu3bWut9d45xEaIwZuaGSEZRo8as+f+SWMNx+lo5GhxSjsRMyV36F1FdMe4nBO4Q04lp5I5RwcHDHkKU84lZAk7CA4pxUJE4DCVKeecmEvORFhK6b1LH51ZHPx4PN2/u7+/Ox0Ph2kuOac9WjVwRLhzAN8Ak33B46iCEPmQsfNu+Tf47R42h941konXtdUqql5ySpx6bdIsMpujbB8TInOUXQB3Yk/B5Ua9KwR3la4YpeMJE3PJCYHcCAxDRGrMAUVUoQu4szmOZtrDYo6dO88TuDMz5yvSutZem0ozSpKr5KnnnEfjOpUu2lp/k80lfqHNhTENL5hcuMFcHDWXyaISWQQpKMQAsVijrEF0FhQ3cWugTUFQHdkaNIRmNmHqmDoRExmgOjbxZqpkPXEjQ0ADNIPu1gwEIAMWpMlpdpoQswNHbyYEIgbmlBgTuzsaAu2iheHdO/qe3TrocX+u9v6tpd2X/lcG/GXANUL1Ch7+zMj2CgHnnpc8zvRISRgY1w2BzAHUo4tcu5JfTNwVwZqHZUBGQCLICUsZeRTIZOamMNp8RpX20SAFdud07DVDZ/Jxyrxk8eOwskhp20ULw897fsxbZ/KbbC4G7+4YImGzqKbj7gaRuiAivbe1R7r40+PlfG61ShdVSymllAFQxHrvrbVaW61127Z1ra01MR8dgUNTuhddDQLTzcTa1npKPdJY91tj8U6oFEg5MU9lOh6Ox8NhMKpMURHJzHpriEg8TsHIx8ah/aNRiOT5eEHc4wujOt03c6Vi2xbVnXprrbXe2yTdTEJ5gzkTRzPERFPhxJAYauEuqmKlpGmUTOKUiRBMUQWV1Rkzk0mXmvuWOlNFiCUIg81VdI0MEh69JsLREEQwMzdDxJQ4lzwv02EJiRiZo+pY+IEIEFFEBMDETaSr9C5mYmrElFJmZgByByaIueORFBS1P1+PUCb4M9IdLpoBoPuoHLTDwZ21QoNIWJTW21brttVat1q3dbteLo/ny0Mp07ycmHKoN8Wk91XkCt4B+rZdW916a9qjtrUj4A3lMjOAibXWzq09tv7Z7WmegfkO07tp+V1Zflemd2U6ECUYtRzQDGhkAET236uAydtU75t76np+evjyS0rlMX95fHxIzIfDUlLW1mReLufz5Xy+XC6Hw3JYpqh6ANO0bevl3OtW12u0TLq2VqM7UXhmw6e2qElmg851I8Sc8lSmnBgRtPfr+clUkBkQnXhalvlwPJ7u3l9/7G2Td+8PpztAT3kCTsS4l8C4Xedv8tphd37r9zvGfZu2jMzyUErcLPANuLt7iFzgBr0DpewzPLyKoWKJJka4l/tFADN1Ed22ej5fHh8evnz69OmXXy6Xc+CMlJc8nY7Hx1q7iB9ONU+nlI9dQZtaU+8bSCWtZBt7Re9mza2BNK1VBQAnwJm8ITslSO4ZoTAvGQ4znw757jTdnabTQqcDzQUTOweFoW5vbJ0xLSOch18nk/h+MzzATUSxp+LHUPkxYkdA6y6banfbzPRFwhmMkIB2U4mwj5mTh52LIEDARAS0iKL6yB8yN1MHNydAA7LIWiMGV3BFNwQjjISGcGlGMFTNQc3EgMjpuRZA5CcRwkQwE04MhaCwE0L+ho3a1u3Lw5ec87ZtIvrl4cvDw8Pj4+P5/HS5nHPOATFj/ewEXbD8e+bZzmcgAEaasjmiRcKp6ajG744jFkSUUzEDAHGHXEopJeW8nxHjiEjMZXR0n6cy5ZKmaZ7nOerlTKOASSqlZMgAEOSOqsYiDRXE8XhcljkCLx4l9gdRdfOC3jqmn9Py9p2w07qhrcTnFTNOsiE17X1dt+tl3WrrXQEQkRMnpR61y0dYOZSr6Krao78fO++Ntp3I3UxMzDj2IDExpszorBrZ9UyIDICciFgEsKooAubo1HQL1SAhM01QiIg5OaIZim9VWquNupWuU9M+2w5zTXrvXb4NRr9KQXupWgDYpVhB5YYmO3oijoxKJgLk4DARHYwR1QndRiEvc1PXbt4VFVXBG3gzr2lqiTpzQgBEN+jsTc0YGnklUIDu0MGre3XojgVoBl6A1REJCPZ+zIDRcBCYgdk1wJ5Gjhzdwjy4K1njn/0z/Bab+zZJsQdazRzBFSyKY4WEn0Jeseeh7VQuRPvRoP8IyEAx+hz1TfqV7GITgiX3hi4Ao1UnI5bEc0m5RJNBUnURF1FRgJG7dVvt7s8ZlUawv43XBnFf4zdMG5SKP//mt8a3MBf3KvGjttx4Pot26bDVuq3XbbvW9Vq3S93Wtm2tbuG5mlpE1wAgXPwg3BAxpTRNQMRdlUSRFADdxdTjQfvdCe/WehdTJ9bYw0SQiFPOp+Ph3d39u9Pd6XA4HpeS83h7qr03QKhtu6455RSLeWQxcrTUTSnlVEouE6c0mi49L6cXddxeTVPi5TC7m6mu6yYitdbrup5Oh2Pth+Myz/M8l3CDzAwcErPmDEAIGrvRzBwi0BpnvAOAJWKwlHPKKZcUyW27G2MQaSVu6M63tCwYOihXAxxUxDRN87IsyzLNU8nJAEHdwSfKZco3UyAivfXW+17/oYsmU0VkTszEO3fAUREyMafMKSX5pn027N7esyreR9PlqM9h42O8WTMfzTsAiZjTqATBKQGimta2XdfH8/nzNM3TfARkwogtmmjr/aKymW7Xy5d1fdq2a61Vejc1BEwp51RSlKjTdr1+fnj89bp+NqucaUnLvCyU3qXpY5ruOC3MeXiPaDS6x1pEQqLQ0vBtn/fQy2PoTY9xjG1dL49PnBKnLL1/Pp1OpxMj3t29Ox1P56eHy/npcnly64wuvYX/cb1evnx5+Pz58y+//vrp0+eHx6dt3UyUILqT467BGf6ghcBcDRFzTtNUCEmlb24ifVuvxCnah18vl5QfH5YvT09PX758fvf+w/sPH+/ffzic7pfDqcwL8qgwDc+UPN443pe2Y0S7n6mE1ww3Di78LxgceDGPGNtuGPCv5hVvdEw8822Boe+meJz0Dg5NWq3r9fJ0OX8+P326nL/UehGpKlW6iGprSqtINabClHuXebmWaRHV1nvrrfW1tWreEDShinWXbq3JWtu1SgekiWgmOxlV5I3yKeEpEyRMDBk9ubJ06olrZXQSdiZAGK1c3zqmnx2/V6KF3ZSHMaQ9BSzarRERcPQbAyHvDUw6aO+mzUTc2j435qPYExKwU4A+NAgBhDsQsafB7CJ4HEIS0t6AyiOnzRmcEZQwekFhypxLijSuPVo/utCOO+wAgW6jrh9CQpwYFoKJg9NFeisFDfZT1sxE+tPT05/+9Mfj8RjAoNb27t27+/v74HTDw96jBBH0iHpKo5g0ooHSsz8RKWujeEn0WpuPhxM4Xtdt2zZVi1Li0zRFDUhzky4hOiWKmg8p51xyHiUdkQCgRE1G5pxzCGlEpOeuquGNHQ5ReSWHvHj0hbBR7mTUHnmW+327a/x5Sz6XDR0Uwx55ujUQG0zIVtv5cr1cVulKxMOZciOAxGQpIU4pgYMgGaLW6mLuqsCKZExOCZFJFSQIOERG5DSqvpuCmoqOtOZUyvF0dzyeVHFde62aUiHOqq468r5hZyGjcEpUtGjiTbErppQR+VaBK65ld5hej6j5DC8MEe52K4gr2CWhhMAJiYkToVpkV6JFo7ExpQSAiQwSYiYsChJtRMAUQKOzgkAHJ4BKuJFnSIzEoIYm6Oa2Wlc3cKvmzSL9Es15hmQIBDRHHjntuquowBt1eW8sND7/Nvb9LprdMcOuEfS9ltRblgWeXb3bxhoKaoolB0gGEf7YTestPDC4xVuSP9Aou+LqJi7N+qZ9Rd9AC7mQ67B05EBITLmkwxLbghKTSKgypXVtHXUvDuUee2GEfTzsBdAukr2ZhJ2pfz5eBkNCu//3fJnfjDfY3FE9Bm3oVqOtqJuIbaLn89Pjw8PT0+N6fdou594qWGjPQ+djN0cigpDxLRHlUphzKspdqHXsEt5D1JmNDAAaVnKvPKgGMnJQcmIuvEzT/d3djz/88PH9+7mUyFRqrbZau4haVzOk/Rp2gJsSU0p5dDydlsNxcSgQ3aSe9wbgb2KYlNPhuPTetk1abdtW6QIpp7r1VkWaysnMIABsqFyjTIE7OhAyuYOYZYBI+jQfYRJCB6CUUyo5SsZQcLY2VM3gBqZBg/Geku0eAcbhiedc5nk5Ho7zMpdpSjmpuYEyEacUPYFDDtO79NJS7QP279F/RAzCO9YJEUWpJk40tADfFC2HwdrujSEGORfb7GuA66NOE+6F+jn6z+bIGitIZGatbdfr4/n8eZ6Py3JPlHNemNncVFrr197OvV3O58/X6+O2XlvdQs4COG4vp4QEXbbL9dOXh99v62fzljJzukvpI6X3mN9hOiFMABzGcCg7waNJl7lTXJXDC/3Qbix+wwt6Oeq6XZ6eiJlS6q19PhyWZSHEKMl+fno6nx8v5yfrDUx7m6M0//l8/vz585///Odffvn1069fHr489rq53mAuBRdyq1FgYziEA1mKq2jvvdV4t8SJc6aUHdDAidPy6dflePrw8eNPP/+urtcPHyu6MxFnoPwiXvoCcL0yos9x9bes643NfYPP3dXb+Gyhgop6djDh2THHXdqAe7ANbg0yxl+Pf4ZFbrKt29P58vnp/Pnp6dPl8qXVq1tz6yqtNzHr7lurQpQJk/Yux8O8TGq99bXL2vvaZQXUlJATuop2sdpl3dpl6x2YJ+aZ4c7TBrmy9YSekRgTeXZl7dgrbJgJwMwjy2pck0OXt7DLGKPswKu5vrkSDgzORGTMnHI4n8KM3tEagACIyqoGKqJSQ1SAIxkEkNDDfY1Nak6U9vAyuGO0j4ZBQDYRsZFgFOUYAJjBE4ISOTFEDkAZSZ97UlZOxAzEewDSEQLdQiYvjIVgZlwYCkFCSOSjV8frSYHh6IOr6vl8/sMf/0jMsQ5EFADmeS6l7I6Z77M4uEwY2Yy3EID5HrXzaOFlZu6EmDjP04yIKRXmMwC21qdpWpallBDK7x0RVE0tagznlFPOgXKnXIY2N7hcHvK5lLMGzDUL0BI9eErOo2CtqdsoIB0YepQee1UNbR8UKeZxnt5Az6DeBkt3wzRxGovoVtv5fL1cV1EN9hEA3QwBEjHmnBP4xA7dUc27ulZxo6DljMi5ICXCPtwGiqbzKVFiJDI1MWlizJwp52l+9/6Hn3762Z2eztv1UkNXpupDBRxNxT0qLiBHDfipTApNsSulzLzHfW6uC7xAvV+tFCIaNVl3VBcLaKesopdvhB2IKRpGASLJXtp/LFRACj6RGJkgExaCCIJEGfvwc3o3cTXEzJjJM/lkXFz3YmQi1q8gorqpbI7qDMYIWcEJsVASBEeCEAxhOHoIGM1pAp/fMC7t9Bu+MKB784+Bfd8KnQ2SYjeiY0pgT4aA4UMiDVHqkC0MdyKUsbspdt+RLhiGhVfQbr2qVOur+eY2owu6BuU1zDxxKXlZpsOSp8w5k4j2pq1TrX1jEEU1V3MJHUPkBQE4MBLR4DT2w9Zvjt2gsWMqHEazb3++7rfP5jdFC7eQoN5+GNMTe773ECK01pqpMmHm5G5KUTbh+Qz2F8JMM7CbPAFu1YsQANQ8uiM+kzc2Eq8BgPeAe0qpTFOZR31UQBQ1U6lbrbWKdjU1U6CAksicwu80Y95fGxA45yTRpGGQly/Yq1fR6jFySYfj3Cqq9d5RRXrX1jo4mJp0bV1alZSi6mRUBnUxUzUxQ6KeJGuKzeme9vDgaIt1S6eKtk1qXa2rPn8gITkRgqsas41gGBJG6IQSc845cWbifYMAIJUylalEkM7de5fWEnNjZqZUufUmRDp8pNHL23etB6ZEOXMpqfW32Vy8sbkv5i4YvWhQR+ZqzuZGThbZuQjAzHmaD4fju+X6WM6fkVikXa4P+TGXcijlhJiXQ5q5uLt5V6m1Xrb1y/X6eV2far12aW4KgEycc0m5AHjvbd2eHh9/+fzwB5MVQBKVnI/z8pHTO+ej02KKuscZnnv/AgUqAMQo4wXP9OTfMFqr27qGVpgRt/VyOT89LgshgtnlfLleznW7oisTgGnJ2XLe1vX89PTw8PD48HQ+n9d1A+3owISJKBGpme7IZI9RhozIbxbJTKM9iZqnnCfHhOxRGUvUzFqtpoJhkUVjlUyH04TEmeA5LRfgNyxovO7LrfJy/FXT9Rbb+xULAzuvsR/kcbTvYd3d3xiEg5nZ1rbLen46Pzydv5wvj9frU63XqDYdPclFI6sP18vTuUwAanqWns1rk4vI1Wwzq8QOmIkSqGjtfW3tWut1lQ4pT57nxE1T1ywujsrkGa2gz25ZOtdRMQHVRu/f/YiCWt/ALqFVwOfCRjvM312C/d8QmCISOiGCIgh40zJbmaRlpBB6upmpCIykVeBRHoyRMGR1Hn0j0YmTDd4diQLmOgGhAyEGNtlpQXeXUZrXmmszbaqb6CaySd+kTxSYBWAvM8yAhEQJiQAz0kQ4M84MM2EhSATR5vE3Yq4IAFFd9Xw+E/3JzZkSU8q5HI+n9+/f48glgNtB81LnuruDAXgx0opHS4l93RClaZrMPZdSppmQzDyldjwcD4dDzinsMTiMXF0zGl33KDHnxKGgiCZH087mckqllFKKppRSMou0h5GjNhoNjmbUw/7H+9TxE/sW5sZE8fjSR6O6r7QKvmOZ8YjQj0RBykjRY+KxPsTAjYmo5ACDDmgg6t6EMGRrrgDm5EBRlxsoIQAHjk/MUdV1jzYqYcKUyrzc3b/7+ONPAJynaynXy2W9XK5DnTi4aoDBTCNFD44SMBfEokQg04tYPO65pt+aIyKiW5XWl+Zjd5yjwvjQBfFgc0Fg75bqCAqgMWEIHaEBdse9Yi4BR0/DYN6tg1ZQYSJFJihuM6XJOmsHFfeu0ARETJtpc0LEhFwAM1BBLsQlOtwQMxGPHloUVUpgR3KRCkM3afigKm8M3E2eC7/N5r6ysP7iY8TGBjM1Fg0817KF/SG+awJi+xCgRYqeNpPNZXOtgI28EygNUsvHbSAKpqwkmicumTVhZ8wJEkNO2MXErKu3LgC2BzfcAch5RxS3s+QrtukFbeu3w+jrq309fgPmRrgsNlKgAEJmzoDTNC/LwUynkuQwg1tOnJjjiJUuvY/SYK1F7dhIl9HQ+4uqqOuoSr3zfBbfhAne2ZoApeHPUMTOC+fJHK9bBXj0XRVhpqYK0eQ3MUd93QiJ5zzaMUYkiSic2pAYP5MWvzk/Y+ScjsclZ4qG9rW21mqUFj+frbZ+vW7TfN55CNBbrSR3AyCmnFMu+Xg41NaneQqxmor03ltt6/V6OV8v18t1va51rW0zaSpNeu2tivRYOebp5guE18qAAGhmqq5imoxUKVjckjjCayUTsjm4+eC3KRElwoSUEBtAH40fdUQSEIHQc8Iodz9NqdY3YO5tzsJPhD1XCIerAuZmhma4Ozg3xheR8rzcv//wc+/1enm8XB7M5Pz0xaL4BE9IibnM8xKF3wyky3XdHq7rl1qfel+jLljOXEqZypw49y5PTw9Pl8+fvvzp0+c/EGDJZZ4OMy4p3aVyBzQZ5KZN+9Za7X3r0hyQaWKekQpyRkzjCvbt8NXSuIXd8O3ovIr2LpEgVaLuA5j0dj4/Se/rul7Xi0gXJpWukozQCVWkt7qtW6tNu4IaATJRIsxECQnRBUDBE0YVjIg/uqr01uq2URS0ZlIHd0PiPM3L8ThCyYijrIbo+cuDta5dTUy73n/U4GgiDf7lJf020r1d/GtU+xwb+XqRmI0oj9/CjG9Km2N9v/jtEMOMnrLBuO8/tCiJ1a/r9nS+Pjw9PZ0vl+t13bbaWu9dVUMOGGIZJFdrtV6JzZxbJ/NV9GK2EgmhEhLahJa19Xat63lbL7VeqxqAd4KuyaRp37QnklKkz7ksbqqiHdVhNJ1XcwzM6BaEc9/6KwcAI7nsBdJ9nvAbaT5Yltt8BGZTh8gHl9tn3yu0DbsZ/mSog24VQ0exe0ij6e7ungJEtJ/ZUjJEIEQlCGkMgLuJOanW3qIwg5mLaFWpKrW1S5lP03xK5cBloTQTJyRmSpYYgBGZnRNQAorUmxfA/u0xfDbpl8slsi2naZ6m5e7u/ocfflqvFYBCtzDExIMqHBjXRlVgja99Z7LhhhcMcs7Hwynn0kV671HAprV6OByOhyMRjg7ncfzuhz4NHjAgWhocLlGZRp0fCjFESkHImVkQc3ESRQ0xc8dnUOujSvPODdm3/SYBUhSdhf1+7ftkd3pHV1jcIeQIIqY0zdPUxKGLNhFtrZr2wlxyZk5RNSkIRnCihJQQ2F3NXIIvC7EqJWTmklJJmZHAQMw1BC4ElDhPZZqX+XA4HE8IrIqm0Jtch1BEv3JHILSzUTEXJ3VRcCdET7zXP/KBl1JKZvqt341MiAn3/fLM6r7cP+hIgOjjxOOI9QKiIQhYc2ke+ZzWUDbQzaWZNJeO1ggFUPfqUuouYE0aMgJ6pyyovXdsFWo17+ZiaA6ImAqliacDTUcsdzjdY7nDcsJy5DQxJqIoOrLrCkblWt8JXUS+FZiB5/PnhUI39u1bmyf+23V3NzmYxxre2YOXUTffEaOPCA/sQsQR1cRoaeFm3XVzuYJtDD1hmE0ltHgM4mgAEzZClUL+TYwUZFwimZKIdbUutlaE0FeFg+fAbLute4nM8Ouvdsy+f/zWeXLbPq9HkIQj6LMraRCRE2XieZ5UDkRgh8W1M2EE21W0tdZqq9u2bXXbNsQ16gG0FoloNVqwhHzjRpZHEFbVYe+AcLsB7rEiiUadkcI5q+NlrdvWemu91qCTmSiXPM0T5lxSKfM8zdM05VJKTqMPmQ/fPqjlHebC7d7HQogl8g2bm9PxNOdGSKFOI0TfttpFtlrhco3Gj7Fmg01QG+38gJAz55ynqWy1tS7LspTMOSWRvq3rtq5Rju16vVy2y1qvra0m4tJ6b/IC5qqpQ6R+jIXgCEA06lSIqRqpkXnOFA16Us4pZUQKNp3ZOCXmULkzAIOTKbp3UzcNjOtARgSJsWSaphRtF95aP7vT5bcViDfoM9g2RA9baWAE5GCjeECa5zsi7r0+Pf7y+PCn6/XLdnlc1yeiiXnJeTkc7tzf42gpIF3WdXtc1y9bPTfZzIQQOKWSSykzc+69Pz49fHn886dPf/z0+Y8lH06HDzlnoEPOd7mcHNgMuqn2a70+bu1S2xWASrkv5T5lYOQoxfxanbB7wH/JGQIAAFWVLjklRsohFgaX3i6q1+slXBrpTZkkYC6jM5r0Xlvdtt6airg7IWaizJSJEhGQJQDdHfyo1wHuptpq2zKXxImZmUXB0ZFSnqbD4VimKZeMSLW1WptIPz88Xh8epUUfASDO8+FUpgXpK3LgL2Bc+OfMyrfLJNaE7Y19djP9vFh2ZgpHkACef+wwvKPRt8cxqDpV66K19utan87Xx6fzOcpQbbXW1iPPHaJW7KDp1VprV8cm4ttmDlezM0AtGXLBxBlUnSZtta7X69O6XVtdmzkQ9ERNu3TqhFJylrZoO9p0iiTODqY2Sgt0i3dt4GZu4Cb1DdUC7XKFAH0vH4A3K34bBj7qGyi4uot7j5pH4IquQ+q2e5PjKIssUkrMaRz7gFHmyR1DCDqqvpgwO/jekkM9JJXhG5mCSMQ5oi9jbe0ifZO+bvU8H+7n5X5aTnk65flAXJizc86QAXO0/UrODMDjip3gLX/otl7czbR3F9Hr9dpqn6fDshw/fPj49Hhe142IOUW1f7vJW313gcxcovlF9H3cW7LuixccIKfMB550jpLtEdGrrR2W5XA4xBK0UdfP3Qyiyv+o34yDUcnRHSIFmzuKJxEl5hDh+TjkMY8eZgFoQpG2q/0G9axR6OBNNpcR+QZxn+fNX3wNu080uD5ASJmnZZ66ijpVUZVaN6krLss8lZyTxMmBwR1GAUlAAjdTEzBzRUNkSpRyGlxNRkdpqlFvN0oAZc7TVJYlirogkCqI2PW6AsCIm9kN6d5EBsjEOZFPaE6A0e7WOEo1AUakDhOZ2VtsbhxhL13E52DUTuWO/M5I9KBE0c6T0NHFtbmuYM2tglWUFXQz7SZiKuBGaDAKBUfjFXHviibg4I20U+pdoFVr1U3dFRCYeWYuNN3x/C7N72m6x+kO8wnyBLlwNHBEBCePfb9X8B/YDffC4C8lXfu+gB3HAgDSm67iQH3ukbo2io3sJ/WgbL9qB3T7Q38OYYZSd5Bqewq0uwTMRdsIO6MwKg+YG/R/CEFQzQLmgqVw5pkJ8uhaKOoi1roSgpp2xSZuUfLPX1G5A2n7Ltl+PphfIPWXR/W3M/JWF7SwCOYapcV9iEAwlgqnaSoA5ipuCQESIxG6OY0iaTshH5jPPeriimjr0rvEfOwRO+z92dPbl+9OKAf9oK7m0rW2TtfaWAgBHbSLSgezlFLOrICGZECO5MgGGHtLSkohzw2HYlC+8SbxdvzC6y4BXw1ONM850h72RQoO7tvWu4pI8wrPNgaey2cTYjSrLKnW0ntvtc7zXHIqOavItl3rtm7rum0D6K7budfqKi4ivUlvKgJRIcIUBjcWuauxJXYromGTI6AXCrJCQeY5OozTYETKfF9OEEEcQiLmMMowTemwRG2yeVnmaZ5qnd5YJ0Mbcevb91yFGEe508HHj1tprqNBEwAAcS7TYTncn+4+3L/7wbTW9XGr18v5y0P5dVnu7+9/7FLdxFwdzKyLbl020W6qABD95OM4qa0+PHy+bpcvD3/+5Zdfvnx+endf7o7TNN0t82FZChLUet227enp88PnX87nL62vra85z3DCkiemKTFwQrW91iOM0A4+x8Rwn7q3j+ldnRSDwD0Kk0Qpm957JPr03tpG5O7ataX1em511V5dO7oxQEk0J4p1khJTbaouqiE5y4SJghMYBQeIQoQDnJDMzWxbN0Sae5vnmVNys4RAPArmo3uvdb1e67ZJ76rKREi3ajIvQMG/wMCRSzuUko63Fo1fLaiX0+j7VA+L5OPPPUq/qFkXbc1as2uFKtytGB4wnSidgJrBpuaq4qq7OhPMtEt1bGbGogCr+UrUwRGB0cAEebPruV7P0ZRRVBSQol4kDJzp2rXX3qaaW8u9AwpCJjDvKiDUR5gqyrYguHV5bX4RMgMzAAGG9PLlbPhz5HDwsyYhGLB+jQ/vV9cVdEVrIY8jdMKxwW79NJ7jc8OKkwMzkDvuvZfNTdUSjnsfxKhCMKO2+1bYYaQERIiuRrmU1tZar227zvVuWq6lnVKeUpo8lSQllalr7la6ZbbMmYkTjJI3b6UWjcAQmPkeR8Fd0hb9XEDVRcwdiHYJQkxSGDZTVRPdK8OG7u8264hIBAg8smwjukUhIJ1Km+Z5miZT7a02ZohZCK0QDaINRwbV0CeUUuZlKaVEpZeweHGIuft+KvKLQMcepCQAGC0KAAHAgtT5dlaifdELcmvHPftmGWkwBLg3+HUA2Bt+qVlrW922VjftzaZC6Myjxpqbmou6RAVDQHMwNXVQQjBAzMicedS0TWCoYgaARKmUgrQcDsvhMC9LLokYwZEYmWmkZPtNrrijFUBEJyTm8a0DElMk5RFCSrvPjaF/eY3IxsVBxIb2ezvmZTCgQUAiARFghHMZwCKK4oTGqORiWk1Wl4v3i8vVtI9S9AFQTME7uWlwjq7aVcDAlcQxWe+xL8GBABJyxlQ4H3k6YjliOWCaiQtyQibgUdeMENHRYEzwS4wba4AgPR8wz2hu3Ppxe/82+zxs4Et+2F/qe3dMe1ulz38VSNndrZlcXc7oNZGm5EyGaIiKqI7qaBEaEtVaoSbsJakwjfRUZEZwoDETJGbdVMyj9pxBVHn7ypH7egpeUrv4zW/eHm/lFe1uJpghOLPzLtpD8GjSClYU0QTMRLqaqQYk67dygTYcad8pBMBowSpqXeXWQkVVI7s34BeMMjHj6AZAVceuG3Q132obQrPAHu5MNPpqg6hDE6siW215TTlzyVxKioLf0zRN85xypMqWnDIR70Zs7Ivd53k9X0wUG5gZcuZYpINi7DUaW4hIsMMBj8w9dBSUmBNzT62mtq3X86g8nnMy1d621qKi1lrrWre1bqv0BqquKq1L7ypDiMs6ypmrWzYz96hZECnRoqbmCMQYL5kpRHsGNlwr6016196ltt6ipW9UciCPpgE5U8k0z/l0XI6HeTlE7sS0rdc3F1DEOvblsaucERCdR0r4KGYRHoub7X5k4PE8Tce7+4+t/iztfH76ZV3bej0/pc+H4/vr9bHWFakFm+KuZl0tUmQAkTilRAUQem+X8+P5/KBuDw+f/vznz4+P62GmqZzu797fnZbjgbvUp6dPD18+ffr0x19//ePj4yc1NdfD4d08HZje5+Q5Q0rYBbqP/M/AW7saJbDajnTfqIUKFMkOSIgEDqoqrUluKRVKIz1c1Wrr6K69t0SZ+fL01NarS0MTBs0EU+ZlKvNUpmlKOSOvXbRJJzcEKEwlUVSMTrnkNEVTeHBng8QuIo8Pnx8evszzfIiOpdM0TWUeXTRyng9I3HtIjVREkBM9M7X/ksMBRjFl2/kC8B3m7rtup6OelS0jsD5YBQeMev5q3lVFrYn2bq352pL4AdP7NNVpadPi6wpAYoCim4pRuH4AHkWTEMyUWAA6gBF5NBVQMoTm3i/nen5at2sVCwEIASaEjFDQJ/Riyr152yQVSa07CZM6m4iCgoUsygzBiYAJoOu3U1oYU7RgoBF7DjcAdjIlgLJbZPF0k2qyaTtre7L6aO3J2tn7CrqhdwaNULVFtXfEW3XweK7RQXOgISQc0sZdAaIE2NzNFEHc0QxCwv5MuD+/HdHeTEV6bXVt27Udrm27LMfLvNyVsuQ8e55pmqjP3CeWiXQCLWAFswdVAPQGreAvtINETkRMKcrI3J1Oh8MxpQx+S1J2f1GPEgBGmG5vsTv0oOZ7GA+ImMCJdyrFERjQYSqTH71IySnnknrriZkJwQkivg4uTjcK5iZaiJ21HA7TPA9C9zkXMx6JEU68xYuDD4i4/J5u42pObGb+bbJvxIFfzhaOOAiO2xJUMCCHgHuI5WInoZu1Wi/ny3a9am9B/EfHeABzE410SxttSuMeq4m5EAA5MnMBj5I+iTlSR92BUiop5Twdl6iVNqVE7uKGHhqr8N38RcTvprtHAvIhZkdEopRTSBgRfG+f4btL8IZVQSYChmd+G58hbsg3MDqlO5G/4AOGIoAJGJ3AzLr3VdpF26O1J9Nu1sEt+pyiA5oCKI5MGhM3dHM1YqemKqDNXADTjIk5Tbkc0nTH5UR5AcpACGiIHWPTEUSlBx9ikQATwZ7iXveEGZ/Dp7tMf1RadtgLjDm+Uedzd2l3wcPtOYabiyNmBu5RSRB8yCV2aiNM7lg9NNqGGwCaazO5uJwT1JQsZ6DkiIqkQAqkiBrd3KXLBloS1ilNJbMjUyz7wX8xEyLOVtTBgQGSQxUF4kT4zHR+dQHPAVV8zk/0kcrsbnuprNfjLTb3ZjkixDhahA+KhxAYyYkB1QFNPYS40iUQ7lDl9r0weahno+itgzmIaOtRUCIiaOHrBa4LmDtSoOJWhp5BzVuTvfYDEGLmFMd8aM7EnESReqotFU6JE2NOVKa8zPO8TKfTiTiVAtHZizn0jTfZ1gC3b/K5RBgNzJiQmczVrHdptUbirIrUWuuNlg6mFRA5AoY7a7ARERAz5ZRySuAq0lVba1t89Lb1Xk166JdFVLuohLARWTV8PvXoHw7M2XLUFHZV93CxQ4hECSMDyVxERYZyujV5gcsFwJgjfOQIPE1pntLhUE7H5XRclmWeplJKmZ+mb9HPjc2F0dAPCQfpEIQH0zNAHK78kFo4EnBiopTL4e7ug+n1cv41/5LdtNb1fP5yfPp8uT5u9ZJSN9ddRjOUiOYQnVY4ZXdvrTo8rnVdt/Xx8fHh4WHbummap7vT8f0yT6VYa5f18ucvn/7pl19+/8svv398+hzF7xKh6cokiTSRMomAunUTCZePiDAHc4qICI5q5r/VMW+wvBQ8mYr01lKqAJQ5R/kRVUP37u4kUn0Dv1wuvV5dGrlmAs60TOV4XJZ5meYp5+IO67ZxJXAg8EyYiQtRTrnkMk1zzjkljpCgO/T1erlc1nWbp2k9Lsfj8d27+ynzlPlwOMyHI1A2SuouatJFRTnbV/f2X4zK3Z9uBDpg9JCwkH/tYYWduA1FqH0V0w2yC3fSyZtoE20iAdNbw6aT0QlTzVPLs3BuyJuBqlmXzowJEaKGizYDRxQURRIEYwI0AAUCVekitl7b9bLVrUfjIgRGT+B5/ygq1KtS6jzVtG3OJVHiMZ8q5pE1gAiZMSVE1fL15kGAKXlO4AhO7oi3AnxuUR9Z0c1Not+Y9c1k075qO2t71O3B6pP3M8gVrZJ3AmNwIAzK85ZMvsOMW8qJ4diAGOWhojRTxIWjZiJRB0Czm03GUaFsUFpK0pWbau+t9rZJ26RXbZtJ9d5sWnw6YFmSLiyNdSKbUTvYQnGaeKYEUdnom4UyxqBCiXLO0zQfj8e7u/vj4ZhziffmHtlBw9a+hLkalnPPfIrCxbcA43CyEOiG+RPOMBGharkp3FLiaCsYbyQ6U9J++gbMLWX0jFgOh3maIwvtG5g7KFW4sdf7r3a3GcCRfCSl8Vs1bUa4dke6L+FLuChd1B2MiROFzb8VcBAdGpy2rQjK6JFiBeixWqW3prXrJr15rDqPQmFi7uSYUnYPWhSJyXH4/ZzSNEWT48O0zLkkQO9S3UC1mXVzcY/uELc+QjssHbU40BGIgRPu4g0D90g738NKb7OWMa0vnvKGi/DFmTSqCRBjkKiGSARROJcZmcDAxNWiFmy9mlWzjq4QejEggCg0aYNhiqKz5iSOqCLg3V0DHqSUJs5LKkfKC1IGJHdzb5HVFh48ISAkJLqRqf58tuLIusP0TLneJuAFEYfgqL9lot90C3B3MJ6f7Cs29/ZTvJ3so9ELjkZ36hFNknPymthSQmaPanRAgiiOFryviFXzLVGdSp0sOxgTMaSRijA6WU7jGGUzVIXWzZHhmzd1e3NxJRG6wFuRPdyv5DfombdgLpFTZHYagDvuB7aaqPbWW621tV5rbzVEt9F/tY8hvUlrbVu3ddta6731LoGrLMCuO6jBCDbt/SFGEsGY/VFoYWjyzMk8+gTS8MpBwUL3aKJ9b2xChClxigLcCVOi3FKtbdpKa9Katqb39zbSsIYEKO4o7qGeN7S5XWTdrqNsmkhrW+tVtal1B0E0Yo8aPRhK6lEcBs0UlNEZIaFHCT4QRCFqo2Kvw9hozbWaVu2rioTqfY+7WWgWAPbKbWpGIdkOegCHKGyvdYtOptC7hlykR2vdHtmAAcaBmZjLNIVW0iOBNxLOljkflrIs01RyLtHSGN9g+YaucDhQN5UCggE6ukKUGWFyYBjlCgNTDAvm7inlZbkz+/H+3Y/v3n1s7eKOopd1/Xy5fH56+rQsRKQRlE/BsYwFjYhMSKqybk9rvZ4vl8v1Umt3w2W+Ox3f3Z3ezfNSW7386fLp06//3X/4x9///p/Oly/r+kToh8NyOtzd3388HBYmF7mKdDVat7pttTaJLJYyTYfjcTkcS55LngmT7Jp5/GY/xk7pvW8bD4FMnJpNuDZTVxFmnqdyWuZM1OrattWkmwiYlsQlHVJKd3en+7vjNM3MDEitS75cEjMYEHiOzPOUlnm5u3/3/sOHOGLNdNvWtF4dIBwbAG+tJsJaUp+KH5ac8+l4hDQZJpoOKWU176Ks5mbIDM809Rsxo//IsdM6DgC3bPjY/CERDXFzWBLp0qVHmow7mKE6iEEX6+pNTdREPTrO9tbX6k2S+ux8xHxPxUiRHBHEUdXcQMgB1QBjFzqRAQGZoSGY9a7StTU1RYAEkBCyQxFLrTMgOaKhJxDxqnAxzGIw9TodapqbYVHP6iziokCImikDkHr+ZhIP7CWpoTuigam7mI9yK2bRUFd763Xt7SptjVqV2i/aLtqepD5ou6pU0+6mu9WKSDFGGguOUlTotseZAJkAGTg6MEWyapoAcaRT4V5JrJugiKkjmd76RiJBcN/RCd51FJQRUwEV0I5WyI3B9kry2BG3kcIFiCPJhYi/hbnjHNtHyeV4PL579+7jh48//vjj+w8f5nlBpN0zGg++fQYAM7o1VcKXTNjO/4QWIg61cMBHcSsIkApAmIxLLtM0mRkRuHurBO486v4QM5ecl2U5Ho+n02k5HKI7WtRevLVqQwx0NXz94HSi3/kzC7njPkQk+o0GK299jUNh6L3rulU1S4lTDhsLYla3ej6fnx6f1nWNovI55ylzymwurVltW61r62uXrUtVFwJIOyR3dTNVdabWuWUugizIBJSYp2liSkwMjiLS6nolYAa36gbb2q+X7Xp9an0Dp1tBiRdYN9zegWgIAR0do0DrrvCEW3Er/+bsiaKyfDt9xjk+GN34UwJwIiM0pshsG32KMWXKMxtmTMAF84HKgfPC+SD9ov3qWmEkRcmId7gQ2sD6SBEbiTQIYGZKKR9SOiReCDKYW2+gBtIwIQlqYuqFUrE0QZo5zUgTUAZiQEHQG39HSAzEo7nuuOq9us3No3N3wDcUy9+snN2ze3tV3bbON5T5jWCOvqsYwlypJqv1K1BnxpQ4cYpeZ0gAFG2eB68eEvnabava1RmVE5aEOREnZCAIYpuII7wyLtCjxdnrdf/qvfvtAvy5wv1vPP6tZr9RQQTjhcyJDMBUA8Nua93WdYssj61utda2BtJtdSCp3qW1vq1122q0PA+aFoPONogkEg2tS1Bzz7TO8FnDviC6GTM7uwMxpWjRhggR/FVTjc7uANHQBXNJueVotRAfaeWUeN3aurZaOwJOZc6pEDHzsC+AOCj8txwC6e1yPntwHarbttXtWtuq2twFyTh5BiRFNVB1EBvt9Jxc1SCRusMIQoK7gCNASlhySgkJlEDQ+wC7IoM6iQ+DXfEFQbjATnNBUDE0RMdRDZcpAZCIgXrvre296HpvNogNvKUJ55TTiBABIZZCU+ZSeCppGmIzCl72raUyzHMstP0Yc0QHN4w6ROgGySAR5Ciksp86Y6KJ07zcEcG79z+9//hTbU/ret22y1Y/ny+/Pj1+BF+WJQQK0UYjyhMjjFLCJNIu10dRe3o6P57PhHme7u9OH+7vP97dv5/m+ddf//znX/74+z/803/4D//4hz/8HkBzpmWZ39+/+/GHf3W6+zhNRyaQdtlq37Z6uW6Xy3WrLeig0907tx9y+mHOOOUlpxxZoqr67ZGkal1kJyCMcFRowrQRZ+IcdY6Px+PH9+8K08OXT31bo1UVmE45TfN8OBzfv79/9+5dzkXNu8i61ZKjtryzeyLKxJnTPM/v7t/98ONPnAozqcr1co64p0bIWcREat1aLXVbTe5y4sPxSGUxLpSXVMZLZI2Ukje69f4LjIE2RnNSiAD9aNHqGu3DVaT3Jr1GX/Bt3datbpt0sagf7WhA6iQGXUFGH1E0B3dUs+2qW6fuxelI5Z7F2cEQXVezatbIxVQR1FERhRmifqUQRfGXUF5Jd3ciZMfsmN2LSPr/0Pav7W0cS5ooGpe8VAEgKdnLq/c8+9n//3+d6Z5zZqZtSySAqsyMy/kQWSAtcXX37Okpy7ZsSSRQyMqMeOO9uJMCKoCCJZOkTfQ6zPbelrYtoy3SnU/OJ4MiSiJRtoADsf10SAOcktVkhu6A6jDMBpiECaUOlAa9Wd/G/XW/v0q769h0bCq7jc1k03E1uZk0kzGRQD8QDgQEQkgIKUQ4MegPmzBnZ0MGJoZMXOuyLGfm4IATBs1JTLoSDgR1I0eyYFcAATISu8cPChn2/BjM0CxcdhMhoaOrqYzuboIAHEgFACIlDkbpD7dlYnIIwES1lsvl8vXrl19//fW333775evX07qGQnoup3dkdFa6h/ArwAE61vMEQR7l5iwUjj8ddq1+uBwYp1KK6hLrwN0QwEyZOWpWZi61rut6uVyeX15OpxMfFx2sOzh0JvCwsH9cNvXD/k4/wEe1++8/TUeRHH+4d7nddlHNITlOzIlUbdv3t++vr9+/bfe7qiTGutTTWlJCMRkqe7u3du9969JEWpz8CZlDo6UerkiMqVNP2MIuI3FJxHkpAAyOptZ7Nx0iu8i27wsY9CZtk+tt731PXGzqzyZ0/Y5LH8/CPEp8FnQIUX7MD/nzHSV4N5PW7EHFibbhUbPhrAqAEZiACIAQOVFyqpSoWj5RfU4ycr+O5cvYv8n+fezftL1C37xvqkIz/E8Z3Bn54e8fXnWUCQtiTflS8oV4BWAf6rh77HdsSIaMxBk5p7x6ueRypnzCciIsAAMwqMAARBTMVUwf1PDHvXovc8H9MN/48fk54O9jLdH8jw9V4CQaHvjuMZU9Hg6EaaJ7hMS5uSuauDQdd5c75EEEkzSXMnECgsn2j47YwByHQhNLXUnC4hCsMgDP+DfHo7KPksGiC5ytNL2/oI/vzwEeCkV85+/gYQz2CeP/s/kIBXA4O+Hohs0sor+27X6/3u/3+77tbf61721vvfXW+uiTAzqk7aHsnl4vATU6YCQax+j2mPL/SDA5WCP2kY6MgKjgQPY4KMPPUFVFESyaLNWsamqaMidjVhqozKjmKmbmkRJcciGixGki3vPbOnzm59JGf72+weFe03rbt621bUizWeYiEauBGqqgoAOYholXVPYIwUu0GX0YZonEUBIlMDmyNMVV4oWaQsRAz/xBikGUOpKbBlHuoD0d/rUTFvchgqrq3uM6sHZEIKaUEicuJS9L8JZLcPwJoSTKiXKmnDBHRjISIvBnms45FwVHPdbd4YWJ6B6iGVDwBM4MFkcN4KM1d/BQLq7MdLn88uXLb23/jggiu9nW2/fb9fecXnJeSwRhpJSOvCWEeZyIDtPW+rjebtfbfalPl3N9unxZl3NOWVW+f//2L//yX//5X/7rf//v/+33f/2fy1pfXp5KKet6vlxezqezGfa+bdt2vcVf99vt3ns3c0AgGpdzBjsnuiwZS0ksRmQq+PNGYzPrRIcgD2ytZWY3A07IaVnP5/Pl6XJ+fn56eXlOCNtttk+IkJhO6/L88vLy5cuXr1+/fvlCzNvet32/3m6llJwSKKDpYSJOKeVSl+V0rnXJpbpbqbXWaJ6QiPZt2/e7TcfrEbrqUmo+nbCcsKypLID48DZyOmxujlLiH06Q/leu42vMzcgOPqJGenhMgUZrrbW23e+32/16v8WP2+jdZooSObIDq5MaKZA5GTBiQkqOPHrvXdXIKWM+UREyoeAAuLp1NyMQ8OGgAOoJ0dmIAA3QVW0MHd00qjVggIKQAYp7EUtoSYxQEdAAxWFXtyFdTWIyi0Uhu5OLsigjMSAYYPqpzAWA5C37bgYKAEEGUEURkMhg27VvY7+N27d++3PsN5VdRzNpps21m+6mzbSbhrMTHoZweAicGMOgNsZmEvbkFsxMp4Tmwf6qeUm5BOvWRGWodBlJOg8hA5gRbOAEzg5xZwLqZgAOEsQRe2jgRuB08BwUAVzNlYlzStMigfnDCvu4UGK1xLZDuZTT6fz0NJ+Jy9NTLuUADALamBvTgzZL08Zrfgt8FFaIH0BVOCAVfPxBZgKg+JXkqZQS3XuUuW4uMh6urmFVXkqJSvd0Oj1K7ccXhAfC+Khxp7RumgAcw2ictcUnmNq8/P1f76hVHJyq1nq/37chWrX4QbA0s9F7ePiIDAQnnpJddRl7F2ltv7f9PsY+pKn2lLhgJgzVFqOjqYvJwD44C2XhZKkgQ04pcVXz0XX07mgAxjv2lrctg6MOl+H7LmMIIoUCZDJnPr6r490eJtHv7tg+KZgf8t9+WCkUcQ/Hsjnu9VHmRbHrjEDoaTIhccb+cibIjJgSuHsy1X7hckr1MsqJUhWuCt9Uw1tN0QQgtFZOBBEE7eGVggVgBVo4nygtRMVCMApuLg4KrICCFEnI2WVHE3QhUCIgNCcFU2A6YrHjXKVHmYs/lrnH6pX/CJqLH0YdP//y47f88D8f/5psQVMx2bVvOjaXzWkcLw3dENwJPNLBncARzd188hC4SQCTKQGGTVD0wHg8idPzW3XIlOQyTAXWv3P9dUX9x9HcYDy+l7nggO4KYtJH3/b9tt2u19u+7/u27/ve2t7a3tuspYKcGqeX+4HZPAT+gKIuE6S0j156j60B4H0PeueihDlVWAqZ4kR15xh/Gr44AqGqsWnoNSPfN8S0iDSGbNt2u91eX9+YGABSShhbYYRYz9fzY6W77/uff/wRUkM36xGQ0VuwABwhINkgW5hq74laHzJMXS0UKRKQAAAgmoO6iSrKcIShOkCNHjZ/gPixcHU3QxCByXtBIEbWKRKRoaNL30fmvtPOBOCAZAAaxU2QRcAjdSbnVErEF9UaWewlz4MRZ3pT4hCQOSEghQHYJ3BUIiRCdYRHXpW7Q3CPwjRX3DpoRwBOLeeRco9jDo9DBRwcCSDV+vT08k9j7ESEIISM0Hv7c9+hVAdkd2dOJZdcSs7ZFZkB0SzO5dHVBAFzqqfT5Xx+RqTXt9fr7e1f/ts//9d//v/8j//x319fX4fIimvJpeTFHfe9qb71rr3Ltt1vt+v9fgtHPDPPM+Eeasalci1cSyqFgzqj9Nn+Mc9TCv43AoarKgEw0Wkpv/3tl7/97e/ndT3VKr0BuIiYQy7l8vT8/PL866+/fv3l16+/fH358tUBXl/f4PV1WddlXWqt0lyjC3J3dxHZ9v2+bWU5nS6XUsvl6dLbl6fr2/nb8+X52+v3b6/fv43eUi4OqO7qoA5LLvV8yesFKDklJAZEc0dz+uR9fcJewEnO/uH3fVLPHYSw+eNhfxsM99F77CH7dt+3+7bdbtfX6+31dn27XV/v17fe90CmAWLQxAAJMBkkh+TAyJXTQlx0ylgHoiIjpUS5kC7uA6yDJgCZJbYbmLqhmSvTjLGfBiZkTuZsngEzQkGsmAqnmnLlXDgX5pwSExOCgQ4bu+y3RkSKZAgM5tk8IySRON3lp6mr99uf4M3MxIIbaMN0iIiOLqP3rfett3u/fx/376PfTbprNxPXYSpqXXV4CHghmLYMCGH4H5GiCDQn5e6ubiGpAzeM1JDwAzVTNZqiWaKUuZRcR5VFDZwOWu8RGxSlLaQZXYIpCL7zNAzUQbtIsF/i8GMwmDbH0+1cQyz1064S/P5ZsOaU13U5n8/LupZSjxh5DQUaHNXto7R9iJjjQWQiY55q6L9esVgxkNqQd78jw4jo7iXqVWaOMZ6MHt3jPI4cAIB45kQ8nn6a3v7zU358s0Nd52bmE0mj+SsfHq5P54luocN8JzoAoLmJWetj29r1tqkZJVqgHiQ8i2k7AeScCRDQuw65tTH2MSLaY5exa8QZuBbPRMDEBJQoJ5KhfeJIMoZ08DUx11JTqimVfe9d+n27qw01YYallnWpjAmcwEhVTcUth/HIJwzdx+byoHEcfLb3zvgfVC/BH4AYVQT97wOae1S+kalyCH6QnBwpISlFkWrznA1r/ZzC2+Y06lNPp85V9+/aX63JNDNxIyJCJk6OxSk7Lo7VaSHKjhgHvvkRD4oGDkGXJ0MDQFUZDSZVmNFN2JSNIGzslcjxGFk/0O/3RseDwOGxen96fOAYC+D7DT5+1yTj+iOP4B3Nff+9Hx+C+W9wFe2b7m+yXaXfYTTB0Ul2duduuFVupfYMiujAYIASfgMOXRy6RjmcFJkxp2OugjjEh2jro7W+73vvytnDw91ppg395YnAQy3nEPq7d/zkU2oLAPyjMvdIlQ1xp4GrgYtq631r2/V+f7vd9m3bJodx723vvY8xRAQAHvqb4+aahY7MMFi5Mdk/yLjuH+ZK8OFdPcD5WeuaK0SpDHBEWQIAmEF8BUSAhyduAggvr+DpcrgN7Pt+u91qrTlxzmldFkLEUDPMF/QXA5q49n3/4085XpQPGWM0EYn1FhTMhzjUzDg1JMSGYww/Kn93JQhzUncQd1H1AepGAOo2vaLC/+QwR55adI+0SXYLZxllsEyuYOIyVNoYTI2YEQjV1XyG6QXlMYwbI6JzWeohuy+55JQ5pRSPFIIzOaEzOTMQBUBOiID0M+6CiQkpgBw8HOEOw1lEiCQ47WrqZpyy2XBf3GsuBaAEBo0Qed6p1Ken538Cj5Cnu4xO2Eb71nZqlZEWMyBKkSefc1ZyQgBQkzFkjxYLkXIup/VyuTyDw+vr973d/9v/95//+Z//65/f/hQZ4E7IOddSFjfYtv1+79u23bdtu9/u223f7gEtMqfEl5zKknGpvBReSloK55IQFQGEPp3vIwAR8bRSBjARRSciyvm81L//+sv//X//F0YCs6sMcx8iDlDqwit+/eXXv/39n3777beXr19fvv4iIkDcRZdlXZel1uI6tB+ZSeBDddv3+317+Qrr+fLy8hyn0v12vTy/XL79WZcVkO7Xt8QESBFNZw6cynq+rJeX4SDqyAwANjlK5MeROnfHzwGBf1QKf3J9QHPJPZzIXYLE3PbtftsCvr2+3m5v19fvb2/frtfv17dvt9v33u4qXXUQImJkCBXiApTdM2DmtKZy5rwCZ+AwNFJiwMSkhbKYNqTsyGAIDqCHsYuhTe4/GE76rzu5J/dkntAzYEEqzEsqNeWaSqTOcOJEUfGo2NjHTgDARgyMGRVqyMmO2kbd/3K/3L3d/nC9i0ZojojZ/ImOLr2PvY+ttXvfXvv2qmN3k4idOgj6KiLuNhtjIjx4BdP9NgTUR4Fh6ibBmjJH80CqdH5XRHELcRGnlEtZ5PABnUIunxSBOQTGhJgIM1MmnKwnM9PAZKSnxNMoCXOwC3TaHqq6yuRv/bxO5vgIiRAp5RwKp6UuOUeao8+N9yF7Pa7HiYOT8Hf4jUV+xHtIwUME4mgP3yvilD44KSACppSIKCUGMxmj7XsKy/SY0YFDmPDkXEqJ7zX1EURxN+b39+nLdpS5Iam3WWEcvf68h5/xlY8C5S8Eh/DU2/u47+1238x9WSpOSDioJJPLV0qGnIe0Nra939p+3/dbH5tbd+vggi6IhrgmZkyETokykxCQm6uKSBfNAJ5SKrnkXJhL72NIu21vfTTRjuinZRljKakmKoxZNQAtcdfHHZsl6HuS68PJ83jnON/2UYZ9MjSDydY7Str5th/jp+M2AE58lIDoILGESORwtYrSkC1DyiCr5FOuT2N5Rq5OyRDNxxg3VGdXAAUvRMRUIK3Aq9PiVA2LO8YHbY8eaH6+CJDAwIFisKE4ANBw6syi2UxYwDNCRTLisODAKed+rIhHaQT/aE+Gd/T2Qy0Lj8H+wZOZOzIefwLgYJPMZzzuFyAQuJqOtvX7q+1XGxtJG9g7CqEbNPUd8p7Pg0HC6EUR1RAQ1LyLKUgQm7JiTlQKMzuRA8YRoD0GefvexTJgjqLDgvH1Xg1icF2mxNMPNku0A1Pa/vMNgX8rBW1yHkxEVPr9fn97e/v2/dvb97cIG2rbvu+ttTb63lsTie3aAoSNV/AYrRo9gEnwz1/Me4Hr/oMCcEK54Eg2JQwfpzsfJkQOB78CEYOsGl/AHGYUquK27bfbba31dD6pCs+lHpuX2ceO87javrd9zAUGsW+Ku8W3IEZmLiVzSokJAFtrtbYABfe9yRBRMTXASRtHMEQDP+wR3MB1uriEGYzNodSE9A9itxOjHRPECWaLji5zmBYeEN0A1GKjCEPcnHNaQxS71mWps/xPzHT4Vz5a66PGjtbBjlL75w8sESITuEe9OTcxPBK5PSMURQMRBXF3ke5uIn2MxJw51ZQKpxxgO+d1Wb+6q8pmtrXt1d1V7r3lbc+A4t4RkTnF+Mk0WCGi2lWHmgIQc0opduHUeru3t7frt99//x+vb3/u+40IU0qhau59uG9jgDkEs0PCizcl5oTLWsvy9Pzl+enLL7/+9vz09Xy61LqklJiQGZN9PgwqpS7rWjPnklNKhBawCqEnBIYZD43xIkwpJrOAS63ruvzy669/++23X3/92/OXL88vX/oYQ62PcX17PV/O6+sqve0ABJhKXtZTLgWQRM0jbK8u4Qa6Xp7q6VzPZ0oZkF+XP9EUwblUIBYHQE651nUlC+stnJafjw3lP/U64DOAg9cxSVD3+/1+vb19v11fb9fvt7fvt7fX2/X77fZ6v73eb2/b9tbbXaSrdoizC2mynDE7ZoCc8prKOZUTl8qlGBCoEgjTcAYIyxXNZgWxo5I7gYV1l7lNDTQigpMZATBiJioAhVIlLpxLLjmVlBIyAYW9v7rbDK0wAANSoAQ5YWEjJ3c6elQAB/35loz9Bj40OlFTcENz1AHaUTr0DcYG/eb9BuPmo7lL1Ljx1+HaCDAtco/z6SE7ixIr7KaOIg/fC0QHUPch0lq7DR2qqioAyJxKWQAoUS5lDb85U4s/Gf4knFIpuUwy6IyfENXW25H1ZTmXlEpWSSknt5AQ4DxLQS2b/XxbjodqbiaRKTZ9TmLxAKi7H3mN+AB08bMLAtx1cLNjdUeHCPNDD+cp4ImC0cFTJCSglDinDOB5ygJiWg0HGfqd+RDHW/ycmePngZwgHCf0x0LlqOYmYHVgPf5TPMQE8D5u0vEcuQ+R3kfrvbUBB82Pg2wGXEo5rWukAZqZbmNsY9vu23bb9usYO6EQzRQrRvCH28FBh4t+ihBMxXS8c5fNHKT3tu/3+3btvQ1pCBAp4jVLzZK5jO4illI2HW7yjuZ+oJ0eBMt3BgMiwFHDPN7vzxoqImDGwyd6psHNvHrwSBdEOBysGOax5IZkRDStgHw+OGCERBgbS14wVXETMAEl76gbDkd1ssj9SJwKphXSxXkxKogl+mYwfcyHD/YBT0u5GcbKyEyUMC+UMlMiVJziFpzkQSIkfs9zfrhkPcgL72yDn56ej2juv3m9o7n4mLXhbAbmUwrT68yHyNbbFcZGPjhZyhjyJ3cbvfV27/tb2l4TnIkbcHF3NXBEFyWz6LssYR3auzEZIBl4H9aH9qGtj721IRYiQSQisunLctT0R314pEggEAIwkdNjz/h0nPgPvUuivFLRfdu27fb6/dvvv//+5x9/Rh7tvofqrAXnU8IzDIJQEnUuIgAyMrj7BIqmEWk84lGC0WOvAfhY5sZHixjvLb44Avn0NGGm8EF/TDT8GArZ9JOR8BLS0nLsUFG1M9O+79s9b6d1jKEWZWbMmGwaDv50p/Z937bv8AD3ERCciFJO4J5zYsKc81JrqSWnFM4G275fr7fr9bZv275bV3Fzna/ZicJzXlWnF6WpjCEydPJ3Y2+LwNyJrmEwvAkwhSUtgE/T4mbuotLH4JIdyMK9u9aaail5Pa2Xy3mZNrh5HgHuqqIKcLjZOQHH+8MjsMocwD/z/YRQHc/hz/G5MVMK65C0giXTRcKbNZgFYzMTNyHiuj4v61OpaykVcybKuVzcTJ42ALnnf923761d+7jRnc1aSntiwCP/S1Tc3dSGiIqARd5cTZwR0Uy2/fZ2+/P799/frr+bNU6WU8qZAHTfN0ROqTPvzJmYU84pl/V0RqCcSy11Xc9Ply9PT18ul5fL5fl8fiplRUoWnwQhfaaNWE+n5+cXJmQGZkigDMAUkWaoY3/983cCKKXmlFWEmM+X58T88vLy/PLy/PLy9Pz8/PxyeX45Pz/VMDdWud2ub9//fDuv+3ZzRGCqp/Pz169Pzy/LunDi2IpEtazrejqX0yUvazldYtR+fnoefZfelmUlzqquYTzMGRNyBgDEw90zqoFjM/hPuCaBfE5mJojbWr/dbte379e379fXP6+vf17fvt3evt3evu/bre23tm8yNrdxpDL4e0B3nGHICGmSS/M1lSUvS64VUnYFMsjuRM7sObHVbFhAiktXFARSiOPIwcEt3nYENGbCSrQQLZwzR32TOGUPV0hQUkEJmzMkRyJDBmHois3wzkaUACPcFoOJ9FM95yC9IcbOBgnBkRIBo0VGh6OZq7iwC5mgiZuYSnikBg5rMxWA/d098oAIQ9Ix8VMJx3s3i2lRSsDJkRWwD3GxDphg2uiG639KqS6Lq1qQ+yMRABzChe9R5k7UFh3Q+7RNl6HSey8lgihrKSVbDZ8qVTFTc80pi8qnqyX+/THEJp50FTuW5vtG/ahlJw57VL0TvZir2R/pCh+4YIGAHKcMuLnNVmGKkePrw+wkHtoyd/fZOzx4d9FUPCIrPrwhfH8EDsj2w6hkojjHoef6GY37w6p5VMeRlyMtnIxU+NDGpcQpkROdz6cvv3wlzvvetn3HHVU1kurHGKqCycObKIiKKTHORlzDMklFIurZjcOa0lxFh4ia4e12vd2v9/ttjC4yCMNK3qyoZdUkKiDDc8oa2eKuj0r30RXgOx47b8yHkFr4N7YgZkx8sBMe8+qpSKNAUXGWmUDvZW5sHnMGQn50NYxEDIaACJycKNlIYAnUvIN3aMgdWDBxYS7MFfOK+ay8OBbAjGDoxvBYoojEiMypJC6c8vQJipgqJEgVuDJzgZah00zCTogcdCCYK/BwEYcfC5Of87IP6Buj6D/gv6OOfeC2HxtBoscvHoZN0883Wn8EcxDTJmNjaJy0Mp9WuqyUGERdtY923a5/OJ6K1UIXKFmVRNGRLOBzAAIDoDa0dCEiBzLHMWyI9aFtjL11EUViSnlyCsj8w6JHxGlZYDrvNmGChJQAIkbyEx4UfO60MJ8iBzMR2bft7fX1zz+//fH7H7//67+2vU+f3DEe7rga6VuzFYYJBiGCR2sbu43hNPmHMOO1iRm9Dy8+bhAfal8AcDNA9KCsMHFKPMtcj3Ua4eZxAKiKAoiajiGt5JJLLokQkaCktO8t57RtWwsQOqcgIzpMhAB+ulOt7d/+/DM6SpztMuecAZwJIfwdU1qWejqdaq1qqqrbtjFz7F0ioWhSNECcimPHcOSRcBgOXyQNV/P3/e/wfYxQNQCEGbvAU6CopmN0E1OSgaljS4gMxCmXlJloySUvy3I+n5dlqbXknALemT5OHoQ2RETnY9+g0J3M5I7xU1hpvIwg9Ts/jF+QGDlEYsiI1U1FuozR9puM0Vvr7db7DQFOlx4zxKOLZE6nstDZB5MToVnf2/cx7o4uuq+L0+KIBwtQxey4earusYMU5gwAouN6e/3X3/9/f/75P6+3N/OekueCtTKSt95UgWgw76WezudzXdaSK3MpeTmfL+fz0+X8fD6/XC4vtaw5F07h/U4+OYw/LxMAgHVdL5encBlEUHJg8ESUGDODjv727U/p/XS6nM5n5pxSenp+Pp3Pf//7P/36t99O51NdlmU9ny+X9XIZvYuK6ri+fvt2uSzrknJ2QmCup9PL118ul6fA0wAh1g6lslyekaiezstlT7mmUk+Xp+36tt+vxMy5asQQIEUiYMLZNDscXJmfWbf/e1cUZKGkDTLW3trtfn97e339/sfb99/fvv1+ffvz9vrtfv0++iajifRwn0C3sLyfFEF51EZEyIicuIxUcq4qi+vCpcYjEi7rzuQZDbNhccpGSZDRj2QE8ONUDcUDIxbimnjltOaSUg0wMQoY0XDRUhAFNQJKyIkMCYidDHeDlJ1TEMyQyeJ0/aSeU+lIzsxM6aHNZzAyAgXD4CQpByPQ1UwO+y6LxMM5fCd3YoBI0YIjUwncpoGFq6gKuLgbAyA5J+BkSOIAoqJ9MyeikrgQZ6bMnIgSAANA6621JqLRq0QwQkq5lJRLZka1ET7iIkO0D5Who/deaq9SpciMaDQVGSojpms5ZdUfq38/dl+H9/rPDkfL+fsRwoIuLCAf1dJ7dYsYzAGe/wlwWMH8pcr9cNw4x2bn+A4KB4AEcFQPdPhZ+sSE7SEvgfg/YQX8Eaw53tRfrwOficVn8YICqJ7//Pl6fzYPZMfCEH1M18mAymeyMzOwr6fTiwAi09tVVAFBRXprvXeR4a5RiXGinCAlYCJANDc1EekiPaKb3MAPjouqjNFVfAy73q73+23bbzKGiSIgiHs3K2ZFNQsYmqLmqoHmRsoaBLZucbfpINi+V/74Qz33+U7EBImjQgu7KwcPi21EdA+C+gMfZQgqJuBUTse/j+4wnn9GQiQGAOeUQBNBBgFr6C3cYZk8c0lR5qYVyxlocSqGKej9szyftJtElFJecj7lUjnFfI9mmYTJiQmgGLMCE0arSciIKdJsYPZyk38SEPdfce+fltaMGztYCfjhV+AA6R7M2+nDioQHnBxsH5r1/1RngZo11Ttjz9mXyqcLX86J0betbVuXcW/3bw6LpyeqN6RVhMXYgQImj/kzuHfRNoxIo8wVsT4iz1Jaa0OVUuY8iIlSouNRmrjbce6rDjABE2YErMyAxDE++w+XueZgqiIqfd+32/V6fX3brtfRWuSihdeywKxMAY+uYQ7Y5+YbyYhEFPLtuRkdM3GYHcXDVOWxoh92erOBxtmTTb4+4DSpPmR4s00mQiBmJza2ZO4eMzLwmQHGhOQoIK01Jngt5Xz+vq5V5LwutZT82DV/viWjj/vtOp+ZyXPNCJ4TIeRHsEdsv25GAMhUcqolLTW3lhoHodpUFd0xurq5guPTm0rDaS8cq9scQtF1qDoTUU6ciAmR4LjdpoAIqjodMo1TfgRZHjaOEbk8Qjj8wajUzOwYBpMZmRGbiznTDLBX0bdb+/HGHI8KESanx6QtlKzHcRDnQybGlKwUdTOVZhEW6trata6X0+l5OT2lvKSUCQEpl/q8jG1fvpd9GdLH2FT38ESOWe0EqURkqFok2SERMyVEa/36evXr7Y9t+z7GDUBKYUQqueZUU6qJKvPClInD4v3p6fKyrpdSTms9r6fz6XRe11Mtp1pXThmJAShE0o826PNC8JgquGmYsYfPXdDVMYo2CBAllbqkupwdn55f/v5P/9fffvstspRyXZZ1rcvac+tt3/ctl4qIUyMJlEo9Pz1//dvfLpcnIkq55FoBQE0dgDjFa0bOqg5IdVnb/bZvNzMnZM7FkURtyGBASoREgZjG3vafS1kw8zbUHUVBFFvvbd+3bXt7u71dr7fr23Z/29vb6Fe3O8JG2Bib4wA0g6M3dnJjNVOd0BmAIyiACzmzqoj5cG2pFmImTkSZIAMlYDEXc1d3AcDAwylNPAQhYu/Bs3t1WIiXENmUmnJhYjAfZkPUVEyGDwVRVCPgBJrYY+YLKIk4WUqgCVNG51Bmhy/mD1fOtdQajjzModuEIb1RTMWHSpOUJRXNNRQDcyYW1V941sSEzMKhneMMJyQ3nPinztxbNzGT5JgtGagDAxqSgqlPAwCbXyruuRliitaameMERJq89lKWUnMpmQiGtDHa3u5xHprBGOY2zMNgMfQYruqeHQGJEyFL0k9JCwewCWauoj2c2luoP0b4RgUNeDI+P6t0w9vLwhmByIM0aXbUu/jhu7m7R5ywu6MdXweRCI2DxwJHc2ET0HnUwh9KXlX9+ErmNzhAOZhkyai8Q3yGs5g/VNpxQnz2BNnkrAUsNG0IMCUupazLcj6dmKmUzIcD6byihJuefRIZmOCeiJBSLVQrpQSIoZN2h2EGffQhXVUAZpcWJYaMvm03HSrDxtDt/tbbJr2rqImi41AAdh/uXSUJIgNwKaLygL0B3EU1rPY9UC+EdyO2yJ2nYNOFlPDzup8ZE0dbN58Iix0MCcgQ2d9jt5x4Rmqjz2edMEIf5l5HgORG7siIgEBcYFE0QqkklpzXkvaF+xs6AhDw6vXkJei51SnDgzZE4TqWiBJxDl/qlAqloFrNahMQHYncsngawujABIRKyAw20zEIHkFnR/n/6ALwpxMIw7xuAtQH7+Aoiw8mwrEwp0L0OMcR+Iiz9gNETAgJwdgzW2ZbC72c15cLvpz5+cwEmgumhE5E2ZkH+m6ywdhEi0QkDkULEUvXRXyIMVuEWopqFxtibYy9dxHhlDnolKbu6cOG4A6gqr330bfR7tLvTPD88sL8kqk6+TGW//H6rMxVczFpo7X9fr/d3q7Xt7ftvpla4gQJGJQcVMaIHggRmXy64h0hPnCYoQXEO4c1xyAoiuMoao/7jtNIMJ4FJzwW+6Mhh4cKYu5Bs6mdmwswpTgsZj8db2dOmcwMAVDBW2tmykzLUnImlW5PF4DTJLQfdfbHS2Rs9xseC9gtgxsTghcKQz4EjBpWhsynCyObOxcumVNCRjBXlQFm6IlSwEfHrbFDgTKGBR4efOuH0sIxEabEZbpHAESQTcC9ZBMeMACFlHNKHOdQyoyIqtJ7AzBVCeqYH3oIh0l5RiRlVo5hqyL5GGPfW+/t9br9vFJwcnARnWj62R0kwWMtzH2MUspLQOEy9p14H3trb2Jaynq6/HI+f11OT+t6KXUhQM6nXJ/r8lSXi23fR7t17YlqSWsM8aeiW3SIuKHD9GxPKTnIff/e5Hq/v7ZxNe+cgCgT5pSWlGrmU04n5iUGSev6dLl8fX7+9Xx+Oa1Pp/WpLkutS8oZkR0pOCPk9n6wHcfWz6VunCZuCiYImtIj2NNdBN0SUy1lqXVZ1uV04Vwo15cvX/7+T//Xr7/+LdXKzJxyLjXnQpzaaVvuN07Z3EbvqgqIKZfL0/PXv/329PQEAES0LAtSqF4g+AiElIhPDpzy6XQavY3pbz1EFZCGyL63smCeHPa5bX7kyf2nXOq+d1WDId67t9a3bdvut+v1dr1eb/frvt+k3912wl6yEIiAIOokAWLIb8icAwMKKMinpsUVlchU1GyYtiKpFKaSOZVEhSmHftV8jJCrOhJSSgnnfSJABmD35F7cKnFNqaZcSuFcCFBb1yZNRKRb7zaMRNGAwQQoGZoTAANrMktgGTyjF4JEwAiE8JPTAuKynpd1yTmXXFLieC+9N4qWSIdIFxlaxCziD8kM1ADAIgXRI2XHFBAdkZGiuQdK8SUODDRIXGIm6lQ0q6mjhmJtKvYCurFwXlMEQQw0l2IzTcwpl1yWZTkt63ldz7WUUgsitLbt7c6cwtrFzETALFKZwxURTN0rhJMD9YHY0uGY8PE6jo94lGyItta3bW97C2P2OBIOcDH0ZMfIfwbFzzI3peRmEQUUB8BRVL1TaW3ilA5gqmBmj9bdkdyRhIQIY1Qi8rGQpQPyhSN9TUQ+cieOdxRd2kGFnGyK6Qr7MCaKQKGQFv54T8A1ytwQzADGyUBEJZd1hd5F1AhxqeVxWE5WdhwpMqSP0Yf0oUMIPbQZpVJdGDFC1C18KlWtSx+yiw6IjN/pHeFjtPvtrdEuYjLsvt17201khhM6ioCDG5smzazMiVKRRY4GIe4HyJDtvm3bNmTIEETMeVq4E3NMCkouKQWa/u5A+fHiyBd0mIpKfFiOMKJPHWaUuYRIjuQTvyUndkQnB373cTN2IzcCNEQgKFicyRJgcqqp9FPtl9ReR+99iEDSctIoc3kBqpOAy4lTSSlzysyJOdNh4A+UEBMcNWj8g1xSk4SNXZ3JCUL/bWke748adS6muSQA4BOnBYBHpYeTOnpMDmZqDEDEERwzn2liTBQ0gYcZ3izZmDETeMaSQYpfzvnr19OvX+rTGS8rgksuWAqpVycCNqThtunYVEGN7QA2pzYWXdSHOg1zUDFQtaHWxfqQ1tsQCW/8lHO2Govf3BEg2O6qOkbb7rf79dv9+gcTIPmyLpwZPfzBPjGE/SwFLeqt0Ufb27a1bW/bJqMTeM2ZgQQVHWWMHgEjQNH4+xFn9rHKRHz/AdHABMBnoQZ+/2RmeesOdmgLkHj25ZFUoe6KGOTyaFwIIHzGnHAil3g86JPEMF+IH5Mm7L3H2yklMyO4EWPOzDkzp09VnSKj7RsicaLEjOiJ0FUQPHg0s7pWGR3clJk4sakiWCJMjMzIDAPMTSyskhEmlWRGm+mMLBN1f5+dzXs4Jy2UIg1sVlvmbmgIZOCGMzzTwJEQcuaocUNKbKZjdHcdg2dVM+/L+waCGEOsiABFQGit37dt3/fXt/vPSwUP3s+UhWKMn2bXOSvwiTvMKSIT9/aWcyXCfd/u2+vGube9bffT5cu4vKznS8m55ERcUj7V5dzH3XcZ496794wi4zBjnroacHr0rUSu1u9bM9fe72PcHYQpIWfmmnlJ6ZTTueRzzqeUU0r5fHl+fvr6/Pzr0+XL6fRyOj3lXFLOiDgDQx1A3fBBWHrcu082meBJgzu6EhpO3tvEWBip5Lwuy+l0Op3Pp8tzWc/1dH75+vWX33778suvnEqoAHjKeqAua13WlJKZi0iYEeVST5fLy9dfnp6fQxfCxBiHd3yQk9KSmTjXauezyVCRfduu1+t23zAlNeujU07JzWc6/H8ujHvcE/WtqZq3Zq37vrdta/t9v9/3bd9630WaeyccOSkDJEIhGsSINBs3c3UgUzKNG+toFq6EMfQ1A1ciR1CCkYCROuNIKBmLIziBsoIpuBOAM7tjShz0UkB2ZDcWYdVEmDmllLnWVAqbk9reupuphHmSuRrZdGV1E3BCYGBJLMk0mxa35pbAIwTxR9ICApSy1LrmnCP4I1RNRBJhgfgYeqZaqwNSmFSYg6kbGUyfmph5T5QyXD3RDQCOoXpwBiTyN9Spyxg6WBEouHMOqI9RlIOCj/DHdWOcihDOuXB0istk9SzLUuuCCHvb8l4RaahGQFCUg6Yw3AAEnNyQkBNnTSaqLOr+CZHOJ7Acd2haN8wirfXeexAc/d0n4gGsABxT17BHcDc3Zme32WbOh4OQIabVoGFZPCW2Ns1rEc2QyQFIVVUJwI/s4HfZ2WN//rAXvRfBH3/ij7Y4cAAkhEeQ20SCH3ua6ScSNFXDudW+wzCTKVdhrIuIIkLJOcrr+LJhld16b63t+95bUxE3T4lKxlIpZ8yJzF0ExtCpPlMT6WrirngMoxDAzWWM3Tf0FrZwvTXTgeBzJuLgZmrg4tZNSFMuuVKYa/g709pj59m2KWN394iUDwuTUspqzgflJO7AzxcTMlOQAMO2FEEdAMEiKyAcWHE6h0U2hKMDMcwWz8GOKjLYZeTmEa/m5FwgF8icMua1LL2usnA7bffb/X7fDaWsWBZIJ0wr8UKUiVPiknJNuaYg46Y8qa5IgGzIcJBPprWR9QRb8kTmTugMRsAERlNJ53O3CETzYHjO1f7TTTkWZRS3hwXvRHSj0I+7AQGT48SomDCnOQCmaAIwzg9LBM6WWTPrUuByLi/PcDnD+eTonDKWmoZk9ayAyqrWTHazpFYMCQCDNusIGtYKYngYOap7dLN9SOt9jJ5TSplLrRad/DEPiTmGmY3R9+3+9vrn9z/+O5Gva/3y5aXUTIBH9tSP1ydlro6hY9hfzFaz2WJZTcPnciCiqATdR2TIDDOz48SdTzMc3q9BTCAiB0SewwI3CNgXkcHhiCBXw6lMPUqo8HwJpAoJoy5UYI7PwgnMcD5loXebvJspcYP3UwABXEWHKYLn70zoOdF6qufTQsyYkZjxJ2q3m+sQYiLkUPVxAKs5LbXWkhMRuImMIQNh0irMdYwuo7sJo+dEwiQIBmY6hilChDyY9FBuqOmRhnwgBbPcnd3pgxWmIuDuPFu68GePkGaidGThcOwSc8sDANUJj8MscH+Yu7n5bI8dwBz6GG3fW+/b7fbpApqP4KEY8Pe/piYNH7+JYu9IdX16evk7Meeyplz7aGPs/ft/v2/f395Oy3o6refT6cwoblbKudZb24sMNJV934f0ALzhQEpi1zCzIU0NATDiAFTHDPYCQHAmrvW0LC9Lear1Usu5Lktd6un89HT5enl6Weq55II4Q0wQQR0NKG4VgqMdRvN4tI0/PVZj9N52JkyRIJpyKbnWnBPlxOvpfD4/PT29PL18ffr6y+n5y3I61/X89Py8Xi55WYhSSCQ41hAz55xq4VSIGAEZKBFnTqXUuq7L6TRvcIy4HiPLY4IGmInImS0XN6WUgRPXhThRSnZo8QOrfv+0Pt8ufnws/iO/CQDU/L6Jqrdue9PeR+BP7s6EORMZZ8iWFld0TWGvJWJdsAr24XuH1v2xM80pbzhx6YDp1meJMSdI2YkM3dEUrYMaAwNOjYBP9aAD0ulUT5fzui5ECYnHsNtt3O/iQMwS9NO6LubQDXdJZANMwZwiN8DR3AwMHE1VemfamdKgHE5biDmSOxE/sxQgBATRoTbcdMy0wm3fI5tq72MXdaJSl5zyksLUM5VGe+tJqMtowVB310nem/laDgCPccpxv1zNVXRvHW84RHLhnKdKDgDBFVzcyIzcUINi44jIRCmXqirmlnKqy+J+JqJSCqcZah18M0IWiWB3jUYXENxIhkl2NQwhA6XCnH7eaeOFRkOcUgoxaC4FEUW1986qRBx2HQHE2juWEUy5AGvNzC1ZMjOezDf44LMb/8lMqlHL2mG6HAGcs1UnQjNG/AscMOvTj1XqUenaEQD+sBXzv0AJs9z+wFXwQzGtB9DxY0cUFBY1BEJygg+lDgYCRxRjTKQHy95Nrbd+v92vr2/fv33/888/b7ebmZWSc4a6UEruoL31IW1ve+v7ATmDg+fETCAWib9u5IbmHNNsd1dTIfRac84cjmERBxR+DGruZsQw+z9AN3yIBumI4ey9x32LRqK1hkg5Z3cP3SdYlA2f4LlEwByoJTogOWpM2nCa/R+MamcCZohiDtzDosEMDZBnzwKHm2fc8GhfCJ2QvNCak1WWPJTRujh1IcNUCtbKZfVytnwiyojMnJkLpzIFZ8wHzkcOdDAWEMEfpXhY9zCiMziBJzc2Z/OZXHWguR/gw39IWngvcEMZgOH5Gc9WAFKRzhDVP2P4h0ItvNScc86cU0oGYA4OiiZoQ2x3udu4ah/ScDS0igCUCp2p1uUkmoaUoUszbmZigpGJBejmoaAnR5sOYgPchJiJorkM+lzvrfeWEjFjKYuedALOAFEoYaxrkdH7/fr2/Y//iahfvzy3/W91qZmIMH0KcH9W5gaDR9XNECAx11qIMOaEqXUmxunRHXRWFbHjcZ+M2NlR4AQajlFROEAEnQZNwWL0ggkAehf3PtPr54c450cpRZkbAY4QM5zHfmVBLJwTeyfwmQx9PPDxIhCcZkSwyBjxlLrrUvPLy0XkKVvFD7ZKf9lozFQFgMOymBCYqHCquay11lo4EYDLRDIEDswvpM5uQgQ5sSQaDDpcVTTKWQM3D/GGiXrwTGGiDYSxTBEc0CAS8dzNQhmgikieOCwS5+iBmXM61OGxxqPmA3eb3d2BMTx2fFUbY4wxwSpV0BDWikylYWs/LxV8bzMnZxXjiH03ZTvYKfNDJeK8rE/MqdRTqWvO9e3t9++vf9yu3xydmUtdnp++Pj//sq61FC/lVMtachmNTGXfZYw+xpgzg2MiiOAOOkZzEDN4uMLhfG1oAISp1tPT+cu6Pq/L87pcTufT6XxeT+dluSzrmbkSZkCI4g8mywaPb+Kz/yKneEf+yeYrvfd9KzmlkhOnnHKtS11KSVxSOp0ul8vL0/PX5y+/PH399fzyZTlfltPpdLrU85lLIeRIf8HgqXFKueRSU85EHMFvQfjKudS6LOsaz1po6kPGCw/AicOAkcBT9CCUC6aSl3ZY5sNjAoMBNwG8z8b+zcv/w79T1bdNRH1v1pqMIROGR+BEtbBjdi6u5pZcqyqIoiiK0lBqAqV5Gz6GiboeZa5KjPVbRCuAaSJPBJkkYUNo4AY6EJQw8+E8ZIAK6ETEcD4tX788PT+fAzvftv47vZrs6kiUOFnOvNSTAm+SeFQyAY2cF0pzM+mu3WM79E7Ec3hDmaggZeAEnInswc56f3wQAHzIEBmj7/f7fdvubd973/vo7mpuhFCWWktxsJRKTjVxSZSZeNDWEWV0kRHkhVinMdN4531+qHPVzM23vatZ6z1nzoVTopSIOOi85MGmFRdxHR4cGSIudY3En1zKejqbCRKknGpZEqecCxMjUuISKv65dYyhKqYm4iLgFlnB4fqXkX4CFDxsZYGIUkqllLrUWisRhYw3RuihIHlwcx/7UcwAER/yA7ZDooAz52ziJlEculuwERDFRQNLdjfV6XHLRu527HP4eJHH+P1AHY7rgeCa2ZRE/OU0wWPHNDs+lPjTEvrjaXzz410R06hSzIEeQiR4KFgmyfwQx4O7qWhvbbvf317fvn/79ucff/S+IVgtJVesFZG0D+m9b/t+3+5728J1ITGnRLkkU7ShMsDAVTRmgjgBJTUbRJhLJiJXcHXp1kkaiHQzdzFPBnGIgVOEJcR5EALunHOwR4LoMobEXhQhnetprbViZIh8tstENDHMI4fQAuqeNW4YR9OR8cuE8RMPkbS6YqQTTfx+Yp0QmBJQTEaciSHzUhJkkkyCLlQ65p3MKReuFdYFljOUJ0RGYDwoucQ8FUXzlsVXjjI3CsBwEZ9aOkIAxojQNnanw/f4+KgfJ+rjZnxa0mHQAwiZIKAWDgahARzxTwdvIUBuZ4ZSeF3LWmvNpeRiAGKm0qVv0gbq5uNu7Sal9R3HTnJK7inlpSyV+Cyae6fWM+1sTbsOnJ59QYWaAxo3VNU+opXVg9hKIjaG9NFb30PXvqwnVX0UdYhwJC2aqozRttvb67ffwcf1t9/adtPTJecSmD3+dCr/XOZ6aHtgAi1pWSugjTFioo7h+8kPc4wY2OPjFsdugjiFzA+6AiFiSkGTQZp+OeYQITqxv4wR5dd7BQMRYYlIBBT8mnkux8yLpltFYjjA2kNIa4BOBABTEo9ATARhDs2zWx9jWqIFuBTa88+GAQ5mkSFNOHVgpaRa8lLLUioxEZMSgtvDmOxhgRs1rtdsknVkF5UhYmJiJm5qOkJPPyNND5YCMU66DMzcClMZvYVxGxJReE7H2UqEOXGupaxrWZe61FJLKjnnRHyowuZbm5bpD7xVRvgvjtYlGFyiJmqigYkqfCoWmayzA6E4bj68P54HtBgcQAAg5LwSF04VkYmKA7c+9v3W2nXbNrx5b2/79vr09PT8fD5fFsCQduchbfTeepM+TBQO5HuKEENuY/Dw5qYI9OPEnBPnWk/rcj6dLrWuOSdOSORhHaq6j4GqgrADZiRGSjgdXigq3dhYAZwmPIyfElgTU868rsvT5fx0Pj+d18t5XUphAiY6X14uz1+eXr5eXr5cXr6eX16W03lZT3VZSqnEiZCO1FYMhi3nXGqN2LqcSrh3zny/nHOpEX0cE8qU8+FEMSndARxMDAEAmJGYcxERkRF9JsRH977sf94o/rcuM9+bqfoYMTUFgIiJS5iL4wJJsQDoGtRQNR5KYizG2SgJcPfUXSJaQM3VwKPMbSItwiNMJaExOkNnu7HfGDqCojshcrAlmTAlJ6SEqdKXL5dff31+fjkzMSLmBPc7XZOjAaWUck3lzPUZoLCcWRujJrScbZL+3FQay27WzQe4ImUHCk6kaVfpqJk0mxukv9xSB1AVUW69BYJ7v93v91vvTURUBgQmkBiBiBOCWSquamloyjkl12wkThqpbWFjA0dm0mO8FrYGMDcKDli3D1HTIZQGpswlMydyBzc0dVNXdRmuI8y+GYnVhIg4Udnqup3202kdq5siAnMCRFVdlmFmOWv4/fXDu0rGUFPmgpwQM3FJqaRUfkZzY4/KOa/r6XK5PD8/Pz09n87nNDk2A1EOBp7P9+Xw0GzgHLaQmjJzYlam+AmnGHXRPFMIE6P7pER7JPBAbLLqAHG+MJGqMZEfZeWxyz0GIUcGhJlZgFOgasykqkQEj5f1kKKghqtxrJOAkieUO9P+frw+Ii8B6YXi8bBzDI3Ewy7fPezGhuzbtt3v+76H0U8tKedMyRBFTUcf2962bd/33rqE6TshwXFwByoMhw9YSRZYSUDMSEQMOXMIQug9nlYDh/C5Ev0hy41fJqac87Iscfw+SHQiEhF5phrqaPrZNOtxT+iQhDsBEBqhEfo0Rox7EhSeqHGZo88xViRGdtSA1PCdCElwfFIzYAXZKBMnSqQ8vew9RtNImalmXCquKyynmXqN4ZKb4HCfnQSF+GTmBwSHBR8EiYIICMLPEIyBo9KFWYX746z54EMCn5W5iFMKkBgyYYqGeJZbQIippJxTQCGIQBzQaT4t+byWdSlLqSVnc1C13vU+pI/72N+0X3XctA/pODqrZDNHKqXmspzMSh+YewIuwbxtw8ndDkydERNyIuQpnjLRqO4ICdRcIvK9tYZABP3cQk79vuaPIwkRMNSQ96tp2+5vbbuLdEQrmUvmH2/Kp2huPLdMSJRTopLTutTW277t+7YLdTqm3AcN9y85NIe/YNCBIUwSYYYipgeS7w4aaV1AAKxqvXWfiEOQU+FdW4CR3+hA6fCLNFdVRIgMMsoAB/sqNBmOlAIqji+Ac5JPCd7XixMBp+wAEnsUMtInaG7cXEJMjClRzqnkXEuptdRSIm0hJZ6wr4az4JApkRrBv46JCbgT4H7fTWJaFc4tIkNMNdgWAQMwIYfgIuziwFSlqfXWYZaQvEYgByPnRES11PVyWs+Xsq55WXNdUs6RHhSNB+I0Ae99mHYRDQCh9xE249ve9723NrrIGDI3G9PEdFnKT0vFccLLh0nFrK4esXYwzThhRoaGRBiIKWE5IfKKvCDXUs/fvv23b9//5X7/c/T72+u/vl2fWv+b2Ff0nZBqWUyliWrr2od3sa4uajLt1+PJFLXDk2VudExpqedlOV/OX0/np1pXQgja7rYRJSyl1Br818o8VbEp18SVeCFeAFPsgQwEbDNre5aCPy6Vy+X86y9fX56ff/31l69fvp5Py7osiSlszy4vL5eXX84vX89PX07np+V0qctSliXlTEyHLuEAjQBihFeXdT2d1tP5dDpt+5ZzTocyOaUUHqcyRghviOnxIMzX92E9B+sXD49/c0/p3c3q/9BlIf7ygFKIKEFko/CifDJxskp+djNzNKNh7MpuDEZo5AownMRVLIzuwfRhTaLaNbzrTRmUQdF2kDcYr6h30obeYirCAERWkqdC5Vzrub58vXz99el8XsJ8ujWPGSNxSfkpLb9Q/dXTL44LVmGTktyqk85aCsDMumo3baa7aSc3BscZgiVu3TWbJnf/ea/tozv53rZ9u+371kdXs5kwwOmAW8jdgpgh0lSa6nAdoRYKoQgRMSeiqQKOR8997pFzO0VIiVNODiEOMzXXIaLAomM8fF/A58QIZlKOA6CCsRoOya3xtpXrraSSSymn9RTBEPNPOSJyyoRIxT3nUcYix3iw1FLKyimnlDkV/qzMJeZcyno+ffnyyy+//PLb3//+69/+9vLlS1kWB+9jPNrp+c85uJgKATgqyqkEOGrcnDh7wvCSTxQ1LBxRmoykgWyhR5CCe6gekIlySu9w3HQTe0cxZhdxoC9mbjoZeg8D36P6pg+P9uQlq5qoxJ97HG0/3BMEjHeB07zm8VQfcAgC0fEK40+Ag4OJjNZlDAKspQDmWjllFL233lu/b3tUwEPEwBAj6QgJHCyOhvALNSMES1xS1lKQAdApZNeuoh5tOTJw5YKITEBDuiEboBqIHYhOYJFMXEqJm1JKEZmG/733fd9UrZSKR9RrFKGfXEROhE7uBMBojg7kyFPyxUSEHCAuMfsE9QGEnc3VDvD30RwdnFXHSUkCj+Gao4lok3bT+2vvd9MWEsdUmGqGWqDWGR45RTR08GEni+JDjXsE1MWENrhL09vAYaaQgjPYAd9++KM+6WnRLXxCWnBGYILCmDPVxCVz4uipmBgj/hRpKqnCkKbkdFrLec1LSbVQyWTuaoQOd9n327ft+m3sV5PdRUzY1EzRjMwNCThxopJrKlqAinoezs2B1BiNiThhxKMnir7PzV0V1DzY0uDuOuvc6Fp6b6aKfgC5s+0EREqcc85M5GYy+ui99910ZKbTUqT9WKXA504L7qHK4pSJskN1t23fCFDHYJrWuNGcuRviu74Vwk+KAwYLZobEsxcC81JruFc7ePRt7ghOYygxhq1WfAAUkSzHxxkTXADUo+M2AxAnzJRSKRkmjyLYWg4I6DN+JDxKaim1LKWUnFNO2dx6byIjleJIamAHhPrzU4UIR2oK5SiFSo4at9Sy1BL8+UOJZgG/t9bamDYTiShxejRwJjpa79NQt0mTMYaLTeAhWOsUCrzIgAiFm46wV3dwcCI2cGRKJdd1ZaZay/l0vjw/5WXJdeFSUsopl8fHET/CSayDRxJVb73NV9xv9/1+37Y9csH6NLACr7Vclr/9uFJg7vTq7kEVcJvowiTDxQ9yp4OgMRmgyKnwUupLLudU1rqczcf19j96v/e29b5frk8AnRmWioWxlNr2zVSlD2vDmviQmQmFFuqD0EIThnohfCA4cVmW89Pll/P5y2m9lFLHaK3fe99Vu9ngxOt6WtY1bJJqWWtdaznlck7pibMhF6SMnHG25n5sYZ+Uhk+XM40vv/7tb//lv/yXv//227KstVZ337f7vu+Xp+fLyy+Xl6/np5f18rysl7qUUgun9C6bfWCp4dSf87Iu67qe1tN6Oi23a05p6jOQmFOY8DNHUhQRcbDXfz4aArkIV01SVWZ3fzy58BcS4X/m5ZFsHmU7IRIwZQQUEkFxJoITo7mTOquxWzJNZgxGYRqGAqQ+ywBVNwOXSKq1IKeauCmBkAvKXdt33f/0/gb9DeVGqIyWSREyIdZzOX+5nL6en19Ozy/rsqbe9rZrugHHg4c1lUuuv1D5xfOvhidyS2hZEQyTBWU+OFDiPkx2HXcddxibj518IBK4uQ23ATY+G7v6GN3Q9n3b9q21XURtGuPF7MVpzqNMZbiNaWUqPQJWHDR4Su6T00UP+4kDzY021cEQgROlnB2x99FHD3W/uxHPjhAn8+vDconn1wnQzFB06532PadbWJSs+/6cSw1NlYU3MmBiDuVNPkb5Q4aqJk4555Rr1LgplZ9JC8ycazmdzl9/+fr3f/qn3/7+919+/dvzy0tKxRy6jAmaPibZCHigs1MPEj80LDSYw5vIMyAwoXF0IgZRWgASgk8KYxSJFjkkAHGmsooR2ofJpH+kgRy00YnwTsu/KciNgie8L2JEA+DB74objH9hlMwK+ycJGkI6dNhTjTCx4Qlc0HRiPd77gRea2mGtQLUuxFCXxNlvt731frvd9ra3toewNUi0sRbATSUwGJGuaorgKrqUoqKMGDoQRzcXj0h4TJgoE6WciCXUN8TuFKES8WO+uxhARXTo+XyyI3t527bb7dpaL6UcZS48LC1+ui0IjO6Exo6BHwFA7G98JGkhETyg3MSogMxISozEjg5hMXJ0SXCQLQHBkQFIDd0AVbTt+7XdX2HcwRonyAy1EJXktUApHiSI44vNgQDMMFE/IF2ESLePARq8F9ThfjCpEu4ENJvMg1cBf0U1/wGamwgSY864ZKqFlsI5c1CXOPG6ruu6IkIUWqGVLzktJS011cI1U04YmfA+3DXK3D/7frWxm5orm2YzUiN3Q8SUOJWMtCxQzdOQ1ITu4twVURNTSVQLLzlnZgczcIlRsh4pr4d8aPQe9PzRmqkex9ExpQAMZCfnTIRmKmHF33ZTSYzrUvr+HytzkQ4cLBgqCEBsKfWcRik9tT0Yn5PeOVkKR9SZxTSVKD1G5KKKRrmU0/m0LGt0O+ZGFJ0iuKPqo2Z4QNPTNzfMFnJiZmQCkdEjswYAzMAtMa9LjbhzMx0yRh/mysQzzZaQiHPOueZlitxPhBgu2evptJ6fOFfijNMR/cflw4Qlp1LSupTTupzWus6YBeaYYoVtnxNN/RAnSsZmqooJEI0ImHIyzSZZW+rE7bBqiZoMnSbVA2PLiaMnpBYS1IoRhrEI0/wjnt5YrCnA8pTmPDullNJD5P9gg5i6iPS2t31v+7Zt+77trfX4cd/37d721ocMEZl9BrjxZwj3ZIQYTnzlESA3OxwPqUhUJofWdv4y4sw5MWeqtT6dzl+fnn/r4359+yNscUNQaWvyBRhFZegY2ocPQRFUQ7U5bQ+nmJCzhmEs55SWnNZaT0u55HwC4G1v+y77fr/fr22/hYAp53Q6n87n0+l0WtfV9GSyab+nvFFqnFqqT7leCqWPnfU/uhJzybmUXEsty1LWtdQFAAzJKNfz8/r0cnr6slye6nouy5JyIuY51/zrl/LjQZio9AEQHWccQpCdS6nLypyIGQFTKeEW+o9sEybGfsgQj2nv/0E01x3E3nfomMsgkkExPDuXWBYGJM4K1IA60HBSQHNUAKeQRJiTAxm6uhu5QqAKbhBhuT4IBowTYAbIhotjQcqEjallkpJTSb6cy+nlfHo6LUvm5HEGq6sjUMq5nAzPnM+YTsgr8IK0MEAhRMdkpBDe6QHVGLiCddcGurtsMDa0HUERLaWUSk0l58j4/stNgS6D0UTV3AApl5wLH0ITcxd3dR9uY8iuodTs+xj7GE10mMmkZnGcleZGZmbq6nMM7mphmvW+lqa8ZiqALcbIBMAwC8WHTOYoI2MzCZffUsuycM5AqO5DtI++x8HdW9v3+77v4YjHHF4ySIQlZ8gltqVaaq1rMHB+HknnUk6ny/ny9Pz85eXLL+fzcykLUnLHofrh1Dn+ekhCQ/vxjrvGFgNHr/0+AUYwAJ1cP8QAH40pJ3ZPk3xwcK9ia49u2ma+78R3HPxwYGZOic1J3UFBPYZbGkHSQRqFKHDjoDCf49o5jPYQUR748M9P0MSM4nq02PPvyUODo72JUQMz11rPl8tzk1L2sjdH5eSOw91EpPcRyU7gSIBAcJw/QRyWMcZoY/QRsi1EdDUTUYJYeMf3jcCmnDgjJMLUizAzpxZyNUBx+EsEGgT8G+7vRH54pKlpH0VD4XOUuf/wYkCOU5PAeerW4QhOoiDbOs8yF+In4MgEicEM3sfbCEdGNjw4Bkc94uBDZe/ter99b9c/s/eMkjIlHwxKaE4OHPwEfEzjju7nA2lh/rJH3g2AAwGYIcaCFI/QYjBEi6jb4OMAEIbg+fHFJoXmx/uTmE6cEtNSaSlpXdJacy0pFg5zWtZ1WRaiqaXhFIMCSgkzT5JDYhA1d3Xt2re+3Ua7uw562IAfzkbvfQFGqgak5Ikts6bkmR0Ya+VlLada11ozs7iK6j5UPUD8B8NKVUZv+2jQdr48vWz3++gNOU1M4agamDmlTMwwbXTbdr+1trlJYkqfFSqflLkcRyo6uIXfBiEkgMpJSmkl5xSxgjiDHgjfJY/mPGvt6YnjjmOomdVaz+fL6Xw6pKUSg3jQmPL49BpDPFAnJJolWwxmS+KcqXfGw4HL3NC95HRe11xKeLdu9/vtduujx2yMEwc+knI4BZbL8+Xrly+5lKBEhUlfWRbOC1Jy5J9RusS01lRKOZ/Wy/l0Pq3rlBXRFLVBB1cNbwNEV0PDoHcnyAAIU25nnCxl5bRHYGbK2dQivdpE4yfkRgCMYZRiatp7DzuYeO4iUbrWUtda1lKWkmtOOfOksiM+mCRwEKzMZmqOaO9ju9+37R7Rzfdtby1Q3d723lqXEWqRdyIQ4yd2dKHTdHSjmXoAE1EgCKfS2aH13sP0IACfOIko6nNwcBfCvK5fv/7y/xBzKSsndu0q/fr2h0sBzTn5aE17d+mugqpoFjuMh9VhuKAhMabMOXOt5bQsT7U+1XphXvqwff++79v9drvfr23fAhuptfTWdQw3QVAmc2mj3YhuyBvytp71TCmXU+xRR9o6PnbCj9ccfTmo2RDL5haJGdmSUzmdl8vT6fllPZ/ruuZS+D9AGIgTzODw/nxo4hyIKOVclukBDI6lVOZ4AD83wH0cHo/q9v90mWsA4g7BWzQAdAqPFM/mh6uPoyqK4VDs6rvAUDfHsGQ5hsxxjEfakMXPgWxyUt3QB/pwLGiMVhAyQsQf3Zg5535a4LzQcs71spQlM4NIH6q9jz6GOmBaypIVniifgBfn4syYKDHXzMlZnRUo1rq/Cw+M0BgUraFtqLvJbrojQsqVOTMo9AdKPz/TIcPQzR2Jc+Gc15RXQvIQWmhT2WVsbe+9ba3fR2+j7yJdRlcdZmqggDabZEc3MMNhkRcnD4LjXELmpgZ4uA5Pym6crEQwDRnpAERjWEOE67KsseHVtdQ1l1MupdZgx4whzRTUbN/32+22bVsIYVOQJCaFPKcUE69aa12WpZYlZpg/LJVS6uX8fLk8X55eni7Pta5ASdUNLUCtYAAQxiE1y784BwlxquyDyhY2pkFcYKbwWyAHCM2/ugPN1GhM0zk6xDoGgEFsnsXlLH6nZuxQ+7nH9DK2cUczJFIln84NGmdcDL3go+bM3OfYM0hpRGpBxPHPQ9AOyYmZASFDsHHBHqzdg0Xhc2YCKefz+fLLL78Sldv9dr9vfWzqrY8eNYWquPpkPUxUOMpcU1HR0VtvrY+9MxEXZiR0VxXSqLMCpkRGzCkvZSllSVyZS289KifppmKA4hC2GPo4UibjJFRK88SHibARhTciPHDvT/ba6P0xtGLobpiIgvVHRI5oSAgEKdKtGZgCYo/C1xk9wYMBAojAk9w8xSUY4LubeJdx37e3++1be/vzlKxmTJbIOmpDHwgGUwU46Xqzxj2g/seLnxWq+UxgAUAUAHEXBzmMFQTRkGzu+5MOfuwa8ffEN39cKzlxLjUnWiqvlU9rOa9lWXLca6JUa6114XjMJ52DkADdEBSns5PFIED7PvZtbHdpO5gmwpQoMaXj4TomQLGtm4MCOKIRUWYtyanQec2ny3JZ6nldMnMTbaK4d1EcwyeOHwmJMvq+iwxwu1ye79frvm25LpwzTd8uQCSixCkFLcTMWtvvt+u+3VQGgv1HnRZo+mlraMRosm6gJNKS9yOcIB5OnIIzJEQlA4fQxaSUDhWa997VuNR6uVzOl3MfrY8dMOjosafPVvsocyfaxLFZppRTKrksS14K50TgaqYCMMQIseZ8Oq3r6ZQTI+Irk6q4W2bO4U4RDM2cQ1VyOp+ev345nU4+tZ/BhKaUK1IG/AzNZa4lL0s5L8vlfDqd1tO6LDV8dw9jcVVmMuJoQ90MFMAQFMEoEtOPILNQYibixElTVnQncEN0VVcLNJfCuGWG18gYXVUp3H2Yas3raVnXWpeSS045ERMghgBi0po9tHo2zZfUIklo39v9vt3jum33+3aYr/fex+jDDpv0R/WD8In+F0wAwW2YjDhP3cGm2BnUumrrfd+2+7ZtIvIOVswyN/H0GsxElNJyufztYKDJfv/uNvbbjawlXDzj6E17tyEggqqojhZ7AQE5AKIRu6cwDqdU8rLUc61nTgtiHmN/u16/ff/jfrtt9/toPbbUVSxxKjkvtdgipmOoiiPgcDQgA6rl9PK53PenK9AVdxPVMWSo5dgyOVOhVE/ldF7Ol7oGczodatp/eB38hXc8/lHkujsiccqlLpaUOYFHMkiKZMt/u3R91Lj/kff1v3M5gMLU3HigEhC9EIEXdzQns6hxfYh3tV10qB05qA/2y6HowIizelA0HTFq4QSewAkzoSWKoPOZm6gpw3Lm85mXNaUlc2L10UdXExEXQ8eS8lJXFvji/ORpxVQwMSbOmBiyAZuTARu4zjKXkCgx5cSZkaCTN9B99Ku0m7smzkRMNmD8+DkPUQvICilxqut5XZ+J2F3NZPRbb27e1bX1bd9vo7fRW4jtYrrtYXoUflKAZoAKMslf4hPhjiLimJNOSAgOpbVPIskxEGKeSRHu7mpEWJd6uZxO61rqWsrCqRKnlIFQTfvom6iL2LZt+3bbtw2mTwKXUnOpCJ5TSqE6qrUua61LCZrNT2hurcvl6eVyeTmfn9fTJZcFgCSsZNEJQ0iMGFO+mDk+kp+m4OehraGjzo34tnBbj6HTw39tMjOJkYEdQKMIBVQxg2jGQOdI6mgc3uV9HoPUGa+bwI9oLXU3QDEN1rKZi5hNUa+YW5xuHGaliTT8jc305zrXYfoQzww8tBksC+YQeb9jiJuPMUZPniAkKbXWp6dngEC/0rZDazJklu1ugROGensS8yAyhGPv6kOaSBPMTIkZEMxNVHFGWiEiEoIjE5dU1rKWupa89NJDwr9vvW09YnIh0NyPlIz3N3r024/h5sfG+/P9yYmBGcIMF50c3SnEc9NSJboaJmSGRMjkjAbkTJ744ds5RwMzpuuoRXwqTFzFwIdK6/3Wttf99r1UBExkhayTDTRBsLBpmEvwsUXjXGKPN4ITZYjpU3TKCiAAkcUdW6MgaiT3Pba3eMv+/s+4fT9iTznRcqo50WnhdUnnU7mcl3UpE+YnLrnmXDillA6/EUYAV50p3HDMfHV0abu0feyb9sauTJCYUiJOU38VRI/pJmsKKOE1QMSJrWZIhU5rfjrVy2l5WmpKfO+CXYZ5aoZEGMpZU5Uhve37vW3bkHF5+nJ9e93vdyTiIMfPOzjh3HBqC+rp7fa23a+jN3CFnzk/n5MWjjkKTHwg2gdnopJzsFBLLaWX0ssDWgrhlbuv67qup5RzTG4AoPdh5rWWsMSnBo7qaHH8IIipxN4UVFR3BPfEnFIYJ+WS81Lr+VTPa+29BEe2tdY6lVzW03K5nM/nS60l4IHeu5kShQ4zZDop55mUEL0rMTNnojTfMVLOZca6/nTwE1EOMVctS63rsqzLui5rzSVoC6rmQ8ZRpkfHPkRGH22M6Qgc2KaMPoaqwpHZw8yYnGOuPYaC4JELbOCRZARmCMCR9JvTelrOl/P5cqmnU11qSmxme2tAbIBiNmQMGTnnePBmZtiQ1kfvPcrcbbtv933btm1rwcQNywkR9Qdl89hsLOUftxmz+/0PRNz3277fxuihRZsHEKJ6N2ut3+/3t/v9TYbMeeAcooZQLIb8S0qFyJHMzEpans6/VM7SN+0bg1mXoaptuBgGCmXgaio21ARMgSI5jgE1IaEo6uijpwaYyYDEYx0S51rPTNVXCBnhuq7PT5enp8vT0+nydFrXOq0yIBksjgvnU4xNLfzqLLga/inwEg+kqu2t3e53SBlTzYZiMQdyNQ9L6sO6+5Pd6vFQf9DawNHL+3wg/cEaYqKEyAjkAMwJOWYpE2z8YTlP3si/V93++78hupWPX/kf1OsT8ZwzQf/we4OpHjFGGB5RcfzQHEgGVwEf3e8h/QvYJYbuCj7AxHS4K5qACbomIuAEuSCUjImREcENVL3tund1RGCABMgFqeZc17UMy0a520XxWelCpWKplAL1UwedvdwscxExIYb1BaSpJC7gqAmkJHcjSIgE2vH1Z9oCGdAEfii4NgyIKirSQpp2v79db9fb/d72bRJzNVCxKLNtWgnGEnIDNwRDMuaA9XiyhGhSqQ4HJdA0Y8EmNyxxzinlsNr2uaW7mbqIj2EjG7ISK6AADnMW2Vp7M1N3MkNGLyUhLLEuEdHVpY/d3NRkdHfLKSEsE7LjT3ba03r+5ZdfL5enWhYAUnEAMZ0PCxFBxNVNT6YZ1vRAoB+muMRxCgc+iAen1h74P4YKfI76zRxUXcIkEyJAMLDucNE2Ee3hCyAiooehvYQ7TekyhvYJoLuai4M46HQoe487FjURU1NSQHUSZSJi0iPsZu/jh3uiqt++vR2SNox9k2kGs+2tv11vb9ebma/X5brUOOkQqTXZ9yGiGoJFcEBD9JSwlix1Cb33TH33qMgB8GERFFJPd4ydy01cg4kGYRUFSJjYBVXILANDqnkJ72TVEeBOzgHb+3uF9mFj+LAEkJA4pWyWOE0m3z/ehRgVScidwBDMQSeaGAKYMIZ1YqcEzEAJiJERD1qpI4DNYIsoc10RbW5Hcws2BGXynJDnhHLYQCXV0pIMNGUwIkeeTg2xtR37tvuR5uHH/M81JtEDg8FhQm6MRhhoKDkYohOaT+n53GqPr/NAOxx+wp5ySs9Pa050WtNpSac1n5ZcSwacUCgiERmjMnKiaBUQEBlZceZpmap70yGjNelNR3cRQCWeQRvMGGHagGwGQ9zJEiggmhECMllOUCulkkrmlIjCDPUICxRRDV8SM3eTIb21tm3b7Xq/XVtrr08vb9//vL59p8SlLvRh/38Mi1LOgNja/vb92+v3P+/X1/1+6+2THKvPJGhzHBe8pMPQGaPMTTVKgzAZ6BUw1pXr0MHDzdf19PzyXEqN+bib762paa11PZ/O5xOQqg9ADf/CcLc5WnCMYEYHDBA3p1RSLqUsS72cz0+XdYyamJj5fmcizLmc1vVyOT8/Py3LklIy0+1+H71HrYKIKaVaasrMKbha7hD/P5eyIPGMC4mtERF/SkYO4vPhrlDXup7W07qsKafE6TD6GrPZPiBYGRrbYsTjBP1AVMYYojo10nGlhEROKgBgc0wRtAwNVAZiMIel5FrL5Xx6er6cn55zqVQKJVIT2e5iFgYKrffW9pRLbBNhLiMibY9EnLZtQctteyjlxrF/q0XQPFOM+Si2Is0/mZa73q7/092u1z+ur3+0tsVUDikxZyJyaAYhdfh2vX2XUL2EZ5qFFo0DKM/5lMu6Lqf1dC6lJC5Pl1+lrO3+1ukVbTPZR9+1DxRDRQyUSlyGimhXHwoOmIicGDIhCMJAakB3MaCkxBogTclLySeCxFyW5bKul9PpfDlfTpfTaV2WdSkluZqrmYN6UshluRCXCaBaxM3BpFd9fqGI7ntLtztwQa5lmU+RqIUBR9DrQ60PQIfp13z8cD6Bx52eO+cHvtjD6GTCSSlGEhAO+aHz+gcnxL9PevvfuB7l+A/fk5x8Ev3feeKHlyTAYcLnAWigB6R48B8n5PaOY4RRspv7AOjuu4/ddTczMCMHBkqElAicCXNyZkcAVPXRbTRpQ4cql5zXWtZlOX0p5UsqF6OKaWlam1WBgpmwACdIbIkFQF3FTW3OJQmoIGakErJvREBiALRMatVj1ADkYx/4440x4KiiHMGBPVhOrkN6a9ttu96vr9fb9/v17Xa9jb6pilkYUhpCmCd5WJAfJs8GbgEFcUIk5Ank4gP/dIhTClU/fAbMzJQyp5wAYc7V1dTQzNrQ3IV4xGE+2RoKQxLtZDqICmJhptNSvBTR6e2nZtK79NFb48SAuNQVzqH8il74x4VyOp1//eW3WpecqxuKqCkIWeRFMMe02xnnfZ1zLwj23NRy0JR0IPFBIJy0WDTHWew62gRx3B0fZag5OISUM4RBGPTcIeG0OLqE0bG2Ia2PvcnWRi5DxIYcIkl3NR+Bt08yiYuhGIjCEBdzQEHBmMIGLhVMh8/KXPv9928p2K85hRM6uLbW973d9/122273zczjhMo5VCNshmo4hoR7sbs4KJKlREutrhofU5BwTQXM4fCpPeBicHVHNwEXMAEd7pEH7RrMAWXIMAqLZcOVSqpMLDJMRwC4oZCZy9/f+9y5NRw23wCAiImTJ48qig4D/k+3moTqKARHmYvqHp7Wjh4m81FTJPackBk5RUgF6gwM/SA2R3BGo2h4IFrusHtVZsTMORFhSKVsAErpZQiZMhhHejBH2/QocGdpdMS1YOxs6j5cQEfAjmhCrgkMZ12riAqRLRu67kdGRGyODxMUc/QfD+WS+fmylkynNZ/WvFSOAfh0qHU0NYvQF3AEZsT4RQUiTIau6mIIBtpl7E1a1z5MFcgiGmvqRMJAAdkMxzBHdSAkDL8qIssZKiYunFOo6IO0o2NIaz2s02PHDx1Zb/u23e7Xt7e37/u2fX96+f79j7e3b3VdL0/PNB1OjkFN8KFyJqLW2/fXb9///PP69n27ve33/2iZO1nB6I8+JJJwEJlzyaWWutRFRNQ48ZzI0Ijj83Q6PT8/17r0PlrrIrLsi6ktS40fYm2MBFBS8qDXjmGcJDi44ZTgHvA45/ywp62ndX26nFVr4jldA4SU0rIu62kNDVEppfd+vd2GjN7HkBFO1KUUzkyEKSUihgmsp1wKcQLgB8c5ypEf78gDOgtuBR4oLGB4H/Y2WmsiEtIPGTKZBqLv0bShxA3GhYzADSb6ANMK10SIMLhTUVMFlwsBYptfalnX5XxeL+fz5XKmlCElA+xiXSXGXiI6Ru+95pTjvUw29JC9Te3ZFihum0wFGQHHT+NeANAYaeAkLqX8o4DR3Xu/mcl2+3Z9+9d9u/lEcxMHQxwHYO/jtu/f2v599Bb6uSnjiHzioPGkNeVVzs/gX9EvpaRSlkJIKiRde9MhOnYfA9TZ54hRyMnVxW1M9wlKDMmB2EWUB47mROLA6pwcICFSLkuiktNS8rKenk+np/V0OZ3O6+kcvKWUU+jmzEEM1SnlBTEHmmsEZFG9+Lui4uOzQxQLzMzGIyHU/P3/u828O59amoNC+/6lHj+bXudw8GcfnREfoz06/GsAD/70Rwjk5xPif6nA/XdYD5982c8K6ECzIEBFf1gyRbF66HImOgyIkAgp6rjH7oMfII05vhXXYb677Sp3H3eTLdznCblwrpzJEBlJgAxRkREAXBVk6O3e9iZ5garVIaW8luWZ+Esup4on12yR08uGSTlpYcks6A6oHlwdAID3lOmgaAV26AgOZJ6Cj+HGBiI/MelSrpyyubkJMSGxg4tKH23bb/f79e32eru+3m+3bdtltDBYQLeAuUNSgwQUrfFxt4ggZUKO/TvKv5hfPcpcI8J41s18rqJZd07pmbkHFUFEmQbCrupDbAwppZdasnQRHX3kfCr5lMsp85JSYSqP39l7DzdYG4aEdVnDcmG6t3y2wJZlfXkJMUahEPM/mOgRyGIOZKE5tOMtxxJxA+DoiSajxw2AZnH1KFzMTY0clOLLOZijaPDFwBTM8CAFxcQAVKX3sffeeo/Ayj5k38d967dtv9124hpuhhrBZmFQZ6KqNmFRi2A/kQl8HOytOHYwgC5z073/cE9E9fc/vuWUllqWpRC4jC4joIr9vu3b3ra9q3kAQ2G0nXMmSkg5+Iuth3Kxm3ZAj2ORQBHMRMHB1ICAw+ojaD6YCJiA0AkMXdEFXNAcRH2oBfhi7B1lsEjVMP5BCLMbnlc6iHwR/f7+uc8u4rFdBZwEAEd+B/1sOfe4yDvYju7khmau4iYxtkY3QHCLHiITFqJMxEiJ3MmMzBOwgyHw5HyDEzihOwABKoDGWMkF0JCB0CHUJm7iIL3b6C4dpIFsIHewSYuZk7Q5FEc4bMsmFGsDpfvYY1DlOkAb2kATQCcAMAEboN3c0GSOAxzi7gUiKipmxn3/4Z4w02lNOfG6pHVJJVNOlFMwd9gdxhAZAtHeTVFDjNUBIhsSzA10aCh1Rm8q3XUgKaEzAzMkxpSYU0JiNdThBuZgxHGqIULERDshOLiYk2iQkre97230LhrDgxhijNFb6/u2b/d9u2332+36/e31z7fvf16enlXlrwQXIEZiTjkh0ej9avr6+u3t9dv19du2f5Jj9RlpYdpgwKHmjEKHgIgIOadSyrKuDkDMrfUxhgzpcywEp9P69PS0LMu+N2aS0VtbAXypJWfmRDmlUjIzAZI7ECYz0gHSVbpgBAqpJsaSqRaOH2vNp6VcTqu7l5LrWolJwQCxrDWVWQgvtV7a85d9d4f7dt+2DQlzyZGSEDGVpVTmdKQkhjcCHjXuEVTy12sMud82dyi55lzDpYspISIgyJAZGt77GKOPLkMCH50kgId0CA9m3GOVxZMI9thWAwweejRqCBheZjmVktd1OZ3W87qeT8t5XTBlJxrqQ5qOLqpRNARu3FM6mDYxLNDWJpobvNzoq2SIhjjC3yE1FD3EDQAAnD7x6SBiAGBOnErKAoDgdOisCbAiaegSSjqL9EcEKMT8Z1pEgQd87mOM674rQk1Y0CTBALJuor3p3sCUHJgTc8GKiZsaynBDVzdyzwiZgNEJBG2okgkqQgo7RcagqSTOicLCy9wD/s59ZOKE7EBMlDkjAk3OFSfApOaMbmYGMX6fu88PV87Fl6XUZVnWJRq7WpalRqLDshRGMJWJd8WM50NZ+nH1+XyqD5CKQ+uSSi3hZVdq5TkQRDz+7PHA4l+/zP+769/4sz+Bk8er/bl2Mfc2bMpcYkwfQHRM8QDD5R8JZojDgTZHjQtR3yIc+JLZ6C676i56175Zv/vYXXrEcdVMp0JrRnaDLiAddYAaOsxtF7yr780ETIPlTWIwqIg4mLNTBi6AKYi4jmogqkIgACng0oMSEi9TEAygIwBNGoarmzmBJwNG2H+4XYh4Oj3luphJ7ONILCqt79t2u93fbve32+3tdru2fYstxXSYDgRDMEZPDMAEDNNz8/BPRcqco7CbaTPRI8XJBACtD3AA1zlcjRPU3CTsHWZ125u0Fjigtr3nvJWSc06lplpzqaWWtdZTred1fV5XWRfngBwTcYKUDIkd0GGYDlU7so4kibCoI//sKlBLASxTZpLSByz6aO449HYQklaK3LGYOQUNjCVCsqd3KiMzephRAKqCBB6tDugRS6sWNf20qjNHP6QNAA7oKnI7gIHe+xBtfdy3/Xq9f3+9rae3oRiZBjIlZiYmonKYtrmqq7qJqZnM/AM/9KQAcLjmupH+6Pypov/zX//IOV1O6+W8uMp2e9tu121ve+utjTa0DzX3EPXWWtZlqbWmXFIqZnbfr9t2G3oTu4neem9qOl/VUBnSex+958wYjAfABEQFvRtIeBkkMAJjUHZHk4iQcgBTskKjpyFdTRwcQ+scmN27SCTeIbw3OJMbie87CREFw+Fo4T+wFn7ebPoNWg3iM5hBkNdMAYIXHUJFAituxSyrskhygMO0jQmTR14BIlNgXTMM/HB3dbPu2kG7SRfpYwwhF4AgjEi/wfZdrxldIpMNiZhzlICRLjRNH6Zkw6F32++2b6YGbmTC403HnUHQM4G7NGs3MxURHX0mntoD8gqT+6aiOL7/sFQOVzJ1RxVQIkMySqEbg4NyHxNVVQsSS4za3EnV+tDWxt5aa1vbNxm7aXMfiMrJOHFKmBKlxIkzYR6Gqq5uhp7cVV0dNMKKpA/riqlrWBmTO2y9b733YaKHuFNVomDqXUbT0U17b/fb2/fX73+8fP1l9F11wDRFtWClIAEyAaLIGKNd316/f/vzzz9/jyy9H1bKp2UuhG8PPoJa0SEEijQzmVbV+One2r61fY+uAgFgPa1PT0/rujLfAWD00XpH8LrUiGfImUsp7sapEDFBUkHpJl1HE1OX0QU8JSqJotJdSlprPi31vK7ItOq69G7guwx1y0tNteRa6rou63oW/TLEAek1RlyQSwlabSl1WUMQmg8NA4UsEyAmA5+juWPI7Xa3WeaWnHPOlYkBwN0jvKO1/bha1LsH0zXK3Inmz0aEKTFPc4nJ0zgQBDNVHTpU9aChMHEuKcyx6nldo9I9rQtwMiQcuu1NZaiLhzmDqIgQ8aEQDoqvhXh23/Zb+FH0LqIq6uBHhOQ7evLQOTl4LstPCwWJEiJxqilXN0fkGH8mTpzCrhjUpZbLuuwiXXSYCiBEJSNHNxD3CXDIuCGMREuhNYMlFwY109a77vshv0tLKTllwtS7tU0EVADMPSFkhhmUbcMUw7XZKSNnpsyEecpsiBkQxLWJcB8Re5aBDAlyTikVooQGFm6MQGZg5GpACGAG8PnoP+UMdU4ulmWtkVW61JxzKWmpmQhMhspQEVPDyKOECVV+oC74wRoP3+epyMw5R5Vbay2lpJRpmprjz4fBB3z4f7nY/fHd4Sc/e3yHwKX/0WUGbShOqqQDTGOmQ3J6dFYxMoKDUYwA01l9LkLCmEiKelPbhl9Rb97v1DfozVV5WSuXc8XLApcF2A368N5cZNIQo2J1GOJt+HATUAFxHOo91QHZPKGn5ByVrs9MXxP04aAImYPgyE4YM10BEABDsGiAIGT87uAEnsET+I8QHQCez89lWdVEZaiKuohI7/u232eNe3+7369jkuaHSTcd4EaghO6JMDM6KiM48cOBIDEnBkBRU5nkmOBu5ZLjQws2poXexg0MHUEdwEDNZpnbpXfpXdsOMPPjQliWak1lyUtdl2U9nZ5ExB0Sp2U5MTNSTsBJ3BDVQR1EVV1FrYv2oWkoizrqz2VuLjnlPOvauRaOocVk3YbjmevMHXI83JoA5syEwuIrDuPMOZNPtzQnc9EDGPPgEpiKjYBa1cwe5h4TQwN01XHf7oGbBjLQ+rhv7e3tvp6uy/I6hqu76MwsmWVuoLnqFtXzAZ9Pr/GpZjumW4eHQ2X75a/Fi6j+6+9/lJxldLdho3/74/fXb3/uLUxxTA3kgZkgLrW2dV3XNaITze12v97vr8PuCnfzTYaqiAVnWkyGjDZ6b4yVoGROgGyoZGjFXDzYOW7kxmDsji5qHTWKJYLOMrLI0IgiMQMZ2lsfQ8Pj3cwPYXRMnKa9wix2pzzSZ6QDOx6igums/OnuNa7Q6OA+K7i6Kfj8cQTEMXBxLSZZEyMnh0kjcWTANGmKRORRELAjGzIBOqiZgjXV5hG1KH3IGOQDSXTI2KXdYMtADmPziCZlLmWBujBn5ISUEBmIEXB+8K35dtNtMxVwNReWG8udaI5obOwKaL1pb6PtKj2aJFMVUR2y7/u+bWOM9WxP6w+bChAZAvrUOrJiOPvlUGIG00slgC91YEQjYsAYJVkfY++ttba3rbdtjE21uXck4eQpecqQMoWPClI2oT6c3IFiXYDZwwO3G7VuiQcTMQG5e5fx/+fsTbfbSJJ0QdvcIwBQUmZVV/fcef9Hm3O7uypTEoklwt1tmR/mASpF9Zx7BqVUpZgUSQC+mH32LV2HeXgwBHmW8ylj6oeHjGlv2/32+vb69XG/9tZcFTmAecYfJvmaGQnVxmj7/fr29vrt29c/fohOe3/8osx9Vjd5bT2PGkAMBBapy+IApZqaLXsTfqTUtJSBiJfL5Xw+r+uaelRVNVNhupxPSy0yTbQEAOuyilQEiWAIdovehg5N3rsw1SrrUk9LPZ1mfu1pXUjEImSpe99vj/swm9qyXKQi67peXl7cPT1U3b2UIrUsy7qsy3o6radzratIeUa1TSUD/I9sSzNrrSPSvTyYBZECaAzN3ag6EiKdRW5rz4DyGeR4WC5SlmkRCEyU1mWIlGdIUu4JD6NzPy7+tFYQ4SJcS0kKx2ldzqc1kA3RoSNkOIKb+1ArQ7UYMcdhhGPubp5MkvTIzdwzndrB93c/fihwj2onVH+mASFQrZ8Aws4Rwbp2TKcRJpZ06wVADPcZ8mbDbJjbU/RtSXLrrfXWR8vzHhGLFGIBVwyfdUj6KjASUPpTVCmL2FrqqVRXs+FGRshJlESuUCpJdanIC5MQIISHqUULG4oNO7W5aKqUk5TTcnpZ10/r6WVdT+vpXMqCKAgFWZglhM3SWXwWlAcS8/MLE08R8pGlAu5JqQxT7a23rS6L6XBTAp6JGVnVHfXiE/NPKuS87jMQQtJmv2Sm4E9zvb8WnH/lwf2fPX6SffzwJH/8Oj/++xOZ+fXDI1QDyDmQjroVYA4t81skuJtddU5VMMUlkWJkB5hDU/AW+kRwB7hTYCpvC0MhFQyOIHeOK8F3oGvI5jgUrWtKALOQU56sdt23hztzCyyGdcT6BU5fqDAiAwoGQ7A5ORiiOKZGJXiqpAHRJmT6bijkE1sKhxjg/QOaCy+ny3I+5/U1rPextR47Qo5zdLTR9tH2HAvlanFTDPcwoqD0SQACTF/DDAGj50Bu7no/WiWawwf3nCWkqZTlf8UDiJ7OZIdp41EPzQgGZiyFW+PapC+jtz7UIiiAiQrJieRUKooIFmEzsRCP4UGAgeyBw72bsaoj+QcRp9lQHZOgA8dgIrOVj14vLTPjnfmQyzEBCkIyJBZ2Fi4largHT1/TieaH0UxlmBCsmh6kAvsBOHPPnLlws23f9rZPXMAiJ2O3x7Zeb6W+tWFPq4SsbS2SxeBTxZWESn+KStPR+PBriFnpRgQWgA8Esfx7SMBCBFwq18pjEECYaZJ9c0bPSMpsZqbaIkYfav12f7vd39QfQS2wYyB4ggZQBI0LExPkUViXsoC7o4GGIFFg2kAGAHjGn6UMSQLCJlF3KtwIWbh4BCIDUJ5f5pFrzQ7K2g899M/NMf0wJfmxCP740Mdr2KC0eIzAGUc3LR2OgCUOq8BLUDFlZE76igU4Jp2WACkIAymQDAm5kFREhjFiDNsf43Fr97fxuFrfwRWZmJEowrv1q91U96tyTREtSVnW87KeS12krCyVWJAEAM08yQD79kifVwijUIyG3oAwrIKp0Ri0KfAYbfTmY2T845RA9r4/tm17jD76f7zA6fKXUwVmAJW7q6Uh9JHrS0RM4hwl3NWG9tHY2J2ZBVAApatnqljrW2+P1u9mO0BnNilRKtRKS+VapdRS64JSUcWDwMkc0cDMdViCV70Po4Ex0EvOmyAg55ipF08wN2uAMZqOrjqSfDL6fr+9vX7/en37/nhcX9qnsiyFMUGHXIi5TPIr7Nvj7fX7n//6FyDBh2v5l2WuewRNctPx4h3MLyQqS0WRHOu0tTELEy9Lz7Lv5fKyruuyLIfvigNErfXyclnWpUjRUlQLEq3rWuvKVIUX4UWHbfe97811mE4F/um0nE7r+XQ6nU7raVmWyiKOQMqn0+l8PrUxShF42jIhSJHT+RQQyFhqUbPsENcla9zTejqv66mUhYh/OCifPK9fXNdu3rsCdKZHBJha7/o4P1KnZWqttb3tmeHex4AfKkTEVBniMaHBA8SaSlWaV1XgQb0PEaSUhaDITMdIs7q0LlqKrOtyXk+etnvmRBBmY2ioIQ2VpVRjloCp1UnwYPShvetQV4uZ43ucPj4Zk37Ut3DMoBEh/EMEJdLp9DckYvlU17+7Gz0DNoWYaM5C/UhrPxCkiVt6hFu4Dc0XbZ93uQ9BY1Lodw3QMdwUHWZqIzLOWGxgokXkXKur2/BuTFgdK/JK9cLLicpCdUEu6UIA5kO3Fo9nJ5f3GQABCJIs63k9fTqfX84vn15ePq2nl1rOpZzLcqnLpcDZECyIYtYzvzx/E7ISdXV3m10tEUFoOCM4QiBFrVXPZ7clE7XeA21SkXHwUN+vv4MiQenTKWlExLO2mpXisY7x/w98e3z/n5/U1IhMFuGPO+b9/+Z/yJbow7f2gO6ADkpBNL3qJoSTos286o9yP88bCpMYHI1hECqBRqi7mo2+99G69uEDAyqJLOKEXsUKdrTufev6CLgL3DkeCIPIODR8xnCba2TpjIYxtF+1b8hXoG8gn8rn/yhkpTLgCigAxZEcCcAADcEtXN0ZDSPFxy4U06+K8vn08B6m4QPCQX+B5r6cTqfzS27NoX1rRBS9Hbr0SKCjJ8ffbaRHWDoUQoROsgITEUxDfA6gzH8x93G4puQxkzRcAOxNe+utDVUzdWKUhAlwUoshIjzmNvPp6x8A4eg2h0VDTTVUTR0AxIEdxKFYyOkCp3ORIiCFK0hACQRkLksQW8AwR1UBsA/uP9t2v94ehBOYBAA4EsWIKHmnpdZ8ps+W4liLCOhIjBgsIRbq4cFz5wTh5HM54XRdnB5hM0zDs+fPgizT2lM2AeH7vrXehg5zBwA1b208Htvb9cay7K3rJC1kZWvuk/ycm3cWuH5Q1jIl7AezljgQZiX66V4movPltNTy8un86fOFwpcCl1N9fb1+f7vC9RFtWLNAYEJhLiJpKjRG631s++N6f73d3yx2ICW2WpYqq5DUWoADA1S7+1jrclrW87K4qsFwHOCQJ3d2SejAQEQcXDCQAEZEhCUhHYGFpZYFCWtZiiyq5q6mpmrHMv5BawoA8Bezlp/Pnv9PaUC/fbX9yojMNK028nV1izBKR1iWoBGsQSWQjNjj8IxLD7B0x02hoQMASl2X9Yws3rq1vd/v2+11u37f3/70/mC0IlQXLgUpurdr298ewzc1c7AA4rKcLuvpZTldlvVclrNIIa4AOBLJ7L23vY8GoQDGc7xkzlT64mVR4B7Yk73pw83C1NX63tq2749t37Z923QM/fy/AC4/vSzZyLmDaThjxOElldCLsCB07Wp93x/EqCrMglyR6lAfY3Tde99av/dxc9+RBpGXCnWleuJlLeta12VZliV44cGIGarFETTtTwdmSa44IhTM8JCbzjEeTq9HNx2jt56Ez26qEYbgOvb77e379z/fXr/erq+fP39BhroIYnikJYUdMmwP9973t9fv//rnf7OUgOWn1+RXZe5B6ZpTm6QOYg63kISrSJk2LpQYJyKN0c0cES8vL+u61lLi6NuQcFmW0+m0LAszq4laIeJ1XZf1XEss9cxUH7ftdXmTcufOhCiSVrXr6bxOn9p1qbVykUAkkfO6nk+nOZ2aOs5AgAR0iUiKLOtyOFfAsq5Z5i7LWusiIolUZ5nzjqX96mEeqpaTR0tHuTYe9zU9SsM98xXG6DrUbO6xSTA6VL4QxwTuxwEwImGuTAaaZS6EcxCAEIEwMWMWNsI0XYRrXZdlPS0eOCJaHwTgbqN3CwggKZbJF/nE3PNYt9xmuZ5STO3qnpYzM0Ei3/05OH7OCn9Z5i7rb8xSqp/OFtMTadbixCmqSPat2TzwfdbTHgdNw81GH3sfe+9779sYG9gj7K6juYPqcDMCLJj+QDy9LyMIoLCspQ6xzurhQSWwAp2pfirrJ6mLlAVZ4jBUG6MP7ZPBYbPptOmcFLWu6+lyOr98+vzl05cvl5cvp/XL6fT5dP7dXQGR0rXT6WAD/uKh7npQ9FI9rTq4I0aOmh3BiaCfztq76SBAA6IMAv0Bu8g57I9s6WMzpvxRONNM85h+lp9HifzTyffXP/1/3R4f2Qfvm2IW0D9UvAgAkVSfd9XOhz4xAoYlJSjIHQ/yXfxw0kTE9MJFQDACpxjFH9UfAA1pAI6cxA21vlvb3RQIGKEKgzAIu+BdoJNdTb/1+A74IO5MI82FHMOjD02jk9TaZNRtqG461P0tcAE+nyjK5VziC2AFIgcBIAP2SCdEd0y1khEyAQtBMEAG8GBAWEJZGWwJ3sHHT68KIpzX0+V8SvSwj4Jo4W0TliSf+mG9k/wWHWnphOCIDhimjkGEICI5sc/LLM1ZxyTH2SwT6XDhAOytt33MECx3cc7sQIrkEgIQBmVreHCppjDVAcAMlJCHmpqpmkcAW5CDOFTD6lR4uVA9oRQGFqASCCgkNZA0Ig0vMrf3p6Wybbdv3/6gWdfis4YlJCYsdVlO57pckCVQAvmHFU1TCYiORGwu7OXYheATYmDOROA4cognlzaLXlXTmTeZgSE97YAAYt+31vbeR5qkmHnr/bFtXG5IUvc2AUs/sOBMT4Nc1vEecQJzQpoXwg9meXPAYSI/3ctIuJ6WdSmn83K+rEKwFDytBQi7jkdrrJpvDeKkw+UwTUe/32+3+9v1fr3e3zwasotAnKicT1wqI3EhhBhjD+vrsqzLeloWo6EBgxpFJMQNSA4IEYzIxDlYyy7IYgZ2EpJwqaUiY61LLUvvHaLZQdUcOsW3jgddBdNI5fjX+GubHRA4sbaPMoh++z4AkpciklahCRBqhBExCCMXIgW2wJI6C/OYwkCclLDEyPKKN4dlvbB9klJj333b9HZtb9+312/99j3GLhhFaKlSCxEMH9a37Xa9vT0eaqGBJGU9fVrPL+v50/nyeT2/SFlEKgS1NrKcU21mA8CIjMmmgJUFdMDoI6CpDz9sFnL4ojYej/163273fdvatusY2n6Dnx8HruUOEW6Hn+DBxuTcADuYjdYeSGjCLIXESUA1hnXVPnTv/T7G3WNHUiaTQqVSKZx+LFKEiwQKIkUQBHmiueqjj95jjKbaB3YHC08S8PE2AyQVheb139q+9bbr6GaaHaGO/nhc5fvy9vrt+vbt/ttvUilOC5JHaHhmQNr0vQvvrb29vhaWsqwvv/+vny6xX5S5ibkF+HS2gmN8RMmvyAboaUhI7o6INtTcEfF8OhWRFHJGBCGKyFBNU7D0tSBCYl5Op6UuJiAcplGXmi7n+S2ZuS7L+XQ6ny+Xy+V0PtVaMn49MZOllsu6MtFay1Ryunn60TKVWpBQSpmlG0AptSadsZRJPJieI7OkeFYTv0LCIqZpu+7J6FLb912kSJFwfxZM7o4AVEvO7tP5T91IUQ3xh/iQJ7M+YI4I50WPkGFqOSKUtNIREpF1XU6n0+l8Xtel1MLMEIE6IbQ8p7uaefBQHcpS0lPSI0xNzUef04TeW2+jj2FPekXKIo6qKon5zzLX9GM8BCQEjeSUnQKnB+c0hCWgTOh2FzqAYwhTmN9wlrluWZp7gFuYmo3uuuvoGu4sVMoSC/B8UxDAzD1G79rTqzKnDIRBHLO/udTzF5YqUhDJTR0VsSAvZQ5KMcLHJAf33toYHQFs6H6/hWtv2+3ttdbzslzOl99fPv398unvl5cvLy+/+emy1oVr+WjIAQDPvOEZNT1TzsJV1YIghMlL030f26NL8aJSKjJnh3sYb+DhCOZ5MiCmvwRHRkO6H/Yd/iyCk234tHz84UeCWZO+nzP41/vkryv9ySJ4v4vmX04TyDj+F8dfOAYXCAC/srcHTfMrBEOgCHSfW/a9yoU4zmj05r5TPBiuATfADhxA4U5qPJwMJOa9hgzAqISdoKHvGBvGA/0R/nDc1QfyQEJkVPMxWm+7KRKVupT19HK6/FaWy2i97U0tICSQF6FV6FQJC0dhwCMDNp1/MRAcwQidwBE9c+TlIJOGu5aqfTFbwXt4t95u+L9/uqmTj5Q2n5xxhZ5KJUsiJ0RgOglP0tM0nZ6shNSTzF7KJnHk6OFc3YbZ0FzvhJheA4D41A3b0y/VISwQ5nolRCFMRU463uExLgg4MmcBcOTV0JF3xIK0Aq5IqywvJ7UFkYuwEJVCUqR3KQwEat27q3dkNvuZCrVt92/f/yBEJiQkOKJB0ou71HXp+7LuQSWAPd1KYbZ+yOmic4gumApTF2iMey3LUmupLEIkgJQI7lx/HvlCmGrvWc623tuzzEXC1F487rfedjcD1N7a4/FA4ogoZXlqyOb8JYkrB/krZqV77L+ZIIoxfTAO/1YElQXgL0KIiDBrQ21rdLsHY4x93x+P1+v3b29fv72+7vvo3SDIy4LhTFgYEEq4ZUz9ulSzkzo5KFEwLcxL4Zq0JyII60JxOa+X0/m0VCNSgLHthDBlwuipoCeMwsjMEswDCMOciki+QcwkLCh0Pp3beFHTfe/uYeqt9ST2tX1XOW6T4xR6nkbPDzwPHkTo4+MwBNr+aK6lSLHiUmi6kEeODYnIpYQEMGJy1gABUM3GGGoKhFPPmGWuee4I8aGgVCsOKzbWGAbmBCEMS1VfL3U5laWK4AQkI8xCBwRmXgKDUziFYSiGok9NAYUyqJAiOYETRYbrVoSKUIhy5siAhQIpgLKVCBtoCEZEEOCK7gROP3pOHg/3GF0zlRcpZtB3TP4SWmQsKoCabtqvxEhQCFcqtYhMx7TBQo7eQjewRjHATUe0HR6Pfr1yXcSxKHCgvl757cZcyulUS+W27W176M5uK9gJqUac84dAcEzbAQR0AI4IH2N/PN5u1+/bdut9N9NM0XL30dv2uL1+/+Nf//X/1MKmG3hnAbe2b29tu2rfwnq4QcAYer/dEWg9nS+//a+f7rZflbnh6sZps5xG+DhtDiMdFzmLzTm9BQARscNZu9SaKY6pJBDmWqt7avQEEIhJCiNRWRaRxQ2YoHcTETwSRAAhI7lPp9Plcr68XM7nc6lldr4ITLAUOZ9WZipShIgiwNxUE+ESEi5SZyMIAEiUfW7mohEQHff/cWP4+1H+4TFHIsl+NbPee+ZZ8pGtbJbutkRMBQqnJw4TErIbdUTDA4t7N76eF/3UKVgcznAlYzJlButlXE7aLJwvSbooxGTmMWkmKQcYo48+jHh06Rn6StkBpat5H2NoWq0l5c98Vrg2fcJn0ZG9zVHlktovylzzgBnKCJDlOrgnjRsOet003qX5E7r2vrd9H6rwfiW4m/beWtt723Q8dNy97xEBIrKsVYIV/ajH1UJHtGaPpnu3oeGA6X0MhFxKWc719Jm5ZMwSoiEaCxwFaGEqiJSwV2/btmWMyjZ6G32o6uN2J56C78vLl09f/vH5t3/87W//4dYx/s74UoXoQ1QpACAxiKAUnvl9LEyEEabqyhghErVa2/t2Z2Ypi1QlFpztQXY4idVyIv8z9YmzzCX10GPSOgUsE8n1SMXHHB28d1IBB8l+okf0nGP99PM/b2X3aRhPRyhR/s2YtMiISH+QnEMeGC39YiQSgP5uxB6WGDA+t9vx46fcyw31AfoK8Rr0hvyKbNlQWZw0TiOqcQVcMJDBBJXc0HrYHeOG/sDYwDr6CBwGA0KBAYGGWht765uqIJVlWU4vnz59+bdl+bLvTco+hoZFACWmdVoKLoKLIMvhvuOHAZwDOGLAwVqYmSgxa00da0qGw0b4GO2BHwzFJuN6InsRlpzhkYQimEnH8A56p6I8Y9gpk14jC1tTy6kNEc2BTPIq3v27IFUsiNCTKn9wSAnCh7swEZRChDObg3FCGu+2XccIJp3rDG1M3lUDKIB3wAV5XS+/qxkAsVSRWtylDNUeYQE2dAdHHAgIZj97xG7b4/sscw/T1EjGAzJRrevS99r2QNZgj9wjGW5RWTJashBJrllGKBSCXosstdZaiQtxAaQUYM2DLhuMMNO+bbd9u7e2tdb6aETIIoSYxov3+6Ntu5kFUO8Nt0dAqA6R8tQzpM/gZGnj+0fzbZm4GmSM2Pwd53AUEVE/WNpEeB+bB/FthD0wrO/7fn/8688///uPf/3x9XuSWZiK1wGmDC7oGAuA18pIJyRk4a5drXlYKWuRRWSppSyFCyOF1kLndbmczmsRRdSAvRQmTGmXI7ojgBNFEUxIQwSIwoyWjLnLQ0qYSc7n8/D5iiUE3lvbt0wj2kTSku8Qmv0wYsL3j8Hz1OljxIdjpbVt025a3KsXzd4mIhJVZ+aQiAIgTFGQsqWBMXobbYzBTHMkhogErua9u5p5Vx9cF0YUIEnify2yLqKngXBZ66kuRTiVioQ5VTvu6bLUWpciVbgwCYFk+hpSZaCCTGiM5lQK18K1YAGoaTY0YS5AIUFMcCsitI/RWFuXKdFDZsaIjxeQm4+mnFWyAGRhkEo3TUUoEgX4cHuYXiEosGJBYViWGkEEgNpvHBQddEuzswAdjR7opSAzBEQbsHcP3N6u8vbguqz6cjqtZeyP/rhrp4CFYiFcMT7PuUUcXV4c+wKsj+1+//52/fPxeOt9N1UIACBwsKFtu79+++Of/3ki9LCNopXCHr3tt+36qvvdtYMbBOiw+/0xhp27/t8/b6BflblJdsAAn2OwI9ePKPVQGRKHQOkxRkhFih8T7/QuAERBZKIoZZZNlDTUYKZSGAhZCnNxAyIsdaQg8DnxTApiBqCfzqf1tAjTNKcEYMQqfF6WQrPsJgDIoR7KnJ3nf5oCnWlueQh53sXpE9ANfAewfg3mTnqaAahqFoEsRJlOezx3YRYUSLlGpiMJkRFg5Mme/gPvzMQsLdNvxuaEkYlKkVqrFBJmEco0uPP5dH65nM7nui48SRfzqVHm0RNFuI4eqjQUqac0zz3GTAxOBFMPkVzyp2MSC+Zl6nEgiGlsGBj+oczNQU9WOsc4O9KFEt5Pr4SoPBkCPSWc++OxbWN0OHBBQA/3vt/37db3m4430yvYg8KYWUgWX6qDddLeB0TGnc6xrLp6+sekeyampwulVUK6mIIhOBITV5aFpQovxBLhATb6tjyu6/K2Pa7747bvD9Xeh7r3zFvrveULVUTW5XRa1rUWWE/H5P6vL0vOOpgzTaSkGg/CTL03glAR63XsW3vcEUiqitrMT2QkTjOkJDg7ETIeACkSEDmEmQ+1dILTGephMWEXg2SZHWXupMw+q1oiQkYKmtnvP/zoB8E91d/JNAyAKULOYW/6Xx77IeezmSkyHd2DPsrnc1EcmxvhhxHk5BPnHzPSzHroHft38G9Y3givRAGxRqweq4IoLMAn5JUAKHYCJR2gG/gN/I6+oTfw7qaAGqDOCgAI1M2G2hjmzlKklNOyvKyn3+r6u+Ou/gjs7gMiMs+ciUgIC5JgEnARnsldc+acRpmclumICGlA71KK6+I2wDVMO5cPxMMDu540/vdNmBAfIwuLsDgpHRm1k5cyoYD5Boe5oUJEzFQDTL7LkQzl06PZPcyRIFNnkzgKKcMKcItayBdmZIxI3uKBB/jBSnnntESEeYAmv3kANMAd+UFy/7RvY6hH4AQ7gIXVePStj67aEp0GiI9lbuv77fb6LHMTiiCAHMSrdnMdOixoOFkgkhAyS5G6SKksdYp+JkYaFMpghTn9dlgqcQHi6Rk8k4EwQiFUtW2P6+P+tu9b71nmzrTgMXR03ffWe3OzAByjA3GEq2p6qOOTTw+O6RH9vgUPu8YDW5mVLsxWAg+fWF1/rl0ifG9XGjgG3u8QNpKj+cefX//5x5/fXt8gmECqLOBOEWmozBhcpM5kO2LhvbfeeZgKL0yFqRQptYowEmgRXKospQoTsiBn9l/MaD2iDG0RRskygBhR3NMhFQ8u+dAxqAgSpYUnkUBo5szv+75t2+PxKKUeEpV3M7h5lR1o91HvIiKOX5W5ve17312Lu7lZ8gQDIM9DZgmBcERnCg5ydw/zPvre9qFd3mP/iBjBDKyBaQxz9IjOZal18UpkRXwhXXAs3W0tJcMiHALCZpmb+vdSS11KKVn2MwZFGg4jIBE604GloTNTEShCFaAEUkRghCcgR+lszKW6RwcEc5n8eSBEYbL4RbxKRLgaIri4w7TziCN7DAA4kDlMd+13ba8gErRiFKFYagEn0GYUDAq6+biH7uAjXBW5YTzuI8vcodC6OdTXK1/vvJxO2nRcqo+HtrsZOlbAiniBaDDT3WbXSrPKNfO+t/vt+n06Kow2oyuQICaf4f72/c8iCI7RwXtdBEPH2O5vX/t+99GzalK1bdtb6x70kXn363iIWXLHe62COGlzAACZdQXT1gHpmbdAEXGQT5+R6c/7bRJ8ASKfMrMgUfiTlPjhh5gVC6euPANWM4EAAQrLaVmKSCAC0qHtP+6eeVLyMfw9iDiz3n1+zzydYD7DfIoffhoPz1Xyw24EJPQgcn7SNBHp6NQt4xGztmamAjLN17OonsIHddVQhenWGAjBhNNlTpBkOgGsp9PpfD6fz6fLuZ5PWEQRZtI5odRyebn8Pn4HIkBQs6GuOgJGzh7d/VnmJqBr04z8WW3EBGEPT6v5Ohw36S9XybBw8Pz8RE3xwMU93FO+PHpvW9+31vfW8vfWWsuGm5gRIkLdRttv++Pa2z1ih2iMg8iZrQAsQGtIMLhg74w0AoYqiiAzDAUztwAkR3IbvW0PkLfMEObMcyYBZA8MdbXeYCBhOg8hltP5t/X0+eVT772N3pLCqzrMu/tYluV8/rSun4osBIRhCE7o9CuCroebOxLVZTmfz9maeebOtx4RIpIR84BiFmUZVQelzyIdZa4IZ5HDxIQJ05uloMOmjKHt277t2ybriiIWbqmsMgc7ylw8KLMwp6OctlKlpodqEP/088ehzFN3cwsARuCA9P3AwKzLnlJ0c1PVH7pc/ki4/GFDw/u+O5be8aEAVIwd4UFwZboKPRbxKpVEnM+GZ6NPDp8Az4jCiOSdxg30NcYbjFfUK0SD6BEapmGKpBSDQCEIHIajRwUgxJXxE9Ml4NS06KDHwIfiMIAAgiA36QO2RlHQCgpkt0QZSD7PGU8bfeZIhHdCsxhEQECOAgLhydv9uZ4DAPXUSEEEWKADBTBzrcvpdP40xnBXRHzcbwAwEHS4H3khFECAGS+PAa4GnmUuTvENQhABswWm2hQMItI6EHieruAxjWM9TIdpNzy4IxhASMJkBgD2nNpANlw4558pb036T2u9pJVr33W0UiRC0v2AwgHUbB/jkXU1RLh/zFZ0d5uyR8J5sBAiEhMyQrja2IdBG6EOOM1riuhSykJSEq+lGd8TiesTYW4oksqyEMkUPULapyNkzIzu++O2bdfe90S8nyirqo9hvQ3VkVzDI74dAcKZkxd8jOYc0BF8Wkbik+oRR15AElLgoC7MBhQBx+nnS9nc3m5/RLiNbqOP1kfrbe9vt/vr2+3+2JmqUA3HZEILcSEWllMppVZA9IBhJuwuAUiMEgZhBiGESMxeCoQjwBhmY3hv3rvrCHcMEGYpJR0MSxUW8oA0Yk9GskeoOfHb1z//kFKlFg1to22PXYcm7TVd2LZ9v98fpeg0QmZKHW2+98f9+Lyjj4vmV2WuDh29p7Gc9pG2MwCYMy4Rn7wQhzAnwCmFHmNoN8/nXpgrsVQuQcBYXPJSCCQvC5/OKwJKZSmk3rf9bjtoRPcUIkLa8xIJc0lEhnNFIqCbjz4gXIuzIGJOTUdy5rV3giZUmVaWUyYqEVP21MJYComQsKpFeBL0wy3Nv2e1+6HMJaQqAmHgbj7G4KJVVVOyaRbUHdHu19vj+va4vp7WZRGgGEJWGQzctfV2a4+3/fG2399Ge/joiBZBEGiKo8V29/A+unfbv73i9ysuy3r/tL1caqHB2IjYsTix+RnoRrKlWRABz5Ggq+lo/XG7vn7//uf3b388HjcdI3wWYDhHszB6u11ficCt3W+vdSlMET7evv3xuN21Dx1mGnmhBEVmuP70+FWZO6vag/qBf1lzeWmiO2AWhkkapJxB/rgWjyHnRJEStPA8Ph0AIbkoafY7x5bvh93zO+Msc0UgFCxNvbOh4dOypPmjAyBzXj9zLkvP9pifZe7hSnpEQMyg0Wf7+MNH/vqI4zw7PnfuHyeiUDrOwggOQECeEeBgaThIgIUYZC7OcB9hrpZZztoHRiDApJUxy5FUmZWuVFkup5cvny6Xl2VZ6rIgswGYKSAFUVnq5eUlCAGgj7Htu1kfpkMtJ9Q+Zdeao7cxNKYWbPIoZllLyWDKWC6cjXXWvx8KughQjciUZsrA7HxtHTw8fIw++qPtt/vt9X573bdb64/WtoQgIaDUWsuC4O7NtLXtum2vvT+YgjlQMjAdC8WCeAoBIazSyggMcxsDOqfnbJjHsGByZtfeYbs7iq0v63KBikSClJ5Q4G5uzVwBotSllHVdzqfT52U5Q95d5qkSHbqPsanuzFilLsuylBMjYe54DPp5Cg0wWbOGhHVZTuczuPkY7pkQ3txdRJgFkDzQzJYx3DTTnpEIWRLAZynppyBCEK5TKjeFrC0ZHtu+bRuvK7Co2dCe0UthlmVt3q7vnEDEUpf1dM7tQE+NT/z4toYnDT2dX1IWRkjoRxxZfsWpLZySdDOXgADi+Fjm/nB+IOKcWcHcrU9EPDAMYSO4Cr0JXys+FqFaF+DTgBfDTxYvDpegVdALGumIuMH4Gv0Vxz3sMWMaQk3VXRGUQhEUgsNRnS0WhBXxTPSJ6MVjbSoBdO9476AajMHoYEq9+9bQK2onmU+BCYWCiRADKYhDOOGJXA/z7CAEYBIGAEksMqJ/vJNGxDhIQpYOzTjL3PP5k5sBTANRn9b3qq5wUMsZUYiYMA2/AtwRiLAUSdAHkJBF3fIkyls2EmRlCgICtPBASEDXjjJ3HpieXmU8k+tSRRuBDMmdBYTMAnBzReM+Rkmzwr23ffS9VgkTQCb0IAsYZvvoDw8NtwCPD2XupMvkaf0cKAESoTARAriZtjG8t9HViSRHJ6ar1T4ZCyzMhYUJwG13bRDJdGSRhetKLImJUxp9M4GPsG66t/3WttvQHm4e/uSVpN3YmI6zRoQRHq5mSYimhFZgQvIaGceFzgyTnp8EFECIZNiloxkciTCY4HX/2QoV3PV2e9Mx7tfb/e3atn10G13b0NZUHQp7FQBnBhacyRpl6ApYSiXmoc40mFw4INLAcpKN8iAQKRhhOnpX1466hzYdI8yyE1hKRk7UWoWFbLg+FZKqWb27O5fiEWVZgNAxHo/H6OnR6qrae9+2/X5/1KpEnHhqKYUQn3oYwuelQ3MSFTB0fBTMqOpow8h0KHPazwggTidis7z1w111YIBqWj2ohUUEQmWOcGKUjMMtDGZTjo4cZZXTy8rEXJkLb23DNzaMEU5uYXM2DIhEIrkOMYfIyIjonuEOxkNYgDBnNWP0ve+9t/RgK0Qvyxp1PdWlliqlJvae3tPIlDruDJl2t4yFn56jHy5lJiwi4e7D1Lp2zkTWADJHQoPQiH673u7X1+32ynD2k1AMQS+cg8K9b9f2eNvur+3xpv3h2okDQiAoDEcHBNfR961vDf745l+/Qyn19nL/9KleTvBy8lolkJ0w4gLlhvZAZgBBFEQgCHUfve3bPcvcb9//eNyvpiPC44D5iZAAtLfHzXW0x/3tzz/+WWuphYhgbPe+3bUP0zANzAQ/AM8Ekr++Mr+Kh0DERGEzMQ+SveCHy1FOz+C9WJwX6F8Qv+dE4h3cjchqO4KTGZiJ4+gO6EchhXFw8wEmdRNS/MYUTh5HcCUSMhCRZIB4OKR4Yo52gQ6+UxIF4kAm8474y4twIEzx/NOHh0eYG/7w6bP4Bw+gIErhaTql5rAtpsAmJSOzmZ8VQpo19Katj9FtDALIsnzyKqbML1ioLrKel9NlPV/O63kVYWR0iHANACImLsS0rMXxtO/76VZrLRnphzaJGJO+p/p030zjAwAg4jzMZ1H7gxj4+c4+O5YfHwHQR3AEZRwkOaErulszbTq2tr+1/bo93u7374/72xjNdJin6UIOJnYwATDX3ayN3tw7IXDawgrWAlWgglYYEpp9iLELk0yDsURGfN7gaoHq1IzuI9DdwrX4EDmJnBAxgiJATfd2Nxul1VIW00HEpZ5KXSsvSMUjaYt9jF11J4zCvBS+nM8vl/NpPZdSc4L0cakk5QuZIGMTkzedQ2NAj1CzMZS4A/GxJINZ4PCjJJHJdxEuIqUwQrR9Hz9wKjO8WXWM0VtrKKKJU6iGWqi9OxU9Oz/CNAUqpbjVEIfwaQgwi12Eyc1NUdLTOvtH7PXoZQ+1Zq6VvMcn3ekXCs7nsTC/XszhyfzCCI6oRIOgEexCWggEhcoavAZdNC4KLw4noIWCCQbHhn51ffP+HcctdAdrDqYQFJpCLCSPyHgPCuCASlRYavgasKqJdQw0o35v476bmTI0xmH8AL4ZXlmJVLBMzxGeV9n02WQG4RBxcRQD4VT7AyFQhm4lUQrD4hc0bjNTt/kCZ3plWZbl5K7v7TqAq2pvrh18gI0AQg9CECKZZ54deVoBhg7u6IyQMzZmVEADGq5q4eHHcZ1ncgYnpUW1j65x+I6ZOvgEG+cQDiByTpZlLhygQKRXzGx9VMfoe29bKVQEPQTQI9xtN91VN7PuPiLsY0fkHmaGaZvs6fBPOTDKe2/OD7qO3nUYcaEcSyA4RpgaEpKIlPBCCKbNtU3pAaCUpdQTS4FDd5CMt/Dh2mzsoz9Gf2QuXcw2DLOaT6DmII/45GeDZTeZrZzPGGqNMHAD9AiIH0wrsg+KSGvTSeiLH5AF/+A9Z6bfrn+M0W/fr9fXt7Z1zXGFhzkCMkJhmtKSlDPn9CiNVimPM8+JDgunI+OkzLnbYaiM5tHbsN7RO9nI5YLHxDbJr4DkAWrW+mgZXKWaB51ZcHkLwFJqEDpAqs4CkGiR0vfWtm2/3++ttXw/i0hNA72I9zU/l+SUJBBRji1/voAsUkOpqgmHCTMcgJqVMuWZfOhnVE01Ii0pEOiIVHTL0CJNxDS3kVtte+07s7TRW8q2R+9jQOoMkhqLqOqHT9FMFcntQEwTqCNS5sRQ3H1o31vro7kZRAgSDS8nSE9xQQbSDMIBtiDuvfe2j9ZMB4RzYrmM8asLCBEKpwGguan7NC4IT7Ml1bGP/ri+vt7eXu/X74VMzyV0C9vR9zC1fuvbW9+v2u46dghlBhGqJe1yuSRkDRAWOqxt+rgr0fDRtRf/RJKZOOmQjlcqbyhXAAFeni2Mm7a23W9vt+vr9e377frW2u6Hp37+IgBCCNfeXXW0thFzKVILFyE0Bet+uIoBhsfkIn88aX9R5hILsWAY2DQKh3AMhAn+wSwKD/+aHHRnDYfwZHViBubNeeSEWQGAKKYzKCIDIJodVSjl4gagAHIHy47TA7IqIs4RcLJbp3As9ciRVWaaiCfcnRTYRI/mq/dDlX800M8988OHPxYvSXfEefA9y9z0AgsEmFTcw92E5iAm5WGWRBM/ZNSmmlvGdYSl9zrNywRjYt3ggF6ETufl5dP5clnXVUQwwIf2mFGzKFLSBIhoDjoyo8ishAchprENQrihzZcFiRD8YFHG5G5mpTPfRog59J7G7Hmb/vyi9OHsgRSEgDDC94itbd/3x7ft/vVx//Z4fNu3ax/bGDui1LKKLMxSqCBCxFB9uI/Q7qZEcjp/Yq5STqWeCsGCfYG22F3sRn4EvB0y5skijcMUyMJBfd43SGEZyVn6eVk+L6tLORMtXKSP0NH2/bZFIMCynNt+3/f7+eVvp8vf1vPCvFQugOA23EdhrMJrlfNaz6fltNSyLFLqPC7/+qi1YjgTtd5vtxvjtKtGZqmVmAJJ3eU58B+dEIxl9jfMQAycbyoX4VoLI+zbvbdND2dBOAiyZqaj9yaZKDDR3OnZ6xE+M/dyIAaYcwNCOGzVcw38cIWkzimcCAsxYE7x6NgmMcHYXEtMqcr/wec/4FdlLh6bbB4geXvOKskJlWAwdSZldHbheGE4O507nC1OA9YRqwNjAENju6K9Yf+K/Tv2rHEVLDTMQDEGggIEBwAQBiAWwBV59bL6uuoQU+5qrs36Q9G30bbeVHf0O8GuyuGLeymKJQo5BRcgIUbyYIukrCY/jjWYgtApDUeOqWKOsTM2dOw/X9MR4D7cRo6citC6VIwzY0xPqBxih4+279td+w42wEZYQOZVEAkyESbs4Acx3sCHW1BQahQYGNnJ0wQ/FWlheTYBeCT5ImUHo5mNaf2TEbhJaMCYIcZZ40rSB+c7yrm8jkWG4Kajtf0uDERRlPNYG/1uurluqvsYzVzZVoS/0GZy/J3dPuXEhIHysEcKQEvn45Ee256OLul3gWAwD4eBoYwWiOADwqYXjpnocDepi7CwSDgagGm4NRu7zpp4eNgB4dDR4xMRRgCrJneH0AldKFvunIMFJWcJPcCBYtoK0byr4nms5legqWQ4JKLPO/QvDzP7+vVfOnS7b9u2azd3jECP6ceOKWRJaLQU4hk39dgeHkHMqTeOcEJkzjsUCCIsszgixzKja+tDW6dQclVzD4S8kSPfmhjD0aw13faRaZ89oVZ0B9y2nVgAH13tqR0gKTMjb237vm2PJSLGGG7GT+dNgGx+D9ICBZJIWU+n9bQeypifjhRCID/sQnA+ZhteajHr5ksppRRJ4ZXTTMVIK3oWDoyhI8dSre199KR7iZSuvrVOyL31vrfvf367vr5tjweUIhHoJS1x0qRlf7QpnReudanL8m75iHOElUZzOiODR5rOOfHAMtiUbGRUhBr0DkJJeRmqj/uj7ZvpQAhhJGBGDHf+IEFDCERDVIRMZ4xpFYKIEUPHdr/fb99fv329vn5/XN8WiX4pY79oe9P+pm30/bXtr6Pf3TuRM6NwKZXWU11OZV1kXbgWAgJAdNC6NOIIj977hmMt3FcR9gACRMQrlFeS7wQL4AvxLKLMdN/u17fvt7fXx/3e9k3HmDVlqmyOOwOygvXQkWmKaoOHUIEQBAx6bpkJk/7q8csyl4l5eqHA7AUyRjiLXkSC8Lwxp0n+U8B1MA0mcYQOXj483S8QZx7mUYCmccZs4J5oLiVGN7XkE2NmhDkbooMjEUSYNi44C9v3GveAIHFS/ud8FH+qY+P5OYfI4xePOIJgkj8+a5I8pGb60DREEBZJpxLA+RL60wJzDB3ddOgYNkb4kQ7KgJBiuUOXAg7gUvB0qi8vp9O5Lmshpikcyzttwu457A4WkIKl8LPMRcRsNMM9RxyJczOlcwgEADgEZGkdMElj8M5ImcHg9LFxjIA+gswJAzHCm+lV9fX29l/X7//7+v0/b9c/brc/ersFeiCc1k8vL/8mUoW5lIoYve9db6bdVcFjOX1ezl/W0xcpn6S8CEaxa9FrHcjeELaU6k1YBTB/9vRgz6AdCMdseyAglHRrvUg/mzkgA0pdKmfIr/V9u+vYrbdSl9631nf1wHIqpy+lrMt6kVJz2S7Ca+VTldPCp4VF5uHiYR97omWpmWPRerveoEpZRAiAssxFDCQLUI+Sw14FCKe09ycEmtk82fRIkXWphXHfttGbjh6uT757wEyRwd7MJ7Eh1ENNVbUPM5NaStSU5ADBvLUmCD5HND+WYE/XjuTOPS3lDrgwJg0qGfBBjABMB6PXJnv0w+MoGuZMKNdXnh0ETmBMXXAIm2AQFIwCwQYXixeDVUMUBMEIOkVju9H4iv1r9FcYd1CF9+QqRRhMzhwEBAEUjFCRToSnqBfAcwD2MfZmA5rSNsB3G7sO0xb2QLu5IlgFL0uUoBNDdcaQFEw/g8+DCJjmuYUHGJ5ddfqpME0Nl7WPtX+YdrOOIDmPX0plxKxxi0gKsNytPW6PZdW9ghYQdnCgoHCZhgIUE06dludmEWjAUcqUDgJlRBSBYfeEdI/MET9S+wBdYySzbR7qcMCXmTIF6aSRoYzMNDtyejKtJEuWCNfR+n5nCkTTwkgB6KPdbTzMttEfrT9UdXWWn8pcd1XPTgyT5gxARBYQiA6obukRozrcnRkhA0vRKIkA6h5BYI4OzBEKYG5j9L31bqYpPMW6MAckldNMdde+qTYIDbdnyYVw3D1EGBwBvSNRIDqBMzoTFAHO6In0UkAHzJtkCh4QMSCHOn581YQs/Xms5kwlDqnIjw81/fr1DzMbzcau4QAggJT5qnlGpwCUi3BhJLTwPrq5b3vPIhIB5wWV/W54qoNHd5yxGTaGtjZGGwzK4MPCk0qBGIB5/KpGoO1dtzZaG02H6shn6gHEDZDU7LFt297MwyHKsrIsy3rZW9/3vZZt9H6/33trAEkAwyc1MrGpAAqkZT19+e3L5y9fEH8xI8qXNjx0qGqPyXKf49Oq1SPZ7zWwsjBAmj0KC1cp+Upkmbub9da3fWutAQAhs8jexuOxI+BoY7R+f3u7Xa/9sfHiNatmIgAYPV0Km4V5OBHVZdTRSy2pZD3wo3z/I2NKE18PjyA3VitmZCMUHILVCRzBIRxB1VrbZ+AtRhHyjM9x4l+guU44HBRgRCiAEwJn2qu7j77fb6/fvr1++3Z7/b7d3041+lZHu2h70/Y29t7217ZlmdsQTQoutSyrnM51PdV1kdPKS6FAcqBuoxRnGl3HGIrhbZXRy5ApxmS8YXkleQF+IVGafChX69t2v75+v11ft/ut7XvoLMrxOTB/nyDmoNA8gBSVUJgig2GRMDNXjtyVX1Zw/zNpAQKD8InzBaQQkCIOKRzMojHiieYmLwEdAAjJIVKY9NSuHScoPMvh98shpojjh4vYZyRipiXiO1fg+CI/i6Nm6B+4gVMAHTrWOI6R55HyS25Cbp5ff3jWeYGBx0V+nExPDnMCpWlzW0SqzHDjcFJABhhuYBSAjFmxT9CCD+HI8Wvi1XnOM6e+FTmZLWkNlOMudAAL97Bh2t0UwAhDGEvhiBgA4f5sIghRiIHBMRzJLRwnABJzOz6Bt2xAw9EB4Mch+PNFNMsg0D1s1/HW25/7/sfj+s/b2z/v1z/bfhu9A3Cp57qul8vvnz/943L+Pb3LzXtEN1+QCi+FuS7rb+v597J8BiyAArq7hY4u2pNgkffGdFyTgqyA7EDpsXSQyfPgV5w5wxYRW5Cp61AAIq4sZT1/9sD98dY8zGPft8CvQBJUPEBtACYzWERqKVwrl8osNDu3ODbEh4VCTOykrvfHbd+307pe1nUphZDKssxp4cFeIB3h5jTSXQGZA82BbPLSwL0IAYUgRhE5rWs7nUbv58vptK5LmrCXWmpVM0LUoeZjhD4bK5ZSRJZlEZE0uWMiCLcxLM0uYl6vWRPlD5Yyecwy9zmWebYXR2eIU6maf5wayl/un2nE/NxjM/LMEZzAmUzImIBJCNcA9CCPYnFSOFuUhJzRO/mD40Z6J2sYDsjAiyqoqmqSkJOKvYgwFZcCXIjlxOUl8EJlxX7SsGgPjX14DNMROKZvKrgGqO97Y7whLs5nKC+FligEWDAdhBDUgRCQMmA3ANP6/1BvAWaICM0yF6P/Qsa5b2/IXkqJUpk5p25EIMLmpdaqNQPK13VdtS0YnWI4YxhhmPDUcyAQzf7Yny2yBTBBcJ41CETMwRIcGKZJy3QDm9j9AeubH5jAvAkAgJFlzqsRp58RMafrDSIxl8plqUtZaqmFidy9DX1gM4fGTIAeYGNsvd97f+xtyzK32OefbqBEDSceEYEI4EDu6j7cEaCr9UwPN3UPMmfPZww4qzeDiPBhBhAM6AFPtvlwRWfygUEAgh6hI8f7bfRNtQPMKgLe9R2QjSsevwM6AkRoGKHQRNcwA54sxWeZR5r1jTt4mJppJFDtiBQHaz5nZrNgBfy4g8KjNXU3mxN1fN49xzQuE4vHGNwIxujHdwZ3ZOZT5tyvi3BZikznwdAxQjXxZoKpKw3zSFdM5DL9Q3HOgcxjqDtQ1xjqPc23huOsFYBZCXtXvT/2bdscAIkAWYeZeQ76i3DbbXvcr6+vYwwdPcKT7Af5UyMiMpBcXj55eCmVhX9BWjhWTJ5Ibm6mHgeBx5/CIeTCnK5Qs0NDJHBwNQ0PHaZPL/kxEJA5IqBjQw8E0K7WR4wuECBUmQtRmUgWVpZFylqLBTs4MpWllKWUkp6SPJ9TZE1z+PsnKGBBiJf1dEpDf2ERzkXsSdx3haGkym6ScQWlgE/4sZafBcSqfXt8MzPrPaNkshqJaanS2n69vX29377t+1X7QwfZWLSdxv6tPS77oz+uf9zevu7b1bQDBFLatec0N6nFGoYeZMCPh7VuXV0tgMAd3GaooztGgOMd5BXkUsrvvHZCizCz3vbH9e3bt69/3N7eetvTLYHgAA0BnqhB5MUCWekmZxbBYwAKeKQyITxxOoSw/zMJGh5oaUyG7kR+ZkPydMXEg5EQc9IexwMBJ5EgRbIBB2j/XkM+CRiQZJr3ufkPmz3Nrp4PoqP8/YvTbWat5UoHAA+zQHREDAJgwKeVw8GgOH575q8kPvVDJ/DzjiJEng7eDpNbcHCJnsV75CQLUx6XptxFpIhEuMrQQR2BIAjCCI0Jwp/A81EiZ7QGEiddOSAM3BCCGZPFxIxqNgw8kdRwjzDrOppqm4uboAgnJ0d11h+YBH8mBHQMxzBwDYyw445+NgBzipROj2kv9WGphFoHQG3fdf++b/963P/rfv/v/fG9bW9tf0QA86nW9fL595fPv798+v3l5e/n02e3PsY2+sPd1YOorKcv6+lLWT7X+olo6aP30VSHtQdubxj3gkMgPKNyiUiEHJEtaARyzIgXR0LiIHYUB3EHDAf1psO3+6P3QbyU5VLq+lKW5fTb7e1PxDLaY5jq7c0d1Kz3bYwdwAFsXS5pkBGIAWFBw3Cen/BM8vnr/kEggjHG3rubvVxeIhzwfFrWsqyTvRfuAGY+QA0jdTBSCkdxJANywNzSCOBVgFlYTuv68vLipgjx+fOny+VyOq2n02k9nep60pw6ct89rI/p+GBGhMuyXM5nTpcbYWEO82FdJ1kNIl/UFHpCpGt+trsJ5fuB5x+oC/zQp8Y0pYuANIv5+KJMEDm9uI9dE4DoBIZolOArIlINEAvSEAsxWA0rBGIompJtZG9obxQbhyMy8oqFbPCw274bIhCn0r6SgBTkgqVyqRdZPgFdqFfg2qwBh4GZYwoYcu8CMAR54Bi2wQZxjfqCy0vISigkSyDHzE97SjWP1TePkVnpTgAN80kBjJ/JuRHxeLw69KUuvqzlSHKJcIRgxJS3l1KXuqzLYutKMRjMO7pxmBKltD/hv8PbOLOG3S3QDMyPEz0RSUEO1IiwtNPA5BR6QPiEI+Ogpk0HXUyu2Kz70lcnrRqnpSQLlyq1lmVZ1lIXYYmAPsbDoQ0TwJimBNZM96F763tawb/AR6eFSKOvvDbSmdvCh9tQA4iu2uY03MKdWPgZt5nXA0bWMK4BM8IIfqCtWtgIozACpQgfbe+ZBzGa6Ti8ESbvLlkfziAylbrzMACDTHp2wkgrTI8IDIOktoPjNKJIApENUzVDREKe07IAyPEA+hwKwrsY68ftEwruSQnkvIB+mMG4mQ7rNBDB3QZGpA51dOvDqpTffvvCv+NpKcK0LMV0jB5qGm4eStP8S+A9i1VQkIqRFGTGKRlBdxgaBq4a6qAOajEs0lPCA5kM0XRoa6N1BUSSKGne5o6ISymndd0e99H2t7fX++16v99NhwgxkacsICDtMr789ntdls+fP5daf8H4j/yaMHlTWUGldCEbcqJkc4Z5WhiVHEPkrDizxdR76o3TlnHaiwKkUVwERsQwUBXwU+HAZa11KaXkgkD0xc1WxFAMJwAmqYVrTed7Fk6NfcrQCxIBZt2iamoGAWut57rWkjQKzoPE3ffuTSPcILIAAGGRXGvgELAsP9dvo+/Xtz8gLUQQCSMjVFPDGr63dr3fvj7u33q7uW9uZCraa9/O+70+bv329q/b2x/bdlXtc/xOlD+P2gj3sadjC6vL6wNu9753A4c0JEnUX83cwtQ57sBvwOey3hmGkHftqvu2Xd++f/v2xz9vb99Hb/jEr+bgP+uPAADwxLAwDoQ34MgbB3TC8GRbO0QAhap+RDH/BzQXCdExcVA8lCiQlRBCHh6QxNxZ6U6/wAnqzp8zkkTA8Py+8bwPnh+ZreV0Ujw+J7/x9HSdvwCTWpgF519CidOWDBCAUsUAgCAG6EBTMPcD8HRAwUfnfGBsT3T45x3FTEstRyE8HUMhsg9GycRPnFGZQliYqshSpJZSi0SEMSkTQ2D4LHMVk/tx0K6z3CGSNEZ3eErHbIQrhCEIIQDPxtrn0B7dIyUHriNcEYISBk5uR/KywxGCELJzdwxHgPBAnUkph0Dih7cqDvIm/KLMjYxV9N7e2uNfj9t/3q7/+3b7r9Efmb1UyrnUl8vl99/+9u9f/v4fLy+/nc6f13rq7bZvbzuSBzoWKeeXT/9+fvk3ljPTyQPUv3nbR2/Q7ri/CW0mGjyhwnQ6AoRAzpRRSzQXAwiIkQSoABZMZErNxuhpxrSevpwuv63ndVk/wQsjSQQ+bt97u/e+xeNN3cZoAJPfTwhLrQfLhj1MDd2z/uMnBP7XVyXcbW/79XZrvZsbEYrIspykViIytXBLbeQsLMLnd0ynjglQHBSZAAAQ4XVdX14uSbD7/Pnz+XJOi59lqXWprKaE4d7ne/7eHNa6nNaTlMJFEDGvh9H6vj16bxkvIcx1XZZa4RA05SalSVrgmd6Xuqrn1AWPXtQ8O+FfLxWA5HYeB0mWydl6ea5VIiRgAAFAB1EoA8RBHATD2DtbJ91Ib2w3QiNCpAosENXQ2rg/mjGTAJNIUKEqtLBUklrK+lLXz0DnEDFm7g+UEdj8mPMHMAIjMARHsKqD7+GM65XXT1jOwotUnZ50TwTpLyfF5IaFz7cu4H3yRBoXiL8evnG/fR+2jWVVXWtdmAqzzBIUDDCIMNXoy1J1rRQLgxqB63ClA7/NJjliqtRTTYE5e/PAmSKNCHyEWLrDsAjyCE8Q8pAvuc8zPo91AkjfPWFBYuDsenL4C1NZLiK1SK1lqXWVuqRPdxvqI80uk7Nlw324D7OR4iVzs2LwMyD1fFnzVgH0DNC2bgoQ3XSk/7FZeMgRBziHOUnWg+kZGgeJGsBxPkPNdCoQAiM31b716ZLbzfSZ1ZD/CKf6A4gYJgkhiXgRbmEAxhiCQQBB6HHMzeY9EvktZ/yyqgIgoU3eQo4EZkPJR6Hw8UyBcJ5X1RyuHrh9Di9dVTsBZjoCmJsOG2PfR9t6rcuylM+fXxBBmGqRNFCI8LRNTKoJEZrbBBqRkQWlIAsKEUwJpjn0YRrYhnV9/4URiO4OiCMCVbUPHWrp0jFfiAhCLKWs68KEOsb9dv327ev3b9/HaEWYhdxjmLkDl8plNY+///3vvfePOQgAcNxrQTlfzvInPc7ckYhZpahqBgoCIXHCkgERKcn2MVJf1t2mq0Ymo6VkLOfl5EZhQgi1YIEqSUeQVIwHeMTCDEbonDZlQqXMEEzmtP9jpBPLykUmnRHUdKi6RxWpUopMC8kkDpoZucKAJOUURmYslYuk+BMQAD6iuWO/Xf9g4iIVywLg0xTF3WKobfv+drt93R6vrg+KHk5ubKP0bd1E7m/t9vrH9fXrdr+N0X0aY6EfKnyzETpcdXjpJtcN7w/buzOCMGbG2YxNHqZqHA/gK/C6XK7kO3mzse377Xb9/vr9z29f/7hd37S3p2IE8XA2OGbmnkLuPMFgoqIeoOAEluLUwOPHjF/4/MCvy9z8Pe+yaY2bqgqavF0SmjTZSV1ACHBC+nG2fUxNwtHpkFU9q2zHQKQci6cQJ3td89TOPcHVGRAU6RMRGAHTySkzgSaSHdM/CdDBMY0lwwPIIeyQCb3fMj+BthMLnlcUfBTrnZb6b79/np+Ls/ycbiwIKdZl5lqoClbGQlAwBEAQkhY5Q97c045qAIxIex93jwmQEebICAPCPMJ7a9u2iXAy7OrScw2kB6GaCRcpFRD9mNjmcnAz7dbaaPve9zaGmqZ8Hg5v3KSG5GR61u5z8j87qaPgz5JrsgZ+uqkNwiEUYhDFsqwAv3n8RiDEdVk+LevL+fzl8unLy6cvpS7CjBQsUusZUWT5crIgWZflc1lePFgdxuit3ffHq+7fuV1JHyEDEjkMd0uowB5tPLa2tdb7UE0hLkLqFKVIXXlZHMSNVZGoI3YAb/v1+vbPIOblsqyfPn3+Rynny+Xt8XjdHq9uGhBt365vXyPAdWDYWsTrJ4J1GtbBnDvMVffhTtoe93273bfH2/XWegcIQioi5/OFpKzLkoUjRvpnJaqeh/JM7kOpKJJ7l5mWIkQoUuq6ni8XACgiL58/n9ZlUqwth269tX3f9rbvvXczCwDi1B9PZ4rJVYeIcNW+79v2eBw2k3LSk68rBMwc1Jj7YJa3R6WbR0PMwIJpH5okmtxI9/v946mSTfFk3uUBAzmh4uMnQseUuqIDRxQATkUq+mB7kF7RHuiaIC5ItTC1rdvj3um6++2utdYVKy8n5zOUEy2VV5Glcj3T8gK0IhAGYSlUG9dO0UmNwmfsFwhwAS/gZm5dd9nv8nhDWVdZuJ7Spesw+Dju7x+fZd4Lk5JxnKU/F7jzGd9u32XIXuuyL7XWZFbidCXw3tto29AtYBBHKQxeEBZj8EGunINPNzjUq4AYRBEc4NNZjAsT0wH1BqIjABrjYYSW8GcgugegAWZxOw/gsPBwRmQSKuk7y2mYNG2TmNLxkKtIpbKALIbcNNSUknE241VVPRKtM80SI9w5fipzs/Sbm8vz/gi3ND1VRISYITAwGXuzUzw4+9NuKSAiHV1m75WuCLl1E2OdmmDXeft4mjFAVsUQ4IhoYXlaJjdiHonH7Cu/hU8IFJD5aOFSVn9siniHgiDlf/PrIBxlbub4EJJ96BIRSfjkKegHi5kiYik9DGImCzaYrkSMaTPH8+2pZVlOpxyKi3DGkHNhdvYgcwyIYeoRrfe9tzGUOaxgTm8RAZGSem1ubd+b+qP1rfWe76vpvNRIbdgomi9uIqllkbqU9DpAAD4CPjN+zN3TzB3ytvbk4wGQEDtABoKWUsrHHZSquZkemgyVZG0GBEwtOgROLEjdyQzJ0/vCYQZqZvMxbOpkEJnrIrxKESIhpJhjEZwMdTyE3Lm7vTDGUriQMzpNQ/UgBMhaRjkhGXqGgCATMlKRUgsDhLAUSaZDraXE4XIvGAWxC6up6kD0xFV5GmOjEv00DVHr23YrXGk5g3Ck7dsYY2z7fn3cX+/377fbt9FuhaxWkgIIw3Tb9zcDfnttb6/f3l5ft8d9tBFuyICcYVfAgUSMnK4EpIZdYaTum5KQjhau6hgxRgwFdnHeQO69Xcf+XUG+v77++f37f/3n//P1j39eX7+17W6T2x0HdPqXgTIki2h6nuS5gFOUktTj46TNtITAjyvlf4iHOAbxx1wyv0DSTrNFIZnToSTNpbVKkismMAhPwm1E4KFwmtsbIhm7GBBpM60jDZDd7KAsObwPzj3r3PQ1m2O61NDMwjpmODGmKjfCHcnDfVKDE1v+68uXr9r8/Shz5xP66+N8Wv/xt9+OvxgRaRaYB6vnhxIuqYKFoBIIhmAwAieNgTCYMoqaIDDcTScSYXZc/pQCKnOAMDRve2OmyTwNqMuSgoAxtLWuZrUuy+rE4maQOdjZdJj13tq2t621vQ21yCDBg3WC84QFAqbJfjnEXROJmn8ITOeFXzRJaccJYAAmTHR6WdbKZa31c62fTqdPp9PndT3XZalLjVDTTa0hU1lOUl/OtCCtgQVQAqSPNrTt+2N7XPfHV9u+lf5W7B4ECAWRIDRMdfR977d7fzzavvfWdWhaXGIgIwnxInWt6ymwBlRVQN4B9wBs+9XBqZ7Pn/69lFMtLy+fsO/32/WP2/XP7fG6bdfet3j72trDxl6FP10ufqoIC7MA5KTsncPz8TW5P+7Xt++P7XG931sfAEBIy7L89rsRy3I6r+taS8nuLkwxW4XsIZDKeqqnc6kLzGM6INxtpNfU+XwR5tO6Xl5elnVBBHc1UxjY9u1xv+/b3vbeWjdzQOBDGpR8tIBUm0CE6xht2x63a57zpUiYJpCreljhaiY+EB6xFfRUiwLmdNYmgDJv9IC43a4fDxR8Zv1i7v5DTYtJTCQPSZ0TBAQKYCJkhm7onfRO45WiYRiggLzE8tnNW/v2sHHr+Lb57aGnWKDUEi9Gn6F+xvXMp8LrQuVE9exQ0lsCK1Pdue7sQLFT+BwlQ8kyN4NfPVprD76/oSxcT2V9ISooAlDydPT3Auap8f1RkRZz4IUzXeIveyfievvGDaWUWotktJLU5H5ChOowHX1s7gMpuOSgqDqDC9tQVzN1I89XDT2cIux4vRGlyGEfhYCA7uiGAGhCxSiSpQFuqaQId3REj8OzIUs9BxEg5lKq1MKlZIYpMSIDMJBg0kS4otTgokE6InzEGDbU+tDRtWf2xjzR5+DP1w8WywBEGB6JACRE44Tu6j4jLWlKw+CYhfgx1vOJniNMxRdCkExidwDNq/I5IZwBPWmzGBO8yqvkQEwJIQwBozx5annNZs75nJvEjP9MkQUicVpT5bw1+6Fc3h4Hxcfn7ZNdyPRDYf5FmQtY5GRmEV1juHfTVNxCqr+dLMxBMs6DmQiLQ0QpS1m8ynI+n5dlKaWkJ3swcWFxtmDynDKrqu2t7a3pUBGozjmxzHdEhIm5qd738dh7lrlDzdzc81IDQhg0iBozcyEWKUtZ17qsixROAIYlw56ERZAoAqcjGAH5TGANn40wMYuUWmutFT6UL1nApQgZ3DCciIQlwgKQcRp6TeKIhQ3LWy+XTYrbTdVGsqaDApCQAVaRy7okB5cjwA0tVfgwUQDNu98DgAlXKZWrU3KwYqTpeH4D9wAUpGCZ4hhGmfE2FCBIWJhFZK3LeT2dlsXV+t5Go0q4sowqY/ShrKbhw8EFQIiIKQj159dkNH2NuhYh8CWd5cZIRON6v3+/3b7f7t/AHvVsy1qKAKK6bW1/a91nmfv21vZmqgA+5xdEXKAiIQIjBHIztED1GA4jG0kERzSHMSLM2vA2QrwFbyj3ur/17auP+PbHv/73f/3zv/7zP//847+vb6+jb57zZ5hTqclYxQNTAgwMCkjBPB5mB0YBPtHSdJriNIz5FfD/scw9SiqfTl5xnAvuBGpIxiREeqRUTFrqDyDwE3Y++BU5AT2ugVkZYtJ2wXXYGNq7jeGZaOFHpXvw3o6fLP90/OMHUSJfDI/UfgclBEARjuF53eDPXAQ8wOZjYD+5W/nsfz5811r+/uUFJmcrvRsP4HmGRs28UxEupSxFlsKVqRCWZOchQARIScMmt6HK7ppuY5PoAY6H/ijcAKz39PBHAAqHWnvOi4fa6EPd19UhUEpmwRyBvdlNzzjfoapuBkFJ0I2p08NIF+M8uyMOrthRroDHQekIALdfuC7nWURcpKxMn4mDCOv6sqy/reuXdb2sp3MtJSlMajtA8wDCAlIIF5IL89mChnofw9R72/ft1va3tr1Gu3I0RE9a6Jz0gPszNziDLtTM3BwmEwaJpdR6Xk6fkJaAxQyJduJ9jK6m+3Zt27W3h5mu63lZPq/nL1xWqScpKxAHgNvYHlchetx/37c3fTkDvAhzRJg9F8jR5vz1se/b7XbdW9v3fZipqSXKwiS1rOfzy+XldDq5aa52cE1Jgrp5RFnW0+lcT+dEZcJcRx8Nk6ZZagUIIqy1ighl/2EGgDrSxHIABAuzCCKR8HJaS60snE4OGJTLDFJa3VvvrfUxRAiS7vAsc91UM3wyYYh0ps6L3hHUwyI0zXjcDsuf2Lf940Hz4/EwOUk/9OEA6MGH1gAcOEAAgdwgBvlOtpHdEQKQgqrzJfjzCG1x3wZsPZpiNymwOH8K+RLl9yi/RTl7qVEWl2XQ4iBK4QTOjnIhORF35jazoonMBb2AZxMyzIeOre1XrstyevH+IC5IBdkdCP6C2GbtM4EBgiAKxkhYhyZa8PNJe398R47Uqcwyt9RJ3ASM6XXd1XYAIwYIksh4ISQiI0NyUMtgX7DJMprm3URzGSTCgXlQKQGyu7jFfD/IKcAxPNzJnNDN0dwgpkdZZKWWKGCphaukYT6SAzsyJE2IxKkECpi7mQ3T3rU1611byzIXJlyb1wPADz507+tkju3zWJ26Ms/KeO7wbM+fsOy0jJicK0IEJJtVKhD6QaCDtAw4PA+y5ITji8OhSqHD8ubHmSKm4wTEtOOZ3xoPjbTHtEkmJERBjwgwA/DJ7zkc1Q9sZHL1YCKmOOGigF9oaJCY1gjNMYwpmCZm5ggAFCEeM7iYRIowZya1jhCFInVZT1IXLoU4RaWIREDo4cNUVcPDLLZH2/ZN1aRELQA+IpwQMnyBWHzve2v3x7b1vrWRbgEAQNMaGNLWqxRBqSWNHXIen1hNUmb5aeFCkXk65uzuQROCebKiMop5Btr9qszVDqnTSlvgozR47rbwMLXRlQCdSVknfjPFRDm2sbCkL2FCRQVxIapElZkh0BHJJ0krYAwboGqeCwGZsAgWSltBDW86+gAMV3VThVTUAQIbuIWzkwc4wuyMuIhIqctyupxfThcbI2v0VDwKhhAWwmFoFuY2nViIxgeXT7fRxg3BYzmlr3O4qY59f1xvr69v36631/v9KrRfziksi3AdPayjhd7e2v123R6bDvMAIvJghwIoSILMjE4ZIA4xNNrwYaCTWTQtCIdFeHT1NnzECGpAd7p9w/rfivc///nP//7P//7XP/91ff3a9rub5p2EBzn9ienS9PKatR4GJX1ivrMRlptr+n0lhYTgV2b2v0Bz3czUMAzNUo5i4Rre3YY7HOOA7D5nYJMQH/IWnCcFHPyRdwR3PszDD4tmAG15CjbNnI8sW+Jp+/ue3IuZ+RAH3IHz0Dk+EyGZSum+O7FkP8ariU8fW+35iHj+Omrc+ck/PmqR5bIempwsBuw5LgvPptYIKRk5pdZSaiZ68+FZnZ2fMJuwiBSRTGowhDjUH+k27g7gBhGKrmydFKG5g3CPg5Ns6QaVufEW6mFmrY3eh5klDsGczpkYQZ76Y48UVnvaUTiYpsLs4IDM7T9/HDimy/ErASNQQcCyfGFigiFCIlTqqdZLWU61SK1C5OHNbDcbAM5SkRaiFXEBqACcqWNt37bttj3e9sdr266j39g6Cy18qiUOv2SYYMlzfJH3VMwrLbst5lLry+n8N+RTQHWnUnVZx77fH9tr74/Rt/vtq9QXxFLX38ryckaUZS3LuZ4u6/XT9njdHq/m3vv2eHxv7RPE7yJkFmYzAWGCTR8eY4zWm5khUWW5XC5fvnz5/OW38+WlLuuyrueXy+XyAgnn5/RWRx8De0+PSZIiUlgKs4SnbUxIWUgEiMy99y6leCJzE9kKQiCiUsvKQlzoYNKcLpd1XVnKlDqGg4ND8OHMGu42hpvuCaPBYeSXTzBJQojoMHJonKcE5GkX9oSzYm6xj3GLybuaxIVEc+m9gQ0AR3pPIsfc84jhCJ1iI39Q7OgdqDitIBejE2Dpron/qzlSreunevp9Of9bufyNli8uX5TWhhJR0ARBIrg7dADFJbAiFWImDEYnBmI2R3QBL+E901DDmvX72Bbdr9quJEWkUhRCcQwESme140yZnHjBEAZhLIzCUAhi8PWvpo4RsD2uQUZMwpl5V4rUY33jbJ9dbezmzUMDHBLSRUnCNMyxsyEoYKD5MRhlYc4lhAe5DN3QKF0+PHKua8QWBuDoFm5KjmZoChMDA0j/fHPzsKSTcAFZWBYGwsBAMuRADiBwiCzUhuoY1tpR6Tbt3eY8bXJfp67lp6Uy9/M8kZwCA3hmqgIxcQLlCDRJr/wMMwFIU0kkxMkjmBTWufCO+jXgYBPkx5kws3oDkiLPDFlmo/PhlUZI4PmmTATGAfBdOeLuZDaTNY4fg+ZtmDMKCmAgsMyNgHA4/IUS6n0CvR8OFYQoEOBGOkBH2nknzB1IEOJQgwCFpEgthTN6jRlYUaRKrUec+JzGOIS6bn2/3q+tdXc39da07T3chVWoE3j4YMYiXEohLgDQte99bzMxPm93PKhMBynqiZYdHP5kw6bl1qFXhUOuFOohHgExFY4zAAvTICOjHz9SlpNtEqZu6QEHmJVdUnYJXcmIB8Iernuf7JDnb9kuJUzgjpnyjUjuoAbDcryLkFbiMQkHQEEIzIQ4R9jCVIUKpx+HRRSihlgCOvlAJ0BGLJDoFZh6hKnls3QWcSzIHFy5nsv5E/UxjMkQNAJGBCZIj1iDKcLTloeI+AOx3UNDNy8MYESzoXTzbdu+f/v29eufb9e3x76vMlTFnFSjdwvzYTB03O/aW3cPSG1pkbrU5bQsp1JXqpUYFD09kXVr9ti9jVAnRBgWXWOImwUyDMceiOq+N3Ua8EdTbr7867++/vHPP9++vbXtntp6OijvMN1gjwgEIkRUc8B0e6KAmQPgc/oOgU5IqetPa5v4P0Nzk/Ki4IZm4ZlzrvvoW29b75HzGcBkzNRaU3m4rOu6LMjIyDTVxc9rLN4f6fqhllcdAGjvx6+R6gJPfMvf0USi6XaEyIcxRwRO81iYYabhc6xw+EhO0BLBUzQw+VRzIz5/mzVLQAK6vxrQL4XXy5Kj28MqP+D5NyegpQfoxczCUog4Hc3iQAGISJhdRFlUxJSNiBAzQMKPyI2nq62iKzmBhTUdBog+XxkEQGLOLGTzMPOh1vY+WXAxrX7yZznIHTGtZy3P2jDDqTvJjiCOZ5S1NHjCIEmL/XD2ImBBEiahehHCpUqtIqWIVBZhMmaD2IZuOt4iAKkKV5IT8wVpMUVVNBu9t31/7Nt1397a9jr2N+13gs5EtZ6KzE2PeITbwTGtPJbWrDgndaTW5WU9/Z3kFFQjxEbYcLl/N9cxtjG2x+0byamuv12A1uVFltPp8mU9vaynl3V9+f71P8fo7tb7vm1vvd8DlJkgQiFfsfifrqTMJQtEJirLcnl5+fLbb19+/z1pBuu6ns6Xl0+f8iV109GHjk57c3wYNJLCUkSK1CqlhjsRQoSUgiyAqGZZ5pppvgnHDQ9MRLWsp8vpfGEps9wpJdHcvHzBHRwJQo4EAogwU9BoiHlbTFZk7r2kF8QkO06+JEAE2GGvcnidZAmLv1gq72guzE87evCjN3libseAFxHAKIbEhvFA38FHYA1anV+CTgHSHPYx9tZMHXmp67Kc/1Yv/1bOf6f1k5dPgyoAmxNMI0QyQwNUrE4VuVL6YpEzIwu5I3oJK85sBGjm1rSDctX9Zvs1yop1ZVgDAEEQIHBKXAMCAZiAKYSgFlwEa4Gl4CJgja8/owzx2N4cRiI6IlJKESl8hKdNVkw4uELWuOhpfZBHIhggR5AZDPQkdAFgzFCImRddnn5waApEMe3wgIiIzbLMPU4DMsrtlVQzm12/u6uFBhZgx4KyUDlJ4AiAwAAyoEldzGlAzucmjtusNxvdYg6EphE3pGrp51dlumGHubtjUGYgICAjc5YmnhAvuLpLuIFbaswmGJT5N3M6x3jwdadfXnj+nHBcr4TJnAwAhCTnAIBhhsklu10I+Gip4wmMTApu+nBZAExLkqOQynsQs2iblfUMWjJI+qbnWHYOULO7+bh9AEr6CugI7ZHGDZhIMGM2IAgoxDXXkUz+NAkJFy4LpYiQ0vEUPHy4bm1/u1/3bVdz0zlPRQihLsSF0d3SoKDWglwAYWhvfc/rOmJazOWKpWP/vnN5MstsenSru2aMTzYh6Sczh5AREenpjohMRAfZII0R9UOVC2YH13H0MH2nnwc4IBo6meno4a5Kx6gyL2iRvKOZCNPvLa9dztQNNRiKwTmmnooamiALIGWVk84/VKYoJxskj+hEBbE5sDqrZ6AVHwbXZqFuCREDsRgCB1dyqljO5fQJebAiDoc2HLbUmM5IahDIcU2GMjrDXzdQeEaK1gDjwwrS3B6Px7fv375+/fp2vW77joursTuoxujm6HvXveHjZr0NtwAU5lLKkkyK9VSWFesK6D06BsAw33Z/7N4UhiNAdPM+YkioByBowHCMCLXRh+8D74+2D/7jv9/+/Ofr9d5CHcIJDoOUYxqLCEcYaPI9HcAcIf1hncI850yJlYajE5JjEKXE/v8EzQ14/f4K1kIVkhymo42xj/ZobWvdPbLgTvSh1lLXuqz1fD5fLufT+Vzr9NI4urtJZPSnJFvN1CYzFGD03nsffZiOuQWSuTQ/e9YS8Zz8HPdtjnhmRZaTtQAI4MPVaHY66aSLT/tf+BHSTXz3kDMcPLsPxQsRFZHDRxFnKTxvf/Sk+0wxTUIUDmAzE3AyLCIi7El2iIDI1HkSYoy0inA+MmTnvMG8dwsfXsAdMgrDw59sFHDIFL8+tPWxtb5PLy63LHWZSIQBM8AeyEEzfcUtEpFOc0CcpLKUFs5hQAINiAgvl/PHBRTIgYxEhIWZOH3/mJlF0iwiFHwgGCEgMclCfCI+IVcPCfD00Nvub7frt3373rZXbdfwQURCtQhVQYJmpk37fev3rb3e9u+39npv911bN/UDHDiyRQIJqbCssnwieQlcrGdukpXtwnJDYDfLwPGIiJQEcJmFCorPk3icL5+X5VxKTa9fTy13TONCn5Tanx6IQCKl1OX88vL3v/39H//4j3/7+799/vzltJ7yS2U7BPNKJGIGZCCcPLRlEZE0ycgRadb15tbHaK09Ho+AeNxvj8cNmWpduRS3kS6Jtciy1FS848GoBaJ3SAsomEop63o6Xy750rl5cubel+wEPCYiNRHzpMJHpsfAkxcfB5kKAe77z6SFHAfDk5sL7588PziH1c9/SUJAECjGDt7cuqsCBgQDFDe32LU/tDcbA4mX0wvzevr89+Xl93L6gvXsfDIsEGhOgZAm4uHkQE4FuFJZZVQQJkBmYAZDNCYiIeaMP0iwAUJ9NGubLztYp9BAAvIMDEWI4zmEMBTGKlALLgWr4CJQC2gkiv2XR++7RcsyV5VVRUTyIn0CYwiA0yo+Di7qMcgAiMN5OKY+O8H39Aqc9dRhyZ6nFwtHSEQkJdQYPSiCwGmGn6U7hx1vzHEgeoQlFz9QHTkw0WMLsAgDn5dPRGT6jfYnauGuHjaR1cjcMwTEX80XD/KYO7gGCpA/7d7y3cgqFXMDTje0aVuMqU87nB7p/SWESaaLg8ebc3+bwZTgWWniMVJHQKSgmOIwpIT9TCdVLXm/BuTmao5q5sHpF0YEgGZpPw3wpNkdpkk0V1UiNkeHPtvV+EWVG2hG7nMiBwdldhIrJvUixSUBcMQTcg55CWhyA9RtqCJBO7hKbbSuo9vweR2ohkKaSSthZlojsVApBbkSM6QAe17TEOkdHXzwKeMdmstndWAmM63M/3K4IB240PGgNLFJ4wSz1trj/jAz/4A9zQIhqbJmPDP4yOCormFyuswjSSyeDp7Toj6ZGHPmXJhZpJaylrqWZa3LKrIIM85gSDxgYCYByIAQDAIUppSPiohIRIzSu9Sd6orSqRwjAxapmTJtka0cWI4FLMawNrSrZdh2kIDUYAlkx5RvpHXSTI1LU46Ptu0x28P0kgXz6GoQ43rf/vz29uf36/2+D3UTUI2h0dDJDUH3BvsOj81bN7VgIZalLpf1/HK+vFxeyumEyxLeH0PDTNuAR7Ot6T6oD/QMTTc/CbrPXIB0oUizBLAdLG0hb9ofNsbcpAfzCw/gPysQPjyrI8KDDsoqgoNPG0WkfJ95Dk4CwCLs/yTsNyD++a9/3t/YxrDepoB79H30vY82EkLnufmTilqlLOXl5eXz50+fP3++XM7n83lZal6wiJOpmwTEnMJ5HgfMiNjbGG2MPkyfCVd5qmYAoT7jfuPpzJ8ey3FYyRwkyWSm5dH2PhSdApFZbb+f2weDBw838ln+TkuBvz6yxUCIyKSd+Zh/53huT4MzJCViJEGc/uypFpj+kZrHpUfAtB6gacSbazg81C0CXaGb2ojsQunwnXluUxYhIg8Yw/bWt9b2PvYpDUgLMaYCwsIFI5C6wbBAtVA3NXdHiAytI2bmpZalylI4AynmfYvw8vtvHxZPspVS8xaeA4VJlfNAAOgRO0BnQJaFeOFyITlHGkUZmNnofd/ut+vX6/d/jna1cXN7IHld1oVLrSAcoKN30719vz6+vu3frtvrbX+973sSgwwsJpcnEG2mRSAiSTmX9e/I58Zb4J3LJvVSy4VkYZIkWuVRCdNRZ6kVCQSApZ4RxueX9cun0+XyuZSa+No7Ye8Y0//0YBLhsq7ny8un337//T/+8X/93//xv/7xj38/nc6n9cTMbj76YOK8TImkCBFyKcXM0qAp4zpNu7u5jbB0RWv7vj0e9+vtbWh/ff3++duf7pYReTmjZSzTnIswWUV5Hk4yLMBxB1FW4QBY63o6X9wsD9BjG8AkEx4+C89jNO+oA9CapdAsYBEQ8Pr4JTf34GM+a93jiDvK3by78VDSp5mtQjT3pjpMjTCkZnvfPbptrz4e7ipS6/q5rp/Xy+/L5UtZL1QWoGLIHohOT4O2lMoAFZSF6ol1QS8CTILEgQYdCUjS9wKOpo8J88r1voN2igHIhCULQ4/k4AYTVMFl4rhYBYtAYRAO/IgnRGhvepS5zmw2dBy2bXPnvRs3PklfT/XSLAdjxp0HzZLcwN3BAYIoHBmDnLN4ZiIICQaIRITd0ZwiOEw9IJJ5Bc9tn+jA0T96JPuOzHG4B1qEBugkB8NkuupwHT66TyNEnS3zk5eSQYwH++inl2UqB3LihFmselqSUCC64xFHDX74lKQOyx2JDv/LSIpCjjAoGzEIdAez5OkYs5nZGD6GT3SXUGTyQSeN5mCKekQKtRJ7zMOfwNWcVeF9cb/3cvl85htnPpvnzE7K1pECjt7gAIl/geZGgGqoJokosxieZLIAwEnzmLiQejAAISFYzr3czIZq64gYFtravm3btm9jDHdDDGICDgsM8wi1ADVkJArJJAQpwpJ6gDlrwDhC6bO5ApwanfxXxAwUn/wTe0JWSRbJcp+ERETccphRhJmIEcmdzMFV9217e32t+/IrfsuxDiAShq+lELN5WAAiz976OU2esHuOiOModrPMJlkWqcta1/Pp/HJ++Xw6n2pZS2GELKPTmSEcuBSRiszBlD6EKIxCtZRaKiZyV3sve5O115Z41lFFF0DKaXVT28dQjzDvrW+P/X7al3VHQA0EFmAJEgNScxuDmGqVihzEQAxIkPkufz1oI9AdLdAcujp2dWzfr49/fbv9+f2+b8MMPUAVWw9w92HguvfYWzy22Ls3xZOQlGU9XS6Xz58+f75clnWFWrwB90277q3D3vyx69Z5H8TgzordXgrFRRCRGSUgMq8RoJZYqiPCIlbYmdydHA78NsdNswucKbY/Ehjy2smb9xk7BkiBQYzIBIQWkYFVH2+fX6C5f/z5xxuHtnb4Zvc2Wuujq/bMkSKhuYYQeU5ZP31++e2333777fbl86dPnz+fT6v84C0HOZ7JstTMzYkoS7R92/e9tSmYt0PuHx6Rm3MMHWqqlpVuDjL8MILO5toTuydEQgEoSJkXDmGO/n7qzLb6uSSeeNKxQCYN4uPhG8f+SFDWpsHgcTpNy4RUjbgfXjuMJEjydNb3ZMClkWu3nFgJMQDh4X1ASIbuNoFhd1cM5hIFkPMOAsqJixTOQyFgmO0ZWdt7G8NmRweOaXgGBAxAgWao6ggaQTYDFxCSn8alrOf1cl7PS1kqL0WeFn310+cPK2UCEhNGAfRA8+CEOjEiFKITGjMxryInqmfiszqqQeapt7Ztj+vj+vX6+i/XO8bONKSKlPPCIWwEXRV079tt++P745/f7t+u+9uj3bZuDkgEQM+jy4GOXxiAxGtZfufyKeDNHKQ+0soXkThdbz3pJgaRWe+1UBFeWZb1/JlJX050Ocv55VMp9RgH/IBu/UqCJlxqWS+nl98+//b3v/3bP/7+7//+b//x97/9fZLXifNQExHxNEBAIiHiWutsw5K3O0YfQ224mfa2b49te2zb4/643e831f72+u37908BbtpPej78EBAmjj+d+w9ELp4bIIF7qfV0vjBxXde19ew8cTqCQkAgcRYj+Rv8oKOa+yYOy258JyMAwP/+73/+9Jo8ZUdzHP+seTOgZXo+HXQFwHQqIMwyd4QPcx0WwsAOHBFjt3G1/c37Bu6y1tPLl/Onf5T1s6wvXM5AEiTJb5o8QTiaIaQgybk71jWsRggRokQAEhOm2Co4IXeMRPItRg/taJ1CARwokA7fQgymKAxrxbXiWqkwFgFhYIpMI/t4rKiO4YMI2cmNiVGRnp0FpwSC5i0ABy4WsxmfsaaTbUQIgcAIKZRym/x+p2RBYRzTc8LgBC7JwQ04mQYI6m76XmAf+MqBzU19VKg5qgNYSt/U40D2I7Ls1uFjZjKG65MeQNMa6PDzJ/5VnTsr3SPMwY/C9/jgX0DcqQdLYmvO/efXcECAg4gwl/6UeVlGW6mPoeYx3X0iAJwyzjO9xecscq6f/7e9d+2OJEeyA+0FwD2CzKyqntYc6c/qd+45u99W0vR0deWDZIQ7ADPbDwZ4BB/dU9MaSbNS+tRUZTPJYIQ/gGvXrt0b62lM9Y4JNnQzDGNzH3vEdN0BPKjJIGnCu8wG14Qhk4+kdoyPGr5Bbu/pXAcwQzOMNyZMDuzgbmTmQeyNfqSbWXcQwIOiCIytrffQ5arivm8RbNt6NzcYPRskBejm1nVMgBCiOxAS8BDVDM40On52GE9ECjb6/HBzlfDQnxzF2a1ODqUIMycRt5BApvA+RKAefoaq+3V7+v6Uyv5eCjXb3IFyQZhLzsTczTViReA4LePzDKgNs9MZkpQkkAVSEeYllzUva1lP5XRayqlkRtDetffW6r43Q8tpKcsqOQMTCIXHBDLlnJecCbCn1qRWXipvLe1BczNRTjnokqbWVK+1Emxba92g175v9XrdXi5XCTdJJCcGZkPqDrWrADCQkwALkCAR9ApvVAtAiDLETAatm++1mn19vvzl6/Nv3168NVDviq3bvqN3UzIw26ptu12r7w1UGUgkL8t6Xk8P5/On88NSMiQxa450VZemuHfbq9aK+w4E6tRZtTVxByJiB2F0N3YX8CJ+KkYESzJhoxByWhRMrwnd4SY9bHSJkC0mTsH8flGK1cwDajkM/vG9UQl8xObCZdsqat/3ul/bvg+cGc+3mrsCaPhHImK027h1cNCu2+Xy/eu383ldlsIsIsN4mka2YRRVIZHhlBOzbHu9XK7fvz9dXi5tr6oauu9oWLw8X759+74sy761yKRQNT1cGANpjm7NmCjIJZdlSTknFmEZ2wQe9p+xbYeQZjIn8bAMfm7qd++Oy7U+/fYdIKy1wMIuRPVQVwxjsKj4zKbLBRMLsUx6JtbKYYKgvSH4nHwN1SlEeqgZ6mBGATy0ZmPmb0wtjAr12PUgUoZaj5mP1rq2wZ6HpUn4JVHv1po21Q4R2TIptXhwMlEObyCRIpITz14rp7e3ym2VOdbi2KIgmkbAyIQl2ElhRs5A2ZFDdaitbdenp++/PX//5+vLX9r+FaEKKTPnfMrro3jr+9fn67Y9Pb18/fr0/bffnra/PO1Pl3qpfdu7A4QM3CcF2B3ZuRv1br13M0TKJCdOmrKlfJX8IOnFrZuZtr3v17ZdUjpjWpBkQDGinJecOSf/dOLHs5xPy5IzISL59FEH+0ivAAAPD5/I4fTw8Onx08PpcS1rkizT1gvMww9hcAgcUsLJ2yFEZVfr/vT89Pz8vG1X7b21/ctvv/75n//0219+vTw9bfvu4E/PT19++0tv9fLyvCwrERPTspxrN0U+ASxILCFCmBIdnBNkgEREIpxzCp2AO7MwE0yBDYw25HHA3dU+6sY7TDR9+w7q9/5muSHhV6+EsTXitEOdL+ocHWggAEYU4sziwsjY0F6sfmuXL+367L0ys+SSy6msD1xWSgVFACUIj5FUMyoUnA+mBJvrbXUuwBlZiMkAJbFoBsxAyVUIhFGEuWQumRI7oaJXwoziwHHDIyIIgZDnBCVDDoDLQAQ+ZvU+ulduNHaAJEA0cBqqXDSKzAGK/p/bsP0bUVVw2KRgSJ3c0YzcdFqqwiBL5lmfxcUAgBQ7SuiW2XnwqwfzHT/LMKRaFFNBoN28dUVzMHMdPO6gLcHdp0PXaFIfyAZDvUkg0S/+kM6Nm2RMcNG00h/jD4MVNXOIyEOk8Q1hGNWiOz2IB7eQuvYBbgwJSFCQg1WO6ck4f2AOgEA42c9xr8aGcMyZHTuhu8VDG+yGw7QJm02eSFYejdvo2o/TETVDCJ98zrD54Wrhb4ELIKJwYaKU7HRi05P37j2mswwcUso5FWGJ++RwnwCAwUYBALhFsJd5a7W23pq6A5HEDeHgyBH8cZvaVlOH3rQ1bSiJBdc1nc+FIi/XfJhwRLLKJN1sqPOaO0d3RLKUJcV7PLjcIGokJXOTlCVl4ci5pyhqkFjVtn3Xj0xtck7LUnoFcgPXkvO6FGZpajWiH7p27SH7OiarESE6abMbyimllGXNS+ZMwG7Qm1ZumUXFcfQHEJGZjYhzTqWkVDKKoDAwGiAQJmIBBgd2cmTgxBkyCUxr5KgRfGTikDmaI3Fq5t0sIXpr7fLiIkzkbmidEETYJHkuLJLyInlhEeGERNQNant9TkpJfyj5tJSFEa3tuz9dm1+evl9eLpfL5m0D3RhwEc0ksICU4NCVWFkgZXSUsixlXcuySMpIPEhVgpTLcjqdH86nh+t6krK12h1dGV0Is3AOQwImNI/eGRMkgqXQ+STcYV15KZQ3qj0mQGJlohGZPsUuMV4VxTsxhOSaDA5fN8Ixk37X6ppo593xwQjaXvcGre21bltvdfQbhugnILO6a8C4SWb6RS/7dv3+lXKWnNPI9GAhHpDy0AiETD0cNJLk1vpe68vL5eX5Zd936z02T+u6b/vz8yX/9g2Bnr69BP5srdVaW2ujjB+wdC4RCMu6rKe1lGVkm0ZhTphEJEkKB4QUQkQZBSQiHi1p/wC+PF+2r3/6bbJYaEEjh0n3/PeBccMGZ0iAhAPmRpMuFju3GLKwiF7MKcYmkQkNIMaE1MLDFA75UpzQ0foyM0RUHVc24u9Me9fa+1b7VtteW+samyIiEgoSubpGyqFbPPGR/UGCmJASoiCm+Icp8eQDAPmDAUa8MyGLNWSCPyQCkTSatsLC4sDdWC1abNZ7vb58+/7tn56+/Wm7/EX37yJOwinlvDwupz9S3drT95dvL99+/frbr799+fKXp60/bXpp2tW6hZDWmIYel5DRiFyaUevWWlMzQCYpks0M0nJN5UHS91avpq3Va9svbXvu+UwklMAAA/xHrtN54Z8e0+fHVHIUbBCZKDgfLfsI6H56/Hwqy7Is5/PDaTnnlJkovAOYyNRaa9oVp8HmgUICHLa2bdv28vL0l7/8+uuvf35+fg7h0Mvz0/PT98vl2Vq1XpHg+fkpJdm2SylLLjns5dfzY3OAWASZU85IeP82Q/oKgxhiYiFxdkDEnHPOCWDuvrcW35T/zNcZ6OSAQjB5o/EbPjoOODxpXRgvgUPZO//HkJ9AhMCQe0IszIYFhUiwgnbbvtbnv7Tt6h5NiJLKKsuJ0oKckQWQwqJlqsthVsFESEjiUlxWSwvIAlqIhYUMSQySIVDGLs6JIQlKSmnJUorkhIKdfGdchA1TBF4h4Zg8K8mzeEoj181hKE27fbSs4MScg3lCCMccc5qpNk5OFpl/EVp2BNq72/CbYWKOq8zuah3UrcFsDeGciDp63Dg9Fg8M7OjOPjBl+LuGWoAozFzGCA2gGXQ1rN4jciiwNvpxd/iQvar2QJGj8z+ScgHDhJVF+EOYG3dJUAQwkHCg2N4bEd9gLgM7oSCyx2BPUxw85MzhRAB3pZC0xo9Eve9RWanB8Dt3irvQHbyr+ijgaHDnNnRpwU+odQcPzwJ1JaVhNjzQqsOY2zMi9EHnTkwLAEPfP60ofUJkwDkj8vY2KXkBSCyJ5YTerIfdbx+6syhaU8YhOhqPL3gQ5sP6yM0UTM1qG46B4MgsMWDiYERIDG6AcT8OSW2vvdW+kyQSP51ztQUFgL13D5Y9biOfAgEEVW+qYJ6AQIRykXIqeU2SCMmjoUJh0JSyA6SUk5SwLIyKGcCZRN1rbeZOid8sLUsu67I0BDJ1xTWnc1lY0t46Yb9a3bTWvbkB2vH4QzSZc8o5p7CrDiiwpJw4E6B2q3u9OglxYgGhQd4DxFhFJFunkjhlTslpDBWgO87+MRshJUnsMm4kpDH76eZOCoAlERKLWojYkQh7a9dnEAFmQiBrAmbMkBMhcpKQDbOksPSlrQJc789JWdY/nP+RKRVZGcHa3mq/XOrl6ev1crleN2tXb1c0zKN1mU9r5kTinbVLhgJMKS2n07quZSksMioeIERKqZzOp67748vLw/f0dN333RhMAIrgWijn2WPW0LQZo2fBtdD5JEnxvMpSOCXr7uGgctAoo5s47qPBPo5O4NDlRnqQRUZveMiMeEN/Vd29OT6AuU07zSkCVQ39HSF58MZm7qZmc3WE4Fxaa2bdXcfci4wJ1ZDazB19uPdiRICUJeeiaq31bdsvz5dWm6mG+NfN2t4uL1cmcYOcXsLbr/VWa+29ISJxCDpiK3Zzw4C5130pRQ6Yi0BEOaWUc8mplFJyXkq2nAHAzZmJEEObFkv1m3Nyuex/+vNXGNsFhm4iOFw9IK9O0Zb5WFtopFCF8V+Y1Jkp+JgIzEkcEIBYXADMgQyJXNW7uoad0/TVj2fF0e4ZtqGjuwnDYiLNW7Nt73tVcxsuQ2gh6PY5yjIC2YJcJXcyQ1XQbr0ZsxIpxSQ+hG3vu+N+2fGpeQ66AhFFOGfKKZzPxQyte9cwMtz368vl5cvT9z9dXn5t7QmwEoWB6JLzY1l+UXtqnZ6fr1+/Pv/62/Nffnu+Nrsq1GF5CUQwYHaQdu4GZJDMWc1jA3DAGRgBqXzKy6eyPrt71aat1u15e/nKsiAnyWs4lhJhznxa5PGcHh/yp4ckEhZyTgTBvh8w7/0jtayrj0GyRSQBYO/aZs2tXSOlzA+wCAAw1LSIUOt2vV6enr7/85/++U9/+m9PT0+17a3WWvfadu2NESQlkeQAtVXaSE1bbzHPoYDL5XLe99ZaFF0EU2MI94VKrCuj5wBkRJRyLssCMKQyR802R/zu5civNpzjJNxj4lf3SczdHFgXJsyd2O+mHUIHgJmigg6CWJw6pVj3HHzX3vr2tV6+9lopnVJeguSQvKBkJAHiGAF3mLMBU7Qw7KaIiJOngmlxWd0uwsQiwNiBOhBS7pRdq6AIShbOmXOmxMBoaJ2gMxnLdMoFiNaZMDD7zOJBj/ks8/4Rm0tD13TA0NjeQwYLQGAOFOmxMJLuBxamWHbdHRhAkIUIwiqMHLwFr8gRrTXbV2OLhbnEjU7urTa5dbIQgICcUBDifssppRw5IwNH9aEInczAeB2PQVs7MK6PdgVg3IKzaI+t4S3MDcPIIPRG1DQBoptrt07T7RTIWRCJeHZo1WvXsIN2dx/yXxyOCwCTkiOcKis315ihYolBvLGPqKurHTA3Wt4jNEu7WlczQI+9LPgFdBx80mwJ2jBux6FyirOFNiZVEF4xA8N1JKqet08QIZWyIHkpXhYnVGuqM7ytaw81YLAJdG9kRhTyuQM9alC0pveTYNHMMeiOGmeDhVickExpDDWCOWoq9PBpcemckRLUarHdhFhlVKsAxEDsyMYJUua8pvVcHh6X00PJhYmdE6bMpaRlLctpkSbLUpZSmEPcAtydxJgTInVT75AT4etlR4RzEuhizO6eiLMkFlHzpubm2nXfa+jGMWYLiYRRSEouOeclp2gpC7MQExAoOnmniLwJDimeucGWESEzsxAHRSAESMMZrlvs3KAODoTDNmI6Jk/bUDM2BrMU0xTm3Bu37q7oqrtiJxJBQtTOBEkYIXO4sUgmiiyWNLQjr4+U0uPjGkMqqLXXba96fb7Wl699f9G2a92t1ybUGvYeQ42RZwjEIIIGEqMxZS25FEkSn3wkxIW/72lZ1rKuqRRKYgKWCJfES5GcObBOgKmQ2zKDJMyZyWlZZClSsnW11m934UxbmOvQDGsdsQGDBQnplR+mKtH/8rmU+e+HuYSRFCjCEqIvBHSPtDJz72b9cOP3+CsLKa252zAXURqqEdXwq5pvNjgKTJJy3nPKqt671tq2665NweaHdle1Vtt22RBQJPkYqo1tF1kIMYwA/dgnEVE4EbAbajewbojhAeJz9zZV6z36Km6Wk4gIM41F7iPa5brXX788IeLBQMz2lM8JuBgPgNhnEBAnvW4ARKaGhGMmFmDMEppjmI+G5QEhIhoieMzpWcgj3FRLydq7JSak8GkmYUkp55JyVoeccy45N83dc/fagdkR27RmAwQ7JjOHROposTmod+gefv+t7ZdNsqSc5BjqPDv9h3enZZZhPjpxU3oV5CQRiIDIAOPBQqnavl2fn799//LPL9/+dH3+c2/PIljyQ8o55TUtj5IfWc5Guyq0vbXWTQ0dGDEROGAfPDcyUQonzYh9QhZKRALAwx/UullHJJGlLI+nh38Ad0S23uv2sl2fHP6rmiJRXpbEa0pckpwWOS1yXnjJmMVl6Hhd2RmBad7M/gHDHaUPqnJvXPeXyyV9+9a75pxSSmbW9tpam3Yi424mwpDQqLZW675VU2dOOS/MklNZ15OZAlhiSkKl5NPpdDqdcs6xvcVJXk7n0/mhLKukhHeGTYgQd+K4OqNLPqc8ewfm8VzNgokQI1EG8fAJPmYufe7St3vhALj2XrAcQzdw8JfxrT4Xr/tb6sgPiwqloD8iCnJylV5f6v6yXZ+u12/79qwKJZ2TlJSKSCIWJAFmiJZqGA/CfTJMyMCUMEzdk6fiZUU8iYAwioGTO1GjJFystxF9MFS2ME7c1IqST1fvI7bY3bp399jYDCIoFNp7y3/AJAnNjyL1OIGD3EcK5+sYlRkjsHc6h1iqyIdzFIbVgVqEoZt5sE7RUSIkN7fIQnc19WADLXIiAMy0966DVcSgJ+I5Lqe1nE9pKI4JyBXNIqNAQV1hqhYAjvlpBEYM320fWApjZJViukOGIuHtjeIoRu5C6ANqArEDqUGNJF4EYHRgdCdmIFYgcLQOffSW0KO2Gpc+pv9hqozxZsswttLApXYg1MNm/dCTzLF+s9BCDKUPgLup9uiZzE17MrYejTQDdCADHIjp4L3ZgMazdHQkQd7tyUT4cF6RoCy0LEjo1jXSf3pvkeXaW2WKhkwuJeeSU8ruFONoHPtkMMgGRJJzBjDbuzVtrTbb1ap5R7RAJEuhRAyQENPptC4nySs+5JzOp3LF8izlha/XXqvVqkEugwNx4L+w2uXzp/LwuXz6af35l4eff/n8yx/Op8eUFi8rnh7yp59OTT+Fa2kpJecSrVcAaE1rU0BKOYcP2vslJbaTGMPymHLr6o6t9rr3fW/b1va9QZx+JBjmT4QkRMIkSAJOvWmrvTNbdspUJIukEj6pOSeR8DkJvUysWmodOipY1x6mEFEeRbN7iorGLR+F6pgeD7ziNwMKM5XOIE21+0gLMu0a/S0hZGFG1GgjOljv7mDsSGTvdKiEyELeutZNr3tkoNani738WfSlYO/shlSyrEs5LUWYrGsF7y3szqOtzCmnEgl2JYV1FjFO2IAARBCJo5QIM0NJtGResggLIHeHrlZVBVAYNJoF7g4gzGtOa/bWeq2R/zJJsuhmzOdnZioDOUK4K3hc9ruNKGx04Whqv6coAT6GucQEzmwuggBMxERm1rsCdDPQHs4oIYo6atU5YU8RWQE4giCsN+2qMAiI8ZGEJaeSJJuNBbfVbn24CFJYjav12q+wqRqRxKsSYYQiDpDDY8ZiSLnCGB0ZHF1dtdtQK8NQdfXuw0XG3BTc3LKbuQgcNcW7U7Vt9bcvzzgiT2mSp6/1irFIA4DHljT7f+oW81kI4xQgCBIBhjtBN2Cw44JHp3P0uCKQoGOrtWvPlmI8ZugtwnwqF3XPuZTS9malQ22QGlB1JHdFsx6yr8EZ4GwUT4YOhg2GokJrRDOpXu5cXpTz+1tlbNCxmUzoM/4KkRhFkBnvTbh69+16ef72l+9f/vT8/Z+vz3920HL+tJ4eJJ9YVsmPUh45nTo+m2KrXZuCOQMKgo00HVT0MM0WQQAIIl+IhRJjQuRhHqTNTRETScoLuDsxm/Z6earX5+3ytG2bqub19PDpJ1qkJD6tcl7kvMp5oSVjYmeKSW4QBYloTsS5Tb49IvLBOyITVn5+eXHEvdYSkZXuY6Dy9UGEoWWPfbO1Zg4ieVkgRo2Gmo0pJ85JSjhVL4vEVSIKzFiW0+n8uKxrShkpeqlxmaIrZDQb+NPlZ9hSxio+bPJ8aKYIAJkPjHvH5t6aROPSz4sey9Db+yTogrj5hlI2BrTnGZzgDSfVBcP4uTAycSJlV9R2rfVyeflyuXzftwtgWoBSKpJK2FQPYzDkgalmo2cePlcscCZ0gVxcF6JTYkvs6m7kjsaUe12MOrszoFAUjeMRDiNDdMMIfxqq+rG4Rexx4Lrw9FGDru+KZ4QkeRqShVwqIOZk2mGsZzxEfYwH5x8N+ZhHcBgYJoyuWh/+Y+YppSyZpwORmWk3pw5Dyt9b66oaUw02LGA0hnBjPoyYk8hyPq3nc14LJkIhA1Pv3TqOQf7gH8b5hYEwY5uKcz12d5wOA0QSCRfvJS5ITmIATgahHg6JLFLo4QdHyaPLFbN1ChhDr3GzAQAYHr0Bh5G3HIwmBQvhBg4IcV960LYw2Om7WT+/zTDFkhyt1ul9F0YJNoLm4ajk4j4OWRMZ0HRgIz/qEzwYcBxQPIIn+AOYS+eHlQjLwssicy+LJ7dFts6+XQl9QtxScpIcMJfcEdGJhlYuxuOIMqLXdlWz2urerk03ZpBEKVNZpCxpkURciHJZlnKSvFDCfCJcK+cnzk/ycqnXl3a5trp33MEdUpGcJSUSwZTk4VN++Gl5/Hn9+R8e/uGPn3/6/HB6SFKgLHR+zI/bSV0BsTVLqeRURgSgQ61tr83cYoYGCd7fKmDmqtDVQ+HXTZuB9Vb7vrf4Z9sbOhDgUE8OQp+JJGJB3LC13lrrwuiYSABQotVcSsolCRPEFtlVWwxcqnYDR+0jbgOm2jrcgIc8J0CSARKAIQmLkGQMqamjqZIq9w7MKExt12pq4TAV3hGBZZiJOvnQwvcO5qiKRB/kQiMwo7au9WV//rY/P28vl/r84penpC+FGoub01LSac2ndRFybWq9d0OzwFeEzClLLqksKdB+2HlPe7DojBAiCVIizAJFcMm85CTCjtLNm2praATZoAN0x+4AAMy8lLRk3zYQCmA4V2cPpdoIPhg9pSGyQxrqHydFiraOTe/BwZNH8f/2NoEPYe6yLIymIo0pfJUJ0cyZlVmJhDilbofuLX5KTVWbuxKhSKQ5DF4XDSgKAQtmGBGAjkQW90g3mD3mUfOPZgpAzBAQWHwFkIjDn1VEEnOYDUxFOY/Jnmk+O3Kko4cVmC0nntb4NwFz9NpnDf/2CCkVus0m24S5U1MyIS+iwxASDI4Hh6jgDhONFfJQoQxLwHlxceB2YMIAH1FLHp0pkZxyXnLKRUqRkrtD6X3pvXav3XNVkc7IMWGCQOEgAX54pw0Z8vjjKD4AANQ1nlLhNr0FmYjXWj84L8dHijIreC44JpfG1HbsGmreuta6X16+ffv6p29f/tv15atpTbksy8PDpz+SnJAWkpOkM3OKuReeaVKJScFIQ8Y4NhoCoIgiUiOK4dmhgQfEsEsxrSyMRJIWd0PCtl/q9am3um2XbXtC4ofnn7eXn06F5JROmU+F10QlU2YQciJwBDIIKpejP4AfVDkQKWj7rlMJj4QGVlsN23aa+PKQBQTMRUQZgQ1DxJVSOZ1hWXXcD5PWy4lT4lJySHJlaBwpcGrKpSzrTPfFo8AaNnvH7QtDgDRYKlVE9DlRcnd9b/8rFC8w2VwEV7BRcyAeNPCHBwK82qgQwDFsFvx4nDDG0IY6fep4CSghEbJjN+BsQGrgQICJeOG0pnJOeSXJOJ5pmum64yGL/wwG79YuRmBxSO4FuSRqgs0cFMgRibJgMVJ2ZXCmFCkoYaLInIZeatDePuSu8xNGzwZni/017X07lryo840xNI19KxSps8QM7ZUM+dMU+iMepCGSIzpYN+vaqYdFvqolHg5NFJ0/HIPxwSzU2ltrvfeQMRh4qMZtRFRGTzaVktd1OZ/XfFpIiITUrVurvVIDcPMRtT1qIB+/B6cAdg7gDJsgprDwQJp6q1cHMUiad8jBwI47xChsY6KfEhB4nNxYuYMRwtsdNXT7sViMdXm8Mk3POsCRdRz5WTE6YbOuC1xjR+cu+AHHSEHzyd3ORkXw8HOOzyESmthJYrprNgx93pY3ej4cF0DSO+iPWAoRU1lSKYmJ3CJ+MAK5W3QjwbTklCSmTnKS5EAWvsnoEfhlpm4SWVG1pdqvL9eg/tW0i3BKtCypLKmssuQiaUlpyaXkklIREkLmoixF8prL0/6UNuSdqAbsKEWWNafMSSgVXs45L5IKSwmAZ+p762jYpND5sZg7S9IOIotwJiQAcvN9r9u+d+13m6W+gTDhPhwtXUN3h2hO7Hvf91ZD8dptLDSD8POuFgQ4EYkKMxGyCIiIpJJSlpw5ZU4yJf4hNPHIfbQh0glfX5tt0VmxOKAP74uhLPVIlkREcGKOlhpNLb6NpvjRwhqWIlE3DrvoaAK7RbSTA7LTMOl/u6w4xD7Qte29Xur2vF+etpdnqztDLwkTiCOelrKUnITB+r43NzNkBwYGShR5CGXJZckpDSEMIERLpXXYm+/V9l1bM3dgYhlLE5tzbWjg2+77bsLWBKMY6S3MumnJec1wTS5D0w4HQxYLc5xOuz3VOHcJP7J9R5Xvt/U2fuZ3sbmI8HB+yIKt7m3P2uo8xZbEVL2UIVGYYWRg4FMNEA1iH1qO2dtPeQQiuB8YlpglcSLmuje87g5VDcZAMo7cs2Fun5KkFGzNyLBkHl+Ofm3k66ZI2E0D6VLc3nZQItNvFoUHQyJxMAsR3VD7BxxDSnJeVzxmVkeXYsDZucKNGw1xiHimQmrU9gGow1uQB0Qb1udRm0ToKSJxZAQza+dWCdxw+CQbIjJxSqmUpSwLl8w5s8OiGml7W40KhSYnNLzfAn+GdMUPlDtQBgzkM3nZY7wU5ib84d2Dx5MFbgA0bH1if4rbI7QKqOq991rrdn1+fvrLl9/+y9cv/9W0Js6n9fPD4x8fP/8n5NUgA2aRwkTCUDIti6yL7EVq5rY7dFMbFkY4KZCuWnsn0AzIESUVA7ugprv2K1JidiDmtDjCev6D9gZI9uWfrtvzvj9dnn59XtdzYfp0WoSKUBZMFNwtxHiPIU5LWhsE3kfIbq/1cr3knm2a6HTTvTYhkjGIiDwzAic/6gAwO1BMQsxplbSezvEoYHTy0BFBmFko57Qs67IsLBzqzq7aehdJnDLFpjrIrBuhOR7BQ3Mx67d7Ae6rteD1V6J2PF4K1RTtXqMQ5+Mjp4X5RN2ekQPgTlACcz8Cn1ZQblOyCKjgCnKi9CDlmnrKuhIvef05rZ+knFjS4DrH4NnAHwfzSSNwGObcJIGxsxgmqImtM6iaFxAnFkqKq5ELGIMhinMGFkqZyyJllVSQZXSu/UhVj1j2UfvG5ha6L3rn5I6A67o4SFwWMw1DG4Ax1TzT00UiGTziBdOtlh+ZH+GCqB6DQo0bOrhaxz6ohoPhGJkbqGFHX1vk8oR0MbJaVHs8/tE0S0linv10WpbzSsKUQgvOqRGhg3cE7eFDBSOmJ/YF8psgZRb+hECHvU3cTm8OYpTyqlc2Cf5xZqeYAmGCydlMPU7sWLmCXRgT3AiAYXMc9h0U9+FIOHdQs9ZV2+CEDu+DOVh2w7jHe8ODq7g9ADOaYXwyH7UQITGEpgYRDvnguClGK3ZMKwq/h7kuyYlcBFjC/HjIphHBTFNiEdLWeNgaRW3DHhlCiNPTBdANMMYqqdbr3i5PL194J2Yyp5RlWfK6lmXhskgpuSxLWdZoXUsSZAPuyTjlvJ7WXDbi5EDu0FpXtXnDpJQ5F84lI5Oatla3/cJMvfcqW62KqGVJRLyuJ3cRyswFnRzQum37ft221toYxHC/XJ7eLFDRdXRhTUmRPHyEHPbI3muqYW08V5DQVdbWELeoP4l4Yc5LEZEl56Usp6Us6yopAZJB6PgATT1yrXp3t8xMyEDsc/Mbcq+x7Q32ce6dI+kOzCISG1nHQKeqa3ft3pu2qj0ajz7bz+AOquoOXbV302GiFy6xPFDW68Pde6B7V3Pr2ve6b3VXU2LMOQXuOS8pJUHA1rVeW+8dOCGBFODMklIuuZSSl8zMY8AUEZG64bX501W/v7RvT/vTS60dgRlYHLk77Q0MTa1fLv16bVl8Ee6ZWoV9N2IjoDXnU4FnUaGueDxbEbA5GiMGEMZvOFt+x3MYDx0C+ugc4diiZw36/viAzX14eFyKtLq1rbS62zDENg9XQsQIsLU5LqoRRaKq1nTYJOrcvH0W2/EHRMCBVSkEhUy0qUFTw65ztoJetezC2i6liGiPJV5ouIHEUHxKqZSyLKWUcuDcWOPGYG8YQc8VkkbZPVZbHuQIDp3NuyMJP5wWH59oSLV8XPo7jAuDPho5V/cL8lhhx+mIWfLphD4izwCGik1iYE6kh3JdlSJWUh0AiKPeysuyxJAXuzezbr63nq9VZAxKhRuTIxFFJ9pHVJHC7Z54/e4ngI/1AUcl81d8OmL7sdm2PiTg0XkdfpYWXIG3rnXftsvT8/e/fP3tv377+k9LWZflfDp9Pj/+8fHTfzRa1Fidwp1GGHKhdU11lb3InmhrGGcfbjWWO1rvWlsnVHcMAjoutruq7aob2wrgkZaOLH4Oj1i6bi/w9U+tXq4vvz1/TT8/nlH/WBgLY2ZMjEweJHHwQreAlnll33P/e63XbVMdCC0M5Gqt0YlIMVs8bmPGuw3d3F0tAqJZZs0mgQrQwd10+CgRpZTWdVmWdXj2AdbWuLYYEiDmIWvyMVJu7swzAH32HmDi7FfHR6TsAC+ION+zu0cCl5Mffxv//hjmviKJx7t49WcEGGk3AOCAYzbKBkZSBEM5Uz5L2bMuao1lyaef0vooeSUZ9P9skI/YxHClYXSOeBmYZAAhOhuLYnYS7IjdCMxQgFkpG5ozMnQBBeRORSlRzlLWVFZKOXSzAIOMoWmgGVOqU+IAQAD20UlFWMty2CeoKjeqiDDySEl4oluJ9U/CCiMliQI/wm/BIfJD6t52bjugdeutYyhsB9gbJzX0ygebu++t1uohNo2OvSmMMgwpkk5yWpa0npb1tHBiFlbrtZEwAqhZc9MhUZsWiBEdMKQrg9QaK2XMPEZ77cNmCAukDHA8X3c3R9xF0dbGg0kJsetRn4+bLWCoD3IBJ3cKAIeDMwyztzhUQ8URMBfntND42+MPcMh/EHFEYPuUhAGEttF9tjIdARgQiZiRE0g6PsrdRRm/Y8Dc96IFREgZiEBkmFlHxc3CwgwRKoTQagUzBGeWiPYlCn8XTsLCTDzo9FwkF9n3/P35S0qJhUXZnVOSsuRlzaVwypQXWc55PZeci6TEwkgWmWrLSqoocgVj66jd9731pjmnZcnLkssiuUhKiYgcvGnf950RtffGCZyQaT2ldU3ggpgZC2EGp5jfuF63Zdv2uo8Zb9dte37Tog/GypklJQQG5KZeu+1V4824QeDFUXOYm1lr3Q1MjYlzzrgspSzn03ldQu+RSxISMYQOXs04SFTtYYoPCGQgQI4Bc22KbGNkctBcFE9BqB2GjZypAZkTa6CamBGy1rVVrdW0g9mklxCnklpt+GoMvTiSABNBdPHe3CqD4R+Azbvq3tq2700BiXPsKyUvmUXQAXrT69ZabSTAiVAccKCLvORcMsAkWpGAsDtuzV82fbr078/15dLcE5IAsgE1Q2vezFVtu9p+VSjQGnXF1oLcdQIqmZfiOTUhbug6BY8hdvWhah/O9Hg83+7HsxYML4aJRWQJjsY4fKgkfA9z8edffnk4L6Hi7q1qb1FKjPcBBEQApO5qoGpNe+tt37fr9WJ19GIjlwBnwymaqmChk4IRkmoGAM20qXWzu4xxiuhtdZh+5FXcxVzE2U0MjQUJJCzwRHKOalOO5t6ww0UnxqFexNlWGlV5jIYSuKMTETnNZfXd4puzPD6uE+L6zR/3tgLPamLcjAojDXhwU6O+w+mnHXpqBSMwGpcICYWw5JREiI/WF7iHWVgMHCRVc3OMxZNZWBAgi2bpQmF8GiYKIBjBRzRXauseVjdDHOZ+1/s7GFIH8MgLNTeIqbje+vu753i4BjiOITPz3q01E8KdUDRGwbzu+8vzt6/f/vz96beXy1Nr7Xz++eHxj4+f//H88Ifl9NkgdUM1IDByxZLtfKLPj3Y915fn60uSaogdERJhHvXJWGlqd0KtMY3Rm5uhO5har9Z3T304VQECkOQF4LObfrp8r9tz3Z4QYbt+v16+7tu32p7X5SSyJCHm0U6JYUEzhKGeHGEt78/F3AXjlhhfiZlYwrvtHXE2pumYJ0dATiIsKcdKkyRJMDGHO/PAhcgANEahQiYliCgknHKJJuZ8E2NzPnBsyMAPbMpE0ROP77FpNuJH9XJH9GLcKgcl/DuPsfDPh+u4XVynpN/GvTiaPTRgkQ/s4CDoGdKJy+fUwaljUuJSHj6n9YHLwilR6FenEXUkIRA6UZjaolBMeR49RVSUbkktuZOrEzoKCoolMiG3zN4ZzYE6rYor5ROvi5RCKWESijYQjdgWwhEzHo02H2XiEJAeRPhxpMTICEAOrjrKco9R1KGwOmrlOGsGI8SXbkzpUWBOmxefGlIA99kVjYvAiExCyMd8XnwjwZyti1cz8MgVtzEeCzDCt2IwQQxNKDEl4a7sbm40GA0zUAANwUy05gAHoRvES5SOEeX1juRGCAOGo3V2e8hiEZ0AN5ziJqcDMITY9+zv0XS7/y13NoBOUcOrWu9aq7bdfGyWkweY+HZsGnCsmKOwm38NQ4JArmY0ZjedDEmIOhATKtobBm4+CPNXfOzGTUQPD2v4SjAnnPILZopQ8HUphK6tBWiO4D6iMRQR75RHgjWGYS1HOHsqpZxK2QAcCISFILlR71DJpKtoT9rR2JUicxwsnqCURE5r8p8WocecPpX0VGsv4Y+bOGWWxCmnXMpS1jU/rPlxyUtoKogk0sOIMmEmLISJIPmIqbPzue577b3p8DDSL19+fSNFJRFOCYABpVOMfkFYC8XIcgq2yx3cRltsFL3AhCWl82l9fHh4OJ8fzueccjzLDt6se7Xa2wUJ3UEVbLSFRbgZkDrT6Jm7uY4wXnQknuhlULKIw8XD3czb3gF7tI5NVbXFBLD1Fs8q3jVVxyIJAIAkiSkihiSlnHJiEdn3d/cKErMxO4li2oy+7/bbpV2NdgBndFKgTqBkoOT71vZde3dBBCYHDkeKwVLNzhIhsXBIyBSkGu8dr7tfdgNQiEl6sKaaC5fMCInZS8GcHAnVqXbadhAB84jOdQ7JNcJta0GE8URChPFxmFa9ZmXmk0fDkSWoxcCV/qHJ50eihV9++cPPnx8siPTWem/aWyQcejTqiR2gq7VurWttrdb6/el7bVWv4clXzXWowmLTgkHpBShRirkBcoet7nuPYU2zMPhjRmZFNLPu1txZO3NPqSVJzCxEIky0piREIEKSRCTSU2/V8UG2xd4994XBp+KEHcwEzIPWPOISXh8lp8+Pq49BnBhy1d47+G2VGq0umJ4yx1oJYJGciodCzYcWAMnUFDRKTiJOQmtJIjJm8E3duplqx0ZQK+WcewyOWHwEYmYEFGKhCVVUIdJHaIyV+pD2KqibKwavGzKK0KjBDQYNkh4MHAzGIHarDW5b67FIz63Rh7+ReZi+6V4hsvqM49P6vm1Pz1++fv3T09OX7XpVw1weP/30Hz//9B/PD78s5cGAm7q6kRuCylr48SFvn/vl6/Xp23NOiVtACmFKY+4du7m5NzVA3fe679dWT6599Kh61b57aGlmbI9IYnwgwLZf3NrL069tf9q358vl6+Xyddu+PZxROKechvTPQA16DC66+yjHcEwFvz6YKIkMGzlEYU7MOacJwKaJ19TMhHEjjZ1r9BxZWNKs2mQMgaoios0hGejq1NUBxREYKUj+lHLOYx4LJyF2t10PjAujcxruTnnqQVX1nos9fuRYXHx4MB+r8Vh3jrbxgZVerSoQXXscjJzHmJu5d9dq2ky7Wo+NHDmxJORMyDdsSOyQUE5cPicXTMarEadyOqf1JKWIpOjYDKSLQOQUJC5BEsiMwsgEESlAiODeXapK02SdFMAQRMhEHNBKBjMEI1AA7rh0Wik9cFk4Z0qJhIdTUzTjcYxPxJk5RozM0dz9fScagIVQINaieHSRhqfhvBMQEUK9rw6k0MkBDdzMx8cFQ23Wm9Ye2QUj6dv00Dcj0Yh3Q2ZhCKoPkEfKD0wli7uNoXI3UzNS7apdLXpFfQJGQwLigZyE2dSVnCw2KHAFV5i6QwAYqhuKLhb5IUv8gOMmIB6lwqRdfZZ2AMdbDe2XT4r3fmUaJl43MOtTFzRrEDsuj/bI0bXWrFWtVYd4wI8lDuYNftzjBws9lA/x+vPtBdmsUQYS480nY8Ceo0C8PTHgPnyEDKb1xe0gpodPDwBow94DYMw5OaIzYykpJfJBW2O4n9k0vYxIuPBfH61LoLA/Ys5leVhrDa5cCN1YG7ZIUgZE2VFIHSQDWyB8IOLMnCSvRTLT+YTn9fp4etm2OkTqFJ5ilHNZl/V0Oj2cHh9Oj+uyhGl97OFEwlyEMmIiSABydA7vbOjVVFvv//f/83+9OS3MwpJx5IV5q2pNw+gO1ASRmJFQTU3VwaMLJ4hJqOR0Pi2fHx9+/vx4Pp/P64mIunZV7dq7wj55UdDBJZSS12UBSqQA3dkH5g6dtDuwEDI7yiFuC4AYt0709Pq+q0WCienhL+3mbgAQPxgbl/nIRwh0m1IqueSylFJ4GqWm5+e3twqSJLKeQLJxvhp/3f3PL705KQMxdPOuXSs2hkTe9laruSMaMbAD47DxhiiXiYRn9x2JkatjVkhVeet0qe7W3XRrbWt8bfLgK0ouiVORLAuzsqi5NaVrxaQIGM15i0onJkItBM1EoTQzV+8KZjTbOkNUiuhjdYzqmUMw4wY0QlWmxOH18QGb++nTp59+/hySEZuWJfHImA5K3gFq09r6Xtt125CQr+w+TG1r3d0tVLNETOSIZOFDZnc2io7mUPcaJp8GNi5syIwnO4pqSCDUu0qXHggiWUpJtPRJXLiZ9d7cTYxdWGYwMkydAQyYNgtnAKdhrWk0CfDBO709Uynx+ZR9qhh7p956V7wN5A4/YTAahpF2Y1iCeCcYVJUHJTb3L/cYEiJEIGEqWZi5dfVBcEeZEMm0FvvODDkGdGRgQggnPUFiAHRnd0aQMMkHjOjD7q7R69dhJRlV0LGXDtELTJDrMVpi7h6Y/j2sO2jLYyZDzVobXkEEoIyIDm7btj0/ffv+7dfr9bmrEedl/fz4+R8fP/+H5fRTLqs6oqqaISg5eilyOsnD4+V8CsH8EJ+oFaGSKHyabJgVuoHure371uoe46hgatpMG8RcHU52LXLeWKzvTJ5Enr75pW9mtfVra8/uJ2ZPQpHFoeZdvSt0HYF78cHxg20akkjOSYKQTeHzVnJOc1R+bNMHxi2l5JzpGKKPhzpMEmU6OjKaOTJFrp25U9RMADB6whSN7RSRPkc//f64kXWj0YsY3a9B5R5sLk5ZwhuYeyBgs1GnwcS+Bz388TEa+LN37Abewbq1a99fett631UrkkhaOK8A65ifjA+IAEBAidLK5o6ZiydHYs5LTiXHBMQBcwMyhsJEEJg8C2aBJMgEEsp/QASvylgFRRpRLG3MjCUBiTvFbB26GZDgolRQTpQXSomGc+YQ34+RxKOqHfImcIDQdHxkPQfIQxIDCGjkI3fXDgYOR8ltQQVpZOs6uSkbMQkjuw2n61b7XrXW1mrrvWtTRDBEJgZHgnBkYBYYICOc14ghcEmIWywekZjHGD2kAXa1k+HBYQ1HzGlPS0AQIDlgbg+1/pQWmGMYLY44gRsGfb+eHHKPg8OZX4+bYUDPSQJNDQDcdAB+/29/BXknwI3gWdAO2r03H0lf7QZzj4f7QLw37HsDwUfXJt5kdCvHiAcCsGPryB2pxdfoYKkPmHvP5sYc3JtzwkSfHh/coXXv3W0anglTSpSYqNCsiggBe+zCbe9de+uImNNMBcVZaiMQSsmnh/NncBBJeS+IKuJMjqjg3Zzd2ZwMyD1CW2M6PDEtiZdUVuEVsXw+78+P2/W6a6AFV3MFhGVd1/P5fD49nh8eTw/LUvKMZGIO/JSZMmECYHD2GRk3zoaPqbnWGhO/OS0oQimND02mVr3FpDUQADGVnEWka2u9uVuA/BxTlUt5PK2fHs4/fXo8reu6LGZ23bQ1Ve1qrtrbXlutriZITGwAkktCaubWOiqNbsEMj0hAwCGq4WFreAdzzZqp96q17Taeqaa9melwzSZCFmDuZpGzx4RCVBhzSnk9Lcu6LGtZlklfOL4/J4QswskoZUhLp3xVfqrQwUGNGNRMe1eGmDyxbtoBkNhIncwx/ABa69te87bn5J7AR00MBmggBslA1Lgr9u5mSkrNrDlI8RMISRF2BkBsQLV5A2Wr1AVFkIWCio0RUJuTZQPmugXRZuqB0YYH9mzezrWRENiAyEYsMIKjT9n96+MDbW6UUa7qFnHUUZhr6CXAo9UFXVvrfduuz0/P35+evn798vT928vzU2tNtTs4K6vStEcIaalZrE9jf0RwDB/mYabjBg5BXh5qqqiW+vSxgSSYkhD1VusuhKC97fs1zhABrmtEeCw558JpdJaGIxzS5LcmXzITHJhxFt0fwZeYAXdEI3RhJORkOBtX96Dg9l+dpuIHApjMhIOpuxEOY8xBCBEBgEZWMAARlpxyEofhXpxEiMgdtGurre6VWVLKxCSAhXhlWSWdJDWRjbij6pBZmPaurWtv1vtgjOKGmZ/h7kPHyccxrTb37HfHbP8OHVqcV1e1Ch6ZpWCcBAkMoG/X6/X6vG3PSPjw6eeST59+/g8Pn35Z1oeUEqE7DEtaBAJAJTbg7qRODghhpyXkFplPruZbs0uzrWk3B7QIHm+9aTezID98iNajSQoBDmNh4WV9INQktC5SP51/+unzw/ksiZlumq7BbRuEqr9b2NfE8Mr7cwKRsphzWddlWZZAsSIyHoOweiZK8wi8S2OoLcbihwR9iG145mndCKVQrbPcfZ8M7xEJW4nbPXzs2BO8Hm+ViIBvFgr3Xgpwd0cf2NeHqQIcnd83T8rhZ/j2RgEgdJ/ODKbV26b1en3+8vL9t/3ypL2qVklLOX8qp8/l9BlMcTkTJUQejijIyInTCijxG5hpCJVkDjaFC0Z87rh2CAiRKQioATyBPTJtQgEW2dqkFuybMOdwKnNKsUUREGIizMCZpIyJHpoodPKFPjtFN+A1H6b3I2gAYNYddbyKRz/YgebDFpcLZ35AiKUcuxH3PmxIkNywN9Oqdde69bq17VL369673gIUJQkgMWAERkiilChlDgcb8NEaoTgpHRFCWRYStNZ77VW6OMVMqatp1zG0oX7vHWLa1FRdh6ElILgbGrgiMzihkzNHcAe6vV1pD1Hv7dy+grlvrEDuSN+7yz4vSdzHcPt3nNEBKM3VtYM27801CBO7Vync3783Xvd+LT/e9XgD48I5zEm1aJuYuvYY2b93AYE5hzlunOOfNwcRPZzP4Bjrt7kHUhXhSLIaK8HY36j33mptrQY5CQjBoUYhNt4heE6CgCWX6+ef9u1lr1f3DtARVciEvSy8PiyncxmefVyIGImFUwmdYFqTnIhyfdTtp1YjXW04JnYzy0tZ13Vd19O6nE9LTkmIpsFdKIwFncblOARit1MMgE4M/GFWNjKQzMrIHbs5gmNihlJKyefTWkqOFEkHHxxASjnlZSk///Tp08N6WlJJnBirqvZat0uLGa4eiL0xEofKuJRcFslZTetW1bqruWk0Q5goW8lkTp4FmdjRumoLek97b73uNUjAWmurtQfMdY01HJiB1InVvZsDwiK5lFLW9XR+OJ/OKWUm7uZxdVX7dXsrWkAkJGGBvJxPD3h6eFkfvpfTFXqvYWXVzNWd0SVMFcMgkw2oddi27rR1B3WvrT09PaWUk6ScSy5LSmWr3bomlpLLaTmdlq223nonppQklZyWNZ1WXjKGoNmxA5h7MkjEYszdyPaXuu/aO7iiT5t0UDtS0dgcIqKbyWnySjCijka9SzQ3FgAAutMlvj0+gLm999aqm4I20+7aw2M/lrx4oNW8tbrv9XJ5/vbty2+/ffn67du379+eX57HIoFIpNQRYNhwBic0HYzuIm5gzmUNtGim2j3cKKf4ydTQXdEI0TMjmnDvre6bWd83IsSwN3e3z58//fzzz4BOhDnzIQdHhEhSj5cdMDfcx5iR+WiqfgRzzUE9Gl7ozCDMCBLuDYj3jrQAcypLzWeqok2hm7mpu5mim2I41HLUJj4VB4agEExJyoGB4qwRERO7g4ajz1aTZM8dIYkPmHuSfM55l1p4r4gRD2FdtbUeUd/afZj0IlKw5yEWRnePiboBWe0gTj72iEU8KKdggMBh+IYOUspAOxJ08Lpt1+36vO0vxPz4+Q8PD7/89PM/Pjz+sqwPUcYROIxEAnIARVHnZtR8tACZMUtAFAeHrrY1vex979rVCF17q23rraqaDYMeB3BAC9elGSUyKNNlOZUs51Ppj6u1n09rfvj0kNJUco+m8xQcm/cZwhww90Mh0LKUktKyLA/n83paY16IMBIjjYhidj6M3CXCM+6oXEkyjfKmahenRd3QJjIdoG6A4vk/D754EL2zp3vQUPMqOgAiEDG99nw4BithPrDHARO/Ik5871E0jPt2UMXvHRvGrWLobqDg6v2i9bldvr18+acv//xfXr7/Zr2a9ryez5//qJ//CNbjAqE4S561OyJlSgSUo7JiGvJEImSCu5FPmHKhkOOAOnT1sRY5OAIPY25Qx+6khl0RiRIKcaa0YjqBFB/kAiGKIQPG3BfjTTw6oG3Yf8C9w9T4J2an354TB1BrSB1mIodBhJ7dIbJQEkwBqmlkAcO4xsiRT9Wr9Wpt723rdev7dd+vVbvxxLgeZqmOiEwCFOaouZFZeHhypGYSEIIpAgw3S3PvEbfVW201BmYBA+ZqC6WZDUdynSbMpuYBfkM/a6RqSOAMTOiMwACMwXO9PS2DxbnB1liLDkkAAEyNgsOhk8VDSTBLDp9qgkC2Y1obJmvqpugK2qE3783DSO3QoB2/+PYeJlx+dQnvChq8dQvvoLj7WNI7AJCbzWc5NqG7VXW8/gfQn4geTw8A0HrvTQEgYG0SDnvBkD4xS8BcVe2ttd4iphN8lM/uI73TJvWxLOunT58DCLa291573927MCTxUmQ9l2UtkrJIYs5MiUJaKTEVWXJaWXKEZ2q3ruHlW/dau/aUcymlhI1vEmam2wxgrEY4zf3BrLuHnsmOPfquX/gB/AfiUUSbOVDw4CJJiB5O6+dPD+fTUuu+7RuAL8uyrmtOOZbfT48Pj+f1VJIICXlz1bbt22WvbVftXU3V1LJkJAqMm5cl5dKul+u+79umvWqvRJiYJIlCN3YUEGDg7G5da6u119Zr7a3HKdpr3a7X67b1XntvDiYppZxR2IgMySLIhzkTc1mW88Pp8dPjwyMCtqa1tZfr/vz8XOt+3ba35wSQUJipLISezp+u509Pp29Xu17rvvdWzV2hOyM4ESAREwmSGLB1t61Ws22v276/PD+XpaSURFIp62k9LeuZSBwxsax5Oa+n62nnfadaKXIQliWfTul0kiV53W23prC7d3NBTM5iRKoI/aXum/YO0bCOfdbRAIc0HwNBdAV3Z0cE4IFjp1940LyAfdguxZJIs8n56ngPcz2WNdcO1lwDFXWd3atwc+oa56Ju2/O2vezbpdfNtUe88LgtTS2oiTmKGHyudgujxVnXDW7EYcxqhaIu2isUjVSksL9lxsyUkxRhBjDtzXpzADBVjasojGvJJQuTI5o0BgQCtJTQjSSFJHf8stElPuhI8I+eqJTSw8P5qPTHmAwN3/Z4bm8AagTQeTdvvdfWWteu8xy2aFigKSJgdP0G5Y5kBr3FwhQjVhwt70DJCBDEHSGZWqut7bWmFLcJA2ZJ51L206lXbVXdoHZtXRt1IWxEvXNXjqHN0VojQkQzUjOzAdcHPTMnWRDuFu77Ryooi7sWpA/v/JBGGwKZOXpHb62rA7Lkspwezj9/+vwPj59/WdZzyjkY51uR4OGJhFVx67Q3qM1bd/dhW2sO3ax237tem9Zu6g5mXXtrtXU1J8BMvLCsIoUpHcULzneOhJwyYSZIaIX8U8l4WtK6lJQEcRhQB72kNkJFgheMP3f192vv48NjYl6W5Xw6LctyCAC0d0Nk5tAWLMuyLMugWAYdBAAoYRqVeIDYCacG5U80ZW1T7D2P+DPc+0cdNBS+3rRnPUfzfh3vUPVNgXejVQ7S/v4bxk40htIm+fhRkRjtajD05la9v+j+tV3/sj/90+Xrf3n5+mukeFh9FDRhSIJJ2AQBTkgLYUbkEBQQkQtFkUyBdMOCdZiIwezeILjHqB0EbjAwcyZQckYQckJv3Zt6V++G3ZGc1NlQADPSAnwKTBw5Sn5nVIbTvBmmEa/fNbCHPGaeiMHmvjst7h2sv4LAd98z4LOPKzi/yQ/6kkDBERS1uTbTbmZ29KmAge6aLXHDh7kgJebM0kU8KRrFYgtG5ETuPXBhBwgsMh4rrmSg6uwI5qpmtfVY1oaCyh2ms3ssrQMtTtMRAPIwHgT3Yz739WEOpsdTOohOuCM+b9ztrQd1A7vzpnU/Ch2nwLjjTI4ZAjBz1xgu8jnngExkkUMJNwJ4PC8fw9zbVbvRJ/Mdzuo1qBx0gzBxvdVIo8AZbuZ+OPG8PgjpfFohGq1dESEUTSlJwEc5XBSRQh+o2oPf8HFREBGGJ1afOfV+bM02WNheW9tNuwiKYEmc11RKGBylIdMMS6qhOUhJCnNyCEedYbpUe621td4CUMZE7FikpmJq9AjtzpN4tnrnbjgvNCDNRKbXBx7PvE9KF8I9jXEp+bSUh9Pas6wlEcLpdAqYy8JJ0roua86ZEcHQHKyhKbkSxHCIEyKFb2lOMQ2MFM452ntvvfZWVSsTIjAydOsy5Qhq3dT2fdu3re5b2/beexjj1t72Xqu20ccGBwY0oOh/oPmUQMX6FgtssGTXfb9e9+fnl+fn523fq7+Nh2itPz1fIBL3gFIq5/PD559+xpTxeq11J+vkPTEUQWEKhSuMAWvr5mTWOqlp7zVvGzETcU7Lsp7W5RKRGaoOZlnSuixEGKLkVEpeFs7ZiKqF3LXWXndr1bswJe2Mjl5R9+tW994MPPJZQqGGAETDMABJ3RuE9dpgI5mZYfT9begUkGLImNjZEdzei1vgQzbXtFmrbt17s1hBrWsQ5a017eHQ2ZrW1tu2k9mSkq0rAWTh3kfPOErssVK4d9UeMRZ4hDGOVQfRmWL5xvE5p3EsIQIwuBOCsIhMY/ycDgYh7gFwI3AmIDfrtW4v1vfr5fkY2l7LclqXJZeYMhUJ615hYfIYqh/1dejB74+Hh4ef/tN/Cq7Z3XHWEnHqKSoMmzzM5AS6WXhZxpmrQYDve6vYO9nwyCRCGpuag3av0FVdmETcExBRSlGm4+TwBuZR1VorXUi7BgRIIqfTauYOBEgl5zZS2GOgc9iihMXxyOwesj/TMWY4Jlya9t5HUjk4vBuhgdlCDKM78LklxX4fw5KRyhsFu2Mq6+effurr6eHx0y+Pjz+fHz5LSkjoikEeT/cxVIe9+lbxuvNlx5fNLtdWa3c1d29qe/dr912h+fANN3A11d7U3DGjPKTyeT39sp5+TvkUtOWxdAbjyYxCmLgkkkznknHJtC6cUwHAkewZy/dULHSF3r2rtx7p1m9Pyx9++eXxdJKUSs7M0kIm13ssVEQECMQUSLeUMtjHEULmkZY5ij8eyU2IOL8YVK5MBBO0NM7bAyH4vlGcBAPm4AcPNi8cHs3em0QB77zA3P3+z3HW7nWFx+sfLxnf70TvFWMwdnFza65X609av+r2m+5fvH6F9p1cwZ2UoH3zLdmVLZNnAzqTnJgLYgISAAGMODwm8JvOcICGuB0BICjR4AQAwc1AY+AhyERyISA0bVZbTFe5AppjdYLOKIxdHHl4S0EQrQiDVQbEQxB24KtYpkPsMr5tKDXBP7KIdURFVMDXleJAtz5R2sEa4mzJjba3maMhWAyYMSfOJCbec+7LkdkAweiyCGekBA7ACVKmpGwgQCPLDcGYzdhdwCxCwsw9grt66ztW6yas5BhmLcPnqKu6KYASGgsCkJG5vh7kGlDbKPB0RFqMcYnXJ8XRDoP4G7D0u9eJmzeKjtvsmbsjHkvQIFXHcxDGFIPZPZ4O8Oh0kjs7AwJY+IUPyt/fvLFJEd/f00ObEM/HUQze/hwggGXglbu7ZW6NeAPmfrzD1wcRnpZ89EwQR6ZuTqnknFKa7oRT+Q8Onh1GyMBgnBFUIzrtBnNtfNIRYxwKbHBlpsTIQiIsQnOedVgpjj0IiSj86Y4+7RhRIYQkRJRiDUMYg9mKY0jurhYZ/57rWFhFxtriR33t/sHzA2gAGlmwjqOc8gGY8OD4l5xPJSfh9RYbOe34CTBmyk1dWxZ8WEtOUrr1sFECDIVDyYJgtW6ttd4roktipmSGTCESFhFBJDfvre/X2nvbrpftet33rW6bao+IKjVzchIWQk4CEPmXQhxBgcNpRoQzOrRWLy9Pve+XS1fbthr04r7X1rtxJIzfjpfL9f/9f58YJUtOmEzttK5//MPPp/PpZdtbawRKbgRKYOjaWq81RqPcDJBQnPnoTri1amZtp3a5bCLPESaNSNfLC4IvOTFjzkIpSSmSMxK8XK/mvW/Xdr02rRVaAyVUJmMg9Eq2t6Zbcw+DSmIQJHACF+JcUk6iai333pXQCfzou0cEA+p89ByYOElUBdbJ0vuw7A9hrvcBcK1X682smfbeat33oSuJUk2tm/duBL7mRAiZaclp3/e97l37IVWLnlsDRyc3PZKIRtFGwBSjDBiaaxFOR6QZjZRQIsqSYt6wLFlE9n3btqt3VVUwRXSJSg7NtbYNNzczBYTwy97XVeu5r2sSEU4xsSOWxYSss8hhxvi+6/rwcP7l83/0CXMBICQtQsxMCDCkuDeFUXjzWe117y1O3Lbv10u4dDuFM9aQ/c2Qa3dVMFVmM2Fw8eKIKBIazjQMYQjVQhzX9313N1XNJZdcksj5tMYEUsSNdB0tRYs/qKlb79ZanylI4dygatrVwpO5q3GDCq422Hj+KH8e71Z9PHYCAHAwBHXASMoavoJpWX9KKT08fPr8+Zfzw6eUV0k89gkb/UpV6ObNYG++VbxUumxwueplGwu0uzX1rfumXg26gQ5mwM2sa1dzp0zpIZXPy+mXdf1J8kI0gfogR8NpDpNQSemUec1cEpbkJUMSRkAztaHBtaEsV1CNqAvvauMef3388vPPf/zll6hI3P3l+aW3Norx6StKSJKkLGVd10H/R/mrHQlZeETDD6tLxEFRDK0uoRwYN3bBex6JAF5Vaa/Z3BsXdv8tQ41wY3bxbqTsRlrh5OjQjz3+eNmoJqND+n5ViUrErbperT3r/q1vX2z/4vUr9u+DO1GElmxn28gKeu4gj5QfiBfEDJCICskyU3BoXkw89AGTdxvcWEAadFCAcPsK9WnAXEbTZr1bV+sG6ohIzciVsDOgeIx+zxPhg2IJU4VwVzg2poG9DittxJGOBuiIxh9Jxihieed+PA0ComAccon4TwA8IhpGA0DgiIYeal6MhSGkrzgMWoJaMx0IgpgzkYCDc8ZUOLsAGYqjh2LWXGJsOry8US0GidxBVffWVI3QCEbYkIcy19QgQjo5lCRsij7Zwvg0OAuCIDVi68KPhqLdQjUBkx+/3YZ+FKjoY4p5wkb3mzbnuNPdffprDxx0kC4H8gNycgQeDutsfits7jn2uai/R6IT4sKsOA+MG1+ASWMenoHHT8EkmXGKKT6A1/Hq61oohpTng05EOeVSSk5pDEIe99XdONr9GY5dY4xY3bp1Ps/2oThyYRI+FECTkrp7P4EjowqxYzB2fAAjBBJOYRkcb2Earw9ru7taYRbRNzvlaDvHDTDY3I/FuYYYHo9TnxQDcqHZonGzLTmvOS8l4g5yJAfNFhiAazDZYJaZaC0lDBvMY4xCRCRlEXGw2vb4mEieEoMgQBg18fDEQXSH3tRtr7Ver9fr9bLv17ptaj2mjgHRCSmNaVgAHNFVYzoD4uQzk4BDr9V6vV4dsHbd97bXNlRzDpQJ+RXOvbxcfv3+Tzml83I+lZM7ruvCKZ1rv9YWqBHBQJtp07a9PF+6PXvr6q7qhMS3iBsEd+1aa9c5D59SLiWzSGsObjlJSuyQKScpCya5tu1lu277pV6v7Xpt1jqaogN0hI6AbJV8BwcAAUpELCgIjG7olkTWZSk5m3vgEnRDMBxNENAehQkgRIo1cuQiEhAZkUn6fTA35trQMB4eAnJgcoEwdBxMBsX6pupWhodUa622uu/7Vvfe+1wpoqq0iO/ba21dW1MHiJpQRHL0aWUEmyXh6MPEeE6cdSYSSYkD7wkhbnvKmWut8cAiBD9HJZdlLSyCqmrgI1KdEDEESRjaisCW4OpKyqR9GCEg2ruoaGbOpYyKdYbzjsCAAFhzDMOnBtdiirE31WYW1sB9atb8QMwOt/UfILIzPTY2QujBlqgGzo2GCzO31q521arHcsDMnpyIckqIGAp6wuHPYgODgpmpeVetrQfH3MYfRteqqzXV1pVAEch0IMgsH1F0ft8kv/t6LELmGtRMDO/RkssnLOt6eijLp5RORCnIRhvR1FMeMAy8LCSBvbXgGIbCbvoLRQ9WgkQMJ/C5yURgnqSllPNSHqaecmy2FHZIhEkoMWWhPNp/mJMnASaAkYsR6Hm+N/XevDXraqHder8nrev68PiAAA5oqq21VFPoAVR1KFxGk22AVyIeziQqSIf104ijHmwuTSofB2OIR7/2LYIaPdD7A++YMZjeXm+QLh5N9mHXFENpxy02aKvjeh/fPXndQa69Zy4RHL2DVe+b1YvXC7QL9ov4Xrh7UvAIeKuCG/szKvlu/XrpeKq+prxQypQWyg+JH0UeABaAxSG7s1v4tE9S7xDg3vW8D2gRJ47ChwHBRr6cR7ccJpMXfSYf2VtwLLIxH8zTNZkG6g2kGlZr4Qsbi+Rt7p7fIX+MiVKJE32cWA9gbXNNGejHAKef8OiEj3SOsPYSwkjkZApvmaiZg6QbHzsoBFeHk5OjpCW3Rr0LumPMAVkHK+7qgV4j7xI9FZbCnIKNur3Vw0xmDG+NKeJhXGqz5J9055jEQIxmLAFifr8nOZoNdDv6DK/GloEGlDnia8Y/75/Ecdk/Gio4TkncG4TTzGuErU7Fw91t7u7uNN/T3fu9Id0JDu7/fz6hPtR8wxoeb/2U4/Unhf/OaYEIT+synNQxTo6DwxECfYCSAOHxbXPxOJ5OIJvI1RxjHtyP+QKcnwZwSOkGPvXbEnC068YbnqfljmsHwFfq4+MN37+7cWLvXhnwVak+z60PVxjTj9KJwrAlEn8dmCALGYgQJMJ1LWWJRnpZl2XJuaSUcuKxeMZn9nBYJwQkZKIErOo96AhEAMIYgKBR3QOADbOOsTaHSFqYERmR0Ny8x8x31PwiyRdnC95O8MgHNTcdxo5RW0W5g+hExNPic9jrqrWuvZt19dtpfHtvq9p23cNF8yo1bHqA0MEYEfgIgnRwc06Sc+nFAblbVyPmUqTktC75tIgI1b3v3Pe9bVsLBrm2Rsxq2Dq6D27QOzk1MLvu++V6vWzXvu9tr2qq6Brd+1jqvBGoMIlwTokpxdoFpm7KSADD/5UCiyLxWDnICbUpIikZAIb/twMbMqqbA9nHZvYfwNzEkkQ80DU5OIOrp1SyqmoN9UKfJUV4h6jF+EFrfW91r7uqDnJleA7o9Xq9XK7Xbau119bcIUwOUmSY5bwseSllmOInyTmVlCOSjobVqPBMTXCzpS57XXrv8RAd3aIwMkPE4BrAx8mKqExEiluqa7CNTqbEhD1QEwFSfwdzgyn0A8XGGq7DSB/iazo6P5M5NfXwHJ5QsrZ922vbI9UzvG9hSKeZiYMOMhvzYK15a73WWmtKKQEAC0f5fkXct011ZPgQUSk5njxGQkglp9OScSpZgmoAonh/M9e7Hxh33/dtr3ute2u1AeGY0lEee8iS+M1D5TD5pleF/jgl8Q1T84DgQowiIuQ5L0SLu7ihQvABbodj4hzwGoaJbTOtCMrh7RQSOsREnolU3J2rgjscY+XMEldcWHJacl4R8dCoIyLzmPwTxsRYhIQGOhmOh9FHNgDwYddgYQPuvY9erarrR1trSrKUEtelE+ac4n9SowhSx+nbFdcGEUUYUSQuVVSXh9Rm7oRz2xhb5tEnnbcnHvSr3zFgcDDuc0MJTeQbneHcu8cmBwdiHdNPGO1f9yN3cVzfwaa9Oj5ic93Iq9kOffN6gXrBvrHtmXTNwEoBlDj1LLuQoLnVTS9fq4rvoqWksqS84vmXJP9Q0i9Oj5EV3y0pIswNwgHg1gu/4RRCYAzTXBRCJhACBkdmJ7JQV3mP7YaGmNenKCF8QJ0ImULzADwscRAP37N5ow+WcXLmsbr3j0Q/OcucGhoMlw/cALOJ4qMWDzZ38IMYMHdalI4R2mHgG3RWIPdJ2HkQ/IhOoOaUKC25N+6qajqDlzzYZZwgdtCeCJSQE5EMlH2/Kk53ggm9AizayGE67rnZP4iQKJrXBH1L/jp2JiY+ow8YMCz8hcZTQOB+c3xEmioOeFXGzarnns3042/mvDDeXovwVh3NOmc2I29c5vFUxcN0h/hgPjQH7p7gci7pxyOGgHTgwLkn+zyZ9gHKBSJaTyuPUsnNzbpqmJ/YcEE54OG42hMFDZiLByEdPYk5bQf38PN4lg8W/QCi92A3XvjtuzxQ7SQa6N27mkvMRMXjih+GNZPcHsz5bQIWWu8f1DFhA+WGRgiQ2CO+MjFl5ofTcj6vp1NEo+aYPBORWSbMR82NEJBp3i3oDKPCi1sPg371sCkRgPBhMHdEZKQknCXlMNt2cDczCNWOCBOvecka4vUhsRpPe6u97q3XPm7wUeJYcjZgR08YYfPoZqYKpgQuHKaW4Sb6AcOETq3adr2YvURyliQJDzozmNknCq5gzswRbty7dTNmyiUtJZ/XfF5zFm6177u+vGwAl9quwYIZQO/YFDyShxmxNazVEC/7/rJft33X1rTZ9M8CAJviRnMEziw5l7wkTuEQYr2Zopub9l0tSgFCYMESHmTMTtQlMZuKxSLtTgaoju46uYIPjg9gLjMnFguMgoBg6HJUm72PZre6u4GaxQ3RA+eq1tZqr2OcJawDzHrvLyVH9bntVXZx93BCSjmVnEvJ5/PpdFqXUlJOOUkpeSlLzmnA3JgKRDYL5zdtrS6tqOoEuGN1GV2RIBrMYEQzDBe7oB/NzQ0MOrmhESgMd2ISQDR7D3PvBs/NRuen6wF84yxoH7HHOnra2q13j+HT3luvwU32cbZspsUJQ9TPUWUFhYrorQ/GNdYyYc45L6WoGQyTWXN3Zg5mcWyE6DlJyWl6AWAYZiLxoFpGadhb71F1bJsk4WCE4l5DJ3Q+BsNy+pDNPQbDj9vrxhsOyD6WWkZikSUnliREwyXRb3Tp8e9h8xQOf71V04bQiWzIdAAIQRAToRE5g7m3IGdGsz+6dsAsKZWcFgcz70EFRVqmCAlhYpSgwhAIbbJlcLc6483pzsA0rmg4JvlHZC6ISMopgCwgppRyyTYciAfRMgcuzN1ohFFzdBhuu9/cJF5j1vmv1zfnAUYB5un3N99x4N+PFwKAubUjHHoAR8A7VOzHLnT3Q3jUl7fm7HvRgqE1tAZ993r1tkHfyVpCXTOIUfhSsahwE9rIm7eX7ggNPIHvCZcTryeSTVbPIeykpC7mqEAO5B454W9PV8BNCoxLg/aMfxgciHVUNYZBmYJNixsACO4QiIAFRJxHoBrw/DodKMgOxssHhXjHZ71ncwEgS+I8RdU4KpLx4EwabezINrvigDjzbsf+i2NhnDOKIZ/EYw30eavpdDmUTLknM9ZJF8fnHfB9rqVTFjCMmwZ5RQcDeXSLjzoKYj0IZ5dItrsvgefvweMMffmntL1JVxxrQog5x4LgR/HgOG/RgSPDkBjf3JQwIdfxooBTaXOAUL9j9QL74PER4I6nnKvB6yLf774jxKXze6arw7BVjY3z2D0QMRonRCMdc/666B3Be5yLU7QQD5+aNmje+lweXj/qgWZwhC6HIfJQGr3+zglfb3z7TY5wwPyJOm9Fy/Gu5k/A3R/i5w/jl1dvC45XjS+Nd4+3j3HD1Me+GvdA7+8yMwDuQgGdHISAEjFRkbQkOa/rui7LYM7yyMdmHvvNIIBG9CoN7fQQEJq5KsQwmYVCKMhbYSfyBmqKNhLChCVLypJ0xnK4WaTUxqzbkMzE040+m7eAuHft3ke6xBTGWTQVIvlpnjxz7WAWdXVgVgJXhLdIBRAce9fLdbtsNYksayklRTMzulWmRsMaFUIHl3OOGBgWKiWVkh/W8nguS5Jate5KyNuuiLtqb6pNtXWoCgAgjMKEhM7cHbZaL/tea3NV00ODFU9FuNc7IIKwkJRUkkjEuCpBbz7a170RoCAyoyBnIckMzC4iHZmgs0OEbCioQ7iNI+Ih6n9zvO8ZwW/fns3Mtcf48zQ1G7fgyKfrY4V8NcOkMQlqLYxZEcYlMVDFpqyQnAyZKIm7Y5iTkxiKQmrGtSMQdPdu1k2bttQgnjuKzm3EQFkg6t57N7ulCiMegMvdwabTOiHiBDFHgT9lQHS8Oo7pGdzq25tHHXdjd3dDd1RHAzIkR3eKlMEY21BDM9JIFXBTcEVXYmVWSAqpU+7UVbppH2wuAAiLcCIkUVU1AGcCFkhroXXxsqqslcoGyY1V6WrcqGg6IYATE6UNEisJIgI64O5SMTce5R4SKY3muKIrmoEaJidF7MSdMSXKJgVKw1ol3I97jzUQAE6ffnp3q1i9/IoU+sUDQd2RKmNfHtuaEbqQC5lwF+LpkTv2APOQAXRzdVSDtn0xvSK7LEt5+GxWtZuqZ/VsUBVXtape1fZuu5ojLaeyntbPnx7XwoIN9Llvv1WKcTiFESONTNiZmLAFsce4M6Y4BYIiNza3q2uH1q12q932Znuz2qz20G+p29sM5KeXl9++fg18oarbtu3btu976EMAHZGEGYgccK8tlxzxEGOROvqdE0742w38NXd6t74dzNCbJ/2ek4FX02hvHn0AcLx1ggdaHlDoqF7gwBT3VO5MsQF8epfNA9rs+pv13fcn6FfURmCALFK8nAnJTNWNmCUXTomZorNCcfOYuJI1bLvWy4b+7EROrn5tlromc7Ix3PIagsPgKR3BCBlBCTuhjK659/2pbt/a9tz2rfcGSLhfnZ5QAVJHuSA5khM5MTCH0ceYJRgfel6l2bMfDBlOqBX/t2+Xt3SUQ6sydq4xSO6D0z0A7oBTg809kK4eTHG08WnIso6xxOALA8EGKxuGiOZgRqoY61RALzwKMALAuQ/f4x4F04Onm5/pqHvuyLnRYh7ST3sNPnEiPxzllIPbW/h/Oj384Zd/HMjKR9cDRgUydBtHKsfdHOasMeZbwXkB4Jb5O/4eJ9id6HU+DsdHmWzuQeaOb3x9+e4w7vEJ72Eu+NAq+CTV40KOd06znoX5bAby+vT485tz0lX//OdfCYdDhan11lQVMSagb3mHBy4/fsNx0WB0qqMNacPOfdwBPkUUQ+R7XN3jPByQ/v6S3qDt7SswtlKi112dcZrew9wBcH3i7omq72uDmMp4c1pyWsOJzC1az+DmjJREsnAqhVMGFidRpAbgDmqjEJ7/IMCcfT8KFQePLD/EjuQwYo/QncwdrLvbIMwRHZr5EVw28wfNzIGQzMjmGoSTPp/PunrYYnHcKXGdkBCJndiR1KE5EEAHUMTwoou7fGCydys5saRyAtIObJhFKJeccsJh3go+fEWGRB5nZCCbiRox5SSShVIGyobsbCjKGfLJTg0HMFDtCm3CXA7bbUIDKLWX1lrrYxDlfveKwQI0RA9acz2dYiAQAVS79nakXxGMMOil0JKZEwOzM6tizqA9PM9HH1jdW9fSeut6Pp/fb3D4n//zf377pb+yC747/jotBDD7OLfv+pvfPX81vOeq/sab+T0v+a86XndY/tXH3+LJ/sXvw3d/hW//9OrC+Ltvf3OmfvdnePtKf+0HP7gxfu+tcvcTH/zxg1/ot/+M1uG/8HECjh8veU/T/K338De/9lfe1Os/fUC9/M03+fFd/m9y/K0T+j/3+OAJwrH3w91/bn8esPlvvCQe/z0u6t/3Md//kjfV2fvv+De5Wh+vKv9GN8Lfs2T/jWXo3/C3/Cu/6d1Z+hsv9j/kIfr3cHywT//rV9rxg+++8r98cfj7jo8en483ho92y/+jjjs5zb9qt/E33/kabvytPuC/r+P9w/KR08LfCfLev9Df9RNvf+p/5rn97/xdf/1uwr/xv37vX8Fff6L/yt/+zuPotv2u9/D6Df2rf+fvgNPvDvwdj+rHi9rHj+bv/drfdfzLj8/vAO1/56/+H/Gi/1bHXz0tb2+/f+l1/nvX23/58rz7jv+BJ/Z/2Vr797zQ/4Qb7N0W9X8sWHl1/N2b8r/rNeG/9/g9G8P/gQd+VKr/rp/7t3/Nfx/Hh9Y/P44fx4/jx/Hj+HH8OH4cP44fx/+/jx8w98fx4/hx/Dh+HD+OH8eP48fxv+HxA+b+OH4cP44fx4/jx/Hj+HH8OP43PH7A3B/Hj+PH8eP4cfw4fhw/jh/H/4bH/wcAZzCwCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKMTA3NjQ1CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iagozNyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNTUyMjlaKQo+PgplbmRvYmoKeHJlZgowIDM4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMTE0OTk4IDAwMDAwIG4gCjAwMDAwMDY5MzYgMDAwMDAgbiAKMDAwMDAwNjk2OCAwMDAwMCBuIAowMDAwMDA3MDI4IDAwMDAwIG4gCjAwMDAwMDcwNDkgMDAwMDAgbiAKMDAwMDAwNzA3MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAwMDY4MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA2NjIgMDAwMDAgbiAKMDAwMDAwNzEwMiAwMDAwMCBuIAowMDAwMDA1NjcyIDAwMDAwIG4gCjAwMDAwMDU0NjUgMDAwMDAgbiAKMDAwMDAwNTA1NSAwMDAwMCBuIAowMDAwMDA2NzI1IDAwMDAwIG4gCjAwMDAwMDA3MDIgMDAwMDAgbiAKMDAwMDAwMDg2NSAwMDAwMCBuIAowMDAwMDAxMTczIDAwMDAwIG4gCjAwMDAwMDEzMjEgMDAwMDAgbiAKMDAwMDAwMTQ0NCAwMDAwMCBuIAowMDAwMDAxNzQ5IDAwMDAwIG4gCjAwMDAwMDIxMjkgMDAwMDAgbiAKMDAwMDAwMjQ1MSAwMDAwMCBuIAowMDAwMDAyNTcwIDAwMDAwIG4gCjAwMDAwMDI5MDEgMDAwMDAgbiAKMDAwMDAwMzEzNyAwMDAwMCBuIAowMDAwMDAzNDI4IDAwMDAwIG4gCjAwMDAwMDM1ODMgMDAwMDAgbiAKMDAwMDAwMzg5NSAwMDAwMCBuIAowMDAwMDA0MzAyIDAwMDAwIG4gCjAwMDAwMDQzOTIgMDAwMDAgbiAKMDAwMDAwNDU1MyAwMDAwMCBuIAowMDAwMDA0NzY3IDAwMDAwIG4gCjAwMDAxMTQ5NzUgMDAwMDAgbiAKMDAwMDExNTA1OCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDM4IC9Sb290IDEgMCBSIC9JbmZvIDM3IDAgUiA+PgpzdGFydHhyZWYKMTE1MjA5CiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"100.469118pt\" viewBox=\"0 0 684 100.469118\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:52:29.675889</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 100.469118 \n", "L 684 100.469118 \n", "L 684 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#pdea6abc3e7)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAA6IAAABjCAYAAACBpL0LAAEAAElEQVR4nOz9248s27LmCf1sXNwjInNe1tp716mqBgnBA0+0EIJWS0jwAkj9V9V/BhJSPTdCjeqhoR+6m65zzt57rTVnZka4+7gYD2bDPXLOzFWnD9UHGqbvHStyZsbFffgYNuwz++wz+Vf/6l8pP44fx4/jx/Hj+HH8OH4cP44fx4/jx/Hj+HH8Ex3h/9Mn8OP4cfw4fhw/jh/Hj+PH8eP4cfw4fhw/jv//On4A0R/Hj+PH8eP4cfw4fhw/jh/Hj+PH8eP4cfyTHj+A6I/jx/Hj+HH8OH4cP44fx4/jx/Hj+HH8OP5Jjx9A9Mfx4/hx/Dh+HD+OH8eP48fx4/hx/Dh+HP+kR3rvDyLyj/i4f6DukQJy9/N/u3fvh+z/efMv/4CT+Kc6jvNR/ff1vf+Az3njJb/3rjduyavfv/6HfDfK+s6737ob/7hR0Dff/O/6rHfn8j9qjn/zEe/+6/2z0lc/KOjbI/f+B/gCuv86GeMsvzv93//Tf9ux0Pf/9c4c/wfZlPHe9xf3f6fHP+wO/n/f8a5dGWP+etLdv/P1r/9BQy6vfrxf4f++xuy909DX/+H35vt/l7Pnd+34f8fT9t/LzvwP2Qj+Kc7j/803vH0f/iHf8k9vW/77drxnr/9xvuE73/HO7//7ZHv/fR3v2xR9bfK+OQ6X7Mec/vd36Pj/fvyjXZJ7vPP60373+/5/8XjPdrwJRIMI/4f/9X/I5w8XtFV6K2hvCIqg7JBDldYapVVqbXRVVKF3pavSu9J6p7VGa43aKqUWeu/mOIv46+w1t9vC9XZlWVa2rbCViqoSQiSGSMqJnBPTNHE+nzifZqZpIqVEzpEpZ6ZpIueMIIhAQBCJBBE7r96otdJapfq5iBwDJHIPCvx6tNPdSAQ/7yDBfr5zwyQERGR/JnD8O0RA+M/+73/m//l3X78b8w+x8CltqCraO+pj0lunt4Z2RbXT/W+9K338vTeadro2Wm809Udr1OrPpdqjNlrttGqfidrZp5hIMRMk+P3qgBIDxATn88zlfOL8cObx4YGHx0cu5zPz6cQ8TdxuN758+cLzywsChBCZpszl4YGHy4WUEuKzZ11XltvCVsq+8iQEQoiEEFHtNPW5Uxu1dapfQ6mVdd1Y1pV1XVm3wrJtlFIoze6t6rHyH376A//T/9X/5rvxjvnCz/+j/x0Skt9j3wjuLP7u6oogEsznVZv/KQg5BaYUyCmSUyBGf43YZ/WuaFdq67TWqV1pKrQOt6e/8Pz3/w+e/vxf8PLX/5rrL/81t69/tnvTlNKUrcPWhK11tqZsrbPWzto6KoHTZeZ8OfPTH/8D/uZf/E/40z//H/PTz/8Bn3/6F1wun1EaXRsIhAAhCDEIMQZiEFIQYoAUhTweOTAlISUh+LrQDrUprUKpnc0fa7HHVuzfpdn6+vW/+j/Rtu/n+P/iP/yf8Td/+iPq9qG1xrIsrMvCuq52D0sFUUQCKUYuDxceHx45n89M88Q0TYQwiBzi4y1uT9jv+1ubuvjavX+8fsE3wZi3Ajl62D71ufDvcszGbDJLMR7sG4+qMv43Xm/ff4AteXX+AQlCCGZ9/m//5t/wn/6n/5fvvjc+/InpX/7P6XWl3L5Sly+02xfa+iv99oWyfKWsX6jbbbchIUbSNBNzJsaARCFEiBFiVFJOTPOJaT5zfvwDlw9/ZD7/AQ0f0fCRpmdKz9SW6Rrovmsg+t1w+l8QlCjY3BzPQUhizwGlrk9syxfK8hvl+hv19htIIJ9/Jp0/I/kD5EcknZGgSFBC0OPcA/7Z9vlml8UoQTJuRncb4PdC/fzGvHLQvS5X/rN//X+ktfr6ekT54//gKzF1//zxZgW5v9f3z+yxqLGbiIjtW/uMGf8LhBAQCYRge9CYE8H3GpuXnY7Nz65K07v9uJldHXu0+jWiivj4BBlr/8639fUlASSOv/mauwtG6LiocbNHnENtHIZP0LvtL6/nhICKz33x9WHPX/58Yb197678m//8/8p//l/8G7tnvk9r9/1a+76mx3oJ0e+73/9jTbGv5/sTl2MC+EzlcBjH3nUXOzteeWcT7odj3G/3Lfbv2D/hm0OPufK9YzzG/N6eiA1/11f32CbYcd379e/npfvcUVX+xT//H/If/0f/2+9O59PnT/wn/8n/niBht1m9dWoptNYQCcRo/tq9jR12c5+vY+76fB9LzM7d7t/wHe2e+vmJ21Gff/Y57HP4cOhtfA87Pf5+N367z/dNONnvua2zcLfffH9D9dXNPa512PTjXHR/7r0f/oG/ttbG//lf/2tut9t3Y/5v/+6/YFlf0A7axR92j6MEckpMKXKeZ86nmfM8M+eJKWdSjKQYzW6gux+pfg7Q7+6J3y8Jbg6V5uu1tm54KgYkRiRGQkxoELZaKaXQuxJFiCLklJjzRI7R7U63++m2hyCEGAgp2LDJWPJjH/RzUViXlXVZ2dZt96nUffmu3a4xJ6acmFJizpkANidLte8T2e2tWR5oMdFj/G681+tXXn79W0ppXNeVZSmkFJjniWnK7t/bnBjnIigiShB7Fp8bNoc7IQamnMhT4uE08XCamFKk1E7dGs8vC798eea3Ly9sw5dtjdqgNDuvFMV9TEGD0IF1qyzuNw3cwLAX+3Qd/kNHRJnniYeHC+fLhZR8rQKtVVottNrs0ToBiCKkEDjNgdMUidk2VY2R1oRWoFUbC/rAf9BUKbWxlkqpjYeHB/6j//h/+aa/9HZGVODnT4/88dMjvRV63dBeEfruiI9FVWtlqzYQTRXt+ISzhVZbo1WoDXNYg9DaWOw2MVqHKkqNjUhB+oq2jV6KbZQxoTFCzARVIkIOmSkppwx5EqYcmOfIac42WbCFFRADOBLpvdNbpbZIKUIp6sbz2HR3gzieVekqvnHK7gDEe2cAdxZCcEAVkBggYH8PAQkJRDhN3098gCjKHJobrI5qo0qjOZgYxsOuwYFqbXQH+WiF7sCjV1QrvVaaA9BtK9StUDYDo3Us0G6bQYqJnCaiBL9nDVBihJyF1E50HpDUiHNg6pkTiXPInGKH0Lj2lViuiAgxRnLvnJi4xE5OvjhVCVLpuqFt3QdaNBBJCJGuHekdaR2tjVArUiu6VXoptGWh3BbW28JtXVnW1cBorR68sHsFIG8YGvtDYLr8EQmZ3tmDKAeAcUdhN9AOMn0NpAhTCkw5MufEPJnBN+fzAKK9d2q1R2lKVahdqKUR4hltQl0W1ucv3H77C7U0au1sDZYGa4WlGgBdaudWG7fSIQbODxcePjwQpo98/LlRNUN8JJ1+Zrr8AaXTtVpAJkCIQgyBlIIB6Sg7CJ1TIGdhngJzFqY8rtv8uVqhFDUAunXW0rhtnbQ2YumE0pHSab3ZXH/j+PDwwM+fP++bca2Na85cYyDFwLpGYtj8fCMpRT48PPDp00ceHh44nU7M80yM0e6V6AHMdufhbSBq6/tw3L8DosOZvkOir5yM8etvgKjuAPP3D3XAKqMa4s6ZHaBhbMH3QbDj9MRByAAeZn9EhP/yv/qv3v7SmAnnn6EuSFeoGxqvdAJNG7WubOsLZXmh9UrTRkyJpmcyJzqRQCA6qAqCBddiJ2Qlz5HpcuL0+IiGT/TwE00fkDYhbXIgGuya5E3Ygaht3EmE5CAxffOIKGWZCRGECm2BkiEE8nwmnz4gp89I/gT5wV4XOiEoMUFKBrCSP2KQA5j43FAUenfbobtTKz55BhgVgfTy/Hb2QSBPlTg1v0cDBXHcW1VzhO4BqbLb4XsQGvdAp9lHke57GXb/RW1dC/5dB/gcz/dAdDiUVLOv9AOkjKBACAOMHvvhDsbEQGhIDuzEnse9HBv6KzB6B0QtSN2hNUTfcJgQA1XumeqYOICE05tT/Hp95q+//N03Dn4zh5W+n784CI0ORGO4C+Z8B0SPs7q/9nuQvNsGvQef7E6fzxbu1/HAg+z3/QBnd5/w6hhj+RqM3rFfuAeiB1DuA4jegZ0xJ8ez2ZNxTneBblUeHh7fHO8UI3/60x8JITCCZa03ylaopRJjIMVEjOkbG6uOhT2I77YsEPbxt3ve932zuTPeHJiOMTiCIAd4EtQDAnp3Pep+2xv7wX5/vx/zEdgcIDR+40McwPZ9IHr/vcOq9xEs8euzsbZ7VWp5A/DasZUby/pM74K2gDboTelNiSEwp4zmREKZokCKSAxEjWQiSSAFD+x4QPDeHotYECrs42p/6aJmHz2o0+Wwl2MOaQh0EZoPSMACWTkIUxCmGGmiNKABFWior0kbX1vyOmJPqBzBNxSqOyHaGzQDOwa6mj0LSHcfUiDLXc2hKqKdkULrehc4Ct9s7n70Vinrla00ttvCsmzklBAaQkU8yIJa4K832+VEugFRh7qq6mCyE1OAnhEmemwwdYImpDW0Ntp2Zbs+c336yrptlNbsUWG7A6Ipmt3SGKkKy7bxslriTj0xNQKpw1aNANk4v9N5ptRHSrPrSjEZEK2FWjZL1HnCKmAB4RyFNkf6KZKmZEA0JVoVyga1KDSf736bqipbady2Yvijtd0OfXu8S80dmU7LiFpW1MIwbc/WtdbYqn1JqcWjJ3jU06MgnqUqpbKWjXVbDTjthmdsko3b7cb1euO2LGxbZSsFVXNKY4zkYt+1bYVSCsttYZomizTkxDRli8LkdABRCcSYiMGyoohN4m3bWLeFWut+4w5AKsRkjrCIGLDWDupZJQn2fTkTYvZNeRitREjRoj3RAKlIREIAsazfW4e4c2ELS+ghkDAgq+M9ZrW+y4b23mk6niulVUq34MCWCiUWc4Dt7Ufg0DOiNlZxd8j2jVsgJYvC5JTJ2R4hhH2RbdsGqvtz9OhbjJGUkmVVhD1C3Zuylcq6FW5r8QgdewSSEOw63GkqPndKsflQSrWM6rqxbhtrKWy1Wcawdkq1jWs4RecRTnpzzO+8rbGDc/88FvDIPo0/NbQbmKcpkRM5nSBNBnZC8E3JInsjGxkUQjeDH0MgpkTKEyFmlETvwbLvCB2LKlVVSlfWbpnQ2rsBdQXt7W4edAsCtUopK1tZLEPim0xHEIUeO12hR7EAi9q4R4WowX/nBpvDaIioZUM8YCoD2KZAUqhdiW2EZN4+aq2UrRxR4NYopbCtG+tqWe1a6571+fbRu3qG38ZAPcov4Q6khcP5Gfduz5j6/Xhr7Q2QsTt3x+27O3SfV8N+/d4V7w7L/cbqn3EfLb+fe/sp7CdwzMN7ZGpZgxEo6O+MeEBDRkODNCPTGSknSDM9ZIpGbhtsa3cnWYgaIWWknxA5EfNMOs3k2aK5eZ5J84kwnenzz9T4Rzb9jOoj2me6ZromIDqwOsZ07D/DgT1+NjDeul+zRRl2x72j1N4suKmgGlAJGEQNqEc1x+j0bs6GqDs/XYhB7zKi7ABuOGDHydxlIV8BMVsDiAVO3zu2Wog0m4cjKOUfPUDnfbbSkxI+pY6gVxg/qz1QIRAJoROlOyNnrI3DhPV+rA3/aCyCHmhdWLfOshULeDVj0Igemeng1mdnPunIXNq1hyzEHAjJbWJ4PfeN0WMB6QNE+S3t7ADjFUAY6MKgsIG7MXgOy3U9A9P3Az7skYOcrmr2oDPCCHZtwwb7OQ8bNraA+xjU3dXc/fIbsKhy9yoDQSN7e+DZ18GGPeiwr/thH2Rf6vd4aV8nd1jnsEnDzh3n8e1PI1M+7I1wZM5Hxn7M77EOA277w/ejgV/L7bZaZsZPqGunV8tOBQ37ub0GojZDw52vdB/E55vXHcew3d8ecjcud1nSb141wN09EH3ryu4DA2NfGb8z1py8eq1/7Xtuwz6/jy8coG/cE9uvjPHHHjR5+7inIQS6QO2VWjqinRY7dat2/0RIEhD1lePz0NYH+3oc/tbIgHdtNATEfCdLKOmeUOpjTLBAGV2NVYfZkbHeO4r0Tm2Vzb6QHZoFQSQSg7EMW2+UtRh7r1uyhbE+74xn2Sq9KtKDj6H7yhLQ2J2RFpliJN7NI5GAxARYYMoCcuM85dVa+2Y2gCgpBR4uZ86nEzEZvkg57f6RkTo6JAVt9uie6Knmy9RqPluMYQd40hvaK0uKlK2yro2Xl4V1W1G114YoZBK1ClOzGR7d55IYkZQsMLAmNAkhCa0UWim2r+C2Hw9i4vZdLGlUe2UtqyUEgjEZei3OvjTMFaa8ByJUoKqwVaXRIIJWtQTF1mmlQ3ffyZlQxv4be9FrW/Xt8S4QLc1okL0Weh303Ir2RqvFQUFh3VZD8Fulaad1aO2gAZXqzmbZDEBsq9EnGUbXZkPXflAut83f11B8UEIgJUu955Rs8uW7n1Pa/51S8sjNyABlcsz2t5wIIizrwrJc2bZt37zHhhVjYJ5mTueZmNK+YStKECGGyHk+Ec5COkVEEyGIUQT8O2JOhBgJKdqi8mxMeidDN7IcYw+zgEsgRpA0IuDmBPfe0R18jMhap9OpvVFqYWtjzAtrXIEw4gi7c6NhmJURfTLDYQv9oHHmHHdK9DRNe4Sw1cbK6oEGWwAxxh2EGmiNbtjsvEs1EHpdNq639Yjc+nwYUfPm2fRtB6DlFRgt1R61dY8cdbbSWIsBs+EAGBD9HoCIezAjAvjKDH1joMxBDAQB7RWoaFsp7UqlEMMj84yD0EyM7odUu1/mAEH0jasDIQZizKR8IsQJJdIcGCrsmYzSYeudtSpLbVQPioSO0Smb0czN0PoGUBbydtspNCKCdNvQW4cQO7ULWQNdzRuJMZJV6F32e3I4eDYOQUaQwhyVGCElO+/k9N17B+07m1Iqy7q6qyH01ti2Ymt+WZ0y34jJ5tBYEyOTOShMqkbVbq15piP4+TgFaWRrfP0bLSnuc/u4zwNo32e87lGJ3PsWjo8O1+eYRwcYlbvP3r/jm7l3T/9Ud0rVp+igqen4MH0NdI/3it0c5LXT82riBrpMaFBIJ2S6QLmg64kWZrZuQHRZzIsQERIJ8oz0Myl8JEyfiJdHpsuF+XImTydCngj5hE6PlPgB5RH6CTihTKhG0HBczxgzCTvwuIOhPt/tJ202xr1DCooG6OLU/G5BFLv2BBJRsazrGP1Xn99Bmt0fc4ANjO5ZRFF/tjttTvkIYOLZI3sdMrKjtq+9eShsWyX04hhK9usb93hkKQc9fQco/d7O3JV+qNgG38Wz04kgyZ14y1gDO3WxdQ9MjfkjAUmJkAJNhZdb5+W6eTlDpda6Z6WDKvTqjJrmGQdj2XTtqFgWPM2RmC3IGuLraxzUuYNCxx5s1K5eanJkg0YZhX1K2B1QW/OR4Gjx58sfOOXvhzz4/bS1YXub7XUdy88MAGCv24NoOwjVAwO/2gde/+yfMhbW65fcg0/f68Z1H/f6DuwMMLB/1mErdvD+7Slwv4t9A/RkZNOHPTuyn/fo7Ii7ysB3+2EYRVAx8PIODqX3zu16M5vr6xv0WHdBXwcG3WcZPs0AoN8BUT+J3mW39TrOc2Qa5bj+cVdU1fwZp5SPcVAPTOxZ7pHFvv8+7u7J+Nl+2AfsHoQe13oPRu8/TV591niPONo/nsc53vsl+vqG3B8SEYkgAQ2WES2tsa6NXhspQA4274ZVkA5BBekg3WxXDG/vda23V4BBMR++drPD9ga739GDYpYJrB4cvLNlojQ6ZcwX7VgiJvqz2bZejaG3bgulbJS60fvY+9NuB1TdH2k21gHZKeU2nAYYcwrkGIkSjr04BEL0JGq3PaTD7mN5XPGN8QaVbjTaNDOlyRJMMUKwUqlSLFli7+/QKr1tTmltLLcby7oZEG1W8jJvibJu1G2irImUAttaWdfKuhaWpaDaSDESUyTESOtCqQaaR+As5EyYJoiRsN7gJkiCukIJFrBtuz0LiBr1Nmgn0JDYqH1j3YQa2r6f4PbeEm2ZnDIo9NbAy+XWqkhvIIoGoZXGtlUDolhCCwJKpEvcg8e/B0Lhd4DoXsuhHvEadALPcK7b5llFe95KsVq+rkZDLJ1ammWsHFxaTd9KbfVwwGxJoKgB1lr3z2rNNqvg2cyYEsXrD/Y6IgeoOVoGM+31Ce4LhMDk2bx5mplPVlO6rgvLcmPbNo/QNnc2DHxdHi4oMM9Y/WVvx8buUaQBSu178w6+0jQZ4E2RmNIxgxCbzG8crTW2dWWvEXVDtlNXEIiDjmJ0BglYVMQzlJ2O9GiGBAhNiUEJoXnG846aGAKiun++ujeoagAkBaMxpeTgOqUdIIDutZihGEWw9W41CzGSs9Gjp2kiela5985WCuu68XJbeL4uvFxvVns4agfawalv6nTWclC/azWuefPAQG1956LX5rWKbiBGZH6rv5cRvV8g3zuXw9gFp3KF4VB3pfSFbf1Kqy8E2ZiyUQCznInphNVzmXEO6pS3ATKBFC2rnqdMypkYh2PddhAy3HQDpRZZax502DfDPWrbjHZeFtb1hZgyaToRZbZNzD9LuhC60uIR8RWBFCrR578MwJaiUdg8itu7WN2dO3IxCsmjnbWp0UZU391Pb7cbz0/PByVHlW3dKM5wGJmSfT7uWTFjV/SuiDSn9VZqqwZAnYEwgiAhHpQtjYFI9BsJ9LCf33BUXs+D4+5/Sxwcxysf8u6Hty77WxrK7qhwR9/69oPfzADA6+yIW081W/32eQoqyZzDdCJoQcoF8gVNF6rMrC2xlOjRUkHjRNQTSR7R+BMy/5F0/kx6+MD08EicTkicIGZ6mClyorYJISNkLBN65wwcI7Ff2+G5u3P5zQAMB7N7BFvwaPm+oQX7jt2eDfNqgPFV9gk157qbo9p28KlHRhQPsmCOTXBKcNABRHfzjYi+mxFVlFIros0+9A6vvAVCd+fN0LUB0XCnPSDBnGwHoqJhbPGIRtCG7I7a2J8t08Cw8SES50CejD53fek8PVWuy7Fvi1ptU9COeilObxXthd6rgVuLYDKdM/Mlk+ZkYCQZCuw+H1tzO966A08Hn3c/q/97z4YqHqz1a8bOe2gGiAQec30TiCJWCzyWxwB2eoekBgja58o32VC5n5rjPXr/84gS6e8G2hSO+rVBn3xFkbUxGfPh7iJ8Sehu2789h3FlA0jse/h+XcfD7PPd3zwLOjDp6+s91hz7/fg+0z2O3pXrbdk/P9yBrBE0jLEd2frw2pYNv++eOn1/DF2I5iDnVT3zHWC3cxl+ku09abf7Playb6LHGO6gcgB7uftM2YMEqv31Wz1Atc+v8evXm/W4yjsse2SfDxA4/jb2Ig+mvjni+GQ9/EgVY2VstdO2SqVTgSiBU8qsaTM+StcjYeFJghEk2BMbITq7hn2862Cj+fwdjL6kiSSR5D7myAqOBIK6nwJGm+090lIkxmy1o07ZjjHSURgZuVooy0rrlZQSmroHAcSAsFlGQLyeUY4gYcB9swGyxxoIhJhJCFIbuhYaZa9jVH0dkLg/YgyczjNTzjycHrjMF1SF2jtbbUizMpba7qi4vboPVqgD69xWSlNaVauF9SChjU0iBqEMINcs6zhNmZwn5nkyvFOUdRs1uva/kCIpZyQnzqHTvVRmS1BCp/RClU4TxfZjK1WM3cCozdVmtp9OkIYQEbUMuyX1bAy7mi1rXanqbJkR8BJLRm1boRXHGB5wUFFnOR0snf6tQbs73lfNTQlJ+aihCIHQAj3apFSJSMyEaSa3xlSrDWqp3JaVtdy4bYXr7cbtdmNZjQZbWt3rLe/XrzqYqK1bBEPZkbRFWpwu4Mazd6goJSipCVtQUlRiVIJ4FkzN2UgxkVJknlfm9cQ0Zae0QpdoKhZOUzAgpMwakDiRT2fODsL2+goRzvOJy/nEaZr34vyUIjFlYvbXJ4ui7MQn+d4xHcfz8wvL9e/MELrh2CPkwRZgjNFi/+bVHOZwgHpVXyzFHp5J3DwYsK2r1XLURq8mtDEoXmO8BDyj6ZnNaDWFEkZGaogSbEcNxTBswUDrPM+cTqcjeypCqYWX643n5yu/fn3m1y9PPL8slHsxouoPd6aaU1EHCHklgLVH8ZzG2tVFs+5om25c70LJrw79ZmMYe8ruRIu5vF524bVyAj1Q18Jy+43ry1/ZtmdKXVi3G48f/sCjZGIKr7JcIboj0y3i3LNQJqVOndsJLufIekosa2PVjnTIsXNSqE0oAbbjNu3GNkUzaNI3enmmrF9YrhEJyswn5hHJ2y/QAKWdmmJ8uUovje3WmCfhNAXOp8jD+UROZ0JIDArR/ogj7gWxm7hRqsEM1TsG/pdff6WsKyln5smijKVsTqcLhBE59xRH104tlXVZ3Vl1m6G6BxtCNBaBXaHHJ/VOaEnDXo8TvG7wXuTFXjMyMEcWYdTxvZ4vukfN78MXb8faD6B7H3WHIwr/Xf3ScHZkOEfcXdXxhervOWrifocrOoBbmJB4JuRH4ryQThthviLTM5qsJt0YDQ+QPxLmnwinPxBOf0ROP0N+oMcLEmZEMpDoPUExyobF4X3N3IE8c8CO0LOMi7gDfkOsKFiszZ9lr+sMEmg9IOWovccdgBw6U+xIakiqaK6W2RkOP0MM45gT9+DSLTODijro6DrmEYPipLs+Quv7Uvru6A6SB7DUu3u2O/r+PWHsf2OMBsgY/5ORtfBAZA+2Z/VOrx1tSq9qNFtngoyvCdGCoDFBlm50OIS2KWVtbItF4s0ZsfEXujOgigHSXo0Fha+1JAiRGGdyzvb52cbXHA2vhxej7A0A2xrUqq5pYOe9l2SMWTHqvfcyBq8X3UNj78zuACEe++ABrO7nv7od9hU6wOgILvAanCmOOcdgCmYn9wzrsTD17jt3LDfKk5o/XIBu0CCH4/7tcQQXv8M17DDUozYjq3aAaTnmdrCSiZgsWL877uOcOVgXA4zK8UWvwPn352jU3HvbZnjGxPqmbGU0Oec9MDhs634vxvX1+/tm32nlXC5+OQLU90Ebp3QaxdvYQGgz5tYoFUmRlIIHMYSRWR/iQ/E+KxuSvS4EZA8adLSLM47Mz4gh7j7gYCuM2IQMAMu4fw5W/T73bnTVYUzuRn+/Z/296BYAAdXgFEsTHTKmhAc+MEYZTkdXFZbN/L7runA+nTidTnup1JEsmAzYJSGFSCuFrSzcltXKnZxWOvKPU544nTrnk5CzlcSJRGfeGYtRW6X3akmiFOg5kSdBYrJa1RyZppmYvOZdPCgfIq1VgljwqfVOcb/kCDgYmE3JgmBjsW4qhC4kjZzizCVNTPPMNM1MeaK2zrJsLKs97FwrPQ7b/vq4PFz4+eM/J0piShNZMs8vN56+XPnt6zMvy8rLYuKKgbZnGgMd0UYplV6bgT8RZ1XLft93f0CsPGv2ORhjJqXJmYczIoEvX19Yywtb2cy/bZWwZVJppGlCMjycTpznRJ0yZcqUtrFRKDSCZGKYLUuuG6FnSmksq7JuLt6qgDaC7ZaoM35sfXVPAjXb17FArQleBgffrmEjsmOJ1psHNNhxXS31jdG2410gGmIm5AltxmMKLdBbJPRqvOuYiVNlclplbZ1l3YjrRuWZfl1ZSuHlduP55YXr7XYXZXIAEMJ+YwbIsICFUxR3Ssadu6BC64OCZdTSEtpd7Y9H9nVkVzxzGYV5mjidK6fZAFJM0a5Fja5oGRlT5uoSCGliOj1wuZw4n8+kZJmVgDDlzGmamFI2KtVQM/SU+k7LDeHOzbEo2FvH8/Mz17/9bxgZLlX1OqHggCMeda4MA3hsQKPuqHZ10Z7iIG8oBJtw0U7lbL5QhnCD+Ah77eI0GXi/FzXo3SblcOwHaLXXT8zzzBRtIZ0vZ6ZpcuU1o+Rerzd++/qVX3974q+/PfP0cmOrzWnYJjQ0Jn31iCiMbdLCX5ZdPZQX1XfXob6810f5Tv87LLp9Ux4F/D4zd+cEd6iHgEqO2GaggasW1tsXfvvtb7ktF7b1RtlWRBKn+QMhJPaNfRdFMSAbUXQS6qS0uXGZlYdTYD1nuja21pCm5BgIdFoTtgqrO0kNB8jBAx9BEN3Q+kxZJ24RCEqImXx6NPfJJ6CBWJs/TdWoNGVl7VeC3pgn4XLKtDaTk/DAycDeKyCqxHDUWHSFVIWcLHL5nhPz119+4euXL5xOJx4uF06n0x6YCTH6nHfAqbY5l1JYlsWDH3fukt/3lE0ETMKwEVaH60xkeveMfWtGrwl60MJksAnCXjtl9Tiv3M1vAj42mDrW4VjXeh8nfx1wGuvl/rj/3T2Nq4dBtjxOYNhMxndz1NoN0Yb3DhumACEbEE2VOFXiqRHnKzI9QT6U0Xt8gPwJOf1MODsQnX+GfKGHEzBZNq5HhgCNu1QH/fWuDnO3U6/c3wH4MMaGuJiQHKq2VtMpOxAtLUAOsBp90MoklEk6c2qEaECU1A4wMOzuEBoLx9resybDOnvGZXAWxp3su6N5f+/ehUUYLXkP8+w3cOCVMR73NmeYt2PGDGaC/TEM9aAmrr3QqMXUFuva2NbCthQTzRj7RUrkaSZPxmLo0fzjVqymp6zNaGFbccqymK2phVYLWo0mpmrOg2URAyKJnGbm6USaEilHB6LmsG+hIlJBXVcCLzOojVIsW6oeZR41lfv6DRA0+L4/ylmGaunbRmUoVe5/PrCOzUo5wkavKJZ3mbHxfJ81tEDwQZU1rGFz424a73NojzEwMkWWAW61U4seAdJ+0G4P+3J83j2uPaaDHL/08x2ZP+T1NYw62KTmd5BMbOy+RmvscceYDdq5f5e+D0R7V67LBhiLq1UTezTWVCTnypoLU06knEkp34HRsAPIfpepw4PuA5DVN4Do4SN2r78r1LpRykpv1QKhSZhztKz9nD37lgnBM3H+PJRkE3kv+9J9TDyjpxZEKbVTaiElZfKyD4YopcheXz1EiYbtMVB4R1NHhzG5C3wcgabW+ne3/bj/AQu1ivsf3fZZtycjy6x3c8io9xtB4FIK51qZsjHUcsqcESRNhGwU+CiTqfTXG8+3lbVU1toozmxAYZ5mPmggBCspmqYTKU10hWXxuvNSaG0jBmFK0RRlQyRNHQm2X8/nidzSrpWRU6TE5HotAirGiuxGPbbayoqi5GkCJgKR7llT9ahiVCVMJy45M10e+PDwyOPDI70rt2Xldlt5fn7m+fmJZV3ZtNHfgKIPlzP/4k8fbKl3QStcl5Xr7caf//orX19eeL7d2LaV0CtBKznCnIQcPRApcU9c9JGlvcvQDyyQJwPeUz5xOl84ny5M80yeZlpTtgq//nZl2bwMsmxIjOStMJ1OPHw88/h4ISehTpk6Zba6sPaVTQspTuR0JkpEdENa5rZs0De2tVCbJQC1eZkD0IMxRMsWXAfGhIaiB+pTDExel7snzhiBOt9nXGipNLN9rRoGeO94B4iKC6lkNAZo7iCFQO+HCmxog0ZoG6TEDcJGqXA6FebTxm0tyLK68+A1QiPDGt1F8cUsvRNUCV2J0TatQVe6L14eBcfaPUK489ZxPryDOVetiMHzNK0TSkViZI6RHL2e043KaO2i2nl4/MDp8sB8OnM6XTifT6ScdoOdQySlvNdC4OOwR0XVN9w7g/6tuMD9UUrh+fnFjMkdNXdEx2MQj/Cx10zcf9rI4DQHokO051Bnc5UxHe1gzLHXECB2XyijPtQiVynG3XC23li3lVKL16U2QnAuOdbWIcRAnjJ5npjmiZSzqSl3E7V6WVe+Xq98vd54vpnBK64qZtl0U/Ud9Z+tdcZuO9q7yGjv4pHL3T/3/x41Gr63v2vdByjTb15zZEwGRS9nU5LNUQgkUCuQF5RWN24vleItZKZ84eHyE4POInd1v4ruEe0YlCkqLXXmDFN2ICdGu2nuCKUgTEmYU+ScHVwX3bOhOU/kFK0IXTd6W2h1otYLrQ9hIPbHPm+60sqG9o1en6nrb/Tylct5on56JISPPF4ull0RoQcQp+VGp20PEB+7El2R8q6Q57vj6fkJbZ3T6cS6rpwvZ3LKXrcddvnxPSvgJ9x7t/Y/I+Az1pyIix50Wo/OTBhqsuyUtD3LtNP9RmT8ENa6V0g82i8dghy707ivy/sZw/BeLcj/RvbzHmzu75M3aopGxvXeE/zmNbtt2z/77fEe8A8CKqYyK6kTZyU3Yf5QudwaGs47HXM6PzB//BPT45/Ilz8Qzz8R5k+QZjRMdEnuBIkzFcypHI58DEKPAU2BoEJUW0ej6GwEvJAjcxqDmnpzcIn6YPN+tHIROiRBo9Cj1babCFcnSiNoJeiG9AXaQXcVAl2SsV68zkpclG2v3eJwvI+Ag/Cqjdc+wEem9D2vUSR9Q8MTF2rTwyjt8+cOTIyxuQMWg6IbJCJqNf5VXMqsm4AHcmTFW7Osy6C272u/W5S7o/TSaFujbpW6Wp2WiNIDBxAthd5M3xLtJkrmQGLYnGmaraxgSiAeAW8WItMu9AghdET6flG+Mx9D4RctPj8kBCs/Gc/+4H0canY6jrG/WzKOFu9rJg+0f6DWfby/+dMeBH+1j4xzPzadnV4cQNpdBrxDt8T4rlg8QMmrKbWfL+8A0W/m2h14tGsezz6Hu6DRWq7ZSY2aTbPf31LZX9kxtQAJ+popdH907bxcrcVIqZXqYoDRy6Jyikw5krP5R9nLTgYQtSCKiVsOsUWUPVNptYftFZ2v9eaihYVSNrZtpZSVWjdqXVGtpAg5KfOcOD+YvkfKkwPhiRgywVvUmc5IJqeZKZ+JaaI1vK3dAMKVUqz0rLZK9kD7PM/WJiQnZ6ixJwesRZXPZTEQYzuPTXgVy4oPP3GwcWAI37xnyPXVRJQB3kVAR2uUxrJuXJcVCcK2rSzrAigv68Z5WZmylaVN08TH3tGYEA8gSIgQMhqstq/T6eLZVjXKfygmNrjlwjxVE7WR4GxA67oQMNbiACwxJFKwIMAIAMSQrAxotvYzU8zUNFNL3e8BGujJmB9BjRaq9F35fOhUiAQc91v22X3ggTNsXgnMg9ZrVmieMl+XG2VbvhvtnBMfHi82F9ZRGrby8vLMl99+5fl242VdqWUjaCNS6VEgByRHy7JLQkIiSnRhykCcrM3k6TJzOc/MJ2OWpJSZ5zOX84XT+cEYaCLclgIhsNXCbVl2/ZyQIsXXyOkUCf3EFEwDp+eJKXSydqqq2+tECtFKTYgkIstVCVRoHa2ue+BCUdbtpBvrdDAVW0ODENWqkFuA0Ibbc6/Ua3N8Tyw2D5x2W8fvHe9mRK3ecUJbdZw3JJrHuhgI2AvcA+Qe6Jqst0wTJGRCysYbDsHrwCyyYZm0O4Apste49H3RwR41UvG2It0FSxToFjGNkRSTG2l7oxWwx2NBRBPcCSk5hTQzzSdOp9nqGbNlNhXLRJ7PJy6umJVStvPcnQjb6Fute2ZkGIbhKI+Ma4hjkTu//11jcwiqDFDZHfCpU5l9T71zQAfF6YgYjoi51dce3zWcP0PyBkiDCERb9CEYdXgA60Hh2BVs68ayrDY+7thnB5+TQEyBPCWm00SaEpITGoValbU3bq1yrRsv28ZSiynAqmWeCdZPyivVTA5cLcp+AABx6e2jBgzYqSkM5zLInUE/gN9bx32NpR4316/fWptMKTBPkVOO5OSKcQin05nT+ZHT/MDt9szT9a9stxvn0yOPjz9ZtGu+kPJMV/E6YxjS3mglSiOHbtQ590IsCtbYSje57mDUlVMeTAEo3YxGTJkpn0h5MqW1oWw7RCrUnMIxdkfdsQkdbcuVbfnCev2F2/Pfs91+4fPnT0T5FzxcHlyd9qCiDmGQGISkwsjOWQbL/tbDuz4jy7JSttWz9YXbutjG7r2Ag68tESGKydlv27arNY9a5XAHFGurRmvZqeTRVedsM9T7++w3eFd19nqV/b0p7dSfmKJtJm8Awn1N3YNKPAsy6kDuwOcr4Y6x2t3puqfpvhIgQQZhxNgOr8RdePU579H97ZSDz22rM5LkyrhMPPQE8cLl0xOtbrS2kfKJ+eEj8+UT8+UT+fzB6kJDpstdaQBqQYyyWQbNTyvGYFlqTSZZr55xZohG3VEI78GoDHl6r08PB103YIGQKEqSTg+KRrP/lnnb0BKgVTTkHfQpgSaZLhPEiZBmKyfxWqkDkJphDcPA3qcWxjhyBxbeqRMUIIbMTkWUMWfu6tb3aNAgvPlzEGfujKzWaBEWCGIiHNqFmjstN7bU2GIlx2LOjkSnTx0BlZQSye2CarOaxVroZaNv9mjbantDgC5KrX4/e/WggQltBBEvcTERiylPvi4TijkZQaoxYEKjOtMm+rn0pKQOTRqNIWvsY+/98WSsXQ8mWf/XAzy9OeYiu2DSkeUeQYXjHu8vuAOh4+nVn7+5o4OK/xoo3mWzFRP+UwuUaPMaTaec96a0YPRGHWBRv/0u5wqI7W/7EtvP8/68v9nTOYImd4Oy7+EpBVI2yuqgpvPd9eqBddzGvNvaoneers+gYoyrYntE8IxPSpEpW5YrRteVCEdG1JTTLVu3t4kTDBzmvIMrO0Eb+VILLy8vPL88c1uurMsL63bDsvUVkUYKnRSV+RQ5P564PMzkPJPyTIzzHsROMTOniSlPTPlMThdCmNjWxnLzNhMj4+pUyN4702nmfD5zPp+5nE88XE7WpzOEfc6O/pJBnGoZItrFs/xGoP2u3GMPJN7f4+8GHSs6FgMO3coSRhlvrYWybRaU1c7LsuyAXVFyvpHzM1POTq+d2ZqiMSMxM6vtDSqRmE/Mp0ZIlTRASKnUUtwGdcq6suXMtkwMYbfzPDPliLazJTkYjJfgNNkTOc4WyG+YfxRn0pzpsdEnbzO4bmzr5uFTyDFS20Srha5t36/dUKIhmkaIJ31Cb7R1YQlCAqQ1cjYKco7C43lmSsG6C/yiPL8BREHpaszBdVm4PV95+fobL19/4/r8xTJ7zUGxCDkkpihYVxNBekd7gd6J2Wo959PEfJk5XU58+PjIx4+PPDxcPJGQjUY8n8h5Ztkq19tKaTdu28LL7crL9cUYg7UaO7U3hM52jZRTIveJ0BqhdbKaRelByEHJ0nxPDYQwoxs8xY1EoNB3lk6QwWpyP1V9ngUlgSfDbOhl12PwAAuHH9PdbiLsfzOm4vv083eB6OD37wi3K11G7MG599wJDIg5zD1FTierHot5RiW4iFFjXRdbHNr39igjQzFoG7V1pzDcFYe7I72tG4tutGbRcHXVgeGImtPpvWpCcNEda3Zr/XLivuGlbDzy8+XC5XTmfD6R7zj0aRc/Ci5V7hlXj1JrVypH9nUYz1FDkFK0guSYCKkjIdnCeReIWj3bMExdu6XNi9FU7wHnaPhsrTtG9PC1YqEVmduCHwq4O/1QjbSm4T5iZ17foAuOzNJox7NtpsLbWvXIZwA5MfXJDE6K5ClbJnTKhGSUrcoBRG+1cK2FpVa23qjuLOKRrYiYUrBC6GrF9t863zsQvXv4RiqRvcZujOP7ProekRx/uDuzb+JTjsyTNfE9TyaGYAGJwOl85nx+5HR65PryxPPXX3mR3/jw+BPPn/4ZOZ8gZEI6GRB1OXShE6wRGIFGEmvHICh0i25utbPWhojPvyCccgCx9bHUZu19Ujb6XbKaVKOlD8dtMAhGO5ZjTlgsorHcnrk+/YWn3/6Wpy//luvTX2j1b3h8/MgfiqmvaR9umCtritEn72mZLejREuNt5jkAy7pwu11J28ZaVuZl4XQ+cT6dmaZsVOOhFuozc4DPnPMOWr/NilowKuz0MKvVDsQ4aNxHi5uuLkaTzIlOKd+pXZtwVO6ZzMT0xgUd84Td4bt3IQZltt31zBrXcA9GvwWho83AvZiGDNnidmQ+77Oir9Uc35rhnr0bLU4kIGREZiQ+cEkPTOefqGWh1pXWNiQkUj4RpzNpPpPmCyFN9hkqTsDp4MI2rdyo2+ICPOIU6wmRCSWhYQicuZ0ZoMGvMWCPQefdM6IeVR+yRztoDUoM3bKiakC0tc3OR4Orfiqi3fqliikES7oQJgjZriPEUbd9BD9GttbJz/sYHsmIYZvfB/5Wc3YAUe1Kp94FDe/u2Z7xHFT7sO83ae/HGDyDEE0jIXdq7kypssZGDsXaukigbqMntni2P+4iKHurp1roxcBoczAKaiLH0mm1UmsBuinIh3FdHsxNVjc1pW+AaGsmBlWbgU/fvw+mQaDvNF5Q6YxWS5I8EJnuQKhTTG3Peh8Y3SvgjnVz79AfGeYBwHz93QNR7t+rr95/vFaPvebVH2Vvr4MaE6AF64tumgodKRaoH8rlx3eNz/fv1+O89qDz/g/Zv2/84btM7nFJ7H1Tk9Xqpele5fb+OgcIvdtX++vzuz967zy/GHOrVKVWz/J6ptdE+IKVlewUVhcuQqi1uEjWuoMcEWGeJyuZSmmnAI42O9u28Muvv/DLr3/l+fkL19sT63o1AJpMFyTFRgqV+RR5WM6cl5M79idimt1XDaSYOU0n5mz6BymeEZm5Pq88Py3cbqv1U3TgYyJd2H7/8MDDw4VPHx5p7dGSGN6twfxl8/eInpQYbfs07j7dITQ4xnyIe7093narrC0IzQId2kxUZqh5l9a4rStrLaylkFKiNgv2qnaGfseUMvM8cT6dUUnWg3k6gyRCVAOiaWI6KbFVclcDbOtGidG/Vy2jva5s07IrvJ5PExJOey9XnAEAWBA5T+SYTTiw48kaW/NkG5BaCrdwsySSGAhtU6Y1Kxfove0BRELwEsFotYi10VSJvdPWlVU7oXe0Vs6nM6fTmfl0Ip8sGwnKr9cX+PLGcKsxTlrd2JYXrs9PXJ+/cHv+wnr9SkV22zqlYCA0WuVICnafTXyoE0jkBKdT4uHhxOPHD/z082d+/sPPfPz4YQ/opZSJaSKEyG9PzyzF9HTWbeW6XLkuV19rndACaCNIpyyJcs007S4+CkmUZDVO5ABZGjkIKU2W/Z9gjjcSQtSxX45AqotyqgUvhb6XywygGnd7O4ClB6YZHTAOwTULo4+uHu8nhd4BosrXr1+JYuIFrWy0Youzea+ZPkAClnlU8L6P1stxK2ZwrIZAyCl7Fg6PbJjzGMSdSgaX2jKPezE55kCp2matTdHWqd1ApzhPV1SPjU0sE2mgcrR1sVoFU9m1Yu0Y0l4rhmdKLOKbvqP5jWNXq+NuS/MI+ogqiNcSWARyROfdwr9zM0ppvFy33TFVdWVQ58jjm+C3DqyOrJWODUXs2a9pXFsHTP76bqMdY+81oPZWobbOulVSwjNi9hnqYIaIU6uDRTzTyELZxmES3o2uQumN0htVO6bALTTPeFYd524AvA06jr/OFDb6OLGjdcYIl915iSZa4ZF1MICLZfbfCzTCXfDV/zNETGKwDXWeDIzOs4kh2FcKp9OJxw+f+Hj9I7frEykGSllZbl94+vJ3pv4mgoREJ5p6mnaCdoRGX1fK9cr2/MTt5cq6rGxeH2tUG2WtpmaHGKEkhCNTS4rMOTPPJ/JkbYYGTy1E62+LxGOI3Jnuzfj+ZX3h6cvf8+WX/5qXp79Q1mdbd8FqCnJ+RGSiNaFUB8pe/3dYiT1mtI/l+4EWo3JtW7H3+FoN7rAoRtMZQHS0sLif76ru8IYRABsMBJuDvXfQtIOS3i2C2+6oXraGBjgaV2EOQavFhTDM+QgxWmXON9lMmzBH9nIA5y5mgJur+o5zvW9Fc7z9EPuwsdP99+M5eB3uqBbcx/YOhP7uoaOO1ylgtoMj1g+KkIUUEmG6kFql9eqgPiExE1NGQuaAixbEMt5hoZcbbf1KXV6sZrF164lbH5B+QecZ0uSry1gdg1GhwdeeOLAbAZJuSt/Va/9Gy6q6tT0ibFFXV+Vrjb4WlOoOsVFXAw2IVFmp4UzISmyB2BIhQ0ggPe7BkyM7O4KKbk856vutx65Sf0dXRJvtY2M/6N3U40upjH6vu6rj+GLuhVSityCz0pGRUYohQhdaMDqy1elWaJhAUGn7XAn72nCGCJapb3W0ejKNgCHXP0BWl7u6PUxRHRlOV9oZA/sjJIJE+lDK9Pm2q52qOSXe1NBEO9Qfrle4pz6CeLDE1tbYv14/3hjvuz3v/iXDnt+bI6uNvKNkj9/v2M4Dsv7n8esROpG9rndHiHswAdcOsGdbq6l3Uo3k2l3AiKO/6t3n3C3rO/spd/8N+8sPOzHO/ShDGOccopDTyIYG4hSI+ShReGsMh3vSfQhCeHu8W+98fXoGho6Hi/KN0tlu9Yw7u637vPS5aeJVZmOHQv5gMgURYu+eSXfBJRG6VtbtyvPLF74+/cLt9sy6vZCzMM2RWYQYOrj4jYg56YGOSEOkHoEhse8trbGVlVa/sm3C05cbX7+8sCwbQ0DNfAoIMVD0StUrTS+EsBDiSu2nPZNr+gP2iHEmhQmRTMCE3VQHY0b3QGUbfeCbUY/foy5qrRY8cgXWWtXFcHQPRnRc6GndkOL7WLOWgwYuDBw1VTqBp+uN87Op65dmSY8QArWrrXexM0czPU9mL5ruoGWeJ3IQgnZyGGD82N/UfVNVNQGpAAE1RfGmxx4tYXdQFCsDSFNE0gw62b7cKt1tl95l1sSNd9ZAC6bwOkTgoiq9FDauSDNxzlY2F3DzuuD3xrur2UoP2FEWUt84x8aHCYoKLRoTc8r2mKNpiOSglLWwYUGAuPd91rt2iInTbJnpFNMecAxOOTbRoEqgEKjE0EyIVQTt1vZlniKnOXFKYtTgqmytI60TYyNPjSl25gjzFMjRFqEOQ9SdNaoQ1Px88SSXtXU0G2OdQe7a5oysqWOLvTWXB1WgeQZ0lFC6z7UnMd8+3gSiqvDLL39lW1+o20p1PrQJGdSdembZ8JE1CDRV7yPavQ9pYV0XWq2WYSJZNoWjpsgON+ZhGMpB64lGS/LPlw596/Rok7mXahbO+ctJBvgMnt3wjEcaEYfobUkMmAYxFULbyKt/pzWIHSBuFxdyr2k4DIdMuOyuyrimQ+nWnexwRFTfCwqsW+HL080jEV4b0druRMv9zsgApcPw+4YVxKP79prAUQ8iXg+iw8gywGQkZqMEo5ZWL7VzWwu5qdGy3NmXYGIvMY06ocmySh4RlDBqqMz5r0DtzZrRqxowi9YPq4k4b7zv2aMhcV+1j7Jfc9Q8ijjAsjnieoyl2sZpWbCRYfeo2pTH6Hxz3N9jPzfG/TPAl1NknhKnWZhnqxe1zKIwn058ePyJbd24Pv/Gl9/O9LawrU98/e3femuDTMgnOpnavYenZ0TrbeX29Mztty88fX3iel1Yt0JxheDWDbhuvkGMHmBBrCA+pMg8T8zzmTzNSEzWMDpGQposChwSBy33UD2u25Xl+Re+/va3/PXP/yXb8mTiW6dHLpfPXC6fOZ0+EcOZ2gJl6xZ5DuoOj63VjnidwFGT1n9HUXSIVkkQWk/edqdRWoOt7PU2MTgjwVUPbfmZM13Kxt7qASFmM+R5yozpgtj6iCOw4SqLYxoEscxbHuqK8agRb14+ICF4FhMHkHfy+vcgNBzAuXlYe2RFt1JILsI0wOiwJbu7eXd93P3uzk3evWrDZLp///7ad0DpAE/HLw5wtVN1YyCEyWpH988Oe5BqZNQH+08smoG0gtYrbf1CuX5hWyvb2ghxRnohDkA3iyEQrK9jUKf2B7vXVk9ke2ML1js0eP3nCAoJSlsqda20rZiDg2101Wu6eu/0YpTSqJUo9n01bDQphAliz6Q+2ZzNgpFUjihvwMEvd0AGG68Ou3JnfUcBTbE6M/GA48gUbpvVtqnqHqi08nuna2J7RhRXToyjP3a27H4w6i0dGuZg0wKahJaUFKvN4R6OwMjd3tXp0NTGqVkvcLShI7Pteb7h5MndHB8tVA7wmY8aKCLietXa2cV5Wmvee9tbGmDOzZg/u37QDkR1xBqtoYe3rNFopRpjh31zzJ21OPa5feGI7OByjPHYH3e19IFAPci7Rxxg/07bd+/XJndfMl7p6wUDorbUFO2Qs9Ja3INCA4jeMxxe/yzH+HP/8/GePSs6AFw4glwiakB0sixozAZCBxC9P+v7/XOcW/Da1kF3/vborfP16/MesIoxI4yEwZ2gZINtdf+vFEZENAQ8+HjIl43kQ9eO9GPkAzB0MVrbWJdnbssz6/bMWq5ITMxhJuZEzsHU3s+Z82nmPJ/I80xKVvZBsIlndqWhsnFbb7w8bTx9Xfnttxd++/WJbavMU2I+ZeufPkUT5NoWVOyR0kZMG62fvNbU1oQQEUmEMBFkIshMcDBq/TDNN942U24dHQjaUOd9Jy3ammXnWjEtjVq8vyccpTgx7N0Qjpr07svAWCaiitSObIWX68KXp2eQSKmmdj3labeHxh4U0vBlJVjCpTXofZ9zKfRdqCfmuK8l7caU0q6EYMF3UfXCaa8jF+g7mBlBWSXNiTR6W4r1G7esqIkWdc/0DrSgqLU12CMqOiYrbe3cSqWsK4v7rXkyxe+ylTfH29T6LQlH3Qht4xwan2ehPSRuPbAS0Zhc4TYzZ+GUDIiuUczHq404rh23t96ySEa3CrWss/ZOVCs11LYhuhEpTLFxSp3LJICVvMxT4jxHznNimiNTaNAaZbWWXFP23vWePDlPSkpKqY21QC2uL9CUI05oUTvtfddfCIK3wwt7Gz/ufRO1YDDj/nkmVNGj84lbddBXdvTb492M6K+//MLtJVG2hbIslG21Sd6GnLIXWMtwaoJzg4/i/H2BdZs4RlMbqng2aV6haTeywhgcrx0KpuxVQyTHQAmBCnvRtiH8jqgQxV5jRfMmmBPTUFAzoJpGhNkNa6uVTQbI9LpOH4mouAFTwhAwQC2CgeyO7xGFDneUpDsq3v7ft2/GtlWenm7DJdiB2YhQj6jhDkj3W2X/HmISR53Z3eZ895kGmG1zJlqkO8QEePQS49vrVmhdmSYhS7hznI/idAP4Fs0Z7V2G5Lm2SlXdW8nUbs2ECUaf60BVb9lTj/opC3BYoTxe77nbl3t1P9jdE3EgGuL3YDTld9nnd4fs0UWRuzrI5DSjLMzZapZat3Yq0zzz8PiJVjvPX/7Mw+UDZX2m1YXnpz8bWD89kOcHejjReqRpMAEWrH/my8uVpy9PPD2/cL0ZELX6Z5vWtVsEM0WYUiR5/diUhJDj3h83pWyiSCKWEU1eDxcSQ5ly9AOu28J6/cLL01/4+uXv+PLr39JbIX/+E6fzR86Xz8ynT0z5EZFErVCiqU9HpxxFn3eh6R4c2Zfh72RE75UF727jfs/tZxeoD3cO3V1Q5nCmbL3mltFshm4onvZe9/Vnm6JtAqOHmtmf0Q/LYYaD9LIVpNr8rtNkARg5HNfDz/0ejN6DSuuHV3cHcrxu1JzdL2ETgfsmWrhfqL5nMv7dhzuX+z9efwFI8uCfb0QWqbp7rY2nfYa7jb0jvULfoDgQvf3Cet24XQsxnYhBXUDLRe3ixLA/GtUUjfuwZ7bMm4wsKL4Wj6yEaKevlbYWdCtIM1vfVFiLsmk1ps62oHUlUkk0kEgNjRYaoSUSZ7LOBO/JGdWd+BiIoha5ZvQZlR0oDns11FDr7wRbSmlIcwoeR0Bi24o74l7q0T2IKeGIKu8Bgvj6QWS/USO4OGiP4WDgjEDowQyyzWm0vmq9GtWQY72YwvyA2+yZo50ts+9ltgeL7/cjwDVKDmpTY0M1Y0Ttbbi0GxCVbmAg4oFEH0OvFfWZtrdN6RgYFZEdnL45xdUA8LEH303v+9kuhzLrEJOyD3BX1k6GQb3XMRb7s7767OMYOhcORP07rJYqkBJMkwlnGQg9HO9+54D3V8643z/u9vIR6Bubg5/MmE8hDCdRkQgpyV6eYFk9dls9hv1Y73fXJY7Z3pnfvXeen2+EEFywClJIqFgdeJPR7sOUSq/Pz5Rtc6aCknNyIcNkgS6Ju41s7gd0GfVoSovO4ikr63plXV9Y1yul3kh5snZJznKbkqt5epYph7tyrGAo2+iDhVor19uNX3975pe/PvPrr0/8+usTtTQeHs48PJ44nSZmTUwkOpnOioSNaVOmDSQUms60nsEZOEb1yKAJkYkoM0Em/7sB0dttYVkW1m3d/aWRKX5zzD07V7ZqPSeLlXpJsNZtwdmF2rwDQWvDkpjYmxgw6Y49WlfWYu30QoiMVkPn08w8TczThASrfZxzst/lbEvXfbvmfcsRo6ROcQgY4mNsvnHvw8YbdVRcCwHEfDzY7RNA8Axz8LZzIUYDorV6repG3UxYz3z+vu8h5i7a+jBWkjGTuhbKagt/mq0kL6VMLW8DUfrod9yQXolaOIXOxzmgl8xThZceqWLiXDknpilawiJC0Eavm2Xlo+5gFO/kgR7JoJ3ZKGaTQxDohUhlCo05KedZWOeAakRInKfMwyVzPiViVEJU74axsq4mJHbpiSiZKUVOs+H01hq1dspWXHHf7ME9sFQDcF7mZvMnp/gqkK53r71ndCndwSd7OdiuvyK/Y1T4nRrR5+cntkUo20pZF1PY9Ju8N85unrnpo+HwUUtpvR27UzCMDmQL4j5yOZxMl3XfI4LCaF0SYyK7wMS2Gje91Yo2U/Qz0DroYmKRFq+dbNXl41unxbbXfvYYUU13g3nUddVqMsnJa2TNwI+iXdkN/1CxjUHu6noGQDMDiKfvLdgwuEhvH6U2nq/LHXgcgR314KfTrOQbMOp7UhdrSB5GlHTflIdgj+5CCBHbtFWsJlPvRUToB1DsHUpxp9qcdLTT1dSCR9S0t051KraEQFSL7lSFZVnc8JpIjXH5B23L1GFNyKfvUWnF27JEOGpw/Hr3qIoei0jZqUkDdJszIO9SjPzDDlDg43XQQv2vekdTsMAtUW1xTvOJ0+UDjx//wOef/6UZlWZCDNfrF+anPxOztc3oTCATKc0QZ2qDbe3cboXbrXJbK2vp1D6CDuasds8k4w5nSpEJa2osoruRHnR5kWh9o+LJaZWjH1qh1oXl5Reev/wtz7/9LdvtCVTJ04Xzw888fv7nTJef0TizNiU2JTQlNitQ7118DEatnEVmx/ofGaP3vPR5mminE1M2BcLTfGI+DSXCyWjzQ9VWLAo7Dr1bqyPrE+JoFWPz81oLXI97L7vvbr9LLpA2Tdn6JNZi1EcP4FSnSKWUqfN89MfSeCxKGbXrd4dHAfdZdQdSXz3eHxruqbomh35ct/XWMzqNfvMe4HsQe39q+7o5ztWexg/D2Vb/eW96Avv8NxpPoBF6IfQV6g2tL/Tthbp+ZVsWtttCiCemKVHmiZgyIc+ejVZrct2P8TnA2ADDRo/13x7n0Ru6Vvptg62aSjOB1oWtwdKalY9sC71cMTJ8RySh0SREVTYIN1uDvq9odA9dDXD2vnv8HhV20GVhDA+0yDGm3w023NYFpXIEExulmuMLbl9aoCVTgkytU1sidaU0e6y1OV2reMDTM04DxDSlbtUUxtfCum1mW1t1ynncAwtH4O5wdFKKTJMFH4OYvcWfbR+UPXgCbt9ro2yFZSnk62I941Ik5OCqphtb2bitG2spbK0aG8b70468a3OF3nszoWKjPCLsqgrBgg3S3Tl7Z+W0CmVzW313vfvet/9bCFF3wD5AFwP87h8v+3/3h0/Q8b49KLV/UPB5Yveo96EnATF2UhKnvY2AnXpNtR6g9O5nHfuaHCydMcHiKwPAbgePfU6djm0uUWsKZQTD2Ov24PVWCnfU4W7j+uYUVxtvY0VacLL5m0SFUor5I71xu75wfXmmleIt0Ix+2FswBWwf9C6m6N+Cj7PafMyLkHJg2268vFxN7NIVPGszuvu6bKRgPSQziU0iwoa2SJ0hT6boL7FDrNZiaOusa+Pr14Xfvlz5+vTC9bqwrcUzloW4WO1P65XaIuczxJQQhBy9V/r5gTmfmNLEtjWWq62Psq1sq6KaSGEixtlUrxF67Szrym1ZKKV4uchQvn5njruK6VAcbrWRs5BjhhCZa6S0TFVjIqrXDuzlWe635pyYp9n33tnKh1Qta90q2zpxmk9cTjOcz2Q5EVIiIUzBs2JB0BhovdKq+bUpgGA9NMeECmP+hmMdhRHswsDxWJw9+koNwcR98oTE5EHgQJOGuhUcurfUgNaKNgvwDZ9kJIGMTWnibUN2ZsA/U4Pt7wbNR/0q9wmNaKVQp3lm0YbW7jbOxCVpmSlmTtEy6OdTJieBaGKt1lHg8JO3ZWM7bTvGGNotdCGJcsrCwyny4ZL4+DhR1sy2CmVroDYSOajNg0lo3QIhTSNTst+naM/zbL56v3XWrbOsxcrAetvHYAQxR+eMkZgZQdnRj3iIsw7Ng+Cq6IMJoeNvGAZUp8CYYvf7EfV3qbnPL89E6bSyUbaFXut+Ur2r1y42F7Gp1NoNDcjA+mMRmROs2nwTdMPpF956oxRTT7OL843AM6MxRHKeSDHTamcr1g+z2yrwqJ56cTQmUy9KK/Z+c84DUPYeSimlvf3B6Gu1BSGWjbTFA4TuBt4jyF6zNGi3Q9Bpyi7i4NGkeZ7QnEESKYyNijug9P1RSuXldkOQXYUN7qg5grWmEdk3qBFWtl/ZRhAEi/iPCPkeyT0A2ij06y5iohzZVvFzVdjbv1DMaW/Vmp9rnxkUZMv+NNuAVttcUu8k1TsgemVZFrZts9q5oSCJ13np0f/zVYhm+P46ZPG/2TkZL79zpnm9sL7FDK/m+Rhh9z931qncfZarQw+QOihmJoMunM7w+OEP/PTzf4B25enr3/P8/Beuty/kp9kiS+mChBMhXWD+TJgztWFGYanclsqyVtbNBIIQm1/Vr1lHtjsEnDVOyJGAHrXbrbmTEQlxJqYzwTOi2hutLNTtmdvLX3n+9b/h6de/ZVuuiETm+QOXD3/k8fO/ZH74mR5mltqJtRs9Jwupm6YAjleOjP3xGOD0PXMzT5MBXxceOs1DifDEPJ88w5ssI9rV2wRZu6FB4W7N7lq4DxSp0jyANKLMO7iJR/BotBWo8+R27WYZ/WDju9cpTzOtXOi9MsKGh0P6Pbg8BmU4rseG+K6q7Tub4NFuSXdj3/oRqLO3vq4R/V0g+t0PHOts//lwri1bNa657+ITQdUSWn0l9AXaDeqVXp6p6xNleWa7XQnxxDZPlNOJNJ2I8wPRub2vs1X7yB3BpHEu2N+t9s9oR7pW9FaQUshBSRLpqqwF1mL2p203erkRtRFRYphMJT3PaNhAFpAJYiLkCXSyQNddpNcFyhky/zhQ3jdX/Ybu/GqsldttoWnxf3mZRT+yHWM+1N6JLRpQaZ3otT2xVMsGhIMOddCixST4FXrt1mNvq9YTr2x7u6sQw67Q6m/co9IxCjlHestOUQ8GRDHHoZSNWvB6tZFdMKc/hMCyrMScqUBwkaGmndoLW91Yy8ZSKtugHLpdt8yyA00B3+b3Lbz7HLPikPsghdje/s787k2pq/IKTd5du81rtXKZCCHqKzB5IOIBQHUf6/H+gxHBHvA8yj8Gw2LMV9n/LWp23Hp5moKugb2D6WRiVhwg9A6M6p3dGQGbcRzgWF4xr8wbx/fpTm9uL7oHee+B7t3eaW+VHYi+Sz9XoRZnH1VIpizoNYHOiOoW0L9dX1huL9Ab85QJOaM9eKmEB3g8A1yr147r6BTQCN4ubCsLL88vlK3uQblWO2WrLNGc56SZTCd0odVAWWGaO9Os5LmbYGRsbK3w8rLx8rLy/LTy9HXh+WlluW2UYntoKZW42bqoNVCbMehO87z7o6f5wsP5kdPpwpxPPD/duL08sy43nr4uvDyvtAopnUhxMhomxn5Y141lXameUTz8wnf2hD3DZ0C012aKvckCVGVKpsXRKttmK/lwotRLjQJTzpxPJy7nswV/k7Uj3JaVW7+ypMTlfKaXExHllCLMkwvgmACV+Ymd1kyQq/fmtN9mmTSfkzrWylhHbt8H0V449lIdvm6KBkSn2Yv4owUAaYz+7aJC9IRX60qvtkerl3NJOLJ31jXDGH6teSmhRAOlr2q1Xx/G3EwQC0GM2ZOigfjTVIjbSm+Nbav0rVqQs8+cZ0FnY2OGc0a7tcJRIkRQtfu3rRvrurItm4kvevmY2flOCso5C+0c+fiQ+fRhZltWnlql3Bo0QTSSJDJnE4ftJLomumZSbORJSEnJE8yzlU92Krdt47pubLVS+11XBJED34jrJXhAIQhE930GtlPMF95FMQ/L6X8f3v29vX17vOF3MqLLshCwAt+6eZ2nb47dF0UpJj6yroWtmtAFQ8nWv3nIIPfeSEnQPuo4LcNjgjsuEKKwi+2YJTac2Y3WI2KpYo2B3gJdjEpqs+oQ5hBgtG0ZzYrNn+r0VmmY+mKtNjloNtq7fHEIh6pvDLtTckQN2OXxc7JWCCKy16Spb7b+Bnds3jMzY/IPatGhMvgKiB73+Pgkn0TavUzXm/t2MYdl98b9y8c57Pvuvrkeirp7JNk/uPfO6Bu61zjJAZat7tAMascW/YS6IJGyLivLYlSUbfXIfa00r1HaHwP4+SnvHr1iziJ6ZzgOytIQt4khkHYqztFTcp6m9wf9m+gy+z3wkb/Lwqk7GILsEaKchGmCy8MnPn3+G6+N2rjevlJbZVmeka+QpgsxnUnTB2LIxHRxwGFqebWNbIj3R8XqJ/zSPbrkfHsZmUDxbFndM6KWvbKG00aHNLGeWhe25Ynl9iu351+4Pf/CevsCJE6nDzw8/oHz4x84PfyBMD1SNXLdXKEueBuFGMjdGwyJ3tF8LKvd75yc92Z6zlbHeQDREw/nCw+Pj7Y5TlZ3jKr3FKt3wg7HI3idd0pW26y9UUqnlJXryxPbtplzrUd2dADRKSfmOTOfTpxOJ6eW21wZpLz5dOF0ulC2jZxnYhqZlHA4ht+AywGoLJt7tNA4FH7fmn96RBAH0+QbIDqyJ9+KGn0LRt+b3kbE8LNzA3AwD/QwJX4+7NbSMqNBFVHLWNAr2ha0XdF2hbYRXFXP6M2F3qCVG2V9IW03ct3MvouJiZg8q5/THmDimOwMq6eWAR7OxlLQZSWUlR47Pdr8WzeL8payUbeVXm9EVSJW051cmZroaZ5WiF6CML62e9Az6JHJ2s33AB5iwZFh0t87lm2h9Q3kbpxHkE0wKplYwK6pEsdztzYpUgMSyp5tG3bIcaTZO8SUlLvpJFhGdLNAlNeM+cowHQQP9MGREdUpecYu7M5Cd/qkqvWW62qtw1odTAdFUoIQKb0jOSAp0Ok0rdRe2dpm/SW9NtT2w2N+Kexjf+xfI1o+6qcU0xFwQCiyz/tvj97AiU+MVl77truDNHPEDGiN3fwIwAzhjW+ZRuMFuxPlSrjmYJvQlBJ83spOvd0dM4vYWT5butPdLEugg6bvdtOc434E9UYQeN+T7h/cnavs12rnO/bQbsJZY09tPo0GXj9uil3f+Js76LW8B0SVdW2EcASrgmCiia25wKLVRK/LjXW5uQCYCbaEalRhAqgGutp9EVfEHuI92ivWAaFRysq6rJZUwNoZhWgCQKV0FilMmN8hBW/d1ZlPyvkSaVVQqWgoLNvK09ONp6eFl+vG7aVwvRW2tVI3K4tZQ/UxCJQk5C2RJXOaKmVt1LVTN6W3QJTZWsBopa6dl6eVr78989uvz5TSyXlmyjNh0NoV85k3y4YOwUcJkHN807Z4SNBthtdxiwWRiIG5J4p2tlpIWyTWsNf9DcHN4Q9np76OGlDB1nmtBaH7NQfqtrlI6YxmA3uyi10eZXMShChifUGFvWRgBy0jeqeK9LEyfK2NQNMQH4zJMpkONHt3P9SDKGOPGJlN5V7UzPdYT4YhgdFiZGgECkCIr87xrcOCPtYPNOaZNF2YTp3WAqUnwvZEo7PuWcVOirCskXKKTBHmOSOirg1irS+1j4xoYV021nljLwc0Q4SI7ac5wZzFhTIjOdv1WZBH6K3SeySI9aAnQKlCqcFLY5QYvSVatuvs2lm2jdu2+bl3FycbQYHDHtzBg0Mzwe2F7r4xu188PIfDgR86NP6+94cb+B0g2nsDDETW6jU4ApXhALdDKEJHX8+DxjgcNjzrNuiig8st7swPRcBpj86NqWqTbu+xkyda0z0Le73eaOpGSyySGkNAYiBNifP5xPlyJqV8qMFpv6vFaC6sEsx4j6SCn9tERqIVm4uf507ZDLIv6Jwz85SZp4nTPLuAjDU9HvWTw9my4N/bd+N0mvj5p0cflyOL8rp2cjilHsnwWt1BI9spi97OYhiggztvFxlkVCPZIk0uIBDDHRATXzi10aoSsL5NKQbyNJGi1XgMILrXxXWLTPUQaArbtlr0Z11Zt4VtWyhltd5/vSI0L2YfBuAYH8so3E16nxN2rgY255yYUrYm0/48wICI8PD48O7kH/dlfON9xmt/jVoku9YjUCBiBiAEq8U5nS88fvqDtSjablyXG9v6TK3K9fmZPG3kaYXeqPFMSg+oboSo5ClZkX+wcvaqSulKcYBnWcZOHaJAYqssBBOCCr3Q1BgHVlMnBKeDWER8YVu+cn3+C9enP3N7+YVSbiDC6fyB+fwTj5/+hvPlD4R8oWtmLQB1n7NCJERhyiOoY85SbVYvt6s2y7+DfhGiXXPKzClzmiYeHx74/OkTjw+PTJOtp967ScaX4nPcqb/+8wCWIQRasx5qt9uVlxe83+3VayZcLKVbXZzVjgfmeeJyuXC5XLyHqfUUHSJIp8vGNJ85XR6tPc407eCSYd/GXPBfmO8sjB7Cg/Y0QO5evz2YGN9c0/3jOHztDjrh3e/vwf69Gu+r+e0gZ8ehO+gc7x9RTL37OPGt5ts1sKLlitQb4kBUtTNNFy4PP9Eq1NJoDRQLCuSyHrL7rQGBXalo/647tsOenR3E3IZ6Db9uK7ouyHalJ2jRxL/Woixbp2wbrS70uhAJJBKaQJq1sNhtr29AKjaXmw7WjEWAo9/P6DVPo05yCHMFUVMNf3UHxkBBqRu1b+4UfYNqfI8LYuDNRHnYN+6mgyJ7P/ZjbAwoD2VpcVnC3jpb2diqOeqDChXVnTqvQR0BDjBFcE0JkGN/gn2tmKiR7Y9DmFBqo5W6l21srRByRHKAoDTpdBq1GyAdAdnx4ft4qe21OhhM/jsR9Vxo32vERXB15eHNvDHHu9BrOPb2fqiwxijWmzS5cztop300ve97uc4IGgUZvGEDtQEXahnBE3RXgLW07gCd7G1cDiVJs92jbc/u2dzVqO5AtKupFmN1tW2/+f7asa87PXIPJPnEGiJmQ+lYbBMGtfqz8dqxj+q4D3rQGkdplOr71NzeOy/PKxKg1ECtlpHsLpQzgKiB0UItm7d+MNEaQkelkYdqqhoqjdGD4c4+U4aPaf0wu6vpTnlCopJ7pKv5nmXrrFQm7fQweotutCIEnaEny9bXG9fbjafnG88vN263yrZ1ts192WrJEMuyN2ISrwFsRCaSLCRuJHmGPqE1E/VCFliXbsJHv1357Zcn/vrX36ilecux2QCh3/NSGltpIIH5ZK2ugtO7Qb4f9GAtB0kRieZzSTIhKomJ3DuzKlvNzCUbm2GI0IgzKxgBj0bvdQ8CpDgEmQI5RqYp7wHeWgvburDFQEkR6Ymhp2D+s7Em4ugZm7MxUGICufN7PWKtrtY66rB3Bp76XtoDUjpat1e2eWilGAirzgCraDPjGaLVykaPqNQO2r1GvRlTU4ILaromioRA9HrK72yKGqVdScTpgfkxQXxE55UtX5H1z5Qv1paw1o3eje56vW2cJyFcEvNs6rZ2PUOAsltgZasm5LUU9yEs2RVycArsYOdZcG4IeJaubNV+v2yNeSucqpXcxQA5dnIePT8N3CWxVmgNqxFd1sKyjdKJwT85dnsRrJbX/YWdZNidaqscvoviys+66wXtOM/tjAUTnJHxjwKiasW1zZv6NksfmpvSD9DR2tjgxo46soc+qGqTTVV3mtxos5FidFW0QWE7Cv/tRgQDovOJaZpNjbdUlmWla2ctq4FgGZFQl0ee8t44dsqTnW+zxshGD7Xoz6AC721BMNEUEQhJyXhBuDuqJoNtjt+UM3maDITOswNRy+jM87QXyQeRPdqpb5sZAM7zxB9/+uAbjk0NU589VD/bTlHE6YpHFFXcyQquyBjTEDIYFNpuk0VdEETMqYqCy0pbW5DRBzUEm2Q28wQkehYwMWVTHQsiu0x4643QI603UzuMkQbGh19tM9nWlW1brWl62ww8Sd+zsWOjfaUiOKhL7iArECV5U/XM5XTi4TRzPs2cnBo96JoA88Pju5N/1Dzj/um+EIcDqbqPr1GHxJUjhyCVZRTm0xkNJtZ1XW6cr1d6F8r6xFpemLaEnlcCnZwfafMHtG/ECHl2OqrT6ZoaCC1d90CgUXOGRxdMGEKNDhN6MQopBkTtvExGvraNWlfW5Ynr8194/vJvWa5fqNXEJk7nD3z86V/y8Omfc3r4mZguNBK9jACTGZzg0drTPIRDLLBTm+xK2Xt+Sd6nicZgNdM5ek+zaebhcuHzp098/PCRPFnrpFYbq1O5DT+8XjUjwCJiPeZutytdKyEKrRW2bWErK2XzeeeAyITPrPn244dHHh8fOM0n+948MVpJtdY4Xz7w8OHG+fLg4HcA0QGWHFiONe3zZmRCx9gN5ezXARZ2EHqfAR1z8qDLyg5y2YNYI1ByZJ+/q1m9O/YaEO5sz4gi68hMffsuA4jBNe9ElV5XKE9oebH60LYgKNN0IYZM3boxY7YNRSl1pZTV+vG1ikjcnY4BlpTXkXM71UMfwNg0nVYKWlZ0vaHblV4DLSVqF5bNNuVaCrWuaFtJkqwtAJYdiZ2dIWK0MXt0z1DQzbpE9wCSCCFZBmFkwlWdrtSB+O14jftqe0zt65FBd8NyH2SzQCIH4BkZ7+5FIDrk78fv7V5HIIm1ILOlpmhTE0MaGg5igcnU+9H2RfGaRPNOQxSS9wLv/UgXtBaszrQEqtj86N6DV92R6Fhv6FwLYYqEKUJUNCoaXGhOR8b5mHv7xHe7br1xD/CzV+vLGBbri2zjFO9A17cTXNBqrRtqtaCh1S8Kkky8MGCO/hiDVhul2PrL2a4hSkIkkUgwKMTq9nTU6HLoLYyg6D0IVadNWx2vO2jjenH7EF+rGh/ZUBdko4Na3/A21ESGs+i1zUc9+Wh/ZoMrHIGTfX13B8cmBXXchuHg+1y8B88K1HeBqPL8ckOCUqo9gjR6GYIypm5aHSj03o1Z5hlPW/fD5kW6RkRMvTwl72GIOcK9V/MfHIiGEMnTRFSjIq5lZV0XaxeolaUpVYIFuUloS6TwgKjyfNt4frnydH3m+WXh+eXGtnUXEFJPVnj/QzGAFaKDs5yIupJ0IugN+jOtRETPXHLhMgnrTbk+b3z97cpvv3zll7/+Si2V02nmPM+efbS11qqxn2LMhPBAnuLvOunuaLgxC4hnUoO3zsuamFDmmjnVAUR1p7cPwaLRH7P3SuumXEuSXdMke5/gHE1/onrXizlFSk4eRPUHR1AYhRgSOU3EyQRC78VLtXa0NrR6P28vU7DYjhy02xGgclGfAd6aB1TND7NSQNXmyuu2Z8dkYNTmXtlLB1trJoAUEyEZWI4x2/hd3zbkXU04S4jE6YEUH2Dq6Lkx5RvhCWq8suqV1gq9WrvD27JyneE0272Z5ohSqdqhDz/eau3XtViroDB6J0MKGUn3Qa++l67V7kC0AXQHomIUelWSCCl2pghRlOS+/V5OqVBb47YVblthq52qCmrfFwfydCshetg6PMA5QGjrgxHntctuO3bGRtihtfkQaj78PyojmmOyNHyzprDSjZ41+vHdO1CWxYuMOjYDmxaJmWIyJcUYmKbkWY8D3FnmzgDpngm13RQBUspM80xOkxWnb6Y2Wlvluty89sYvNATynLk8nPn0+QM///wT59N5d3KKFwqXYjU8ZhRH/G1EBm3DPXlGdZ5P1tdtABBkz4imbFnRac+Ouuy+tzPZBYO6Wj2mRy3fOi6Xmb/50+exFwPyqjauf/N839rFKDyD1usR4Ls6oxDEKFa9eW2sibCkGJjnxJS9V1B0o+WZ0YAYqGyyTzTGeKnudZ2DRn3UtY1IK/smedhTMal1TcQ4BEDUgahnWdtQHe1UOnhEybw0n+w9EDQSiaRgCnk5JiYf9+GopzvBm2+PbwMDRybfb5NfU60NoaCNPXumRHq3OR9TJDMznx+4PPzEh49XtMG1Q9vqUVNdFrbtibD8QqgLOXUeH8+0z4/0+kiUlael8rQ0rsUierWbYTD2wKCjOBCmEygEad53zamgqG04baVuL5T1K9vylfX2lVoWAGKemE6PnB4+c7p8Ik9nxNegelR42ypoRbQQpRAkM09GiTW1PdvER32or9x399TldqNuK+10IogwzaammlLcQWjyjDYCKeddaOFQhB6Azz6zlJn5NJOnhGJ9yD48P1OKOTAvz088P33len2mF6MbVe81O+WJ08nrU+fJMkghcn545HK5MM+z94gbFFvh6DMox1pWtyKq7PUq3WTuuypl2/bc4+787fbzWB/7R93Nx7t/fT++Au+PtseQ+kG9+/6luj/fO6nHNYY9QwEV1RXtN1q50etKChMhn4j5TDpVpkulhxtdhVILZVuo/ggqSAxItA1vMBhHjfo4X3OZDfBbRr/Qy0ovC1pvUFZqd1peC5StUdZKqRutbmgvRmOX6IGuZoqZGVPKDYlOMnGHKnu9s/V5s0bgUSA1t4l6MESizzt936R4xqFhFHl2ezVunAh7/f6oRbcRaByUp2FHD3uKmiQ+YpTLAaDVhYSap7Bab8QW6dL2PnEDlLyaWOM8RhDgDjTuEfIRCe+dXi2rJrEgW4RgzqepNrrzkWy8jr3uDrTBngnZa0l638WfDjXYsW90hiJwvAvOfD/HjRLbO/Rqwl4aApLsb0FsfwghekbCXtyqOZtBQPfMqWlRCLjj9Q3DK7hgnQ4ANwCMnftoyaAjWF/dFrhTJ2m06LmvL3UHT1yOxbUetEN3ldcRmB4iLBJG1tVAyRibXaQlCHv/vu6qxaPOVny8R8JgcHH3vdxp0P07Y+Hzu7OuC2B12belIFqso4K312jVW87tgeWJlAJd0z4eZgON1TDGNnYB90EQnLLoZsuBN8NXICFa0S52L+lWciW+XlCkWxBBNFLWzvPXhS9PN16uC9fbSq1HBvheT0J9rlpgyLLzrUDZGtutcEsrISw8XFa2tdGb0IpStmYA47ayXBdK2aBXU16NztICaoNalTwpqmeSdyG4Z6HcH7V6D+VWqc18uNIbWy1EDGD0bqrw0du6qVdCoIdPgyi1V9ZttcCE0+lzzrTsKr8EiIpEC8TtCZVgKsY7I29ggS6k1mwtJfPVEGvXtOc9RZG9x6juNkXv8MMI2snwJbvVprfeKb2ztcbWTCCotIaEwBQn4myaLyEarVl1oW3F1IPLZm0ZezOMkgLSxnwyxthbRymFp6cXYsjM6UyOJ9IpM8+Rc9yYHp5J81+I+asltKSbaFDOXs4HIq55o6ZnUyvUrVOaMi0r621lm1ZyTvQ5u302f6DVwrau3K4Ly23ldiusa6dUqBhgX0pnXgvbpiYu522PzHUarFWj2G+bjd1yp0VSRs0stucOH/7wE8ZiOIJto61g70rDbW7HknleQ9aH03+/1w02SHh7fsPvANF5mkmSyAQSShExukX1SYJ/qXjNmhWneNTPhXxS5Hw+cXk483A5c7lceHg4czrNe43XqKHam9d/s/laFMzaryzrxvV6I0+ZZV15enpmK/WoX0yR+TTz+Hjhp58/8c/+5o98+PDBDYDs0XWTdHZgrcqh6Xes2mmemE8n8jTtcuBjQxBhz5AcYC+4gNH4/ZHwFrFI9O856Y+XE+e/+ZkRkbAbb+pwvbWdlts9Ez0EMPY+o7ugzdGS5b7fad8DCQfVWlCnxMhONR1S30GsBisG6MH4+ozNoxl9K1gPHQPBewAiHveTY3M0efVEmww0TTn5dbhanJjTIASTmC6NQoXRcqB1m/D9uFtdFM2KlhGRb3QZEWHbnI2+8fYxXMADfPq93e+TUQ5MIGChhmaR2xiROEGYUZm9LDqQ0sT54RMfPzUTZWjWuwk2i4SVRlieQGDSQp46508PzOEzD9PG50f45Wnhr08rT9eN62aGQ2Gnaw91MolYDy+p5NDJKRhoCgG00esAoU+U5YmyPlPLDbT6mjqT5wv59EiaLxZpx5XtfPxardxqoVWFHmk18XA58XC5MM/RqTNmD9BB937f2Hx9+sL16SuXx0eaVuIUTWSl9z0L0XxDzfPEdHJl6jhqtWV3nkdWv7UzD7Xw4eMHHj584Oc//olludFqpZSVX3/5C3/++7/jl7/+mevTV27PT0x54vHxAz//bPbhfLlwOp3N8YmB0+mBDz/9kQ8fP3O+PDBNswXK5M6tdnSy1/6Z4ohnkOreQFvVahzL6gJhw6kWz2HI/YNXFkLvRXH0qKsZ1FrhmOfvT3IPEsg9Fr0HJTp2ZnbRFUa9vd1Pq6HsIAXVldYW6rpCTkiaCOlMOHWmrrT4zHa7UbeNUlbKeqMuV2uVku0eWtsYGfHG3Tl2XgvBLXLvlV6t7lPLgtYF2up52milGsXUvGvdPAtTjIYk0UXyKl0qOilBE0lm0ERvDnZ9/xUxENp8Ix/2O1m/JauDFXOY++4dvzPeqAN4EK9dMuDpnxvEotWjFCJ4G5XxHjEqk4Qj2+V+ilHOnJa7Z92aBYcF2bN+2gMa+qs5pOiRjZYjoLiXfozMp45MhU0a60V+ABvtDWsl4KUdMVhWcbI710eP0uHgjHFWpQY8O27MnjFeRk8dc3MIi7jNc5bMe+M9HNfuIjY4FVsw4JeSqbxLN0dZqKaBVbvtG0kQtaxojpPbUD/nvQexWn1uFHPAW7U2FoP+pxaklBw9C2CMInW2mOzz6a4Vgs97HIh2UUI3IDru66gHFBEHseYzqRgQDnqMzaAZ297rlGCxAHSnH3ZARsLM6MDSDcQxSn0YIiRvDbeybguqhb5cUb0abb9Wy3j1to9HzpPXR4LOk8/tI1kxsv6Cz1fYFUtjUDQXak3UGijN9BC6VqsvxTO61jzBM79emhKsvm9KmSnNpJjpVbi+bDx/XbgtG7elWADVVrtT8Q9tEwO7kSieQfM+vrV2trWS4sp2K9Qy/BKhV6XX7pnhjbKtpGg9HFVdnZ1gJS3V/NUoYsmZKVO1vWnNl81Uduu2UkoFtcxWWBdirZTW2aqBthgj0yx70H5QYQc4GKV0pW2sxfyynDN5SrT5TIgwk01dfp6MaTZPTJMJbxrrd2SSraY2bpUYi4kqNkVqhejsqSDkYNlWxLFD6Eav9ew5DJaAA99gDIjWu5U7FRPZWWqldKX2Tp5n6+F6ftwFB1U7vTQqK2X0b94WYkuWkRelt4JGa3fX29vtW9blxl9vf2GeLjw+/Mzjw4mYZ6b0wCUrlw+/cL5cOJ9PaAIm4fEiPD5mHh8SUwZ6oW3dylVqo26wLsJWCjlO3OYLp/nE6TSb3yQwaLimdXHl6cszT19vPD8VrrfOVoTmusFrbdzWzrYJtQR6jq4HIagGmipbVW5rJ10rS4WXW2VZTU/DWNVy7AGv9gJG5OJub2YPGI4eoWPeK4ExxRjg3h20ILZfBv4RQFSAy+nEFJUaIyUGthitEW8JrBJQqXTTzjMqoMRDeTUGUo6knPjw8ZHPnz/z+fMnPn38wIePH7mcT04HSJbad6NnwkWHUmZv3YBMMlB1vd54erlCEL4+PZPniXhb3LlrhBiZ55mHxwufPn3kj3/6mc+fPjmdMvpm5VTSVh3EWXawcwygBCE59TZN2URwRj/Bew/km2wGHNHTMY6Kb+riUYP3MqLnicsfPr6KHo9mx6NOZ0yY7mM0ejm13m1zF6c6e48pU/wdQLQ5b95q6rZ19VoBt+R41BYDzkECGox73oJdidXUdqcMV1qUvTacHciNaK+NVAzWciQ7CO10Uo7M/aiR603dSbZ6kbK1XZCj0aieefNUh80VtbrgnjotdVqoVJTYdS/dESBMb3OM9O5xP+8HN998c3PsqjbQlSCFWi2rm9KZMFl9gvoYx5w5nT/w4WP0ht4ry7rR64tF6lph2650XQlROafG44cTD/kDn04bt0c4/fpCyi+m8Hpdbfy7bdAQXvHxjf/fSKE7tSl51HKj1yutvFC2J8r2TN2eqeVqxj6ZYU3zmXy6kKaTr+EdhqC9s5WFUq4sodJLoJRE6x+sR+o0eybCAwkK71dy2fH8/JXffv0LpW1IUPJp4rberK6u1T1LlrI1CU8577ShEO/X38jyKXDyudn4+Omzt7EoJpyxrfz93/43TCkRUX5F0bIxzxMfHj/w089/4NPnzzw8PHI+X/bM63Q6c3n8zPnxA9PpREr5yCLhQifiZMIdC/pcrpW2bb7GNnpr+3rQHfioSdPH+0BW3NfQMR+PqKSOf/u62p9hr/17a5bvlF8Y+kBHD0E56keHn2/ndwgQWG7Psu9C8wivZR8lKEEzEh4IE2QJVEmmgu7Z7229km7PZA0kjMEwRMS9iOmbVTmEaSyrr3Wlbze03tC2om0z55tOq0ItzXrLVSu56L0SEKpWWmogDUInNmHWiMpE0wTV2BiDGhlEaUHpcS8j3QOCwzZEz5bGt330u2vw9/j9HII5e81+GHWHXr4iZnNsSMwu2tge1OoB5LoOelv3XncDMCkicT+F+/KGcf6DpWKQ0pyevYbRqaE7TfzuuvfPuxPRMYBlZR4xWWuINEcGBXSII+leAsNe9nIfAOi9O5t/OEEjQ2dZBRHTL3gXiPp10Y/zU+8PYwGFIVwX7cqDzWjzBQ7bNUBrjs6AcDtTnG6qGD0/xWh7UrMa114HY0ZI0cSkCE7RbX2fy7avHucz1u/IJJjDZtcgiCtlN0ZLoZ327+/XoPu6t8yt7H3Sg2dMCeYrWJlP861z2BKbY6g58CpWS9d30aj3gWhtq9duPrFtXy1Q1KqBUd8PggRO5zOo6SCMQImEIxhD88zuHt4zSr7ZfKH3ylRXWo2sBaeUWqZ/CGpbpwRBI+CWKgZnScVMjpkkiVaV263w8rJa+4q1ejGZ7OMQccaGB/yCRKe3Z8ted+i1U7fKGgplrRb4cCe8dzXQUbxUoGzUBDVZIFdDQgiudaLkPhFj4DTP5HniZbm+Oc+3rbAsVl5SXSU2bpv32ayuCttRDOTnmPZgkq2JdviM2qhVkVaJTYg1klohd6N8z6dM54QESNlrRnP0Ei8POmP+9rAX22b+ZlPBpJSDsUaCYYE+TUicrJRLOlVNvXjbFsq6+lqXvQY45wkE60ncGmvZuK4LSymYqojANCE5ky8PpnCrQq8FDYvRUGvzvuAr2islmu3WntBgCuD9Hf75tq3cXv7K+byR0oXzRcl5Jp0/ID1x+fCRy8OFy+WEFqDB5SI8PGQul8gUC8JqbB63060qZYNtrax5Yb3dWE9najkx+pyrM6XKtrJcr7w8v3B9XrldK+vSjQkkwX1iaxuzVaHW6C23bA1ZQB9Kh2XthFhZCtxujWXtbLUbNdvZPva+vgfFDr/4EIXy2KcFIjyAY/kHj3Aje7LM/DPxIOzY+0YbrrePtzOiAn/8wx95mKNFLbZ1p7qZPPvGshXWUhj0F9tUzWE0ql0iz5nHx0c+fvzAx48feXi4OOVtcoN6ZHmAVwum17Y7ccMJ7aqU1qwGM1s6nruaCKvhizs9NrvybXSaMB00iKvuCq1Z7519Q4Y9uxUHfXhE6DzSONxD8z3dhN5v+GOsdVCMdO/XOWhHbw757rAMhxN6tBqe+w1H1QGob7iqJooi4Q6EeiN08awL6rU+vVKrZTdUq7fNUWq3euCxae6KuN0cH6RbeUJyI58DEjERBA+VaHPHQiD0bJHcYDUWp2liNPLdAbaD7OKS77aBNVSFujVaaWip0Jr1khuLRPGG8Y2msABaKyVHUwiLd9klgccW+GdvT/GxxNwn99joKO4fKeIAQgKdzPnthdYLtatleRIoRvcz2e/MPJ85Xz5w+fAztVXKeqKVZ3q70vpKX6/E2DhP0JOSE+TTRObsNZmBeUqc58RpiiylU5pRekq9cwLpdw8zGb0tlPVXal3Zlhtte6FuV0q5UrZnQpqRmA30eAb76GXV0VattnS7cX35lZeXXxEK6+OJ+uFMDsrjw4UjK+dj6RkfvhPWOY7aiknx34ZHL2bQH86oKOfzhcv5wjkGpjgfdNloAFR9Hre7QJI1jTeKf8wTc8rk3ui1UELkdL5w9sd2eaSuK6fTiY+ffuLz55/58Okz5/OFaT4xREMkmDKoDBpb71BdRfg+0jQsgQdU6rZZ77znF5bbjWVZ6M0CZENQaICBodx31Igcjt99TdmINFoQi4HVdhshCC8vL2+O94hg3p3p/jOH1eVVU/tRrzeAqYyMaEIkIyETQ4K4GYMiQBdB8snsQ1fC7QrhiVo2bs9faFU5PRTm1pnOSsgzUWYkRnMEJeynoPffPYBouXmP0A0tlZBMRMZq5Z3p0YwS2JoJ/geaZRRDRPKEpAmNE10Spibtmyt2fWFkiQZAUnPupixMTWyNml4Itd0N5jdHShm0H+Upns2Poz/uzlK5y+wzgOhddtLB217i0NmFbHScqIemTfXVnOYcIslrQ4dgm82DoelQvafwUa/V20ElbU79e11y8foxgJsQCZKIIZOCCdipNFQDSt1BKQ41eh92Odo1idI9+0e/ZyZZjKKrqbCPOqP3DtkVO7lTgNe7h/0tqJv0cAQabEd3sSqPE7vZx67SgNmeTtzX0EHbjW4XkgPy0Bo1WZbNMtLhsB0esPLYFSP7ZlTuo6Y41UrxMgvw4EWIe6/yYWQ91Hx/anauUR2gKtaEoXuJ0Ldz7A4su8Ko6nEe3401uFOp+7XUZjWAvQ5kqBAiO1tEhv5DQvC+vSPzwgAhcdefmKfMlCNBrF6298K63bCekNUogSgmjRAQTXtv9BDs34JliCzj5v3Lhyp9H+vcA3sqmCqWsEdD9/vjNklAotjDA0vj2mzIldFmpXk/6lIKKQkpYaVRwZhrvQezOTEyn098+PiBaZ65bgu0xreH3j1G0LC2xupgtHXLUolEJDqdWby0KmCBmeB18kRMSXb4tcMHsNfU1iwDmzOnlMhBUC20momCMwHGHmzBmK0sFmjYFjQee7ukiKRAqZlSJgT2AO22LKy3hc2BaPBASkoT2WtMq9ustTYDoV2RZCKg82nifD7xcDkjCLVUinakW7uvoJ0kIN75ItKRXs1m6ghWfT/Wdph/jGuYmIqtiRxOMvH58cIfPj9Sbg8sL431tpLieE1gToE5BOgefBQrN6ulW+11r9RtYbm9cLsmXk4BWGknmHKnlGe0L0Sp5Kj2eVOkEmgSiMAcrdfoUNO1xJTtTfvaBqQKrIGlwFICtQW6ZzKPYKPbtm/sfFcIHbrbzt7VNUF0f9frvcEYFqqjTQ+mWzOCaPEdcQXezYgK/+xP/4xPH05oreA9JLdq4HMpK9d15bZuDEltIXiNV2aaMtNpYj5NTse9cHaFysmzHEcLBN1B3SFbbkat1WaG1o1iaZVcjMZgktcHCDX0PSjByZXafEPykdo3fMEN46CAmWKfulFERm5uxAP2gWHPRgz/baQYdqN1OH0jA9LxCF64M3LfHubx7hnZ4BQTizi4WIM7vM2YqgwipL0+Gb0yjDN/TQVsTdzGKbUFQg1IxQqhd4VRoxGZClpEMAdGpR8APyUTePBar1EzLG4EIkqq9lkxBhO50cmj4uY0FpSiHcO4jV58o6i4Qm23hyuOhd6J6othzH6nAC2lsN3gZdzrkV1wMPrTu+xzZRTe744IB6161CfZpjMhYoT4WjdaXZFWCV0JtRHiGYknwKLpeZo4nR94/PAzirDcZtZbpixC3QqlLISwsWGiIFk60xQ5h5kgwpwTlzlxniPTJDzdKi9L47o2a49hk8rU0u5AqGqnlitd/4rKM22rFkgqV+r2wlZeiNoJ6WT0RmF3mG2tdFpd2bZnlpff+PLr3/Lbr/8W1UL59BGtnzmfJkr5eY9ijjUxIv6/11LEmoMXbsuV2hulV6bTRJ4nmnZ++vwzIsI0zyYUMWWGQJA6Ha7WyrZuLOuNbStM08TpfGaeZttQUyZooypIbMSYydPM6XSmXB7opXC+nPn06TOffvoDDx8+Mk0nYs7Wi3ItNPXa5ZHtrc2Msivg7gWqx0JH1SKZ1+dnvn75zaKZ1xd661Y7ktO+zHXYEKepDUdtbCDo4ah2jk2BO5sid47o0/PTu2O+h77u7ZQcJ6K7fTuIv/ul6ZGpUBLITAgzOS3EFLGdXj36PRHCyYDo81dCSEZPe/qV5XqjVmtKLhLIHuwyn8VrjzxotoMuhdbLnhFt20rdrJl7VAsCmZZaN/p+tzqlWh2ISickc4jjPBOmE6SJLhkTSXFnfI/4GgCvTX1DV0pSpibMDkbnBFN+X8hFREjTbIneOyCa3Hmy+u2DLTLG2Zsz7Du6umjKqFMcTmjzMRJX2xVniMRR/hCTs3cOhhIiqNdajfVX6hCUaVb72SyQaJH7QwdiBA53D2UELfxhPfaS0RfDRA7ZmVKjlt2CmEo/ai6Dev2YMVpaZxddGlDUp74rLXavOX1vzB1sBrVgqd1yI1kF2zQkjHpF3YGo1Xva+0azdQndfif3ddWjztNozooNvKAcrSFsr87ZFEhDw/pP1vBdzZSBv8ZQ798D+J4lD9Hq9EMsnkEwMCrBFOuT61Hc95kdPcdHh4PeR123030Z565Ovx06H3pXp86ewR/A9+3xNqX4/TVimZVBsx1+FhhNdtT4D7pscPabDoM2xGbcv5inifNkVNAgxsLovXBbXnZ/yHwgRaua0qpmotj4xBCQLuClMbVUWt+8HGtk4i0xoB5QYVcuFYY2ySGgpn7PnfYbrfQsxDsROtlDLXTtphy9KwgLpRhQCKF5kiChmHjO6Xzm46dPzKeZv//lL3u/4ddjfjdp/bxa62ylmJo1OLA1TYzBUht2RsWB6A4IDrtkfpzNYYmR2hvLtnANgQzQK9uaWFI0MTcvDLxnv7WtmUidCD0Y+JXkImA5sbr9U9WdjbcsK+vtxrasu+9gJVwTMRkQNRKcgeymICEwx8kow5eTlQmdT/TWWGqhtArNa3LpLgCZCY6NRZv30+2+GIcF/vYYQRklirECpxQ4TwnizOcPF/70kwHR3/qNulkQKyVlnoRzDpyTUWhTMoFE7VZuVoslP2pZWW4vvLwIMXW0Z2P4zErfrggLU2rMk4kfXU6JHgOahCTCKcFlCsyzsRLNx7f9S7s6O03QInQJ3DZhrZHSAq1b0EX2ch+3uAqjZrqPITIzZ76IY7Q+suLIvlfvwaFh6xHrPe6JQIkusvfO8W5G9NPnT/zh0yO49L52K5beWmUpG7dt5bZte9F8QPZ2JtNkIHQa/frmu+zGiCa9uu33/GQ1yf5UPcLGYO6ytcY0FQeiea9HlGBy9nv/vr1GE2+S3vcIwKj/GyzZ3Xn2jMN9G5QRMb2zCMaDlxFNGBu03LVGYAeNlg31L+0Mb/3NIe+9U7wXqwlA3BV37+PTd2pU9wLskVGJ3o8qjCZdMnjb7tyKAoHWj6xOR91wOgXYa21HXyETRDM6lYlNDXlvE5VBxDOte3yYMcgmTBSYPFOI6l47R7cC/+r32uiM1UQHnLbSmkLDe+e5Q+X3bIDa+75a49E9wzk2/vz4yR2B78dd1Gk+vdIp1u9JEk08+yMTSCIGtSxQyCijIXJDdEWaEhLEHnZqutVpnDg/fDRhoTjuR6PVF4si941ShS3CnBoxCnM0SopldaGr3xcVahe2otRw0Nt24oR2tBdaXdz4rKgmWlFa6WzLE2V7odWFkCYDVHkyGXMRRJvVdfXCunzl+vwrL09/5euXv+XLb/8W0cacOg+XiVI2o+ToEXH3RCgeJObdYItv1qVubLWwtcLpfGKe550+dzqduFwuXn8ysuUGQstmdKdlWbnerqzrSjufjzpkzzYZMjpEKGKIFmmfZ/rlwuXhgcvDI5fLI+fLIzFNSIyu/tuoTdlKJa4btamvsbjT9WOydSyBgw7YOqUUluXG9eWF68szzy8voGoS/t1qpO6zlGOSitewK04vZNRq2eubHgEli3S6zXFDtizL+6M97JNHzkbobwDOEUE7gJG++pcpH1pGNMgJCTMhToSUjF0ijU6xYEw6kaZCmmZiztR1YV1uaHvGqIvZnOnQCVmIsZHFwb0E+zwNNNSzFwXaRi8LtW4UbyU1GPrdKWm9Vy+3sIhzCOKeR7Ls63w2IOoZUcWzEjZ8DCVoRa0+z6O+teFlAVCzmn3o0Lb3mS3TdKITdyA6gENKXr/tmdAd5DmQRquD6gbd54IzTiwYYU506FgdVhtAdDA5hLiHhN298D2qe+1ybd7jsW7/L9L+tTtuJFnXBB/zG4C4kFJmVtXeZ3r1/P+/1Wtm1pxzdlWlRDICgN/mg5kjQplinu6eqMWSUqLIIOBwN3vtvWgjamBvr0BVEPAhWXnEvdCfV8kAfT36HT3SA64HpAfAGp+hPR4bgzWfB3bTOdD12jquqi7WtSca+lgXT6v1T6+x73QzEgo2EbWG8uHYYs2EPCZ/P0xHR/Npf69fuz/+bX80d6Pt0AZRzyfv1QwlBKdTFK+NgWr0sP5B7wNg/ggNL16rMBG8GMsLHgZQds29NUCaBWlxGSNyxgDunHmcheMptp+pD7faH4xmzASQASgOx07hkz4UpOO9/ls1ZRk34Fk+0A9DLjl47voFWzftK51aRF2O7afULHCbjIYIPdFbJpfEFCdSiDRfKSjoPZhm4jvRGwPOCy1Xm4bqniwNc2od+tFBSx7sKW/v3/aBUd8N8GVcR2ush47Vmav2eNgOA8cfPDwctSpVvErTteeVUTakZKfziXmejyb9T5fczp/um1JLwWqvblph28NcP/5uTDndUaqOKehgCQarF+VYB4IOJvacWf3OFDzBaX1Uq9MttTWLC9Gv4ZzXPWNIrcRYcdHjS8QlMyQ1J/l939l2zYVdbSLqeHiJeL8TQkJZMqLRj+LAeYJptGMcsX2eFEQnpa1A2ZFaNE2gd+vbbcfp5tbb3MGi7D3wMwv0QRMeDAWHsh5S8PgUuZ4Xfv36wna7krd3bh8O7xshaLb8lBxL8rYvKDOitsq6Zta1AAb4b7DeOiEUhGiaS5C209uG95Upwmny3HYoDopAdLAkzyk6YtRYpAPGa12HV3bN8DP4CxI8PkBIFZ83jZQZqRj2OiabNgWVBlW6GtV2lcfpeTsA7sGq6I9eY+yXmHa0dcTbHvkXxqGfmhWNyaJ04/N3wXVP6JHUJ+Z24qJiNaMAuUOLGWyxh6D6TjX60R5dO23dFB4dA4wJ1ug2FCn3x8IACKVaoaPaTR9USF6dovIDcdarykPwj2qApI8yuR8GK4OLNf5m0KYOYyLk2Gy7oXf9+YL+AaoV+7PebRLrlGJlP/6fmvDx2nJl/9g4KLrOmrc+3LeG1ubRNDpzbA02hYuxmjGDTkeRQYEZFBqjjNSi2hdz5T2KVXOp88HuvaCFUe+E6AjJESfdPKd5MvfYfiAltSkVa1nMyTRGSuuEqnb+e94JwbFno1kOikcZCLHdAzsFR0RKc+peXsu4p1aMmlZyNB70cXDb/iOYtvInr96hZ6WilndafseR2a2YiGkhpTNxWjSjNJn5k1sIUWNCdAqzI02oriOSgYSQtBlNk23yxajUWem59R0phdo0zib3To1ihTgHWq7aU322HOPQ1OszDhzdIHb27Z31/k/EL3QSrbkjr2pdP9i2D3rvxLhwunzl+vI35umEo5G3d/b9g3370Cb0/Z98vP2L++0bJd+Z0kRKM8vyQkpnhHDQnLoVY87eC+I+w1oUpJomSqlspVDXjY/3d779/jvLtHBZzmwvX1jXlfvtw5pKbUKbRUi1klUHuu/m1BhMO5PpDKpmM6OcVfVdVaOngvfKykhJn4/x+Npi6V0LxFIKtb5zv29Gd9eDdDmfuZzPpHk+pk1izUMbhb0ZyCBiDAVhmheWeT7e32jkD33akyMwBkKMXaWhjajSr6x4PCZVtnX+BdJ4tJtdi+0+9jqlc9gONxgB+hp1eLNJQe9Ck0iRBSfqGOncXQv2tuKrt/M80B2UGCnTRFk/6HVTGlb0TCmQYmPyOy4VYphJBJKLKinwgd49O7BXqH3HtZ1e1eyrNig26agobSuXTK7ZnCOh43F+IqQzYb4Q5gt+viLpRPczFZ1GHIT2/qAYMRrEZiwWa/pr6+QKW9YioOf6uLA/vITT8kJ31ZoG9UkIIRJDekxQEGOH6N5Q82oZqPnY4we4oRIVM0HJGpPRSz2y+XSQWg+m7jAoEeOXdiwEfTShWfXLJf+hEW3aFKjnwMMI74fzgcEkChp30h1UR8+dsjWg6HlnDYh4b07JuvY0f8ajaa1qeIT9HgpI5dmVejAFtCf9ZI0bWiwI0jX+Y0zisFi32vXrqkauPfas4GzCpTUb1rwO0yh1mm3HIEqe4kfGVBE4vp9+Xn8Uheag3PpoXt3hRXFMI10/GII+eAVA3Y/ykudos9F4DnOd50igB5jfjqZzGAsW01dWuwbDKLAPkLaLTYkfZ8znr4y4gnOdEJVNUMXpvexNjWGc6i2705+8mMurmifp9ykFShFaqNTkaTUy3Malq3e2E0d0gWWaeTlfmYKeqbU0tq2wrTu9NZY5sSwRR2OvmlWeLXPeaSwmMSSmNNPJdMrh2DtqUB1ZoHXbuPgM4EiOIl9wONGINOfUhEjrRs0idsLDuNLu45B9IBCkoVGbYlK2YHTrn19tbRqjgk3O6TWyd9fQs4GGaUaVFZSSZVl6f6ynRw76YOPYflerPY/29cRqEeWb0r2jhzHJ1v2l2Tnfe6f0ZjEezUDCjuvK1HK9qqjemYFO3tnyrtnHNZO7+oH4DrE7A4/MRHPEO9qwyQfPFJRB5tpOzzfyPVD3TF1v9P0OdT/uQTNPmNrU26D39iRFcqo1/Vkj6jwuzHifEPxB5+4dvPOcTie+fvnKelc3/vfvvzOFbPGHyhiIyWvySIzEKVB64f32gfPDowZy7uxbY71nvFOg0ovDU5C2I2Sibyyz45Q7e29spRM9JO9IEWKoBCcEp3mh0SnLIoZISgvz+TeWyz/Y2sS9/4uP9k/cv7+rfOh2o9l9GnOyA2brVl8bKC6i97hYIzqGCkpz74ek5eijukO6uqiLsV4+pbXwF42oM9dbadjURKlUuE53QvPOECKPd0Y7OigOA4jrPz5chhjpex0N3tOvo9im003TOVC1DoRaCLkQ0kSISZuuEPB2MB/OsYixLnXiphNKa1EHLcpG9H0Y9YyD1op/dzywMt6E6Tz9Ufgdc40DehwoNw80bQAEA1D9ZIPfc2H7WI+DRwQ9xJ4MlR6UmmrU14fr2ZQq09xIsRNjJ/LQMXAg/NVE3M+N6EBsHweQ88HQLtt4qNqIRk+aAstJUbyUpuP65KL5SKU15nlmnpPeo2bapFbZtsi6WrxK06mnFubDeMEZGqWbZnfmyuVV4C+iOqbHxVT8fTw8A4Vh3A4wqvInr6YmFHn7Rr7/T3q94byKqtN8YZq/MOdX2nwGTqQYcW4mhASy0vZ3arkrhCQFJxkXzjbdc8SYFDc/ioRCq+/UfKH3O7Xd2eqdHUf1keaGk+AoEvQHeX4+1GVTBnajhWbN7Ps7chPETXQmahXW+8q6qo18qYWOENPC+fIL15e/MU0L0rURvb39i4/3f/L+/b94e/svbh+/02um9YafF1JaOJ2+ME1nkEApT9oiN8Ccv6bm6jqd6H2j7zu5Zj4+PviWvnGaF76+fmHfVrZ15eaDFuJVm89a1UF56MiLFXitRJo1oq01issaaZF38rZR8mZTeAtET4kUkyLMPCZNgtHLWiPvmbVuFAvMFtFcsNdS1NUveENpBeldJ+ql/FC4q85c2QPzcuJ0PqnxVSlKF6vqrtjNiOowIzGb/257ShPUjKKrW+DQVuvk1J6AT9Z4Z1B6B9XQ7s3Ygnn86rqi9TphxyYDNikQARJVGt3tIDfEJX3a2oqUhgse6WpyUWIgzzPru6O3nX19IwZhS44pVloquFIJ7cTUE7NMeD/hwkQj4A2dz31DukWyVGUG1O6oFcTYArkUze6szSbaHvETPp2Jy5UwXwnTFRdPdDdRJVoD6h4U0v7Yy4cxlFKNoPSOr53NXBedgJT60xmdCCynK+K7ArDBpug+EmIyL4XRiA5d684ujr11ihi1qRUo7eFEmpV2XEulmVyBymEy1JtOIQYtqwd1aVVmi62bpuuuGIiTczFHRzWLYziSDxO846NxxK6IxYM5rz9Ld1CFmgGptpabxT84XBjmb1h+pv69hIBIwTpTwH7vBi1xTF3H7z9vREd9ICKWFeseTaE7yiUFi4bRkjWXLijVUn4w3XtuNHXi9Cz1kHHa9OFoa9/b//HvlWVSezk0oRol8uT3cGiA9flsPVoz/Hg/Xcw868no6rkZHZOIZ1bQI16mKk20FXLNT+HzjZFzTO/HtVadrBw65p+/OkjW8843QoSm3HwF6q3kc84hQX+IhsaG5LLTu8e8mii5Uwq0UClTpJVygDAYkO8QggssaYZzY5ksY7V27reNmyjtf1kmlmWGlslbpVbNFw05a/YvkEJiTioRaN3h6gBZ9Oca58GoER9tqDLexrRIDLT3YjrsofvGKhCnXhV1SHwY/gamn/MNTz8ay0GTfdAkf3w5k7zhPb15pVdbbVl71+mWNMSNrMxAnBPzaWJK8aDiYu+DPhg2OiluYl+na5xSA5pzKoiPXqcAXuVhYtTcw12jq447VzXwGrO5MTmVVrWRdULpjc2A5L1mZeL1hhMhGjAa9BFWAzQzudTJpGo9Y4AgFak7db+Rb6Lyo/VO2+9Qs74zMbZfVYfgWndqqza0UWp7HRvUH6+3BHxYcG4C/NFsgRqnLcvCl69f2TaV4fw+zwRrQL39mpJnip7IQu0ze9lIU8a5zWr6RsmZfcs6Bbb4weA9SczjoFdC6CyTNqL30gl7JYgQvSMFIfqO95oZGl2nSscFp/m1y5nzl9+4/PK/U+TCvV35qDOVRK2wrhvdhjrO1gP9SQZke4Sziaj6JljTaYOS0YD2pzpDcCYf0SbUNVsPg2Hzk9cnjehovkTH2Og0UTxmHWgUFMur1MI76GPb3TFpHKhvPxb5QAt5NIUyfpXxh/Z1RJHOUXh3cCFqcZcSPkb9bx8orqARKbZ9dPnjT/P4v9GIOjjsVW0q8KBeDETSqFRi/Hz76AMi/eEb2G8NJdKpgxZ1x7f5i4noumf+9e39aZqkh1kp5ThcRgWp2hJs6haIFc3N8wFco3u9/s5oSb33Q9+7ZQ0ELsWaUOAhvOfQG3nvj8NcUIvxeZk4nRbO1xPXqwrsxzXKubBtO6VWUtKJqPNq3ECph5ufooBON9cQ8D4Sgm5sfXDlnj/sfopNdI6TbvyeJyDg+draclJa7M9XuV5LzSoseaXs32lto/UdH2dS+jcpXVmWK8vywjyfSEYz710d83RfzvS60/uKuBVxH3SJIAEhmBX6TGsXan6h5ncqK25fNYx98Oy7QiKgEziluXemDGmHEBSR8nVsjHoy1qJuvNw7XRKdRCloI3pf6ThCnInzmWm5kiyupeSNsv8X+/rB+9t/8f72T+63b9zvb5T9TowT06Ra19P5C/PyQogL4CiHlsVI2aaV6uOZ/slrnhcul6saLPSO7FnzeUVHN602yp5ZbzdojX29HwV7N8oNo5CzdZud5+7s/RgQNSoGva+PKdC+beR9J4RomiFdPM7YH4N6q5EM+2F+Mwyk5mkm7zu1zEr/68q5H/4ciDs0qTiPC4UYA6fzmeV0VvT4aERNn2dfWxkl7kBrRwPY0YRJpTHqwTpoy1qLdL6//9ysaFwnW+j04ZI7EH4G6bGBVJxUnjXxXYK6aHZne1ikuxnxC+LPuL4hPSNtxdUPXNUiaZKdGmFPwj10si8ENlx9Q4pDckdyQfIJFyLiJxwL0Z1oREoT1V/Xd3r5oJU7rWajBmmT3kdzVcwluSnLxrtIiAvTfCUtL4TpgksnCDPdBdRI52gXjvOoc2wnB8DS6HZQP/wFRMCVzvzTqy2cT1/wUQ6vhKMRNboZo3gbvgv7nZYLO6uycota/recLQKomF9CM/Cia0yEaXV6hUY9QKregsoG/DjDOaQcrVRqtoZ0f0xEDyv/1h8NaB80r6ep3zHdeehJkWyTN4fbR42gTZ6PDl8dPqmxkRrygHjVXzkq3lVCKMRQ2POzC9SgfBkl+RMAdwyBtdNz1gQ9KJTPBmPK3tFG9ChxDj+AMUXVr9sO0PyJZmrgO3U8Nf1h0DaMhg5Kqn3vNr5vP5qrsUEevjiCPps6AtSDYExhn96jf2pGR50x7lkx46lBIT7msgO87v3x/dwANa24HgCwMdoeLsM/u+CN2lZ93iQjruMD9G71Udd60YlNw22I0LpGdvRWKVk3zJIbe26kMHGaImWZqDnSUrLaUWtITHYVfcAPMKcLDk+vUHI5WDs1a73WusaLlFJwXSfK8zSpFtwHxBnV3wCK4aoxppmDxupE9FwqlbIXclAa6jPoqkkPw+RLpUE/RPlZMz72lj6a2rHODGDsx9r/8aVRhwl6tUbUYnJaG2YhPwybRp5oTNqQqmmn1udjzQxQohTRs7ipfE1sWNIEcu9sran2E/D64CO1PcqvzmNfeqrvVUa204rqRptTmmduCiKX1mnO0cf7EqO9GT1hRACKPQjNJCuOgnTYxXEXp/4NpbKvG3nb1AhptzM/7w9H/lYY2RitaA1a5eeNkfORyV2IadaYPl0ZiNMoqHk+0dsr68s718sr5/MVKjiyGTgJ4jRZIIULuAt72Th/byxvhW3dzERLz1xnN1BZMF7fV6/02lTyGNSnIJotQ3D64Q3wiF40WqcrwyfEyDxZI3r5yvXlH7TwlV/zxL1NesbmxnrfyPsdTc8ooxI4vFhGWd3oNkTkGFy1cSo+MYpUi/uUmiF29w5k9+frG/5iIgpjTnhgRdYxm16iOagdP45xQ9bc4AONyro9oXXjQRGeJo32QP/RyOeJGqFFGRY6rTQF/RhBtgM+dMc5dkw1x4I2eqMzzrducMIQ8ff+YyPKOFRMp3L8enRnn3c3469kHJDPiPsn/+52X/mf//r9uPIcxVY9NrcDWbZNMiVRy3cPvkHoQumCM6RsuLi1Wtm23T40i6q2MXJ3T2juQF41CsZbE+pcY5p1Cnq5Xrher1yvL9qQ2T3LpRCnRKlVtWAx6X3bgVpMO6A/lxu01T78Xh1iCP2wxT+KZXkgMw1FmfX3Wlgf4ILYej2uvRzr4NP7hLc1ptVTqY1tfWfbfrdaIOB8YpquTPOF0+mV8/WVy/WVmCaNFXGBXpUGmvNOro1SOy7MTNMLcbpA98TgYD7RypVWf6Gw49lwfUVcPjZvRA/KEGGePVUCuXvWAute7XAVqA3pOoVodaPsGrfT2GnVU4qwbTv7vhPSmWm+cnn9G6fTK855cr6z32+s9w/Wj+/cbt+4375p00cnpZnz9SuX6y98+fp3rq9/J81XXJi0OarlmAA8Mwd6//y5OJ/OeOnElBAX2Pad15cXXl9euZ7PxOBptbDdb+Rt1a/bu2p5MUOs3kyjE3DBdCe5IGbh3lHK2hTVsKzkzLZt3G4f3D7UzTbXyi9/22zz1Ol/iInpaEwDzq2A6MGWzZHVDr3DzXuAWKLrLMTItCyGHGqBE0JgOS3M8/w4tK2RHOSQB+XOH8XL2Be1GVWq6MgQru3RiELn92/ff37BDcEfwM2j0eJoQHuvdKmIZJwooDeoaI0CPdJFTUK6c4hLtHDWyU59R+o7sEF5R9hxvTL1O+IzNXXK4nA5kFJnDjtR3vGtwb7RfaISqC3h0onWLuBm2B2SHX1/o+3fqfsHNe8WtyGWuVjV/bVmas3QmxXRiWk6MZ9fmE+vxPmCizPiIzqHeEw+ZFwknsFKDnO74frZH3+l5+ERp/OH/USE6+UrYQrqkzBNRgOPBB/RqbsWnvuuGat0YXMf9CbU3MhboWw7NW9HMzro5moI2VVL3zjcbvug5jmdtPbu8c0m9iIPHXOp9FJo2dbxoOa2Tm+WXdkfXgHj4NLj1WQp6BQl511pXbXgsk4Vj+mid7jgCCngUyDUaB4N6i0QorppRq/NdKmV/Jzv3auCsIOO39unE1GtcayEl0dDqGYyZpDjVAtfGdr2x/16NKwPyuJjOoZOlUd0m6g2FqlHFqeum4cDtk5uuk6mQlR2hE2GxiE7wPfniZiaL9o5Zg9qt6Zx7AXDD0L1bbbH1OGEPKbXx5yfB+Zk9RN2b8aFs850UDa9Oe87+dzhstPJ5W5gRUWkagEadErIsadZ5JYBwWM6Vas64bda2bfMthVSnFjmxOW0kOfJNIdR98qscSi6XhUI0txIr2ZEeyU7TwpRI/qe9KraaFUCjuAc51nZTCHuxLiz52zMsGLTV2NDma5bnaZ1DeZNf3rnPMtcj2ayFlu7uRjD5aEDDUFj/5xz1kxriTo24VY1YmTfd/2cT6iLej5FelNabq/aPLam733QYqW7YyLJADC84C1K8XBhb+CG661og+lNbyr2XFRgLQXWjc05glPzGTGnTGm2rvtgLzwYkYjKAfZcyK1q+oPDGlJlumHPpggKUXV7Dr3KNDqe0kWBwKI/H3SCD8TQKLmT98Y9KjW7Gdtj3VbWVSVPQ44g0kw3PtaFTmur6z9j5uJ9ZIqvRJ8IfgaTjvgQNVqGBSicz1+4XL5wOX8lr5Xe3tnWjTwneg84v5DmF+L8ldI2Xt46Hx+Ve/ggb3d668yzY5kdc9IBtNj+V2qmFQUevHiCU1lIFIP0uk4xvYMYhehHcgn4MDFNC9N0Js0vpOUXZP6Nr03P7u6iSrZuN24fwrbd9BmjW3wYT4D0QzN/TNGxjQU5mFsiqgMNQ7M+2ruO7X8Mru9PX582ogcu+YS8j+maFjcKiQxTAiVFamPh1AHCJgWPqejzVBKepo6j4eOBFA2ibD8mpdgmrw+lD0Os7xl03Cd48UCsDsc24/E7MwB4BHMLw6mSY+N3RyPKOKyMlqvoyE945cdv5OnP7L33ox/9tDG6bzv/9e/vPD6zP1DZ3g8kVKNxIikmmnia60johAa5CwGORdp7N1OKzLbvrNvGvqtRRR1CZTGUGruHMtwQH9fLB0+aJpZl4Xw5c7leuLxcrJnU9xlLJUzqfjsKgNosGiYPOENXkfOekDyTeKWCdEeXnd53aiuH69bRhKIITOuqbxlN6Dhoxa77cb0H0IFuPn8uGccNskZUAkikNWHbVt7ffyfvN51GtE6MJ2K6cD5/5csvf2fb/8Hl8oXl9MKcFmop7PuN9f7Gff3gvt0J8cTl+ndO/IYPJ4JbcClRpzO17uS2QvtA6jvi7qhZSWFM6EJ0TDS6i2xFuG+VWypqojMQVrMsqwX6LhTRfKhanEa9ZEWfQ7oyzVeuL39nnl9w4sjbjbfv/5Pv//4f3N5/Z98+2Pe7hpDPZ6Z54fryC19/+3/w5cs/OF+/EqcrzifVkdSqQIWMRmwgxJ9f7+V0JkXVsIj4p0b0hfP5TPSBVjJrGwVyxYkQ7HEUGq43yzFNhJ7IpdHYVddi2FdKkX46sUxJD/p15fbxwdvbGx9vb7QO93UzzY6z6x2P3zs3rP/NudsmmEfBV1Sf3Z80f5rPmphnNU8am3bwnjRPTEnNiurQZdl1GoXlcxP63IjaSMSKOaPV1eGqq7v0/+v//f/5+fqGo1nlCbh54GPqSqn6vIy4XSlB9iy1HpRO04NORwmIi1R/sgKk0ftKrzd63aG/4XtFesP7Qk2NOjtcDXgPIexEGq7ukN9pzlO7o9SIaxc8L+BO9D3Qd0/PN9r+Rt0/bAqolDr1MRv3Q+OUPIJ3gRRmpvnMfHphPr0QpjMSZ/DxAVQ+G9LwbIVje4ZN48bG3W1fkaPE/2Q7EeFy+UJaJgsrn0lpUv2PD9Y8aOOw+hsrnpIrQqRVIedK3jL7ulH3jVYyrWRGV9SaGifpZBiLX1HNfK9NC4BeEdNvijnx9Ia60pb6w8cAVVp70ETH9LSbLkYLU9X76brsGqGRlW4pxc4POx61+fDKeCmNUKBVb9iqx7uJkGZiiPreBJsIFZts60etmT1rbFxt9fOJaB9A+2A6PRq2oQdTPXg3oOwBMDx0c0PyMJq88XUHTdaeUz+uqVFRGWtDrBnVvaNZIxpGM3PoUuX4ekOr58d7tJiJo3x42kaP9yBjGjomWwOYVKBsMByeQZVH8yvW/D7tWWZrNRrRce6P9/Xz690o9W7eFfYtnBah0vzR4DrbS2VYGHeVGlGVwVNzZl0z232npqoOqk/a5TFxr7naPqwTUud1Mhpj1EY0VRzuaE6rKJtO76F+DYfDBwWFUteItRgD676z7Tt7dlosSyN4z5QSU0yUUritN3LOqIinEXw8nG07CizmbG7F9cFwiRbjFIPHB2fGQhVpauI46t1mJnfe+0/3FW+6T21EdcemFJNbtUP767o3MLvrrMSL6qCDx0eLHzQQTVMT2tGw67ky1oV+j61Uau3aYAxQWDcg06cruJlC0txvr3sBOHItrFtm3TeqE5qHHhwSVTc5vE289/p2uy0k5+lWF/aK6U9VStZaJ4VKCo0cCqvPqoG1B7bWyn1duY21VAutFbwXnQ47pdlmG+wQft4YBZ9YlpMCm0ENK+UArCMiCwKczndrRr9y6yst39n3hm7ZER8W5vmF5forrW+8vFU+PjLeweoKNVfm5JiTI0Wtc0Q6vVZ6VSaYIIRBw3UQnOCFY4LvRWOjUlR/vuAcPk6kaSFNZ9J0Jc5fCKff+OLPhNMLtcP79ze+f/vd/APUBFKbzD5w60e7ZuXKQ+ZptbntL8du4tQXwR+MD+0RxyYtnwAt8FeNqNFpDwhlNGpHEcXRgIJyy40N/8PkU/f/Y0c9pp/jsBiT0FEc8fjqf/qTQ7RvH4/CgccmbM2n/PDxQBWPJthpozvos3T3QCBVlKFmC0E3UzlO20NM8tN6W374cxnDzWHKy0//EbqhbXu2/xr0Gg5k2nsVAOMcrpnjoKEXytFv7KXgsn8aoSsdRrnouunmPVsjqsHI2ng+DuXuBDFKwGGYgLnNeaXSigtoFpwcvHF1TbNrKppn6qTjQyTEphQ8F+zfiJkb6V0ToyYi7viaujE+KGjDZGHQqp4v5dGQymONHQX+Z9lFIjijk6fpxTRy2ri6EFhvv7Pdv7OtN0rZjEp3p/Y7W/7O7fqVy+VXTssLre7kfCfvN7b1jW19I29v9LqSt2/E6YWUrjg30equqGuakHpG2guxC17u5uLbD1BAIx2qTQQrXnSmI+hhqwYjQEGDlZ017R3EqXPvNEeWyy8spxdiWmitcvv4N3nPvH//Jx/f/0nebnTppJhYTi+cX37l8vIbr1//g5fXf3C6fFWTIqcZjFgWnBNH8EoZGxuS+fR8csl1Hc3TDOI418rlfOFyPjOnhKNT9l2/jqH7wWsmrnPjufc/AlBHUfWYUikIpd+zlMq6rry/f/D2/Ttv37+D89w+1HV333dc0KlfqZVaFCVvRqF7TCvdMcm6r3d8LYQSjgPVOUecEuIdqcwGqGlREkwrCkNjMQpcY2rYPuWMWvhoQDl+tlF8jmdjOEcDn69xsDUEB4/K/rT3oY90Nm0djIWKlwoKKRJQenlFtSVj6tR8QlgQuYBrSL/T+h1pO63utLLj+8YUO33yNiXQry1tpe065S1mgif9g95u4M7se6Lsibpv9HJDelaujVih3013TQXRqUzwiSnOLPOF5XRlXi6k+YyLkz7nzh+N5KH5G9fjOM7sv5+4cw8fAw59NllG2/Onq32+fGE+aZzQNGnDNYDS2hr0rJpM2wNLqYesYVt3tnVjXzfavh6U9BHtoffrQYEblEt9o82eBzWLGS2zdKA2WtGpgbqHtuPznFUcTVnmBwbbeVAP3dBcihr/tNJs37Zz3CtTxzeBamdUCZTaCFXdhjsepBGTw8lEDCd8VIYTMijBhVI3alnJZWXbI/u+UmvB/2x0cVx1DqBAxGJQnE7Bgvcka0S7r3RftQDtOgFSKcp49h6aYZ0rDsq8ZzhoihXafQBELugUJyTwCXzEOU+ondRFqYbeU0vmES/2mHAO91H1ZHD2bI4laM++85r97IOyE2RknzuOWJnBT7Z9w+EIAhgL4JEG8KC2joNzUHPl+PWz9W3X2amhEGO6PL6OjDZYrCkPlgupuvwpRJ24lERPlSlW9rmSQtTC3wd6h1KbslBqs/PEEUM6gLrh1urdyOgVXG/0mulFzelUNwnd6V7pHQqCIrTmqc3Tmmkuu8YniQjBe+YUmaZEyUKpQWsleTwPY5213s0pfaO2ToiR8+UKQEoTtWQ17DRgctRrzkecj7x++cr5clHWRPicnDjOCXXItfpI0OdsxKp0zbCNKRCj6tPFPabRtVa6B4dNzoLgXD/03t55M+mrjGid1jtVTJ/tvYJhXc+K2ip1z/TSmBPM3fKYnQNprHvm475xW++qfXeopC9FfErEGKhBz88xNXMIxXlWYy+OQVYpVaU3HeaUOKVZYyC9ejaMddlaYy2VrcOO6vtL7fjeyb0Symg89UycQyVNf77eIc5crl+0N7B1DXYPmxKEkUjw2mheLr/Q643tQ2Uk4hacP+PjK2n5heXyNyo7l9fG9cOixvKdXrej1nM8MyQEF/V61+4pLUCA277zsWabrmtfNhx+Q3API7l0Is1X4vIFl640N9PchI8wi3C5fuH1y698/eU3StnZ9jvremPQb90xDPyxnxHcQAzspHzuy+Th6O1M5gEwJJOuf8pqgU8bUf0hD0G+uZhx9F+Pxu7ZnGTMvB6FoGhfYijZoPhw6CkG8v/4wX/83R866P7YUEeDhx3Kxjd7iO2fPvTfDBT0qRV0QHOIERqs2ng0oV6bL/7YiJrC+Y84ut2Vpzf8h2a1P33eH14jiuSBwj+wd5GjrDi+zNCPjYlkqUqFADGBdjU9hrkl7ht5z9aIajNK79Z3D/2JM4SpGHphrpnBGfKr/H2lZmrxU0pVrUW1RrEravNAVjsh6jREG1FnJiOVnBVx6/2hh+vjWtRmTpj94ZTb2xMdV9fhAbJIN33ioHg8UPGfv4TgEyIeL19IcSbNJ+bThdP1C7e3/8H79//Bx9s/ja77we32zl7f+Lj/D97fv/Jy/Rvn09dDS1LbTt7fKfmN1ht5+8btLanp0ekrcXoBiYgYvXw64eWFqTR8LUjdRvQd0pq5wqr+VFqxhnToj93D3bM6KM40TIoqBj+RpitpemE5fWU5veB9ZNtWbrfv3D7eWG/f2W6aQTnNZ6blzPX177x8/W+8fPkH5+uvXK6/MC8XgjfwoTudtqBugdGrTuFovNonBQwGjDUIMXJNGue0zDPneWZS1wul5No6d/KwoY8xPIrGgaR6m9yjQc82OCJEjXZChFIL93Xl/f2d79/f+P7tO+IjHx8f3O8r8/1OE0fuw8yrHDSr1jsMml/3tNbZtg2cIfAhkKaJeZ6YYiCGmTj142cde6EzA6JmiPIwMxoA1zC7wIC+Y9f7YfuzRts2/dGMtv6nXfL5ih8Aojx90ihwe1ctlXTNaqzYgcGOk00pQOJoRGovlH6iErWG9YEmC+I6EhytoPm6vdLqSs0f9LYRfUNmD900MRRoSjkt0nACGUdrH5R6o8uZXGb2faFuFeodT8a7RMDTe9CGrlnmiDVUMXplbJyv1oheidOJHqaDWnno9wb45jDATZFbeaKjHsX10yRKh2FC34WPP94euzen0yvL5aLGXFHds4cJUOvm1jnWmumXt31j3Tbuqxp17fc7reyHLjqEgAQ7J1Vw8yR3UQDNeTRmyh8mlQimRzNX51qqarxodsx1/Pj5zZzJMwzf+uOosnOzo26l2QwrhozFe9WDNpzqJ0UQV/CtqRasCzpVKMyLICRifOjtvdfitVNVMrB/sO83QoiEoAWy34Oa6/7kmssB4Ohb9k6OuIDoPDFoJna3aY4YXbY1RzRjuUNagMHAXRSKcUG9KJxnZKKOCeiYgoqPiE/aLIaE9E6cnIKxIeJ3Tyk7o70dQMjDCTcYLdY9HltrLkWdW/RrO2UmdIMjH4w0+5q2Aeo1eDjsOptwalGtjcjDLGlAXc6+39MN/2RPkQCudWoeQwr994ZWWFOsDWMcANE0s0xJnzd7n3oe6Htb5okYJxCnEpkt2/o293FzFB5mTeM13Gp7r9p85s3OTKVCd6+1oXMQg+Bx5CCErDq76kU1faKOyyFoTN2cPLvrTDXSWlFX0VFP2kfvnS1n7utKbZ04zby8vLIsJ7582em9HUw23XdHjeLBBc6XK1++vDLPixngfdb82/czb4gyAHxv8qng8b0zTYlp0tjEEJUW3REF/EsldI2GC4Ml6B3dd4ILFB/Y98y+b+w5H889IjbdTwhQpACOshfWXNW93tbpAKcQ4b7tfNxX3m53Y7E1xCtYG6dMMVZjCGpp3G0gpHiXAW7mzK+mncrWu85n2tKZUyMebsMWG9M7uXWK04Y2SyNTLe6q6Ana+gGiyFxIlz9f7phmri+/KQtq39UwsYtFCxZbtx5xM9N05Xz5hVo+6OU7ud1w/oQPL4T0hbT8ynz+O012Li+Vy3thX1fW929ke57UnMvAMx9JUUhB66rWHRWPxMrHKnx/b5RccDJo+BrBE7yniaaI+OlMXF4IyxeIZz2zmwOXCAGW5crLl698/e3v3Ncb399+NwBO6dcVTHb02GPtYTtqs4PCO85Tp67GoxEdU3bNbgFx3Qy5fv7664moOWRh/GwZm9Yzqnds4OPgGl3lAz0a/zkODQ6q6+Pfjn3UvjvHf/XHfGgYbRxBrAd0qORNMPqLf+g19Ps8FRjjAXtGw/9Y8ImJpw/h9HDKfbyXH//pH5rPn/7+z4XLH644IyjWTiK6FUzHdTWkWu/PoOpZ01YazheQp2lpq0bNVXSxNKW1DuOT3pSi4IDmnVID7DqLZWy58DgUBzWsWHBuo1NKU3pk64f5S+86NdOGELSX18ym1kXD4nNlz/VAPcf3GFTp0upTI9oeyOsf+33bWwagcUw13aAG/XzpCxiyGnExInKhtzO1nCnllff5TIwaUfP+5mk9s2/v5P2dPb+rhqsU8raR0kyMEyKdnDdq3dQNsxRtrpY3cv5gXl4J8UqIF51GeCHEhCfh2o9u09K7mhKUET9SGYraB2Ktd693zfLr3aJ7QiRMJ5bTF07nX5nmV9J0woki8+vtO7e3f1PySis7MU1qJHT9hdfXv/H69R9cX/+DebkyTWe8j3S6ZjmimgVPIIg56rnHe2/S+fkVN4OT2phDYl4Wllmz4aYQdA3WQt7Ko3AKwZA2b0WpRUF5m6Cb1qSLZozpEhHToSVzlRRy0Wb0fr9z+7iRppMW/fuuLIS405xTM6CcDRVux0Q9BMtbdaqF7tuGLwUfAl2EmJTWO1xynXscrs+vantpbc32QX/QAZ0VNiNbUv9pPwq2w2SIfvycXZ6AmE9eMva95715FItGVW04aOYy00EoiKy63jr47nEUO6RmigSKBLpL+ux1h5CRfkfKB7VXat2AQghd8zNNgygUXNvo5U6jUkyX1Nqd0jZ6v5HzmZxP1E2QmgnS6F4QFxCSGhcVRbWHy/k8T5xOF87XV6bzlWk546eF5iP9OA8G6qxNmBrA8Ng34DhXxIpyzbcbQJ02eNULH58s8nl5YTldTcukxaVS/JVyWoo2oCNPbzWX6HVVbdO2buzbZpTcgjPdePAj67DZ/6o1Ie0AJ4bXh5gIsIP6DNR6sGDacEd25i9uD+7DkImDNjj+ro8ep0Htui9rvq41ot0RnbNJHVa0e1zr+AYdDz7jYqU1h3M6EZ2nE8tp0aJZ0Tf27YN1fchuvHfaiFb/SSNqzQhDSaMNaHCPjzgot8FDDePwpEl7mOgNcLnDcGJHOuIi3mv2cu+6D4uY9tQ3zWUOEy5OSJjAacxGkHDk7erPEKCrKyw8JqNuUHqHTKRxUKWVpeUQsWgj0dih2gfFstG7TvQOt/jB7BngiT0fro91oiygZj//sx/DmAiM/eWn+4kTpilQq5B7JZfDqe3YcUZrqz4TgeBVWzfFSSMtxNnkJ+h00Mnj2bNGFIrezw7eBWJ0BANjNIu0Ho22d4KjQcs6FTVqI6a7FOl4J8Sgk+xchBwcrap7tjPgRQTNqExBXf+rB7SZ1ElYJyZt8rxtHJr/rnKk5XQ+aOCOMTR53l9Gvav3dZoXXr+8spyWPw11ftzDH4t9HAOaRaq55mMIk6bEtExMUyJGA0/sXvdWDTBQh1XvHcErwBV9p8ZI8PsP+IMT/wBblxOCkEMme/VNKNzZSyP4Smqa7Tqeo70WtpJZ96wsCtN592FC+SwXwPYr6zm6MeB0wDGkA131tt0RXFCjqlEzDg2qoAZIPoH4h1dDVto0gz5d9XssX36yoQAhJJbTV0re2flg3+46QLE6W5mUHucm9d54+YVa3qnbv+j1nRDP+HglTK/E+SvT6Tea7JyumcvLxu3tm1J+EdP+dzM5Agz8iskzRV0nDcdeM1PKpKA/qJcxc7Cs0hjwPdL7jJ/PhPmVMH9B4oVK0hrRCT7ANJ+4vnzl6y/vfP/+L9J/zYj3BmyLNpnYuE0eAPiDUao1quscz59OQ3Uy60WoaHONGz0Znxug8ReNaDNBufSqE1HpRo8agn3dNA4nQJsUPoyD9Il54PVPJhGHNROjwoIDtbe5qqH9+uz646YdaMb4eMzRDBl+otIwGmqlI+kk0aZ7NrHorR3GPsPcQQYgbCewO2haHA+NlXhPP9kfNhHh+MxxkP/1S44Dddx4jk3sgcyPn6nVSitCFbUJb8HTW7D3qatUKQXa/GuGYlTh/a4uotrkNLs+Rv1qPNGlxwHtKLlzv+/4cNeJnkvEpEx1RV9NzIzgnGoA6aLC+qJW7TlXzf7aMuuW2fd8WGMPd9LOwD76U9bZw1hJEJ66c7tPj+5UGUc2KWojsPsnV1sgRcticxbLwERvV3oPTNFzXk68vvzC7ePf3G7/Zr2/sec7Oa+IBFKcAZ1At66buNrTXxDJdFE0rdbG/faNfbsT4jdiWogOJtmZ2JD6QehZrZNswuDqQKf1/TuMciZWGJsRhAseSRMyL7h5waeZOM3E6cQ0vTBNZ3PcE9W2dNVAzMsZ5hMCTNOJ64tOP0+XX5jTgheoeWVrlU2gmX4reg12nlPgNCdOy8QyJaIZszxW/Z9f27aTt5VkMS7Xy1XzgtEDqVRFWL13hxZiTNe90bxSSjjL51Rxkj/ob2JFXQy61r3AvCxqLBWTUcofBZNgLICgTrfOUHQphSZVi0DvjDLWEGdaroPub2sNg8HsuRPvrHn88TocII8YMFuV4ubdj/qgEah+9KJNm9NRUPywpuUBjP3sdXzmAO+QpwZ5NLWOjqe3RJes1DURfMv4vuFpeLcR3EqVBScz0mcanoajyYT4C2oopQUGpYCsUIsa2jiHENRsit2uhrr1Nmm6zzTVUuW9sW+ZmhXsWKbI5CdqXCgyE/NG2IVSCtJOOBzn0xcu16+crr8Qzy/E5YRLyZzERTFFxw8NpVLTbKI3cA3HYeZysEVsqTnT8GT32Kf/sKvgQ9L8OSu6WmtseWdb76zrB+v6wf3+zsfHNz7efuf9/Ru3+4c2pHlnL5m9WCHdqsY8NAURnbMs2W4aTqfFs/cG1jjVGFYbbw4Qby+FveVDqziGV2qv3+n5OHXxwRGiO7SIgGnRVIequk6hWzyCWK6g1Iduf6xbLxVqUcMXc+lUU6+JNJ+ZlzPz6USMHkZsCpBrxZdKTAISCLHgb/Gn69sZLU2nfQ92j14Pu3fG/AnO02M8mBmlNhAFSJUd4GkK3+MCCAouuZiMhaC6NecjMQE+6s8yLYQ0WXa37jGacd41msN5Som0slHLpiY/j59Az8n+oNwPplBrg5GgzadrkAu0p7isbpFGStPtR7PhzLRQazSbcMiAnQeG7xgZsf2w1LU95xPTueADv/zyGyUX7h937rJS9qrXxuiZgxSj7qyWR5sL1enz7IMjRQUj53nBeW/sgHJMQUsbOaIGNjn1xhDR2qcKxBiYpoin4nrHtUr1dp70ZgMLA5y8aCPrPLUGdcqVjs+we7sg0kgxcponzucTiLCczxYRpR8uRJWSzDPzlJjnmWVRM7p5WWi1PjnmjvnRA3gYtXIXPXfmZWFeZq2LP2lEO91clRVkdeExBNJpsO5EMUVl51iGewxB96ERW9TNRKgCAVx0R4bpnCbmpHEve96POjIEpRtfLleceDXvWzeixat9gNJkkxqIOpuIxqrmlZNplxHNyU1pIk3TQxN9MBblAM5a0yxvyZlssWxYI+pTUEp/8sQYSCmqUaFZyTYRAxsK7kOlRHtfqUWbyDbc6ptOW396vbuj9Wgne0Tz4c2JuZmHgnhcTMznC6+9QH+jlS84+WA+X0nLlThdCdMLYXoh9sw035iWd2I649xE7+oRQCtmECfUJhbV5dmjHUYirPdCzlm1wE6p6vMkTJO5I8dIZwFZkOmCm19h+grhTHPa5rmue5pqYM9cX79wub6ynC9M80xeN50At2Y0e2xA+KgdHhR/Z/ucskpCcEQelOE+2BrHrvK0v/xsX/nsL0aIvLOpo25hctjz9h9oqtqwHDEnT03a4+b++JsxcTgmWX0USFZ0GYqijZReioGWDHhWm1EtA4X2KDT8QxeqZkkWAXF8P3dMFHuzCWFvYBRL1561o9aM2nSCYZJzbBLjIvef/Nnjv59ZXz97WQ37uOH2JZ4RtdGI0hq9FuXvC9qI1sBhgiLD+Va0yO2jWVch9L6t7CFQNrW4rvkPi2VQbcZHd+TSuN82FLGJhDAjLmlWXgg8AuDR702wQgibgDb2vbBtJmLfdva92DURpfbaVHXQjXXK2g7Ngq59u4fohjME8w9a0QC8G9LgyK39yQVPcWglRCeULhp1aeF8OlNff6PkO9v6nW194377zsfH79w+vuvks2QLf+/kkrXICpEYFqDS3EqtG3nf2Lc3Wi2EqBqOFIQSoQVwFBJZM7TkMYWxXsfQftNHumo6mY6LQQulecYtF9x8YVrOTPOZOJ0IYSGEBZGgm2g28XucWGwzi3FiWS5cr79wvnwlpgXvJ6Q1ar2xW5RJziulrEqD9JqRdT6duJxPXM4XzpcrTq547/40CRyvfd9Z73fOlzNTSlwuF5365kK24rvsu9KwYlDh/UEj0ilnnBYt+IwehRmjiOmsvGWPxagkw3k5a6EYVYczQDSxTdV7T4iJNE2UWhj69e6qfrQA6fEzaL1mFKRRlGON5YDFhiHZwYd9NL9jP2m1kk3j2X3HE35c23RDj+1ZqI/JVqvtAbgdmvWfv8ZeNIpW/bN+AHEy/r8HRZRboraAa47QC7G9g2ykeCe6D7qckX4GuZD7QpWJ1iecv1oh7nQiUTZ9W7IiUgl4Ag7XO60FWhvPa6NLpZO1UKo6lc7rRm8z3p9JcUamiT6dqG4hbA636ud6wEtiOX/hfP2F+foLfn7BTSckJit0Bm3V9DcWlaENnOa+Ba+obvBW+DKK4EcDOiiQm8hPL7k+u6r/sp+MUhrrtnO737jf3rjf35Qa//6Nd/u43d7ZtpU9b4eTZ28KADfpSnHtFdecThdoByXTobTYmJQq3xvmptrNpbQdzqDNHKfF2ylj/9frmLKaGcyk+dSjcC6lQW5UCuKaDTT0PFFTLt2HVbM8pjZdp+ytmplKNbDXE+J0SAGW5YyPAYxqVlvD7xkXCkE8zid6r1TfaD85PYc2aUyF1dxMDhq/WD0hBphKjPQulIY2hDZlHNmyneFvoNRaHyISol6rAjStM2JSvWGIk+6ZIY4DSrWfZgLYW6D5QMiBLILeIGG0/toEcqz9WtF81yFZQel5rTtK06e1toembBh4HY1o6weIzQDVcbp+DyDKJuttGJDIAc4/9p+f7ynee3755W/kvBPdG9KEjZ1S1M0Z6Y99pmlWcslZqZLOE31AopBC5LSceHl9wfmgbJXb/Si2W2069RFtIsX2f+fUgFEEWqr0GgmofMzVSvbuKIa1cB5rRIhRWVKtBzrd6Oy6BzTzQYkxsiyzmufFRHcaXbLtm+YuIpwvZ5ZlYpqUSbScTkc8inNCDIEUTfNrhZ/eDmu4rH7WxAKlZNZa+Sy7VQGapokJISAS9dwaLAn7HjHGw6l7GAEB1GYZ3L1RaFTpyOTwUok+EkNknhIILMuk7r92ToUYeX39ysvrF7wPbOvOel9Vz5l3Wq0kM/sL4RE9FltlKhOlq3Zdz1mNNIkpWayePJ4XP6a3zabMO7JtSN4slqgTxBGnSExqdhlTYJomfIq4KSIxgnd059n3HcTptLFUdnZK7Yf5VTdW4M+vt9C7ykA6HnliEdTacL6bl0hkOZ8JUaC/U/Yv0N9YRiM6WyOaXgi9kOYb0zwa0aTPbuv6fBShNkeuzmplR4wKmorr3O6VfSvGBFCgfTlFptmRkmpvkZkuJ5ivuOkVmb7Q4wlcMBqtPtveB+blzPXlC5eXV05nNafstVHzSHDgkMvJAKls3Q4arkYMBlLUVAipBequ02cZMk1nDe3nNQr8n6HmHpxIjmZUxvTs6JQeTej4YUdQc7dd9rk4PUKDx5jXHtIjv62rjXxtFUQnkoKzJrQ/msTjXTy9x0H77cONz4yWLA+pO6fEptqfAugfw9lgtCQZjOSmxUdXMRX2mTAaoafF+/i9/d+x+T/9+ScvZ03j0YA+/aqX2FkouF03m5QceXINo5M9TaWf36Md0l0cvjVCf3wDndQcNgN2+HF4VHVDaXYKwkYMKzHcEBzTNOGmgW49JuW9i8bGrJnb7c7t4879rhlPJWsUQTf6r2BaFg++gzcjI9ewYsx0KLZp/VDYP2EA42proW2/+6QpEmwiGgYFD44IDRFEEsKF3gs5fzEjonc+3r/x8f6N9f7Ott/YtvuBltIhpkSKE0KjNUXA4Y1Sm7kbZui7uud1NfiIrrFLI9g6ldaM/qZRMPVgx8tRUDXf8cEQwmkiLOqIluYL83QmpBm1R/fQ3agxCD6wzGeg66EQZ+bpREqz6lyzxkqoG+DI4lrJ+U4pK94LKWg0RS0v0L/gvSNN04EWfvaq5oTYLfvMDdq8DDdIBXwGHVcRz8Q0zUzzoh/LSQ/jodWxGJcR66T0XUXo6I1pntVhN0TNLLXMY0WCjTJmBUWpFR/UVbqNqVTnYBaog7MBUYZwx5QUCT5ipAZDBFuDj+U6kFT9cu0hR7DtS54/j8dh8IAjBsgydPgPRPl/9bIt177fgQry+J2DHmgtIm3C1ZnebvQKSCFwQ9yOkAkUmrTH5A2hiddpqav0cEfSBgyAUsGWQMP1Si0eMdOMA1xT0QCNndYKtazQ1Ywi+ImQOn7x9JBwvuDYKSXgZcJLYD6dOF8uzJcrMp2RNONCOkA870aDImOLwvn+aECDug8Gr/b4etbplRGTfQz5R/kkfw44JmBKs9borVoLOW9s253b7Y2P92+8v/3O+/vvvL/9zsftnXW7a/5dKZQn5o+nU1rD14b3I7bqUdQ6J7iocSmY/r70R95srRoa38y0pRtVqnfTVdm0pZtAywVnCLt/OkMK1MEoeixH1VLqeVzNPE1vpuM581kp7rq3KvtgNlfHEzGd8MHT0agM52d8mAmh4HxUZ3sam3unkf90vd1ghwgPtshTUwraEGkBpYVyJRC7p7umFFtzx3RxVnMrH416q+Z8PngDJDR+IvY+eHGEMOHTjDOjnbFfeNO2K110opbEZtEpuewKjo9m6WgQm+mqOgPgP8DgwVrAH6wu1eKOyZ+gVDiPSEP8qIVsDZsT/aDjCx0X+kHNHZXYYLi5kPjZy/vA1y+/UXJm8gtzXNjuK3mv5L2wZQWbS1PHcD/owboTmMFdIIZIivrhvGffPSP2oRn9e3h1DI2kgusdpADKZpimSPNdHWBLM5OeAeRZfq5lhao5I+aMa8u4d5x7pDrM08zLywu//PIrcZrAaVzUx+3G+/sHpVadOqZkWY3atKaUbH3ruRWjUrR5qj8OH4BRIx3PDwZk/3wfF6Nfjtg+b3IR1UcavbN3bYCniRSTnnVOjYCKZAo6WKrdopmarSt5AL3j7TkDUgUhxagO4GlWamWFXhrJDKhSjCQ7q+OQQonupQr8mSt90KlpTEmNGo2ionWtSm5wYi7eDZ938AG3BwMVOtE5TtPMlGZtts1910fVYrsUTU+tayZNmTjt+HUDcZbioIaBf2IWPb16h1wNuBVvcW5ac4zG2Xmve2V0zEug1Ve2+yutvjGdTurWHhbEz5a9XfHpQlpeSPOVMJ0JcabsWVMPaJAruGJDEb02wYCSEB3TEjidAzEmXi4z12vivMC8NFIKdDnT3JU+XWF6occr+AVNh3gMxJwPTNPC+fLC5fqqDen1hV6qTkV7ObzMxqlHh+CCJnZME/MyM80zKUVSVNAt3z/Y72/s62oeAlYByDAPdT+93vBXOaIDpsMosOOhOv6cY7GOBmE4rerwsB/5Zw/LdCsCeKKHPRVFo4DraJNYWoaBiDnTAvbnbfPpYR2Hjn3vOrLJorfidlAAdAMotbBuG6XWwwEvANIDbrS2NjFtYlPXB4zMQAjGrwM97lYkDhO75/f0qDr//BIzQPnh5xr71pPm8VnyqFRVbTS0wLUCD9NkdUXFNfdwXCM7fMTjQiSgsQcDHj2MHGqjiOAtHqAVnU4WKWwfd9670PZKO5+Q2kjTRJhUU6kPfCNvOx/v7/zr37/z79+/cfu4se/FnOMCyYfDPKG1hi+FnIuZNwSCLzZxfExFGffFGvHjV/T8HnlpBzDxSfcvopMQ7x/TDYcBHMN10mHrJhllLRHTwun0yravbNvdft3Ytk0jTbzlp9HpvdBqJqR3fHxh3z7ofYW+4STTaWYs1dnoSC+W81fY98JtK6y5sRfdo6oVDYdLbVAaaEiJtJyZLl+IUbPSBh+/t2qFuCGoKepT68RcBz1Qud9/53b7F2XfNeNw3x6B0CVT205rmWmaOJ2unC8vTHOk9hc08PpBzfrspVMKNW/Zt4377aaFIzpFjyHCNJFSZJonpT2dTsznK/PpTJwW0jxbI6qHnrPrrXFOwX515txW9bB6OrxjjGrPb5vpsizHR+2NWiaNEKpNL7ghicjjOVZ6o01Uzcgh2vdxIsf+9IyX6Jqz4tiZrldrQnXOlNG0ybF+u9PHUpzBX2Od2jR06FE/zVh82qqVwmV/Pv7SniV9i/bfeIRFC7lW1AGXjogaGLlQ6b7hpeB7wbWKtEIVnYa6FnFywcWKoFRFKQ76Ru879KKz0Rps8tRMi+KsMOnsstHROCNFjT1OLkyh4CfNsHMFMgJdXT8XHzilxLJMuDkhU0JC1OknOt30zpm1fFcgwIxEvNfp6IOOKk+MGWsOhr6vV/Z1/xTgiiJE55TJ0UVNZC2gvNad3ZrR9/dvvH3/N+9v37h9vLOuK7lko/k/gN8umhlYbCGobt/OgwHgOKOk9U7ujb2WI2+29Wb1pu5JGn0znMgH6wSwa+OjThtC9EfhQjGYwKaaw11+7LdDCkHD3o/FjXmnjJlRgE4TaZpJ00xMMz5MGhgvTg1hWkeIeD8T01OMTO/sboWfNKJHYSjD/Ge0dVZEWcSFOI44hijQZFag09xdfYiEpIY5LsTD2XQU/0KHGpE225rRvcaFhA/qzNyszhHEmBxi6yZTy0q05mDfV3Wzr4VDJyqCLw2XK71ncum43Oxct+msV6DtMB6yesM11bQjw/11UEEBo27qvvVY29IVbPbjz6wJdWZIkubTT9e3c4HXy2/03ng9f6X+upM3/djWne/vH3z7/s7HbVWDMZeYbM9NKVk0isanCJ2cdyhCKRrdVpvG+JSWcU7lFMMToKOggiYB7DiBlAIuOXXh3tW5Vrw6BWt03A6rkKbEvhdEAoIQfKAFXdOdcNzny+XKb7/+jb//x38jpEjphS1vdNGpaNuVWRGCgqTaiJ6IMTHMMb3tz0dj2f9IzZXHZn6sY/78Z/YKIRAnBVKj+RCM+EKQHzKrYzSX4pCIQc2hBiBVciYXjUOK8ZGAUDvkooyEkjOtFqsXAt0JeS3cnZoIruvKeruz3VZ6rvguRHGkUV9gbIluOaet4KWrwWHz6jPQ1TcgxISPZrDjLeu3Kn0WF8FHfJzwDjWR8o7ZBxavUSzeeXVGbg1qQbLS0R3CSA6IUUFoZyabY19v7XEe/vFVW7fBgubGBpcIBjiHMOIjx3mvE+qaL9w/Xsn5jTRPuDDTJFK6I1doeFycScuV6fTCcn5lOr0grpLXHZFi68JMnRLMJ8e8ROYlcKoeNwnpLEzTzMv1xOWciC7jZcM5T5MLzb1S0ys1XOj+RBfdX50NZbSOcOoLwpnL9ZUvX37l/dvv1L1w/7hR9nyULt2uFc4T0sTpcuHl9ZUvX7/w+uULaYp41+kt8/3f/8Xv/7R9W4ySzY/msfx8if9FI6pv49E3HYULDwS/j+fHHQWYMOiw7UA3hvZhvJmRD/ncpPZu425xdFF3qkGV69ZeaS/3Z9rvD+/Yvu7RiGZP8A4f3IFodCDXwn3byLkcDrndOfygt3YxQzjVrjQqj+y5sZkY1jcERMdYQ09onfLadRz//8mbd/JoRMfnPMTu+v6dbW7juh2NKA7wRzM6UM8j4yqriZE80z2dP6awhHgI/EfGXG0FSqP6hnfajLcuVApru1P3QtszrjUCQrSFmrwnd500lz3z8f7Bv//1b37/9sbH7U7ey6GPkGHB7tSR1JeC9wXvs1pzBzVaGmZL3XRyjzX13Bwcd+a4D/LZqrdX9Mpx15giu63H4h61scP7RJQJ5hPt9HKsrX3XBnRdb9zudz1UsTlTB0Sfg5g+CPGdfX2n5O/U8gb1Bj0r7bUXttborVD3TNl3ci7cc2PLnVy6Up9MW++96Z+DQ4LDx8S0nFjOL3gXdF10oTXVmQ3rbB8cPiSCnwzBN6fK/c79pi66+us763pTc6KiWVxDCXk6X2n1N3wQcnkxmqCno/Qw6Z8/n8OkorfGvm3cbjfmqJQajTkJuJ7UdGGamOZZJ13XC/PpSkgzYZpNI2oMgdGImsO15oCqNqzVbAedOu4Gr8HnY8q6zMuhU5qXkxbUVTdSPbGeGlEGojg2PZ6KYG+/2oTyJz97t+dZHRQdoauTY2fQru3fG5g3NHvOmozmBNf071prR3N9bPB/+frx0H0WF/zpdz0ACx1Po1DbppMqKXjZiWwIFe8zvjVc7Totk4XCjCMS5IKLthdh16ppNy0tIxYJ40QjnpwhbmrgVHGyA3d6z9TuqS0i3JlCJsWGlI6Erge8MQVm51lS5LRMuGVC5qiRUboyETgmnfrT6jR+0P2VBvg4J3t/ULFaUUCJpnEq+7p/eqWDTV4HeafI+P6PRvR+e+Pj/Ttv33/n7e0b+7aybSvV9FDd2CnYkLGNotqpztEHy540pFmBIG0s99bY66DDWnRFcDYpwvRHzQzrrCCDA9QJoxEN/lGwiVIXS22H1GGs0XF/tcBTiwsvBnR5Z1IEjcOYZtWHxTQT4oTzCRGlMQ9nYQjaiEajj9o0xLl///R6y5joiDV/IscscdzH2tRYI7iAjzMjHT50MTDEH42oUvj1w1lxLKIcMNcnPJXoPTEZ+BSSUrHtDNNmmmMiqwZHhVI2NVqz82TflXY4GiDnnIGwhd4de66IK8ckUKNQVMs+GlFlVIwm0zwyrAkdRVq3iJ/eRiMKQ2jl7ddnSvEAOOInjah3npfLr0ZBFaKHXjPbXRuU//rnvwj+nzj3HbrHEUjhsaenSX+fopr65F2BrrzvR5ZsKRu5Fj3n/GQTLjlMikrWjNkpBWKciD5SXadQLSZOa8xSqjFYOss+k/dC8E3dZr0n9Eapmr2p7JuJ68sLv/z6G//xn/8NFwP3/YOP+zt72Xl7D5RSdOoZAlOK6vpujeioOcTW/9j6xm9kTBZ4YgPa+vors6IQA7Hb9NGotxpfY0MVi13xPqjcJiVSnJniTHCqh+21seeddVvJZScYi0icp3XHXhut1CPeLwVwSY3e8la595VWG6vd5+1jpe0F3yGIaCPqnJlh6vS5Nc157nTwToc8rVG6As9uSG0MREYcrihrSnzBhUToWaeOSSmgCYjm7tqNCVi7ekz0bow63KFH9yEeP6cpCI4Yls/AxNZVV+9FGSLep6OhHZPomIIBApoMUcuFj48X9vxqLufWiDavmtzmcGEiTRcmy7iezy/0vlHrjX5Q6js+dOIkLGfH5Zo4Xxcaibh4lqtnWhZeXy6cz4mWb5Ttg1qFKleKfIH4Qg0XmltAND9bbXmMLuuUMSZBHo3o92/c3t/5Fv/F7uQHoHqQQWOauFxf+eW3f/Af//kf/OM//oM0BaQXcr7z34Owb+9s692aftW9PuqU/xtmRQfCKCZ8Pw5pPWF7a/Q6Ws/K0CF2yyzat51936nFaBEobXFKihyV4eRXirmjNs3kCwEE9ryT84Y4R5waIWhNXTK2aQ23rcfD25rGL2hzsHK/RYII8xwJTjcKRZgbe6ncto1t33WRTZNeDMvAVHqp8ssLj/Dm8T2d80oJtOLXm0vso4kcG85oSuxNftYbyaDVPhr7o+DwanN9cP4N4cImvc4NKnJ/8N+rUJpuLLlmhjOnMxG9H9/PP4qZgRgVC2bWhkv/rFZH9Y7iHSUU8p7prR1ZbTGoPuGHCfeYrNoaUKMKPeAVUYpWRKhpQiwaZp13NS5Qqlo2QKEe01Gpw3mwHhvOIfa3AmA0Bp/Ftwhm8++gNzn0RyPaYdiuP5t2jDG3OjzatMclxEWcmwxFG7EaqutotViDoU1YybqG2w59f4eqETtb3ShFnXj1/nalUQchBoixW6i3WBYlyAHiDBH+jnhdE52H4RgVKBuSbzgf8U6zDasdFPt2535/4357J+938q76V3FCSg7nZ5saBM6XV66vf+Ply9+4vvzKcv5Cms54s95/dGk/uebjgKqVsmfytusUxnldhz7gJohTUvOPlIjzwnQ6M18uhDgR0nSYFemHt/v0oIfrALNxUGON8uzQ4jgafSqMjwNdxpwk3bF+nxtRXdVWuB8I9lgfY5r5c2B7TGi0cO5G8nRHs/lDQQKHI24XcN0mzsaM6Oa6O0yTPtMWiTVX4w3IAZQpwHUAOQacga45sTgl4YyG1ArdBZrzNKl4Ud2MEyFQqGxmrlKpXXBUNSxpFv7t6sD26M5iiiTgJeCDZvzh0fihLnZ/PLkLrRXyfmfb3lnvv+s0fd0o60rJRZ0XcQdYVZtmZkruyKEv6CiBWBjGdtjkCOmHSZE3bfbQs/TWKHmnZs1G7TXTWyZvt6d97s/3+cH6edCnnR3GWgx1c59VsHVMGgcB+Lh5VrgO7BfRazRiD0ZEx8iWpTcb/ep6HLERMQ6jF+h7ofaik3YD4EYDF4zq77wHr0Bs6+0oLoeOtA8EmqOuNmzWjIKCalbTFJmXidNp5nQ6cT6fmeeFGHXtdHOpbq3pHl92eq8Inhjmg3WAwLv///70ek9p5nJ5/aER1UGgTSa9/nlKM9NyJs1nunhK1wJ8OOs7H/Bx0OyHm2s49n8vEF0nSCPFcEz4xuRUp7rGAhtnEUoB7L1Sy36ck/N81wzjvOlZbO7gGp+x4/yNfa/c1x3ng8kH5gM0CyE+AFjb/zv9mISaacIPIL/SEAdI+GwwaYD6qAfs5w1p/mRPcczTlRAc5yVxXiLSq0ZSfNzwLimDwSVq6bQqeBdZklIq52lhmtRArqF5obloBMp9u7OXnVLV0CkEoZpmPRdlFpSsTJpt+6DVSZ9Xgj1LFhc0fjbTqyoYMdz+m6I7Th3Qc1Y3aW/N7qCPhxh1CHKszUxrRRsF70gpHkZFp9OJEKI9qwZ2jUbz6Sx8NJ+P/z4+/kJikaaZ6p01ogqADCaMAk3+YGOlEM2oSGUnwYWDOSaW7eRz1KntMAwSZRzSK3igByROuOmMpIkqwlo1suW2Zu73jdt947Zt5H1HHMSgtPBhOTY8XlqruttmqKiEAx9xtRG60Mz7oosaC6kkr1OaGfc03cdyARmSiG6yCQMha2uaVVoUGHVFn8EypA52LoxpaLGpa/tsDxfBBc9wVncBi3J0h55Vp89BwXDXVU6QzoTp1QCURJeJ0oRtz/TudKjQhEqAsODiGQlv4CLiKiE5pslxOkdeXhJfvs5cXy9cXi90mUhLYLppPvzlsrDMkbw6Ng/77uhcoV/p7gwygQ2pDuq/AZZqb+HVtHI6c7l+4eX1F37/1z9JcWJ1qu3vrRpryBPTxPnlC7/+/T/5x3/73/jHf/4Hf//HP4jR0/rOtr7z/v5Omv8HLn5HLN4xeM88z6Q0cTqfgJ+v8U8bUbVA9yrjb8NV1FC4Zho/0AO5Km1ooPp5z9xuN263m7qlmTHR6XSy8NVwWNjv+862beRSSCkxzxPihG1bWbc7znum1pmSRYfsnW1dLc+nH4e+TgAr27Zxv99JKRC9U6tqd2KKkf70drdcuN1X1n1nFmGOkSaiD2oIVsirvqeYBrC1h7NrNIOTwVV34XkDGhTkrg3toNh9ehv06dLDxB0GQMn49ClF2xzDsTFmi5lorR1fs5aifpR2mJRWHxQgo4somcNZMTGaXzP8cerIJzKykhq9Z7XPt/wppaXY9LY/spxSShrkXs3VmLG56of3UcPMQ1d6lB36wwm3jaa/NnLUny9EnTp6F9idInVFKlUc4hq1qi39oOqKTaqde9CMwieNKJixlagG5IgGcliRb7bwR0HWnzS5Dxdf74LpKwPJRPX0ZhMJLa40AKwiUgm+0EJV3Ub+UDBmW1n3FfL6tBnatY6CG1Be1dD3nLuZg5jZVtbi2N+/68TTruswHKs2IWntaLfpvSkV0LIM902puILRZFNkWmbm5cQ0L6R0YprOnM5fuVx/5Xz9lfPllcvlC/OiUTcDdfx0hbcKpdAtx7aUTCmB4ttDkxU8PiUkJSRG/DSTljPz6UKISd1vB+3JcdznsZb1+XscOppBptN+6c00Fw/61NEEWpGm7AYOd9s/vY5pw2N8dpAB5a9n8A+K76DoPjMsHkXLaFq7Vfnaaun3CFaAHl+PT96n/Uvn2oHSHyCNDLbGMJsZRa081geChBPSHK5PKF33TJcddWvtekaI0GSHWmh5VaDEfg4vHS8JcWdrqpWujqz0FhGpeA9x6Nm8Eg6nODMlBYhyhq1syPsb9Mg63Y0GuFFqhx7oknDbStw2ZMtIU4o78jC/ONo8Uc2nUI0W3BBparrodZo5mkltlFbKrpFMtJ3eduq+/TBV/mGN89zg25rwARdMxxS85f0qsKANuu2VTTviLmZyMpqK43MVSPQ2zVBzEC3EerX7HTTzVrt7BZRT0omkArEbdfTmIoioC2MI4QBoxI+ipR1Gfo3+1IT2p+VvZ53WoWoWZm6Wowk9X85cLheulyvLMtue3Khlp2ZtxvdNndyDNc0xKQXfh2ATrJ+75mpm428cWdh27cZZO8CFaI3oNJ/oTmMvmoysmzEN9HqvnAfxR7HvvCN6RwoweWGy65nMAM0ZcF3NUKzbtEXPi6rFdSnWvCya1WjSB+eGc7scALq4wH3d8B83nDmNLsuJ8+VqJjqT+l+0ZhTwAXwOkKUfZ+JzXujjpg0zIuULjCb02IoEQpw+2cMcKS6kFLhcTny5nvDSyevKOt/oPdCqw7uZdc3se4XumKK6sqZ5Md1+1GZ8z9zXOx/3Dz5uH5S20Sg41wnekUsiemf5xJ59v/Px/sb9/k4pM+K6GqztG8UyMGvr6EBh6NOsyWlCLp2GyoNGhm9txUy0ql1XNbSp0rjdbry/v3G/38g5a+Pn/aGTG7IOH+LzRXrMHZ4258fvHyiOHM/P5xPRaVrA6MwxaZPpDIild2rztKYmhjFYE+qDsuhk8EBETQBDICRlGjqTt8gAu1zDSaKHhp9PhNMFnxIlax25tcxHaXzsmdu68XG/U+43oKrhkwSVmwiPRrRXBdBrxVW04fQJiVV17w0DBvQf7hWyscBqUUOhPTe2kIkekuhHdE6BTOcpXcitUeims9z1uuRCzZrOUMy1e3jDlKcB2R9fathmbB3pWE7JUasOsE3rB/SZc9HyQ684L0iIdCZK1bSAWtHeZCvsVWiSICzgJ7qLOCnEyXE6e15eEl+/Lvz625nrlxcuX17oshAXT3z3+BhZlkRMXuMV6TTnyfVCKy80OdElHmDomNTDo6ZABOmeFBfO5y+8XH/ldPrvpDTjQ6Dl4cyuGtxpOfP69Tf+/p//O//5v/0/+fVvf+PLr7/iA7S6sd5nlut/Eeaz6stdAcmE6DmfT1wuV+bl5ywL+KtG1JljZRcrZozYYVMCWtMtrzWbpBmFRRzbtvPx8cH727u6staHQ+40z4gIOWcN8b4prXHfd5ZloXWlnd3XG/f19sTtFmru7Fvldruxb+rOdMzfbIK3bxu3+50YHdEL0TumFGmzTrK66MRv2zMfqzaihECcuxUESvVTrnoj75l1W1nX+5FrCTDNM7WqExkMLaG6aw3B/4EW22ajm89npaohr0ZRnM1A5XQ6Mc+zuZJpI7qaJjHnnZKLTUfF6KuZgaLX1g7E3Xd/fI/mRtqTrUmMu+368d67NfalKB7vHFbAixUtGhCs6JtnXhalddRKe6JnjkmsD6oJ7ehUNKVJUUR7QFrDLP4rORb2fceH3WiH2mBkcSBZi7bacG7QjkZjqD/QcyPqw+eNKL3q9Mdo5I+C3xztxGhvTc2tBm2zmnuzbrQKBAQLRj8a0Yoeilh4vLcJtyS6n/E16SS3qi13WTfavmkkiw+EAJN3asHelFJXgmMTjPZisTut0UqmbB/szhHSRI+T5s5ZE1aLUply2Q/zhkEvHoCGTrS6ZqJOE/PpwvXllevrK+fLK8v8yrK8sJy+spy/Mp++MKVFwZgQD+dKk7Z/cr1VKzdcrGsZObLmrxaUMhImnYa6NBHmmbicSKcTMYyJhXugOuPQF1tzfWjJ64O21kYjqml7x9426LRH4TD+35nQ/qeP6c+e3M9/5h8+8cc94bgszz1NR5ulo5Gxz31qerXZsUlIf5p6/uSthmfDGCt4RvP9iIzgKFobw9VRDy9HwvUF1xakXYANXAbJakDkdeLTsMO+qB6md6+Prfc0P+NcZeg+u9uQvptxiGY9Dgyh04kR0uTIpbJtnX3L9P5O64643S2Ls9Cap8sE3rOVRiwN2ZtRZ6q2m5Zd23qli+ronFQNnpGKo+rP4bQhDt78wkXNhsq+UvJKLSutayOqGZ8/v+Z1xE7Z3qAyYz1XxHsz6fAPmcgoKM2cQhEUh1g+6Ji8D7qf6qG9UesUpafWw8nWdwUbvU3lnHNMkwG8KN24FMupFUW8hzFYDAEftUnWqYaZe/Th2/mH6awty4fWVojRkyyHcVlmTucTl8uZ6/XK9XrlNM+ar9q7uo6XpmD0upL3zLTMxBAJPhFtL3LmiP2z17Kc+WqN6NDMHqwkHgZGMU1My4k0nY9Mzj6o48fzNZw8zXhxTD+8Tujn6JmTY7ZGdEpK+3cyGtFhEKX7cxsT+qaFr5qiKTi5mxHcaEShs6530nSn1E76/maSAzWgOZ1OXC4XXl6+6ISsqqHPsdaazau70VHVScqaUHnsMQaUP2ROowFS+MsIeYT48+utTuMTMUSW6czl/EJwkP2d5CL71tjXSq2eW9y43XZaw8yJkp4vaSbEwJ6L0slzUWfp9U7rG+KVAVebAkC5etUbZse6fvD28cH99kbvhRAd9ErNmbJtbKUc+kBl8mld1i3DPFtmY6mVvWzK2uuFEKPpqsffF3LL3O43Pt7fWdc7tWbE4meUaj4fH2NK/VhOfwQqf2xKnzfpAaB/9prmEw50QBH12Xc2xey941uh98owSwo+EpwxziTaNXBI60hM+NaOdTAe4g4KboeqRorzmXC54mKiryv5fmeVzB3PvcFHqbxvO2Vb8QFScsrGMt+K7kT3uxChqplZByqOJo5mU9AuQYEhZxRSESq675RWqdVB7eRa2V2lCFQHzaszsThPBXJr5MbDUbwpG60VdadvCLhAd9lcsj93hnZOiCkg0i1/tx/7tYgZpDmthfWyCRDwYSGkq8oSgkd8pHWnU9nS2fbCliulObqbEGtEm0Sc29WQaPacTonrdeL1deHly5nL1ytdTkhwKnnxnjgF9Teh02unEHD7BfqFLgsi8YhseoBM1ow6W5XiiHHmdHrhcv3Csly0EfWBXnd6bXincoDldOH1y2/87T/+N/7+n/87r1+/8PL6Becata644JmWKyEtiE+I20A0Yul8OfPLL1+J0/zpMv+0ERU3UFpD1Acbx/hiWqRALpVsDp+DArBtG+9v73y8f9iGq6L8EALLstB71yb0fufj48b7xzvbamYvwRNjJGelf4qrOL/SGmxr4X7b+P7tg7f3N7ZtPRqx1julVLY9s64rKXii9+r6NU/s845vjSawlcJtXbnd72w5M83zQV3BCr1aCuu6crvd+Ph453ZTxzRnTm6lZGot9qFmAT1N5t751OgZRD4KyM9eirJ4UkqcTyc9wM9nzpcrp9NixjKOWirzpkHoSn9WFBCb1B5UTZsGjenJgY7+4V0cea3W2IwmZaBG1f7MO6EaCjTA+uEEm4s2juu2ke4bTYRia6MxJmyJIM746Wrh7X14TBDsAKhmytHRhqKUivNZG7TucARwDeexQvwx1RknwThYtab4zMilsa2/I86xbWo81Fo93B296YpVh9GN3TmuTTmui6JqCs50y3nsrZLLuDdqQqL6r0yQineqG3IOQohU71Un06uGwDs1YBlRIQ3VNK95ZyuZvWbNWWtjWnqj7UKWQq0TuU6I1yzXATKEmHAh2jp50LX0/TtAzWOm+cS8XDmdLpwsP2xeLqR4IsYTcTqTpjMxKkUsOP9D1MxfvYJTend4agL94ag3EZMWfGmemZYT08miV4YzbfDH9OAJcj5+FfiBynpQZUeRZQXbcf+sWXguXJ+/1l/UBv+3Xp9CUMIPRcz49fF+fvzNnwGun39lEdVBKzvh0YAeWnfhiJ8ZU5MRcaXXwGiLXQhd8D3gyYgUoCC94FuBkOnsiOyUPdNyp9f9APOKNFJo4BMuXEk+kNyZyAeOD+g3OplGpXelsscQiKHixejuTa34mxd8WGxStoA7Q7gSL/+A9EKWxEFB6cWo6dpwIhWRhpeGdw1PRXpBKLimpckAAnB2UdhBdnBNda4uPQxN/7Ch9w639U734XB9z2Xnvq3cd80HLU0BT9yYagYDtfRetipmuFb1jBXTeJrxz5FNKKMl7DgvRDN10Ynp2Pe1EE9TJE0K+iXL60Ww88RiIbwyAZpJSVrv5OEy2TG6oy7KAdIMKYkP5jycvDa9U2I+afOproyvvL68cr2+siwnNanr5iK+awORt5W878TolLkgQvJeHUBD+FQHvSwXvn51uv/IyM7Wm3FEurhHVnBMGnbfcYej/GABPB48OSi7Pjwa0SnZRwykFEhpSGdUXlKrxqkM8GNMSGs1douZ3NSaSMZUGuAQXYGH1rtmIJsTsPeOKSVOy8L1cuHL66s6fFsiQLEzqHY7u21PG2yZEXzQ26P+6H3EtphR1fHn/TCa8eGTc7N11vtGr437lLilFdcb9/fvfLy98e3bG7ebZovW2mF4T3erF6xRD0HPpPP5qt4XXjX/ta/qHOorKUbEdWrd1ZW5dtb7XQcD+0YIjnXTSLFmjvSlNZpozImCTibPETX96q2S68gFzWRr4uqomXqj1Kx1ax1nuE1N7X4MWmYM4QCDlCb7h833uGifnCV/aEI/AzTT5YtKmcTcc49HUYmwzujfwyhJpSsJ/KSyIdNRS0djbppKMI4IRjvsfIdghoghzYT5hPiAuAXnF4JMTBJpLqqG+eOdcvsgl8a2F4IPpKBO/CmcuMxf8aVSG9QOzkem5cy8XA52gsbMRZxP+n33Qto16363SCt6ASpeKonCRCV5p/rgOKGGndqjKEswq0FnLUipRCZmWSCckemOTHdKzoRp+en1Hn2AgGlxu1GY7WY+DeWq+dH0Dt5Hpumk+7HpXrUpSwiN6iGHSgwzKZ2J8YyTmd4CtXmTHWqOcMkKtpZcqLnQfaF3f7CZnOs23HDqZFsTe58ILYEkelRWjHpWjIaZY2DjrG5wXmm307yQplk18j5QrfEOMXE6XXn58gsvr1+5vnzlfH4hpsUkjA2RYPI0TWk40gNE0xReXl/57W9/x4fI/lk+8Sd34tjUn10cj4eqP7bubu6o67YpUl0r27rx8aHU3G3byVk1itM8cbleAbjfV+63O+8fH7x9f+N+vwMwzzMIOq0pmXHyldK4fax8//bBt9/feXv7zn1d2fPDabDUyp6Vwz5CVqcUWeeZbdlxValGW8mP3KpayVmjNwYuSEcDm2933r+/8f3tG9/fvtOa5kyFFM2B7BG4OwpXcUIgHFuKznoeF/+zYtR5dyDJ58uJl5cX/Xh95Xw6HWhaKdkoPJM6mK1KcXmY+lSUIWqW5I/jxxoQHs0perA0Otj0rJXnRnSYBxSlKzRPCA+kXZHDppOLXFjXjZDudPFUEfZiWiTviShdwYWkiHeccN6bK6U2Rc5iCkDNPmpruGyHlOmsfOcH0fNDB/P4PQxzlv6Xjej9/i+gc/v4xsfHN0reEad0D28UbT82IDFNk7nIlpqpNVtkyQOkqUX1JHnf2OwQOwxIRFhSZJ4CvmkREmIk+0B3qLU63TJ1HR3VS9fWFDzZd+55Yy2Z2iuxd0LvGia/V0pf6SXRSkLCRIgLMcwEPxF9wrvIsNE+TD6cZvWFuBDiwrRcmGdtPoeJT4yTbjbEI6/TBW9ur5jhzGioPodbgnf0MfU0ypsK/wfNPWo22LIwn84spwtpPtlaCUYlGvfj6QsPlH8c7JiR19CR2v1pzXLtjuekHmtmPL9jqno0gj8Uq/a7v0KU/uL1WWj5j03oHzvSp+9rb+yZbfD86x9fTiAZocBbI6rfb8y2TBuETuaGEZM87ft67ZxZm0wIlRG1Iqhzrm8b4u54d6O4O5mVXHdq2SlVteRtjsg8Ef2CSy+kqRH6G678G8rv9Han1Tu1CeLMdCMUvEXGYFPWLpGYrqTpik+vSPyCpFf6/EqbXskyW2HSkZ5xveJ6tsZO6bhBGsF1FEsvMP6+NdVNunG+qQ5dnJKNxUV6N0Hrz+8w7/c7WcTofUWL2Xxn2ze2bIUydr76QAhJJ1Yi1KLnd6u6B0ivB0Ux2nOjuk915B1nlrOIhA6E4ilj3zUAIsZISkodLCVQqtJ0XS4UX4/P01r/4airmrtGHdN55xhxacdk4JiCetIUNOphnlnOF16uL9aEftEi5vpKTCeCV+dsSlZK5XbXRjTv1ByRVlWT6R2zuVJ7+awR1YLuhzVrd08LLnfonIajuT4DnefTUe/eADKtgDMn0Afd2KlhSvKkqBKVaCCBaretER1NYqmUqjmsrjiqD4Qns70R1SLSTbOmzXkMUdk16J45TZHTaeHlqo3o6Xw2tlOzX80/oVdznm0K2tQBoD41pPaz1/E+DiC3Pyi+vfMZkai1xu1DzQqn4InO0Uvm27//ydvv/+bjY+W2bqxbphQ7j80wil61AayV0DohTqTpxHxaiJPqH0u70d1Gl1212g2dhu6VmivretPM3X1nDY77FhWUaWa2Yy7RPthZgTMjSqiWnbrXzD7O8KbMrtabGVOqdnvPG3vZjUm0GfWVg40QokqlhqPvkd066AJ/WFcDvP/T6/8E2Jkuv9Cn0yM0sXfEPCjo6uTdu+bbig1KxCU1enLxMGdyneNDJ5L+yDNlsMiGaZ7XWq2Lx4WMT5kUT0ha8NOJbd1x//4Xtf9OLrBvlRQ64ZRw05VlWohh4uwTzRyaXYhM80kb0DQR4vwwBXPKJqy1UbN6zKx3jcfrrUCvuF6Y+sbUNpITQkqEOOHNp8PjyVkd/1vO9KpApMSMmzLhtBNud/z9Rt4zYTl/es2HrELvudGYnxpRBphftE7utavmclbqdozeDJjMS0QatQgpd1JamNKZFC84N9NbpFZH3hv72tjvGnu4rjtp20jbhgRPreGoVbBYNAVGVA8cm344F5EYlIpt7D46lCYKhD4ZqR4adIvEiSNvfffGXpw5X1748uVXXl5/4XJ9ZV7OhDBpjdo7vQ/TVH/UlmMPTWnm5fULf/v7P0Ac//2/3n5aPv1FI2rI4FGdWTfNsZshXVSXaBTbzcT267ax3lXvMHQAAKfzidvtRu9dG8H7ndvHjbf3D+63GyEmLnvGR3Uny1mpr7V1nNt5/37j27d3vn174/39g/WpER0H574rzSOaCcmcdu7Lxn3dEK+fe9933t8/uN3u1N4eektD8Mc09OP9nW/fvvH9+zfe3r7TgWmemOpk07Fi00Jn2VFq7Twu2HBP7T/ZnP748t7QZLMDv14vvL5eeX194Xw+2/Xv5JxNOxoNlQ2sa2Tfd6NalsNx+NCQAM8uo4qqDTG/Ult1Ijo0J4/YnaGJHYeX2AHoSyUXbfy33WjW64aLK/hAE0fOaijlQwAvhythMItxdct9OOGOA/ygrXWlZORS9Gco1Sh+eriNa3w0139oSDv94UT8p42mse9v9N643f7F29t/kbeV4TyslKxgbss68au9kPNq9vtaZLeqSKmza1QO3aUJ5YtWl94FMw+YSWHBo9l2uAA+gPd0L0axU6R72PtvJbPmnXveWUtm76pX9t3RezbGqx6ijUoTdVAUH/F0EM3b9GGyfDF1kotBEcU4nUjzmWm6MC0XpvnKNKkTYIpqod8aNOV0PDS0FnkxHEeVFfdXRFXzvB600jYogvLQxtl7DWkimanFMBA5GsvHnf+kCbOJ5jFut+mAgStqfqU6VW1G/0wn/vNXHVXGT0Zh/xdef9Wo//z1x+/XH2/jf/FSA5pBUx9NTKc1i5mSQcUf05EHzXk05lrQC+CPqI7xbDnRaaK4iFSHS6L0r1LBZZoMelXF10hogdInqgSaC9SeqBiLoGCa5gpdTcSCcwTXCL4fLIUQAvNyYjl/IUy/QPxKD1/I4cTmJlrzVtxrE0oveMm4o3FueANwnDQ0zKTY9HMUd7Zn28+PMy1hj9ADNP/TG9A7vN8/2LtmYtbBmulqyKdotOodQ5yI00zMO4OXLKITSZ1KNstd7ArcRK8Zp25ofEcxNDTA+uQN2pizG3g4NdvbPdyzqz8o8QdMbgBPF+hi+5PR0pQSrK6UxMHgccbiCUxTIM2ReVpMUnLlen3lcnnlcr5yXk6cJkXRtYDL1Lwr9XnfaHmj1azNt2hmYPKeFHTyNIyX/vhSw7t4gKMj81d4/OxHLMlh7PXMDOo/AlAGXg7zMzUKdActMkZHiMMnQZ+vGCxSyyiwrTlt4Isjl0bxjRIarT3lcw92Uu8gnVqz0U/1fFdzQmVJTVPiYo3o1y8vnM9XjfSpqmccFN1icRlay1jsWsN+HVE9+nEYe5kT/WhCFTRtJG9sgD+9Hrmg3SQjLVfyXtl3fR8gVoSDtLG8hiGWZTmPzMs00XpTWUb05DZRudH6XadC2zCzLGY8o+BvQ3/2vey4DNj+nmuh9KbP0GBaW7BAl6F1rmrYRWU4Z7uHXNhyTBVo7l2BtzG49E4OuvazxwAij1zoT15HvM8xAR177V+fCeH0CqcXxNAEqdZ8WpzU+Hg28BOfVItpObiDfTaae8TTJKhMQIRhfhecRayJaqh7F3BVczBdMmMdTzz9E59mpbv2btIeQVzCpyvh8oXp/Arz5ci9dd6b9GfW59YaUBGVK4AcPhx+25DbB3K/a43Vlb2Sygep3IiuqyN+VIprjwtOIrJvyLZSy34kQbRa8aUSc8GdV9z9rnX0Sff8P776YxPUa+Ifzq/IeMZ1nZdatc5tHe8Dk8gBXA2tuWZ0N2qEmrpJmk5M6Yz3M5Co1VNyJ++dfW9se2XflRW67xueYF50Huc0ycJ76N4RIsQaiS2Suk6sXYyar+q8sut6Zy+NvWg/1Yzl8gNbJFp9HqJNwgMxaSP6+uUXri9fOJ2uTNNiEUnOzs3jATtA9fF15+XEy+sXfv3b32i189//+f6EvD+t8c8W/8gKa+OM6sMVtytFaTir5qyN6Lpac7keU9CSy2FI1Dvcb3fe3t5UH7oqNXdMJm+3O6fTZo1UI+eq/P1aQTK9w8f7nQ/TlN5XpWiMz1F3Vr3QMeuNjLFw31RYPd/v9N5Z943buvL992/c3j9AhLxulJGFdb8jrfHx/Tu///tf/P6vf3O731jv66GFcabpGDln05QodeGH8GTaY2fj0ZT+7CaAcanPJ5bTwvl84nw+cTotzMus+h4rFEqOdkhpUTZNE8tJtaKjER0NUB3mSr3bc/U4fIeTaOtq7U3v4/g+NiZvlJnjZZtx6529FNg2M95w+Kj0SglRhdrOkavqirzlOA3NT4pGzQ3hmGY2ozGVUglmue28V6TOia0poyocTXN/GEMwJjmPHxFgWn7u/kfXnKvWKrVslLyx73f9IbsZOwV1l9PMwUqpG+v6bkYJu00enujPJoZXLSmYIlH1sPH0aKxiordiQdOe4jykhG+zTqZ7I7dCWxuCOdTtK3vLZBoF6CJqg15t2uWd0iO85dqFiWBTUETDnHvJtC4E50E0n0z8RAgzKc6kaWKygOIYwEmxjdxRm2aEOh/wLqm5kAyDEDkanZ81deNVcmbfVm3Mg8ZrhDQRNzU6KqWw54CExOmsCKo/1sIzNQYtIP7w9R9HuhZ4zZrdag7dOWedUm+7AWS7uSEON77+9HzKH77283/8rAn5v9ZgfjbF/Oz1/NMe7MP/RQHjHEzxic5zzLMGAKAfHXWVHC7MR8Zafy7XeaIy9sfEGIEeaGXS9S9C8Z6WIo0IsiJlp0pgq8CmX7sU8N3BHqFMSL1DVcdeZ8BOEIhBmKIQJkdaPNM5cL5ETpeES5bT1ruCNs2hD0UD3xBRaq+XgrPJJxboXurzbRQgWFN+qMTpaGOoZa+jEWh42ifTOeh8fHxnLzsaXVCAbtpnLcKW+UQtV0PrM7TG5m6IGWM0p/RcJZc3vOh0KninZkDu0YwCaPZfN9D2OSPvASSPCSegU1krRnq3BXBMRNScTbzguxpdOVd1Et0cIlUNjYyamJIaqKQpMNlEa0oL06TGZsvywrK8EOOCiDp7douhKqWxbyvZYmug4UUpvil4nTxGrxIb08T97JX3zJazFYzBgMfnRlTD1r3T64d7aLyc/f6PcRtHZvcw+AuD8mguvOPD7sW4P6Ox6M20wrET64jesqawyyFhOhhL0qklmm5+Z5l1Hx4RIadl4no98fJy4cuXFy6Xl8fU1SarRyNaHxPRcR7Vqo6iY3qqPgdPk1Bbu88GSK5uUP7ciAbv+e3XX4gxcDktXM4zvRZicFzOC/d1Y912ti2z5cqela3mLaptmhLLPDNNo+hNuv8a1TDXQGmeUh0bm/r8lWbsGUeNmqnZZcIFk7QYgNVKZTcDoi1vB8U/OEFc1YbKCdKbZYYrwOadkOZAnAIhen0GxHwxoidNSaGLZpR20/UOdtHYQx5nz2MUMV7D/6LWdqw555xWCMPz4LNXvMD0BXpT1kZrqBjf4tmoWs9Zza4LPiEh2Rmq5pcddQ5WtoQHCbRhZiS66VaRI0GhdUftxiVxnuY6+IKE6Yg4iiESXTd9fSTEmTCdCcsX3PU35PzlaDK1pnzEqWAT2UHj7AN0bR2RiHQ1JJKqjuCuFUJ2+AxCoftIdZEeZ2S64OKMnwrMO74WBbrtI5oPSNgzad+opTLl/wnl3z/bxmltgFfhxz3AjeQK9Q1RI6eql18e2v0hJ1B/G0f3QoqKGezTxDwtWg/GBe8nmiQDdjKliKUrmHyhZFzIOBdISfBRiFEIXsBDfYp3SiglO86aPBAsVqd3uO+O+y7sualhUhmxfiNBQKN/lJ6rQEGaFs6XV15ef+F0vpKmyWjvwwRLf0bRTE71Wmmd4CN+cZyvL7y8fuXrL78p85T/46dL/C8aUWGcU6PkGc2o2YgqfdKazfV+5/39g/ePD7Z9P5CNYq5VvXdu1oiqTXlm23Zu91Ub0Y8763UnZ3XZUt2hcvVHntvtY+Xjpk3ofV25r5t9bS2sfO3suRH2Soz6oY3oTrrdqbXw8XHj4/bB29s7t/cPQgjs902zG9eNzXl6qbx//87v//43v//7X0eMyAgRVp2kBiv33thPi05H+yM3VaHAJz0Wj6H+T/eaGDidF7O5Xzif1Y1tnhPTnI5Nr6Zijp8qmK9thBWXY4qci04R66AAWVE+dCRjaldNW9qahsSrU6ghyqIoUAyW8zkMEaxRqtkCyK1A8DHi02ybX4UQDkG4j2pzn+bZAs0tTy7EoxqspjctuejXCuEpL9IT03bY25dcD7OGMbkFjoiEo2gRNcf67KWggel8y07JmxXiMELOVV+SQXb2/MHH7Xc+Pr4p/WMYoQxEuaFanOZwLqp4PS6kKRLjhXm+EJM6aPayUVjZmqO6AGnCy07LO3XfaaWwFaUj3bfMfd/YWiH3RhVDs/pAnAWPTjqDn/BhxscFHya8T4A3GnVWDVrwiHRicoho8xqCTj9j8KQgBF+hZVppqtVtQu1K1fDeGc330YCO3x85mz955aymJF0cLgQkRGJaidOiG9u419NimpLwlA16tAY2ENR7/oQt//ic2aS/mVX7eDb2TQuVfVenYF3H5jT5NH3s41kY06KffJ/Hd/u/+/o/24z+8fOe9pT++a7iRJjiME57ZLyOmKYux4z6+PPWhu5lTEl0nz8+Z4A9dqm6ATe9JXpTOnnzgZ6SOvdJRNxddYZVKE0Bw813XHNICbiScE2nqkFg8jAFTRtNXmiTI86O6eRZzp7zJXC6Kmp736HmitRsIpiC+IaEioSK85pNLL1A3ekWXWI7BkgEiUo9lwTEY+ajP2+30BKh4bQp++Te6Rn3hs+rgSAqaVjcmeAnSDNtOdMtj7RVbYzFilxHo3ndQ8RMMhwN7/jhQwtZvSN6No6IAmtwRittjWitDVeUnVKKSikGKj7Mao6YmRETJh3nG85XQ74F7yvLPLHME7N9TJOxcybLL0ynQ0+e4omYTkQ/Izjzc+jk0iyeSw17dArebAKo7KIUAykE0qAkf9KIbvvO+0c+nNtja4+ZnekDvReahzDobDJinEacmXs0pIKdr8Gaz0fkmW64Yyo2DJrMbdn+24k7nq/WhWKNYDUPLWUjcACwYyVWWw+lbCzmxh+Dt0Z05nI58fpy5uvrlevLyyGLGVmwtZvD/5iIWprPAOj1Q1k6w1Pj+O42PW8G2rXeqOsH27dvf7rePnj+9tsvxBBUCzwnHJ3L+UTJX1RydV+53bU+u687tXXTfI8omhFBotqy1pqCH8GTs2evjpz1/Ze9UOx69+gJLZBaootSUbs1osOFfd931qyNaLQpviIOFXzVmDCxyCj0fgXvSbPqqEPyuCC6/s23Y0oKEpRsUoXRRHp3uJmPiznwyD8CkxpRVCyBwFkDoK61x2d+dhykM0wvOiywZrTXAjYppJukQAws1A5aa7EY8dFr4kJXQEJqBzwNNXE6nFQZTBddm7ULtavBUBXoroPPpvXXmiHGqFIHjwFBGmMSl1f85Tfcy2+H3lovnv16DGgOsr/9uZ00LqoniAScHUCuZrzveKlI2+ne03yAMMF0xk0XgjWsR13YFazDppipKtOstcb0P3f4958b0RH5Qzd2nA0kDi0wYhGH6oNSi5qF+jA8L5RN57zDyIZ4L6SoU/N9mlinhWleCHHG+QmRiMY8VWqBUro9szqd9z3j3ax7ZHTEqKBhK2IReJYzLMly5SfSPJG8euXQOmEdl7/QdmVUjJprRBbFQXeOCZczaTpxvj4a0Zh0mj3qBiw7ni7GzNOhluatTlyuL7x++crXr78qK9WYjn98fdqIjkUihpAoAq4LqI8DsKmr7G52+uuqk81t3/SN0am5kkumt87tdiPEQEqmJy1VA3LXlW3fWFf9iDGybTu7HVbH59qktRovexjlYBQjb7oMnaYWtqiU0ds94L0Wwh/v77x/fHC73bjf78SYWE2vGkNU1CQEvn//zvv3Nz7ePw46C6Juv847QjeUpKh1Nlb41lIsW6ky3FfFtHhHYfuzlzwOQp1SPJurKJKnSLinT9Emk488sUPTmZUuOw6c2gfSqQ+guhVrxmQFhnMm5vTXy2imuzWjipZUK3gwNHs4A46N1Jn+s1vmkEvJwqU9yUfiNDMti2kEdMobYjoa2eeNelp3tnljWrejaR1rQ92CHxTkgTQCh6GT2mzrNY0xfXK5hZTO9N5YzplaGzGdDwqTImHRNp6NxobbE7UJpTq8H2YsNoEYhiPGlfd+UnOftLDMJ5bTmZgSvWe2faXsqn/Yy6olbgwEP5OlQ81mXV4N4S4aMRMEZ7RhZ7QKy0xAgjbOqrtZiOmECwvOz9TW2QZ1m52NFe8T276bUdONsl8o5YO6zLQ6k1KgV52Wtw61ByoRqOYoN+v5LjxpMccs6ecnajcgg65IXDRQx49pqrEM6N0KBNXrjmzAAxD7SeP1aCExY7WHocAjS+/hZjl0u709qOhjKgCqLeMHxPv/n4bzs9dnX/PzxvPPn/p5M6tUMvvXXalEYlRA7ErqPqL38fAgt4KqtH4UukczaoXYoCiN99u7g64h9cqmcRAsxNylA5luHfbmaBVc7ZA7rkIwuqw44Jg4eXCan+ZTJC6QlkKId0RUs5/3D7b7zF4ncpsoJCS6EaWorA8z4OjVa3HOKHecUs0kIi7hesK5pOtH/7FNj4pNiB1Q6bl8Oo0ueaNLtTVVoat7tSBEH6hxos9nm4YWa2+bhoL7Tq2e1tyRuSs0nOkInXTLfbai0T6nNUPPBxOj282X0Yzpx9GI5noADQNwEQ/eYnSejYGcaJPVgk4Q5zlyPs+cFnMMPSLMkppeTBemdCXGRa+lJDpKUd3bqs2TnR8a66bMjBFLM8+LaiT947kfz/7PXut659u3N6Zp5nw+G1A8GuvHvqRxT1oID2f8own1oxHlB3BNns5kGSL40YjIyFl3hzOvd4O+N5pRbVTr02SylHFegIbY6/v0XmN2ZstaT1HjdFIMzHPktCTOy8z5PHM5zQYoDFfe0Yh6cnU6HXxuRH2j+ErxQnZCae74ObCmChFtQI1dtkpm+3MfSvCeX3/58kPcjy5H1Stu2866Kuvs4+POx+1Oa50UI5Np0GJUQL9ZVmS256n3BlIUjG0J+u1wdx9rplnD5bxm3CPK8GiYS7VRbtU9VcED8d2kejp1DV6QrgCdRrwFnYjOOhFFumltH6aEw1NAqAe9Vn6wVv8zOHiAmWh9M2QhrWmzIgeD6C+c/UGnZW7GdR0CiahGv/di1Pxujehw4XY0H2g+0rynG1amiQAA3z9JREFUea9NW+s0Z34q3VMJ1KfvLXR1E+/jzJeDwtlFNGO7697duqARR4Hgm9LUU8JFncQSJo0nCaexsTBO7mMK/wyMPjXDYsyQ4eA72LNSPFSNO4Gm9GGCyptcBJ+0HnYWZWQHlIx9rqsLbmhq5uW+/XxIUWvjdi+k2A7goXd/3Gpl06hOX2uJ8Qx5a7p1YqhT5UfEEuj55m3KnqbZpEdKoe4oY8389TT3tiibq7dKiB0fhZBUHiDOUYYDPkqjbk2s/tEoshg8szlgVzqlq4PxXlUb7Yz56OP/j7g/3Y4kSbI0wY9XEVEFYOYemdVzus7M+7/WnOnpzohwdzMAuojwOj+IWERhbvDMrK7J0gh1g8GwqMrCTJfoLkFqbfUFEX8eK7nxL7/w/OUX5uWs7uUPzRdQRqNKn7I0AcIi6/HLy1eeX77y9PIV426fXuN/AUQH6NQNzR43XdfuW8qFLWcpaFNiU8rbtm0fAFItcvPe7/JCfAg6VBWtqGSIFcnZud6w1qorbJbA41zUsl9G4IyOo1pxD31gsWKV7EshlUxIlnW1wqVuhZQ2rtcL1+tNXmfa9KKTaW7vhnXdsNby+vrG9XZjTZtuTDLtKaVAgkYgEsauLx303pXq14+TZawuvlENJX5OXRwLVRrHc9vwwQv11cDUIkx9pw3F6dgUwewFdi5lpytV1Y7UsQiWjHVG7OPHxGg8i2TvtVJpWXQYzh4hz8PAQzqpZafFmpTlc6orqA2m04mpdeLsCPNE0It7Pp2ZTycJ5l4WQgh7wbRTc3M5tMbrxu12Z77fuN9WpXJvO91bgqbl2ugKbsamOm4T94lG1BjH+elfMcYQ4jPL6V+kO79PRNXIxxhqT7S2saUbp9s759u7xke0o6joHdDcLuNxLhLCjPcRazvGNlrbuN+u3G9/kNZ3SrpT053oG3O0eDfTeiFnSy+d7sBYAaAeh7cC9ByWri6bDglE95PHR1lMlvlEnJ6wfsa6WY+nOvhuQpnvFUKYNKNO9EfPz088P594ej6xLNORVYqnMdPNjAGmedkX6KG72kOxP2fm6qPjvWOeJ6WgL5xOMyFM4gDZH81ZtKjUNedxIirnEEZ7DBRfmVESqG3JuBYeQNNRSGrjpzdaK9oxFj2ycx6L39+nuvr8FPf953Wf//MeP5sIH49OM4fmse8WmV2/5dHC/vGYaOmvJiNFJ21DU/h4DA6QMECsainRjTlMYE/YXjGtCKWsSIOF0qBUTM50U2XKZyUwPkTVg1rt8jvAd4xb6XwjpRspRS7XwOUaSO2Jal6o9glbJ0yfsNWT1HSm42ltkvdBlyacMToJ9ToB83jnsEYKTnqm5julrPTe9HqwUJNoJX/ysFTtEDeddsp0k9YwxhJ8xExCrXOo1kcjZLYVSknUYoTiNPRfOo+Vy9By9Ea0idK7SgzG9G1M2wR8DZDXMeQs5nx7bFI/wJfzjtY8rbUHsCu9b2c73hqm4JijZ57EAGmKMhlxbsK5meDPTPMLIZykaG2Gkqs0wpQZNQp0a50YjnivedmR8/lJnG1H0ar72me32O125fc//snT0zMxeow9KT1OXSt3Yza75wfbEaOj05n+cB80bV50pGi1yNTL9mFgNHSmR8TXYdChcSFWJBkdo8M4OX+9FQUyoyHWFXB7nBGnzRg8MYRdGxuCuPROanK3TIF5CmQrudS1CtC1anBFM8KYMV0N8BAwJrcjphtcU/OV4bKsYHw4gNbaoPw8t9U5y9/+9nVnHu3RPUZ03UWHBOuWeL9ceb9caa2zTDPLPBHCcAS2bFvhvoq5pDTJPaZ4DEIFL6XpIOGuzJb+IH0ajYWxPgt7ATuWHqGYW/WLsR5cMJpoYMXBH2m8CBANkh0ZLd00UtnIJbNud+7bqpF5iR6EXTQqvNGc2BfDfSI6jpi2TlU+kEtWICtg+q8YLeNRuqN1j1UgZbqAoK4TRDNehlLsRwPVGEfpFt+t/oxG6YgbdndkXXl0yoRFGo7jbTR1nz/uE2U05EpWptRgUYTJ4qeICZ5m5ef2ZjBVaJtCfTfacBiAdExE2e/3/Vw2o5mjAkwHwGzGUZAEhd7lou7dCf21DUrxQ5O0a/u6j3lv1+uky8//ySPlytvlTvBWDEmzJy+BOgemqDVrZz/GMmRyAgax1G4lG7UPyVmR67eL/hgLLnrCPOGniIsBu7q9gdW6GozVwega8TxdNepSG0kjQM5fa8Ii2HLBUwlTJY6mukoRQvBMrZOqwSWpSU2T+jEEAcbLcub09AzGEKeFL19/4cuXX3l+/ip1n3X7UE5cvvU9luHyK1KnKU58efnKl19+4en5C8v5WdaiTx6fU3PH7TE6AlgVfxvJBWqNlLOCApmKSpyIANI+RPAKhEYxlLNMHEde5bqKzjMXperebhhrxK1MJ18HGG0fgOjQSex5eipKzkWK+eQtbjNgJDxbgKhMQ0vWRaHB/bZyuVyFQnKXyeXbmwDRTY2PQgyi3VPHUozoTh51im0H3WNsLQC+z8tD0fvzs9Ga/GyXnTiGbZuEn9sjrsKqS51zFhO8UiTdPu4WMCubftgSpVa1eZcYAZcsvVdWdQ4cIHRo6GrOtFxU5N32jEXrJPetuy5h6Va667U1epZmgCxjokU8NXFls35ispZZc9BOT08s5ycBoqeFEOPelRVHU9kEU8q7jnia70y3mTjd1GntzrpthE2y2FLK5KTOxaOIfqiU7WdA1FpOp1+xzjMtXzmVrN1ljkJJ4wlqS9S6kdLK6S6T9FLKbpHf9YYxakrkrPDrvU5Uc7mwpVfu999JZeX9+gfr7RVaFodI77FxJoRAqRtmkxyuY1O14iLpharSrJMNosn15JzHBo/TMPgYJ6Yo9FzrZymI7oZWM9smxmB5S2rrblmWme32RFqfKOmJVp6oeWHQOTGRbs5gn4lxkYJKNTSPbJt96vDpmiLXvnNyTZxPJ07LzDJpMHyBUqsWNUacdUHv72OOdZxe8/jD9x109OuOGmH8d3ziYdoB9C4U7dHRowNBbZcc7IpB8zmhAT4C0n9PA/oz8PrZ93T9738W7mrrSCbN+/cfhQugOimj5mUDjLJHBDS6xh7wQCd8fM2PZYQes65iPOMxtmFtF+fanul5o9WV2pLQy3KCnDC24Jwa+lihMk2zw88BFz2VTGWjtkQpGzl37ne4vVsu747CV7r7G93/iu3Pchk2zawTyEfr4+MBRLWYUJASvCM0AZO2J6grOV0o25Xeq97PDtsyywOE/3A8dMI5jMNMM+w5ttbhjMP4CaYiv8c0aAnTNrxt5GTJyYh5TTVK5WzaAOi6H4hHQW8WTJXpSJP4kEHn2unHBlzwuCbXfkrS6Kvl8A+wIx+6Ob3X3K5bG+ZizqBURSMZ3V6bRZp1aW3Amoj3C9P0TAgn7eg3arqTUuF+X2Ufs1abTNI8E6fdE/MsdLVB/RomdmLO8vOr/3a/8scfv9N74/n5CWg4LzmAohc9rusxsRRXUZ1cjsbVw7rR6VAF+Ftt/Nk+FP/2Qw7fCLm3HBPSYXiHkfpglNq16v3YtDBtuobi9mMSQyAG0Yd61cfG4JmigFH5U135e6cg9G27m9Cgx1i0qPI2VfursLp1dsMgp1Rs5602rFX2sn4GRB1fvz5jrWWYHzmdvAR3xK7lXJiXd+Ik2vHTaeG8SOSXeAnA5XKncyPnok1vBUVdGq2SvSg57uN4yT7Lh0n1Mf1GjYf0/XrzAEgFhPqg529vpEoN5WeHj6IjrhS2rM68mzL2tkTaMoZwAOGfrtdjGqrrooLF1tvuUyDH0e5147/3qN1Rm9/P86PEYvyOD26lxlL1tVkMBYvrhtqN9P5aI3dL7pZq9oMhPx920yWZVArLy2DpOJlgF6GaM9x1g8FNHjdN6g8iQLQ1gxE/qP3a7H2A0QOE9v3Ok18ue7LcbdJ0U/Bgm+jzBwhV9lnHqjOv/Qhy96iQgwY/1kR5UT+fROdSeHsXIFqyIydPKVFZoOPldGH7hYkQ1PRJG0HSj5d3NmprYa+ouZyuyWGa8OoZYryH7mh6/7SGsijkfqSLa3PwRupALxrfQRWuzZILbFujUgi5MpVGi8PEbtCGO943nFUvBAWyPoh52LQsLOcnrHVMS+bl6688fxEwKUBU1zQ1x9vZsTsjU+R+0zTz/EXc0k9PL8ynMynXT6/xT4Ho0L9JI0NoOUoFplZIpbGmzJYeKZKD6tZ36uagegzN6JgqjhsmpSwbZ62kbeNyueg4WyhRMgkVOk+rD53e0eXfqXd8AFWlWHJxuAz0Si12n7KlLEWnLJqdLWeJcilVKYJwv91Y102ov9ZAMdLjbNIdddlSnCNvhdv1xtu379yvtz07zPtAjBJ67J2lRwns/az7VatkoHYsLqziSqUrrXUeHyMzqOZFQ42V1ig6oEovqhmwXewNldo1rL5bL1pwZ3WoVG2FmgCVlGml7qP9vTujHRDrHN5Aa55eI9YUuc27ZIRtWwZWjIvYMBGjTN/aMEMyPIj8ZfEzGskhxhEN1zrWBXyoOD9hrFdLO5k0GhfwcWOLCZ8Sbk1Yl3aH5T1TdC+7P6O9mJ3SYbqTjM3aMFanBFowGQO2BZybsHbB2jMh5L0B0voxhhMgKqYMcn0WWk3c15XL5TdeX/9PXr//G6+vv9FrYpkm5vOZZYnMSyD4TskrLkZsTnK9l6YwQt/SA0Wso5uz5iGWVkh5xW5XOpbJGIITp8fnpyeCd9zmE7flwrbexw0kBhKniWmOhClgvZdzYAPOeqydMe4Z455ZlidCCHxGv/2rR9cNzqguJwRPUJBte4OaaSlTthvpdmW9XnYACFE794/t588f+1ftRYsWLpgPn+u9UYuYKElXLyHub3KwHVLU7Bj2332Pff9zb4z8L3oYUNdkaKNBYFCqZxMAXsVwzemEwXfRZnoMTosCb/puwd9Vk9yP3Z6OUsMYm+3+hciN0OgKRKkrPV/o6UJL3yF9h/xKM1ea2ygtsRpw1VJrYKITrcEFS9Q4gZQybPLzSi5sd5EZ2BgxLPQy0YsAtNxkAlC7kyd1NKsViMphsaZhjWaLtg3T7pi60spKqyvGINoZF3BUlk/qx6BmFaU0jeNIbPer5HUaK/dyq9S6UctGKxVnHFNcgK6NLCdmaDmpm2pV+YHQwEYhdOREGqWbdqGymU430g0/GsryZkdt1o1KP5A4iNZFz1Rql8Zt3b9FT6Fo5rZ142IsJTfiJM8QkdglYOkSBxXigqvgvTQph3mbHa6jQ0qgf2JEd2WzUMLG4bXG4r1SMn/y2LaVy/srIViu12fut7M0FWIQA6GBTjA71bc30dn3fhwvq4wOa4wWw/IK7ADrtsuW6uQ1NamHtdjVotiMfUqNV/pgbR1FWsla74wmZte8UJXeDP8HpxPHI25LAU3THOQqJiZtd8gVraClizkJ8rJ6B++OzOjWPK0flDwzaMnWYmtV+qKAy88Wld0t1oqL/pioG20cDnaY1ySB1johBEIM2jgXivi2bby/v/H9+zvXm6QYpHyXGLNu9km2sUZMi9RozCgbyHRtElihDIPXwYfoXK2V81SRDd16hwt+n4wdHcu+O/CSLLk2VifDFcmQv1NSo5ZODKITH+f5kG48LLr72nA07h7ZZ0fM3P5lf/EwNKVqjnrV9BHPI47ZdrhCK+2ckd2K1DFe/R1EomUoVTzdJJ3z2NiMkSxR8/D9HaW3o/ILE3B+IsYz0/IC56vc497QbNSn6H+7BBPrj+/H2jOeD2B031zHdt8NNJFYHE3YikAWj2RCy7i74+ndadPO7j/3T41q+sfTww/nTh+5NPJtk4lodaRSyFWo8Pct7+uvtZ5pqkxTkzxZbYyMPFcxHW8YJOJvH0ZZhwsRP834aSbMC+4+Qb4rJVc03bWMe7bu0iGrzROrLB+wyjzxYvCVIZuGvWdwm9LzITjHVipbqTvmGqkFRutwp+aR8yzZrvTGy5evPD2/MJ9O+CCxX8NNY4Cwppir1UNWFePE+fzMcnoixEnXxp8fb/gLIFp1NIyTsa4c5U4zcgFvtbCmxJYyeSysvbO3GNsxIRTx/EMH1vq9SJPoFAGy2ybU2aGJNFZ1C/tJ0YVfxcQHED0AaWuFUi2lWEpxJNOVRiwZnKKfFGRuNNQ65cL1fsduiUFzykUnbb1CMWAlVsNag+0CALMT85PL24VWG9aY3YlzOZ14eXnG8MIUPb3NmO4/7eyW2rhvhdoNxt3lVNsHEFpF82CcUz2OV22dgNtmtDCh0UylkKXoEqNzWsu7O+weK6CbY86ZkjI5FXptOCMboUwTJFvO7ZuNgR4x3VBc3hsWvRr5/mZwfiOERIqJPI+ojKrUwK5dFDV1shb3cHOZLvjQ144P2u/du2NirBNCkueWsG4FI7ljuWSlVh7Tn9o/v/irXkviZKj0DqW6yUL5QON0HmsmnOvEeNjg751P0K/VcPOykbYLa7lyv3/j2x//H37//f/N5f0PrtfvxBB4Oj/z9Pwr58WzzOBMIacJFyNmixjX6Tol2qN0DHQrv7dSddPuUHVSnZROWQvdiGNnjAvz9AXz5VfW9cbtdmFbr3rfZTXKGk7NQp0O8cQUxE3XhzPWP+P8M356JoRZC/iOCuqOivUvdtWunb7BJghetFUWdXDOG2XbSLfIennn9nZC3Kd1swz+MD74DzxkKzK7nvZxYj4AaWtNDNXWVe+FxKD0WjcYCcOx95Pfs1NZDz3qjwD0fwUgtYDfR5+yhlkrbqjGSIRGaauARLroRJ2lGEc0VuNTLLmKe6JougRjSt3bNINYaKhd6ahj4+y6C8rnM50M+U5Pr/Lc3ujpFZPfaGajWnFNv+VGuXe2FDl1OFnLbANxjkqtW6GBM5leVtK60kwgmCecWzE1YfZcRsngzV20cVXX/MdmjlS5iV43AcrlDvmOaasWEU3MF+KCjzPBNH7GzZVLVFwqWxVdz3D6hpuCdhSYC92q90zvhhAXAV0KRHMS231JOM2gjqut6XR7B6Kd3mXK57vSNFuTdWKsTbvT+7GGm1EVtlEg6rms8toGWwCjwwPkXmpNpqq3kIhTJk6FeYHlFATANoMxgeAn8ALInA2Io2R8cCNXzZVen9L9F9191pphvN7W4q7d/vGR0sbl+kaIjsv7K+9PZ2KU3E3nxqTf7uBoX0eLgFHz8BTgN5pO2nztGifhpM5wXZxFm7V0D70JEO1G9yjVhvU+6JhVWV0qM1Jviz46IfR9Mid0V7szVca0dZyLPQc5HxFhe1RLH1nVYsa0axiR3zNATFfa8ZgijmJ9aOokUqz9FbFlP2BjomJ1L+itqePqQ5ljlJ48inC6apoz1+uFP/74nd9//66Z6KKvdr5rk3qYRnlhX+n7RHu/Vtlxxgit3Nqg07TRuO2ajSuva/ys1gWsjoZ17V3YcRhyrRg2rPGkrYiJ5l08T0z3MAt1+Jh6Hw2+HUCZg046wOjQCjbVyg8K6t7Q/XTr1CaCarqHdrzp8AeGe7PuVV2edHC9UwxUd5hn1QZVtbkCRMd5kv2i6+yzM9ZHgxm3XrVYE4nhRF2eKeevuLISeqKZQrGS6dndRDdBgai8r53Po4vKDkbH2zY7VsSMMYgUO3sHu3cBoZJpXhkmcwJErZjldW3CaIPIPF7f+tERHvHzizyXylY2vLPkYoWaW8R3Zrr7fR1xzjMvlXluu8cFveP8iPiRiKcwTNj0c1iH9REXBYSG5YS/zRSNcClF9P5lN8McAw+9L5QqN/xIBIR7Bc1G9hebKayU3NlSJzhH6WLwueZK0vSJcf9II1Odd+eZiRnnHM9fvnJ6EhajcR70fXZ9LV1lTaJjleaztZZpmjmdn0RX6oPW8T893MBfUXN1k8OgC9bY/GRj37IA0aQ3RG8CQg+6W9+ngxJzcbibSn6dLIJjYtZbI6fE7XqjlKq0EeleDXOcrhfmbsiwX9nHFOJjJmUlG9HNwJiWim5ydPAwVrJF103uNbU3HxuWNVBbxVRkw7dGu+cCOkaW6nq703ojpY1SMl++vBAcnJeJVjO9jdv+52ejtk7KRTtQki0n5jOROM+yOcs4CewQyhstStSMqBVyzeSm2XWaNVVqJZdNQprzRilJJqLtcPkdNJveOsbJxjEmorU30ZY4mRD1HhQfWJoVelnTxabtxgxqSKHc8VqOZykZ4xzNWjxGu4scIEGpmcY6ot6UQxzvXMDHTIgJHxO4COYOLmFTwqQkm5beuNb/nGKEnglRHtqHhcpwCB1loTJWrKqttXilIPcu9Au5RfrDV+uG3hK1bWzbO7frN97f/snb6z9I251aMm6amZcTzy+/ME+G6BK0VYq0EHAxCHhX/WsfBb92cAekb8jEyfQqE8Uu9NbaKzZ4dbKMLPOZeXomn06cTydSWqk10VrGeceyCACNcSbGWWMYFqZ4IsQz3j/jwjPGSXj0uH//M49Sq9L5NUZlXWWr0POV7jfSurI5w/39zG2ZpIhxTruyaiazc27/PJfd4fAouh6u8b0T/bAxtlbJSWIKSs5iNGbEZr7GCevbw3zmk+uoj58la8wHvTL/a0Co/F5EVzzWDcDYjrPClCgkbL/S64ql4tSMwuLUxEJmo9Y4ahe6V0WknV0bleLgqB3bPtaUsq8vvRV1hC3YXjDlRt1eqes3enqH9A7lSjOVahrZSnbgagpbyRRjKBawJ+Lk1RzF40yRHPuSyekmcQ7uivU3el0EUDZLTY20NbZqyM1Q2uP62RUQZlpZqflGzTcBy3nF9rxnSIY44ZsldIkx6MtPrn4D0Ut+Wy2ZbCz0plFm9cM1OMyHrEXzKGf8KCYxu5/UnudsmjZ3lYnR+oemmTWO7sA5ySAeBfkouvYILxC2aj/IFVZ6WEoT1ZWlPexUe6VohD2gYGEqlqnIdMIHaN1hTMC7SIizAinRzbdukAxVjW6ydqediXREQJV3nqBFjUSUOem6fzIRzSlxu12IwfP29p1lmZmnIE21tmC8sC8wZt/nxhRf/y/FhIFuRWs1ljZD15pDj8cgNI04AT0ug7S7c0MV9NbGDqz3SLValcXCztI4YrAOB/JDGqLFdB9ypLrvo23Xnh3NL6sAc4BarBauBoaB5DixXV/nI0Dq1tDb0MH+/LEbr+xr8AAKyD1lHgv/B6C2N+xkndy2jevlwtvbq5gRbhvWwTR7XBCwLPrhIAy5ag7jSDUHRJ2QhXIt2aW1i0ljbepIbY1MflU33KvmBg9TAeS4tpzJuUITUJPWwnrb2NaCd0Fc/vuxJu7nRu8R8ZcQl/bH89x7Vx+URMmZoLF1/+F9oSI54cMxd3dXlWZNd5buNPWgG2wfTRe0fh1PuSZLFe1w7TJUGiC6GSGrPpbWj00F2wzOBJyfidMTp/MXXN0g36CuFBPk3zk0m9RdmTkugt3gsus+fMSCHWuqQXXZ48JqYB4puUbzR83jVFCpuX20oA19GFcOptLjfz8BoqU2brngnTQvh9N4SpUQnDIZZAq65MaShW5btenqVJMfg1c9vdDpCXK9tm5pxmBcxMWFuJwJ04m6BWkWdGn4DZwzqr1x0EQGKH8tRcwzc3WUYshVne9tpfRELp0tNYL60zSkOVaK1EfD+2do9p0PYqKkLuRPT88spxMhTtrU6cfrGdijShJHq2oa6iSycDmdJXPUegXWn9dRn5sVKS20tUbVyaDYf0v8wXpf1Qb+CKV/XDxl+tE+PAeF1KrGAjg2Z70AtpQorQn9wzlZfNWAweiCP9xKBxVSaD9jIT7ocCNTrWnOUlMzFKEaO80zEq1DSlkvzodFfTdiUXpqq3JDoJtCbaRtZG2NlViKi/MyY7pY71sFC+Ki+PMNVddWXSwauVZSET3PtokZVNoSawiUKvpc6ZaNKJMssSy16MdlpwPlnDWv9cZ6v5NSVsdCESrHqBY41tG8GGxYBYUNBfbGyIJolLao3xt8xMwHlcMYx3I+sywnYoxacDS2LWFvV5oxxCwc9jBVfCiEUFXwrcQeIxtv044ySBA2xqjNdCaEiI8JN0TWWxYKRR5Od3K+/WMO6o+X+P4+5fpttms3cdA3h/MqHE6jbW+Casmh57TTaibnlbzduV3/4PX133h7/Ttvr/+klEyMJ5bpGec8T8/P/O1v/8LLl18wfaXlTSJhehUKdAyUWrFNTFxs6ZjSDw2Sdg73tG5jdtoOvVJqYl2v+zUtxhoRayxTPDNPZ6FJeyMU8mEnrpEv3k94L1be3k1YJ8ZHYj8oBZfVyeLeWdytSn/+eL9c+fbtu1JPCpf3C+fTzKL09Z3e0QrzNBGnIABUbiJ6n+l0Qmv44HF+dPw/rlu9ypRzvY9s45tQ7bdNY40GQ0NN19JGa1UmDSlL13wZ94H9FG4bxhqjOcaDotLFvnwYc8jLOn7Kf5W5kTEQvTaTdA2lVqrJ0BM136npRitXbNuwfVNnWynIS3PU6qjNUZsVHUqFnDupdHWyVKfhJk2vplN2mW4VbcJVhbYV01Yo75DfMPWGrfJ7mzFUse6ltUxribVm7rUwrXfW9YlcnjmfZ6G2lk4p6IS20dgo6QL2D4yTbEdrrrS1UO6FnDtr7qQ6AIAoeVpL0pCpol1tNWF7wyGmWd1F6bxbeUqg+2fnT1y6QwwMR1sDbKTdbKUrzdaYMYm0gOTl0q1MtrSQtaVgrHT/HzWT0uzQLrlOwYxO/K1q3npH6Ywa3VGTrF7qSu3sCGkfmdRKex81T0c18MM4Q/GakU68tRHvFmI8M8/PnM9feX7+hdPphXk+EcMEuk9aW/Zp2Mi5RKdQu+GcTvfiFFnmBWehliCxWgalpv35UWslb4nb7cq3P77ta7p3HmssT08vxLOEtO8Tqr2Nd6xXZi/G4JExMbIDnWaKeo00CwpqrD30pvtktB+1x5HXKed6gPHBzpCG+8G66PtLOuopq/WKgJ6BkqWgtyofQMHYoGh+kL88AiYOACrHr4lxWEfN+drDXvyThzY65Zj9YG5G38Gu1H99v0b39zUuMSNmPT5K46bd72zbCqbTmsMHQ2+NKUbgLLpPi5ruKcOKSu2ifxzXczfgq8fHim2id5dGUtC4FEuvUujz4HRskH2/V3WgToW8VdJaqaljvdLfjX94HsdpZKDnlHW6e6co8673rrKwO7VKbbssy3HclE3Y+WRd6YIax95uWoVShf2lFNbeDhfo7o4LqRrN7a1WaeJjUGNEx6luu1ICKY1UBZ0CEK02K4Bmsc1Cd3g3SRxdWUmrIa+d1j25Qk8NGwq4BCbpzwBGY2V0wHi8Hh5h6Nhb9TPdSLxgFTA8GAdDKzjcl2vjmLqNHzf22kcgqh/7vzjcZWCKLDWfONJWfB7mcA3rCqnAmoTBORqDAkQtMXjyEml9ojXZU8d6UFtnKwbjZubzV9L9jZbeqOkV6wpG8Y+1Hme9Yip10W1ieJVr5XqJ3G4T6xrIxaj8xO35u60LNvC2qqfHGDixr0Hjf6JTl+HFFCPzNBOmSQYBo8zrjwd4+NIMN+guBnQ+qIP6jHWeUjv3NbFuf84lHo9Pgegwqim1U2om5Y11u7Ou950SUh7yyBgj3h/0DI/TCIkEaftCOxarfTpRK6k1yGWnjvRBR+pgtQsincGmC67Ti6c9UFoeulRtxDOUfYE0RqhMspHIzy9VgOi+QQyqjLheiPbg4SKupVFshm5U95ExQIyeeY5U/bsf1BWdTv5VEdp1Ayu140bW2u6iK2DUrR7rJEKmVomKKXVkqQ6r6KFPGiZS4j57u91Yb6tMobt0Q7wPWCO6Ru89NT9kcxq0s9sR1bkA0bGjOOckezJERn6atVZiWpYTMU7istUaW9poF0OunZgrU27E3PAxChB1br/mBiAFdoc6p06ITBCjZMyGFAmxMC+FlOtOZyi1ajEsgc89rZ9c40LbxABW9L88bqofOj9gjIDiXbeohQ1oEV5W0u0bt+s3Xl//zu+//3/5/v3f2LYLtVTm6Znz+YWn81een595eTlzfprZ1j+4pm9saZVJpne4KeJqxdQi8Q6SYijdd2OxzSCdQXbDpM6gLjVqK6zblVISvYGzkeAWpulMjCemaZHpgToYxygBy9ZGJOw6qH530GEP7dO4hI26+PZR5uyX9s+v8cvlyu9/fON+X7ler3z7/Q+ezwtP54U5Rs1JtJhemSfJKLTeYoPHeCUOPVDCnORky4ah18uYBOWc2dY799uN+00Mykb0T1E36bGI9i55x00L4hCiTPtGkfXQsaVrc2IsMbsJhTZ+St43w11L9b9oImqtGMuM4qNVuS56y/SWaEmmgL28Qb1i6lWn6kKDqxosX5sTUKqGCGsSuk/RUO+qMT+o3raUjVI2alGNYy1403Cm40i4dsX1q3xMJZhOs57axX4/FaFI961i7zf8u2VLKxLXUnaDtpzF6l72kUTJ74CAUBM6hkjfEvW+kdbKuja2rDmT1ujr3ShlpbVE65LrGUIghAlnZiCKlMRG0b67CWM/t4aOIRLjBIz+lqErFbEOXWYtAhzMAEAygTe4/Ty5UjAu7OyYoVseGsGDYdS12TEonrIuD+fFrsBhRF9YNa5xmtvovcEHRwxiWCMA1KgGTSNHsmbLGjCI46yzM8GfmKYnluWLrmm/cD4rEI2TAjGV2ZhO7xr+3gX8iLmh3pPq1H4qJ5yFGDylZGpJWCP32c8erQqj4X6VKXLJCWetZiJHoo+Y8wsxPLI4pHHYD97g3sjeteS6Dz0C0A8fa2agdUdGYtef32FnEg3jEWH0DG0Xu65SomvcTgneG+Gw11MfnHk5Jhjy+qT4G7q0D87xA4giv9uMvW6/ljrWClhqre+A13b5+GePTlfaNKrBdeMfOHZNMUoa1+CY4vT96MhpsN4TpogPgYZEjAmbQnMSvQBRH0Z+rtSP4h8i50+mnwZnHNaLh4ULDt+kQWuHCdkAonovjfdrjMM7SXFANdJ1y6R7IW2VvDVa6XgjAMzisdbrmuD2fae2KmDzvvL+/sbb2zspHYX32BuMsczz9DARVYnZX7nNN5mEMhxza6XXQi8S9yHmPTqFdELpHz+0GpSdNv7U5mE/nnsJpPdEQwXiY1iEoepU0jZD7x7vJsJ0preEaZWaM7lDL4aaKsZnXbs2QI18NN7E7s6+yH2j9dQ+NWVMNNmjtEwHU1Wn3R/AaDM75bjUo2KDx5643uMfpqIwfVKLdyQ/tYsuTdZsvTacHXTUijWGLTfClnU/OdyQRxyTTMV1Ctqd1B1dh1gZ8AJE8/pGuv3OdpsxPmO90Ygpvd6MFUlMqbSWFBdkLtfG7WpZt0oq0LpVoyjNIq0Vn4UZ5TSiS2jEZm9ejkGMUdlECNNuXBSjANE+Cjyj14vp2jiTfPqcdbhlrUoHIzHOWBfItXFbE/f/PBA9DgJNbvqcC+t943q77ui39S5ASCknRV1PD4ez40R3vRBqFX2SdAcPCgGohqFWJUbKIipZPdodsQWrlssjsuODIcheNA5O/OjoHhNZEfsehbUxhtqL0BwUgBr3oM0wens23Qz19RpRjEpnQikXzlmmKJOQGAIhiPOdNVL0tFo+HJMfjznDyU+PRWlt56aLe1wSkOIdrjlx+Rx261rQWGNF16qj/Vwq6yYX7dDzSpfaY0MHJ0CmWEexBWuUQqubjbwW5SWpBkTWDdVw6CjfaRfVWkuYZkKMap8vi34ulUaidFSn5TQHSpZA18dmYxnU7dHh363xhzFTbISYibmy1EYeC62CZunQJHFP3jbefvs5EB1d71EwDqqOUDpkJToWtQfLdtp+T0p27J2c7mzrO9fLb1zef+Py/jvr+i40XB95mhbiNPPy/AsvL7+yLBMxdryrbP2I1wEkvsDI5mVzgmr3qnVcl2gEgcdpoXP4oho6rRdQu3u/3bivV4K/0LvFENTAQsCsMUGiF8JJTJmM0m+tU6Mo89DV7nsBfHTEx23X/+L6FsZDzpU7q5qTraR1Ia0zyxyJ3hG9x3sr4HiaMN6JcRf9AHpVXaudmkYMVYt2tltt1JxJ2ybPtJGLaIiL3jM7WyBtlLFmVDHvEcZDO66LsYnp5r5b7nfE7XuV31HbYFNYegjHmvTh8fnx+Z/9sNYwT5ZSu07DOj2LeUfTYO+SBZD2fKXnN3pdpWlXi3bSjT5FK7oVWLfOljs5C92mFqX1tQFExdm21UxtGVrF2463EGwhmA1vN3BigNOt+sz2RmmGVEX+UVum24bdkMLFenKuezTH/Z64r41SpHCwvdDZ8OlK3SQjr6536n2ljsloEvOcoRmsNem0UOwdjQXvFgxhN9axLuJ8xLmIdQFrhz3px3NpQCNgPMRJdNBOnHK9c2zrSkorKTt6V0MVgxR/tdBpep0mUsnKQFKGi2Yajml+f7jfRyE3utrGDFdDmfoOv4ZOx2pESIiOEBwhOqUfa9ZoM6K1Uh1wLZ3iOtV1NTCSKWCcFublmWV+YVmemJcn5ulMCNJ8FMaQrGkpyYTofr/unhD7Gq1/b2pHWatQJ3vPtJooJSiI/YxJJPecsH5u9N44n594eXnj5fkL5WtRYBp2wKaiCrrq6z80h82Y9Mle44er7AcwKv82/nxsqhe6FmejHlIWFro/O/kldjcmepyQHu9p7EOPYPSxUfs4/fTe700viUYxO91xvCnz8L1G14IRM9daw9VGd8exsO7zbMsfm+lax3JoUdlB6E5PHd+L7LPWSpzEvCwspxPz9UqMkZTqXk+GSY+TFSC5MO3nDiPGkt7bBxCPNoxFEy33stXc0mEsNICO1YYL5F7pSn8tqZHWQtoKJUlDjm53BpJ52IOH0ziIuac4/a/clYmTUtprlnHMRnzQmF7+R5qUw50fBaMj37urXK3ThLpvupiQ7V3hjh338Wgaqt60DiA6zspo6O57+z7zElmGNsHQ5ripkio+agDG+c6VvmVk0b5DleGRNLAUVLl+yG3GMTTj2tA/H87UsKGwarzTtGkgzR99f1ZmubtGGfb18XEq+njlfqZZ1AH0w/DvAKNOwVdXmZRvYm40cojl2jMah4QyJsRIqWSIQY55aSpb6x4bToT5GRefcOGMixs+GkK0kiZgvVDFt0wpNxkMJsuWArfVsaaZVJTSawZIl2PUTUcyZ6WGtMh94B7q6o54dXjn8CEQ2sQ0SeRijJPU9g/3sHn47zhe3Rh8iCynJ+gTy+mZaTnhfaR3S8r1f8w113mPD4HaitAZkM7qyAoddLScJbcy6efXdRN7+NqkC6eLjoy3u55AvXjt6HzI/5pqX6pOeMaC1tswOTEylepDy3lsyPuWrBtLa6ItNeag/1p1ThvUk30iq+6DQpc2WqYYxRv9eB0qstknMLr5D8A1T5Hnl2e+fn3h5csX5uWkduVWi57PJ6JDmC8LqBhqCFW3kWphy4n7tuG8Y2KSgieInlAmRHLxt17JeeRs1h2M5tLUec3sdu0GOba9tb0DOjQjZuiPzKEVpYlZlcQwaUdqbJTO746+VinP43t3Wlmt1FywueBKxdWG183QGrXz934vGIbGbt+Yx2Sq973b1PbN79gEU85s68qWEvfrlbfffn6NP3bP9uXPjNtsdJEHddzsC9n4WJoLmfX+zu3yO9fL71yvf3C9fiPlDe8DL1//GyHOTPOJeTlxWs6cTmecKdT6SkrvbOlOykJJj0E0Mc47Ukq6WLM3WQzjT0fwE9bOSFukq44mU2tWQwQ1oOmFbbvxbr6Tc2Xbskwl7zPTZeJ0fub56Reenivz9MQUDSGG3bzDmEF7kZ/ZGR15o/j4APTtoZP6p8UmRuK8iCOjEZdMiW0CS6V5S/WOcAtMl1fCFMFJxEKplW1dWW9n6kvGGojO05W2grG4bmnW0RVg5bRprpU4w7Ym+rmsRfC2raz3+3EP6sUgOcd9vxa6NshQzenQnfZWlW1w476uWCd5XGGajqJPz9untKv/wMPoNfezo/pXP9c5w7J4au0413DOkFIjbY7UrDSFSiOlSt0ydUu0stLrRq+bbJRFqJ2pGHnmzppgS5onl5vGasmzDUfPKtPF3iuWRnWG5pFYHC/5mRgLztOd13gViQ/JvZNRUx6lcV5vK92+c9/yPo3IuXG9Ftbk6QTRfxlLzpV1u4leersK/ThlyBWTZM2oiJ5IGjhNDX2EdRHiRJhm/KTmRHESirpXF2lTP7nCR/FiZBoXIn2aWeazxprdWdcb23ZTQLpSalZn7Y1aM9t2Y9vu8lxXtnSn5CQmc0N3S92nGGb0L8cNWMd9qdRNO+i6Qm9fZnXInsIORh+bcHQHXXIcW7P0ILS3VmW9NxpiH+LE6fTMcnpmngWASsGE5BT3OyltbGnlennn7f0b7+9vIh8p+j66FtgGMchzFu+RiXMXfXEpSYrvT6i5Zl+j2BkOKSW2ddM6pan8JO5UZJCp2gCirbUP95F9aHzuMTP+AKKj4Bx3p4Ctw8F8d+8fk+g2GDUCgB7PydFoPe70x/f2YU8yRwzDeN0Clv0Olvc9E3YAzIeGKxgs1ipQsV2px+3D7/CfAlGDt+5w9R3HYnRptWnXtKbq2rNp+vkBPpx3knl9OvH88qwNicbl8sr99s623RUoWLyXpmecxMDPegiTUKAPTxJhSwzfC2OlJhrxNMba/d6U/MUgtO5Vot9a6WKGVDo1NWo+zplTWjDavMA0fd/q+ar1aFYZ1ON58d5pTSPnOYTA+XQmhLAD0cPz4JM1RQGY6CS7ANA2dNw63VJXczNMPJvoPW3rcv/uFHvRibaGRoWM2krdsx+qoq51hcS9gKmipW/lSk9XyBdcumojMwn91CWq3Wh9pRdHCx2rZmXOBZyLOD+aicIo2DvZRv039kiwByAqh18nnx2ntXnvRn0E5E85Ho93cz8A6A8T0b8yz9EBMKZ18Wbpco21h/NkkDicEVSxZwzrs1ZIqWJNopTO6ire5z2ipVOFckyguwUTTtjpjJ8icTaEWeKyjLGUbKj3TRro1ZNLJNeZrS3k5mgmiCxAr8tudOI5XqlV7WYQaYHVe3isE7VKwyaGCL1Lg2g+EaOYFo3hk1UZ1t4cMIJbQphYzs+8fP0bxlSeXr4yLWdcnEDlk+3Rd+CHx+dAVEGOrRmbpZNUteuzbasK5islH9z4AUZzTnvs/FjYup7I4dSEs2oVPRbo0VUZFDLpSowF7VhUD3DS+7gYVQ7dj8mrmOY0veDka7xe7GJxPZztRnZkh65c6b01iYrE+8NB1H/TzsvQeQTjOZ0WXr584Zdff+Hl5QvLciKEKIugalU/6+waa3BBA7i1e9dBJ3zicrVum+jOQhBXSzV0ko1IFvdaK/f1JuYQdqN2Q94Nf+T4WSfTWqtTga424AeVulLbsbl0PRa1j2VPXpsbonCl9AwrfvuQE3sAUaA3ai+4XPBjeq6bw85PD1GmyNbt+rrx+FMndky3nTrYaXW2bYnb/c66rrx93tg9fu4414zFTwozmYzKuTN795CxyzNodtv9nffXf/D29m/cbq/c7m9YF1iWryynr5yevnJ++sJyftKcOE/Jb1ze30npyrbdyCWJ46XzzPOML47b7bZfi3vxowuBtZbgJ0I4ywRCgWhKN+kq97oD2Noq23aThXErxDURwooP4pJ2frqSUxUw/2QwxuPDhMGJaZRO9BlHQDfPsfA+NnXtOIg/eYzQZLlJhR4rE5OGpVCLAtEgzm0+RnECBkqurLeV6bTSWyOGwBwnnI9KMbHgPQ604ZEpW6KWpMW7JDuWVsmqC93ud9YQ9nvS6TXX6nxca2ONaZ1edXpTMq1kMSm737lcLtxvd+Ky4J5esPPMYTpij4vruNrGFfzvX5yfft2/D2ydNZwWT20DiDqcbdAzrViSMcp2aUJDWzM1rfRyo5W76POyNLSSuu+lzP5nSmLgkAedvx1W860LldyYJl3kaCFIR9ZbYUN06+g2gouHG29vpC6TpTqaYb3Rbhtb6bxfVlA2RW+OUhy1imardU83BpsKcJf7YXunpistJcgNSlOtjmSKikuolTw85/Ax4uOMH2BUP3ZBJqLOBpwx8PNlXE37EPfBEHDOMoxgtm3ldn/ndn/nfnvndof7WjQze2VLK+sAoWklbRu5HC7nvYnZ3cAsw23VjHsU9kLfmPagL2xihuMt8xSFCr9EiU8KTjVLVddoj+mBjj9AKXKshdIsHf4QIvN8ZprPTNMJ7yeMekqklDAZ1u3Ofb1yeX/l9e0bb2/fhG6rDVmnTukheHyIuh4Z3KBgtkwrTq+Dnx/wPTrkAYjmLD4WOYkLvndOgKgWv11BaGuHgdSjK++oWQYQ9d4rHXfEpY36Qwvbvcks3y8AtByfM8f5GeDD7VTaAR5/4rTNAbTGubYPz8cp6I/Apg7zoWOso01js7e07ABrziKOpA9A9LP8bX0PA4juGGr8R5sLQ/pQm07XmuyfA7haZ4lT5HQ+sWU9Vq3Te2Fbr6SUVbZliJMlRAGiPhrNidWaqouBV94SqchxxzRxCHfHdMooSGE0U5zURdsmHhy9CBgVlGAwTe4dtzcMALMnEGNsH75UgLyOQyvX9nMxTWIWKH4B0hBZloWocqb9nO2w688PHUQKaOkKmNvYU+Q9jffWu3xdVzKErTDyLwcYqA8TUbU7AgxW3/7Yrrrp1G5IrZFbg5Ko6U7JV3p6x5R32vauPgMCREtKFDZK9dQM1VXsnqse8aHgg8QbtlEvDo21Is62DwP6/qdBpkG1dWzV/bjLEiVA1FK0Zpbnw3W///ERiH42FOrsmFWPhxyQ3g45BUbAXdcD1pEmgLg9ybmoDbYk66pLDWeLUPONTG6N6QQHwQa6nTH+hA1PuJjwkyFMkiABnZIqt9vGekvkEqh9oSLHtzpLs16BqCBEMxpFjGalUXaA1J9eox+rrl3ZWYKXDHoZqsngJE7T4XC+X6HHsE6aSqIrPT098+XXf8Xazvn5F6b5SepI4xnxb589PgWixlrNXYqEVplqYVpnpm2RiUKpbDmrI6pYlGc1Ihj8/QES4aC5Ggnu2t/YAR6Pkz+szx91Bq2NS6vuV8vochxxGzLNq21Mx5r+nr5fXCqhE6apmsyIJmNQtaQDjzku1P342aPTvNMzrNEN3fP88sTXr1/529/+xtcvL5xPZ9VJKv3gsR798UT4IIGxRkwjnLX4oKDOeToay9GGQ63BOOlMxxh2UCC3rKU00ZqKhgtAqG3O67jfBSFu1SqO49buE83mxeJcgmvN2F/0WLN3AVtvlCY0JOs1sVMnpOyLy2Ncgvy9dYRilzIhVGoUionVAifGsHd5H6mgTa+rnVJrjtdslZJkrGWeHFO0pMVjWv704t+viT5iEPTsjE6vPYoArCzUco2JY2HJG3mTCUfOG611Qlw4+0iMC6enXzmff2E+Sf5mnGYsBWOUdpZvEqNSMsZ4QhAqRIwzxhoF5EfRIdN787CQQmuG6KMsGN5xu73JdVyuWtxnaoHmzU7LGTQi5wNOz/WYxg/znrTdmeaZaZrxQTqau15pB6APU2q9Jj4xogPYp029VdnsJeFNgtTr0C4oGMmZ+7riwg3rI60b3LpiLxdy2mSBbR2vC6VTgXwIkW29789SilK4PMNiPaeN2+XC67c/aEqHttYyz0IT2ycRvcv0Uwv1vK5s65283shpIyvtN21C+Q0h7Po077SpNK6zh031Pw5A/+89nDMsk6M2yRIMvhNcx9uKNwXaTMsLLc+0PFFMpPVAKY6SECv5LCH3ObfdWr6WJkYIpYhhxmCnjHuoi95oTNSF8uMIk8dPHhsd3QeqixgT6T3oPShRFLk6cjVy3dZK64WUCzZlXUuHbb2n90hvE9bpBKLK+81V6HulaJFlHd4ZmtN1SFqOahnrcX4YdM1i2OVnrJuwLmLshLFiWtSN//Qa70BKK9ZBU7dgcX2Vf5UpoDQjRccvuc6lbDIJTXfVTK6UkqhNdJNKRtS1lf2+c4OiaaxMIztYW/UpBi5dWUfWCOCIPhCcPL2a7Qh4HiZtAWsCZjw1LkHnK/uaaYyTJkYprKs0B1rrpG2VyZVBJsDbjdvtnfv9nZRuCvwOBk/wlhg90xSYoq79SqX0mpftdW3/2WMUWY8Pq+wiH7w0/hQMWAVuw1lTXDYPD4vH739cdwcQtUrLZUxRtUnS29HsHqD2wxTUHABx1AzDIXdMMo3hw1Tzkf3zCHofX9dw536k5h7HRRuEeyMNsMOfgw9fJz+z472jNWkm2M9M/syRBW6NjgXGVBIxdMmlsG6J233lertjjWGegoL9x2mzyJimGJmmiXmedR/zGGuovbLlrtjQihzFNKxF3UuRgt82ehV2h5hTPqQAIPu4D4E5LjgbhOWRGx2hDHZ0SkUHc1CmvfMEvV+c8+q6K/q/0fwZoGSs+8uy4IM0k40x2mSRn2OdmFyFfTr/Ybz26aPqUMV0ZCr6GFOiLv5HbKL8YTs0C80MKqvqdtUvU4Y7O8bCyLdSu9GfLTTP0sRUbCuFli6Y+x/Y9Q/u6Ru39A2/vZFTIuVCwVObp7ZAcYbiGtUW1YVaihvrbNAIJ49zQdl08sTqevOhwaGvrxfYEiYXXFcqOaJcGs7AAweMXXd/PFz4/c+f+vj40GQSQP7YBtuHFQNn6MFzTrAL+/oC1XQxlmqqsHJyvXSVUIDoX7M63+bqWBNcrokpVFo1tGygF26XO7frRu0z3XpwHTM7TJiwfsbWgBsGWnYMCuQedQOIekv0lhBkram1kW0nZHH5ndRgdJokPUEYnWP9lUido5WlA5EQmZcTrf6Csx1n4enlF4kkc0EZtX9d83zumuusWJ8TMK6D7aSyUXQqsKVNDAdK1mKlUJoO9s0Aj20gGDl1Boa50GEc0PcC5gCtfbQDZfLEQ6G7XytH0TOKvNa7iLp1undQlMSYZt8oehcXsnFZdr2wumSO7kGyve2LvRkbhvcfbNads0zTxGmZeHn5wi+//Mrf/vYvPD2dWWYBiYMCMQDvT0+EDyyn8wcQJABXHRUVwA1nsG4GlSzgw6RHSEBSKY2chJNdilILjMN5ML0fFKWuDYN9wdbmQ290xsah61vr+/EwepOWMa0tBeuqvBajr80MJ8BhsKCTaCcFUymVtGVCyMRY6XPXjuG0dxFlY1S344cYjjENGAYNXjcHO7o8AeZoqCVQtp/rQ0G7tEZ1E00m46PRYa2VQm9vPEjRIsYshZJXtvXCtl5I6U5tFR9mlviVEBem5UkcJE/P+KA3tIFa3qn5Rt7e2NZ3tlVyc52fCHGWiIrowRQpFN1RdNDHpgTDNptemKLnNH9hOZ1xJgg7Yc27BsuYStQJ7ij4ncu4IrmsxqCgt5HzndvtjWU6s5yERrwsJyY1OLIu7FpetJM72AjDIfGzFX4Udb2LgYs0FKTMFtMEg/HS2RsO2n7b8OtdzT+Egr3d70ITL4VpnsVcZhLjpWleSGljvV1Z7zdqyVhj982f3ik5cXl/49tv/ySvqxRFIcJXwzyf9gmLoe9OsCVnbpc3Lm+v3C5vbLcr6/2KmF5Iti/PLwTvmedJOr178TzufVkb/6vAqDOGOTp6NxQPUzDEYIi+Ez3YvkK9Q12hbpS8klOi9UTKnpIrdawh1ahWfOc4YE3Fqq7c2E7fm4wGsDphVs38HJnmiJ8EEOA81QY6gdw8qMOuGORYSjXqjCt7yx5mZ9CGloMe6F20ldYhWsdsyNUTqhNA2B3GCq1WtGXqvlgNtQk1eABR5+fDIdpOYCcwE91EGgGjz76/kB8evcs10Qvee5KXiehY83NJSr1d2fJKzjLxTGklpTsp3QWA1kTvBWg6KDDiHN3ZgadTFop70BD2ZhSEFpytIrqn4pRm6724yTrrMN1Bk6c0Zy2tGZyNGDdhbcDZgLVR3UHFLVu07EUZNklkH7mwbUlYAVMgxoC1kMtGzhurNutqTQzdpUwpgzo0isPiNE3EMImG1cu/z3ESoGV/DozGPrBf82pOM02RZZmZ5olpNGt3TZ84bVor2qlHp/xHb4IB+PanHeyujjF1j05pD2B2gNPx2kaz9HFaOeqSQR31XmqiMX3ddZ4P9Up/WFcf3+/ja3wEr6Nh0c1RX+230L4sHbq2g3LcGc7LPz3ePBg5MkyVjvuhtUbKifv9zvV64+3tgnOW02namxDyukf9dAA+HwMhht1JN2ssRG6VaiwNpW4PaqxzWBzNQi9C/e8dkpp5yRRQ1qQQRIIS/UzJ4lUgQFRiCKUyq5gu90hwgegjUwiSDKDNLx+86jvN/r4N4INnOS26v0ktNpoL41oyewPC6fV8gNnP56EywSxFj/UOdDzdNAWh0lwRYKTTQ/Vr6AbVfY8/lWbfRjTfqEm7GDf2EU1naBiJXEuJdbtR7t9o13/QLn/Hrb/j1z9w6V0ziS24hd48vQWqg2rV0HM0z6w0BI2TxpnoRYO486tLv/VBhiT7VFQusG4stjdMuWNyUvquxvU0ocHKrHpHCMezj78f/wJS/336aOOXH7K/x7ugK56R2ljvtRHrxNCpDibg6CBYmWjvQy6Z7uYGKQ+2keFCJnCj5ZV0c+Szw1K5Xldu141uDTaccJMlxEC0Cz4sOBtxVc2qrNTf2qZQICqZpjFYYpB1p1Qw2VLU5XdSTagMRCZpoOh6I2zR0VyTq0bYGBOcGt4ZTsuEs/D8/EXkGmZMavUa+eTxORC1BqzDBVncsYZzSdQm4PN6vyttTmx76jB2GVOSfoDFfayri+9+Mkf38EOHcfC5zb7w7jTchwvqx07h+NzQa+hLoRmD47CmF5582xcKMxZtjE6cqlJTR6i2LDLeGNAJ1TAgEjagFyB6PvPy8syXL1/4+vUXlmVWLrahKLei8fmFH2LgdH7aO0HmwczAB+kaDa3m0cka1Cyrr7eRcmFLhXXLpCQFw9Byjs3G6kXR+0HMQOkyrgvNEyMC/MY4Jw1xKDsiTVo7DJV8qIQu80prxuvSXDw1vjJen8P5WF3cxNRB+P4CVoI6V3o5F9Vqp7Yy8uSGdtE7eTpntNCSBb416dDfLpMsGD8e+ofrc7yPne7SDdZ3aXVpR8kM86KWaTVTyp2URoFVsM4zOS9T0OdfVaytOUpaVNSyUlImbW+s63fSeiGlFYwE2ocwMU0dH8TC3jot5q2T1BQMpog2UQCpgKTeLVN84uXpb/QG9/XOuia21OTnowHqo2BwR8Hi6KTkWNd3jG1s2w3nIjHMnM9PnM/PPJ1fOJ+/AI2pL9gQlR1g9wW47ffqp5c4jAVM3QrH1HF38JNOlVA2ja4trauz7cp93Vi3xP12hVapOXE6n5jmmXk5U56edifp+/XC/SrT0967FA/GYGiUtHF9f+Pbb7+R10265cuJZVkAdnG+HNtGThvbtnJ5/ca33//J+/dv3C/vrLcL1jlOp2fOzy+Y3rTrGDBOp0fto4Z9TA4+GfD8T31Ya5iCo2MIXdwFBYhC8EA7izlR3WRCnxIlFdJaZErQR96ckW40IlSS09gwtuJspbtHEwKjwMXh1eQnhIl4mpmWGRcn0YMaR1M33t6svoZOK0mKyiKufznJhKV30fnKuj2mmpFhImad3PvOW3JtEuGgBjzWirbMaaEtQBQBolYYJ9ZHbJBJqPfaYXYzOAGi8gw0PENJ9bNTmPNGN41SHNl6HqdbReOdtrSShpmaRqKNfOdaVdPcj4YbzoqjNyiV04mmXp9DI40B06qYDvWKEKgKWJlyOAfeeg380AK2OegyuZf7OUrMkw0CRtW1USai0DmMCXvPcuzthvd3oSNHLw6lzlBbpjV5fyWv9F5wLhCCZdJJ5TRNTHHWDrwwGoILxCAAdZ5HMfS5xmKflppDFxhjEOfHSaasYTcPGxNd+ctfgVABaO6goj7Qco89sO1TmOMpP3v/fqdruDUPv2fUQ8OzAgWsB2j98eeO9/oZEH2kCn8ke47vl2arVfT4Y10mrBcFu39hVmQfaX/94Rzo6yxFwMt9XbnebnjnJTKufpw864sF+u72PLxJXAjkJr4JvZbdT6Q1Q5DekUS2mADW0IIYa9VWoEokn9GpNEaNVJYzczxRixqtNbhtG35bwWQGRTaEyOT1+ouT6OYUwIXgcf6xsaA/33sslilERo7rrv38caF4GNY9gvjPHrUKu03hD8OcD1Q6hJUpqdJxe1cgKth0V9XsbMD6yURUi4R9moeey3Ul3d/ZLr+T3/5Bfv+/MLffMOsfuHwlukjwEy40TA+YHqm2U22hGo/knrfHiwWMlQgc6/FBjBJDlAau12HPYKR14+nWKQvqjqlJObIN7JDh6fSRrm94QMFHMPoRTn5KzdWmuu0yDR17thj/mA9f93EjGCDUHFpdNFXEKJ27S507KoKiLy1Xo1NRy31t2Hqnblfq5qibx5nO/b5xvydsmAmLIfqANzPWL5iw4I3DG0ffBz8DiHapk73ZJ6Ix6FS0AL2RvazJc4xk56R5F6adNfPISHlcK92QPTjxyKE94ZxhmiaRa9iDSfNXj8+B6MMvxVl8F4czmaDJlMoYw+164367i0nRJi5hNlmyMaDUqkGz1TWB/gAyH4X9g04x4loGLfdnoPPxgPzsgjoW+kPz2btQ7Ch6U39YJ45pTu9qZR5ko4iTUB/HhuaDl4uzS3jtPE+cloVlWfQE+N1FFp0ZMRwMP6lAp2nm6y+/yGsf/9HpiUxs5ILAyLRXKFEbrXfR5RYtwNeVy+XK5XJjWxOlCB1mAOfH4p+ugFdpi60qWLVy68nqJFRnxRA7lX98YtyLI/+0ti7aUeOk2xWD6KuiTG5dDHQNJBldsdb6nr/lVedaa2WawodN2zmH08iSwdV3wtjBWyQewjTtBAPOEPzPj/d4zTIRHXmIo4jouGoxqManJ2jDxTHvT2M6cZrwwbG0E9Y6puWFeXkmTgsxTKo5zNSyktY3rpd/cH3/P7ldfiNtdwwOH2bm+YVpnvF+xdqVw7VVTaw04w3Kg9aj0psUrwDeBZ7OL3SqhG/zd+63RMpJrsFe8SfDtEwsyxPezzg3CT3GWqGbqq7KYHl9lc14Wc48P33l+fkrT09feHp64Xx+lsiXKIHFUpQpDeiTx/1+53J518w3JGaDqtpNMSHIFc4h8vz1F77+8re9K1dL4f1y5f3tjfv1Stk2Lm+vvHz5wvPLCy8vX6hZjkVJmbfv3/n+7Ruvr29cLhfW+0rJGdM61Mp2u/H67Q96bSzns0w0u04lnKWVxHp5o7bGer9K3Mxv/+T3f/ydt+/fyGmlpI15XphCxOk1OdyxW6vCRMBoB/hBU/VfAELHY7dq71Y73kAP0Dv1dKLXjKHjjJiQhBBlKhVn1vuVbb0KHTnfSWmlm6pGCMOkTabJAwxJg8FjTJApf1DDn1kyyfBhdz6sre8alZY7LWfRcpZMHx4EpVGLrkWjybmX2aL87T2J5rUZbO2UFnBVKZ7e44PGTOiCIXpJ1VUZyX60PuBixMWIn2bCvODigvUz+Ei3gWalAm6fCURBqGchAJLGtwMVxHAr10ZqkLshYynGUY2jGUszDmzHqMW+boDach/75wCe4mjdlTI7Nns5L1KstrE/NmgaJt6bUJ6lUPYYN4BfYITDH8Voo9ZEa+vuuZCSrCe1tF1PJvIIr6ZAAka9V1CjDr6Sv7kQY2SeZ51STmLzHybV0Y2JqIDT03wSnwV/5PH++Hi8n8Y+MQzerBlAze7fr3BOG+La6TcD5B9Ty/HxDkofvm40P3bAySFREAB6AFtnJVZkTCytbsJjIjK+rXdUinRQ3MfvfKQK71pg82d5xI+10M/XGZ3W6RdI0xuGC4tzUkD/SHf+03Hf//tYmisV3zulVw/AJoX9iFbDdHpr3G83Xl9feXu9sK4S40MXCUecJlrPtF52uVSrnWoEQfUKxjuc7xo/5/G+41vB1Q3TBiNLmmJ2Z2dEpYPLtO++3dlSIjvZ262BWQHoHGemMBF9pBaRKohWPDBizfZrCJ2WP5z7/cD046CZAxN9OCd/9RgGPcfKZx++R+79oUvser/Jfdfk0xV6F0r5cODtre/1tlZ7WiPIetOqDGNKXinXV8rtd/Lld9Lld/LlD9hecelGKxtGzaSwm0wsTaC6SjOZboSJMkzhjndrGOkVxUeKuwiDZKeZu32CjJ/ADa3ihiNhcJheZAzWK73LnnugQwV9OwJ9GFjtH3x23NWXgMH3MnsD6zinXfbBgXMfBhu9td1bpOk6tOvQxxhVGWWjvQAOayecO0F7J2fD2iqBgqsZ7+QagIAPJ6bTV+bnfyEuX/DxDH7CY/Fdp8f2APKWRnCW6B1TsEzREaMjBIs1nd4tyTuVSEy4UiX1Y5wPrV26Xn88XNp7fWqM7Ptd/Ai891IX8lFO8tnjUyC6g/0xgvWOeVmUW6wxHSHw/vrOW3jHuqssuma4wMlFXbrQXduwT+PhxOnmdnRYBxVFtG+9fZxajc6e+WEBHhfGIzXlWLwPPn/vqjlqVYDMOJgPU1urC8lwlg0hMC+zCMynqB0xmdSVXKQTMM8spxPLvKhO7ACh6KVwrEs/PxnzPDPPY7OV9zoy43pvO0UTUIORTOudlBNg2LZtdy2WQOWNkmUiKvpQoeoB9HrctNaICQPdga+06vQ4132SY7reQGr/LBhV/j7cfcVdreObFCjGPjhQzjNxmonzQoiTaBHamAxJ5lFKmfvtDtpRFbOHSXUkXo0ixGRAbgC0gG5Y5aULEO07YAahInz2ECMFed0fJqKIJTq9ietcudPKTSaaRVxBxzUSwrIXYc5J8e19FGqmk5yx1jI5XVjXP7i+/53v3/4PtvubFhueGM4spy8sy0Lvr7S67sWOMVbiILB02+ldTI1yrbRSKXXTHNmOtZ7z6Ytkg84n7vfC77+/UkvRjadxPjnmeeHl5YUQFoJfxGk4pYfnSs5p70VMceb55Ssvz1/59W//yt/+9r/R+3/jfP5FFivrkcbaYdf/s8f9duPt7ZUpOGkyRC9dTdOwzZBbw9WOCzMvv/yN/+1//+84Y+mtcb1caLVyvbyRU+by9sofv838+re/8S//+q+0nGg1Q5Ps3ddvf/D9jz94/fad9/cL1+udnLLQymtju115+/ZNNnbrWE5PGGMIqgerOXG/VJmEvr/x9vad3/7+d/75b//G2+s3TKuycX/9SvvyBefMbu1eayY3sXXHGG1e6ZS0H2Dq/9+PvXkEqmsUIGZQ6lM/Y0FAgpNM4GmamaeFeTpzvbxyvb5h3Rv9asilAhmQTdR5j2fQDwelKtBNQDbMBR/P+HjCxQkXIw1LyZWWC9lkSstSoBZx7m0pYWrC1EwvVQBPfQBYo6GmG3rvDdMlT69VMYSzdcLmKv4G0eC7291PndL33T7NF/6M9R4XPW6K+GnCzydcPNHtQrcT3cpEtBtPo35ywMHHCR+jmLXUJhrPLg26Uiu5dXI3pD5AqKcaL2YTtmqTzUB3ak4ibBqJaoAPeZLa+e77x8pEYdB1Dc1oFnOX67U1KEUnh9aBjwR/Ik4nrI+6F0tsTFVqf0pJMz+FiltKUVYRIsNQk69HICrRZX43RJI4s8Aya3bxNKsxXRRapj6nuEjG8SSujcu8yL+5z3vmBxA9XL7HLTaMcZzfnWWkKNcM0R9B52Nt8eHJUYuIjMd8+P1jmtZ/eB3juDh3TESBXWoirwdkvx8SkZHjPcCsfQB1D3XPD6/3Y0O+P7w2GJPOAR739ccouBGcosdS9MX/kcfjVxkF/sF7piC1knd+B96jzgMBOtfrje9/fOP17cLIOu5dpEPTFGltkvgnKgah25ZcaUbcS+3kCQaMF+ZQCFB6xFWPqWOqpkDUeJFQuLADyVIrt1WAaEqeXDYMsMwzy7wwhYkpTAQXyUmN17wAUXHP1gjA0RgzxxHZT8WPYEcPfzePx+6vj3WtnWL3Xtx+rY3aUkah7OWmUHNlXx0T0ZGO0FXLv6dFPDQ8ujICTatiVFcSZbtSbt8ol98o778JGL3+gckXWr3Tm+T8uioeJCbfoTu6q3SbwShrpcla2NHJqznWsmId6SEpYZh4GScO3SYu2CiGaM5VvK2iY+9VIrt63fX2UrNo0+2hrv8ZEP3E/2zHJqj7rNTDo9Fz/ASz30ZmH2Dt7M3W6GOii9ZGpqlJkXyP0WVESNEe6yZ8WGCbqMWx5YprBVMaMVisi1g/EaYnlqdfOX35V/zyK3Y609yM6x3fZE0eGmRDx3RL8MKOmqJXIGoJweqeIFTdKQTmKZJdE58L71XKMfYcDkfj0bwzRiZBbuQPDzKt7kOP1+X/EBDdJ5DaXUDNIJw6zUoWiCy+siPh7WELvOkkUmJEDFD0J6uD7tBX6OLb2wO1F/aN5JNXpyfSfPjMx8fQYjzq/MZK2x8W3YcNxgxwBENMH6PoFeMUCTEQNMezNXl/3luWZeZ8PnM6nYRj/TDOPjYCtGvw8zc1zTOn5Wl/N72LSDxnsWxmpxcYaq2klDFZPt9aO6JztqQB4eXBkdaJy5W0Zmg0epdmgWg0REvUm6UasNViijmmn80IraDJpHG8Dzts0a3ZNQVCQ1BjpCAOlHESE5hpOTPNs8QntEObWVU7knMBVr0uxlR0ordOkGaQLHZSFehp1g7TWFD1PFp+2LR/cgWVJsTyOrqDbe/57M2P3jUbMSdaSbKYtob1om2IccYH6ew71ZIYe2S+QaXmO+v9G5e3v/P2+ndev/+dkhNxOjNPz8TpmWV+Zl5mySMt2rwZphdYnHEyzXHgXMNZyHTN5EvknKi1sMxnlvMXzucz7+9X/vjjm+RBFtHfiY7MEmNgmRfm+YneLff7XZoCtZKAqg6AJWdu7kbSuBPohBg1mmhhnkQfOOhDpfY/7b3jkdImcSnNY00Xd0xn6G40NIzmzBqwTvQixkJrWOtovZFT4na9ctPJat42iVaplZITtUhG4dv3b7y9vnF5v3C9XLnf1bgI2ahKyqz3m9DhlVJrQB0YV7a7NENu1wtvr995/f6N3//5D/75j79zu7xLhzF4zqcFWsUboFdKFjfe3LWL7YSe6fzhSvlf+diLdEYjVqnReNo0YXpXUKKOelGpkvOJqPElLkwY0WjgQqQqhVQmMl4phRHrIthA7wFMwHkBoi4sqMZDp3wbLW/a6ZdsYzG9y7SSMLVgdRKofiTymq26YNqjKOgMEyBx2azDZK2KNr5jaUYD3w0YJ/eSBIXr9Ac+TkLnE24+YcKJykQjgo2y9jiP6eWzo02Yz8R53vNqu97HvVYxmLCePiaPRg2CqoBNg4NWMF2Kwaa5Dc5UGtqQ5NhDhPZ1TBmM7l27ph2dBCP055GlId17w8gQ9n5imoQVkPK27z1iXLaKA/ntxrqtjJzw3tGiSoCedQ5X1aykBmoNTNOEtZEQZrzSveZ54TSfmBVgOhc0FkfiHWKYmOMiro3TwhSXPdLrs8fYu8fFPvTzjzExPFz7eifsRf3PJo4PP3z/HWOqUXcZkZzzAfoH4Do0l8c09hFEjqmnuPzq72lt37dF+y/7mbVjsmf21/EoY7LW7oBWfsyjVpU/TUiP6cQBOkejyvRjvzSfaHIH3jKGnWn5+LDazItxmBAFNT20+1TdGCP7TBJ3++v1yojGa7URfGBZTgJwLJK72xK9JehF77+G6Xav8WQK2PZmjHWHJMg61QeP16hmVjFOzPOJ05LwPlBqxJjOaZ45LTPRT3gbhf5Lpdeq5jo6ETWH/hs9fqMSfTS72YHL/hFjyvPYEjimdz88htOtMcc9PpoUjOSC8dNVpz+AqGhEf5yEtgd67gBrBlqBmqAkSrpT0o28vZMVhNbL77T7K327QhWqfWM0Twq1JOAupWotdDvJVFTNR3mYGsJ46eYAKWaYcRk5b15qKtFTS655s30fkKBDqwF0hR1jdg+TD9PnD0D04zn682MfwTAmn//Rx5AWDtbn6Fd1bTSJvlluHoWJ8lpNwPuFOD3R2kKrgZotxXSyKSLD8FbMSacTcX4mLC/YeAI3gfHSKLECbASnWB2yNdWGCgCNwTIFoerSLa05cnBMMTBPE9Y1QhQgat0YLI7Z8EP7ZMdqch+IMdJgowzAPfDj5/448FdAdATmqp/YbqFsFL87xxQjy7RQTwVqJzhHcJ5VQ7O34KWTqp3VQbOttZF72TWYPwY9dwxGxEmMy0aMVv580n98fNBgyI+Ubro9go/NwwEbGWWSU3Y4PR726HKD11YwBXoX84ehFZ3nifP5zMvzC09Pz0zzrFRXpw6PYO1hpW4+6TTO88yvv7zILaCvKeVEUmfOrAV2R4Jwx0RT7MsFmG5bIivgaH0sWgqK9muiIdQ5oeGIFtNK/mRJdDMc5NrwPT52nLGJ7d0rv7v6GufBDnqZx/hBzZuI08I0SYbmvJzAWJ2Ktt38ounxL6VhtizT8iId0DxVpkEXiIcRgzVdKLkOjBukFaEgNnU27u2Ti1+pQhYFxLqA2LHYj3EgnaFnMC7i/GAIRKEdBnGrlYLvAfwqRaa3QtreeX/7O3/8/n/w/ds/+P79Vbqz8VfC9JVp/sI0n4nRiVNoG2Hvct/0amRTNQ5rAsEbapCc0d7FlOh2v3C5vPH0dObl5Qtf7Veu1xv3+40YI29v37ndrkjOrBiknE7PomUOM8ty5ikV7vcb1+uF2+26T9db6xgbyQXW3Fm3ypoqUypMSYrkVBopq5nTp0PRLldWq5RaKMXgnThDOx/AeRqG67rxj9//oBnPeVk4TRO1tb3IMSARUrkwsuxqKWICs6504O3tXQyL1jv3dWXbErWIJnqsBRZDcI5lnjmdFgxwv16oJZG3lbQJlfj1+zfeXr/vz5w2zDwRvd2LJXkNok0VNrxknPqoncO9CH5ojuxDin9vo/t8yvzvPY5zIcfe6OZqjIS99xD2onfos2OcmJYT07wwnU8sl2dOTy/cLu+ktEqTpFYYrrPGIcYRXjWUno7DuOE+G3fqfmmZ3oq4N5Yqtv95o9dEb5I9ugfHOTVdaKLxt1675XrOR6PImIYxZV/XGQWimliQhsGa7GO0AB3RrQ8Ne5gFRJ6esdMzdjqDOyGGSFJ4OqWghu4w6c+nxRjDdP6VeDoRWqM0dVuujaxuoq5mTMmYdMekO8Qb3S00O5M1BqHXRGsFWzPUQjcJb6wUd2oAOAovFGx3Xf2ckTXQ2LFfS/abVRMS463EgzkjlHGnBnVeJnemph3cl5JJaWXbbty3K+v9ruBf10grRT/dsect654kpnpOmhIcxb9TcxLnZLLknYDQXfdqH57G4Y3Fj/3rp9e37pcYbBPZUMlZ7vu7gOeckxq0iRmQ3G5tf10/TkUfI132CeX4uD4CvcHOOrSVsl0c0U3S7Bi0PDlutUnWacmZMTXtvbGud/l8LTt4O6Zfsl+OCfXjNVdr/aAbHY3sx9L7AN2jPrL7evTxOtb16pM1accO5uPXj5/hrCV4mGPgNE+cTwu1NXxwjGpOsiJHES4+ADkXai5gOsEHpvhCniL5NAs9VJ+1JlpN9C4u5eLqaUSX3bLokjUXWPJfI94JVb6UQsqJ1g3ey/oR/MR5eWaeZmorOAfzFFnmCWc8Eq9gqUWpjtbr+X4YKnxYY4/zIljzKN/N4xkxWtnq/dQ+3zS1Mc/eBBg1LA+vwXz43WKmhVH34N2QTNeNKkOHVhutyX5A77SaaOlGyzfK+k5e38jrq9Bxr7/T11dsvhPaSC5wut6qKZRJ9Kwg1GS6SXQ7i97cBZVhjVV4VJdqIGeq9ua0fnRW9KJxFolEXAhhlia8a3oeAmDlvTBkQccAba95x7np7NfgAMWfPWRoqyBUAaU03x6aAYwmgH48flwHHvSkZj87fR8EmWZ0kC3uxMY6wrRg+wulP1HqAm0ihE6MnXl2TKeJWb0WjA9UPK1baOxeLvSOuKOLG7lMRBveG5mEepmODm+V1uzOWJmmiWmeMalKdKdzh1ZX3++jVl0/ePj76HSxLwv/UQz/l0C0KY2iI7SeocszXUwPYogs80wvDdMNwXmi6k22EFhDYIubgKmclHLZyLnQqlAwZfpogAdb8tHRQTRAVrt7j0ZEcrEcB+WjVoL9oOxTUTv0j6MIZQeirVZqqRhdwIbV/QCTHZk8QaNWu4txQ5hYlkWA6MszT89PzPMsE1E3gKiRTrRpWjT9vNM4zzO//PqrTAH0NW06QVo3L3Tbri6SWpDUJlmMkueaZTFvTW84KRKc1W5y73snG9jNkHyIxMmTs6H2QiuoXbV2nh4cjMfiNyY8zj2AUDdyAcWJ0vqwT0RDXIjziXk5czo9aU6qofZ+0EEVdEnDQow8UpaYoCnre5waU+3aUJBiVG4snRMY1QMbIxoRM5zMfnJ9IxNR4cgP4C7XzWhkjK3caDyC0U6d0K0k6sH5id1XfXw/RjYDISyzbe+8vwoQfX39nbe3N6bpiWcicfqFef7CNC3E0FiNkUlETuQkx4TmpDZ3FmsiwXtac6y20UnksnG7Xbhe3+j9f+Pl+YXz0xPrupLSqvdFU+MebXDkFWO6NlKe1dxJJqOXq0wRL9cb1+uNlJIaOkEqsCkYnVNlS4VOFSBa5Dx9usBr0di6Ueq1oSPXkQtRgKix3NbEP3/7g3Ur/Pr1K//yy1eZOKKmEAaZjF4uosfU7vq2rWz3O9Y57qvopdf7nfW+sm2bTJ3GBETXBu+9ANFlwfTG7XLh+t64Xd+5X994f3vj9fUbb6+v8rPWG4ZOdAazzDgjlFxnEDrv9cKa676BOi9WjqPB9flE9PMVe2xi/1k42vv4z8Nv2RsukuNIkMmgc2LDPk2TGDdtZ+bTmfn2zOnpwvl64Xa9iqvurqe2kueJo3bJ5qxYWpeMTmNEJ9KNE+3xukG+0fuq4fFFKNV5pZcNWkaYM+qo0gVc4RzGGwFMeu6ckVzr1jLWVDGSMGMucBSIvQjtXjwBdA/TJp1D7mvnAjbM+PnMdHrBxGcIZ7o90avDVsnO9Opw6pv/5HwZ4vkX5qdnMXpC6P+uVnmqOZEA0RWT7vT1SrMz1URwV2pZqXmDstHshrUJqqxlzSDHrGa9j8YkQAuiodG1XhuGqv/qh6RiZCuah+eYaFo1s+vIhCNXMVFK2511vbJud+BwRHdYrHF7s1omtEN7NszwHrTudtCjo4LRsO9PwwXYGo+343kA0s+ZLV1j2iS2TPwTMvf7yvUq4DmljVorIQwXU8MoSX+mCwXUs+Lwr6gqhaitHnvNB6rs+Jn86Wf1AQy1jimlSOZ6EiqogNXG/b5KGoFKKQ7AKO+11boD0Q9a0R8ou2O6tB+yzof3OORTB5DR1/mBbvz5evSBGk9/oCjKOidDisCyTDydF3KpBGWEjEbGAKMY0VLnnNnuKyF6nqaZ5RShL+rLsLGtN7b1Rs6rZOvWpPdjECCUBYiWluU1Wbs31oKPYEQTuqVNwFCV+jH6iFmsOn43NV0JTFOAbqi5S2yVK3Lf6CR0l6A9rgNjvR3nQQ7k8Y9jYrojJHN826dHW8rHZj4OBNC1TnDggyEo+nfTwFSa7TR1yBUgKrVjq1VM4Yb8rVXJCN3eBITe/yDd/qDcv1Nv36n3V3q6YVvCdZV7PbwOqVkzkta90U2isYAthHDe73NjDaZbvW+LvG8Fzcag9bnozoVpdsLq04cZb4UhYp0VE6Mu7EQBiTo4Gbjg8ag+TKj3iewnMqJjvx0g1Byn6zhtR0Pmw30+LoPji/dv7eO1DdMi+R0dsNbj44K3DdeeIJ/obcKHSoyVefIsS2Q+L7h5EhkFDroRDbA55IveQPSGJTrFax3vYYqeGBzBa9KEFQ+V1mGKME1RY4eKNAOG2eioqR+O0b7WHF0RMKJPNUYB+06Z6A+rzM8fnwPRJu6caPgzNProoCptVWiTuqmre1KaNqZtYlsi8zZpzl4i5ayBv4WUMmvYCEEW3QFQxxuruplV27FNiiQAqzfV3vHbgejHhXZQY8ZT4lfs3qkcBkbOSjnSnUO4n33/txAldiDEkb0pT68FyXI6cT6deXl54fn5ieW07KHZZkfs+lTKS/8L++IpRF6enrV7KhufXwNWTShq6SQj2XR1P2aHu28tjVKUcjw43VYKQeukI2bpYI9ukfcGF7ySuj0YmW50owCzScG6L5W9q/5zjOvtcbFapzuU/fDeh8/b2FT3TEcv5iHeW3xw+OTYNtEf71SjDrVUElkNjRpbyPtNYI0hRssURHwt/HevejBxP61/YZ7TW1d7+4/NrAErRxEnph4CWp3zGqsirpLGOEYs9L5KGSNUlbqStnculz/4/v2ffP/+O/f7jVKMao6/cH76G/OyCE3CrIwctrKHfDexWjeNbrtanEe8b7TqaV2mpKVsvF++c1+v5JJxzvPly1f++3//f6qZiFV6W8U5K66G9yuXyysYxzSJ+ZC1E86fmaaNaVmZlxvrlrQwq5zOXwjxBexMaY41d2ovMvUpUrh91t0dgMeNPLXRhVsW6cQN63YXyKXyfrmKgY61RGfFdMkI1bx3KLVxu6/UDluSKcO2roQQj4zD+6ratoJpFdcfiuXWZOqzray3KzllnLvulNzb9Z3L+xuvr9+5vL+L1rbXB/2bxHP01khpo2BpW8GGzPIMS5gfdOoPLou60v3lyvw/6bE3njhMKexo3j5MbfYoheA0bmUS19HlxPn8LGB+XYXyr5qj1g0NS+2W0iBXKM3oNEyLn27E8Ol2g1bIqWFapucbLV3lma/0uor5hNEplahP6aZijEwqhJarGcv6uoclpMnStBz7yOhHG6PumrbgbcC7jneyf/k4E5YTYT4zn1+Yn78yn7/Q3YnuTjTicd6sdJm9N7jPWBZAMRPZzDRl9lQLzTaabXRbwFWMy1g74+xCsAuVSDUzNtyo+S7PstLynVbu1HyhFUvLErfQe6W3kUda9zXLdEtzMhWWRqQUD9YbWduxMgV2HuOcSCp6J9fClldKE/OWdbuxJs01zXdSWSl1o7Z0rPnGDUT/p8tYjnzVJmbnEA7J/iAyDtXpWoezQTNDvZoVRWJQ7agTzfantK4xiOwyXemDvn+78v7+xuvrK9+/f+d8esJZxzzPahik++BDE/vRdfZxKipA9JiIwnCu7Q8Txo9A8JFKW3VSu18jRdYqmTD3HYhu20rOWdfQoR9te4TG/X4nXC601nan3A/xIGNfHA0vnWSMdeex9vkTCNW/dQWXfwWMHpewHVztW580+Z2zTDFyOi2Ssbzrht1ez4UYxVvjtlJSZWUTXXWVnOLgHdN8oveItzLtT87iiqMUJz4QVkGQZDfQTVcHbcnrDDHio2RXWnUyF3ZZR5ygDSFGrLMSbxE9p2VmWWZokLbCdi/QZSK7A6ohvfnxsvzh7wNo8ACAzFiEx+X77yDR3tSnewwFtKk2osAeJ6479LFNp8ToVN8cE/2aablSNXaxlUwtmZou5Psref1OWeXPur1Bkogvg3qrWA/UHcTKO6wDedMxuxN+NxWLrNkYC3bCWq9NwyhrhGsY27QpFjBu+As84eMZG04Yf8LaiDEZbJbf00eKhByfZtoHIPrhoD7c2+OvfzUR/el5kDGp1oR/9YVykoUmzMdr4qFps39C70dxEZ7pccGFhV4WjMsYs+rXifOuNG/ECb03qxRnuQctHecgBss8eQH1CGtwjgJCnXtkRvQdaMqAyeEadCP1/OF18595mONa/fcQqD4+dwBQfYo8M3Lx+517D2bfkJxz+BiZto28bCwpsW2zhnMfk66cCzmNRXjlvq6klMlJzBFyFoDVS1U803eTnRG8PTK19kxJRlfwUetxGCrtmU87C0VvVmMfjCsOgDp+lvdOcq28w3kBTCGo9mGKnM9nnp6eeXp65vnliWmKaut9dEceb4jOX58QHyLnp6edw19LwRgn5hK1sa0FYzZ6y9RiyNvQWKKLjGpvR2d8OI+50dlg74w6q86R2rWQRdwJrc4EjKsYV7FdNF3WdCp1L/pkERhvT+lZ5qOWZY/kGZPbqgZEreCRTqX1Vl0mHSF6YvTkHHeQPXLHcpZr486mne/OyECbomOaPMscOC2RskxMmkcWvKX+VVbUjq/7vpceINSI5mPYjLthsW8PbSxiOoEZx+V4tFrY7u9cr7/x+v2ffP/jn7y9fqd3j7Nn5ukXns5/4/nlbyyLxdpV8ir1Psil6muXZ+tSnEw+spxewDick2nztom26P3yjbe3P3h/+87T+ZnT6cx//9//XyzzWbRX05nL9buGy2e+v71SSuPlnvj6i+XrF1n4n2JgOVvm88b5eWNLAxSLS/DpfMbHM42JLYuerKj+5zEr7seHZPx50SLMM6fzzOl85nQ+M5+k4+niRKtK1SqV6/WKaZVgLWm7C5BS7Q9WBP1bvnK7b2xarE3TLMZexspEJEt0gGgOO64pVbIW1nXl9e0V66wCS0drlXW9s95vXC4Xbrcb9/uqDAIvURPTzDQvWO/JpXK7XmErNOOxUyZMs3Yc1QVwL07/c5vf/+3H2A9+6GqOGsqoVtwOwNbkPYY6HJNl3S5Zpnm9dppa07dmqB0BoaWRayfVpu6Yfdfr5pRwbPTUSCZh2pWW3qjbK3V9o6YLloJkYMrUwVqvXX1ZB63tWCth9t5qTFNDG20GTKGsRd0ZD1d07y0xBGLshAlCtPjo8XEizk/MT1+Zn74ynV+YTi/4+ZlmIrUHandYMwwYdA/wBlt/vpB34FYspaguVQuG2juFTjOeairNRXqPwIw1C4EF/DMl3Wl5VTB6paYrNb1TNk/doHQBNLYVCUTvhWYemrLm6LB347Q7rRNMJxWBsweDpQG5Vfq2iiOjMTL5XC/c71fW7cqW75S60XqmU/aphkxW0WxN3at3x1ABqUZBaFcQ2q0V25kubBTXDV31uiFOTCGKC/WkrrohEP1wDP/smB8U2Y7QV7ctcblc+PbtO7///jv//Oc/WZYzIU48PT2DG0OMAyw+FqWPlNzdtf+DLnTUIH3v+j+CUbO/LpmsFt3LjAGskfz1lFT2INd07520bQcQ1d9XayVtG/f7Ha9TxZyzZK6qjusxe9QYzUh1OgX/AShLU+WoEOW1Gq1jhwyq/6eL9KO2GfUVxOg5n2eh5nppcplh3W8qyzzz/OWFlBslN+63ldYK27pBLZxPohf2LopTbhNpky2WXKwwuNCmPE0cY53RWCNLmMKeeBAmAaQWS85V1iTr1SxLvEAkD37h+fmZl6czvcF6z9yuK/R30gZ0ndzboTGGD5PKR+wDe520Ax9lx+xr8n+gSh9SLcwx+exGWQD7dax1kRnnQIBo7doYbCplqAI827ZRto2S7uTtpnrQN8r9O2X9TslXar7R64Ztoj20xsl+0btIuWj0Kr/L0wQkIZIXiUmstJ71upd121qPCw5joww/rBe2izMY7yRGy0eRdfkZ52eMnUCb/vL+2l6n1XY0IdqIqXs4CfuQ/wMQVYblp8wtlJr72GeR/aR1gzNSf37Yys1oATxoRPfGgNFBuXm4ZrRhYIzuVWPd9Bg/4cKJlk9g7ooBdJBXMrYWJYyK+WHXdcgitXpwMHnLEkUn6gw4b4ga3+LcaEaxH4em9GMZKvV9oGT2F6xv85F1sX/uOD48NEj2pgljb+g/3iL741MgalrDjKmoWm5L0TIE9GomojRUHwIlBkqOCj4nck5SwKgIX2glWYx15on5PqnBjhSRoknbqMPV1mgmt2pgDgMZyQ0ab+kjCD0MApyzOw10dIeNFhVjWhq81+cBXo3qP31UKpbT/J1puP5NPD098fT0zPn8xDwvhCgdN7Pb8e6XpIJQg86rf3q8g/cs82nvWhVXJM4iFVaXcDZg8PRuaVUDfOsAoGL0IuYTak7kjqcZXVM+vme66IBqTVBFA2lcw7qOC2BMptemQKtCLwJGH+6mEdA8JuV2pyNrZ7mPTnKlNnGc7SZgHYTgpLiLnlA8JXq9TgoplR2AFi1oSx6d6cPtbZo88+TZTpFSFp10ocWylc7nZ3vqvkMcPQMhnTwuIdoBHO7L+3Rr/Ah1X4S9+2OMoZTM/f7O+9tvvL3+xuvrH1ze35mmryzLmWX5hfP5F56ff8X7LLEj+cjo2zPXxrWkQNQ5zzI/E5TyPC9n3t6k839f37lcX3m/vPLL+i88P7/w66//wun0jLWe4Gf+8dv/xW+/wdv7N263O9uWKNUSp194fjZM/kSIzzg/K/VWgMgwc7LW4tSav2HZcodedgOP3fHxJ49xb4YQmGeh9S+nE8v5zHI6E6aFMC2kLdOuV3K6S7GWM94aHKKbsl50pVhH2mQ92Q277jdxPJwlk3C938kpSWxAF01wHmCpFO7rnfe3V0xvqjmSPL6UZF263297PJJz06GfXE6EacZYR86Zy/UKNtGsJ9TGc/lFgajbJQG6svKoHvmvfOwNfCM7UHdSgNoO3Tl6t3i9XcRVkf28706L/dB2iROsuE6nUvU5GilF2DDryv3eqcmQfMGZFVOv9PxGS6+0fKHlq9BEdV2WPcViXEf0WB5jC4aCsxKZ5Z3B4nDOULyVc5YzqIHbOMYiIanE2IihE6PBT54wTUznM6eXr5xf/pV4fsFPT7h4onZHqVbAkm34KiAiaBbbABs/e9yqIRfNwbVCVZKuvZJXTRPDDRcRc4kC7oyJGZ9XWlEgmi6U9EZZJ6zp5H5oR41NYHaXG4ZOUtaJwbzRxoMaF42iwtiAMarnB3qrlLRhctZ76HY8041cVkpLtF5kamEN1jVd78E66dJLM6Pr5wzOK93Xe2kaOQ8u0K1E1VQs3XqMC+puLHEZ87RIbEaMRB8II1Pwk33zqDOPQjPlBNcrIbzyx7c/+O2333h5/sKXL18QecwhvxjGQY8/o+kE81ELOkAF+++DUdDuDVmdKtDZNaUiRRJwOfbIUqqavwll2GgzQWLBys4qaWq6lHLmfr/v+tVcCqflRDs1Yoz7a3yk6HZlUjlzRNQ8Tm8/PPpDEf1QY332+PFfHoc+49+MMYTgWMxE79KEdHqfVqFKMM1SR6VUuV/vhBBJayGnTMuJKXisEZA4XIaNBeMNphpSFhf70tXPwiBTNXXXDzGKM3MU13IfPL1BWWXPcL6JNs90mcZPC6fTM19efuWXr18lk/u6EtyNtMHlfRNfCWv3WuBxIfigyh3rqBb6Y4hCHw7/R530742OhLlVPx7rDwDh+L5uBLD23mkWfBMWhSRRdKXkZml4bRfy/UJe30iqBy3rN8r6SmsbrWVxprWi77SaJSx9965OtYCRaaS4pipA7xVqkWg5a+nO0r0Xnac12BAxbsb4WQz9ghdjohgxQTTk3gasEe+B3geLoaJtPQFR6H2iz8dJ4wdV1lgf+NhM+s88pBzTNfazDWDMDh4mogJCP37ZwCIDsMm1pEwgP2H9AuEE7U322SK+GrUUqckb0Aa9XWrWsf56Z5iCZZ7GBFQ8FrwVPHUwQIw6ug939wesYoyCUT67LP/81nWwdVzODw2af+fxORA1gpr7oHjA0cnZK2409LxRWqVqN9o6QzQB7y01FHLyZJ+OaWGrlOLwWSmvRTc1e7B4vHciaN/Bm3ko0oUKOfSWO/1tn2yKEY8PkmcVgpdcK71J1DIE07u6RTqiF2rQyJ6LU5Dc0Djs5yVnJ0YJyRaNqNeaTqZ9Y4Gy+8bPfgU+LtY/e7Qm+s9aRe8pcSYb9/vGtmZyFiqEMQ7vJ8AJJ1wXmaHPwfAnAwqhPAXNCAxEPSatVnJatehe2ba7PFd5lpw0OqBiTaYgeqxBs3XO42MkamRB8EqFCV71FIOOqRPpLtqj8ZTFRSnSxh1NDtU62RGGqwHL0B80O6o3bFVoJVUjSmojl8qcK/PUWNftUxxq9lVjFCLyn2ra+ALteA9Qanc7749d5r5/raHTWyanG+/v3/j2xz+4vL+Sc8ZYxzQtPD195en5F86nF+bpjLF3enN7gW+M16eY4ZReJcu1Cy05xonzWbI8a2+cT39gHby9fcO6wrq9c7l+V43FF4w9s5z/la+/OqEbmplp+qKLTyXOL1i3UJunNIdpDpqXTrkF6yVKwuqKOhaxxwX9yND6q8V9HMu2n2uJ+IkEzd+VYvmxWeSEieA8wVuCTjov1xXjbzQjUSklN9yWMAidO+eMD4HbXWJbBNiLVtC2Tm6VpHqy4QjcW6E10XQm1eca6zg/PXF6epYp7jJLDuI07RPZdr2xbpkwn4jLmdnIxM4/hJ//eOX9Vz1Gg0SXce3AsvNzH7u3446A0aMZjugozVY6wfIp6XoP9+tcK6U2UnHkbEkJbrcV8sbWLvTynbz9Tl5/p+Zv9PqG5YazCXzTifGxnjsXEf8zj3VF30nD2kbwEL1Q7w2B3o04mevrkum8UHW7KWDywzPhfCNMjmk+DBpCmKUQch6HaGkaaASLXje6kZMd9Set3Q5sRXI6pZtl9sa5dJ6NdrFFd9RNEzMmL/R6Y4M2AyOo3r4Dra6Ycoec6KXQTKKRqdoMaMqVNqbr9/T9nB96dyksdv/CJscHLehkwi37gWjwsrA9xvt2BniQqOzNXtF4W+/xLhDnhTidmOYnluWJ+fTCsjyznJ8lX1lNR0KQXNkYZfq5TPKch0t9iHinkV1/pa02H8GVTAQF/G2b6ETf39+43q4SSaXvZzcn6kZjsT5KfeCRDizkx2aMUOEephs7JdYM4KGN8ia+E+u2iWFSyQQv9URR5lepo5bpu26vaprAAL9NDf1SSmpqJJ8f2eKHAZPWGQ/TcXSaj30we3pYq0cDdkzrxrXUmrAZPnvsu+ZPlvq99W4EGAcvR88pcJNj3KhKEbbW4p0jThPL6YShU/OmzriWkY9pjFxnngiuYxo000gt6+RfWTJd/NOsM/uUeG+o1XbEmHR5jxt3AbhdqJE5LtANwU/0ZkiuYW0Ws0Lj1FvkJ9pQM46nTpeaxuxpo24YYho6MfrdM+BRz/7Zo+nUDzimdOMVfACjXVCi1iK2d1q1D5r+waA7stMF04zjF3BhljisGmgtQ2/iMm69vMVaaabKMbdG6bTSeBL5hJiO4aCYJgafFmorUDZsvmPsFadJAKZHrfci2IluIsZEjcnyUnO14xDv69rDwR91YGs/XLPm4bA+AFH2xtK/B0T/omrvXUGtUSO8sf78GXQer+dAT6MOGmBv5M9iHMZFoSPnJ8gTpchApdax/mh91tVMS6Is8N4xBcM8B6ZJMkOdtwI+FVuN6WVTyvaWCvc1cb1nbmvinjZKPe6hH670H9/Qh7e2T0F/1DPz8PdPHp8C0Z2qykDq7fj7XrSI/ieXwpaTuvoV6UQHuXhrHjSGvk/GigplBeyOrfHBldciGiDnH5C5Iae8d0Kke+721/poGvAIROcpsJwWllks5IdZRdW4AJpENwR1mYoKMqdlkoJzjhL0qqBUtCxH4K7QKQ9Br3UWVCc6isARfNu1MPjZo7ZG1img5ICu3G43rpc719vKthUZTBtxJI5Bb7K989YexusGs+ugpKO4LAunZWGeZ/3+QC2Fdb2xrXc1YhGnwZu7Yown203OaSlYk7DGUW2R92ms5sZNkhUaonYdIyEc02HRa8j57jRqL2pUk2lt0FyddgiHPmzQvsdGhJhb2YYxopustQr1oxZyYs+2K6WSSyXnRsqV6237yxtg3De73T1Ht1sAJ/uY1LiG0xB5Y3QBfqToMLqEmW278v72B7///g8ulzfR/PrIcnri+eUXXl5+4XR6YZoWeqtkOxxVHdYOEw8VfvdGK5luHXQIIXJ+emGaZsIUOT+daKwYuxJiY0sX3t6/4/wLzleMnYnxV758PYE949wLp9N30X/luxTh4YnaPLlI8Vy7blLNMELPjDafjinAAPBHEfdX6qKxWfQeZIJj2Gn9PkSMdfvPGtOxKQaWaWaehHIdvTjrxrcrxke63ag4citsuWK6TBlyLnjvWLdEUiDadPMwVYyVchl63EQuHmsaRjMiay2UWvAhspzOLKcT8yxrguQIC3NhTZn7XUxHnl46YZolO1FZFhI98Weg91/xkPVHHTPHNP/hPP75q/vjdwKj2WD+dH8MACuMB2kU1WbIpZNSJXlDL4XN3OjlO2X7ne3+D7b736npD2hvWFa8K7j9qmkIq8Opu6rBe2EByL2VsdYQAsQoLBXvJV7BeadNUdi2IiHnNOiFTqaTxNzCBKyrhGiIs2eaRG4hAdxOWCPeiWugtQxTIHbmQ6c5x/XhaD0+Uu3U0sH2XcM2jtd+bDXOoCMTU6zsS00nD7iAMyPSqGHzDZtvktGXE92sVBy1m4cit0rmrh0353Hete26A1EGU0XPadPvr61SyiYxOl2mDkb3Y+dVz+n8Ax1Uo1d81KbXxLw8s5xeWE7PCkJfmE/PTMszcX7ChwnvJ6KPEu8RJ+YYmGOUP0NgCuK+P4yp7F9Ud4bHhiAMrWepRRkSd94v4gJeSt73mMF+6t0yHPnHZFnqEqhmrHudapR99EOjbbCtOo9ApGl8T2ZLG9frlZQT0zwz9UlqoFp3J+nh3C9r1AMduPcdiGZ12G1NaIlBPTrGRPTPQNQCTcDzKJTHddgegckATkMP27Qp/nMgKrXGjrs+/MsosMfdbLXBjDY0jRkNrVHgShFvrCVOE+enM4ZOundq7ogjqlFfEPG8cGpqY7uh9ILNm9Sn1smeiRHGpzO6V5td51tsBXWJNUaMv9acSetGr0B3TPEkzv1GHbWNZ2hJzdHdOTp8fYAb0fn2HeiJXEGkI1XdrtsOBqJ3+zp77Kc/f/Qq1FO53h6vfPbXsR/7oX1WKVarQt18PNdVX19VjT82YMKCNxIL172n1Uyr4kkiLXgDtdK6xOh0ZQ5aY/G+44PIIKwLGB9oueNcoyRdNXuFspHNDboeT+Mk8qtN2qAL0D21e3pze4PHdNGAGsQnQ/upghl6352Aa5OGy94+euwVPBzg4+O/Ouh9Xys7owQ6GlNd98b+8PFu4vWwJg3wub+q8Z60WYBmi3ajEgasAFF/pvsnugLRDLRi6N3Rm4Mmf3br9hgjHxzzLJhHjIlEPiGlpSqJ9Vqr6umxbonbfeVy27jeE7c10zAEDMFazE98bWSNfbgV9qHbAwvUHMffmnHOPj/en09ExzGz0jU0D1O+3c+2jQVf9Q610GsW0BGkEJMOW903u7abLIzNUhZypwAvBunuKeNZNupRwPVGqUJNPU62vND9EtEDJAuRnJwpBk4n0aAE53DGiCPpttFqVTMLoYhOUyDOgXkK0lmYJQsrxkjwBwX1sKmv2Fqo1uJGZpnZzwDj8j3Y/T9/1NJYV3HEu93u3G83bvc799udbU3U2rFWTHm8FgPjoh/T0KrmOxj53U6NR4am9fnpSUxygpjFlJJZ7zPr/c59unG/zwQfMTh6Mzg8rRS6FRBqu6UY2RDHNCtGMTXxaqXuQ1RDAtXfuoMaIBSkJuCxZGw2eAK7OyBaTFirmrAfXQm1s/mwcUsuWdfuPVpYHUXxff05EB1HbgecoxABzV99LOaUvrij1K7dcJ327lPCQkmZlG7cb29c3r/x9vo763bHWMe8PHN++sqXr3/j5eUXoaP6iVpX0V9gsTbg3Uzws0SbODEYqgq6RWtkmOLEly+/8PzyhWl2rNt3SrsQg6f3jW17577emO5JKKTuxLycaD1izcw0vbCmK1u6AZYYn8FM1OagDg/MA3zwAF4edRbHn+Pjzxcb8/D9O53QGJnah7A3H3rvFJ/p1csUf56Z54V5ikwxsOVKnBbNt1zpxlKBVETXPjIEvXNCFS1lj+hpyES0NHFTraODrdP6qpFREpEkNKx5mXl+fhatUZRMui1p4Hdt9FJ1AGYI2tmf5hmvmtPhnv0BjPyXPB51e6Mj+gBCHz88qpqHZtnDBtof9S9acI/Pd8RCvxtq7SRv2Zwlb3D3lWATtt/o5UIrF2g3LBvOJlm9jEgthiTaWkfwk+jGQ8eHhjiiSnEaA/hoRK8fJnyYaFhS7qQCnaR0UtQgB+UuIRqy4EQ/FidlcCgQVTO+GBxx8vjg2DvXD4C0bJ7rz05hF8OmOhJoflqw87AfmH2jlSVbaKtixtWwvWFrwoQTxi3gFrq9K6B2D4ZQsjg11El37NAfGkTsgKv1Jk2ENoBo3ZtEtWZ9PoB5rQOcOQxynA8EBZUhzpptd+J0/srT01eW8xfm0wvz8sK0PBGmJ8J8wj7EtoQYND7M68dDCmMVhD6ysD557IXQEZkyDDZEJw5K4MMYbVB7q0wFp+DB7qBPtu/+oWk8NFxdJ13wABzG7QHCMKkKQhU8Xu833q8XtpQ41bqfkzwouEN7Otan8ac2CaqCQonq6nvk3TLPO413P//7e5D1rKsPRPee4ypUauH4XUMHq1FDrXaN9fjc5U9dIj5c149trPH3warb1xkjB264W9OPaBxnLTHO1LlAqxSk3hlriuzJKgmzck8OxhRdCmZnRfwrEzojjs5NaqtCxVEwqqmzaHxczpLRiceZwLrcyUlSHQydVruyaWQREc34x8bHmAiMe6tWmYSmXLmvhfuW6b1jaXhniMHTjtOxyx4+Q6NdkxTg2EP/XFOafcExuui0juaFOrF6GVrRbmjdUrujGQ9uklLVWdGP14lWM7UUmuTJib9CTwgNtwj4dw7bHS4YfOj4ODSeE91Dtg1n5BiK32mjl0TtV2k2Gk+3QaafLqhu1IFt0I2wTowRkIrIaoZOdl8TxrXfpK40+/9+DkQPai7StPsf3op1s9qZYT/upR9PzQ8f8KddYdS4xmBsxPoT3T/RtCZzxVDbaJy5/TkmosYIs2CaAtMkLE7n7QH+Bj7okm9eigxq1jVrwsDGmjKpFMR/pO3VsfnTa//k7QEfpqH/icfnrrm6OI4XsR9c7QLU2shVqI+3243r9Z28rZS0QhfHM6/GH2WYXahOdGhFq8YpxCjuk94HpqlqN1G7Nq0p4K0M11sp/ocekb1rgS7esmkoDbRIPmbNARcD52XiNC9CMSgS/dCaTNcwSmvtlVoSae20minJk4J03d2wut/1qOqiah+Cq/mRSvQApj7p7OZcuF6EJnu93rjdrmxb0uiMphpSKZzmaWKa40ELQnUAre2bWAM1YJFN/nw68XQ+Mc3TTn+uxRCcYQpeqMnWYbuh5UZNFdsMzSaqlWxO2x8oTeqcHIa7oQ97QedGN3u4pPoDkDpr1FBC9BYhNEJsUoTpolxy3XWi25bY1sS6JS3+RcuEuuMdnSarou5Oyg27CbUnpfoXl/9jMdgfVq7++K97s2R3P7WDPqpNDyvAtJTCuoou9Pu3f/D+/p11vWON43z+yul05m9/+3/w66//jeeXX5niSYGXLLbGeIJfWOYX8rKyrRurv5GsbAJNY10kyzETQuDl+f/X3p93N5IkWb7gTzdbsJD0JSJq6nVVfdT+sm/OnM6pzAh3EoAtuswfIqpmoJMekZHZ2W/Occ1EkE6CgEFNVVSuyJUrjxibeX75lWW9YZHGxc6ukK+s67NmXXoyUqPlwoH+4LBhJPQLQp3qcW7Qw8BS64XejBruHLSN1vn7Q1RZZa+kkpsgU8HgQ8cwHBj6gdvtJgY+I73EfMBpPbqx0hoo9J1QKrubKFUbQyazZoXQVqh0MRci0kojl0IqBVcdG2OwztGpbLlFohhJg2USbY2s86z7cWqgMiM2MoTAeDxyOBz4+PlnPv/y/+LTT79wenwk9P0dCH19DH3/DCy7//7J0SKWGpVsFPLdU1qgdkOl39j8ekXqK1UFR6sOWKaAVeo2SJ9NAoexZzkdWKYTL8cjx8PIbehJS8c6e20lEJvoWspi253t6LoD4zgwjI6+t+RyI6YTOd+wNmJNEpDpeqkz7Bz96DikQDYziZmUwXc91ve4cCT0J7rxgdA/4bsHXHfA+l7pvxYfrIgb9ZahN4Sg+94YBeKS3lyd57/fuTdZcaupfuEb/nx59U3zSdXZVsQMtT7WBBXrEGXzogq47VzRR2VlFBW7K1aBiUbscw3SVSd1t71rkDCllTUu2lc6yl7IdZ8LRdK6Du+lRr1XGu5wkMzn6SR174fTI91woh9O+O4gvQD9oHtYs1fegXdk50jWEY3FI4JGNQe11ex/f1RtBO+90H37nsfHJ37++Sd++uknPn36yPnhxDgKy6nSNpugXhLaZMrC0ioazPVOgvDOKOivWYV2C+W7mBLrsopK97qo+OLK16/PfPn6VXuBr8QkglzLvLRWa8YIg0nO760uuwa6o7ZtqXRSa622Odv6m1ZBpApuK6ONAs55AaOGDagbI4vTGEytWy4ICKCqAr+9dlPZg9B6Vt6fmbz6ajarQo1uxjUx3ybmm6pxqwZC3w8E7whOyo/WNTaxvmI0a1xyAzglgylW+n7agndiR0ox5JhZy4pJBZOKMK+y1Ghma4jFQC6kNbHOM8vtxnS9cL28YHBcLhduVynvgNr+p1LGd0roDYxq7+CYmeaV27RynSLGyHUZ49hcfO2tHEW9/b01XgNFe3C1Z7XckSeNBPYkeK7zEws56nxV/Qzti24yYlvoIS8iDJQmiAvFLMAqvkdZNDAljBVpyyUsIhcMvkd0UkKP8T1lNXTo6bDKfTOygTBxAZ5JJEqZMekqj+6KSSdMPlJ8D0bFjPS0zOrr74FoBaOSFb33sbfc/AZE2a3dQkbLXt8Y2+qVo9G0s7QGD7dHfWk9J8o+ebIDmGb3evU19f4Z/RtJ+HlwA/gDxQ7kEkjFk4ojKfgUxVwpscCWVmZYk0BY086iVBkBsag2Rm5dDm7zwjQL3ipFgje0Prn1Gg3b/i3Uc6f5DMY036IB9Dfh6/sez/eBaKmRwd3EI2Ch0t/meeJ2u/Ly/MLt+sJ0ld5+zhq8UptSUgWtFoHb6CdS1B5UtUxrJXNmWSPLmqSXpBrdJkrkJPpllZpbVHAgl6J8bV1wtX4wLqTVY83IYej58Pigjb9V3XSaFBitEhXMibwm5riyLobFea23rNFgyeCEEOh66BDQ14DoG4vw3kR/O9Y1crncWOaZl8uV6+UqQkJZwPowBI7HkePxwPF04HA44P1Wn1IPr6iHasy5iS6FIJLkh8Mo0bis2TVn6YMn9ZIptlhMhrhE1lmMd7KWZKxmxWsPOaOUDCcZ0KDqfU7k2a132mpBFLo2IOo2wYUpgol0nVyvRKclUltb/Czz0oDovCxKXU5tmVu3cd+MkYzMGouKakhR+7J+D4jemRtxxjKyhnYOutDDtjYX9xHRmnEqlLwy3b7y269/4bff/sLl5Tfm+cY4DJzOjzw9febjx3/jw4dfeDh/oOtHag0sGCye4A+MwyNxWbhdr4TwjLWr1J2u2i9zmYhpJQTP+fyID5aXl59Zlokcb0DE20gpN2J8FmaByxI8w+LCSGcHfHeiS0kdYCPXshMGe53dbP++QzI1FlRapuy94XQtGiu1bUvUvrdIP9vT6czDwyOXlwvrHFmmpYFQp6InxnmtK+0ZxoGu73DBgbNqY7SaJotYTCq1Ek7UOlPKuKzZPCNNz0MnoDbHlbhIC4FWc5cT6zw1YJ6U8eBCIHQd3Thwenrk06fPfPr53/j887/x+PEz/eEkQNTZ1oes3E/bHwCZvw9G3w0W6Hs0RVO70WfqTatmHXYmqv2sNGdHz38JTktqjdqzDCOrpv7PWDDB4lzgMA6k04E4n3k+HTkeDlyGgXXqmEMQ27wmzQgI/V7aanX0/YHD4czx2DOMgVxmlnghxis5T+Q8gy0SUbce1wW6Q2CkI5WZWG7EFXzosWHAhTO+eyAMT4ThA74748MB63oBRt6J89sJCB16Q9cZERbRTFtFILMNrwKN293KqpdhsgCoymxqCbRy//y770utvbZQHEZ7saI14+xqxzH1mtQhsJV5o+wQzc6YlBrozFqzljRgWc8kqdOTz5dSVNGctZU/VMeiKRqbgHM9oTvSD2cOxycOpyeOZwGh54dPHI6PdL20xrG+lwCXCwqwldYnqi2ipmsMIkdl8EXUmOVoK7yB5b9d6w2IBu3r/cDnTz/xyy+/8MsvP/P580ceHs6Mh55h6KS0xtBanxkTiZUZoSDUZlFhlcyaBMyybpJSfaFS7YKAxcv1hds0aR/slefnZ758/aJBVKkBFX0GYYi11iuAMUkDBltWdE/NzTlr7bzTXqMaeE7S0q0yQSprppZShRDIWURyrDEqnFbvvwQqxKGtJMwsLW7eGRFwjSrzKmhLbVKnjmw9SjUwIzEsBX9RFHLnaWJdxSc01tENA7Z0UPb1qklDXqqRWjI5FnIskIwAUbwAPu0KkKI42zlGiAV8ITgJuHsVzbIYyJBjYp0XKVO6XrleXgCnSYEryypA0e9a5twLP8l81Kz1uorQ321euN5WnDP0nYgzVi2Pe+p1rJGob0ZJWYJ2zR4rHGiAa0fT3dEwiinkKGBc+jaLfSrFUhDQbrxDG65AWRWIDhQzY5kpZVK2SybXul0j5VQGj7PgO4vvHb7vJNjkRT+hyiuJ0FKEGMlpIadFuj+UiZReIF4h3jDxhkurBDRzxrhez62CwVIsLYghAQ09VzWjX5KsZdvmZcfaks1KpdCjwdP3DQq74Ozua4Vld/d+dy3svPw9UNUDtoFRvX8NkBajXRoM1gaKG8j+AHYgEYhFWvXlIlTcomeFLcjeRRh6FYhWf1jE0rKuRxUBjYIPJGsvJU0xiW8oNn5LqNXPtvcF7vd7/Xed87d/9z7ykfG7GdFixIF9HUV/nRXr+p6UFnLsWBdZSGs1lo3qITfPaa1mPQzbDa38dgWorW5052w5aygtI1kPA1Ori3S91NYkWi8SI8ssCo7LPLMuM06lz43rxHgaWKMj5VXEKSyg77FXoBWgpT1GQ6cy85IVdM5vDsvdqnwFTN8Y6xK5XiZRHF6iUDm0r58PnvP5KI/TkcPpwOF4EDVOZJtVIadVa99iFGXD4D2hk2xqry1NYiwkXfhWjXGowhDGqvy5x9kgm9UVsqs0mn3N2U6R14kzV9ucyH3JLZrrvMNmeVRxk1Ky1FKsQoGsnHzJnC/Mqog6zwvrsorAQxRgbnWztdUPGhEW2oG1iVIM63cyoo3PD2xaoLvNZKoaGc0hdXsw2kQ0JPSU0so8XblevnC7PLMsEyVLbejx8Mjjw2ceHj7y8CDZ0RBCM0jWBJzv6fujZqsj1+szfX8g+AljZ0ACE6JGvQCGEDowZx4ePgtF/vYr6/JFMhvrhVL+hvUZEzLGg0EijU4FiIzd6kfuRIfqnquUlu8AzD86uq5nGMemphn6gWE8cjydeXh44uHpA08PTzgbuLxcud1mhr6XGs1x0J6ClmEcOZ3PPE6SfZAm8CvrDOuSiKVgs/ZfVXaAnBM7cQjUkd8pHzZnNhgxjMaIeE3w2oNO7rV1XpR+jyc+fPzI559/4fPPv/Dh42cePn7icH7AhV6Ufdvq2o/Nefve+L0Z//MtFt56re1da2DCGKWsNwS6BRxa4HO3RmoU1WrrkKEbyOOJeFo5n544HR94OZyZbze8f9ZMZMY68EbqD0N/ZDyeOZ2fOD88cTgeGMaelFfCemONN1b9ikngDNkacBHXR0JZ6dJEnyfsCs5Jpt91Z1z/iAtPGP9IcWeyOVBsLy2rrNfWPF7bQTm6zorSYG33oZ/Z5ved9FLY6Jvi59///q35bk6s1lCnlbROpEUYRvKQ2s2SRRV4Xx5hilHgKis0axC2JL3pehRJb90s6ou5OsPCWkna21EYS0sDNKWUFojbFIxFWMlaEVYSuu2AdwPeD9J4vj58j3U9aLuGovRJs2tvsxYweRPBQqfNF/C6Rd8Do/uAWe1RfTqd+Omnn/n3f/93/q//8X/xP/7Hv/Pzzz/z+PigIoNbIKGUopnjjQFQfcdiZV4xheL29kMcxmJogXUTpXf0PAtDbF5mbtPMy8sLl+uFZVmbre+6sAU2Da29U4xRsqBachJT1TuQkp2tR7prSrxJabtZs6XrKv5LE8MpBR88XezwTuxRA75oCxAK2QjyN+S2tt6c77slXfd90X2v6639ajM4e6fUmqIt5CQAIme/1CgbwDqPt5DWlRgXrVmW9kGFlWISuUTSmpXyaRBNdXXKsxHbnyBHKbMwWbQBjPfYoBokGJyR9hamFEqMLKqi/re+pxTL88vE9TJLW8GcRUTN1baAVT2/li1UYKkB43kRVtO0Cu3cQS73KbhNaCe9a+9b/9odCMVsOaoGA0xRokTRUpFCsVYE1+KWABKtBENhq1OtKq+llSEkEqvUkSqLotoCYSMGjDV4l3F9kEfNiLpO5jYL+0iymAWs9FZPcaKYRLFI7WtZIS+gIJW4kk0kF092aVtfCjpNXV81GKIZ0Zzr/OyBaGnfy/+3r98XVqxv8urQfO3Kt8xgzWhu9mF7vvnm+fuMoxDLBfjZokDfdeCrqnAPZSabQEZKuIrZlfu0zy/ZziVmzJya2u66SEJvnlemJRJTbiKDMeeWDTUYFXITHHCXsd2tNtrP7qdk+w3cz9veq357vAtEs/LShX4nHHkBiEg2LFgGJ3/uneNwGJhvJ+bpwjzdFPRNrSVF1qxXFRhKmiKu/SVjM7hK4a1GOCWtp5AD2FqDo2YdN4Aqkf+aKbXN9TNWVDRvZeLrs0zuOi+cDgeOx5EuBChFMy4OTAcG6SHahUYlNDWjp4+qVud9EMXYrhfn3lSlyS0UuAs+vzviGrlebpQih0g/dKIW2nv6IXA6HTgeDxyOIjg0DJ28V71Xc1aRBOm/mGLC4DHB46tqXqWzZG2I3hTystCnF20hElOjcaD1wRKFF2GNpo5qikRGa+BHgbsc0AKYpkno01K7JK+VMZS01WhMSIPiunel9+DKsgoQXWZRMI0aoTdGs9O2GlKlFGg0N5nMaqSn1HuiC6A2ewv6SDCximc1p5ommNEe9v5RxZPEiZtZ5pm4LhStMey6gcPhgdPpA8fjA+N4pO8HqQs1RYWfOrp8wBlL5ztKTlyvvzGMB7r+Sgg3AdVFaDzrKtS5ksG7gePhI+tj4SvwvN6Y15l1eaYQsX7G9xnfG5wvODdSazHva5RyqznLbWvdR76/GX8HFurHgeP5jPMe5wPj4cSHT5/5/PO/8dPPv3A+P3I6nijFcDq9ME0Lh3Hg4XxmHIc74ZI11nhrJuVIIfHyLP22UtLsRqW6IWCq1rtvrZ4EYMUYmZcFbyzOBzrnlGpeW09IwMVpDXQ3jpwfnzg/PfH49IGnDx95ePrA4fTAcDjhuh7jfJNWL9rfsRrjagbeMs13pLcdwPtm2l8Dw7dG3Zfm/ofVebr/+320eLu6mpXav2894IsyULZ42xYtxkDnB8pQSEc4n75wPn/k+eszl5cXjO0wdsF5QzAeY3usHRjHB54+fuLp008czx8YxiNdPxJTwq0rbl1EeXGZpWaJRDKJ5FYIK7Ys+DTTlRm70l7X9SdMeAR/JtkTsZxYy0goA9kIoHKhI/SdCD4MjqGzOCeZJAO6RyAt7xvyvSJpVlHEb5+0fdPq+UoWgZA4k+JEXJ6J81fi9IXl+ivL9TeW21fiOkGJck3e42yvjp46kDE1BfGiNY/ovpH9HlWIa1Nnrdkz2QvSJqAobRSENop1GBfAKj0YJyJVCaF6rVFbKS1084L3C5gANuKKx/gkNroURPuBFsPIWdgKi4E1F2KC3kGw8rCG9/tBF5oNAwFpp9OJf/vlF/7rP/+L//yv/+K//vM/+fnnX3h8fKTr7mm5ho39UXb+RJ2zavtkD9ptQ+nZK31C5YzIpRDTyjRPvFxeuFwuXG8iPJhSZp7lzMpZsqKdCmLVPqDLumjwVjQU4rpiDRJsW5fWisWHICJr6huJoNXSzs2kZUzGSBmMD1IP7UMgaLBNtCSkhqzYIkDNSDcC9Nx6b1T9VnHBau2inPsWqD2+7zIhbVprAsMx9B2n04FllQB6ShMGQ3BSC1qAmKV9TUwzKc4UtI2QScQlQTLY7ElFgvfJah9hBfNJKak5J6K2GPHGUqzDYvDWg9fwQsms88SX3/5KXGdSMtxuK/MsweSuH7R0QGuY7UZzbiJFqe6FRZl2C8u8YAikriqXVRuxL395/yCtIKPOXx177QxTg4XqwwjjB7LVzHHaHjWDSGUxoYGgBGVVG7KupHUhrTM5LuS0QkkU9cGtC3jfSTlD3+H6HhuCKIBbh0kZTASTMV6DVgFsnnFFVL+ziWSTKW4Q0OU6MBIsKRmhYZNaF5FidkwtvfCmgpyNLkWzMZD2QLTss6K0+/D+ULBeSrNVNHuw2YCtPr32bN7WfsuCsv17Hzxo56X6xbZU8OfABUzocb7HhhFbFoztmj5AVf9qkDsn6bRxE7s2BwnyxCg9eoWhkVjWJK32dB/Xdl+C6xQYqwjV/ura59jj67q/TWVbode16VJsvsN3wA/vAlE9HHNu0ubb6wm1IxiHQ4zoOPTEeGJdbqzzjdv1wuX5K5eXF3XKIynlBtzAtHpRiRwVSpFekfM8syxLExOJaat7gNLUWPdOdBW72Td33g74pFLqq6hvxSQg+fxAzonj4dDULb2zreXJMA6Mh4Gu77UViW2Zv5qNa+IIVqgK9W5UUQPZQBp5rnfqnfsRY+J2naRGabB0/cB46Dkceg7HgcNhYDyODIOo0vogt06iIMAidSpxXaX2LuaWMa4R0EbZSlHbEiRKzApEtdfrEjV6tmVG5IMoHcMkIceoo6Ku8qbK6WwznLkUmGcFoUgGxIZGG8gJllX6VBYNchiNDMvnkGivtNLQti9JMr2lBIrb2rs47TkoHHeJLuZUWL9DzTVGolHiwpQWuKq1b1Yz69vjFRhVI5SRgy6p8xDXWehEpeCso+8GDqMC0cMD43CgD12riRVqXAfhSPAdMJJLZBzPDMOBXsWgrFspSL+5NUpvzFwKwXccDh8o2ROXicvLX0nrF+b1wrq+YPxCPzq6FOh6S9dLHW8VDbtr3F40owJbxPHukDQYvmfA3x/DOHJ8OOsB1nM4nfnw6SfJKP70bxzGA8MwkhIcT8/cbjOHw8j54cw4DGqHJDJcSsE5S85R5mIV8aDr7cqqQLSu4YLuvxrNNaJuLeuoaInBgu07QugZ+oHhMDKMI0bTYcU6+nFkOEgG9+nTZ54+feb8+MThdGY8iiKocwJe637fXIwK18qdaX5zJsv+WRvo/OZp7ed/7H5swLeC0P1ju//bc6sDfn/P99ny+jz04BJxGTmUO28wvSNny/H0gdP5I8fTF/rffsX7HudXMB5XCj6MhP7E8fjE48fPPH38icPpA6E/4cORNYFbEnZJmGUCP7PGmZgmUp7JdqX4BWsWfFnomJGuLz2YARuO2O5BBSAGYulZ80AsHYmgNVO15MLS95a+M3hXcErhqoIf0b9PNWr+TVt4b9wE/aau55oRSWkhLVficmGdvxCnL6y3X1kuv7LcfiPNL5Q8QZE6Qxu8BgrlHuSUWMusCpK5lcNYSbvpXt8Cv0lb06C2b7MFIhZSVTFdO+M2inChCslAilrXv2gAcVnwYQW3YlwEk3A2g6toRP6Tiyii1uY81hRihmQNa4bOQueErZS+s8T3zqD3gfP5zM8//8J//Md/8J//8R/8x3/8B09PH0RwULOhTWnW7IMHu+yqelxb/3Hb6r2FCl0zyJINk/nTvp/LxOX6wtevX6WkZJWgaHXw5JoRRW0jbVi8ZkUrVbPScTFFylSWpf1tmOeWEV3XlWUtei3rBkQ18FaAvu8ZhpG+l8CENRoIQJzsUoQZY5KhNHXW7wRbdnatxrSK2WyLMWaj5OrPNhtIoxcPfcfpeGBeIi+3SfwTDJkARvrcxqRO9DyzrDcoUfRsjIoIJYMpDhRgZe3OUGwN7ujP1V6lUkjWk13GFAkMGIcE5ksmzhNfY+Tl61dihHlOxGQ4nR6U9ij1p62lkNlsqWSgcgugtyD6suAclBLuToS6FfY8nbeG0K9fAdEKdvRnQtstDSvV10um7DKieiYmDVI1QGrULxRhp7yI/xXjQl4XShImhi1VuEzaA/ouEPqA7wdsN2KCVyZhgbiqjk7GuhEbTlg8sFJYSWUmlRnDSjEd2AGcsLVEkEeAvUVsUTFo+6TckiDt7KpBNwWiuc5MCzBxB0CrS/O7GdFSFHxqILn+u92AjRV3J5am5TAbFjXb/WrgdQ/09HsV3ZIa3EIpnZaVjJg8g+vI2kao4o96fTlJ142rhTWlxjQQhmANMApbssgm1OvbAmw1yG+NZGhFF2bL9DasuQeju+8rvqlJnO03d9bizfEdaq5UDwjR1GhGwSpdVSg2xjhM3oRovDMieuOs0hmtFO/PM3FdwYghLojUMwRt8SERMquN3623rGvCxIixomqb3KYGJ5GnKHUk1jblPR8CwUvrkLhKf8CcC0YprDUbG1MSWfXrhZyT1AZ5aXPSD30TI6q1Y1YBVq1RxWyUDDEjWpezhQVkroq0eKmRj6oA/NZw3jIM0iJmPAbGQ8d46BkPgWHsm3qvC9JfVWhWcvjP88rlcuPlcmOZlk1xrxisjzgnaXqXBFg1lcSYpefiErlOK7d5ZV4jS8oiaIFESzKWoiIZotZYxDEoGnmzRjNGQmOkNeSWDZBLwRgBoWhrBmODGsDSNlLNDKQsUbmiFKPgvB7SonJYKZTiUKgRLujayJRVGv8aY1jm99u3bLWee8Jmu4U78MmWWTLb/qgOvESRRM24CyImNQw96zoAiXE4cDw+cDo+MvSjtoqQGqRswRcv8unSpBBYiPFC1w+ErsPVfpRO1lpKwhqoqokhWLzt6LoTXfdAFz5g7I1p+sLXr89ks9IfDMMhczwlTjiGIdBU9Hby7tVwb8X9O9tbf/Adg/K+iw6H0xlMoR9GDocT54dHfv63f+fDRwF04zDSdz3rGjmeTtyuN0LwlCIBixhXpWtJC6F+EIXaw+HAeDjQvbyokqJpB9ndfVIAKtl0qwGRwhpX5kX72QVwIXA4nXn48IGuH7DeY0OgH48MhyOH44nT4xOnhyd5334gdD1WRcvafn81a3Xuvud07CO4d/P6yjF873n3z1EF17p2873D02T9y5YRZwfe23029dAxLbAmP94JR1jJ7FOFvLQdkXVStzIMPafTkYfHR67Xj8zLhfFw0Ob20PUnhvGBw+kDTx9+5vHDL/TDA7gRbA8rJJOxJmHKCHkmF3mkspDNQrELpazgV1y/gINCANNh/EhxR7IZiaaDEjDJYVdgShi7tvks2UNx5OToPARfdtmx748NiOrz3+WUasQ+b+AwrTPLfGGdv7JOv7HefiNOvxGXZ6n9LgvGFNVGMBg8lIxkQwuGlewyydW6bzAmq9CabcqbOW/9mGPSotb90LNe2EXSI9S6rUa7ZkVRCnZBA4uoEIp6egIupaQhOBGCwprWrqCq/srXQizSXSPawpygsyKm5wys78zjMA48PT4RtEXZ+fTA0+MTj4+PPDw8cDqdOR5P0nap9pUs1d7ljRGihq5mArezwWxrX1tW1AeIUm5ZJZgg90YD5TmzxkVKbVa5H846nFERx86zj/qUIoKMW0/viXmRIO48T0yTZE8pEEIQhpAGamOKDZRWBlr9TDEmvJcyok3VXpIB7e0Leo62BfCdBS7rpzKH6rNN2SkcNxNh7v+w/kSdVR8C4zhwWFaG5wshOFWoFfAn76PZUWOaxojN4pkIqEKouMmQktQWF1soLuv5Lb6pKUWAFEZawa1JPLdslcq7qdKDCPilBFK66aCsSineBaERBd5UspbFTFyvE5frdRM4yonOG4ZgGYKj7xzB2ba+nLP4ELSu950pz5naFWBTcqbVKW8Ah5a4AzE9Oddew8p4ykK7zTlr7akA0VKMAlSje7j6VhsbwmJwtuBdFsXyXvp/Gz9g7EDGybuWRMSSDGSbxP66XoOCWR6smLwgVeFqo21PsYP0EsWB2gVTcoMzWRNTliLXmRHV6+QoqdTFJZ9J7eLmz9Sykvqz941zKYWKPctbN6adiTRmXBXobG5+syGb72j2dmUfGDcK/Yyw+4yFon1dfThgy4r1chYaUzPHtS+0CIgtMUlCKosKtQigFQ2gau/Yei6UupYUr+yuTcowNoai2X3Wt36+z4je/W7nV//e2fkuEK2zV4BiRVCgWIc1onqHlYPIGlOTFFhTpKbGSFAkWEvnPTfntL3LJlduLYTO4ktH18tG7CZZ2N00MU0zbpqFelIPjFyEu64FuJSEc5bD2HEYDyIB7wPGwu12oxRpx+BVwdc76VdprSGmlevtSlwXnHVb7VnJWO+ElqyRu5oR3aIfOrcVGBcR2xAjoNEKg2wmvbmlUlvfMfJd8JxOI/0QOJ4Hjseefgx0g6PrpH5J5JiF0rpou5frdeZ6nXl5uXF5uUm/Md0QqViJSNsVn6zwv41GgsoGQtdllYa288q0JJZYiNkg2119KpMFhBpHKomYkWJ4BdhG6/58CGBUYVBVUWNOFGYwnpItXV/oOu0himzgkkXJK8a1OcgGCM4TfKAah330uioMpmpPSpEWQnqw5yLOwLtLnPv6o1rpAULy3TKiG+WCcn8dRaWzRfRG+kwej0eW5UiME4bMOJ44HR84Hs8CbIxtB7IFmTcsmA7KTMGzroP2N3QaibWqEqz1wOqISO2KAH3vDCE80PWfsW5ini/89dcba7zQHzLjcSEmg/cj3h9AlddaVHE/v7uxObWmrfv3TMb37M3x/Eg/9BxPZx4fP/D04ROfP//E49MnjqcH7RXasS4Lx9OJ6+WqGU8RRROq002ybUFaQHRdT9+P9P2I9x1V0v91po+CHhZOWRNKIy8SwbZG+rMOpWB9YDydefr8E8fzA9040g0H+mGkH6VNhbSrGFtTebOdPnXWuN/r9d+76OobYz+3e2ruW3O+gdG357sUSBGarL+ucErZ5kbrjxrDJO9+V696dwDZ3fdyEJUdXb1QrDQ2Rz8piK3ves/hOPL49MC6fgKkX7IwzizD+MB4eOJ4/MDx/JHD+RPWj8TiWYsnzdLOhBwpLpBNRzE92S7ksgrVK69ks4KL2LA2ca6Cl2iy7Ummg+KheEqylDmTykpMWetoFtalI8WOGAN9MPTBSE9TBXT3TvvrORdHzsqUtztfR1sd9R5UDYUUievMMl+Zb19Ypy8CROdfYX2BPGNM1tr0bnfIFxEySRHjCtYnfNasn7MCkFDqbZKbWe91UqeurszG+qkK8E4ydc53OBs2QGqriJITm16pYugZp8qsTsFn8NoSJyh4tQJcYzEiklFQITEjHV/VLganNaIW1vL2uXk8HPn8+TNd1zOOI6fzAx8+fOB0OkvLp2FomdB98KYC8VqChDpmkrW8B6F1D1pn7zQRAA12J1KOGENrQWNM1SxIrFEUb6tg35o8OffUMy0XKcKTUpaJ2+3WmGElZ6Zp0n7EyjTou1aqYtZVgevcxIpSTERtJbPGRKhANHR0nbZo2zmhdVWWwlbK8N76Rs+K2p/Y6FmJ+HybxMnbAbf6unWuBnoO68o4dvS9Z55XKetRXRGj3RSc82DErsdcJH1XDVQ25GSIq/yu2EKxmRAMLnjpb5kzJmUVqCwsJWrORwFPkr7yWfeDzIXsdYmvCTOiCT7Vs1AB3jTNPD9feHl54XabmSZhLDlj8Z1j7L08uiBtABsQVV2Rkt+ZMRQkb6q5ktTYAQn9Ret1afZ/q31UK/2/9Q9We18JYzUgKQ4/hVoPrqq1xuJMwruCd9D1Hf0oeyuZgURPLpacV4qJsp9NIblIsQFsJ8JwpgpsZkzRLCseCPLQOvQWsG3+iJTZJC+UdFMKCWFU5CgBiT0QLfVv29fSvtZA2ftn8P4crvTcbVKNzvMG3CoQlcCCKBcbTTRqkACzBWra61S/chO+shg1oaI873xP6Q7YHLF+lDZettvsr4LRnGGNhUJkTVvSrCD7Yx9cNvuaNLbs/v5hTQWou2D0a1CNmvuKSG1p6HQrbysKet9DPjLez4iqU1lqBNNKZAQnINRoRFQMuKPYIql3U+uld5u2yIVVumUutX9opbtolrTrcEGyflhp5m20dqWqw+VsiTFikA3ShcD5dOThfG6NyaWoupDSSoyGruukRYwVA+DUcIqQ0UoykRjloImxl/oYoLaIqYXpDflToymlOXMp5XaThSZdi9L3IPT9uouu85wfDlIPeh45ngdC5/CdqM7WOy8OU2ZeMpfLzMvzJCD0OnG5TBoBtfjgtFmxUFwkVb9bEKU0ILosC9dpYZpXpjUKINRIdc2JSzbUg0lkrBavVylwI5lydV5cgaTZthJFfl5ENiahf6jzGUJotQpof9EUBUhW59cpbdrVmhVDE79K2uYnxqQObc0u5BYlltrit8dWZK6bq0Zyq5O9j2Dtjol7IAq1cbf3QSKFQ8cw9CzLiKFwOBw5Hs8cD2cFS5uglUydw9ogjjwWimHu+hbFFqewUtKzRsIl+l0/u9E+asGf6LqPhO5GKv/N9Va4zRNd/MocC6F74HSeGJPsoSKKAa8+02sDva37f2QcTw8Yc+bx6QOfP//Mp0+fOT88cjo/MB6ODF1HHwLLvHA6nbhdr9yuF2lMP914eX7m8vLc6sCGfpC1YkXoxlaWBmp466GrmUBjbQtIVdp6zpl1lbhir85dAawPdOOBw8Mjx/MD4+lMPxzpxwOhG7AuSPNuo9Cy7KN/9UB89e82Nof4rfFHsp3yKu10eXOkVLhNQnyUjE+uW20DoVnqS9B5age1HuJV4bEFZfb10bLtdwdxoTj5O2f0CksBKzX34/HAw/pIzhHrnLawAHCM4wPj8Ynx8EQ/PNANZzIdNxFbJK+ZbBPJuPaIeBIdiUhGxEyyiRSXMCTdTxLZxzqKCyQrDepzceQkEfc1iRr3Mq/MN0tck/QCXApjbxl7S99ZyWaE8n69Yr3VLQiyv9vfPq/WYudcAwJCz43rTFwnYryR0owlyVmKa4rx234sUsMFlJKk/MErfT0bTDaqAm4wWX/eAJCqH6tHUZkmzeZqmYu1XttV1BIU7ZJuvfgC1mO0kb1V0FBV1IN39MHRBUsfBLAWY0QsT0FoPUti3rWVAXxSd8PI794a0hLrM33fczyeOJ/PfPz4iYeHBw6HQxMnqmrt+0cFozV7aIyC8eZcWr1XRVV+N0q/c07+xtLqbkvJzSGtKtXyPquUyhiBbN57yZTGnnVdcIvFAtM0MU03punGPEsrt5wit1vYggPW0ve9tIhRJd3L5crtdm0aClKiIwG8NSb6bqAfRoZhZBxn+n4Q36tlQ4zcl5o5a2U5b65woUGqo12da9so4t9zOO83hHOOzlrGsWccO8axE90IVcevLS1qyxRrLbEYrXWUAIvTOdUYlfQjtoVsi/a89dKbPouaPknb9cTcGH8G04SfcmtXBLUkyeI0CFRamU4NStdM0zKv3G43rtdbo01bYwidI4SO06HjOHaMfaCrQBRtV+Wku8R7E5fVNlQAtAej2/2rINRswUMkI7qJFFUgqgkh/bkpMgvyuYX9JkAnYGxSUCT0eucgeCN9mPuBrutZUk/KHSkbSVSwshbVObZWhMpcoLhuS2QZ04ylKWKTTZHWNtv5k9XPzphsyFZ81uQk6CZAVNYtCUiSGNmzh7ZM6Oav6yrm9zKiMsdbAPmtG2QQU+gM0r9WKa/ayaVtiG8zod9mRtv31iK9cj3OD9AdsTlLvagbMXbAmAA4Kicpa1AzrSLUKN0tMpUCXNdJ9Xu2933n2tTnM3Ut3fnD27+br7z73OwzoXWSXgVIXo93gGhFuAoWvaR5jdLZjNJxTMMQZcfTTiLJH6XmwJvA2A14I+pd0otIPp1RkJRKUfEEwxozdln1PeRTWmtxIBLvSS7ae89hHBnHkaenRx4fHgjeSyYw1/rIwrquGhH09H3P2PcModsAco1+lELfdxwOBw7DSB86SW/zakW1YRX1ywHmrDo8RkE6u0dxO1ru23cj9J7Tw0DoAv3Y40OnNWwS6RMl3JV5idymVbKht5nrdeF2m5nn2ps1k7JhTVb7WS3cbretvkGV3gxQkii8xTUyL7PSHzWqmnYy8FVUxxasCgWUstJ6Umm9Z0wFF8WYWeNxTiJWJknEZpmjCHGkLPelC3rAVGMZKVoQXwpUpUbnDD5IPYdz1TkQA72saRO4WlU5OEmtptTmvF0jugec1atrBqxsm7NFP7+5bRsQrdnbUiIxzSzrhVJWoa74jtNR6kJD6IUmtAe/lJZNEjajheLxrsOr4qe1HbWFQIxJ1YQX5jmyzpG1z3ooWoztCP2Z8fiR8+O/8eHTje76ImDNd1gbVFEwY4wET2pg+e7T7TwRUyfrHxyH0wOhC3z4+JFPP/3C588/MYwH+n6k6zrJJCgl/nA68bjMbW1cL4Xr7cpf//Y3AF4uF4Zu4PnlmV9//Y0vX5+Z5kUj2K7Vx9Vm4LKTnWYlJMoZU8SQde8qvWpeeLlc+e+//ZXkHC+3iadPE49r5HBKChwMvgNfNEhl6topre6kqKMijoGt0Z82j6W8PaPvZT7fo+Z+b0xz4v/9vy4CjMRabTTcXBGp0J6c2zJ+de3X9ylszpfdHbhNuEO/WifiZa5kXGn5V3KyGNsTujPjsZCyB3tQe1XIxeLDiO+OFHdgzkEUkFPkuhRuc+Y2Z65TYpoS0yyBuDUWqVHMlpw9W+uTLC0DWuyqBj2lvkaCPZakdilp6xipdSzkvLDGwu0WOfSWcXAcR8/x4DkMgWV5v6FI0bRSMboWLLxVASZ2Q84WOVOlP2cIB8pwxtlM8Ia8dth8k0eRfoSGInYyJ0pelV6ooS21Z1JSIWcqqvcQk/RjrD2YPbbRdq2T3p7Sastp8NXpma9rQZ23outYwFmH6wbCeKI/PjIcHhiPD4yHE+MoZ+nQd3TBEzSgWowRYNmCmRA1qJHS1uc0li3Int6Z8nEc+fDhA4fDgcfHJ56ePvDLL7/w4cMHjscTIXQCdtM9AK1lDXt67j7Lsf/c+6xGXU/V8S9a07kuS+uRnnPGO0vfdUzTLOfUImVCTb00JZZ54TYMDNrb++vXL1xvV5ZlVl2ERQLk1pJylhIkL37MTTOnxhi+Pn/l5eVl+zyquBuj1Fxej1dut4lpWpiXlXlZhUZfP5N+LaVo+zr5+7cXOCqECE7bPTg0KFXqaaK2kHdsnH4VLGvwzjEMA6fTiZQyL4vM58aWEhptZa6tEnVpoL8YBf81uFukxi24wBCkZZ8tBZMKeV9/WwqVPSOOuog3iTwrLTijU6Xumwbr9HNUuqux0iZnPAyMZQAF0CFIh4Vey3X6XtSLq+OuC2oDkm/NV66BfKRErn5t2arta2EfNDYUh7AIi3YpKBsLIGtdpRRYbQkFU4IEsyyU7JCqSwnsOVdwHmUVdVgTMARy9pKVBpKxAhCNxdgk9Z+atJIMXV0i8sFbj+KasdTZlevKkKVWUQJnSc/tIiVjteZVM6KV9g8bCN1nRPnm9d8fbQXr+th5RFSr3s5Fu52Jte5azLvurwbu7h/svrdmx8awgAlY31PCEZcLtutxQZR0sUH9CklclN0ayBqJMGV7T1sVn9p7qo/7Rja02bdm/9566GvUHJm+trHbrjcK4qtdeOXC3I13M6JVfAZnpD7SexHu0NofowBE+PWl0YtylEeKkvb3OFwYGUIvl1cvXNNza87MUWSF15Rx86oRE1vvvx6Sqk6mjlPfd3RdJxHQJ6kJqb3QqtocyAFQ6Xjn45HHhwfOx6NE0jTyIiqxEqWX7GlPHzq8cZrNvauG0gkq+kVrz2o6vjWEFRBaFISWGnV6D4h2ntPDiNNaVR8CYMVRSpnbbeV6XbjeJsl+Xm9M88Iyi9JwziLJXIpGh0xhWSy3m8E7yZB2QQx5S71rRE8OxVUbbgv1IcVa12LAOon6FIk0GlaJnBWhpgr9w4gjZ6sKo0S5UjJKhU7EJSK9PRfmeRIj3Xd0KiCRivYK21EqsAXrBYh23VYDbJSmM88L07Rwuy3kMqnCnrzHsqyAtuL5doVvkSJ0YzUKRmmb1+wc873r3+gbNRhjMjmvxHhjXl7IZaHvxLE8nh4ZhgMhdHr3M61VkQFri9bV6XXg8U569Xk34ExHPTBjTJgigQgJPiTWRaK1BcSZ7U+Mp8TDh4lPc6K/fGVZZY1YO1CKI6WiUbfSPtD71NzfBz2vgdJb43A8cTgdefr4E58+/8Knzz9Jj9BKd1Ow5kPgdDoJJSknpvlGpnC53vjrr38jriuDgtfL5cbz8zPPz89M06zYz0KRTEeL/AKGoJRcsRMprgJIELA7LSvdvOAuF9a/wPPtxteXC7dlZo2JB90TJUOXCwyWgAe3Oa2V9nTnFLTmkfcO2h/NiP4eNfftnBtMU+T//v88q8O01c1mdTYVmuKtkbYlXaBT4ZQt4LO9h9GgiVMg6r3Fe6n3d7bgcsZmgy9Sj9UCXsWC6Qk9jCVQzAEXHqVHdMzaw8xTTCDhidESZ+l7dp2SANA5My2JeSmsUZRVY9L+o9moPTIaIC3UPdYOSFMVLgWIllztONIv2cBqCostLGvmNiVe+oXj4DiMjvnYkUuPMUbUOt8ZNZqfM0ijcXN3f7bbWGv0qjgFeD9Af8LaQg6e3HeUeFAQOmHyrMBzVSXLmRgLJi3URvb7NkWtBjNLyUJMiaSZFyk3cTgM3nndhxLItXU9V7tXa/klX9HEzIxxWB/w/Ug3nhmOj4ynBw7HBw7HI4dhYBxGhiBZIO/rikP3Ok1vwFmwGsRJZZcBVaf1PbGicRx4enrifH7g8+fPfP78Ez/99DMfPnzkeDzhvfTQjHGzByLUtPXcrAyojdq4C0But2vn8G+godFvVZNCAGfCOUc/9PjrlZyztpiKWgqzsMwzt+tFAEovLJnr9YWbtn5Z1plVNS4k4Lrqc6UFVqXw5pL5+vUrX75+bdndCkZrjeX5dOM2beI5y7Jw14MW02xMBeUpvr3GSymkVbKRwRhtgSLro8Xa9jbuvX2iv5EgmNSQn09Hlnnh8nxhWWfp8elc87q8s2RnSRGyStI4b6C8YnsZOQOCCwzdyHE4iNuZC2kVVeManDC5XosKcunVSRBN56YKEzUQs61d8bsk8dH1AeuMapaobonqZjjNaNfkhvgTm2DWO26hXI0CUdlzZvu6B6VsP9cFChi1j9oeptWI1uCLCvxUkAIY48XnN2IfKB3VllqbpV2LKy1g5awHPCWJrydcFKdtarxm5aQnMhrsKFlpyKUmZyoo3H9fNBuZte+swZqty4YwGrPQp6NTMOo2IGqQAFzLiFZfZ7uH72VECzW5sKPlVjDSgKmuE1PZE8LecK4GKNR07fZXzXze+Z4NeG6JD7QMkOKxboBwwBXpie3CAH6U/tl7FLizT6Xa7Jb8suqL7IHlfaJlCz5vdp/2kjsQbfdZ1A2Yytto1BD5uu2lzcd+b7xfI6rz3gCp3b+jqXerhTQFjFYjKD+TPpUOqzUTtZB3ez2LT0noo8XShZ6+X+nnlWVYWouK2mdLZLNlywnd8cjDw5mnxwcezmepVy2ZVQ+DkhPzPANSxzQOPefjyOP5jLdSIVCy9N+qAii+1jpayXiWnCFbcNshtR1DCpRKrS4UIFoadXlfF/o+CAXNMvQSESnWkBSArmthWRKXl5nnlxvX65XbJD3KVqWSiFHZzsmk9NRKbTCmiCCT1q/UouqKz0oW5dBlWbWZeSTm2PqMSkZBqMaloCDTtntd6bHWJoxJSuOqn1coyaIoKPWiMcEaV3y09HklZTmIW52iGg5rLXY1Uo5sizDDvUinO+9aVBfNnuciSstJaypSVuDwTlZUOPxl28tGMcNdVKg++T6+W/e93NmaWRLn2zlL1/eM3ZlxfOR8ehDpd2up2d72twpA20ONlfeBLoz03Uke4UBwPSk5aU48SZ/VZZbm2c4J4C5ID6rQHzgcP/D0IeHDiWmeWNeVvj9hbVAqs35+vnUY7oHPPsr69tivv/fG8fzI44cPPD595PTwyOF4VtEPBf8lY0rG+0A/DOQcmacbl8uA856YIi8vF243aWfjnWddI9MkQDEXGoUtx0iq9qmlH2trnu0mllJIZMnaA8ZJ24BpnllyIhVpob4sC5eXC9eXC6fzI8N4ktYiWn/mvQNDKzsQgamu1drZun/eXE3vzfv7P7v7/Ts/n9fE//rvWzsYK4sga619zZt5bxiHjnFIdEFqmKTnYGlsEaOBE2slcyoiG1ZrmG3LjMr8WwX8ULMMElBzZHpphdUFvM3gsvQ6zxCTYU2wLJlpiUxz5jpFblNiXjLLKiAxZUhZbGRN7G72tYYNbYvYytcqMrMT4tAzrBS0j6Jk4aAK4llQh81ZQ987+mBJyyYG9MbNkuW2X3t3v68nR9ndOFFatK7DcxDb6QIl95CO2HLD5omSb+R4I8eJ5G6kVRS7bY6QIyaVzak14tBlBIwmpeQBWGe3gLKx0p83dHgV8xG/tEbZ9ewqBnDCzrA9vhtx/QHfHwnDmW58oBsf6YYHQn8kdAe60NF5yeIFzbhXd1ACFKKQGwt4q0Iwuk9Vw4rSvr4XtNnE1jZgVdvDxV3vadvW8z5AVYOedeXsMxV7am7z7d/YcFX8aZkXrtcL0zxTSiEErzWAUJS9U8rKbC2325UuSNB56MVOLPPMNN+Yp0n7ZtfSi9yAtLWWZRGW08tFsqBfvnzhty9f5DPppBhVwhyGqAFquU7p651QBHY3Z/tA5PodILosiwTwDRSvNcG7mGado1f/3H23ZRRLkTOv70RBd7pNPPcdQZpuql8rbKHWNsVoKYCzWrKjdW71VVVV1RSLt4Eu9KINUpCaRVXaX9eVHJMII2rQRl6rKpKK72JcFQt0d573tk6kf+0w9JQiCRJRuvetLvj+45dX8/H9g/NNsaIKEL75au4c/5JoAd2C0nJLBaWVml9oPdnl1ZFkCgIWa9DcZozNwopTdiTKLinZSqkDVVtE6kxrJEmYKqYuorZOt7WhwSA0iFiBaJEaw5KNnCPq11mjNOJSBRe1FAwj+La+1h0l9x6I8g4QNbv/br7+3S/vFrc1yihyUg8vwbXcenCXnV35Jgu5A34V4GEVsFoHvsd1RzwW1/W40IMfSdp94u762tqEjXS+gct2/ebet73LzrL9fAtO3Pt2ewBq9i9vtlt8N3u23L/uG+P9jCg1eVnuHhpC0QCpkbtP3p5T6pvWjbz/W6XwFs2oGgF6thi8sXQhcBhGShaj04duA5Upk4OnZGkofD6feTifOZ2OHA4jY6/F/zkJjfcwYkpm6jyxAlp01aZIzVpaixC8SzUqUpiO0aa+CshMMc04NQl2SqP2ily4giKjwkYtTLc/xd4eqWSWuGKMNMc2FHHIpsh0W1WM6Mq8LAI0s8FZ6UUmte6y+GNMTTJe6iSjRmgNwUtvIeckM+rqhii0Hq7LsrY+pFZBtSw0K+Dc1AJ7oweb9M2qKpml0DJcBqOUKF0rui2EApQpUWi4MYvC7b2BljW0xpVpudGrENAwDCJqM4yEEMCA7zyDMeAsLni6vmOaJvpZanAuL1/eWOBSR2wsWBVeqn3QBFSpUibAZrqoPHtrJRJsK+MBUekb+5GH0xNQOAyPHMZHTqcHgg/NyBqr2aW63u4eAv5DCIzDgdPxkdPpiePxmcvLwnRbmebCvESWOTIvq6gyqulJpajjYfHhwOHwAWNH+mUhrlGazLtBD95N+RDuHZHX1Nz6z28pojI/d6/xDjQ6Pzzy6fNPnI4nQtfvY2XqBOq8q5Jg1/f048jheGQcR6x1xBgbzcxq3Zp1ln4Y5HBN2gojrpio4lwt4Cu/LzlhbSfCZkZ6AWKg6zpOpxPH00nmsWTmaeK///K/+PLrbxxPf+F0EgA9Ho4M2m6mHwYRodKb6IPneDpzVMGU0IEJtuLtzRF/Z57+bjD6zq/WmHl5WdT30TqS+jo1a0jGWbitK/2cCV5UxL3Vno9F6Jhi0xWIKr25glBhWWhQxZhGf66OonVsr5UlExWTZDVTEprmGmGJRUTY5rR7ZKZZA3JRgl6pKUHuVFrNNhFWT70aB2xZPrXJNau9Tyi3qLaRjG9wIlBkVPChCtysMZFjfHfSK3Cv9Z/mfcS6fWf0tLUew4AzjmI7yAPkeQdEryT3grEXipF+zBaDKVbq2Ogw5UZJ0yYwV6p4G4AR5Vvr1flRUSGr9aCtbKO081uyyCpaYgLWHbDuQOjPDIcP9McPhPEDvn/Cdg8Yf9Q2DEE1BTYGjleaci6yJ1OWPqExF6I1rCoG49Qmb22k3l/6Ly8v/OUvf+FyuWkfPbENy1KF3KALnZZ5yDqpc9EcL32tfVZinxFtQM3IfyqAkj+UAEcucJsmvnz5KpRZddRlj0gJyrrOzPOCtOwyeCv03X7oCd5pOYkIFq3rIurxSqkGYRUlpQJfbze+fP1CXCO/ffnCl69fhApuRJ03hJ6u6xvDahgGUcstRgWqNNuzA5Cb3S/E9W1thZIL03Umd6KR2jmroWZVlwcNWrQNsUHPUr/uCJgFKJngHeMwcD4euT2cSdreT9h1Udq0GDkbvfNQlN3i7BYEVdCacpYWRlEyftKmxautCgoMLNbMzGWWfvZZ2hBhoPOe0KtKtHFYF+j6Eaf30ajqo7EGrwwL72t5AHrP/cYsqBd4B9bbgcq2CN+zKRs1dwMatPW7ZZ/2QFTO0+wgJ1EAL2QVeUpaRpfb/JcKRJvNEgB3d1lZkiSVfVLVdgUEqj2mfkwJXFF7BisKuPv8pYJP6gTsQxR3QNRko6wzpRbXAHpj+oh2iGQD0X3+NhCl/e17hkXBYp3uBhL3brxetfqQzhlCcPSdJ+XMmkSosyIjdgDUvgajbQlsgLBYOROs7zDlgDce33f4vpe+q05aHN2HMfa+1A6E7n69X24N+NbPTP33PUhuf67+mcxHadd+36tJ14z5hkP6Z4HoDkDWia83Vb8vWn9Srdk+ByYTb/X3+udFsnQYJN1ubWspUIEnRQQT+i5wGAcWVYRb51kWpTF0wfP4+MjT0yOHcRQ6mffqiFqhijDiraELTlTobgIUTMmyqbPBuJoKR+T5dpNdkMwa2WCzxRbJlIjPUG8UtFO+gWtV0FQwWjni8P2sUsqZeV0AR23SO10jl8vM5WXmcrlxvdyIScSInC76fpC+d0lFCpZFGluXLIfJsi7EuO6iNqZlR52zykunNSRf10jWJtBS3yRL3VrXgKuo3VqteUlKga1TUTSDvWuv0hwhWe5Ze+cJaIqscbfDdZK3YIa8Z9cFxnlkWUbi8UD1JawTcSurFJiuH+iGme7WSS+vaXobiFLBZqFYMaJ2d1a0PPZr6UuzA6OmHr5i6Jy1DMPI48NHnLUcDk8cxke67qB9XytdUCm5pgJPWgCkysOHEBiGA8fjE6fTC+fjhetxJsUXbrerikxFljWyxEixGW8KMRetuxN13PHg8SGqAEvN5OiuzjQjsscnzUFpo7T1u69XvFdtrU5NeddxPJ8f+fjpJ7rQEbq+/a3c59Jo8DWr6bW2ZjwcGMcR5xwxJaZ5lkguhnEcOR5OdL2T+vS4kuJCVKpvtmD03lKkDjnnII5gkKxfLvKEru84ns+cz2fmdWFeZm7TxNfffmNaFvp+YByPjOOhfa3tXIbDARcC1nn6YeTT558wmCby4nytI64z+h3vus7672RC7+/Pt2ONhS8vK9ttuXesUXtsKfi54H3CuyjUXLXNJWu2X81Yjfw6L4EpYShsm9fY0pgropgqlMymzMfWNiOrwmwqhmUtzFFqP29T4jpJI/llKSxrYY0ocK3Blg1YF11IBjC2bHbaaIZc31/oqFpKosG7euXCuNnqfLwCUavZwdqsPsZIfidbpJchFP9q9PIro99o2ruv6qjVGlZsj5Hu8piyYsqEyRMlvahA0K6WCIPFY00Q+m5ymGiUy5oorO2+Y4wqPGtPaGXuVNqgBN5yKzepz7G2U6GMAetPWH/C9w/04xP94QOdAlEXHjC+B9tTjChgwtZfti6TmntJssTwVkBqsAgYNWipgZFOD98ZLy8X/vKX/y/jeGGaJi6XK8sSm3hg3/WczmdC6FrGvt2KOydLa7Rq5vwVEK1rTMsTKxJo9gpgmma+fPnKNM+M40joOqwV0SbnHCklbpO09ai+kgRYpTyltvGZplurNU25qpwaurTVb95uN758+cKyLPz25Te+fv0qARUrQczDwdJ1Aj5D19P3g5b7aHBYkwLydQOh1Zav8W0gmkvhdpMOCMFaotJO0UAUGK3121b56wDnni6pJ4gqyVri6cC8nMk5cbvemG43lpLJVnvaWkvxcpY6J76IiEkZKr041WDkmskJhLorPexlq0n9M8UQY6awSk2yBgis96KI7jtZ/y7QDQPOB90zVdhrrw+wDbPzD9tSUR/x/ol7u7135u9HzWjK7O7+U7e1fl+tganfG8GdOTlKFiAq/VIFjG5iZYaaRqy6L4YiB2eLUshTSq41kEa/r0AwU7KtoXYNMjen7xX+3gPB12dXC1HsgKjYgWRKYzpuQJT2OXK9tnYc7bDKDuBWdP0eNVd8sy1DWX3RPfCS5NRWJ+qdJQTp0R6j1OGThFacyhaMq/Tc2rblda3ohtoQDOE7vD3gTIfvA77ryXagmEA2RpdQ2f3NHoCabc3oHdmepyunfsa6jhsAvXtJxS7qBzZ/sNwjTV7fzx1Yf3Omt/E+EFWp8qbm9A26lkMdLKY4afThPC2rlQzGSJ1oaf3pNuqlKJFJ/WfwHgu4LhPGTB8TcZmllmKamacbyzxRRWGC95yOBw59Tx9Cy+4VjdhYZynBY0qHUUEOC3RB6tEaIqyzbKW4vYCAL7Mt6FL3qNKJK1V5H+mqi7JG2qi0XI2KZrMtjPd40vMS+fI8SbQpr+RkmW6J20XqH5d5Jap4kPNSzzX0gX7whOBYl5XCAqhh0CiRRCdt21xVnr9SBXNO5JJVgXVtILYUtK8RuwbOurhKUeW1JBmNuM/oibGom81oQXWtS0hZnN9MBpMlfKEpqxo13U9RowqpkNKySq1TTIU1JVVuExVT5z2iai1BABfcBiTfGDWzmbMYiSYww+bI7q6Ehtg2VN0MiS0W6wPH8Sy975xl6E/03VEUVrUusf6hMXJgSYBglw214vyGEDgeT8T4SXrDrRmKw9q/kfKvhG7AWC/zEDPYREJoV2uU+ZH16NUZTxij8690w/2c3wdKXh2shnd/t83N/X/fGhKZH1W9uqpYSpuBkqOIVaVV1K7XhXWZuby8cLtJACb0HY+Pj9vBVxBweBgxxpBSZJ5vkonzAoRKKho4kvmtvWqNkYxeQUSLCrTevAXDOB44ns5cpxvOfYWXF4y1pCh0YVEvXohplbVNIXS91HH4IJlZzSYWFYspjR54P29/ZHwPlL7/O8nqUoNBQLVBEhCSOGGiEDPYVeqARO1c7GZt9SSOF5oRFdEK7wrWZZwx7cBvWVErDIwQrJQEKBCs1EsJaNjWh5IiGX0J7FRxKfFgSm4Xv6vXqcO04Ehby6bWS9HEeJwzWG9ahrzkQrFq1tnk92sNbAWinTeEIDXqwvJQOtr7N4NaO94Qy37LqBm5A6LtZ9WpVONjDBRxmAXU6c+LxYQOy4A1R5xbwK9gJ4p5ptCB6cAEMJ6cO0rqJOjgAtZ1TfXZWt/OA8Gh4ugB4oQbUW50YcCFAy5sQLQbHuj6B/z4iO3OFHcgGy8td7IlZsl2Vwr13rZbA94ITu+sZm6KqnxqSiPlQlKzad8yO0CMkgUthaacPY5HTqcTDw8XpklqM1PO7c2bOnRbQq9evBR1sHciYaUGc6QEKVb6YClSfmQ9JZfWT7IUCFFqRwu0di+iVL9sL6hzIUquK2tchJq7rlSlTxqkkW9zlt6iLy+WeZ65XC5cr7dGEbXOad3lwDiODP1ACD3GOFF4XTQ49RYQ1c//Xo1oTpnnrxeWXqjcY19F5ioIyhsSqNnQ3evuN6+p5UFG8vnewzEOrA8nKIXOe6HUtkCGUP5D7sg5anWXIcaI8xHsLCrYq3QCGPqJ6TYzHVac9YQgQNZ7WYgp1XrzIpnj1OOD4/HxzMPjGecCSX0o7zu87zWIU30oo2f4FrDYhtwz0z73q1+1bypM+PZpbc41cG/QqW2xqx1qUWBRTG4iNbKujJytyYEpNJGzdi7ppjRlM0W6zmvBWX2/kouQII2Kuzm5n1KPbFpGNJvtM91/s/+Q7zGndkC0Jrgyopprai/MjN0FwbeMrG3MNp25tubuMqLtMPmdKFeFbndwYQOP1lql4zq64On7wNB5FitSSlmDDzUX13ys/f032/u0+VBBLAyCwWyPsx7rRZncmIBIhOliKG1B7K58/6/9PP8eJNx81O0n5e6nzSKV3eqtx3IpbY1uHmG9V+/7MN8Bol4fhko3rVynehhLHaSoIpUdC1WAnIavKaCHS0GzD8iGEil0yWbifKtnyTmTloW0LKzzxDyNLPMsB2QRp73vOoKzOCNs9LYwFSCXWj0cgnxQ7YkWutCoFfWCTVOU0mVq0HY1huJUMVhpIO1vacuUaiEM+r6V360y97aCrTtn/37cppW//npVRVN5rEtmmUUNliJtXKQWoWMcehEY6UWdVmpQ9JDNRfeY0K4Me6ewZikspdR+lElFikR2XNa2rCZpSC99L8X5T5pVkkdMBRsLycntjgltGSDzalV6XWTOkzr9RQymHiSN31prdkQ1QqObUqBuTGKNmXmWLOC8SM+/w/HMeDQMg8F5ad9TIzzOO/K77VvMnVExGrHPVsDmXa2F/sV9VLftPD0g5dldsBzGQSmKHc5JUblRiso+ymaN1AZ/Q821EHzgeDw36XpnA104YP2BVDwFLzQNjNAFTcSmlTkmFq2LirHs1CILtetEpcrso2LbnOh3r9bpPkOwzYV8/r2B+Z6xsdpmxWiwRLLpVUBjYl1m1mViXSUItS4z83xjvk1M80Tf9/z8b79wejirE4VkMZzQ2pZ54lqDEE5ocTiJ4JntAtXBRKPpInGec2FZVy7XK+PxxKeHRz58/Mi6Rn47/crXr1+b0mat1SrqIEiEWXo8eu+1ZrRSHe0Gpkx1Xtt0/6HxR0WNXg9jwLvKSKjiOHVVS81ORkTHcoTY5qkyYTYEUUumBKjVnnpZ16+hCkNoXA9roAuWzlu6UKQPZ6sb1Uiy1TPAqpq3KoxnD9kVsoNkM9HqvS4qjKLOUI0GGw0QNXvc8J9tzqv3UmtuLRIU1dIntwegugedFREU7wxdJ3WhQ++15s8Jd/SdkTVQZUt1yDO7k6LeOL3MzfFovlFB94cc96ZYDNoX1CKBSh/AHDFmxrkZEyI2RYy/YexvGDNg3DPWD1g/UNJMyTOYoqByxPleVC8VjIpQi1FGwUpBAJaxDh8GQjjguwOuO+O6M7474btje5gwUmxPwrJmy5oMS4KQILhCpzTqak9tkYoYb2mB0+L03mFwpmi2XPaLf2fKa6Y6KRto0h7k8yR2Jca1tftqgQ1qgGU/6ep278BT5j7kUG1eRtq1yflUBOS4gMGSU2GepS+tvU2sMVJZQpKx01rdXJ34SC6enI1e/61RcysQrpTyGgDPpTAvi4ogLVyvV+Z52s4+tjKD0+kk5QEhYDBac7pFPkqh2dKaQSpFGFpvjZQyv/72IgqwoeM0HuhCkdi7yXddCDbwuY1Wg7zLEGG2/VHGjsxJBBZ1zqwRQa3ZBnIedJFUWyr3/XJbMfZKSoVljlxvE13oeHm5MQ43vPV03aBlA+ID5l5dVKMdECyMY8/HTx/58PEDxlimeWWeowb1wRjp+2l2IPQuk9UWS/3AqFPMzos37fvCZp/fOxBKTpQUVUxLXrQJa8GunUs9o+Xn2VTarCPnKD5VTmqra1GlQE7U3rA7102lI9RzwyrgM0WEiWIGp+yUrEw3jLb9q9e3/0xl9/UVEG3ztT0nV3pwAVOMtnbR4PU+I6q2pZWe1ILlsn2tlPCtmPneb3l71E9R2n3cMyckqOHoOk/XSXKo76VcLCUrNiKL9gRm86lkVgrbotjer9R9WPQMtmr/nQMXMDbIGiyaDTV6nQUNNGjwrGzv1X7f3nsHfXeAkf3P6/Wov1CZkXVKa+ujsn99wxYo2RWNt+d+B/h/RzVXRDYkEFtncfcxbK0M0DcuujlUvS8bXWpNTr8adzH6gtdU1KPrcF2v4E0do2WhLAtx7lmGnnWeRXxGN0/N7gn5B8lnmkrLUi67s1C8Zj98M2i2FVprFowKLtUQG/Tvq1dllda1HQbtBu9uN6YCVfV4dmJFplQV4LeNzTxHfvtyoyiNX3piZeIqmZ/gA13QPpV9p1Lgnq4TStW6rEj0RSOcCkStAat9RbtOHlIrYTTztLYeWkl7bzZHVTGic+ItSNSpCiRp0XgqJFvbKBhcNs0GGGPxusTEYVBHniIFzFZkue+2ZqmCC/IaMW5CDesame3S+qMJAHPYEPAhSA9ar5kLKz1Il3l+e30DG0VCKZxaCwcVeNV/3BusvcNSabrOqeiH7XC20jAFAuVSQeBmeF5TIkzF47rVRB79yDAMUsNlAs72LGvh5TqzrgUfOjKIQNMaMdZpm59ETKKinJqasl75u7a3ft631ud2nfeG69W8bGm3N0fLxKuj0gQ+Lhdu1wvTdGWarszzjXWZWZaZFKVf6jwvdH3Pp0+feHh4FBtRP19M3G5XLi+htVNxToNIVCulCocpN2PtnKhSSzYts8bIbbqJQuUw8vmnX8i50A0D3TBKX9PpxrosLaIsLYf0wLSSZQ2qBOysqxZSn2P/wOH37fh9IPr23wmbQddhRpVidW+ri12QwFXShwie7KLRtT5UnUenbYacy1sG39Cej3xKrIV1LayhEKP0nvO+4J0ojMsaN3itO3VIoA8yyWeiT8SYWWxptE5rxcmpYHeLBb2egG0NG1tF7jbGhm5OqchwhlA/h/aslFbZkhHtO6uOhgi9WefJ1vH2PqE5EY2ay+Z/7p7U5v7bvbTtMcGnFumZbaQu1HpEyXLFmhXjojSGzwnrr4CXvzGeaKW2s+QZ8ixz3h3w4YgLI94PWN8rEJX6tspEKDlrRtThu5GuPxD6I7474/szrjvi/CgP12F8oNhAQiiOS4JOlY1jNtKSBXA7h8giWdFiodvNaEGrdqoYFbUv7ZvT3cR81lXaWi2ztD8R8T0V7stZSegSHK+gcl8jL/6U3JVc9o7Wdl9yzSKWojWcpQXYQFrULctKWZbdnS3UtkgUySBVj27fUmZZKxCdtf91rcOqvodtmf9FW8XMs5QPzIsAV+el/jd02opuPND1wtKQLGAVb9qduzoX1X4XUGrztyPlzNfnCzEmHk5H1ig9dzUW1UD8fv3L9Jm7887aSm01r87aDqMq/3L+J1IsSAZIyq8kI4n6IBHMDe8vElAssKyR6TZzDTO328T1NjMMowrJyTxaHLmTNWq0LZzvHKfTkZ9+/onPP32mFHh5ufFyuWl3glWAgbXtM+xpjNvK3n+/RwTVT1Q/QPGfYo93h5w1aec+VGDbJm372gQR1A/LRoBsTvp++dVDgehdEO8VkNPdWtdIqwfVgIaAUH00iPU2sC67XXH3tbx+1vY/AaKliQBJL9RtrYpqemX9bEBzXzZYvvlM5fuT/sZoa1cfzkqwJHivvrmn6wI5ZxYNsGpJ5duv92pm9v+tGVHBFAHjCsZ5Kc2gljyw+zzbX9+vivpZ66/fCXbwrS2sL7JHOfXt7s+019+9vreKB78z3+8A0cLf/vZ1i3DbakDEGAiIkzpBmbRaAK1F1SlStLlySbEJiFQaKAYRR/AOFzp9hA3AlUJeI2VdSevCuizEZWmUwnpdhl2tXuXuFImaRG1WnbTAPym9zFkR1nEa1bCmFhProlYgap2o/TofcGHGhyC1kVXAYX/j6g02BsmCajbU1DY04jUVDLfr9OaM55RYZ2k/kbUnUkpyaJViyCZLdiBm1iUz20TOjhgd1iAO9HIjxoWcVyBhTWqrxlZVMi3qzli5PxqlqFQDV9WBqXNaSCVCgYyK4jijmeWiWVorhfyuKgWj9X62zZLoOJlGG8Fsh+w+wIGp7RdkWK3naNFhtEA+CZ14mWZu4QbFsK6RMKuin0r0T9M7850TL1//grVeI+q1kbc6KEbrBGyNwRQNZFSxFtsofM7Wr7SHqYdMUcpZBa66VKSuYMvCGFuFsuoU1mvJXK8XXr4+c71eWdcoMSoDcZm5vnwhxYyxHcYG1iiF8gLgy/a59tR4rZmoh2gNq5htC92Peta2SNs9jWvDpvX136Z1PX/9wl//+y+yJIso4M3Tjdv1xjzdJPu5SCP3WBu2a/AiRsnXOS/9s+p9sknUmnPOHI4nHh5ngvfEdSatshakebg6jinRDz2np0eG44OsqzCTUqI/nPHdAWxgTYXrtFKKiOSkYsnGgfGIulXWwJojJlGoZV4pZqIYsRtguFxvYkPUQWzz9c7h9O54w4jXH728PL/5J6ZEfH7eHJICDYQWcdpckcyPo0gDcqPOialZ0U18zpjGhcEWg801s18zePKwyP63CCuiIH3lcjJSF6hBF6KD6ChOzxQjdLk8r7Cu2LjicyIoGHaYRudMVnMiZQt61nBWpQd7YwjFEorDZTbmTBEnxap764ooapqsZ51SwchWsgnJsUaHXR3MjrRc64L/9obc/opJE7U0Az1f7p2RN5yx6pzuF0fbWIWiytzkCCViarSyJGyRrHyJE35dKDFhc8EWCQQWk5t59XS44nDZ4pLUYpqcMVaUQ422tMhZspbGFlxMcm6aGVO8zE1M4GaKu5JdkLIc6/Toy+DBBEPuDGswLMFwDfVEkHWz7xcac2HNsOTCnGDVLF21M2l5O6BY+4jWXo3jONL32mYnrlwuL/z6699Y49LqlNtJvwsUUNc4e4bM9rVgGghtj1yIUQDh8/NX1nWRti1d0OxNPTtEmGg5HknryjD0DYEIpU9Uc7sQ6LuutYDJSic2CnSHYeRwGKUNmHqFfd8TQmBZFkIIdF3P6XRiHAYtPcisy8zt+qIsjnpdG1DYgCjt3/N8e3O+S07Mt2fIC19/s/Q+M18HOcuc3NfKetsdDPI50CxizSTuM4ryFBF6idKu5uX5wtevL1xfbsqaEXtcQX1Wdta8CHA3VlpJ9X0gJQnUGyvPW+LCTUsq5O0KMYqGxrpGfLFkk5hmx8vlQugCucD1OnO9iorxsq4sa+Bvv3b4YHh+HmQ1v2XL9977Oz+rmK8gYpHpHfbWuVtJ+f6M3h3K7WzevlYPzuD9yugjg13BiChmdIneZ5Yuk9weiJrdObMDbPqKzkAwEGyh89Apm8t4OQ/6ZEhAugOhb03A66/fTp68c96AaDY4CmO3MviIdwWKnC2uWByW3pr2l/dgc5/524Bb7972U5zNDGGRs86qgJ1VTQTtCCHYwWFyJMeVuCwstw6TvQhIzjNpEfZBTjVJV9ti2dZmxmrpXq7JCAPFWooT37PYSLEryRZWL6zOgicVRyqOLetUACsaNYpFNj+7bMEft69V3QJD8PrftDX0VtJk/2jIFHaquaV9NbpUL89f3g+a/8//+T/f/NVdlOrPjL8n2PC993kDpP+JP/3dt/7d1/5H5mL3Aq8VSf/MawBv3pv7bNW/YDRk9X92vFd3W8f71MX3KHb/wg9mfv+dXl//9u8/tkf/hStC3/C9+d4fUN+/qn9O5vB7r/H2xDXAzW5dVfD4O2P/t9/72T97fN+m/PH3/qMz/k/7NH/CeP+Ztfynr/eNP2yr93tp6P9ttuMPfPr/bWfA9wzVt7/45id/dEreu+93kf/XP3/jil7v4b9zNFfslR/9Vhbg9bW8eUV/6sz/x86hO0XMv/NlvutLVNCjr/1HzrA/M/6eM+C+PAQagNpd2JtroVTY8/fN0Z9dV98b+R069J/b0ubuy//fj+byfOecu/vVH5iw76zbcv+0b7578+V2v/4nuPh/8F3/T40/5se9Hu/t6Xepud8qZ/5vHP/A+/yjl/i9v/971/Wff6e//zX+Zffme+P/ITvkzwL773HW/2Xwrfwj7/Qv3KP/hPGeM/nPGt86B//YAv1715U4DOV3f/avHX/8vf/l2/lPTMu/9BrfuL7fveT/zWv8/9z4nqF6A5T9/lP+KePPBiF/bzRI+c9ao38KuPyzVvs/+Zy4C8yVf/AM++cPo5nC1+P7a+Hvm6M/n0z4+8c7H+d3xv+T7sg/Yfzu5y//1MPh7Zf6veD5P+GN/8yZ839k/HOv6jvyfz/Gj/Fj/Bg/xo/xY/wYP8aP8WP8GD/Gj/HPHz+A6I/xY/wYP8aP8WP8GD/Gj/Fj/Bg/xo/xLx0/gOiP8WP8GD/Gj/Fj/Bg/xo/xY/wYP8aP8S8dP4Doj/Fj/Bg/xo/xY/wYP8aP8WP8GD/Gj/EvHf8/qrlVFpxyqdYAAAAASUVORK5CYII=\" id=\"image8333f3f8fb\" transform=\"scale(1 -1) translate(0 -71.28)\" x=\"7.2\" y=\"-21.989118\" width=\"669.6\" height=\"71.28\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pdea6abc3e7\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"70.950993\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x800 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Prediction: 7\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjcyLjc1NDE1NzYwODcgNzExLjQ3Njg3NSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUgo+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJy1nUuPHMl1Rvf1K2ppAXYy34+lxrLHFrwZi4AWhhfCiBpZIG2MBHjgf+/IarLz3BsZX2VcNhfkkHdYFSeroyLu6Yqv891vPvzvf/344d+//+7+j7+7vTv+9uPfbt39L+nXT/f2/pf065d7d/8+/frp1qa/fbrNS98s09hNa/rrR/516bpmXOZ1mVK9tX/98+32p9u7X6en+Vt62Pe3W98207QN6X9O89p0W7f/u0+3buyaqfP1j6zP69Z00+f68TSm/Bju5/vpIF2qbvOX//z1w/339/++v/t1v6OlS0+/ftkR78eLcksvys9fHrC/Cl3fNfN6/vQ/frq/+9fu/pv/uf9w++H+85dnbtMLuj9726yfnz9Vbv3czO2SvQosj8385UW4fZe+Lr/cfk6/t/d/SBj3fmjG/uU1nqahmba163eE23fvb+/+ubt37f39nx5fuPd/vP3H/e/aX93/8/7+t7d/en/74fZAuQ1rs7RDhsCyRBimZuqH6whdjjC1zbLlc4FliTAuzdxt1xH6HGHum3WbMgSWJcK0NUs3XUcYcoRlbLatyxBYlghL16xddx1hzBHWpWnXfDqyLBHWodnaiuk45Qhbehev+XRkWSJsc9O2FdNxzhG6tHD1y8naxLqE6Nq1abeKGbmcUKT3dhoqp2BdU6T1qdsqJuV6QpHe3uOSz0pT1xRD3/RbxbzccgostOnt0A/bZ4g0L7Py6Vuj6dM/aZtxHOoWRwy8zs0wTNnAR7k48No307DVLYkYeFubceiygY9yceAtfWGGyoUQG2qX/tgvfmCUSwPP7dwsQ1e3/GHgvm/mfsgGPsrFgbu1WfulbtHDwMOYVvFscqFcHHhIvUGvJtfJUoeBxzmt3dnkQrk48Dg0bacm18kCh4Gntdm6bHKhXBx4mpquq1zTMHDardo2n1xHuTjwnH7v1OQ6WcbYJg5N1+aT6ygXB162ZmjV5DIrV3//7UsH/Wj4bIddaH4Lzeztd4W2+FOxLU4PqWywzSPwXHKM9nGNP6Ft/sm0hmmn6tfx8cht+vJIvH69ff3+7Q//9+Gv9+7v7//y4Q9/vJtV8bM6UEvaz1pyS3tcWvyXeZhdC9vN6S++/pF1c0F4nlwm9lb+9R+kVX+bA07hROvnLyIBpyiP8RCL/qpYtKlXWafsNTF1vW+nDaZL745xHR4gQb3ouzQJ1i4HYV07TtpwEnYVyNmO2u8dSz5LTF2D9Hsns1SBnO2ww9JMy5CDsP7E+sZm2IYqkLMdd9yaOT1BBsK6Bkkb1LhuVSBnO/DcNct8MllZ1yBpw5rWusl6tiMvQ7POJ5OVdQ2Susx5rZusZzv0OjXbdDJZWdcgqetclrrJerZjp1WgnU4mK+saJHWhSR6rQE528CGtAt2YT1ZT19+oSF3pNtdN1hMX4W5jZGRLkzWrn66sazL1Ze3n9mWJj4gJKYyZgEKriaeIWAopjKaAQnuKp4goC/dt4ywHxRNpcRQhfyGFERhQaIPxFBGZIYWxGVBonfEUEbMhhVEbUGi38RQRzSGF8RxQaNHxFBHnIYWRHlBo6/EUEQEyvS0NCBRagTzF29lQqX8v9eNJPM5b+0/F1n5XqEpLsA8xRiRGeWJE/f6NwTY1Vy97UMCK+qtWlAZIU3tat8Ve77ilr8Hi6x9ZNxeF5zm3otd/MKddvnsbK/KftJTHeFjRcNGKkommJx6y18TUdROxf9y1jn2b1sQdJPyhy94+bTkI6xpkTW3V2laBnOzgY5vap+lklrCuQbbUVi1zFcjJJj52Sa7S3MpAWNefArVb0y59FcjJPj72Sa7GJQdhXYOkOdvNaxXIyVY+DvPeF+YgrGuQYWj6uW6ynuzm47jurWEOwroGGadmmOsm68mGPs7t3h3mIKxrkGlpxqlusp7s6eO+Cgwnk5V1DZIWtGmqm6wn2/q4rwL9yWRlXYOkbX0e6ybriRVxt6EVDXOarFn9/HPkOb0i89R3L0t8xIpIQSsihbYiTxGxIlLQikihrchTRKyI+zatCBRPrMhRhKyIFLQiUmgr8hQRKyIFrYgU2oo8RcSKSEErIoW2Ik8RsSJS0IpIoa3IU0SsiBS0IlJoK/IUESsyvS2siBTaijzF21lRqX8v9eNJPs5b+0/F1n4XqUpLsA8xViRGefY5UVpl53Xcppc9KGBFw1UrmsYx7W+P42r2oM88pa+jr39k3VwUnufcil7/wZKEeXkbK/KfFZXHeFjReNGKpim1T6lp9a+JqevTT2Nqq+Z+XNruARK0otSYpR1mzUFY1yDT3latVSBnB9JSq7IO+SwxdQ2SFq85fX1qQE428b1b2YY2B2Fdg6T1a5naKpCTfXzaklz1cw7C+pMTclOzjnMVyMlWPndJrvp8spq6BJnbpdnGusl6spunliVtOPlkNXUNklaAtLNUgZxs6KkzbIbuZEljXYMMfdMNdZP1ZE+f91WgyyerqWuQcVeEusl6sq3P+yrQ5pPV1DVI2taHvm6ynlgRdxtaUdpQmjarn75rhi797/Hl+65LzIpIQSsihbYiTxGxIlLQikihrchTRKyI+zatCBRPrMhRhKyIFLQiUmgr8hQRKyIFrYgU2oo8RcSKSEErIoW2Ik8RsSJS0IpIoa3IU0SsiBS0IlJoK/IUESsyvS2siBTaijzF21lRqX8v9eNJPs5b+0/F1j49pNYS7EOMFYlRnljRNC3NkLbm/mUPCljReNWKjpN/Q9oIlpOTf6ibMM6Umqnly5sCRw5ZfnWi02He5EOixx9Pn/5hQlN1HMe8DiwPj08jCvMecZz9g6L0Rf+KOI5BYFkiII5zCUHGcQwCyxIBcZxLCDKOYxBYlgiI41xCkHEcg8CyREAc5xKCjOMYBJYlAuI4lxBkHMcgsCwREMe5hKDjOHZ1Yl1CMI5ziULHcSwF65oCcZxLFDqOYylY1xSI41yikHGcYev3ReEzxOtpepRLp+mHtBmmmRGN44ztuC8FfmCUSwOP7d7FhOM4YzfvC0A28FEuDtwN+9c/GscZ+21/22cDH+XiwP20f8mjcZwx7fbpzZ4NfJSLAw+pg1nDcZwxWXd6g2cDH+XiwOPWjGs4jjOmni39Nxv4KBcHnlNntITjOOOy7G/jbOCjXBx4GZp5qVzTMHB6N05zPrmOcnHgdWqWJRzHmdK7cZ6zyYVyceBtadb5jeM4tu07b2dtHKfUMPuHVLbYNsBzPJcc43ocZ0pr0edHPpOJ/iviOLaFPU7NmUvlATxeEA/sneqEi8p8E6coj/EQi7k+juOmGOp637ZxnKheIHZjQVjXjmPjOFHJQOzGgrCuQWwcJ6oaiN1YENafWJ+J40SFA7EbC8K6BrFxnKh2IHbjNBh1DWLjOFH5QOzGgrCuQWwcJ6ogiN1YENY1iI3jRC0EsRsLwroGsXGcqIggduMWedT1NypsHCfqItxtjIwcB9uf2Ig72B4SE1BYMzkonqiJowhZCimMpoBCe4qniCgLKYyzgEJLi6eI+AspjMCAQhuMp4jIDCmMzYBC64yniJgNKYzagEK7jaeIaA4pjOeAQouOp4g4DymM9IBCW4+niAiQ6W1pQAjOaQXyFG9nQ6X+vdSP2zhOqeXPFKrSElyCh0YkRqmL4wSsKBLHMdeLU3PmenkAjxfFA3unVuSiMt/EispjPKxoqY/j2DnAum4ibBwn/qHLa+zGfeqCugaxcZyoFSF2Y2cJ6xrExnGiVoTYjQVhXX8KZOM4UStC7MaCsK5BbBwnakWI3VgQ1jWIjeNErQixGwvCugaxcZyoFSF2Y0FY1yA2jhO1IsRuLAjrGsTGcaJWhNiNBWFdg9g4TtSKuNvQinCw/YkVuYPtISsChbEiUDyxIkcRsiJS0IpIoa3IU0SsiBS0IlJoK/IUESsiBa2IFNqKPEXEikhBKyKFtiJPEbEiUtCKSKGtyFNErIgUtCJSaCvyFBErIgWtiBTaijxFxIpMbwsrYnBOW5GneDsrKvXvpX7cxnFKLX8mUpWW4BI8tCIxSl0cJ2BFkTiOPehznJoz18sDeLwoHtg7tSIXlfkmVlQe42FFa30cx56/Yl2ffrJxnKgVIXZjQVjXIDaOEz6QdsRuLAjrGsTGcaJWhNiNBWFdg9g4TtSKELuxIKw/OSFn4jhRK0Lsxr6BWZcgLo4TtSLEbtyRQdQ1iI3jRK0IsRsLwroGsXGcqBUhdmNBWNcgNo4TtSLEbiwI6xrExnGiVsTdhlaEg+1PrMgdbA9ZESiMFYHiiRU5ipAVkYJWRAptRZ4iYkWkoBWRQluRp4hYESloRaTQVuQpIlZECloRKbQVeYqIFZGCVkQKbUWeImJFpKAVkUJbkaeIWBEpaEWk0FbkKSJWZHpbWBGDc9qKPMXbWVGpfy/14zaOU2r5/UNqLcEleGhFYpS6OE7AigJxnL7dm4b85B/qJo6TNsm0QHyu48ghyydxHDzdt4jj4OkfJrRVx3HM68DyI2RRmveI43TJhtML8BVxHIPAskRAHOcSgozjGASWJQLiOJcQZBzHILAsERDHuYQg4zgGgWWJgDjOJQQZxzEILEsExHEuIcg4jkFgWSIgjnMJQcdx7OrEuoRgHOcShY7jWArWNQXiOJcodBzHUrCuKRDHuUQh4zh9+hoMU5aYQLl0mr5Pm+E0h+M4/b7UTlliAuXiwN3WJBGMxnH6fYF9PaFyDHyUiwOnpmiZwnGcfl9WxywxgXJx4HFo1ikcx+n3xXTMEhMoFweepmYbw3Gcfl9C81svoVwceE5vePlTK2Qcp98XzvzWSygXB17Te1z+oAoZx+n35TK/9RLKxYG39LaWP5tCxnGGtEJ2+a2XUC7G6tqxGeSPo5BxnCH9sc9vvYRyceBu3putt43j2LbvvJ21cZxSw+wfUtli2wDP8VxyjOtxnGHfBZZLMjF8RRzHtrDHqTlzqTyAxwvigb1TnXBRmTdxCvzEs7M4jheLNOWq8zhujqGuN26bx4n6BXI3FoR1LTk2jxO1DORuLAjrGsTmcaKugdyNBWH9ifaZPE7UOJC7sSCsaxCbx4l6B3I3zoNR1yA2jxO1D+RuLAjrGsTmcaIOgtyNBWFdg9g8TlRDkLuxIKxrEJvHiZoIcjdulUddf6fC5nGiMsLtxtjIcbL9iY64k+0hMyGFURNQaDfxFBFNIYXxFFBoUfEUEWchhZEWUGhr8RQRgSGFMRhQaIXxFBGbIYXRGVBon/EUEbUhhXEbUGi58RQRzyGFER1QaNPxFBHpYVtprAf5Pa09Pr8XMSDT3FKBQKEdyFO8nQ6VGvhSQ27zOKWeP3OoSk1wER4qkRilLo8T0KJIHsdcL47NmevlCTxeFE/snWqRy8p8k49aymO8aFFXH8ixk4B13UXYQE78Y5fX4I373AV1DWIDOVEtQvDGThPWNYgN5ES1CMEbC8K6/hzIBnKiWoTgjQVhXYPYQE5UixC8sSCsaxAbyIlqEYI3FoR1DWIDOVEtQvDGgrCuQWwgJ6pFCN5YENY1iA3kRLUIwRsLwroGsYGcqBZxu6EW4Wj7Ey1yR9tDWkQKahEptBZ5iogWkYJaRAqtRZ4iokWkoBaRQmuRp4hoESmoRaTQWuQpIlpECmoRKbQWeYqIFpGCWkQKrUWeIqJFpKAWkUJrkaeIaBHbSmoRA3xai3yAL6JFprmFFpFCa5GneDstKjXwpYbcBnJKPX9mUpWa4DI81CIxSl0gJ6BFkUCOPepznJsz18sjeLwoHtk71SIXlvkmnxaVx3jRor4+kWOPYLGuD0DZRE5Ui5C8sSCsaxCbyAmfSTuSNxaEdQ1iEzlRLULyxoKwrkFsIieqRUjeWBDWnxySM4mcqBYheWPfwaxLEJfIiWoRkjfu1CDqGsQmcqJahOSNBWFdg9hETlSLkLyxIKxrEJvIiWoRkjcWhHUNYhM5US3idkMtwtn2J1rkzraHtIgU1CJSaC3yFBEtIgW1iBRaizxFRItIQS0ihdYiTxHRIlJQi0ihtchTRLSIFNQiUmgt8hQRLSIFtYgUWos8RUSLSEEtIoXWIk8R0SK2ldQiJvi0FvkEX0SLTHMLLSKF1iJP8XZaVGrgSw25TeSUen7/kFpNcCEeapEYpS6RE9CiSCInrWYnZ/+OssnjdOPeD3+uH09iymd5nNdnuyhDmAS3/DOihxedPfuLBg31cRy8CEzjNEM5kIcwzpa+Tl8VxcHwTOKo4RHEuTC8juFgeKZw1PAI4VwYXkdwMDwTOGp4BHAuDK/jNxie6Rs1PMI3F4bX0RsMz+SNGh7BmwvD69gNhmfqRg2P0M2F4Z9Ebrj8MHGjABi4uUDwJG5DAqZtJAHCNhcInkRtSMCkjSRA0OYCgY7Z7N/gy4MQr9VyDiJ1JvFb3vTNrohu1KNaPJm/Jt0OB2ymseleT5wc9+d4rZZGTQvjIG9/KNM1c2oE2iz/cFRLo6b1cJS3O5TRmmVthjYLPxzV0qhpGZzk7Q1lriap85DfQumolkZd9403HKrp2vRS5TdQQrk07rY2s/xpEzJT03V7G5hNKJRL43bdvteGMzXd3qjk909CuThwv++y4UxNt7co+f2TUC4OPKT9Vf4YiUimhr3beUfqIjXnHa9/RFWLbP49nkmOcD1P06XV5/Mjn6nA+DV5GvahOCeHC0XZXA6e5VwGfNKl1gj0xyOPPxaHeNGCMZClMXMLURq5M9skTUwOmJchBGM00k5siiamCMzKEIIRGglhEzQxUWBOhhCMz2hPM+mZmC4wI0MIRmckhE3OxKSB+RgjrIjNSAibmompA7MxhGBkRkLYxExMIJiLIQTjMhLCpmViDsFMDCEYlZEQNikT0wjmYczqjZiM/DaCTcnETMKcvIdK8OC9coksg1CvFeYmLfAK3qNFiUV205x6x+DtHCgZuAWGtAyHEBEOIBjjOBC0cjiEiH0AwejHgaD9wyFEVAQIxkUOBC0jDiHiJWyHjJgcDE/MxEFEJIUQxlIAoTXFQYSMhRRGWUChncVTRPSFFMZfQKEFxlO8ncsUOvBSS+3yMOc9e+Y/VV2+fYDxGTFGXRgm4DShMAyulofccLUom0vCs5w7jY+pvIHT+E85ikO8OM0UCMLwy88cjGwTbAwm+oHHEXYxn3ggAyMhbAQm5jQMunBqMP8iIWz8JeY0DLkQgtkX+emLjb7EnIYBF0Iw9yIhbOwl5jQMtxCCmRcJYSMvMadhsIUQzLtICBt3iTkNQy2EYNZFQtioS8xpGGghBHMuEsLGXGJOwzALIZhxkRA24hJzGnNs/nAac2peOU0WIKh3GnOLlcNpzB1WlNNkt7ypdxrejAFOwxtYSKdxCBGnAQKdBgjaaRxCxGmAQKcBgnYahxBxGiDQaYCgncYhRJyG7RCdBgxPnMZBRJyGEHQaQmincRAhpyEFnYYU2mk8RcRpSEGnIYV2Gk/xdk5T6MBLLbULs5z37JkFVXX59gHGacQYdUmWgNOEkiw8MYMTarhalM0l4VnOncZnTL7B5zTFIV6cZg6kWHiCiSEWeYbIZlhiTsOkCiEYYJEQNr8SPMqFlAohGF6REDa7EnMaJlQIweCKhLC5lZjTMJ1CCIZW9Lkyk1mJOQ2TKXynMrCiIFxeJeY0TKWYA3YIq0gIm1WJOQ0TKYRgUEVC2JxKzGmYRiEEQyoSwmZUYk7DJAohGFCREDafEnMac+b9cBpz5F05TXb6v95pzA1SDqcx90dRTpPdsKbeaXgrBTgNbz8hncYhRJwGCHQaIGincQgRpwECnQYI2mkcQsRpgECnAYJ2GocQcRq2Q3QaMDxxGgcRcRpC0GkIoZ3GQYSchhR0GlJop/EUEachBZ2GFNppPMXbOU2hAy+11C6Jct6z+0fUdfn2AcZpxBh1MZSA05j3+g+3/wdAjCxlCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKNTkxMwplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDc5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA2MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCA2OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcGVxpAHGiEmcKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAxNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDMwIDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAzMiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDQgL2NvbW1hIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcyIC9IIDc2IC9MIDk3IC9hIDEwMCAvZCAvZSAxMTQgL3IgMTIxIC95IF0KPj4KL1dpZHRocyAyOSAwIFIgPj4KZW5kb2JqCjMwIDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjI5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjMyIDAgb2JqCjw8IC9IIDMzIDAgUiAvTCAzNCAwIFIgL2EgMzUgMCBSIC9jb21tYSAzNiAwIFIgL2QgMzcgMCBSIC9lIDM4IDAgUgovZWlnaHQgMzkgMCBSIC9maXZlIDQwIDAgUiAvZm91ciA0MSAwIFIgL25pbmUgNDIgMCBSIC9vbmUgNDMgMCBSIC9yIDQ0IDAgUgovc2V2ZW4gNDUgMCBSIC9zaXggNDYgMCBSIC9zcGFjZSA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAveSA1MCAwIFIKL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAzMSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTIgMTQgMCBSIC9JMyAxNSAwIFIgL0k0IDE2IDAgUiAvSTUgMTcgMCBSIC9JNiAxOCAwIFIKL0k3IDE5IDAgUiAvSTggMjAgMCBSIC9JOSAyMSAwIFIgL0kxMCAyMiAwIFIgL0kxMSAyMyAwIFIgL0kxMiAyNCAwIFIKL0kxMyAyNSAwIFIgL0kxNCAyNiAwIFIgL0kxNSAyNyAwIFIgL0kxNiAyOCAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY4IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDIyICj95yTz5R7x5Rzh4xjU4RppzFsusnwfooYjiY0jh40nfY5BQoZFNH9GMH1HGGpHEWNGDmFGC15FCFtFBlpFBVhEAlVEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA1MiAwIFIgPj4Kc3RyZWFtCnic7dpHbgMxEABBOecc/v9Unz0EJAhowZZdfebM1nEJcPN5gDazYmewY10KGgdaB1oHWgdaB1oHWgd68N5mJ6PdK0C/BVoHWgdaB1oHWgdaB1r3M9CP2XLiZvY8ux69zkBBQUFBQUFBQUGPHVp0OlquAMsE6PZA60DrQOtA60DrQOtA644Guv+jE9AdnwWNA60DrQOtA60DrQOtOxro1eh2tkyAbg+0DrQOtA60DrQOtO5fQe9nh4Beju5my3sQUFBQUFBQUFBQ0N8FDTqb7Zx4mi0nQEFBQUFBQUFBQf8cdHfno8fZMgG6PdA60DrQOtA60DrQOtC6Anox25/xMltOzB/699nDDBQUFBQUFBQUFPQnoV/ez1AcCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKMjgxCmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OSAvSGVpZ2h0IDE2OQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyMyAo/eck9uYf7uUb6eQZndk6g9NLd9BSZ8xcXCyxfR6diCWCji5rjkI9hEYvfEcse0cRY0cPYkYMX0YJXFxFBlpFBVhEA1dEAlVEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjkgPj4gL0xlbmd0aCA1MyAwIFIgPj4Kc3RyZWFtCnic7dvJbgMhFEXBzhxnHmzn//80+/sWCOs5wkqdZQtQqVcIwfaTHbMyYr59Np5ylW2kpKSkpKSkpKSkK0k/s9esQXqXHbLyf8oIUlJSUlJSUlJS0qWkZdXHrEFaes4KrEwhJSUlJSUlJSUlXVu6ZeeQnhBpf6T9kfZH2h9pf6T9kfZH2t9WrohcZ3/iKKfnpKSkpKSkpKSkpGtLy5dddg7YUzaeQjqItD/S/kj7I+2PtD/S/v6Z9Dubd9xmZcQJl7FJSUlJSUlJSUlJ15Z+ZPPSt6ycON9n5eEjKSkpKSkpKSkp6YVJb7J56fj54Fc2XpSUlJSUlJSUlJR0KWnZjj9k89LSe/aSkZKSkpKSkpKSkl6W9BeV6q/6CmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKMjgxCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAzMSAo/eck1OEatd0rZMtdYspfYMlgQL1yPrxzIY2MIouNOFeMOlKLQzyERi98Ryd3SB5wSB1vSBxuRxhqRxZpRxVnRxRmRxJlRxFjRg5hRgxfRgteRQhbRQVYRANXRAJVRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNTQgMCBSID4+CnN0cmVhbQp4nO3cyVLCQBiFUUTFWZxn5P3fkv29i66sWqzzLak/nZNd0pWw2me/2eKB/XtWE+voM3vIVqCgoKCgoKCgoKAzoT9ZLVoT2WP2lT1n2+gsKwUoKCgoKCgoKCjoVGj9Uu2i8RFXWU1cRq9ZPUaAgoKCgoKCgoKCToVeZ7VoHpLwXS1aS5xn44vNQEFBQUFBQUFBQadCx1vj31ENlPwkq0PeojxHnwQUFBQUFBQUFBR0KvQ2q5GbqAbGO+F3WU0MAwUFBQUFBQUF/Z/QTVb7x/mZ3n2WLyxv6076KQMFBQUFBQUFBQU9Muj4VY3TaPlJ+vtCUFBQUFBQUFBQ0COD1q71S5b/LVePABdZLVHQj6ieCUBBQUFBQUFBQUH/FrSqkeXVG8tVXut4TVBQUFBQUFBQUNCZ0APhiaI3CmVuZHN0cmVhbQplbmRvYmoKNTQgMCBvYmoKMzEzCmVuZG9iagoxNiAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OSAvSGVpZ2h0IDE2OQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAxNiAo/eckyuAep9szcM5WW8hiIKSFHpqJJIWNXCh6jkBDh0M7g0YtfEgcbkcSZUYMX0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDU1IDAgUiA+PgpzdHJlYW0KeJzt3MtuwkAYQ2HT0kKv8P5Pi9j+VhUVG5pU5yyt0eRbzio6z55nduI0+x69z+yKGxJSpEiRIkWKFClSpKuWatb4TCH5gjRMviANky9Iw+QL0jD5gjRMviANky9Iw+QL0jDZ8jpbvuQw6jPPSO+RbEGaJluQpskWpGmyBWmabEGaJluQpskWpGnyZTNvfqRp8gVpmHxBGiZfkIbJF6Rh8gVpmHxBGiZfkIbJF6Rh8gVpmHxBGiZfkIbJF6Rh8gVpmHxBGiZfkIbJl81IH9JuZic+Z3q88hrSfkj7Ie2HtB/Sfkj7Ie23Hely9qDXX4t+Cmk/pP2Q9kPaD2k/pP2Q9vtX0rfZPRz72dfM6UiRIkWKFClSpEiRrkn6Mis47Dd5duI4W74UKVKkSJEiRYoUKdJVSW15mhXoN/Qxkx1B+suQ9kPaD2k/pP2Q9kPaD2k/k14AdfsqkAplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjM0MwplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNjcgKP3nJOTjGGDJYCd+jh+WiySFjSWDjSd8jlwpeI4qd44tb44ubY4ua44vaY0waI0xZY0yYo02W4w2Wow4V4w5VYs6Uos8Too8TYo9TIk9S4k9Sok+SIg/R4g/RYdARIdAQ4dCQIVCPoVDO4NDOoNEOYJFNoFFNYBFNH9GMX5GMH1GL3xGLXxHLHtHJ3dHJnZHJXVII3RIInNIIHFIHnBIHG5IGmxIGWtHFmlHFWdHEmVHEWNGDmFGDF9GC15GCVxcRQhbRQZaRQVYRAJVRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNTYgMCBSID4+CnN0cmVhbQp4nO3cx1ICUQAF0VEwYUBRxAxGTChGzPH//8l934XLV0V1fwAcdm9eXaZaYkO2gdbYNNtmB2yEPtg1q4QKFSpUqFChQoUKLQldYSeshw5ZnQW0z97QJ9tlQoUKFSpUqFChQoUWhbbZOeO37rMJ9sru2S/6ZndMqFChQoUKFSpU6HhCj1k4WuiCzbIzFrfYj+iFTTGhQoUKFSpUqFChQotCL1lcKO+hAavYM3tiP+iL7TChQoUKFSpUqFChQotCY34cDh7o47ges4o5Fkf+BRSX6ctMqFChQoUKFSpUqNCi0JgfH7EOiv/txdX4Orv6r3c2w4QKFSpUqFChQoUKLQoNV3wIZ9GnrMkW2SrjM0G8VYNDlpZQoUKFChUqVKjQ8YR22Q3bRLGKbrAtFnuQWxQb5xoTKlSoUKFChQoVKrQolC8qHsWsgsuMBzbPYiYdTw38rTHVmGRChQoVKlSoUKFChZaE/gEFv26tCmVuZHN0cmVhbQplbmRvYmoKNTYgMCBvYmoKMzYxCmVuZG9iagoxOCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA2NSAo/eck8eUcpdo1jdZEhtRJa81ZW8hiQr5xQL1yM7Z5XCmvf1worn8lq4Eflosgj4wjh40khY0nfo4nfY4qdY4scI4tb44ubY4xZI0yYo0zYY00X403WYw5VYs6U4s+SIg/R4hAQ4dBQoZBQYZDO4NEOYJEN4FFNoFFNYBFNH9FMn9GMX5GMH1GL3xGLXxHLHtHKnlHXCh4Ryd3RyZ2RyV1SCN0SCJzSCBxSB5wSB1vSBpsRxhqRxVnRxRmRxFjRw9iRg5hRgxfRAFUKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNTcgMCBSID4+CnN0cmVhbQp4nO3cx1ICQRRG4cEcERNiQsSEqICIOb//S7k//8JlV1Hn7KG+2d2+1TNVk22wDjpmO2yWfbEReme/rBIqVKhQoUKFChUqtCSUjM4p66M7Vmfz7JptojF7Y0KFChUqVKhQoUKFFoVuszbbQhcsXIdswJ7RkPEIMBIqVKhQoUKFChU6ndBLFgtlDtLnbI/NsA+2ju7ZDxMqVKhQoUKFChUqtCj0hHXZAYpxfY7tslhSH6E4NTwwoUKFChUqVKhQoUKLQm9ZbKkn6Iq1WI3Ff66icOWEL1SoUKFChQoVKlRoSSgZkxi2e+iVNdgyixsiCyhODY9MqFChQoUKFSpUqNCi0HCdMa61402/JbbC4oL3PuILiP0XJlSoUKFChQoVKnQ6obFx5pzc4zL4hsVX3ioW36L4947zJxMqVKhQoUKFChUqtCj0iYWcw3f8YpGtsdg48wgQD//NhAoVKlSoUKFChQotCf0DcE8tWAplbmRzdHJlYW0KZW5kb2JqCjU3IDAgb2JqCjM2MgplbmRvYmoKMTkgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMzAgKP3nJPrmIuHjGMrgHsfgH5rYPH7STmfMXFw9u3Qua44xZI01XFyMQEOHRTaBRyp5RyZ2SCN0SB1vSBlrRxRmRxJlRw9iRg5hRgxfRgteRglcXEUGWkUFWEQDV0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDU4IDAgUiA+PgpzdHJlYW0KeJzt28lOwzAYhdFAGcpY5rHw/o/J/t5FhESIBedbO85JV78ld9pnd1kueMnestvsNTuNnrL3bAIFBQUFBQUFBQVdE/q5QPXxH9lRVAt2GSgoKCgoKCgoKOiq0Nr0fq7n7Car8fwhO4/qWHGWgYKCgoKCgoKC/k3oEoNzjcG14iCqJx4zUFBQUFBQUFBQ0LGgNZ7nEaCeqENCvbb23EZ1l+MiAwUFBQUFBQUFBR0L+gOVvFZMUS2oS8+goKCgoKCgoKCgY0FrPF/iUw6jemn9vxAUFBQUFBQUFBR0LOj8eD5bbVEdRwW9ykBBQUFBQUFBQf8JtJ75PnT2tsf+JKoFlxkoKCgoKCgoKCjoWNBfaRPVr3OdgYKCgoKCgoKCgq4J/QLdw5OPCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKMjk0CmVuZG9iagoyMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA3MiAo/eckldc/XslhQr5xPbt0Nbd4XCmvfyClhR6ghx6aiSKKjSSFjSaBjid9jid8jlwpeY4rc44sco4scY4ubY4ubI4waI0xZo00Xo01XYw2Wow3WYw4V4w6U4s6Uos8TYo9TIk9Sok+SYk+SIg/R4g/RYdBQoZBQYZCQIVCPoVCPYRDPIRDO4NDOoNEOYJFNoFFNYBFNH9GLXxHK3pHKnlHXCh4RyZ2RyV1SCN0SCJzSCBxSBpsSBlrRxhqRxZpRxRmRxFjRw9iRg5hRgxfRgteRglcXEUIW0UGWkUFWEQDVyldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDU5IDAgUiA+PgpzdHJlYW0KeJzt3EdOA0EUBuEh54wJJpicgwGTg42J9z8R+/oP0MiqWs6mP82qNXrzqhZbZQtonk2ze9ZlNXTH3lklVKhQoUKFChUqVGhJaDw5YU20w3hq7ZF9sSnUYUNMqFChQoUKFSpUqNCi0Fe2xvbQMetj4XphdD2wOSZUqFChQoUKFSq0N6Ef7Iztorg4j7Bn9ssW0RObZEKFChUqVKhQoUKF/i/oJTtAR6xinywOuUK3bJkJFSpUqFChQoUKFVoUGtPFAb1GMQQdI82zLOQDiJ/KO+tMqFChQoUKFSpUqNCi0Jhx5khzcxsdsmH2xr7ZJorJllEmVKhQoUKFChUqVGhRaMx/bLBTNMMmWGzqiLdRR222xIQKFSpUqFChQoX2JjQWsMV/ejx1nzXYDYuL8xiKq3Y/EypUqFChQoUKFSq0KDQ2YFywc7TFBlkc+8NWUKzdGGdChQoVKlSoUKFChZaE/gFF7Aj0CmVuZHN0cmVhbQplbmRvYmoKNTkgMCBvYmoKMzU3CmVuZG9iagoyMSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA1MSAo/eckndk6l9g+g9NLZ8xcXFfGZVHEaEvCbD68c1wpr38hp4QgpYUfooYemokel4okhY0mgY5cKHqOKnaOLW6OPUuJPkiIP0eIQEOHQUKGQUGGRDmCRi18Ryx7R1woeEcnd0gic0ghckggcUgecEgdb0gcbkgabEgZa0cYakcVZ0cUZkcRY0cPYkYOYUYMX0YLXkYJXFxFCFtFBlpFBVhEA1cpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA2MCAwIFIgPj4Kc3RyZWFtCnic7dw1cgQxAETRNTMzM7N9/7s57w4cqsr1fqzVPGUalWYnh9lNdhCdZHvZVvaU7UTn2U82AQUFBQUFBQUFBR0Jfcjes8e/Os6mss9sM/r7oaCgoKCgoKCgoKBDoftZ7fA3outsJaspXrKLqHb4HxkoKCgoKCgoKOj/hN5ltYe9jer4+ChbyL6y9ahW8pqBgoKCgoKCgoKCDoXuZpfZdnSVrWU1otZ2Fp1mzxkoKCgoKCgoKCjoUOh3VrvxvG1crwB1EWM6qxHzUQ2oFw9QUFBQUFBQUFDQodDaSpcjD6nrF3UhZC6rGyJLUR2N32egoKCgoKCgoKCgQ6E1pKC5+a5f1MH3bPaWLUa1+P44EBQUFBQUFBQU9F9C64C5jqCzWkk9ZZLVHKtRKWrxoKCgoKCgoKCgoEOh9ZQ6Hc7dee3w6282ZrKaczmqOfOLxFtQUFBQUFBQUFDQkdBfgJip6AplbmRzdHJlYW0KZW5kb2JqCjYwIDAgb2JqCjM1MQplbmRvYmoKMjIgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjkgL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNjcgKP3nJN/jGNriGKfbM53ZOpLXQYvVRnzST3fQUnTQVHLPVW3OWGfMXFxgyWBeyWFbyGJZx2RXxmVPw2lNwmtJwW1HwG5EvnA+vHM9u3Q5uXY4uXYytXossX0rsX0qsH5cKa9/XCiufyWrgSWDjSWCjiaBjid9jlwoeo4kqoIjqYIjqIMip4Qhp4QhpoUgpYUgpIUfo4YfooYfoYceoIcen4genogenYgenIkemokemYoel4oflosflYsflIsfk4sfkowgkYwgkIwhjYwii40jh40pXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjkgPj4gL0xlbmd0aCA2MSAwIFIgPj4Kc3RyZWFtCnic7dzHUgJBGEXhMYsIJsSEYA6omBWz6Pu/k/tzF267inPWUzMfu7+7uqk2WYPNs102g37ZLfthZ+yBVUqVKlWqVKlSpUqVliRd+bcFtsdq6Jv12Rt7ZC9MqVKlSpUqVapUqdKipEssFgGT7IlV6IC9s0MWI/4nU6pUqVKlSpUqVToW0jZbZJyTa9tsGh2zV/bFbtg1U6pUqVKlSpUqVaq0KOkca7EJFicxOPMfsRE7YUMWqwKlSpUqVapUqVKlSouSfrB1FpvlsdPN37bG4nTHFIsn4riHUqVKlSpVqlSpUqVFSeP64CoLeo/V0T2Lz8ZR69g9v2BKlSpVqlSpUqVKlRYlPWX8bH2LxUtmUfxVR9BDGuuIAVOqVKlSpUqVKlU6FtJnFpN0h+2zJrpjVyym83O2w5QqVapUqVKlSpUqLUp6yZZZXDCMZQIPc8Q7Y6LfYHHBsMuUKlWqVKlSpUqVKi1J+gcAE9D6CmVuZHN0cmVhbQplbmRvYmoKNjEgMCBvYmoKMzYyCmVuZG9iagoyMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA2NiAo/eckut4nqtsyi9VGhtRJftJOedFRdNBUcM5Wbc5Ya81ZYMlgXslhW8hiWcdkV8ZlU8VnT8NpTcJrR8BuRL5wPrxzO7p1Obl2OLl2Nrh3Nbd4MrV6MLR6L7N7LLF9K7F9KrB+XCmvf1worn8nrYAmrIElq4EkqoIjqIMip4Qhp4QhpoUgpYUgpIUfo4YfooYfoYceoIcen4genogenYgem4kemokemYoemIoel4oflIsfk4sgkIwii40jiI0khY0lg40mgY5cKXiOMWSNKV0KL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDEgL0NvbHVtbnMgMTY4ID4+IC9MZW5ndGggNjIgMCBSID4+CnN0cmVhbQp4nO3bR1JCQRRG4QciKhhRESMGzALmLIb9L8r5+RfQVdQ54x58Pbv96r6qy1bZAuqzJvthh+wbHbMnVgkVKlSoUKFChQoVWhK6wzZZA92wNvtgJ2yCjtgFEypUqFChQoUKFSq0KDSG7y02g25ZjZExGTIeuGLxjBAqVKhQoUKFChU6ndCYaXdZC12zOfbO7tkbClcohAoVKlSoUKFChQotCt1j86yO4otzxX7ZK/tDcfkY+YUKFSpUqFChQoUKLQrdZ+tsgGIaP2Pxdf2UkdFjz0yoUKFChQoVKlSo0KJQMgZrbBGN2Cx7YWP2heLykVChQoUKFSpUqFChRaEHLCb8JRTQFXbOYnHlE8XPgXdMqFChQoUKFSpU6HRCH1nsbnRQLCzzQCeG8fifkIN0rDRvMKFChQoVKlSoUKFCi0IvWUA54T+wZUbGOJY5uPMc74xtJlSoUKFChQoVKlRoSeg/dKmyagplbmRzdHJlYW0KZW5kb2JqCjYyIDAgb2JqCjM1NgplbmRvYmoKMjQgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjkgL0hlaWdodCAxNjgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNjAgKP3nJPjmIeHjGNfiGc3gHcrgHsfgH53ZOprYPJXXP5DWQ4vVRobUSYHTTH7STnzST3fQUnLPVXDOVm3OWGvNWWfMXFxky11iyl9gyWBeyWFbyGJZx2RXxmVVxmZTxWdRxGhPw2lNwmtLwmxJwW1HwG5Fv29EvnBCvnE+vHM9u3Q7unU1t3gztnkvs3susnwssX0rsX1cKa9/XCiufyetgCWrgSSqgiKnhCGnhB+ihh+hhx6fiB6biSGOjCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDYzIDAgUiA+PgpzdHJlYW0KeJzt3ElSQkEUBdGvqKgootgAKtii2IvSqOx/Xc7zDphWBJkLKE7NihcvftVmx2yXDVgNPbH3pT2wL1YpVapUqVKlSpUqVVqS9I6ds312wYYofuWMjdgRO2RKlSpVqlSpUqVKlRYljTd/SDcZYcMtFNI39s3i9q9MqVKlSpUqVapU6UpIZ6zHblk8vjmCnrAYUu+xBltnSpUqVapUqVKlSpUWJW2yA7bGYsK8gX7ZC1uwOHPOlCpVqlSpUqVKlSotSnrP4s1/w05ZB7XYIzthl+yZKVWqVKlSpUqVKlValHTM4pAui1O50hyLKrEWHQP4uFzuSStVqlSpUqVKlSpVWpL0g8WfgIBdMS6qxFJ40MMR0kipUqVKlSpVqlTpSkj/WDg+WWw9c+Ic0rh9nXGs3akipUqVKlWqVKlSpUpLkv6waxawWPeYohhB99k222H88nNNqVKlSpUqVapUqdKSpP/RwykNCmVuZHN0cmVhbQplbmRvYmoKNjMgMCBvYmoKMzU3CmVuZG9iagoyNSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE2OCAvSGVpZ2h0IDE2OQovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA0NSAo/eck+OYh5+QZJ62AJoCOJn+OI6mCIaeEI4eNJIaNXCh6jlwpeI4rdI4scI4tb44tbo4ubY4ubI4vao0waI0xZo0xZY0xZI0yY40yYo0zYY0zYI00X400Xo01XFyMNlqMN1mMN1iMOVWLOVSLOlOLO1GKPUuJRjF+Ri98Ryx7R1woeEcWaUcUZkcSZUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OCA+PiAvTGVuZ3RoIDY0IDAgUiA+PgpzdHJlYW0KeJzt28lSFFEQQFFA5kFlUGRwbFBR+P/fc39zUUsqwnPXGfVO715XZG3dtl/tIf1uf9pL224dOGjjEVugoKCgoKCgoKCgrwl914Z8L31pV22cctw6cNlAQUFBQUFBQUFB1wW9aT/bYxo3/Oc2T2kd2G+goKCgoKCgoKCg64K+bZ/bbvrevrZxylHrwFkDBQUFBQUFBQUFXRf0Uxs7JZv01P62ccpO68CbBgoKCgoKCgoKCrou6Pv2o/V2XvhmPGKcsrhTMjZbQEFBQUFBQUFB/xPoeOP8rR2m8Usu2jjlpHXgvIGCgoKCgoKCgoKuCzpGrls/Drxrp22csugY771BQUFBQUFBQUFB1wVdvuH31fjYcV5kLN/wl/8kgIKCgoKCgoKCgr4qdGxzfGz9OPC+Le+ULK6MfGigoKCgoKCgoKCgq4L+Az0LPCwKZW5kc3RyZWFtCmVuZG9iago2NCAwIG9iagozMjkKZW5kb2JqCjI2IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQ0ICj95yTc4hi63icztnkenogenIkemYomf44qdo4sco4zYY02W4w3WYw4V4w5VYs6Uos7UYo8TYo9TIk9Sok+SYlAQ4dBQoZCPoVCPYRDPIRFNH9HKnlHXCh4Ryd3SCN0SCJzSB5wSBlrRxJlRxFjRw9iRg5hRgxfRgteRglcXEUIW0UFWEQDV0QBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDY1IDAgUiA+PgpzdHJlYW0KeJzt3MlOQkEQhlFQFGdxRJwFZ33/53P/16IxaOzE8607t8+yUuncwSB7zibZe/a5eq9ZOVGgpKSkpKSkpKSkpH8pHWcH2Vl2mjVvecjKiZuMlJSUlJSUlJSUtG/pWjbPdrK3rHz1+y0yUlJSUlJSUlJS0r6lm9lxdpJdZM1tettxl5GSkpKSkpKSkpL2LR1m5av72W/M/E8ZKSkpKSkpKSkpad/S9ey82WXWdORDlfpS5T4jJSUlJSUlJSX9n9JRVnbS5Z102Ul/ROWWx6ycWGInTUpKSkpKSkpKStqTdCvby2ZZ+ZnHD0z0VxkpKSkpKSkpKSlp39KN7Cgr2/Np1pz5y4uRcuI2IyUlJSUlJSUlJe1bup3tZmXmP8xeonJLe+a/zkhJSUlJSUlJSUm7ln4Bqa3H6AplbmRzdHJlYW0KZW5kb2JqCjY1IDAgb2JqCjMxMAplbmRvYmoKMjcgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxNjggL0hlaWdodCAxNjkKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMzkgKP3nJPPlHitzjjNhjTZbjDlUiztRijxOijxNij5IiD9HiD9Fh0BEh0BDh0FChkFBhkJAhUI9hEM8hEM7g0M6g0Q5gkU2gUU1gEUyf0YxfkYwfUYvfEYtfEcse0crekcqeUcnd0cmdkcldUghckYLXkYJXFxFBVhEAVQpXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxNjggPj4gL0xlbmd0aCA2NiAwIFIgPj4Kc3RyZWFtCnic7dy3cgMxEERByntR3nv7/3+ofCZAJkKlfvEWt0Pg6niLRfadvUY18JXVxHOWA59Z/UQ5QUFBQUFBQUFBQX8TupsdZsvoOHvKasttlgPnGSgoKCgoKCgoKOhc0LWsRt6iGhif8IfQjwwUFBQUFBQUFBR0LuhGdp/tR9fZS1Zbhgf4swwUFBQUFBQUFBR0LuifOeGDgoKCgoKCgoKCrhK6nr1n21G9QlJ3gtoynKhbAygoKCgoKCgo6D+BbmX1dPggqqfDD1ltGR6ch4+kQUFBQUFBQUFBQVcLzb/+LXey02gvu8lqS10KcuAiAwUFBQUFBQUFBZ0LWl/VKPlRdJI9ZrVleMKvWwMoKCgoKCgoKCjoXNCrbDPLgboC3GW1Zfgd58sMFBQUFBQUFBQUdCroD1Gpxt8KZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iagozMTAKZW5kb2JqCjI4IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMTY5IC9IZWlnaHQgMTY5Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQzICj95yTa4hjS4RsnfI4tb44tbo4wZ40xZY02W4w3WIxBQoZBQYZCQIVCPoVCPYRFNoFFNH9FMn9GMX5GMH1GL3xGLXxHLHtHK3pHKnlHXCh4Ryd3RyZ2RyV1SBpsSBlrRxZpRxRmRxFjRw9iRgxfRgteRglcXEUIW0UGWkUFWEQDV0QCVUQBVCldCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDE2OSA+PiAvTGVuZ3RoIDY3IDAgUiA+PgpzdHJlYW0KeJzt3MdqA0EURFE555yjnOP//5/3VQsZgVGDz10/mDO719Azk+dsmj1kF9kk+s7qITXxmtXEhJSUlJSUlJSUlHQk6XG2l+1kNbEWfWXXWU1cZh8ZKSkpKSkpKSkp6VDSx+w+q0PASbYU1b7+lNXES9Y7PykpKSkpKSkpKelI0rNsf2a72UpUT7nNauImq1MBKSkpKSkpKSkp6VDS2vnvsjoE1M6/HJXjb04npKSkpKSkpKSkpAuU1j2UOXb+1egzq1smtdFfZe8ZKSkpKSkpKSnpv5AeZbPvSRd9PZpDWhP1CSIpKSkpKSkpKSnpUNKDrDb62dLNqPb1+ttHfU9Yl0zqdx+kpKSkpKSkpKSkQ0kPs9r5t7OSbkRz7Pz1Lm8ZKSkpKSkpKSkp6djSgtXOX++yFdVGf57VxGn2i52flJSUlJSUlJSUdHHSHzQrLywKZW5kc3RyZWFtCmVuZG9iago2NyAwIG9iagozMzUKZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjY4IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjcuMSkgL0NyZWF0aW9uRGF0ZSAoRDoyMDIzMDMxNDE1NTIzMlopCj4+CmVuZG9iagp4cmVmCjAgNjkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjU1OTcgMDAwMDAgbiAKMDAwMDAxMzM1MiAwMDAwMCBuIAowMDAwMDEzMzg0IDAwMDAwIG4gCjAwMDAwMTM0ODMgMDAwMDAgbiAKMDAwMDAxMzUwNCAwMDAwMCBuIAowMDAwMDEzNTI1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0OCAwMDAwMCBuIAowMDAwMDA2MzU3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNjMzNiAwMDAwMCBuIAowMDAwMDEzNzI5IDAwMDAwIG4gCjAwMDAwMTQzNDUgMDAwMDAgbiAKMDAwMDAxNDk2NiAwMDAwMCBuIAowMDAwMDE1NjQxIDAwMDAwIG4gCjAwMDAwMTYzMDIgMDAwMDAgbiAKMDAwMDAxNzEzNSAwMDAwMCBuIAowMDAwMDE3OTY0IDAwMDAwIG4gCjAwMDAwMTg2MjAgMDAwMDAgbiAKMDAwMDAxOTQ2NiAwMDAwMCBuIAowMDAwMDIwMjQ0IDAwMDAwIG4gCjAwMDAwMjEwODAgMDAwMDAgbiAKMDAwMDAyMTkwNiAwMDAwMCBuIAowMDAwMDIyNzE1IDAwMDAwIG4gCjAwMDAwMjM0NTIgMDAwMDAgbiAKMDAwMDAyNDE2NSAwMDAwMCBuIAowMDAwMDI0ODYyIDAwMDAwIG4gCjAwMDAwMTIwNDkgMDAwMDAgbiAKMDAwMDAxMTg0MiAwMDAwMCBuIAowMDAwMDExNDEwIDAwMDAwIG4gCjAwMDAwMTMxMDIgMDAwMDAgbiAKMDAwMDAwNjM3NyAwMDAwMCBuIAowMDAwMDA2NTI4IDAwMDAwIG4gCjAwMDAwMDY2NjEgMDAwMDAgbiAKMDAwMDAwNzA0MSAwMDAwMCBuIAowMDAwMDA3MTgxIDAwMDAwIG4gCjAwMDAwMDc0ODUgMDAwMDAgbiAKMDAwMDAwNzgwNyAwMDAwMCBuIAowMDAwMDA4Mjc1IDAwMDAwIG4gCjAwMDAwMDg1OTcgMDAwMDAgbiAKMDAwMDAwODc2MyAwMDAwMCBuIAowMDAwMDA5MTU4IDAwMDAwIG4gCjAwMDAwMDkzMTMgMDAwMDAgbiAKMDAwMDAwOTU0NiAwMDAwMCBuIAowMDAwMDA5Njg4IDAwMDAwIG4gCjAwMDAwMTAwODEgMDAwMDAgbiAKMDAwMDAxMDE3MSAwMDAwMCBuIAowMDAwMDEwNTg0IDAwMDAwIG4gCjAwMDAwMTA5MDggMDAwMDAgbiAKMDAwMDAxMTEyMiAwMDAwMCBuIAowMDAwMDE0MzI1IDAwMDAwIG4gCjAwMDAwMTQ5NDYgMDAwMDAgbiAKMDAwMDAxNTYyMSAwMDAwMCBuIAowMDAwMDE2MjgyIDAwMDAwIG4gCjAwMDAwMTcxMTUgMDAwMDAgbiAKMDAwMDAxNzk0NCAwMDAwMCBuIAowMDAwMDE4NjAwIDAwMDAwIG4gCjAwMDAwMTk0NDYgMDAwMDAgbiAKMDAwMDAyMDIyNCAwMDAwMCBuIAowMDAwMDIxMDYwIDAwMDAwIG4gCjAwMDAwMjE4ODYgMDAwMDAgbiAKMDAwMDAyMjY5NSAwMDAwMCBuIAowMDAwMDIzNDMyIDAwMDAwIG4gCjAwMDAwMjQxNDUgMDAwMDAgbiAKMDAwMDAyNDg0MiAwMDAwMCBuIAowMDAwMDI1NTc3IDAwMDAwIG4gCjAwMDAwMjU2NTcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA2OSAvUm9vdCAxIDAgUiAvSW5mbyA2OCAwIFIgPj4Kc3RhcnR4cmVmCjI1ODA4CiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"672.757283pt\" height=\"711.47625pt\" viewBox=\"0 0 672.757283 711.47625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T15:52:31.154771</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 711.47625 \n", "L 672.757283 711.47625 \n", "L 672.757283 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 141.5225 143.278125 \n", "L 141.5225 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p56496128f2)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAAC/UlEQVR4nO3cvYpVZxiGYdf4F6YxYBfUIkEI2IiShKClYmvAPoVHEDwH084JJFVqwdLKFEOakJ8iqQSVFAGncmCUqDg7ZQ7gXYGb4br6/bCKm6962cuN5c7m2NDFn09PJ449+ezNeKNga3t7vHH4+vV44/iHZ+bfcfBqvLFcujje2BovwP9MpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5yxpHz/TsPP9pvHHvi9vjjfcv9sYbXlLyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGS5+h5Zd/9tTveuHvh+gpfMrfGv0W/f7k/3vCSkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlLxVjp6Xq5fGH7L55c/xBv/Ze/jpeOPszvZ44/iPv403vKTkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIl78QaIw6We/Zfzg+W31z7YLxx/vH8j8S9pOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5q9yT0vP05vfjjVtfX55/yAq8pOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiXP0fMRdXD4z3hjOXlqvLF593a84SUlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeUfr6HlZ5hubzejnz+5/Of6ET779Y7xx5Ydvxhsfb/063liDl5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkLTeWO7MrX1a3xj8sP3i2O9746tzn4401eEnJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnqPnlT36+/fxxq2PLo83jhIvKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMn7F9QARLriRmh1AAAAAElFTkSuQmCC\" id=\"imageed3cd25107\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"20.5625\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"mb109f5b22e\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"26.6105\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"38.7065\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"50.8025\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"62.8985\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"74.9945\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"87.0905\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"99.1865\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"111.2825\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"123.3785\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"135.4745\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 157.876562) scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"mae0c4ca8ae\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 141.5225 143.278125 \n", "L 141.5225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 143.278125 \n", "L 141.5225 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 141.5225 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_21\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(33.360313 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 316.200761 143.278125 \n", "L 316.200761 22.318125 \n", "L 195.240761 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p9a9bc19ce3)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADTElEQVR4nO3cvYqcdRiH4ZnZEZFgIhYSgiAiqKioIBZ+gM16BMagWNhYeRAWnoSegVjY2IuINsZgJIVfINrYWGlgScCdGStri+eV3CzXdQA/Hpibf/Uy6+PN64fV0CNX755OrH55/vZ446w4uu/CeOPvpx4eb2y++m68sYTNnT4A/otIyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvK2q8P4m+fV+xc/G2+8tXppvJGwORpP7P78a7yxvfbjeGM/XliGl5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkrY/Xl8dfPR+dPz8+ZHfz5nij4OjJx8Ybu+9/Hm889+1uvHH95XvHG/uTk/GGl5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkbZcY2d+6vcTMmXDlk8/HGx89fmm8cf3tJ8Yb+5P5v0UvwUtKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8hb56PmnD54ebzz6zrUFLrnzlvhgeQm/vnb/eOOhGwscsgAvKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREre+tW73jhMRz7+7cvxIVcefGG8wcLW6/nGYZyXl5Q+kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkbQ+np+ORC5t7FjiFnAU+WF6Cl5Q8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkbZcYeebqm+ONi6sfFriEf/3x7ovjjQc+/Hp+yH43nvCSkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlLzt5ty58cil9+b/CLwfL5wdr9y4Nd744tkFPlg+LPCrbI7mE/Mr4P8lUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZS89fH68vyL5fV6fslhfsZZsd7O/4D7cHq6wCVzn/7+zXjDS0qeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1Ly/gE8TlQfbExBOAAAAABJRU5ErkJggg==\" id=\"imageca2dde8827\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"195.240761\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"201.288761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"213.384761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"225.480761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"237.576761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"249.672761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"261.768761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"273.864761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"285.960761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"298.056761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"310.152761\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_33\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_34\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_35\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_36\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_17\">\n", "     <g id=\"line2d_37\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_18\">\n", "     <g id=\"line2d_38\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_39\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_19\">\n", "     <g id=\"line2d_39\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_20\">\n", "     <g id=\"line2d_40\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 195.240761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 316.200761 143.278125 \n", "L 316.200761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 195.240761 143.278125 \n", "L 316.200761 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 195.240761 22.318125 \n", "L 316.200761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_42\">\n", "    <!-- Layer 1, Head 2 -->\n", "    <g transform=\"translate(208.038573 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 490.879022 143.278125 \n", "L 490.879022 22.318125 \n", "L 369.919022 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pbe2b675792)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACpCAYAAAC/F3YRAAADuUlEQVR4nO3cPWteBRzG4XPyPDWtDdiqWKhBikhx08GX1D2oq4v1Czjr4uoolA76NVRwd3WwOroookVL2qIB26ZtpOF58Ru43EdyI9e1n5s/yS9nOmRc3n5hPYTePP9yOvG/MW5uHvcJwzAMw/roKByIs5jExnEfAP9GoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESrX5229djkdmT+/nlywW0ePLewfxCUdfPxdvnHrvQbyxunsv3tjY2spueHgY3zCslvGENyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFSbH7x4Jh7Z+uGneOPC96ei5397Lf+PwI/t/h5v5J/oDsM4n8cbq/v3J7jk+HmDUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKtfnJ92/lK1+M8cTeO09Gz88unoxvGP9+FG8sbt6ONzaeyn4WwzAMyz/+jDcaeINSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEq1+ezj/OPYYX0jnjh4dTt6/vGvvotvuH7lUrzx/Ed78cb63AS/Ex8sw39PoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNXG3ROX1+nIerHID9nczG54lP/z2WFjFk98ev2beOODC2/EG7OzZ6PnV4eH8Q1T/E68QakmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpdq48+7V+IPlrc+vTXDJGD4/wd/aejXBRvzjHLavbcUbezsP4o0G3qBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJtPsnHxlNIPzheLae5I3T9yqV8ZOfbeOLXqzvR8xc/+Tm+YfnXnXjDG5RqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKqNuycux/8SeL1Y5IfM5/FGanbumXhjdeduvDGePp1vnNyMnj//Zf6x8Y3XH8Yb3qBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJtPsXHxsM4xhPxHRPcsLh5K96YnXki3lju78cbH/7yY/T8Zy+9Et8w33423vAGpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUav8Awix/GyTW0R4AAAAASUVORK5CYII=\" id=\"image53f3849d55\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"369.919022\" y=\"-21.598125\" width=\"120.96\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_41\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"375.967022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_43\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_42\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"388.063022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_44\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_43\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"400.159022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_44\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"412.255022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_45\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"424.351022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_46\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"436.447022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_47\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"448.543022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_48\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"460.639022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_49\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"472.735022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_50\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"484.831022\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_21\">\n", "     <g id=\"line2d_51\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_22\">\n", "     <g id=\"line2d_52\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_23\">\n", "     <g id=\"line2d_53\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_24\">\n", "     <g id=\"line2d_54\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_25\">\n", "     <g id=\"line2d_55\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_26\">\n", "     <g id=\"line2d_56\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_27\">\n", "     <g id=\"line2d_57\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_28\">\n", "     <g id=\"line2d_58\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_29\">\n", "     <g id=\"line2d_59\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_61\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_30\">\n", "     <g id=\"line2d_60\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 369.919022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 490.879022 143.278125 \n", "L 490.879022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 369.919022 143.278125 \n", "L 490.879022 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 369.919022 22.318125 \n", "L 490.879022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_63\">\n", "    <!-- Layer 1, Head 3 -->\n", "    <g transform=\"translate(382.716834 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 665.557283 143.278125 \n", "L 665.557283 22.318125 \n", "L 544.597283 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p6ad6402772)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAAC1klEQVR4nO3coWqXUQCH4X1zacEqiMGBDIPgVBQ0ymAw6+5AvAKTYhS9CpOXYFoxbqAIEwwiwgwyi7AbUGcSk+l8w5c/z9O/Hye8nPRxps1p52Rp0P1Ph6MTSy/W14Y36Fm+cnl8Y4ZzwKkSKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREreyueX14ZHXqzPcJJFMU3jGyfD/6EvfX10Z3jjwvO94Y1fHz4Ob7hJyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESt40x0vPP+7eGD7Iyut3wxv8dW7/7PDG9+0zwxs/j4+HN9yk5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJW+Wn57hX3aPDoY33KTkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlb+V/H4DT8ezwzfDG47Vbwxv3bm4Pb7hJyRMpeSIlT6TkiZQ8kZInUvJESp5IyRMpeSIlT6TkiZQ8kZInUvJmeUR3jodSt85vDG+wmNyk5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5K3MMbL26sHwxvrS2xlOMu7L09tD3198sj/TSfjDTUqeSMkTKXkiJU+k5ImUPJGSJ1LyREqeSMkTKXkiJU+k5ImUPJGSJ1Lyps1p52R0ZPfoYPggW+c3hjdYTG5S8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkjfLS88Pv12fYeXX+MQ0DU8sr64Off/z6qXhM0x774c3FomblDyRkidS8kRKnkjJEyl5IiVPpOSJlDyRkidS8kRKnkjJEyl5IiVPpOT9Bk7HNa7SBv40AAAAAElFTkSuQmCC\" id=\"image7aaeb0856a\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"544.597283\" y=\"-21.598125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_61\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"550.645283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_62\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"562.741283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_65\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_63\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"574.837283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_66\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_64\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"586.933283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_65\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"599.029283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_66\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"611.125283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_67\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"623.221283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_68\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"635.317283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_69\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"647.413283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_70\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"659.509283\" y=\"143.278125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 157.876562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_31\">\n", "     <g id=\"line2d_71\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"137.230125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 141.029344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_32\">\n", "     <g id=\"line2d_72\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"125.134125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 128.933344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_33\">\n", "     <g id=\"line2d_73\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"113.038125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 116.837344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_34\">\n", "     <g id=\"line2d_74\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"100.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 104.741344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_35\">\n", "     <g id=\"line2d_75\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"88.846125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 92.645344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_36\">\n", "     <g id=\"line2d_76\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"76.750125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 80.549344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_37\">\n", "     <g id=\"line2d_77\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"64.654125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 68.453344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_38\">\n", "     <g id=\"line2d_78\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"52.558125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 56.357344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_39\">\n", "     <g id=\"line2d_79\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"40.462125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 44.261344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_40\">\n", "     <g id=\"line2d_80\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"28.366125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_83\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 32.165344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 544.597283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 665.557283 143.278125 \n", "L 665.557283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 544.597283 143.278125 \n", "L 665.557283 143.278125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 544.597283 22.318125 \n", "L 665.557283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_84\">\n", "    <!-- Layer 1, Head 4 -->\n", "    <g transform=\"translate(557.395095 16.318125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_5\">\n", "   <g id=\"patch_22\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 141.5225 324.718125 \n", "L 141.5225 203.758125 \n", "L 20.5625 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p568683dc47)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAECUlEQVR4nO3cMW9VZQDG8XPbQ1tuqUIKxRCFhJgYgy6Okpg4GV39Bm7q6Ldwc9E4uOhHME4kTiZOTCamg0YiAUEqAgV6obf3+iGemjzD77efJy/0f8/05kze2/l4OYSWF86mE8PK/kE2cDCLz3D7w8vxxrnrT+KNcW8/3lic3oyen+zeiM9w4Vqc1rASL8D/SKBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEq18dmbF+ORjT/24o0nr+9kZ7iXX1heHsPP9fnptXhjfHQi3lj9+0H0/HI1/8/4+Ycr8YY3KNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBvHp4fxyHJcjTc2f/kren6x/UJ8hvFp/kXgR5fGeONw60y8sX7/VPb8T/fiM7z42yLe8AalmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqjZPDo3jkaDu7ezgMwzA7uxE9v7mb31+cbZ+ON7Z/nccbm7v5B4FTy5X83fXwcr7hDUo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNXGxXr+wdVx73G8MX38PHp+ssg/Prtz/Vm8ce+t9Xhj+me+cedq9hHcl77LL4Bv3s7/Jt6gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSbRwfzuKR+TF8Yfloml2cXr95GJ/hx2+/iTc+uPJuvDGs5u+Nna92o+eX44n4DFu38r+JNyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQbF9O1eGQ55p0/3ckuyK7dzS/YvvHFJ/HGKxf/jTdW9g/ijXHMLoAvZ/lF9lvv5H8Tb1CqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKk2Pnl5Go+c+v1hvLExXY2en585GZ/h2qefxxsfffl+vDG8sBVPzO/cjZ6fhBeeh2EYXv36ZrzhDUo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQb5ycn8chyLb87OM6Ooucn80V8hqvffxZvXHo7+3cMwzCs7+UfsF15kN3RXc7n8RkOXjsfb3iDUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKtfH5Vn5hefX+43hjdv5c9Pz8ZP5bW/vnOH6v+YXlxfoxXACfhh8m3t+Pz7Bx43684Q1KNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjV/gNsi4y2WbcBMgAAAABJRU5ErkJggg==\" id=\"imagec9b7939b1a\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"20.5625\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_9\">\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_81\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"26.6105\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_82\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"38.7065\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_83\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"50.8025\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_87\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_84\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"62.8985\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_88\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_85\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"74.9945\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_89\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_86\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"87.0905\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_90\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_87\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"99.1865\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_91\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_88\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"111.2825\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_92\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_89\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"123.3785\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_93\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_90\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"135.4745\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_94\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_10\">\n", "    <g id=\"ytick_41\">\n", "     <g id=\"line2d_91\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_95\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_42\">\n", "     <g id=\"line2d_92\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_96\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_43\">\n", "     <g id=\"line2d_93\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_97\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_44\">\n", "     <g id=\"line2d_94\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_98\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_45\">\n", "     <g id=\"line2d_95\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_99\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_46\">\n", "     <g id=\"line2d_96\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_100\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_47\">\n", "     <g id=\"line2d_97\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_101\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_48\">\n", "     <g id=\"line2d_98\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_102\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_49\">\n", "     <g id=\"line2d_99\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_103\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_50\">\n", "     <g id=\"line2d_100\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_104\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_23\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 20.5625 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_24\">\n", "    <path d=\"M 141.5225 324.718125 \n", "L 141.5225 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_25\">\n", "    <path d=\"M 20.5625 324.718125 \n", "L 141.5225 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_26\">\n", "    <path d=\"M 20.5625 203.758125 \n", "L 141.5225 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_105\">\n", "    <!-- Layer 2, Head 1 -->\n", "    <g transform=\"translate(33.360312 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_6\">\n", "   <g id=\"patch_27\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 316.200761 324.718125 \n", "L 316.200761 203.758125 \n", "L 195.240761 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p4d3a84f6f9)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAEKUlEQVR4nO3cv2tdZQCH8ffce9Ik9aa51StY5dY0Q5XiUsRNRNBBrC4iLiKItEPHFlpdhDoVpJR26eigSEU3RynOBc3UpYit/SGpxqSX9jZpb9qc49A/4avwDM9nf7+8SZ6c6XCqtxaOtCXUzD+RTpTS6WTHR+P4CptfxRPl5lo/3lj8/H68cePkdHR++EUT36Fc/TOeyKqQ/mcGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQ6v/iZeN2qhtvdO5sROebfi++w8qPO+ONy5+eizfebt6LNzZuZb+P6v5qfIfSzZ9/PkGFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCq1uZqbikbbOO69msi8Ct+EXmkspZfBu/kXgly5+GG88vTgbbwx+yX4f7fbs71FKKZ1e/hK5T1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhVbXq+N45NFgLt5op7OP4HaX1+I7/HFxT7wxvz//8OvstUm8MTyxEp1fPbgrvkOZquMJn6BCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhVY3vZl4pDt+EG9Uk4fR+a3nBvEddlyJJ8rPH38Tb3zQ+SjeWFoeRuefn2zEd2hW8pe3fYIKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFVo9eaYXj3Q2m3hjvHs6Ov/U0u34Du8fvRBvvPrl0XhjVzf/WXaez/6uW0/mz67sm9mP+QQVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKrR622gSj6wPt8cbczeze2zNZS88l1LKD2fejDc+O34+3vj62/3xxvLh+ej8i2fzLyy3t1biDZ+gQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVW7Tt2uk1HBpc244v8/cq26Pzwp3F8hxfOXY43fj31crzRvzSKN6q769H5tjcb36E0cVo+QcVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVWvX6Gyfjl/aqNn/vb2r0IBt41MR3+O2Tfrxx4LWl/B6H9sYbN97JPmC78N1f8R3K3XvxhE9QoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEKrb++bjkfWn81fWB5eqKLzm/06vkPvev7/ujj7T7zx+5X847EL30+ygdGd+A5bq2vxhk9QoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEL7Fx2VkR1CxP5oAAAAAElFTkSuQmCC\" id=\"image75215038bd\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"195.240761\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_11\">\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_101\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"201.288761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_106\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_102\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"213.384761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_107\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_103\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"225.480761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_108\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_104\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"237.576761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_109\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_105\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"249.672761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_110\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_106\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"261.768761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_111\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_107\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"273.864761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_112\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_108\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"285.960761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_113\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_109\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"298.056761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_114\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_110\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"310.152761\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_115\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_12\">\n", "    <g id=\"ytick_51\">\n", "     <g id=\"line2d_111\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_116\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_52\">\n", "     <g id=\"line2d_112\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_117\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_53\">\n", "     <g id=\"line2d_113\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_118\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_54\">\n", "     <g id=\"line2d_114\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_119\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_55\">\n", "     <g id=\"line2d_115\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_120\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_56\">\n", "     <g id=\"line2d_116\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_121\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_57\">\n", "     <g id=\"line2d_117\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_122\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_58\">\n", "     <g id=\"line2d_118\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_123\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_59\">\n", "     <g id=\"line2d_119\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_124\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_60\">\n", "     <g id=\"line2d_120\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_125\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_28\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 195.240761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_29\">\n", "    <path d=\"M 316.200761 324.718125 \n", "L 316.200761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_30\">\n", "    <path d=\"M 195.240761 324.718125 \n", "L 316.200761 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_31\">\n", "    <path d=\"M 195.240761 203.758125 \n", "L 316.200761 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_126\">\n", "    <!-- Layer 2, Head 2 -->\n", "    <g transform=\"translate(208.038573 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_7\">\n", "   <g id=\"patch_32\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 490.879022 324.718125 \n", "L 490.879022 203.758125 \n", "L 369.919022 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pdc6a497cec)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAADX0lEQVR4nO3csYqcVRiA4Z2diUZMFEVdAmmMKYQ0gmAqwSIgWIhI7sI7ELQRvA5rCxttvYHUYiUJBFGRVTE2rm5mvIjvSF6W5+nPx2Hm5VQf/+bO5u7hiAvn8wf3Ruc/vnF7fIft6zfHM47HE+B/JFDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtN2SKZvNfMbhYuxNb3bzn/Swn/8W3zx6YzZgM3+7zq49N57hBSVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpixaWF3R+eDyfEbBi2XiF60/9PhtwuDa+w6W//hnP8IKSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpK3ZBz3sl4y5EPaNvdZ3n/1hdP7Lo/k+6Pbn4U7qkReUOIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpC1aWG58tDXheDufsWDp+fruymzAgv90/+ej8QwvKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQElbsrC82c3HHPbDBdkVXzZesWy84GvTK37Pd777YHT+mcu/jO/wx/u3xjO8oKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVtycLy4fx8xZgnb8XS82YzHrHi9/z21lej8++dvTm+w4tffz+e4QUlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASRMoabsVXxXevvD8gqvMHP4+G884Pnl5POPxwx/n97h6dTzj9qcfjc6fnNwf3+GnD18bz/CCkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKRt7mzuHp70JS6UBfu1R4f9eMRn9++Nzn9y463xHbY3Xx3P8IKSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtCUfsN298tJ4xvmvp6Pzx5efHt/h8O/5eMZ2wUdw96e/jWd8cfr26PzxlUvjO+wfPBzP8IKSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtP8AR/FdwrBkHuMAAAAASUVORK5CYII=\" id=\"image11c6a0762a\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"369.919022\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_13\">\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_121\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"375.967022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_127\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_122\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"388.063022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_128\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_123\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"400.159022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_129\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_124\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"412.255022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_130\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_65\">\n", "     <g id=\"line2d_125\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"424.351022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_131\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_66\">\n", "     <g id=\"line2d_126\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"436.447022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_132\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_67\">\n", "     <g id=\"line2d_127\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"448.543022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_133\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_68\">\n", "     <g id=\"line2d_128\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"460.639022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_134\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_69\">\n", "     <g id=\"line2d_129\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"472.735022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_135\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_70\">\n", "     <g id=\"line2d_130\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"484.831022\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_136\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_14\">\n", "    <g id=\"ytick_61\">\n", "     <g id=\"line2d_131\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_137\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_62\">\n", "     <g id=\"line2d_132\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_138\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_63\">\n", "     <g id=\"line2d_133\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_139\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_64\">\n", "     <g id=\"line2d_134\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_140\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_65\">\n", "     <g id=\"line2d_135\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_141\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_66\">\n", "     <g id=\"line2d_136\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_142\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_67\">\n", "     <g id=\"line2d_137\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_143\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_68\">\n", "     <g id=\"line2d_138\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_144\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_69\">\n", "     <g id=\"line2d_139\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_145\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_70\">\n", "     <g id=\"line2d_140\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_146\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_33\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 369.919022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_34\">\n", "    <path d=\"M 490.879022 324.718125 \n", "L 490.879022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_35\">\n", "    <path d=\"M 369.919022 324.718125 \n", "L 490.879022 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_36\">\n", "    <path d=\"M 369.919022 203.758125 \n", "L 490.879022 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_147\">\n", "    <!-- Layer 2, Head 3 -->\n", "    <g transform=\"translate(382.716834 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_8\">\n", "   <g id=\"patch_37\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 665.557283 324.718125 \n", "L 665.557283 203.758125 \n", "L 544.597283 203.758125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pba92a40bc9)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAEEklEQVR4nO3cPYtUZwCG4ffMnBl3djbgfu8aE8UFsZAYjJAQFCsLG8EqCRaSXyCK/pBNkUas7EUQSbGgjZDORjuDxWrUXTdudv2a/ZqTH/EQuIv76t+Hd/TeUx1OdW7kUlNS3xyNJ5p2FZ3fGt8X36FcfRtPjP6yGW8MN/KNf38+FZ2fWHoe3+HZtYV4oxUvSP8jAxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaHVV1/FIay1/wbbpdqLzdS//HbuL0/FGmcl+RymllM0P8cTKmb3o/MQfu/EdTp99Gm/4BBWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqtLr1xVg8svntXLzRWxlE5998PxLfYWcs/9j0wl/5RjWSfy16/mE7G9jLXngupZQnt47HGz5BhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxVaPfz4KR7pL+cfXN2aHo3Oz//5Ob7D6yvb8UZZexdPNIOteKPzYRgOdOM7/PNj/u/pE1RoBio0AxWagQrNQIVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0Opqdioeaaoq3ugtb0Tn109MxHc4dH093nhx+Vi88eXvj+ON7tXX2cDF/KXpg/fqeMMnqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1Ch1c2rlXxl/5F4YntmLDo/9jJ/wfb+o7vxxvkjP8QbpZU/N+or/WxgthPfYbuf/w6foEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFln8Ct5Qy7LTzjW72t9LkH3kuCw9+jTeO7X8Vb+yursUbq2ezL04fuPM8vsPmQv6f4hNUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVmoEIzUKEZqNDqqh9+ibeU8vGrXryx791OdL4e7MV3uHFyKd64u34w3mhPT8Yb87efZgOT4/EduhvxhE9QsRmo0AxUaAYqNAMVmoEKzUCFZqBCM1ChGajQDFRoBio0AxWagQrNQIVWN4NBPNL/O99oDbL3Qbem8ndSby5eiDfm5l7GG3tvVuON5RvfRecP/xa+T1pK6Z3rxBs+QYVmoEIzUKEZqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKra4OzMYj778eiTcGk6PR+WEdX6Hs5N/yLaXdjieqOv8xvbdNNjCTf0R3/KeVeMMnqNAMVGgGKjQDFZqBCs1AhWagQjNQoRmo0AxUaAYqNAMVmoEKzUCFZqBCM1Ch/Qcbb4G38D6fYgAAAABJRU5ErkJggg==\" id=\"image2496836ab0\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"544.597283\" y=\"-203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_15\">\n", "    <g id=\"xtick_71\">\n", "     <g id=\"line2d_141\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"550.645283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_148\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_72\">\n", "     <g id=\"line2d_142\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"562.741283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_149\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_73\">\n", "     <g id=\"line2d_143\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"574.837283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_150\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_74\">\n", "     <g id=\"line2d_144\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"586.933283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_151\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_75\">\n", "     <g id=\"line2d_145\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"599.029283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_152\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_76\">\n", "     <g id=\"line2d_146\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"611.125283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_153\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_77\">\n", "     <g id=\"line2d_147\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"623.221283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_154\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_78\">\n", "     <g id=\"line2d_148\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"635.317283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_155\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_79\">\n", "     <g id=\"line2d_149\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"647.413283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_156\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_80\">\n", "     <g id=\"line2d_150\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"659.509283\" y=\"324.718125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_157\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 339.316562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_16\">\n", "    <g id=\"ytick_71\">\n", "     <g id=\"line2d_151\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"318.670125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_158\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 322.469344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_72\">\n", "     <g id=\"line2d_152\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"306.574125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_159\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 310.373344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_73\">\n", "     <g id=\"line2d_153\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"294.478125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_160\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 298.277344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_74\">\n", "     <g id=\"line2d_154\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"282.382125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_161\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 286.181344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_75\">\n", "     <g id=\"line2d_155\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"270.286125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_162\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 274.085344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_76\">\n", "     <g id=\"line2d_156\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"258.190125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_163\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 261.989344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_77\">\n", "     <g id=\"line2d_157\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"246.094125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_164\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 249.893344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_78\">\n", "     <g id=\"line2d_158\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"233.998125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_165\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 237.797344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_79\">\n", "     <g id=\"line2d_159\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"221.902125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_166\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 225.701344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_80\">\n", "     <g id=\"line2d_160\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"209.806125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_167\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 213.605344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_38\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 544.597283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_39\">\n", "    <path d=\"M 665.557283 324.718125 \n", "L 665.557283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_40\">\n", "    <path d=\"M 544.597283 324.718125 \n", "L 665.557283 324.718125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_41\">\n", "    <path d=\"M 544.597283 203.758125 \n", "L 665.557283 203.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_168\">\n", "    <!-- Layer 2, Head 4 -->\n", "    <g transform=\"translate(557.395095 197.758125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_9\">\n", "   <g id=\"patch_42\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 141.5225 506.158125 \n", "L 141.5225 385.198125 \n", "L 20.5625 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pbf4063ed98)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAAEBElEQVR4nO3cz4qVdQDG8TlnTjOOM2VmxlQ2Fg1iQkQUEbRpEekF1CJa5kK8gnLrLq+gTVSLihZBi6B9F1ArUZRKS/qH9Gc0j+PMebuI5ww8i89n/z78DufLu/rxjk4efGdYCA3Tu+nEwsLiYjwxmsfGgQei51/5+kp8hm9fOhhvXPnweLxx7MwP8cbo/rV4YxwvwB4TKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm8yu30nXxlm+cbOTr6xtJRvbG1Fj597+HJ8hFM7L8Ybs3v5+2d2ZxpvjO+b5BvxAuwxkVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfUm45V98cgwhwvLw+5uvDGa5Bds0y9On73xcnyE0XL+xeqjj92MN8arK/HGwmiUnyM/BewtkVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNSbLIzz+37zMJrHB3Dn8VsOHYwe/3t7yM+wm3/Y+M+ttXhjY/ZXvDGPO77epNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm8yu3U7XxnlrQ/Tu/HGeN9yfo5rv0TPv/rQz/EZvhyeiDeOH/493rh1N/9PFlf3xxvepNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm8yff35eGT1Yn7B9vqbR+KNjS/yC8cXz61Hz3916pH4DOO1/CL6f6cfzM+xeSjeGG78lp8jXoA9JlLqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqXeZPW7/KLw7J9/442NT3fijWE6jTee/mw3en7xk3vxGbZfuxVvXD6/GW888+6leGMYhnjDm5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUupN7jybf2F55eKv8cbVMxvxxuYH+QXuH09nl3SPv70Yn2G8si/eOHEh//r2sH443li4fiOe8CalnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqjU6un42/cjps5R99He1fiTfmYXfz8ej5tz76Jj7D5889FW9ce++FeOPJ97+PN+bxv3qTUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKvcn2ifwjustX8g+2To+txxtLf9yON7YPLEXPX/j4jfgMR9cuxRvLN+OJhdGRR+ON3as/xRvepNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUu9/iSmIZjUJkVkAAAAASUVORK5CYII=\" id=\"imaged5334f7e8c\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"20.5625\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_17\">\n", "    <g id=\"xtick_81\">\n", "     <g id=\"line2d_161\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"26.6105\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_169\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_82\">\n", "     <g id=\"line2d_162\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"38.7065\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_170\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_83\">\n", "     <g id=\"line2d_163\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"50.8025\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_171\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_84\">\n", "     <g id=\"line2d_164\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"62.8985\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_172\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_85\">\n", "     <g id=\"line2d_165\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"74.9945\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_173\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_86\">\n", "     <g id=\"line2d_166\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"87.0905\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_174\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_87\">\n", "     <g id=\"line2d_167\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"99.1865\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_175\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_88\">\n", "     <g id=\"line2d_168\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"111.2825\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_176\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_89\">\n", "     <g id=\"line2d_169\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"123.3785\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_177\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_90\">\n", "     <g id=\"line2d_170\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"135.4745\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_178\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_18\">\n", "    <g id=\"ytick_81\">\n", "     <g id=\"line2d_171\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_179\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_82\">\n", "     <g id=\"line2d_172\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_180\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_83\">\n", "     <g id=\"line2d_173\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_181\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_84\">\n", "     <g id=\"line2d_174\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_182\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_85\">\n", "     <g id=\"line2d_175\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_183\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_86\">\n", "     <g id=\"line2d_176\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_184\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_87\">\n", "     <g id=\"line2d_177\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_185\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_88\">\n", "     <g id=\"line2d_178\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_186\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_89\">\n", "     <g id=\"line2d_179\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_187\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_90\">\n", "     <g id=\"line2d_180\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_188\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_43\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 20.5625 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_44\">\n", "    <path d=\"M 141.5225 506.158125 \n", "L 141.5225 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_45\">\n", "    <path d=\"M 20.5625 506.158125 \n", "L 141.5225 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_46\">\n", "    <path d=\"M 20.5625 385.198125 \n", "L 141.5225 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_189\">\n", "    <!-- Layer 3, Head 1 -->\n", "    <g transform=\"translate(33.360313 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_10\">\n", "   <g id=\"patch_47\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 316.200761 506.158125 \n", "L 316.200761 385.198125 \n", "L 195.240761 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p011dada4a4)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAAECUlEQVR4nO3cz4qVdQDG8fN6zngcdUYdM81gahIKF1aboEW1ah/dQetuoEVBq6AbKCIIIqJFbbuBNtHCNtEfCEG0LLQZbWTmOP/tIp4RHujz2b8PvwPf865+vMPKVx88HIVeXrmeToyu31+KN1bXT8Ybly/cjp7/+c+L8Rn2t8bxxtPL/8QbN/4+G2+cWNiKN47EC/CIiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKk32d+YxCOzvbl4Y2NrGm8MQ3x/e3RmOoue39/J//dHpvvxxvxkN96YzOXnODa3F294k1JPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESr3J0dPb8cjyiXvxxp3ZQryxOcsvTl85eSt6/rvh2fgMBzv5l55v3D0Tb+zO8svsd/cO4RJ4vACPmEipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqTabT/GOrNzfzu4uL0614499j8/HGze2l6PmHB0N8htFBPnEYhkl+kGGcf9jYm5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUupNNm4uxiNbp9bjjd+uPRlvjI7kF2yvLZ2Lnn/h0h/xGX659US88f6Vb+ONd6++GW/szSbxhjcp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUG9776Y34pvCP95bjg3z8zDfxxuvfvx1v/P7aF9Hzlz/Nz7B7Mv/C8nQtf//MntrLz3HbpWf+B0RKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUm/ywuhKPXFpcjTc+Wnsl3jh3eiPe+Pz+49HzQ35PeHQwn3+xeut8fnF6mM9/zM5KvuFNSj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9Sbnj9+PR369dyHe+Oy5L+ONr6++FG+89fyd6PkPj+YXlkf5feXR3Hr+/tleyDeGDV965n9ApNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfUmewfjeOTiifV445O1V+ON40uzeOOd2y9Gz+8u5PdJx2e3442dYRpvjA7hauzDufxyrDcp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUm/y1eSoeubS4Gm/MDfvxxnicX7Bdnq5lZ3gwxGfY28kvoo9nh/AB3McexBu7m0fjDW9S6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkip9x9jFpOHV2sCsQAAAABJRU5ErkJggg==\" id=\"image34aabfbfa0\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"195.240761\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_19\">\n", "    <g id=\"xtick_91\">\n", "     <g id=\"line2d_181\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"201.288761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_190\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_92\">\n", "     <g id=\"line2d_182\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"213.384761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_191\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_93\">\n", "     <g id=\"line2d_183\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"225.480761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_192\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_94\">\n", "     <g id=\"line2d_184\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"237.576761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_193\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_95\">\n", "     <g id=\"line2d_185\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"249.672761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_194\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_96\">\n", "     <g id=\"line2d_186\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"261.768761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_195\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_97\">\n", "     <g id=\"line2d_187\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"273.864761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_196\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_98\">\n", "     <g id=\"line2d_188\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"285.960761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_197\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_99\">\n", "     <g id=\"line2d_189\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"298.056761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_198\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_100\">\n", "     <g id=\"line2d_190\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"310.152761\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_199\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_20\">\n", "    <g id=\"ytick_91\">\n", "     <g id=\"line2d_191\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_200\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_92\">\n", "     <g id=\"line2d_192\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_201\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_93\">\n", "     <g id=\"line2d_193\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_202\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_94\">\n", "     <g id=\"line2d_194\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_203\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_95\">\n", "     <g id=\"line2d_195\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_204\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_96\">\n", "     <g id=\"line2d_196\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_205\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_97\">\n", "     <g id=\"line2d_197\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_206\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_98\">\n", "     <g id=\"line2d_198\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_207\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_99\">\n", "     <g id=\"line2d_199\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_208\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_100\">\n", "     <g id=\"line2d_200\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_209\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_48\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 195.240761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_49\">\n", "    <path d=\"M 316.200761 506.158125 \n", "L 316.200761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_50\">\n", "    <path d=\"M 195.240761 506.158125 \n", "L 316.200761 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_51\">\n", "    <path d=\"M 195.240761 385.198125 \n", "L 316.200761 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_210\">\n", "    <!-- Layer 3, Head 2 -->\n", "    <g transform=\"translate(208.038573 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_11\">\n", "   <g id=\"patch_52\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 490.879022 506.158125 \n", "L 490.879022 385.198125 \n", "L 369.919022 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p2bb0691994)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACoCAYAAAB0S6W0AAAEBUlEQVR4nO3cO26cZRiG4X88v+dgeyYohGMkSMRJHIoUNIgKIbEBlkDHAmADbIAV0IWWNQACpaBCCBQBQkIiCSQIJ8ZOPHbMIp4gPcV19d+rT/Y9f/XpnVz+/JOzIXRudZiOGF6/cDM6/9UPL8d3ePu1n+MZ31x/IZ6xvdzEM47vLKLz62fvxXfYmR/HM7biCfA/EijVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJtPD3Yzqes8hF3j5fZgEl+h4PNPJ4x380f6d4/mMUzJjun0fnZmJ0fhmFYzx7EM3xBqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKl2rh+8iAe8tRePmM9O4rOT8aH8R12xvyx8elJ/ptfrvKHvptfs1fkR+v8Ifv1P5+OZ/iCUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1cbjzRgPWUw38Yzp5CyekXpl71Y849t/XopnnCzz5bHp/tmtrfx97er8v/EMX1CqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKk2Luf50tb7p/my0x9/z5ad7p3LFuAOwzBc/enNeMbFy7fjGbfv7sYzTp7LHhyvFvkS3T9+uxDP8AWlmkCpJlCqCZRqAqWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRq4+QRbDZ+dX0znvHBxa+j8x9dez++wy/vfhbPeOPTD+MZD54/iWc8/t00On/znfgKw3SVb972BaWaQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGrj0YNZPOTLGy/GMzZn2QPbYRJfYfj41pV4xuHF0/wi82w78jAMw99Xsj/I3t79+A7zMf9b+IJSTaBUEyjVBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEq1cTrNH8fOx3wj8KXFnej8w03+W3tv/X0844u7b8UzNo/lm4m397ej84fnF/Edht380bMvKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFQTKNUESjWBUm3cnR/HQ7an+aLSdIHt1pi/a736V/6W82T3LJ6x2Mn/J6fDPLvDMr/D0WF2h2HwBaWcQKkmUKoJlGoCpZpAqSZQqgmUagKlmkCpJlCqCZRqAqWaQKkmUKoJlGrj7BE8Nn5ieRDPuHF8Ljq/u8qXpT6z2I9nzPbz3/z0Uv74+mE44ix/dz2c3MuW6A6DLyjlBEo1gVJNoFQTKNUESjWBUk2gVBMo1QRKNYFSTaBUEyjVBEo1gVJNoFT7Dwi5iJz2iFItAAAAAElFTkSuQmCC\" id=\"image9d5e9f5608\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"369.919022\" y=\"-385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_21\">\n", "    <g id=\"xtick_101\">\n", "     <g id=\"line2d_201\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"375.967022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_211\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_102\">\n", "     <g id=\"line2d_202\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"388.063022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_212\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_103\">\n", "     <g id=\"line2d_203\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"400.159022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_213\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_104\">\n", "     <g id=\"line2d_204\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"412.255022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_214\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_105\">\n", "     <g id=\"line2d_205\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"424.351022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_215\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_106\">\n", "     <g id=\"line2d_206\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"436.447022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_216\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_107\">\n", "     <g id=\"line2d_207\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"448.543022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_217\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_108\">\n", "     <g id=\"line2d_208\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"460.639022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_218\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_109\">\n", "     <g id=\"line2d_209\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"472.735022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_219\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_110\">\n", "     <g id=\"line2d_210\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"484.831022\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_220\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_22\">\n", "    <g id=\"ytick_101\">\n", "     <g id=\"line2d_211\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_221\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_102\">\n", "     <g id=\"line2d_212\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_222\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_103\">\n", "     <g id=\"line2d_213\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_223\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_104\">\n", "     <g id=\"line2d_214\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_224\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_105\">\n", "     <g id=\"line2d_215\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_225\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_106\">\n", "     <g id=\"line2d_216\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_226\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_107\">\n", "     <g id=\"line2d_217\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_227\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_108\">\n", "     <g id=\"line2d_218\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_228\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_109\">\n", "     <g id=\"line2d_219\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_229\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_110\">\n", "     <g id=\"line2d_220\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_230\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_53\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 369.919022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_54\">\n", "    <path d=\"M 490.879022 506.158125 \n", "L 490.879022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_55\">\n", "    <path d=\"M 369.919022 506.158125 \n", "L 490.879022 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_56\">\n", "    <path d=\"M 369.919022 385.198125 \n", "L 490.879022 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_231\">\n", "    <!-- Layer 3, Head 3 -->\n", "    <g transform=\"translate(382.716834 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_12\">\n", "   <g id=\"patch_57\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 665.557283 506.158125 \n", "L 665.557283 385.198125 \n", "L 544.597283 385.198125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p9959d07868)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACoCAYAAACbic6KAAAEFklEQVR4nO3cv2vUZwDH8Tvv0sT8Mk1MzvT80ah0kiDqohTBLh066SAdOlRwkBYHV6mTgn9A/4JO0qljIVACDgqCDtGgWIiiCaKNlzsTE3N69+0f8TnhPbxf+/fDA/fmmR6ufOCPm0UpNDuznE6UGh8G442xga144/HKnuj7+u5mfIapwfV44/uJxXjjY1GJN74behpv7IgXpM/MSIVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwjNS4Rmp8IxUeEYqPCMVXrVo553uKHfjjcb7/NFzL+ydXIu+rw+14jOsfhiKNyo9+E3utA7HG5fGVuINb1LhGanwjFR4Rio8IxWekQrPSIVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwquOTG3EI5ufvog3jtRexRvtTv7PxO1uNd5IFUU53ljcrMcbtf538cbV17Pxhjep8IxUeEYqPCMVnpEKz0iFZ6TCM1LhGanwjFR4Rio8IxWekQrPSIVnpMKrdjp5pwdH3sYbW52+eKMXDg2vRt8vrOXvOLc7+ZvWxdZ0vHF0bDne+Fjkb3y9SYVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwjNS4Rmp8IxUeEYqPCMVnpEKr7rvy2Y8stGDP9FttgfjjemdrXij0R6Kvj8+/iI+w93VmXjj6+FGvLG0uTveeN4ajze8SYVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwjNS4Rmp8IxUeEYqPCMVnpEKr3py4lk80i2V443f9s/HG78sn443Ltf+ib4/O/9rfIbJWv54e+720XjjzLcP4403/43GG96kwjNS4Rmp8IxUeEYqPCMVnpEKz0iFZ6TCM1LhGanwjFR4Rio8IxWekQrPSIVXnrl1o0hHTs0sxQdpbGf/sFwqlUrdIn98vdHuj75/3RyJz1AbW483fvjqUbzRV+7EG+dHF+INb1LhGanwjFR4Rio8IxWekQrPSIVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwitffvBj/Oh5dXs4PsiV6bl44+rSuXjj+sG/ou9/vn8hPkN/36d4Y2u7L944Vl+ON568nYo3vEmFZ6TCM1LhGanwjFR4Rio8IxWekQrPSIVnpMIzUuEZqfCMVHhGKjwjFV716bv8vd94/2a88ff6bLwxMfA+3ri2dDbeSJ3Y8zLe+Lc1GW9MD7TijfreZrzhTSo8IxWekQrPSIVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwjNS4Rmp8IxUeNVvRt/EI92iHG/sqmzFG+1uJd74/fCf0fcXn/wUn+Heq/3xRi8sVOrxxsrarnjDm1R4Rio8IxWekQrPSIVnpMIzUuEZqfCMVHhGKjwjFZ6RCs9IhWekwjNS4Rmp8P4HZuCToZ+9ykMAAAAASUVORK5CYII=\" id=\"image26433a49a1\" transform=\"scale(1 -1) translate(0 -120.96)\" x=\"544.597283\" y=\"-385.198125\" width=\"121.68\" height=\"120.96\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_23\">\n", "    <g id=\"xtick_111\">\n", "     <g id=\"line2d_221\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"550.645283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_232\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_112\">\n", "     <g id=\"line2d_222\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"562.741283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_233\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_113\">\n", "     <g id=\"line2d_223\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"574.837283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_234\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_114\">\n", "     <g id=\"line2d_224\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"586.933283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_235\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_115\">\n", "     <g id=\"line2d_225\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"599.029283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_236\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_116\">\n", "     <g id=\"line2d_226\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"611.125283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_237\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_117\">\n", "     <g id=\"line2d_227\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"623.221283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_238\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_118\">\n", "     <g id=\"line2d_228\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"635.317283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_239\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_119\">\n", "     <g id=\"line2d_229\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"647.413283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_240\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_120\">\n", "     <g id=\"line2d_230\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"659.509283\" y=\"506.158125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_241\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 520.756562) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_24\">\n", "    <g id=\"ytick_111\">\n", "     <g id=\"line2d_231\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"500.110125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_242\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 503.909344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_112\">\n", "     <g id=\"line2d_232\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"488.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_243\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 491.813344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_113\">\n", "     <g id=\"line2d_233\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"475.918125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_244\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 479.717344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_114\">\n", "     <g id=\"line2d_234\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"463.822125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_245\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 467.621344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_115\">\n", "     <g id=\"line2d_235\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"451.726125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_246\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 455.525344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_116\">\n", "     <g id=\"line2d_236\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"439.630125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_247\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 443.429344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_117\">\n", "     <g id=\"line2d_237\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"427.534125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_248\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 431.333344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_118\">\n", "     <g id=\"line2d_238\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"415.438125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_249\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 419.237344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_119\">\n", "     <g id=\"line2d_239\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"403.342125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_250\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 407.141344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_120\">\n", "     <g id=\"line2d_240\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"391.246125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_251\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 395.045344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_58\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 544.597283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_59\">\n", "    <path d=\"M 665.557283 506.158125 \n", "L 665.557283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_60\">\n", "    <path d=\"M 544.597283 506.158125 \n", "L 665.557283 506.158125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_61\">\n", "    <path d=\"M 544.597283 385.198125 \n", "L 665.557283 385.198125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_252\">\n", "    <!-- Layer 3, Head 4 -->\n", "    <g transform=\"translate(557.395095 379.198125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_13\">\n", "   <g id=\"patch_62\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 141.5225 687.598125 \n", "L 141.5225 566.638125 \n", "L 20.5625 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p97552b33f7)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADxklEQVR4nO3cMWtdZQDG8XOTe0tImqQ1RZeCDm5SFJxakY4ufgUHwamok5sfoIMgSAQRnZz8FkWEtpsuHaQguAgW0pA2MZqb5DpkFofnyH2G328/Dy/c/z3T4Z3c+PjzxRCa/hlPDEfXJ/HG1q/5OU62s3O8+OX9+Ax/fHQr3nhpNz/H3gc3442dbx/EGyvxAvzPREo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNSbDvm3xsOlw/xj4+eX8nPMjs/jjZOt1fwgodP1ZZ/gwvls2Se44E1KPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1ppOzfGS+kX85vfJ3vjFfz/9zZ2vxRGx2uOwTXFj9a9knuOBNSj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9aaLES42nh3lNz2P8bHx7Ci/6Xm+sfz/7fzysk9w4XR9hGvAR7D8XwT+g0ipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR600n+nfCwcpp/9DxZ5B/YTvJjDIvV5X/ouyh5dbSco+QY8O9ESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm86HeEC3M3HB/HGZLGdn+PRXr7xw9Po+bP4BMNw785n8cZ7d9+KN05uP4s3ht18wpuUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqTeeb+aWx+zeuxBsHr+b/l8XKTrxxPr0WPb/5/cP4DG9/90m88crwIN6Y/bgVb4zBm5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUupNLz3Lb3q++ii/EXhtfyPeWP9thJuJf38SPT7GTc+/vP9VvPHOp2/EG8c3D+ON4Yt8wpuUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqTU9GuOl57/XteOP5y/k5rmxfjTfmt16Int/5Jr9h+bXdO/HG9eF+vLF5L/8QfQzepNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm+Um553ftqPN9YOtuKNy48P4o3hydPo8TFuev75w9144927b8YbB7eP441rX8cT3qT0Eyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVLvH8BucTVaKaKdAAAAAElFTkSuQmCC\" id=\"imagec57e13cdc2\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"20.5625\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_25\">\n", "    <g id=\"xtick_121\">\n", "     <g id=\"line2d_241\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"26.6105\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_253\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.42925 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_122\">\n", "     <g id=\"line2d_242\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"38.7065\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_254\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.52525 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_123\">\n", "     <g id=\"line2d_243\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"50.8025\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_255\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.62125 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_124\">\n", "     <g id=\"line2d_244\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"62.8985\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_256\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(59.71725 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_125\">\n", "     <g id=\"line2d_245\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"74.9945\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_257\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(71.81325 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_126\">\n", "     <g id=\"line2d_246\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"87.0905\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_258\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(83.90925 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_127\">\n", "     <g id=\"line2d_247\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"99.1865\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_259\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(96.00525 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_128\">\n", "     <g id=\"line2d_248\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"111.2825\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_260\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(108.10125 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_129\">\n", "     <g id=\"line2d_249\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"123.3785\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_261\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(120.19725 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_130\">\n", "     <g id=\"line2d_250\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"135.4745\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_262\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(132.29325 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_26\">\n", "    <g id=\"ytick_121\">\n", "     <g id=\"line2d_251\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_263\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_122\">\n", "     <g id=\"line2d_252\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_264\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_123\">\n", "     <g id=\"line2d_253\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_265\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_124\">\n", "     <g id=\"line2d_254\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_266\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_125\">\n", "     <g id=\"line2d_255\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_267\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_126\">\n", "     <g id=\"line2d_256\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_268\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_127\">\n", "     <g id=\"line2d_257\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_269\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_128\">\n", "     <g id=\"line2d_258\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_270\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_129\">\n", "     <g id=\"line2d_259\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_271\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_130\">\n", "     <g id=\"line2d_260\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"20.5625\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_272\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_63\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 20.5625 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_64\">\n", "    <path d=\"M 141.5225 687.598125 \n", "L 141.5225 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_65\">\n", "    <path d=\"M 20.5625 687.598125 \n", "L 141.5225 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_66\">\n", "    <path d=\"M 20.5625 566.638125 \n", "L 141.5225 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_273\">\n", "    <!-- Layer 4, Head 1 -->\n", "    <g transform=\"translate(33.360313 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_14\">\n", "   <g id=\"patch_67\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 316.200761 687.598125 \n", "L 316.200761 566.638125 \n", "L 195.240761 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p112e538a1b)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADwklEQVR4nO3cTW+UVRzG4fN0hk5TOpFI0C7AxohQXhI27EjcaUJc+EHY8QXYk9i9n8C10Y2uXLrSBYQE5CUoCZAQpYy003ZeWPoB/kN6Q65r3zsnk1+f1cnpLl7fmrei1eez6kQbPh6XN3Y/GpQ31n6+Vfr72c5O+Qz9UyfLG5O/n5Q3emdPlzemd++XN5bKC/CWiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiiZR4IiWeSInXf3X+oDxy7M+uvDFbrv+/rLzYr59jvFfeqJqPRod9hNZaa93B5LCP0FrzJeUdIFLiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiiZR4IiVef+3ekfLIwVr9pefBv/WN8Ynl8sbR5drvMRtPy2fohsPyRnu5XZ6YD+ptLIIvKfFESjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfFESjyREk+kxOv/t1l/Hfn4nfpLz9NBr7wxWMRLz/v1l6+r5tuvDvsIrbXWunH991wEX1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiiZR4IiWeSInXP7FefxG4v7OAl4kXoLdbv7A8n9Vfai6fYT/jsnGbHP5v0ZovKe8AkRJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMTr7v+1Pq+OXLv0dfkg21+dK28Mf/ijvDHf2ytvvC+WhvV7wrPRqH6O8gK8ZSIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LidZ98d7N86Xnjx/JEa7P6xJFR/RHd3m+3S38/n0zqZzj2QXlj+nIBjyN/ulHemDx6XN7wJSWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiiZR4IiWeSIknUuKJlHjdLw/Plm8sf3v5i/JBXnyzWd748Pvfyxteev5fyuVrX1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiiZR4IiWeSInXnbmxVb70fPzOtHyQwT/1F5Jny/X/uZVfb9XOMB6Xz9Bf/7i8MXn2vLzRO/NZeWN670F5w5eUeCIlnkiJJ1LiiZR4IiWeSIknUuKJlHgiJZ5IiSdS4omUeCIlnkiJJ1LiddOnp8uXnq9+fqV8kNdfXihvrP60gJeeJ/XL1++LpZWV8sYiLoH7khJPpMQTKfFESjyREk+kxBMp8URKPJEST6TEEynxREo8kRJPpMQTKfFESrw3hzmPayM68GQAAAAASUVORK5CYII=\" id=\"imagea9ad21eb1a\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"195.240761\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_27\">\n", "    <g id=\"xtick_131\">\n", "     <g id=\"line2d_261\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"201.288761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_274\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(198.107511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_132\">\n", "     <g id=\"line2d_262\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"213.384761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_275\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(210.203511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_133\">\n", "     <g id=\"line2d_263\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"225.480761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_276\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(222.299511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_134\">\n", "     <g id=\"line2d_264\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"237.576761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_277\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(234.395511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_135\">\n", "     <g id=\"line2d_265\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"249.672761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_278\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(246.491511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_136\">\n", "     <g id=\"line2d_266\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"261.768761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_279\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(258.587511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_137\">\n", "     <g id=\"line2d_267\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"273.864761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_280\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(270.683511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_138\">\n", "     <g id=\"line2d_268\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"285.960761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_281\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(282.779511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_139\">\n", "     <g id=\"line2d_269\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"298.056761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_282\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(294.875511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_140\">\n", "     <g id=\"line2d_270\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"310.152761\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_283\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(306.971511 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_28\">\n", "    <g id=\"ytick_131\">\n", "     <g id=\"line2d_271\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_284\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_132\">\n", "     <g id=\"line2d_272\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_285\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_133\">\n", "     <g id=\"line2d_273\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_286\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_134\">\n", "     <g id=\"line2d_274\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_287\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_135\">\n", "     <g id=\"line2d_275\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_288\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_136\">\n", "     <g id=\"line2d_276\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_289\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_137\">\n", "     <g id=\"line2d_277\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_290\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_138\">\n", "     <g id=\"line2d_278\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_291\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_139\">\n", "     <g id=\"line2d_279\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_292\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_140\">\n", "     <g id=\"line2d_280\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"195.240761\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_293\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_68\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 195.240761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_69\">\n", "    <path d=\"M 316.200761 687.598125 \n", "L 316.200761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_70\">\n", "    <path d=\"M 195.240761 687.598125 \n", "L 316.200761 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_71\">\n", "    <path d=\"M 195.240761 566.638125 \n", "L 316.200761 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_294\">\n", "    <!-- Layer 4, Head 2 -->\n", "    <g transform=\"translate(208.038573 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_15\">\n", "   <g id=\"patch_72\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 490.879022 687.598125 \n", "L 490.879022 566.638125 \n", "L 369.919022 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#peeff49aaaf)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKgAAACpCAYAAAC/F3YRAAADmElEQVR4nO3cPWvdZRjA4ZzkNNbEUqWDRXxBaYQ6lLgUR0FEHP0WDoJfwMUPp7gIrUMLjS8g2OJUbGobmpwT1w6Cw32kv+G69v/NDed3nunhWXx689vzraG/DvanI7YuH/09+v7p1ZfHO+z9fjyesb59dzxj5/rBeMbq7tFswEc3xjts/fDTeMT2fAv4/wiUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJW359PX5Rd/9+8/GM04v7Y6+3310Ot5hcbYez9iE85cuvOgVts535mfXYgN7OEFJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRK2vLC47PxkNNLy/GM3YezS89n+/MddnbnMzZh8Wz+m4ytxw9vb4QTlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQtT67MX/Pde3AynnG2N7ssvImL14vT1XjGJq75nhcuTm/ieeQNcIKSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUtOWjd3bGQy7/+HA84+Tw6uj7i/ePxzucLyP/1/X6RW+wtf2scXk78ovAvxMoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIWx3+8Pb6298WbN8eL7Fx7d/T96uffxjsslvOHY8/P5g/pbh9+MJ6xvnVntsPe3nyHJ0/GM5ygpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJW358Tdfj4dcubGBB2yvvjL6fvfV/fEO24+ejmes7v0yn7F3YTxjMd3hw/fnO3x3azzDCUqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSvLD8HC8sP7eDF5bhvwmUNIGSJlDSBEqaQEkTKGkCJU2gpAmUNIGSJlDSBEqaQEkTKGkCJW35+ZdfzYd8shrPWK2G96bfem28w+6fj8czVnfujWcUrA4PxjMW398ez3CCkiZQ0gRKmkBJEyhpAiVNoKQJlDSBkiZQ0gRKmkBJEyhpAiVNoKQJlLTF6sG18QvLn71xOF5k5+C90fero1/HO1ReWN65Pr8svLp7NPp+++LF8Q7rk5PxDCcoaQIlTaCkCZQ0gZImUNIESppASRMoaQIlTaCkCZQ0gZImUNIESppASfsHYmuC6Edzn8YAAAAASUVORK5CYII=\" id=\"image06573ebf9c\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"369.919022\" y=\"-565.918125\" width=\"120.96\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_29\">\n", "    <g id=\"xtick_141\">\n", "     <g id=\"line2d_281\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"375.967022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_295\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.785772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_142\">\n", "     <g id=\"line2d_282\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"388.063022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_296\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.881772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_143\">\n", "     <g id=\"line2d_283\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"400.159022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_297\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.977772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_144\">\n", "     <g id=\"line2d_284\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"412.255022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_298\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(409.073772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_145\">\n", "     <g id=\"line2d_285\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"424.351022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_299\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(421.169772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_146\">\n", "     <g id=\"line2d_286\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"436.447022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_300\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(433.265772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_147\">\n", "     <g id=\"line2d_287\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"448.543022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_301\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(445.361772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_148\">\n", "     <g id=\"line2d_288\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"460.639022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_302\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(457.457772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_149\">\n", "     <g id=\"line2d_289\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"472.735022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_303\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(469.553772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_150\">\n", "     <g id=\"line2d_290\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"484.831022\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_304\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(481.649772 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_30\">\n", "    <g id=\"ytick_141\">\n", "     <g id=\"line2d_291\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_305\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_142\">\n", "     <g id=\"line2d_292\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_306\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_143\">\n", "     <g id=\"line2d_293\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_307\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_144\">\n", "     <g id=\"line2d_294\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_308\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_145\">\n", "     <g id=\"line2d_295\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_309\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_146\">\n", "     <g id=\"line2d_296\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_310\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_147\">\n", "     <g id=\"line2d_297\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_311\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_148\">\n", "     <g id=\"line2d_298\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_312\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_149\">\n", "     <g id=\"line2d_299\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_313\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_150\">\n", "     <g id=\"line2d_300\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"369.919022\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_314\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_73\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 369.919022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_74\">\n", "    <path d=\"M 490.879022 687.598125 \n", "L 490.879022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_75\">\n", "    <path d=\"M 369.919022 687.598125 \n", "L 490.879022 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_76\">\n", "    <path d=\"M 369.919022 566.638125 \n", "L 490.879022 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_315\">\n", "    <!-- Layer 4, Head 3 -->\n", "    <g transform=\"translate(382.716834 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_16\">\n", "   <g id=\"patch_77\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 665.557283 687.598125 \n", "L 665.557283 566.638125 \n", "L 544.597283 566.638125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pacf0b5e120)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAKkAAACpCAYAAABQ1R0vAAADuklEQVR4nO3cPYtdZRSG4b1njsnkE/Fr4kRRUBCsLGwEW/UHiLWdhWUEWys7KwUbaxvBSrCyNo1/QDQoxPELbRJGwsw5e/sjnnfgQa+r34t14OZUi3d+7eUP1im0vX4xHTFN8RbTNO/yISdH2W+5/uV38Q57LzwXz1i+vxPPmF98Pp4x3bkbj9jLt4DzJVLqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqXeZsSQeZsfG6+bOV9kzfc4vZbtsS4DrreXJR6x7nbxjL1tvsey3eZ7xBPgnImUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipt5n2BnQ6IvUBt8IjPPRPtsi8v58vMecH4CP2WAe0MW/yu3r/pNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm8zDXjNdxowYhpwKzzC6dXwpecBLyyPeLF6yEvPA2YM2SOeAOdMpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESr3NPODAdsSR7rwdsMd+/kLy7iCf8Z+xjDi+zi/i/ZNST6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1NvPPx/GQC5cu5ZsMuEldDh+JZ3x+69Po+1sfvxLvMB3/kc8Y8RDv3V/zGWen8Qz/pNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJPpNQTKfVESj2RUm+zPvVkPOTs4YMBqwww4BHdtz57L/r+6enbeIfpiUfzGffuxSPmmzfyPX78KR7hn5R6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqWeSKknUupt5l9+i4dc+Cs/el53Sz7j6LF4xlfvfBJ9/+6Hr8Y7TH/+nc8YYD3+fcCQ/MVp/6TUEyn1REo9kVJPpNQTKfVESj2RUk+k1BMp9URKPZFST6TUEyn1REo9kVJvsz57Mx5ydu1iPGMd8ErzvMsPbN/86P3o+8P5drzDdOPxfMb9+/GI+Zm8jfkHLz3zPyBS6omUeiKlnkipJ1LqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKl3vz61bfjS+H58uV8k2WXzzjMX3r++psvou/fOHop3mHvypV4xnJyku9xkL/gvTx4kO8RT4BzJlLqiZR6IqWeSKknUuqJlHoipZ5IqSdS6omUeiKlnkipJ1LqiZR6IqXevy2lhXsqxCH2AAAAAElFTkSuQmCC\" id=\"image49fe10123b\" transform=\"scale(1 -1) translate(0 -121.68)\" x=\"544.597283\" y=\"-565.918125\" width=\"121.68\" height=\"121.68\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_31\">\n", "    <g id=\"xtick_151\">\n", "     <g id=\"line2d_301\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"550.645283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_316\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.464033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_152\">\n", "     <g id=\"line2d_302\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"562.741283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_317\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.560033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_153\">\n", "     <g id=\"line2d_303\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"574.837283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_318\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.656033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_154\">\n", "     <g id=\"line2d_304\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"586.933283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_319\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(583.752033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_155\">\n", "     <g id=\"line2d_305\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"599.029283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_320\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(595.848033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_156\">\n", "     <g id=\"line2d_306\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"611.125283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_321\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(607.944033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_157\">\n", "     <g id=\"line2d_307\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"623.221283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_322\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(620.040033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_158\">\n", "     <g id=\"line2d_308\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"635.317283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_323\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(632.136033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_159\">\n", "     <g id=\"line2d_309\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"647.413283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_324\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(644.232033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_160\">\n", "     <g id=\"line2d_310\">\n", "      <g>\n", "       <use xlink:href=\"#mb109f5b22e\" x=\"659.509283\" y=\"687.598125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_325\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(656.328033 702.196563) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_32\">\n", "    <g id=\"ytick_151\">\n", "     <g id=\"line2d_311\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"681.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_326\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 685.349344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_152\">\n", "     <g id=\"line2d_312\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"669.454125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_327\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 673.253344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_153\">\n", "     <g id=\"line2d_313\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"657.358125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_328\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 661.157344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_154\">\n", "     <g id=\"line2d_314\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"645.262125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_329\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 649.061344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_155\">\n", "     <g id=\"line2d_315\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"633.166125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_330\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 636.965344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_156\">\n", "     <g id=\"line2d_316\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"621.070125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_331\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 624.869344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_157\">\n", "     <g id=\"line2d_317\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"608.974125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_332\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 612.773344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_158\">\n", "     <g id=\"line2d_318\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"596.878125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_333\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 600.677344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_159\">\n", "     <g id=\"line2d_319\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"584.782125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_334\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 588.581344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_160\">\n", "     <g id=\"line2d_320\">\n", "      <g>\n", "       <use xlink:href=\"#mae0c4ca8ae\" x=\"544.597283\" y=\"572.686125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_335\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 576.485344) scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_78\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 544.597283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_79\">\n", "    <path d=\"M 665.557283 687.598125 \n", "L 665.557283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_80\">\n", "    <path d=\"M 544.597283 687.598125 \n", "L 665.557283 687.598125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_81\">\n", "    <path d=\"M 544.597283 566.638125 \n", "L 665.557283 566.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_336\">\n", "    <!-- Layer 4, Head 4 -->\n", "    <g transform=\"translate(557.395095 560.638125) scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p56496128f2\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p9a9bc19ce3\">\n", "   <rect x=\"195.240761\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pbe2b675792\">\n", "   <rect x=\"369.919022\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p6ad6402772\">\n", "   <rect x=\"544.597283\" y=\"22.318125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p568683dc47\">\n", "   <rect x=\"20.5625\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p4d3a84f6f9\">\n", "   <rect x=\"195.240761\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pdc6a497cec\">\n", "   <rect x=\"369.919022\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pba92a40bc9\">\n", "   <rect x=\"544.597283\" y=\"203.758125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pbf4063ed98\">\n", "   <rect x=\"20.5625\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p011dada4a4\">\n", "   <rect x=\"195.240761\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p2bb0691994\">\n", "   <rect x=\"369.919022\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p9959d07868\">\n", "   <rect x=\"544.597283\" y=\"385.198125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p97552b33f7\">\n", "   <rect x=\"20.5625\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p112e538a1b\">\n", "   <rect x=\"195.240761\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"peeff49aaaf\">\n", "   <rect x=\"369.919022\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pacf0b5e120\">\n", "   <rect x=\"544.597283\" y=\"566.638125\" width=\"120.96\" height=\"120.96\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 1200x1200 with 16 Axes>"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Probabilities:\n", "Image 0: 0.07%\n", "Image 1: 0.11%\n", "Image 2: 0.07%\n", "Image 3: 0.11%\n", "Image 4: 0.17%\n", "Image 5: 23.19%\n", "Image 6: 0.16%\n", "Image 7: 48.87%\n", "Image 8: 0.10%\n", "Image 9: 27.16%\n"]}], "source": ["visualize_prediction(mistakes[-1])\n", "print(\"Probabilities:\")\n", "for i, p in enumerate(preds[mistakes[-1]].cpu().numpy()):\n", "    print(\"Image %i: %4.2f%%\" % (i, 100.0 * p))"]}, {"cell_type": "markdown", "id": "eb2a282e", "metadata": {"papermill": {"duration": 0.050007, "end_time": "2023-03-14T15:52:33.019432", "exception": false, "start_time": "2023-03-14T15:52:32.969425", "status": "completed"}, "tags": []}, "source": ["In this example, the model confuses a palm tree with a building, giving a probability of ~90% to image 2, and 8% to the actual anomaly.\n", "However, the difficulty here is that the picture of the building has been taken at a similar angle as the palms.\n", "Meanwhile, image 2 shows a rather unusual palm with a different color palette, which is why the model fails here.\n", "Nevertheless, in general, the model performs quite well."]}, {"cell_type": "markdown", "id": "ee977bd4", "metadata": {"papermill": {"duration": 0.049786, "end_time": "2023-03-14T15:52:33.118763", "exception": false, "start_time": "2023-03-14T15:52:33.068977", "status": "completed"}, "tags": []}, "source": ["## Conclusion\n", "\n", "In this tutorial, we took a closer look at the Multi-Head Attention layer which uses a scaled dot product between\n", "queries and keys to find correlations and similarities between input elements.\n", "The Transformer architecture is based on the Multi-Head Attention layer and applies multiple of them in a ResNet-like block.\n", "The Transformer is a very important, recent architecture that can be applied to many tasks and datasets.\n", "Although it is best known for its success in NLP, there is so much more to it.\n", "We have seen its application on sequence-to-sequence tasks and set anomaly detection.\n", "Its property of being permutation-equivariant if we do not provide any positional encodings, allows it to generalize to many settings.\n", "Hence, it is important to know the architecture, but also its possible issues such as the gradient problem during\n", "the first iterations solved by learning rate warm-up.\n", "If you are interested in continuing with the study of the Transformer architecture,\n", "please have a look at the blog posts listed at the beginning of the tutorial notebook."]}, {"cell_type": "markdown", "id": "df8e996c", "metadata": {"papermill": {"duration": 0.04995, "end_time": "2023-03-14T15:52:33.217806", "exception": false, "start_time": "2023-03-14T15:52:33.167856", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/Lightning-AI/lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://www.pytorchlightning.ai/community)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/Lightning-AI/lightning) or [Bolt](https://github.com/Lightning-AI/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/Lightning-AI/lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/Lightning-AI/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", "   :header: Tutorial 5: Transformers and Multi-Head Attention\n", "   :card_description: In this tutorial, we will discuss one of the most impactful architectures of the last 2 years: the Transformer model. Since the paper Attention Is All You Need by Vaswani et...\n", "   :tags: Text,GPU/TPU,UvA-DL-Course\n", "   :image: _static/images/course_UvA-DL/05-transformers-and-MH-attention.jpg"]}], "metadata": {"jupytext": {"cell_metadata_filter": "colab_type,id,colab,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16"}, "papermill": {"default_parameters": {}, "duration": 95.471059, "end_time": "2023-03-14T15:52:36.115908", "environment_variables": {}, "exception": null, "input_path": "course_UvA-DL/05-transformers-and-MH-attention/Transformers_MHAttention.ipynb", "output_path": ".notebooks/course_UvA-DL/05-transformers-and-MH-attention.ipynb", "parameters": {}, "start_time": "2023-03-14T15:51:00.644849", "version": "2.4.0"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"002866599e56433e93a9101904093ec1": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "03b7c1e8363f49efb152ade00e42d88b": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0705b30a0a3e4ba088003e9a786ae4d0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8828c8a65a27400fbe7a5e20f64f0267", "placeholder": "\u200b", "style": "IPY_MODEL_57f430920df6406f8e4d1fce92be0bb9", "tabbable": null, "tooltip": null, "value": "Testing DataLoader 0: 100%"}}, "0c8945e1cb5e4fb3a02c17fd0e62ecc2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_85e48eb991634a3ea406fc8dfda54470", "placeholder": "\u200b", "style": "IPY_MODEL_4abce5ec958c40919afaee7e617dfa29", "tabbable": null, "tooltip": null, "value": "100%"}}, "0ca54e5559544cd295fc3dbfc6114950": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27a0aec2bec8421688830d30c222ebb0", "placeholder": "\u200b", "style": "IPY_MODEL_f1fd43977328429889b4c22ca62aa7e2", "tabbable": null, "tooltip": null, "value": "Testing DataLoader 0: 100%"}}, "0cdd482a1e504cc0896b51b0fb598ff0": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ceb53d72cd14229973592f5588279b5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4cfbd24387c34f20b95bd9ed4d878c35", "placeholder": "\u200b", "style": "IPY_MODEL_75be55627e2246909b91c56b6c361a63", "tabbable": null, "tooltip": null, "value": " 79/79 [00:05&lt;00:00, 18.45it/s]"}}, "0d63a96992bc4eb5be436fa910050b42": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1104fe6c323f454da93b22083101d69e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ead255fa3b2f4bc68d807ef02cc693de", "IPY_MODEL_761f749519204627a6c596ecbfce79fc", "IPY_MODEL_acfccff0243a412ab7eb55836deade98"], "layout": "IPY_MODEL_51d9d8255d6840d195c5c0f7d7c84c08", "tabbable": null, "tooltip": null}}, "11c26f833dd14e5dbdc6d50dcb6ad826": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_24f35f5c648842a48d19558dcfc16691", "IPY_MODEL_b7186f79733c4d2786977281cbfcf575", "IPY_MODEL_8ce4e6a1bde44f9eabf26928c3002976"], "layout": "IPY_MODEL_7ce1a7335ec7451b8e01fc4ede5ca7ca", "tabbable": null, "tooltip": null}}, "11f150b9260840d9bb028b52089e0096": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b506089b21124f15bcea2e2e80cd4d45", "max": 157.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f9d607402e7e4c49bca85603357e1fa3", "tabbable": null, "tooltip": null, "value": 157.0}}, "13a9850787b9482e9223f7fc98899d91": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03b7c1e8363f49efb152ade00e42d88b", "max": 169001437.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_538a72fe8ca34a548d8976d45dad3006", "tabbable": null, "tooltip": null, "value": 169001437.0}}, "1c60af01015a45fc8595b70d00bce254": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d38254a9dbe4537b99355ade5cf55bf": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20f844156e32427fa854b4884c3f0618": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4d3e327638744fd88e6c8794664927a", "max": 79.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_be81106cc3ac4b65ae5669a53975d69c", "tabbable": null, "tooltip": null, "value": 79.0}}, "2482699ce4c5493f90e5469f3466e1ad": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7257710fd99e48a4b86847725f0407a7", "IPY_MODEL_ba0a722923ed4841a7f55fd0898461b0", "IPY_MODEL_45c40ea1527b400f9ac87bf0a88f2c22"], "layout": "IPY_MODEL_9d4323c8e09b47078c229bdfd985c8fb", "tabbable": null, "tooltip": null}}, "24f35f5c648842a48d19558dcfc16691": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bb9f86b8f1f4ad591b08dcca0c5f409", "placeholder": "\u200b", "style": "IPY_MODEL_30d8865b744b41f08d12be7a0af3f925", "tabbable": null, "tooltip": null, "value": "Testing DataLoader 0: 100%"}}, "27a0aec2bec8421688830d30c222ebb0": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d1fffb5ff504942a7ffce3a74df7960": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0ca54e5559544cd295fc3dbfc6114950", "IPY_MODEL_20f844156e32427fa854b4884c3f0618", "IPY_MODEL_58ff1e59b0884e56a3aa7829b7b773c8"], "layout": "IPY_MODEL_35bc44e291594d219a29f6f1267d7dcc", "tabbable": null, "tooltip": null}}, "30d8865b744b41f08d12be7a0af3f925": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "34dcc455ae1546df943f1bae4b8035b7": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35bc44e291594d219a29f6f1267d7dcc": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "3feb9491f6a54ac3977f14873b98637a": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "45c40ea1527b400f9ac87bf0a88f2c22": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b78841b12cc4fa6a71382ceb2898552", "placeholder": "\u200b", "style": "IPY_MODEL_816e6cef78114e898c94a8c60d5409ea", "tabbable": null, "tooltip": null, "value": " 391/391 [00:23&lt;00:00, 18.25it/s]"}}, "481d2df862b6484b81dc870eb9f54039": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4962b3091e574a4dad4e73eed716ef68": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "49bbb3e14d9746979770f9e01f371488": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5978a25e78e94713a682a995111d5c42", "max": 703.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_afce56a4086244b0a405c7bc1906c80f", "tabbable": null, "tooltip": null, "value": 703.0}}, "4abce5ec958c40919afaee7e617dfa29": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4bc59debc9d94249a1a4d61898187daa": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cfbd24387c34f20b95bd9ed4d878c35": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e4cf5bee7694768ba2d72810efacc96": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d38254a9dbe4537b99355ade5cf55bf", "placeholder": "\u200b", "style": "IPY_MODEL_4962b3091e574a4dad4e73eed716ef68", "tabbable": null, "tooltip": null, "value": " 157/157 [00:00&lt;00:00, 201.15it/s]"}}, "51d9d8255d6840d195c5c0f7d7c84c08": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "538a72fe8ca34a548d8976d45dad3006": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "57b126d77c044556a8d975e1fa04e884": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "57f430920df6406f8e4d1fce92be0bb9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "58ff1e59b0884e56a3aa7829b7b773c8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d9132d4c8774c059d3714b9f06d0f51", "placeholder": "\u200b", "style": "IPY_MODEL_e3ad1cb968ad4e14b2c121e379e1a4bc", "tabbable": null, "tooltip": null, "value": " 79/79 [00:00&lt;00:00, 193.55it/s]"}}, "5978a25e78e94713a682a995111d5c42": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cba48cfd6ae4d3e94ba7d1ecbef6e96": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6603b0fd37a54096a478f7c71ff83ded": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "678183b68ba4454684e47fe98f47e3f4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b6ff92e42344e3dbe34bc16479a115b": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6dcdf6c65d274cd89263f10954e939df": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f1696c1f17643c7a5414eb4f1f10d40": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7257710fd99e48a4b86847725f0407a7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96241341e95a45738556da214a5f61e6", "placeholder": "\u200b", "style": "IPY_MODEL_9c7e34dc4f1b4b72b8bd048cbe70a659", "tabbable": null, "tooltip": null, "value": "100%"}}, "75be55627e2246909b91c56b6c361a63": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "761f749519204627a6c596ecbfce79fc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3feb9491f6a54ac3977f14873b98637a", "max": 87319819.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1c60af01015a45fc8595b70d00bce254", "tabbable": null, "tooltip": null, "value": 87319819.0}}, "7c90c07100574b238366ecc51e5e1fac": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7ce1a7335ec7451b8e01fc4ede5ca7ca": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "7e1eb7dadc8f4f118316b8078c1eb135": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83d391adc72c4981a4b2f8742643a8ec", "placeholder": "\u200b", "style": "IPY_MODEL_baf7465a946d4a49b85662b3b7fdbe32", "tabbable": null, "tooltip": null, "value": "Testing DataLoader 0: 100%"}}, "816e6cef78114e898c94a8c60d5409ea": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83d391adc72c4981a4b2f8742643a8ec": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85e48eb991634a3ea406fc8dfda54470": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8828c8a65a27400fbe7a5e20f64f0267": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b78841b12cc4fa6a71382ceb2898552": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ce4e6a1bde44f9eabf26928c3002976": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ea093fe25504e52b7ad692cb32169af", "placeholder": "\u200b", "style": "IPY_MODEL_e0644ff9bdf440dcb5c567d616dfb7bd", "tabbable": null, "tooltip": null, "value": " 79/79 [00:00&lt;00:00, 319.25it/s]"}}, "8cf0e083fd75470faa68e37c7f64775e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8ea093fe25504e52b7ad692cb32169af": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96241341e95a45738556da214a5f61e6": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99a2429c9e0c411bb4902de635711918": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a89d2bb4add74e958d99173922b706f3", "max": 8.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6f1696c1f17643c7a5414eb4f1f10d40", "tabbable": null, "tooltip": null, "value": 8.0}}, "9ba36a3fb2c74d1081690d6374fed478": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bb9f86b8f1f4ad591b08dcca0c5f409": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c7e34dc4f1b4b72b8bd048cbe70a659": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9cf58405e8a640cd9cc1002e3a1cad04": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d4323c8e09b47078c229bdfd985c8fb": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d9132d4c8774c059d3714b9f06d0f51": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0a3886d69004098b309b801c2529ad7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0c8945e1cb5e4fb3a02c17fd0e62ecc2", "IPY_MODEL_13a9850787b9482e9223f7fc98899d91", "IPY_MODEL_ef29fec4ac1842c0b3660c5f27f0847e"], "layout": "IPY_MODEL_34dcc455ae1546df943f1bae4b8035b7", "tabbable": null, "tooltip": null}}, "a585fa1558f14cb88dcdc21c1b95801f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a82d0ed52bce47259ed212db50948b9e": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a89d2bb4add74e958d99173922b706f3": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abd99d85e18b4571b9ed46fafaba7dbc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d63a96992bc4eb5be436fa910050b42", "placeholder": "\u200b", "style": "IPY_MODEL_8cf0e083fd75470faa68e37c7f64775e", "tabbable": null, "tooltip": null, "value": "100%"}}, "acfccff0243a412ab7eb55836deade98": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5cba48cfd6ae4d3e94ba7d1ecbef6e96", "placeholder": "\u200b", "style": "IPY_MODEL_a585fa1558f14cb88dcdc21c1b95801f", "tabbable": null, "tooltip": null, "value": " 83.3M/83.3M [00:01&lt;00:00, 45.0MB/s]"}}, "aea6a3202a02430095349e455ba303f9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a82d0ed52bce47259ed212db50948b9e", "max": 79.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7c90c07100574b238366ecc51e5e1fac", "tabbable": null, "tooltip": null, "value": 79.0}}, "afce56a4086244b0a405c7bc1906c80f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b28b350c950a47bf8f0405347d90cf8a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c67ec6508f5c49cab3e8d8d23de48922", "IPY_MODEL_99a2429c9e0c411bb4902de635711918", "IPY_MODEL_fbd31356b2df4124877384e5f6fde95c"], "layout": "IPY_MODEL_002866599e56433e93a9101904093ec1", "tabbable": null, "tooltip": null}}, "b506089b21124f15bcea2e2e80cd4d45": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b7186f79733c4d2786977281cbfcf575": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4bc59debc9d94249a1a4d61898187daa", "max": 79.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fdf1300f3c6745b89c1028a6fffa2774", "tabbable": null, "tooltip": null, "value": 79.0}}, "ba0a722923ed4841a7f55fd0898461b0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ba36a3fb2c74d1081690d6374fed478", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57b126d77c044556a8d975e1fa04e884", "tabbable": null, "tooltip": null, "value": 391.0}}, "baf7465a946d4a49b85662b3b7fdbe32": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "be81106cc3ac4b65ae5669a53975d69c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be934155883248859bba41f43c5b1d37": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c2e80955803c4435b2a947121e427f69": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_abd99d85e18b4571b9ed46fafaba7dbc", "IPY_MODEL_aea6a3202a02430095349e455ba303f9", "IPY_MODEL_0ceb53d72cd14229973592f5588279b5"], "layout": "IPY_MODEL_e7680a1c33e04ff2a31d7fd7987b2da7", "tabbable": null, "tooltip": null}}, "c67ec6508f5c49cab3e8d8d23de48922": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d01ffee810e8420fa755f1c50fc3972d", "placeholder": "\u200b", "style": "IPY_MODEL_9cf58405e8a640cd9cc1002e3a1cad04", "tabbable": null, "tooltip": null, "value": "Testing DataLoader 0: 100%"}}, "ce5047182c7d4a8384c808ab082bc971": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0705b30a0a3e4ba088003e9a786ae4d0", "IPY_MODEL_49bbb3e14d9746979770f9e01f371488", "IPY_MODEL_dd42589ceb5f4a0c99dda31333d4177b"], "layout": "IPY_MODEL_e28aa783c4f94081b1842fceb1caa042", "tabbable": null, "tooltip": null}}, "d01ffee810e8420fa755f1c50fc3972d": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9d68f961f694c259f922f2ff85ced95": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7e1eb7dadc8f4f118316b8078c1eb135", "IPY_MODEL_11f150b9260840d9bb028b52089e0096", "IPY_MODEL_4e4cf5bee7694768ba2d72810efacc96"], "layout": "IPY_MODEL_e4617bd711b04c908593d23dbb6780b5", "tabbable": null, "tooltip": null}}, "dd42589ceb5f4a0c99dda31333d4177b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6603b0fd37a54096a478f7c71ff83ded", "placeholder": "\u200b", "style": "IPY_MODEL_be934155883248859bba41f43c5b1d37", "tabbable": null, "tooltip": null, "value": " 703/703 [00:03&lt;00:00, 204.39it/s]"}}, "ddcfbfec555d455f984f154e4eabbb8a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0644ff9bdf440dcb5c567d616dfb7bd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e28aa783c4f94081b1842fceb1caa042": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "e3ad1cb968ad4e14b2c121e379e1a4bc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e4617bd711b04c908593d23dbb6780b5": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "e4d3e327638744fd88e6c8794664927a": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7680a1c33e04ff2a31d7fd7987b2da7": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ead255fa3b2f4bc68d807ef02cc693de": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cdd482a1e504cc0896b51b0fb598ff0", "placeholder": "\u200b", "style": "IPY_MODEL_481d2df862b6484b81dc870eb9f54039", "tabbable": null, "tooltip": null, "value": "100%"}}, "ef29fec4ac1842c0b3660c5f27f0847e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dcdf6c65d274cd89263f10954e939df", "placeholder": "\u200b", "style": "IPY_MODEL_678183b68ba4454684e47fe98f47e3f4", "tabbable": null, "tooltip": null, "value": " 169001437/169001437 [00:21&lt;00:00, 3399804.10it/s]"}}, "f1fd43977328429889b4c22ca62aa7e2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9d607402e7e4c49bca85603357e1fa3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbd31356b2df4124877384e5f6fde95c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b6ff92e42344e3dbe34bc16479a115b", "placeholder": "\u200b", "style": "IPY_MODEL_ddcfbfec555d455f984f154e4eabbb8a", "tabbable": null, "tooltip": null, "value": " 8/8 [00:00&lt;00:00,  9.54it/s]"}}, "fdf1300f3c6745b89c1028a6fffa2774": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}