LightningModule¶
- class lightning.pytorch.core.LightningModule(*args, **kwargs)[source]¶
Bases:
_DeviceDtypeModuleMixin
,HyperparametersMixin
,ModelHooks
,DataHooks
,CheckpointHooks
,Module
- all_gather(data, group=None, sync_grads=False)[source]¶
Gather tensors or collections of tensors from multiple processes.
This method needs to be called on all processes. Failing to do so will cause your program to stall forever.
- Parameters
data¶ (
Union
[Tensor
,Dict
,List
,Tuple
]) – int, float, tensor of shape (batch, …), or a (possibly nested) collection thereof.group¶ (
Optional
[Any
]) – the process group to gather results from. Defaults to all processes (world)sync_grads¶ (
bool
) – flag that allows users to synchronize gradients for the all_gather operation
- Return type
- Returns
A tensor of shape (world_size, batch, …), or if the input was a collection the output will also be a collection with tensors of this shape.
- backward(loss, *args, **kwargs)[source]¶
Called to perform backward on the loss returned in
training_step()
. Override this hook with your own implementation if you need to.- Parameters
loss¶ (
Tensor
) – The loss tensor returned bytraining_step()
. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).
Example:
def backward(self, loss): loss.backward()
- Return type
- clip_gradients(optimizer, gradient_clip_val=None, gradient_clip_algorithm=None)[source]¶
Handles gradient clipping internally.
Note
Do not override this method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.For manual optimization (
self.automatic_optimization = False
), if you want to use gradient clipping, consider callingself.clip_gradients(opt, gradient_clip_val=0.5, gradient_clip_algorithm="norm")
manually in the training step.
- configure_callbacks()[source]¶
Configure model-specific callbacks. When the model gets attached, e.g., when
.fit()
or.test()
gets called, the list or a callback returned here will be merged with the list of callbacks passed to the Trainer’scallbacks
argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer’s callbacks list, it will take priority and replace them. In addition, Lightning will make sureModelCheckpoint
callbacks run last.- Return type
- Returns
A callback or a list of callbacks which will extend the list of callbacks in the Trainer.
Example:
def configure_callbacks(self): early_stop = EarlyStopping(monitor="val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint]
- configure_gradient_clipping(optimizer, gradient_clip_val=None, gradient_clip_algorithm=None)[source]¶
Perform gradient clipping for the optimizer parameters. Called before
optimizer_step()
.- Parameters
Example:
def configure_gradient_clipping(self, optimizer, gradient_clip_val, gradient_clip_algorithm): # Implement your own custom logic to clip gradients # You can call `self.clip_gradients` with your settings: self.clip_gradients( optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm )
- Return type
- configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Return type
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated" # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.
- forward(*args, **kwargs)[source]¶
Same as
torch.nn.Module.forward()
.
- freeze()[source]¶
Freeze all params for inference.
Example:
model = MyLightningModule(...) model.freeze()
- Return type
- classmethod load_from_checkpoint(checkpoint_path, map_location=None, hparams_file=None, strict=True, **kwargs)[source]¶
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"hyper_parameters"
.- Parameters
checkpoint_path¶ (
Union
[str
,Path
,IO
]) – Path to checkpoint. This can also be a URL, or file-like objectmap_location¶ (
Union
[device
,str
,int
,Callable
[[Union
[device
,str
,int
]],Union
[device
,str
,int
]],Dict
[Union
[device
,str
,int
],Union
[device
,str
,int
]],None
]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.hparams_file¶ (
Union
[str
,Path
,None
]) –Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:drop_prob: 0.2 dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningModule
for use.If your model’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your model to treathparams
asdict
.strict¶ (
bool
) – Whether to strictly enforce that the keys incheckpoint_path
match the keys returned by this module’s state dict.**kwargs¶ – Any extra keyword args needed to init the model. Can also be used to override saved hyperparameter values.
- Return type
Self
- Returns
LightningModule
instance with loaded weights and hyperparameters (if available).
Note
load_from_checkpoint
is a class method. You should use yourLightningModule
class to call it instead of theLightningModule
instance.Example:
# load weights without mapping ... model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values model = MyLightningModule.load_from_checkpoint( PATH, num_layers=128, pretrained_ckpt_path=NEW_PATH, ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
- log(name, value, prog_bar=False, logger=None, on_step=None, on_epoch=None, reduce_fx='mean', enable_graph=False, sync_dist=False, sync_dist_group=None, add_dataloader_idx=True, batch_size=None, metric_attribute=None, rank_zero_only=False)[source]¶
Log a key, value pair.
Example:
self.log('train_loss', loss)
The default behavior per hook is documented here: Automatic Logging.
- Parameters
value¶ (
Union
[Metric
,Tensor
,int
,float
]) – value to log. Can be afloat
,Tensor
, or aMetric
.on_step¶ (
Optional
[bool
]) – ifTrue
logs at this step. The default value is determined by the hook. See Automatic Logging for details.on_epoch¶ (
Optional
[bool
]) – ifTrue
logs epoch accumulated metrics. The default value is determined by the hook. See Automatic Logging for details.reduce_fx¶ (
Union
[str
,Callable
]) – reduction function over step values for end of epoch.torch.mean()
by default.enable_graph¶ (
bool
) – ifTrue
, will not auto detach the graph.sync_dist¶ (
bool
) – ifTrue
, reduces the metric across devices. Use with care as this may lead to a significant communication overhead.sync_dist_group¶ (
Optional
[Any
]) – the DDP group to sync across.add_dataloader_idx¶ (
bool
) – ifTrue
, appends the index of the current dataloader to the name (when using multiple dataloaders). If False, user needs to give unique names for each dataloader to not mix the values.batch_size¶ (
Optional
[int
]) – Current batch_size. This will be directly inferred from the loaded batch, but for some data structures you might need to explicitly provide it.metric_attribute¶ (
Optional
[str
]) – To restore the metric state, Lightning requires the reference of thetorchmetrics.Metric
in your model. This is found automatically if it is a model attribute.rank_zero_only¶ (
bool
) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
- log_dict(dictionary, prog_bar=False, logger=None, on_step=None, on_epoch=None, reduce_fx='mean', enable_graph=False, sync_dist=False, sync_dist_group=None, add_dataloader_idx=True, batch_size=None, rank_zero_only=False)[source]¶
Log a dictionary of values at once.
Example:
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values)
- Parameters
dictionary¶ (
Mapping
[str
,Union
[Metric
,Tensor
,int
,float
]]) – key value pairs. The values can be afloat
,Tensor
,Metric
, orMetricCollection
.on_step¶ (
Optional
[bool
]) – ifTrue
logs at this step.None
auto-logs for training_step but not validation/test_step. The default value is determined by the hook. See Automatic Logging for details.on_epoch¶ (
Optional
[bool
]) – ifTrue
logs epoch accumulated metrics.None
auto-logs for val/test step but nottraining_step
. The default value is determined by the hook. See Automatic Logging for details.reduce_fx¶ (
Union
[str
,Callable
]) – reduction function over step values for end of epoch.torch.mean()
by default.enable_graph¶ (
bool
) – ifTrue
, will not auto-detach the graphsync_dist¶ (
bool
) – ifTrue
, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.sync_dist_group¶ (
Optional
[Any
]) – the ddp group to sync across.add_dataloader_idx¶ (
bool
) – ifTrue
, appends the index of the current dataloader to the name (when using multiple). IfFalse
, user needs to give unique names for each dataloader to not mix values.batch_size¶ (
Optional
[int
]) – Current batch size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.rank_zero_only¶ (
bool
) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
- lr_scheduler_step(scheduler, metric)[source]¶
Override this method to adjust the default way the
Trainer
calls each scheduler. By default, Lightning callsstep()
and as shown in the example for each scheduler based on itsinterval
.- Parameters
Examples:
# DEFAULT def lr_scheduler_step(self, scheduler, metric): if metric is None: scheduler.step() else: scheduler.step(metric) # Alternative way to update schedulers if it requires an epoch value def lr_scheduler_step(self, scheduler, metric): scheduler.step(epoch=self.current_epoch)
- Return type
- lr_schedulers()[source]¶
Returns the learning rate scheduler(s) that are being used during training. Useful for manual optimization.
- Return type
Union
[None
,List
[Union
[LRScheduler
,ReduceLROnPlateau
]],LRScheduler
,ReduceLROnPlateau
]- Returns
A single scheduler, or a list of schedulers in case multiple ones are present, or
None
if no schedulers were returned inconfigure_optimizers()
.
- manual_backward(loss, *args, **kwargs)[source]¶
Call this directly from your
training_step()
when doing optimizations manually. By using this, Lightning can ensure that all the proper scaling gets applied when using mixed precision.See manual optimization for more examples.
Example:
def training_step(...): opt = self.optimizers() loss = ... opt.zero_grad() # automatically applies scaling, etc... self.manual_backward(loss) opt.step()
- Parameters
loss¶ (
Tensor
) – The tensor on which to compute gradients. Must have a graph attached.*args¶ – Additional positional arguments to be forwarded to
backward()
**kwargs¶ – Additional keyword arguments to be forwarded to
backward()
- Return type
- optimizer_step(epoch, batch_idx, optimizer, optimizer_closure=None)[source]¶
Override this method to adjust the default way the
Trainer
calls the optimizer.By default, Lightning calls
step()
andzero_grad()
as shown in the example. This method (andzero_grad()
) won’t be called during the accumulation phase whenTrainer(accumulate_grad_batches != 1)
. Overriding this hook has no benefit with manual optimization.- Parameters
Examples:
# DEFAULT def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_closure): optimizer.step(closure=optimizer_closure) # Learning rate warm-up def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_closure): # update params optimizer.step(closure=optimizer_closure) # manually warm up lr without a scheduler if self.trainer.global_step < 500: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.learning_rate
- Return type
- optimizer_zero_grad(epoch, batch_idx, optimizer)[source]¶
Override this method to change the default behaviour of
optimizer.zero_grad()
.- Parameters
Examples:
# DEFAULT def optimizer_zero_grad(self, epoch, batch_idx, optimizer): optimizer.zero_grad() # Set gradients to `None` instead of zero to improve performance (not required on `torch>=2.0.0`). def optimizer_zero_grad(self, epoch, batch_idx, optimizer): optimizer.zero_grad(set_to_none=True)
See
torch.optim.Optimizer.zero_grad()
for the explanation of the above example.- Return type
- optimizers(use_pl_optimizer: Literal[True] = True) Union[LightningOptimizer, List[LightningOptimizer]] [source]¶
- optimizers(use_pl_optimizer: Literal[False]) Union[Optimizer, List[Optimizer]]
- optimizers(use_pl_optimizer: bool) Union[Optimizer, LightningOptimizer, _FabricOptimizer, List[Optimizer], List[LightningOptimizer], List[_FabricOptimizer]]
Returns the optimizer(s) that are being used during training. Useful for manual optimization.
- Parameters
use_pl_optimizer¶ (
bool
) – IfTrue
, will wrap the optimizer(s) in aLightningOptimizer
for automatic handling of precision and profiling.- Return type
Union
[Optimizer
,LightningOptimizer
,_FabricOptimizer
,List
[Optimizer
],List
[LightningOptimizer
],List
[_FabricOptimizer
]]- Returns
A single optimizer, or a list of optimizers in case multiple ones are present.
- predict_step(batch, batch_idx, dataloader_idx=0)[source]¶
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- print(*args, **kwargs)[source]¶
Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
Example:
def forward(self, x): self.print(x, 'in forward')
- Return type
- test_step(*args, **kwargs)[source]¶
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters
batch¶ – The output of your
DataLoader
.batch_idx¶ – The index of this batch.
dataloader_id¶ – The index of the dataloader that produced this batch. (only if multiple test dataloaders used).
- Return type
- Returns
Any of.
Any object or value
None
- Testing will skip to the next batch
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- to_onnx(file_path, input_sample=None, **kwargs)[source]¶
Saves the model in ONNX format.
- Parameters
Example:
class SimpleModel(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(in_features=64, out_features=4) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1) model = SimpleModel() input_sample = torch.randn(1, 64) model.to_onnx("export.onnx", input_sample, export_params=True)
- Return type
- to_torchscript(file_path=None, method='script', example_inputs=None, **kwargs)[source]¶
By default compiles the whole model to a
ScriptModule
. If you want to use tracing, please provided the argumentmethod='trace'
and make sure that either the example_inputs argument is provided, or the model hasexample_input_array
set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary.- Parameters
file_path¶ (
Union
[str
,Path
,None
]) – Path where to save the torchscript. Default: None (no file saved).method¶ (
Optional
[str
]) – Whether to use TorchScript’s script or trace method. Default: ‘script’example_inputs¶ (
Optional
[Any
]) – An input to be used to do tracing when method is set to ‘trace’. Default: None (usesexample_input_array
)**kwargs¶ – Additional arguments that will be passed to the
torch.jit.script()
ortorch.jit.trace()
function.
Note
Requires the implementation of the
forward()
method.The exported script will be set to evaluation mode.
It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the
torch.jit
documentation for supported features.
Example:
class SimpleModel(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(in_features=64, out_features=4) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) model = SimpleModel() model.to_torchscript(file_path="model.pt") torch.jit.save(model.to_torchscript( file_path="model_trace.pt", method='trace', example_inputs=torch.randn(1, 64)) )
- toggle_optimizer(optimizer)[source]¶
Makes sure only the gradients of the current optimizer’s parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.
It works with
untoggle_optimizer()
to make sureparam_requires_grad_state
is properly reset.- Parameters
optimizer¶ (
Union
[Optimizer
,LightningOptimizer
]) – The optimizer to toggle.- Return type
- training_step(*args, **kwargs)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
- Return type
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:
def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step()
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- unfreeze()[source]¶
Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
- untoggle_optimizer(optimizer)[source]¶
Resets the state of required gradients that were toggled with
toggle_optimizer()
.- Parameters
optimizer¶ (
Union
[Optimizer
,LightningOptimizer
]) – The optimizer to untoggle.- Return type
- validation_step(*args, **kwargs)[source]¶
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Parameters
batch¶ – The output of your
DataLoader
.batch_idx¶ – The index of this batch.
dataloader_idx¶ – The index of the dataloader that produced this batch. (only if multiple val dataloaders used)
- Return type
- Returns
Any object or value
None
- Validation will skip to the next batch
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- property automatic_optimization: bool¶
If set to
False
you are responsible for calling.backward()
,.step()
,.zero_grad()
.- Return type
- property example_input_array: Optional[Union[Tensor, Tuple, Dict]]¶
The example input array is a specification of what the module can consume in the
forward()
method. The return type is interpreted as follows:Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array)
Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array)
Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
- property global_rank: int¶
The index of the current process across all nodes and devices.
- Return type
- property global_step: int¶
Total training batches seen across all epochs.
If no Trainer is attached, this propery is 0.
- Return type