Source code for lightning.pytorch.loggers.mlflow
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MLflow Logger
-------------
"""
import logging
import os
import re
import tempfile
from argparse import Namespace
from pathlib import Path
from time import time
from typing import Any, Dict, List, Literal, Mapping, Optional, Union
import yaml
from lightning_utilities.core.imports import module_available, RequirementCache
from torch import Tensor
from lightning.fabric.utilities.logger import _add_prefix, _convert_params, _flatten_dict
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.loggers.utilities import _scan_checkpoints
from lightning.pytorch.utilities.rank_zero import rank_zero_only, rank_zero_warn
log = logging.getLogger(__name__)
LOCAL_FILE_URI_PREFIX = "file:"
_MLFLOW_AVAILABLE = RequirementCache("mlflow>=1.0.0") or module_available("mlflow")
if _MLFLOW_AVAILABLE:
from mlflow.entities import Metric, Param
from mlflow.tracking import context, MlflowClient
from mlflow.utils.mlflow_tags import MLFLOW_RUN_NAME
else:
MlflowClient, context = None, None
Metric, Param = None, None
MLFLOW_RUN_NAME = "mlflow.runName"
# before v1.1.0
if hasattr(context, "resolve_tags"):
from mlflow.tracking.context import resolve_tags
# since v1.1.0
elif hasattr(context, "registry"):
from mlflow.tracking.context.registry import resolve_tags
else:
[docs] def resolve_tags(tags: Optional[Dict] = None) -> Optional[Dict]:
"""
Args:
tags: A dictionary of tags to override. If specified, tags passed in this argument will
override those inferred from the context.
Returns: A dictionary of resolved tags.
Note:
See ``mlflow.tracking.context.registry`` for more details.
"""
return tags
[docs]class MLFlowLogger(Logger):
"""Log using `MLflow <https://mlflow.org>`_.
Install it with pip:
.. code-block:: bash
pip install mlflow # or mlflow-skinny
.. code-block:: python
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
Use the logger anywhere in your :class:`~lightning.pytorch.core.module.LightningModule` as follows:
.. code-block:: python
from lightning.pytorch import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_ml_flow_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.whatever_ml_flow_supports(...)
Args:
experiment_name: The name of the experiment.
run_name: Name of the new run. The `run_name` is internally stored as a ``mlflow.runName`` tag.
If the ``mlflow.runName`` tag has already been set in `tags`, the value is overridden by the `run_name`.
tracking_uri: Address of local or remote tracking server.
If not provided, defaults to `MLFLOW_TRACKING_URI` environment variable if set, otherwise it falls
back to `file:<save_dir>`.
tags: A dictionary tags for the experiment.
save_dir: A path to a local directory where the MLflow runs get saved.
Defaults to `./mlflow` if `tracking_uri` is not provided.
Has no effect if `tracking_uri` is provided.
log_model: Log checkpoints created by :class:`~lightning.pytorch.callbacks.model_checkpoint.ModelCheckpoint`
as MLFlow artifacts.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~lightning.pytorch.callbacks.Checkpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate
default.
run_id: The run identifier of the experiment. If not provided, a new run is started.
Raises:
ModuleNotFoundError:
If required MLFlow package is not installed on the device.
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
experiment_name: str = "lightning_logs",
run_name: Optional[str] = None,
tracking_uri: Optional[str] = os.getenv("MLFLOW_TRACKING_URI"),
tags: Optional[Dict[str, Any]] = None,
save_dir: Optional[str] = "./mlruns",
log_model: Literal[True, False, "all"] = False,
prefix: str = "",
artifact_location: Optional[str] = None,
run_id: Optional[str] = None,
):
if not _MLFLOW_AVAILABLE:
raise ModuleNotFoundError(str(_MLFLOW_AVAILABLE))
super().__init__()
if not tracking_uri:
tracking_uri = f"{LOCAL_FILE_URI_PREFIX}{save_dir}"
self._experiment_name = experiment_name
self._experiment_id: Optional[str] = None
self._tracking_uri = tracking_uri
self._run_name = run_name
self._run_id = run_id
self.tags = tags
self._log_model = log_model
self._logged_model_time: Dict[str, float] = {}
self._checkpoint_callback: Optional[ModelCheckpoint] = None
self._prefix = prefix
self._artifact_location = artifact_location
self._initialized = False
self._mlflow_client = MlflowClient(tracking_uri)
@property
@rank_zero_experiment
def experiment(self) -> MlflowClient:
r"""
Actual MLflow object. To use MLflow features in your
:class:`~lightning.pytorch.core.module.LightningModule` do the following.
Example::
self.logger.experiment.some_mlflow_function()
"""
if self._initialized:
return self._mlflow_client
if self._run_id is not None:
run = self._mlflow_client.get_run(self._run_id)
self._experiment_id = run.info.experiment_id
self._initialized = True
return self._mlflow_client
if self._experiment_id is None:
expt = self._mlflow_client.get_experiment_by_name(self._experiment_name)
if expt is not None:
self._experiment_id = expt.experiment_id
else:
log.warning(f"Experiment with name {self._experiment_name} not found. Creating it.")
self._experiment_id = self._mlflow_client.create_experiment(
name=self._experiment_name, artifact_location=self._artifact_location
)
if self._run_id is None:
if self._run_name is not None:
self.tags = self.tags or {}
if MLFLOW_RUN_NAME in self.tags:
log.warning(
f"The tag {MLFLOW_RUN_NAME} is found in tags. The value will be overridden by {self._run_name}."
)
self.tags[MLFLOW_RUN_NAME] = self._run_name
run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=resolve_tags(self.tags))
self._run_id = run.info.run_id
self._initialized = True
return self._mlflow_client
@property
def run_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the run id.
Returns:
The run id.
"""
_ = self.experiment
return self._run_id
@property
def experiment_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the experiment id.
Returns:
The experiment id.
"""
_ = self.experiment
return self._experiment_id
[docs] @rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = _convert_params(params)
params = _flatten_dict(params)
# Truncate parameter values to 250 characters.
# TODO: MLflow 1.28 allows up to 500 characters: https://github.com/mlflow/mlflow/releases/tag/v1.28.0
params_list = [Param(key=k, value=str(v)[:250]) for k, v in params.items()]
# Log in chunks of 100 parameters (the maximum allowed by MLflow).
for idx in range(0, len(params_list), 100):
self.experiment.log_batch(run_id=self.run_id, params=params_list[idx : idx + 100])
[docs] @rank_zero_only
def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
metrics_list: List[Metric] = []
timestamp_ms = int(time() * 1000)
for k, v in metrics.items():
if isinstance(v, str):
log.warning(f"Discarding metric with string value {k}={v}.")
continue
new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k)
if k != new_k:
rank_zero_warn(
"MLFlow only allows '_', '/', '.' and ' ' special characters in metric name."
f" Replacing {k} with {new_k}.",
category=RuntimeWarning,
)
k = new_k
metrics_list.append(Metric(key=k, value=v, timestamp=timestamp_ms, step=step or 0))
self.experiment.log_batch(run_id=self.run_id, metrics=metrics_list)
[docs] @rank_zero_only
def finalize(self, status: str = "success") -> None:
if not self._initialized:
return
if status == "success":
status = "FINISHED"
elif status == "failed":
status = "FAILED"
elif status == "finished":
status = "FINISHED"
# log checkpoints as artifacts
if self._checkpoint_callback:
self._scan_and_log_checkpoints(self._checkpoint_callback)
if self.experiment.get_run(self.run_id):
self.experiment.set_terminated(self.run_id, status)
@property
def save_dir(self) -> Optional[str]:
"""The root file directory in which MLflow experiments are saved.
Return:
Local path to the root experiment directory if the tracking uri is local.
Otherwise returns `None`.
"""
if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX):
return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX)
return None
@property
def name(self) -> Optional[str]:
"""Get the experiment id.
Returns:
The experiment id.
"""
return self.experiment_id
@property
def version(self) -> Optional[str]:
"""Get the run id.
Returns:
The run id.
"""
return self.run_id
[docs] def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
# log checkpoints as artifacts
if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1:
self._scan_and_log_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
def _scan_and_log_checkpoints(self, checkpoint_callback: ModelCheckpoint) -> None:
# get checkpoints to be saved with associated score
checkpoints = _scan_checkpoints(checkpoint_callback, self._logged_model_time)
# log iteratively all new checkpoints
for t, p, s, tag in checkpoints:
metadata = {
# Ensure .item() is called to store Tensor contents
"score": s.item() if isinstance(s, Tensor) else s,
"original_filename": Path(p).name,
"Checkpoint": {
k: getattr(checkpoint_callback, k)
for k in [
"monitor",
"mode",
"save_last",
"save_top_k",
"save_weights_only",
"_every_n_train_steps",
"_every_n_val_epochs",
]
# ensure it does not break if `Checkpoint` args change
if hasattr(checkpoint_callback, k)
},
}
aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
# Artifact path on mlflow
artifact_path = f"model/checkpoints/{Path(p).stem}"
# Log the checkpoint
self.experiment.log_artifact(self._run_id, p, artifact_path)
# Create a temporary directory to log on mlflow
with tempfile.TemporaryDirectory(prefix="test", suffix="test", dir=os.getcwd()) as tmp_dir:
# Log the metadata
with open(f"{tmp_dir}/metadata.yaml", "w") as tmp_file_metadata:
yaml.dump(metadata, tmp_file_metadata, default_flow_style=False)
# Log the aliases
with open(f"{tmp_dir}/aliases.txt", "w") as tmp_file_aliases:
tmp_file_aliases.write(str(aliases))
# Log the metadata and aliases
self.experiment.log_artifacts(self._run_id, tmp_dir, artifact_path)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t