Source code for lightning.pytorch.callbacks.model_summary
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model Summary
=============
Generates a summary of all layers in a :class:`~lightning.pytorch.core.module.LightningModule`.
The string representation of this summary prints a table with columns containing
the name, type and number of parameters for each layer.
"""
import logging
from typing import List, Tuple, Union
import lightning.pytorch as pl
from lightning.pytorch.callbacks.callback import Callback
from lightning.pytorch.utilities.model_summary import DeepSpeedSummary
from lightning.pytorch.utilities.model_summary import ModelSummary as Summary
from lightning.pytorch.utilities.model_summary import summarize
from lightning.pytorch.utilities.model_summary.model_summary import _format_summary_table
log = logging.getLogger(__name__)
[docs]class ModelSummary(Callback):
r"""Generates a summary of all layers in a :class:`~lightning.pytorch.core.module.LightningModule`.
Args:
max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the
layer summary off.
Example::
>>> from lightning.pytorch import Trainer
>>> from lightning.pytorch.callbacks import ModelSummary
>>> trainer = Trainer(callbacks=[ModelSummary(max_depth=1)])
"""
def __init__(self, max_depth: int = 1) -> None:
self._max_depth: int = max_depth
[docs] def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
if not self._max_depth:
return
model_summary = self._summary(trainer, pl_module)
summary_data = model_summary._get_summary_data()
total_parameters = model_summary.total_parameters
trainable_parameters = model_summary.trainable_parameters
model_size = model_summary.model_size
if trainer.is_global_zero:
self.summarize(summary_data, total_parameters, trainable_parameters, model_size)
def _summary(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> Union[DeepSpeedSummary, Summary]:
from lightning.pytorch.strategies.deepspeed import DeepSpeedStrategy
if isinstance(trainer.strategy, DeepSpeedStrategy) and trainer.strategy.zero_stage_3:
return DeepSpeedSummary(pl_module, max_depth=self._max_depth)
return summarize(pl_module, max_depth=self._max_depth)
@staticmethod
def summarize(
summary_data: List[Tuple[str, List[str]]],
total_parameters: int,
trainable_parameters: int,
model_size: float,
) -> None:
summary_table = _format_summary_table(total_parameters, trainable_parameters, model_size, *summary_data)
log.info("\n" + summary_table)