Source code for lightning.pytorch.callbacks.callback
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Base class used to build new callbacks."""
from typing import Any, Dict, Optional, Type
from torch import Tensor
from torch.optim import Optimizer
import lightning.pytorch as pl
from lightning.pytorch.utilities.types import STEP_OUTPUT
[docs]class Callback:
r"""Abstract base class used to build new callbacks.
Subclass this class and override any of the relevant hooks
"""
@property
def state_key(self) -> str:
"""Identifier for the state of the callback.
Used to store and retrieve a callback's state from the checkpoint dictionary by
``checkpoint["callbacks"][state_key]``. Implementations of a callback need to provide a unique state key if 1)
the callback has state and 2) it is desired to maintain the state of multiple instances of that callback.
"""
return self.__class__.__qualname__
@property
def _legacy_state_key(self) -> Type["Callback"]:
"""State key for checkpoints saved prior to version 1.5.0."""
return type(self)
def _generate_state_key(self, **kwargs: Any) -> str:
"""Formats a set of key-value pairs into a state key string with the callback class name prefixed. Useful
for defining a :attr:`state_key`.
Args:
**kwargs: A set of key-value pairs. Must be serializable to :class:`str`.
"""
return f"{self.__class__.__qualname__}{repr(kwargs)}"
[docs] def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None:
"""Called when fit, validate, test, predict, or tune begins."""
[docs] def teardown(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None:
"""Called when fit, validate, test, predict, or tune ends."""
[docs] def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when fit begins."""
[docs] def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when fit ends."""
[docs] def on_sanity_check_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the validation sanity check starts."""
[docs] def on_sanity_check_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the validation sanity check ends."""
[docs] def on_train_batch_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int
) -> None:
"""Called when the train batch begins."""
[docs] def on_train_batch_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int
) -> None:
"""Called when the train batch ends.
Note:
The value ``outputs["loss"]`` here will be the normalized value w.r.t ``accumulate_grad_batches`` of the
loss returned from ``training_step``.
"""
[docs] def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the train epoch begins."""
[docs] def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the train epoch ends.
To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the
:class:`pytorch_lightning.LightningModule` and access them in this hook:
.. code-block:: python
class MyLightningModule(L.LightningModule):
def __init__(self):
super().__init__()
self.training_step_outputs = []
def training_step(self):
loss = ...
self.training_step_outputs.append(loss)
return loss
class MyCallback(L.Callback):
def on_train_epoch_end(self, trainer, pl_module):
# do something with all training_step outputs, for example:
epoch_mean = torch.stack(pl_module.training_step_outputs).mean()
pl_module.log("training_epoch_mean", epoch_mean)
# free up the memory
pl_module.training_step_outputs.clear()
"""
[docs] def on_validation_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the val epoch begins."""
[docs] def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the val epoch ends."""
[docs] def on_test_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the test epoch begins."""
[docs] def on_test_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the test epoch ends."""
[docs] def on_predict_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the predict epoch begins."""
[docs] def on_predict_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the predict epoch ends."""
[docs] def on_validation_batch_start(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the validation batch begins."""
[docs] def on_validation_batch_end(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
outputs: Optional[STEP_OUTPUT],
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the validation batch ends."""
[docs] def on_test_batch_start(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the test batch begins."""
[docs] def on_test_batch_end(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
outputs: Optional[STEP_OUTPUT],
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the test batch ends."""
[docs] def on_predict_batch_start(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the predict batch begins."""
[docs] def on_predict_batch_end(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
outputs: Any,
batch: Any,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
"""Called when the predict batch ends."""
[docs] def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the train begins."""
[docs] def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the train ends."""
[docs] def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the validation loop begins."""
[docs] def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the validation loop ends."""
[docs] def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the test begins."""
[docs] def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the test ends."""
[docs] def on_predict_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when the predict begins."""
[docs] def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called when predict ends."""
[docs] def on_exception(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", exception: BaseException) -> None:
"""Called when any trainer execution is interrupted by an exception."""
[docs] def state_dict(self) -> Dict[str, Any]:
"""Called when saving a checkpoint, implement to generate callback's ``state_dict``.
Returns:
A dictionary containing callback state.
"""
return {}
[docs] def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
"""Called when loading a checkpoint, implement to reload callback state given callback's ``state_dict``.
Args:
state_dict: the callback state returned by ``state_dict``.
"""
pass
[docs] def on_save_checkpoint(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: Dict[str, Any]
) -> None:
r"""Called when saving a checkpoint to give you a chance to store anything else you might want to save.
Args:
trainer: the current :class:`~lightning.pytorch.trainer.Trainer` instance.
pl_module: the current :class:`~lightning.pytorch.core.module.LightningModule` instance.
checkpoint: the checkpoint dictionary that will be saved.
"""
[docs] def on_load_checkpoint(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: Dict[str, Any]
) -> None:
r"""Called when loading a model checkpoint, use to reload state.
Args:
trainer: the current :class:`~lightning.pytorch.trainer.Trainer` instance.
pl_module: the current :class:`~lightning.pytorch.core.module.LightningModule` instance.
checkpoint: the full checkpoint dictionary that got loaded by the Trainer.
"""
[docs] def on_before_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", loss: Tensor) -> None:
"""Called before ``loss.backward()``."""
[docs] def on_after_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
"""Called after ``loss.backward()`` and before optimizers are stepped."""
[docs] def on_before_optimizer_step(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer
) -> None:
"""Called before ``optimizer.step()``."""
[docs] def on_before_zero_grad(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer) -> None:
"""Called before ``optimizer.zero_grad()``."""