{"cells": [{"cell_type": "markdown", "id": "e62e6e31", "metadata": {"papermill": {"duration": 0.016748, "end_time": "2023-03-14T16:23:52.946910", "exception": false, "start_time": "2023-03-14T16:23:52.930162", "status": "completed"}, "tags": []}, "source": ["\n", "# Tutorial 12: Meta-Learning - Learning to Learn\n", "\n", "* **Author:** Phillip Lippe\n", "* **License:** CC BY-SA\n", "* **Generated:** 2023-03-14T16:22:18.171251\n", "\n", "In this tutorial, we will discuss algorithms that learn models which can quickly adapt to new classes and/or tasks with few samples.\n", "This area of machine learning is called _Meta-Learning_ aiming at \"learning to learn\".\n", "Learning from very few examples is a natural task for humans. In contrast to current deep learning models, we need to see only a few examples of a police car or firetruck to recognize them in daily traffic.\n", "This is crucial ability since in real-world application, it is rarely the case that the data stays static and does not change over time.\n", "For example, an object detection system for mobile phones trained on data from 2000 will have troubles detecting today's common mobile phones, and thus, needs to adapt to new data without excessive label effort.\n", "The optimization techniques we have discussed so far struggle with this because they only aim at obtaining a good performance on a test set that had similar data.\n", "However, what if the test set has classes that we do not have in the training set?\n", "Or what if we want to test the model on a completely different task?\n", "We will discuss and implement three common Meta-Learning algorithms for such situations.\n", "This notebook is part of a lecture series on Deep Learning at the University of Amsterdam.\n", "The full list of tutorials can be found at https://uvadlc-notebooks.rtfd.io.\n", "\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/course_UvA-DL/12-meta-learning.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/Lightning-AI/lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/stable/)\n", "| Join us [on Slack](https://www.pytorchlightning.ai/community)"]}, {"cell_type": "markdown", "id": "a591cae3", "metadata": {"papermill": {"duration": 0.010661, "end_time": "2023-03-14T16:23:52.999072", "exception": false, "start_time": "2023-03-14T16:23:52.988411", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "9253b450", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2023-03-14T16:23:53.022121Z", "iopub.status.busy": "2023-03-14T16:23:53.021106Z", "iopub.status.idle": "2023-03-14T16:23:56.361601Z", "shell.execute_reply": "2023-03-14T16:23:56.360506Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 3.354948, "end_time": "2023-03-14T16:23:56.364368", "exception": false, "start_time": "2023-03-14T16:23:53.009420", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\r\n", "\u001b[0m"]}], "source": ["! pip install --quiet \"seaborn\" \"torchvision\" \"torch>=1.8.1, <1.14.0\" \"lightning>=2.0.0rc0\" \"torchmetrics>=0.7, <0.12\" \"setuptools==67.4.0\" \"matplotlib\" \"pytorch-lightning>=1.4, <2.0.0\" \"ipython[notebook]>=8.0.0, <8.12.0\""]}, {"cell_type": "markdown", "id": "c654a8e5", "metadata": {"papermill": {"duration": 0.010454, "end_time": "2023-03-14T16:23:56.392112", "exception": false, "start_time": "2023-03-14T16:23:56.381658", "status": "completed"}, "tags": []}, "source": ["<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/035rkmT8FfE\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "Meta-Learning offers solutions to these situations, and we will discuss three popular algorithms: __Prototypical Networks__ ([Snell et al., 2017](https://arxiv.org/pdf/1703.05175.pdf)), __Model-Agnostic Meta-Learning / MAML__ ([Finn et al., 2017](http://proceedings.mlr.press/v70/finn17a.html)), and __Proto-MAML__ ([Triantafillou et al., 2020](https://openreview.net/pdf?id=rkgAGAVKPr)).\n", "We will focus on the task of few-shot classification where the training and test set have distinct sets of classes.\n", "For instance, we would train the model on the binary classifications of cats-birds and flowers-bikes, but during test time, the model would need to learn from 4 examples each the difference between dogs and otters, two classes we have not seen during training (Figure credit - [Lilian Weng](https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/few-shot-classification.png\" width=\"800px\"></center>\n", "\n", "A different setup, which is very common in Reinforcement Learning and recently Natural Language Processing, is to aim at few-shot learning of a completely new task.\n", "For example, an robot agent that learned to run, jump and pick up boxes, should quickly adapt to collecting and stacking boxes.\n", "In NLP, we can think of a model which was trained sentiment classification, hatespeech detection and sarcasm classification, to adapt to classifying the emotion of a text.\n", "All methods we will discuss in this notebook can be easily applied to these settings since we only use a different definition of a 'task'.\n", "For few-shot classification, we consider a task to distinguish between $M$ novel classes.\n", "Here, we would not only have novel classes, but also a completely different dataset.\n", "\n", "First of all, let's start with importing our standard libraries. We will again be using PyTorch Lightning."]}, {"cell_type": "code", "execution_count": 2, "id": "50d09d8a", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:23:56.414859Z", "iopub.status.busy": "2023-03-14T16:23:56.414486Z", "iopub.status.idle": "2023-03-14T16:23:59.687158Z", "shell.execute_reply": "2023-03-14T16:23:59.685967Z"}, "papermill": {"duration": 3.287306, "end_time": "2023-03-14T16:23:59.689858", "exception": false, "start_time": "2023-03-14T16:23:56.402552", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Device: cuda:0\n"]}, {"data": {"text/plain": ["<Figure size 640x480 with 0 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["import json\n", "import os\n", "import random\n", "import urllib.request\n", "from collections import defaultdict\n", "from copy import deepcopy\n", "from statistics import mean, stdev\n", "from urllib.error import HTTPError\n", "\n", "import lightning as L\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import matplotlib_inline.backend_inline\n", "import numpy as np\n", "import seaborn as sns\n", "import torch\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torch.utils.data as data\n", "import torchvision\n", "from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint\n", "from PIL import Image\n", "from torchvision import transforms\n", "from torchvision.datasets import CIFAR100, SVHN\n", "from tqdm.auto import tqdm\n", "\n", "plt.set_cmap(\"cividis\")\n", "%matplotlib inline\n", "matplotlib_inline.backend_inline.set_matplotlib_formats(\"svg\", \"pdf\")  # For export\n", "matplotlib.rcParams[\"lines.linewidth\"] = 2.0\n", "sns.reset_orig()\n", "\n", "# Import tensorboard\n", "%load_ext tensorboard\n", "\n", "# Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)\n", "DATASET_PATH = os.environ.get(\"PATH_DATASETS\", \"data/\")\n", "# Path to the folder where the pretrained models are saved\n", "CHECKPOINT_PATH = os.environ.get(\"PATH_CHECKPOINT\", \"saved_models/MetaLearning/\")\n", "\n", "# Setting the seed\n", "L.seed_everything(42)\n", "\n", "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n", "torch.backends.cudnn.deterministic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n", "print(\"Device:\", device)"]}, {"cell_type": "markdown", "id": "c73e0993", "metadata": {"papermill": {"duration": 0.010868, "end_time": "2023-03-14T16:23:59.715265", "exception": false, "start_time": "2023-03-14T16:23:59.704397", "status": "completed"}, "tags": []}, "source": ["Training the models in this notebook can take between 2 and 8 hours, and the evaluation time of some algorithms is in the span of couples of minutes.\n", "Hence, we download pre-trained models and results below."]}, {"cell_type": "code", "execution_count": 3, "id": "5e10365c", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:23:59.739570Z", "iopub.status.busy": "2023-03-14T16:23:59.738116Z", "iopub.status.idle": "2023-03-14T16:24:01.267793Z", "shell.execute_reply": "2023-03-14T16:24:01.266377Z"}, "papermill": {"duration": 1.544421, "end_time": "2023-03-14T16:24:01.270516", "exception": false, "start_time": "2023-03-14T16:23:59.726095", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/ProtoNet.ckpt...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/ProtoMAML.ckpt...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/tensorboards/ProtoNet/events.out.tfevents.ProtoNet...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/tensorboards/ProtoMAML/events.out.tfevents.ProtoMAML...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/protomaml_fewshot.json...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/protomaml_svhn_fewshot.json...\n"]}], "source": ["# Github URL where saved models are stored for this tutorial\n", "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/\"\n", "# Files to download\n", "pretrained_files = [\n", "    \"ProtoNet.ckpt\",\n", "    \"ProtoMAML.ckpt\",\n", "    \"tensorboards/ProtoNet/events.out.tfevents.ProtoNet\",\n", "    \"tensorboards/ProtoMAML/events.out.tfevents.ProtoMAML\",\n", "    \"protomaml_fewshot.json\",\n", "    \"protomaml_svhn_fewshot.json\",\n", "]\n", "# Create checkpoint path if it doesn't exist yet\n", "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n", "\n", "# For each file, check whether it already exists. If not, try downloading it.\n", "for file_name in pretrained_files:\n", "    file_path = os.path.join(CHECKPOINT_PATH, file_name)\n", "    if \"/\" in file_name:\n", "        os.makedirs(file_path.rsplit(\"/\", 1)[0], exist_ok=True)\n", "    if not os.path.isfile(file_path):\n", "        file_url = base_url + file_name\n", "        print(\"Downloading %s...\" % file_url)\n", "        try:\n", "            urllib.request.urlretrieve(file_url, file_path)\n", "        except HTTPError as e:\n", "            print(\n", "                \"Something went wrong. Please try to download the file from the GDrive folder, or contact the author with the full output including the following error:\\n\",\n", "                e,\n", "            )"]}, {"cell_type": "markdown", "id": "63e54fc3", "metadata": {"papermill": {"duration": 0.01117, "end_time": "2023-03-14T16:24:01.296161", "exception": false, "start_time": "2023-03-14T16:24:01.284991", "status": "completed"}, "tags": []}, "source": ["## Few-shot classification\n", "\n", "We start our implementation by discussing the dataset setup.\n", "In this notebook, we will use CIFAR100 which we have already seen in Tutorial 6.\n", "CIFAR100 has 100 classes each with 600 images of size $32\\times 32$ pixels.\n", "Instead of splitting the training, validation and test set over examples, we will split them over classes: we will use 80 classes for training, and 10 for validation and 10 for testing.\n", "Our overall goal is to obtain a model that can distinguish between the 10 test classes with seeing very little examples.\n", "First, let's load the dataset and visualize some examples."]}, {"cell_type": "code", "execution_count": 4, "id": "575015b0", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:01.320396Z", "iopub.status.busy": "2023-03-14T16:24:01.319831Z", "iopub.status.idle": "2023-03-14T16:24:18.693471Z", "shell.execute_reply": "2023-03-14T16:24:18.692173Z"}, "papermill": {"duration": 17.389853, "end_time": "2023-03-14T16:24:18.696985", "exception": false, "start_time": "2023-03-14T16:24:01.307132", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz to /__w/12/s/.datasets/cifar-100-python.tar.gz\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "65853beab73b4a9689b72baa6bc5ef6d", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/169001437 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Extracting /__w/12/s/.datasets/cifar-100-python.tar.gz to /__w/12/s/.datasets\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Files already downloaded and verified\n"]}], "source": ["# Loading CIFAR100 dataset\n", "cifar_train_set = CIFAR100(root=DATASET_PATH, train=True, download=True, transform=transforms.ToTensor())\n", "cifar_test_set = CIFAR100(root=DATASET_PATH, train=False, download=True, transform=transforms.ToTensor())"]}, {"cell_type": "code", "execution_count": 5, "id": "70506422", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:18.729240Z", "iopub.status.busy": "2023-03-14T16:24:18.728860Z", "iopub.status.idle": "2023-03-14T16:24:19.042640Z", "shell.execute_reply": "2023-03-14T16:24:19.041750Z"}, "papermill": {"duration": 0.328521, "end_time": "2023-03-14T16:24:19.043944", "exception": false, "start_time": "2023-03-14T16:24:18.715423", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDYwLjggMTgxLjIxNDMyMDM4ODMgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicVU/LbsIwELzvV8yRHOp4bZM4Rx4lSm/QSD1UPUTBhCJSmiYq/fxuKCrC0kg71uzMbLwM3+912ORzLJ4pvrG6J8ZB0EDjIDiDkQsa0sJacolWXqbjdWLPyrCzRn70HdsT7ahDqswFziXKgaesEp9Zo633Fl8BL/hAPJOAXlIOgrO457jv1F3Xxw6jRWb+fesWccFYnrCmNToRNHdGwqmTgzQeZBesE2W0S3w6BSdO+VuZuqV5SfFKRAbl7nJwuSV6xaRoqyYgRLIi2an2dnyY/FTt5zH0OO0w7AMWxSpCxord9E9haTLbsNbYVkPVhyHCG5VP9FiSlKVffm1XogplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI1NQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggMjM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDg5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVNuRGAMAzrPYVHwI9IvA/HUYT9W+yENJZOnxHKB2vkAYLhjS8h+KIvGYS1Cw8q+0h02EQNZxUkE8OvLPCqnBVtcyUT2VlMo7NBy/St7W+DHro/3Y4cCgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE2IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE1IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAxNyAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSA2NSAvQSA2NyAvQyA3MCAvRiA3MyAvSSA4MiAvUiA5NyAvYSAxMDAgL2QgL2UgL2YKL2cgL2ggMTA4IC9sIC9tIDExMSAvbyAvcCAxMTUgL3MgL3QgMTIwIC94IF0KPj4KL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9BIDE4IDAgUiAvQyAxOSAwIFIgL0YgMjAgMCBSIC9JIDIxIDAgUiAvUiAyMiAwIFIgL2EgMjMgMCBSIC9kIDI0IDAgUgovZSAyNSAwIFIgL2YgMjYgMCBSIC9nIDI3IDAgUiAvaCAyOCAwIFIgL2wgMjkgMCBSIC9tIDMwIDAgUiAvbyAzMSAwIFIKL29uZSAzMiAwIFIgL3AgMzMgMCBSIC9zIDM0IDAgUiAvc3BhY2UgMzUgMCBSIC90IDM2IDAgUiAveCAzNyAwIFIKL3plcm8gMzggMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCA2MjAgL0hlaWdodCAyMTEKL0NvbG9yU3BhY2UgL0RldmljZVJHQiAvQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMyAvQ29sdW1ucyA2MjAgPj4gL0xlbmd0aCAzOSAwIFIgPj4Kc3RyZWFtCnic7f1ZrGRbfuaH7THmiBNnznnOO9e9t+rWXMWqYrNZZHc1my2y2UR7kGSgrRfpwfaLX1qwDQGWIXh4MiChYQGWYMkmRbrFVpMsdhdZLNZ0q+pOdae8mTczT2aeeYgT87BHP+zv+/a5ESeS1EEZjQbW/yVXRuxh7bXX2nH2b33r+9tbW1uWCRMmTJgwYeJ/fDj/pitgwoQJEyZM/Nsa5kfUhAkTJkyYOGOYH1ETJkyYMGHijGF+RE2YMGHChIkzhvkRNWHChAkTJs4Y3uxHa+fOZYUwTbLCR28/zAq1op8Vbjx7NSscjwbYOAizQsEpZIV2b5QVkmiSFc4tL2WFarWYFYZxlBW2d4Os0OmmWWFr/1FWaDTqWaHZWM0KcRxnhdTCxnaCgqM/CxxcWpTa2NjGV7YTc2MUXB6n6GMb30N9XBc1LBZL2D3qWZ+Mr37l77Fo8+w8aZryOK7FSmeRxMkn97FsR3/TpFO7Jwk3trW5NfNJOrvNiSPgisIxblkUjLhVwv2xo+PjYj1edZqg/mmE46QxbmvEm2h52KZQaLAmuKLXX//2VLXduDhVQxUctoPDNpu56HxjXexswXGm/0bUXnnYkb7kv+wnNk+f/62ZsICeE0f6RBvz1sfT+5y40vwz/oNPYvXkgrZB/J/+n//Hqd3DEW5B0alkhfpSlQdENSq1Jg+AEfp4G8N5Eo+zQsnFXW6UcZwa91pcWssK0QQbH7X3sDvHfrW6kBV6w6OprypV9ISLl69khYPjw6wwGA6zQtnB2Tc/Psa1e7jAS88u4jgLNVypiwsMJ7j2Vg8H/F/9g39qfTK+9U9+nBVSm0+MFFfhjfZxrhIeSmkRR+637uNyHv1BVrh8Ds1y69bNrBDw7Cn7aOrj2aiGCsbYZrmB3T/96otZ4eUXXlQlF3hp/WE3K2ztYGDe2cDB7+6iiVqDMs4So0/qGTjblxT2bK9nd/1v/i/PT331R//l/y4rvLV/KSvENh7pnouHahCgPY9baMZeF7e+VMLFjie4isPdj7PCt76KX5Yba2iif/YvdrNCbelaVnBd9NtSEeeKExRq1kFWmAxx5LceoRqffR6969lb17PC+oWLWWFrdycr/Om/+quscOsmbuJ/8h//R1nh+hVULGarxnps6ufDQozHHNgM8yZqwoQJEyZMnDHMj6gJEyZMmDBxxjgF59oEQd0WXrrf/jH4xlId7/Wr51ayglPCEUol4ixRShv4KElRCBIUnEjvyNi4BgZgDfuApa1dnLRcADqunFvGAck2cwCY4uxeCqiSkMVNQmwzJGYZBOBIBZ+YgnAjTfBXRcQC3+atMa+riZ3ySMQzbfE6Hllc1CNeDsc8F/ZyPdaZn8QxGiqK+ElC8kx85LrYy8k/8biNr7pFPFTMSqaCOy6vMQdCNs8LEpWQHHou75A9Q43YROKonu/xm7/+r7SnAOoTX8wAqV9UpBoCOoVQPL8gmbVJce0UjemxmyWJIA/7Un5ctpg93W9nSPxTw2MH7vFWCuBbuF+dDmB7qQxaXgpAC2sNdMVyGZecDnB6nxXrR52ssP8EZNXefpIV6jUc0LNQGBEmH/QeZAVHcxYMO8EpNnYes85gcZMAlT866GeFpUvoLeUGOnAYAgvv7QHlhezGjsXpFWeG9TMcjghNDMQTPF56hyC9teZ5nLTw6axAAm195qufzQpf/iK+Wl4B+/3X/+o7rNgeq4HKj0d4vGjIH3fQN3700zex1/6RKvnqKy9nhWefwYNueRHzVufOtbPCjR0c4QfvovCozRmTfAqI4zGZ5o2nTYfMHZh7e6D9P/zBu/ioCFy/ugrAWy+jU9kp+lvBwymSCJdfdFGf9dX1rFCu1llB9AFNOiScobtw/kJWcLl7q41b5uoJpsc+d681UMPGMn6YrlxHY44mqE8QYPhUy+hd9Qqe0gXO4qW+Ruj0Q0BDdDy2psK8iZowYcKECRNnDPMjasKECRMmTJwxTsG5LvFINAIJPN4B2wk62P7oEASmtg6qUK+RrvDFvFwC9on4yTDEy3JCCVa7i1f1bgcH3N8Bt/FZjWAIpLPx4C6+8glvCUJtgtASIUCxDK1doQLyEPYgftt4BLvg556FRq5egeYtiUhNPUo0vaL114XvV3ilAFyOwB3BxTiQ/BJVFWIRlIiJu8Mw4LGFFMUZ8IFt+fyGreqQdKU5VRMZFuxxXV4RaxDNnM7OT0tuyZ0cB2014Xkdi7sLLQmCW9N87ykhMW0OeGdlhb/wSKdVtVau5CS8dXClLm9rr93OCj5nBMoldDOx/VwimbfmDMW1ZltsbthkTX4Nx4lG1BBSYxzyeBUfN2zQRbdX37YIVAMKtlMPX/m8X4mLbjMOQcOGRzjg2hJ6+4ATE4f7OGClSnk24b/E7UEPG496OOBSE3Bv9TI2th0OljGuNOATw+N4rFc51tgzu8cTa054BQny8Ykd434dtdAs/R4481qAp9w3v/FaVvj1v/2PskKnjY1/8KPvZ4Udaj7FIW1Jr0/I7bN/NOEy5hP17XfeVyXvbWxkhdfIdb/x1S9nhWYTnWpn615WiMe4koIPRurwGajuemIeYurfPNL58weaGpj0IJ0dHEKCawWct1qFGnbQB5fe3wUE1tqHSgkVW1jANNx4gk9i9rdbt29lhQtXIRI+bkFrPeEqgESgmJg65JUm+ZjFv0cd3MQP7+DHYusx5iO0GqJU5JgtoyBJMKXx+TM5V9Qnc1vMvImaMGHChAkTZwzzI2rChAkTJkycMU7BuQo7EeTBm7VnCyECUIxG+MohUPL42puEWvwO0jsc45PdI7x0H1F5NRygcLwPfeBkgLfvyaSF47iiYdPcbzxoZwU37nNjVNUt4Oz1JpR1fkzhbgcsIiV0atAFwieL8MjrpI9NZuhRQPsFEYMT9FWOCqhzki/jnS6ITheoH3Ny8ad0mAiHuDuX3RJwBVILn0DENpmSrqjgABYFIzRaEAy4n+wXEBOK0opFOiGQvuaqQF6I3DDs3MpgbjzFLWEWRD114+l4ikPFiSOyL81A9fEEXTGKJcjDV60jkK5yBbMGtRjzGin1qMUi5whEjHk3bZv62Fz8N80AT7mcvMNQvB2g8s01nGscgYhuU//ZKKJifd7bsIAxywpa/R47Ce9l7iHB6nSPqKElI22g+1hbD3GXhx0cp1KjGUWK0dI9xkljEtpqGa0xOEDNyiUc2eVNCSJccqWCFhv0qfD3qJYc5OB8KgTbc5ybgiGnPp4G7Q4eL+H4Tla4e493JwazvXcXbLDTwUjXIPJ90VTUp+RPT2FM6MygfhifYIPHx+hmP/zRT/HJEc5SqaOSH97DJFfPwgxUZR2PNQmP1dtPdKFpqxbFU0aEnkKNWpX1xw3qHG5khQFJr8Xergk1l5r/Mp15cmrKR6hXRJ2X12GJUKgC+ZY5r7HQameFlyMA/GUWDgicowrunYx9imV8FZMGHx2jMSN+0uXMwod3NnGuRXqD1PljwbFRLNNtRs4vfAgozJuoCRMmTJgwccYwP6ImTJgwYcLEGeMUnBsRoYShTBK4fJg4NyS7iIZ4Rw4meFUvcoFzlGBjwgxrc2c7K9zf4AruRXhjJqKOlIGW6yg4BAWOIzo3Tfl8Wn06Ma01Y4EpbDzoUqdKFevD+x9lhY17uIovfP7VrHB97Qpbg5iaS6dbMzhXujjZHRS8Bq8dnEHC3Vyiyd1lm1AgQ5CzpUPbBPknODmiEVWgaC3AKfqE25ZlRVz7LJwbU6BYKQFtVcgkkxjtEFG3KZWajCCCgMBc5+DtcEjNivTPzFe7z8Ssja2gUy7TdablrE8Ds/Nj1mj35Hc8NLs9W2w4ameFwxa6a+sYMkUB1aUlLO5+tA2D0GoFrVqvYwG4z85QKqCdK9zGsmacO+bj3B6ZlcizHE4mFMoeH2Mb16Ne1wItHAdyJaXykDS4f8Tb7RPKOZrFIFBllUecLIh7Iquc6WBbhiG22d2mV22RMyZL4GOhzUkiyi/jiK4j0nvTE2BMm+dRiE7uEwmm87tEocABxZvrFXBdF25+JSts3aMZywBw73s/+jArvPceKO4K67ywUGGdp62wZY5dLhPjsz8HAZuXHbtYzDX/BZlye+ge956AQIYRbXg9WMLWzkHFWhBm1AzSjAf102K+2UKpKG5JI1leyJC3IWiBoyYz81aa0dov4Dg3bxd4OIwIK1+8gA/6XKaRkK4n78JsZzTmA9xHw75qNbPCjYVrWeFnDc6q3LyNQgkbH+zDCURWxkMa/377DfweLdYwRj71Ih77FTpXL9TRbz9+AvnxF156wfpkmDdREyZMmDBh4oxhfkRNmDBhwoSJM8YptO2oJVEiOEmBa3492m8GUigRUmol7IgwICRvfPIY5gaPH+P1WerEIlfmdoZ4nY+JTyXBdQkTXLnyOuIVMjW1uBehZf7nAckz/U5FaOX+mtKRoEuxsdR3jlilMy26U1Tr51gNKle1zppSt1z4qkRdLkVrXBfv5cYO09m4REpTglat8h4wFZQ4ZHzCPFOYxadJbIF1C0ZYQm7JdJfIWndTS4xF0AVwVCVb6lN+5fJCCiUCnJl4KnQS8dZy9Wkt7t+IWf2NQjpkFMa0Vx0H7awwGKGF946AdBJKQ3eOsVQ/pOj0/Hn4i24fAwKfX7yRFVYW4QtaoQHICTeJv/7P2XCCfltjwrJuC3f8eJMIeogBWaXVbZ0aS4cS9PEeTjrixqMJPQ0o+awu0L2EXDcYouUPjtFtZAVMHmnVF9WT0ZEmPIVLTa88WEREHR9dejRAxQ7pprvSrPJyWA2O0MGACQ39uVMGBTpX5+YnNG04d/UzOOC4nRV2HqIQkBgf0PN2HNGAmpnUlhek3sTlSJWaag4iN/XlhAt9vJvsCZZluUxjN+F5J/Q0cKovZYXFc3DxLTYgZ7VzYxP+m7s9TIeGj76L45mNGPsjOPf+ra+DIetpEMtbm11xQmfaAWHpgIYSfZrbVGuYzqiVOJyJfP0SRc68v53NdlboFoCOr3/pVRywj0/efhcj6/YButArn/k69qJP70h8OBZwli0Gzr5WY8+xUfmetOj0hf7o7ttZ4V9/D8kcv/DSf2p9MsybqAkTJkyYMHHGMD+iJkyYMGHCxBnjFBLiUCxXoT722q3LWaG6SD1nFW/fUvAKRQ7JWw4OsNy72wMfrlRAV7T2dzQmhhqAdkrApiOnFJ06Aol0XZCuTyzFmVnGns6oYZULTKozufu2aew5GOLspcJ0NqXZKJabLErLSj2elh5TsGrnfo84sudqSbhuB+llbieLL2ImkBr2lCEIlV+trWWFWpW0MD+SVaXBb5XKwC655Q4Vcb0RmTMptGSWswaw+Qp23k1BI12IcyIp21TMKmalb8yNFMTtT8hz5x6Hn5zm1DCzV16QGwblrCFYYqcLLe5wjA7cn4BQjceE6sTdMTXtk2101zGF61UfEvT1lQtTF5FLK62/Pjyxpi4l36KUbCivgI0mI1xOtYTuEVlAkQV2xQJl4aUVVFWJ9vSVVKhxoK7I7IfU68aUuwchzxXTeaCG/asN8E/mzrKKPjZWTjSmVbRWl7CxMOyE9s4l+pAUOD1hz+RfU2h6Qg4p4z66eoewPRnDUaFSIqJkxw5jCvIHBM4hWl6S0cvrHOAVui7Qo7hAVrm4CCjd6eh+LaqScYrx2O9vZIWjLpOIrT2bFarLN7j5bG+f7tvxjEWzzCvUzTQ1ZrHbK/7gu5i8KBXxNCgWcGlFCndLzKZX4sOkzJUFlQVss7CEHHMFdg/bOZyqfEKvBj2BHXa8Kil9jXMMq5eAalv3YPXQfgIPimCIgbm3A5Ph8YBLS9hzZFpepnduneYeR0O0xuEYfXr/MaZp9j74AIW9Y2tOmDdREyZMmDBh4oxhfkRNmDBhwoSJM8ZpOJfC1Bpfe4skFcKNPrV2Wk3viB2MJIJVgi0lNgJQ6tKC0unj3T/iCu5Hjx5lhSdPwFvG/Q7rSi9fLuMVYS3Sp7HgKc0N8EKtVpv6pFwCH9AyZyX66vaBc4/aYHrNOvaq12fXxSMcRzyWimI1rHhmzli4Tc48ZxB0bl/AcxDEBGMwlohocb0O28lnz2Oh8crisupW5KLjnHkRawyDEa8RpOLuJhY4H9NnwFW6NGHPvEqsrf4Sk5Y4x9FPsej0pgqzTggJaV5in+Cv+EdthS+Efv14+k/DmLtH3DjJT8XdItzxbgcdb/cAWtwuxdv3djFDMY5wF+r0qXApUT48wldNmi0MxrhTI4LiUgRq5PHW516q9ty/a3sDDB+bvSukM20QUC3PC0vG1L3TiNVnssLUp6SeHHXcUQooNlSCc9UWcECfoDiWyneMAxbrHMVDDJ9kQnE7cXDUwUl5GKtSw9BYXiDtbOHsRSZiK1anu19Cv5cRnzPO/BxVBRrb9jlbtL/5XlZo7/0IGwUAvKKODt2hPYppQ/nGxLjkzUMZLKN5L52HBvUis0MqR6HtwpHDZW85atM8wrLCAExSvLC69vmsUF+9iZpweoUPmBPCdR4nX7GgSQKGM4t88wE1jXO/dgP1CJIuC7QypqY3mOCA4RBdcUQ39YA9MJSBNqu2SE17jcnvSP3zScCQhiQ92qqnP8adusLpqi4p7uMqGra9jwOWUlTej4GOxxOaw/Dxckzn9r0tLBsZWHhIPvzJO1mh3wYxDpn08MYl3IvZMG+iJkyYMGHCxBnD/IiaMGHChAkTZ4xTcO4uk5FVaALQHTBzPamAUrRHXIasdD/tLiDAcRvsq6ckTAR/EflYmwmbSrSCfPgQDG1INNRt4eV91G9nBd+fzlolYhxR0yvjSlFcn9iwSAFYsQzSW19mmvgiYMLzz77IA4IGhMnc9ckRLS7FY5WIJ47CqY09LgBPqTG27HCqhgnh9oit6hGbh0TiIoGNapO7i6bm4edgGf/mvseEmzWadq40sc66N2L+oERMftZ+li6+REOiSOMhgMlTfU3JwP8m/gmzX53yCQvkezq7KiaKeyIFGb4cjXGj9w5gCbJ/uJcVHtNe4Mk2umJEteeogV6x3GhmhXCCFius4AJbx9hr4zH8dXtN3MRLF5/JCp4LHiW57+yft8M+qkqRu9Xr0nmACcJckrcipa6SVhZswTiaqBASjqlFV1fUhELnEAdcXqK6u0yvBhLjCStWpLtpdZWInjy/zHO5NNq1XE3lYOMKzmCNWNWAfi8pjxPR1GI0Qhv6ztw3gTDGg6vfhS/uqIdbkEa4KTIicCj39dgIlkPGqEFgY6SkLq70cEAn4T3sdf48MH7Me3HYwZH39jEuOpyisiyrXIdf68rtr2aFm89/Lis0ajiUy2tUB07YqR3OZ4iaOvnUDUW5M2PFcec+zf7hL0M5rIF5wiB3OrearJVVmGjJQ6hhh+OsLeEHZbeNe/fkw59lhe4wr1r2T4HP7Y0NDMOW18wKe9d+JyscLKPpUj7lnMfvZ4XKBL7HC0UmR2P7HPfaqMYujlxbwJEXHWx87Rx+GvwrX8oKRX/+dN68L0yYMGHChAkTTw/zI2rChAkTJkycMU7BucGY6IAWjgOuNfa5olYkUKBDBZHeEVfuS6arzETKqzVRiiPiI9kmVKskJ5QyFigL9HytHaZmj9RxOCB9nVmdLbFcqBXTE7JoC9scHbexDWlHRN1jQpvfxsxrfb+zy1NMcxM57kq9HDInWiTYIjNbR2CTZpui5TxgHAJ8lLjmXQvbD7niOIhzxd1yhZpDuoa2u1Tf6dKoCF2ooqkvLcEN+IiL01s0NxbJyU0Xcr5L/+QxTiHsORsy01CcluZsOtGSPbPxrMdCLAsCwdtZ/wU2dRKDLI2o4ot4Ydt7kk2iYXd3xABJTR106b3xAU+Pjre0BJVmNOYpSCAdF1yrdAxet7p8VTWz5sRCE3vJy1QEz+XwKdawe2OhwGqghiur6IqdPCcgGqFxiSDVJYujU+7OR+hv7X3sVVvHV/VVjJrOAa5Ld1s5AbXMP6F6Ob9fTMnXIxF1OMsT0Aog4QSQoOtwSONr9vFo/iTAzsM3ssLxLrBh2If02sk9OgT/ccTEEavkpEyARogsJhYsgHn6Ph5TgxHa8OAIt2lAJ5knpLipj/F18flfUSUv33gtKyyuwovD4+oDPU6Ecxforr1UQyWbVfoeU/vaH8rFggrtEVqvOxbgndvNNAni0t1DGTA9PkMs8nbbnh6YueMKqXLKjeWW40V4mPzDTzG3IJ/Avov99wdoq99vv4Kvhugwzx/fyQq8dOvDyjV80oSwOeyjB/YH0GOXGuylbMwu5wcvXcHoe/FTr/G60JiPHmMi4GD/0JoT5k3UhAkTJkyYOGOYH1ETJkyYMGHijHEKzi1T+ypFaKWC9+hKjTiX4K7Ptf85yeTvcqcDCCZwp0Krhbf4cgFCw0sXkOLn0aONrLDfwutzRODmUs6q9GQn9JzTiYGE8JaXV3g5hCTcKCZiqi1CnVssF3hksB0J3VwCB8ua5pAxFbOKRLDIEY9igYJDm9so9ZLMY9Pcg5cavDyZEVrepa1EkdSlyFvgnpAEj3pASUVqrUs8Qo2KaJ+2un0am0YV0KoxyfARcW6egylPwpSzHP4jq9+5IsBZnKsQqtVFu7lzL7dxpjluvticjgGznE+YMRYwz51yIRQ/aKPF2ky9NKQLbp+mtQmnMwo2OnlzscTKs5PTkbhegtJveQWrxScpRs0o5opyalZjahr9mQXy4xExXcRqEJSVifnKVcoUiQQ7fQ4f6mNzrxKO/gWmMCtVOEcwwa1cW0blnzyCoDTJsSGq4ZYo2gxR5737/alzFaqcpiGUdnkVEbMEFinY9gXb2aWVx9Atkh9qOE67BeRRXqDqPv10VhhVcQvGI2iwI/qKTALc94Rm3dGI7cwJIDtFISS0tyNAe8+l7eoxTV0WYB77ua/8WlZYvPhyVigt5KnQfE5OeZy8qJdxy+oVfLVIePvMRT6T2VbDMdpqex8N0SNV1xTStRU04xFui7XVnps/TsNZj3TNZEX54wjb2iddqLONcxcI+WNg9yI/iTlRSIuFnCFL5Tsgiy6kGFCf625khfU2Rtbt4k+zgrcAPfOba8gZZ1NrPTngc7L0POrjY6S3mKdvh9k/Jx++i41p09GhM8M+pbyzYd5ETZgwYcKEiTOG+RE1YcKECRMmzhinvNQzgY/lEIs1mMZdeq0RKe4kAHmIIryhd/s0WzjGi3BOcY/xGj4cQLd24zJS/CwvLfDsqFK3084Kfa5Vd7h0WpLXdMYlMgiYtIgoptPGq7pMdC2Je5WMnhqzMJrwyLgcn2vVBbdPw7lKfEb6O+O6kNjTkFwuqWLSKUGKR5ggnCv7BfFh2cC63GutDKAkFmFZVo9yZatAjMZKaq29K3cC0tchaVWLC5PFdnJZ7HyThISwNI2mQbciVvIjR+0ghbbUidOrvBUeQXtMqaoofUDtd4Hro3XAnT24ZW5sbGSF9XU0y9ExJNbCufstJj6jh6qTyp0A19XrDHkKJSNDnY+7aPmAGLZcxiyGjDtabZ6CNra3rr3AS5zGuQH9bH0aKdDyOU8p1WiAKocaj8zu10gwxCr0xJbnSUgM61Pp7fq4ir6I8RIxXQz4HwScr+Hwke122MPZF5hOsbyIOgdUmpeZJa1I+5GABM8mMQ5HaPBoSObpT3ebyWDuvMDVm1/ICimHTxShNSY0NJ4M8FDqM/Ndtw3S22tBmWm10W3CIeaYkgmeKjafBjeo8PzNf+c3s8KVa4C3kQuGLDfxQZKPi22SVQ3ar7yIS6sVCTn5xDvo4Ks7HyDn1+7eRlYoVi7hYotXuRdbjysC1hZwrqPh3Ncn5R9UgY9Ji8rZHOe6/EiTPCeeDzoOn4rskx8eop/83l/hl6U9QsVWL8I/ocgFEi93wFGrnPsI2O9rnCz61hG47sIEPxbfKSF95yTAnRoSAjfKaKijFkbox/f/JY5MXC/x9soSfMhffh72O7Nh3kRNmDBhwoSJM4b5ETVhwoQJEybOGKfgXL9MHR21uI1FcMIWE4SJ2wjKCedOxpOpT/b3wUkGTEjkkzcORjhgQhfcvW2QkxFx7niAt/iY+adEunR28boolOoSB1RKtUoFlxOTUN185rmscPUSxHIjnuvNN7A6+5kbAM7r61TwcmF6HmS/8nNwmRxNYPaE8lZuk6hGiS6RCiGRApdyK+F7RFZpkcUNedKuTC2i3OJgQHOGiXJQEf2l43ZWqJWYmYiV7NF5QIXZeIrVbS7Vnmudm8fsTRTEljZaXFfAPGZePM9HHx7w3m0fAsyur8IK+ON7yndPcw8ecJ+OCltHyGV/1AX/2Wu1cQoapRJbWh7p1ZC+0NKQN5cxWA4OUZ+DsMvKcwE4WaLjgBx+9PGDrLBQ/XFW+Cf/+J9Yn4wStZq+T+MCkvwxbUMkiWyS6y7RdUEUNwhR5ypZa6OBC5zwq3HEnkxPjyp76XCAm7vQgDC132EjcJn/wgpR7QJdKdCRLTlGF4solVmxVB4shK4yiC5yyUAob2EqeEczczoKPWdsioQrLlPXObATSQgt4xBnl1p+PGzjkvuguAMiwW4bzzSbHfLZlyEQrV64hYrx6dqhUe5CFe3zwuX8wavBfo0uFjb7/0/uM9HYEC289fCtrHCw8WdZYamOvlRNiXOdr+May6DZx2NU8tIKlfnVuerc/+9PgP0drYbgq5ZHd+58SkrMNr8e8nb551io/Kcv8iaGtChpQShrMQOaTQRdGuN2LNESoUAddpGZy6QN9jgiXgsxnB/xMf0h+8mYj8dBF3fz859CdrOVlQs8u9YFcIKDv3SLi01rTpg3URMmTJgwYeKMYX5ETZgwYcKEiTPGKS/1b70HpdPSMt7rd+n9OBgoV7syc9GHc0Zaee4cgEmFKY60cZvpwnuU8m48BM7qk+I6EaV6eQ4yCfOm1bkenQc8dxqfKoSXRbHWlmEpsLaylBUOW0Bw9+8jk871Kxd5FZRCWtOKU79M6CodGgmTAK+gZZr7BUyrW8VG1FAJTUSLpBMpW2NMh4eDIbZZYEKf5XJOnH3p6NiKDsV2MXXYQQGfdGhl3B/2p+qfX9rfIHIX3Pk4V8w2t1bIjSmIfXTHS8WpjXXgEfXYKZFOj56lP/+LP88KUk5+7nNYi/3mz+Cqur6OW791hDu+vQ814GDCLFcTmhIzM11zAcx2NMG5RiN8VU84piLUp3WI4dNYRKvaRdT5wgWsx994iFmMH7+Ois3i3Geex8ZF9UT6xnYoEg7IJBu0eJZeV/g0CuTBS/a7Qjo9ZvbDNgXnnAUY9HE5k0ATChQJ0wV3cAhw59FawW5wPOYKT0r9I7JWh0p4V9MQVPkqFVoifi7j32kHgNmQ16tMG/JkXhSQR3SRFeFcYUK3UYAHoG1fywoNEnWX/roOEb++qvg4Ra2Cr65cwFcrDe2eD4xahfYCQ7TwT+9js92tD/DVNnpywcJz8tZV3KleH4fa3EQHvnoVd7y6DLB8OMQDymPdPHfuXMx33wJi1YjPs8XxLurhKhMUJ3dc4bjmDaq4eFKdYwo/WVUEXNcQcWQ9esKeXP5yVrh7GbLYF8KNrPBMgPmaaxM8rgecmfoOZ68exzQ/4TREoQGNdMCZl0mAbnbjGrw4StS9uzMmOUky94XTvImaMGHChAkTZwzzI2rChAkTJkycMU7Buf/t7//X+K6A9/H1ldtZ4fwa+MCQroPKOCZOEjLBVr8PeDWZTOt1tdfBIURuMiUoUgDmy4yRX8Vc11ytAVdGoV66sVejATrXZlKziBxVJHChDha3uwWGtrWFaqxfAPd75iYuuVqRJ+q0fWseSu+e5yCb3lgUV7neThyQvqmsqlojtok7aDQhkC4J34D3YvMQUs8hZZOWZSWkvr5EufxqQjGk4+EaS7QyLvAsBTruRifSq7H+06z2BJcmdHX/+r/SdINGTBl2cIDbUVqEP8a7H4FrSel9/jzY5vbOTlYo8065XKr/4qdgXPDsDfRbjxj48eOHOEUZbTUkmG2x59iUhoprhUTHVARbo4m6PdpHDrduhGsf9NBvDw/EdcEJH2/dzwopRbDnL2Jx92zUm6iqwGwaSqJMJw2fCsaiLCyE1uX5oIYiCJWamiy6RMIfE3m5ZK1aX9/Zw/3q7qJZ2IRWiUS07uNKfZ+GrhSun1/FcnhpLPc6AJKeByw87KOG9CG2ugPq8OWm62i6Zzry/GuEruKoHk1dLqKC1qVluhbTx7jIuRDVsEQnjRKdEZRhcDBCYecIJz1s4b5fWsLuy1U23SgfOwdtFN58D5Ry+8lfov7dv8oKS0z61VwGk+z2Ucl2G22VhBy8Fm7H7XOQqqaHuMhCkfrnuSkKrd/5LCYvCuwDBV6j50mzqk+wl+Nork0eC3zelrHROv06vo/sZNbaOVgrxISlfQtC2dDBU7rdQN9+k8bOHziYYmvubmSF4fajrPCYvTQeo8e4E879MXudVwfcfv2tj7NCb4Cz/+5v/52ssNjAkyf/+Zj/wmneRE2YMGHChIkzhvkRNWHChAkTJs4Yp+DcvV1AAJ8LnK0QesVaCavXAzLb3AGVy89zBRfVkm4kLRf+LZVo49Ak7WFmn+degAFCQH/dyHoWn9BwUrRwQGJs2zhFvd7MCiPmadI6/THddJWsqlhENQbMP2WTEcVc7v3Gm69nhc1tmDZ85XOfsT4ZMcVmOtcJ0DmjU43UUGJNzGXGhb3NKsBdvuaXVZ2QXfW64BUFKu583YITCcj2mAptQt2mx7+cfGLKc8xO1SyCCC1chMVEqQ308WDrAa/jr/fOVSo3N09YNR3f/u53ssL3f/LDrBAQax8fY3X65csQeA86uIorF8EAi8RxRwH6wHITkP/5JSCvl248g2rI4ZM36Jvf/FtZ4cke0FJvwAkFB63h0XHUcnFfHC7er1Ly2mqRM/LGOLSfnST04SQJHx0DlPUOcQvqCzhOrUFj29Vp5w3F1mM0S6WK+tSq9BAok1kR0AZ0ldAIDSg2lqZdJh8p9bEel7pXC7AWYRY4y7WBDWs1NEvHZV6wgGdljwp5ySktnpcaeHSM+OgYk953h2iWNrSW1mhIIwXaFIQjtGqB96LAx0tizUWTF8hRb52j6lKPIGpia4SND7bx3U4HlX/xMpl2gpPe3eHUQyA+LKCJvc6DGlpX17F7yMfsmxhD1v2NfVXy43vwdZl0fpIVFotwA6gucy7JYbLCASpZKoF2vvIKZqBKfIQ+cxu08+YtVGXpABe7vccEavNx7tc+3cwKBT7/8yc5m08THJrSibmOQD69cgKxeryvfMymKXpejQ+6ToTuMe5hICSTR6wGCS0nL1odzFvth0zqdxkYttDFDF0y2MA5xxAb2xTujrmcIeYiiDfe+nlWePE5PPe++LlXcTmhprEMzjVhwoQJEyZ+0WF+RE2YMGHChIkzxik4t9kADdjfBFVoMZvM7euEKrS71FpUhSS4ApiCnDH9E7TGtrkIMa0UqpfOgcWtLBGL0FY3oc/A7i4EmaLKa2ugAS2aMUobrBou0PywS3NUaTWr6ys4RR+Iaf8dvODfef3NrPCwiW1mca4Wbp8wkJSub66EVZLIK+uAli/eAMpequHa4zEayqOi8miIyr91By6aE2KxAq+06OUQ9da5a1lB90VXXSNUX6hRoUq+cdAXYcPpRGztmduaO+UqBHl472bj//3Pfy8r7LcxfeDSRODiZdR5mbf1W3/7G1nhy5/HEuxdJiz7A2Jhu4irXl9a5QXKdIJ8myrNtVXczbEFlW9BecVoG9usgpgd0YJDympJEN0ZFD/sY+O0JF8ILcynO4GDu7m/384KfeJKi4vEZ2NMBufwb9/qDMUd0702GvPusIajsRbaS5Q7dcWWT6+SlILtKOGMiU9lMnWYPucRLII7tUbEzG69Y470pkSStFaoo/vdXACi7zYxeHf3QDsPSXoXlklxuRy+1UW32T1CYTa+9Bwa6qiN+ghjTmJ8dX+Xfb7LhqLm/4gY0pUdBNNENmkFfL6JwvqSBKs410Ebnzx8QlfnLcwdHDz4c1UyGd/JCqvn0CDFCjrwJOBSBcrmV9hvL1yAU+4VGonIACQ3peHtWKqi/j88IKCe67WQ6/9T5SjkeM530lONSwwSdiYd2dY8whgt7HPSbSRBvlIKMgtej3nobB9fjakhL7SOeXL00kID124HaLrUww9KXEHHc6MW64PdrYi/enwUdyPczrfehcn2yxT2+/LriOY2mXkTNWHChAkTJs4Y5kfUhAkTJkyYOGOcgnNrXAnOleXWkEyvWGZK8SpAmZLjjKh97feg4ut2aWw4UDot0p4IL/iTiVav4ziFwrTZZhTp3R/yqt0drEqWPW+JeFk2BQHliS6VZEUeuUQ0evgE6KC5DAjgUMFovf0+9mrhcnZOSYFmTZ1CYSvRe/5nCmhAkbTk5jqAzKsUkRYKRV4pms4jKLNjnGKJLX9hEcj34R7XaPcBLrZaufZvmbLPxQpoT0yngNEArOxhC+rroy6IR4eplyIidPlnJsLR84mQOEk8Y9Gg2N3DyvoRrW49ny6vlzCh8Pd+9VezwhLXPtus/AFlsdIYp2ORQ1zy8TEup99HB3Y99UBs3KWNs46zynmEVd6gP/oX384K1eo0VFxZRc+Rx0KH984lH65zQCmzW0wR7DGnDyYpDtio4UpnY8IBWVsgrucgyeWxRYJrqiXjCVkceVRApBkqa5Xy9JVpGTGAFn3cYw2tIU+Bk/baOJDHptMojtkB2kdcuU/uVyhzDiVpZoXSMv1DIq5wp9GzTxW08GFM/fzBCI3QJ6WbjYebKNzZQdOFXNQfEuyrg5bZw+WCW6sogxi2uXWBwuYi6tyj28bWPp5pGwe47zs7eLw8+ADwdnKEuaHF2o4qucREk/0e6xbh2XXl8vWssMo8jFeuAn1fughTgqVmk0dC/T/6CEYicYDnQOpdZW25cUowPRNyy0lJvLme4IRjMCGnzXkNTWml9CJO+Ojz+KSybVo9sAuOqX31EzD5JjtwbGMbn8i30EZfGjRg0TDqoU/GQ9gmaLZJi0QcHw9MJ8VTrkqNfXMRrVqpY07nuZs4clHZBulIYzvTE3MK8yZqwoQJEyZMnDHMj6gJEyZMmDBxxjgF524fYL3q+gredldWm1lBzqVyOShSUdmgIe3qEja2+YI/HgBwiaEVaLmYcC12MAI/DCd4eY8CjwWt3sWb9a0b13BSmsQq59G1K0BwSQokKH1sTP2YT0/IRYrtirKAJKIsEjqNK7iKPW/++mT5D+QyNhnkSq+Ia7/ahPTutWc+lRXUGhMKaJU8rkpMbVNoKkHyy5eezwqXl0F4vvs+Fmtv93NY1NlD4zszJgk0082tQXPNnTIBnRDjzrn2p4U9f6f/6W9+ISsoC1IQ4Fwrq1jyfGkZ97c/wlUP2T1a3XZWqFJjXJGCcRn0bcJOtUe156XL4DbvvvtuVvhn/+X/NSv81u/8RlZ4nrbJfgmavRqdUhP2wPF4MPVJ3nXICT2uVS9QNpwQbo9FVpXqi/MaUdK15sRaBZVfYuo9l6vXE6bni60BC2RxvHEh7SD6XTnu0sqjTHxK5W3IezGgR+s4ZOYydteYZy8U5JnMkxLTiXufv4LbVGZr9Dtg7I/oraH0XONcCSmXDPy/RGnx9XUgyiq1rLPxzmNw0ZQcslbG2Zd4T4tFnGK1hsqfa1LPX6NHMauxtY/L2e/gqyNOVQ3GXLDA58zju3ARebIJ5+dIWnVvTZUsULwa0ua6SgPwdVLcT38a6cBWV9C3S+ycMe9vp42qHLdQGHOCo1xHCzspBtT89HHWx3uymKBNMZ8UE3bXMUnvhEY6E3aYsSYBOccQMZPgL73A5z/R6GevY6bj/ApI/oMj9LeNFl2OJ3TcqOJK77dkZk1jcJsLLnzsXuLEhF3ENv19UnpmivyNb2HIv/Ly53AczhYVfZppcPZNs4GzYd5ETZgwYcKEiTOG+RE1YcKECRMmzhin4dzNjaywSCFoYwEi2A/fw2LhmwSqBRo2ppG0kc2sUKLAqVrmOvQhXrGVX8wi4Bp0AF5ivqGHTGETjuV5i50arFiRFFe4J1eLzQILKgbFSItMIBWK9DZBFZ77NBwVJn0IwM6dOz99QIZbqLCGpE/kFRHxo3SqWpVfpFGtS02jRzLpsj6y+szzjkl+zCMft6FTHVPm6pxIUiYwmxf45Wxy+1Pg61kgbh6z6dIUv/YZdCqb6muvAIpVqABQLxK8RzHuVJtK7w49DXz+IXhtHXrFAltYEwoXLuDeCTPevHkTe11i8rur+ETc+rt/BRxXJ/oLaGpQqaA+qaxl2by9SY/XTgsOMlK1hdbOe1Tw+rQC1k2cjYUCHZWHtEQImQGtSLk7b9jx0YAHpACSJrEBFdcBnRlqbLFkRLH9sIkDpgBuJc7XuGUU7C6QeDjG9IFmMTzOPixdg/K8RDJp0WilVqfxaYrLiWmFmrBva4W741EXXWQyMpsrBeZmQrOexdxOzmwXqqS4M6kJI/o8bx+hMe/sYJsRZ3JGY85DaQZEo4nHGfbbWeH4EM3i82kQs/9sbuV3eYGy+Wdvo7oXmebvhefRelcu4yv5bPSo6z6iTP3okK4CtPIoL2IcJTH1z3lePGte/LN/RYk1PwlTPVSJ/WmboDx0voduVvJwf0suzYQbpLh8SvcHkumiHSRlL1Eo7pIhFwt4/i+XgYWfdFEYDiUJJiiPcByn1OQBafXMcf35L/9tFD6HGSVNn2mmr8hJBwFe3zM414QJEyZMmPhFh/kRNWHChAkTJs4Yp+DcT78A2ef1K6ABhztgaFqQXqsQPJJilSleSmO+WfPdX/JaX5pPsRSCjgLfml1+5eSSUa7wZQ0dW9vIvlW5zLgxC7k5gLZhNQTuJlRUVhahebvxa1jmLw/SyrXr1pwozPgwpFyiOyG8KrLpHOZOGgYAMmWCKdnbylu4RQVjwPxcEf1X2+19boNFxKH0oYQtlpUv8JdnbzqTne2UxG0nLuUT/5wWJ9ixPfXJbJY0RSXCIvmUemP2FytyFlh32b3iqncP4SwxItZ26CpwZQ0QTKuihfSFYnYo061wQqFBg9yVRjMr1BZw9g+XIKq8xYHQGtLhgcvwe7mtLu0+ElbMpRkvpbPqgSGZbYHrvrtk8uWC9pqOmFzLKgFnJRPquvtEtQPy2GOaElD7WmeqOI+et2JgshgRefY5iqsFfLLI1fk2swQ+oZ+JMsTJgzdJtIgexym5eGJEoQyE1VBUnrPgOjiFzSHqcG4oYtrBlLgv9ee+CYR0wZUdyibFn0M6CYdMsDUmv1TyK4e911EKMLaPJc9wdvCIN3cwPOaV4ja5cixh35iwYFnWk21s9nd/7UtZ4Ze+IswIgB/Q0mE8wqN4ZwfuBK1jTh84mIoqN0DOIxuftI9xp3Jj8/lmC4seLNMXqjEL+KpRxjUu1mVMgYrVyyk/4SxegT8WdHi2bFz1T++h9VoWfBiS7nJW8Kvo/8UGmiWWBwUdd6MJnxhSpxNTJ7nvB/pSytlA2S+srKzyE2w8lCs1c/B1U/L2E0+37J+l5ekfAvMmasKECRMmTJwxzI+oCRMmTJgwccY4Bef+B//e/yIrhPQHuHcHGdmPj0AOV1ea2J/K0kqlan0yUjLSQgEkp03zwyim5yHRiV7DXafAmvFdW1BFR+abdZKbG0x/IlSrlOvpDCiOlbAsVZ4mVNUjvPWI6SbzBW0xwWxMpBMTm0QEs1UujlaWtL1DAJnL5yErrddBb8YknCExxYjHkTx1Yxt2kXvHuCkuHVlPItSUWPspQllr/lfzcezTDngiZdLcbQr0tLSY6mhgoYmOmatomSx9OMRVb9MoeMwGWSmBWa0vAA0pNZvW/vfZaNd4WzceovUmA9CepSa0wXIBrZVAlr742U9nhY+37meF/ckhrxQ3WlSwQh517RogcEB318cPYUjbO8Y2AWc61pZocbwwPY4UKxdwrlg2JiNaTxziKsZc+794jiSTXrztQxoyE25fuon+Fguka0qAGdDSCKc4bMOItnuEwTsZoPIlWmrHdBNQrztki7lOnxeIkxYpSHZcCIkdjv2qNPaSiLJi8vL1i2gorzgXgH+4o7Gv7GDUD5PQyu9XBtiS9ecpwJT1j584aieiWq3Kl/NtGqOqUonbfCQ6bi4p3jvEU3F7B+C9Wm1mhYdP0NujEE2U8sHS7dDFtwJ4W12AgcOIPtty1TjsEIQm+UyLNSd+98u4iWUazkjbLFuYAlvPFejmQgmH9tSaWVOBTzWrUEBvb9QxRkJu027jSvsDWubykmPSYLmpJ5HoOh3XZbkujx1uUuJwrtGe2tZcF7tHyjsl7p3EundzXzjNm6gJEyZMmDBxxjA/oiZMmDBhwsQZ4xScWy0Cacb0IvjUy0jzff8BEn+/8w5y+rzyyitZoVjEG/p4TIhBLvJw41FW+PgesPALz9/KCrUmtJEhvQpjpsuJKIRLSAxSiv+UaCmeoY1ykoz4Gi7EegJkKNuOdiMEZiGSqSl1htIhz0YwGfAU0/xHstIq/U4L/CQhAGxTPynBoZR+nQFI4OY+DI13j47wVQdfOalOKundyWaxZwrTIQ3tU1iP4O2s4Pa0r/76dGkji2v2CYIOxwC8h1QVXqGG8IB+zoctXP6AOPeFa9dwHHYPoZjhAPdlcxMoUo228Qjpor721V/KCvRkte5+hBxtclS+eh2nKDcxIr737g+ygjL3VbleOxnoElGNpQUMqGtf+XxWaLepvmYitvVLgMk3r8319Oj15N5M1sQ6L6wx318DyMymgv380jJPQe9c5pZKCdJ98rqUfVI5CsXZRj4+sVfwSX2V3ggpAGZVwmhNprA5dofguq1Q+HR6sMiHxGPL54bPuauKgCodiYfqZL9tfTKUuiuVwl/HkURfkzuRmB7nffIhz+ke4r7E1iyJxfqoGtgrleGvUs6xGicfu/LT/eGP3soKn3kF7s2jgA9DuiWU6SFQpwV3uYZPAmZ5a/dwyJ1DFHYP0XMSt8m6WfOiUsJxfIlq8zkypTjUV5wRs6bHvhrftaefK9EEMwJHPQznkGL7IbMWdohzz9P81uH8jyZcJLhV/9AyjWM+KKwRDriwgCG2QMf1IXNrhuH0NISV9wE64Xhzm8y8iZowYcKECRNnDPMjasKECRMmTJwxTsG5E4pyhemENX71V+E6+Hu/9/tZ4Y033sgKv/RLwGKer+Wu2Gv7yeOscLALM8noJkRZohPeiAvJA7x9xwGFUmQHHnmFFHFaTZ9jFq1rzq1ip2GjaICW9w+oM0wS/VUxQzj1pv+UENvh7iUa5C41Fqc+GZIhxLSBPWbqroMOWMSHGx9mhX4gYsyU65IW55iBNfyEe8J8cDMTT6G4T/nkFEeFHO3MbbSfbEKc3KCqNvGAPccO+sDbH4Kabm48njreahXTB9fXwLUSLmAfd8B//uxP/jgrfO0rX8kKwx6zRO3jFN/8B38rK7z++veywpPN7azwMqcq1ldh8yvCVf3gR1mhTgVjgQ4GLz6PrFUlynSZDSzP0ba5CUE1vT2s5RVczlIZjTAbt67QbTjvpKRYSnxGAwXNWbhSngumcYbC4e7OzB/TST4JMp1BTzMUMfl5ODP6EonjyQ1zJEi1vAo6ea5pl+/GzNlnR7HW4M9GFE8zxhNiWn6RW5TMmo+IXirhHaucryZgxbQYgbJzRwbanGdxdFPsfFzIWXeb/gn3N/CcvHIV3rnFKph8qYhJkISeLcfMVddnSrWjNg+4jxHRowVHpTFz2bORzCBN3iGXTi/C4srlJw+NPpuqS+MCK8XT9fwCavhss50Vyj14jMiZJGnQBINzW+t11GfjSJME6hU8g+4Ze0XAxH8l1vn8OoZPr4vn7aF/yOOwb3MewWXBJ8WVLno2zJuoCRMmTJgwccYwP6ImTJgwYcLEGeMUnPse852dZ0ae5WXAhAZ1Tb/1W7+VFf7wD/8wK/zoRwBcr72Glen54tYqCNX161eyQkwtVplrqGtD4NzOnTtZwVm/mBXSJnCfRVtRrWs+EdPv4yeoowqkTzx7MsOBTtBgfJKexkjn7eUTEkmCW2YKpxKXhJdqQHgTrj0+6gEtOiS9PRL1CRfj52a4M6zp/6/xFPNbxd/IdWEmxuwe3R5NAFw0yOEB9LEeV9/vbsLz9guvfTkrPH8bpGt9Be3pUgNZIz/9yldeywojipwfPYBG9Fe+huNsbQPefu/1n2aFRr2ZFZbXMOlQ5ScrJG+rDaCh0RLu1CIzAD7/7HNZYWkJasASUwF2Ou2sUPYhP+6vYoH8MklvrTrXbOHSOQwErSgXEM1nKNgI6re6gSnJqmCpk8/XCLrOYFg7HwnY2JpmyEK1J44zbU+tIzszBss+/Uzk7pLI+FoYlhtLfi86bc+ludYJiit1rqaEtI0q/8n/f6L3ihYSSqsafBSpVXudPi+HnskyKc4nifJj+7ybY+pRd49QuWdfuYHTxUzGRxSvDHf9EWrQHeA4+0doxoMOtqlUOWPCk84milR0A/ow05l5OGEiwjGeQ8d0lu2MmJqN8LY3wMX2x2iQ5SKe7d9Ceknr4SHu+IePsHGtQu8LmqgrqeUOKe6DbV47ddQuH5gJJyZ82phPhniqNFcwDP/Wr2AucoF2H7oHSujpuZos041OpgqzYd5ETZgwYcKEiTOG+RE1YcKECRMmzhin4FyfiY1mUZ58aBcXwQf+/t//+1nhj/7oj7LCD38AReXnPvtqVijRJLPJHD1lAje/wORHBJYhXVIdJpp36fmgpbXJDIeVdDYgEYrjaQWv9gpCanFzy1AUatR8inzIvXNWwaiQ/WaRFLfINixQdTae4KRa4VsqgEUIHw0nZNpccRylTBeVU7UZQ4N5//9kOPN59FNWXv9N4qnId+6hg5D+ybGYG3DNcRvi1ZVVKG8Xz6Gf9EII6pwKWiaw21lBLscOQdD567ib//wP/nVW+Oh9qJ2f+zRmFn7w5g+zwpvvv5sV/tE//N2sUFtuokBldVTAkb/2tb+bFR48gH+IZjpefRWaXq3g7nQBk2u1c7xkdKrjY3zVJA0OmF9sNhIu3peRghShsjB1mTJPRDSW7ytvk+8oc1k8tXHOWlOh2rnd3iO8VefUxnmPSISXVefpeZbI4nIAX8gXW+Q2yHJL4AElEk7j+d03Hys8e24XIA0qCZ62tafZr8Pcgnlj8lkUjTGudx/9PCs8+gBPwmgEh5Am+WGSVyhng9IJS+R8dIQ+MIkwETbs4ywhU9QxeZfV6dNaYQ80+NFmOyusXbyUFYolDB/5kKgLzcb/58c4aZ80eiyXm0R2Lih4SlaYPyfpjZCgijEv9rvvodE2W7jmdg/PQHXgXA0uus5S0ccwvHABI32/hSuNI56LNyii5/OQM2JeEXMotRoVztL6z8Db06aojNmCCRMmTJgw8YsO8yNqwoQJEyZMnDFOwbmf+tSnsoJ41OxLrnjU+jrkhb/5m7+ZFf6b/9d/nRV+8IPXs8KA62+XlyBBXGYmtbiEF3N7AeRt5RwIXlRhWvY+fAZc2qV2PNBO19VCcgKHGC/vOddl5T13etW5nedFAgSLKNwdDHFSr6BVt4Bgs+E6stYkMRPO5V4hkfGI3sIRIclE6Y1GSIp03EEKpJNLweedPQ8xq1O/nFFF/sJjdkW8585ttPV1dIYwFGLC7ag3AHm8InZXDvrxEDfowwdw+djaQ1Izz5Ewe1pQN0gh7l25Du3rB5vYfacLE91XvghVbXUVx/nZB5iYkKfBwT6Ww1cq6DDbuxD3HnfbWaHIvGC6rh7hfJEKbRV0UxJeezL/Rse0WU1yGMjxSCYZ0HHihPPGtODWtXD2Au1Q4tzBIJfBTn8iKa893dtD8lgpXJN0Ghs6M31D8wsJDyjLaI1Zl83izlp80EA4SOeugpd7g1rsxEuDhoPgrQTJHEeqD0HrhKO41wKq3f74+1lhbwvzAvEQX/k0D0lpu+HmrZpPSJ2gx+yutAQ5OsbpBiMUggDb9Pqo7dY+HhodDo31y0iteH4dqyrkCBHHaAA9jmZjhwd0eFudVGsE+FCl3jiI1DLYPVBf4gzdURftYB/Qh7aAQr0Ozlzh017TIgv0YFmi+fPSInS2Pc6IfftffTsr7O3BnsIqoarC/l1aK3z0YCMrrHG5x4k+xUkHe5oqn/jXpEIzYcKECRMmftFhfkRNmDBhwoSJM8YpOHdEG1sx21m97izXXV7Gu/Zv/yOIG//5H/0PWeH1N0A8JC9sLD6bFdbqgLf7fB3nQmFrdRFMr5KgPkmCalRKZVYMNNgiCYltgrIZyWjuuhnrExSOj9tZoXUMXhdFyEZUKJWmzzUTQl4RUxcV2GIWHSDL+SJiEhXtr+alHE6p20+4LEiwOBfw2rPbWKfQ2/9xWtycZszf7RRQPL04fTaURKxS5Ypp0rN6HZ/kpI5/7JWr4D82O94woAGmnDXJmmLe6aUL2Cu10HPaEwiAb34KPXDM5F9PjiDTTcCAT5hy8G76Hd4yS0we/P/egx6/QkS5EwKBKum0uO5hl6pa0tNbV37F+mSI9EryrQjZULmRAlu+4Em0jI1zo+ncoVbQlfh0xqI5nWHIrqtGEMXVcTR1MjPY8svh4Wx9wseLG7NeeuB4UxuLgtrzXwTiPGXXtDZYdgcntiGvzoEkYkSL18Mn72SF3cd4po1aMIdJOZGkvq+5oZCq+yIx5icdImgd4OG8ASn0cY9J/UaoS+sYz4j9Fk/no0tfugotbr1R4elw5KIv1bSMFOYOzAmT1knAHIXE/nlTsXtwYYI6g1ZVFLiqokA76AWq3FdpRr22hvUa8vNZ4LyeAK/vyWMH5xrQY1w2Po/HQND+iMSYN3HSxb1786d/lRVevgkLi0YDMt1csy3/EPWT/DFrzBZMmDBhwoSJX3SYH1ETJkyYMGHijHEKzp11Czwt1fvcjVfX8GL+j//d38kKwwnevn/4vT/PCo0mNr52HfakjYYcZYEp/BJezPf3sCDdowh2oYnX8PEYMq0xbSpHNFIQpZlQDduj5i2YAPd5lM6WyGwXqQSTPanWfcfxXD2bmiUkIBMST7l+3CPlGHN1tpjVOAb26dPvUZU/YXw6DdJPiVw/eZrB7plUuScyYU3f+rxK6icz2e2T+cpJrfsejdFWArxKIu8IM0r/PJP8LkdV/KrEhGUp9bpyurB5O4uk67GFs5cKuL/FGvCR8l8JXnkcL2mAirm69bycNBlPnUtNoO6hLGDDGBhq0CdQiub+XTset3EcObjmDc7umgp7ojHj3O5AjruoUWyH3NiaKri8UtciDZaQmBcUc9KhQJsL39KcBQZUxNbQhIsizmW6ND51p2cBCo7Ozvuly+G2jj13YCb5+FEX1ZXKVkIfsWKsaa8L5r955y+yQvvRd7FNwBxeNmro5jMvKOiROGYPL9Lr1XXycRmTa8stNvXwMOwM8NX2NvrJIdP8NVcAQte4PqJa5C1zdbF6HFEsbWlibu7joN/XoPNYwBU5lHN7pLhiraUy6GtzYYkVOz9VWF1BVZtNZnbjg/dE2s2ZWSp9wltVJh9+6VMvZ4Unm0DQASXxq0tslgoa8+qVW1lBTwNnoJNy+DjTsxgnZLq5f/lUmDdREyZMmDBh4oxhfkRNmDBhwoSJM8YpOFev6rm9JCOan91b0qmICKVQaGaF3/mdfx9fUVD29jtvcC+8a1+/fj0r1KmY2tzazAr7R1BJDsljP7wHRZw4yWis3GGooZwi5LowofxSLgdSHd+4cTMrXLoC4dZgCGxSoH5yQghwSmghOSHwiFA6ITaJSQOGIZWHNP+M5CRAF1khhFnD26doa0/keX96nJbrae423DSXcpJkuoAqrs9kZAV5COiPs7nVHY8kSmTLDADnI5LzClFMjQreAjFsEFGzrbxIUozzjtu8HZ5MAFgvuTcUuSLetXEKdaHxKOC1T9Npm+Bxwj4dCf4qZRgbYcLd43Qad8/6maTpXGoUJdg4Cqe9TEXDcgxLEBrkUzDTSc1caVat6YLjsJdKO5rfScpiWdVc08sDJryDEdmvLWEziZmr6YDc90DeEWyfXA/Kk+b510je5rfYiYRWouUR64xtJCuN+LjLDSLIMxsrV7NCGn8uKwyO4NEx6cNtI2WHtGz5XfMWMOlhEuJcxUL+9jKZqFNh+8QH7bz7MXhyb4J2uHwND6jlJZgS+C6ft6S4Hj9J2OZBhELIvv20xF5C6Lx8j5nCqnWcdH0VhPbcOSSsXFxEnaWzrZT5WOCsmeyO9WOheY0TmB2FVAYRkaYP+BXNT8IAx7l+DYbVX/zS17PC0RH8ajY+fj8rjHpHWeHDu8j1+cwzz2eFEr2FT8xrzFhwWHPDvImaMGHChAkTZwzzI2rChAkTJkycMU7BucKeyvddrwOx9npcSD67dJq477gNKHfUI+1JQMy+9Xf/51mh6AML/PCHyFH1859/gK8oYFPKsBELEZVXoso6aUimF4bTuexzGR65lnJmlct4i3/wEOg4CH+UFTpMT3/xIsDF5cuXrTlxwv9A2BAnHXPBdcSvFrnQuFBuokBUEJIzj/tHPOI0ZztJPqarYU3zsU9uNrvsXV8p7ZDUjFrtTgFbkbVdBFCqLKJBimWsj/ZKcrrgKQNZuU5HxDslKbKEl8LsFjHUkKJEp4Jb5qXTK/1jWiv7dNwVxBMD1wyFahhOpl1VReHsmJxQWbNEIHOfVQn8OJ3BzhnR5jRkOwf52aW1RlUnVJVbJ1xVp6JQgADS8yiCVcUsYbFpFbcSw9knSJnFj1BVYuoT3YyDl4Vc6CpLBA4ozfFEM467dm4QwXvKs6ckxqF8R5LpuyOfComx5a8rIO+mc98ENJUzKz9OZttZcygk16UKHlPnroPiLl98NSsMuhih/SPkwusfPuBXKIQjbBMFeGx2+PxcWsg9pTlTYYUpdK2dITp5s4prvHYTs11N+pB4dBTxeRd8UW1C/lSAOjc/YZ8M5nazC5zSWqUAeHGRnudLcCZp1JtZoVgss0CFNgfvCb8Ca+oTRTyT1FKbiK7ffwhyPhzgIXDhAhjyyipu0NERWmyTMl1J/Z979hlUfhV63cVlPIHLpSpPSh2yRLl5pfWv8c41YcKECRMmftFhfkRNmDBhwoSJM8YpOFcUV6+0orhjGhdIXiWAmbsTsDAOgWGFxep14L5/+Lu/lRWai3gN/8vv/mVW2NrBKuaAatjJiGtjWR/fl8qL9oxkGfUF4AUJOxXiDEIQJRb07l+uAlw/fgxd3ONHKHy8igxHX/nKV6aObNvTfMxWuno5hIq6VGAg6VHdKpiWENGkM/mnhNnEV3PylrPBvEZ5ScuHXa5r9khEC8CwhQKoSBBS8soqFcpokMIyBIqFBhIt+fkSbBZElFRbby41cmS2KUlzH70rZFb64qJ8D1CfPl0sSnTmLHryT8a/ERWzhSKvlN955I0hDS5csXRJKHOiJH3g9FVMmHFM5rcniBBhMm9izCNbnI9Q39Zic48SUyHo2ShyqbuW6ss/NiZiDWItq0ek5LG5hpXy0Ximm0nhnCYCoby51GpqnX6c4CqGVofnQnhE4kWJhOktHCRyeOAl59MQvC55I0goywtKee2JPkmmIaEiYsIvO5eU68FF8sz6OITkSSz6L/EzPvDZaReXpErFdE9EgeioDzPnXgfC3V4bs0UjpjjsjDdVyQK9wVcuQ1m6funTKFwAgSyXULeShyoVabQrB+Q4yGcdeGl0wok4dcKlAUE4d2B+45d+PStUq3iEypRGredSZ6ulHCd8eKZtE2YtevKYyVqYz3SwD1zIE7rhXNUaH0o+2ufGlStZYcKx5uRKYNmPqD6zwHl6WcSMjv5p75vmTdSECRMmTJg4Y5gfURMmTJgwYeKMYW9tbf2broMJEyZMmDDxb2WYN1ETJkyYMGHijGF+RE2YMGHChIkzhvkRNWHChAkTJs4Y5kfUhAkTJkyYOGOYH1ETJkyYMGHijGF+RE2YMGHChIkzximORfECPDhk7y7DDlpGWN4J+5PpbfQNXR+iadedPEFjPIbPe4lfxjQxd+hGZM3YFtszBSXHc3hSnx/JlkUWJ8oqOesNI7+MWKkNk2kfELd3OLXXv/8/+3ezwrUrzazwzV+/nRWuXodLe3MRRj+1Gm10XPiJ/+CvfsoCbJu6fdi7/Kf/2f89KywuwjAoyS8HhUgJNendk5xIOhoE8I36/o//NCsMxjtZoSJvqf12VhiN72aFO29jGzul6fNNXEi5ij6ztQUvp/0d3MRKFR5Mvo8jDwdwY/nf/Me/b30yvv97/wIlOZvkfihzC9aMMbT8UE546+gTFpwZXy172k4lTxyonKPy8WGCRl1XgQWfLkIOt5F9+QlznOl+KocUfZX7T3HQOedesD4Z//v/w3+Ak5Zx5HMLuCnXr6K/tTpPssLuPmy7iwVmj+jDdyzgPS2X4QUzGKO/DfptXGCAXnrtHI4cxNjraIxFceMiupbyVpZSdICgRxMumv6co/mOMkzs7+/zkmkaNWSyT2Uqpbl8t40+dv7CeV4yPNmfPIb7z3/4T/8T65Px+rt/lhXu33/As+OpsrmJvQ72MZxbx8dZoVqj0T+d0UIa2csZrcYMlFcvXMsKvS7a58o1JCdeqOI4clhz2G3u3P1Ilaxzswvn8YgIOX5/8OPXs8LP33knK9y4jYOPJhhZ27vwRSrQcang4zmwtAxztNVVOMgrKXKr084K/9k//T9bn4zf+8PvoBqxbJ5YfxqZ1Yq4kPUFtEOZ3mQLTfgBLddgiBbTAWq7hRbuM4VqgcO65rP/B7iukCmZaxV0mOUmjNWKbE/51+eZr2kpNaZJ0/0dnLQ7YDIMdqrRGPZGA2b+iNjycq1SngI9Fn73H3/L+mSYN1ETJkyYMGHijGF+RE2YMGHChIkzxik41y+QZMaCaUoKyN2eYinMQo5Y9ZXyKfKdfesB+KFD7FO/BivhhRXAjVTe3DNG07On0PV4/E6AV7vLQVv+2/kBZ3Nt6r1+JoWq4u/+BtINXrsCW+rVVWw8HgMHDAdgX4uLjU+eIEdeATO5JnmaPQJAIUoaidv0Uk+ZjzPlJ55IuGWFZNcVC6ht0MZm7374blZ4fA9w6fqz2ObgCCylP0K19waAt7aLrwYDMMACgaGIn+fiFBVmZJyNcmWa0MrIXobXnjBsbqOvbJSkrzxgbrUva3JLOJc8inu5tlDVNOlVrlDhXHIyi1grr5j4npv3PO2lk6p76m6mU1+dSPaJbUbWdNSqdHWvoH2aTLcQclrEZ98uK2ku4V5xFckgNzsgmV2C/ZIDKGdNiCtJepeZVPL+FoZql4O3VMbZdXkryziFA3xo7e7Bcr01AFVzx3y8FOgVHuKkRSaCdUnmfdr6F4tggyn3OmyjQ5aLeW7Oqdglql1oIlWnRtbaGh4vrX02nY3LuXb5VlYYDnGldz66kxXqnItZqsGc/eF9NGar1cV1cYReuATyfPU65mJ2iV57/a4quVjHpa0uo9XefAcD872f/zwr9Huo5ITj0Xbx0Lh9Gw9MjyTz3t2Ps0KhgNvx+PFj7MVutrK2Zs2JNULgnQPcsuEEbV7SNA157GEHD4E6pxgq7JxK7VAtcyCc48wCyeqI0z1KFWCx3zqckNN8XMgsFBojqaMBiSfeYIwjt3uomKztFxdIg5l3ZJ8XGI6YrliTgGwNJSNwZn59FOZN1IQJEyZMmDhjmB9REyZMmDBh4oxxCs49EUrvx/8r61ueAnBaLSnomathKWxKx3h5bz8EcDj+4L2s4PAN3aNMq0Y64ZWBO2yCKb1iJznTY0GElvXIYTJRRs51Z97Qla0znkm3lye6m/7G+o3f/FJWCEbYpksFbxTik0IBDEEMWTk7hTImxCYj4oUJWyxlqtEwEask7oiZCJN5NHcPH6luH3/0QVb46OdvZIWDJ/dxqAHkmhVm5CwQAy+dBwga71NLeRTxvEyyyLR8RWL/xhqASYFZDxuNZWtOFArse7xDHtGor4KnArMD5vkLdSTeMinrBPApw8vzvNrTEFgH9FxRXNaLJX3lEtWK/XoF1XlagZlT3Dy/o8UC2icmyT9xMXOx0ZiIN+LuD3Yxjio+Wr5SwS086AJV+SNwrYh1jmx0GM9BL68W0QPcGnrp9as3skJzGdrRAvL8WjX2ZF2OywEuca96eaFMXs02DEKlBybT5pC3i8rfid0dF4Uyue5ogMp3ezhX1JubGnP/AMMwoLxWjH1//ygrhLw7t595Niu8+Ax00c06WnWpChp84xYkwVvbG1nho+49XLGPyv/kre9nhUstgNb9I+iZfQ7e5YWmKvnMbeifd3eAvreoHF4/dy4r9JnIuXWM1K1XLuErhxra43YbVxSgQaSf73Yw0heJtb/w69NJkRU+5xqWl8B1j7rsQpQEh+SdPXbgJEHDNsp4LHQ97OXU8QmT51puiZmhU3S8/RZ6RcApv3oJX9Xr6G96Puip2KfYOCXcHjNP6nDCNQvs9rmQniOsxAN60u3a0w95O55+YsyGeRM1YcKECRMmzhjmR9SECRMmTJg4Y5yCc3OdIBeaarXsCW4yvVo8B6rEjAmZjM2faofccufO+1mhHuKTNMGL+dF94MfHH0MyunTxWla49alXUekSpHExGYJjS5mJcISV+fYuinvKizmRzgkBrv3Jb54WlTKutN8Dden2cV3tow63gTJNa/Bjgos4kTqXOlsZPFgigSH34lf85HAX6+v3tlF4+PBD1e3OB29nBaIUq1rEIRKbPLYMclIo45iFKs5bof6zPwTySFm5MVfoB1wWvb6yyNqi9Ybk0rPhedNdSCJwAhjL4V2UnFU2BbnyVuJeFXIjBgmA5XvAD6TOzQW3Fs8+7cOgiuWfkOvywFaS5jcG/3LUJARu+W1VQX2A9zXmum8fGPVEUPMccuO8nUN0oWGHl0O1JGdFrDjCvWgU0BcqLuBeMcFdri+iJ7S7IJBBCCRYY5ew6aiQ8roc3gs9MTx2codiSw1D12niAqmoTPO7pFOwDdnJHY50N0CdOwcQuA4m6Iez8e67kLneuvUMrqKOk/ol3Uo8TBaaaPEie+aNy5DXfudP/zwrbBVwOSm9BUZxOytUl9DQBZonrK1hyF8+D/S6WsMsSa+bi68nI1zj4iKGz2uvvYpjPgCuf7izkRXW17DNC7dxRQ8eQnk7CWhlMJJ8Gpe2tIhZlVvXITz+4me+YM2J8RjDudHAuUqk/YcHqGpEYqzRJ2eGYwpuC/y5cGy0eZWdocSJuQqf5AF78t4RriLlkQtldNci6avmv+IRHkoxO15AnJvOPBbCgHNk3Etq+WKBg39m9yS3Q5kLdM2bqAkTJkyYMHHGMD+iJkyYMGHCxBnjaTj3RMivAC/Us5DToULPlUA2x8LYOuxjyXCZMC10xAahH9vfxwLwhztYmFy6+3ZW6HZBll76wi9nBb+OJcNxMq2qkmJwVjas+uSq41RkVfjUmfpKi3Zn/+6QaFn2rftcwf3kEbDY6gowVEAeJTYoOhESJshF1qN2NAjBInZ3KeF7DHPUhx9B4TzsQnDoely5bFlpAOrll+kISiuDCQlMu0MCw0XQvT5abTxiO5C3OxTC1WpgMlUuzJd96GTSzgq3n71izYlqmZxEajnSPNeRsk6kVzYFMzpb9iWJwHM7XHFCmRtorxlifMJN15oq2LnmWwVunOiA5D/TeluLKmwrIbzNC9E0zo3YA2cdBC4vNlkJetXKUjhvA6qFKX6W8a9Wkve7ONf2BkBoStXlyho6ydIFinLJkGXIXKMzg5PP4LA1ZLLKaiQJepR074M+yVtPUn981R+hr9aqAID1GmchqAA/2MWD4vUf/ywrjIZzpwy6HQzDx4+hV1+ZNHEuSdM5LrZ2wUX3dyGOffQEnxz2Qcnf+g7moSp11KfThwC43gDlrtD9W5zWcwgkCzjXwoV1VfLlz7ySFfIxfoBn4M8/xNCOIjRjiQ+EKiHn5SsYYrsd6Kf1AL98GdbK9QrA8ovPPZ8V4kg8mT4bjJia9nCEJmrQE7uyDsDb6eBOjYiOheuH7Mkd+h54OIwVWFLeolCtopsvNtAyw+GQl4zCmLNFBY8y3QL2qlXZ/2kvk/a5e94r9LTX9ApZNEeGz+dMrp/nzifsd+a+cJo3URMmTJgwYeKMYX5ETZgwYcKEiTPGaThXMkUKFmcFkMwzYxE+WV46jcXy12ASrn0Ck8EYeOSod4DjhAAvRyHUWU5RS+bxYv7+u29mhUmCt/ibL76WFZbWAS6kBrSFoHPyLPUmv8q1r6JqKthTn2ib2SZLyJo6XNT8ZBOQJ01AHvrkDJubALyXL1/KCloJnrCujQXAjfZxOyu8/Q60yh+8TzvNY2SSGnXQhisESv4JN9FoTOdJCkonxDXHHdyXew/AgWsXuWa/xDRGITa+sEZIFeDeDfrALJ6DNt/Z6vLIOODf+Y2vW3PCV/IjKW+pivRyTwNsIg2tkycRk+fDtKOCMI1LgOnmfytOb5OnS7OnBYc5xZ2ZGnAkVD9hzTB1LkHOxNNEgADmtILdZSO48+XgFzkjkOd90uwFB2R+0txthJyN+uq9u6CFnU3cr+EIt3L7MVr15vOAhFevo5fKptSd1SHrscCl9zZHRGzLCQTb7D8BQ97bbWeFETOg6Wqu3MI0TZX60t1tTOW0dnH2dgcPiqMWbSBm4soVmNYOhrjSQ9ovqANsP9nm5qhzGOC6Xn8TNFWq+5Aq6HUfPrfXr76UFSYUCbdaGI8XzmPIXLgIi4Yra2jMo8MjVXJAIvpk8zGvCJW8fw9TNvubGOzpc2C/LtnmcQv1v3EZtyzk3aySVC/TNvkDpmDb2wOy/vf+J/9L65MxoDo3ZsEJyHUXaPO7CD7cp9lIjxhWBjhjdsDOEH2gR2+EPiXbiwv4qkJJc72EftbuY//+EA1rs+NVqBaWol4TN0U+OsYcWaUyeHXM2asBZepKK6kxqxSfGj7xrCPPTJg3URMmTJgwYeKMYX5ETZgwYcKEiTPG09S5Tk6LppWQAl1pzkinxasxhYudfaCD3R2sHe6OQTyeHCDjfEw7RL9MYR6RpuNWWQu8xe89BpQYdgB5rt1+OSusrwPgLHGlsMfX+VSpsnLZMKua+x7gk2RGr/uUVGhBgCPu7IB77FJDuL4M5erBLnh1sQTWeuUqrlSJus5fPMea4YD//e//D1nh/scwUoiotq1SmUYxoDWgjG3YzZef9yeo9gHbiouhrSRFTYbE4/VFMKJL5+EjuvEI8LaxgNMkEUjOhIYS2xttXEiu4sYpzl2am3HJsbnkWRnHeIM82R2wB3p5PyVCFK3UbZ3JL6av8jRGeeeWFndar3tCnS4zAS75n/XgJXG2WUXbmx418jS2Qvkw0HGUZFTqXFfTB9Z0yD85Yk6oCffyNOxytbD0sSg8/BAUN+3i2NeXmlnhmJm2DunRuncPI/R4D5iuvopxdO4cISF3D4jWozw9n3g1YTLp3qCDQjThTY1R+SvXr2WF1UsY8kkFR25R712ioeurX3wxK2jKYzYkUV5vsB/aYrao6v27mF6RJ4xcIM6fA33djSGJ73Uxrmskpaur0Nnu7qF5d/ZQn8+8Bvh5iSrZkER9h49Ey7J8DuRWGxR3axdV+uIXYImwQxfc1iGGf7vN+S+S4VqNyup6MyskVPv/+PWfZIUP7iCn2wUOzFmcGxC6KrNhFHFRBrlnmdrgMn23g5g2tvI95siKZgxphxF7OzW0ISfLlNiuVkV/CznbNRySM3PyIuYFup4e5fQqkcMPT+r5OPLYoW9M7twiUxeOWeVfY98WMZ4N8yZqwoQJEyZMnDHMj6gJEyZMmDBxxjgF5+p3NbFm4JWWxYuGUfJUIl/ziKr29yEbu/dzwITBMaDENnnF/U3gXJ/nqpS4onZAblkEPywzI7lfwZv+YAiF3sMB1Gt7tKit1SCfqy6Bt1x5/lWcYhFJ7fUWLyide9VyhXxqabH5XJw7puft48eAYFxDbw36IKtdptuplq/wK9KSCc7e3WOmIS67bu3guo6OUFAi+/OXcYEpmacyZD16+FB1i0nzRlxQH1ugVeUK+E+lCbYjo1O/iI7RoTSuSGuFa5chNWz4vAv7uL8FpgMrcbG88oLNRslnlrfc5YB2r2RuLkG3y0xYJ7S4MraVSSy2Uborpd/KVbXqt15h6qS2Jyw8LUrXrc/1vxQk25xrsN0yt5k2JElC0vWI5gYxGGnKRfRJ7haLbU8xhOV3otOeHBVU4JTHuENc+f5GVmhTDXtpCVpNj/y/SklkZQGdSnYfD3fR8TY2oB3dXYWE+wtfhFJ0kaLuCTu5TLYL9GceDYasPGpfL6H/jBz0dqdICOygJ3eZW625jFNoqFZc9N7Fq7Muw4idHTxnzl+AC+7SIl0O2GK3ryHx2de/BiV5m3LfyxeBYX/+1luoGG/B138FGx8cc33BO3Q2JmN8/304M/zJn/5JVrh15VpWuL9xV5WcpLSg4cTT+nkas4yZcYyuEa99GqPvpZdezQpd5ry7RteFH7/+06wwpnO1S69arap4iui0VkM1+gNsPSQjdTgVNKIPrc8jazbE45E1+OSNnLsbcPSNyXUjdg/bxtk9mj6H+RMY55hEmmLD8aSa1uizKeiP5BJD+b1D32OfdNpOeBWaKOEUjBKoTThUZ8O8iZowYcKECRNnDPMjasKECRMmTJwxTsG5evnONUv6JLdWYBIZ/gqX+NXhNmwq77/9g6ywt7mRFR7cRYquJ0+wTUqp6rVLICcFvoZ3Zc/YAgT2ZjibWFyjQR2mVFXM7tQ4T/xIrV11ievHtSqf6CGU8ynRQb6ifD7O7ZHZhuR1zz6DU6w0aHF5HlK94aCdFf7g976fFd55/V5WOH6M3dcvYuOLNwB2Vs5TwXgDLHo8gVZzbw/yvGQmNZVlWccd5pen5tCmd26/DzgTjNB67SPRFRCtzce4C8/cghhyfY1ruvtcgt0EahuNoL72CVTH81OhFRzsnic1I/exaVzsMgGWl6ij0stXTrkspBG2kSz8hDoX20gsKngrwWEaCgRxL/W3vMDdVZ+UUDqt8YCYULCJoB0a/+aidpoDWxIKWhM2Ar4azHS3gDJsGTu7rHwsVEXy9v77mCjZuw/N57lFJj5TtydsT/kccKiNFA3z+dWEi98PJkCLj+5ivsarYptRCa0Ryf3YwjAMqBJfXcbcwf42QOjBEXSt1YtMlZU0cRxqPgvM1jdig09iAu/5A/PmbWT+8qnM7PGp8oVPfz4rfOW1z2LjW9h4bw8V+5M//XZW+Nmbb2SFlVWI7VvtNo+Min3u8zjgj2jqe7iPlv+LP/+LrPD+yiqvK6f19zaQ/PHGDTypVlbAnNvHGrzoeGvr4O03ufEH7wM1F4rMOFZHV7wv718C6nYLz4pbly9ac0KuMiUecDyikQK3ibScIaVBrgT0mjHhxvnjmp0qJMXNLWr5q9MjMdYtk858HOCJNxigBxZo6uszu99HlB/LuOb6bVxpgQrezUP0t8MDkPBVPtM2NrAIYncX28gFosB5xm98y5oK8yZqwoQJEyZMnDHMj6gJEyZMmDBxxjgF585+JJIp19mCdK1Ml7P5eCMrvP2Tv8wKd+8Aa2w8ArwdcxnvhQugnVduPJcVGo1mVqjXQcOiCUDB9g6gRMKl6UqXI9dZJY4S0nz1M1/NCi9+7mtZYeE8TmpTeau/IFxejpe76ZJh0wXUPa2tsjhuAQt8+UuvZoUVLsHeJ9z+6CNI9R7ef8Kv4GNwQK7l0y6gUoeYcGEFiOnRHZDwnTYEh6ITNrMaJUweVGvkqdCsAjY73NMKZQLzHrYPA3y1s4X2PD7A6ba01r6GT1r7QEM+3RIaS+CE6+uo9vbBRlaIgpnEYAw3PWZRlH5aeeulFJ2mkryeuGnZzrpT/ERY2NHGucMtZdi8rcrwJehkRYScgrfKlCRUlYsAKWguwAQgparQtsF/UovgOgHfs2N+EovihtyGLTbT3Q6ZLlB02qFNQYFTLt1ttOrmY6hqlylTL/lAXi7pdIEppSSmzU2kWZ88zRkr5NqgfFyLbwUDaiPlts3KiwbbZHHCuS4Hrb+EUyxcoS+KT3cLTapQ7y47ZXvG2Xs2Wl301dYxmmXErH9LzWZW+PrX8Hx4yJUCm0zCeH8L0xOBha4+GAMkbu/ALWE00bMIdX7heRiVvPPW21nh6BgQVVLP556/rUoeHOJ08nU5OsL2ozEadmENT8WHT+Az8+d/+adZ4ZAe2gc9XOy9JxDn9+mhce0SbboH4MPPPfOMNSfeeAPsulqF8lzWCpWSza/wycE+nl3nzsMopkrzF02W+QVcdRCg8Vt0MC5yVkXZ1twZZ4ZyBdXQz9Cbb8JEffEc8HijidH33/53f5AV1tZQn+vbQLUvvfSprPDTt9CG3/tLTKhdvnozKzyhsfnBAa7LJYK+dh3b/If/a2sqzJuoCRMmTJgwccYwP6ImTJgwYcLEGePp6lwGX63DPvjAAb0fN+68nRXefQev2B9/DH3UmPRpaQlA6fxFCKVWudw7DXHo4yO84O/uw6ZygVw34Yp7v4xX/hqXaRcLgGkFJsdxmUT+2VdgO1lqQFAXkA/HTGrvUqdapBOm53MpNyVhPVoiHNOis1CdbrRaFfJU10Wb/dV3oet7cBdoxUtAOfrthKdAs9SpaYxdwD2tcP/oAFU9fxWewPUiPolDkIdKHajq5g20zzOv1lW3wRBC3//i/4b7sr8tNqWs9CBRbfqaHh4yexENcr/3Fz/MCj9gcqvmAtpcd3OZK9ltsVZ7LgP3Yial4l9y8lg4sfs06U2l4CWqtcljlbneyb9iQX8sOtOk11F/z40UuK3Oni8Xl/0yriu16fBsL3MTLue3gaGchLw9xahJrUPuRVvdhBMTyVwA7udqefk4UJRLG+S9nRYPQ2gf0uWA68erBXRXm/YU8ia2yYcjioRzGbNW09OmQC3fP8YpVqk+LdbQFeMBevuETLsiL+s1HLlGu+y2BbA5ivCcSek27Eq+SebpC+xac3Fup40Zk2XOOIw8DOdHnGP6vd//fWxNVn/cxoDq9rG7w9mi9Uu4ubIT6fSAXkPi3EcP7mN3JmtrLjSzwv4RIGHvjVyd+/kvfCYr1BoYqpUKWm/My4/oDxCzwxwe4jnpU0MbkRUf0IO34uM4N/n0qFDyuk6V72z82Z/9GY7MjRcXAUuLPurTaKDb7+1i6cQtCqGTWAscmLmsWmCd8VgbUoLb5EN+sY5eEfChNKQkuFbDNq++CnOPxzs07em0sQ1nAze2oKo9oLD5PcrU33sXo+/4GF1xYwODZWsPN3pC+5ExTaRTrs5otbHXbJg3URMmTJgwYeKMYX5ETZgwYcKEiTPG07xzpcUV19rjEtT3X/9eVnjvDRQOKBJrLAPpXGiAIawyr7rktZ0OOUkPBbtMasQF6T0KyUI6005G0z/5AZFOyBoWimBoH3wAbXAqkwHKJnttLLgulbHx9VvQqnkyImDFDsmZh3R3/OIXf3mqGkeHwAJ/8sf/IivsMXVRElK9GYEze9SF+gQFHYLihObAvQjkobwKNrJyDvW5AVMK6/w5NMulK7jAtXM0tGzk5OHhPeqN6cYacdF+gVnpPXqW2hTcpkQxHld5pxYuRPrn4w5O9/AhVovXS0Bk166B/yQyEZ6JYPdw6hOH5NChapR3zPJo7iqcm8Qzucxy5iogSwgsk0yfWmtBXJWUTUm5zGYMGbS7rHdTm+AxFmfGKniHSZSsEEDJCQD60ojKZBpypjFNdGMqq9lxFHUpgWVqzf9TNGq1mYxP5gb9EL3dddi7xuiKIceaTCCUhC7PT0dImDhKDkWZN5l2t8WhepeofwlkctyjL24EXjfkuFYCNc+jNSudS6ucpnHYRV02r/BabnOd5PNOUxGN0I2vvIBn0UdHMK1dWgTPfPWVV7PCt/8MetcmhbtKwqWpHDHGDz58LysoddcKJ61GvMCKRK2Ung741cFh3vlf+TTSOMqCYHcPT489yv6HIRq2Ty/r5RWcjhTZur+J0Zdw4+M+aqs5smWaRcRKwjcTvS46TJ+eBpubWFDgsg+oV8hj4eAIz8BBj/2NA6tC9B3QElzEt1JCE8m9WdMZ4zHIaplO6e0erl3q5YSyeRkyTKhnHg3QdFyKYbUOMOHIXmYl9ODVLZNTujJ7qptFmvyaCfMmasKECRMmTJwxzI+oCRMmTJgwccY4VZ2rdGD4xCFiWuFq+te+AqR5eAiNaHkRAGeBxo/S86V8NU6YQGfSx7v2/iMsZ/bIiCqLVLpSdVZw8cpvEx24hDxyN1VB7+q7j8BbIoKpERf+D+gZ65OPHWxBQ9skk6lXSbD3gKmXVrF6dzbeexc8s0GZ7jNfRH6lRxsgMx9Tpttp0SnUR2s0G8zqvgA0tHoBVb35Ek7x7MvgPxfoL+oWmKynzEKJC+SdHAWmSvXu0FqTyegjl5nXqMlMIq6+D1E4PAA5kRC0RulgiWuxK8xBX2UCtWoJX01Gc/MHbd/B5edMhtTU8XAhhKaW64tcCqhO//2X5lJeJmNSh6FJrOdzhoI66kKBG/NcHmcW3KKMdrkXj+PzK4eXbBdxg1yi2pT4NBnj1scjIK+YDC5irquUCC4KiFYXpq7PqlfxkSwRFN19AtU2XUkj1LA1JqqizWmJtHwhpfUoR2iRLRbKAYNPA58zHaU6q1HEfQ+ZZc9vMYUftZEpOVuxjN0HQ+C+iUOn6HVIPdeKGD4hR3GehDHXYOOSBSSjdO6UwUIF9HIyYLMEKKwsYMbhwgrG9RpF5hNaK4wFUclFf/pTGBHUKhhN5ylz7azjOIvLS7xSCk0H0xizXquqkjEVoTWmJhQjvfsAPedgF7plhw8xhzMLFzlZduce7FBcNlqbnt65yw1dF5aXm9acGI64WCCOpwoph2HIarjKZcY+KYfzlI90YWpBV4uuMrkZb+6iy004+JXH7RGdEAJejkKn8GRYTeW5W5S1Dk4acIhVZMhMFXTC2SLPnf5lLPpFa06YN1ETJkyYMGHijGF+RE2YMGHChIkzxik4V7njJXvL7UoJggZ8fa4tAiYEfJ13c5UkYMhoRLkX1xrvbUHutbkFTLEkj809YDFJ4xLiXJ8ityJZSrlGySvZrwxCJ1R2qs5Ku1YilKvxK4+LuwfHpAn0BXXFj9K5eraf/OydrPD5V2GbSf9I6/hwA+cqtbPClWdxpetroGFXr6IaF87RRHQJCKJSZ7qxZdTQ8dEsIetlR6BAyUhroldVtzQCOOp1seNRG4B6kuKYUYgj3L4JUlfwufZ5RHEyBaA95SHqoqlT+kiMmABriW6oe3syyJ2Onz3ifaGZRolktcTcYS6XewteSUdaKkhfyytVUjOeokBQXGLGPnYTq1xgdnt6C1eYTa/Edf0em9gm+/XLHBohlaXsFK41ZHXQtxNC9YS5w+Kx5jWIs8Yo0JjEGh5hm9rz1lTIW1UjVK6xk8mY1cA29Rru6ZM2gHxHWtMCxpHHlvfYtxOao0qHrLxyuQkFnwdD6ifrbB+PUwYCzqMRMXWKGg4jDPmVy+hjvo/GTCg0pQjU8nTf89vM1iA29E64wkyFVLWNBYDiKqWeBzQr+O73v5MV3ngXqHYY0tCYPUq32+HToELjlyUaEayuwhN4YwPzNXKAKRbQLD06M5RcTU9YGx9Dsy3x6pgF2T4sN1D/Eg/1MS0d2oudqUuLWNtECctYOKKGtuDrKT0d567DEsfnNkU+zsSZ9XAu0nmjzIut0Fa3RN1yqcj5Efag0UgzC9irSXeOJKJtMgd4nWYLKTtVSJx7YhJPVHm6l/p8KInQDoYTboxN2/ThCTX5RYZscR6hxOadDfMmasKECRMmTJwxzI+oCRMmTJgwccY4BedKJyXbzCcPN7LCe2/AQPVoG7Ixl8xWdK1P58YWZajtPnBuStFdrQnV3Bduww7RHU4nNesye9FghL0mfGePiTv6PZw97oCYKcmULZShnGbUc4pOyLCxVm+iGnTl3ScEiMiRmms5I52KCWmAFUE/Nh5jTfelc8jjduMCeMXlCzh7Y5mSyBrltTxXyMT3CYWCcUqHzJjaWlLHOATuiLmevXucKztbh2iQLqV6xz0KHX1cY5HJrYpMEP/SC9eywsER9to+wl1oLuIsdbL0QzpPilENKN77+XuATr/9u9ZUHARokCBAJyT+sYrCsGQqIkIyW3AnhLdUaRZJgwtETCNyvlHAA9KrORabGaOFJ0y7VqL0z05RKlVQs+oCtik0mO+MjEgwOaEtQNzDkV06GMirOR7gq/4emrezT+eNXRRufdOaCkkQxS9dLmjXInHPZYEDUlrcKumcDEL71GEu1kELY7rEhqS41C1aBaoTJ9yrY+NcpSZZHHHuYKTRhwOOhnSBXsHYv3QVINQtEJaKBhOmeXwECUhGlNdayrTlzSWTa2s4l81pgFoNN/7CJSw06HKeIqFyW2nXrjJjY/0W0mAJmxdK0zUcMinktRvQ64YhLUfI4RtN8vM4f/DKxWWb6tOQBgElPqmuX0Q+L+pkrXa7nRVarTYrgLotLGD4y7T8woULrBIemP/6L/4iK/y9b/4D65Pxrd/9bbQDO5UGlEsJu0Z6UQ9VCeCZ+KzIHqifBrmYSE8tCFxlezo8qfyqC0S+nl751ArsgZrgUO8IeBPTUNNwnIaYcJkGn9sdHnDE/WP6MKggue9smDdREyZMmDBh4oxhfkRNmDBhwoSJM8Ypr6jjIfhGaw889t0f/2VWePQh7AdH/XZWOGxD7qUETkuLWGu8tgpgsnbhWlZYYaakegX4aHkZK5Q/evvnWSEhwWsuwbQhsvERTVsth/6KKUViuo6IZqQh4YYcULX7uEfCSeDcS3AV17h02qWU96O7SIP+0YfvZoXPfO7vW5+Ma6tAB9fWYK2wUEcbvnqbNLiMkxad4VSd5UEakH31R/QEHqGhDiiF7RCUHbfRCL0OxWakE7Vmvi5YS9qtBCBLacV8KlRr9OyNIpC6K1dxp649wl0YDtBWty+iSjeughE9eiA9Km2KSXA2Nx9bcyJIcFJpX2MymUPeOlr5WhU6wXoESdLaFSjDDglwKgmhGdd0p+RpY8HbIeEt83D1h4STxMJ2hIYqc4pjXKO5Ky7dqrFXFSc44JAJsIYE6QEFh35dFcORgwHHDSsW9+dqTeu0sAjo1SDSVS1KcMubS3ZWreCkX/4cUm5FHOB3PkTftgmBl2l8fUyf0lGIilWpukz5l3eJY4QZtyyvwnamvYDW169faGaF51+Ct3CxwrkY0j2lpUspgpWJSqJbKY9VtlOUT0BNx+oqhvMh1wWsNoFYyyVU+piTTSNi6muXIU99/uolHgmNOSDOHdBEl+LN3NljkWnXJhSRjilGvcA5HaWusyxrzLxguQs0r6hCReiAOSgDovxz5/Dk3Kdxd28f11iiIa2SA370EdIg1qjyfXKwa82J8zexxCBJqZaWx7IclVlVTrNYPgemQ2cSfULQa9l8bnvsFcK5Hk8hBa+sd135oitVImW6Cbm3rB50P0RxQwrooxzr0pCBt8yjnrlAG+eQyvx0wrE2/4XTvImaMGHChAkTZwzzI2rChAkTJkycMU7BuQ/uwAn2w7dezwp3fgqcu/sEYkuH+KixgiXGV66AgVy/CiXb2jpgSIfoQ4mx2kzx02dmokEXCs9+otxJeMUW5IzIEMjbcuVhqNXiwgIl/H1QqWPVeYlWn1EFWMzhAnCH7MvnAUess8OV1+198MzZeOkWRXQXcF0Or0La4NEYRx6OmLZ+jL2OaKC6RY3x/gGuvdVCoS89J3P99PoULY+EOnGKz37+uup24SYutl4DDGlUKYYso5I1uul6Pq763Hky+TVIf7sHaL1nLjWzwiqdftdevJYVDklEB5F4Y82aEys19L0asyDFshYlEUppvzyh3eWINgUOb3SRBgoxv5Iwr6iTExgGY2IoOnNqUXVIs1klRysSVw4OANwGh0zht0/v0Ps4qSvbhQ42PtgGXnt4H+4WY4qWLz8PseWzn0WKLpcIOrDmZlwqcbR6pGoFiWmHXKJOIrpED+qLdOd47nmMxwoZXKmGyj98AOr+ZH+D1QASDKiNX6hB87kse4HzYL83b6G3RGEbda3gFJU6ut+Vy9jYL1Nnm8smJa8loiWrjdiR5N4QsA0tPg3mwlzL2tjBdZUJ7fePgTG3n8C1u0B96Us3cVOee+65rNDkMn+HI6tIjwXZyR4yLdf+AVYllFycq9bA7lEFdZaktt3qqpIVj3L3CmqySrWzMjMOVnA3B5SX79E2QTnIjtronBPOZBXYycdD+lRvw+kiySd8ZqLWzP51pX0lNZXjtByVOUAthwpeR+YGxLguddQ2hfTSq8csOEqyJqYtpC//ZOFc8X9aK+hnTFjXY1UTuqnoK4fPB5+S7wIfqqy7VWafDMY0JJ+f1dG8iZowYcKECRNnDPMjasKECRMmTJwxTsG55y9fywoVJr7Z/RjesMM+1G5f//XfyAo15XNnhqMhta8/v4PUPN0Bc50rnRapqUsolzKxVxBCFugR7k2ozIz5Xh9yrzFzeE2IfSKJqSgAO+6Aqvn0g61Q7itwNyazffQY651j+p1WiQWEfGfjxjNg2tsHONfBFmrY6pMPD8jreqw81/weDfDJoz0UhiNcV49fKTnU0jo42/mLOGmZ0FIuv43mLdXNcUCZCoV2VvA8pjoicw5C2h3QOvXiJcC3ZXKkFr0myjSm6FHNWPKk+6WZBhWhleLcRiNBsWxi2JS98VyDQkcmpBtTlDnhxlr6PCDNnvhcUE9vBC+nTxSUsmI213QP6cOQ0F4g5X1pd9FvNz9Gr2g92cwKLmcUYioYx702zk4H2BEtOtu0zO0TSt/bw7TIT98Hi0soNo6oR/3U/9aaDvFPYig7lhoWzDYl4JqMQebPn29mhSI5qkfA9cpnwS2v3gbpfbIF8jyaYIxs3MclC4ItLAAFOlTMemSDpToG1O0mlPk2JZphDNgYDghvaRsiB2CXGF8q0DwJFwGvcqIpG1cu6JyJxzvQjS9SlDvuYlwvc3Lnm7/261nhwTY2Ho+49J72C7LSll3GYIDHVJcQddTHcy9iwse1NTwbzzFb2cXz+MQKT4yLSAQe7XjnA7r4UqY+5LRQpYkjTOhOU2CjuZRYjwPUrdXC2PdoYSM+LJvi2Thk3jffF2slEaUs3KLOtsxUgLogm/Y7ZY5ZiXJTLp0ocvSWabAS8EYHvJnK5ligOjeRaQm/SvjIC7U7h8iQPwQD+kskfNpPuJG26bMxpfD3yORDuo2k87uZeRM1YcKECRMmzhjmR9SECRMmTJg4Y5yCcxvM6eNSt3bjxU/jq2V8RWWodeddMNtw2M4KRVK1WC/mXFjcoK3ipAuK1aWNp5wSJy7f/Sm7KxHM5lIuygsTm8vYCROU3alIQZ1y4yQydVRSm1C5eZinaSyVI6LMBbm2M5dMWtT+/fEfAuncvUP1Jr9ScwiLWR65H3nOcQtSxkIZlS80sPFkAN3vuavgOd/45S9lhcdkjAf7YHGPt/ZUNf8YAsWA6d7CEJQySQAxhrHEkLR04A0qcOH2KEKV7jzEwRM6M6TUtXpcqnztKlaCdw/npkL7uIW9akXspe7RKIO31Gv4RJpkKUsrVAPG7DolihtTutfKs9QnfdUKbmXbWqAL7mELXO7tj6Db3PgYhfYuFJjhWDYQZGjspUUWeDwrIngcqUAwFVBMu/XwkNukLFjzoq/UdcRrEyoO2x10vOMuBlTs4cgX1+EfO6EV8GCkRfRslioa89oz0NinIe57/xhwbzTErZxEOJeytnU6GFCNZfFzPiA4/HyCRJuUT7n8XBJs1xHO5fp6ukkIyKccLLKBjZO5skklz+r00OeP91EI2Ot++FPMVXmcO0hSjIu9ve2pc9msqgwNJA4v8hMZ3uorh91O4LpG127LslpHaM+3PsCyiIOjdlZYaODeFcgSy3zS+Q1mgbQxnVMp4d7tM63Y9hZGcadNrwY1Wjj3acbRnBvX2LwvUajHo+wOqLUmUJW1ghKxORL3UtMbs4Vj6XU5vaIUbUp1F84kNVNCupTdLOJIl9VzILNlIV+yaM2KTOixEGh37qUJvhznFk75reR1mTBhwoQJEybOFOZH1IQJEyZMmDhjnPKKurOJNGdv/gQeC0ctcMKUyquHG+9lBTlYVivACy59DwoxPSGpTjzeBTHbfwzGWCIW88rkG0UcJyGP1bv/mEwj4Jt+URnnlYSLxECMSPabKQ0ibCYt8rmxVF5K5l6uYmPZ8woxzUZAk8zNPWyzcQRR68IyeFSZLVUhodLK3gmlcmmOMrDxgCLh0B6zYmBEPnPct49BqO5/jFY92H2ouj3/Mm6xzBkC2rR6ZabxImaS2ebGxkZW2KJcMxQC5B33KWCTjW0corZkpVa9mGOrqYi4V4+YpVEi9fJpTMGMUa0h19pzlfhxH1UdhyKrxDREiKMxeqA8NptN3JcyUdvuIbDnz975SVa4d+8eLoe3tWBNM1axMJc9R04gCesTca+Qm0/YLGN2hpitKbYZzf+7dhDocrgxD9huUeXLml27CRuHc5eB+xLWx8mhNiLlmNUi+ph1Teide4lq8AbdS4726Rvs4i4XHGJPoVoOKFtPmlTwlqCMbahWzdfX8zMZqEbkhwV2kmQ+zu0P8cDxiVgDTmH01ZhMCFhb4hPMYcKvVKfA2eMZB4Bk5pMCm3c4BAnX80H9cP9EhxqNJBbFZk0ueSgWML/Da82FsqMuDt46wjXWeV8cjpp6uZkVPJfWGUwi2e3SUnsmXC5DSDSe1D04WSb3Ehkg5Dchz3fGBy/vuCN/XS6vcHhbZa2gA0mLm8o/OddscxtWUdukekrrXGpqLvdQh1GdE0vn4tSh7D64kWvMFkyYMGHChIlfeJgfURMmTJgwYeKMcQrO3Xj9R1lhtP0oKwTMd9bvcC02pZ4uodxxh6JcvjXHBEEuxZ9axq4U9o7sGWmQW2tgYbJLtVtApWhZnrdcblvgauSQKl9vRkOV543imnB3wOQ4NMgdcKX8cAzSW6WkuM5kbXZl0ZoTXhywYqhzxBXQvT7lqQHFe7SmjChTHA7RLOM8jxtXCo8oxivCuXR/C1f6g+8iedzeLup8tIuNjw9yWjQZ8Sx9HDyaoPU8XmNC+hZQinZEfeD+DoSpnX1gz0vn0Q51ElFRrxZbL+DiZbnyzkaaYvfDLsBap4u7eTxAWzXq9MW12GEsgUfamdL9tkgut7SAT+TVvL2PG33QO+TGaPP3P3o/K9x/iHRRPucsJPAe0cpD4NEl9skFh0RMsdwARJ/0CanRKNHG9Hxmlw5n0LEioi+EzdvUZRqsImc61s/h7iwuocM0l0GwXS5sl2tIDkL5SYHDuU/98HIDkPDZW+DD5QqdXS3MI1Q4s9As0S2W1DSm2N5yecky2dAiego7HbJBtbM8FiIOMZktaJrGm6HTCt9DRwqZjCzhELP4leYONjZgqRFM0CELLieARAtZMTWd7pbnSkQ6fV0S5UrLGqoVLGtpAZx8eYEGuX0Q2uMezFti2pg49FjeeAQT4AePlX4Rjd+jBXevh2fF+YtIaOhQP1+mL/Rs5Gw/90+Q3QE/IenNt+FSDomlZVwgvi30bedwXwifX3FkCZ6K0OY4Ve0pmKzbkE+6cWTlPsy6Zfm8AY8sLEyuKyitT9K5A9O8iZowYcKECRNnDPMjasKECRMmTJwxTsG5H/zld7PCx49hpBBQVBZE0HQ5YCFWkWJapWUvM2WS7QGGKB2SI6tPJmpfqFF+xpTrdgO7jwlDSqRqsnoYEysUJqRGTFvuMleR1ln36OVbIpgKiIb6u3TKlbuvx5X7PghVqcAEaj6qOhshl7Fr7bDNdfGTDkCiSyGx3CYlJg2Y2r7D9okDqRyJqshhjg5Bb4Z9oLyQkDyiFYByGFmWVUhR7YS61lGKKpWVdcvGNQbklo83scy820NTHx3QaHfCdHhkMhFzukUWjuyR9kdejq2m4vYF0Kf7bIjRBLu3x2iHPfaTMEbHU/KvGm90k6LEMnHL5BB72ZQFhvGE17WBy2nBKLXbBeC12Wgx9xrRrziHOwRBUp+egEeSaxLepsK50+bP0QyhkjNDPB/n1jmyyhy2O7vw2bhykV61PsbRJGQuPxd7TejpKjgpi9rcSITsy2Mj3KbKd3GZHs3ca2kV3SZV5jsL93RCZf444kmlPI8oSCZei+llKn4uciZmq49cmahw9yRPqTYd4x6+6nPKQPa8Ec269+h33Wd+xi4nd2x/mjpKLaymUw1zRbFmr2YAYCr4n2tGraKnDow26qrbWxOel7Nm9L64exeZGXcP8BwILjB7F9tzQC4d0r024VqDQumUJz+2ycXSHD58uoYcI2Vp0fnE02DxBEtJcbVQQszWlQsKn7e5YpxDSzMdca73FWfmrc9vB4/Dc8m0Ycym5pPDStlzpJ+3ieJT3TtdBPtA/gyYCfMmasKECRMmTJwxzI+oCRMmTJgwccY45aV+0AMf2D0A03OrYLaLy1gF7HHJf5lUzZPHLN+sXcomXYr3UmIBjzy2VoOY0CnhOD0uOz/g+vHqmCiP9pvHAzCiIg9o8xS0VrUi4oWQVgY1qknjCc5erYB9OQ1AkuYSstufv4wsUaMxiMrWDuRwsxFIdRxh4y+9BLy22AQodmgZ4RaBlxslWtcOUbE/+T7acGsTjVAuovJfeA0N9cxNuh6kaBYJO6MIeC1Oc+ldswkMcfcBGm1MApNwMydu4hPa6nY6gMbjkAycguoj+gwndNMN2J4V9oFxm5a/3tCaE8EEp6jSY2G5uZQVCmQxEb0mRtRRa6W/T95+yHxPIU0/O21chWhpmoBrdfvY+LiD3pUzt9wEYBrZSXCozFwyJVBBkj8dL+bpyS9zUEZolFsriO7NXdF9wq/VmtBotIghtlrDre/Je9cRnaYWnUwvmuFsutIJO7DNdIHlKgqdwdHU5YSyVKWj8P2PQUTTGvmheL7qxVkAh3zNpkOE7CBkmZvjXOmIeZsS1iNJpqmpoubg7DbdmKVVFpzb24JFyYQi+UIJMyDSD0uwmlJem/eadLoDyCVbG+c0+DSp5917G1lhg5+VKrhBaxcwgRWHaCvlarRtdIZLF69lBY8y4xpRbbMMkh/TdWQ0Ybe35rqgCI4norhSnjO3oCZpAnVpDg3X5b1jN4ty4Tr282XPwt29fDZEI8ue2t229RWryoGpyUTtdVJbPF2fybTrskOca+d3c1p/bJtUaCZMmDBhwsQvPMyPqAkTJkyYMHHGOAXnVtYBAa74t7MC1ydba2uXsoKyhJ94fca/KTmqmy9M5v5ySiSY7XSxrDjuoRDRLaFADW0aglvGY2C6c8xTb9PRtUvlYa8PrV3rGGRJzGoUM98ZfUEL9M+UvDDhouyUhgwx6WXnaC7OjQOwEY+XemEJn6yfw5GrFXDI8QiI8kuv0ZmB2dzf/4ji2C3aeBbQmL/8JdyUX/8G/SUosm11wdiZlc566TUKKS3r6AACzv/unyv9EJO2k+/ZKSCPPAR8yvAi5iALbBpBxLjTRco+7RIYoMVmnNAjwm7MXdP9R3/1vayg7Pb1SjMrrC3i/l5eg9pzeQG9orGA+jzeAdf62bvvZgXRp3hGVVuixM7lonW3oHX9VFeyB8vPUyxRPXlMLBbFajqcSkRU4FJYjPw9N+S0ch+G6U/ywkwM6PlsBehmowQt3ygxZRjll9KZR4m4LvYaahvhXKKqhEOjRCeQAd1C7CrNZjn2ReccAsyAvaXcRH1SIl8vnZ7u0QSQT6MVN2GdqS+NhJf5575Nt4ETDqhzEfivf/X5rCBMrVvQpZX0YQvnOkw538Gze2K2erjNUFyBRClv5bGgyKW8nHlJT1RZDicTcss+83DZRTwrOseo7e5eOysIcsrY1mULry0BAtfZKxabnMCqlVj/ua9PoSYvWJB/rDwieKPyVI+u5gjcaTmrbpBgqcPOKdPzkL20MDuZImG2BiararsaNbJWljsHqjqh50/ES86Vt6xGwEdHPumQK4r1m2VwrgkTJkyYMPGLDvMjasKECRMmTJwxTsG5W4cwyPVpklksAAIoOZQojTwN8vXRUlXNSqdIC21mQRoTEspV0opJPEhgxnwx3zyAPrDJbWQvMOKyYoc0eMQFy2VqGjsd7D7RUl8yBNGFQR/ErHcfud7KFAqWaE05G+0h8Gmf5G6/1cZ1cZl/2UFjDjq45K++QKGpTQ9Sl2TGJ692UZ+yCy1r2WMeN8plv/8u/hL6z/9zrL/+J//Rsur24nM+t6cWl7wlTKizpfNwvQYQ9MLzbLRjXoiPjWPi3CFtCiwHYPnZyzjFed5xVy0yEzHZ78NjVNuxUVjeQ8u8f5dZpchRPWU4yjsV7V45NZDSuFViSIe9s8g7neSdU6uzSUQlOORxtI1ccKNEiImqQgKlHN6SDSl7l1iT1KeegCr3moRzWyyY0EyDvsGRFINF2o9Up+0g7ESCQ7ocaEW5uDcjzRPeEU7mSbhYYgdw+Se4T2xYZcH1p2WoUtU6fAgIq6XkmSFtE8JAUw/TaDGnpokKc80Wbr2K/pzwFDH9h7vHKHznzzEL8uQx5msqVIBXqkTHqdCx3F/VDy1+wrPOiHJzr1fqmKM4v8spMazLR4RjY2jv7GGwdzuY0qo1oBxeWYXH+NYmbEPa3KY1xPMkZlPfugTv3JvX5Xszt9EGdLBJc/EqLWg4JyVrhJi+B6lmDeSWwKvOHRXYEAE7nqZOChzXcW5GPW3IIHm5+q2dPwSsqTrnul+ONfWu/PZoYoKXHMnuRp3cnZ7cmQ3zJmrChAkTJkycMcyPqAkTJkyYMHHGOAXn3njx01lh7wB8Y0iFqkU1YEylqzwNJJHT+6+SQ4XhdCapcpnJqviGrrW6EjCmennPRWLYprMN7tc6BKGNeYrFJv0TyAdsKuKUTr2klfKSjZHFFItaCY4LLFdxwFIVYtTZOB4Bfo7pKdwnDVilt3Ac8hSE5AHXmCv/lPRfBV86NCX0YWPauNIhZYofPaBuNkHWtrsf5pju9kXUnxpYy9f695g6uoBZ3ohYv/GrwD6Xr2L3fgskx07w1btvAeeOKY3+1t8BNdq9g37yxnf61pzoDPGV45Gj8k+6mA0yGAJnjShpLrlFXhfsLMRRxzxgRLFosUj3CamvKWX0fSbaowg8oFQ7F5wzlH7rRE4oUTxCJ0HK3HGUfTsXeVLFSjVgLlNkBHFizYkCHUUSuluMRxyPNuYaCnU2ZjiNu7lQPofSMf2cxcY9CmWLbGdXKa6oxRUa9ckhPXd6r2SMbQaccLE0AUTXEU0ARbw7cSSQOJ1xTGLLyBYIneuxoCiW2VB0XHF5n2Le961NTJTsbaOzLZ3jzdXl8OkU5T690+pNwXbP1TMEu3tM0nfzGTDYUZKPi60nGEfOmJ3Txd08OGxnhcEAUxU3b2F9RGMB52130Pi9gZwQCMNJMgsN9gFaLPj2KU/+LGya5AS8d1U+xHwecBAAHYf0u65zwYWfq9yn7YVzTw/JjynV9pmnUhryXCQvZwYy8OTEjwQ+YffQT4zugq0ZHN47adFlq+Lk26hzchTzlyWZ39/Mm6gJEyZMmDBxxjA/oiZMmDBhwsQZ45SX+ue/8PWssLIHato+ZrYd+WfydT5g0q4cXpHJJCGRL8WfEd/inTyPuagRV14TCwjwan20lvHK6vD8efDDCeVVPnHN9NL3E9CpTDoRUGwsKL2wBLDZoPitSpzrMrPbbKw0QXq//OXPZIXeEO2zs/MAZ4+p8uXy5HceoulWm82s0J/QaJeZvxwXNZzEuNKQpqYTEvUJTUQ/87mXskKxkPtCDPvM6caF2x4FpK7MFlzCkFiYBQrt9SWQpVvrXA3topIXF9GMA1TWunIBpcP7pD1zM6FZE8KZ2SXP4whHLtbgphs7uCK54O52YAIwZg8c64AUJQqMihyWaNG8UMF1HXfRtxNaj04CIR2iIU+ArsAjSllKhTM/8cs4ssPLCcbghOqTmvtYYzfzefaNx4+tOSHXWXlQJ2PaJlCvqzRnIRnpoEevFOWEIpL0mHtLnK1EibIfyBeXY5Y4mH4VVhRpHgGFCf0KijxO6xgdyaGha5JP3EgJKe7NDqlUcbmjAt1r1Rq51H+uPUVwwBpKmcmWDwicQzpXyDx5NMAlVypoVT3cJCsddImpeVNGA4BNn/WRovjGLdzlL37x1aywuJDnVey1OqwJPvn2t3+WFT7Yg3VMgQ7GE7a5nCDKNQxw38cn9TKqdHEN533x2VeywrlVjKySN9c7V/MjNvukJi9GfMy2uIpBsxgNzVtJLC05N3tXGKm7Kh2eGpZTMNLiMmGZTip/XVcVU4fJF4mkPCC+GmvGUD4M+fwgKqgBbnGyIM8SyMJsYjuFeRM1YcKECRMmzhjmR9SECRMmTJg4Y5yCc/0ikNfauQtZoUkv03AMPiBPS0HXIBDF5RJ1LSimJDIcD7kxsaE0XXnyI/lUchm71obz7btQoNkmV8uOeVIxoiRPzUMBGFVnSlqUm6OSD1drYHES5bqEwM58Pdt6CWyndBuLu7cP2lnhrR/S79RG08UusOq9x8A4Vy7A/HbzAORhbRGwxbbAah5to/J7m7gXsQNVYYFGllfPk6jYOXnoM01bREFgwrvAfHRWkKK2rg3KlHJN+uAIV71yhbiyiI0vX2viOCGu2o5xRYk4uWyXZyK3PCVPc2cQSqnIXE70Tx7QQ+OI/U030aE0ulBUKisKSlkf4aMuGfSEaFSY3Z4Rk+cZ0GgpXGAitgkz92mKoVSkcTHzcAVUL4tbCuyOc1iqaYhpva4ionpz0EanGvfQGj4PnBDDFpmoTiBUutaIl3wijRdRLXOrRXS36A2BzWOXy9gjYTENTHJvinsXKGUPLFxgwKx2+QBX9iuC4pT6eUFpZROTLlq9VmrJ+WbD1qdf+BVUlY8g5Q1stVGxf/nHd3gV6L0TGmiPe5zm4CmOjzGXQUZoeRTS27SlKBbQ/cbM4Vh08TAp2Bi83iSfG1ouocN41NBeXAcDj+N7qD812xFF1xUOjTJdUCoFPLsqHirgh7ib19dfxpEv4CmktJKzoRGh2xpxVkaGuwKhlQrT8/GAI1mCKAOapLPsilU6V8uQNncv4WNhwjHraWTRAVuc3LWF9GnRwxEahgLFmnAUwFeWTNnz6smj3qXUbNZUa8yGeRM1YcKECRMmzhjmR9SECRMmTJg4Y5yCKEcj5jySzlZehVqCTchpRRJtEnkVWSBilV7XprLU4zYWdVaiYR65ltR3VGBZAWVaBX9a91VjLni/RCg3wwYVqTJk0VZXyDcHU7xSsa9o7tu8VQqAvAZ9oIwF4u4b5wBmhynB7A4Uzntt4IV2G7vvHGD3y5dAZkZj7PXeQ5z+W97ncMk1qgGLMP90SC/327ko9mfvAqMFY2CNIvPSK4NVRCYZBPJHRQWGbXzQoZ7QK1AwOUHrVTxoaLfv4lz7D5hxbL5FZ6obRCNlW7m6ulCo9nuPcFJbN4isSX6k3KtEBthoXMkKa6vXskLVwnr2Xnc7Kxwq9R7pU4uM1KOKVYxooQZ09qmbV7PCcgO3NaH587WL2Kbfp6o8RmM+3sY2P/3gLWzDpH4HBwB3CWSYlufPxbluROdeDoSYlDLgmE2J+zzqdQOpuB1qaGfMZiXlddisHpfljyi4HYWawcFeac5lKZukkcLhPjTPXp2iXGpHpUOW0jb3RCXO9biNxq64rpDiiYxjc3nu6kX4xsisI6JTRLmCwq9+89eywod3/6us0O23s8LeUFMGyncmni8LC1S+QgGtmH+9jjbc20Fr/D/+i9/PCsW8EayUTxY9eLtD+n6QwMcTVGDUpdcKM7jtbaC2Hp+uSw3Q4+dv3cABadrgEIZXq3iwnLtmTcWYILRI1qp5FtbCKlCL69DKYyzJq9Aoj1P2WHk2fsL5pmIZT5WAvxGePJa5l+YjJrlrCf4tUgAs5e2YzFadQ2a80ujLwlf9JuZe8s5NeMl67EfzfwDMm6gJEyZMmDBxxjA/oiZMmDBhwsQZ4xScm2cdmrGWTZQcnAUhL9fWy7JomKAr0QeXYEc0rkzzZexEi5Ryedzdp2LwhDMDTlosErrypDnOnbku+TTmgluluNJJpfvluWJLTHtujiqXzpxeCCS4THj11ZehxxskOODN9YtZoTvAkTs9gNmK084KYQz6NBwA7GxugU+0CFEv38YCaq8OFPjxvc2ssL1P+wPL6nRQpZUFmM1WLuOYfVKj+BikbmMTn7zzFtq88xANebCHJvKpBK1SVLlY4Qr0fegMl2vYq/qpuQzEVk4r9iXd8fUqCmsLAGIeldUWsf9eu50VDvvU2k1oL9DfygrjOtr8+oVbWeHF269lhdEEhK3XRqM9eAQl5MYOdh9wPuLGORiW/u3PfCErLDRw0s4Y1bh8AUw7iUjg74HSb+7DKUJzFpLFFn0toqfdRw0sbjb6BxQ/c4phaRW67n0SSOHKWGYCRKxeTQrG6SPLbCQecvKihL0GFH8ONBC4v3sCtmb/2qSFSk04ph1EtczEf56eKhx9+ciihpZcVy1m5VuwH1bYJeabmg45T0Eua6WUgssT9atf+XxW2NvFbXrrLVD3JJpWgUpZrFxmoSwSOAswpvWEXJRlAxvSmiM8Mc2h2gd0Jvc4xBYXcI2xZl6G2ObBHXTXF5+9nRVeeeW5rHD5ItTyzTqnYPiYLVNLrAyPsxGwZTQecxDqTE+6yX454iiWW45u9Al/aCpmKdwVOnbEkOmoozm7kEs5JjOC/FB8WEYKbFifT/ICrbkj9q6QT3tNU8rmPc/cp4UbM4nYZsO8iZowYcKECRNnDPMjasKECRMmTJwxTsG5uZxVFFfr4okeTmRxn8kvL+tFvXTn2e2nl2k76fQRk1gKLsl9lS5HcANv1hPRAMn5lPhM+W5IHlwKydJcrpU7cfL6KMOz9TovO4i5Zgsu3Ug9qulcSsuuLongYZvrdayzjlIKdynBbTHvfHeIvXaPwXV7ExDaOz/+Ma59H7SwSyXkvQ9BeFqdnDzYNg6+QgFzgaYE5SJxE6WGH32Es/zxvwQivrUEpWujhEur0ZTAZ9q4foFeE4RFV65A3Fuiim82GmWA7iXmhlujCPbaCr568QrWhi+y0Yq0YG0zPd/WEXj1xi7qPI7w1dIi2uH8GppxdRkH7A/R1K6Dqi4NwGN3j9GwESHedhtw8oNNsN8Xb6CG9x9Ba/14E6z1uRtosbc/+jgrfO+td7JCQNBnK9GSvGFlvyA8OBODER2JSTtjErMxB4tV1DJ2Oor4aLqUCblCWVgLwZUk5aU5atTOChOeIuE4kiOxsg26Yl+cuFlcQt8ObBE8SnCljWQNXaZUc1IN1Wlf3CTnbFwgb//16lyfp/AoNE2YozCh2LJADPsbv/aNrPArX4UAfkRHDq0LmDA7mNbypzPuLhrpszHr6mydIJB6zApX+sSwuuoCU/hVKmjhxSXw/xqNYhzB59xnZtqdpsBpr9koV2usrTxmZXnBfI6sWBJI143dC662wVUUeJwylecy95AvbjF301WyQrq7zFR+TEX9mJ1KPw3qgY4senRkeUfoB84VaJ728i0WNHUoL3drXpg3URMmTJgwYeKMYX5ETZgwYcKEiTPGKYhSUq7E0lu8xEvUNcl1k+zC4WroVBtLppuLEnEKSacsanrHzB1m51ao2CbS+notuJYWl2/6aZ7inGSVJ/XlSirOPPOng3L9JLmJoqwABLfnuy2kQnC0XSX3KIv0UplWK6OqhTLVibzANhFLEIFOPHtJucAWeAJUo/cESdaWijjypVWCuzBX53okSCF9EyYjbN+nDK83Uq4iHOGNtwAng8sAoUtlbFyldLBeAkddpAh2bRnHWWNN6qW5qM31Kdcs4RrdErSmnQRf3TlEO1ygC+iNNZyrWUMvFaVZqaOJRjQHfrgPne3WDkC3RX/UEVWaH22A0N59gMR/gwFgkVSsOy3YFP/V2ySiyfWssLSAK+300BpvfQzvi4MBDjhkgrl87iLvShwsPFeHK+5nY1Tg6OMnkcfMTWRoNlvDZqosl1QtpppalM+JNNY4Igq8QA6oyURTOXxW6JkhRb1qxN6e8lxyAvY5nFO6++ZpzvhUcTWZwuOJH56YgkFBisokmdvHlPQwlfySczoJJfrVAh2nm+iHkoPGM24z4Qxs14MiJofUpNWJPG7p9Mb5oyzfTBpp4UYpXQsF2dTQ5YCf5B4AuVGG/Gr4xOMRc3mtN3dyqlAk2+f0QUpZrJuID8sJh8rqExfE+hCYcwom5FdDZqaTCa8sUzy2Rtkrsapk4HlD0c9E7cn74pHiKpOaqjHiqBuxxRz2TrWYpx+CGbvsfE5zJsybqAkTJkyYMHHGMD+iJkyYMGHCxBnD3tra+jddBxMmTJgwYeLfyjBvoiZMmDBhwsQZw/yImjBhwoQJE2cM8yNqwoQJEyZMnDHMj6gJEyZMmDBxxjA/oiZMmDBhwsQZ4/8H6hzAZAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjM5MzcyCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0MCAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNjI0MThaKQo+PgplbmRvYmoKeHJlZgowIDQxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDQ3Njk5IDAwMDAwIG4gCjAwMDAwMDc5MTAgMDAwMDAgbiAKMDAwMDAwNzk0MiAwMDAwMCBuIAowMDAwMDA4MDAyIDAwMDAwIG4gCjAwMDAwMDgwMjMgMDAwMDAgbiAKMDAwMDAwODA0NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDMgMDAwMDAgbiAKMDAwMDAwMDY5MyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA2NzMgMDAwMDAgbiAKMDAwMDAwODA3NiAwMDAwMCBuIAowMDAwMDA2NjE2IDAwMDAwIG4gCjAwMDAwMDY0MDkgMDAwMDAgbiAKMDAwMDAwNTk4NiAwMDAwMCBuIAowMDAwMDA3NjY5IDAwMDAwIG4gCjAwMDAwMDA3MTMgMDAwMDAgbiAKMDAwMDAwMDg3NiAwMDAwMCBuIAowMDAwMDAxMTg0IDAwMDAwIG4gCjAwMDAwMDEzMzIgMDAwMDAgbiAKMDAwMDAwMTQ1NSAwMDAwMCBuIAowMDAwMDAxNzYwIDAwMDAwIG4gCjAwMDAwMDIxNDAgMDAwMDAgbiAKMDAwMDAwMjQ0NCAwMDAwMCBuIAowMDAwMDAyNzY2IDAwMDAwIG4gCjAwMDAwMDI5NzUgMDAwMDAgbiAKMDAwMDAwMzM4OSAwMDAwMCBuIAowMDAwMDAzNjI2IDAwMDAwIG4gCjAwMDAwMDM3NDUgMDAwMDAgbiAKMDAwMDAwNDA3NiAwMDAwMCBuIAowMDAwMDA0MzY3IDAwMDAwIG4gCjAwMDAwMDQ1MjIgMDAwMDAgbiAKMDAwMDAwNDgzNCAwMDAwMCBuIAowMDAwMDA1MjQxIDAwMDAwIG4gCjAwMDAwMDUzMzEgMDAwMDAgbiAKMDAwMDAwNTUzNyAwMDAwMCBuIAowMDAwMDA1Njk4IDAwMDAwIG4gCjAwMDAwNDc2NzcgMDAwMDAgbiAKMDAwMDA0Nzc1OSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQxIC9Sb290IDEgMCBSIC9JbmZvIDQwIDAgUiA+PgpzdGFydHhyZWYKNDc5MTAKJSVFT0YK", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"460.8pt\" height=\"181.207445pt\" viewBox=\"0 0 460.8 181.207445\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T16:24:18.850990</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 181.207445 \n", "L 460.8 181.207445 \n", "L 460.8 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p5765601d70)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAmwAAADTCAYAAAA8lk+sAACeTElEQVR4nO39WZBs+Xrdh+0pd85ZWfOpM099Ts+3+8637wiABEAC4iCIEkWGQwE7rLAd9oPDLw7ZCjtsR+jFbwrpwRGypVDIJggCFAGRInAx4w64Q/ftvj33mac6NVdWVs578oPMvX67mRt1bjhIliK+9fR19q6d//2fdp5v/df63CdPnmSOwWAwGAwGg+HUwvs33QCDwWAwGAwGw18O+8FmMBgMBoPBcMphP9gMBoPBYDAYTjnsB5vBYDAYDAbDKYf9YDMYDAaDwWA45QjK/setB5/kcRrP5sZZHOvzTGLThJ+nqa53+Q26Po54T8WeCwEr4slkoo89/easVmv6W19xVvhi3adSqTjzEIZVxBXEob7X9RWX/O5N00Qx2uD7VXyua1xXfXXhwo259/zot/9eHh/uHeax5+j+dTfK4wDPmzl4lrranKS6vneg9sxi9eFETXMST9dEjvpkmije3B/l8TsfPM7jR5vDwvMEnr6jhvGbjjWHBpHa96Sv54xiPc+Z5aM8fuXCeh4v1fW3zYru2a5p/BbbGo+1Zd1/bbWu+yy18vj63/0nzjx85XPfyuOV9pLi1koedxq6z1JL/XV2Qd91dU3tCapq/27/OI/TWO0fT9TX93ae6Bp/msfn1td0/UyD+eE9jc0nd5/m8XCoNcbl4wYao3PLeq4vv3pFz7Wg9h8dq82VQPPmnTtq55sfPtJ3zV/yDqZ3oT0Z/se7t+858/Bf/Of/szzGNHbiQH3r+LqPm3Jt45JA22Xiay4lWMNerHUVYG9K/QjX657jKVrkYztmWNF9MjxBgDZ7Pq5R850s0TXZTF+c+rpPmqltPp7Yc3VP18N90H6ORZLgnqn+x//27/1XzjyE2TiPRyPN4SzC+2OGfo4Zq83RbIrP+a7S9RHeMYTrqp1JjL0YD8l3WJrq88LfZpxZxb+J0Q78iVMJ5r9bAr7H8HnM9YCOD3wNuIc5x/bx8wDzuHPhqjMP/5vv/CSPZ2Pt2f5M/eiH+t5KRXEy1Vhi6jp1vEvbFT1Mu6b2DKcag1GkOMC7sYK+buOey231WyXQF0d4fwyGepapO39TCbBA/RjjijkxxOY0xrh4jvohxT47GGmuuxX8jggUTyaaJ//J3/hVZx4sw2YwGAwGg8FwymE/2AwGg8FgMBhOOUopUaZxC9Rngs+ZGkcqPQNdiMx4McXuKN2ZIZVOGoSpTK+iptYazTyeTZECR7o6RIqW9GXC9iMF7oEe9ZBiZqI7SnS9X6AIQPuSGub1oDs8XJMxxf4sP5/dEP+hNrvo/wlpaPAjkxnS6yNdPwLfeXCoNvdH6tutw0EeH0+VVn4BVNiVq0qvH2x+lMePd5UOPhwVqQPX1fddWezmcQj6MgCd0Y9Af6Rqx+deV19cB33ZqWkOtcQ6OgvVRh43Q/2PGr4XU8iJJqL5ypBE6qNooudKArV/obWYx8+vrObxYltfFgTqo95A1OQOxuD+1m4eT2Jds7SoZzm39lwery5rnAYjXX8z6+Zx1Ve/fXDrjq6fqs/Xl0Q3f/21m3n80lU91+0Holk7oWiK569ezOPNLT1jw9/J41mqvnIL9JMWR4z11mxgUEtQn2ntRaBW/FRzZgKaPwNV4pJSxNR1K/o8BXXDTTHF7orHcip4Fl4T+ThCwQfAeibN6oO6DUDFzFJQgQn20BKKzMvm702+hz0U+x2Pv6T4nJRxkUyej/FU83CEOJ2C7sTc6/V17GGA4wEj0FxjxHw3THGMJor4DsOzYL/OQHOXgf2Tfur/xbgX6VH2ewX9xf4NK1ozjYb2qcWlTh63Wm3dE+83vrt45MfH52FNe5nuWMQMY0AKtYpndqp4fr4DQfU6oCYdHDVyQInO0HsRjvAEWGNVfi2uaVR5TAkUdTJ//IJAN4oTHo/SfQonE/C65XEEHndyIrQfFOoMbYgxB6oYC7dAZ396Fv3LsAybwWAwGAwGwymH/WAzGAwGg8FgOOUopUSZKmZMWjNxSb3hjz0qjZDyQyrTReqwQrWGW+BQdf+CogOXQB3FdHDGdCRoNB8p0WpVKdoY6c4MdC3T5CnohRjP5fugUz3+BgbVy2dH+phqpxniMiSgQeJM38v07taR7j9MldPd2hE12R+KLjg6lqrn4ZNeHkeZ/nanp79tLSll/7f/wy/n8WdeFkX2/j3RXM+9IGpuc0f3dxzHOToSteFUoFAFRTKe6rtTjOXNF/X8f/1XFnTPe/rbWgsUREXPHPp6tlZDzzPc6efx1lPRK5OhPn/BmY/+WKrd40kvj5/09vJ4c19tvr0luiNASt7BnN7u6T57A1E5MSiLTlN05MaGaOksE8UZQWI2BqV93FP/H+wd5PEEytMpKOmzXVGQL54/rzbU1LZrl5bz+MJZqWXTWOvttZvX89gHFfuj99/M46OB+jPwtFWl2Dtq7LcSNOs6QjGZgRrDUY8ARy5iqLsSHBeIoGoMWqCe3PnbaDTRGNVBDXdret7DuKfvgsKRqjVSPVSVZ6Bljo/Vtomn+zQX9V0+VfGYDwX1JfY+J+Axkfn/tudRmMIc5iZdAs7JGGOaYS9L0A8znK/53d/7kzz+yU+kaOTc8Pnuwesjxj5eUI96cCIAh50hr8H3H4/s+KQBneL7cDTU2MSJ7jvDeCeJ7luvaL42cXTjxZvaRz/zmefz+MI5KcC7bf0tqcxGU/OgmeqaMoyHOn7RqOrZAqhWI4z9FHPIJ+WPeIZxneK3A4bJGeN4Qejr+jqOPngYs0rAo09YqzO8q9k2ULpNjCuPU5HO9qBC5TqsxHArwGBHBSoWlCvGIi2oqdFOHNcqg2XYDAaDwWAwGE457AebwWAwGAwGwylHKSXq0/SRMU0ASfkhHUkaMSmoZWBMiLQmqYAYlEVBiVGZn54vmAZCZBGTaoRaKMR9Yhj8uUitZlSqufOpCYLGvLWaqA8qcxIYDrr+fKWqezKL4CQe2l+RUuhoIqrwOz+VEekoEyX14OmmPodRZRV98mRL/X/hvP620VSfnz8nbdFSVdcfPv2+2nYsGvD6RVFnrU6R9q031Eff/66MWzcfg37K9N3jSH19+bza8ZnXRbfdwz9Dzl6CCW2IOTrVfRpIV2+6ogJu39Uz3HpP4/TvOfNBesjncYFUfbTV1zhtwlQ2cDn/qFjEF2D+1XyoXFvn9HltI493Dh7k8Z37Gpu9Y6ntDo9EO5KGDkAPVUAj3N2SAvQP3vpBHi931J7U1Vzf7/fyeDDgvqA5lxZU6NxTQLmAfqKW6mjQd05Ca1V0+Wxb9znY2srjGzdEN2WYY0FL7Zwm6p8paMdpOl+RFsHAerGhNixg7GZj3dPLqHLTfYqG45hjUIB7ULMuNLQuUtCOFXe+UXic8ugJFKk4cuHOZ3qcChSm6YQXnawSbUAFSPF7DBqNx02+889+mMe/8Y9+P4/7g56uJ33JIzWgekPQ3zwiUykzRi+0R/ds0ajV/xQlin4P8WKagGI/7GuvcXHf9oL23avPaV6+/8ltxbcVnzsjtflrL8tw/fXPvKr7h5pzHt5FZeB7kr8FuAeV0YhhVf0b4F1NmrKgBi2ZKyH+toYx86j0xhiTouYcrYbh/M/xjAlozQl+OyRUsJLCjri/UwVMg3y4YoCqp6KWZtPPcIrAMmwGg8FgMBgMpx32g81gMBgMBoPhlKOUEq3XpcqIZ1DqMEUIJVkSw9AU6dEZ0q8paFAvYfoStSlxzxlqxLlQ4TB1HVP+A+4ghSKlUOYtmW8mOIFqMu3NN1P0C6aEagOpsGMaWyIl2oTRYb3ZwTWgekvUZsQklCIwhgLyaNzL47tb6kPHhWoIxoXrTVExF8/qnmky3/y14mgsXr4Cyij+UR4P+9v62ylMPSsyTF3uFp/xxZvdPH7zTdFzUweGn1ARBfiPMGQtSP1to6t7LixIEVmpij5LpqD5I6kjL76oZ366rbZ+9KFzIlh/kDUc6Yjc7EBZ2TqTx8PBJmJRwy7rVFJ9hUnd7z/M4+Pju3kcjfS89VDPQoVsgPXc6mqOjsdQ5iLlfzwQnfrD92WOHFY0t6YjzaEqKKdmW887gXlpf7CfxzS2pnxsdVXK00ZT9M7jx+qrMiQB6BcYbVJFGGK/S6sYO9CjIc1mQS9WcKyhoK4Hx9Gsah16EygCXdFqIVw6E5yPiFPuZXgWtOHc2tk83h2Kyp+BhvLiAr+uCPchJeqiLirNwQu1k1kK1SGNeDIluvtE6s4Y8zzFfQ562ne+/fu/l8ecnzWovJcWtbdm6MP9Q63xWcw+1LoYD1F3uMYaj9pDbr5wIY//7t//lTxeqBYNnD28NwKsvX/+B9ovf/N3/lDXYM7VOxqPxpL6Yv1yN4+fPJQK/6Cvdf7hba3/b/7CN/J446zWTxjMp8YJUpA8okHqECLOwnGKGox/GXM8mrg/96AKio824VzugaYMSTtivsYcV7yrq3DCpUOD73Ie6Fn43p6B+hxjT09IDRfqddNIGke3sPZ43IGrJAhOXjOWYTMYDAaDwWA45bAfbAaDwWAwGAynHKUcXASz0t1t0Q49ppaHojLiGWq4UQ1CU8aY9KhSqDGoT5rcFox2PSp7FFeQ3iUVm4A6KNTxRLqTirQplKQV1iF1BIo4AlCZ9arSvjPUvqNh38KSaMfOqlQ9TdKjgdLqF69/1pmH7Ym+66NbUuwdj9T/l66I2grwjDXQPp95SX2y2lX6f29Ln7/5sZ6lHiq+dFZ9tX4e9f1Q03LmqZ07T/X5mbVi2rdFRZEnc0evRvNlpMNjPVuSgTIPkUpfVr9PZ6xZq77elJDWGQ5FL1y/ge+twlg1LKpb54GmyVSf0SCUlNlkqr6bRlKMcv6xFucE62qC9cM5R2qyrG5hB7V4kwRHGeL5NRYJHgugki6C4SXr2vJowmQqqnQCGpHmkYUTDmhCDfUPqVqj+q8MQU3tJO1ba8NYGDuhC2oiAk2WgVp1Smposs4macGMynZP67BdW8Q1mCdghlEatHC8w8tI+2gNh0P1VQ1UbMEEvFDzGHs0vpjqSNLiVO+zvqJXUnu0DD/5QJTgFBR5CnPwvT19fgRFM+9frevZa23UjQWNtriqtT/sa+3wuEKE/Wsaa22mUHlOE9GPs0ztiatF5eXxgf4+gpD5ybaOL/ioHRvwmALqbI6wR4wjHXUZzbRf+KARo4rm9L3tn+pvU9CUgY4UnLn8kjMPPMpAU2MaTHMysmRoBHrUwX5RhxK2ivVAyjLDbwSP8wz7RQC6mrV1PbyHqR4l5Vpwv8g450D5I4aQ2UkCHh3A+uFRAKzPWeGoxPwjBX5JoYAyWIbNYDAYDAaD4ZTDfrAZDAaDwWAwnHKUUqIf/uBP83h7VwaTIxg9BimVoaA4aYRJFRHSoDSMo+EdqZg6Ut1pOl+FCubTycAd0MwuTmFgB1XQwR7UaWjDYlfpc49pXKRcWSPVJ3XL1CrSncO+qOStJ/fzuLusOnC1psw1v/g1Zy72ekqRf+97b+Xx8rJolisboIwpxgXd/JkrVA328rgFGjD1u4o9/W3VVxsqGRSBoHqqoJXe+tF7efwLf7VYL63RkknkZIoxc0B1e6RvoPjB2GSZ2rp9oIe+c4CxRw29d38iJd1kJs4ibEltF0ek3nV9GaqgyVmbNgS9UAu0TiaD3TyejdWPNV+U1plVzQ/W5Xu4pWMKccJjBAINVycTHXFIQD/NoNbmuiKtyUQ9adPUIU02X31FmiyZiMahWa5fUFYKpHT3dnedeeCaLwOpjwzcjQdqJYEqmZuKh3lca2tcZrjnDHRwjJgmmpMM5t0wMXUC3bNA0WAtkM7mUYwq5kkKNduSqzlTqMcMWoZ0M03GeWyFilSOL2sexi6PCjyD8ycQrmJ/H5IOhnp3gH7AsQdyT/Wm+qFSA92EvSKA2rcBep0rZgZ1ZsBjNB7HSOP7F3/xdh6PU61fx3GcJ4+0X3iRxrvii5JfXdfRmOFQe2o1KLgI6zsGWucRnud4rPF4sqN18v7H7+j+I/QR3ktvfO3XnXnwOFfwbvTg0FDF+lly9VwRDOlZ09snncoXN026A5o1cw1gTlDlmpFWhtEuaoAmM+59mK8u9535czcMeFYCNPFY64Qm4zQWHsHM3impzc51SFPmMliGzWAwGAwGg+GUw36wGQwGg8FgMJxylFKid9+XqaHfQGo5nG/0mKHGJelIpvw8qsdK6m+5VBpRgQQ6j6ahTkGNB9p0PMT1an93SXTBOSg3x1DFejA67PV6eVyrgfJCqnSC9G4lZYpWzZyiI6pQUI6HosiikdpQhsU6DApRo7Llw6AQqkEfNOUQ9w+pyHRAcaD9NA2s0sQQit0K6g02MXY3r2pu/IEn+u7GCzJwdBzHCduiI6dQPkYxaIEQyrUQ1GSgsfyTb6vdf/xt3XP7SPdMElHgoz6mPlRgTzZl/ruBcfJTtKcECw316S5qqdJk1QedtFDX9RWk2wOkxp8eiSqhUjqmAglraQqTTy8j1UBFp/qEqqlaqLnisq5lSpqPxxpABYKa9EtMU7meScu4oCPilFQyqA/QDrx76p/8b04acPsYi1odylPsU+Nj1P3lum2C3sWayVzFXmU+tUKqdIp9akYz8RruWWH/Q8GOdVEw9a7D4BeMH8fR8ziHQZXGqOsa6Y8jmJ4nGBfGpJLSAoV6snp3OsZ9EvQt6D4ftO+58+t53BuL2mq0RTk2alTskrKfr97lfHZdmN8W3NZpgq2+erqpYy5xUlSRh6AI/Zru6+G7185087h/pPseH2keVFH/eHhM6hpGuzSDnqkfZ32of0GJZsnJxwgyzEsqJWMoQD3sm3WoQdtNmERjHlRoPE+VNb6XxrZVmNNXcZSBa9Ln2HC8k/n7UfG3hjc3zgpznWbo2AfR5gzUbQJVfBrP3zdZezzAHueHpT/H5n6vwWAwGAwGg+EUwn6wGQwGg8FgMJxylObgzq2Ibnp08CSPZ1Cbra2pLmJKQ81CCllhBmVYpcSYkxxqCqPQWsY6e7o8hponxu/Pmi/aYWkRdQjbUoC6kVLV/ZniMdowpZoNac1mW3TqCIquEIqULJJyqN5WinzxnMwKE6gDd+6rNmMZug1d3wJjtLbUzeP1M6LRmg21eTJGH9aV8p7ORCmMqBqM8CxgOMaJqIlxLGVrlEkd9OIrUn/+L/7Xil/+nGhAx3Gc/V2Z/0YwUE0TmL6CCnTrSrcfD3T9Wz9WA3f3unm8uYfaqJnS+VVvJY8TKJDfe09mmLOO5sGlzsnpah/p7StnVD+13VB71hY1by6saU5UkQ7vLGiOPnwqivYv3no3j2uLGEvMUUpDWQ/QB203hlqTiiUeWWDdUo/HHWj8O8H3kmrgPWmuSfUoVVncLrhfgJZJsvkXPYPXpBNC3e3M0B5QGQ7W8AyKRR9muRmfMQUFCQrb55EOmnSDPqpOdT1EmY4Lc+YM+2lC9Tv6fDBArdgzoEo9GD7jOIiLOMBxlgoUdaTO/apoNCr/afzppqAgC+a6pBTn4/bbMqwmTUwaqj/Q94Y4mnPhIurSwhyb9Rgzd75xaWHOkxYrGD6X0Pqce6wn/an32WyKscSe6npq08a69qAGjiPcu6v3be8QympswlSSLzW0X7SgpN1/rPkx6Wlfy7KT8zTNKvcXHH0A1TgZam/FiRmnyqMGhbXBGqCk5KGOxjNy3QZc6KBZeU86OvAa/i2POxVpclCWPGYB5TYN/l30YZEenV973HmGfepZ1oxl2AwGg8FgMBhOOewHm8FgMBgMBsMpRynPM9oWrfbwk1t57DeVpoyPRZkFMC+so2ZlADUlaw/6SCfXIGvKULcsg6HjQkdUktfQ/Y9BsxwfSJlXqYg682tKGW/1pKKrItXrog3tjq6vo9bfFOrLxfUz+FztjA9lXDju6fouTIA3oDYbQ905XdY9y+CHoh1jpPM3D/T5OIXiFYadflV92/sTfT6CgujhLmg0UIjJTP38x9/X3HiyQ2de1Ip1YOwKZdtHt1FYz3Gcbhd15EB7+x5USqDkPF/0apLiXlRZQikW4p6hr35JUSswnmIZgNZkjcIMBsFl+Btf/0YeHwxhllsTDRyCO4hRW3P/SOMXgWbqtq/m8edf6eYx1U5HPfQDsuoZ5sHO9t08HvR7ugYUREL1FWkE0BcFhSDS/0EJrRmA+qTajP9SxBJ2UnxvQpaJFAqvLztaATTrop5JSU087QXJZL5iMUa92oAmwKDYahXtR35BdTj/aIgz0zWLLe0vCegalJ91ZvgPTHOnQlUpKcuAfQilGtpDipMq4EJNUpikhlDIc46RGooL9UBP5oD++Xc+zOPhVGPRXcaxFf5BrP6Zwiw2rGmv57NzahSnCajtwpykcpH70nzFaEGt/KnUR4j6niEUjrWG9trVZe0LSzDtHQ/VF8cD7N94ZwYVGMziyMgxFODDQ63/8ZYUrfUFGDeXoMK6yFRokwrEcaQaOtKnahJziycQXNDwPH5BJTlVlpz4lcLxK2542L8K45rOvZ7qTjTBCXh/PGMVCnDWDJ3MWC+dlCgU9TzqxRqphYl58l5mGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiTbbop7OrKq+ImvoTfpSnoDBcpIRam6C4qi3pCh0qVJCjUcPPEg8EmU0AJVR8ZQyr3R0z9UVtTkYgHJdEO2w2EaqegoVGlOZUOxkAVK0MJKNQY8mie4zHIme6qF/dvYeKX5wL4/bK+d0/7raX4awCpUL6hB+/z1RkOlQ9FoDdeyWV7u6EbLN+32lzg+QJqaBK+tq/uBN3f/+Y6W266AmoqnmSW9f1w8GRUPNL35ZCl7P1bypQVXnQeGYoe6pB9phoSnl6v4OxjjVGLRbvCdo7AloHRii1rqsjXoyjRBW1Ybhvtq5dyQ6grQgFcgRVGlhD0rguvqr25aqrA7h40ob6wqUxd6BVHiToeZlBCVzv69jBAWz0wLTQNWnPi/QmlSY4vMK0vxV0CYRrmIt3oTXsKYn2hA/i+QKmExEE9Wx5UVY//19GBRXUEs4wL5A2h0dEaDPqR51sfexRuIEFNt4qDasQs1Orm4P9ZtRStQ5e0H7xXHUw/01vqRQE1CrEY6eJFBZUmkX4UgK1ZSknljb1Anmz5MyDED9D8Zq6GgL87+pNXjjuo4HDA60rvvHvTymErZIfc6PvQL1j78E51VGW9E0OPvUAz935UoerzREyR8N1O7IgaEzuvHSRdUYfff9O3n8+MlmHq+d1V4zg5vC8Fiq0suX5eLQqOmeYa30ta/2IA7oAF/kw3UN+jTkEQqfFDJoQRyn4DERHzWkqST33flUtFeQlfPdBeoW48fjF8XjC/PVwgUDZR7F4HEQUKi8Z4R3Kevysv2FuqJJ8d04D5ZhMxgMBoPBYDjlsB9sBoPBYDAYDKccpbnRF7/5rTxe2BRt1zsUhTI4EuUyjpXG9n2a07HOFtQUMGUd9USZZaDSWBPzqK/vcg9ETzVXpKz0a+KJJn3RUGOo8aZI9oYj1K6EKV5WUtMrQuo57EMZhrRsOtaz+KzxGFOdpu+qzHS9C4qzDBUXpoRQrWWuaJzqgtrfmIFmrEiVBMGVEzbV/gU4eUZQhg3HSNcif7+8olT7GRhBbm/18ngw3Mrj5LhYc28G6sFDv9SpCnRAUSMtzVqTF8+Ltt/bEj28vKrnP7+xkcdtqJp91EM9OJLK9+x5UVRLDXAWJbi1KTqid6S4App1dVHt6bQ1Homj9ngOVVBQrVYYazyWFnSf477m9BHMNa9dvpnHLz53LY/f//j9PL5z74M8DhyNUxX9nIImywqqLNSadYQQPEINfERE2iQjVQqKAHQEVVZusfqgcxKOB6I7BzzWgOMOD5/gSEGk6198VdRWiuMaVZh6Fvw6qaItcjf6Xsz5W3dkHB3UL+VxHUr4g13tEWtror9npNRAy9SgPHd89CG6zUfx1MSfT/uWqdZSUD2s1+lBDVkwDS1BrQ0qCfU2R8eaw4GnOby+qr0GW73TmaK+tY96uIX6jVTpsRaqQBqNKknSX2Tg+OzRp+pzNpuobwpVZhZo/YxnWlcJjn1s4LzDNNKeFdRwBAT1U4+P9H5zYQBPw3GODY+rlKFINeI4ElS4HunnhPMA71jOCfQ7d1N+XjhqUDDjVhtSmtkXjHlxTyp+KQFlbVCcC0ozqqZRdxljn+HISBrBDBnfFbBGL1WoGZ9FzUmgrC60swSWYTMYDAaDwWA45bAfbAaDwWAwGAynHKWU6OUvfSWPD34Ik1WkgRcbyEuDdkDW0WniGh/Gqm4Cc1ekRCc93Wfn4UPdk4qUTOnIQV8UVjBUopXfNUlEKcyYJkc6kgqhOKKBKBSHUCWy3liC+paVpuip9rI+b4MiqLP040zt9LwiXTgPMYwtUwfUQax+bkMVW6fSLoTZJNRvjSrSxH31YauG1HZTafdZojFaOycl0le/9moev/njn+TxOALd9CkKq4rOaLTUp0NSpz7VaqJIOB7Ly121aQNjD8PfKeZQCrrdZ6FUpPzDhvp6kuj6MriurllB7dFzHdEXV9bRvy1ds9XTGmC/Z6DhJhHaTMWVprfjoSbjWdQb7XZhBl1VG86tikL5cRtU3S2ZZSfoq3qB6aJyS3/rg34Ci+PUQXfEaD8Vo1M8LxmCBFQdWE3nWSjRIERfQabbOS+V5fSnMhY+2JKSbwPXVPc1T1qYb5xXBGm4MejLONOz7Pe1rj6+fV9tA12+v6P7tLrYTyegwqh+g+qu0LSMFOF801DSRKTFSC9WYOAaY31RaRcnhUGaiyjW/lVB/UlvTGUe1gJoqMuXdUynQIXheEMKN1tS6nyutOTz0J+vjKQikDTap9njMY6QHEHFWqnq7xfbonhx2sFpoI7n0pLm3waOfbQxPzYf67jQ0ZH2vvFM/TuDoe54cvJ7hib3BaNXmtB+2i34X1xDw2KokdmlFVClbsb3MI2PqZrkd1F9ySM1nPfz6yKzbR7uz/mdZPPnLhXFAdqfxLwe7WFtWqpEebyDnwcn72WWYTMYDAaDwWA45bAfbAaDwWAwGAynHKWU6MZ5qaO+1ZTx33f/6W/k8d7Wkzy+cvnlPH68jXqao14eV5GqTzzUVwSzunixm8eNruIRVZxIrQ59pFNnSL9GooBqSGU2kJJOXaREkd1uwMS0CkUkM8ApzHWrDX2Xg9TzAIaXI6ShY5jrtn2m1U/+/RxWRR2cX9fzjg51Tx+1E50ESiFQEA4MPqtQE40oBk1B31W7eXw8BNUz1LhQadtdVJ9cu34xj195Ya3wPJWGaO/BoSieoxpoLLgyu26IWNdcvnw5j/f21e6nm1I1ozSik4I6jGB8DEFkYbyPR+AdSxBAKdaqUk4GSgF0ewNKvSX48jaqalsDiuVjmIs6VAhjvjptqMRCKKXI8ECNe+6MKJflro5BXD4ruub+7dt53Nvaz+MIhrTk3nzQAlXEKJfoxKAsxqTzEAcFE11cj+8qoy+IJtYqqdgKFIVdUE+9J9t5fP/OA7UhlGr4pWUdO4ipECyYss43cfWhMPVALz5+Imqr00Sd00RHK6Y43lFNqVTDAEcwDS1QMTANhtE5j31QPZqBSvILNV5pnqrvnYGyZM3ZMrQaUrz64ASnoM5bGDsv0ncNDlC3GMdfkkhrLaKSD89Yg8S0iv2UatCkps+XMdakIimkbNWLxtoH+1KJxzCq3t3X8ZCFDvc4tK+CutxNjf0SxnI41vxI8Q45Hvfy+AgG3Jx/nz6WMg80WSZIO8aF+Uej4fk0Jb+WNLyL60lRF2PeBnPLY0iqkW2Yb5ScFZ6F34X7UxGdcp2DSi/cv6w9UGKj0QGPaAUnv/8tw2YwGAwGg8FwymE/2AwGg8FgMBhOOUop0f4ulCdbogXuvi/13+Yjff7NX/638vjzr7yQx2PQfyPUOTs4Vmq/jzqHR6hr16qpXtpiHSaFoLPiSGnfAAal45S0CdROUCD5FT3+FIag8RQGuawRB0q3gpRrOtWzJDTpRTs9qDupfRnDBNDz56ehCxjrnn/950R9fuGGUuQHA9YqVDw7Vj9MpqIg9nHNg0z3GSmT7xz3kWJGZnjrgSjHP/n29/O4UIINj/X8FzSmjuM4nVX16e0PNJ8qUIAmvtpUq4qSCKCqWeiI0ppNVH+vDqPKG1ekLMtiPVwNdUIPYaZMprGzIlPgMlxf0oPWQ1CW4AIaUICi9KLTQo3YKZR3I6ThJ6DVp6D/Ww3cE3Mojcnh6/4uZuDRPpSnuOa1m9fz+MXLorEff6JjEAePZPrqh6TM1M4JFHItUCjjkb63N4GhJukUKMzbq6KlUhhzx97J/+ZsuTCMBsVRBR3ZXdBaWuyozQtLoD5TXV+FgXUHRqcUR/ZgaPoIdOd4qvvsHcjg24PabBXtqXUVLyyIIgywECOOLyiaCPPcIU2JZylSnFR9Kp6NRTuyLmIGqrpgHuufPC6kKRfaMP7G0ZDlqtbmG1/4TB7f3VRt5tTlPiCalYq9Tkd9OBxqP9nZ0bgcHmosqIxstWDUDkNj1hLtHejd5jiO48Gl+PUXX8zjjz7QeCSgYEeYOGMcmzjCOjkExflkU3VFDw56us9A9w9c7fEBza9P9jQu7E1UBXt4H6YFx2iNfR17GRWvLsy46zjqQbVpBuN2GoVT2e5h/8JrwsGJFycE50oD4YL2F/sUDXLxE8TJsGfxWIZHc338QRW/KSLI2V2shyDU3hHB2Dp7hjVjGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiT59dD+PP/zJD/K4d9jL4z7qiv7T3/4HedxZEYVy7qJoqCuXVMPw1edFmx6h/mYKWqB/IAPLACZ3+1tScYU0hoUBXxUp1BgUAZgbpxbqmshDnTDU+iNL2WiDpkCqPj5Sin1vS6ayNaR0186rH8agUB/elQLPLVHmEHc/UQr/sy9q+M4vg0KE+pU0SDZWOn8y0d/uT3T9kyPdZ2dX/QnmxhkM9bcDKAWP+zIfnUL6F0Bp2+91C8/TWtaAzJBajmOkwCuoFVhRv08n6scnj6VM3t8TxX6wA8XymhRXq0uiTpIZ6teCPh+OlA6fFcwR56OG1dQkRQiq6Aj37A1hGAuKcwxK1Ec6vwlz0QTXsP0QsRXq700xxu265kFLjJ8Tod5tnQafLV3fua557GxoPXgN1MRro/0waHaOoJbb1Ljcu6M5PcGzXHhB6uKbn1edTQqre5ug/MpQmc8BZaB0ak1QNx5o05rm25On2u+mY9ZI1P1/+tP38vjeXSmghyNRPTNH83k21sMstDQnj45EhYVQoeOUhTMZqG8fbkp92Ghrnl+8gPqbeMY0hUwUIM1H6tNjbU3sKTOMVwCa6OTV4jgXNy7kcZ3GuR0870A04J9874/0Ofb0559/XveBOttDTdUAVFULi2QCZfsEqtIaVKIz7MuPn2re9no9xQfacxzHcRo4ZtFuqO9WuxqboE6jd+w7U7yLQOLNYu4pqB0b6p6dNS3oCY53pDTaPrlktbMCGtjF+ySjyS0oPA+EJGnKGvqdasoqLgqgNHZB7bOWKFXKFb7PeQ3O3lBhXgE9SkUq6fwgAG1KI2YoSakopnn3FLRmPeSRC/VVzHNQHFMcc3Gf4R1jGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiV59XsqW7iJqU4JOefDhW3k8HvTyeK8n/uzuHSn2eqA411bv57GL9PPKilL43SWlxpeXz+QxU731UDQCa83FLlVQeeh4ULOwjifprBhKFZqDTmOl50eZ4gnUr/1DPSNr+i2uSR1ZhcliCpPE5bUN5yS8d1sp/MWu/nahrWdv1GFgW9fn1QZSroFo3DWkra+j3wa6xIkSpe8zT1TDEVS3hz0YOIoZduKpUs+tbtGAdurpS44HMmXtgy4kHe4m+u4YBqFbTzXndnY0Ho/39H31xz39ra8xeHAXijPUKnWh9GTd1jLsDfT8+6iFynQ+GFHHBQ3fqJBChoIK6fzpFJQ/aLsQ6XxSpQFy+yHS8x6MiKMZHSxBfUA1NZ3q+mZdz9Je1dprqsyh0zoLGgH1Uqeoc3hhT6rbl2MpUittUiJq2+xQ82S8r/uEny7iOAcTqMdnUIaRgag0oKKDCu0AhtRPdjQ/P/pQCtl4NMDnn+RxpyXK+MKaOmgfCvmxo2eBUN3Z2tE+0hvo+sM9qXSXFjSHt3fVPy5U1aND7QUvvap+rrZgYg7j2QxUG/85X1AZgir1oSCkuWn8DKTo5Q1R3nv7ohpXF7XXX3hZtYo393QU5vf++A/yeICjFC9cuoxvIM2o9TvEERwwkU6zJWpxglrXUyg1JwW1rP62gbF2HMeZDPX3s6G+5ACfNxoavyGo3xleWC++qvrMrAsbjXWfFEd1eKTD6WLfBc1858l950TgfU7Vt4PjQlmh1ixiTKF0gvZAehr7/FvePsbnqGUNtanHNrAOLr+X9UMLDaJJLyhLfE5XiRhGzDRlTnnqCJR5hPrkM8RTcKgRVMARHSmeIX9mGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKidYaUtKsX1Yq/RWa0CIdvr95L483YJCXIDU+BnWweyBVU28g2uHjD1CPsaFU79KqUuM+FFcO6hOSjhxCfTWNmdaEciZh7TukYpGSdmFoSCPVBHW/qqB0F9tKc7fa3TzuHSENf6z2LCxKUXvzhVeck3B/V997YUe0Uv1I47WHlPfVs6BlzsLscxlUaQB6DePbDtVOr6oUfHsJdV2bUHZCLec53TxOYlDAnj53HMe5dZ8UjKhJpvapRBtEulcQ6F4PH4hSuf9Q1Elvov669UTzbAv03N62+NsKeIdz53QU4PmXrjonIfRAg8zmq45WalAmwumxBlVmllFlCQofefgqVKhhyHqRaE8F31XTQsEUdRwHdUtBR9ZqvKfmRw3UYXNB14cop1vtgtKFQq4NE9rGuv7AB0XLor4zqK/76M8x6HK/dTL1djwBt0/aDlTacKqxIz3igO4YjtS2733vzTxuolBrF2u+C3WnD4XfIvZWJ9a+sEPzVRhts0BhNIZpMMfXmW/eu41jAJ6nPfrGq6IdfSjbZqR9wHEGAShUfAH7MEHnesHJ7qy7u1LdNpqalCM4do8nin3suTyac/+RTGQd1Ettw+R2Cko0xMIrPBdMzPt97RVRSZ8c7MPFICm+SiegURsdPVtEJwPMywqOQeA0grO1tYXv1udt0KDbcE3woch/6UW9TypwLJjNTj7e8fTOx3mc4YhACCWwjzlKD90q341Ug4b4HMdNEDrwQnfgp+0koESbGL8EbSMlGoa8BhswO5dHQECf0zg3wrmJDPOA9UAdHFVJcXwkphkv1wn2FNKps0rpz7EclmEzGAwGg8FgOOWwH2wGg8FgMBgMpxylOTj+kotBKV64IGXP+lkpnzYfKd3+9vek4DnYV7q21RWF11qQwmx1rPTzAGqh7SeiyH7w3rt5vIRmu6AFIqg+U5gmVppKjVcbogVbbRgrokZlDUatVaSYfRjtZqCYWCesFeq7QihYXRi+ojnOCIqRLDuZRqgiNewEMjGt1fRdj7eUxr1zV2n7pbbGcV1MrHPpkvrk7BnU5VtSexpV0TU+Usmerz6nGCdAntuDeWq1o751HMfZHyi134FKa7GtdkyhyI0jUQ1TpPbf++B+Hm/vSs1Hc929GerX9tSODE6SHpSbTaT/X31Zps9lWA1F32SQHddAX9ZgsuhXaA5M80jds0a+AHQB685lUEGGNIOtgoKAWWYdVHcFdGqjA+qzjfqkaIML19pKHbQpqVvQQx7UxR7rAS5AXTjVmCZjGEmCTmmtw3AUJr31Nlx0S1AB7UVNKURujgszyxhKSVJ+kxnahnm4tIx9DVRdhuMXPhy4AxwlGWCjneGebZjoLqCuaAXz0wNH1sT4jtDOOo6VjPr628cPtC+sX9Q1U7QhhsqNxrNuYSIqTEDlR7OTx2UHqttLl/VeGUAxuflYR2eaLe3RXoSjOZAKPkSNzeOe3is8TrCyImr+yiUdtVlZlkPB++/JBLzf195XDbVv7O2p/TVygo7jXL4kU+CzME2fYE5s4V33eEvtbjU09s+/ILeGlUXNs1189ycfS5l8eKDjHYvd5Ty+fl3Hmv7Kz/2ccxL+6W/8Vh5XsDfx+A/NZvnurWLfrON91Wiq72rYC3gchMdHxlDk1kBxdmHknUJa7WGfakO1m2GdRNhrWIaYv3HilL9+WJNU11DJPwT9TeV5D/RohGMErM1KmXINqmHn3/47zjxYhs1gMBgMBoPhlMN+sBkMBoPBYDCccpRSoi4VP5479xrSF03QDoND1G8cyNA0rMk8lmqeWr2bx5UVpEoDpV/BvjgBpHCNRSmxWOvLBSXqsk5YgaqDMSfzo6BHWjVRMTE4lDFS/sOBqLAkna8G6yKd3W7qu463VUexwCmW4Iuf/0weHx2on+uB0uiLK5fz+PYn6qvtTamyHt5Vav6Dd1ELbUH9v3pWz3jtZbXh5qt6rrNQ7Pgh1KMBUs910S8xTD0dx3HcQOrLdkf3Wh4u4m+U3mZq2fP1HbMIqiOYu4agultQjdWQnh8P1UedquYKKdr1dRTdLMHnL2k9pKAOSZlTPRegv/wK19j8OUpkrI+HeelzrtOMF7EHei4EXeuDKg1A2/uoz+hix/Bwzwr6zUPsouauVxdN5HmgNVwdp3Bh4ppg36GKq45lUoEKtVCuD6BxMetgks6rVqGyxHeN4B5dxXMtgNJZ7GieNFEfsoJxrGLcI3yx76ERdGKFur4BGspLqGbFGsMxhTo6qFrXc7W6ovymUz1XFOm56LtKZigCpejiooyUKK6Js5PVu4uL3TzuLGgf34My8rkrz+XxFz//pTweDmBoDvPh+5uo3zrUEYgItXpHMJ09gLNAGKqfazVQnzhiwQ6iUpVmro7jOJev6wjFjedFR05wjGP6ztt5/DEM5oNA3339qu6zjPG7/1DHhUhXs76nj3h5eSmP252iye88bN2TQXMUza87G1S4PnHUg4a3OEbE2qCexz2Ixz6gQIaCkpRoHZSrA3cHKnipOqbqfgZKlGAd5ekEJuPY8HwPn+NvZzOOvf7PmI4UWA+kU4kqTPSd//P/Ze41lmEzGAwGg8FgOOWwH2wGg8FgMBgMpxyllChpgZRsjacU5962lDTv/+CP83jrgdK7u4ei/DpHvTxud5SiXV1VqteDCqfaEg116dKNPI6R8h8zFY1U7GyKFD6LlSGF78PoNYLSKKyK4jhz6Xn9aUDKVf1ANVKtrr+9cl1tZi2+AQptJqGUPCOk8Mvw8itSDf33/+x38/jWJ+r/NIIxJBSvyytSRFWQoj047CmeKs3/0aaoiR8/UDr4cweid6+K5XI2zqjPz19UR6+dUUq9EqIunVOkCyNQPEOYI2dwUwyqoEQD1OusKF5ZhUIoRj3QBGrEGPUWh1DAJhq/IergVetQ9pTg7PO1uZ+TBvVAEWAKOQFUpVQLpwlphPn1+kiDUPpEJakLpRd8Xp2g8B9UfZJmxTVl9wzUPxnqtGYVKeTcxtcUezCVrfxIzQ8/UnNi0VVV1PfNEqjBYX7dc+bjeIjCttjXuK2FEGhVuhivA/XJEo5HrLW1TpZBndfqoINZutfjVgtlOGrURlC8TbBHeIui9Sv6KidY1HzrLulIxORY9/RiGB3DyDdw9cCTmdbFYQxlJRWpoHd9qGgz7CMZnov0VBmORqIarzUv6btAke0daQ5s7mk/2sFxkFaXCn89b6ulZ7x+TSaynbY6sQ5qe2VJ+9qH7/8eWgp6GkcphkMYOx8Vj3r4oFcHMIwfj3XdQrebx6tn5LhwBXEKs9Yn2I8rqEdNdS7rodZwRGjzsWrf7sG54Ztf/gVnHhqgeweguj3sLz7qGVMxyrjZxH56rLlFhTZV3DPUA2c5WmaWSk6JOBMoVRPQ/FcuX87j/X3NubRQz1RtuHdXtHoKqhSex46Hn04x3jGTidZS6ulZaD6c4FgD6VqqnctgGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiRb1SqBHkcJbOrORx69/5Rt5vAjl5rvvvJXHt2+L7th9KqPA3q5owY1zolBWl0SVZo1uHh8ixewmylO2mzCJ9EULVJD2Zh28KpQnIQz+fE9p7xdf/Hwet1aUqnYLNeig9gP1Wa0rVZ9SWQVK4SxUaIegJsuwvCIq+T/49V/P43feeSeP734i1V0AU9hBTyljL9HnCWp4JlBe1lzRFDOo+va29Pn4UHTiT9+UsqhRE5Vx7ar+9sZroh0cx3GGI1E5ngNzVCiBhqgnOGOKOqNSEmanoJZIn/moU9ld0BjfuCJed3lRSubtvQdqW1keHgjP8NlAHWCucN7wni7ijPSTw2fEHCoornANY1Kl/F4qTEmJ4nKeInDc+f1MbjUF5Zd5MDj1tZ4dV3M3xVi7FSmF0wxj5z/FNVB3JZzHJxu0HuP6wvEIIIS6s7sBI1nQXm2YYrdp0gmldBXUdgw6K2Mh4oxKOFD8kGVWsF/44GI6oD5Xn9P+WIWZaDLUPfcfan02QE9loEFJxaZ4JYxmoG4iqABxlCTBmqIqscB5lSDA0ZaHT7XWHKiPD/pStn/vR9/J4/ayxuiwhxrS2CsaNfVJAxTiiy9I8r4Nw9qjvt4rdfTVLmi0EObYVPVdvFBUkdM8lpTfwrr2ly7ebx99ciuPWw199/6enn8G1WSrjTUGGngRtPeZNdWLfQpD4fOXsSZL0O7oPkvLej8vLuo5qxXNiU5H7WFt0+vPSSGbcq1mWhuNptbP3p6OUI2G6usuaqeyXvcM4z0a60hRC8a5r70mZ4W3fvKTPA5oot/p5vEm+orHCDLUA76C+uqHeAe+9977eVzF8agp11ui3yZU11YxX8tgGTaDwWAwGAyGUw77wWYwGAwGg8FwyvGXqETnxzRK9JtKg65euZnHK1C5XLwqVePbP/zTPP7kox/n8f0HSoc/fSpa7exZqRovXpVacxG1+9pIlcao3TUZSekRDZWOHI2UNj2AqgSlQR0n0UN+jPu/9AXRvgsbapuH9CvFUTPcZwpKYYb6hImjdHATdJwzg1kjMBhKaVNvKD399W/9Uh7fvKH+vPvJh3l8746ozx2Y6B5PRClU8ABXbijte/mFF/L4px/pnsfo8xDmvcdjPddbP1Cfv/+e0seO4ziDCZRDjp5n7azmVv+YBphqX3cBysGZvnua6PrXPqt2X7us/q24+ttWqNT1j36slDaVPWl2MvUW+/Mp0aRAwykOYB7tQxma0cQZFGTBwNrj9azFB2q1YHjNwpmsrcmajIjpmkp1aomZrYf2uxnqhFJFmIgqKRjnZqIdMxeG184KrtEadl0oybyTxyViO535VHIKheP6hqjb3ftSa3aq3TzuNtTOMCCVSboT9VVBcwektkHxU1Uaw5g7g1F4a1F00DDS2jk67uVx1dE1U0d9RcrocF9rfm8i6nnhkv62BtPpFPfJQOMmUJJGDpX5J1OiC12t2f0DGayPj0RzvfGFN/L4m9/Q/jvFvvMYx2t+/9uqY73d13zbfqx4clXq/TAkDaX1eAmGtb0j7Vk0PV1D7dHnX5DBr+M4zs6WVJn1mvpiAieAMQxaAygN/UxU3cqKaM0HD+7nMev1rqJG9+BYtO4dvFc/+fjjPK7UYdBagl/8xV/MYyo96zBibuC5mlDP7u5IwXtmQ+1v0gAac7oSwsAeNPzBrt5RNJ7uoBi3j/twxtVBK1OJubeld8DiGY1fp6t3z3s/eTuP10ArX7mqercvvyzV8Q9+8GYeDwZaSxcuaQ49eqzfNbu76h8f8+nylZPrVVuGzWAwGAwGg+GUw36wGQwGg8FgMJxylFKicUnMVDfNdWOkHat1pbrP31DqsAYjw9YS1CwX7+cxKbxHj5TS3TxUSvvyean6QqQU+0eiCFKoRwJvvtLOA5VU64B6Aq3x9l/8vtr2QEqen/9bfy+Pz117Td+LfkhAs8SIE9RRS3zQo6hzWGbTurik1O0f/fHbedzqSMmz0lF6+ubNl/L40pXLefz22+/l8Rg1YQ8fwlAWVOTR3u08Xl/SNRev6p6Tqe6zvQ2DwkTUys5W0WBy/1Df4cOYOEAKfLGquTIbazZunNNzPncNlO2Hoki+8EV9fvO6UtrRQDTHT77/NtqtlDYYy4JqtQyJq7HJqO50SBeS7gxKYtCapFNJlWLekypNvflqUKr2qAwtmu76c6+h8pRtKBj5sv0+C5Fq7F0HxsKkUB0dKSh8lw8lqQPFogN6FGozmmITKzUcWQDtSFWjCz6yc1H7V++J5uv2HVE0jYpo0yTVc81Ac8URag9CqU4apGA2i52WZqgoi+yETf3tGMbRWYGaBJ2KjWR3Xwq8nU3RMnefaG1fhjJ89XJXbYNBsUu6Hy8H1vktnJ0pwRLM09eXRVWN+hrf566IvhwfSV137bqOazQqGt875+7n8eGmaN9mDfWPeZwFBtE8QvAHf/Sf53EFptDLoM4Wu9pznzzWcRPHcRz4vxdq2S5Dcdk71Nw62tF+dOXrOl7089/85Tz+3d/97TxeWxOdN+lrbdx5pKNA92GW+/F9OQe0F06uJfq5z30uj1l/dwJaHacCnADvtIVrV/Q5THQr6IdKwZhb9+m0dNM11JdllW34dTtVHkeAWpbv+dlMc/frX/liHoegVisYsL//7/xaHtMA+spzUteyRmr6usbryvm1PF5d0/vm/n3Nj60tvWMaOFYWmkrUYDAYDAaD4X/8sB9sBoPBYDAYDKccz6gSZf090iCk/1ATMuHnQntD6fZrKKSYVH6YxzS8W1lR+vmTe6JKj/ZEedEcsYocLRWX9SoMFBuiZakSa3REvzTqakOrJQVOcwmmh4v6nPX0CpRoUtDXKqQcjCqXk4VVThu14iqB4o8/Ufp7G0qenSeikr/wFdGjv/bv/jt53Gn/eR7/+M9lwBtFoiAeP5GKax/USjoVXbBxQYqa9VX1VZyKN9naKqpEOwt6hvFUqX3Op1YLClC/l8dgJJyLZ0WvHAyllOr1NVe2d9TXnYrmQR+1YOsw2DyYiLKooU/LMEtRw7SEevcRO6wvibhAC9K0lvcB1cDY9edTqwX6EhQP70lTX7fkGAHnd0GW5eGepDJBj9J0l7dJEzxvDDqYNStjKk91eYY6h06J+C2k5y7oHQ80jg/K20e/vfSSTH1DzMmDrV4eL2R6xgBq8NGUKlHRMp6va0hfVlvq0NVVUSWXbkh13+5qfoYYd+40rqu9Na6Kwtp6oHUbox9Wl2WA3q5oX6tDyTvBN4xwnMBDpzcw7icToo5z55ao2I2zasMS9u4PcM2Dezoi881vfDOPe1CYfuZVmaS6CfdlxUuo4bl7KGr4JzAfPzzQkY7nQL/+3NekVL1+8XIef/Txuw5x/pLGjHsKjxostKFChynuzrao9zt3RWX2UIu7C7pwCGXo8iKoenxXd0mb5fgZFO98N47G2pf5kvIwyoFPajKcd7njY9EXfLnxeYZ3ZoV0Kt6TAeI2aE22eTzWu6uGtd2oq38yno/AZvb6C3KkmEyoSEdNVZyXOb+iuXtuWbQpxNTO4suiTafPXXbmYRoncz8nLMNmMBgMBoPBcMphP9gMBoPBYDAYTjmeqZYolUykMpgSTcBTxAXaFMoQT6n61hnRo8+Bgrj7pgwRnZnS+UkkXiOBApQmgJUF1jBUet5xIZWCGqS50M3jy8+9msfr62rbUke0bIDUdkLjUvRD0ap0/uceFHUpfjN7pEpLUKvqey9elFLoMYxwm6BNO131z3B8jGsu53FQBVW4DqVKpuddh+Llzm0pXnrHohOjB2oDPBKddkv9fwmmpI7jOIORxnU8US+hjJyTolbrqCdaJ5mJvolAPy3ANLHq655PHoleuDtQqvsIZsozKPsmMFxOo5PHZhKh70BBBqQCQX2mKdSClKSi7mRhvaGGo5uQ7iyJS1SihdR+gX1N5l5OeNgZPCpPXVEQrq/+dEnXBsXV8S/A8XXQ/xkkiGQ+k4QUCm655swH+oHUWARz2mCG8U2hiMQ6v/aS1kCKex7uo+YhnncIxeheT2sjgLKt2dWedeY5PcCZM/q8tYQ1DJo+JhE6g3LTQ61C7Muks48nNKMGdTjF/MH87LS6ebz5QCagNZhdT8Y4ivAMdZE3NkQfVavotzH2FJiM37r/QR7fvq+61BWoy8+si57aerKVx8d97X0f3JaJ7HM3ZXi7s629pQIp4ksv6SjJX/vlv5bHyUjvqmiKOew4zsUreofswCj18ab6LoJ6sY1316Mn2qfee+/tPH4KdeExaOkIR05qLd0n2df3cunRbLYMg4Hmh5Po2RqoobvQ1PuBhro8AnJ0jHby+A9r5WIa05jbiWFsj/vXUbu3BrXmaKp5z0MCNOmlAS+Ez4VjJTS25x5EJWnhHQ6DbNYPjlBnl0cQuLlGuD7wy7whBMuwGQwGg8FgMJxy2A82g8FgMBgMhlOOUkq0qOKar2SkEq4gHuPfko4g0UqjvTWlxs9sSJFTOVKK3RH756SRPt+NZI54PNLnAdRXfhVGvtelIrr2kswBl9ZlxltDapIdlLqMQenguVj3j8acvCaFeaqPfkjTEh4KCENdv7EhVeKZM1AoRqJNVs9IHbSIOoRZOkWsvnoKGqGzKGrxb/6dX83j+w+lPP3g/Z/m8eBQlML4SOn4ZijKottWyt5xHGdzS3+zAfNM9tHhgcZ1tK8U8vGhqKj3dkRzHB97uEbfPZ2pLuRwoOcPPM2PYn1MtXPrsdr5ksrjFpDSpRR/G2FcM9CaPuoBZqwZSmUo5xzre8J4Nkk5n0A1eAUtFkLMuRKVsuvOP9aQQIHIW5IqdT3ENI8l/UpKlH6rBZUo6WOsH1DGNJgt28yomgxgrlklAxHz+ALXNjlpfX7lBVFvt36qIwL3HvfyeDQGpR6qH649J2r10hWauIKKAZ0yTWAazHEpmDOj38ATF+o9LigewIA6Au3z8OEneeyEomjPXdQ+soSaqgdP9bdvv6M6vKwNWgZS0r2ernd90kfq/8UlGotq/pPSfYoanoORKLIIfTIAdbu7q70sjtTPG+vdPB6PtG88fqSxvrimsdtA/D/8vd4ncQQKH4/2D37zN/L43qYUsM+/KLPgLijz5RWNAbeCA8y584vay778JZnE3oDSdRnK/DKEVe2b1Md3aqjpCUcHGoUPUC91OoUSFuuNSs8A64rHrBqsHwoHCJrNDgYaS35vra513sCxqQYW/WwC2hS0+gzrLcK+RvPeKBKfSuU5CwhENO9N57/nkwz7acxvmA/LsBkMBoPBYDCcctgPNoPBYDAYDIZTjnJKFKnbJJ6vkGO9RybzfFIlpHcKdopIE0M5t3ZGdMEE9c+qKH82GenbUqRo+09lkurVlEJ96ZXP5vHLX5LxYaWtlH+SzadBCjUh54vcnBR/S0qNIj2/QLMUNKPz718CD5KahQVRnBfOSzH56IHqybVQv/X8eVHPpLnCUGliGqwy3dxd7Obx1y/LWPD6DRkCPnmo8br3sWqVjvoyofRR/9BxHCeAeq5SoTmi5lywAOrwqmiBRlUqou1j0Rb9kfr00WPRUp5Peg5UUV1US7sDY9Kqvuv2J3q2X/hFZy6iaH5dQvIXcQzKEouGsVuo0QllaGH+0ZgXMetjFhSjnJcwsOTflhjtegUT3RKFGdawn85fKGW2kKRBU5qdMsYeREPqOD2ZEn2yJ7qNa6/GTueRDqjcKjTU9XFRqPas38A+EkKhDeHgypponKWzirGFOiloO6rQPTwZ6Vq/UE8WezHmG9V4axd0fXe1m8fcswZQaLaaoom475w9q6MLFbwouqiXWK2cXBfx4UPRgCurqIW8KiX5YCiV4fUbogo90OIV7KHn1rXHvfNTme4+eiKqtFHT9fceaJ9qd9TmBajrPU8DuQkFZzqkOWuRZuSecvWyFKONpvbaa8+p5ubtp/fz2AUdnsSi5xaX1C8/evftPH7wVPv9IvrR21UfvfS8znG88UVRpWVoQuZfD/UsTRjVTqGOPEId7zGNdrF3VLBWa1isCw3Rgs224jbUoM2mfgCAZXWOocTmPG7BKaDdUJvjmcay8LMG95zieESMozmDEY4mYF0l3BKxhxaoUtyfRzrS+T+tSmEZNoPBYDAYDIZTDvvBZjAYDAaDwXDK8Uwq0SKoooOCwqPajDQoFGO4Z7H2HdLbMP4bI+3YQJo/CJUeDbqiIxZWZYK4dO5yHl9/5TV9V02p0qlDaogqK7SzULjQnRcW2k9QucWwQL9SOPsMP5/dQjtFCa6Bcgl90QILqDlH6pPmo0GgNDQNI6ex6MsYOd2wIrr5zNnLebx+Rt97/oJogO1NqOhQE9ZxHMfdFl0acVIkejYXKrZuS+ntDiib0UTqqDGMD/sFo1qltEcjKWkHA9Gy1y+rHupyIHohnhap3HkYjucrLv0KTHTBgWV0s6RyGLRmVqLWzApUY8HN2sEfzG1PoW1oA/xcHZ9Tl5/7pE15EeZ0gWZFjO8qKDGpVGWpVSyODApKD5SoV3Jcg3gEE9eMz0JazZtvWumSmsfamMHUM6QK+qwo9WqKOoeQyPX2oYSrw7DT0T2HmRRvGdaqV6IGDXAOxSueSclDH89YaavNEBw7C8vaL1zs76NU9B8p2u4Z0XRf/urn1f5Dra8ydGAWe/Gi9osFKCOfbku1noI6P3dGKt3r56XIfOmGjms8uSul+ku/oM+zQM/yzodv5TGVhRFMWKv4PEY/TGc6MrK3p+9yHMeZ4TrS6vtQw4ZV7aMB6vtOsNcOURPz0UNRnzO0j++rR1CxhlA+0uLg62+oDmsZfMz7Sl17ax97696uHBpINXL6VQLMddZRBd25iLnYXIAprs+jOnANOBT9egwldhvjVMOa9LEHTWBWPBhqvSWgoSc0znVPfinzGEqCNRmBWuW7jcfNqBjNnqECr2XYDAaDwWAwGE457AebwWAwGAwGwynHM1GiVKp5hRQ76IKCKSZQUJUx/UdTWSEBPbfxvGq4PX7nx2oDcvir117I4+cvyhwwQBo3qyi1GhdYKCo38XnB+Hf+/8gKytD5f/upnpiLghHxyRlRZzRWv4UB6MGWKIgG1I21OmlQpHpRu9IHbRiiVinLK5LC8lATlurXDKq1Fah9V9dhMHlBY+Q4jrO2fi2PP/7pm3m8++hOHkcwRJxMlcbujPX8s6HaMToS9ZmwNqUjGiEMdX01pCJshlh/26iLKioDFaD8p1DG4wJkEQuGuvMVpqyDx4mWFmKYMqrJRa/cguEqzJ1RkzQlHYnv9bjOwXf4oDto6ltBvUEPNGJRhVpmHg2jTZ4XqOBIRMEwFuaUTgkSqD5hnOtjH2lUNL6NhubD9rZoKBfGlpkvOqs/BdWeStXYxTqc9PS3Vy5JsbcKVd+7t0TPHcK8k93g49lr6GcuVhrhuhivGUzGqfb1uL9jPvgYrxB0lo86iuOh6Ck/1ufxrEwTLLzyyitq20yjNwHNFU30XOOB+uSoKjpyekbPePeR6m1219S35y7quMaTzft5XPe7eTyAQfcBTNuDisa0VhFFu5XKdLfVLO4PF66Ipt2HSvnNt97O40fb+nv4mDvbOxqnD0IZGRdqYmLsW1Ck8v18cKjjJrewR/zFWz/I41/46s8581CDSrSPws77fdSyRf1m/pCg+W0F828RCtNlOBx0WlqTeLU4E9x/2Nfe3etpPLj+uVXOQCV7WLes++kX1PUwIsd9Ypjr0qS7WlX7A1DPPdC1U65J0qD4ArySP+WiMR+WYTMYDAaDwWA45bAfbAaDwWAwGAynHKWUaBHzlWo0mHwGMUWJXWyRjnRrSpt2r4g+G0ZIcSLlXz8n6s1fVMHRFHRHWYnOsiZnJY0rUE9l9GiJaC3N5lPDRJnalPjdf/L9PL6MNP/qKtum62czpbNd1Myk0osq0WpVcYIqclWMC2szMuWdQvub+qCekG4+d0Hml47jOEtL53Cd2rS7IfXZnQ8/yOODWzLIhTDJOXgqlVY8Vtp+bbmrduP+w6GuCUO1ezru5XECs9BnSVfPUBuRXDdNE2Mo3SJQgQWVNb6X9GjBjpZrr3DUgNeQgtTnPriDjDR5wXSXtKz+NgUNypKPAdtfqA2Kh4excBDQ9HX+giu0gc9bOEdwskq05mjuVsG5nAVt36p183gy6ak1ncU8rtekTo9xBuTxkUxZaTI+BH3fA52X3b2bxxUPNQzhN0qTztqC1iEp4+UWTFLRDVtQVnKT87EmkwyqZ4yLO5tf3zYFDTrDmPpQ5nXa2l+c+aLbAtZWZfYd+FRz6/4dGKZ+9J7owVufqHYw3z0j9NtHH3+Ux+9+8nYen4fCtOqqocNIbfji61/L47Pndf2lK1Kzbm3JqP3BXRnqOo7jfHLrVh6/9KKO9pw7r+MhP37nnTxOoV5cQj3Q44novwYU8l3sa7v7UrmfOydT41aLe7bG+AdvfTePyyhR1j/ePxBFOwa3V8NxBwjhnTaO1bTroG6bmCsduTWEUNEOYr3naYo7HmktBVh7AZTnKX4jHPfVnwHqV1dxPCqs4ucPaM3hBIcroPrsQVUaYZ1ja3ImkINy60tYPzTm54q9k1//lmEzGAwGg8FgOO2wH2wGg8FgMBgMpxyllGg0m6/cYjoP4otCTbwihapPC78OQREWlJu8BGaC3aui0mq4KoGahTXAHHe+SqmkHGiBlo2z+fROAvqlUA8UCrky4izDPROanlIChmsK3Qn8s9/9UR5fvqi0+y/+skyDL0Gh1GhKzRJBMcnx8nyqRGHgGNEsFs9IQ1P0SVZikuziaeKkOC4ZuJyRA06oq7955WufyePnboiSGE9EkRztSR22hn48e00UQb2p53zyRAqtnadShDWgZKpAmTiCUrUM4xGeraBA0sfF+qFQ3rFOZcHlFrcsqelZ9jlrhhYMbwt1SHn/EjUrrmc72T8h6sBm4OQ9rEkauibgU4tHAfh5NveagsEk9iavpHwlDTKnuL7ho05jV1TV8RQUEAyc00jx8aGoKg/zrVkXfTacwDy2qu8dTKTe29/TPGyAlumgfuMk1dyj0ebejo4BzI61tlNs0mfOyli8CqPWnZ0dtQ33nEKZx+eaYZ33e1ovG2f1vCsbWmuPHoomLsOZNVGid+6IJq5W1Q87O6IdE6i8o0xjd/+RaoYGFa3xxWXQbgXTY43LlWuX1f5V3f/iZX2+0BSlFh/rmrWu2n/Q0pg6juPEmGekLM+cO5vHL7/6ah7/FPRota49ewwF8q1bUiyHOFJQq+o5eSzj4kVR/tOpzo8cHPWck7CzrzXA4zwNHJnxMqjoQS+uQAFah+E12MiC2Xd/rPtsHmhdDTAXKYhuYd/hOYII7ysf5u4V9FUV8yMp/K7RuLarPPIjSr4/Vp8conaqk2k9jCdqwwy0aUyzfBh2g3Hlz4hSWIbNYDAYDAaD4ZTDfrAZDAaDwWAwnHK4T548eQa7VoPBYDAYDAbDvylYhs1gMBgMBoPhlMN+sBkMBoPBYDCcctgPNoPBYDAYDIZTDvvBZjAYDAaDwXDKYT/YDAaDwWAwGE457AebwWAwGAwGwylHaaWDe/flIl9wGYfr8WQid2C6truwSafD+uGxXIkf7aIoeYJisU25XIcVOR3/we//8zz+0z/5U92z18vjGdycp2PFdGqvwOmYbWZx6WpDLuONhlykiUqFBdN1fQ1xGOqaVluOyfVQLsw0bV9dVfH6/+N//L+b+73f/Ppfz+Mpqp+nBctkONNX1J9rF1QxoOKrnTEcqw+3VVS5vy9n7YL7PitBOCUO9LymUNS2WOG2UMQcxandQG7ZQahiyGHYyeNZpDmU4hnCuvo6XFZlhLAjl/EKvtdD2QcfjugFQ31U8v3H/+nfd+bhn3/3P9U9Me8HAzlku57auYgizykqAviO+qGG8auinWkq1/040TwIq+q3DP8eSxy1P6J7P+ZNhALUXMMRCxrH8yuIRKn+lk713C9SVDpO4Zw/xveOJ1jDWM+1mtZMHMPVH1UV/qd/8/8+t20fDv6LPPY97mVqQ4KqCjNUCuBs5R7hF6YxHNNZjJ4VJbiHpqzmgHmIAutZxmooak/iaOzoxxSgiHnVU5xhfGcpxxdzyeF6RsUKVjFhZQ30SuFv8Ywu3Nxfaf8vnXn4D/8TVQDg9xbfJQ6uETy4139qg5n7sedhb0FfOXjGOIZj/UBtOz5StYXjnio4jI+28jidFCs7hKiisXLhF/N4/bm/phhVKOo1PU8dVUOqATeh+WPDvZaVc2LsKdOp5sEI8f/+789fz//X/9t/lsfNpt6BQaB+LFZqCXAN36vMCbHCiltyzXxkWGMpqwOVzNfRWNVBfKzbZgvvBpReiGJUQ8F+xCpAfEa3UC2Gc8srifleKZmv6Ie/+2tvzL3GMmwGg8FgMBgMpxz2g81gMBgMBoPhlKOUEp3NlCIMQ6UO26D2CFIfn/o/eURKpFYRdeOBChsdKy39O9/+J3n8F9//gzxutUTnndtY0t+OlAYdI45R9LxIp4hymYH2Ge6psOteOr9INdOXga/+qaNwb7fbzePz51Vc+uZ10XTnzql48oULKtpehrJUeMai6ky5ov3RCNRcneNF6mZ+ereQeiY76s6/D+OsQGsU08H86ywVxe6g6HEyPdDH/DcGv5v01jGKWR89yONw8WoeNxbV19W6qEm3RjpPt0+wHsqQJkqlc5zCkJS8qL1Mlzs+lmILlLyH+6RI2yeI/aruH8Wa92ClnAhF1TPQEQnoUTBpBQqPHeFj3nPN1z31WxzrwZKEdCrXHsaLc6KiOEQxdM6hmHP9Gf7JOUUR5gBUmpuKpsjQP6SkC9RHgTpk/+j6ANfzqEFS2B9BGWWKEy5tFr4H5dJwNVfZhLRAX6IPsbfWMoydi3FxMBExLmxyDGqVNCvpXY8U2TPQXKTXCtRnYYvQfUhJ89k9n/syr8G6AM017D/J48G+is4P9u7iGsXRWIXd45mKk9dwZGdpQc/iOI6D0zDOaFtHeLbrZ/J4On0+j89cUKF2tw36H3M9DNUXVX4dKPMMk4hr2Mc4hSlp0JEzD3/y5zqCtLqynseLiyp4v7ykIzyddldtw7GgalWbCo8RpYXXmNpTeMcWjmLhc2c+ZR5jDW9ua8xGQ71Xzp49l8fjqd7zH3/0YR632vpNwWNNTezjy6uisxeXNab1Go9QuXOiT83vEsq/DJZhMxgMBoPBYDjlsB9sBoPBYDAYDKccpZQoU5nTqdLJx8dKCRfVGvNBJcniYiuPm4v6fG+nl8f/+Lf/6zz+4L038/iNNz6Xx1euXMljKj2Gw2Ee72xv5zFpVqaYJxPRbuMJVSJKMUeRnp008XQKlR4oF6Z9r14RDfqVr3wlj1/9zEt5TKUgKaMyFJkq0LVQEFWpLIQiNYNacTbWOMYYoynSxKRZypnPkxO5n6ZBi+CNSXe6JdcU76wQCjt8nMz0POPtn+TxbO+jPPYrSmP7IWm4+Qonx/lfzW1NADrPB/XGcY1Bm4ZYY42mxikI9L0zqJ1TKKU8fFcExagLdWpBwceuBYVUqUHRjUGeYq5noF+zwgSk8pH0hZ4xBV0DJtYJQO9kmLuktzjsXIc10EEZKMUyzGZa/zNSsWgb6RfS036BJ+Z8QIx2sg+pmmbsebo/x4iP7hbWtp4xCNQeH9RQigGOHVCxmG+kFLlfhA7Vb2oDlcUVd74q03XmK+GSZ9jLeNSG8yQFF+u5VCJq4DOXR1XgXDDSeu/tyOngaPuDPB7u38vj6UAK0CzW+8BxcQQCqtIASsEFHA/yguK7cDjB8yTadzcaoiAroKXv37mdxxcuX87j5SWp4jlmHljNgOp6h/QoGkSnhPDkPXvzoSjhrcdyCwgwZs222ra+qqM9Z86IdlxcXM7j5WXFjTr2XFDjgT/fxYFKz8KriKcpsK6ee+5GHkP07WQ4FvDoXSl7ez2Ny/MvfCGP9/elBP7o4/fzuP1Un2+cFf1648YLeVyrQbHvksadr5b9S36O6foTrzAYDAaDwWAw/BuF/WAzGAwGg8FgOOUozcEVDTLnU1JUXBEFBVhB0QVzSqhtfvM3/8s8/uEP/iiPv/bG5/P4G1/7ah4/eggjQ1B7Fy9CaQPTwADp2vV1KV5o/DuZKR5HoqHY/imuPwbNOgNlTOUTzT5DGCA2G/qcaV8qUkpBQ1qqbkHl0Wy1hbRss470OlLPEygF44lStKOCZyNpClAiZWxlCT6djM9K/+fPeGNnPmdbUI0BCWjEFOM6mxR0q7rPMzSnVtd3RVBKNpowAQ5gOoqbxq6ujzD/SHuTKqVBpg8angrQGMaz7JMUHMF0BvPhlCpXfBeWMJXDAWnoBJS8T5UrKBpQOqQFwOw5ERRsVJV7MLzmfZL4GdSIUFn6oJLTEjrey0DLQDUdgHLxaEpMY1uX5rTO3LhAuTqimLiuSH87GItiG0CV0giaamuPVB2VuTTCpXo0m3t96LGdakOC8SJNSRVqGbJs/nwICsa5oGtBwXPfLKhlMRb9PSnEjx7/SG2eSXXu0UQXfZi4msN8n9WwR3sw2eYxGsdxnARtjWBs7UWgz67rXbS5KaPeLdCRk5GuWVuXMtGtYgyocPZBseOdw/dSVmLcStCYm8bQMZ7z6EDzbNjXcz16cCuPa3Udg+ouSH25tr4xN15d0TN2u6JQ+S4tpxQFuji4UNHzPVYJ9Vz37r+Txx/fVry6pPY0YaK/dk7Hsl648XIeN/BupyFw4TgCDXULx3pOPt5hGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiXolBplldUWLdcK8ufHmlpQV/+3v/Hd5/MPvSr336otfzOMrF2/mcTTT/ft9qUGbUNpFE6U4O53FPE5hnBtNFddCUVVMubahECozBC7WSOTnig8Pe3k8myp9nBRqKup6mlyWgel5KmfqdZgVwnC0UqBooYAEteKglmurIeXTEdLcSTJfUVd44DLFKPvq0/1ZMA705n7+s6JY0/RkJXPG9Dk/x228Z0hX84hAra6+5pjx/jRWLSiuaRIJSmgaUbWrNk+goCRFRcUV+4Q1Or1A834y1T2PjkT5c34XPDehDK04pFxoGqz1WatCsYzb0JTVAQVJ2ov1SasN9q1zImq1rtpT4bxXGGEsOC4FGo60I+7vkxrmlurOXxtUd3LOl5n3FtSRrAkLNS5Np7NCXeESLp/0a5kpsUOloz73C5QoaVDUsUxOHpiCOTNoIhrwusWeVuTzfaNn7C6JXqu+8it5vNeVYn/r4XfyeHwgtXgK6jKlChXjXqtpn3UKpsdFY+1CHVZ0sBvr3bXQBD13XsdV2k2N986BFKZP8A5ZPyOqrt3BkQv0Xa3OdziU59OT6epWi+baWBvYg6i+jPAOifE/ZlCYDwY6vrSzo98C4W2NwQLe26urMqRdWxM1TLXpwoJcFhoN0a8VvANZz3yMGqPvvfvTPD7uq22tBbWhf6R34N6ODJd97Ec/94aOa7WaakPxtwPV1PPNgZ/lpWcZNoPBYDAYDIZTDvvBZjAYDAaDwXDKUUqJkmKjaWVaUlszTalI0W13dnbz+Lf+4W/k8Qy0zMs3ZHJ36YLqbFagNusd63owPc4yRD4pUsYjpvBhHjmACtCnGo8KKqTGaZbL9D9Tz6SbqAAJodxcWlTdNfYPVU1R9AwpUdy/Ajq4SuoJ5pqFaqBofwX/Y4bxJYsTBEj5J/MVh89inFswEP1LLi8kh0uYnGcQOBX4tuxZ1KYltG4hpf0MtRFnrFc4lPqSc2IyUT8GKAhIGmgy0pxr1USVdJpSWVEt6IK+4fq8fxdqs7HWxtWrUjj95B3V0BuDKvns6zKqbjbVBioWd7G2G6ApNzel4q4Gomueu/pcHkc4pnA8ONL1pD4Rcxy7XVEWs9n8WoiEh3EszGNQVaS8KwVlMZWV3AtQrxN1VDlNElCThVqfrOuazV9LbE+G/augHsWXpazHWKLo5jz3OOUVOh7ak7DWqkvqdu4ti/Tuz2iqnjrz3ytsHSnpoFA/FPsyaNNwQXturfnNPF5Yu57Hm7dFj24/+Z6+diT6i2bFlSrVozwL86kjE+xHKMZD7P2L7QCf614NHB1YQN3sJzui7R4/0NpeQq3PjXU9czybT2tSwV6GauNaHnuY916m9eNyPdAsGw4TGeJZxjbgb4f6fAKj8P1DKE8fy+yY1Geno71pAVTm0pJo06VF7ZvHqDE+wB5dxT4b1Ltq8wh7U0f3+ewXvo7vRS3qkvdTwVmhpICo+wz5M8uwGQwGg8FgMJxy2A82g8FgMBgMhlOOUkr03XffzWOqMlZWVvKY6XCmt7e3d/L4d37nd+be/6tf/VIef+87b+fxcAQjzx2lWS9uQGF2pDTl3mPFZ66qjtfiitocBFI+NhuiaGhmR1VPAiNZGueSbmI6fAZqlVlyZp6ZVqcBH+v1uc9AL5apAElbe6l+h3caSqnXoYStocZojIZ22korT/H51q5S0mUmtaUopIP/kstOvtO/cpSpglkDtAzb2zK/TGLS5BqnB/cf5fHKquiLGdTLG2tStL3woqjJjVXV6At80N7gt2igunvvt/L48T1Rn7/6Dd1z656o0n/8u1Ju3zz/mTz+5hekgqKKq3csA9InW6qFCIa2QFm8cPP5POZ8PepLCce5yLV3eKhrPKxVr2S8iILiEv9GJQ1HyoLUG6nMpEBrsk4oTFJj0qCsE0pqEorIZ/g3swtz0AqMXt2UKkDW5QQlVTiuMZ+W4bOHaHOGecXjIOwHMp/cj0L3ZMU76+26rOtaUrOVjgPFrZL0KK4HrVxFH4bnRPctrGqtLT54MY8ffKD3VjwWPepCfRjPYLD+aRU5+iXFODXbovOWF9VH9Yr+IIIJNTy3nXpD1NvTba3bB49QDxXf1Wpp7bGesfsMLuAba/rbAXyYUSK1MCcc0J0h5lyA91vbwY1S9V2nrvt02vrbxwf6296xqMwRfiPs72nPLdRLxgSpwuA4Q+3x/kgUsw8HBQfG8yn2gk5HvyNuXr2sy4P5+wWPwhSqUpe+500lajAYDAaDwfA/etgPNoPBYDAYDIZTjlJKlJRFWQqPhnQHMPgjDcpU7BtfFbVCE9cJ6pMd9LbzeH1NqowIajDSiBVQfimUKgloSs+liovmi6REQTtU5tctK6YskcKG4oWU6PGxUrdxQZnDVOnPRgSScin6wyIVi1GtLerZG6CDp1A0MkHegApqoaUU/N4eKBcYajrPYPz3LCn4T7fjXydKU9Skh56hdWFF/TvLSF1rPi12pehyE/Xp4ZaOEdw4p2MH6UjXhFk3j/1EdIoLhfbTJ6JvXr+p9bboy4SynojW/Opn38jjB3dVe3HnsWiWwX5P34tpPBxKxfVnf/bP8vjho4f63q7a3O8/zuOlJa3tWl3PeHSk7xoMBoiPEat/Wk0dLygDlY+MMxqfYl0l7nz1ONlX7hdTmKZ6JXUOCxRqwYi8IGnW32KPiEGRuaRxPX5OxSiNoMsoUYH0ehRhL8vm074ZlJik+6YR6xzjYSAyLqCwdcw3Ey2asOPyAv01nyqlyXBBpUe1fE3PfuWmTNs7bc3PO+/8l3mcJpqTWVFf6xCk813QpcvLNDjX+6HS1npOU8WNme5TC7Wx1+EQ0Gpqf9nc1zqZgnIOoTx9FrPpf+/LatsMtXVHU71PehO183Ckz4/G6ovjkfroeEi3Brg4VHt5/K2XNW/uben6Dx+ITm019L0VGGFzTng4l3F3s4+Y38ua3jDaZb1kGIs34PoQT7k3VXG92kaVe8EM+hmOPpXBMmwGg8FgMBgMpxz2g81gMBgMBoPhlKOUEn355ZfzuCyF1+8r1fjbv/3beTyZKH359a/LYC6AWiMGBUEDO6rozp4VjTOuqA0D0KCXzknl02hJgXMcgTpkCANBUqLkI0jjEqQyCrVEWbuvxNmVVGwhJc10/rOoRHgfXD9hYTe0YQKD4slAdewKafo2jP9AcyegoatIBw9AYRfLJZapQf/1kp3//6ScS+/5DNfUYIq7BhPHNFD/drpX87jta74uhKIRn+5r/fQnn+Rxo3E2j9c7UkFPIl3/3e++mcffwBGES1el0PzDP5NB6N/4Wz+v67/0hTx+BEp0f0drMnBFU+z1RL/u9lUbcPvgaR4fHuuoROSB3mlqPtWwC60si+58/FjHIw4OpUhdXlXfrq2qH16WyK+Ax1tqA2kTqjUzUpCs0YnNwweFSoozhsLRewYFaLG27HwqkIrLJMbxC5rxpoxJrc5Xg6asYcxanzT7xd4XFwrHzm9n2T4YgRJ8XmUvP4X51GeREkUzvfn0brmPNzcnmAbzWIzHPtfn7QXUpaSifkIDcdSc/tQOEaF/66AszyyjrmVP5rd+qHlcq0qNWG2QBtV31Gs0cRcNR1Pc46EcFDzQf+4zpGk6oeZBpaJ7Bosw/gblyvFLYSodp7pmgFdUH1Spk+l9vrGgd06Io0b1gsk4FdEa1wjfu95W/3RhULypbcSZ4p3J9R9N1QYqxnv7+uM/+sM/yONf/IW/lscrcNSIYLqfoa+ojq6U9GEZLMNmMBgMBoPBcMphP9gMBoPBYDAYTjlKKVHWpqRBHtWj3/620oKkET/3OdYhlIqLVGmENP/ZCxfzeARnvgA03BiqkthVCtUJRTf5oT4PUqU1XRptIsVZTEEypU16FMrTApUhUA3m4P5UsLVBOzoFxRUNLH/G38/I+KegQYaoqXoAU9I61K/L7W4eL7SUgl9Y0Ofn1zby+NyaTF4f74gK29qXUnC/p++a0WiWz/Upo9OstIbgyZg/Yp9W4c2nb9wSVVpWLI4InDw2XzyvPiK1vD3RjfZczYPXXvhyHi81RXf+8LGokl2o9u6hdudGV2PTXNC8/8Vf+dU8/ujjD/K43dZcrK2pDX/8p3+Sx1/78mfzuF7X2rv/QLRs5qk9jw80D4aggI7H6sMK6uN+58fv5/H6ZallW77WfGdXNE6vp+866PXyeEAVVwvOoiW4/XAL/6Xv4tGEKfadyWS+Qr5WnW9OOxhpvdWgOvRR73KGIxrTqZ4rmqkRY9SQjbE/Vlwac5LaK0gicySgiVLQiCGOpHg+57y+qwpj0QLlVTCn1Xe5VOD6VDqefAyC9UAL+2DJHl00OncQz68F7BeUebzEnf85vmsW6f3BZ6EJdgq1bJIV94cIf3NtQ/vCtctat+OZ9svJROrOtNbN43ZLf7vY0udNKCU9HFOIYo3f1o6OwEQ8F+SWvvaFgiRXIY/h0EDZw/OG6Pd6qLZ18bXBkv6WptLjmZ7rT3vaI+7MXsljujKMUIf4aKh1uFGVinOpgfXv41hTzMHnHEI92hBzetzL46fbumcbhrosLMDfSlxjhZq+6GeutzJYhs1gMBgMBoPhlMN+sBkMBoPBYDCccpTm4IZTKTepdrj1keiaR4+kBvvSl2Q6GKC21nTKGmb6Oqqvrly+lMeLXSnAKhUoFiOoViJ97sPUL0iRSk/mUwdMv/plVBiud5HeLQjMwEF4/nxl2KzAlKK+GmKHCp9n0CKGVdQhBaeTgZKOEqWGh2OlxWdQxXigR7qLoshI405grrsQa1zC87pmaVH3/+mtn+bx9qEUfj7qCnLc/4cPPvXfOcpMeEs+5y1L1LxlKL9mvhKtDHVHtIYDSmsFq8x3lKqvuVpXq6grujJSmt/pK97ZV928LNA8o9KogfE7f14K6uUVGYFSbfff/D//szz+yhuiRK8/fyOPHzyV4e2tu1r/t5/cyeMIlN8M82Y0lJJ8NEMtQWw9B0fqt7ffFv3aWRAlMkHdxgnUef1j/e1/8G85c9Fui95NoPScjNXOnYdq/+RIfduGqu/ptuj/3p6urzc1v89d0rEDeHc7SaTvDVLRuH6CyYE+7O+Lkjse6ka1uu4/xnENUqhN0MRnLqgPFxfkYFuFCavni1L3PFFqrCVKCtgB/TU51phWsDcFMA0tQ8JaqDwmUjD+nW9E7GH+F0T3iAsKU+7joLwyPFdxb8FRjRKz5ZTKYqcItumNr7yex6+9pvjeI9FqcaR9NAPl1+9JoR1j/TQXJL2lCpKGzqzP+riHowDlr/0cowlUrnXU5cSf8ggP6X++61yMkxOQTsWXFfZfqHarmsfLUMWTih02pOb1jrS3pnAyQDcUxj6FktnxQNFi4iwu6Xuzodo5muj30RHcMp67dl3tpHky2szjY2lSNv/mwzJsBoPBYDAYDKcc9oPNYDAYDAaD4ZSjNDf6//iv/l95fOWiVJx7T5V2pIfg7l4vjwspRTFpTgiV1QxU6Wym9GIdLppM/w+Gogi8Ier+oY5f7IiaCGi+WGC2QGWyvl9RZ6jr+bc0lS0xv/RJx6GemYtnjO/fU4zUc+PyFeck+DBxLNj+pkwBK3U+IS+DtOz6iig4jtfxsdK7MygUj0HNzTzUSKsoJX35rNLBnaaUM6RHRyOl/h3HcTKk1csVmvyD+elzp+TTMrKzoBgt/PF8899noVapLMtAC9LocbmpcWrXUIfRUz+eXZdh9GCseTMaa1y3j6Qwu9gQ7UU1Uqupe97HnCNtWm2KDjvoyRiytSCafICF/v6HH+n6ka6vdKHIw7YSQnU4OtQcug+D7AA9Hda7edxeFB2RDkV97hzoe48HpFnnY28TppU10Hyoi9iEMq8ChfPhlr5rV13utLua31SYPb4DijDQs1NZ6Sf62zDUBrmCuqurC+rPR3ffy+N4qvXjp6R6tSeunLuWx5euP6e/hfo1CFD/1BdVOktEQw1n85WSPE7hLUDxCuPS2TOYgL6woWtqVd1zDKZqNIExKmqVctQjUl5U4Lk8zjL/eAOVp9wtKoHWhYtawFlM5R9o2YT3cZz1Fc3dsxtaS8NhL48vnxetGeDdMsGaf/pUyvAD7KNH+5oHlSYU16AIVzCHtvp6tll6MvX2G9/Tu3ShmSDWNZ26On6xrXt2Gvqudj3D52pPM4SbQl0xSoM6s5n2i/5A+0W3q75d7aJ+M6lGGPb6DpXP2JdJ15L2pqk05gR99ifYE1nz+F868vP/A43qA1DDTqXCq+b+LWEZNoPBYDAYDIZTDvvBZjAYDAaDwXDKUUqJ/uSDD/N4lihVt7IguiYqmEcqjRvCdLcGaqjaQD4VdQVpkDsaoZYYTfqQkp8hB56wVl7BkHa+iogGs1T5kDfNQHcWsseFGFQe6Vf8QRXfHB0qhf3Rn30/j6cDPe/hGZkq/vp/9B858zBDnbOCASSVsKChplCJpqBNG6RWfaZr9bfNmq5Z64g2cVGXbjxUOnioP3UeY2Yd9JTKzz6lCmVf07iyrCRg8eOTacqfuaooKe2f8U9Hgegt1+H8lkIzrKkfOXdjqIXOLIuufvRY5rQTX/TTwx0ptM+fESVCI0bWFVxaVBsGUG72QTXu9Xt5vHOkePtA8e2HoiZmmWiBZRhYU2kYU9GNz1PsKQ4oJwfKxEoNdAfo2g6U5LPJyaPkz0RvVVL1vxNp36k3oWxtioaaoKbnWkvPWKnruYZQcdKYswqvbBc04ngkGmQw0edDDa/j1/HsMASPBr085h6XeWpn5On+k0T7sgt1bVJQ1GtPSXCEIpnS6Bwqd+wRjSrMU131ZxRx152PSgX1MCua/+e7et5qgZJCLWooz3ePNHb9ma4fT2HIin4u1HLlNAQ92mxojgUVzZkpDXUxnwMPRuGO41w4K9r7zt1beTwZa7/8PAzmn3tOx2FqVdGafqDnrDe1Bvb3FA/72iOcqvaOOpTAQaB7zqKTd8XDWAawexCtRz3F7EeaO4PddSqB3jk10PA1mGVvdPT5z7+m+1RxzZKj8wjXsIQf7cGRog+TaxxHqvD9VuW815zzUD/Yx2+TKNZ410Blshbv3t4uPtffNhpaw5VQnVJFXdQKOOBKQHp0PizDZjAYDAaDwXDKYT/YDAaDwWAwGE45SinRs+cv53FYVXp3jDp4L7z8ch43kf6rwjSx09bfBlBETI5F1Q3HUHrCUe94RLWjUo2VqlLmPupj8nMXlGWENH9/KIqgA9PaIKACFKnPEhPHBHTnZErFiNpcras9055S4Xd/8pb+Fsq5D0A1lFGiCZRbbA/Vlm6hnp6GeArV5xR0RwjzzimUNhX0iQeFr0vFJNocgipd7IqCq4HaSo+RX3eKaluvULMPY1Ci8i0y1POf/2fmNUvwLCrR33sLRpiYE7OZKIuVVc2/v3XhC3lMk+LuslRQrPN6PFLq/f72Zh5/Pnoxj6eo17u5Cdr0guj2O3dkeHv/8YM8/uSBPh+Cn1uDAe/xn38vj1OYTY5Gel6aZZOyTDGQNCDNQM9lMHeOYBQax7q/i/qbNfKOJTiaiQJe6uhYhh+ACqzouwJHny+iVGk01jqZ9KGOpDcoKBc/wJ6F8seeJzrLmeq4wOQYVB2+a4bjJllhjeg28URtPrgv8+H1hsyW66BiBkdqZw2nFOjp7YEGLagscc3MRy1UT521c6z2OM5fd+bhY/kxF0x6W3WtBboGVEG/rrZ0zVmYG7/Q4pEGPeNuT9+1c6Rn2de27AwxV+t1zavFFa2d3n2tKe65588Va9rWqppPt+/czuMBjsA0Glrb1ZrGZhX1KAuK7jrqB0OF/8EHMrOeHGoN19uqT5y5XTXuGfbE//lfpRMDqGis4SneG5MEivcYNOVMvwUmMz3LCGs4nsKZIFP/tJpQmEO9nMSk/NFOrMPpVAtucwwVNKheP4Tprqv9JQh1z9TVfjSOtW7hE+z88HuqqX5uQ8rfz7yq/Z3UZxXuwz744yrqli4tz6+RbBk2g8FgMBgMhlMO+8FmMBgMBoPBcMpRTomunsvjg23RWCNQWi/88s087i4q1chaomOYAO4eSOnRR8qcajk3UAp1BpVbBKo0rCu1WgENF0D5SMxipThv31XK+MyZM4iVynz0SLn6IxjGUkV07sKFPD6GUnLvkaiqyzdlWknz3ukYzzLSPdefof6eU2L2W1RV6nc4aeitY/X/m5+8m8evXVXdyLBEsTsDlRzURQfBn9D58LGUxfe2RQ8eQ6naCoup3uUOqIcG6XPdOAUdOUCN2/2+nucIhrwx1MusP1hAaS27ksufQW763/yTH+TxGBRVANr+5Vc0Np//Fqk6pecbmNNLnW4ef/zwYR7P8Ix7qDHaAYWyvq45TUXXK6+8ksf/h//Tf5zHP3pL6uWP7ohmWV0XJTqA+WoNNTRrNX3vbEA6DHwb5mUME1QHRrUQUxZUWSG4ugbo+U4LkrES7IxEYyVjtXNxiYaaup7mqz6OPmSYSxVQn90l/bHrYu4V1GnqqyruH7RA7zqiZbwqx1frbTRjDVm1mccAZhPROE8fQr1fF0139pzqN19Y1l4/jbWO9o+09x0dodalvtaZZPque09Fr997sumchM9cFG310VM9+3iiZ+lPUS8Vf/t0T9fcb6hPWg2N6fkVtfT6WfXn9QvquGMIfJ/sqJ/v72ofvHjjDbUBpuTTfR1tWaztOESrpr0sDrSe4wjm19uiw9/8if724iW9W86fE625BGPlzgLnsfaOBMcIskB7awr69hk8jZ3r61DwYk0WDKBxJIImtC5r0MIVICvUZMU9C2W8NX53tzQ4P74H4/bbGqfxBJQoaM1KhiM/PSnhvQ6d/FH3d9RVDBXtNIXR7hjm/dgXBvj8d//p7+bxH/7Zm3n8lS99I4+/8bXP57GL4yNDFASQ9XURlmEzGAwGg8FgOOWwH2wGg8FgMBgMpxyllOgA6sXejiiXhbYorekY6sgQ6cKSnGuNVCbSka02zERBXx4PlMoMKqyJqWtmUNexBJgL+rIOBeuZDdGg/NsJ1K8+lY8wreRzTfm3qPHYRQ25CGniFMoQ57WXdJ++/najK1q5DAmosGINTNKj800rx1DUfPjkfh6PoMB76erzebzUUvo4mah/MqhrD4aaJ5uHKLYINdvZlhSj3ZbS945TpGxjKFRZX7JV0xhcBz03ijQGuwPRi3e3Ze6639/PYw+0EenkUkaUattCzcH5OLMuanmnJ0WnD6p7CsPP/+7b387jL7+qObGC4wWrS+o7GlWHNc3RXk9jcAmKzsVF0IUwkhyDoh47Uj7x/jy+8Hi7l8cNrNVjjD1puL1d3XM2Bf3XQO3LGO1B+5e6UHGCjlhsab9otGHAnZAom48qjLzTCOsw0ViEocZ6MoKDLegR3+fRDRhzVkHdgqeMaSwKtXYD5uNxW8cppp72O8fTc023cZRkW/tFAqWdD063u6wxWr8MWjwEZbSk+TxBTcg+jF33Eq2dvb7WV4DauCFUnD7Undg6SnFFU9XptHRPmAY4PvbQPVBGuzBJpeEw/Xr7YOZvbek+XdTG3Oiq/etLmg9nV0FJn5U68+La387jzSc68rJ7948c4vhINXdXz+i7O23tZX3sEeORxn4Ec+Q+9tSLF0VjdxdEuW6c0Xg3aqJQe0Nd076v/j0oevzORSWc76DANcDamn6Bnkf9Vx5rQuzhZT3Db40K6opy3dawroaZzIF7MEd2qfTGUYPQVx8myFFV8FsmrF7N42yCPTHS0Z6UtaJT0c3H2FMm+7pmsq2jGIsrOs7ypS+9rjaAby6YiZfAMmwGg8FgMBgMpxz2g81gMBgMBoPhlKOUEu2hPllzWam6JZgIsnbnDJRiwhpdVKfAJC4CnTWdoH4d/jaCQqh3qDRlHUrGB3eVarz1rtLQsSPaZ5YqVUo11XCg9L/7oVKT7XY3j8cwrUwzmOV+gBp9Luqlwrx3+IGuX1gQVXr1BRmdnj8rhdb6GaWzy+ChZhvb45bVwESWlWNB2erDPamVtnrs5xoup0IOhsAQAR73ldYPWRMStQ2ncTEff39f82wakRJF6hp05BnQxktt8S5NUNfdttLVB6BEnYIaiXUYSY+yH0mJnlzn7e/+rX83j7/zQxnMzkDhHyL9v78jSuQf/tY/zuO/+Isf5/HGhYt5PMZ8baDW5PaB7jOAOrVA4WGu7OzqiMMu0vYzUOMOaJBeT3SYD4Vm0kfNXRhqJuhDmjV3Whq7GdSUU6gjU6gOY6zbtbVuHrc6oolT1AktQw1UbK0JRSeWA+NaA2ssVFzY19C3GdSv8Mp2MqjoWGuyDupmNACdMkENVvQhVWs8+sD6ylVQuu1FUEmLavMYdTajmfavO73387gHJfkYKvExjMsnPbQB4+igHmitePJhLr7/kfrnulhiB8Pl1Bq65tya1uDdTX1+MNaceekCxgsS9vs76AfQ9I+1dJzH+7rnxqLG9NK6rl9fFM3Yu/aVPL5zsajru31La3h09MM8ro609pqg+Tn/9nZFw/XhUvDkidZqDXThjef0Drl2XWb2B0M9/+VVzQ8IfktBA2vWqXbBg7olZsqEh32cZrO8Tx2mwQ6OGtR5TUN91caanGaaOBM4SdSaMNpe1G+W+Ejq5Wigue7VtB48GOS6I10fw0ja9VBrFipgp6J13kEt7tdfEX3ewHGWGO887tdlsAybwWAwGAwGwymH/WAzGAwGg8FgOOUopUTXz0iJwdpa6yvredyG6Wmjrhx4BBqEFFNEZSUMBKkMpVJwMlGasg8lWQADwdu3ZfB5AKpn/0hUW4TagB20OQYt64Hy6oBy6R32dD0oER9p4o0N0Z01mMomDu4JNZIfiM763Ge/lMfnofBzMtBTgA+FlldIQ2clIUxAQUm7hewrjAIxdkMoxgrUKihKF/KgDMqfGAq2OijU1C+qLVdBa1ZYaxLXTFPUpkRDeqiHunMo48rdY6S0nflp5mepDcq6pWl2srTql771C3n8V77xc3lM+n93V+2sLWrNvPvxB3m8s6Nrlpa1Dicz9UMd/ftoT1TJe3dVR/Lm1et5TNXt7/++FG03bkph1kbtvmmq+YfSgE46g2kynmsItXNAA2is7RQp/yqKa/Z9zbM6lK3tFdFPfoVGleJ0Bgfz1wlx7qLWfLUKyps03wjUREVxtQ7qnNRnS/O+ArNPH5SOBzX1CCra4URHEBIHFDPW/GCg6xOoxyohlOojGg6D6g30jAd9cX6ep+9awhGNeg3jBUVdB8az+5pihVrLY0g0uXf7HqjSEmwe6D5PIV30ocYPQj3X2oLueX5Z/XwRFDZeMY7rqG03NvRdZOC8AOMy1vc+3dc9P7yrm752XfFnr+qe1zaKCv+b134pj99673N5vPnoT/P4eP/P83ipqXddd1nK3j6cEu7elfo9gfH0/s7lPD6aiR79ZE9j/MI59UWjevLxjj/7SS+PQ8y5EEclAhhbVyr8XPfxMA88j5Si/nahLupwvQH6FXU8B0Mdy3BS7Re1QPvIrCpD8NjV89YqmtNLazg6s3U/j0eP/vs8foijIUmB0kXN44re4bWGVOutmublizfkGvDySyoyQGUo38PuM+TPLMNmMBgMBoPBcMphP9gMBoPBYDAYTjlKKdF//+/8T/J4aVmUwtam0ovDodJ/KytK45ICIvV0fAxjSKQCqXakOW2lohT+Ku5/+ZIMBD/56Ja+Fzf1YH5LA87xiIpUpVyZ0t3fk7KQz0J4MBY8wnNdvq406EuvKBW+d6BrEqhZhiPUfnuWgpVIJRfMXGEYmcGwk/2fQlVWMIUFTUmjSpKGPuiUalXpYNbtnGRK67egJjy/IvXrMtSNjuM4EeqwBXh+1mFMWL8O6qjeRH03w1jOItRkLDG8fRZKtKAYTU6meIigoIJSyr+7IMovQp3NjZ8TnUolM2fEFHRkFCv+5J7WwPvvilodQw728vMv5PHFi1fyeHlZ7Wxsa2yWFrt5vHuo4wUp5m4FYxEV/GtJ4WmLqcEU06/ommZba2llVRQ5jTPPwrz0/j1Rxk+fSFFXhmOoXGcs1wvV19ER6ubiYTqd2tyY1Op4pr9lzdbuCr4MRrgTjKPnUF3vINb1rXX1gxvooqMnqLMZau0dRzo+0uT25eqaR1tqczXE2kn0eYSaxxUYly4sgdrCcZkMay1+FhNQKEy5N1H9muEYwIN97NE4rVFHAVoqYbmOOqg3WqiBCUPpDramdl1tW2zq/qMUbRjiuMmnUh+rXcVf+6yUjD9akJJ86wkUnZs6pjB4qmM+iwuaQ92uvuSwBxcE0Oq3tnSEYh80/2xFz/ksJat/88fap7iFsjYzXR940qVQG7TwToOrAajShq99/Ne+qqt9X2tjZ0vUfoz5UcPxqEr9ch63YfT84v79PL4x035xeap38jDt5fEfJnqYW01RzCNIwHncyXfV/i+9rn326298Jo+jmfas/QMd3eLvnTTlJFp35sEybAaDwWAwGAynHPaDzWAwGAwGg+GUo5QSff3lL+Rxs6VcsReLfjnowcgTSokp1HukFGk8ubWl1OT2tlRTw6FSvRXUmVwnJXpFdb9aC121B9RkVqALYYQJhRNTkDGVqlBKsv01UFsBpDAj1Nnc2RdlvLoHtSLULNeuiTatBMpPj0DXdorModoDhZzrMc0P2gTPTrqTitFCTdKCZJTKHzyvT5PHCq7W9XVcv9qQArKDPneHKPDnOE401X+7Tc2hhLQu1ZGYsgtQGrbwfXvHorRJaxaf82QU/rZEbUowvV2komkwq+tdTlHU5fVKxqwOJWAcid5q1zRZ/urP/Xwe376ltfqjH8nI08ERhO1t0WcO0vxn15SSf/xE6zNoqM/3phqX3hFMqH0ohOs4mgBasAIl4/qKxm6lq7iN9Tbs6W+XQFP80s9/3jkJn3woiSOpPZoJT2DS3WrqGSPQl4f72tcaoPxnscai0dZ6jjMYRoOmj1BHNZ1pXkVQ/iagMhOaCYMmqq5gnas5TgYj74R7HFSoXlVxhn02msGUNEZ9aAfKNlCKjZb+1sP8PO6frN6N0Q+sP1mg3bBIAlwzHKpPDiPtiZNRL49HA1FPQxiC93uip2jg+sqreud97jUprJ2R+vCJ/tRZaKr9l88V94cPH+q/L69rr/38ZbX7/VD02XhdBtlP7v0kj2/f//08Xmrr+c+f1zskbshpoDeSMrTiQukN8+Vnoau/9bru4/kcG10TBDxKo8/dQl1rABS4h2t8mNxvLKvND3d007CiNRaGek9cuKC9r3P0/Tz+/B3tfWsOjO3xzuD7oFWVIv1XQH3+dkv74Ic4hjLraU9pr4o+roa65u79v9B3FeY037FauIs4huI4n3XmwTJsBoPBYDAYDKcc9oPNYDAYDAaD4ZSjlBKNxkr39qcwsD0U7ViH4q8KiiCO56tEqzBoJKW4tia68wA1Q0egz5ow5qXJ7Tpqce6CEk1S1AZL9F1UDWagRIgZaJDxWPe5cOFCHrdaKJYHhWmK38APHqsO2QsvvZbHn/2caJwG6IhqFTXJnLEzFy5rIUJJiWehoakbK/0aFPLWaucEz+jjmgBtm8RKW6eFOnMa3xB/2/CUJu5AsVutFE0bwa44NV/zKUPtxSrG3s9ACyaiqNrV1tz4eAI5GcB0eJlitFBD72ekUwtUNO7Pz0lN+vy3E5SYVJsmMHpl7dRLZzUvQ6TYv/DZL+bx9raOINy/fz+P19a7+l7UgjzEWlpf0jUTGHbuoskxnmWhJcqiu6R2BqGuWVoWBdEETXF2XXvB4iLMXatSj165JPXV9cuqy1uGyQiGzlQ1gmosHJXAWPRgCNw/1n60sSrlfGdBzzsc0rkVVCmNdmE4eoRivEOsQy/TXnkExVsETt0D3TzYBt1M1T3WuXY1x/HQBiel+hjm4AGoUlBqU8yBlFQP1HuFusUlKLgJYE+JYx0rmU707NOh3g2DvrjJfk/77PHB4zw+6sE8HTU80ylM2PGM4fEP8vj5tb+Zx8uXX83jyoLmZzzTM37woOgmsNnTeO8cql++oVs5X7wGc2RPe9/u5a/n8UcfSGG/tX1f392QyXpWkWsCj7qcaSqeRWrP4Blqif7tL6qPfH++GtYvKEbxORWj3vwjKQXDWE4VKLefHmo9rC+hhusYZu1wgJjUdNODVjePu0PNJwfK/BBHQGaR1sybLSltb7vag2ap5lmGd1qzI9PkD29rzh3+SNfPMq5tPePKku7/6gsvqZmafgVYhs1gMBgMBoPhlMN+sBkMBoPBYDCccpRSohA+OgFqAPaPUPMMVEa9JlogBnUTQg2WtGBGuCiKg6nx9XUZZD5+pPR2hHT7/oHStayv2IFiNEQdMicSlcF6mqREU6SSBwOl4amEWeiKBiFVlRbUl0j7ovYg1aAuaM1opu8NWMNwvt+r44PyIgq0G9L8VC56DtuGNqOvqPAhtU2lI1VcNOkNyOrhPjtj0WuNuNj+KmlaMJNUFM+geqNy2IWCrAGZ3FK7m8eDGfL/rLH6DMa5VKj5wfx+J3x//qCV0amkjXy6TdLfGNcHpPP5vR4oAt4G1OrGuo4OrK3JyHMyEVXEWparXaXz15ZEb+/CjDfFuIQNtaG9IHqnDbNZF9cvdqgGVbyGOoprq6J91lelDL9wVuq6BFSdUzJEoac2TFGfeIJNjnU/XRhhVmCQ3YRhNOd6NMV9MJ0rFVLhUOlN9cfw33V2DkA1BjDyxbGGDC7SpMiJo2ON4xiUUbOrPWg8gKH5TM9Ls2Iqo9OCvBkUc8Rr8DDpyfUqH9wRBTkFrTkeiFaajPV5PO7p+plorhT7ezRSPJkoLqwLX+8t39GY3n34II//P//gH+VxfeG7eXz20ht5vHhO/GZtQdSl4xSN2CMYxn73fRzjgJnvYkt78I1zmkSXvvZcHo8mUoZu7uj6rUOoQSEvXkBdzp0+DM5nJ+dpMtZ1xhLjjMtc0uG4pnDUiJSoPvWQK0qhHq/infnCitbVr38d9Dlq91b89/P46UC/Qf5gV6rbddTxbSWg1VFT9U8XpBB+a01HlvxM767qrva+agsq2opcCZaXNJ+++PlfyeOlNdGsPBZ0BFeJnS2p8ctgGTaDwWAwGAyGUw77wWYwGAwGg8FwylFKiY6hBAqg4BmNlKYMB6IXAtBHLdCj0ykMFJEpXUBNxfEY94T6bWlJ9MjuvtKODzeVMh9A8lILRH3E/nwahMq/jCl/Nq7gIwsqdl/0EalAB9REnKpL+32kuW9K2UZKNGUtQaeoNJoHH+a0GVVZuIZKWJr00WjXxV/4oRQ4Bboz03NF8fy2JaAjEhgLTqH2mVZ1z2pQpErqja6+GzzToK/vm41FI6Sgsciu9kaocTsWpV2oZIdUfYERpZIJ8yB1US+uhO4kKpX5NFC5wpTtgYkorshK/rZAlWbz6QsSE0mC7yrU6xUdudBRmn+1qyML3ZbW5BDHF1odfU7qfXlNa7vCHQZ8ytLCUh5X0c/TAYxh17SP1H3NUTeGmWph5s+nCFnDNEzV5tlY14+PtE+lMLDtLOj+S6A7Fhd1zyPM1RgDsL+Hvc/XHhSPdM3Tj1mHVBMafp1OE2bFR7taCxz39Wug+UC1F2h9qIB5tGKG/vdAqc0wZ1JQVR5432RKdSeo4ZNPHDjjI1FAh9syi40Gj3QR1HWc8xXQsgmorSzDnMSRgBh8eSXU3A4qmmMOlJpri3r3DCeixX703d/Sd1VkanvuqqhSx3GcC1dVR3pxVXTpcKa+e9rD82D93MLjL7XUp10Y9QbB/LqcKU4C3d/DUaYJjwIVCv/OB81vC6avuk9AF12Y4hZrIfNvcbnDozo86oEa16hDXA9xPAc0awVHDZqh7sM5/aOOqORz2LMeLjyfxx82Ludxt6O9Jhi8lcc1mFY/3JQxL9XaSw0pdjeWdITqpRdeyWMeO3pQ1bGvakCXiPmwDJvBYDAYDAbDKYf9YDMYDAaDwWA45SilRMMa6sVVpC5qNpFaBgMUBPNz4BQO1er6g3pdqWiwLE6KNDZT79WaUpms6UmqZwSF0HFfaezxQOaplYpSqElKmo/KJ6oj1Z7JGGpFGP+yPlkLJq/tZdE+y6gTVgG7FkKFtoB0bVJi+NpakMKPSkfSkUkJfRmATvVZfBCpaj5Xgvy6B2qbBryToWjieLyPa3TTlYYoskUoOB3HcRo1pZ/5z4cqTJlZX3Y8Q6051HN7fCBj2AnqbLImaZlxY1pQMmlw6jVRJ9WmxrIMRQXryca8SYHCm0998m9LWFwniEF34D6sQ1r4pxk/xtGBOgyHA7T/7LoUTnGoveBwBJov1bjUUV9yudPN4wjUdrOucV+s65qNNam7Ftv63pVFcYSk/NJnoN6Oempbo6Z5z75KQC9OBzANx7pKJ6CYNNUdB4q6EJT/UR91c6mWxwCkpJJX9LdJojYf72o9F+pswvw2wbEVmtnWscN7mG8e6J12B30Cg1WXRxE4rzD5GqwfCjo7eIZUwMYV0YZhs5vHO/f/NI8n/Q/Qfjw7DLQ97OOsqeyH3OP0vvGw91Hp3KxrvFZR03IJitd6Q3Nye0fHMDY//G2HOHys2r3Ll7+Wx9dekBqx0xJl5oByhhGDcwgDe3+HVKOQOjyuQerTmY9s/tEBgi4CpFnjTP01nc6vl5xgUeL17EzxeRzxwIaeZm1JY7M10B7x374rc1ouKz5viDWwePROHtcDUaIfLr6ex7vL2mtq7LfeD/O4MhUl2qrqN8Wkf1ctWND9OzDs7R3JzeK731Od0wXUS65gP11e0fumDJZhMxgMBoPBYDjlsB9sBoPBYDAYDKccpZTomTWla0OkmTtN0XZhQ3QK6c4E5o7NJmg4mNCOxkpfZqk+H1B5CjNL1huNkfq8cuVKHj96JHlNiLR9sCI6qwIlCeufVaE0CmGSWq+D7kT9UH5eB0Ubsh4ozHKvXpIJaKOm/um2dZ92W2n73RJKNICShKpPB99bUHRmpPugDAXd7BWMV0FJY7yaoFMLBrcztXM41Lj0hz21pyMa4dPVWyNHf+Pjf/pI25NuH4xEj+71dvM4Jr3IfkEavkgR0ESYNfH0zLWGUtRhHfRFCViDlrVyS1WiBTXyz1artABvPlVCVRYfPS18lfqqAQPbdSjbRpGogNqi1tIQNYZZa7bd0Dz22bdQQc5gNrt0VvPj8sXreby4IBPtwNNaKhybeIaalY0W1dFCexGUWaG2JtTjY6idZzgqEWo9VMP513g4FsAawKSPFlYwdhX1yfAA9CVqJ4O1dkaobTp+rGdpLGkOjwOtrxDNWQJ9H4Sg445Ac03VzmoTxr9YxW7IYy7qk2fJBFRgYNvqaH88bmsOTEda49lMpqcpzL7jTM8b0bCXvGzGOaB5u4LnOr+uYxheKjrLhSJ1ratr6jXtCcOhnsVxHCdCW7dviS4dHz3M4xuvq2DkwoL2moL4suBkMP94RNGoFvOm5JhFkpx8juAf/bHo3hnez7MUtWmx5c5goByhdndc8rf0fHbxNN94SVT09Qvq6wsviD6fouZ0BOeG43d+lMcbl/V74WJLa6P/yW/m8cMnoll7L0rlW7uII1SJ9rv+rtanj77lMZ8zZ3R0Y+hoThygJumjLR3fiQ5EuTawlv7mr37VmQfLsBkMBoPBYDCcctgPNoPBYDAYDIZTjlJKNI2U/htALTQdKeUfkIaD2WQUKV3NWpz8uqBQmxFKD1BvS0ugHZpKF/aOenn88ssv5/HNmzfzOIOa0EPK2PNBlYIGYY1Rz51PETIumptSFQO1KephdlpK4y5DJVILmao/Wb2TpijySuoGn9PAsszEMMEzBlBNuSyGyHQ8aTeWb6RJclVq0L1jUQppKpPBFpSdn/oKp1lRHzWrosD6U1FyT49ENRyPWdcSY1DgPuerNWkG6bLbURSvQEE8gxwxjqHUwzyg6W5hPEDbe4X+pdJTKJt/KbjkYit1FRm/4j3xvYHmZWfhQh6fwV4QHqm243NnlOafZFJ0UVmdwEC5vqq5MoEBd7OmeVOHkS+NJLOUPBHq+D6DSrSNYxmzGSjaRPeZhqLJItCafg21hBfVtjTQ9aELisbT3zYWYFSL8Q2hzKWaetDDnMGxkmoDCjzsKVR9e1XuoTATpQIUW0cCPmsfKmyqL6f4LrDijkuqESpLj/PzGYymZ1DjhzhCsHZee3q1KdrxaEvmuseHH6udUCtG6LcMD1wP9Q7bwHvlwjqOuaAe7jRSn4RUFkeovTvayePlrmhcx3EcN+vqvpX7ebzflwLxeFfP2WzKWL1Qf5P3LKM4C8de9DnV1IUjEcmnD6b8y/izu6Joa1VRe1XQdlUUvK5BjlzDXOxwXmJO0PA2RC3RM+t7uAbrAc/VhlHtGLWi213tQa99VvVA61DjHsCk/8ot0e2zNR0v2L6kZ58MNT/u9EWVci9eXNb16+dUs3l/pPafv6Hx3Xmo67c/ED36wSc/dU6CZdgMBoPBYDAYTjnsB5vBYDAYDAbDKUc5JQoqY3QsevH+bSkxax1RHMtrMnQlphNQk1B9rq5KxUFD2oeHolxYc7O7rLTmDCrIBDRUCBM6H8arPlVNhSJ3qH+GT12ojkhxkhZjzcYYtdl8pHE90CPdNui+hvohjefXWi3DdNxDm1mPDfQl7jlDypj5cppH+jBGDqBs5e95GspSmZfBtLIKE9xhpDZsDkQdJP0iJcqarFQjU6lbUEH5nLKg4VEDsYzGppGsO581dVLW5UxJcZ5c57VMDUoaq2B8SqVqmUi0hAYtXFLaovkPWaRZ+G829W2xxijW6lTzqQUKvAElL1WcEQwyNzakBKRxZqcligBd5ZQw26X9UAZsZU4H5tT9A9SpxPGCeKY/aLagpsbxjgC0ZjpSo2c4MjLew/GLmuYSWL7CnE9i1pbV9eNj7ClQpIZ1rlvQeQOtvRgq7jrMx0kre6HaP8F2sYf+Welqr2+CkjqCUjVKMc8rpa+WHNy7WfO42pIybxF1jo97oo9Gkzt5nGGvCbDnQnTvbKzq2ZcX4HQAdwPKM12MNU74OEeHOIYBmt5Npap0HMfxUZe01VJDghBjORStO9zXc1Y7otWo7OdyLjPUJpISmXhy8skb59e+JQVl6uIoAMaYZtMxaspOp5oTQ7z/hwONzeBY9Z6bLe0jz28ozhwdq/Ho+gBqNcW+P8RADWJR4NuPNTbeRNdvoHbyBObuzobo7TEM+B/d+ySP6bIwhuL9eIL3GU4FrNR0n+Wrmt9nKy/m8f4RisiWwDJsBoPBYDAYDKcc9oPNYDAYDAaD4ZSjNG+9vKS8/QTFzWY9pdgDmOKFDuooglXzoL6s+jTU0/W1azK/rTegyrivFOGU3wXqLYVZKfwNHQ/Gih6Uf65bkkCGGS9r0zlUfYISpcrVB9WbodYaaa4OaIQ4oqKTBrEnkz3DY9ECVLOGAdSaMDSNUZPQyearCStQerJmq4sadTTvdBB7uJMHmqXdUUo9gmJ3AENdx3GcOFP6PHbn05eNutLVPlV1x0p1M1XvlihDPVIeaENGmahLikrtno4PnJNQrFVaVkt0fq1PKivZzn/1YJ8orlW1xiLUZm3WNa7ry1DUYt4vLemaASizZkP3bLe1v1QCjW81pAEpKZ3CiM2/pgSVqtbJDGu7swjl9lm14eBQbfZ97Qt11tAdY/9ahxFuos1vZ1O0DJePG2mOTdAer6LnWkV7Eigxtx7DqBpHVQIY5M6o0q/CoHwBhuY+6FTsI3WoAC+e0xhl2XyVboh9rQnVYDQuI+qEWaT+4b6cghreffTe3Didqh+qoZ5xqa02rEANurBAA3c9S6FuNBSmrJdMxbeDPbGCotDj0Z5D0EDdw95cBQUeTUWJHj7RO6GVfDmPa22ZR/NkSNmxj2cCx9IJ516yVpeC8v/9e+/m8dauaMoR6E4aYad8zyCmOLUOvvDac6IFBze0RyygzHQ0Qa1sBwa2MK2tz1Tgt/fHH+XxImp933BkbNtf1Ri9g1rUrV19cQvvQ/6W4REhbk07A9QzBRXexhA1cJTh5ue+lMdLKA5QBsuwGQwGg8FgMJxy2A82g8FgMBgMhlOOUkqU9FwFdedCqF/CTOnUCiigACrIZgNpZtA+ozENSoUrV1TDcHlN6rH9nlQWo6Hiwx3FkyHMLJGudmGWS9UNaasJqDo/UbrdBd3po35gEwrZSaTvOn/uah6vglZuNpUGPeyj5mQFFNz0ZPkOU7FUH45jtZ9paCo60xKqMIHSBuxloX9Id5K+K9SuhCopAcXsoC5opUIVanmamf2SgSIcjTQ2cYkyNC3QtJi7oeZukiDFDkUR0/nTiaixUiodKKNEC1QseXJy+M7JFEdpTdJnaM9fchH/I48qgfqqUe/m8dkzNcSX8/hgV5RCHbVEL52B6gtKzCrMOFPQTKTbXGxPz6aEnY826vVOMMEnfc3LVkdHMRaXdM/+vq6v+HqWEExSlImad6ECbC2jniyU53Hh6Ib65FgslLMGdarf1N9uxtrjMqhxKzAuXVrV2PUPWZ9UX9xt4ogGZLRhDWbiOB4wwzU0Sa1if/egFD4cYSMpwWwGlS5SBzE+37zz3TyeHksZiu3U+epXZED73FXRSrc+karv6EjviRR7C99tNL4ejbT2ibKjDtNp8XlHUEo2qopfuPG8Pm9LLfjhrcd5fLz/YR57gd6BLH5dpGnnHxcoXjP/Gcoo0UnhXQQDW+xlrabWTAD6uVCsGEp7v4Ia2h3N0YVFrauUvwZY/xVbRKsjyrIPVbD3iq6v70OVPdP+/jbm5R/tY8/qayzW72ANQ7FMQ+2wpgnYAL37S5/T75eFRY1do63+adOIGPV3z2/IXHc8mu9KYBk2g8FgMBgMhlMO+8FmMBgMBoPBcMpxsruh4zgZUrERUqhxoTajUqj1OkwWUcfPBYU3iZWizpCybDC131VKsdtWmrV/hNQnFCN7u0p3dpeUyqxA6UFlTxBA2YrUbQ3mt1U8SwgF696hjP9uPXii6xdkxufCWLQ/QV1B0AtuMD/12SkZmTBQOjh29bxFZgsmupTmMD2N60kLJDAlnkGBW5Zq9zA3Kqj9yDS9B1PPil+kRKkUoyqTtEjCOqlQ2DplSik8W7UGtRbnMYxbC5pD9F2hBuizLZX57SlBGWNZWr+2hHIto1+fqT0F5fD8+9RrovZdT/PPB6UbpKSZFNdrMN0Ey0K2hurgtPDsbOjPbhv8L+AVqH3N9QAmtIOj+fTc2TWs56n2kXpDD3MIM+HeMfYyHA2pYC4NQHfAx9PpLINiamneHh2rbdWm5mEDVGnow5h7QXtWran2jKHYrVZ1/VIXe7SHdRej37BePF/PXsMzxtxDmyfnAiKs5QIlOtG7wY2kzu5C5bq2fiOPbzwnKumX/8qrefzGl76Sx9/9/nfy+IOPVNs4xTvJxYSbgB6tYP+qosYxj55kafE4S2dBa+Zzn1GbvvW1N3QvmPY+977a9Idvqt93JlAaB3QjKHGYnh8WkBX+T2fuNTHeA/2B5neMHM/SyuU8Xl29mMfDgdSaO1v38jhBm8dT0Iuo75lgj45By+5v4x2L2sPjQ6lze4nm7ieB+q2Vim7u4/fCxyP187faMite6GqMFxe0l02H2vvoEtEB3fnC8zIHX4HZf4pn99CHhb0e62c8n5G3DJvBYDAYDAbDaYf9YDMYDAaDwWA45SjleRKaxCJ1u7ghmnKprbTg8gqoD6hBCuoZ0HNjmO5lUBQ28Lc1UBa1FaUjm1Wl/H1HNMXT7e08DqlUu6zaYDRYLZiqQsUVZKj1CXnKNIIqK9T9L19F6hMGwscjpV8rMKcMUMM0g1qRVFIZogi5UlJJoKoDUJM1mIbGpB9Rf8/jNGD9uQpqxYEicGA0WzAQRDtJqdHgt1AbzymaDqep2kR6NIlJg1JFNN+Elia/bLbjQGEHmpUUrwuT5WLB0WcowFeCIoUM5dPP5v/6rwY0DS6rPVqoHQslMK5utrr4S9AahW6bP1eK3CdNN0kHs2mFoorOScgitT8a8P66xvO4PnGkgJRlR1RMqwPV91NReCHmTxX7SILe8hKo6GHq2W7BzNap4hrM7XUYfINmZY/WanqWFtTs2TL2ZdQ83H0k5fXSKqjwDihX1NacQJ19PNR+5DnYdxqiXMsQzyiXhWod6315CX3evam2Lb2exz94X2q/x4//YR6/8WVd87kvyKD0EObv23hnuFibcYGT4nEQHP1paM998fnrDvEaaNCbNy7lMU2Kdw56eRx5Urf6Nahze6CNk5J9MC3Zm0rPXJycp8kw/6pt1Qmvruhdt7oq+q9d1/u/09E8WF7R0ST2o4t1Hs/U1zUoKP1A6+r2rdt5/HRH77Hz56XKpNmxF89/t1dYQ7eEP15e0G+cm8/fwPVYw/4P8ngC0+Ax6V2ouAtvksKxj5/tqIdl2AwGg8FgMBhOOewHm8FgMBgMBsMpRyklSoqpA1O81758LY9bVaX221AmHY6lKimYzaGOWga6wIPaLASdVYcSYwTadACqMUpFlS6dUdsqqDc6Gul3aTFNiRQtaSsHPAhS9THTlz5MdCusrQk1KO6PrnIqAYwIwWpUq5RKOXPh+RwytMejMlQp45impPxLUEAFI1xSQ1Ds+AFpAdZmnZ/SLRhMIv1Nxee/+L/5d7B+X4T7gkpnKp2qxqCi8QhQxy9DDdoM/BzrZhaUkkhXx6jJ+Gkq9ySUKT0LMa7/N8WIOi4nGimC+YbGjIutJn1OWnn+9Xz2rKRmqFsw0Sz+xc+EGGu1pntGY9HuISgg7mUF5Wyo+TmCem88Rh3PwjEL9WEnEGV05kI3jxeXRIXFU91zvyeqzkfb1pu6/ngkNd4Ue24de9a5Dan3dqGoc1PRUIsX1D+Pb8sE2IOC/fxN0UQLK6rHWPXVVxGOvxwcF2trzkOKPZ0qywzvgPaK6mp6NdFrU1ffuy/BvnP73R/n8d3bH+Tx9et6N8zQzjrMXzPs4z7UoDMc31mE4evrr72Ux6++qNhxHGdhQfc96qlPnzzVsYyP7mttfLKlMTgY8kiB6NvMmb8GsoL1vFDm9e2WvBOI9XXV937ja6I+E5gpk4KczaCaPtjR5zAgrtXUdxPUu97b1VwfD7HemtwLsK7w0tze0Xfx+E+SInZ4JAe1Y9Fvg75qpPb3NXcf3tM8ODjUNSFM9IdjHBHAb5MZlNUJ6tSSEk0LrOzJbwHLsBkMBoPBYDCcctgPNoPBYDAYDIZTDvfJkyc/I79gMBgMBoPBYPjXCcuwGQwGg8FgMJxy2A82g8FgMBgMhlMO+8FmMBgMBoPBcMphP9gMBoPBYDAYTjnsB5vBYDAYDAbDKcf/F6THM7+TXeMhAAAAAElFTkSuQmCC\" id=\"image8d3367922a\" transform=\"scale(1 -1) translate(0 -151.92)\" x=\"7.2\" y=\"-22.087445\" width=\"446.4\" height=\"151.92\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Image examples of the CIFAR100 dataset -->\n", "    <g transform=\"translate(106.216875 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n", "L 2375 4384 \n", "L 1825 4384 \n", "Q 1516 4384 1395 4259 \n", "Q 1275 4134 1275 3809 \n", "L 1275 3500 \n", "L 2222 3500 \n", "L 2222 3053 \n", "L 1275 3053 \n", "L 1275 0 \n", "L 697 0 \n", "L 697 3053 \n", "L 147 3053 \n", "L 147 3500 \n", "L 697 3500 \n", "L 697 3744 \n", "Q 697 4328 969 4595 \n", "Q 1241 4863 1831 4863 \n", "L 2375 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-49\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"29.492188\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"126.904297\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"188.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"251.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"313.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"344.970703\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"404.744141\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"463.923828\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"525.203125\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"622.615234\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"686.091797\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"713.875\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"775.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"827.498047\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"859.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-66\" x=\"920.466797\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"955.671875\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"987.458984\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1026.667969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1090.046875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1151.570312\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1183.357422\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1253.181641\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1282.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1331.068359\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1399.476562\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1468.958984\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1532.582031\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1596.205078\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1659.828125\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1691.615234\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1755.091797\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"1816.371094\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1855.580078\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1916.859375\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1968.958984\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"2030.482422\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p5765601d70\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"446.4\" height=\"151.68932\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 800x800 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Visualize some examples\n", "NUM_IMAGES = 12\n", "cifar_images = [cifar_train_set[np.random.randint(len(cifar_train_set))][0] for idx in range(NUM_IMAGES)]\n", "cifar_images = torch.stack(cifar_images, dim=0)\n", "img_grid = torchvision.utils.make_grid(cifar_images, nrow=6, normalize=True, pad_value=0.9)\n", "img_grid = img_grid.permute(1, 2, 0)\n", "\n", "plt.figure(figsize=(8, 8))\n", "plt.title(\"Image examples of the CIFAR100 dataset\")\n", "plt.imshow(img_grid)\n", "plt.axis(\"off\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "73170b10", "metadata": {"papermill": {"duration": 0.012712, "end_time": "2023-03-14T16:24:19.069797", "exception": false, "start_time": "2023-03-14T16:24:19.057085", "status": "completed"}, "tags": []}, "source": ["### Data preprocessing\n", "\n", "Next, we need to prepare the dataset in the training, validation and test split as mentioned before.\n", "The torchvision package gives us the training and test set as two separate dataset objects.\n", "The next code cells will merge the original training and test set, and then create the new train-val-test split."]}, {"cell_type": "code", "execution_count": 6, "id": "6c3efd11", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.097211Z", "iopub.status.busy": "2023-03-14T16:24:19.096820Z", "iopub.status.idle": "2023-03-14T16:24:19.134436Z", "shell.execute_reply": "2023-03-14T16:24:19.133347Z"}, "papermill": {"duration": 0.053259, "end_time": "2023-03-14T16:24:19.136145", "exception": false, "start_time": "2023-03-14T16:24:19.082886", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Merging original training and test set\n", "cifar_all_images = np.concatenate([cifar_train_set.data, cifar_test_set.data], axis=0)\n", "cifar_all_targets = torch.LongTensor(cifar_train_set.targets + cifar_test_set.targets)"]}, {"cell_type": "markdown", "id": "a559d897", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013034, "end_time": "2023-03-14T16:24:19.162221", "exception": false, "start_time": "2023-03-14T16:24:19.149187", "status": "completed"}, "tags": []}, "source": ["To have an easier time handling the dataset, we define our own, simple dataset class below.\n", "It takes a set of images, labels/targets, and image transformations, and\n", "returns the corresponding images and labels element-wise."]}, {"cell_type": "code", "execution_count": 7, "id": "408e1992", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.189824Z", "iopub.status.busy": "2023-03-14T16:24:19.189578Z", "iopub.status.idle": "2023-03-14T16:24:19.196447Z", "shell.execute_reply": "2023-03-14T16:24:19.195737Z"}, "papermill": {"duration": 0.02226, "end_time": "2023-03-14T16:24:19.197767", "exception": false, "start_time": "2023-03-14T16:24:19.175507", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ImageDataset(data.Dataset):\n", "    def __init__(self, imgs, targets, img_transform=None):\n", "        \"\"\"\n", "        Inputs:\n", "            imgs - Numpy array of shape [N,32,32,3] containing all images.\n", "            targets - PyTorch array of shape [N] containing all labels.\n", "            img_transform - A torchvision transformation that should be applied\n", "                            to the images before returning. If none, no transformation\n", "                            is applied.\n", "        \"\"\"\n", "        super().__init__()\n", "        self.img_transform = img_transform\n", "        self.imgs = imgs\n", "        self.targets = targets\n", "\n", "    def __getitem__(self, idx):\n", "        img, target = self.imgs[idx], self.targets[idx]\n", "        img = Image.fromarray(img)\n", "\n", "        if self.img_transform is not None:\n", "            img = self.img_transform(img)\n", "\n", "        return img, target\n", "\n", "    def __len__(self):\n", "        return self.imgs.shape[0]"]}, {"cell_type": "markdown", "id": "6c4d3e74", "metadata": {"papermill": {"duration": 0.012892, "end_time": "2023-03-14T16:24:19.223731", "exception": false, "start_time": "2023-03-14T16:24:19.210839", "status": "completed"}, "tags": []}, "source": ["Now, we can create the class splits.\n", "We will assign the classes randomly to training, validation and test, and use a 80%-10%-10% split."]}, {"cell_type": "code", "execution_count": 8, "id": "aa6847a5", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.251090Z", "iopub.status.busy": "2023-03-14T16:24:19.250735Z", "iopub.status.idle": "2023-03-14T16:24:19.257669Z", "shell.execute_reply": "2023-03-14T16:24:19.256932Z"}, "papermill": {"duration": 0.022229, "end_time": "2023-03-14T16:24:19.258861", "exception": false, "start_time": "2023-03-14T16:24:19.236632", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 0\n"]}], "source": ["L.seed_everything(0)  # Set seed for reproducibility\n", "classes = torch.randperm(100)  # Returns random permutation of numbers 0 to 99\n", "train_classes, val_classes, test_classes = classes[:80], classes[80:90], classes[90:]"]}, {"cell_type": "markdown", "id": "dc267801", "metadata": {"papermill": {"duration": 0.013373, "end_time": "2023-03-14T16:24:19.285463", "exception": false, "start_time": "2023-03-14T16:24:19.272090", "status": "completed"}, "tags": []}, "source": ["To get an intuition of the validation and test classes, we print the class names below:"]}, {"cell_type": "code", "execution_count": 9, "id": "d786af29", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.312836Z", "iopub.status.busy": "2023-03-14T16:24:19.312368Z", "iopub.status.idle": "2023-03-14T16:24:19.318451Z", "shell.execute_reply": "2023-03-14T16:24:19.317507Z"}, "papermill": {"duration": 0.021225, "end_time": "2023-03-14T16:24:19.319847", "exception": false, "start_time": "2023-03-14T16:24:19.298622", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Validation classes: ['caterpillar', 'castle', 'skunk', 'ray', 'bus', 'motorcycle', 'keyboard', 'chimpanzee', 'possum', 'tiger']\n", "Test classes: ['kangaroo', 'crocodile', 'butterfly', 'shark', 'forest', 'pickup_truck', 'telephone', 'lion', 'worm', 'mushroom']\n"]}], "source": ["# Printing validation and test classes\n", "idx_to_class = {val: key for key, val in cifar_train_set.class_to_idx.items()}\n", "print(\"Validation classes:\", [idx_to_class[c.item()] for c in val_classes])\n", "print(\"Test classes:\", [idx_to_class[c.item()] for c in test_classes])"]}, {"cell_type": "markdown", "id": "7f835460", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013315, "end_time": "2023-03-14T16:24:19.346027", "exception": false, "start_time": "2023-03-14T16:24:19.332712", "status": "completed"}, "tags": []}, "source": ["As we can see, the classes have quite some variety and some classes might be easier to distinguish than others.\n", "For instance, in the test classes, 'pickup_truck' is the only vehicle while the classes 'mushroom', 'worm' and 'forest' might be harder to keep apart.\n", "Remember that we want to learn the classification of those ten classes from 80 other classes in our training set, and few examples from the actual test classes.\n", "We will experiment with the number of examples per class.\n", "\n", "Finally, we can create the training, validation and test dataset according to our split above.\n", "For this, we create dataset objects of our previously defined class `ImageDataset`."]}, {"cell_type": "code", "execution_count": 10, "id": "2d3ae7aa", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.373408Z", "iopub.status.busy": "2023-03-14T16:24:19.373188Z", "iopub.status.idle": "2023-03-14T16:24:19.377601Z", "shell.execute_reply": "2023-03-14T16:24:19.376929Z"}, "papermill": {"duration": 0.019799, "end_time": "2023-03-14T16:24:19.378915", "exception": false, "start_time": "2023-03-14T16:24:19.359116", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def dataset_from_labels(imgs, targets, class_set, **kwargs):\n", "    class_mask = (targets[:, None] == class_set[None, :]).any(dim=-1)\n", "    return ImageDataset(imgs=imgs[class_mask], targets=targets[class_mask], **kwargs)"]}, {"cell_type": "markdown", "id": "e208d32e", "metadata": {"papermill": {"duration": 0.012813, "end_time": "2023-03-14T16:24:19.405037", "exception": false, "start_time": "2023-03-14T16:24:19.392224", "status": "completed"}, "tags": []}, "source": ["As in our experiments before on CIFAR in Tutorial 5, 6 and 9, we normalize the dataset.\n", "Additionally, we use small augmentations during training to prevent overfitting."]}, {"cell_type": "code", "execution_count": 11, "id": "758ec6d0", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:19.431909Z", "iopub.status.busy": "2023-03-14T16:24:19.431743Z", "iopub.status.idle": "2023-03-14T16:24:20.846853Z", "shell.execute_reply": "2023-03-14T16:24:20.845816Z"}, "papermill": {"duration": 1.431242, "end_time": "2023-03-14T16:24:20.849201", "exception": false, "start_time": "2023-03-14T16:24:19.417959", "status": "completed"}, "tags": []}, "outputs": [], "source": ["DATA_MEANS = (cifar_train_set.data / 255.0).mean(axis=(0, 1, 2))\n", "DATA_STD = (cifar_train_set.data / 255.0).std(axis=(0, 1, 2))\n", "\n", "test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(DATA_MEANS, DATA_STD)])\n", "# For training, we add some augmentation.\n", "train_transform = transforms.Compose(\n", "    [\n", "        transforms.RandomHorizontalFlip(),\n", "        transforms.RandomResizedCrop((32, 32), scale=(0.8, 1.0), ratio=(0.9, 1.1)),\n", "        transforms.ToTensor(),\n", "        transforms.Normalize(DATA_MEANS, DATA_STD),\n", "    ]\n", ")\n", "\n", "train_set = dataset_from_labels(cifar_all_images, cifar_all_targets, train_classes, img_transform=train_transform)\n", "val_set = dataset_from_labels(cifar_all_images, cifar_all_targets, val_classes, img_transform=test_transform)\n", "test_set = dataset_from_labels(cifar_all_images, cifar_all_targets, test_classes, img_transform=test_transform)"]}, {"cell_type": "markdown", "id": "16395134", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013006, "end_time": "2023-03-14T16:24:20.878421", "exception": false, "start_time": "2023-03-14T16:24:20.865415", "status": "completed"}, "tags": []}, "source": ["### Data sampling\n", "\n", "The strategy of how to use the available training data for learning few-shot adaptation is crucial in meta-learning.\n", "All three algorithms that we discuss here have a similar idea: simulate few-shot learning during training.\n", "Specifically, at each training step, we randomly select a small number of classes, and sample a small number of examples for each class.\n", "This represents our few-shot training batch, which we also refer to as **support set**.\n", "Additionally, we sample a second set of examples from the same classes, and refer to this batch as **query set**.\n", "Our training objective is to classify the query set correctly from seeing the support set and its corresponding labels.\n", "The main difference between our three methods (ProtoNet, MAML, and Proto-MAML) is in how they use the support set to adapt to the training classes.\n", "\n", "This subsection summarizes the code that is needed to create such training batches.\n", "In PyTorch, we can specify the data sampling procedure by so-called `Sampler` ([documentation](https://pytorch.org/docs/stable/data.html#data-loading-order-and-sampler)).\n", "Samplers are iteratable objects that return indices in the order in which the data elements should be sampled.\n", "In our previous notebooks, we usually used the option `shuffle=True` in the `data.DataLoader` objects which creates a sampler returning the data indices in a random order.\n", "Here, we focus on samplers that return batches of indices that correspond to support and query set batches.\n", "Below, we implement such a sampler."]}, {"cell_type": "code", "execution_count": 12, "id": "08644e6c", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:20.906916Z", "iopub.status.busy": "2023-03-14T16:24:20.906376Z", "iopub.status.idle": "2023-03-14T16:24:20.923589Z", "shell.execute_reply": "2023-03-14T16:24:20.923060Z"}, "papermill": {"duration": 0.033191, "end_time": "2023-03-14T16:24:20.924646", "exception": false, "start_time": "2023-03-14T16:24:20.891455", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class FewShotBatchSampler:\n", "    def __init__(self, dataset_targets, N_way, K_shot, include_query=False, shuffle=True, shuffle_once=False):\n", "        \"\"\"\n", "        Inputs:\n", "            dataset_targets - PyTorch tensor of the labels of the data elements.\n", "            N_way - Number of classes to sample per batch.\n", "            K_shot - Number of examples to sample per class in the batch.\n", "            include_query - If True, returns batch of size N_way*K_shot*2, which\n", "                            can be split into support and query set. Simplifies\n", "                            the implementation of sampling the same classes but\n", "                            distinct examples for support and query set.\n", "            shuffle - If True, examples and classes are newly shuffled in each\n", "                      iteration (for training)\n", "            shuffle_once - If True, examples and classes are shuffled once in\n", "                           the beginning, but kept constant across iterations\n", "                           (for validation)\n", "        \"\"\"\n", "        super().__init__()\n", "        self.dataset_targets = dataset_targets\n", "        self.N_way = N_way\n", "        self.K_shot = K_shot\n", "        self.shuffle = shuffle\n", "        self.include_query = include_query\n", "        if self.include_query:\n", "            self.K_shot *= 2\n", "        self.batch_size = self.N_way * self.K_shot  # Number of overall images per batch\n", "\n", "        # Organize examples by class\n", "        self.classes = torch.unique(self.dataset_targets).tolist()\n", "        self.num_classes = len(self.classes)\n", "        self.indices_per_class = {}\n", "        self.batches_per_class = {}  # Number of K-shot batches that each class can provide\n", "        for c in self.classes:\n", "            self.indices_per_class[c] = torch.where(self.dataset_targets == c)[0]\n", "            self.batches_per_class[c] = self.indices_per_class[c].shape[0] // self.K_shot\n", "\n", "        # Create a list of classes from which we select the N classes per batch\n", "        self.iterations = sum(self.batches_per_class.values()) // self.N_way\n", "        self.class_list = [c for c in self.classes for _ in range(self.batches_per_class[c])]\n", "        if shuffle_once or self.shuffle:\n", "            self.shuffle_data()\n", "        else:\n", "            # For testing, we iterate over classes instead of shuffling them\n", "            sort_idxs = [\n", "                i + p * self.num_classes for i, c in enumerate(self.classes) for p in range(self.batches_per_class[c])\n", "            ]\n", "            self.class_list = np.array(self.class_list)[np.argsort(sort_idxs)].tolist()\n", "\n", "    def shuffle_data(self):\n", "        # Shuffle the examples per class\n", "        for c in self.classes:\n", "            perm = torch.randperm(self.indices_per_class[c].shape[0])\n", "            self.indices_per_class[c] = self.indices_per_class[c][perm]\n", "        # Shuffle the class list from which we sample. Note that this way of shuffling\n", "        # does not prevent to choose the same class twice in a batch. However, for\n", "        # training and validation, this is not a problem.\n", "        random.shuffle(self.class_list)\n", "\n", "    def __iter__(self):\n", "        # Shuffle data\n", "        if self.shuffle:\n", "            self.shuffle_data()\n", "\n", "        # Sample few-shot batches\n", "        start_index = defaultdict(int)\n", "        for it in range(self.iterations):\n", "            class_batch = self.class_list[it * self.N_way : (it + 1) * self.N_way]  # Select N classes for the batch\n", "            index_batch = []\n", "            for c in class_batch:  # For each class, select the next K examples and add them to the batch\n", "                index_batch.extend(self.indices_per_class[c][start_index[c] : start_index[c] + self.K_shot])\n", "                start_index[c] += self.K_shot\n", "            if self.include_query:  # If we return support+query set, sort them so that they are easy to split\n", "                index_batch = index_batch[::2] + index_batch[1::2]\n", "            yield index_batch\n", "\n", "    def __len__(self):\n", "        return self.iterations"]}, {"cell_type": "markdown", "id": "7a9b479a", "metadata": {"papermill": {"duration": 0.012949, "end_time": "2023-03-14T16:24:20.950800", "exception": false, "start_time": "2023-03-14T16:24:20.937851", "status": "completed"}, "tags": []}, "source": ["Now, we can create our intended data loaders by passing an object of `FewShotBatchSampler` as `batch_sampler=...` input to the PyTorch data loader object.\n", "For our experiments, we will use a 5-class 4-shot training setting.\n", "This means that each support set contains 5 classes with 4 examples each, i.e., 20 images overall.\n", "Usually, it is good to keep the number of shots equal to the number that you aim to test on.\n", "However, we will experiment later with different number of shots, and hence, we pick 4 as a compromise for now.\n", "To get the best performing model, it is recommended to consider the\n", "number of training shots as hyperparameter in a grid search."]}, {"cell_type": "code", "execution_count": 13, "id": "ea25e642", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:20.978473Z", "iopub.status.busy": "2023-03-14T16:24:20.977915Z", "iopub.status.idle": "2023-03-14T16:24:21.006570Z", "shell.execute_reply": "2023-03-14T16:24:21.006121Z"}, "papermill": {"duration": 0.04396, "end_time": "2023-03-14T16:24:21.007730", "exception": false, "start_time": "2023-03-14T16:24:20.963770", "status": "completed"}, "tags": []}, "outputs": [], "source": ["N_WAY = 5\n", "K_SHOT = 4\n", "train_data_loader = data.DataLoader(\n", "    train_set,\n", "    batch_sampler=FewShotBatchSampler(train_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, shuffle=True),\n", "    num_workers=4,\n", ")\n", "val_data_loader = data.DataLoader(\n", "    val_set,\n", "    batch_sampler=FewShotBatchSampler(\n", "        val_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, shuffle=False, shuffle_once=True\n", "    ),\n", "    num_workers=4,\n", ")"]}, {"cell_type": "markdown", "id": "c978f39f", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.012927, "end_time": "2023-03-14T16:24:21.033667", "exception": false, "start_time": "2023-03-14T16:24:21.020740", "status": "completed"}, "tags": []}, "source": ["For simplicity, we implemented the sampling of a support and query set as sampling a support set with twice the number of examples.\n", "After sampling a batch from the data loader, we need to split it into a support and query set.\n", "We can summarize this step in the following function:"]}, {"cell_type": "code", "execution_count": 14, "id": "640e1b79", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.061299Z", "iopub.status.busy": "2023-03-14T16:24:21.060741Z", "iopub.status.idle": "2023-03-14T16:24:21.065603Z", "shell.execute_reply": "2023-03-14T16:24:21.064983Z"}, "papermill": {"duration": 0.02011, "end_time": "2023-03-14T16:24:21.066814", "exception": false, "start_time": "2023-03-14T16:24:21.046704", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def split_batch(imgs, targets):\n", "    support_imgs, query_imgs = imgs.chunk(2, dim=0)\n", "    support_targets, query_targets = targets.chunk(2, dim=0)\n", "    return support_imgs, query_imgs, support_targets, query_targets"]}, {"cell_type": "markdown", "id": "502ce9c8", "metadata": {"papermill": {"duration": 0.01339, "end_time": "2023-03-14T16:24:21.093324", "exception": false, "start_time": "2023-03-14T16:24:21.079934", "status": "completed"}, "tags": []}, "source": ["Finally, to ensure that our implementation of the data sampling process is correct, we can sample a batch and visualize its support and query set.\n", "What we would like to see is that the support and query set have the same classes, but distinct examples."]}, {"cell_type": "code", "execution_count": 15, "id": "d93b13a1", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.121100Z", "iopub.status.busy": "2023-03-14T16:24:21.120570Z", "iopub.status.idle": "2023-03-14T16:24:21.518344Z", "shell.execute_reply": "2023-03-14T16:24:21.517344Z"}, "papermill": {"duration": 0.415456, "end_time": "2023-03-14T16:24:21.521746", "exception": false, "start_time": "2023-03-14T16:24:21.106290", "status": "completed"}, "tags": []}, "outputs": [], "source": ["imgs, targets = next(iter(val_data_loader))  # We use the validation set since it does not apply augmentations\n", "support_imgs, query_imgs, _, _ = split_batch(imgs, targets)\n", "support_grid = torchvision.utils.make_grid(support_imgs, nrow=K_SHOT, normalize=True, pad_value=0.9)\n", "support_grid = support_grid.permute(1, 2, 0)\n", "query_grid = torchvision.utils.make_grid(query_imgs, nrow=K_SHOT, normalize=True, pad_value=0.9)\n", "query_grid = query_grid.permute(1, 2, 0)\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(8, 5))\n", "ax[0].imshow(support_grid)\n", "ax[0].set_title(\"Support set\")\n", "ax[0].axis(\"off\")\n", "ax[1].imshow(query_grid)\n", "ax[1].set_title(\"Query set\")\n", "ax[1].axis(\"off\")\n", "fig.suptitle(\"Few Shot Batch\", weight=\"bold\")\n", "fig.show()\n", "plt.close(fig)"]}, {"cell_type": "markdown", "id": "b8c1b2b2", "metadata": {"papermill": {"duration": 0.012948, "end_time": "2023-03-14T16:24:21.554647", "exception": false, "start_time": "2023-03-14T16:24:21.541699", "status": "completed"}, "tags": []}, "source": ["As we can see, the support and query set have the same five classes, but different examples.\n", "The models will be tasked to classify the examples in the query set by learning from the support set and its labels.\n", "With the data sampling in place, we can now start to implement our first meta-learning model: Prototypical Networks."]}, {"cell_type": "markdown", "id": "3fce8385", "metadata": {"papermill": {"duration": 0.012976, "end_time": "2023-03-14T16:24:21.580602", "exception": false, "start_time": "2023-03-14T16:24:21.567626", "status": "completed"}, "tags": []}, "source": ["## Prototypical Networks\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/LhZGPOtTd_Y\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>"]}, {"cell_type": "markdown", "id": "1bd18c0d", "metadata": {"papermill": {"duration": 0.012902, "end_time": "2023-03-14T16:24:21.606435", "exception": false, "start_time": "2023-03-14T16:24:21.593533", "status": "completed"}, "tags": []}, "source": ["The Prototypical Network, or ProtoNet for short, is a metric-based meta-learning algorithm which operates similar to a nearest neighbor classification.\n", "Metric-based meta-learning methods classify a new example $\\mathbf{x}$ based on some distance function $d_{\\varphi}$ between $x$ and all elements in the support set.\n", "ProtoNets implements this idea with the concept of prototypes in a learned feature space.\n", "First, ProtoNet uses an embedding function $f_{\\theta}$ to encode each input in the support set into a $L$-dimensional feature vector.\n", "Next, for each class $c$, we collect the feature vectors of all examples with label $c$, and average their feature vectors.\n", "Formally, we can define this as:\n", "\n", "$$\\mathbf{v}_c=\\frac{1}{|S_c|}\\sum_{(\\mathbf{x}_i,y_i)\\in S_c}f_{\\theta}(\\mathbf{x}_i)$$\n", "\n", "where $S_c$ is the part of the support set $S$ for which $y_i=c$, and $\\mathbf{v}_c$ represents the _prototype_ of class $c$.\n", "The prototype calculation is visualized below for a 2-dimensional feature space and 3 classes (Figure credit - [Snell et al.](https://arxiv.org/pdf/1703.05175.pdf)).\n", "The colored dots represent encoded support elements with color-corresponding class label, and the black dots next to the class label are the averaged prototypes.\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/protonet_classification.svg\" width=\"300px\"></center>\n", "\n", "Based on these prototypes, we want to classify a new example.\n", "Remember that since we want to learn the encoding function $f_{\\theta}$, this classification must be differentiable and hence, we need to define a probability distribution across classes.\n", "For this, we will make use of the distance function $d_{\\varphi}$: the closer a new example $\\mathbf{x}$ is to a prototype $\\mathbf{v}_c$, the higher the probability for $\\mathbf{x}$ belonging to class $c$.\n", "Formally, we can simply use a softmax over the distances of $\\mathbf{x}$ to all class prototypes:\n", "\n", "$$p(y=c\\vert\\mathbf{x})=\\text{softmax}(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_c))=\\frac{\\exp\\left(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_c)\\right)}{\\sum_{c'\\in \\mathcal{C}}\\exp\\left(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_{c'})\\right)}$$\n", "\n", "Note that the negative sign is necessary since we want to increase the probability for close-by vectors and have a low probability for distant vectors.\n", "We train the network $f_{\\theta}$ based on the cross entropy error of the training query set examples.\n", "Thereby, the gradient flows through both the prototypes $\\mathbf{v}_c$ and the query set encodings $f_{\\theta}(\\mathbf{x})$.\n", "For the distance function $d_{\\varphi}$, we can choose any function as long as it is differentiable with respect to both of its inputs.\n", "The most common function, which we also use here, is the squared\n", "euclidean distance, but there has been several works on different\n", "distance functions as well."]}, {"cell_type": "markdown", "id": "40104969", "metadata": {"papermill": {"duration": 0.012992, "end_time": "2023-03-14T16:24:21.632410", "exception": false, "start_time": "2023-03-14T16:24:21.619418", "status": "completed"}, "tags": []}, "source": ["### ProtoNet implementation"]}, {"cell_type": "markdown", "id": "1a8c09d7", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.01289, "end_time": "2023-03-14T16:24:21.658506", "exception": false, "start_time": "2023-03-14T16:24:21.645616", "status": "completed"}, "tags": []}, "source": ["Now that we know how a ProtoNet works in principle, let's look at how we can apply to our specific problem of few-shot image classification, and implement it below.\n", "First, we need to define the encoder function $f_{\\theta}$.\n", "Since we work with CIFAR images, we can take a look back at Tutorial 5 where we compared common Computer Vision architectures, and choose one of the best performing ones.\n", "Here, we go with a DenseNet since it is in general more parameter efficient than ResNet.\n", "Luckily, we do not need to implement DenseNet ourselves again and can rely on torchvision's model package instead.\n", "We use common hyperparameters of 64 initial feature channels, add 32 per block, and use a bottleneck size of 64 (i.e. 2 times the growth rate).\n", "We use 4 stages of 6 layers each, which results in overall about 1 million parameters.\n", "Note that the torchvision package assumes that the last layer is used for classification and hence calls its output size `num_classes`.\n", "However, we can instead just use it as the feature space of ProtoNet, and choose an arbitrary dimensionality.\n", "We will use the same network for other algorithms in this notebook to ensure a fair comparison."]}, {"cell_type": "code", "execution_count": 16, "id": "3bf8b10d", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.687216Z", "iopub.status.busy": "2023-03-14T16:24:21.686644Z", "iopub.status.idle": "2023-03-14T16:24:21.694132Z", "shell.execute_reply": "2023-03-14T16:24:21.693178Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.024893, "end_time": "2023-03-14T16:24:21.696432", "exception": false, "start_time": "2023-03-14T16:24:21.671539", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def get_convnet(output_size):\n", "    convnet = torchvision.models.DenseNet(\n", "        growth_rate=32,\n", "        block_config=(6, 6, 6, 6),\n", "        bn_size=2,\n", "        num_init_features=64,\n", "        num_classes=output_size,  # Output dimensionality\n", "    )\n", "    return convnet"]}, {"cell_type": "markdown", "id": "65533c6b", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.012933, "end_time": "2023-03-14T16:24:21.728507", "exception": false, "start_time": "2023-03-14T16:24:21.715574", "status": "completed"}, "tags": []}, "source": ["Next, we can look at implementing ProtoNet.\n", "We will define it as PyTorch Lightning module to use all functionalities of PyTorch Lightning.\n", "The first step during training is to encode all images in a batch with our network.\n", "Next, we calculate the class prototypes from the support set (function `calculate_prototypes`), and classify the query set examples according to the prototypes (function `classify_feats`).\n", "Keep in mind that we use the data sampling described before, such that the support and query set are stacked together in the batch.\n", "Thus, we use our previously defined function `split_batch` to split them apart.\n", "The full code can be found below."]}, {"cell_type": "code", "execution_count": 17, "id": "3f506e1d", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.766462Z", "iopub.status.busy": "2023-03-14T16:24:21.766046Z", "iopub.status.idle": "2023-03-14T16:24:21.780976Z", "shell.execute_reply": "2023-03-14T16:24:21.779933Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.042333, "end_time": "2023-03-14T16:24:21.783983", "exception": false, "start_time": "2023-03-14T16:24:21.741650", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ProtoNet(L.LightningModule):\n", "    def __init__(self, proto_dim, lr):\n", "        \"\"\"Inputs.\n", "\n", "        proto_dim - Dimensionality of prototype feature space\n", "        lr - Learning rate of Adam optimizer\n", "        \"\"\"\n", "        super().__init__()\n", "        self.save_hyperparameters()\n", "        self.model = get_convnet(output_size=self.hparams.proto_dim)\n", "\n", "    def configure_optimizers(self):\n", "        optimizer = optim.AdamW(self.parameters(), lr=self.hparams.lr)\n", "        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[140, 180], gamma=0.1)\n", "        return [optimizer], [scheduler]\n", "\n", "    @staticmethod\n", "    def calculate_prototypes(features, targets):\n", "        # Given a stack of features vectors and labels, return class prototypes\n", "        # features - shape [N, proto_dim], targets - shape [N]\n", "        classes, _ = torch.unique(targets).sort()  # Determine which classes we have\n", "        prototypes = []\n", "        for c in classes:\n", "            p = features[torch.where(targets == c)[0]].mean(dim=0)  # Average class feature vectors\n", "            prototypes.append(p)\n", "        prototypes = torch.stack(prototypes, dim=0)\n", "        # Return the 'classes' tensor to know which prototype belongs to which class\n", "        return prototypes, classes\n", "\n", "    def classify_feats(self, prototypes, classes, feats, targets):\n", "        # Classify new examples with prototypes and return classification error\n", "        dist = torch.pow(prototypes[None, :] - feats[:, None], 2).sum(dim=2)  # Squared euclidean distance\n", "        preds = F.log_softmax(-dist, dim=1)\n", "        labels = (classes[None, :] == targets[:, None]).long().argmax(dim=-1)\n", "        acc = (preds.argmax(dim=1) == labels).float().mean()\n", "        return preds, labels, acc\n", "\n", "    def calculate_loss(self, batch, mode):\n", "        # Determine training loss for a given support and query set\n", "        imgs, targets = batch\n", "        features = self.model(imgs)  # Encode all images of support and query set\n", "        support_feats, query_feats, support_targets, query_targets = split_batch(features, targets)\n", "        prototypes, classes = ProtoNet.calculate_prototypes(support_feats, support_targets)\n", "        preds, labels, acc = self.classify_feats(prototypes, classes, query_feats, query_targets)\n", "        loss = F.cross_entropy(preds, labels)\n", "\n", "        self.log(\"%s_loss\" % mode, loss)\n", "        self.log(\"%s_acc\" % mode, acc)\n", "        return loss\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        return self.calculate_loss(batch, mode=\"train\")\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        self.calculate_loss(batch, mode=\"val\")"]}, {"cell_type": "markdown", "id": "be090263", "metadata": {"papermill": {"duration": 0.013071, "end_time": "2023-03-14T16:24:21.813798", "exception": false, "start_time": "2023-03-14T16:24:21.800727", "status": "completed"}, "tags": []}, "source": ["For validation, we use the same principle as training and sample support and query sets from the hold-out 10 classes.\n", "However, this gives us noisy scores depending on which query sets are chosen to which support sets.\n", "This is why we will use a different strategy during testing.\n", "For validation, our training strategy is sufficient since it is much\n", "faster than testing, and gives a good estimate of the training\n", "generalization as long as we keep the support-query sets constant across\n", "validation iterations."]}, {"cell_type": "markdown", "id": "b16637b2", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013041, "end_time": "2023-03-14T16:24:21.840096", "exception": false, "start_time": "2023-03-14T16:24:21.827055", "status": "completed"}, "tags": []}, "source": ["### Training\n", "\n", "After implementing the model, we can already start training it.\n", "We use our common PyTorch Lightning training function, and train the model for 200 epochs.\n", "The training function takes `model_class` as input argument, i.e. the\n", "PyTorch Lightning module class that should be trained, since we will\n", "reuse this function for other algorithms as well."]}, {"cell_type": "code", "execution_count": 18, "id": "a3d2019e", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.868651Z", "iopub.status.busy": "2023-03-14T16:24:21.868231Z", "iopub.status.idle": "2023-03-14T16:24:21.877021Z", "shell.execute_reply": "2023-03-14T16:24:21.876040Z"}, "papermill": {"duration": 0.025369, "end_time": "2023-03-14T16:24:21.878717", "exception": false, "start_time": "2023-03-14T16:24:21.853348", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_model(model_class, train_loader, val_loader, **kwargs):\n", "    trainer = L.Trainer(\n", "        default_root_dir=os.path.join(CHECKPOINT_PATH, model_class.__name__),\n", "        accelerator=\"auto\",\n", "        devices=1,\n", "        max_epochs=200,\n", "        callbacks=[\n", "            ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\"),\n", "            LearningRateMonitor(\"epoch\"),\n", "        ],\n", "        enable_progress_bar=False,\n", "    )\n", "    trainer.logger._default_hp_metric = None\n", "\n", "    # Check whether pretrained model exists. If yes, load it and skip training\n", "    pretrained_filename = os.path.join(CHECKPOINT_PATH, model_class.__name__ + \".ckpt\")\n", "    if os.path.isfile(pretrained_filename):\n", "        print(\"Found pretrained model at %s, loading...\" % pretrained_filename)\n", "        # Automatically loads the model with the saved hyperparameters\n", "        model = model_class.load_from_checkpoint(pretrained_filename)\n", "    else:\n", "        L.seed_everything(42)  # To be reproducable\n", "        model = model_class(**kwargs)\n", "        trainer.fit(model, train_loader, val_loader)\n", "        model = model_class.load_from_checkpoint(\n", "            trainer.checkpoint_callback.best_model_path\n", "        )  # Load best checkpoint after training\n", "\n", "    return model"]}, {"cell_type": "markdown", "id": "e99be619", "metadata": {"papermill": {"duration": 0.013129, "end_time": "2023-03-14T16:24:21.908618", "exception": false, "start_time": "2023-03-14T16:24:21.895489", "status": "completed"}, "tags": []}, "source": ["Below is the training call for our ProtoNet.\n", "We use a 64-dimensional feature space.\n", "Larger feature spaces showed to give noisier results since the squared euclidean distance becomes proportionally larger in expectation, and smaller feature spaces might not allow for enough flexibility.\n", "We recommend to load the pre-trained model here at first, but feel free\n", "to play around with the hyperparameters yourself."]}, {"cell_type": "code", "execution_count": 19, "id": "c89b030b", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:21.937715Z", "iopub.status.busy": "2023-03-14T16:24:21.937098Z", "iopub.status.idle": "2023-03-14T16:24:22.289350Z", "shell.execute_reply": "2023-03-14T16:24:22.288370Z"}, "papermill": {"duration": 0.369844, "end_time": "2023-03-14T16:24:22.291836", "exception": false, "start_time": "2023-03-14T16:24:21.921992", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True (cuda), used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Lightning automatically upgraded your loaded checkpoint from v1.3.4 to v2.0.0rc0. To apply the upgrade to your files permanently, run `python -m lightning.pytorch.utilities.upgrade_checkpoint --file saved_models/MetaLearning/ProtoNet.ckpt`\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model at saved_models/MetaLearning/ProtoNet.ckpt, loading...\n"]}], "source": ["protonet_model = train_model(\n", "    ProtoNet, proto_dim=64, lr=2e-4, train_loader=train_data_loader, val_loader=val_data_loader\n", ")"]}, {"cell_type": "markdown", "id": "5bdc8c12", "metadata": {"papermill": {"duration": 0.013896, "end_time": "2023-03-14T16:24:22.319950", "exception": false, "start_time": "2023-03-14T16:24:22.306054", "status": "completed"}, "tags": []}, "source": ["We can also take a closer look at the TensorBoard below."]}, {"cell_type": "code", "execution_count": 20, "id": "a96c3cda", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:22.348614Z", "iopub.status.busy": "2023-03-14T16:24:22.348432Z", "iopub.status.idle": "2023-03-14T16:24:22.351987Z", "shell.execute_reply": "2023-03-14T16:24:22.351284Z"}, "papermill": {"duration": 0.019531, "end_time": "2023-03-14T16:24:22.353235", "exception": false, "start_time": "2023-03-14T16:24:22.333704", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Opens tensorboard in notebook. Adjust the path to your CHECKPOINT_PATH if needed\n", "# %tensorboard --logdir ../saved_models/tutorial16/tensorboards/ProtoNet/"]}, {"cell_type": "markdown", "id": "850556db", "metadata": {"papermill": {"duration": 0.013689, "end_time": "2023-03-14T16:24:22.380812", "exception": false, "start_time": "2023-03-14T16:24:22.367123", "status": "completed"}, "tags": []}, "source": ["<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/tensorboard_screenshot_ProtoNet.png\" width=\"1100px\"></center>\n", "\n", "In contrast to standard supervised learning, we see that ProtoNet does not overfit as much as we would expect.\n", "The validation accuracy is of course lower than the average training, but the training loss does not stick close to zero.\n", "This is because no training batch is as the other, and we also mix new examples in the support set and query set.\n", "This gives us slightly different prototypes in every iteration, and makes it harder for the network to fully overfit."]}, {"cell_type": "markdown", "id": "82674d3a", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013394, "end_time": "2023-03-14T16:24:22.408046", "exception": false, "start_time": "2023-03-14T16:24:22.394652", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "Our goal of meta-learning is to obtain a model that can quickly adapt to a new task, or in this case, new classes to distinguish between.\n", "To test this, we will use our trained ProtoNet and adapt it to the 10 test classes.\n", "Thereby, we pick $k$ examples per class from which we determine the prototypes, and test the classification accuracy on all other examples.\n", "This can be seen as using the $k$ examples per class as support set, and the rest of the dataset as a query set.\n", "We iterate through the dataset such that each example has been once included in a support set.\n", "The average performance over all support sets tells us how well we can expect ProtoNet to perform when seeing only $k$ examples per class.\n", "During training, we used $k=4$.\n", "In testing, we will experiment with $k=\\{2,4,8,16,32\\}$ to get a better sense of how $k$ influences the results.\n", "We would expect that we achieve higher accuracies the more examples we have in the support set, but we don't know how it scales.\n", "Hence, let's first implement a function that executes the testing procedure for a given $k$:"]}, {"cell_type": "code", "execution_count": 21, "id": "a912f4a9", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:22.436726Z", "iopub.status.busy": "2023-03-14T16:24:22.436280Z", "iopub.status.idle": "2023-03-14T16:24:22.453454Z", "shell.execute_reply": "2023-03-14T16:24:22.452409Z"}, "papermill": {"duration": 0.033159, "end_time": "2023-03-14T16:24:22.454641", "exception": false, "start_time": "2023-03-14T16:24:22.421482", "status": "completed"}, "tags": []}, "outputs": [], "source": ["@torch.no_grad()\n", "def test_proto_net(model, dataset, data_feats=None, k_shot=4):\n", "    \"\"\"Inputs.\n", "\n", "    model - Pretrained ProtoNet model\n", "    dataset - The dataset on which the test should be performed.\n", "              Should be instance of ImageDataset\n", "    data_feats - The encoded features of all images in the dataset.\n", "                 If None, they will be newly calculated, and returned\n", "                 for later usage.\n", "    k_shot - Number of examples per class in the support set.\n", "    \"\"\"\n", "    model = model.to(device)\n", "    model.eval()\n", "    num_classes = dataset.targets.unique().shape[0]\n", "    exmps_per_class = dataset.targets.shape[0] // num_classes  # We assume uniform example distribution here\n", "\n", "    # The encoder network remains unchanged across k-shot settings. Hence, we only need\n", "    # to extract the features for all images once.\n", "    if data_feats is None:\n", "        # Dataset preparation\n", "        dataloader = data.DataLoader(dataset, batch_size=128, num_workers=4, shuffle=False, drop_last=False)\n", "\n", "        img_features = []\n", "        img_targets = []\n", "        for imgs, targets in tqdm(dataloader, \"Extracting image features\", leave=False):\n", "            imgs = imgs.to(device)\n", "            feats = model.model(imgs)\n", "            img_features.append(feats.detach().cpu())\n", "            img_targets.append(targets)\n", "        img_features = torch.cat(img_features, dim=0)\n", "        img_targets = torch.cat(img_targets, dim=0)\n", "        # Sort by classes, so that we obtain tensors of shape [num_classes, exmps_per_class, ...]\n", "        # Makes it easier to process later\n", "        img_targets, sort_idx = img_targets.sort()\n", "        img_targets = img_targets.reshape(num_classes, exmps_per_class).transpose(0, 1)\n", "        img_features = img_features[sort_idx].reshape(num_classes, exmps_per_class, -1).transpose(0, 1)\n", "    else:\n", "        img_features, img_targets = data_feats\n", "\n", "    # We iterate through the full dataset in two manners. First, to select the k-shot batch.\n", "    # Second, the evaluate the model on all other examples\n", "    accuracies = []\n", "    for k_idx in tqdm(range(0, img_features.shape[0], k_shot), \"Evaluating prototype classification\", leave=False):\n", "        # Select support set and calculate prototypes\n", "        k_img_feats = img_features[k_idx : k_idx + k_shot].flatten(0, 1)\n", "        k_targets = img_targets[k_idx : k_idx + k_shot].flatten(0, 1)\n", "        prototypes, proto_classes = model.calculate_prototypes(k_img_feats, k_targets)\n", "        # Evaluate accuracy on the rest of the dataset\n", "        batch_acc = 0\n", "        for e_idx in range(0, img_features.shape[0], k_shot):\n", "            if k_idx == e_idx:  # Do not evaluate on the support set examples\n", "                continue\n", "            e_img_feats = img_features[e_idx : e_idx + k_shot].flatten(0, 1)\n", "            e_targets = img_targets[e_idx : e_idx + k_shot].flatten(0, 1)\n", "            _, _, acc = model.classify_feats(prototypes, proto_classes, e_img_feats, e_targets)\n", "            batch_acc += acc.item()\n", "        batch_acc /= img_features.shape[0] // k_shot - 1\n", "        accuracies.append(batch_acc)\n", "\n", "    return (mean(accuracies), stdev(accuracies)), (img_features, img_targets)"]}, {"cell_type": "markdown", "id": "63889364", "metadata": {"papermill": {"duration": 0.013316, "end_time": "2023-03-14T16:24:22.481434", "exception": false, "start_time": "2023-03-14T16:24:22.468118", "status": "completed"}, "tags": []}, "source": ["Testing ProtoNet is relatively quick if we have processed all images once. Hence, we can do in this notebook:"]}, {"cell_type": "code", "execution_count": 22, "id": "994f4e9b", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:22.510080Z", "iopub.status.busy": "2023-03-14T16:24:22.509736Z", "iopub.status.idle": "2023-03-14T16:24:39.495386Z", "shell.execute_reply": "2023-03-14T16:24:39.494288Z"}, "papermill": {"duration": 17.002446, "end_time": "2023-03-14T16:24:39.497345", "exception": false, "start_time": "2023-03-14T16:24:22.494899", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "561a58f8bc154ed9a27a58a2cf792198", "version_major": 2, "version_minor": 0}, "text/plain": ["Extracting image features:   0%|          | 0/47 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "5d395304617e4038bd11111fc410031c", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/300 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=2: 44.30% (+-3.63%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "287f6dbe8c4d48b2b75567abe04de48e", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/150 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=4: 52.07% (+-2.28%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "9797c2a7b20f4408832173d406141a15", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/75 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=8: 57.59% (+-1.30%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "2ba8efb642e94a71b9fa8f5c862086b4", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/38 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=16: 62.56% (+-1.03%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "8bcc60c29c834cbd86eab23caca1d2af", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/19 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=32: 66.48% (+-0.88%)\n"]}], "source": ["protonet_accuracies = dict()\n", "data_feats = None\n", "for k in [2, 4, 8, 16, 32]:\n", "    protonet_accuracies[k], data_feats = test_proto_net(protonet_model, test_set, data_feats=data_feats, k_shot=k)\n", "    print(\n", "        \"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)\"\n", "        % (k, 100.0 * protonet_accuracies[k][0], 100 * protonet_accuracies[k][1])\n", "    )"]}, {"cell_type": "markdown", "id": "4ab8191f", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.014261, "end_time": "2023-03-14T16:24:39.529595", "exception": false, "start_time": "2023-03-14T16:24:39.515334", "status": "completed"}, "tags": []}, "source": ["Before discussing the results above, let's first plot the accuracies over number of examples in the support set:"]}, {"cell_type": "code", "execution_count": 23, "id": "9a357207", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:39.571355Z", "iopub.status.busy": "2023-03-14T16:24:39.570723Z", "iopub.status.idle": "2023-03-14T16:24:39.588462Z", "shell.execute_reply": "2023-03-14T16:24:39.587487Z"}, "papermill": {"duration": 0.041881, "end_time": "2023-03-14T16:24:39.590153", "exception": false, "start_time": "2023-03-14T16:24:39.548272", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def plot_few_shot(acc_dict, name, color=None, ax=None):\n", "    sns.set()\n", "    if ax is None:\n", "        fig, ax = plt.subplots(1, 1, figsize=(5, 3))\n", "    ks = sorted(list(acc_dict.keys()))\n", "    mean_accs = [acc_dict[k][0] for k in ks]\n", "    std_accs = [acc_dict[k][1] for k in ks]\n", "    ax.plot(ks, mean_accs, marker=\"o\", markeredgecolor=\"k\", markersize=6, label=name, color=color)\n", "    ax.fill_between(\n", "        ks,\n", "        [m - s for m, s in zip(mean_accs, std_accs)],\n", "        [m + s for m, s in zip(mean_accs, std_accs)],\n", "        alpha=0.2,\n", "        color=color,\n", "    )\n", "    ax.set_xticks(ks)\n", "    ax.set_xlim([ks[0] - 1, ks[-1] + 1])\n", "    ax.set_xlabel(\"Number of shots per class\", weight=\"bold\")\n", "    ax.set_ylabel(\"Accuracy\", weight=\"bold\")\n", "    if len(ax.get_title()) == 0:\n", "        ax.set_title(\"Few-Shot Performance \" + name, weight=\"bold\")\n", "    else:\n", "        ax.set_title(ax.get_title() + \" and \" + name, weight=\"bold\")\n", "    ax.legend()\n", "    return ax"]}, {"cell_type": "code", "execution_count": 24, "id": "24969c34", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:39.633317Z", "iopub.status.busy": "2023-03-14T16:24:39.632608Z", "iopub.status.idle": "2023-03-14T16:24:40.023009Z", "shell.execute_reply": "2023-03-14T16:24:40.022071Z"}, "papermill": {"duration": 0.413422, "end_time": "2023-03-14T16:24:40.024626", "exception": false, "start_time": "2023-03-14T16:24:39.611204", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzQzLjAyNSAyMzEuNjEwNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1Y308jNxB+37/Cj/CAM+MfY/sRej2kk3qCA6kPVR9oGu6K4FISrqf+9/28m921kxA4ICVaKfthz8w34xnPZPJu9s9f09mn0xP100UzGd+my4bVDZ7PitQNnu+K1Smezw3h7a6xzmoyHt9vh+/GshYmwddbLKtevzTNdTM5hoClIp04iAvkY9x4cYk4CYWoFln3abWg2bW6abzoCG3O6CQ+64Wd1q9htwNmKGkTV+Bqb4W1Rt+rDbEmJMUi2hq1mKlf1Vc1OTaZGasPeG7wdP6qPSpee2dDbeAAVpqbi+Zc3fdiSbNHJHrJ7evpCm3uESVSR4R/idHUyfK6c/z0rjm5bCbvWTGry+s2eJd/Nr+pA3OofleXH5qfL5vzVtdbsGzAMkJA5LUwDOAbsAxJu07W0yzdvlgyB93RKGmO6BvwZHbadsKeJhr3RjQGLbRBdEDfgmikXtjTRFn2xdSasNJeFZABfQOm1lAv7GmmtkrR0l+EU+ba3UmHQYJRbGoJH7/d/TFbqPm1Wn6ZPyzV33iZ3l4tl/tyYS9HdIAUSmUBHrCXOs+Y3kgfTTQsyZkd7iPtaM88g9cUyfmS54i9kmfA9UYUAvsUw26efs88may2CUeuJFqAr2SakFcoKIY9Wd7J1O87ooyeJbDYKqQF+EqmjGLirUhgR0F2U917UIU0oXWrgzqCr6XqIdE7MfDe7jSVvQc1RlykxtRBHcHXMo1OczA+MGrSroIOqr4u6VnKUZbHotEu51zwGoTLi2GzrB9Pp98WV9N/X+Q22zGMsvoLePFlg22RhxLFoI1clE54ZIeqdnw6bZ65MvfrQ++bMCmg0KGeFw2xx2azum6H/pHJwFNkYw7b2G6xjVhgqD23Y3PCEnXAhMAxt/3DTQ5Ah5iSlQo2BLjX+AhcyEbXYi17OLeyxFsdrEkpVWabqImQ/nnxFtrtrHHy0sOv/VqEml0RWptKRnMCa0rRR1s27MzoVBgg1zRxn1sfPLnaKcFBs4Q1F2JG08GHELtcIxj+7GPS52Cbgs+iuOiztJ2JNti5ZByyS01+IfVuPiwEtW44c5qQzlmw3bLMOh2xCleCcSBqJZFsWSbozBC6iKKRjGFyyW/TaRNihzoCWeQ91sVi1XlZlEwOtjZ+62S5ZfDdNs/C9Zvz8N32eRhrnzlOjysLAY9L7YL/vAobIdfFbqTFOVyJebwyvj9UDkdBHMKc/9TB7PvRBXpfdTZbXM8Xd1dfpzN1tpg/zD/OHsr6OTl2P/rTxE0+jz/2A4W4XNLaG8O6do5yOHVpVU86EOnkUMx8MMkMILukpV+HDjNkfjUqOOfwTVOAuXL53vUVbjXh7ssKRl0ZDX12D2YV6LS3v8BQzbKs1pwCFoOErBQNyGASxHVYb/vtCAwUR+m9K9Z8OO0q55MlceeltdY3oNiGtmrlXO9OcwhrEIp73ID+l9o22sKjeRFOIcH1N6Ih550NDpDReFD4Mhad4CbJWPAuocQ1MY9KEQcVKHp6Dh6ZRwM5jDPiKqST327sIJ/vsYhWqhQlqKcuVTpFp4R7AFsL49ASCzF0liRCT6LnGgatAVJMsonLZaJxRRqpxMEqshJrvThZqLUplQa6dRoDMnItoJVDSlG92wqdo38L48ZAFCR4nSsPWtuzvaqWj1bJTHm1j8zu3xTODvM9h/G0+3h1sDhEadWWJHL7UQebxfG8+Q9pyJo8CmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTI4NQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MQQ7AIAgE7/sKnqAIIv9pGg/0/9cqNT0AEzIZM6FCusa6k7HTVaFNqLZGD1hKUqD6FgOam01TDoj7oR1IY5TvnkpggocR97GKcijQFqlu4v83cb/89hxjCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCA3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzszBWMFCwNAISppaWCuZGlgophlxAPoiVywUTywGzTC3MgSwjCwMklompIUgWhWVsYAmVRbAMgDTYmhyY6TlcGVxpADXCGOsKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2NwRGAQAgD/1SREhBEvH4cxwfX/9dDBj/JBgZyqoMxZInvBpeBa6OVkyYpFwXZ4ZCfatYXRZw7LRdnGDelfxXRn4Meul/I8Rf/CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCAxNjUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY45EkMhDEN7TuEjgDfgPD+TSUHu30byT9JYD+RF00y6bEVJ1KlbHqN96d28e9FpvrMocsrsS3JMSfDVWFOj5ulSfQ86pOHVZxE1Y3hfjX06TbhVA4o71Kvp6kWnqEMr3PllOu1VTmxDPpIt/tryL7nef+5LbE/xXEgR2O0LZLwKjXVrJSWFwkFHYI4zkUkHr8BubuVN3qFe/xRM9PwAAxc+pAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMzQzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSO24lMQzr5xS8QADrZ9nnecFii+z92yU1SCVCtkiKdvvCQju+LLCz0en4tqfuRa+Nf4OqHD9PFVEvFGfqBPI46jo+T2ZiL0Ouw7oRnVM/T/gd5HdDTM6TOs0TJ2d1wSlYtd8aSydCtti5yJvwndRKnfRBdiBWIdmNpIuSTjpRLrlcRE6VbQh5v4XYurPpJcJnTT/1VhevkGkHslBItrLYL29swpp4onoqtzIbJGdfB24HMm5tODBSMiFajcMmq92mMfWNSdu+sOIwCSxtoticIs/VtNPknUqhflFSUDcyNDOR05RxLrmayS+rL7ENUhxFRvInQ/KKCYmdXROLd3Mhxv8+Bp8yGNzP44sh2R3uYCTjp7XIoby5/oqYW2+kVAV4dJVnjrl9JGZHlxxaTp9KZD3W47wovdBcNTe/XWimKN7MvGi3GervL/w8f58//wE6b3+eCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAzMTYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLjuQwDEP3OYUu0ID1s+PzVKMxi5r7b+fRmepFQEHWhxQzV9uwSvvytN7Teg779itjW9S0v1fsOFHMssgnG7HsdUXcFt5823yvB1fqRVE7ddM8kx43D9dLkxn0rQWG5ciDrytzPhn2OGTyVq/2FPU+3SoGe8ZBTeZFEXzev3zf159LMtID7ooGOdV98HaV81DLctHPKuhtUXC3L/Ssec4RWQdfl8NWkadbmsZrO5eat27n9AlgDicaOczUnEbRRmNrRrMoyQYae8BwHXxUKHr4Sf//aDOW/mJ83gvdmp9MLu6ScKnCk7sPclsUnQzaq7jVLWd1W6/7dLuD6GBwbikmaCrel0O55RLTm+rAl+7jJdlu3F37/BziLYQ33isqnGr2dfINudyrrGacH0qLPo68cOfnH3kQdIAKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDI0NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFUTluBDEM6/0KfWAA67T9ngkWKTb/b0NqJ0hFwpIoUl5aMmWHXOpSS2XVlC8dvlIUTz8j1JpFTFErCTRohtwjNthWiTPF7MHlrIC5pbDDK3rGj7ECldAjVA134R7iPdzX52We7rB9nhmr0yqWp1WJnz3NsJkddMKZjzeq0C1V6f4vzz2+eypqIZtt5Dqnd6YZuoGYwHxtyYTHaZJwT9/Ee+RczbJQgd+auMk6qFRAF/54Rs9qtMUEZLq3sEORjTNVFIMIXFHzem58tUvuJaOPK9vYeWKZS/tefYjeTDLlPfCPD/Ab3/3+z5j5jfyvX19UXbwKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDIzNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUtuBTEI2+cUvsCT+Cdznlc9ddHef1tDVGkkPGCMIfk4BOF4qSOtkCX40jXQBb+D/Gz8rBRDiCP2QWgiMhDmeK/w1lBWmfUkXya+l3eWyDgnTGBFtcdYMT/wCpiRbzfabrVBpmiGHp0ezalQRZtPVVWdOR3pQPagcDLGG3uvt2NQ8pPeNO6Smg8rg4qLxXNQXEt4BUQYXtWNGvwXDqm5jlOyI22wvZG2dH+F6pV2u7G+ph7vcPch8HJsue7IjhPMd3s6N6dcn70HdOTVzn2ItpC5x1Nmj2iTGczQcobg/53e63t9/gDQ9VVVCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVE5bgQxDOv9Cn5gAeu0/Z4JghSz/29DaZKtSEgyRdG5Nibc8BJD2kTkxJeMoroC74dp4B6q8mEB2Q71CQmDZkLMcA09AhGFKSuTuLTxGj53M/fqLPimhmx2Qg2ih6uJ7OZ0SFanGGXvEUmZhaCD5MtJuyVpG68DO6vtW2QjXcRTEU7SjNBuloc125xXp0GXtQ6M/VVB1LRzRdWF4YTxzNDOxWiusF48lZizJ4ITvvXPsjOyis1S8B/kNX6GB2u85/0whuYM0I7BeZi3dZ9knLFVXZ7v0XgNE2mm9OblipZdSlldqJL8nE3VQ7Tec3023tz+/Qtvm1sqCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BEgMhCATvvIInAIK479lUag/m/9eMmjV7cbocpRovwcJ64HB3zir8UrrxM6l6cKfieZPZpCKBFLYDWZRPsgZCa025Ss4M3I0GhAmdvMiDHK/7bP8kSJW6czVw3LD+j+5BLX5U4azDsTXWqJyaMNB2cMLaYDx2K7ry3Nt2uuj9BY4jM9IKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDE5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkEFywzAMA+96BZ5AkSAlv8edTg/p/68BlSY92IshZBrQmg7Dpl4VxCrD1xwtIwK/Rxkeg7k/TP4J/6gwB3PpI4qJSMctJxDLQF6IHaLWXseJBZomvkFF4Cw9ux3TBu9zdtxYdXiPiOs1mXIm4ToRu+R4af/JI87rsGdypDr25hvd8HHm/4q1Wu0Er97gSHcEReXUn5eUGtESWd1nHt4jlbZVu0lRO9K6YU01rDi3Slt4X+k9fsb3E2e7RmMKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDU2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMxNFUwUDA1UTAyNFcwNjNUMDa1VEgx5AKKgFi5XDCxHDALpCqHC6o8B6YqhyuDKw0ACkgOVQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggNTAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzYxVjBQsDABEkamlgrmZgYKKYZcQD6IlcsFE8sBs0A0WGkOTEUOVwZXGgC4Yw0lCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAyODEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJJkgMxCLv7FTzBZuc9PTWVw8z/rxF2p3NISwVGCMiayjQpBZ9yIfNJP2tYLVJz+h++hLQmuRTZMnIHitA1vMBsUcgpi5gbr5HCm2UiohCGhk1GptRJ0aZb6YyNstWaTfobkfEgpz2sKDKJS29M1DQT6B48L2Q9GfiPZJJETWCe7SCsSBfeKiKcFMs3Yh68beYWeKF7YkFvZHhBrcgXkOdGxh6QAWu3Kvbgcd1M1KBY20H3PA50HgeCrXY/cb0diNyRqdsBp98O2HM7YPzaQeNx0Kw7p3zANEA6/mXqm+EeWgF9I4NKb97Eu7Mv3BK7wt37csp231L93FILEcM9WVHTc5ihGi4tMCX2/fnPXOM1ft+5fXE8CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOTAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZBLkgMxCEP3PoWOgEH4c55OpWYxuf82Mvkt7KdCbjUwu8OwqGsEkcNw6+3IiMCjlOG/MdeXybfwzLcKczCnPqKYiHRccgIxDeRGrBAVu8uJCZoqvkC1wD501nFMCX7eWbkxR/FqEftV6XI64XoRa8jxofzqR+y7eGpypE7bix8kp8Sp/xRHqZXgPgmOdEdQVJ/685TSRLSsDZG9eLW0186OmxSVkXYmHF0Tjqit0iY+K73aX7s/AWkMRmgKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDIxMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1ULkNAzEM6z2FFghg6rNvnguCNNm/jSgnxYE8m6JI514yxU0eMEl3iZzyxLCibiGfYTOa6SpUiEaIXSb30Dq1rBst1IO6+qb/plCBPXsGobwpF6gLXQEI9xDvYVubeX1UuOE344F28dR2bew9ZNxMBZNw5mSjC9PSlen/fe7x7m6s+Rluu1mUOoynpdpeqsQq/XkSy4NnJxl2nZQC0J5JxowOLvTkY3ILsTrHbIaVFEDtDOTVBvX49Cv4lbKz8eoAVJ9IHGdI2jH0vwYrvb4ihlRgCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCAyNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7bgQxDEN7n4IXWMD62j7PBIsU2fu3ETUTpCIBSeSzlyQmtuOlcyGXIHLiS4bGwTr4tOnhz/hbaxdOw+m/82y3DX4ObNZMFWaltnANy40IhU/tHvfZeo2oWLrImpghZ8Kr/xrplavRbBbZqks5KSd7gxsip28yGVYhYmDmq5Qt1Guwl44cr2gwVhBUDc298Lz8Gt/DVsCL5jOs+Om46tWlu953SKFZLr3PrDiputjWTou2NmRL30j4UyiaYKqQp3rkJhRtR2ZueP3JfeN7doqf2amt3UPHZm6QhDc3G1NIy9Smf97Dt71/AW5+XvUKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFUEESAyEIu/sKnoCS6Pqe7XR62P7/2sC204MmhExAscPcDujCduN0e/SWNPZh74YFg9PAbegyQXWHnQ0jlVUV+pZ/F54t+FV04LCxabGmOmN1CywbSgufhYMjO2JuV6tNCijfVfqfgcWOrmWjEphzQhjMyZNGquv3U4BeqG2VUQpDDiWJJ6oz562sxOP+Bua2v1+42qs9P29tOCwKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDM0NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1kkluRDEIRPc+BRdoyUwezvOjVhad+2/zIMoKbHBRVThvypQ0ealLxpFcU750pKqkT/npzO+Wz4jtEmoSviUsJCZnN3mGryMRU9yTGOIzOj7D9uzMYtF7xcAM16ooPeZik4rOjn69KpVteplVyMYsX/3GqSRv8ohD1i4ze44bLGEAS7Dc4MNkJ8+pYqd6Eq71smSa7o7auJ2hJm1JXonjSOC+NIG7V9tjVzvCI/PvBpQXMxS2r6SgPOA4pxxZpYk7osL5M26IYpACrWaM3qLaJjFaEW2hREgCVxFZ6p25n+7wXLxZVWEZail+QMLYjoijUtmOpq2HjsXcNtbZs2FH2WNzI6gktLGLiiYkFavK8GJpYXLZw7olo/qzvkptucKpa5KILVslWIbWt9FioUnG0muJ9acM9RVrVaszx+nMzdKBy1JbHyMBCwYmTv5/wmd8j/cv1qt+GgplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzaxUDCAwxRDrjQAHhkDVQplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMTMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPQQ5DIQhE95yCIwhi0fPYNF3Y+287yP/fhDjPjE4G886FpeKw1tiL8ltIPfG3qZnzorAPmSoo3EMyyk0vY+3IxXsdkd95Ui0gHVw1tHFtqZPMktamnTIuVYl+rsjCVMZMElxcWHZgScUHGKAshJUeyNrhHYr11rPooi99/lkgMkwKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDIwNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUFuBCEMu/MKf2AlEgIh79lq1UP7/2ttZkbqySYmxglpjo7ceNnA8o0ZiS9rrDgrvyIq/TSf8Y9F+cOWw+dA+Dw4dse7HTbuSr/Qy27F6aNeNykLVusoG5YLTkeT6+KZt6jkhAUrO2BDTuzxpDJ6khmGd5htvrkOUkk/LLqxx5lPrsoWdLJNRUnocjDlJnbN+KziYp0o7cEsEbUmRhWcQ65C6dlReE0ol1bqTCHkDP1asjJc6UOjVWC7PsDYeG/93b7b5w95jkyeCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCA5MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jMsRgDAIBe9UQQnhF0I/juMh9n8VovECC+/NBis2FMsxRqCp40GQd9EN3F6awOFI3pLk600w2WnnSjXJaafj77mWP/uma2tnFO/lSmN9yGPtX3jB+QAQ3h4ZCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAxMzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY67DQMxDEN7T8EFDOjrzzwJghSX/dtQd5c09gMlkRxpEKihmyaGBzImntooFX2arnnS0ZxTnYMUuW/td0FNAj219pagqyo8nZABt4K58Gi2K0sMxt0z1OSGR1ORC48L6yFm/nHFhSbUNo91o69Rxs4MtrPgz36nv5er5ajIOre77Lu9vul2Ls8KZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0VWSUNBTytEZWphVnVTYW5zLUJvbGQgL0ZpcnN0Q2hhciAwCi9MYXN0Q2hhciAyNTUgL0ZvbnREZXNjcmlwdG9yIDE1IDAgUiAvU3VidHlwZSAvVHlwZTMKL05hbWUgL0VWSUNBTytEZWphVnVTYW5zLUJvbGQgL0ZvbnRCQm94IFsgLTEwNzAgLTQxNiAxOTc2IDExNzUgXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDE3IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NSAvaHlwaGVuIDY1IC9BIDcwIC9GIDc4IC9OIDgwIC9QIDgzIC9TIDk3IC9hIC9iIC9jIDEwMSAvZSAvZgoxMDQgL2ggMTA4IC9sIC9tIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAxMTkgL3cgMTIxIC95IF0KPj4KL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0VWSUNBTytEZWphVnVTYW5zLUJvbGQgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTQ0MCA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDM0OCA0NTYgNTIxIDgzOCA2OTYKMTAwMiA4NzIgMzA2IDQ1NyA0NTcgNTIzIDgzOCAzODAgNDE1IDM4MCAzNjUgNjk2IDY5NiA2OTYgNjk2IDY5NiA2OTYgNjk2CjY5NiA2OTYgNjk2IDQwMCA0MDAgODM4IDgzOCA4MzggNTgwIDEwMDAgNzc0IDc2MiA3MzQgODMwIDY4MyA2ODMgODIxIDgzNwozNzIgMzcyIDc3NSA2MzcgOTk1IDgzNyA4NTAgNzMzIDg1MCA3NzAgNzIwIDY4MiA4MTIgNzc0IDExMDMgNzcxIDcyNCA3MjUKNDU3IDM2NSA0NTcgODM4IDUwMCA1MDAgNjc1IDcxNiA1OTMgNzE2IDY3OCA0MzUgNzE2IDcxMiAzNDMgMzQzIDY2NSAzNDMKMTA0MiA3MTIgNjg3IDcxNiA3MTYgNDkzIDU5NSA0NzggNzEyIDY1MiA5MjQgNjQ1IDY1MiA1ODIgNzEyIDM2NSA3MTIgODM4CjYwMCA2OTYgNjAwIDM4MCA0MzUgNjU3IDEwMDAgNTAwIDUwMCA1MDAgMTQ0MCA3MjAgNDEyIDExNjcgNjAwIDcyNSA2MDAgNjAwCjM4MCAzODAgNjU3IDY1NyA2MzkgNTAwIDEwMDAgNTAwIDEwMDAgNTk1IDQxMiAxMDk0IDYwMCA1ODIgNzI0IDM0OCA0NTYgNjk2CjY5NiA2MzYgNjk2IDM2NSA1MDAgNTAwIDEwMDAgNTY0IDY0NiA4MzggNDE1IDEwMDAgNTAwIDUwMCA4MzggNDM4IDQzOCA1MDAKNzM2IDYzNiAzODAgNTAwIDQzOCA1NjQgNjQ2IDEwMzUgMTAzNSAxMDM1IDU4MCA3NzQgNzc0IDc3NCA3NzQgNzc0IDc3NCAxMDg1CjczNCA2ODMgNjgzIDY4MyA2ODMgMzcyIDM3MiAzNzIgMzcyIDgzOCA4MzcgODUwIDg1MCA4NTAgODUwIDg1MCA4MzggODUwIDgxMgo4MTIgODEyIDgxMiA3MjQgNzM4IDcxOSA2NzUgNjc1IDY3NSA2NzUgNjc1IDY3NSAxMDQ4IDU5MyA2NzggNjc4IDY3OCA2NzgKMzQzIDM0MyAzNDMgMzQzIDY4NyA3MTIgNjg3IDY4NyA2ODcgNjg3IDY4NyA4MzggNjg3IDcxMiA3MTIgNzEyIDcxMiA2NTIgNzE2CjY1MiBdCmVuZG9iagoxNyAwIG9iago8PCAvQSAxOCAwIFIgL0YgMTkgMCBSIC9OIDIwIDAgUiAvUCAyMSAwIFIgL1MgMjIgMCBSIC9hIDIzIDAgUiAvYiAyNCAwIFIKL2MgMjUgMCBSIC9lIDI2IDAgUiAvZiAyNyAwIFIgL2ggMjggMCBSIC9oeXBoZW4gMjkgMCBSIC9sIDMwIDAgUiAvbSAzMSAwIFIKL24gMzIgMCBSIC9vIDMzIDAgUiAvcCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUiAvc3BhY2UgMzcgMCBSIC90IDM4IDAgUgovdSAzOSAwIFIgL3cgNDAgMCBSIC95IDQxIDAgUiA+PgplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCA3NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jcENwDAIA/9MwQg4hVD2qao+0v2/LUR87DMI7HqycKRME/YRfIH+nPTSOFC0yEwZaNqzvtgkuYOXI5QnmtKrYvXnRQ/dH8meGAwKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvTGVuZ3RoIDE3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkcA/4DztNPpgtx/W8uZdIMUY8svRFd07JWHx8aUjfdoY0+ELVzldBpOUxmPi7tmXaDLYTLTb7yaucBUYZHV7KL6GLyh86xmh69VMzGEN5kSGmAqd3IP9fWnOO3bkpBsV2HQnRqkszDMkfw9EFNz0HOIkfwjX3JrYdCZ5hcXLasZrWVM0exhqmwtDOqNQXfK9dR6rvMwEe/zA99BPmQKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNTYgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNTcgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago1OCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjU5IDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjYwIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDQzIDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyA0NSAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NiAvZWlnaHQgNzggL04gODAKL1AgMTAxIC9lIDExMSAvbyAxMTQgL3IgMTE2IC90IF0KPj4KL1dpZHRocyA0MiAwIFIgPj4KZW5kb2JqCjQzIDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjQyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9OIDQ2IDAgUiAvUCA0NyAwIFIgL2UgNDggMCBSIC9laWdodCA0OSAwIFIgL2ZpdmUgNTAgMCBSIC9mb3VyIDUxIDAgUgovbyA1MiAwIFIgL29uZSA1MyAwIFIgL3BlcmlvZCA1NCAwIFIgL3IgNTUgMCBSIC9zaXggNTYgMCBSIC90IDU3IDAgUgovdGhyZWUgNTggMCBSIC90d28gNTkgMCBSIC96ZXJvIDYwIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjIgMTYgMCBSIC9GMSA0NCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuMiAvY2EgMC4yID4+Ci9BNCA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjggL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvTTAgMTMgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC04IC04IDggOCBdIC9MZW5ndGggMTMxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjYxIDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjcuMSkgL0NyZWF0aW9uRGF0ZSAoRDoyMDIzMDMxNDE2MjQzOVopCj4+CmVuZG9iagp4cmVmCjAgNjIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTYyNDYgMDAwMDAgbiAKMDAwMDAxNTY5MCAwMDAwMCBuIAowMDAwMDE1NzMzIDAwMDAwIG4gCjAwMDAwMTU5MTggMDAwMDAgbiAKMDAwMDAxNTkzOSAwMDAwMCBuIAowMDAwMDE1OTYwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAxNzIyIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTcwMSAwMDAwMCBuIAowMDAwMDE1OTkyIDAwMDAwIG4gCjAwMDAwMDgzOTEgMDAwMDAgbiAKMDAwMDAwODE3OSAwMDAwMCBuIAowMDAwMDA3NzMzIDAwMDAwIG4gCjAwMDAwMDk0NTIgMDAwMDAgbiAKMDAwMDAwMTc0MiAwMDAwMCBuIAowMDAwMDAxOTA1IDAwMDAwIG4gCjAwMDAwMDIwNTEgMDAwMDAgbiAKMDAwMDAwMjE5OSAwMDAwMCBuIAowMDAwMDAyNDM3IDAwMDAwIG4gCjAwMDAwMDI4NTMgMDAwMDAgbiAKMDAwMDAwMzI0MiAwMDAwMCBuIAowMDAwMDAzNTYwIDAwMDAwIG4gCjAwMDAwMDM4NzAgMDAwMDAgbiAKMDAwMDAwNDE5NCAwMDAwMCBuIAowMDAwMDA0NDAzIDAwMDAwIG4gCjAwMDAwMDQ2NjcgMDAwMDAgbiAKMDAwMDAwNDc5NSAwMDAwMCBuIAowMDAwMDA0OTE3IDAwMDAwIG4gCjAwMDAwMDUyNzEgMDAwMDAgbiAKMDAwMDAwNTUzNCAwMDAwMCBuIAowMDAwMDA1ODIwIDAwMDAwIG4gCjAwMDAwMDYxMzQgMDAwMDAgbiAKMDAwMDAwNjM2NSAwMDAwMCBuIAowMDAwMDA2Nzg0IDAwMDAwIG4gCjAwMDAwMDY4NzQgMDAwMDAgbiAKMDAwMDAwNzA3OSAwMDAwMCBuIAowMDAwMDA3MzU2IDAwMDAwIG4gCjAwMDAwMDc1MjEgMDAwMDAgbiAKMDAwMDAxNDQzNyAwMDAwMCBuIAowMDAwMDE0MjMwIDAwMDAwIG4gCjAwMDAwMTM4MTkgMDAwMDAgbiAKMDAwMDAxNTQ5MCAwMDAwMCBuIAowMDAwMDA5NzIzIDAwMDAwIG4gCjAwMDAwMDk4NzIgMDAwMDAgbiAKMDAwMDAxMDExNSAwMDAwMCBuIAowMDAwMDEwNDM3IDAwMDAwIG4gCjAwMDAwMTA5MDUgMDAwMDAgbiAKMDAwMDAxMTIyNyAwMDAwMCBuIAowMDAwMDExMzkzIDAwMDAwIG4gCjAwMDAwMTE2ODQgMDAwMDAgbiAKMDAwMDAxMTgzOSAwMDAwMCBuIAowMDAwMDExOTYyIDAwMDAwIG4gCjAwMDAwMTIxOTUgMDAwMDAgbiAKMDAwMDAxMjU4OCAwMDAwMCBuIAowMDAwMDEyNzk0IDAwMDAwIG4gCjAwMDAwMTMyMDcgMDAwMDAgbiAKMDAwMDAxMzUzMSAwMDAwMCBuIAowMDAwMDE2MzA2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNjIgL1Jvb3QgMSAwIFIgL0luZm8gNjEgMCBSID4+CnN0YXJ0eHJlZgoxNjQ1NwolJUVPRgo=", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"343.005937pt\" height=\"231.597813pt\" viewBox=\"0 0 343.005937 231.597813\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T16:24:39.814938</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 231.597813 \n", "L 343.005937 231.597813 \n", "L 343.005937 -0 \n", "L 0 -0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 335.805938 188.638125 \n", "L 335.805938 22.318125 \n", "L 56.805937 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 65.524687 188.638125 \n", "L 65.524687 22.318125 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(62.025312 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 82.962187 188.638125 \n", "L 82.962187 22.318125 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(79.462812 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 117.837187 188.638125 \n", "L 117.837187 22.318125 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(114.337812 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 187.587187 188.638125 \n", "L 187.587187 22.318125 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(180.588437 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 327.087188 188.638125 \n", "L 327.087188 22.318125 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 32 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(320.088438 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_6\">\n", "     <!-- Number of shots per class -->\n", "     <g style=\"fill: #262626\" transform=\"translate(107.82 221.902188) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-4e\" d=\"M 588 4666 \n", "L 1931 4666 \n", "L 3628 1466 \n", "L 3628 4666 \n", "L 4769 4666 \n", "L 4769 0 \n", "L 3425 0 \n", "L 1728 3200 \n", "L 1728 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-75\" d=\"M 500 1363 \n", "L 500 3500 \n", "L 1625 3500 \n", "L 1625 3150 \n", "Q 1625 2866 1622 2436 \n", "Q 1619 2006 1619 1863 \n", "Q 1619 1441 1641 1255 \n", "Q 1663 1069 1716 984 \n", "Q 1784 875 1895 815 \n", "Q 2006 756 2150 756 \n", "Q 2500 756 2700 1025 \n", "Q 2900 1294 2900 1772 \n", "L 2900 3500 \n", "L 4019 3500 \n", "L 4019 0 \n", "L 2900 0 \n", "L 2900 506 \n", "Q 2647 200 2364 54 \n", "Q 2081 -91 1741 -91 \n", "Q 1134 -91 817 281 \n", "Q 500 653 500 1363 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6d\" d=\"M 3781 2919 \n", "Q 3994 3244 4286 3414 \n", "Q 4578 3584 4928 3584 \n", "Q 5531 3584 5847 3212 \n", "Q 6163 2841 6163 2131 \n", "L 6163 0 \n", "L 5038 0 \n", "L 5038 1825 \n", "Q 5041 1866 5042 1909 \n", "Q 5044 1953 5044 2034 \n", "Q 5044 2406 4934 2573 \n", "Q 4825 2741 4581 2741 \n", "Q 4263 2741 4089 2478 \n", "Q 3916 2216 3909 1719 \n", "L 3909 0 \n", "L 2784 0 \n", "L 2784 1825 \n", "Q 2784 2406 2684 2573 \n", "Q 2584 2741 2328 2741 \n", "Q 2006 2741 1831 2477 \n", "Q 1656 2213 1656 1722 \n", "L 1656 0 \n", "L 531 0 \n", "L 531 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1863 3284 2130 3434 \n", "Q 2397 3584 2719 3584 \n", "Q 3081 3584 3359 3409 \n", "Q 3638 3234 3781 2919 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-62\" d=\"M 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "z\n", "M 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-65\" d=\"M 4031 1759 \n", "L 4031 1441 \n", "L 1416 1441 \n", "Q 1456 1047 1700 850 \n", "Q 1944 653 2381 653 \n", "Q 2734 653 3104 758 \n", "Q 3475 863 3866 1075 \n", "L 3866 213 \n", "Q 3469 63 3072 -14 \n", "Q 2675 -91 2278 -91 \n", "Q 1328 -91 801 392 \n", "Q 275 875 275 1747 \n", "Q 275 2603 792 3093 \n", "Q 1309 3584 2216 3584 \n", "Q 3041 3584 3536 3087 \n", "Q 4031 2591 4031 1759 \n", "z\n", "M 2881 2131 \n", "Q 2881 2450 2695 2645 \n", "Q 2509 2841 2209 2841 \n", "Q 1884 2841 1681 2658 \n", "Q 1478 2475 1428 2131 \n", "L 2881 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-72\" d=\"M 3138 2547 \n", "Q 2991 2616 2845 2648 \n", "Q 2700 2681 2553 2681 \n", "Q 2122 2681 1889 2404 \n", "Q 1656 2128 1656 1613 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2925 \n", "Q 1872 3269 2151 3426 \n", "Q 2431 3584 2822 3584 \n", "Q 2878 3584 2943 3579 \n", "Q 3009 3575 3134 3559 \n", "L 3138 2547 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6f\" d=\"M 2203 2784 \n", "Q 1831 2784 1636 2517 \n", "Q 1441 2250 1441 1747 \n", "Q 1441 1244 1636 976 \n", "Q 1831 709 2203 709 \n", "Q 2569 709 2762 976 \n", "Q 2956 1244 2956 1747 \n", "Q 2956 2250 2762 2517 \n", "Q 2569 2784 2203 2784 \n", "z\n", "M 2203 3584 \n", "Q 3106 3584 3614 3096 \n", "Q 4122 2609 4122 1747 \n", "Q 4122 884 3614 396 \n", "Q 3106 -91 2203 -91 \n", "Q 1297 -91 786 396 \n", "Q 275 884 275 1747 \n", "Q 275 2609 786 3096 \n", "Q 1297 3584 2203 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-66\" d=\"M 2841 4863 \n", "L 2841 4128 \n", "L 2222 4128 \n", "Q 1984 4128 1890 4042 \n", "Q 1797 3956 1797 3744 \n", "L 1797 3500 \n", "L 2753 3500 \n", "L 2753 2700 \n", "L 1797 2700 \n", "L 1797 0 \n", "L 678 0 \n", "L 678 2700 \n", "L 122 2700 \n", "L 122 3500 \n", "L 678 3500 \n", "L 678 3744 \n", "Q 678 4316 997 4589 \n", "Q 1316 4863 1984 4863 \n", "L 2841 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-73\" d=\"M 3272 3391 \n", "L 3272 2541 \n", "Q 2913 2691 2578 2766 \n", "Q 2244 2841 1947 2841 \n", "Q 1628 2841 1473 2761 \n", "Q 1319 2681 1319 2516 \n", "Q 1319 2381 1436 2309 \n", "Q 1553 2238 1856 2203 \n", "L 2053 2175 \n", "Q 2913 2066 3209 1816 \n", "Q 3506 1566 3506 1031 \n", "Q 3506 472 3093 190 \n", "Q 2681 -91 1863 -91 \n", "Q 1516 -91 1145 -36 \n", "Q 775 19 384 128 \n", "L 384 978 \n", "Q 719 816 1070 734 \n", "Q 1422 653 1784 653 \n", "Q 2113 653 2278 743 \n", "Q 2444 834 2444 1013 \n", "Q 2444 1163 2330 1236 \n", "Q 2216 1309 1875 1350 \n", "L 1678 1375 \n", "Q 931 1469 631 1722 \n", "Q 331 1975 331 2491 \n", "Q 331 3047 712 3315 \n", "Q 1094 3584 1881 3584 \n", "Q 2191 3584 2531 3537 \n", "Q 2872 3491 3272 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-68\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1625 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-74\" d=\"M 1759 4494 \n", "L 1759 3500 \n", "L 2913 3500 \n", "L 2913 2700 \n", "L 1759 2700 \n", "L 1759 1216 \n", "Q 1759 972 1856 886 \n", "Q 1953 800 2241 800 \n", "L 2816 800 \n", "L 2816 0 \n", "L 1856 0 \n", "Q 1194 0 917 276 \n", "Q 641 553 641 1216 \n", "L 641 2700 \n", "L 84 2700 \n", "L 84 3500 \n", "L 641 3500 \n", "L 641 4494 \n", "L 1759 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-70\" d=\"M 1656 506 \n", "L 1656 -1331 \n", "L 538 -1331 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "z\n", "M 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-63\" d=\"M 3366 3391 \n", "L 3366 2478 \n", "Q 3138 2634 2908 2709 \n", "Q 2678 2784 2431 2784 \n", "Q 1963 2784 1702 2511 \n", "Q 1441 2238 1441 1747 \n", "Q 1441 1256 1702 982 \n", "Q 1963 709 2431 709 \n", "Q 2694 709 2930 787 \n", "Q 3166 866 3366 1019 \n", "L 3366 103 \n", "Q 3103 6 2833 -42 \n", "Q 2563 -91 2291 -91 \n", "Q 1344 -91 809 395 \n", "Q 275 881 275 1747 \n", "Q 275 2613 809 3098 \n", "Q 1344 3584 2291 3584 \n", "Q 2566 3584 2833 3536 \n", "Q 3100 3488 3366 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6c\" d=\"M 538 4863 \n", "L 1656 4863 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-61\" d=\"M 2106 1575 \n", "Q 1756 1575 1579 1456 \n", "Q 1403 1338 1403 1106 \n", "Q 1403 894 1545 773 \n", "Q 1688 653 1941 653 \n", "Q 2256 653 2472 879 \n", "Q 2688 1106 2688 1447 \n", "L 2688 1575 \n", "L 2106 1575 \n", "z\n", "M 3816 1997 \n", "L 3816 0 \n", "L 2688 0 \n", "L 2688 519 \n", "Q 2463 200 2181 54 \n", "Q 1900 -91 1497 -91 \n", "Q 953 -91 614 226 \n", "Q 275 544 275 1050 \n", "Q 275 1666 698 1953 \n", "Q 1122 2241 2028 2241 \n", "L 2688 2241 \n", "L 2688 2328 \n", "Q 2688 2594 2478 2717 \n", "Q 2269 2841 1825 2841 \n", "Q 1466 2841 1156 2769 \n", "Q 847 2697 581 2553 \n", "L 581 3406 \n", "Q 941 3494 1303 3539 \n", "Q 1666 3584 2028 3584 \n", "Q 2975 3584 3395 3211 \n", "Q 3816 2838 3816 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-4e\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"83.691406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"154.882812\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-62\" x=\"259.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"330.664062\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"398.486328\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"447.802734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"482.617188\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"551.318359\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"594.824219\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"629.638672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"689.160156\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"760.351562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"829.052734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"876.855469\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"936.376953\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-70\" x=\"971.191406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1042.773438\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1110.595703\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1159.912109\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1194.726562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6c\" x=\"1254.003906\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1288.28125\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1355.761719\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1415.283203\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 56.805937 184.841241 \n", "L 335.805938 184.841241 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 0.40 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 189.020381) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 56.805937 156.523291 \n", "L 335.805938 156.523291 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 0.45 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 160.702432) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 56.805937 128.205341 \n", "L 335.805938 128.205341 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 0.50 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 132.384482) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 56.805937 99.887391 \n", "L 335.805938 99.887391 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 0.55 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 104.066532) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 56.805937 71.569441 \n", "L 335.805938 71.569441 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0.60 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 75.748582) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 56.805937 43.251491 \n", "L 335.805938 43.251491 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 0.65 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 47.430632) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_13\">\n", "     <!-- Accuracy -->\n", "     <g style=\"fill: #262626\" transform=\"translate(16.224375 135.9825) rotate(-90) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-41\" d=\"M 3419 850 \n", "L 1538 850 \n", "L 1241 0 \n", "L 31 0 \n", "L 1759 4666 \n", "L 3194 4666 \n", "L 4922 0 \n", "L 3713 0 \n", "L 3419 850 \n", "z\n", "M 1838 1716 \n", "L 3116 1716 \n", "L 2478 3572 \n", "L 1838 1716 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-79\" d=\"M 78 3500 \n", "L 1197 3500 \n", "L 2138 1125 \n", "L 2938 3500 \n", "L 4056 3500 \n", "L 2584 -331 \n", "Q 2363 -916 2067 -1148 \n", "Q 1772 -1381 1288 -1381 \n", "L 641 -1381 \n", "L 641 -647 \n", "L 991 -647 \n", "Q 1275 -647 1404 -556 \n", "Q 1534 -466 1606 -231 \n", "L 1638 -134 \n", "L 78 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-41\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"77.392578\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"136.669922\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"195.947266\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"267.138672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"316.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"383.935547\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-79\" x=\"443.212891\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"PolyCollection_1\">\n", "    <defs>\n", "     <path id=\"mce685ca1fa\" d=\"M 65.524687 -91.665604 \n", "L 65.524687 -50.519688 \n", "L 82.962187 -102.224451 \n", "L 117.837187 -138.976072 \n", "L 187.587187 -168.695981 \n", "L 327.087188 -191.783998 \n", "L 327.087188 -201.719688 \n", "L 327.087188 -201.719688 \n", "L 187.587187 -180.325595 \n", "L 117.837187 -153.727062 \n", "L 82.962187 -127.995335 \n", "L 65.524687 -91.665604 \n", "z\n", "\" style=\"stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p832ec5fc3e)\">\n", "     <use xlink:href=\"#mce685ca1fa\" x=\"0\" y=\"231.597813\" style=\"fill: #dd8452; fill-opacity: 0.2; stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_12\">\n", "    <path d=\"M 65.524687 160.505167 \n", "L 82.962187 116.487919 \n", "L 117.837187 85.246246 \n", "L 187.587187 57.087025 \n", "L 327.087188 34.84597 \n", "\" clip-path=\"url(#p832ec5fc3e)\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mb627f6bdd5\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #1a1a1a\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p832ec5fc3e)\">\n", "     <use xlink:href=\"#mb627f6bdd5\" x=\"65.524687\" y=\"160.505167\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mb627f6bdd5\" x=\"82.962187\" y=\"116.487919\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mb627f6bdd5\" x=\"117.837187\" y=\"85.246246\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mb627f6bdd5\" x=\"187.587187\" y=\"57.087025\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mb627f6bdd5\" x=\"327.087188\" y=\"34.84597\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 56.805937 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 335.805938 188.638125 \n", "L 335.805938 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 335.805938 188.638125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 56.805937 22.318125 \n", "L 335.805938 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_14\">\n", "    <!-- Few-Shot Performance ProtoNet -->\n", "    <g style=\"fill: #262626\" transform=\"translate(86.840625 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-Bold-46\" d=\"M 588 4666 \n", "L 3834 4666 \n", "L 3834 3756 \n", "L 1791 3756 \n", "L 1791 2888 \n", "L 3713 2888 \n", "L 3713 1978 \n", "L 1791 1978 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-77\" d=\"M 225 3500 \n", "L 1313 3500 \n", "L 1900 1088 \n", "L 2491 3500 \n", "L 3425 3500 \n", "L 4013 1113 \n", "L 4603 3500 \n", "L 5691 3500 \n", "L 4769 0 \n", "L 3547 0 \n", "L 2956 2406 \n", "L 2369 0 \n", "L 1147 0 \n", "L 225 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-2d\" d=\"M 347 2297 \n", "L 2309 2297 \n", "L 2309 1388 \n", "L 347 1388 \n", "L 347 2297 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-53\" d=\"M 3834 4519 \n", "L 3834 3531 \n", "Q 3450 3703 3084 3790 \n", "Q 2719 3878 2394 3878 \n", "Q 1963 3878 1756 3759 \n", "Q 1550 3641 1550 3391 \n", "Q 1550 3203 1689 3098 \n", "Q 1828 2994 2194 2919 \n", "L 2706 2816 \n", "Q 3484 2659 3812 2340 \n", "Q 4141 2022 4141 1434 \n", "Q 4141 663 3683 286 \n", "Q 3225 -91 2284 -91 \n", "Q 1841 -91 1394 -6 \n", "Q 947 78 500 244 \n", "L 500 1259 \n", "Q 947 1022 1364 901 \n", "Q 1781 781 2169 781 \n", "Q 2563 781 2772 912 \n", "Q 2981 1044 2981 1288 \n", "Q 2981 1506 2839 1625 \n", "Q 2697 1744 2272 1838 \n", "L 1806 1941 \n", "Q 1106 2091 782 2419 \n", "Q 459 2747 459 3303 \n", "Q 459 4000 909 4375 \n", "Q 1359 4750 2203 4750 \n", "Q 2588 4750 2994 4692 \n", "Q 3400 4634 3834 4519 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-50\" d=\"M 588 4666 \n", "L 2584 4666 \n", "Q 3475 4666 3951 4270 \n", "Q 4428 3875 4428 3144 \n", "Q 4428 2409 3951 2014 \n", "Q 3475 1619 2584 1619 \n", "L 1791 1619 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "M 1791 3794 \n", "L 1791 2491 \n", "L 2456 2491 \n", "Q 2806 2491 2997 2661 \n", "Q 3188 2831 3188 3144 \n", "Q 3188 3456 2997 3625 \n", "Q 2806 3794 2456 3794 \n", "L 1791 3794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-6e\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1631 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-Bold-46\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"64.310547\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-77\" x=\"132.132812\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-2d\" x=\"224.515625\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-53\" x=\"266.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"338.041016\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"409.232422\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"477.933594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"525.736328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"560.550781\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"633.841797\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"701.664062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"750.980469\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"794.486328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"863.1875\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"912.503906\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1016.703125\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6e\" x=\"1084.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1155.375\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1214.652344\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1282.474609\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"1317.289062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1390.580078\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1439.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1508.597656\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1556.400391\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4e\" x=\"1625.101562\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1708.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1776.615234\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"legend_1\">\n", "    <g id=\"patch_7\">\n", "     <path d=\"M 64.505938 47.264063 \n", "L 147.504375 47.264063 \n", "Q 149.704375 47.264063 149.704375 45.064063 \n", "L 149.704375 30.018125 \n", "Q 149.704375 27.818125 147.504375 27.818125 \n", "L 64.505938 27.818125 \n", "Q 62.305938 27.818125 62.305938 30.018125 \n", "L 62.305938 45.064063 \n", "Q 62.305938 47.264063 64.505938 47.264063 \n", "z\n", "\" style=\"fill: #eaeaf2; opacity: 0.8; stroke: #cccccc; stroke-linejoin: miter\"/>\n", "    </g>\n", "    <g id=\"line2d_13\">\n", "     <path d=\"M 66.705938 36.726406 \n", "L 77.705938 36.726406 \n", "L 88.705938 36.726406 \n", "\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "     <g>\n", "      <use xlink:href=\"#mb627f6bdd5\" x=\"77.705938\" y=\"36.726406\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_15\">\n", "     <!-- ProtoNet -->\n", "     <g style=\"fill: #262626\" transform=\"translate(97.505938 40.576406) scale(0.11 -0.11)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-4e\" d=\"M 628 4666 \n", "L 1478 4666 \n", "L 3547 763 \n", "L 3547 4666 \n", "L 4159 4666 \n", "L 4159 0 \n", "L 3309 0 \n", "L 1241 3903 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"58.552734\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"97.416016\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"158.597656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"197.806641\"/>\n", "      <use xlink:href=\"#DejaVuSans-4e\" x=\"258.988281\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"333.792969\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"395.316406\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p832ec5fc3e\">\n", "   <rect x=\"56.805937\" y=\"22.318125\" width=\"279\" height=\"166.32\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 500x300 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "0aa35d4e", "metadata": {"papermill": {"duration": 0.015783, "end_time": "2023-03-14T16:24:40.057418", "exception": false, "start_time": "2023-03-14T16:24:40.041635", "status": "completed"}, "tags": []}, "source": ["As we initially expected, the performance of ProtoNet indeed increases the more samples we have.\n", "However, even with just two samples per class, we classify almost half of the images correctly, which is well above random accuracy (10%).\n", "The curve shows an exponentially dampend trend, meaning that adding 2 extra examples to $k=2$ has a much higher impact than adding 2 extra samples if we already have $k=16$.\n", "Nonetheless, we can say that ProtoNet adapts fairly well to new classes."]}, {"cell_type": "markdown", "id": "3a4fe2a0", "metadata": {"papermill": {"duration": 0.016237, "end_time": "2023-03-14T16:24:40.089584", "exception": false, "start_time": "2023-03-14T16:24:40.073347", "status": "completed"}, "tags": []}, "source": ["## MAML and ProtoMAML\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/xKcA6g-esH4\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>"]}, {"cell_type": "markdown", "id": "3f9bb466", "metadata": {"papermill": {"duration": 0.018574, "end_time": "2023-03-14T16:24:40.124230", "exception": false, "start_time": "2023-03-14T16:24:40.105656", "status": "completed"}, "tags": []}, "source": ["The second meta-learning algorithm we will look at is MAML, short for Model-Agnostic Meta-Learning.\n", "MAML is an optimization-based meta-learning algorithm, which means that it tries to adjust the standard optimization procedure to a few-shot setting.\n", "The idea of MAML is relatively simple: given a model, support and query set during training, we optimize the model for $m$ steps on the support set, and evaluate the gradients of the query loss with respect to the original model's parameters.\n", "For the same model, we do it for a few different support-query sets and accumulate the gradients.\n", "This results in learning a model that provides a good initialization for being quickly adapted to the training tasks.\n", "If we denote the model parameters with $\\theta$, we can visualize the procedure as follows (Figure credit - [Finn et al. ](http://proceedings.mlr.press/v70/finn17a.html)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/MAML_figure.svg\" width=\"300px\"></center>"]}, {"cell_type": "markdown", "id": "b8b4e461", "metadata": {"papermill": {"duration": 0.015471, "end_time": "2023-03-14T16:24:40.155910", "exception": false, "start_time": "2023-03-14T16:24:40.140439", "status": "completed"}, "tags": []}, "source": ["The full algorithm of MAML is therefore as follows.\n", "At each training step, we sample a batch of tasks, i.e., a batch of support-query set pairs.\n", "For each task $\\mathcal{T}_i$, we optimize a model $f_{\\theta}$ on the support set via SGD, and denote this model as $f_{\\theta_i'}$.\n", "We refer to this optimization as _inner loop_.\n", "Using this new model, we calculate the gradients of the original parameters, $\\theta$, with respect to the query loss on $f_{\\theta_i'}$.\n", "These gradients are accumulated over all tasks, and used to update $\\theta$.\n", "This is called _outer loop_ since we iterate over tasks.\n", "The full MAML algorithm is summarized below (Figure credit - [Finn et al. ](http://proceedings.mlr.press/v70/finn17a.html)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/MAML_algorithm.svg\" width=\"400px\"></center>"]}, {"cell_type": "markdown", "id": "406df54d", "metadata": {"papermill": {"duration": 0.015392, "end_time": "2023-03-14T16:24:40.187011", "exception": false, "start_time": "2023-03-14T16:24:40.171619", "status": "completed"}, "tags": []}, "source": ["To obtain gradients for the initial parameters $\\theta$ from the optimized model $f_{\\theta_i'}$, we actually need second-order gradients, i.e. gradients of gradients, as the support set gradients depend on $\\theta$ as well.\n", "This makes MAML computationally expensive, especially when using mulitple inner loop steps.\n", "A simpler, yet almost equally well performing alternative is First-Order MAML (FOMAML) which only uses first-order gradients.\n", "This means that the second-order gradients are ignored, and we can calculate the outer loop gradients (line 10 in algorithm 2) simply by calculating the gradients with respect to $\\theta_i'$, and use those as update to $\\theta$.\n", "Hence, the new update rule becomes:\n", "$$\\theta\\leftarrow\\theta-\\beta\\sum_{\\mathcal{T}_i\\sim p(\\mathcal{T})}\\nabla_{\\theta_i'}\\mathcal{L}_{\\mathcal{T}_i}(f_{\\theta_i'})$$\n", "Note the change of $\\theta$ to $\\theta_i'$ for $\\nabla$."]}, {"cell_type": "markdown", "id": "94ba56cb", "metadata": {"papermill": {"duration": 0.015483, "end_time": "2023-03-14T16:24:40.218049", "exception": false, "start_time": "2023-03-14T16:24:40.202566", "status": "completed"}, "tags": []}, "source": ["### ProtoMAML\n", "\n", "A problem of MAML is how to design the output classification layer.\n", "In case all tasks have different number of classes, we need to initialize the output layer with zeros or randomly in every iteration.\n", "Even if we always have the same number of classes, we just start from random predictions.\n", "This requires several inner loop steps to reach a reasonable classification result.\n", "To overcome this problem, Triantafillou et al.\n", "(2020) propose to combine the merits of Prototypical Networks and MAML.\n", "Specifically, we can use prototypes to initialize our output layer to have a strong initialization.\n", "Thereby, it can be shown that the softmax over euclidean distances can be reformulated as a linear layer with softmax.\n", "To see this, let's first write out the negative euclidean distance between a feature vector $f_{\\theta}(\\mathbf{x}^{*})$ of a new data point $\\mathbf{x}^{*}$ to a prototype $\\mathbf{v}_c$ of class $c$:\n", "$$\n", "-||f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c||^2=-f_{\\theta}(\\mathbf{x}^{*})^Tf_{\\theta}(\\mathbf{x}^{*})+2\\mathbf{v}_c^{T}f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c^T\\mathbf{v}_c\n", "$$\n", "\n", "We perform the classification across all classes $c\\in\\mathcal{C}$ and take a softmax on the distance.\n", "Hence, any term that is same for all classes can be removed without changing the output probabilities.\n", "In the equation above, this is true for $-f_{\\theta}(\\mathbf{x}^{*})^Tf_{\\theta}(\\mathbf{x}^{*})$ since it is independent of any class prototype.\n", "Thus, we can write:\n", "\n", "$$\n", "-||f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c||^2=2\\mathbf{v}_c^{T}f_{\\theta}(\\mathbf{x}^{*})-||\\mathbf{v}_c||^2+\\text{constant}\n", "$$\n", "\n", "Taking a second look at the equation above, it looks a lot like a linear layer.\n", "For this, we use $\\mathbf{W}_{c,\\cdot}=2\\mathbf{v}_c$ and $b_c=-||\\mathbf{v}_c||^2$ which gives us the linear layer $\\mathbf{W}f_{\\theta}(\\mathbf{x}^{*})+\\mathbf{b}$.\n", "Hence, if we initialize the output weight with twice the prototypes, and the biases by the negative squared L2 norm of the prototypes, we start with a Prototypical Network.\n", "MAML allows us to adapt this layer and the rest of the network further.\n", "\n", "In the following, we will implement First-Order ProtoMAML for few-shot classification.\n", "The implementation of MAML would be the same except the output layer initialization."]}, {"cell_type": "markdown", "id": "7cd1290b", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.015478, "end_time": "2023-03-14T16:24:40.249057", "exception": false, "start_time": "2023-03-14T16:24:40.233579", "status": "completed"}, "tags": []}, "source": ["### ProtoMAML implementation\n", "\n", "For implementing ProtoMAML, we can follow Algorithm 2 with minor modifications.\n", "At each training step, we first sample a batch of tasks, and a support and query set for each task.\n", "In our case of few-shot classification, this means that we simply sample multiple support-query set pairs from our sampler.\n", "For each task, we finetune our current model on the support set.\n", "However, since we need to remember the original parameters for the other tasks, the outer loop gradient update and future training steps, we need to create a copy of our model, and finetune only the copy.\n", "We can copy a model by using standard Python functions like `deepcopy`.\n", "The inner loop is implemented in the function `adapt_few_shot` in the PyTorch Lightning module below.\n", "\n", "After finetuning the model, we apply it on the query set and calculate the first-order gradients with respect to the original parameters $\\theta$.\n", "In contrast to simple MAML, we also have to consider the gradients with respect to the output layer initialization, i.e. the prototypes, since they directly rely on $\\theta$.\n", "To realize this efficiently, we take two steps.\n", "First, we calculate the prototypes by applying the original model, i.e. not the copied model, on the support elements.\n", "When initializing the output layer, we detach the prototypes to stop the gradients.\n", "This is because in the inner loop itself, we do not want to consider gradients through the prototypes back to the original model.\n", "However, after the inner loop is finished, we re-attach the computation graph of the prototypes by writing `output_weight = (output_weight - init_weight).detach() + init_weight`.\n", "While this line does not change the value of the variable `output_weight`, it adds its dependency on the prototype initialization `init_weight`.\n", "Thus, if we call `.backward` on `output_weight`, we will automatically calculate the first-order gradients with respect to the prototype initialization in the original model.\n", "\n", "After calculating all gradients and summing them together in the original model, we can take a standard optimizer step.\n", "PyTorch Lightning's method is however designed to return a loss-tensor on which we call `.backward` first.\n", "Since this is not possible here, we need to perform the optimization step ourselves.\n", "All details can be found in the code below.\n", "\n", "For implementing (Proto-)MAML with second-order gradients, it is recommended to use libraries such as [$\\nabla$higher](https://github.com/facebookresearch/higher) from Facebook AI Research.\n", "For simplicity, we stick with first-order methods here."]}, {"cell_type": "code", "execution_count": 25, "id": "83ea40b5", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:24:40.281968Z", "iopub.status.busy": "2023-03-14T16:24:40.281785Z", "iopub.status.idle": "2023-03-14T16:25:00.569726Z", "shell.execute_reply": "2023-03-14T16:25:00.568892Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 20.308473, "end_time": "2023-03-14T16:25:00.573073", "exception": false, "start_time": "2023-03-14T16:24:40.264600", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ProtoMAML(L.LightningModule):\n", "    def __init__(self, proto_dim, lr, lr_inner, lr_output, num_inner_steps):\n", "        \"\"\"Inputs.\n", "\n", "        proto_dim - Dimensionality of prototype feature space\n", "        lr - Learning rate of the outer loop Adam optimizer\n", "        lr_inner - Learning rate of the inner loop SGD optimizer\n", "        lr_output - Learning rate for the output layer in the inner loop\n", "        num_inner_steps - Number of inner loop updates to perform\n", "        \"\"\"\n", "        super().__init__()\n", "        self.save_hyperparameters()\n", "        self.model = get_convnet(output_size=self.hparams.proto_dim)\n", "\n", "    def configure_optimizers(self):\n", "        optimizer = optim.AdamW(self.parameters(), lr=self.hparams.lr)\n", "        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[140, 180], gamma=0.1)\n", "        return [optimizer], [scheduler]\n", "\n", "    def run_model(self, local_model, output_weight, output_bias, imgs, labels):\n", "        # Execute a model with given output layer weights and inputs\n", "        feats = local_model(imgs)\n", "        preds = F.linear(feats, output_weight, output_bias)\n", "        loss = F.cross_entropy(preds, labels)\n", "        acc = (preds.argmax(dim=1) == labels).float()\n", "        return loss, preds, acc\n", "\n", "    def adapt_few_shot(self, support_imgs, support_targets):\n", "        # Determine prototype initialization\n", "        support_feats = self.model(support_imgs)\n", "        prototypes, classes = ProtoNet.calculate_prototypes(support_feats, support_targets)\n", "        support_labels = (classes[None, :] == support_targets[:, None]).long().argmax(dim=-1)\n", "        # Create inner-loop model and optimizer\n", "        local_model = deepcopy(self.model)\n", "        local_model.train()\n", "        local_optim = optim.SGD(local_model.parameters(), lr=self.hparams.lr_inner)\n", "        local_optim.zero_grad()\n", "        # Create output layer weights with prototype-based initialization\n", "        init_weight = 2 * prototypes\n", "        init_bias = -torch.norm(prototypes, dim=1) ** 2\n", "        output_weight = init_weight.detach().requires_grad_()\n", "        output_bias = init_bias.detach().requires_grad_()\n", "\n", "        # Optimize inner loop model on support set\n", "        for _ in range(self.hparams.num_inner_steps):\n", "            # Determine loss on the support set\n", "            loss, _, _ = self.run_model(local_model, output_weight, output_bias, support_imgs, support_labels)\n", "            # Calculate gradients and perform inner loop update\n", "            loss.backward()\n", "            local_optim.step()\n", "            # Update output layer via SGD\n", "            output_weight.data -= self.hparams.lr_output * output_weight.grad\n", "            output_bias.data -= self.hparams.lr_output * output_bias.grad\n", "            # Reset gradients\n", "            local_optim.zero_grad()\n", "            output_weight.grad.fill_(0)\n", "            output_bias.grad.fill_(0)\n", "\n", "        # Re-attach computation graph of prototypes\n", "        output_weight = (output_weight - init_weight).detach() + init_weight\n", "        output_bias = (output_bias - init_bias).detach() + init_bias\n", "\n", "        return local_model, output_weight, output_bias, classes\n", "\n", "    def outer_loop(self, batch, mode=\"train\"):\n", "        accuracies = []\n", "        losses = []\n", "        self.model.zero_grad()\n", "\n", "        # Determine gradients for batch of tasks\n", "        for task_batch in batch:\n", "            imgs, targets = task_batch\n", "            support_imgs, query_imgs, support_targets, query_targets = split_batch(imgs, targets)\n", "            # Perform inner loop adaptation\n", "            local_model, output_weight, output_bias, classes = self.adapt_few_shot(support_imgs, support_targets)\n", "            # Determine loss of query set\n", "            query_labels = (classes[None, :] == query_targets[:, None]).long().argmax(dim=-1)\n", "            loss, preds, acc = self.run_model(local_model, output_weight, output_bias, query_imgs, query_labels)\n", "            # Calculate gradients for query set loss\n", "            if mode == \"train\":\n", "                loss.backward()\n", "\n", "                for p_global, p_local in zip(self.model.parameters(), local_model.parameters()):\n", "                    p_global.grad += p_local.grad  # First-order approx. -> add gradients of finetuned and base model\n", "\n", "            accuracies.append(acc.mean().detach())\n", "            losses.append(loss.detach())\n", "\n", "        # Perform update of base model\n", "        if mode == \"train\":\n", "            opt = self.optimizers()\n", "            opt.step()\n", "            opt.zero_grad()\n", "\n", "        self.log(\"%s_loss\" % mode, sum(losses) / len(losses))\n", "        self.log(\"%s_acc\" % mode, sum(accuracies) / len(accuracies))\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        self.outer_loop(batch, mode=\"train\")\n", "        return None  # Returning None means we skip the default training optimizer steps by PyTorch Lightning\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        # Validation requires to finetune a model, hence we need to enable gradients\n", "        torch.set_grad_enabled(True)\n", "        self.outer_loop(batch, mode=\"val\")\n", "        torch.set_grad_enabled(False)"]}, {"cell_type": "markdown", "id": "519db1bf", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.015886, "end_time": "2023-03-14T16:25:00.609061", "exception": false, "start_time": "2023-03-14T16:25:00.593175", "status": "completed"}, "tags": []}, "source": ["### Training\n", "\n", "To train ProtoMAML, we need to change our sampling slightly.\n", "Instead of a single support-query set batch, we need to sample multiple.\n", "To implement this, we yet use another Sampler which combines multiple batches from a `FewShotBatchSampler`, and returns it afterwards.\n", "Additionally, we define a `collate_fn` for our data loader which takes the stack of support-query set images, and returns the tasks as a list.\n", "This makes it easier to process in our PyTorch Lightning module before.\n", "The implementation of the sampler can be found below."]}, {"cell_type": "code", "execution_count": 26, "id": "649f6d48", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:00.643147Z", "iopub.status.busy": "2023-03-14T16:25:00.642485Z", "iopub.status.idle": "2023-03-14T16:25:00.655489Z", "shell.execute_reply": "2023-03-14T16:25:00.654718Z"}, "papermill": {"duration": 0.032713, "end_time": "2023-03-14T16:25:00.657608", "exception": false, "start_time": "2023-03-14T16:25:00.624895", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TaskBatchSampler:\n", "    def __init__(self, dataset_targets, batch_size, N_way, K_shot, include_query=False, shuffle=True):\n", "        \"\"\"\n", "        Inputs:\n", "            dataset_targets - PyTorch tensor of the labels of the data elements.\n", "            batch_size - Number of tasks to aggregate in a batch\n", "            N_way - Number of classes to sample per batch.\n", "            K_shot - Number of examples to sample per class in the batch.\n", "            include_query - If True, returns batch of size N_way*K_shot*2, which\n", "                            can be split into support and query set. Simplifies\n", "                            the implementation of sampling the same classes but\n", "                            distinct examples for support and query set.\n", "            shuffle - If True, examples and classes are newly shuffled in each\n", "                      iteration (for training)\n", "        \"\"\"\n", "        super().__init__()\n", "        self.batch_sampler = FewShotBatchSampler(dataset_targets, N_way, K_shot, include_query, shuffle)\n", "        self.task_batch_size = batch_size\n", "        self.local_batch_size = self.batch_sampler.batch_size\n", "\n", "    def __iter__(self):\n", "        # Aggregate multiple batches before returning the indices\n", "        batch_list = []\n", "        for batch_idx, batch in enumerate(self.batch_sampler):\n", "            batch_list.extend(batch)\n", "            if (batch_idx + 1) % self.task_batch_size == 0:\n", "                yield batch_list\n", "                batch_list = []\n", "\n", "    def __len__(self):\n", "        return len(self.batch_sampler) // self.task_batch_size\n", "\n", "    def get_collate_fn(self):\n", "        # Returns a collate function that converts one big tensor into a list of task-specific tensors\n", "        def collate_fn(item_list):\n", "            imgs = torch.stack([img for img, target in item_list], dim=0)\n", "            targets = torch.stack([target for img, target in item_list], dim=0)\n", "            imgs = imgs.chunk(self.task_batch_size, dim=0)\n", "            targets = targets.chunk(self.task_batch_size, dim=0)\n", "            return list(zip(imgs, targets))\n", "\n", "        return collate_fn"]}, {"cell_type": "markdown", "id": "5ed06a98", "metadata": {"papermill": {"duration": 0.015605, "end_time": "2023-03-14T16:25:00.693200", "exception": false, "start_time": "2023-03-14T16:25:00.677595", "status": "completed"}, "tags": []}, "source": ["The creation of the data loaders is with this sampler straight-forward.\n", "Note that since many images need to loaded for a training batch, it is recommended to use less workers than usual."]}, {"cell_type": "code", "execution_count": 27, "id": "3db0bec6", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:00.726508Z", "iopub.status.busy": "2023-03-14T16:25:00.725966Z", "iopub.status.idle": "2023-03-14T16:25:00.764138Z", "shell.execute_reply": "2023-03-14T16:25:00.763232Z"}, "papermill": {"duration": 0.05655, "end_time": "2023-03-14T16:25:00.765495", "exception": false, "start_time": "2023-03-14T16:25:00.708945", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Training constant (same as for ProtoNet)\n", "N_WAY = 5\n", "K_SHOT = 4\n", "\n", "# Training set\n", "train_protomaml_sampler = TaskBatchSampler(\n", "    train_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, batch_size=16\n", ")\n", "train_protomaml_loader = data.DataLoader(\n", "    train_set, batch_sampler=train_protomaml_sampler, collate_fn=train_protomaml_sampler.get_collate_fn(), num_workers=2\n", ")\n", "\n", "# Validation set\n", "val_protomaml_sampler = TaskBatchSampler(\n", "    val_set.targets,\n", "    include_query=True,\n", "    N_way=N_WAY,\n", "    K_shot=K_SHOT,\n", "    batch_size=1,  # We do not update the parameters, hence the batch size is irrelevant here\n", "    shuffle=False,\n", ")\n", "val_protomaml_loader = data.DataLoader(\n", "    val_set, batch_sampler=val_protomaml_sampler, collate_fn=val_protomaml_sampler.get_collate_fn(), num_workers=2\n", ")"]}, {"cell_type": "markdown", "id": "840ab6b6", "metadata": {"papermill": {"duration": 0.015558, "end_time": "2023-03-14T16:25:00.796601", "exception": false, "start_time": "2023-03-14T16:25:00.781043", "status": "completed"}, "tags": []}, "source": ["Now, we are ready to train our ProtoMAML.\n", "We use the same feature space size as for ProtoNet, but can use a higher learning rate since the outer loop gradients are accumulated over 16 batches.\n", "The inner loop learning rate is set to 0.1, which is much higher than the outer loop lr because we use SGD in the inner loop instead of Adam.\n", "Commonly, the learning rate for the output layer is higher than the base model is the base model is very deep or pre-trained.\n", "However, for our setup, we observed no noticable impact of using a different learning rate than the base model.\n", "The number of inner loop updates is another crucial hyperparmaeter, and depends on the similarity of our training tasks.\n", "Since all tasks are on images from the same dataset, we notice that a single inner loop update achieves similar performance as 3 or 5 while training considerably faster.\n", "However, especially in RL and NLP, larger number of inner loop steps are often needed."]}, {"cell_type": "code", "execution_count": 28, "id": "9ca00407", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:00.829693Z", "iopub.status.busy": "2023-03-14T16:25:00.829256Z", "iopub.status.idle": "2023-03-14T16:25:00.908001Z", "shell.execute_reply": "2023-03-14T16:25:00.906747Z"}, "papermill": {"duration": 0.098372, "end_time": "2023-03-14T16:25:00.910579", "exception": false, "start_time": "2023-03-14T16:25:00.812207", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True (cuda), used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Lightning automatically upgraded your loaded checkpoint from v1.3.4 to v2.0.0rc0. To apply the upgrade to your files permanently, run `python -m lightning.pytorch.utilities.upgrade_checkpoint --file saved_models/MetaLearning/ProtoMAML.ckpt`\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model at saved_models/MetaLearning/ProtoMAML.ckpt, loading...\n"]}], "source": ["protomaml_model = train_model(\n", "    ProtoMAML,\n", "    proto_dim=64,\n", "    lr=1e-3,\n", "    lr_inner=0.1,\n", "    lr_output=0.1,\n", "    num_inner_steps=1,  # Often values between 1 and 10\n", "    train_loader=train_protomaml_loader,\n", "    val_loader=val_protomaml_loader,\n", ")"]}, {"cell_type": "markdown", "id": "f2661b7c", "metadata": {"papermill": {"duration": 0.016178, "end_time": "2023-03-14T16:25:00.949637", "exception": false, "start_time": "2023-03-14T16:25:00.933459", "status": "completed"}, "tags": []}, "source": ["Let's have a look at the training TensorBoard."]}, {"cell_type": "code", "execution_count": 29, "id": "1b25f8a1", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:00.983443Z", "iopub.status.busy": "2023-03-14T16:25:00.983025Z", "iopub.status.idle": "2023-03-14T16:25:00.986536Z", "shell.execute_reply": "2023-03-14T16:25:00.985940Z"}, "papermill": {"duration": 0.022094, "end_time": "2023-03-14T16:25:00.987828", "exception": false, "start_time": "2023-03-14T16:25:00.965734", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Opens tensorboard in notebook. Adjust the path to your CHECKPOINT_PATH if needed\n", "# %tensorboard --logdir ../saved_models/tutorial16/tensorboards/ProtoMAML/"]}, {"cell_type": "markdown", "id": "09cc82f4", "metadata": {"papermill": {"duration": 0.015878, "end_time": "2023-03-14T16:25:01.021733", "exception": false, "start_time": "2023-03-14T16:25:01.005855", "status": "completed"}, "tags": []}, "source": ["<center width=\"100%\"><img src=\"https://github.com/Lightning-AI/lightning-tutorials/raw/main/course_UvA-DL/12-meta-learning/tensorboard_screenshot_ProtoMAML.png\" width=\"1100px\"></center>\n", "\n", "One obvious difference to ProtoNet is that the loss curves look much less noisy.\n", "This is because we average the outer loop gradients over multiple tasks, and thus have a smoother training curve.\n", "Additionally, we only have 15k training iterations after 200 epochs.\n", "This is again because of the task batches, which cause 16 times less iterations.\n", "However, each iteration has seen 16 times more data in this experiment.\n", "Thus, we still have a fair comparison between ProtoMAML and ProtoNet.\n", "At first sight on the validation accuracy, one would assume that\n", "ProtoNet performs superior to ProtoMAML, but we have to verify that with\n", "proper testing below."]}, {"cell_type": "markdown", "id": "a19d0fa7", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.015965, "end_time": "2023-03-14T16:25:01.053769", "exception": false, "start_time": "2023-03-14T16:25:01.037804", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "We test ProtoMAML in the same manner as ProtoNet, namely by picking random examples in the test set as support sets and use the rest of the dataset as query set.\n", "Instead of just calculating the prototypes for all examples, we need to finetune a separate model for each support set.\n", "This is why this process is more expensive than ProtoNet, and in our case, testing $k=\\{2,4,8,16,32\\}$ can take almost an hour.\n", "Hence, we provide evaluation files besides the pretrained models."]}, {"cell_type": "code", "execution_count": 30, "id": "d9c453fa", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:01.087087Z", "iopub.status.busy": "2023-03-14T16:25:01.086687Z", "iopub.status.idle": "2023-03-14T16:25:01.097400Z", "shell.execute_reply": "2023-03-14T16:25:01.096833Z"}, "papermill": {"duration": 0.029338, "end_time": "2023-03-14T16:25:01.099020", "exception": false, "start_time": "2023-03-14T16:25:01.069682", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def test_protomaml(model, dataset, k_shot=4):\n", "    L.seed_everything(42)\n", "    model = model.to(device)\n", "    num_classes = dataset.targets.unique().shape[0]\n", "\n", "    # Data loader for full test set as query set\n", "    full_dataloader = data.DataLoader(dataset, batch_size=128, num_workers=4, shuffle=False, drop_last=False)\n", "    # Data loader for sampling support sets\n", "    sampler = FewShotBatchSampler(\n", "        dataset.targets, include_query=False, N_way=num_classes, K_shot=k_shot, shuffle=False, shuffle_once=False\n", "    )\n", "    sample_dataloader = data.DataLoader(dataset, batch_sampler=sampler, num_workers=2)\n", "\n", "    # We iterate through the full dataset in two manners. First, to select the k-shot batch.\n", "    # Second, the evaluate the model on all other examples\n", "    accuracies = []\n", "    for (support_imgs, support_targets), support_indices in tqdm(\n", "        zip(sample_dataloader, sampler), \"Performing few-shot finetuning\"\n", "    ):\n", "        support_imgs = support_imgs.to(device)\n", "        support_targets = support_targets.to(device)\n", "        # Finetune new model on support set\n", "        local_model, output_weight, output_bias, classes = model.adapt_few_shot(support_imgs, support_targets)\n", "        with torch.no_grad():  # No gradients for query set needed\n", "            local_model.eval()\n", "            batch_acc = torch.zeros((0,), dtype=torch.float32, device=device)\n", "            # Evaluate all examples in test dataset\n", "            for query_imgs, query_targets in full_dataloader:\n", "                query_imgs = query_imgs.to(device)\n", "                query_targets = query_targets.to(device)\n", "                query_labels = (classes[None, :] == query_targets[:, None]).long().argmax(dim=-1)\n", "                _, _, acc = model.run_model(local_model, output_weight, output_bias, query_imgs, query_labels)\n", "                batch_acc = torch.cat([batch_acc, acc.detach()], dim=0)\n", "            # Exclude support set elements\n", "            for s_idx in support_indices:\n", "                batch_acc[s_idx] = 0\n", "            batch_acc = batch_acc.sum().item() / (batch_acc.shape[0] - len(support_indices))\n", "            accuracies.append(batch_acc)\n", "    return mean(accuracies), stdev(accuracies)"]}, {"cell_type": "markdown", "id": "545ac8c6", "metadata": {"papermill": {"duration": 0.016239, "end_time": "2023-03-14T16:25:01.134840", "exception": false, "start_time": "2023-03-14T16:25:01.118601", "status": "completed"}, "tags": []}, "source": ["In contrast to training, it is recommended to use many more inner loop updates during testing.\n", "During training, we are not interested in getting the best model from the inner loop, but the model which can provide the best gradients.\n", "Hence, one update might be already sufficient in training, but for testing, it was often observed that larger number of updates can give a considerable performance boost.\n", "Thus, we change the inner loop updates to 200 before testing."]}, {"cell_type": "code", "execution_count": 31, "id": "cf39137f", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:01.167815Z", "iopub.status.busy": "2023-03-14T16:25:01.167643Z", "iopub.status.idle": "2023-03-14T16:25:01.170678Z", "shell.execute_reply": "2023-03-14T16:25:01.170165Z"}, "papermill": {"duration": 0.021081, "end_time": "2023-03-14T16:25:01.171926", "exception": false, "start_time": "2023-03-14T16:25:01.150845", "status": "completed"}, "tags": []}, "outputs": [], "source": ["protomaml_model.hparams.num_inner_steps = 200"]}, {"cell_type": "markdown", "id": "2bd1a067", "metadata": {"papermill": {"duration": 0.015956, "end_time": "2023-03-14T16:25:01.206373", "exception": false, "start_time": "2023-03-14T16:25:01.190417", "status": "completed"}, "tags": []}, "source": ["Now, we can test our model.\n", "For the pre-trained models, we provide a json file with the results to reduce evaluation time."]}, {"cell_type": "code", "execution_count": 32, "id": "73e2b6f2", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:01.240196Z", "iopub.status.busy": "2023-03-14T16:25:01.239537Z", "iopub.status.idle": "2023-03-14T16:25:01.249784Z", "shell.execute_reply": "2023-03-14T16:25:01.249171Z"}, "papermill": {"duration": 0.029008, "end_time": "2023-03-14T16:25:01.251390", "exception": false, "start_time": "2023-03-14T16:25:01.222382", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=2: 42.89% (+-3.82%)\n", "Accuracy for k=4: 52.27% (+-2.72%)\n", "Accuracy for k=8: 59.23% (+-1.50%)\n", "Accuracy for k=16: 63.94% (+-1.24%)\n", "Accuracy for k=32: 67.57% (+-0.90%)\n"]}], "source": ["protomaml_result_file = os.path.join(CHECKPOINT_PATH, \"protomaml_fewshot.json\")\n", "\n", "if os.path.isfile(protomaml_result_file):\n", "    # Load pre-computed results\n", "    with open(protomaml_result_file) as f:\n", "        protomaml_accuracies = json.load(f)\n", "    protomaml_accuracies = {int(k): v for k, v in protomaml_accuracies.items()}\n", "else:\n", "    # Perform same experiments as for ProtoNet\n", "    protomaml_accuracies = dict()\n", "    for k in [2, 4, 8, 16, 32]:\n", "        protomaml_accuracies[k] = test_protomaml(protomaml_model, test_set, k_shot=k)\n", "    # Export results\n", "    with open(protomaml_result_file, \"w\") as f:\n", "        json.dump(protomaml_accuracies, f, indent=4)\n", "\n", "for k in protomaml_accuracies:\n", "    print(\n", "        \"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)\"\n", "        % (k, 100.0 * protomaml_accuracies[k][0], 100.0 * protomaml_accuracies[k][1])\n", "    )"]}, {"cell_type": "markdown", "id": "45499351", "metadata": {"papermill": {"duration": 0.016023, "end_time": "2023-03-14T16:25:01.286991", "exception": false, "start_time": "2023-03-14T16:25:01.270968", "status": "completed"}, "tags": []}, "source": ["Again, let's plot the results in our plot from before."]}, {"cell_type": "code", "execution_count": 33, "id": "49f78869", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:01.320810Z", "iopub.status.busy": "2023-03-14T16:25:01.320448Z", "iopub.status.idle": "2023-03-14T16:25:01.665362Z", "shell.execute_reply": "2023-03-14T16:25:01.664433Z"}, "papermill": {"duration": 0.364607, "end_time": "2023-03-14T16:25:01.667712", "exception": false, "start_time": "2023-03-14T16:25:01.303105", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzY4LjY2NTYyNSAyMzEuNjEwNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1YS28bNxC+76/g0T6EIofvo900BoI6iGMDPRQ9uIqc1JDjRnYa9N/3I/dBcrV6OLYiQ4B2PDsz37zJ2evFv3/PFx/OTtkvl80sP80fGslu8f3EBLvF9zuT7AzfT43A012jrOfWGksGj8vykZTkVor4cwnm6vFz09w0sxOIeWCCB+msdsJ4v/agg5DBCufZKlpwVjE027ibxljuoU0TD61FsFaZEW050EgETr4jdu9WtGT0V7Ymllxg0lquiK0W7Hf2hc1OKCKT7C2+t/i2Xqv9ag03WrnawIFYaW4umwv2tRcruDSIRy85PZ511OYrYiXYK4F/WeKilWV46/j5XXN61czeSCYlu7pJIbz62PzBjuiY/cmu3ja/XjUXSddLoGyA0kOAl6MwDMQXQOkC162s3Sj1oVBK6XgLo4SZqS+AU0rNVStsN1B/MKDecSvWgA7UlwDqRS9sN1BpD4VUkeu0Vw1koL4AUkWiF7YbqapKtPSXQJbp9HbgbpBATFIt4d23u78WK3Z/wx4+3z8+sH/wMF9ePzwcyoWdHGM4OfJBFg04037UeUStIMlFgCNVCEFtcZ/gWhwYJ/I2+CA0FTgz7Zk4HXQAqNHO6R04zYFxIlM5Rq6EvzPQgvhMpFIQN2SMMEbvCKk5dEilIq5JKq1LqJn4XKjkOWkJSxXtiKo5eFSN51I5Hco9qSA+F6pRPBjnhRO7CtUePKpeYS4rqyuomfhcqFhJrFMRrUPhb4Vq6qYepbyK8qTlWJhjSzccgMvRsN7YT+bzb6vr+X8/5DbVIvS2+zg8mHLFViSN9ZawSK5KJ2x4g1VvfDhr9uSMG/uw/QbLUf7O+nIlRi7aIMgEBGjYIKWAg7TWELcsFi6pAsdZIJVo3k4idiEQlTh28iiX3vLg0FpNTYbvQ/AUaDO5kI0ObWzwemSIQbOQBkVUWU0wD/qSjAnU6bBx+uQgquHDYm55T8pQ0E0cfs5rBStUHcQNb7DqjRTEvTirIHqsI96roKsgitjc262pCKKOTqKx77Tl2imXZkrpaRxssDsINYpLbMuEjKrIJCR3vcYN5EK219wFE5KQwhIrOfQpspXZGATKWpVaxgTsp0ax7mDcjMqs2VZmo8NlNsc5jsgIqctzV0SmtBV65G/DnYxr2cjfEptuoISo9LfEyct6341BAcP3rvW+kaY+uhfEVd9q09F2jA5JImKLZLNzwV7fD4zAlvjQDgL4yOrgp/iU5j6elD3ESeQh9mk5wWYR27StG0dCwGl6SieUxQTjEk3FB6wxpcYfnmhdPuQ6bLZV7OZ8iHPLCVmnA3AH4YId9S7NpcfvUTp4FCtpEUbp4LjA1KMyG/ZsGlU27AVwQza02ESwSJrW53IqGzTWLqWctwA9xddlAzYDF5xDgQejJ9i6bNCcSHkd4BgzpTSlg4z3YpgDEvtGKeuiXDQoxpqTmbwvmrjOmrqlgu/Xb7nupm+5wLvnJVnmLARsltpGf89TsESStfdU0vRSNi87b46ZRpJgT/NtYh0tvr+6xIGWvV+sbu5Xd9df5gv2fnX/eP9u8ciuv3xsH85Pzn8rF6TZiX7q7eNt7FVPu4OMt55eW98mnc7XCNirqaTFUkKeBBk7ZyYrFZsgGAO6CXqJHygYpN1F67zpaX5Qtsw0xVEyBotooQBTTrSMvSWZMi+NzuQlyJDoBQlfkAlCbcc7aCqJgyjIzeRs/bIkZ5iFsuyNSW/O2ym7c3xu3VJHBwVSA0Bn4gkoBo0wHkdEGI+yWCP+lGlY2UOlkV7HCTYQCWuUxbCSiU8bZUIAEY3beiyzzCmsylb6GCFQMSbR8yI1HmAsOP2gRmNrkPHWpiR2sOPbJTEoJUWrqBcJO0KcmaVyh36HHp9ez3ZiBJHUIirKeHyPJ+P2WTfasJFkbcGnsKB4pGQlD12NDD616rjJUXC6NJKm0NAUbpryUBaZXZmVl07PdhbxyXhoHTf1ulPud61288HU6r5u0i7ntl00vj+Oc1Jo0/4ZdrQ6RmvmSiBi6Y8dtc21bKep7tZWlK2HitF8K2oOJ70Q0q+q6jK5qruS/FM2j8omU5va5WomF1kNk3GmjxlRFEAcqy6lRFV+Jq4qKSeKqgJSnFtiTtTETlVVgQbLSUi2FFJtvEhKthQW4GyDBTD+qmoQZOvTWwWueA7qcQ0+yMSqDkveIcNLqUMx1BYMdVNaS1O4aNoHNOWvQWrp2cGCOgqDtWXEBlxlbCfy4Ok1iXdlNyOfW5XjLeei+R+GWCl7CmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTY5OQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MQQ7AIAgE7/sKnqAIIv9pGg/0/9cqNT0AEzIZM6FCusa6k7HTVaFNqLZGD1hKUqD6FgOam01TDoj7oR1IY5TvnkpggocR97GKcijQFqlu4v83cb/89hxjCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzszBWMFCwNAISppaWCuZGlgophlxAPoiVywUTywGzTC3MgSwjCwMklompIUgWhWVsYAmVRbAMgDTYmhyY6TlcGVxpADXCGOsKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDYyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlcwULA0AhJmhgYK5kaWCimGXEA+iJXLZWQBEcsBswxNjIAskDoEywBIg7XnwHTlcGVwpQEA4UMQ7gplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggOTAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY6xDcAwCAR7pmAEzBsT9omiFM7+bYxjp+GPQwgijIVDswjYNfgsNPqkh4AyqVMNZyCptbrc3vhIRrranwYMMnMuNV3FsUhd1jQpzXyg77udbrpe7jIdyAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggNzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY3BEYBACAP/VJESEES8fhzHB9f/10MGP8kGBnKqgzFkie8Gl4Fro5WTJikXBdnhkJ9q1hdFnDstF2cYN6V/FdGfgx66X8jxF/8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDE2NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jjkSQyEMQ3tO4SOAN+A8P5NJQe7fRvJP0lgP5EXTTLpsRUnUqVseo33p3bx70Wm+syhyyuxLckxJ8NVYU6Pm6VJ9Dzqk4dVnETVjeF+NfTpNuFUDijvUq+nqRaeoQyvc+WU67VVObEM+ki3+2vIvud5/7ktsT/FcSBHY7QtkvAqNdWslJYXCQUdgjjORSQevwG5u5U3eoV7/FEz0/AADFz6kCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCAzNDMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI7biUxDOvnFLxAAOtn2ed5wWKL7P3bJTVIJUK2SIp2+8JCO74ssLPR6fi2p+5Fr41/g6ocP08VUS8UZ+oE8jjqOj5PZmIvQ67DuhGdUz9P+B3kd0NMzpM6zRMnZ3XBKVi13xpLJ0K22LnIm/Cd1Eqd9EF2IFYh2Y2ki5JOOlEuuVxETpVtCHm/hdi6s+klwmdNP/VWF6+QaQeyUEi2stgvb2zCmniieiq3MhskZ18Hbgcybm04MFIyIVqNwyar3aYx9Y1J276w4jAJLG2i2Jwiz9W00+SdSqF+UVJQNzI0M5HTlHEuuZrJL6svsQ1SHEVG8idD8ooJiZ1dE4t3cyHG/z4GnzIY3M/jiyHZHe5gJOOntcihvLn+iphbb6RUBXh0lWeOuX0kZkeXHFpOn0pkPdbjvCi90Fw1N79daKYo3sy8aLcZ6u8v/Dx/nz//ATpvf54KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDMxNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kkuO5DAMQ/c5hS7QgPWz4/NUozGLmvtv59GZ6kVAQdaHFDNX27BK+/K03tN6Dvv2K2Nb1LS/V+w4UcyyyCcbsex1RdwW3nzbfK8HV+pFUTt10zyTHjcP10uTGfStBYblyIOvK3M+GfY4ZPJWr/YU9T7dKgZ7xkFN5kURfN6/fN/Xn0sy0gPuigY51X3wdpXzUMty0c8q6G1RcLcv9Kx5zhFZB1+Xw1aRp1uaxms7l5q3buf0CWAOJxo5zNScRtFGY2tGsyjJBhp7wHAdfFQoevhJ//9oM5b+YnzeC92an0wu7pJwqcKTuw9yWxSdDNqruNUtZ3Vbr/t0u4PoYHBuKSZoKt6XQ7nlEtOb6sCX7uMl2W7cXfv8HOIthDfeKyqcavZ18g253KusZpwfSos+jrxw5+cfeRB0gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMjQ1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVROW4EMQzr/Qp9YADrtP2eCRYpNv9vQ2onSEXCkihSXloyZYdc6lJLZdWULx2+UhRPPyPUmkVMUSsJNGiG3CM22FaJM8XsweWsgLmlsMMresaPsQKV0CNUDXfhHuI93NfnZZ7usH2eGavTKpanVYmfPc2wmR10wpmPN6rQLVXp/i/PPb57Kmohm23kOqd3phm6gZjAfG3JhMdpknBP38R75FzNslCB35q4yTqoVEAX/nhGz2q0xQRkurewQ5GNM1UUgwhcUfN6bny1S+4lo48r29h5YplL+159iN5MMuU98I8P8Bvf/f7PmPmN/K9fX1RdvAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMjM3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRS24FMQjb5xS+wJP4J3OeVz110d5/W0NUaSQ8YIwh+TgE4XipI62QJfjSNdAFv4P8bPysFEOII/ZBaCIyEOZ4r/DWUFaZ9SRfJr6Xd5bIOCdMYEW1x1gxP/AKmJFvN9putUGmaIYenR7NqVBFm09VVZ05HelA9qBwMsYbe6+3Y1Dyk9407pKaDyuDiovFc1BcS3gFRBhe1Y0a/BcOqbmOU7IjbbC9kbZ0f4XqlXa7sb6mHu9w9yHwcmy57siOE8x3ezo3p1yfvQd05NXOfYi2kLnHU2aPaJMZzNByhuD/nd7re33+AND1VVUKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDIzOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1j0tuAzEMQ/dzCl0ggPWz7PNMUHTR3n8bUs4AmYiQJfKpdMqQSHmpy3STmkPeekVOiVny34rNv+t5PoqVb0+tTYGHKImRYi5eU7bcl6P1SnGNjjG0We/LxmqliQ8/HTIn+vhT3cTStVisDG0IRxJew7Kno+jP9XQYwy4ByABWJCOSigSZ1kTpRS8gpoGWxJtZ5+D7+gWvwt1xvNdqFQNExlzUDO4H1NLeM/vW8qac4uDjhM/oHd/ND5fAXXQN8DKHFZzDW1llT1jmd8c828XsuLKenFZI5gRJuHPY6EJaupL+uYe3/XwAWX1cvQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1ROW4EMQzr/Qp+YAHrtP2eCYIUs/9vQ2mSrUhIMkXRuTYm3PASQ9pE5MSXjKK6Au+HaeAeqvJhAdkO9QkJg2ZCzHANPQIRhSkrk7i08Ro+dzP36iz4poZsdkINooeriezmdEhWpxhl7xFJmYWgg+TLSbslaRuvAzur7VtkI13EUxFO0ozQbpaHNducV6dBl7UOjP1VQdS0c0XVheGE8czQzsVorrBePJWYsyeCE771z7IzsorNUvAf5DV+hgdrvOf9MIbmDNCOwXmYt3WfZJyxVV2e79F4DRNppvTm5YqWXUpZXaiS/JxN1UO03nN9Nt7c/v0Lb5tbKgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQRIDIQgE77yCJwCCuO/ZVGoP5v/XjJo1e3G6HKUaL8HCeuBwd84q/FK68TOpenCn4nmT2aQigRS2A1mUT7IGQmtNuUrODNyNBoQJnbzIgxyv+2z/JEiVunM1cNyw/o/uQS1+VOGsw7E11qicmjDQdnDC2mA8diu68tzbdrro/QWOIzPSCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZBBcsMwDAPvegWeQJEgJb/HnU4P6f+vAZUmPdiLIWQa0JoOw6ZeFcQqw9ccLSMCv0cZHoO5P0z+Cf+oMAdz6SOKiUjHLScQy0BeiB2i1l7HiQWaJr5BReAsPbsd0wbvc3bcWHV4j4jrNZlyJuE6EbvkeGn/ySPO67BncqQ69uYb3fBx5v+KtVrtBK/e4Eh3BEXl1J+XlBrRElndZx7eI5W2VbtJUTvSumFNNaw4t0pbeF/pPX7G9xNnu0ZjCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA1NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMTRVMFAwNVEwMjRXMDYzVDA2tVRIMeQCioBYuVwwsRwwC6QqhwuqPAemKocrgysNAApIDlUKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDUwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2MVYwULAwARJGppYK5mYGCimGXEA+iJXLBRPLAbNANFhpDkxFDlcGVxoAuGMNJQplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMjgxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSSZIDMQi7+xU8wWbnPT01lcPM/68RdqdzSEsFRgjImso0KQWfciHzST9rWC1Sc/ofvoS0JrkU2TJyB4rQNbzAbFHIKYuYG6+RwptlIqIQhoZNRqbUSdGmW+mMjbLVmk36G5HxIKc9rCgyiUtvTNQ0E+gePC9kPRn4j2SSRE1gnu0grEgX3ioinBTLN2IevG3mFnihe2JBb2R4Qa3IF5DnRsYekAFrtyr24HHdTNSgWNtB9zwOdB4Hgq12P3G9HYjckanbAaffDthzO2D82kHjcdCsO6d8wDRAOv5l6pvhHloBfSODSm/exLuzL9wSu8Ld+3LKdt9S/dxSCxHDPVlR03OYoRouLTAl9v35z1zjNX7fuX1xPAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMTkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQS5IDMQhD9z6FjoBB+HOeTqVmMbn/NjL5LeynQm41MLvDsKhrBJHDcOvtyIjAo5ThvzHXl8m38My3CnMwpz6imIh0XHICMQ3kRqwQFbvLiQmaKr5AtcA+dNZxTAl+3lm5MUfxahH7VelyOuF6EWvI8aH86kfsu3hqcqRO24sfJKfEqf8UR6mV4D4JjnRHUFSf+vOU0kS0rA2RvXi1tNfOjpsUlZF2JhxdE46ordImPiu92l+7PwFpDEZoCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAyMTMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVC5DQMxDOs9hRYIYOqzb54LgjTZv40oJ8WBPJuiSOdeMsVNHjBJd4mc8sSwom4hn2EzmukqVIhGiF0m99A6tawbLdSDuvqm/6ZQgT17BqG8KReoC10BCPcQ72Fbm3l9VLjhN+OBdvHUdm3sPWTcTAWTcOZkowvT0pXp/33u8e5urPkZbrtZlDqMp6XaXqrEKv15EsuDZycZdp2UAtCeScaMDi705GNyC7E6x2yGlRRA7Qzk1Qb1+PQr+JWys/HqAFSfSBxnSNox9L8GK72+IoZUYAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQO24EMQxDe5+CF1jA+to+zwSLFNn7txE1E6QiAUnks5ckJrbjpXMhlyBy4kuGxsE6+LTp4c/4W2sXTsPpv/Nstw1+DmzWTBVmpbZwDcuNCIVP7R732XqNqFi6yJqYIWfCq/8a6ZWr0WwW2apLOSkne4MbIqdvMhlWIWJg5quULdRrsJeOHK9oMFYQVA3NvfC8/Brfw1bAi+YzrPjpuOrVpbved0ihWS69z6w4qbrY1k6LtjZkS99I+FMommCqkKd65CYUbUdmbnj9yX3je3aKn9mprd1Dx2ZukIQ3NxtTSMvUpn/ew7e9fwFufl71CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVBBEgMhCLv7Cp6Akuj6nu10etj+/9rAttODJoRMQLHD3A7ownbjdHv0ljT2Ye+GBYPTwG3oMkF1h50NI5VVFfqWfxeeLfhVdOCwsWmxpjpjdQssG0oLn4WDIztiblerTQoo31X6n4HFjq5loxKYc0IYzMmTRqrr91OAXqhtlVEKQw4liSeqM+etrMTj/gbmtr9fuNqrPT9vbTgsCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAzNDYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZJJbkQxCET3PgUXaMlMHs7zo1YWnftv8yDKCmxwUVU4b8qUNHmpS8aRXFO+dKSqpE/56czvls+I7RJqEr4lLCQmZzd5hq8jEVPckxjiMzo+w/bszGLRe8XADNeqKD3mYpOKzo5+vSqVbXqZVcjGLF/9xqkkb/KIQ9YuM3uOGyxhAEuw3ODDZCfPqWKnehKu9bJkmu6O2ridoSZtSV6J40jgvjSBu1fbY1c7wiPz7waUFzMUtq+koDzgOKccWaWJO6LC+TNuiGKQAq1mjN6i2iYxWhFtoURIAlcRWeqduZ/u8Fy8WVVhGWopfkDC2I6Io1LZjqath47F3DbW2bNhR9ljcyOoJLSxi4omJBWryvBiaWFy2cO6JaP6s75KbbnCqWuSiC1bJViG1rfRYqFJxtJrifWnDPUVa1WrM8fpzM3SgctSWx8jAQsGJk7+f8JnfI/3L9arfhoKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2sVAwgMMUQ640AB4ZA1UKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDEzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0EOQyEIRPecgiMIYtHz2DRd2PtvO8j/34Q4z4xOBvPOhaXisNbYi/JbSD3xt6mZ86KwD5kqKNxDMspNL2PtyMV7HZHfeVItIB1cNbRxbamTzJLWpp0yLlWJfq7IwlTGTBJcXFh2YEnFBxigLISVHsja4R2K9daz6KIvff5ZIDJMCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCAyMDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFBbgQhDLvzCn9gJRICIe/ZatVD+/9rbWZG6skmJsYJaY6O3HjZwPKNGYkva6w4K78iKv00n/GPRfnDlsPnQPg8OHbHux027kq/0MtuxemjXjcpC1brKBuWC05Hk+vimbeo5IQFKztgQ07s8aQyepIZhneYbb65DlJJPyy6sceZT67KFnSyTUVJ6HIw5SZ2zfis4mKdKO3BLBG1JkYVnEOuQunZUXhNKJdW6kwh5Az9WrIyXOlDo1Vguz7A2Hhv/d2+2+cPeY5MngplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggOTMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPYzLEYAwCAXvVEEJ4RdCP47jIfZ/FaLxAgvvzQYrNhTLMUagqeNBkHfRDdxemsDhSN6S5OtNMNlp50o1yWmn4++5lj/7pmtrZxTv5Upjfchj7V94wfkAEN4eGQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMTM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Ouw0DMQxDe0/BBQzo6888CYIUl/3bUHeXNPYDJZEcaRCooZsmhgcyJp7aKBV9mq550tGcU52DFLlv7XdBTQI9tfaWoKsqPJ2QAbeCufBotitLDMbdM9TkhkdTkQuPC+shZv5xxYUm1DaPdaOvUcbODLaz4M9+p7+Xq+WoyDq3u+y7vb7pdi7PCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9FVklDQU8rRGVqYVZ1U2Fucy1Cb2xkIC9GaXJzdENoYXIgMAovTGFzdENoYXIgMjU1IC9Gb250RGVzY3JpcHRvciAxNiAwIFIgL1N1YnR5cGUgL1R5cGUzCi9OYW1lIC9FVklDQU8rRGVqYVZ1U2Fucy1Cb2xkIC9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0KL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0NoYXJQcm9jcyAxOCAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDUgL2h5cGhlbiA2NSAvQSA3MCAvRiA3NiAvTCAvTSAvTiA4MCAvUCA4MyAvUyA5NyAvYSAvYiAvYyAvZAovZSAvZiAxMDQgL2ggMTA4IC9sIC9tIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAxMTkgL3cgMTIxIC95IF0KPj4KL1dpZHRocyAxNSAwIFIgPj4KZW5kb2JqCjE2IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0VWSUNBTytEZWphVnVTYW5zLUJvbGQgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTQ0MCA+PgplbmRvYmoKMTUgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDM0OCA0NTYgNTIxIDgzOCA2OTYKMTAwMiA4NzIgMzA2IDQ1NyA0NTcgNTIzIDgzOCAzODAgNDE1IDM4MCAzNjUgNjk2IDY5NiA2OTYgNjk2IDY5NiA2OTYgNjk2CjY5NiA2OTYgNjk2IDQwMCA0MDAgODM4IDgzOCA4MzggNTgwIDEwMDAgNzc0IDc2MiA3MzQgODMwIDY4MyA2ODMgODIxIDgzNwozNzIgMzcyIDc3NSA2MzcgOTk1IDgzNyA4NTAgNzMzIDg1MCA3NzAgNzIwIDY4MiA4MTIgNzc0IDExMDMgNzcxIDcyNCA3MjUKNDU3IDM2NSA0NTcgODM4IDUwMCA1MDAgNjc1IDcxNiA1OTMgNzE2IDY3OCA0MzUgNzE2IDcxMiAzNDMgMzQzIDY2NSAzNDMKMTA0MiA3MTIgNjg3IDcxNiA3MTYgNDkzIDU5NSA0NzggNzEyIDY1MiA5MjQgNjQ1IDY1MiA1ODIgNzEyIDM2NSA3MTIgODM4CjYwMCA2OTYgNjAwIDM4MCA0MzUgNjU3IDEwMDAgNTAwIDUwMCA1MDAgMTQ0MCA3MjAgNDEyIDExNjcgNjAwIDcyNSA2MDAgNjAwCjM4MCAzODAgNjU3IDY1NyA2MzkgNTAwIDEwMDAgNTAwIDEwMDAgNTk1IDQxMiAxMDk0IDYwMCA1ODIgNzI0IDM0OCA0NTYgNjk2CjY5NiA2MzYgNjk2IDM2NSA1MDAgNTAwIDEwMDAgNTY0IDY0NiA4MzggNDE1IDEwMDAgNTAwIDUwMCA4MzggNDM4IDQzOCA1MDAKNzM2IDYzNiAzODAgNTAwIDQzOCA1NjQgNjQ2IDEwMzUgMTAzNSAxMDM1IDU4MCA3NzQgNzc0IDc3NCA3NzQgNzc0IDc3NCAxMDg1CjczNCA2ODMgNjgzIDY4MyA2ODMgMzcyIDM3MiAzNzIgMzcyIDgzOCA4MzcgODUwIDg1MCA4NTAgODUwIDg1MCA4MzggODUwIDgxMgo4MTIgODEyIDgxMiA3MjQgNzM4IDcxOSA2NzUgNjc1IDY3NSA2NzUgNjc1IDY3NSAxMDQ4IDU5MyA2NzggNjc4IDY3OCA2NzgKMzQzIDM0MyAzNDMgMzQzIDY4NyA3MTIgNjg3IDY4NyA2ODcgNjg3IDY4NyA4MzggNjg3IDcxMiA3MTIgNzEyIDcxMiA2NTIgNzE2CjY1MiBdCmVuZG9iagoxOCAwIG9iago8PCAvQSAxOSAwIFIgL0YgMjAgMCBSIC9MIDIxIDAgUiAvTSAyMiAwIFIgL04gMjMgMCBSIC9QIDI0IDAgUiAvUyAyNSAwIFIKL2EgMjYgMCBSIC9iIDI3IDAgUiAvYyAyOCAwIFIgL2QgMjkgMCBSIC9lIDMwIDAgUiAvZiAzMSAwIFIgL2ggMzIgMCBSCi9oeXBoZW4gMzMgMCBSIC9sIDM0IDAgUiAvbSAzNSAwIFIgL24gMzYgMCBSIC9vIDM3IDAgUiAvcCAzOCAwIFIgL3IgMzkgMCBSCi9zIDQwIDAgUiAvc3BhY2UgNDEgMCBSIC90IDQyIDAgUiAvdSA0MyAwIFIgL3cgNDQgMCBSIC95IDQ1IDAgUiA+PgplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvTGVuZ3RoIDkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Oyw3AMAhD70zBCOFTAvtUVQ/J/teGfHrBD1vIuAkWDB+j2oWVA2+CsSd1YF1eAxVCFhlk5Ns7F4tKZha/miapE9Ikcd5EoTtNSp0PtNPb4IXnA/XpHewKZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvTGVuZ3RoIDc3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWNwQ3AMAgD/0zBCDiFUPapqj7S/b8tRHzsMwjserJwpEwT9hF8gf6c9NI4ULTITBlo2rO+2CS5g5cjlCea0qti9edFD90fyZ4YDAplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggMTcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCRwD/gPO00+mC3H9by5l0gxRjyy9EV3TslYfHxpSN92hjT4QtXOV0Gk5TGY+Lu2ZdoMthMtNvvJq5wFRhkdXsovoYvKHzrGaHr1UzMYQ3mRIaYCp3cg/19ac47duSkGxXYdCdGqSzMMyR/D0QU3PQc4iR/CNfcmth0JnmFxctqxmtZUzR7GGqbC0M6o1Bd8r11Hqu8zAR7/MD30E+ZAplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iago1NyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjU5IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjYwIDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNjEgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNjIgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago2MyAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago2NCAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjY1IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNjYgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNjcgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgNDcgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDQ5IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2IC9laWdodCA2NSAvQSA3NgovTCAvTSAvTiA4MCAvUCAxMDEgL2UgMTExIC9vIDExNCAvciAxMTYgL3QgXQo+PgovV2lkdGhzIDQ2IDAgUiA+PgplbmRvYmoKNDcgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKNDYgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKNDkgMCBvYmoKPDwgL0EgNTAgMCBSIC9MIDUxIDAgUiAvTSA1MiAwIFIgL04gNTMgMCBSIC9QIDU0IDAgUiAvZSA1NSAwIFIKL2VpZ2h0IDU2IDAgUiAvZml2ZSA1NyAwIFIgL2ZvdXIgNTggMCBSIC9vIDU5IDAgUiAvb25lIDYwIDAgUgovcGVyaW9kIDYxIDAgUiAvciA2MiAwIFIgL3NpeCA2MyAwIFIgL3QgNjQgMCBSIC90aHJlZSA2NSAwIFIgL3R3byA2NiAwIFIKL3plcm8gNjcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMiAxNyAwIFIgL0YxIDQ4IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC4yIC9jYSAwLjIgPj4KL0E0IDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuOCAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9NMCAxMyAwIFIgL00xIDE0IDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC04IC04IDggOCBdIC9MZW5ndGggMTMxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjY4IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjcuMSkgL0NyZWF0aW9uRGF0ZSAoRDoyMDIzMDMxNDE2MjUwMVopCj4+CmVuZG9iagp4cmVmCjAgNjkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTgwNzAgMDAwMDAgbiAKMDAwMDAxNzI0OSAwMDAwMCBuIAowMDAwMDE3MjkyIDAwMDAwIG4gCjAwMDAwMTc0NzcgMDAwMDAgbiAKMDAwMDAxNzQ5OCAwMDAwMCBuIAowMDAwMDE3NTE5IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0NCAwMDAwMCBuIAowMDAwMDAyMTM5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjExOCAwMDAwMCBuIAowMDAwMDE3NTYyIDAwMDAwIG4gCjAwMDAwMTc4MTYgMDAwMDAgbiAKMDAwMDAwOTQyMCAwMDAwMCBuIAowMDAwMDA5MjA4IDAwMDAwIG4gCjAwMDAwMDg3NTcgMDAwMDAgbiAKMDAwMDAxMDQ4MSAwMDAwMCBuIAowMDAwMDAyMTU5IDAwMDAwIG4gCjAwMDAwMDIzMjIgMDAwMDAgbiAKMDAwMDAwMjQ2OCAwMDAwMCBuIAowMDAwMDAyNjAyIDAwMDAwIG4gCjAwMDAwMDI3NjQgMDAwMDAgbiAKMDAwMDAwMjkxMiAwMDAwMCBuIAowMDAwMDAzMTUwIDAwMDAwIG4gCjAwMDAwMDM1NjYgMDAwMDAgbiAKMDAwMDAwMzk1NSAwMDAwMCBuIAowMDAwMDA0MjczIDAwMDAwIG4gCjAwMDAwMDQ1ODMgMDAwMDAgbiAKMDAwMDAwNDg5NCAwMDAwMCBuIAowMDAwMDA1MjE4IDAwMDAwIG4gCjAwMDAwMDU0MjcgMDAwMDAgbiAKMDAwMDAwNTY5MSAwMDAwMCBuIAowMDAwMDA1ODE5IDAwMDAwIG4gCjAwMDAwMDU5NDEgMDAwMDAgbiAKMDAwMDAwNjI5NSAwMDAwMCBuIAowMDAwMDA2NTU4IDAwMDAwIG4gCjAwMDAwMDY4NDQgMDAwMDAgbiAKMDAwMDAwNzE1OCAwMDAwMCBuIAowMDAwMDA3Mzg5IDAwMDAwIG4gCjAwMDAwMDc4MDggMDAwMDAgbiAKMDAwMDAwNzg5OCAwMDAwMCBuIAowMDAwMDA4MTAzIDAwMDAwIG4gCjAwMDAwMDgzODAgMDAwMDAgbiAKMDAwMDAwODU0NSAwMDAwMCBuIAowMDAwMDE1OTY2IDAwMDAwIG4gCjAwMDAwMTU3NTkgMDAwMDAgbiAKMDAwMDAxNTMzNiAwMDAwMCBuIAowMDAwMDE3MDE5IDAwMDAwIG4gCjAwMDAwMTA3ODIgMDAwMDAgbiAKMDAwMDAxMDk0NSAwMDAwMCBuIAowMDAwMDExMDc4IDAwMDAwIG4gCjAwMDAwMTEyNDAgMDAwMDAgbiAKMDAwMDAxMTM4OSAwMDAwMCBuIAowMDAwMDExNjMyIDAwMDAwIG4gCjAwMDAwMTE5NTQgMDAwMDAgbiAKMDAwMDAxMjQyMiAwMDAwMCBuIAowMDAwMDEyNzQ0IDAwMDAwIG4gCjAwMDAwMTI5MTAgMDAwMDAgbiAKMDAwMDAxMzIwMSAwMDAwMCBuIAowMDAwMDEzMzU2IDAwMDAwIG4gCjAwMDAwMTM0NzkgMDAwMDAgbiAKMDAwMDAxMzcxMiAwMDAwMCBuIAowMDAwMDE0MTA1IDAwMDAwIG4gCjAwMDAwMTQzMTEgMDAwMDAgbiAKMDAwMDAxNDcyNCAwMDAwMCBuIAowMDAwMDE1MDQ4IDAwMDAwIG4gCjAwMDAwMTgxMzAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA2OSAvUm9vdCAxIDAgUiAvSW5mbyA2OCAwIFIgPj4Kc3RhcnR4cmVmCjE4MjgxCiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"368.640937pt\" height=\"231.597813pt\" viewBox=\"0 0 368.640937 231.597813\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T16:25:01.456079</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 231.597813 \n", "L 368.640937 231.597813 \n", "L 368.640937 -0 \n", "L 0 -0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 335.805938 188.638125 \n", "L 335.805938 22.318125 \n", "L 56.805937 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 65.524687 188.638125 \n", "L 65.524687 22.318125 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(62.025312 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 82.962187 188.638125 \n", "L 82.962187 22.318125 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(79.462812 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 117.837187 188.638125 \n", "L 117.837187 22.318125 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(114.337812 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 187.587187 188.638125 \n", "L 187.587187 22.318125 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(180.588437 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 327.087188 188.638125 \n", "L 327.087188 22.318125 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 32 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(320.088438 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_6\">\n", "     <!-- Number of shots per class -->\n", "     <g style=\"fill: #262626\" transform=\"translate(107.82 221.902188) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-4e\" d=\"M 588 4666 \n", "L 1931 4666 \n", "L 3628 1466 \n", "L 3628 4666 \n", "L 4769 4666 \n", "L 4769 0 \n", "L 3425 0 \n", "L 1728 3200 \n", "L 1728 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-75\" d=\"M 500 1363 \n", "L 500 3500 \n", "L 1625 3500 \n", "L 1625 3150 \n", "Q 1625 2866 1622 2436 \n", "Q 1619 2006 1619 1863 \n", "Q 1619 1441 1641 1255 \n", "Q 1663 1069 1716 984 \n", "Q 1784 875 1895 815 \n", "Q 2006 756 2150 756 \n", "Q 2500 756 2700 1025 \n", "Q 2900 1294 2900 1772 \n", "L 2900 3500 \n", "L 4019 3500 \n", "L 4019 0 \n", "L 2900 0 \n", "L 2900 506 \n", "Q 2647 200 2364 54 \n", "Q 2081 -91 1741 -91 \n", "Q 1134 -91 817 281 \n", "Q 500 653 500 1363 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6d\" d=\"M 3781 2919 \n", "Q 3994 3244 4286 3414 \n", "Q 4578 3584 4928 3584 \n", "Q 5531 3584 5847 3212 \n", "Q 6163 2841 6163 2131 \n", "L 6163 0 \n", "L 5038 0 \n", "L 5038 1825 \n", "Q 5041 1866 5042 1909 \n", "Q 5044 1953 5044 2034 \n", "Q 5044 2406 4934 2573 \n", "Q 4825 2741 4581 2741 \n", "Q 4263 2741 4089 2478 \n", "Q 3916 2216 3909 1719 \n", "L 3909 0 \n", "L 2784 0 \n", "L 2784 1825 \n", "Q 2784 2406 2684 2573 \n", "Q 2584 2741 2328 2741 \n", "Q 2006 2741 1831 2477 \n", "Q 1656 2213 1656 1722 \n", "L 1656 0 \n", "L 531 0 \n", "L 531 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1863 3284 2130 3434 \n", "Q 2397 3584 2719 3584 \n", "Q 3081 3584 3359 3409 \n", "Q 3638 3234 3781 2919 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-62\" d=\"M 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "z\n", "M 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-65\" d=\"M 4031 1759 \n", "L 4031 1441 \n", "L 1416 1441 \n", "Q 1456 1047 1700 850 \n", "Q 1944 653 2381 653 \n", "Q 2734 653 3104 758 \n", "Q 3475 863 3866 1075 \n", "L 3866 213 \n", "Q 3469 63 3072 -14 \n", "Q 2675 -91 2278 -91 \n", "Q 1328 -91 801 392 \n", "Q 275 875 275 1747 \n", "Q 275 2603 792 3093 \n", "Q 1309 3584 2216 3584 \n", "Q 3041 3584 3536 3087 \n", "Q 4031 2591 4031 1759 \n", "z\n", "M 2881 2131 \n", "Q 2881 2450 2695 2645 \n", "Q 2509 2841 2209 2841 \n", "Q 1884 2841 1681 2658 \n", "Q 1478 2475 1428 2131 \n", "L 2881 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-72\" d=\"M 3138 2547 \n", "Q 2991 2616 2845 2648 \n", "Q 2700 2681 2553 2681 \n", "Q 2122 2681 1889 2404 \n", "Q 1656 2128 1656 1613 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2925 \n", "Q 1872 3269 2151 3426 \n", "Q 2431 3584 2822 3584 \n", "Q 2878 3584 2943 3579 \n", "Q 3009 3575 3134 3559 \n", "L 3138 2547 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6f\" d=\"M 2203 2784 \n", "Q 1831 2784 1636 2517 \n", "Q 1441 2250 1441 1747 \n", "Q 1441 1244 1636 976 \n", "Q 1831 709 2203 709 \n", "Q 2569 709 2762 976 \n", "Q 2956 1244 2956 1747 \n", "Q 2956 2250 2762 2517 \n", "Q 2569 2784 2203 2784 \n", "z\n", "M 2203 3584 \n", "Q 3106 3584 3614 3096 \n", "Q 4122 2609 4122 1747 \n", "Q 4122 884 3614 396 \n", "Q 3106 -91 2203 -91 \n", "Q 1297 -91 786 396 \n", "Q 275 884 275 1747 \n", "Q 275 2609 786 3096 \n", "Q 1297 3584 2203 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-66\" d=\"M 2841 4863 \n", "L 2841 4128 \n", "L 2222 4128 \n", "Q 1984 4128 1890 4042 \n", "Q 1797 3956 1797 3744 \n", "L 1797 3500 \n", "L 2753 3500 \n", "L 2753 2700 \n", "L 1797 2700 \n", "L 1797 0 \n", "L 678 0 \n", "L 678 2700 \n", "L 122 2700 \n", "L 122 3500 \n", "L 678 3500 \n", "L 678 3744 \n", "Q 678 4316 997 4589 \n", "Q 1316 4863 1984 4863 \n", "L 2841 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-73\" d=\"M 3272 3391 \n", "L 3272 2541 \n", "Q 2913 2691 2578 2766 \n", "Q 2244 2841 1947 2841 \n", "Q 1628 2841 1473 2761 \n", "Q 1319 2681 1319 2516 \n", "Q 1319 2381 1436 2309 \n", "Q 1553 2238 1856 2203 \n", "L 2053 2175 \n", "Q 2913 2066 3209 1816 \n", "Q 3506 1566 3506 1031 \n", "Q 3506 472 3093 190 \n", "Q 2681 -91 1863 -91 \n", "Q 1516 -91 1145 -36 \n", "Q 775 19 384 128 \n", "L 384 978 \n", "Q 719 816 1070 734 \n", "Q 1422 653 1784 653 \n", "Q 2113 653 2278 743 \n", "Q 2444 834 2444 1013 \n", "Q 2444 1163 2330 1236 \n", "Q 2216 1309 1875 1350 \n", "L 1678 1375 \n", "Q 931 1469 631 1722 \n", "Q 331 1975 331 2491 \n", "Q 331 3047 712 3315 \n", "Q 1094 3584 1881 3584 \n", "Q 2191 3584 2531 3537 \n", "Q 2872 3491 3272 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-68\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1625 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-74\" d=\"M 1759 4494 \n", "L 1759 3500 \n", "L 2913 3500 \n", "L 2913 2700 \n", "L 1759 2700 \n", "L 1759 1216 \n", "Q 1759 972 1856 886 \n", "Q 1953 800 2241 800 \n", "L 2816 800 \n", "L 2816 0 \n", "L 1856 0 \n", "Q 1194 0 917 276 \n", "Q 641 553 641 1216 \n", "L 641 2700 \n", "L 84 2700 \n", "L 84 3500 \n", "L 641 3500 \n", "L 641 4494 \n", "L 1759 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-70\" d=\"M 1656 506 \n", "L 1656 -1331 \n", "L 538 -1331 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "z\n", "M 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-63\" d=\"M 3366 3391 \n", "L 3366 2478 \n", "Q 3138 2634 2908 2709 \n", "Q 2678 2784 2431 2784 \n", "Q 1963 2784 1702 2511 \n", "Q 1441 2238 1441 1747 \n", "Q 1441 1256 1702 982 \n", "Q 1963 709 2431 709 \n", "Q 2694 709 2930 787 \n", "Q 3166 866 3366 1019 \n", "L 3366 103 \n", "Q 3103 6 2833 -42 \n", "Q 2563 -91 2291 -91 \n", "Q 1344 -91 809 395 \n", "Q 275 881 275 1747 \n", "Q 275 2613 809 3098 \n", "Q 1344 3584 2291 3584 \n", "Q 2566 3584 2833 3536 \n", "Q 3100 3488 3366 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6c\" d=\"M 538 4863 \n", "L 1656 4863 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-61\" d=\"M 2106 1575 \n", "Q 1756 1575 1579 1456 \n", "Q 1403 1338 1403 1106 \n", "Q 1403 894 1545 773 \n", "Q 1688 653 1941 653 \n", "Q 2256 653 2472 879 \n", "Q 2688 1106 2688 1447 \n", "L 2688 1575 \n", "L 2106 1575 \n", "z\n", "M 3816 1997 \n", "L 3816 0 \n", "L 2688 0 \n", "L 2688 519 \n", "Q 2463 200 2181 54 \n", "Q 1900 -91 1497 -91 \n", "Q 953 -91 614 226 \n", "Q 275 544 275 1050 \n", "Q 275 1666 698 1953 \n", "Q 1122 2241 2028 2241 \n", "L 2688 2241 \n", "L 2688 2328 \n", "Q 2688 2594 2478 2717 \n", "Q 2269 2841 1825 2841 \n", "Q 1466 2841 1156 2769 \n", "Q 847 2697 581 2553 \n", "L 581 3406 \n", "Q 941 3494 1303 3539 \n", "Q 1666 3584 2028 3584 \n", "Q 2975 3584 3395 3211 \n", "Q 3816 2838 3816 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-4e\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"83.691406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"154.882812\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-62\" x=\"259.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"330.664062\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"398.486328\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"447.802734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"482.617188\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"551.318359\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"594.824219\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"629.638672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"689.160156\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"760.351562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"829.052734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"876.855469\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"936.376953\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-70\" x=\"971.191406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1042.773438\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1110.595703\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1159.912109\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1194.726562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6c\" x=\"1254.003906\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1288.28125\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1355.761719\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1415.283203\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 56.805937 176.330859 \n", "L 335.805938 176.330859 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 0.40 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 180.509999) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 56.805937 150.614708 \n", "L 335.805938 150.614708 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 0.45 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 154.793848) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 56.805937 124.898557 \n", "L 335.805938 124.898557 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 0.50 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 129.077698) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 56.805937 99.182406 \n", "L 335.805938 99.182406 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 0.55 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 103.361547) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 56.805937 73.466255 \n", "L 335.805938 73.466255 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0.60 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 77.645396) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 56.805937 47.750105 \n", "L 335.805938 47.750105 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 0.65 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 51.929245) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_13\">\n", "     <!-- Accuracy -->\n", "     <g style=\"fill: #262626\" transform=\"translate(16.224375 135.9825) rotate(-90) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-41\" d=\"M 3419 850 \n", "L 1538 850 \n", "L 1241 0 \n", "L 31 0 \n", "L 1759 4666 \n", "L 3194 4666 \n", "L 4922 0 \n", "L 3713 0 \n", "L 3419 850 \n", "z\n", "M 1838 1716 \n", "L 3116 1716 \n", "L 2478 3572 \n", "L 1838 1716 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-79\" d=\"M 78 3500 \n", "L 1197 3500 \n", "L 2138 1125 \n", "L 2938 3500 \n", "L 4056 3500 \n", "L 2584 -331 \n", "Q 2363 -916 2067 -1148 \n", "Q 1772 -1381 1288 -1381 \n", "L 641 -1381 \n", "L 641 -647 \n", "L 991 -647 \n", "Q 1275 -647 1404 -556 \n", "Q 1534 -466 1606 -231 \n", "L 1638 -134 \n", "L 78 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-41\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"77.392578\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"136.669922\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"195.947266\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"267.138672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"316.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"383.935547\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-79\" x=\"443.212891\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"PolyCollection_1\">\n", "    <defs>\n", "     <path id=\"mc9b19c5f3b\" d=\"M 65.524687 -96.049831 \n", "L 65.524687 -58.684322 \n", "L 82.962187 -105.638551 \n", "L 117.837187 -139.013503 \n", "L 187.587187 -166.002803 \n", "L 327.087188 -186.969538 \n", "L 327.087188 -195.992355 \n", "L 327.087188 -195.992355 \n", "L 187.587187 -176.563911 \n", "L 117.837187 -152.4092 \n", "L 82.962187 -129.041655 \n", "L 65.524687 -96.049831 \n", "z\n", "\" style=\"stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p6b9b9346b3)\">\n", "     <use xlink:href=\"#mc9b19c5f3b\" x=\"0\" y=\"231.597813\" style=\"fill: #dd8452; fill-opacity: 0.2; stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"PolyCollection_2\">\n", "    <defs>\n", "     <path id=\"mbef3830eb5\" d=\"M 65.524687 -89.782457 \n", "L 65.524687 -50.519688 \n", "L 82.962187 -104.40931 \n", "L 117.837187 -146.467856 \n", "L 187.587187 -172.022965 \n", "L 327.087188 -192.416278 \n", "L 327.087188 -201.719688 \n", "L 327.087188 -201.719688 \n", "L 187.587187 -184.789977 \n", "L 117.837187 -161.897388 \n", "L 82.962187 -132.360407 \n", "L 65.524687 -89.782457 \n", "z\n", "\" style=\"stroke: #55a868; stroke-opacity: 0.2\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p6b9b9346b3)\">\n", "     <use xlink:href=\"#mbef3830eb5\" x=\"0\" y=\"231.597813\" style=\"fill: #55a868; fill-opacity: 0.2; stroke: #55a868; stroke-opacity: 0.2\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_12\">\n", "    <path d=\"M 65.524687 154.230736 \n", "L 82.962187 114.25771 \n", "L 117.837187 85.886461 \n", "L 187.587187 60.314456 \n", "L 327.087188 40.116866 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"ma7c04ab2e3\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #1a1a1a\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p6b9b9346b3)\">\n", "     <use xlink:href=\"#ma7c04ab2e3\" x=\"65.524687\" y=\"154.230736\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#ma7c04ab2e3\" x=\"82.962187\" y=\"114.25771\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#ma7c04ab2e3\" x=\"117.837187\" y=\"85.886461\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#ma7c04ab2e3\" x=\"187.587187\" y=\"60.314456\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#ma7c04ab2e3\" x=\"327.087188\" y=\"40.116866\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_13\">\n", "    <path d=\"M 65.524687 161.44674 \n", "L 82.962187 113.212954 \n", "L 117.837187 77.41519 \n", "L 187.587187 53.191341 \n", "L 327.087188 34.52983 \n", "\" clip-path=\"url(#p6b9b9346b3)\" style=\"fill: none; stroke: #55a868; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"m9e2262ab6a\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #1a1a1a\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p6b9b9346b3)\">\n", "     <use xlink:href=\"#m9e2262ab6a\" x=\"65.524687\" y=\"161.44674\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m9e2262ab6a\" x=\"82.962187\" y=\"113.212954\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m9e2262ab6a\" x=\"117.837187\" y=\"77.41519\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m9e2262ab6a\" x=\"187.587187\" y=\"53.191341\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m9e2262ab6a\" x=\"327.087188\" y=\"34.52983\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 56.805937 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 335.805938 188.638125 \n", "L 335.805938 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 56.805937 188.638125 \n", "L 335.805938 188.638125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 56.805937 22.318125 \n", "L 335.805938 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_14\">\n", "    <!-- Few-Shot Performance ProtoNet and ProtoMAML -->\n", "    <g style=\"fill: #262626\" transform=\"translate(31.170938 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-Bold-46\" d=\"M 588 4666 \n", "L 3834 4666 \n", "L 3834 3756 \n", "L 1791 3756 \n", "L 1791 2888 \n", "L 3713 2888 \n", "L 3713 1978 \n", "L 1791 1978 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-77\" d=\"M 225 3500 \n", "L 1313 3500 \n", "L 1900 1088 \n", "L 2491 3500 \n", "L 3425 3500 \n", "L 4013 1113 \n", "L 4603 3500 \n", "L 5691 3500 \n", "L 4769 0 \n", "L 3547 0 \n", "L 2956 2406 \n", "L 2369 0 \n", "L 1147 0 \n", "L 225 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-2d\" d=\"M 347 2297 \n", "L 2309 2297 \n", "L 2309 1388 \n", "L 347 1388 \n", "L 347 2297 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-53\" d=\"M 3834 4519 \n", "L 3834 3531 \n", "Q 3450 3703 3084 3790 \n", "Q 2719 3878 2394 3878 \n", "Q 1963 3878 1756 3759 \n", "Q 1550 3641 1550 3391 \n", "Q 1550 3203 1689 3098 \n", "Q 1828 2994 2194 2919 \n", "L 2706 2816 \n", "Q 3484 2659 3812 2340 \n", "Q 4141 2022 4141 1434 \n", "Q 4141 663 3683 286 \n", "Q 3225 -91 2284 -91 \n", "Q 1841 -91 1394 -6 \n", "Q 947 78 500 244 \n", "L 500 1259 \n", "Q 947 1022 1364 901 \n", "Q 1781 781 2169 781 \n", "Q 2563 781 2772 912 \n", "Q 2981 1044 2981 1288 \n", "Q 2981 1506 2839 1625 \n", "Q 2697 1744 2272 1838 \n", "L 1806 1941 \n", "Q 1106 2091 782 2419 \n", "Q 459 2747 459 3303 \n", "Q 459 4000 909 4375 \n", "Q 1359 4750 2203 4750 \n", "Q 2588 4750 2994 4692 \n", "Q 3400 4634 3834 4519 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-50\" d=\"M 588 4666 \n", "L 2584 4666 \n", "Q 3475 4666 3951 4270 \n", "Q 4428 3875 4428 3144 \n", "Q 4428 2409 3951 2014 \n", "Q 3475 1619 2584 1619 \n", "L 1791 1619 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "M 1791 3794 \n", "L 1791 2491 \n", "L 2456 2491 \n", "Q 2806 2491 2997 2661 \n", "Q 3188 2831 3188 3144 \n", "Q 3188 3456 2997 3625 \n", "Q 2806 3794 2456 3794 \n", "L 1791 3794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-6e\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1631 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-64\" d=\"M 2919 2988 \n", "L 2919 4863 \n", "L 4044 4863 \n", "L 4044 0 \n", "L 2919 0 \n", "L 2919 506 \n", "Q 2688 197 2409 53 \n", "Q 2131 -91 1766 -91 \n", "Q 1119 -91 703 423 \n", "Q 288 938 288 1747 \n", "Q 288 2556 703 3070 \n", "Q 1119 3584 1766 3584 \n", "Q 2128 3584 2408 3439 \n", "Q 2688 3294 2919 2988 \n", "z\n", "M 2181 722 \n", "Q 2541 722 2730 984 \n", "Q 2919 1247 2919 1747 \n", "Q 2919 2247 2730 2509 \n", "Q 2541 2772 2181 2772 \n", "Q 1825 2772 1636 2509 \n", "Q 1447 2247 1447 1747 \n", "Q 1447 1247 1636 984 \n", "Q 1825 722 2181 722 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-4d\" d=\"M 588 4666 \n", "L 2119 4666 \n", "L 3181 2169 \n", "L 4250 4666 \n", "L 5778 4666 \n", "L 5778 0 \n", "L 4641 0 \n", "L 4641 3413 \n", "L 3566 897 \n", "L 2803 897 \n", "L 1728 3413 \n", "L 1728 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-4c\" d=\"M 588 4666 \n", "L 1791 4666 \n", "L 1791 909 \n", "L 3903 909 \n", "L 3903 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-Bold-46\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"64.310547\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-77\" x=\"132.132812\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-2d\" x=\"224.515625\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-53\" x=\"266.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"338.041016\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"409.232422\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"477.933594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"525.736328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"560.550781\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"633.841797\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"701.664062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"750.980469\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"794.486328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"863.1875\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"912.503906\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1016.703125\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6e\" x=\"1084.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1155.375\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1214.652344\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1282.474609\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"1317.289062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1390.580078\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1439.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1508.597656\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1556.400391\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4e\" x=\"1625.101562\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1708.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1776.615234\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1824.417969\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1859.232422\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6e\" x=\"1926.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-64\" x=\"1997.904297\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"2069.486328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"2104.300781\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"2177.591797\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"2226.908203\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"2295.609375\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"2343.412109\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4d\" x=\"2412.113281\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-41\" x=\"2511.625\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4d\" x=\"2589.017578\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4c\" x=\"2688.529297\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"legend_1\">\n", "    <g id=\"patch_7\">\n", "     <path d=\"M 231.782031 183.138125 \n", "L 328.105937 183.138125 \n", "Q 330.305937 183.138125 330.305937 180.938125 \n", "L 330.305937 149.74625 \n", "Q 330.305937 147.54625 328.105937 147.54625 \n", "L 231.782031 147.54625 \n", "Q 229.582031 147.54625 229.582031 149.74625 \n", "L 229.582031 180.938125 \n", "Q 229.582031 183.138125 231.782031 183.138125 \n", "z\n", "\" style=\"fill: #eaeaf2; opacity: 0.8; stroke: #cccccc; stroke-linejoin: miter\"/>\n", "    </g>\n", "    <g id=\"line2d_14\">\n", "     <path d=\"M 233.982031 156.454531 \n", "L 244.982031 156.454531 \n", "L 255.982031 156.454531 \n", "\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "     <g>\n", "      <use xlink:href=\"#ma7c04ab2e3\" x=\"244.982031\" y=\"156.454531\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_15\">\n", "     <!-- ProtoNet -->\n", "     <g style=\"fill: #262626\" transform=\"translate(264.782031 160.304531) scale(0.11 -0.11)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-4e\" d=\"M 628 4666 \n", "L 1478 4666 \n", "L 3547 763 \n", "L 3547 4666 \n", "L 4159 4666 \n", "L 4159 0 \n", "L 3309 0 \n", "L 1241 3903 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"58.552734\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"97.416016\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"158.597656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"197.806641\"/>\n", "      <use xlink:href=\"#DejaVuSans-4e\" x=\"258.988281\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"333.792969\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"395.316406\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"line2d_15\">\n", "     <path d=\"M 233.982031 172.600469 \n", "L 244.982031 172.600469 \n", "L 255.982031 172.600469 \n", "\" style=\"fill: none; stroke: #55a868; stroke-width: 1.5; stroke-linecap: round\"/>\n", "     <g>\n", "      <use xlink:href=\"#m9e2262ab6a\" x=\"244.982031\" y=\"172.600469\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_16\">\n", "     <!-- ProtoMAML -->\n", "     <g style=\"fill: #262626\" transform=\"translate(264.782031 176.450469) scale(0.11 -0.11)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-4d\" d=\"M 628 4666 \n", "L 1569 4666 \n", "L 2759 1491 \n", "L 3956 4666 \n", "L 4897 4666 \n", "L 4897 0 \n", "L 4281 0 \n", "L 4281 4097 \n", "L 3078 897 \n", "L 2444 897 \n", "L 1241 4097 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"58.552734\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"97.416016\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"158.597656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"197.806641\"/>\n", "      <use xlink:href=\"#DejaVuSans-4d\" x=\"258.988281\"/>\n", "      <use xlink:href=\"#DejaVuSans-41\" x=\"345.267578\"/>\n", "      <use xlink:href=\"#DejaVuSans-4d\" x=\"413.675781\"/>\n", "      <use xlink:href=\"#DejaVuSans-4c\" x=\"499.955078\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p6b9b9346b3\">\n", "   <rect x=\"56.805937\" y=\"22.318125\" width=\"279\" height=\"166.32\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 500x300 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plot_few_shot(protomaml_accuracies, name=\"ProtoMAML\", color=\"C2\", ax=ax)\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "290a05d2", "metadata": {"papermill": {"duration": 0.01735, "end_time": "2023-03-14T16:25:01.707036", "exception": false, "start_time": "2023-03-14T16:25:01.689686", "status": "completed"}, "tags": []}, "source": ["We can observe that ProtoMAML is indeed able to outperform ProtoNet for $k>4$.\n", "This is because with more samples, it becomes more relevant to also adapt the base model's parameters.\n", "Meanwhile, for $k=2$, ProtoMAML achieves lower performance than ProtoNet.\n", "This is likely also related to choosing 200 inner loop updates since with more updates, there exists the risk of overfitting.\n", "Nonetheless, the high standard deviation for $k=2$ makes it hard to take any statistically valid conclusion.\n", "\n", "Overall, we can conclude that ProtoMAML slightly outperforms ProtoNet for larger shot counts.\n", "However, one disadvantage of ProtoMAML is its much longer training and testing time.\n", "ProtoNet provides a simple, efficient, yet strong baseline for\n", "ProtoMAML, and might be the better solution in situations where limited\n", "resources are available."]}, {"cell_type": "markdown", "id": "eec2b12f", "metadata": {"papermill": {"duration": 0.017257, "end_time": "2023-03-14T16:25:01.741710", "exception": false, "start_time": "2023-03-14T16:25:01.724453", "status": "completed"}, "tags": []}, "source": ["## Domain adaptation\n", "\n", "So far, we have evaluated our meta-learning algorithms on the same dataset on which we have trained them.\n", "However, meta-learning algorithms are especially interesting when we want to move from one to another dataset.\n", "So, what happens if we apply them on a quite different dataset than CIFAR?\n", "This is what we try out below, and evaluate ProtoNet and ProtoMAML on the SVHN dataset."]}, {"cell_type": "markdown", "id": "cac8dc83", "metadata": {"papermill": {"duration": 0.017331, "end_time": "2023-03-14T16:25:01.776790", "exception": false, "start_time": "2023-03-14T16:25:01.759459", "status": "completed"}, "tags": []}, "source": ["### SVHN dataset\n", "\n", "The Street View House Numbers (SVHN) dataset is a real-world image dataset for house number detection.\n", "It is similar to MNIST by having the classes 0 to 9, but is more difficult due to its real-world setting and possible distracting numbers left and right.\n", "Let's first load the dataset, and visualize some images to get an impression of the dataset."]}, {"cell_type": "code", "execution_count": 34, "id": "8f5c226c", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:01.812521Z", "iopub.status.busy": "2023-03-14T16:25:01.812343Z", "iopub.status.idle": "2023-03-14T16:25:25.487853Z", "shell.execute_reply": "2023-03-14T16:25:25.486752Z"}, "papermill": {"duration": 23.696805, "end_time": "2023-03-14T16:25:25.490910", "exception": false, "start_time": "2023-03-14T16:25:01.794105", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading http://ufldl.stanford.edu/housenumbers/test_32x32.mat to /__w/12/s/.datasets/test_32x32.mat\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "abcd13b2c2214bf98c12bd56858451d0", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/64275384 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["SVHN_test_dataset = SVHN(root=DATASET_PATH, split=\"test\", download=True, transform=transforms.ToTensor())"]}, {"cell_type": "code", "execution_count": 35, "id": "fdbd4485", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:25.535550Z", "iopub.status.busy": "2023-03-14T16:25:25.535182Z", "iopub.status.idle": "2023-03-14T16:25:25.805204Z", "shell.execute_reply": "2023-03-14T16:25:25.804145Z"}, "papermill": {"duration": 0.29095, "end_time": "2023-03-14T16:25:25.806818", "exception": false, "start_time": "2023-03-14T16:25:25.515868", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDYwLjggMTgxLjIxNDMyMDM4ODMgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicVY9PT4NAEMXv8ynesT247CwLbI/9o1gPJrVED8YDoQuVFCtCrB/foSFtuslL5k123vwmWPnfz8K/pAsstxRcXdERoxZV0KhFJzBSUUVaXEM21spJdRgrdqwM29BIR9+4PVFJLRJlzrI2VhYcsYrdLDQ6dC7Ej8cbvhDMZUEnW2rRSdJT3DK14/jAMETMzCW3aBCsGasjNrRBC604EvpL1mDTsUutXKZxJyFgTpSLXRKBY6vclaloaJFR8CBfDLLyfHe2o3dM1k1eefipTAhBol04PEz+8ub74DscS/R7j+3r4zN2eZ93vp/iA9kT3WckdPQPgplVQAplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI0OQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDc5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jcENwDAIA/9MwQg4hVD2qao+0v2/LUR87DMI7HqycKRME/YRfIH+nPTSOFC0yEwZaNqzvtgkuYOXI5QnmtKrYvXnRQ/dH8meGAwKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDOzMFEwULAAYjNzMwVzI0uFFEMuIwszoEAulwVYIIfL0NAQyjI2MVIwNDQFskzNjaFiMI1AWUuQQTlQ/TlcGVxpAHQyEqEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIzOSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCA4OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TbkRgDAM6z2FR8CPSLwPx1GE/VvshDSWTp8Rygdr5AGC4Y0vIfiiLxmEtQsPKvtIdNhEDWcVJBPDryzwqpwVbXMlE9lZTKOzQcv0re1vgx66P92OHAoKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNSAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDcyIC9IIC9JIDc4IC9OIDgzIC9TIDg2IC9WIDk3IC9hIDEwMCAvZCAvZSAvZiAvZyAvaCAxMDggL2wgL20KMTExIC9vIC9wIDExNSAvcyAvdCAxMjAgL3ggXQo+PgovV2lkdGhzIDE0IDAgUiA+PgplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0ggMTggMCBSIC9JIDE5IDAgUiAvTiAyMCAwIFIgL1MgMjEgMCBSIC9WIDIyIDAgUiAvYSAyMyAwIFIgL2QgMjQgMCBSCi9lIDI1IDAgUiAvZiAyNiAwIFIgL2cgMjcgMCBSIC9oIDI4IDAgUiAvbCAyOSAwIFIgL20gMzAgMCBSIC9vIDMxIDAgUgovcCAzMiAwIFIgL3MgMzMgMCBSIC9zcGFjZSAzNCAwIFIgL3QgMzUgMCBSIC94IDM2IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTYgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggNjIwIC9IZWlnaHQgMjExCi9Db2xvclNwYWNlIC9EZXZpY2VSR0IgL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDMgL0NvbHVtbnMgNjIwID4+IC9MZW5ndGggMzcgMCBSID4+CnN0cmVhbQp4nO29OcxtW5altfvT/s3tXhdNRpsRREZkClWWSjiURBn4qAxwMDAQUMIoCQkssBAYBRYGDsLGAhMDCZdSVaWqCSIyoqJ/70W89273t6fZLcaZY8x119z73P+efCiV0hzOv+5pdrv2Pnd/a6wx008//TRxuVwul8v17sr+ujfA5XK5XK6/qfIfUZfL5XK5TpT/iLpcLpfLdaL8R9TlcrlcrhPlP6Iul8vlcp2owr70u9vh0Egz+YlNk/TQGIYBn5JX+q6Lvp5m6cNXn6Z2yfFbD9Ew8MOynKHvzVtfjr5xGb/yn/yD//jQ6FpZaddh7fwQ/rvSYcMy7GCRynsZDniWl4dGjs+k+EyaY0H6rfzQaFPse3AwsbYkwxbw/038GJeZ5VgUTivPZo63cm7AgFPfNfJhHnysn3v0P/z3/yh5U//df/MPD43ZYnForJZnss2NfL+s5Dhs7zZv7nTywYfvHxqXTx5hL6Qzz1aynBJLruYraVTyVl7MD40GG9/W0ihT2dMEh65pZE/zcoGDIJ/pulZ2OZPP7LlAHJ+qnMlysMD1WjYjwfndbneHxt3d7aHx7/ytHyRv6n/5n/4RVioLamqstJHN4KWaodHhXKQDrzU0Ur71Dv+ZDi5M7UpRg327T/lWH3/YvMVvLRZydgpcCNpX03Tq6//RP/iH0aZ+85vfnt54vpKYV7Low2MNfnyYeqVt5aTU6FodL6vg02HzAdtmD35qGtiOIb4h9OY2+8nHv41e+R//t/88eqXQmwBOK04m97FHD+TpLYsy2uYeH8kLuXyKQq7ZpomPVdPVh0aH3eJ9ssAdr5hV0ihxd8JneGH2PY45b0q4wAvcyvhjsW9lpW0tX+9abLxsV/Jf/qf/c/Km/EnU5XK5XK4T5T+iLpfL5XKdqBGcS2LWtfIEq0gQD8I5HsNzPLN3eGq2gJcP74R7ljMoMcbDu3IHgyDGFH8mw6N6H2/O8a8/hP2a7RlwgEg4E4NzCYKIY7mpWdwo8F4OcMGP22MRHEOCMt0LEhge2VZBNzYbyI+94SjIsowpbnGTmraPPwyVgJwzMNIUvassAfF6sjLZtIJACdu8q/eHxnwhn8nAdefz5aGRzwUP8vQ0rXyLaFR3AwixmgGqV/KZgIahtw8gdTiYdSdLLgrZwdV6fWi0PbmWnGli2Nsb+dbz17fJhALMiFcy2Z4c2xygvZjyEefaay14S1cWrYvXPocPUm3YTZVGT8LPK4LXSNpFH2bXwm4l/cDP8CIxm3rsScBezmn8Thov8J2Gf4KNj1dB5l+WoNxZfFRD2buivfMFr8S3rCPDX3pgJz+iynEb6i1C1wXEVw13jTcVg7eTnvcncF3eHu5uZbzm7v7+0Njj14cdhux3uZQ7xhxdab3GPaTAyNSAzkmMyw3CDZC/a8Ts23u5DNs9cG6D22Yz+TPkT6Iul8vlcp0o/xF1uVwul+tEjeDcHiYqunMLcsYk9q1leFhWCKzoIKZPRDq0V/VDHzXICeiYavFWTtsklCoemXT5HtGg+BObSudp/w7L0QXSH6sUC6sw3EO9uOqzBQii/QwkvMf2BEcs5tS0RQ+BQZonMeuB44DRYDcb4UiZObDcWkI80pAMHtoZ8CmNecm0NTpg+wQm7APikdtuAV1hAlytBczSFkgeWwACL5bCUav5AlsoG9YlcNU2cU9mZ+hhB+xxxKo5WTq8uDgLWSMr3TeyqQPGD5Rb8ohhyVkhrsKrFwKvPvvs6tD49W8+lg//u38niRUTx4H/CU5juMfDS9LLvkRel+a0KQI85oRgpHM4vNhmWqa1T3a2/3BkAr0u5x2DIx2xX5dHdQemR68m0WKvvneOYkwqzeKHhGPjFCNcNHYdkw0q5c7i6zov4pUOQxHtRXh76XGEaShlb9cj3MdfDO5dXBQ7Aw+1tfu+/amJoypZ8vaRMF0FO7muwVxZxKfYwWYnFPfV1fWhcX17c2jUtfjVafBmx1uvxWy/WsVbuF4u4y3MMMqT8haKw7uXr9/cyEqvrzZYOzoerlls8oj8SdTlcrlcrhPlP6Iul8vlcp2oEZybw9zIRpaqbfPwhw/mFdhFhznmQyMsrucDsPF21XTwGtKbGgColNIGMmjmQ+wCTfMjmAefeZc8h2Pq44YCUq4LDdqGOR0+V3YKBAd7LqcDdzQ3mlVk8DKmSvCUe+tJzATHEYQmDVlZHy1hhOJi23h+FgshJ2dnQlfO1ueHxmy2SN4mpVhwqHIf97DGXb8WyENcWc6eyIeVtBFOwsFbyNpL4OU2ERB0e709NL54Lkve3AmGTUF6y1Q+/PhCdufZM7HX5qVsWC7HMqkqHOpa1n4PSk5yxgO+3coObneyGT//2S8PjV/9SioS/utf/BI79veTN9UC99UwNe6RAsGUD1pnZ5Uw7eUcDSQYzGFunM3krTX8w3PYmIl893uhagssp8LJvb4WI/HtzZ1sGHrUrJTlrM5lyedoLJZy7AZQtRp3jN1GDsv1jZydm+sbrELWtdnLuvoWCRiG2VKWXtoghaCH4zOG4tpEhQDnYsyr5BCMyU4x+TNqjA/unA2GGOpaPt+0sY2VJnBdgF68lkubQZkH3PGCu2K8wETzOmLL60iKBW/O9ODiLzvVq5dXh8bdjXDU7U7eak33yDN5q6vR/7cYXgHlznGlL+ZVvGHk3twMrOvFc9mMm2vpXcxXSQZZYFNz+CuWP4m6XC6Xy3Wi/EfU5XK5XK4TNYJz6SrcIz8w6egjxZxuwNJmh9xU9YgBM04D1V65p/wNYleNLZZONvAKnbTbx98iLLUxv1Sq84KtBTfmFQ9BvkE8L9OGbaKmncxtPM98RacnT4Y2kGLNgOAKNCpESobvpuAShGaEijXmNSvpZdwlbag4ZbNKaN755eWh8eTJY7wlxI/H/ojJeQ/nbQ23MMcItht56wZYj2Ts8lJSZ8nve10XnLfMNOile+8FCCUvXsku//rXnx8aL5/TDQjbM7r9syeyg9/73lcOjQ8/FD68XMuSK8BJeAA1KYLpBDwajLn4w6dfHBq/+e0nh8YXz18fGre32FYruriVJcJwqK5RxiADbpfcVDk7ixVY65qsVcD1AqSXaSptI8hLcz8wjX22l9O0r9HfsPYSvW6xgJES61qdyVu0l9OHyehmBmgU6Kt861imgNEIYzS2c7Wvq003vniZWGK9uOqCxhAM3bk2blppaoBz2046DLklyfB+D9KLAY4micc+gvuc3haj7VesbVCtlcW5NuGFe81BmWMRLBS2db+TPb16LTbsVuG8HI0SQyYabIvjs7nf4BU5PpzgsEZK9rzE17HrOe7SHQy3PKqM5t7eS39LB85lQJx4o6cskj+Julwul8t1ovxH1OVyuVyuEzWCcxtSGjwsNzWiUFF6qQNEO1vBCVky3RRwso/RKKuAsdJWrrYxYqjY0kZ00A38cLzNwdxwWlUnecVDghTeybg7EmpqG4pq41pmCXyhg5lE3+MYMpo4By2sYI69fHx5aLDAVgUfZpIk1QywF+f69laMjlf0QGKuMRvc/Q7nrgLfo5OTDeYn72FguwceOZKde3UNVMsABJyX2yvkZ26FrlTAg4TA6m8Eb+nUOoi57Yio3W7l6L18Lkv+9a+fHxp/+PSlfGYnbGeDtT8+lyNcgeZdXnzj0Jghp7dtOaAAl2Yu1HSPtxJAuRqTu+9wfAivvvKVrx4aT598mEwoh786KRi4wXxRfIb5CZVsIS/Mkq8sZDkVHIwVXpmBTmvuawX2hZO7Q9W2BnWj6K/mdZ0hsIVJKexInbJ++WvJqqZIE1wbMhkEpLzLpYpGAG+thZU8NkEjixpBlkWMc8syxrmFKQoWunNLFNkixa3rOPKCGkxcQ693Mx5YvelE+z2Cao2CzxDgPyR/PL5dc8SF+cm8idUs4cfRQNzxVmu56GZLTCvAb1SLu1MLa36zkR54X2yxQAQprHE90r1vavHVjBXCO3rqca1pOPyR3JipN1wul8vlch2X/4i6XC6Xy3WiRnAumd7Vlcw8vcEU9d2OQQryGP7H3/vOoTEsBbiBASvoCKDC8ObfJMh7ZEisTYuVh+6yJOWQLx310E5Gaw7TKOOIAmpkaXCMXzRjU2cjE0OZDyeGUMEFPWQxtFnC7vjoqcQOPHn67NBYIVIyDcIW1NqMxmKQjymfwJZwcvcOs6G5r1UlfGOJdEoaOPdbOeU3d9JhXr4QRkobntUtutnQE3TLZmzhyeTQQFXyWAEYBonMsqdAx4xNIGLdbITQfvHi1aHx8SefHRqf/0FssS1muF+9kA27w1DF974r+7XfYHL3BXD3HpAIIbElMma3sJjeYu3bHd2JcngvHzHPQXBumSuKj8RSUARlNByWDO4AfaJJOK+QnwC/IuliDvCY5jE+1cplOL47WJw5CnCPhNubDeg9HM4zcN0Chu3ZnHwMRnqsiyESnamiqGXXtBQabboGz50kW4hN7bWMwzU4lw0mEpcatoAGQToN2xgXoOM0CTzkRVvEHzOJwR3jNcwUA63TxwRvBea6u9HOWtFwG8Rlx15cVrcMJkEg7oAxHTVHMRCmsZXG3Z30nAL1ECt0zqdPnx4aj5/KpbGr5W7w+RfiqL+6kiv0NRN3r2SI6vpcGucXjw6NBca2hg4/XjrbA8Z1pI5U7MCF3CRLxIYsll4KzeVyuVyuL1v+I+pyuVwu14kawbnEWf/qX/7s0PjVL353aGxB+dpOUNXHn8hs8T//2//mofHsPXkep0trPkftpC7OFX39Sp6+P/n0xaHx/LkANxLFR4/EBfrNb38Tr5xjyZoqcJDWqCK4YMktel8VpdANi6/D90WTsC65n55sy1X0JNgxzg3mdBvrHSmu2Z4e/8vJkdG6OhML7uVjwbmzpZAHLRN/f8dt24OlsJ4d94ysjOEMBYoNJUCROpna1M/aw5PJKeHXt7Leuw36yXQBoQbcn7EJLHV3cX5xaLDm0Xwhb52fCWJdApEVQJp9zdwPOX7X14Jqr5C8muXy1hPAotVKjme7leX89PYXh8brl3IhvPhMlrO5Fm7ZPxKmncE+XS4B8RayhYS397UcllYhp+zz40rW/rUP5GzOZ/KKVU/Waggka6sR52Zktjzv6gan5TtBA7Z5msBBwmnIr9El9nDvb4Dxt2i0gI0pXMeNGnfBbPt4FrzNV1Hv68hVg0aGdaWTF6ZNXAmq/uEz0SfChs2eNfHURLWFwbn0RVe4rDjjINxlDmBpCAzuUE2J05G3WAIMpalJJreJvyOTBbhHRwKHTUKFNQmzyh/nESSMTMGtT2svxueOn6nRYWYzZN5i0sEKQdzzQYDqBmNDrzHOSD8/xyMYicB+2/bx8IG97fMGuMQP1GIhl2EJ4DzZyfxJ1OVyuVyuk+U/oi6Xy+VynagRnPv8C5mH/rtfCaq9xePz40diedqgqNO/+It/fmi8/754RB9fCouD9S+pwJoa4Kxb+Pr+8idS+Omf/tOfHBovXgs6axqhRu9/JNGsfB4vviNcN88uZRUAJvT9krcEyQoxlMgU8iT4cAxwAv5zxAQYT9xOpi24wxATlYFuUuwhEQQZAj2xC0xGnsMOTUjIAlIvYI5NkmRfCwMhiZoVRKMCTGg1ZG2sO/hstfIaY4oBAXeIDtgCs3QIwNS81irm7dQZoiGGJMaMF0uwFGzqxdkM2yxsP2MFKHyZNjx8KdlthOLe3cpgwWwu3/rzv/1D2cJCDsLzP8jRm6WynL/8sQxnfPGZXBG7GxRjwpzuJVh6hkupQfQu8eliBdYKtvmVrzzDDqKcHGhwgvwEq46z19WQiS8lcSPIKaDHkpUNkemqsJQDCsYNC1hK9ssdZEU2Tn7v2ABr5BiIzlXnpaE2XTDSDgDQjB2kWpYRe/oAi731jva0guu1JW+1iEu1sncD6wgOQhviamtHFpi8cYuIl8AuFGDk+AaVGp5LQ7Vl1w8S0wnI2/sYEGukNs+UiTHnqcpx/89A4Nlh9hgjuMSJrrTiHoK40WE4uMO7SqqhNODDGD/iaBGNzTpngTvGOCDWPbNHylSHtPInUZfL5XK5TpT/iLpcLpfLdaJGcO7djbDWphEv4lc+EsPtn/3pjw6N5y+kltP/8xd/gQ+DYsEAmZq4A06mfv658Maf/fRneEUW+LVvSdkpZiy8vpIPX99cHRqslNQh/JBRhwOe0OkLDZIH0jf+hHOZE6sjFjULRwhSMBmZVds0SAAr4cxlRkry6/hIq8GwsAXCnbsGLaefjfD2959+Kl+vddI6k2kbHM99ShiISNjHQunXsMXeI+4g7ZG6ANQ2zwWo7u+Efw7gezPMUkfpvKQFk7cqF4JrbPIGT0fbMPwBWRMom9VwFj8s3xm4TbNH/axE3lqvAItQDuzRIyRULGTfH50JLOo2cvSuPhcIXCYCt3NwnxmNzSTwOGU9/IFpKmtnUkRC7yu2p8jlwwtw5rSdjKfogE85rZ78vDU2VBpu9Q3C25whAEBn4GNzJDME/lj58F0OjzGJ5hB3pB6drdf/nQMdY2J7hgWWvC6JaEne7LV2Sj7KCJ1jnUcbKZBlOGI8dIhBMKkk6rMlH+5BQe0AUK/G/pHd4Lu9fjFOnQ309vDbMdkxqXcgvDYbfDBpukE2OANwpFHgtpAVHCOQvx3u0nXDQGYEtuNCGFD9jZiakwg4h4IpHbjCtN7ZgN+4IJ2F9xk5zhtkdG+3GIcY5Lev4pKnHzj9SdTlcrlcrhPlP6Iul8vlcp2oEZw7gPuh/FTy/ntCuj78QHDfdise2jLnjFrOR5ZvZXj6ZkRhDghG69Trq1f4tKz0z34kYbz7Vh7w//E/foGVCmfue07cxpN+FqNROoFLVi+yexqAXfm6bvw7qD9WWw0ghTjXYJhebboAzma+NhNZaXzNgMN6WCEbxFN0tW5PmcO3rFHG9EliEy2uSvOoQSLFOFzOs65KUi/EZmJnm24S59qiTuS4Ncx7A9gOLc1kgBVw7tAyz1kaNXAu+wmrUzF+di6u2OTiQg7sopAxi+vn8vXHl2IS7hF1m4P4lah7lZGNAyR1CWfBy4cLDHAMKCsGX2qSY5fXS2DYehLTtcjNYDUxxmuQ0rH/950leNxmXqqx91UbWXzV0CQJhJxw0KDBS3TnFgCzdcvrkRvGbR7JAoh2Wc3hhpGSeR7lkvGbQWKKYaf0ajJm2sBPEkXiXN7TOIzVA9GTKFIMxQ03THNxu/gwDuYk2lsNIxoycz0fG4B6kCa/b13KfEXxOPskzjjDFoKECulvjPK4Q9D0eofM24xjOoJYa9bg0y1lT45TR1KcIN6BW0aLoHNuWAbxlinQuFT3dBRPh+1MveFyuVwul+u4/EfU5XK5XK4TNYJzH18IvP3aVy8PjW99871DY7mQh9w7GGUbwL1cS+Fg0Xig7kF7dnu6auVbixUiE5eSqPCtb394aHz8e/Ga1g2sU3t50u8AnGuG8ZrKRBlLqql1UMTQTr7UEbMwjNEAnCNSuMFJ2caUO7KU1LzGNAkAXqW4mXoZuejoFdYCG4KSUoOCDq4lpjSW2nD+O5lb3yAJ9k6IxwX6CcN7a/CWu3uh/TXMtFZE+orYmHJJAtMyDlc+soe9li9lIKspeFoBwFWgolzONfAEoefwRM9gTK1YCauA15oYFtERGd4aEGHKNGmOCAw5r4i4jBdzjNkDZ8iX3k4DcFoZ6cXttAfFplz1fJpkBl4I/RB/pjP8kPPieyWrODvMD6EpF6x2LAUCR95ERnO4Jy3a6DMnYkhVnDZwJDtFExWYG0CbrqLjOAWXfTWDk5zMNtMnFB7DMZzLgQCGaeD6bZWT48iY4o+pBjLYZdMNawIZhkk4qTkbupzpY6VjdnEuRG+GafgWKW6O4ZmWt3QUPmt5heLG1WCbO3Yz/ugwq6FaRI1CU3fidN8OOLdFBbQNYsC3NYYOb2V79s1kCoo/ibpcLpfLdaL8R9TlcrlcrhM1gnO/9/1vHRpPn8qD8JNLYa2vX8j8+i/+IEXG1wgsvbyUDNKC6Y4wT3HaLF1VK0ShfvePv3pokFueXchj+N1fyuTuescYB04SJ0cit+Q0bewR6UY3yYR6818IS1hP1TssaAihFzYEL4Cmcs4vEAQtuHlGxFRgKcpqcs7058TkEZJDRoTVMzGSaZlAW5utMNtnT8SqfXkuOHezlw+vruX83t+PdDCsM4ZmpFjKyrDxhNmkZyWgKzsDY0VLzMW+WEguRA4svAUfywB5yO66Rjrn/Z1UQGsaid69RDbCai37lVfsgZwJ3qEBEYvlBrixZB55G4Yhmunicd3IrPx4XQoe9fDi6+qPjeFth4CINucpgKuWDJl0TqfeF1EjwIbGY5zFFJe2SXW6dvEFafMH7KVyJETXxp0yAWCkJpoNIhjsdQFsjk0NLLV8hTiXDbNfvQ64BEtAcUByXXM2bXW2I5muGi/zblEV8bd4V0zNZ+gf5rEinFeTczCAcPhTzeTUP3osvxpErPTP87wC9GqGTFPzjoFvoYRjMcdvBLJccqDjFoOJDdh4zfCTgqb02IK+g9X/frdNJuRPoi6Xy+VynSj/EXW5XC6X60SN0LZnSFRYLN4/NO6vxGP58e+kONqLl2K/fPbsg0PjfIU6NXweVwogmGKFR+z11yUgd4kqUSxEvr2Tp+bb17LSMhMo9/Sx5J3OWfSqsP8JsFP4jTjZ3PpSWZDKmvcy82H+WwEpKV9caClAISQ5RfQWwRRXQG9kA+dtg8m//QKbDJw7QzrGPpgXXHD6PCAnoQotbbSP2kpwZL89SqolWpVeTlCBamJrFPZ69OQxdnXyLBD707LIOIiikm0ugHNzbphOnZblDMaByTndcxyQdGAxMljslIHLC/cwEt/dv8J+yb6/9+GTQ+PisexXCe9fl5KzAWeZJORBIzxkv5jDyVpXmGue3G0n3bk2ZFUJ60jlvvjrWmmLPTmLX7GQcMAW9vh6q1EPnL2OXopGRSewIr14w/oApB7+dsY6axM5jlYkjKVGUztQojKXMxtHtucBjSNjOuFO2CCFwKZrrdHxokbuSiNV0uJqg0dk4S1f4Q1TbxQmkNze8dQ2DyP940cSY/IYA4Ut7m+c08GxhvsbGdd79fzq0Li5vo12Z4YCaiUHgEqQcFDlXBNsZBUcQ1wt5Sfm/l6uPhYkXOBeVK1xwzXyJ1GXy+VyuU6U/4i6XC6Xy3WixrJzUUBqs5Fn25/9/FeHxk9//stDo5wJKPvBD79/aLz/3qW8BTfUntNmYYJiyOpiKQ/UVSWE9ovPpJ7XT38s6/rkdxKZe7GSR/4nT4SqVagCptEK6v0jV5gsPzRCHvQ9Q1QfIPXaZaRPWEwef5ikNzXIlxP/OYm47+Vc1HSU1XGcLFMi12eCVUsNVkhKHKs56sLTrlaWoBlnQjM4ufvqlThUdV4zQChzKa6urg6Ny2cCZ87OBOc+fSbpHDP4Y6044ZoBCAwRzVk7Cfyza0D7QbN38GzXcN7yyNicAZ7zCh2G+7WH2fges6rrnbzy6LHszte+/tGhsT6XPU1Bg+n0IzEmpqbZckDuR4rLjW7ApJUP397I2m+upk2AGS24cZYBuWVuLK/q3tQ59JOUj7Wl6IQv8Jn5XHDWEtkaG9SMS1KgfnW3c4AAO4qTGzTQgXm+6IkkkNScCl7gybvIXPvKq498ZxJuP6jxoGplqW0bvD2iEXp8bOHvQHGPyObitkilDpJ7mWkQG4nZl+YLjrMIfeWNs8FcAwYg3IPZfoGKhK9eXB0a9VaurPlartA1bm7lnGNksoUM0KZ7fz7HTBBczt1OVrrZoHwhM1gwTLk6d5zrcrlcLteXLf8RdblcLpfrRI3g3M8+e35o/OIXvz40fvlbMeXu4Zj61nckkOH73//2oXF5KU/Ww0DeyLxHThmGwQ/c5g5e3F//Rlbxs5/960Njcysw+YMPxcr76JHgysWM9W5QF0wn9sbzowOvnMIv+Rt951SpQdQw5GEEpMSvBNG7dF3G9rw9ZgrfAj+uQC8LhL6enz2SBQYQtZwhlAA4jjkDRYm02AWCWzey8BmIBw8sE0EZQbnZip11i/zk5VrWm8G8Ol9Nhi3MKhizAQM7cl1G3aK1u0NeB5b36JEckLM9K/dh0npLPE4UKevqUcvs6lp49eZW8kNu7mR3mo7hwLIXz96XKmlZIRiqxgTwGqblFFA9ZwRBEjN9JkXkwNQNrpHre7Eg3t5Jw6qCq9DaYsm9OVedZzlVLzqk9klsWB5/nVdWjz65AMU9W8su390gniLbY9959cXZy5yUz/KFvaYkxJmoCgmZxE2ua2J1j/h1gyCCGLraO4Z+S2vGcViBZzAONiGrpNedb2WppakjMHksNsEC3iNm4PjuylEhjfIw1Q+PKJ2+L2rxOuvrHuKbKgvBBYMP8THvWf0QUSdbdKrr13IZ3lxLo90zg5fDgvKjs7qQO89sIVf6gNiQPuHvEfM6UNAQI0oXlzIhhRd4i7jtDMNhXLKVP4m6XC6Xy3Wi/EfU5XK5XK4TNULbPv9cjLK/+JUUI7u9F9L1ta9/7dD4wQ/++NC4fCyQhxGHjIKkn44xpyQem3t5Zv/4N4KOf/tLCePtG/nat74lFPfb3/3OocEpuixWxTJY2RDzimCWdWzcte47ZSNKMt4B8QY4N9oKfS1gyTGr0bCFJH6FgGeHZIOrG8GPy7XA7XOYcgsA2ypXnDuv4grvOyQY0ydZoMxZZsoqsZBQ25KKYDO1BhnrGckr+518+H476TWt4A0mfWoBAzlnvwcS2tcxh0pTcBuUnWs6ci2gGHyYiRMNgyYAXXc7qXn06pWYAOmcffJErOOrM+nkDLGg4VyTInhY0P8HhmqAHLLjaVwq9vTmTjbjCsm9Vnp22Mk5kRwnLNOcXtNgtoY2TAHBPF5Ozn5LbzAPK1Oy6djGlpmokbBJqkbghgYWE8RKmGJkD4gyCBTjU3bsYSRylxQXttKMNy4Y2sm98xjnMiWAr/DIB5x2NPPBUlzDUTWQYbLUnV2erkx3/+1PTUeyiLlI3TXFucyZiTmzHdvSI4xPdBicur+XC+HmRty5WwxgsbtezDEdAO7cFZIQFiua5Nldme6BCzMlFpZ3KriFL3BT6tDv2eCUECt/EnW5XC6X60T5j6jL5XK5XCdqBOf+/rng3N/97rND48ljSTn4/p+IKfe73xOuO0Npco15BC3kLzQZCGMBXnwhlO9f/XOJVvj5z35/aHzn20Jxf/RnQnG//kcfyrZiru4wxMSM5bT4iG7/dzBSyl2Jm4iTxcdctdNKY8QUOOXMhhjIQgACzJDkIKUJyNseftA7GGhvgTtKOAZJjUhKkyTJciEVO2TDvrpCqa9eztQ5cCXDLVmVrMDxrMlIgYXPzxGZuxa6wipeL14Jc37x4lW8+xATLHlASCmZuqCRoag4VuYCcGaVNPIUYZuwfDcNqnchIGLA0WuV1Mkh2u9lC29wWB4j0+Nb3/j6obFaISkX0QpNF1v+cvh+6TFmp2AJs65j7TAcVUSG3twKxXp9xVzQWFoYrgVmZK8vYo+oukbtWyOvmAa+rqnQBk4qpTSN4K14L47QQoWW6k6PKW5vhk7esdBXDHh5haZpDMBz9MgSR6xAp2WjKhj8wgZxbmw/DuYO6DYfrW7GAxKPCgUO9vjmk5mDfyQb2UpvR9x61vQzpSJ13baKZB9vPP3YPbJT9hsUGrvBbe1a3Onbe3mFUTYzDFedwYu7WMorhemcg44aTGYB8wRxB/XQcagC1zVTea38SdTlcrlcrhPlP6Iul8vlcp2oEZz7ye/EKPv8uZAu+j+3O0GCr1/DypgjuBXzXhPOj8bC0wQlupB3+sXnsuRf/eLjQ+PuRuZrf/WrAoq/+z1Bx48eyZKvMCF9A0xX0u6IjFk+1/PBvNesWvrHErxicg9Oyl1gKmPHUkGgLaniPjlQrC1FNJMOMXloYVHmHHVGU7Ygk598KgD81Ss5mMsFpsOjkSRJhXJgG3Dgz1/I+S0r2ZJFJQi9Qi2zvqGDVxqsOkd4+/6HUikvxdznLz4Xr/Xnn31xaFxfT8LJYNo7KD3eImVnqgAtuPQYJ8gH5oeZ7tu20pcIglrkQvTorjADJjfXyFjAK5eXgnMfP3qCtwQ6vcChpld5gSnYZ5Ucc3Y8HJWkT2M0Su59cyMU98VzgckvXk7jXFpn6Q0mnMx5fOKG+mxx6AqNDuDFEiNNmzGr+8XPmDJY2pjOM7ENCz1ZQW8E3vLDhiWfKN3TSV4dRArHyFedyUcURx3r/SEJrdqm0aKjcKii72O+PWLl/asdEC0yqGkJsek68N1yDCYenOIuchYA8xdquPevkdF9ey0Xwh7ptUwCYbTOYgUv7lJuQTwvTPBgKA0tuBVuEGXGLWTXYWgJ8rfBmROMNeHaHfmxoPxJ1OVyuVyuE+U/oi6Xy+VynaixUmhgiXMkoH78G0ld+N//8IdDY3Umj7s/+tGfHhp/8sM/OTTee4op6gjbTFAK6gYP71/8/jlWxuJH8jz++89kXX/xL+VZ++n7Ugptvpxh7fI4vwN1pAeVtC/IK4inMKszrTdP6OlICzpWoEj+pn38DghGmsVfZwkwy1+Gnga5eBo7KUkPw+o95ul3Neyp2z0XxSn2NdBQC1i0yIWTzODm5cEbAAw7UM4M+HSxkEM9q6TRAJ/Wu230rXyagYRES1aqJwiURsFsi91hCEA8cZtgLTXuO+YwNCyptpHP3N0ABCEWomvlaGy38pnnX8jgxaef/ObQWK5k37/xDSHhs0qGPJhYOhCW4jqq4QJ8dSWn7JOPmVMtjP3li+tkQpl2Bpyodxp80CtiiBr6EXPV2Ff0gGvkM95KTCM1xBjrUrbJ/8ln5i00O+NT7TW+JJlSUDwOSzahDWr114sXuJssTz29McpmUHOWcslx7S3mTnPtDA9PkqTBTYwokg0myirX7ch17bmLDwRNzuSoJj58RHpZamhDDEJ5PQY+YhxP9aLjToUslwGDU/WO8csyxrQjxcU9eTkXC26FbPASkQglB2Uw2NRskL+Nu+Kyk28NuF/l+Dq9ypxx8PyVTEi5Q9RDNZdVrC7kV2wxn3zg9CdRl8vlcrlOlP+Iulwul8t1okZw7je//s1DY17K8y+B4d2dWAeJLNJMUFWay+NzimoydDh1DTGjPLO/ei4Uq+sw2XYnD9T/7F/8s0Pj//2FULUPv/LBofF3/97fPTSW55fydWWboCtDjPIGUj7O3OeEZe6zobgWAh/BRsohaWPjK/oZwhGkFqSkp3jHoC7Nn6T5zcykZpEpwp8BaQNJ6PjlxPxS/ue0nMmZYo2tHtSotzm0QCjzuXjkGB+6QfxsjaRcYtjcQGyq1YxZNAYTFEB4ixSInB2WNdqA7GYzeW9WsQFHdI+efCvr+vwPrw+NLz6H5fsOb30unbzbA+d+LkboT37/20Pj2VOBtx88k7EGZoeyAhpjdQfgrB1MiVevZKW//bVQ3N/8RhqsL2alBJIpoNpP6DyPHZQ8g7Spt7qF5jMcR8DV0psABDssYtlgGlThQsN+y3x9OqLhHck1l2fhsVmuiXgN0oHtpsboWZ2rOHS2HmJQGA50utMrtMHYRw3LeNPs0cD1aEy5do+sI1oRq3aG6J1jUoqr404x19WDp52T+8g7DyrcdYi53ssrtzdyx2h2uM/0uHhnKNQ4W3AXD384y2M7AHfn0mChRsaGcNQp1dEqWdceN8zX11eHxhUaS4TxzlEmMugnsfxJ1OVyuVyuE+U/oi6Xy+VynagRnPv9733v0PjWt79xaJSYN66mMvz41nDVXjx6dGhUJZ++8VmwuCVmy77/gTh4t7W4s1aPSIPlwwoBwGNp0yoKIb0sBaVz8KEx7BFDIq3u9ABIckxBgqR8iwvk/1K6eFNHgh3UbzjEn6H3j5haqyOBnxA4BKDYuvgqcJL5LA753G4wVRlby2DeqsTB5/YDMTU17YWIu0QWQW6QNaXGY+N4zGnpBJMpGLEwAHnVNC4C4GgAJvApXI49fMivXgp5/if/5CeHxk9/8utD42x1cWjUG9mM3+KYv34hkSC31wJdF7l08qyDYxCJIl0n6Q11K40WYx+brSzw6rWENrx4Kb7fHfyKRTlySUJxBKtObO/I/RDs0POVzjRsOa04qzZNu+iVkfJkoxXPJjZVG+hsGpuhr6AD5PFn1AqsqPXtF6YNIhi7nGPObGvGZTaeAq/k+hZ9+PEG2kPHc5EEVyg/xnACDSTv44buGgenFLMn2H6zqw/AuNz9saJmsM2bIbEgygZ8m30J9usG0wfuUVtzB1ftfospAxU7cBJ9izu2x03grpbLucmQZY1tniPvOlFXOfdLi/nJAmu5Udxh4JIUlypTd+e6XC6Xy/Vly39EXS6Xy+U6USPs6P2P3js0OgVleIrv9On9oE0jz78LZLTSSMnf5xIu3/zx5aHx53/nbx0aX/v2Vw+NLR6oF2fyGK7oAw3W3spQx4qlu4KK7aSdNspgkv8EXtypjxwTaUdQRYgMAatQ9xrWRYpF4KCz6WV3OA+dtcm4O6QuPWghcx7fLLQ0RJ8v4c5librMOH0HxXpxFqtO92a5NFIvrlU3KZlSiopRaRejoS1sij0mU6eYQ10jE+H2VoI7mHtw1kijruUzc0CzHIz07lY40s/+8neHxk9+/MtD472nEgX8+oV06ftbyT24fSkZI1Upm/GD7/3w0Hh08ZGsfSXDGfd3gmpvt4DbuMgqoKqmk7dmSzlAX/mjp4fG5bkE9lplOMAZi17hyLVaTe8hzJbmXkJCvsJGPNIRxBQwrZiNOCmaow9BVoNJ9wV/Rypz0jGZlo76PL4ilJbqpZVM6Qi9DAy3MaqlObyqOJYhNxzeyngqCy0eZxB0Yg6vXlbhFRpvUjZiYI4baiU2htvUvPVO8cK8UdBC3GmYht1UfItZ5cz95s2LERNMt66ZZz7DR+T+z1hpkt6NBimI9pjTUafyrWyOawz9tkD8Tp5hFQlvmLhGGpY5w1gVS91hAIh3cvqHrfxJ1OVyuVyuE+U/oi6Xy+VynagRnFsu8WwL+JAZGkCmMhswlZXFmOgfAzWi4bZAIOH750KMV5cSkMiZ4KQiu4YuR+Y0yiM2q8mnBIkapBBPEM51pjMe58maFMNyx2zGAjWJhnQqNG2lYDqp5oHGU6EV+SYkXTGd7vFKp6tI8Bmun7WulB2HW3f4M8ek48Uc3mYcPRpca0zu3uMV7hGnhO/2QKx4a72Sk8j50UN/dWjcbe+SKY0EXMi/a6Q3MPwhBcvpMb16D2Zbw6bbsfAZNrVHhaP7W9meVy+FtXaYZ13N0IVyOWibjYQt3NwIMWbEw7P3pd8+BfstMRO8QYYqy+HlqDTHmmgl8OAHH4gTuM+EBveJLOfJY+G6VmoN1fJMiBQmUOW0+sSQVR11MJ7PkbXFLlBSXA3i6C3p5brisBFCTl7gBbprUKMN4wscmACCK9DZcl6hyodHtt6Ivl9TywzfL0tZVwVmO0PoMceqKpTlqioAXhrIy9imq0m5jHhFikLe6EanZiiK6k2uRaauaQ4PJVhdvLNjFPcBYNf4+e0YWaHGX/lwjlM2YL6G2oaR89KgjOMe95AtLt4Gn+GvRguXOycdcL7GtpXRkGzGW5CcoOVS7kUsl8bJCPTi1nveQ2R7GMiwRt67DkECStd7zceI5E+iLpfL5XKdKP8RdblcLpfrRI3g3ALuzbTC7NQuNuYRABYl68uAQBIo9cQ1gDMFH8ylUcCimZe0TqEiOX7fi5L2QpZV4hx8hL6aUMoAksRTjrWEE0nQYMDuSSSENtfUeIPVBMhQgJTHh9O0Y8RE5NVhJ1ozA1qXp+WidCo392i+FAB1eSkssYQtcrsTPHKLSkA1JjinOHcN0OjtRgjtFlEG60IyNJZrgSHzO3llD7JqRe/30PKgy/a0JMY4rewe5EgMd2WaLn2S6ltGZ6DPtkTG5p/+6BuHxne/+zXZi4tLWQ7yJTjLu0CXXi1kZR/9kVRAu68FOj2/qrGp6IElg0bpVZYPf/OPJGzk4skSbzGaGAUEjdg92KGJRjVSw9QHO9ZrTSm0QOSxXDKv6ziZIUh2pYecPZB+VJzKjDg39rUOuJwJbwOKSwc4h0VMVKzdP2Nq1ZAENasXaMjaLcVdIC96vqA7l35d9EyMMRHn0pTbIHajrunp1RuvZmirz9ZmvxDnwjHLcOP+7Vz3tEkHwX0yPsa6zZqCwgEsWpHlLWant3ukBOMCp9WfgTy8cfa2c+ZxzylxOlZLOUHrM8G56zXGmJhewtkEuI4q3NwYpFDyDoxLdou892Y/OTLlT6Iul8vlcp0o/xF1uVwul+tEjblzgTVoFg2KiIHJVKAKmFo7oMwN/ahlTsCLZ348LLfwRjIgMQHcAwNOMgCuBLbJsmCeIbkuQLGuwewRCxtpYaA45pGsVb2I+qXJObaqnrAongmu86Y1GBbcI4tZE+HNAkXYF0iA3CF/YAeD366t3/xSQnSWB4irAJM/v5CoikdPpHrXHpXL7jeCc29Q6q7pgGGxpIZ9AB++RtzBGpHIl8hPbsBRj2CkuztZDnN6eYJ2WEWJKe3EaMsFwNqKNfhybCHTObDNAM4VwpbJUT/86MNDo0YHTsGFVys5UEyBJsAskG5QVTibPZx+yE8o4BRPM3AtdOAC1soCYxVPHi9xEOCU7iYBeGZxLr7VMX5hhHbaCftcIJYzjUR1gVpjjcyWqJZl9uKoZ7pJGWjMBQbZEfEgSM6ieAkhIUc6jMt9upPZHAM2tMpeTsSKaAVFtXEjMO7GqQusvaWRuawXmR67hzDBpkXidFPg7goCWWlZMd4rMODCwnY60MMNiNf1kOxcPbCG4gZUnIxU/o6cTd4xEK3Q1Ozb8srFhXho9W6PMTsdoDAjE32OmwAKll08OcMCheIuMBNEDwfut5zcscLNZIP77VYvefnS5g752+30hTn1hsvlcrlcruPyH1GXy+VyuU7UCM7t+WBO052+BYagzlKGFtKnBQ8VvjXgW3TszWZLfJbTvdlI9XuHzcACW92emH9mmjMAvMwPM8JRExnw2SHmFVqnHhtmSa+VRu/ilcx6BqfJUmAklgUslkIVnj0T/LgDTLi9E5PYzRZOWjpgsc1VSeCXLBbi9ryE+3SJhbegK3vU4WJBro7l1QjcWfwOiOn1lVhezy7E7rvEup69Dy9lFVcUonbb2IJLgsMw1YJ9ifY52BrJ08oZTZXSqUowmQVmXs9BBecLJGH2wKfgYykgzwwgiMZL7ULAUHwracnZyO5ig+ygDlX0LpzNoWM/ka/nw2QpNJpgW2RiDAijmIM3ZhoCwOACjrOIcpNyoJcc4xdwrRbal9AlMPJCkvn48lKWA7S+QKDxHKMJPbZ5ey/cu0Nc9oBDt4NLfLdFJmpKDy1OCnpU3zVRw8qGxwZXH4eE4rEhrtS+YhOAM01viHNaFKTzXOCwZkGVMvLkkfJq3ADcu5hZkZGp667F0Jj3tyAx4wE414wu5crb5RVGPYyxdBtjzvideDNKBL+cn8lIEDNhMpjkNUicwc6pnPFyjWGvtfiozzC0xDkLjHrgLwL9ujmGhO7ukNUAwLvF3Wm3RWr3xnGuy+VyuVxftvxH1OVyuVyuEzXCjuzvqqIPVi3HU7xaebEo4ix90mc2giG01MBPDzENUKwAeMVoheBbZoF4nh8CkPrm4jQOQr/FxgimmCQhmpRLl7A2TJ37OEw3nC4u791uBNWe91IY672vfHBoPMFmvLp6fWhsYbIlEiewTZLkvWeS8rrCLP4NgHADeLvdIKYS06Jpm84zPSR4Rf59fSs5tL/7WF558kxyX9dwAj97/yvJhFhNnrCIBs5qBlQLDjbHKzP46Ao0GNhbzvkt6ZMEOAx2niEpd4YT1KG/NbqjcjRa9DfaYplDkuSYR98gwhfu3BR+1FTriwFTIzZklso26wFPyKwmIzptVTKKeJBVC0nCM62Vhb/8Nt5qcT3nnXpwsTuMDuBicBXzqM4xex0wmYGlGS3KZNEYRCDb7MBjt/dyMDuOUOBbvPPkSl9jWjimmB8yy4VJy9qApZy0vM1hl22AVfP4ptR1ccZCsFLcr8Cr6b/dIzM2SZLdTi6EGlGubARlB+ngZak7G27MRsxjx2IcpqV3YHZg4lzAeRYZxCss7BjcUu39lv55+XoJ4/r5hXDUs/PLQ2OOIb8CuLuFE74d0IVgkme1wbKKR986XMW5AfgM3FghTGO/hNl+J99qkAtxd79LJuRPoi6Xy+VynSj/EXW5XC6X60SN4NwZmMygdq/J39q0j+nrsfo7+NuaSNXUWLmClYKG4el70HpPtIvFLIUu315xQhzPGADeIWrwQ4o/hsmDYIBZkmqKRExxNeY0Mx/m9hANFdwL4CzOFF7J/OISCZ+cLT4D/EwCsLYB9b16dXVovHotjQ1Jhe5J3EjNQdsjyuA1lsMqYPRRn5+dJxOqGNGsuAdeXEDXCj46clQNHDD0jBRuB1DM/IQZMm/LnGXgpNHSj804C1DuPkEcLmyoalwHhmVgxW4n0RMkXYq8cHoLOEvvC/lWi3nozIXu6df9N5IpBZcYwZ1hesy7RoOuWmJqlqbKC/AxUmVsdNth37UwouGWPAUIWM7VdRzHt+qG0c6qCFleIcbUGwVDVpnwoCuYjIrQYm16KwMpZV9FTGpQtRAHQb3KpKko5sXCZ3ncIVOMgHDtLUExAlJYEy1JkrphFyLXjT/WoG/Ta6rbpsHFZmxLkxm4tiF+YUQxvM3MWwM2Q8tkamSKnc4AsjrEwytnlzLGtL5E/vYKNmzc+ojQMzjqK1a3zLk77B64X+mIB6C0/jQg8wd8eH2+xCsoCkmirrM8kin5k6jL5XK5XCfKf0RdLpfL5TpRY6XQCvvipJmWcIZMMqCe8eM8v8V5tEHuAV4Y+bqx6TL8FkwjZSUdvMLn+m4wX+ejPrAAOQNf6ZVOmK2YVmCbjAN7uZzOkF6bUUmcpaA1Fy9uOauibeYCGWjZNerwJLzd3Ijj99UrcdXeXckru11sPBs5CXzBUKMduG734uWhwdDa+/V9/H1ohh0Bm9ejx0bbCW+pd7CPwlVbY1L2DjR7MxPXMfsAjwMP+QzUtGCdMiyQrtG7GwkQphOSOb3JGiMd8AfutkJx71FFrm0ZtslaULA6gyHnyEZoa9qh5ZKYTugMY2N5fgidwJBbRovIWwWWmO/lLBc7WRcn9VNE4inn+6NB2Ngafsjuyle0HJgOC9CizwgLGKSZGQuMWQPI08XaAITSQzvoSoPCf2+KPYH3lyBOFsvRAIH4W+om7WOcmyMQhLDRDmOxG3ObSWXbTnFu08TwlrvP1ekRVmc1/5o7lbmpWpx7RC1QbZCxjCkYOEasFsc8hx6pI9yexUIuTHq2V+cX8i30u2LGOR24pQOG1xgaSGFyDm7kRPrcVfnLAxWIPwS4RjiehrGhGpfGHDeTj7760aHxQcdrbfIHwJ9EXS6Xy+U6Uf4j6nK5XC7XiRrLzu1jqsZnbYrP7DqjnG8p/zQ414Yt6IxpWLAsOtanb+P70igAulj5pG9CdHWJWfQKuRa3MNfy9CNMJJKGP3BrNHGCU+9JHPg12s/iMk+bjRj2Pv3894dGecWoWJZnmkXfmqHgV+BcTXrYzLZgtrstoxVAfRVpGdMdNAQ16vAKvYvAceCWd4Aqu7ttMiGmLtPNSK5LvDzABNsDTipdrCXcoNqDGuGg8YwxOWBAoSWaYFPEb9Kde30rNPizz57LKgCln7wnxeM+mklyBXEusb/6qTUWFd0Mb9H3XiLmt0EWARhw0uwU9MXKYnjF89biQKUcDoHplDm0JLSkaezbDchzzqEc5oegscdJaUZgI3ODua3o5XhFLzFsarHHZgzcVDmn+700yNnqPX2qjHeWU9BN49ze+N5ThNAytZhJCFwMI177MubVmr+hkblcW3yj4JL16118xJIkaRpGOjDlg5UiY3IeVLibnjGhtyMbd/B2nJuhC6Vm+EyrNybxDTOIjGYgCSAwzm9W8r7NbhHPjyBmDyJ4zUSJYGPl74h3dnoyBeJQBt45F6iAppMR4pEO+8rb1+RyuVwul+u4/EfU5XK5XK4TNYJzWeEoEB1oDInlDO44z1arm+lM53gmeDAhXVbA2bKpyYTkcmimUtuYRlkiiyC3j+FxjIO14XHje7Wecmp5vJwRjRjzJrEJYZECkAArywtYINErvZGcp5whSYBgp2Bu6hv/NyLxiFNMU4UrbMUwPDFl2joNpYyn83PuM6faH4FObccJ/iT5cLGaMOFgaIA9BwhR6ythBxkvQE8jGs0eGBYfptf07ubq0Hj96sWhcX8vgDfN5FtruHNJVrkXpIuF7k5s4MxxufXYjG4va9/dC8Hb3E76mceCL+Qvz0VKJq4WdPIxgOIsHs7oGKSgODdeB5EvjyGTYLsu9ozyAle2x46k6JiZBkiU3cc4l8mlLS2sXUxxh96iPCNjKR/UFC5/u5SjV2hgU235wp5xsiMW2PggWJxL43cSRAd3nfHiql9dPswLKtNajQ+YNvAu4m02YJtxZxi5qUafCFppwRkTAPgG1VLBiFhMeoPN4A9BfOqH6UgcK97tu542fvYBmrf50+DuXJfL5XK5vmz5j6jL5XK5XCcq/fTTT/+6t8Hlcrlcrr+R8idRl8vlcrlOlP+Iulwul8t1ovxH1OVyuVyuE+U/oi6Xy+VynSj/EXW5XC6X60T5j6jL5XK5XCdqJLHov/gP/7NDg9EVjAFieBDrDu62kvrNyn9aUxABE1UlScRFxWqOaCAdqcBnSsZkI61jv5NVMJd8i6hxZo1XSDOvULKxxCsDU9Y1Yaeb2sGH6L/9P/7X6JWrrXy9LItogYzA2NcsFogDhbeY+s1KrgwxZ6YGv7VnWUcEee82COnGW4xKSYLM6NlCAusvL6SqX7WQY85Dzhwf/ueKQduFSf9vTSo3d7Y3yfYfPVolb+o3f3gZ7SNjiTINKmLUOl4wwUmZCT3hLmdDnN/NI5xjvxocxj2S+usdE2SYRsS4cC4HZxyNImfyjSywRi+9QgTS9XOJtt9eo2TpTkKR2q0EFQ2II/8P/qv/Otqv//P/+r9lvxgDxLOD9J9qJueU5VoZDDToBiJ7CDFA9RbBQDiVDPTWqB9m/fQmZYbRNtiy2Uw62xzR3hq+j1Ngk3E0b12LRtgiFqaiJvRnP/rT6JU/+bf+nqyL9yLkfFWo1rCcyxaul1IV4GwlfXWJV9ZLKXKwQP3LsmRyELcmThdiZk9RSifJcZfLUT0iSZLZXF6scMoqlJstSh6r1DSyqcZInJAJsqf+/X/v70ev/PDP/+3oFWa86XlhXJTW02AR1ngVDDLTNCNNgGIHRr9FP9EKo+iLtjJKp5VfuTKTaM+vD6Z3Manf7g7zvkz03M9//OPoFX8SdblcLpfrRPmPqMvlcrlcJ2oE584Wwi5yrZknOKJt+NgMEAr+k/fxQzeRZgG2UwLeljN5a74AwcBnCvAWBqaXeMDPgGqZwtwjx1lDzFN+PQ4pHuIU5SAi+a8W4qzh2iaMmoeuUoAj6yJVI2vKUjIi+RYz2XsczIbsNYnDl7nkLNPTSiJUVTjC4GkllslKeR0RCEOf9WDFGf0WDZHAZPE5HBEDnbXoI1eRMIA7BlOpyd1mUcBccZZJrNZNZS+NA8QrgNl0JstpW3R7jQiPCz02GCPgPhc4znNcXEuMfZCadjWiyUHp+wQjFNM51yxCQKaXY5urHh0GB6GqeAYpnl0cXmx835HDE5TFcJJHLOnj60cLKHBcwCywz9HIbL/Fdg2G+729/OUxaT3M1FDQgtV80ROKuFGULGvBPmawquJc+0Bii/KSkuuF0ePc6bv6sTg3395h7EtaSpmXKm/O04Uxgo2Oj/5gduTdNLLOGOfmeutDoyynlsfelStnZnERDvdwl/k1bs8QN4iXUSeVpTj0njgtfxJ1uVwul+tE+Y+oy+VyuVwnagTnnl9eHhqB7wssEWBqC6MsK0cOrIWJZ20arpYrOPQU3krj7Fz8b8u1OOIKPMUTQTRbKS64uRMr4821LJDlNntsWNbCtInH8JaP7FqpFNyPBTiNO1f5IclDMqkcCDooWSoNeiNzcl3YAptEIKFCJy1FSdaEo4EPtYUclhY7lmdw95Uxs0qCQ027plr+iHOzmG90YB9aVtJSI4PITDHWpM8mYYgFS4MBxZl9S319PK+08sZjDVp+ELtB+3GqMDlGOtbBm7UAvI006oY1NdHxcp4yfKuCg3cmnXy2WMvX5wJmd3fStzuUWjyCzp5/8Ry7gyVjFfO5nNzzi7NDo6KPlCVCeQx5aeCq2e9j7zdLhOrxGWIEZ68J7Xh6+STmldgpPUbdYwVvcDOmPht+FN0YsF1HlMzQEo8YCypXVXycOZsgZ6ez9k01iIrY67TEcqc3nEGZJAsds2HHiTh5wTBJ3RB8i5chK+zSoRpvtCoveAdmPVR8q42v0MFUWg2GtgiTu+gVjh9x3CrHjY6jTpUOAs6xZIzi8TaFCqz8YdIGpzM0mLMwyDUblNolk8cGsSf2HNcwMw2M/EnU5XK5XK4T5T+iLpfL5XKdqDGc+/jy0CClJGKt9/JEnIOs0pCXbWGmwrMypxjP5/I8Pl9LYw14e/noXF45k1eIBfqODkbMfca3OIP77kY2Y7cRLNbv8PSNSfQ5pvp2OaaWA16pDy2Pma3CQjVuTfIj+pB1GnsrB6pusa4HzIDu6GfGkkkwCkBgzMNOOpD0bAkS2JGY6f+NclgNS874Vu+ugTNKe0Az8Jk8ie1zCVCt3bVW5zVPMhDL8MgJ+RbRX8ZGbjZD8TIXSFwTj0f05FH4VtMSneFAwfJKj2SF/k/s35FQDfJWh4PfI7QhAaEij1qsBOf2uI5qDFVs7yR+gaDY6vPPgHOxGRXm6a8wYkJwfbYShpzMYotmq8hL1rVDLsR2y0gQBmjQR0r2JStVMzaOPM9Op75fMwcff+dznFOcHWuSHxSWspe8g2FXhzA4qlLyLbkKZkukLqzlGK4YrcAbF5ajhvY0JootTtxOkbgcOt4JZ1hgWaj1NLf2ciLrLu6uSRqT3sEMTAxqbrc29SR6y4pGWbqwuwQRHCZ5w8qae/VCgtiBGeFSMCSnkrOwmEsHXqAnl7j3MTahYbAJenK9l4O/2eEXYUO/LqB6F/N2PeDq+Y+PfD/Ee6G7M/WGy+VyuVyu4/IfUZfL5XK5TtQYzn306NDg4zMdnjvQnhTOuoGTjhELSd8jKU0Bb9tqLTjr8sklGheHxnotz+wdg1jxhD4M8oDPKMsF4i4rgLKbq9eHxj6HbRgJqHkBxohNJWbR6bepwbkmh+FIIENvgiZISzhNuxuhuLAxl0w/iEEZ82l7m0iZEOMAQWC3CCSTABwx17fvcWQ0olb+0oZHVJublEtCkJG3cIQHBBZ3zQMmd6dH/ifXv7mBgVvYmHOt5TDgzFgc948EMiWgs6bTeAczHhZwS55Ndio9L7oK+XBZ0nk4R0N6cgHQV/eTOPfq6jZaO7NKaIlf4RqhTbEDweb4SANUuyP7As69v99En+EOBgfBuGqhIOqB8RQMWGZPZv/HQRiJiv1y/nM/m8egmEMZRSWvzGG4nRPwwuo8Q7g0o5KDqyA2rO5xMHdA9A1uZQsMP3FP37DSMjrDhN8GigcdAr8uuG4S33xOk3J3XUx8IQR3RXzCXj3Woc1w7IwGeOYGI6IEt/SK6BtXDUcVefUWwN1lKYeaGewJAH6nQbvoirg0Wk1KwV9l47a7Os51uVwul+vLlv+Iulwul8t1okZw7sWTx4cGPVTEg6S4e8CZPWeda/Ek+Utz7wJhvMsLwbnLc2nMADpynXkNOqG1tzhjmgXC5KF71cRP6GkvX9/1W2wY40lF/QiCmDabWWhppExPrYwxuNByQlw7oBwhT25CLcjZgnJjsuQNglibLVba8XxpMmcwMZ+BA3wzDlwd40gmSFNtkuSVXBcpDV7Jp8NzR1bBxmQsME99ptEK8TZzL8gS9xga2CMkZGC4ATaQc8w5eFGaPklPJmff1/sYKxMEcZq24lwyK/jMF7VkI8zur2SBzS7edejuXsql0SNKQlvgDO4RP0IeW+MaYdA0nbccnbnHkm9viXOZEkyHJ0ZninjQwbpAiXODye+x3VdB2dJYrzWR1kZ8JA8XLz5LHYNXsBnawKaOVDejabOPPhOOAOFvnEYSJO4GOBf3t5QN2/9hKA0GoDhEYY9MfKn2OpwR1wWz6ruY59K8yhPEdWXmdPTmWAWXNzBsGuNcdqoSIx1FKY2UZxG3Ms6G4NSDPMEttIWDF5u4b3khYHwQ5Ttb9sCOYxbcdktxPWzB5XK5XK4vW/4j6nK5XC7XiRrBuaszYa1qbuSnYWeqYGArMN07bzDrHJ/JyMfAbBeLJb6Oamuc2J4Y4MK5/ARm+sgvq5ixBj29iIBXe6QudJ0wq4YcCbuTGY448sT+AHw0GOikuZGGRc/y2NxYlpywLx/eIDvi6vr60NhuZC/octxuQCZRsSsb6P3TjaY5LUOyblkxOjiOuyTA7GivVUrPRhq9kHTy/ZnWoSPRGulgslKDvx5yrBU4pzFmscsbsGMNSo/d3spBI8nkqVsspZeeJxIAUsEsSnMmT3OFCycw5eKoaskwDmwAV+Lwstog80MWaNxubsf2+7AXmPOOBdKmq4ZDUtw9OCqCHToEgHDf2digL20299G6CPeCwR3kD5NgGzYYeINj47oFqgzRnSE3dQjs5X8V0RvPblPwFaalcns0PERTb9GIz/JI1TZcTUzkznQUwLwSWlZNv001E8GwYt2A+Hq04a58gYCWSP9ITbQjb/Ew5gZZ847HXJROlxPn1aQKZnGJgetmeIXHinZ3jZXGEdZqmwS8JQdTpLHbI0iEM0o43KOe53hsiKcgGMSbvDv5k6jL5XK5XCfKf0RdLpfL5TpRI7SNrlHNdGVdJPM8nuhDt6iF31HzTuly1AdqYCjlFnHC52BmufIRm+mvVUViLCAovwPSxDM7LViNkjczUV8xC16gMW+68BOlXrWgzr2sHdGauSKIIvowd7CuharRLXl9JTiXwI2bwczXDuCuxmd2e3V4DgjbXK5ohAM063miuf2YoczQziG21wbZuVgFwRJLmBH75G//X1pqUJU20vjU09s5AsEsHuZZQD+7A869vr6JtvkMB3SGQYd1FjMrkro8IZMXIsosCwbSMspY61nxyLHfIvM2R4Jrdoxk8q0seoVZpjxxjRqSORAghtsd3IlbjBps7rdowNxLK2NPdCzb3JexmVYnrUOkuOwb3GIaiSvsKfNV9Lq0nvAk1kNcuixEyA5JMs80XXo/8+klapLqdHJvyu/zdOtAlNno0GSsHBhfDFYcb4mm6caXBusn9kOMfLued3Je15M7MpaxQFOxSbc2qbyd3snNEk0OeWqId2JCaRLcQjXpnNeIKV9Y4HR2CC0pNwTFJqJ5ulcF6RyTA1KUP4m6XC6Xy3Wi/EfU5XK5XK4TNfasytrpjJglUOUDNetq4cmaD8sDQFCv0DR++u7wqL5nSAKfsAldMVedhdHJKyrSADVlkYYRL8vqa2A65tCqtSxIUI2OgaK3h8zuBnXUxQBFtH1sh0sVfhLnyhHTCFOYJPkKifoMk5HZ2LTC6643giifv3jJTSNmfPxYYoorZISWM5w7HLTURtNqakRcvYjnt9WJ57EfLwhBncRHnb6Fw9gT8tC8jT6Qsb/RvM3CTzDmIbC3QeP2Trjlp5+9ODQ+/u0fZJ3wZH7z218/NJ6+91TeQSfvMhZRYp6zbCrL/A1mzjstwbSFY1U61z6vpN+uzy8Pjc3jTTKhIGOZBfLgjbepy+j2ux1COWqYcjexO5cFpFglkIW9tPoVp7zjpGR9TN6U56MDdDlSF9oCG8bk0jh1oQ94LtZqjsK75MJmQKws70XuRyM6X+GH7QCOHgSaNvv4AhlM50/T+L43DqFNVu1gPhYvOtE7jHUS60cIRDkepzefkQ2ZlB0gscEOJoYiyPKNtzWYvCCNFnf7FpcY8yWYn5OzdzH8hxcCFkibbhAgEyPoEbpu7lccqsgVAidT8idRl8vlcrlOlP+Iulwul8t1osZwrtbCieezc6pyVdEfi9DCPF6UrR1D5MW54Q0mgHNuLOFtoiBUllPiWbsHxcqULsQOSIIL+mN7OAYV4IzwFoo+rUl/oO4XognC16YW3JniWWzsUI2d3kjyVVYIOj+7PDRWC8GzLwdQ3N+Llffq9Q1Xt4T/8x5keH0m7ty2Q4IlMSP92MZQV+pBw4nuYn8gg22VnqnV1B4iIyL0wOCIVXRvvqGnXm2BzIbdIXBjL1t4e71BQ9ynL57fR6t67yM55jVjM7GOAQjezmvXeAocjSyJL5+h4VHlJuPQgRrNWOYPqQtWZY6EExzWirXV0D0KzWqWv10jrRZ+3Rq5uDVyGFqNVuAYCjtwHBRAnk/21Rv8WGhOBTzhuD9o8Kkm5QKdGZO8ulOnkwSOiAcqwLlxHniR27uBDdiNlxwASbykdztj6mYiwRgS1GDb+JoLV2dkb9J2ydaUO/1haiyDF7csA5GD8xN/mHfyDuMsqU6UkI5XwDFe1zRJg7fjdk1LfIF6Z0xL4A0j8OvK385M7lBarrMBeHuSz+QluyvvYOztHrbgcrlcLteXLf8RdblcLpfrRI3hXLpy+YROVKVwD7ZA9baNlDbHYuANw3Lo0OOTPh/w+4ZmSxh3yQ6AjkuiIRoF6dfKYi+WRi8yKlbjDt7+f4hhtPmmOLGX4pJnFY9wPB0+YCzxkmmpPTtbYTnC69ZrSXadzyTi+O6a7Jfz/ZXa7DZMTAWy41xsHhlin4E2VBAYzdfFt7BswqJePZkUTwdfiXFuMIObL+Gvbr6pQ0S6zk2Fr2+PnsPiX7ud7PsWBcJ6BNvmuYBQpgQ3+nUYSuGaLtXgRy5HZ3W0W3qNKP9hQLQ6z5nMCZIJjlQiP9ZqBnjL8YjFTCDwEo2yXGBT4ZbX4QM0THE0vqV1DE26KQv2MeGEb+m8eKjEh+fwkM8RF8xX+JkRf6xic2OCfRdbKcN4g+xc3DrKGC9nRQyuqX762udFlLKwICOF03ibeztcEo6egTMGOcMmVYOrM5EIuklcnUlBGQIH8JQy48XVSBwuR8ucxUvWkBx7/6cJtuNwnuDcFDh3wO9I1yPPhMUceVh4t68ZnRHfgTvj/dYd5HhEyR8C/K5ZnKtjDY5zXS6Xy+X6suU/oi6Xy+VynagRnDvi0COvAzCkQy/nEzq+bp96+UBNx1TG6dUAXLQOtm08n52cuMKM8sD8CXtVQThjLH8MByC3GQlRNBZcm3s5LYZkBtGY8deVXtIKC4ZQlLKp84H0CUQInI2YrppLI+v4mZgPv/l/IzoeeUCKqJGmoOt97GSzuIZm6d7Y3awdMX3I4VNhHCE1r6BBsMaMhRouvhrw9h4Ee7vBDG4QnZJ21pmwxN2eEQ3opXX8SlnGxFn3y+DFgBxKd20H5tDGFZeC+mLgn6gbaMXP0PJKyD+fC84l8qWJWrk3TcI4HJpwS6N1TxaNDYMluMo5mBInPAxZXLGLpv3ZnNkgi+gVdRSb6learYp9f6dsAGo+i9l4rpPo40YwPf8hnTbuEjo4olHa8pfwVjNsw1EiG7aggwXxlgTxADxE8YOQuasp1w3Ysd0jbDXuqQENjicU8Pu67j7eDcuQ+UPQtjjUjE1uUNgRd0XeZzj6xgpoJec1aERDnK/LUR5uKoOUOWLCVbAPVIXxkE+bcil/EnW5XC6X60T5j6jL5XK5XCdqBOduUCCJUEUnQSsfYApuGzUGE9Gg9dB1pnNhPpzEr2hdLTBkWKdmoDS06TJtlQyNnq7Ar3ukyJR5Zjczjo9Ij4+ZpU06TT7AD7E4WpHHh6VSDGVSZDtpbO8kPOHuVnID9juuS08rwVpghoTJMyfONQG/Zpp5p87S2KZLX2Ju8iofpJFg0JjiqmEXjUbREHOY5SNbHIcdkmB5QKxHdI/Y2LbhyALNq6Cd6v2Ow5F7M0M+wLmsSMWaX9yv2AiaoW/P55M4tyCLhquQFHexWOEVpi7Q6hmbwAm6egv3OOiA64g+/ELtrMS5TNmOK47NiHOBzhbo0kTQs1lMp/XwatKJ4bp25GVaiyWr/sVoMTcDQOy9I1zXhL4m1qcdB4ToW73aXM1QSPBip7EA6G86FhOLl5gN2h2JiDB5Dsdk3PLKYztuIXbErMsS+IBXm1E84lyNMUenwvHUnsxQF1MYseGvDyeAMOEBlm/+fCyX9IfHuR+M4Agcym8/ZP4k6nK5XC7XifIfUZfL5XK5TtQxnMtJ0IQzGZgFXVpDFz9H08qrCYUmf5VlvPghDdHlArGcoojRkDIrEtoalMYwGdqrOsNEDMQa4yYPACDKf7Q8O6hjG4cMBFjXxJMmnDtMfohJ1jjgGyDKm2sJyH316pW8dX93aMznakpcI65hAdsnkxwUTfYxUeVndMI14xf4UWB2Rl4oczYzr4/8by0NwE/cUIpLgJNEDeJchiTUSGZm1OfZWrBnj4Jcq7Ucq20ttkC6uINp48Z0bTfevEdCq3XBtHvQOxgvJ9MSXZVZiUgngPPDpKYmwSBj8K9yeKycHmzSOT3MNNvH5nY2eDlz+rmawnnRoZfPwNAY0VBxPjsTsDXCNManib4Rr+shVybvGMEuy9EoTNEra8rVnhCYYt/c0DeuB/zloE4Mb3s6pYNhLGt3V2u/SYxJzHEYMcCfZmUe+f5kUTNtcDOwFXnA4uUzWXxBEVzzh4T1zjgsWCToyTnvikX0ihbZ1C2OTxlTNeaguMxqYNhIQeNuwTs4/pqsBit/EnW5XC6X60T5j6jL5XK5XCdqBOc2OwFcGahpOYunRSdIHNXoADz1FvhhLjGXnx5a0pXVaokF0uWL7Fw1gMmi6eJjObCqxIO5GkT3aMWsqcQjf8f0V8M7gurnJhNyBDbGsomUY5GqMWfubfU3rl1nUmPjwT32WzHlXl29PjRev355aNwB5y4WS673bHV2aHAWP+lPUO8+ZiAVoSIO8RYYWdM7U4N90CuYXlvv5ZWzC2uNJu2M+U9gecUYgTJSeWezke25v9/gFekD+0YaC/TbJ48fYaU4RCDejPLYg+vuUSlM3ekZUgVMzbvB+Jltg+7rjqZ0XCNEeTr2kY1ckvLhLj4+ajo1OcyDOhjhV2R2LiiWGpJNiG5RxJdhrwEpLIzFTABuY3wBKJk0Zk0bGW0PXQBSeUXYC3NSnDs/mG3WElfT1noqyGCxL5m3jGE1OBfySrjr9sXM7OOx0JLUfGZkc99BurVJ3Acszg12GifIpBOMDJalBhQrhqU/HIMXGtzBiQaxs5rr6NmFOBMklZtAjhjzmcazY8SQDm3FudgeOuqPxFNMvuNyuVwul+uo/EfU5XK5XK4TNcKOOP28NPmBNC8NCG7N+IDP9EKWVSKu7OKiZvRZJZj8vlS2CQcXAKbGBczi3ADWTVNTlqIlpoDGPkObAkEEoU7RkQSASelK+5hcaKGlkVJxIhYgoxMsx0FgKaQaLt9dI/Ryt0fGQi2vdJ1wyLI848KLkjPi5S/ZnSYZcH6zYm16iOOITlsOqU/jPtA0KFgPCJwk62ivA+ehYYCA/Ax2aHFAGuTZNohE0AADLJC0Z7ZAybAVRgRuEZI5Y9IF94v9Fv5wcjkFdHDw6n8+iTQt9rdvHfP5Hv5kxnBI1XCwp9jmfU1+jqptON2wTgfJ1big6BhXnNt00WfyHJ/Bh7XEG48L0xsSvpDjW3FcdtfH6LhsmdFNaC/LSU15vMDNOj1kYpQZypdNN1L7ShK/pTKEk7J7obcHpe7hkmBMNTnkGjiTxOMaujrDURmA3CWxHpKCEjBbfc0sh0cmfuWdNDYIIm/xvq12bjQ0TZfn104H4IbhZpKbzGducamBG9gMLrDwsAWXy+Vyuf5/k/+Iulwul8t1okZwbgt3Yo+4S0aP8hGbBKcBnKlhiaxradB5uIV/crcRZ2l7JnCPIbHZGhNg8TzO5bByjc7OzuPZsr3JxiQWoKO4Z4OxiiO8bsRJlrxNgbk3/rBGPTCMAseOxmaSUqZoNj3ArPHp0T+2XMthOb+QOIXdtsVndDPuN7eHBk28WX5xaFyUchYWsyXekiXs93KmOpTxUrJsjjDZW5uA2wPwFg8oJJQYFK88CoeortmX5Mhstju8JSsl0p8tpXsslnDxlaCUJbEYyHMn3Wy7lSXv0PE68EYGgGTm/B5zcupnyAnlFaZA8G9asAtN/r+2qTksAmrasICgsdcy1INOYI2nYBU5687FntaMTWA0B2Ejl4xhiIBgYjm8LcgWFjXTJOLBi8TEZX9ZCuhcPCphA3J5JtmRRsC63hVieh/UCsSAlN6U5KMZXmkDey6JN29iPWNYTB7vESnXJcDs5ZjzdHSdRbVGZlxCTz1vAkl8EwhGxCCtj2eYLRM84KGlz5Z3DM2zLdlz5P5PS72G6HK/eJvlQch49cWbwRkcQUiIKcZ3JHAd8idRl8vlcrlOlP+Iulwul8t1okZwbhCSSZrAXFx5gb+9eGjWhvqa6MdrOC9eDKXFlTyYr8F1WZmICINpopofSxoGANKAPjHZVZ/rzazzAVufBTV+8Deu2J7ov98lbAEiMVDLpxrtRLkBILnSEqakMiVS3mAC5MWjy0Pjq1+DB3UmnPbq6pZb8vq1JOu23Q6vfXT4o+bVJexqgBedAap5fMxGjHmMTWAWZTY/wqHiJfK0KorEKW+RjcyMhc0GYcsw01YV+M8cOHdNazQcoQBCWRFz3R7Zyk3dRI0WYbxBLgStqvRR2/pZb/fiauKEKY5mVbPYG5bcNPTQxuZ2wqshi6/iAO410SuMHdZwA90e8jFemNjlPN4dGoB3eyS3AJRVcyZOoE4Z68phCzN0P8281UvV+vAnpd54TTiBAV4zgUnwGGFt8aMpScacF7ym5b2YNIL+E1jcceJgtA7bRcvyc6xRGG/AsdElDmCxCmQZH0Ya+MntrTob9YCVZ7k5MnaAQ7F2fO4om7EcNFD4sogbTMENLN8MEonvBsG9CF/nvZSW7zTut5ydEczpePuR9ydRl8vlcrlOlP+Iulwul8t1okZw7mKJmlkINwhqkxOGyAtzPCwvEInQYha8lu/BI/bmVqp37WDlvQXgXSJNl1Vy+EBNItqCLTLHtd2z+hUQXNtHHybpIuktlLUSJLLOV+w6C6aST+Iji2r5WTr0xgBIDEbJ9AK7L33Rshkz+JkfPQK0rM4PjeUM8Qu733BDPv30k0Pj+ka47tm5HOrLp4J/V428MlP0R/QR100b6Mk0x0PNqzTdHamAxkpJ00eYRtAeuKbZy4f3exJ4hnIA5yIks0LYZtvCcDtwgj+dt3F3JSPdo3ft0aXV6ZfjjGOTGQkSeBrjRhAdEOcV6IeP4FzgQXahBluoXJe7M4Bca/EsIE1cGl1H+kqbLgsRxtvDAZeuwk1AWXSMWGlsRiCxEv6+QxlEHjv9OgEgYwosxU0err6LKbeNlU2nz5eOXunRiA+mWpQNxtTbgi2yFrhzRwA1V0dT8btkv4zswMi+TXazkdgQG0qjkQjxoEwQxM0sDkbioOfwtsZ86RG/LnAuQxJwd1KcCyhdY0bJHkOH3L+qjImxlvmjTVeLDOIeoskMZmaKkT+Julwul8t1ovxH1OVyuVyuEzWCc8/OUDwLKQeLueA+lhZq8PQ9ny/wYWnsciAmY/mre5nCPwBM7QFmb1HGK8VDNzMW+hXxAiDnnBG+RAfxdG87h5pwQsvKD29HtQ/RCK4x1IksQjG1IVTcHDrcWNUrmLgtX58vYGzGKna38pmSJtQk2aKwXd2gsaelkw0mrwqTpE03B5NhjaDWsjvjCNUDMj1Vuevjg18YLyUDEG5uZCDg6voab8mRmc1gLV6xV8hydyiOtrvfYTnSA7e7PfYd8A15DrfXkg1y9eoG+84YT9lCGptnJa8g+rAtO8PkfdJtnB8NU31AD1QzbStLZvfYbmWb5zNsYclcFNiPWXHPlDAjgutaXhroG4wo4VtGQflCVraKaWnXlViX9c8fkfXGv90tT3G4hwpsrtgdsFplttZ/nsSNYN0PAazvKMJevTXEa9YiYiaIIYgyfvM7IY89koISFJjE39iqbVzqY+Ugk8kDyrUHNt3Yi8sU6EwDELBfnJ2BG9cOee9MieF2tKybRs8zfeZarJANWWmFO2FVsWbi5L3Mn0RdLpfL5TpR/iPqcrlcLteJGsG5Fxdi2qThcAVmy3nWeSacbTEn8pUPb+5ZDgnxpDv58MDaQICD251gqF7IWZIhIHG+EIbcq8EV1inGQZiZ/5kWteFMcFY/l79kaKkWGIo+ogpI7SQAGTHcmrdY4ooNWss6ctGOaFHI247UEWycZYDOzub4Fj2WDT4TVOpitSCleQm+iEn3IHWcb84jrOwMkFSjU4F9mGAZENp4drnluk0vW8szleP88oxvwWPvbqSfvH4pHYWRuesziQ6ewUw+YNRge8scZumBV6/BdW/lMxsQ4w3Q39lLGVm4+ELQMWswrdeyigKDF1kFMqsEbpJSEl5lCDduTM5An0xTU0Yrc6AEMb/bnezOfMOgURAqAjf0k9xcI9xYdhKaG3XKvCkgyP+BK6FFBw7yCvAZLY5mj8/kFP6RennamDxQVIvRosBjzI6NRs4zx6sAmzUdKXCagqtJ954HRF3TeLd4QLLEEd/y2PF8+x7ZtzLja+UsBgL8zhiqE03Bpc+WcbiobgbEWuHi1aFDcFTeQzjPoqEXF2M6+y0u+T0jZThCQZ+tYfto8H5JnDufyQXOIbY8d5zrcrlcLteXLf8RdblcLpfrRI25c9fizmXpmTmYbarePXmy1mRCPu3iIZk4twZmbAln8PysOY00ShWctI54AcydvweKKRm0mPJJH5mQAzMhY8so7VVj9c666N+BJlHtmOx/Suy3uECmSQCrNsSPcsRurgUt7vFKDttYngM4tDiY5FEBzuWUZ06oZ7KEAl4QGI1N5gnCWzWsoYSuAWvjfHNL2KY5mMFPBEFta/g2Ox4Sbhk+ygJwd7mQnO0G2QjoSpz7fweb7g4U9w5hvHd38tbVmTTublEcDauYzUtsmGwGQ4ZzNSweiQWYnOFP/tlP/7eWnZwks0Z9sd0OjRnCT9q4bhQTbgsD0zIzid5uIb+uUJr4fWCPMomyBVilTS7QIza+v391sVScukCVRbNLxd+yodDvpNTQ6fFPqaZDJ8jJ+dnsIQtPos9osLM2HvAtrlPPODZU7yE2DSPOD8lNem2Qi4u4YAwdzhYySsWZAjwfvHFxIIyh1gwbafZMC8H2mLgbe8AzdM5SU7uTaFOPyJ9EXS6Xy+U6Uf4j6nK5XC7XiRp5Vi1LPlDH+LQb4ixKKqgARbNZ/KytqIr1wnXWLVirMh4sByyuJxZGFCrhUQu/VgeA0w2xGdXO8NVSaH3MRt6J4wQEgxY1O5/dfKuPN6PHZmwBJW43RJRiP8sR6lhkiLmYiz2VmC50eDbAsDUO2h5UkF5KElqa09KMhJlnAQC/jOcs8+gNR7IVjDhDvwTkCUJHk2gVuYnWzBTHgTzjhNMknDEEgCZYHnP4zNmP6X9mGa/AR8rigCzYxz0F0rSBG9pMo5cGQ/wUo05HdO6Rm9Fx/rixO+6XiJXG1UdiRqpG130141vYQdaw02yQ2PeeIcYhhfGXl1rQ8WJLvA4CmCUHmM3wTM0WgN5ldKXDnScllOOgE6GyRoXEJSCPFfwyyPdIIwghwUo1DDcpwLfzlPZgcxwUQMZRLQ9RkHkb32bHPv32V6zNOAhb4C0PBxadilcxa70V2pPjwpds5BxH6JGEgC69QJC4znTQWN24umXgIY+H/JhXobR/4CuMAXd3rsvlcrlcX7b8R9TlcrlcrhM1gnMbFmTH8zinI7eY4b5DfoIWPmv5FC9/tUqURoZiJvgKc9XxSqZGQXlUnwE6sTTbHK8oj2WZMyLfLjYKBpW24snUR4yzpxnzjkTmBp+xawPP7FnwC9W4MJv4fsNMSDbkiK1XzEyQRe92/Ixym8VyjoYwkDmMcHSgqV8XgatEdaVG/hKNmowFjcy1HMwcbHwrVyLEfIC4qNl8Idu8XqPnZPwMfH2Ak0SHGayhrFyWIxLk8k4O7OWN+J85lXt1JqtYXUhjjVeWOIZ0jGuwJ4tkke3bV7DrQYAHv95H37JqQeaJRuk6Js7iGdSVAuWVGvwrB4ql4soyxmuErkVpQTrhJNl4HBeQBRdStEALim2iwgjFNTpSM04/Y0I/7CnQndDPZOZbb4fItMSzSxQ92SljB3gwdeMzPUTckmnZVF0TAG57YGDTRaOYXEk2TW8Hs4p+hOLG3w7QtzQIb8l19T7JmwnvD8TsFY8euisCGQrcBMqdvLJH6kKL4mjMogloLm4L7P8YLGPFSUa4aK1DI38SdblcLpfrRPmPqMvlcrlcJ2oE595e3x4aFXJBBzzSto3Aoi1co4wFINwjDWBsAtlOBRq2Oj8/NHLMXk8V53JCLkN04yfrEtbKthcoVw+xKSuo8wXAS7+WTnk3LGJED3HBYWq5+RLjIgObLoMd6EyjAZI215iWaM4tYMRmc4dXsGQ02o6z8pPzS4nOqKpHh8aTx48PjfWZxFSW4CSczs+kXLoYadztQHpbTrg2+Eg9hMmk6A2mdEo4vj5DD5wvpfH4yTk2XjaVxtQZ4OSQyRZyGCEvZcP2SHBlQgWL8RX4zOMnUmPu/JF01/NLwbmLJXrgjExSd2hyV3lUiNfY77Qrxk5OK54CDb/NyQmT6JUCHlpS3AFm2rbHDHdeUOS6uGp4KknLtZIUeykQ9GBm3AcMGesyjmJr+rS00M6LD0j42wdcMi3dNWmdzfUzcWMMrU+6qdVAztxpTkHgZ+iUDoJYg4kJMf4dsQfrFpmUA5rajY1Ul8M823carjIWXKZA9CMN3t+03x/+jvifRyA/G+zt8S8CCz1qWsh0kbW9bgZvyjExZqxQhd8s2yhzrjaWP4m6XC6Xy3Wi/EfU5XK5XK4TNYJzX798cWjM4VBqVzKdn9WU9jCL1igp3oGa8gmd9JXWKVLcy0eXh0YGnEvWRKZRmORePryneAzfAR3s1TtK7AmnKxAlsxoGchvsss59ViZnExcn1TN2gN/i1PKcpBT+SdY5ohmPtIdOSLC4Yoajsce+M7UVe3q/FfzOmmjVXE/rV7/24aFxcSEH//0Pnx0aq/UKG4BlggO38Amz5juNsv0QEy1ibGYIENVqJkcRw5CAWwKG97HvlzD80YVA6fP1Euvq3/x2ktEOntOGTciDs4Cwhdsb2cGLCzkIxNRna6G4Z0tSXAwo0B+o+cFMnJiszJWO4EFSelJK9pzJ/9dW8zjzllm+HHmpcJp4vkqk6dLG2Xb0M7PBsnq4irHNrEhFI2VqMm8Hg7I1BUJTUmMfph46fEs9n8ZRTwL+TuXJKpr/Fbpa+grEymn1I6ug0Rqbiu3JNXYVx7nCWxnZOK3OyLsIElk1SDaPLd+ZdrM4yljHpNKYeAfu3CRqaGDAMH30bKi1eSsILuD8iHjUjHfyXLfdbJCWqEN3LXmt4edDz5TeMeXbGPeZGzu3HhVm5/LGS/c1rggOOiwquRCY55CbnmPlT6Iul8vlcp0o/xF1uVwul+tEjeDc66vrQ6MGzk0InfCMvN8hiBV5ngzI1YgGgllOrWXYQkVHJVMXYtzHycv8uqbp0oKLpNy23qMBIMmptR2nn5s0XeuCS+I9fYgbkGSSXJevDMY2TFZJu1cBsKtmVBDsFVIpyLVYLo2ktIHjNMVpWq7OuW3nQOiPLi/kXXikuZN9Qu7URw0GKdRI1dBi9MAsdRezlKanR5rH3JzfzLIyM4MbyoGE5oSTOYkf8VE8IsAl1/Qa9wChMN3N5nMsWXryHH2S06uDInqMO+Ya7PT9OJDTdpxjLG3ynWQJvFwg94D9hFw3aDAgVz7Dq6arWrwln6EBnqebVFldteDD3NHeJNwqWifOxfkicOZ5DyzoTIg1oyqT9tiHuXOzmCGTDZbGTBuUS2PYQmwy12hglm7Uym5xpExHKmvCFspgdINtrfBoiHcg00H4EXU9G/M331EH8nRHO2apj53AIw2exNQOcMR+3aDjxCeIVl7tFJpyHNt9i4zXNW5cqIPY5cgOwh2jS+K7/azkuEY8eKHnwuwM5U+iLpfL5XKdKP8RdblcLpfrRI3g3Pvb+0OjAwXLEwJVUQNqytSF/R5+XcQvkApkmNje4i1+poItkNPhFfKABDbkseRRjcDb7Z1s6uZ+c2jsdkyBgCkXrkvFHurntDg3zvN8iBtQs3x7EioAB3xGQQr5jyl4xMXQDnoxCIydLUAnaoJWItN4pXMc1SRJzs/E17qC6ZSRDmkep08kMQfVqdM13dcmF5fHM4BdaEz/J41T9XmCaFXtGTpq3YlYSc6qfBnxaVyHK0XlMgb/9tjD5UJcvo/PL+XD+PbFuYQtLFFjTl2FPfedXDc2CT8km4M6UmPL6vxcTiX7m/J/xCArndYGPPYc+2gBFSu6fKV30XWpAbBqyiXbxOCFwblBOCpXgTELS4MZ1sEGTm6WxAwtuAyPoM5YBbMFDM6lHTS3ENXSVFJu7Cm3MNEgBRM7bEJIgsOiQaxlEVuIbTSEzZ54kNRGHV+qwzSeNFUuk8xUN+PImA6RGT81xTkdGtHQxY0BY1L8+oAbTqe1zOSVjKdDvfEcs+NbcTpHzhyGoYheoRN4Bi96BRqsyb3TD5z+JOpyuVwu14nyH1GXy+VyuU7UCM7d3guY5QN1blxeLJe22wpH3bL0jOJc+YVmLAB/snvzhD7vBK9p+C3svmra5Fu1rGsDnHt7c43tAYuGO5cIRD1dltvgoyONB03u5v9F6DNkA2EFSJPgK4wLaLU2j7wyQ1pCUQpa7DpxZjK+mCQkiAQGLCoDWER3ZcG9Zo2hmMLxWOXqnMSWcao+oQq+peeX4Z9qdEymNOAE1Ti/LY3H8NAyfplJsATOwQRwongCw3hqPNkOXb4rAPOnjwWYV5V8aw1H9Aolw8qMaEjOVIbtSFkPLiVV5offzhuDQz+YV2JdXsqmsgOzTtkC9lpC++WKOFeOYY1DVzc0yc/wdZjAOUFe43lpkoxjnLW3wC2c40JgKi+9weS6GT485iYly5t2Nr+LiOB0poBJZA2SDeKwBd6mBsNT2aO0cJjx4qpPlVRZS6Fpvq0evSLeEjWuMxf7mHgY2ZfiW98RiqtLMTi3D+4C8YdGQLMZ2DA38B53vE4TzjnSt4/XjiDwzJBznjueKU1KR4MMObN0nVZtzjgo4qTosd+EWP4k6nK5XC7XifIfUZfL5XK5TtQIzm12eH5mxgIpCxBiA6ffbr/BK0g5gH2UhZ8KlF4it9zvaRSUxmwzx3L4gA+ciw0j+yUJ3G/hDUZdsD2zfJH+mupT/HSlIaziCM59J/FbnL1uIQkDDTICZ2AfZsbSP9bR11fGyQZdS6sboWUAi9R8yBWbvFbNB+Bce7qLs+hbWloLu8RT1rX7aNsCBDJLYsm6mNfRNrQrI2e45/fjkFhF8TqznKZK+kiBoJGfzCjgxYJLRrTCnN5mRhDQ00hzJk4ZcypI7Fj9zXQY66gk6R2sl3FaT59JDTvFuYBOZLZnMGMvkXdNns9zUdVyLpZLXIadjBrM5k20CjZGigzivHMV7PZniGVmWgjdwrMZi6MxnpQX5rHdh97BoGpLgAXw1vrw41Ucq8g28i2cU+JMUlUbjh2Mc6hbPosbg8HaDztCplOlevG/uR+jX3/IOrg8bnMcSBs42LldMdft0IW22y3ekg/nxTZaRYZuprG6HLcy91t2Ts4x6fDjxZuqmpYTovgseushF6g/ibpcLpfLdaL8R9TlcrlcrhM1gnM74NyBQLXldHgEIADeNgytxWe0jjnICX2yNLkxKGAPny1/zXXGvU5jJ9uUF8hChi7eMHqxglBHuFiJH5num08GJGp27rvgXM0fwCu6F4aS6Azmkbn88UoVxioJjKFEAGPDryJDmEcmiTeJcPJINkKqHCi2LNqtzQzksWLP2YO3NKjyNiCdo6TzFqe872I4qRvGr6fRR/SlXosfYVMzElHxhxOvVXRLmkp5PQJ7B8XdXJnFuWZuuLHi6l5Mw7THjy+xzWT7Mc5dIHVhBXcueSyzoxmt0HbymTWt17VcUHTn8gySj+2beCymQm01nvcVYPICoRbcMAb/BgbguJMcic4NPvN27MhMA41CxSvK/BUA0gY6vVp7N8hiUhoMCWF0hnW1aAkOrovB1hczwyFjoRzmLX4948UShxIPieG6VrYLjgxFcaSDoRO8RvLoS8F4HD20vLdzjEDg7TaV2wI7eYaDxpKa3VI6VTWPo5613h8miXDkkaOBKcPY9drFla5V0mLuzYNp5U+iLpfL5XKdKP8RdblcLpfrRI3g3J5gtpef2MbU82LYQq0Py5iHDj7Gr+cktJjm34ExNkjc5axbfWjmlNiCVESe6ys0ghhaM/mXjmJOh8deNCYdMkvjQl3vGFI5KZsrq2uwGMcgmmwaJvcjdY6IIHRtZImMRBj6NnqLbsAiiQ3MY0wm3hUbDarbP41zd3uJxWANvSFhgiteAa6vuEfGVKl4OeWJBq43xuzepG6WiHGoqvhaCIIQYvza6/HIoo8codxUb6M+dUBh8lsVshF4VLnNrNrGnI2Rc6HGVI6PxMUKWbDOfp3iWEwycJuTeMm4Qlnmj5Dcbkam+NRUmnsQ2Z0UCyxmsMVmRdwh2SWY3JtyVIVM25pj2SE1sDmum5Yah/Po5WDvAwHkNxsw3dBLVS3j3Elu05d0XzsivWpiIqpZGmSk7Es8C3gvQ/A10zl4e2zwY5G3TF2IDdVBFg27K3H324NN3kn+JOpyuVwu14nyH1GXy+VyuU5U+umnn/51b4PL5XK5XH8j5U+iLpfL5XKdKP8RdblcLpfrRPmPqMvlcrlcJ8p/RF0ul8vlOlH+I+pyuVwu14n6/wD2eysWCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKMjkyNzgKZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjM4IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjcuMSkgL0NyZWF0aW9uRGF0ZSAoRDoyMDIzMDMxNDE2MjUyNVopCj4+CmVuZG9iagp4cmVmCjAgMzkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMzcwNDggMDAwMDAgbiAKMDAwMDAwNzM1MyAwMDAwMCBuIAowMDAwMDA3Mzg1IDAwMDAwIG4gCjAwMDAwMDc0NDUgMDAwMDAgbiAKMDAwMDAwNzQ2NiAwMDAwMCBuIAowMDAwMDA3NDg3IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDAwNjg3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMDY2NyAwMDAwMCBuIAowMDAwMDA3NTE5IDAwMDAwIG4gCjAwMDAwMDYwODQgMDAwMDAgbiAKMDAwMDAwNTg3NyAwMDAwMCBuIAowMDAwMDA1NDcxIDAwMDAwIG4gCjAwMDAwMDcxMzcgMDAwMDAgbiAKMDAwMDAwMDcwNyAwMDAwMCBuIAowMDAwMDAwODU4IDAwMDAwIG4gCjAwMDAwMDA5ODEgMDAwMDAgbiAKMDAwMDAwMTEzMCAwMDAwMCBuIAowMDAwMDAxNTQ0IDAwMDAwIG4gCjAwMDAwMDE2ODggMDAwMDAgbiAKMDAwMDAwMjA2OCAwMDAwMCBuIAowMDAwMDAyMzcyIDAwMDAwIG4gCjAwMDAwMDI2OTQgMDAwMDAgbiAKMDAwMDAwMjkwMyAwMDAwMCBuIAowMDAwMDAzMzE3IDAwMDAwIG4gCjAwMDAwMDM1NTQgMDAwMDAgbiAKMDAwMDAwMzY3MyAwMDAwMCBuIAowMDAwMDA0MDA0IDAwMDAwIG4gCjAwMDAwMDQyOTUgMDAwMDAgbiAKMDAwMDAwNDYwNyAwMDAwMCBuIAowMDAwMDA1MDE0IDAwMDAwIG4gCjAwMDAwMDUxMDQgMDAwMDAgbiAKMDAwMDAwNTMxMCAwMDAwMCBuIAowMDAwMDM3MDI2IDAwMDAwIG4gCjAwMDAwMzcxMDggMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSAzOSAvUm9vdCAxIDAgUiAvSW5mbyAzOCAwIFIgPj4Kc3RhcnR4cmVmCjM3MjU5CiUlRU9GCg==", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"460.8pt\" height=\"181.207445pt\" viewBox=\"0 0 460.8 181.207445\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T16:25:25.666131</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 181.207445 \n", "L 460.8 181.207445 \n", "L 460.8 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p8417e4775d)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAmwAAADTCAYAAAA8lk+sAAB2j0lEQVR4nO29ya8t2ZXet6M97e1el8wkM5nsWSxRKpclC6iBNbH1BxiQDBswZMGQR5oIMAxY0MgQPLCHsgHNbP8H1txj2wMDLrJkmVmsIllkPmbzutucLnoPiIr1W5d75YnLTBaPjfWN9o0XJ2LH7iLe+vb3reT58+dDcDgcDofD4XCcLNLfdQUcDofD4XA4HJ8N/2BzOBwOh8PhOHH4B5vD4XA4HA7HicM/2BwOh8PhcDhOHP7B5nA4HA6Hw3HiyK1/+Of/+X85ltNUvuvSQspd143lpm7Gct3UY7nvW1wnj5azPBvLSSHlIUvk+rhO16Lco9KJnJ/lUs5x/RLlFPrYAc9y2B3kvocqek4yyI9zfPcWeY5yIeezmrhvkvBfBP/0f/oX0ePbXq45oA4shyCN0g9xEbD1W9aH5dSoJ9EPco5RnV+vB/6xG6R9B/Q3z0lS9GuGcZPw3nw2uSb7huh6tBfK6vkxBy7Qr8T/+cf/x1hupPphCKVcv8X4K+X4erWS659LOZHTwxDwXBhzHdo6U33J8/FcId7H1lhUh43xpAb1IHUbcC8MD91fSXz89a30XdvJ+lJm+H8mznn37XeiVftX/+p/Hcvsx7KU8TCbSV/M5/OxvFxJmXXbH/ZjebvZjOXdVo4f9lJusWZlxrjlOVVV4bg8e4cFj8+yPpMxc3l5Ls+ymI3lHOM/w2/zXMpJgrUecy3FOFRjJmWnhii+/71/K3r8n/2z/2osF1j3i4Lr5vF1R9UnS+PHrXGOdhhY5vU5ZnJpT/bjZ9ZJla22fmC9gRRrAftDnZ8wNiPH/8F/9Pej1/xrf/PfjR7ney8MPYoyD/uO62kXLQ9DfG1NM4xRjINMrd1YI1CfNMH3Bd7zxUz6bIl1lvM8xbjh+6Op5VtmX8l85rPzPb/AvRbLhdx3scSz4B2QxmNm/+N//99Fj3uEzeFwOBwOh+PE4R9sDofD4XA4HCcOkxJNc4YXQfkhTJmCIlS8CSiOtsVxFQbFzTKG3km/grLIJHzJz8wOfFCPMCVDwGRQMlanEwqi7flb1A2/TVD/DLRPAb4gQ0hXhbNxSVWeQDU+FD2j1qYtshGSnhCCt8Dfsl+GgZSmphFIeeSkydQAYdgbZeO/G53x0HxOixImza/oOV7ToETnM1CZCbYLdKSQMG4wVlJSFujAgeNPUZMYi6rPSFNgOwIGft9xfoKSJt2G80vQVamqQ7xfFJ0ETrd/6HjCWEkUnYIqBHOAj6hroRd5TTUuUbUMC0bXYb1D32naB23Yk8bF+gKOfCDtjmvynBbXZ5njM+V9SR+jT9nXfUJaXND3GEsZ10HO1d/COtUI1cv51SdcTzH2+G7gfEmn1M2gB9M4VaiuiPk4ZcvEZ/1bYlCTxGAv2nJNg5a26OrBfAP9FWIw/jC6RjPXWAtI5ytamWNFyjm+WbgtRm3FUu8GroP4jsA11ecCKzqh7z4PPMLmcDgcDofDceLwDzaHw+FwOByOE4dJiWZzUU2RBl3MRQUxIFTfILx9qDIcF5VFW4OuQRiRIcscaq1yJjTo+uJsLM+WcrwhjdBSWShQ6hQorqq9qEGHXpReDI+qcDP4qQxh+yKL0ya2MpTl3zw8zdC5VoMeD39bCtDUoBcUbdjH6UTSU51By9xXVmVou0yxBaDzcN2ESknSf6TDVb1xyQdSEKpNMYYsFKXMjYC6ZQ3qnDNUL+NY0aMZaQ08O6nALK6s5JO0irKU+1aN1G2/l3beH2Q+zDEPwxnoUSocSVUH0AWog+ZH42M04f8bhzgtpWhQXmYCA/H69bXUU6kjpc3nWO/OzmStIYVfYItGDfVYdUAZa8pmsx3LVNGrLQgp6VfSmnE6tcH6lRjztpxBZYlGnOG4UmJSXa/692GYougkqMAjTazWI7xvEjgL5HkZPb8ztjooJTzGaujjc8f6bdODxi3k+H0FuqJy0zhtR6Vkb6wvvLeiXQ2lsaKNObao1p7C2pnvpSFeVO+i49sFlFoWV+c4pnq5KOH0AHXnrBQlplKSsk24tQrK/Lwoo+fTNYAK9gL177r43OMWFirz+8DxTd5XipZilPAIm8PhcDgcDseJwz/YHA6Hw+FwOE4cJiVagCIgPbJarqPnM+Sf7+Wy+0oogjaXc2j8mc9Bua4kxLlYCzVxfnkh9VmLCZ2iEajEYoiW59RSnx0oizuENam46hsa//H6AWXLwBaYEIb+oujRXNGOrBt/EVcukVpkaJjtrNs8bpioBMSBtNK9/yMUeObcoKK1rFbKysPRMm4EnYG6kvlVFEwhFExvhPltSP1nmD9U3vU9aR1sBSjYB2g80vmGStRSgJGWGdAH+71c8+ZazCBvN3djeb0i1YB6rkC5KAPLOFXaKfUoaSlDkQfo8zlupvSF4OWL12NZUaJQvy5gMEt6iua6pE1JidYwud3BdHtzK9ss9qBNM0N5ZqmVO6hNqXjlBEgUJSrPopStavuCgBT8MOgtC8fxm6sP1bpJJaYxf01a3FC2T9kmoXY9hHh91Jqursn15N5WD2xlSI05YFXqwTpDpTyNby94MCYwoiZUv3LbiuGmrlSipHehFgatuVjI2rTCN0KJLSnsJc4B0qakj9n3Dd//g5zfduhjbCtJhnj/9srAvo+eE4yus+ARNofD4XA4HI4Th3+wORwOh8PhcJw4TEqU1OScak0qqHA+FT8qVxZCmYc98nLityWohtVa8uCdP7qK3rekUpUhSC0JlHNILzRShxlCqHyWtkJe1ANUQSpUapgp4joWfff5wGAvlYLxXHR1Ew9JlwgN51Aokoqh+m2zFfr4ADVhV8dVQG3LfpH6cCyFEMI5+nW1Zm43UBso57qBce94WzPPXp7GlVVsUtW6BiUcIAZVtQF1WBakRDlWaNZIKsdSUKI+pFZgzJsoelv6koaoLG93Mgdevr4dy2+ur8fy4VzG/Rz592agDsuUylDS2WxFY248FOZWg+MT6/panpH0yKyU/qKquQQtvlrKWOe4aqGKVypOUJZ75BLdgyolFUOlamLkk+wNg1web6o4RdtgOwvnuR7oE5xLfwvojTzCLdYRmrNnpErTuGm7Vh9aClC0Lel7I6ewUpha6wzrE0LojHooI/Yp7WueoqwGoseVgXp4GOVqVU27CMTXF5slN60S5PrKKJkmt/GtJKRBSyhAE7W9Jp6rNFHK0PjWE9KgvA5NwBXti+s0zB/cyvzUStj49iULHmFzOBwOh8PhOHH4B5vD4XA4HA7HicOkRFdnQoMsoDpanYlCkyxOdaAijXSYnKNUhPgHpUIrGe6EuSNosc4IHSY0JSXVgIr2DWgQ1KeGmnV3J9TcAWHWrmY+QObBQx3wh06HGTccZDh4mBAiZ6ie97XS6Q1DXHGlaDeE76mQ24M6u3kjtNIW9GjXxOvTgGJqYZxbFjoP5wG061UjSuD1SsYZ1XlqxPZxLpMmrjRfpNmxMjU0ukaN3QnCRBorpykrGqfqldLTUPB26nzSoAilK2UcTT5Jn8k5u/1uLL++vR7LpERJVz06yDaFqyDrQoASTlG0Bt1sPPokaIWZpXyO4/ZW1K+kIDoYcJIqrUD5k/4nldEbSukGawS3FOyxHUTlky2oSOXaxzyzpMjjY4aUPRX7LeoTmI6ZeRdZDgaVp9rcUk0+7P//LZWYNBbFuM1AK3U5qFJlHKsSO+Ka8bIi7BXdzFyu2EZjmPreNwEn7Fyix9XR9/bVmPeIwqBBe0PJaMF6nyQGlamM4Q0xqJYm43xlFE76Ml4m3amug7lNCjUzaFauQTCACAn6flBqfAG/X7qeOcnja71Wv4ISHcxPsCg8wuZwOBwOh8Nx4vAPNofD4XA4HI4ThxmPu6BRLSlRKMYGUF0qbxlCyDVC8nua08IMMkG5UYorCe139ANshaZIEtJfQinM6cdKehThUZXDFGqTnPnGcE2GVknvUlll5aN7qOGgBRXaplKVhqlJvM5KtIpQbwv6skKbHw5C42y3MFi9FUqNVEyWyn0H0IMdxsnuTqjVEEK4vRa66u5Gyu+//95Y5vgj3UllGe9H42BSS8zP2JDyIK3D0DX6ldSqhaGP03Zsd1IqVM9ShMo5MxicYgo6MsCYVxnSgupqEbavWubBBP0HdeHhIP1Nk1ilpgqAolDUXoAQQ2IN9WTCOdZtDex28ixqLcCvC+SmrKAMJ62Zg5bhVoMac6aGWpOq+ArtqYyqOxnbGZ+mICVq0JTGdpOmotEuzMoxPnmd1FCYa6ngFEPwh0nhaUTOMdP2oMJIj6oyqEyokhNDMam3OshfLa7Dco33EKlS9l2OXKLJPQ4xUXRefPtCZlClpszSohqVCziOK4NgbgH5giaWWmsmlLEtIzFjRQa3qpqBfSZjosD7IE+ovua2o7gZul4fMZ87zOeOx2Vud1CMJzTIHTgupf455rai2z+DYh/POXqGw+FwOBwOh+N3Cv9gczgcDofD4ThxmJTo1eMnY5nqpRWMGKmOYoid4eQsFyqABnMVqIM9KJeKoUmUM+QbTZgPLDUoURh8zlDnAuo9Gl4yNEmaNcvkmqRNqBrMFI0TV1BppmEC1WAgVbnKAPxBo+BMUR9xVY9S76JPqQBtK+ZjRbuBzi4XIkObzSXnLKLW4eObj1jr8PLVy7H86ScvxvJiJsbNM4SQiwsx2mXfkJIPUCz2XZxC1q0ep5wUrTFFwWsoGVNl2CvX5Dx5cyN5J3cbCbeTjixA4TNX6ZBinqAZMuRprUB7k3q+uRHF76tXN/JbqKnudjSAlbqlQeowm1l5YOMKVmJQNAJ+i77LrLE7Qb6rzK9BY+VYC2Yl6I6a2zJQzplLGBQk16+KZdDNVInqvQlSH6jc5n2cbksMroqKdxp2chtAZ5nB4jpK3RisrR7x6wxTOGyA45/PnoLiJwXfQZnfUV3HPLbGHCQ4T7kdolE5W6UfW5gVq9ysuCaVjr96BioWMT8VvU1VeZwG1apg4xyLBlb5tOWMaZRofJxZq6BqF6oyjS08ahwrulPxuCjH1bwNjPCV6W5Ok2gsin2cTuX2n91BtvzsKln7OJ9r3Jfzn9cvuWWHux1aOE+QEp2wlnmEzeFwOBwOh+PE4R9sDofD4XA4HCcOkxI9A/VUILw4p+oOdAGpiQNy6CmzSYQ7WyjVaPBZIex9GOT66Q40qKJEQRNB3bmohVJbLWHCCtpO8ZoIVVNZmascZlAoIseYygZGuqA3Qs8mvTZJSjqWUiOsrHKbJgy7wziWxn8dQ+eWkixuGMnycik06HolKuMOeUVfvnilnoYq0bqRkPOXv/zOWH50JddaLaQvmXs0hDj104LmoJoqQ1toV1zDGHICjU0KlbDMjpUidyfl169ESbsDBVmUpCBhQJzIb9Mc4wM5TPegup//8vVY/uUvhZJ++eLNWM4z2VJw+0b65fYcc1vlbJW6pSXHx8OUhnpLAcaioUacQu/QBJXGnBz3VOnyeIttAQ3acKCyHbmHmdOzgcKUOUZZh4zKeaihqcBX+TEtuhkDq4Fqjap70qbmGDaoNouOMymsCeiVcpEK3DiN1qnzscapsqW8jBvHqnzBin5FGYNDr60B5+i5TwPyQanZjS0aJl0Y74/7qtQY1PWV0evD+klB1QeHSe+yL1OW4+b6QSk3ma+b79J4nlddjveZNrzFdwrmCc3Et6BESYO2DeZzF1cRk7pt+OrBu6HGtw/LU8JnHmFzOBwOh8PhOHH4B5vD4XA4HA7HicOkRAsoQ4siQ5l0JML5DcxmQYkkedzUDx56oe4Y6oZRHUPJpAIy5gmT8gJ0J+lX5hUroRhl/RXNSrVJGlf1BKWgOh5i1oyOpWR6WKjaoiwY9qXZpxKn6UDxWKLYsphBRQfVLUPVVGo+fvRoLM/nYrC839Y4LlT1r+ot5f3ugDJMXPcISyP8rNSXqHdH8+Ve7l1mHLshCpWnto/TKCEz6AjSbZovGEGTYioQqSLcbIR23IEqLUtQB4rOByUKhR0NJre4zjUo12uVI1baeXsnddjeSHmD4yVUqHmB/JjG/CFMxahRJh2WGVSShTyjkTTWjjy+jmhVr0U7YhvHHgpT0qAYh1Sks01aKFW7ltRb3OCTC2eq5XUoxyk/TR8NsdM1JarK8VsRg8orehyDRVMa91LNoLaGHKd6J9WH7yGUSalza4h6/7X62ZXBeTzlcTBtUg3vYlLjlkrUolnVeGqP95NuX97WGB9sF5TVOsgL0dXAYNXpQEDlc861j+sL19+BrgbIj82c4di6tdmJWn4Lk2tSq8xJrtXRUgW2D2n1Fqa7FQzKqSrvJ1DVHmFzOBwOh8PhOHH4B5vD4XA4HA7HicOkRBso9sIASoHUJEPphmpFURYMm4KCKGBm2TLKzxBniNNBjIgOwaA4Yaib58jdx/BuCcoFBqVZEg9ckx7R5p3xgL5NKTyMEk1MQ0OqymjaGqJlRV+o9pTfLkCJni2Fbi6hls0KoZgvrkQlOrRyszuocdJ7/0coQFeV6JsZTIqpviQ1pqgKtp2iuqlMCiij/1LSF5ALKkro+P9tqARidDtHw6eKxaJyCwonRY2hPgmpaDmcIc9pVqKtFH3M/kZuRNSfOVipDFdzPlDFRXUU2w3jCXyBVhQax1WbH1fUDRPMJmdzGbtUfS9Az8/nGHsY0znWqYTbDtq4yWoNxajqR9JQ9PTkOkJKDupUGtJyzeVcsuhRTvNhAiWqVYDYTkElJk5/oDBUIcP2mkQtVLg+1e90HFBqwrhRq4UpSk2TWsR1OMf7Qa/LLajrjqrJYLSvkc/VWu+nYFB9TKXqBOra5L1Rju/6sOtv0KPKyBjrHWnQVKmdYWBNNa5SiWKrAfP+Ik/onrmToeJmPmD2fVEaWz3gVKFcHNR7mMbuUiR1m/YT3jFHz3A4HA6Hw+Fw/E7hH2wOh8PhcDgcJw6TEr3biKFpCcNOJiXLmJcT9JTKX0dHStJEpFwK5kUEVZKTEkUVGFlV+UNhkAsT19VSFIvLuZzD8Pme+U8TNgvD8PHQbehIF8RVJVZgO0kepqzSsH47xZgXdVb5J+WPGajw8wtpT0VFgjJaLoViqvdQ6eIGQ6frTJqpINWaMvwM/s9Q4fSBRomgDmncSNpuiNPYVl6+ScSERVfjeA7VdMZcpYyYw/AWwzvMF9LW63PmbQ04H+H/Oq5Ami9kvq2XUE1D/Xp5IRddn8k5rEOhngX9TUddxc9JcdIWAeMylgLPQg56nfmGy1KecY51YY48tgW3U5B1VOa6QrNw7TNpR9JnfFwaWCuzZSqCqVLE+EHfkR5NFafIstHOf4XIsfVEKSAzYx+HMQm1ytCayw/DYNDx9jXvN6KV95MmyEb5N6/2PWVo3Hh2yjYCZViM472xDcXavmDRo5zDPeeMmtBcX2AGzdy9cBDQ+VtlzvNdQjV4zhzVLb5ler7/pZ4lt0oZJunsOp7C7SbW+kITegseYXM4HA6Hw+E4cfgHm8PhcDgcDseJw6REb25uxvK8FAVVgrB9CVqTJpH7Q4Uy82aBtkJ4tJiDckVYcMjihrf5nApCKNtQz/MVaFBQpTQEHpDLkXF1qrVoQqvoPKq1lPTPoOAAZWCrHXWj56szLBWUQQsolaHBMdEHlkrHZA4z1BnyqCqqJ07LMIckw779PUqUdVXUJ6Byl+ZUXEExqtSUMFmkoa6R04+h+sxy1J2AQqmFMG7UM8r1F0sZr+tzGaNXGJd7GOoyf+h8KW2yvpT5sFrKnDnACDfBVD8/k5D8EvToHKrgJ4+FAn/r2cVYvryQeVUWpBqkTLqDY8syZe0NGodmpBw3YO3DMEW9CxqKpr4l1gsqRhdLto/0i1LX4sE6Y70gQcKxzfqwzDZR85w+oXheqqf13JNxklJBrNS+xBSlJE9P4uUH/v8/x5pOKHoQz6WcCLjNglWz8nN+Hp7RgKWMDEG3teobKzeolaNzwjnEQ1WvFqxz1PwEfam6RtXN6AOVyxqUqHplckzL2kQVZ5JJ3s8Mec5nC1mnuNVG5WOGyr3TkyxafyYNoOk25y37N89YxrqDLWBcgzLj/Ud4hM3hcDgcDofjxOEfbA6Hw+FwOBwnDlsleicq0XYhoUOGF7tCwnlthbyIyMV1qKXc0PAOYcQSocYckrcUZpbLtVA0y5XQFCosS7oJSowFaB+avraoT6KkRnE6SwWJSSMyPK9ypH0xOe4I0kepabBINWs8aVtqKVipqsRzzbJ4LtEaedoO+42Ut3LO/iBh6waKuhBCWMDUdAHFYgl6jopiqvxIRVO5qgxdGYVHW2gaNE5F9QYtFQw1j1Kkog9YtxwVmoESOj8/l/MbGv9Km4bA+YNnQXXmoFlLGD12MDJeYF7lOWk1Of/sQubY5SOp2/pMqAZN+1jKTSr+4sq50JEeAc2NfJ3kSpLSXLaiIEWYYfzMsH4tqDAHPUqFfM88noq+IO0TcA7GGKlJKtWwHpG+tJAqZTEpadC+Zo5UqhIfqIA2VI92+ThyUPzK5JUnUWpHlaFBwT3Mhnz6WV8YLO5Q86soxg111SVRHoxLqvadkLOSW3vU+1Bdh+bOqE96vENII2qKPX4vRcXivU1VNvP7cgsFq8A5wK068xldE0jDy2+tLSDcpkBKlHOS62xh5Da28i4THmFzOBwOh8PhOHH4B5vD4XA4HA7HicPkFvY7oTJzw7iU8UKK/w4IU+6ZZ485JRG2DzDgXZ4J/XLx6HIsr8+EEqVCY7PbjuW2k+szlEm1xgI0VI3wawVTvALhS6X0AH3Rg2JSihrSIGi3xAi9DzpwHT2HsGhQRfFZJqNGXlelkIVNospzljI8LT+tkI/tzRuh0V9/KlTeK5T3B+SoDSFcXF6O5TMoJS8v5PhygTymCEun6kGpACV1aBgcGuyNMkdWuSBxrzJOiQ6mYi5uVMm25hQrZqCi27g6l2hq5LWEKnteCrWXJZwbpMwY5oeyF9sUqE6dqXx6cXrHzOdoqKMt49xEGfAmkTOm5UUsoQwvOM9nPA6aEm1iKt6YL9VUR0PxPkDxXtC8l3mO0S9UkhrqWjXn8dtyTlocW0xI5ZNTnJTfMt4XavV6ILvI+gxpnP4ymbNglA2fYL3+xscM21MreY9Tvfdzadv5NFlXrM1JvE0nYYIpsy4fnzOss1rXlGl13AnbYlxpks5yGriexjuc6zIdAbKW+UNBleJbIOvjamTSkWUJZTu3iaBf1fzM+W63VKJptEzqU7sSHO95j7A5HA6Hw+FwnDj8g83hcDgcDofjxGFSoipPo8plRxWhHGaQFaIvVVZhX3BAOYzkVjC8vQRdVs6gSEXok+Fd5iQbcqjKUAeGIIssToMo81ilpoqHdNk+SiWWGJSokS9tCsxQO89hWj4rH6ZBSXWGMWKLXzegBw87oThv3lyP5Q9/8clY/vTjm7E8n0n/hhDC02dPxvLb7zwby4+fiFnrHJSoptWY19Z4INPQkdchHYPQO4xb2wMUi2sZi/euFL2vacaLgZmX8oMl1LL9gC0FNcec1KdB3faZlMsLGX8U52o6Hyol0nmkEUnbgTpMDWVyMsV8VcH6B8O8E6tNP4USnZGClLZVNCgpjjROxWiqjqpP0srx3IAlcxKiPWegL2egStV6RBVzIEi/yrPMobSfY93MYeysTYwNI1/mKg3xOWKZIU8B80xT1adyYKrdOFQ043xj7AVDxZhoF2Bck+8k3hhn46ekyKg4vP83zyPU3DDG1pS00KQIOygl27aJ/mBKzkq+NzpuR0A1+y7ejnrXFKlPHLfeY6r7qAzF+7zDVixDMcpyDlN/qo4zpZqGMT8+i2jcrFTxSXzcWypRltU8UcvXhC1RR89wOBwOh8PhcPxO4R9sDofD4XA4HCcOkxLNQR0wVMwQJFUW/PSjOqqEOWXfIYQPKmABI9w58vjloA7qVtSI260oQ/d7MWVl2JThznbGOoDaMvKBaoWMnEMqlibAOi8nfpvGKSOltHmg1eMwgU4lrUlFGikFhoxJfaocrwgTp4pOwW9BG+420ke3N9JHm1tRHBdXyM0YQlgtz8by1dXjsXx2BnUbhlndSn+nyO24WIKSwHMyr61WF4L2wnHm3GRbtz37ewqMkD/paty4LKnIo1kr6WB5lvoAhfMOxrzIo7pGvtGuidOgRUbzWBhJMsedYcSqxrHK0xo9xaR3tFkx/4Wmu7x+Hy1bKGC0qwyZSUHmpDUtdSRNuuUof0tjbkWz4tlJMXN+6lyFccqVT6uMeVWuQtLZpLxJ+5J2i5vT/rbR9XGalfRokhw3MU+nULGWktKYp6S8tLE27ksF4T2VKN8/qUWlxXdQTNolo94beKWpvJx9fG5M6uJ4E6n76usb5tFo60G9V4/nOR1I9WIbB/OHtyonqdSHuc2zQqjhPMB4XeXixfqYxilprgVadBuvP9uhs7aMdMff+YRH2BwOh8PhcDhOHP7B5nA4HA6Hw3HiMCnRGWjEFCF2hrGbNq4o7Kk0IoWSgVaiqSzOoZEsabsKhqu7PSlRUF4INTIk3VSitGtmUka0XZtTGuo3pVphbkOG0vlLw1jQUmtOgVLXMN0bDV+pvmK+wTweC8+SOFWSgoskJRp6OWdegM6GAnRWyvEskz5ivrcQ7uWLRPVIJxUwyO1VeJ50Ca/bR88JSdzskLngOBb7guqo48oq7Z8cl6eS7uEAzNnuhZQrGNXmEH3VuBfD/9UeptVbGesHUKh1BapX0U+kIKGUMihORYOSHuE1JxhDWvNtinq07zvjHEGZ0xQbhsCkSg16lIbRyvAStAyvSXUhy8rIW+XGBQ2qKNG42pRiaCtXYaaMOeMULY3L2Uc6pbJhkjqBXpwCy9S7n1C2zk+NMZMY81GN+WDQ+r2a2FLM4mvxr64rcyCjEhXnpGY94u2oaFCVIvqhW2mOQ5smH9+GY9VBHf0cdLtNoco5fD/TpD+nYT/f1XinpWrtY05ofNcoJTOo54bjBu9hqkRz9bKWYhvfomXBI2wOh8PhcDgcJw7/YHM4HA6Hw+E4cZiUaDGnSk9OaxhaVapJOUzaCuxZaBnH7eOKy6oW+izdghqqhRI9IF9i00qZ4ciqkkocSvlt3cAgDxTZYKg4O5QbqlYQfqUBL0PGdqg6ni9tCrThIP/FMBmlqW9vUFIq56kK2kevTrXZbCGq3svLq7F8dSXK0M2NhKR3oLBDCOFuK/lHD3v5zRCEXs1UHjZQ5hhONcaBRatp82K2BQ0U4zRZQUln0M8gAPVp0OHWfS21ME10lQkyJhZZwaqWtn754s1YvrmW9qFylgztDHknZ1CJs25dD3rBMAS2DJ0tWqPtaPaJbROgC4oirrjsJ6h3SV0pNTjLmXFcMSXx3IDMK6go0Zw0OtVjpJtYt7hqjeOf7Wblch2s5SWJPyNh0U0cA7pMPGwtq9u4onGgkp+5GakOJiVosLLqsKXIJAw23lKkcvjfb07r3z6P0TAf1BZfP3CPjQFzy4hJ48YrZKQhtZXkqkyz2bjxLBWXpCxb5DCvuL1DGUNziwDmnnKGgEF5he8IXh9rbo81i9sUCkWJomgoeS14hM3hcDgcDofjxOEfbA6Hw+FwOBwnDpMSXS5F5adzZTE8SrNJ0gvMxcXco/GQLlU+DcLkKUOQjYQgWxVKp8oCNEvLkKVQQAeoTUll0hSXdKdWhloGnwKTpZxgIDoFrI/BdijVms4bh75Quev4XMjH1jEXXbzfE9A+5xfnY/nRI2nnVy82Y/n1m9tAbO6o+BVKlMrHOc0OyS9QsYzzUT3VxwNoRPYxUqOGAgataQJl7IT8e8QQ4jyNzWLTlBW0F85hiJ10bVkwJC/XuduIyfDtRvpju5E2rxU9Glc+J0YuS1PPacyNXhnextXXphqR18H8bxQVHgeVsCl/S1oDaw2ZzIRK4YTqVzmHVGai8hDLOQPnWOCa0kXLmbEt454sTs4BdVNBFZfVVJ5CndrCjLcX+ls1upHj8aFm3xa4Lpvmo6CtSHkN+XE1aGLNO0I9CuvQR48rlSEWmvQePci/U3MbC+qttm6EaNls69+K17GxZUS9B6wtEfGrKHCY9aQ42b5Gvl46H5DuxOV7Y5sFjw9KYQ5HBEW5yhkd3jHMoU3z/oZzLyMlGt/S8RkJlqPwCJvD4XA4HA7HicM/2BwOh8PhcDhOHJMoUYaru5bhaoQREeZjmDIzFBqWmrKDyqIBzWrnRTNM7mDq2SJMWVUIw2cMm8o5pAIZNiWNqI1arWY0wp0Mgz4wnE2D4gRVoFlmnsfzh/bIW2bRvk0NxW4Fqg10RFGIMrScwzgXitH1GUx05zBe7rSqj2qbRtHe0k8tc9BmcXqCOeUYxlZ5GGlgS6PnLq7+TVKayj6wo8zTDWrVMCMtyEqBBpqBrW3nNDWWH9yBBj3sUQb9xzmjFI5lXEFlh/PjSkzL7JQ0Jem8e5slcB25Zof5fDjswzG0DVS96PfDQaiM/Z40CyhU5FpNFCWK52VK5dTgg5SaTerfIEeiNubldgRehlsZcAPMI25TIEWbwjibRp6zGRTBvTyvRYNaZqgPZeb2u7jaWhkCp9iqktPAHca0XJc5+an2Ze3UbhCsG/FdIuoc0mW5QXve/7dMnae4QJSNOYbKJlZ8xdpFgOtYaa1NGKy3UjVn8fe5qqXa4sBtAVRN8ypUSlNxbaj3C7g+5DTCxfql6sZ1CubXmMQ5t9GQhsf7k98UO9CjVSXrEcdxaWxTygy1tgWPsDkcDofD4XCcOPyDzeFwOBwOh+PEYVKiKXMqIoxLU0PSHS0VS8z1h2tagghFBaRximBAiDNPivg5UDgq1Q2oVVKKlmFn18XpQqXoUvk6QZum8dC2ZeL4UCSG0e6gHAp5nGq8eLltSBMJTbHZUP0i7TMrhX5Zg4Kbz0CRo82pINYjQv89KPVcGy1THKbUeeqyVGXFVUekJrqEdYhTeJ+r00iDDnEagUgNuqDEw/ekQUkjoPxGfHNDA1qwruJm0xlymGagRHlccSsU0inexMibpyhR0O1qq0Hc6Ljv4spQmi1bUObaqHRVyzMeDqBHSuTKHbDukAYt4vQiy0ohD7lvx+0UHahMUP9ph60MRj5jgu1vGf9S/UrFcduJYbJS8hrG2V8UDtiewnlKZTfL1ro8JZemRpzvU+8MpcaVYoZ6ks7K7k1lI3Wpvofl5muc/+tr568wDPF3Ds17lWp9QnNZKXoTQ7mZGO3IcT9Awa4NeOPm0TSeLhUlKuO1QM7zXOXHJd1JN4u4wpQ0aAFqVRl5ow07PEsDtTNznqutIcxVrCh/UufH6VGPsDkcDofD4XCcOPyDzeFwOBwOh+PEYVKiyn2U6iio9GjS2UBl2SmjOkWK8gZSIlXFcCGVFTTp7ZEDtGASU9K1UDWSZqV5L5WCraUGZY2pKIrTNT3oL62iiSN5INmQpUX0uMqjCqWnpcxV7W8oVUiD3tHgNhcap6cZ7UKuQ7XMAEqTdFMIIcyX8jzzBVXHVEeR7iFljrYGdaXUwuhLRYmS3qJxo2oijIkJ3aToZ4OCSNV4MvpGsYsM4cvxWcGcvvjpXK6zWCAfMCm5Duo8XJP5OpUSi1sQlHIzbi5qpRjsLXq+5QNIUSlzQSNSJUo6wkIFOrjDtokMP81LUPsNxtIAlWiKvK7M9VlQUZtFz2H3dsa2kqCoIVwTWy4sSpRbPazcmtyaUGL7gjYWJYXNOxhrx+cwbaVxrjJkxxJHs9IOaz3fPX0ebxNLHchBRrp5CPH3B5XFinIkPXqvIXSaV6hMVd5mGlL30eOcA3o3zPE+6HtVidhPTfTGgqdGAZ/fMCkmVd9yOlDVb6htM0VTytwrS5ZBjypKFN8RBelUmc9lieuTskQ5w3YKK3cyzfv7ht8CzOON+cmtEqBouwmKUY+wORwOh8PhcJw4/IPN4XA4HA6H48RhU6IMzyllG1WWEtasQcPRDPW+UepfwsxDhvsylEnaQTMlpDJblJETEkHaEmVSMbVyU2ReRzlMJUkHlZUOpVOiGacvLcPRKexCkrDLSF/E6Tu2lTLXzbLo+VQHFQVpTTmJJqxDfz2WNzBq3d0J3UHF6OWV5BsNIYQr/L1aivFuUcZVNakymIR5pmGiy9y06DLt54h2zKiIBhXCPLKW960JSlhV1yfRw4bgVWf3o4JqTmWiXOnsYomyUAdPnoqpMTna1QL5SdnOpIxJ6QxxKooUG8cN6YLQcHsBlbyoGv4/SbPZagfDW+RFtdB0zDcq16wbuVkNxWjbL2KnK7VsjrmtKBo4GuegXNIKqvsextykialgV+tXXCWq1JENqSSagFNlSZW7oYRXKlHApEdx9IH0aMttKKQNsRWhwTnM90xj9GBQ81b+5sSiE9UrKa5uVirmz9gmocax5RZg/FbTjihPCq/E1flkR6dt74hfUxnb4gzrGXtDFctnyZR/MPJvZphLBiW6nMM4F8eVmhWqz9lcKFHLdJfq1Ey5PhgOEGrxjuc27wLN+LGu9XG63YJH2BwOh8PhcDhOHP7B5nA4HA6Hw3HisClRRPZ0ejYa1eL0BuF2hLGZp1FFnxmiNcKIDEfOSI/SLJcUQY8cYENcoZHAJLYDVdIhjyUVSAyflwiVdqQUW4Y7p5itkko6bqSqAHqatIC6LfOoKWUk85nF1Zbs09VSqLP9EnQncqeR/jpUm7HM9JCLpdBxz956rB7n8ZNLud9azivLuNpO0eEGtcwyQ86tQRuTL1BmhzxFqfOO91MWDK5FdbdFe6GeFqXAkD8UjswXebYWSvTLX3oyltcL5I5EQ5xdnMl1mIMWc5s0AikXzqXtgTSlXKepkR+T1HtORaQcT9Bfe2yz2Nxej+W713AHNtCSigUdkedQtjN/MNYO0iNz0i9YOfns8xoqNJh6lnh2bvvgepFlcVqGavO2jY+9jOsj6B0q53JVZpuT5nqYweokjs8AFancNtAmNEmWsqlmNYwItHmt4toFHem+uJJU5Y1WC8dnNJAl0OQctqhZgwZNjGVErf0qBMM/DEPwh2LKb438sqRTNe0bX9cstWyuDG8x1jOZn6nKoRufA5mh2LUNmuPuEVbeVZU7le8PNWANh2IDHmFzOBwOh8PhOHH4B5vD4XA4HA7HicOkRIeO6gXmT2P4nGHpuGqHoc+c5rdKrQlVGcpUoYHpUTnc+M2p8hmSrmXezJ5qVqEp6j3MNUGPMqyZKwWLPAvD9lqlZCiu8FeqDBOPfz8rRScVeDiuDAQN41xGaEk50ohwtRJKlM/Ic6j02oMqZe7X1UxC1SFcBOLRY/l7DqNXqoVUmTlAuzhNSUpY5SodLBolHnpX6jl1r+MyUU079PGyMT4UfaOojKO3VdfJMWnWZ/PocV5zAZXujJxfH6dTuEbQLJvXVDQWhbZpnA7iLoKe83MriuVux+0LUygF6xxs18CNSfVSrUyFWd6SppRnXIC6Xa5QZ6w7TQ3FKKi9FGsKjUI5h3MaJgOkqucz6esZtiPMqcIGXZuxrxUj+jDq7KFEG/Mx9qTRQEG2MMVFE4Zuws2Yd1mZ1BoTaeBFqVw08jRb9Nevfh9fa5Qfvcolirpi/Kl8yYrCEyjiEwbi+nUSn4cWtGKR7RJXNSeGMS/HkG08EefSdV7nODWpzaZpwM8tAnwfxuWyKpc4vmUqfBc0MOzmVi+dc1o9QLSslOGNU6IOh8PhcDgc/7+Cf7A5HA6Hw+FwnDhMSnR7J4o/HaqHwSTC//VByu0B6iuEEVVktSUdKdTBHjnu5lCzzZj3CxSeyvlmKTpwr6aSelZbUbPtNvK89QHUHtRjiipBeJpBzcQIg04SU01QWSWGnEgramjMR+PJ4+FXKmeWyyX+BfTaCuF1hMh3e2nbZo97dRw/esidncs9ZjA+7INcS5mvGqa4bHhtdggFrDJoTOJl9LGmAmkAHadEe8Ng876VZLwcr1uqVKLHaR0qogsobc9Aia7XQnVTAEd1YTmjklTOaRUFCeNp5nxs47Q15yrvpah6zNUKBs07GOQqs9w6bsxNFGrtwFhU+QOhJMP5zLlZwBQXlwnzTujFCirRJehItkOjcvGyf+WiNPJMlDI/Ph5oJjqfy30Xc6FBOZ9ZLkH7Ul1nsTtfFLqOzyLHmTvY9MftORcsgjCuAlSLtNq5QBozPm5V/mm1peHeppfBKBvrtPWG0Gat8a0b+sZSzHhfvLeDYXhNpAZ1qHaSKGNYbvOJw6Zih0hJb7OiAX/bkZok1Yv1heum+vCgSTSeC+sO6dH9Qb5NKnw7dGrrFt49GHOD6i+pgtoKo7ri+CzzCJvD4XA4HA7HicM/2BwOh8PhcDhOHCYlevPq9VimAolUyQEKigPoxcNecv01oEqptulThAVB1TEnJJVqJXKJFjTspAqtpvklqECDBt2CBt1t7+QcUDGdMvuMh31TFVa3/oGIh4AtioygEiaDIoh5XUmDdoqmQw0QGq6himX+NlKL65VQKIqWRN+lMC5scip/5fz7lGiO/IxB5RPkWTAItnIpmibFcdNdi37uIUVjGL6fIktTmGiwGTlHPfsQbx/1SyqZwdWtlpw/oL1As3DcqDyBpPw7Y6sByk1tqKZwDq+ZwfySvFdTYU0hDXqD+QnFaMstFwbWUDtTEc0tF1RQzqBWJp3KNYjrV9tyG4dQolRZc8A1oE11LsG4ybVFf3EtKEu55mIhzzIHJbpaLXAOTKqxvvOa2sE1WgVt7Bw/xQRVn4qBM/JeMgdjosrI2WrOd6pQ0+j5Fo+pVH2kSpViUj99TxqbZf3mkCLFnWmc+kxUws54gyl/YDxOqmSKx3uK+Z8V/cz3jFLO47hh/GupR5mLm8fx2ghZR8qSW5zkXZ0hWXSutrbgewHvWK7pzFNbNViD8C1To9zVcg4pUTpJ0AVcGbLj/dy3HGcT3v9Hz3A4HA6Hw+Fw/E7hH2wOh8PhcDgcJw6TEr1982YsZzChy0Gt1JWEJu9AL1JhuocClIxfDnqBqqYtcsol1F/2CIkehGpQRqeg5xiyPOwklLm5uZXy7SZ6Tn9ArJ45UhuoYhoqRpgTMu4OqD0WLXXUcZCyUNdh2Fepr6A4pHoUN2vxjIzKznLmNpQx0IGaa1SuWNB6iMcPGakDrVRtYJ4ZUmn32Rx5YQ2zWVK2DHV3SrUTz9uqFZ2k5y1j3geaiE4Ibys1XIjTK6lBD9nmuuwDmkrG69AbMjxNjcXbipSQpk0x/qjYzYz6YAw0oCNq0B11BRoUKu5QH6dELy+RIxWUcTmX8U26cLkUerFQOTpJT2GLBmjTOQxpG9CspDvrmiprpTGXeiZxlSjHQ5odp0RJfZIenePZSVWb6sPfAqqDPHsOOitL6EQgY+lQYH2oYOSdyVqcg1tMZ1D1G4a1fN4Z+o5zrcAax/dWkhl8X7g3N3quWdY6oiqIcho9rtWj8XfClDXIQhpnFIO1Fmgz2yFW1DSrWvtouk36me80zB9um8D85HzIsvj6RSUp313KRB/X3x1Iicoa1DTc6gVKNOdcjdPZ6t1LenRCd3mEzeFwOBwOh+PE4R9sDofD4XA4HCcOmxJ9fT2WVY4uhM+bhgZzQlNsoe6qKprQIjcojTOZh7AD1Yhr9rWEIw9boURJ0VL52EDRQVPcW1CiB6hBezxLCuVGSiUJqEPmAKNahhQQVaUmJYrjyQTarTNymCl1J0wSlbkhfttAacO7ZgYlQnWUUumAeqbatEJe0Y5te4+bo+o4JFJGKsWQhjhlQ1Wjss40xFSdpfBSylNciBRkepwqsnJ9auogrjQmRdsrWpP5LhHyV3Rn/P9dim4jTYHWohE2W9FI1xdqqDKp0NSUKOgqmM2SOmRuYOag3W+xtWKDuQp1d08zazNPqOCtLz0dy6miMrktQwbc+mwt9SzjVBXnOU13mXuUylOeP5vHx6FW+9l0mzwLFK/zebQ8m/E45peRX9EyZCbsMx62bYBGpEOHuuFxq0TGUpbI+btE3gcZFKMp25DVKal+l8Mc2zRSZi5X7a2L+agupOcgt2Vw3VFUoNoiwEXLGHOkwzn/cT7fRd0QnxtTaO9OrVm8Tnw7j6JKVY5UnhHfAqLdFGjSC6cHrGUZvhGaWtp9j+1UzBnOedKr9yHy+zZGGckBSIOqXOvmuI9vVQlDfC3OkuPxM4+wORwOh8PhcJw4/IPN4XA4HA6H48RhU6LX12OZigtSCm1D40zmBoWyAooLRatlzBXZ4nzm7stwXKiSu1tR8+RZ3ICT+UB3MNok5dIb6s48gTKMxqWkfUhlqJC3YEruzoeCYVxFVaOPGG7uEEquW9DNNLyl0hYqup7hadBQDcttPK9bB1UvqdL7aHFeD/qjKKn4kfMZhe+MXH59yjBzPPyv1Y5xStTwfzVhpN8zcwDqHIhG7jt1TlyBTCj6BmM0U0pAQ0GF4cp8eqrckQaFUoq5XNFfGRTCKSiLAKPdppL1otozp6/QoNwqkSVxisbC02ekRDE2QAeXRZweJXVoGRdT/Up6dAa6XymajfFGVZyW5lFdJ+C6TIXjDGpQ1oF1s2j0QUnVhmhRj1qD9pkAmshyDjZQ0ZIyatDvNYy5VbmQcwpsJ8hZa5h1pwZlp1s6rg5W6loO+nvnsazpTpZJr/JCxv4O63z6tpKynWCWS3Qt1dfxzk/IXavrG4a6VjJRRVHHbRNIRXdYg+paTmq5SCMHKEHKmFtGVL5qOgWo3LFWYtv4S0PlOQ/xl0n6wDnjETaHw+FwOByOE4d/sDkcDofD4XCcOExKlPk0Vf5KUmYII7ZQVnRUj7VxUzzSiK2KsUO9CPVPD0qkhjKxYLgZocYKIdED6NH9jka+Up8ypQGfnMKch5aC0Co/lCKYAtIpKuTN8DFpUBqR1qShYeZIxRgN/hACprqGVK82/jyultHnh9BAbZuCOW1bUbelHRRR+K0KUZMKMPL1aTPICVRpy+PR0xVS5RIZD+2nOv6PG/B0huRJKVp1Js1qKF6NvHYd2rZuuTWB1CfKbBTUMwe9SOVpzjZRZtYyD3d312N5v7mR07G1YuhlcKSgXAYzh6xgPhe6kEwgKUUaXipz1CRORw6KG8L5OXPrUr0Yz4Op2ZR4/kbCMiVW98qN42m8rI28WYcvfv0iFIlm5euEYr/PQb+28XJLc/OCW0Mwj3o12eQ6wZg73C6jqE7OZU2Jsn0TI7+k6ZpulY1/0FWNK5kfSr0NE9byLwzms1NVSvUraUr0WcNc4taWF1wH40Czl3GDX02DGpQoQRNjlQRAig+1qfYIm8PhcDgcDseJwz/YHA6Hw+FwOE4cyfPnz3+7cW+Hw+FwOBwOx+eCR9gcDofD4XA4Thz+weZwOBwOh8Nx4vAPNofD4XA4HI4Th3+wORwOh8PhcJw4/IPN4XA4HA6H48ThH2wOh8PhcDgcJw4z00F6+cz4FyaypiM4HIThmN4rF+14Ili6ldN1u1eO+nH3Ye0aHr++cp2m63wWt1hmUl9COybHk2arJLI4pzOclwm6jF8m2+g5//Af/mdyL8Mi2ko2nqr+kl+q9oEzeoNzOrYVr08n9QwZE/B/gRzXz3/t/whMUMxkvNJGNLNXbYfzmSQ6ZPH/h3QJHdHRH108ewQzQOSZJNH+H/7b/zp6/f/iH/+nch2OJ1hbt/UBv4iP0eViOZbX5+dj+epSkpifXVyO5XK2jJbXZxdjuSjkeA/X/Rbt+erN9Vj+xYcfjeXtVhKyP/3Sk7H83vvvyqOkzITBzAhSzlWbxMtFJlkJ6DheV1LP/VayHtzdyTz5T/7R3wsx/M//8l9IfVq5Tl0zwb2cn2TFWM4KKecol8iesFgh2fpcMnQwIXvKJPJpfN42LTKUHOQZK5V1Ip5QOsvocC9nMOl8meK5kA2hRx9V1S5abiqpT9tIuUEmFWbEGLB2/+N/8k9DDF//2rejxxMjGwDXlCTh3IyXCyS7z41sLonKlBEvMztLh+dqO44fncGlQ2aetq1QjrvxDyr5ArOz8Jnjvvj6EZj1RA5bidd/9vyn0eP/8n/557hOPBMGkSUcT/G1NXRGlgFkN2I1e47j7HhOAF03q85sz/h7eBisOFZnHI+DiXjYJiqbiEoWL8f/yX/830Sv6RE2h8PhcDgcjhOHf7A5HA6Hw+FwnDhMSpR0AUO3CePtAeFdRVPGQ4eDYgLi4WfSowwdZszxPhgJeEM8HMxk14OZwZ0JseP170Cj6aSwrBsvSToSSdVBTapQNRPKxllZM/euDvMbZYPWVBSioiAE84VQPQWonmImVGFRyHHed5bLOVmqQ9s9xtn+IHThYS/lro5T7IyZpyqzO26QxvsgyzEmVMJkafgM9ArpUQs5qDQmcGd9Oo5L/sPADpdymuY4xdiOQBo343EkZJ+hbon0R4tJucawv3okc3uxOhvLj548Gsvnj66kbqA1KvQjabUeieNJlXC6pZmcU4DezRI5aQ46rEusiQIk8XWBXcRE8AkTwaNclnLfxULG+hw06GIZp0fV+FEJxKXMduM6xfZJkhZlOU76T+8OkOsvSO/mWIMGOc5pxDIpr5o35hYFlLvUWKgsGInQE0UJYpyzzC0XOedvfC5z24N6fZiUqLS5TurObTR6XWsaUn7Y6qG2xsTfS9zekTw4PfgXA03h8VlS43i8nmxe9Vbla6/Fu3HA3gQ1GOOxJd0+8W8HnZtdvRyM49Y5x8F3DLdW6e+a+JplHVfXf1BtHA6Hw+FwOBx/5fAPNofD4XA4HI4Th60SVSHIOO1IKKUnQ7qk/NRPJ6hzhjjtmFBZYdCahEVxUtHJ8PagFCwMjUcvE0ISD6F2veIycJzXN65pgCHXwQidK7qMYXvyygaFSixBgz596205fr4ey6REqYTt0FikjMp71CKpsd2tKP5ev349ljfXcrztoLLk8+gBIkVQMyosnZIWEUqoyKW8PpPnXK+FFrTQgTpRbCfaJSukvcDeKAXfbCbtNS+FFlzMhG6bg3pbzFc4LucvV1KeLeScvJDfDhgr+UKOZ6gDFXBzKCL5LKRKUigHOf1bqr6pqsMY4Jyv8eO2puQK9O4E9VgA9aSGCSm/PE4l56Aa56RBUV6t0eZo/wXaP0dbkQYlbbLZynPVaJ+2jlM9XKNLUN6cFjn+WJbSd0UpxzsoFzNcP8e2AVKrpCOpBlWKwAkLm3rHGDSopi+pBoVit+D85RaNMnoOFbKp2mYQryfnbwdlaNNAJdpV6jeNUtKCTq6lHVtIk/mOGuJCYHMbjnIIMKjJJOV2nuPokzglqq6J91uiupIUJ37AB0M70hGgh4pbMYSqn0hL433Sk66NU+xcmNVz4WbDA1/KCbdo4afVfi935fKFPuq7499WhEfYHA6Hw+FwOE4c/sHmcDgcDofDceIwKVGGaweD8rNAM1tlVNcfpy95uG+a+ClkOBRNyWsapniBoWHyNXG1idKO6PiulLSza/T66r40N1SVe2Ao1jBVtMpUU5mUqFLmgk5ZCUX2GOpAGoLu9qIIrGGiSQVVVughd34htNEKdFIBKiRHuPr6jfy2qYWGGEzqHYeNMPkc6tbzK3m2R4+lfH4mBrYWKpiLWn6c5Qx0G2kdKG9nMM4tQX3OQVkul0LXLs+Erl2A+lQ0aCn9l+K+VInmJehgGPZyDmRQShYlqKUAmnKIj62+X6AsHEGGG7AOCcZWW1NdB5PO7jiNQIpjUE8Tp/xS0KOk8Ms8TlvPlImu9B3paZroaiUvnhG0WJ7G57ZSPqKepPJpMloUeJY5KUJQoqAISfkN0PUNoDsH0LVUX5JKTvrjijdu1wgG1ZspI1yD+sylbUvQoHO0eVlKOcezK6NsroncSkFqXpnlkvaUuoUQQt0IHXY4xFXcNB0mvUpakO+c3ni33OOTQxwPU5vmyliZxsFc16FwruV5c0WfUzkvddjDBWC/EWPuly9kK8wtDLuvoE5/++0vj+XVKr6dhSbuaqsKt25lXBfkGVNj7jWN1JmGxgWeke8k0vDX27ux/PKFvMRusA1oeyvjKfyjEIVH2BwOh8PhcDhOHP7B5nA4HA6Hw3HiMCnRqkZ4TikrjNydiNDmKgyKkDlVeiqiy9Ak8isaRnLKpNfIH0YwR18/xO8VDHWNojVJvxh1HuJMrFJ0dgb1STVSKKKnBIO9VMaClolualAQlvmworBb9AuetwMtsEXYd0+FDM5fguILIYQie2ssr0DhhUeXY3GA22yNcXkDJZZlvKn7WMo0Nb1AXs7HTx+P5fWF0IKkLy3UMFbOmCuTOUwhJkswnnKoREl9dMY2AqVeBN1DapXt0CC3oTI4hbqzY07POVWNMB2lSWlhqO1o/FuQXoCqrKeZqDwj6aoZaNyGKlEqsc28f3HoqReXjGqz6XieXdKRzFNZkDKGcrMoSVnSkDlOz/VDvN9JK3HMZMjBmqZoZ8NgWa0RvBWowEypZTH+MxlLPd8HuMxgrMWEXqfiOYnNdkZ9OP6pSJ/PaGIMOhh9wefS5rdU8oOu7EmJwiy6xrwLIRwO7BtZC9N0h+OkY+VadYLcsVRNYv7ovNZx5wA12LlNIUwBt/zgvvgWSLndCRRq4Jxkm3Ycl6wFKH+lQJZ73cEp4GwhbZj0pMDRr6A7W6w1LQy+0xLbNfAlNJ9Txc16Yi4x3yuO56nU5xr7d25v5N242ch42G3q6HELHmFzOBwOh8PhOHH4B5vD4XA4HA7HicOkRC1dqMqFNsQNaZW4kzQfTRl5ChQavGKuaIq4WW5v5BKjwWyr1DVxE02VC43mtPwt1a8qj5plaMjro2wYEU4RiVKxw6iyjuYrXR9+LMUk/ijqpLMlFIegwj59/vFYvoPC53YvYeuagwA3oDothBBef/JyLH/57a+M5UsoUUnPLZZCeWy2MNSFEIimvUGpFKXtnpyJ6ui9d98by0soMSuogl68/DQcwwzUTKJynoLSRW5Nji3SYTT8XByEQ60qqU+D481S2nqecsuCPHtVyb0aUgTMGUgVJKilHCo8KuaYW5e0QMGphO5mHsyQU40oZdJwPfNRqnEDunk4nuNVq6bj+QN7mmujDi23fVj5LtWOAlKWVHcaZrCgkrWPLM010XeghknBL7DwzGGKSyo2V1QglHxU3WIFPshQVfOZ62+n3gek0aYQb8bWDZUnNIuXQZtye0COMUzatCxlTlHVO5uBfs04d+K5QBvmFa1J/YV7oNITFGeX4zjeexkUwqCBtYn7cbNzY2fPw3OS0hlC7RyIU6XKlF0J9ofYYfWXIkdpaM6c29g+cnsDN4I91Z23AX/Ib5nLFXRzsYa6e428v/jtfEHDZeR1VmbfNFaWe20xgba7ffT8AuNvDScGCx5hczgcDofD4Thx+Aebw+FwOBwOx4nDziVKZSjVPGSbAqkD5EWjUZ0hmyS1ynAqQ6hUqjJ8nJLlizOcKmxP8z5+ozI3XW/kD9WV5g3i51uspjqHghpLVjrhOql6doaYLdrXoG6NJKl7hHFfvHgxlg+1hJUPMH88QDFqWSR3FcZGCKE5yN8rmMGWoORo5km11xzl/U7oQtJqNRSmJY5fXV6M5XPQoNuD0KwvXsoz8/ktzBfIrdmphpd6wlyYtGmLcdCA361gxNhUVKXJdZpG6r/fCUVddVKfHcw7D42M+7qhIlLm2GpFk1VQARgrOSjLsoRCFhRQINVTMJernDKofJFUYkI5i7yWQwfT1+74/NHKVsx5nHOA4lj9Lxa0GqkMjm8qeZk/WM0BldNXjrcNN4GAQgUtVtcyHt5c38jxlnNHxsCTJ7KdgHl/aeq7Wkr/0mi3ruScl5/INoDNRlRuDejRBmtBp3IzT6Gq48c1HRmnnnoqN4fu6HFeR+WuxPjR1DnqQ1oPbd6rPKp6exDXLEV99kZde153wjOoNorXVdH2D6RErXdgpxwa5Him1KC8EH8dT5KqVdlx2rc5yDh7U8E9nXS+ZfpAM36sR/O1zJmLx8gVTePpmbwn1KKFYoV32n4r70yaA9NUnteZL2DMja0wFjzC5nA4HA6Hw3Hi8A82h8PhcDgcjhOHGbdm2JuhSZVTDuHatiX1AbUc6UuqnRD2XWQSCqQhYI7QJIk00gUJwsR1RwpVjrdU9sDYDoxL6EFhMV9cQmUS3GyVSSTqQEO9waBQVN7LhwI0VA9+mvkbe0WbUtGFWDW45EyZ7kp5X8XpTtJQrTJYRD219Ed+ey/Hawe65/ZGVD7MFTiHwov5Ruu11Kmt4ubIBQwpF/jthZEb9PqNhNtfgga9BRVlYb2W6w8t+1ien/lGyWU0oMZ2vYTPSxj2DpdyTqHUVHLJAsa5d7fS1j/9C3mWP/9zUebuD3LNNQyEacpKZWKO/lshnP/Nr4vS9p13YD58Jm2SZaB6gtAFejsCci1Chfd6I1R1wBaH+Rxmywa0ETHK4G56PUNRMsoGJcXdBd2Eac77Kg9g8qbKrBwnqf0gpIagruO6oNT1XLOwvnO9gAqQbaXzIhvbQSYwcJaJMa/JtSZNaVoLGhdbZ7iW5cqAN256zrbKu7iJLinNButgze0K2Bryq7/r6G9otsty3VJJiu1FVCNynlDEaTb8cVWpBf1+s1wN0I59Gz2HxvnWWE+Qk5iqZq6bN3g3cNwnibwbqCpl3VqM12aQdafYyVpZYxtHsaArAfIBwxRbKf/Rd1tQnzso+Q/ILbvAmrWEUjWfsI3AI2wOh8PhcDgcJw7/YHM4HA6Hw+E4cZgxuBamjKRBUyOySlPDFiFglb9OyTionEE4H7nTZgiPHqDEqHF9pXCC0SkVVAybzmagXMAQ0qOT4XBtcosfIJSuqMDeoEGNFG8aD6NKGWIm9anMDWlK3ClZj5xDdRdzxSlaALlQSYvTvBdUNakn9lGa6CFHWvewk369zoSCfPwIFNta1DztSkLRmzvmMUXYG2HmM6hQF8y5iWfegXo7bCW83RtKWoJUPcH+zmcyFpsGFCHo55YUFXN9gnXgFgQq1JiHcXUmKqimE/XoD//kZ2P5z3/yi7H86FLameH5mzfXcuNe6vmVt8V8eJn9nbH8rfe/PJafXkp/7Q9ync0BefNgSBkGUQf/9C8+Gsu//PSVVCHIcz1+9GQs/+1vvRtiGCxKtDtO58WJ0s+A5VyqYOR+TOJbE1JDRZsoV2KOvbh5MlWcraFmbTpQduDdWObWit6gjKfAopUtmSHnIGlKZS5rlFs8F010C+YqhZmwegewHbDthjRofY8SrWpZgw4HKVfcZoKyUtuquf0wGlSPj7jq9aHQ7654HysT/Y7vJY51vGcwXDO0e458oOWMSmZulcAWDfX+wVg3jMvVuplIv2x3ct/NnayVG2zpCCgX/N7BuKxBDTdU/uOcOZa7BYx516vj2zs8wuZwOBwOh8Nx4vAPNofD4XA4HI4Th60ShREpQ7RU4SjTSoQmd43QSsz9WMKEMoPpLhV1LQzyrl+JYu+Tl5+M5T3UOQvQPr1hsnhxJbRJAsooRfgyAwWUUqEVGGaNG//pPKHxb2DTjFfheNyaIe8+xMP2KvScxKlbTV9AMQbqk9dXZfUszLsqR1s1NqDcut8+oMMPUIymByh+Qfkxzx4NXWc4fmCutkLG3xwhdrbXBmaHzNdJs9P1SuhUE6bqTY6WUAh1g1CuNBROSeGXMr5J5XALQl5Q3Sbls7PLsfzosTxjBoPGmupaUOZLUM/cEnH3SmjKF5/8ciy/xPxsKrlXkYsat2YOypr0FugOqNM//lho8Q9+LPd6cy3z//JcaNz/8N//fohBUWlYy7RoGrQj/h9L1TelbWqeMw8mDXKjtfnVVeWnLIOS41YSGpeTNqV6VFFPgp5MFZXwfXz+U1FPY1durdD0KBWX2E7xMD9wVWvmY+zuGdKOdWjl2dsGdehYZt5VeZaylLWF64nauqF2N5CWZd1gINwe+ANNfUItSGVpXVE9CmUotgUNhjJU06BUR+IM9Tp5oDOBZYSr3i1xqpF93yF/sDKJV1QmVaJY07FeL7D2BdDPJfpvNpO1nk3F6pfI5Vonch0qc3cwH9/uuP6ingt812CbFZWkND3f7OSbiAbrHRqrnLlK1OFwOBwOh+P/8/APNofD4XA4HI4ThxmD++SXkkeubiW0R9Udw6D89KsRBn3yTJRkGRSCDNceEDq8fS00yA/++Adj+Wc//4ux/OpWqNIEyhAqn9YXQmH9e3/3747lJSjaFlTsrBQFiFbaGEqyCRFmTYNa2TUfBsXEKLNc0sGgUEinUAqrnovUJ07pSbPArJgh+DROmwaqQUkl3fs/gjLJRH80UCnTZFkZnDLvHFWvRt5AKo2Yv7ZlTkBWTila4wpQgnkGVb5CPD+3BVQ1KNoAFdtMwvBnMPhdLGRMZ6CDS9Cm7Bvm9F2fybj/znfF5JYUz9lK8uZ96elTuReUvG9eXo7luxuhQYdEaIQ3N0JfPt4i/D/IPM8XzEMMmmIPOjuTOVntpN+f/4UY/z4frsMx0CRWmcdiDmSYWKSbuRaYZeZCTuJUFelOTYNadCfGG/m51KBlOce4RcOYCwPo75aKfRq1UqFIF2AqpklzkWadsMRZZq5aPRrPK6pzKsNBoGYbqmSaAJ8RlGjOtVLOThX7fdxI+Vd/h+i/9eazHS8TVtt9HjUocT836l8ioxsBjqt1XL1maJZLKwaOGylye0de8r0ha0eScouM/HaO/LgFKVQ0SgUV+qaWNauBwToTprcdaFMo5BOY6NOhIS2kzg1cK1ps9aDSmGOomB+Pn3mEzeFwOBwOh+PE4R9sDofD4XA4HCcOkxL90QcfjOWPPhKKYwtj0c1GzEoHKIq++9e/N5aLQspU8uWlqNB6UGE7mJV+8rHkP/w5TDQ/finHl6B65ivknFyLGq+GiWFr5MQscxqpxqlbTYlaSsm4EsbCNPVo9Faa1rTUQRlpTdYtroTVpqGU8hgGnwalw59myIdZ3KdEMyrXQrRM02Tm0ytnzFkrN2yQFy4wLA36j8akDJ/PZkLDbfcYK+3xftIUCembuNKYikXuLhiQK5N1y5UxsZxPCnyONjmA0n70WObD3/pbMifXa6FTdxuY4r7zpbH85FKo2BefyHz7UJaFsL6SOvcZDEGRMzTJON+gssqkDl0u51xeST8+eSxK71/8QijRzS1ys5rgmCOlQ1VgXCWeGurx9MG0KY/jt8E4n3NM1d9aVKxzUMbcoXo0IU0MPqvr4ucrubkSzpsSxShUjupJ9CB/HVeDMv8p6X7LdJde4twCkhhK3ozqXdKAWlaq1cIp6XacQ1Uqt59wm4mxk4bXn2TV/ECulG3KtTUxXBAyXl9t21HcsJyChuDWjaKUdlyt8G5fUiEfVyOTuuZ1OBZV3uw53j2ZrCPLFddcbjsgtc0JEdekzkpZi9f4HuFaQzRaBhyFR9gcDofD4XA4Thz+weZwOBwOh8Nx4jAp0Z/+/Kdj+cc//vFY7qGEK2fyvbc6E0pk6MU4c+iEEhmgNg2lhDuZS6xAbq1HVKr9RPiX1VzMMv/wb3x3LH/tW2+P5SdviTp1vgR1hlAmw7gpQuyZwYMmpAhUqDpulqkNda3QPnGcdlM0AhU7St7J83Ff0KA9z7Fuq64DxY6Rr44KULZhCaPWeUnqWSvsmP91X8sY2sGEsobahiaFymgUdSUVcjgI3d5Cecr8nuVC6LlsI3Wg4aWFHM/SM58jaaY2rsgj5cqcoewoPksFmriqWZb2qXE+TYbfeluUp69eC935Emq7t96SLQtf/cpbY/nsTM6ZzUkjSL/OV9KGAwbmoMYQ5kwBShf0+eUjqdtXvyZ1eHMtKvFXL6VsQdH2VG4qBs+iIOPjilRmbtCa6nyDIlPCOWOrgU0LBhyncpP/cJx21OcbxxW+GCnilOdSdzXaR9OvxxWmyig8ifcd1xMa6lJ1z7bN7tFcBdSOnLesB/Pa9lTnmguy0X+qKY6bLD9USUrKXL0PUQeewzZKOf4C2wvHodRFiu5QwJD27FzWlH0Kw+GKik7kEsdyXcxlbZrNZa1PUin3NOBdSt8xnzlZbxpJszlneNddXVxKHXLkSJ0jgQC2vFh0M+ERNofD4XA4HI4Th3+wORwOh8PhcJw4TEo0KSTEeQA99Y2vvz+W/+iP/uZY/up7oirLQWusl6K6C1AE1rWoTQsoxs4fyfnP3hFKVKkaYbT5zpe+PJb/8K//tbF8dSXXud6KQd4OlFqRx9UgKupNpkHF7eNGlcmEcPbnAkPerAPD/GwqRaHiMiqczVoa4f9U8SY4DsUbjGaXyLW2XIhC5gzlEEIo53LebgeF8EuEvcERVg3yAIISJdWVkY4AHbnfS5yced6YN7OcgxLFdbqgcwXGoPK8UmWl6C1Q8jlzgDKnJ2gTjCdluklTUxoog6tXijaopha41/pc2vBORN8hy6WdFwu5/tvviFrz/FyohraVeZVjXlU1cgwWrDOeF03bIxfq+Zlc/yvvylqwuRMadLU6rqxSZsu9kuMe/a0JJX5LomV1umGkOslgVbFwOCcYZSOnsmXdncbZQn0O6Syqa9X6Ej/HAqlCC2auVZZVrlX+2lBtc/sLzHIz5rQsqA7mRXkdw+g4hJAkpLpCFEqtqvKH4gmU0jVOiSqBJg2gM4uqP943alMAp49SWUP1qfrAUL9SIsvxWvB9gq00oC/X5/I+Z37VO7gA7A54zyOf8WKQ357NLsYyt2JRhbo6k/NJX5YFx1/cGaJE+z99JGvlxdnVWIbnrvJmT/HdZMEjbA6Hw+FwOBwnDv9gczgcDofD4ThxmJToV94TVdZHz5+PZapfFqCzrq4k/DdDOLkHndW0pJWQdxF00wwhyGdQen79m++O5T/94Gdj+cMPfzGWf/yBhDLf+6ooRnMoT4uMNBQNDaFyxXdsr9RFpCDj5pRDiFMQXxRoZqlUoko1BVNCy+AvYS40KuRgbox+DFBAUpU4g9r37WfvjOVHl9J3rBup0hBCWCJv5gEGxwxLN73QcwXOVz0DdU6eSZmh8c2tcH6ffCR5MN//hlzz2VMZx1QyZuXxcLWitEhlKJNSqTU9GROqKRVtRwNLOZwy5x5Mn2nKWqCtW/QBx8T5hZzzUtIHh+vrV2P59RuhsS/RL08eSR83nVCimn7ifeX6NAruoE5lO1N4d34udXjyVFSuDfIBWlAKPEU3kWJGnTP2RVzJ16GPWsugVZknx/NgkhLthzitqQyZ5fR74s74OYaF7iT7XUV9cquE9VsyW8Y5nwvqGdme8e0pqr9SjgHmVMUPjk9xy2NcvUtC0HmL+z6LHs+RCDOjKTboUa4LZv7Q47V+MJSCWglSQYOG+HEiTY23IA7noEq5ps/xLZA8kjnP39aNzL2qlvfEAc4CVN2myE+6KGQtm6dQksJ8fI5tNzm2sNBtokOeU26JyGm6jXUNwyH0Kee5+Tkm1zl6hsPhcDgcDofjdwr/YHM4HA6Hw+E4cZgxuHeeijnte1CA3l2LuvNH//dPxnI6SBjxm994bywz79eglDRyXNEpiO+eXQi19f0/+Lr8QyKhz9cvrsfyn/zgz8YyBIfh/e+IknR9gbAmwtPMLanS76HGJBcJFZJWEs240muSS6QFJfWMK3Ms2sRSUDFvHj/hO7oDU92IdqMK+Oxc1JYLmKe2CFXrpIQh9J2Ek0mlP7pCCBwVn8PktoERMw14W1AepHvZGLe3t2OZOXHPLy/H8pNHoihaLOS+FhookFm3lqa4qk1JM2HrQCeDt6ql3A1CC5JCoaItJ1VacnqDHtpJfzD8f34pbf4alHECBeh3vv3Nsbx4LH3M9m86uT7nGM1IG4wn0rhUtrHfS/DH52fSDodLGXMW+oZUNdqB87AFdQsutsOWjg7Gzh3zV5rH42WuGDRJ1garlsltvGwa4fKuk8xpqQCNG8mqc/AsSvP5edY4pe7kUW4ViOfqDcPxGASGZKippERfUO2vHASyOAF5Pyf0lNyowVDbKtWnepw4qW3lcJ5WhzjUO4E0qDJoVzeLHk6Uca6yU5BrqsfC2l1yy5KsNU0jHVU3+I7APK9b+U4hVTrcyBaKgYbdVKEqBwVuF0KbG+bUSvnMIs3TmYMWzhlpc7xfPMLmcDgcDofDceLwDzaHw+FwOByOE4dJib71llCi3/y6UIp/9sHPx/Ivfi4KzYB8YE+u5LePn0o+QFJpzPvVdlTCSNh7uRIa6t33xTjzdiPGmdfX12P5Jz8RNetOxIHh/JlQPSWumeF7tZjFw5GMAKuQrqI7ETY11FoqGhy90zQkk3RflpFkOH6cZaVgk/Ic6uDLc6ENz9dCVcGPMhwO0hkN6LUQQqiRj7aYxym2HMbKzDvZN1R+yTXbjtQJ+obJ4EBTDjg/x0NnzPk2odNqmPqSHqXqixwHlWWzUu5Lce4wgF4EXVBYuVNRnwZ8G9VI3SDH58iz9whGj5/+QijRj3/5Yix/5W1RX7/1VFSi7K9O0SNJ9ByqrEISp01yUJM91GYcZ/Ua1LkBy0i2VwmBsQYpValRJvWpysht2FIpHFf+KdU3rq9yA/OcLj4ptWIvGH/F1eCWSarKrWnmpbTWoCmUqKGWNQxirWtSiTz0VIzGF92sg5IP7y0w24qKJGWvctEaOUx//W9DzQ+oeWKsEcq0V22nCNGy8oueYFKs6jPhfcV3EfOiaurQqKea8/xtvO87nEMl+Wola0FbyzXrWn57uxEa9AbbX8Ic+UM3QonS/aLEFpOC5sAD17J47ur6INti7jb43oEKPZ3J9dvW2nQl8Aibw+FwOBwOx4nDP9gcDofD4XA4ThwmJfqlLwkFmYFCGQ4Sztte/3gs/+TPRDH67Nmzsfz7xbfG8tUToS8SmGWSBmVOthxKuPVa6LKvvf+VsXzYSH1+uP/pWH75SmjTN29EEXjxVFRlBUKuc+Q8UxSNFdk3Qtu/DbNcdVtlYEkj3ymg+gXXVPlJDZUYqAAqC88WEkpeIlS9h0z3Frkfq42od0IIoUBIeA6qKwMvWMAUd9ULxc4QcnUQ6rBHX5KKKkDJ0cB3gZx1GbioGvlGD1vIjg1QjdQbdFgxj+f6y9ZShwXMiFdLmDjOqAaFsjKP0wvVAWH4QJWvXOf8Qtq8q6UORSb9+uLmWsqfvBzL778n83wOQ+MOeRTbPk7FKsUfxh/7rus5FqV8sZIxUK2x98FATXpamdPKOYoxglyQ1KcyRuYNKJYL7He5Tgu+TYlTQZfvdzI37jayZtFQuuuhSDWMealwJJWf0ciTOSdx/oB5TmNhjmHtPnx8TbFgqxjjtLWlbuSaNSTxdlDiPY4xUKJdFx+HPWi9zIhx3K+arco01JSG4l+XrfhK/H01GOv9FEz5LWnTQanf49fRuazjZYvgTdHuzOmZwfg7gRk85/yukbX7sJP5w3fUFurRM9CsyZl8s9CsPOW2hgB3AChYb65lDn/6yWupG9pkhnutzmUNteARNofD4XA4HI4Th3+wORwOh8PhcJw4TEo0QWK1JWiZ73xbDGybvYQF/7f//Ydj+d/86x+N5SdvCbW6vhCaJUXuzllGpYSEF7dbKb96JUq1phba4bvfk/q8fi0KkP/rjz/AbyUv4juV0Dg0y2XoXec/mxDaV38ZyiFFHfzmOlFSk8wZOqicZHHqJtF6MPUv8tu4KSZzrZag1ErQoKQgOvTj5k5Cw9U9anHeytg6UGWJmi+hHiUlRKqCCs0MbaSMZDHOLmGQu8L1W4TSX76Q5JovMYYstAiH98hxR2Vi2lJlJvfKoEBazOSc+RxtjVx2bHetKiM/B3oX9QnoyxUo7dWZUJnlXI6/eS199ouf/3Is/953JL/vYgEKG/Ongcq1JW2iUt/SKZRjCDQuxusZTC4P1XEaQef3jFOipJ46lRvUoLaYlletAFpXPh4lpTjEqVKqqXegRzsYi7NPVRn3ZXMyT6Mux1WJzHuplPCKUzxu0jsNcarw8xi+qitOuI5ZNu3Hp9xZ/62pz+NXMilRI6dsMMefrR3+TZGo7QsYc7yXYsyh7gSVSVUpzanrA8oVZLsDvxGQjxlr4upCtjs9wzaRGtuv6k9lLlXY8rLBVp3mwPtiGwG2FHQNtstgO84d8lVv7lDeYosDpnN/I8e758eVvB5hczgcDofD4Thx+Aebw+FwOBwOx4nDpERffHwzll+9FBPNx5dilvnue6LWfPKnYqL76UtRRNxuJdRYI/yfg5aham27F7XGm9dynQ9+JHlCi1yom7/9R//2WD67EsVI08t1Xr4WOvWw/5rcF3SZBsLQTEXZGaFxQz2miFUwUkrVp2iHCTneVN64uCnmoGLS/DFzucYrapkwkkIpkFuvAH1Hj8euR+gZakXmXQwhhBYqrQCzwwah9A4q0U7lW8Qj4I8MbVSU8luqW8tCxgrVprtK6L83r2T8vXoh6kgLbRenV0iHtTVUfjD+LclELYTm0waWcUPkASa0e7T1BrT0Hs8IFiEwReoc6tT1SuZ520p7fvqRUMM3mJ+XmHspHmYYpA4UYg+kcTP2qbSPolnQDuVMKNH1QvrUAik/M+emqcyLX1Op35TcNH7cot4S0uU0DcaNc9Q/B985oEw1qMrNmMafharbjDTXFLViGj/+UAxDfC5bVKkFU/H+BZWn0In3m0Eb4aKtmbtU0dL2tf4SZksYVG6S/Ob0qErPyn/AcW4vGBJjfOOnGT83OA2hzmXe5ddvhFK8u5V1jdsUHl1djuVnz8T4+/xK6NFHDbYaVHKdV6+vx3IFk1vmJO0bmERTXYz1VOeQFnp0u5NvkKqS63edXPOA49vDccW7R9gcDofD4XA4Thz+weZwOBwOh8Nx4jAp0Q9+JEa4z58LHfmNrwml+PZbQok+e/utsfyT5/9mLF/DPI6UEZV8pDhLlLd3Ei788Z9+KJVD7q7v/f73xvL6XAw1S6jrqEJpQEMxn56iFHViO5xzPJQMsWboyOh8MSKdz8BvfgNtxmuoXBHyplA1Bb2blVTagQrraZiqA/tdw/A5+ia1nseik+MqWdJhSygiSc9f30rougYlut0hTF5rKjdeNdJGMCY18jkqJaky9kS4HYoojl3moGxqmERWYlJ8i1B9j05bQw3Kds5pUIwcnUUh9MJ2KzTodoMwf81cf0JTJjCS1XkOMQ6YuxNGtVRrK3Ek6IgiN5cwqY9BiQ4G12PlyuRuhIx0VpZEj2cFqMycWwfIf4EGNRS+pIlZDszHahFmStHZx4pKxdwZOSdTw8DVIg6T40zmvS0NLMfnvmU0q0yAOe9glM1tN/q4Veb5x+MaSr3/GVDKSmOcTVO04qImnXyc2rdhzZP4nRQVizmQ0IxYjT9LESltUlcyvt+8lu8I9sf5mbzzOegSLAs5tmgUZZySVmbWUIk2e6xxCxpPY4sQXRMwDrj9Z8Canqt3kmx/ySasZR5hczgcDofD4Thx+Aebw+FwOBwOx4nDjMG9vhF15y8+vB7LySBmohfnXx7L6/PLsVwgN2MXSJPJ9WmQm66EqppDyZelcp09THTfXEvdfvLnH43lCgqNspBQ42KGHJWIlZYwUmXlmP+wAUVTMJdYYM49uQzDxBloq45sh0lfTlGJ0uQWx2nkmTLUTgqYtyK/EK9Cy/yELQ1QScXwxnEDxxSq0qHXz866qv8/DHGyxWqh3silmBby29VaxtluJ2qh2608G2lZRu1LKCgtcHwEQ/GbDhg3eN75TOo5K6B8RDv0UFApZRXu1TLXJLYCDKRfMO45Fpk7tQYV20El2kPJiyERepyTwGyS4f8uxHN0KnoXdGcN+o/GuRWcJ4fuOBWlqAbD/JaHM2VEHDclVl6/uJfOvxunSpW5MY2qlVKQVDLncJwyTo3pTLPVRPGOGOfoF9LNiaH2++IQp+wsla51jjLKBq2Zo98L0mLMU5zHj5MeJd1pqTzvr0w9F3waivesX5yCpaG2nWOVt2Z7cazEx5mdkxSX5HqqqHrrfI5FrBeKe4+fz7qRMqYReYftIzNuoSrlPU9jdG4dKBRljn7lewXrUV3vo+W2k3eANZ/pAJGDfl0iZ3aJ75F8BreCzqKJBR5hczgcDofD4Thx+Aebw+FwOBwOx4nDziUK6hBenOGTT4WO/AjmuhtQlqQRVe4+RkcRUuwRvmQeP1JMVzDsffNaqJsf/IkoWHmdFiHpxUJCkMwHlqFMU7wM5QQh1Ck5QMkKkm7KyBzSJPXoFTUYfu1Mo13UHxRcMsTpR4aGGf2moWyNeDbNAa38mSlC/AXCvqR6flVTqV9vGEAaYtV7JqhdtEyaaQaq/lAh7I1noMNxN5BGPG7QapmLsq3LFJR/LuXVStrh7OJSzgcVm4AKSEkLzIQWOIDWbHbSTzVUrth1EG6Q6/P1p2JU+cvnYhT8+lqOzwLnqjxXA7p2BoqG4yBDezaD1FNtQQDlSqqUeTA3O1B1E8S7+QztRpoP47ul8XLB+ltmqljX1Bon1xxISbOMduihJEswbsGWKVPlmmpT1KFA+5SgZQqlZpXrJHoixcuA9uu2zGapHj1O71hEq9oloShjg25WlCjzHDOncJyKzIs4xZkqtaml9rXfBz3WERqZk0pLjLFlXZdGzH0fpxS5VeeLC8c8bKuOyhPMLTzM6Wu4L9AEnIa0fM+UF7KArZfybp8jJ/SAdWo+k7WGLhTcTNENnLeyJjInNpWenA/K2Bpzbznn98USx6XOzNncT+gwj7A5HA6Hw+FwnDj8g83hcDgcDofjxGFSoutzCdsVhYTtnv9SqJL9/o/H8m4v9GjTSEiRypsONOUA2kEpK6HOefrW47H8nd/7zli+20po8sMPRbXaNBL6fOsdoVAvoGCdl1Shom59nBbIUf8+ztKpMg31IOKaRBAMlkOhAk1u5Xub6kAaTyY0fezjYfcsWMdBVzLfYC3tv7mWfl+A+lytL8fyO1+W3758KbkoQwihqjFWEFqegXo4PxPj1gyqo9tbufdhL4a3NULpq0zqeujEIDedk74B/b+X38ILNqT5cUqUJouDkbtvvpTrcGxRHV2ABi2Q8zRABdWjXwtQoj0qvcE8udtLO9/dSW7dMpc6v/hI2vODD342lj9+IX32zlO5VwduvwJdUGKipKSQUB5gAlw3sueihupzv5W6FWh/nWPUygcsyKBSTpjfU80lAdWFVIwqQpT0jjLmhtK2lrolisKDOShMj6nqzQ1aKWXORipG1QpDWh9bFrBGNMx7y/rT7NNQ8j14H4cBKw9popS2hkrXVIaCyswNRSaVgixbhsmKrozX59dB1WScNk7NLTYPy6Vqw6Kuf3PNr87/evytRjpY5z+WcgtFet9SSipFKr2ZB7pAYmQa8CtVPNqhxXxjjmel7gZXmmVUSnNuBBxnPuC4KW6CLSDLpXxPce0eJvSLR9gcDofD4XA4Thz+weZwOBwOh8Nx4jAp0afPno7l974uOUPb/udj+fZwh+MSavwbf/gHY/nd9+S3WQn6AnHHGgqzHjTcciVU2He/962xvL64GssvXkhuw0Ml1MrVleQY++rXvzaWzy6QI7HE4xsR/66jMsT6vgVdyBxs2qlWSkP8OpYKTcNSUkLlwhtnDM1TFxM31FVqWYShe4T/24MoLPcboSIPZ9L+y7X03eMroadnUPKEEEJVCVVHtY1K34co+XYvKuWqqkIMStGGepMenkM1xnNI51OZ1LbH5Yh3G5kP9EDM0O59Jf+wXsu2A5qXJmj35VrGOkfEfi9tDbFjmM+l3dEF4eUboUF/+IN/PZYPexjh7qUd/p8fivp6dyPP9Qff/wO51zmMJKGIqltQmcJShAIml90WYwjGxQcojT96LnUOQe71/rtQhs2W4RgyYzClpEcVxUHE8woPoBd7zD3m4lS5EwPnZ9zAltXk2lTmsrZWNGtVc1UOc5nKEmONwHAmNcT1jko+GouSQjV2kkxy2tXrXXxbhqIgSX0qZV5c0cnrWCpGYlBrNKm/KUazg/m3dd1uiKsmqY62rkMkJvV5tNo2Ej5/3EVA0740R4/TpirfKp8XrgNUWecY6zNsZeIYrQ/YgoD3QQf1+2Yj74waW3CUehd1K2m4TLP8jDSrzEnlnI99UHzdmjS0yoF9HB5hczgcDofD4Thx+Aebw+FwOBwOx4nDpEQvnwh1+P0//L2x/NVvvD+WDweEMmEw9+3vfHMsz5cw/sT1qZapqo7/MBZpFHh2KfzO7z+6wvmk+WhmiVxi4GW0UoU8CEPJULNRkNZPiTHH8+/RJHHo4+oabbYaD5D2RrhZUS4h3oZ8dq1QIo0bV8VlCB+3UIlu74Quu4ZBKZVwK1B/V+dCVYegKRWqavdwa95tEdIGhUrFD/kY0iiDQevMoMqcZeDtmJcTIfYKY90Cw+d5z4EjLXkDZet2K223XCEnHtRO50/kGXPQW3NsL6C66ALbBXYNKO1O1N2vXt6O5U8+ejOW21qus+f2gseyFjz5klx/eSF0ZDoHxVyCPk9BX+xFpdv0UAeD/muRa7GtpQ1vd9JWWSGq1SKTsfF3/p2LEINSaxvGy1y/Oq4jrdSHdGenFHIw3SUdSdpOKROx1sDctQTtw/G5XICab6Tfm4y/JY2DXK40LjZyoVrqNEXTKaqX9C7KnGvpcYLHVonGaT1rdVTlIU4naspRzoegPOhkl/H+JdLPWNOVIhdjq1ZbLqgQhnqxt+jzaDVsitcyGZ/gWcDzlfmtZayM13DXxq/PcT9gXbDGE88vsYVlwParPdwBthuo/ZED9O5W1rhE0aBJ9DjNlJmDNuekUf7v8Xc+31U7bCNibuaiwBiY4BLhETaHw+FwOByOE4d/sDkcDofD4XCcOExK9PxcaJAZDOAePZawXVNTHSXHF0s5X4fn48aEDLMy9N4yPyTVTjSMTEmFxWnNToXJcUnWIcRBBc4wRfr0OTCYuUEJho8NepQ0gkER0NhVqVnV+RKuTUHx0aSzgmrz9UtSEEIJ7HdCZ5cLGMGGEEqY7eYYjnsoe0gj3t4KnbffSTjcUvBSFbTD+bNSaMflSijbRwXGPcZuY4T5iTPMGeb006bM2AqwZz5T9k08vyqHXwplHOnwBOquJbYjPHsiSt13v/KlsZwnQrHtD9Jna+RdfXQu1OeTZ0Jpz5bIlZeDFpyhbqh/BQqb3XV2Ju2fgCqZzaX+11CMXl+LgrU6yPn/4D8Qc22CCl9Fa4KqapgTF/2VgVLsaqGJuwbUbVviuFCZA6XCqhvjOTfn2FJweS70bsa5B4q2KmBWjHm1WiBvIY7POfeo3oNitG25xUSgaTomhWYO33h+yC8KFsWnKDhV/ThxatKmA2k6afMOa5lyDVDvsPuUKMYWKVGsR1S5M59xh3HTK6NngaKNQ5xC1oi/Ay2obSVsL8wf1oHtouhUXJNzj2bHJcY9c1+v19Im168+keuASn6Jd87dTqjPLbZQXOOdoee2POP5ubyjLlAmFdshxyiNrcmUcisWVatKwYrdNVkOhXx13InAI2wOh8PhcDgcJw7/YHM4HA6Hw+E4cZiUaAGVUgqV5QJ0Rwo6RakgEQJWTCZN5Yw8bKxQ0Vk0VDy8yzJVQYxZkp3KDFo2zR72HctnmUJrWgqcKdA0qKHW0r9ARY9f36JrdN480AXo693mFscl1HuDkDTD3yFo2itBXsjDDsaqUNjUHFtG27Ffe9Bhm42oFAuYI85QJxo0lldCS03p18sLOT9JoNDEUJyVQlfd3gjVSwpitpA6UE1N41MaoiaJPGOay80WC/nt46dCO37ta2KKfb6We9XIQ9rXcs2njy/lt998R64PShQMR8jBF3SgzNoOhrqp9HU5Q7mV367X0lYdKKaPP5b8wR9+KFRJCH8/xNBBkcq8hQ0ch7uWakeoXDPmCUUZ7dMgT2udoVxKmebJNKRukUeV5p0z5Es8IN9rVoCWwbjKkRc5x5jhXFDzQn5qUl5q4JpKW2NbRv+bxwKUnpHrchJf95VBsVG33sij3HVoq57jlma86DusJ6myHNDvqhbmwlSG0pi7qkCbVjTppnnx8e089roep36nQNPGoIEfdBVdB9LqKuc2rqoMbKHQnM1ljWD7HCrkkMbasTvIWs8cvVz3aeS/gkp/BhPwNOVWI7RJPFV0KDEP9Tjm3KBRsJzTaMlyFB5hczgcDofD4Thx+Aebw+FwOBwOx4nDpESpspzBlDFN+BOE2BHaK+fM+xU3Deyp7ImzbfoPleuTeTDjQVpl3GjkQlO0rPJMjNOjZnZPRZcdDxo/lAbVv40bILJNtLDQspuM083qGZUShu3AxoorfA8wvk2gjNrneshRhZemQk1S2cdQMUPLVIaqIaSOS5kKrdtrURQNkO2craESnem8p8dAKrPIqIaVOpTIp3lPzjsW85IGxLiKGrugR5VSWtqNNMKTR3Lf/mtvjeW3nl7KNSGxK7Dd4RHy7z59KirRDKaP9B7mmOtBX7AfqdCa4bmYI/LtLz8by++/lpzEfQcj4hvpRxOkxoz8jZoCwjkdTWtBc+2EpkzRvz3yIg8oVzifhroVDIoXWDdLjD2aNtcsN9x6AtPjgia6XKORR3GIU3bcilBhDtPktafz7AOpNsKk6Xq1gMn5WHd6xQjG1aDMyakYRK5rNDeGIjAHVarymRpbee6rRPne47iva6pHoQzF+5BlinCVGtTYojKEOFdn5sc1YClprfetNZes8WE6LqBzZlCqX17Jlo7NrdCgNKStMFcbRYMyP7lss5jD/eLiiq4Y2Kaj8oFKueeWFOTrLmYy9xbY0tFge1fTcP5g/E3IWesRNofD4XA4HI4Th3+wORwOh8PhcJw4TEqUygoa+SWB5m4MFcPQsTfoBf4S1JgS25AeyWkgGqc1BkVl8hwY5E2gIBX1+QWF+T8P9WmCn9hkDgYr/C3oqbpFmJ/GrlTFdC1D4YaZo0G/6ryrclLbqSRsAaxFSHvSq6DSDFNGRQWi/9Q4w/OkMGU8IAddXYmiaLMRw8UiF1pQuwvHQeokK0j1kqIS2kuZsoIeKZGTNONtYYo7kKprhRZoDvJcKRSpZ2fITTkX41yq59iXKWjHEvOwAH85UIXGkD8MeCsa0mLpSNU8B42wkH9YLIUS+fZ3vjGWz0HRXlwdp62ZT5PjOAEF0aZx2ifFM1YHmF+iv3ZbGDhDUZhnkr+1wHFluEozUeSQLaBg43zruzhVVadCX94hR+2nn3I7SHwLhVYTYlsDc/jW3JYA+p5zBONkUtblezRirD562018K4xeZuP0qEWJqrWpIa0Xj2Wo95lS1+p3hs5dSuozbtDcK+mtkUuVinGOIeN5NK35UDcC4zpKnW4Y4ffx3+paklKM5+icwVT9yWMx/k4xl4Y7zAEYWxfIbcy5tEZe69UKZrkXUl4sMaaD8ewcZ+gWuh48wXYT5jNXcwnrbHvcN9cjbA6Hw+FwOBynDv9gczgcDofD4ThxmJQoaRyaSnbK/E7OZ3i0R7hapdNDOL9H7DNDKJ1qxNZUnhjhYNIRExQXxOehQQkdbid1+8XTo5oGnUCJMuxO+ljRrKBKmctVNTTaX+VvZcie44HUwa9VCveLK06VmSdz6CnjYz4DqQbmvuM5uC9C1LtazGw1ZRGOQt8LtFGBrQMwBy5AfTKvKBkC0oVUVlK1t6diMcd1WLdAio3GoTRK5X1hnA2T2/oQp4RIHTRQyJHyTlLSgqidksJRYSrPdXkBKjm5HMvl/N1wHAZNZqidCW4joDqyreJzTwt/jTmZxCmvFG3CLSaq3YxlTSnYON+UepztzJyYvA4oVGNJVFSYUmRbivQ4BmtSGXSfzp8ZomVrfbBWxd6g73Q+T+S3prKzi7fhfZj0oiXJN58hTokSvUVBmvRzHIPKq0rz4uPvMVUH5qDljpwsPn+YYziD4lLlwcVXS7mQPyqYqrP+XEOXyHM+n8uWkfV6gfOxFYuG2tgOxnVNuSnM5Lfnj5BbGk4bLUySuwaUaHN8zniEzeFwOBwOh+PE4R9sDofD4XA4HCcOkxJl+DKDEihn+N+gRDpD7mDl6NSh6C56jqK/GG4386s9VBUTD+eTEnmo0ubeHT7HbwFFO6p/iB9WLCjzovF4/FZIzRaGnuH/uDEtkRq0xn3qmZQEDUjVOOP9MIaoFlLqU+XbaCiW4kNXqX/YjkV+/P82TUNqkoacOc6BoSPUSzQyRRReUQdz5Dll3WjueoBKtMRZJe5Vgu5sEqERWlDDQRle0wQUWxkKoRGYbzHtkWMYBr9lJvdtMZ62yPEKoV5Yr6HcKuhgiXbI5BwLdr7LuJJPq0RBHxuq7MHYopE8cFtGCFaeXEMaHuJUVW+Ya9+TlUfP4XUWoKHyjGOVi0pcRWcZc2tMWBOH+B+aTYwbaE+BvRMm/k7i/NWUqL5zYqzN9jkP++0UsJ8sqtRCZ7wU9GWOq3y1+jVavLctAGV8ndBvfX0uVGYJc/AGBugQX6rcujm2F+TMa43lRRs0M68rFeasM7cyxMfiYoW1D2tZh5dsfzyVqEfYHA6Hw+FwOE4d/sHmcDgcDofDceJInj9//gVxdQ6Hw+FwOByO3wY8wuZwOBwOh8Nx4vAPNofD4XA4HI4Th3+wORwOh8PhcJw4/IPN4XA4HA6H48ThH2wOh8PhcDgcJ47/F6rVTpQIo/jWAAAAAElFTkSuQmCC\" id=\"image7fb898ef4f\" transform=\"scale(1 -1) translate(0 -151.92)\" x=\"7.2\" y=\"-22.087445\" width=\"446.4\" height=\"151.92\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Image examples of the SVHN dataset -->\n", "    <g style=\"fill: #262626\" transform=\"translate(117.891562 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n", "L 2375 4384 \n", "L 1825 4384 \n", "Q 1516 4384 1395 4259 \n", "Q 1275 4134 1275 3809 \n", "L 1275 3500 \n", "L 2222 3500 \n", "L 2222 3053 \n", "L 1275 3053 \n", "L 1275 0 \n", "L 697 0 \n", "L 697 3053 \n", "L 147 3053 \n", "L 147 3500 \n", "L 697 3500 \n", "L 697 3744 \n", "Q 697 4328 969 4595 \n", "Q 1241 4863 1831 4863 \n", "L 2375 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-53\" d=\"M 3425 4513 \n", "L 3425 3897 \n", "Q 3066 4069 2747 4153 \n", "Q 2428 4238 2131 4238 \n", "Q 1616 4238 1336 4038 \n", "Q 1056 3838 1056 3469 \n", "Q 1056 3159 1242 3001 \n", "Q 1428 2844 1947 2747 \n", "L 2328 2669 \n", "Q 3034 2534 3370 2195 \n", "Q 3706 1856 3706 1288 \n", "Q 3706 609 3251 259 \n", "Q 2797 -91 1919 -91 \n", "Q 1588 -91 1214 -16 \n", "Q 841 59 441 206 \n", "L 441 856 \n", "Q 825 641 1194 531 \n", "Q 1563 422 1919 422 \n", "Q 2459 422 2753 634 \n", "Q 3047 847 3047 1241 \n", "Q 3047 1584 2836 1778 \n", "Q 2625 1972 2144 2069 \n", "L 1759 2144 \n", "Q 1053 2284 737 2584 \n", "Q 422 2884 422 3419 \n", "Q 422 4038 858 4394 \n", "Q 1294 4750 2059 4750 \n", "Q 2388 4750 2728 4690 \n", "Q 3069 4631 3425 4513 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-56\" d=\"M 1831 0 \n", "L 50 4666 \n", "L 709 4666 \n", "L 2188 738 \n", "L 3669 4666 \n", "L 4325 4666 \n", "L 2547 0 \n", "L 1831 0 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-4e\" d=\"M 628 4666 \n", "L 1478 4666 \n", "L 3547 763 \n", "L 3547 4666 \n", "L 4159 4666 \n", "L 4159 0 \n", "L 3309 0 \n", "L 1241 3903 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-49\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"29.492188\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"126.904297\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"188.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"251.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"313.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"344.970703\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"404.744141\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"463.923828\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"525.203125\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"622.615234\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"686.091797\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"713.875\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"775.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"827.498047\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"859.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-66\" x=\"920.466797\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"955.671875\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"987.458984\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1026.667969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1090.046875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1151.570312\"/>\n", "     <use xlink:href=\"#DejaVuSans-53\" x=\"1183.357422\"/>\n", "     <use xlink:href=\"#DejaVuSans-56\" x=\"1246.833984\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"1315.242188\"/>\n", "     <use xlink:href=\"#DejaVuSans-4e\" x=\"1390.4375\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1465.242188\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1497.029297\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1560.505859\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"1621.785156\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1660.994141\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1722.273438\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1774.373047\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"1835.896484\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p8417e4775d\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"446.4\" height=\"151.68932\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 800x800 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Visualize some examples\n", "NUM_IMAGES = 12\n", "SVHN_images = [SVHN_test_dataset[np.random.randint(len(SVHN_test_dataset))][0] for idx in range(NUM_IMAGES)]\n", "SVHN_images = torch.stack(SVHN_images, dim=0)\n", "img_grid = torchvision.utils.make_grid(SVHN_images, nrow=6, normalize=True, pad_value=0.9)\n", "img_grid = img_grid.permute(1, 2, 0)\n", "\n", "plt.figure(figsize=(8, 8))\n", "plt.title(\"Image examples of the SVHN dataset\")\n", "plt.imshow(img_grid)\n", "plt.axis(\"off\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "1e21283c", "metadata": {"papermill": {"duration": 0.018975, "end_time": "2023-03-14T16:25:25.845288", "exception": false, "start_time": "2023-03-14T16:25:25.826313", "status": "completed"}, "tags": []}, "source": ["Each image is labeled with one class between 0 and 9 representing the main digit in the image.\n", "Can our ProtoNet and ProtoMAML learn to classify the digits from only a few examples?\n", "This is what we will test out below.\n", "The images have the same size as CIFAR, so that we can use the images without changes.\n", "We first prepare the dataset, for which we take the first 500 images per class.\n", "For this dataset, we use our test functions as before to get an estimated performance for different number of shots."]}, {"cell_type": "code", "execution_count": 36, "id": "2817d170", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:25.885363Z", "iopub.status.busy": "2023-03-14T16:25:25.884696Z", "iopub.status.idle": "2023-03-14T16:25:25.901775Z", "shell.execute_reply": "2023-03-14T16:25:25.900858Z"}, "papermill": {"duration": 0.038913, "end_time": "2023-03-14T16:25:25.903098", "exception": false, "start_time": "2023-03-14T16:25:25.864185", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/plain": ["(5000, 32, 32, 3)"]}, "execution_count": 36, "metadata": {}, "output_type": "execute_result"}], "source": ["imgs = np.transpose(SVHN_test_dataset.data, (0, 2, 3, 1))\n", "targets = SVHN_test_dataset.labels\n", "# Limit number of examples to 500 to reduce test time\n", "min_label_count = min(500, np.bincount(SVHN_test_dataset.labels).min())\n", "\n", "idxs = np.concatenate([np.where(targets == c)[0][:min_label_count] for c in range(1 + targets.max())], axis=0)\n", "imgs = imgs[idxs]\n", "targets = torch.from_numpy(targets[idxs]).long()\n", "\n", "svhn_fewshot_dataset = ImageDataset(imgs, targets, img_transform=test_transform)\n", "svhn_fewshot_dataset.imgs.shape"]}, {"cell_type": "markdown", "id": "c4db8082", "metadata": {"papermill": {"duration": 0.019077, "end_time": "2023-03-14T16:25:25.941283", "exception": false, "start_time": "2023-03-14T16:25:25.922206", "status": "completed"}, "tags": []}, "source": ["### Experiments\n", "\n", "First, we can apply ProtoNet to the SVHN dataset:"]}, {"cell_type": "code", "execution_count": 37, "id": "74333231", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:25.980978Z", "iopub.status.busy": "2023-03-14T16:25:25.980335Z", "iopub.status.idle": "2023-03-14T16:25:37.743175Z", "shell.execute_reply": "2023-03-14T16:25:37.742064Z"}, "papermill": {"duration": 11.784447, "end_time": "2023-03-14T16:25:37.744742", "exception": false, "start_time": "2023-03-14T16:25:25.960295", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "5cf904604d114af295068bac7b7cc23c", "version_major": 2, "version_minor": 0}, "text/plain": ["Extracting image features:   0%|          | 0/40 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "6e3ceaeb41b34af48528052d6eb1f03f", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/250 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=2: 18.82% (+-2.28%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "6bebf2bb5deb4f628df93f27d68e0602", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/125 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=4: 21.94% (+-2.09%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "20143e83dbf048158ffdc7de0b2cd499", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/63 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=8: 25.59% (+-1.76%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "5e9eb214bb0a4972ada0da4eb391975c", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/32 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=16: 29.06% (+-1.85%)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "60df67d61c41438b8700604cf4253166", "version_major": 2, "version_minor": 0}, "text/plain": ["Evaluating prototype classification:   0%|          | 0/16 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=32: 32.92% (+-1.34%)\n"]}], "source": ["protonet_svhn_accuracies = dict()\n", "data_feats = None\n", "for k in [2, 4, 8, 16, 32]:\n", "    protonet_svhn_accuracies[k], data_feats = test_proto_net(\n", "        protonet_model, svhn_fewshot_dataset, data_feats=data_feats, k_shot=k\n", "    )\n", "    print(\n", "        \"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)\"\n", "        % (k, 100.0 * protonet_svhn_accuracies[k][0], 100 * protonet_svhn_accuracies[k][1])\n", "    )"]}, {"cell_type": "markdown", "id": "68660a09", "metadata": {"papermill": {"duration": 0.021667, "end_time": "2023-03-14T16:25:37.790860", "exception": false, "start_time": "2023-03-14T16:25:37.769193", "status": "completed"}, "tags": []}, "source": ["It becomes clear that the results are much lower than the ones on CIFAR, and just slightly above random for $k=2$.\n", "How about ProtoMAML?\n", "We provide again evaluation files since the evaluation can take several minutes to complete."]}, {"cell_type": "code", "execution_count": 38, "id": "4e5dc2a6", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:37.836936Z", "iopub.status.busy": "2023-03-14T16:25:37.836343Z", "iopub.status.idle": "2023-03-14T16:25:37.847661Z", "shell.execute_reply": "2023-03-14T16:25:37.847116Z"}, "papermill": {"duration": 0.037593, "end_time": "2023-03-14T16:25:37.848992", "exception": false, "start_time": "2023-03-14T16:25:37.811399", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=2: 17.11% (+-1.95%)\n", "Accuracy for k=4: 21.29% (+-1.92%)\n", "Accuracy for k=8: 27.62% (+-1.84%)\n", "Accuracy for k=16: 36.17% (+-1.80%)\n", "Accuracy for k=32: 46.03% (+-1.65%)\n"]}], "source": ["protomaml_result_file = os.path.join(CHECKPOINT_PATH, \"protomaml_svhn_fewshot.json\")\n", "\n", "if os.path.isfile(protomaml_result_file):\n", "    # Load pre-computed results\n", "    with open(protomaml_result_file) as f:\n", "        protomaml_svhn_accuracies = json.load(f)\n", "    protomaml_svhn_accuracies = {int(k): v for k, v in protomaml_svhn_accuracies.items()}\n", "else:\n", "    # Perform same experiments as for ProtoNet\n", "    protomaml_svhn_accuracies = dict()\n", "    for k in [2, 4, 8, 16, 32]:\n", "        protomaml_svhn_accuracies[k] = test_protomaml(protomaml_model, svhn_fewshot_dataset, k_shot=k)\n", "    # Export results\n", "    with open(protomaml_result_file, \"w\") as f:\n", "        json.dump(protomaml_svhn_accuracies, f, indent=4)\n", "\n", "for k in protomaml_svhn_accuracies:\n", "    print(\n", "        \"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)\"\n", "        % (k, 100.0 * protomaml_svhn_accuracies[k][0], 100.0 * protomaml_svhn_accuracies[k][1])\n", "    )"]}, {"cell_type": "markdown", "id": "db744a31", "metadata": {"papermill": {"duration": 0.027285, "end_time": "2023-03-14T16:25:37.906220", "exception": false, "start_time": "2023-03-14T16:25:37.878935", "status": "completed"}, "tags": []}, "source": ["While ProtoMAML shows similar performance than ProtoNet for $k\\leq 4$, it considerably outperforms ProtoNet for more than 8 shots.\n", "This is because we can adapt the base model, which is crucial when the data does not fit the original training data.\n", "For $k=32$, ProtoMAML achieves $13\\%$ higher classification accuracy than ProtoNet which already starts to flatten out.\n", "We can see the trend more clearly in our plot below."]}, {"cell_type": "code", "execution_count": 39, "id": "e8f431be", "metadata": {"execution": {"iopub.execute_input": "2023-03-14T16:25:37.950333Z", "iopub.status.busy": "2023-03-14T16:25:37.949702Z", "iopub.status.idle": "2023-03-14T16:25:58.379862Z", "shell.execute_reply": "2023-03-14T16:25:58.378903Z"}, "papermill": {"duration": 20.456321, "end_time": "2023-03-14T16:25:58.383655", "exception": false, "start_time": "2023-03-14T16:25:37.927334", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzYxLjY2NTYyNSAyMzEuNjEwNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1Yy24bNxTdz1dwaS9M8ZK8fCydpjEQNEGcGOii6MJV5KSGH42cNOjf93BeJEcjWXbs2JBinnAu77lvzuLl6t+/l6v3Jy/ELx+aRV4t7xoSl/h8Ekpc4vNdkDjB51OjsLpujCPpHDvNWF6VS23wJ6n05xU2V8vPTXPRLI4h5k4oGck76xWHsLGwUVF0ygexThqcVBuaXbubxkYZcJrVMnYaQVsdJtjViGkVpQ492D9bYa3SX8SGWO2jIOek0WK9Er+LG7E41okZidf4XOLTWa22KwfJ1vhawRGsTm4+NKfiyyBWSWL4Y5DcLk96tPkCXylxpPBfzFJ1slh2hl9eNy/OmsUrEkTi7KJ14dnH5g9xoA/Fn+LsdfPrWXPanvUULBuw9CxjoIkbRvAJWHotbSfrfpb2uVgSKdnRKGlm9Al4kvLSdMLuJxqejWhQ0qkNoiP6FES9GYTdT5TcczE1WvWn1wVkQJ+AqSEzCLufqalStAoMRJltn47SjxK0IF1LePvt+q/VWtxeiLvPt1/vxD9YLK/O7+6ey4S9HPhT6RCtKwpwxh5rPK1bQQ7ybNQc2EC77eZT8tlKXC+HKErWxuLkzLMAf5AoEUuDcg5hHnruYmqemymeVOSDLz1agD/KFDNEMIFCsHpnSihp65xIQo6SOHIS80bKCJbgW2bWZl4cL5ff1ufL/x5lNdMRDK7/8VhwOaEYTeyC0+jD69IGW54Q1RPvT5o9d6aBZxwefEA5CcyunCjYycjGxhSJYwNG9zQmemUB5nYV8YdxTDGhY21HhZLsonOxnZqGQkjayQAJ0dWwSfXRQYvtcCFbG+ktJQuXiqSmR7HVblQ5kvQcOWEzhNsx7cWD/WfGHywcrKsN62hhfYtx0qJSe1P7b8sTonqi9d9eOyv/oahhn3W1/+B83feb7D8lVYw+cu2/KKPS3vraxjB9sIRqWXskwCJBW65hrWBnPc7Is3AhG9HFUzWIPEqC9lXEBZ/CsAuiGcIP9V9dtSRPcqvZlVuTgbxQx0s2pLQtZ9WgZQpyraemVmTaPlZYA7WamK23k9hH1/PB+X5kUFB77/QeSmdbOfciuB6Ka3sZmHIzLiqDqigWb5R4eTtuhM/afWQhOHAMHjtn9hmLrE/FGt4xwXiyJsxsc5hJ2l1kEToWKT63K4Ump6OjhrmIuoI97Hp0E+vDISdgsytVt4YDQ7moVTvA5MyD47XzRk8KVpCWvQfLKiBskJo2a2S0UrFVJpQBsWe9qAJiL4rzATGwY+es7qxOswER8a9FbOErzuzrA0KnbahJztDMpi4cTPrW3qUvP3dkGw6WUa4MW52+il2n5Wyhk6+l5tkr9swbgLmLPSy/+WLgev7FAPbu+V4h7ywEbJfa+X7PQclKCt3VHpWml7J9wHl1KCxCxFkOXVgdrL4ffcAdQLxbrS9u19fnN8uVeLe+/Xr7dvVVnN987BZvjt/8Vg5Fi2P70Bc2l6lYPey1DfvU55DZSJnu/QUumGxkUO1EV+DIMAZ9h/6nSzw1I5V3R+O9ChXqU160e5dNgafmxoNPKhyFm7VOx+QTE+r7tM/6Fehy4FJgaHoQ2zqihCHV1AeNyKgSxHVYof7ViGWi+YDCJptWXXad9t4WunM8nVwQUEt8X9dwEeje9agJdNUE2oB+SjfMulBWD4S1cioWKIZijY5mAWmMn7hxxYRhPkG1T5hnG9E7G9xirQqIXqBGGvJM6WY7kFNBOVshnfz2wQ7C9cSnLitKUS4V2lidiS4bPfv0aFYOLnWK0pkFCT+QGLj68VQU36ijiVSgwNBDtSvFpWlMGReqcwEqSyjshYKYJSY0RiRzLaDeIKWowWzFmdm+hXKjI0oSNOVK46ltbPf1dGsdjapLCjyHXr7zrvnuMDVCdMnul8XB+hDVVxrlcFNNv+Kgq59lxWyzamMK2XlhmL4l7jMKNxxvuE6pjOWcKrGfMlFkbbjQMAdkhnPk+lShyGO+ziEOzGGGVFznlccF0LsQeEwjINEqRS4jI+ecWRjPMOYiYsrMwjwGCrjZFueGdnSLlqvcgjktwhqhV1BJNu6p9JwzUmVXhnMEZ4k51Muzi6TIag65k9mMSMF5xEbLFMKyAfO5pa2zhtkrBZXCfRt+fmCWedSEelR5dJpNJ5PT5n8azYD1CmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTYyNAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MQQ7AIAgE7/sKnqAIIv9pGg/0/9cqNT0AEzIZM6FCusa6k7HTVaFNqLZGD1hKUqD6FgOam01TDoj7oR1IY5TvnkpggocR97GKcijQFqlu4v83cb/89hxjCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzszBWMFCwNAISppaWCuZGlgophlxAPoiVywUTywGzTC3MgSwjCwMklompIUgWhWVsYAmVRbAMgDTYmhyY6TlcGVxpADXCGOsKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDYyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlcwULA0AhJmhgYK5kaWCimGXEA+iJXLZWQBEcsBswxNjIAskDoEywBIg7XnwHTlcGVwpQEA4UMQ7gplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggOTAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY6xDcAwCAR7pmAEzBsT9omiFM7+bYxjp+GPQwgijIVDswjYNfgsNPqkh4AyqVMNZyCptbrc3vhIRrranwYMMnMuNV3FsUhd1jQpzXyg77udbrpe7jIdyAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggNzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY3BEYBACAP/VJESEES8fhzHB9f/10MGP8kGBnKqgzFkie8Gl4Fro5WTJikXBdnhkJ9q1hdFnDstF2cYN6V/FdGfgx66X8jxF/8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDE2NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jjkSQyEMQ3tO4SOAN+A8P5NJQe7fRvJP0lgP5EXTTLpsRUnUqVseo33p3bx70Wm+syhyyuxLckxJ8NVYU6Pm6VJ9Dzqk4dVnETVjeF+NfTpNuFUDijvUq+nqRaeoQyvc+WU67VVObEM+ki3+2vIvud5/7ktsT/FcSBHY7QtkvAqNdWslJYXCQUdgjjORSQevwG5u5U3eoV7/FEz0/AADFz6kCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCAzNDMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI7biUxDOvnFLxAAOtn2ed5wWKL7P3bJTVIJUK2SIp2+8JCO74ssLPR6fi2p+5Fr41/g6ocP08VUS8UZ+oE8jjqOj5PZmIvQ67DuhGdUz9P+B3kd0NMzpM6zRMnZ3XBKVi13xpLJ0K22LnIm/Cd1Eqd9EF2IFYh2Y2ki5JOOlEuuVxETpVtCHm/hdi6s+klwmdNP/VWF6+QaQeyUEi2stgvb2zCmniieiq3MhskZ18Hbgcybm04MFIyIVqNwyar3aYx9Y1J276w4jAJLG2i2Jwiz9W00+SdSqF+UVJQNzI0M5HTlHEuuZrJL6svsQ1SHEVG8idD8ooJiZ1dE4t3cyHG/z4GnzIY3M/jiyHZHe5gJOOntcihvLn+iphbb6RUBXh0lWeOuX0kZkeXHFpOn0pkPdbjvCi90Fw1N79daKYo3sy8aLcZ6u8v/Dx/nz//ATpvf54KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDMxNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kkuO5DAMQ/c5hS7QgPWz4/NUozGLmvtv59GZ6kVAQdaHFDNX27BK+/K03tN6Dvv2K2Nb1LS/V+w4UcyyyCcbsex1RdwW3nzbfK8HV+pFUTt10zyTHjcP10uTGfStBYblyIOvK3M+GfY4ZPJWr/YU9T7dKgZ7xkFN5kURfN6/fN/Xn0sy0gPuigY51X3wdpXzUMty0c8q6G1RcLcv9Kx5zhFZB1+Xw1aRp1uaxms7l5q3buf0CWAOJxo5zNScRtFGY2tGsyjJBhp7wHAdfFQoevhJ//9oM5b+YnzeC92an0wu7pJwqcKTuw9yWxSdDNqruNUtZ3Vbr/t0u4PoYHBuKSZoKt6XQ7nlEtOb6sCX7uMl2W7cXfv8HOIthDfeKyqcavZ18g253KusZpwfSos+jrxw5+cfeRB0gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMjQ1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVROW4EMQzr/Qp9YADrtP2eCRYpNv9vQ2onSEXCkihSXloyZYdc6lJLZdWULx2+UhRPPyPUmkVMUSsJNGiG3CM22FaJM8XsweWsgLmlsMMresaPsQKV0CNUDXfhHuI93NfnZZ7usH2eGavTKpanVYmfPc2wmR10wpmPN6rQLVXp/i/PPb57Kmohm23kOqd3phm6gZjAfG3JhMdpknBP38R75FzNslCB35q4yTqoVEAX/nhGz2q0xQRkurewQ5GNM1UUgwhcUfN6bny1S+4lo48r29h5YplL+159iN5MMuU98I8P8Bvf/f7PmPmN/K9fX1RdvAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMjM3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRS24FMQjb5xS+wJP4J3OeVz110d5/W0NUaSQ8YIwh+TgE4XipI62QJfjSNdAFv4P8bPysFEOII/ZBaCIyEOZ4r/DWUFaZ9SRfJr6Xd5bIOCdMYEW1x1gxP/AKmJFvN9putUGmaIYenR7NqVBFm09VVZ05HelA9qBwMsYbe6+3Y1Dyk9407pKaDyuDiovFc1BcS3gFRBhe1Y0a/BcOqbmOU7IjbbC9kbZ0f4XqlXa7sb6mHu9w9yHwcmy57siOE8x3ezo3p1yfvQd05NXOfYi2kLnHU2aPaJMZzNByhuD/nd7re33+AND1VVUKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDIzOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1j0tuAzEMQ/dzCl0ggPWz7PNMUHTR3n8bUs4AmYiQJfKpdMqQSHmpy3STmkPeekVOiVny34rNv+t5PoqVb0+tTYGHKImRYi5eU7bcl6P1SnGNjjG0We/LxmqliQ8/HTIn+vhT3cTStVisDG0IRxJew7Kno+jP9XQYwy4ByABWJCOSigSZ1kTpRS8gpoGWxJtZ5+D7+gWvwt1xvNdqFQNExlzUDO4H1NLeM/vW8qac4uDjhM/oHd/ND5fAXXQN8DKHFZzDW1llT1jmd8c828XsuLKenFZI5gRJuHPY6EJaupL+uYe3/XwAWX1cvQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1ROW4EMQzr/Qp+YAHrtP2eCYIUs/9vQ2mSrUhIMkXRuTYm3PASQ9pE5MSXjKK6Au+HaeAeqvJhAdkO9QkJg2ZCzHANPQIRhSkrk7i08Ro+dzP36iz4poZsdkINooeriezmdEhWpxhl7xFJmYWgg+TLSbslaRuvAzur7VtkI13EUxFO0ozQbpaHNducV6dBl7UOjP1VQdS0c0XVheGE8czQzsVorrBePJWYsyeCE771z7IzsorNUvAf5DV+hgdrvOf9MIbmDNCOwXmYt3WfZJyxVV2e79F4DRNppvTm5YqWXUpZXaiS/JxN1UO03nN9Nt7c/v0Lb5tbKgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQRIDIQgE77yCJwCCuO/ZVGoP5v/XjJo1e3G6HKUaL8HCeuBwd84q/FK68TOpenCn4nmT2aQigRS2A1mUT7IGQmtNuUrODNyNBoQJnbzIgxyv+2z/JEiVunM1cNyw/o/uQS1+VOGsw7E11qicmjDQdnDC2mA8diu68tzbdrro/QWOIzPSCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAxOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZBBcsMwDAPvegWeQJEgJb/HnU4P6f+vAZUmPdiLIWQa0JoOw6ZeFcQqw9ccLSMCv0cZHoO5P0z+Cf+oMAdz6SOKiUjHLScQy0BeiB2i1l7HiQWaJr5BReAsPbsd0wbvc3bcWHV4j4jrNZlyJuE6EbvkeGn/ySPO67BncqQ69uYb3fBx5v+KtVrtBK/e4Eh3BEXl1J+XlBrRElndZx7eI5W2VbtJUTvSumFNNaw4t0pbeF/pPX7G9xNnu0ZjCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA1NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMTRVMFAwNVEwMjRXMDYzVDA2tVRIMeQCioBYuVwwsRwwC6QqhwuqPAemKocrgysNAApIDlUKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDUwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2MVYwULAwARJGppYK5mYGCimGXEA+iJXLBRPLAbNANFhpDkxFDlcGVxoAuGMNJQplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMjgxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSSZIDMQi7+xU8wWbnPT01lcPM/68RdqdzSEsFRgjImso0KQWfciHzST9rWC1Sc/ofvoS0JrkU2TJyB4rQNbzAbFHIKYuYG6+RwptlIqIQhoZNRqbUSdGmW+mMjbLVmk36G5HxIKc9rCgyiUtvTNQ0E+gePC9kPRn4j2SSRE1gnu0grEgX3ioinBTLN2IevG3mFnihe2JBb2R4Qa3IF5DnRsYekAFrtyr24HHdTNSgWNtB9zwOdB4Hgq12P3G9HYjckanbAaffDthzO2D82kHjcdCsO6d8wDRAOv5l6pvhHloBfSODSm/exLuzL9wSu8Ld+3LKdt9S/dxSCxHDPVlR03OYoRouLTAl9v35z1zjNX7fuX1xPAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMTkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQS5IDMQhD9z6FjoBB+HOeTqVmMbn/NjL5LeynQm41MLvDsKhrBJHDcOvtyIjAo5ThvzHXl8m38My3CnMwpz6imIh0XHICMQ3kRqwQFbvLiQmaKr5AtcA+dNZxTAl+3lm5MUfxahH7VelyOuF6EWvI8aH86kfsu3hqcqRO24sfJKfEqf8UR6mV4D4JjnRHUFSf+vOU0kS0rA2RvXi1tNfOjpsUlZF2JhxdE46ordImPiu92l+7PwFpDEZoCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAyMTMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVC5DQMxDOs9hRYIYOqzb54LgjTZv40oJ8WBPJuiSOdeMsVNHjBJd4mc8sSwom4hn2EzmukqVIhGiF0m99A6tawbLdSDuvqm/6ZQgT17BqG8KReoC10BCPcQ72Fbm3l9VLjhN+OBdvHUdm3sPWTcTAWTcOZkowvT0pXp/33u8e5urPkZbrtZlDqMp6XaXqrEKv15EsuDZycZdp2UAtCeScaMDi705GNyC7E6x2yGlRRA7Qzk1Qb1+PQr+JWys/HqAFSfSBxnSNox9L8GK72+IoZUYAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQO24EMQxDe5+CF1jA+to+zwSLFNn7txE1E6QiAUnks5ckJrbjpXMhlyBy4kuGxsE6+LTp4c/4W2sXTsPpv/Nstw1+DmzWTBVmpbZwDcuNCIVP7R732XqNqFi6yJqYIWfCq/8a6ZWr0WwW2apLOSkne4MbIqdvMhlWIWJg5quULdRrsJeOHK9oMFYQVA3NvfC8/Brfw1bAi+YzrPjpuOrVpbved0ihWS69z6w4qbrY1k6LtjZkS99I+FMommCqkKd65CYUbUdmbnj9yX3je3aKn9mprd1Dx2ZukIQ3NxtTSMvUpn/ew7e9fwFufl71CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVBBEgMhCLv7Cp6Akuj6nu10etj+/9rAttODJoRMQLHD3A7ownbjdHv0ljT2Ye+GBYPTwG3oMkF1h50NI5VVFfqWfxeeLfhVdOCwsWmxpjpjdQssG0oLn4WDIztiblerTQoo31X6n4HFjq5loxKYc0IYzMmTRqrr91OAXqhtlVEKQw4liSeqM+etrMTj/gbmtr9fuNqrPT9vbTgsCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAzNDYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZJJbkQxCET3PgUXaMlMHs7zo1YWnftv8yDKCmxwUVU4b8qUNHmpS8aRXFO+dKSqpE/56czvls+I7RJqEr4lLCQmZzd5hq8jEVPckxjiMzo+w/bszGLRe8XADNeqKD3mYpOKzo5+vSqVbXqZVcjGLF/9xqkkb/KIQ9YuM3uOGyxhAEuw3ODDZCfPqWKnehKu9bJkmu6O2ridoSZtSV6J40jgvjSBu1fbY1c7wiPz7waUFzMUtq+koDzgOKccWaWJO6LC+TNuiGKQAq1mjN6i2iYxWhFtoURIAlcRWeqduZ/u8Fy8WVVhGWopfkDC2I6Io1LZjqath47F3DbW2bNhR9ljcyOoJLSxi4omJBWryvBiaWFy2cO6JaP6s75KbbnCqWuSiC1bJViG1rfRYqFJxtJrifWnDPUVa1WrM8fpzM3SgctSWx8jAQsGJk7+f8JnfI/3L9arfhoKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2sVAwgMMUQ640AB4ZA1UKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDEzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0EOQyEIRPecgiMIYtHz2DRd2PtvO8j/34Q4z4xOBvPOhaXisNbYi/JbSD3xt6mZ86KwD5kqKNxDMspNL2PtyMV7HZHfeVItIB1cNbRxbamTzJLWpp0yLlWJfq7IwlTGTBJcXFh2YEnFBxigLISVHsja4R2K9daz6KIvff5ZIDJMCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCAyMDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFBbgQhDLvzCn9gJRICIe/ZatVD+/9rbWZG6skmJsYJaY6O3HjZwPKNGYkva6w4K78iKv00n/GPRfnDlsPnQPg8OHbHux027kq/0MtuxemjXjcpC1brKBuWC05Hk+vimbeo5IQFKztgQ07s8aQyepIZhneYbb65DlJJPyy6sceZT67KFnSyTUVJ6HIw5SZ2zfis4mKdKO3BLBG1JkYVnEOuQunZUXhNKJdW6kwh5Az9WrIyXOlDo1Vguz7A2Hhv/d2+2+cPeY5MngplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggOTMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPYzLEYAwCAXvVEEJ4RdCP47jIfZ/FaLxAgvvzQYrNhTLMUagqeNBkHfRDdxemsDhSN6S5OtNMNlp50o1yWmn4++5lj/7pmtrZxTv5Upjfchj7V94wfkAEN4eGQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMTM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Ouw0DMQxDe0/BBQzo6888CYIUl/3bUHeXNPYDJZEcaRCooZsmhgcyJp7aKBV9mq550tGcU52DFLlv7XdBTQI9tfaWoKsqPJ2QAbeCufBotitLDMbdM9TkhkdTkQuPC+shZv5xxYUm1DaPdaOvUcbODLaz4M9+p7+Xq+WoyDq3u+y7vb7pdi7PCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9FVklDQU8rRGVqYVZ1U2Fucy1Cb2xkIC9GaXJzdENoYXIgMAovTGFzdENoYXIgMjU1IC9Gb250RGVzY3JpcHRvciAxNiAwIFIgL1N1YnR5cGUgL1R5cGUzCi9OYW1lIC9FVklDQU8rRGVqYVZ1U2Fucy1Cb2xkIC9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0KL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0NoYXJQcm9jcyAxOCAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDUgL2h5cGhlbiA2NSAvQSA3MCAvRiA3NiAvTCAvTSAvTiA4MCAvUCA4MyAvUyA5NyAvYSAvYiAvYyAvZAovZSAvZiAxMDQgL2ggMTA4IC9sIC9tIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAxMTkgL3cgMTIxIC95IF0KPj4KL1dpZHRocyAxNSAwIFIgPj4KZW5kb2JqCjE2IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0VWSUNBTytEZWphVnVTYW5zLUJvbGQgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTQ0MCA+PgplbmRvYmoKMTUgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDM0OCA0NTYgNTIxIDgzOCA2OTYKMTAwMiA4NzIgMzA2IDQ1NyA0NTcgNTIzIDgzOCAzODAgNDE1IDM4MCAzNjUgNjk2IDY5NiA2OTYgNjk2IDY5NiA2OTYgNjk2CjY5NiA2OTYgNjk2IDQwMCA0MDAgODM4IDgzOCA4MzggNTgwIDEwMDAgNzc0IDc2MiA3MzQgODMwIDY4MyA2ODMgODIxIDgzNwozNzIgMzcyIDc3NSA2MzcgOTk1IDgzNyA4NTAgNzMzIDg1MCA3NzAgNzIwIDY4MiA4MTIgNzc0IDExMDMgNzcxIDcyNCA3MjUKNDU3IDM2NSA0NTcgODM4IDUwMCA1MDAgNjc1IDcxNiA1OTMgNzE2IDY3OCA0MzUgNzE2IDcxMiAzNDMgMzQzIDY2NSAzNDMKMTA0MiA3MTIgNjg3IDcxNiA3MTYgNDkzIDU5NSA0NzggNzEyIDY1MiA5MjQgNjQ1IDY1MiA1ODIgNzEyIDM2NSA3MTIgODM4CjYwMCA2OTYgNjAwIDM4MCA0MzUgNjU3IDEwMDAgNTAwIDUwMCA1MDAgMTQ0MCA3MjAgNDEyIDExNjcgNjAwIDcyNSA2MDAgNjAwCjM4MCAzODAgNjU3IDY1NyA2MzkgNTAwIDEwMDAgNTAwIDEwMDAgNTk1IDQxMiAxMDk0IDYwMCA1ODIgNzI0IDM0OCA0NTYgNjk2CjY5NiA2MzYgNjk2IDM2NSA1MDAgNTAwIDEwMDAgNTY0IDY0NiA4MzggNDE1IDEwMDAgNTAwIDUwMCA4MzggNDM4IDQzOCA1MDAKNzM2IDYzNiAzODAgNTAwIDQzOCA1NjQgNjQ2IDEwMzUgMTAzNSAxMDM1IDU4MCA3NzQgNzc0IDc3NCA3NzQgNzc0IDc3NCAxMDg1CjczNCA2ODMgNjgzIDY4MyA2ODMgMzcyIDM3MiAzNzIgMzcyIDgzOCA4MzcgODUwIDg1MCA4NTAgODUwIDg1MCA4MzggODUwIDgxMgo4MTIgODEyIDgxMiA3MjQgNzM4IDcxOSA2NzUgNjc1IDY3NSA2NzUgNjc1IDY3NSAxMDQ4IDU5MyA2NzggNjc4IDY3OCA2NzgKMzQzIDM0MyAzNDMgMzQzIDY4NyA3MTIgNjg3IDY4NyA2ODcgNjg3IDY4NyA4MzggNjg3IDcxMiA3MTIgNzEyIDcxMiA2NTIgNzE2CjY1MiBdCmVuZG9iagoxOCAwIG9iago8PCAvQSAxOSAwIFIgL0YgMjAgMCBSIC9MIDIxIDAgUiAvTSAyMiAwIFIgL04gMjMgMCBSIC9QIDI0IDAgUiAvUyAyNSAwIFIKL2EgMjYgMCBSIC9iIDI3IDAgUiAvYyAyOCAwIFIgL2QgMjkgMCBSIC9lIDMwIDAgUiAvZiAzMSAwIFIgL2ggMzIgMCBSCi9oeXBoZW4gMzMgMCBSIC9sIDM0IDAgUiAvbSAzNSAwIFIgL24gMzYgMCBSIC9vIDM3IDAgUiAvcCAzOCAwIFIgL3IgMzkgMCBSCi9zIDQwIDAgUiAvc3BhY2UgNDEgMCBSIC90IDQyIDAgUiAvdSA0MyAwIFIgL3cgNDQgMCBSIC95IDQ1IDAgUiA+PgplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvTGVuZ3RoIDkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Oyw3AMAhD70zBCOFTAvtUVQ/J/teGfHrBD1vIuAkWDB+j2oWVA2+CsSd1YF1eAxVCFhlk5Ns7F4tKZha/miapE9Ikcd5EoTtNSp0PtNPb4IXnA/XpHewKZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvTGVuZ3RoIDc3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWNwQ3AMAgD/0zBCDiFUPapqj7S/b8tRHzsMwjserJwpEwT9hF8gf6c9NI4ULTITBlo2rO+2CS5g5cjlCea0qti9edFD90fyZ4YDAplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggMTcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCRwD/gPO00+mC3H9by5l0gxRjyy9EV3TslYfHxpSN92hjT4QtXOV0Gk5TGY+Lu2ZdoMthMtNvvJq5wFRhkdXsovoYvKHzrGaHr1UzMYQ3mRIaYCp3cg/19ac47duSkGxXYdCdGqSzMMyR/D0QU3PQc4iR/CNfcmth0JnmFxctqxmtZUzR7GGqbC0M6o1Bd8r11Hqu8zAR7/MD30E+ZAplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iago1NyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKNTkgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago2MCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago2MSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjYyIDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjYzIDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNjQgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago2NSAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciA0NyAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgNDkgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IDY1IC9BIDc2IC9MCi9NIC9OIDgwIC9QIDEwMSAvZSAxMTEgL28gMTE0IC9yIDExNiAvdCBdCj4+Ci9XaWR0aHMgNDYgMCBSID4+CmVuZG9iago0NyAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iago0NiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iago0OSAwIG9iago8PCAvQSA1MCAwIFIgL0wgNTEgMCBSIC9NIDUyIDAgUiAvTiA1MyAwIFIgL1AgNTQgMCBSIC9lIDU1IDAgUgovZWlnaHQgNTYgMCBSIC9mb3VyIDU3IDAgUiAvbyA1OCAwIFIgL29uZSA1OSAwIFIgL3BlcmlvZCA2MCAwIFIgL3IgNjEgMCBSCi9zaXggNjIgMCBSIC90IDYzIDAgUiAvdGhyZWUgNjQgMCBSIC90d28gNjUgMCBSIC96ZXJvIDY2IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjIgMTcgMCBSIC9GMSA0OCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuMiAvY2EgMC4yID4+Ci9BNCA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjggL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvTTAgMTMgMCBSIC9NMSAxNCAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTggLTggOCA4IF0gL0xlbmd0aCAxMzEKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago2NyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My43LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My43LjEpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyMzAzMTQxNjI1NThaKQo+PgplbmRvYmoKeHJlZgowIDY4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE3NjU3IDAwMDAwIG4gCjAwMDAwMTY4MzYgMDAwMDAgbiAKMDAwMDAxNjg3OSAwMDAwMCBuIAowMDAwMDE3MDY0IDAwMDAwIG4gCjAwMDAwMTcwODUgMDAwMDAgbiAKMDAwMDAxNzEwNiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDQgMDAwMDAgbiAKMDAwMDAwMjA2NCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIwNDMgMDAwMDAgbiAKMDAwMDAxNzE0OSAwMDAwMCBuIAowMDAwMDE3NDAzIDAwMDAwIG4gCjAwMDAwMDkzNDUgMDAwMDAgbiAKMDAwMDAwOTEzMyAwMDAwMCBuIAowMDAwMDA4NjgyIDAwMDAwIG4gCjAwMDAwMTA0MDYgMDAwMDAgbiAKMDAwMDAwMjA4NCAwMDAwMCBuIAowMDAwMDAyMjQ3IDAwMDAwIG4gCjAwMDAwMDIzOTMgMDAwMDAgbiAKMDAwMDAwMjUyNyAwMDAwMCBuIAowMDAwMDAyNjg5IDAwMDAwIG4gCjAwMDAwMDI4MzcgMDAwMDAgbiAKMDAwMDAwMzA3NSAwMDAwMCBuIAowMDAwMDAzNDkxIDAwMDAwIG4gCjAwMDAwMDM4ODAgMDAwMDAgbiAKMDAwMDAwNDE5OCAwMDAwMCBuIAowMDAwMDA0NTA4IDAwMDAwIG4gCjAwMDAwMDQ4MTkgMDAwMDAgbiAKMDAwMDAwNTE0MyAwMDAwMCBuIAowMDAwMDA1MzUyIDAwMDAwIG4gCjAwMDAwMDU2MTYgMDAwMDAgbiAKMDAwMDAwNTc0NCAwMDAwMCBuIAowMDAwMDA1ODY2IDAwMDAwIG4gCjAwMDAwMDYyMjAgMDAwMDAgbiAKMDAwMDAwNjQ4MyAwMDAwMCBuIAowMDAwMDA2NzY5IDAwMDAwIG4gCjAwMDAwMDcwODMgMDAwMDAgbiAKMDAwMDAwNzMxNCAwMDAwMCBuIAowMDAwMDA3NzMzIDAwMDAwIG4gCjAwMDAwMDc4MjMgMDAwMDAgbiAKMDAwMDAwODAyOCAwMDAwMCBuIAowMDAwMDA4MzA1IDAwMDAwIG4gCjAwMDAwMDg0NzAgMDAwMDAgbiAKMDAwMDAxNTU2NiAwMDAwMCBuIAowMDAwMDE1MzU5IDAwMDAwIG4gCjAwMDAwMTQ5MzkgMDAwMDAgbiAKMDAwMDAxNjYxOSAwMDAwMCBuIAowMDAwMDEwNzA3IDAwMDAwIG4gCjAwMDAwMTA4NzAgMDAwMDAgbiAKMDAwMDAxMTAwMyAwMDAwMCBuIAowMDAwMDExMTY1IDAwMDAwIG4gCjAwMDAwMTEzMTQgMDAwMDAgbiAKMDAwMDAxMTU1NyAwMDAwMCBuIAowMDAwMDExODc5IDAwMDAwIG4gCjAwMDAwMTIzNDcgMDAwMDAgbiAKMDAwMDAxMjUxMyAwMDAwMCBuIAowMDAwMDEyODA0IDAwMDAwIG4gCjAwMDAwMTI5NTkgMDAwMDAgbiAKMDAwMDAxMzA4MiAwMDAwMCBuIAowMDAwMDEzMzE1IDAwMDAwIG4gCjAwMDAwMTM3MDggMDAwMDAgbiAKMDAwMDAxMzkxNCAwMDAwMCBuIAowMDAwMDE0MzI3IDAwMDAwIG4gCjAwMDAwMTQ2NTEgMDAwMDAgbiAKMDAwMDAxNzcxNyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDY4IC9Sb290IDEgMCBSIC9JbmZvIDY3IDAgUiA+PgpzdGFydHhyZWYKMTc4NjgKJSVFT0YK", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"361.642187pt\" height=\"231.597813pt\" viewBox=\"0 0 361.642187 231.597813\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2023-03-14T16:25:58.183491</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 231.597813 \n", "L 361.642187 231.597813 \n", "L 361.642187 -0 \n", "L 0 -0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 49.807187 188.638125 \n", "L 328.807187 188.638125 \n", "L 328.807187 22.318125 \n", "L 49.807187 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 58.525937 188.638125 \n", "L 58.525937 22.318125 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(55.026562 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 75.963437 188.638125 \n", "L 75.963437 22.318125 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(72.464062 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 110.838437 188.638125 \n", "L 110.838437 22.318125 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(107.339062 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 180.588437 188.638125 \n", "L 180.588437 22.318125 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(173.589687 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 320.088437 188.638125 \n", "L 320.088437 22.318125 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 32 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(313.089688 206.496406) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_6\">\n", "     <!-- Number of shots per class -->\n", "     <g style=\"fill: #262626\" transform=\"translate(100.82125 221.902188) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-4e\" d=\"M 588 4666 \n", "L 1931 4666 \n", "L 3628 1466 \n", "L 3628 4666 \n", "L 4769 4666 \n", "L 4769 0 \n", "L 3425 0 \n", "L 1728 3200 \n", "L 1728 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-75\" d=\"M 500 1363 \n", "L 500 3500 \n", "L 1625 3500 \n", "L 1625 3150 \n", "Q 1625 2866 1622 2436 \n", "Q 1619 2006 1619 1863 \n", "Q 1619 1441 1641 1255 \n", "Q 1663 1069 1716 984 \n", "Q 1784 875 1895 815 \n", "Q 2006 756 2150 756 \n", "Q 2500 756 2700 1025 \n", "Q 2900 1294 2900 1772 \n", "L 2900 3500 \n", "L 4019 3500 \n", "L 4019 0 \n", "L 2900 0 \n", "L 2900 506 \n", "Q 2647 200 2364 54 \n", "Q 2081 -91 1741 -91 \n", "Q 1134 -91 817 281 \n", "Q 500 653 500 1363 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6d\" d=\"M 3781 2919 \n", "Q 3994 3244 4286 3414 \n", "Q 4578 3584 4928 3584 \n", "Q 5531 3584 5847 3212 \n", "Q 6163 2841 6163 2131 \n", "L 6163 0 \n", "L 5038 0 \n", "L 5038 1825 \n", "Q 5041 1866 5042 1909 \n", "Q 5044 1953 5044 2034 \n", "Q 5044 2406 4934 2573 \n", "Q 4825 2741 4581 2741 \n", "Q 4263 2741 4089 2478 \n", "Q 3916 2216 3909 1719 \n", "L 3909 0 \n", "L 2784 0 \n", "L 2784 1825 \n", "Q 2784 2406 2684 2573 \n", "Q 2584 2741 2328 2741 \n", "Q 2006 2741 1831 2477 \n", "Q 1656 2213 1656 1722 \n", "L 1656 0 \n", "L 531 0 \n", "L 531 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1863 3284 2130 3434 \n", "Q 2397 3584 2719 3584 \n", "Q 3081 3584 3359 3409 \n", "Q 3638 3234 3781 2919 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-62\" d=\"M 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "z\n", "M 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-65\" d=\"M 4031 1759 \n", "L 4031 1441 \n", "L 1416 1441 \n", "Q 1456 1047 1700 850 \n", "Q 1944 653 2381 653 \n", "Q 2734 653 3104 758 \n", "Q 3475 863 3866 1075 \n", "L 3866 213 \n", "Q 3469 63 3072 -14 \n", "Q 2675 -91 2278 -91 \n", "Q 1328 -91 801 392 \n", "Q 275 875 275 1747 \n", "Q 275 2603 792 3093 \n", "Q 1309 3584 2216 3584 \n", "Q 3041 3584 3536 3087 \n", "Q 4031 2591 4031 1759 \n", "z\n", "M 2881 2131 \n", "Q 2881 2450 2695 2645 \n", "Q 2509 2841 2209 2841 \n", "Q 1884 2841 1681 2658 \n", "Q 1478 2475 1428 2131 \n", "L 2881 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-72\" d=\"M 3138 2547 \n", "Q 2991 2616 2845 2648 \n", "Q 2700 2681 2553 2681 \n", "Q 2122 2681 1889 2404 \n", "Q 1656 2128 1656 1613 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2925 \n", "Q 1872 3269 2151 3426 \n", "Q 2431 3584 2822 3584 \n", "Q 2878 3584 2943 3579 \n", "Q 3009 3575 3134 3559 \n", "L 3138 2547 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6f\" d=\"M 2203 2784 \n", "Q 1831 2784 1636 2517 \n", "Q 1441 2250 1441 1747 \n", "Q 1441 1244 1636 976 \n", "Q 1831 709 2203 709 \n", "Q 2569 709 2762 976 \n", "Q 2956 1244 2956 1747 \n", "Q 2956 2250 2762 2517 \n", "Q 2569 2784 2203 2784 \n", "z\n", "M 2203 3584 \n", "Q 3106 3584 3614 3096 \n", "Q 4122 2609 4122 1747 \n", "Q 4122 884 3614 396 \n", "Q 3106 -91 2203 -91 \n", "Q 1297 -91 786 396 \n", "Q 275 884 275 1747 \n", "Q 275 2609 786 3096 \n", "Q 1297 3584 2203 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-66\" d=\"M 2841 4863 \n", "L 2841 4128 \n", "L 2222 4128 \n", "Q 1984 4128 1890 4042 \n", "Q 1797 3956 1797 3744 \n", "L 1797 3500 \n", "L 2753 3500 \n", "L 2753 2700 \n", "L 1797 2700 \n", "L 1797 0 \n", "L 678 0 \n", "L 678 2700 \n", "L 122 2700 \n", "L 122 3500 \n", "L 678 3500 \n", "L 678 3744 \n", "Q 678 4316 997 4589 \n", "Q 1316 4863 1984 4863 \n", "L 2841 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-73\" d=\"M 3272 3391 \n", "L 3272 2541 \n", "Q 2913 2691 2578 2766 \n", "Q 2244 2841 1947 2841 \n", "Q 1628 2841 1473 2761 \n", "Q 1319 2681 1319 2516 \n", "Q 1319 2381 1436 2309 \n", "Q 1553 2238 1856 2203 \n", "L 2053 2175 \n", "Q 2913 2066 3209 1816 \n", "Q 3506 1566 3506 1031 \n", "Q 3506 472 3093 190 \n", "Q 2681 -91 1863 -91 \n", "Q 1516 -91 1145 -36 \n", "Q 775 19 384 128 \n", "L 384 978 \n", "Q 719 816 1070 734 \n", "Q 1422 653 1784 653 \n", "Q 2113 653 2278 743 \n", "Q 2444 834 2444 1013 \n", "Q 2444 1163 2330 1236 \n", "Q 2216 1309 1875 1350 \n", "L 1678 1375 \n", "Q 931 1469 631 1722 \n", "Q 331 1975 331 2491 \n", "Q 331 3047 712 3315 \n", "Q 1094 3584 1881 3584 \n", "Q 2191 3584 2531 3537 \n", "Q 2872 3491 3272 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-68\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1625 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "L 1656 4863 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-74\" d=\"M 1759 4494 \n", "L 1759 3500 \n", "L 2913 3500 \n", "L 2913 2700 \n", "L 1759 2700 \n", "L 1759 1216 \n", "Q 1759 972 1856 886 \n", "Q 1953 800 2241 800 \n", "L 2816 800 \n", "L 2816 0 \n", "L 1856 0 \n", "Q 1194 0 917 276 \n", "Q 641 553 641 1216 \n", "L 641 2700 \n", "L 84 2700 \n", "L 84 3500 \n", "L 641 3500 \n", "L 641 4494 \n", "L 1759 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-70\" d=\"M 1656 506 \n", "L 1656 -1331 \n", "L 538 -1331 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1888 3294 2169 3439 \n", "Q 2450 3584 2816 3584 \n", "Q 3463 3584 3878 3070 \n", "Q 4294 2556 4294 1747 \n", "Q 4294 938 3878 423 \n", "Q 3463 -91 2816 -91 \n", "Q 2450 -91 2169 54 \n", "Q 1888 200 1656 506 \n", "z\n", "M 2400 2772 \n", "Q 2041 2772 1848 2508 \n", "Q 1656 2244 1656 1747 \n", "Q 1656 1250 1848 986 \n", "Q 2041 722 2400 722 \n", "Q 2759 722 2948 984 \n", "Q 3138 1247 3138 1747 \n", "Q 3138 2247 2948 2509 \n", "Q 2759 2772 2400 2772 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-63\" d=\"M 3366 3391 \n", "L 3366 2478 \n", "Q 3138 2634 2908 2709 \n", "Q 2678 2784 2431 2784 \n", "Q 1963 2784 1702 2511 \n", "Q 1441 2238 1441 1747 \n", "Q 1441 1256 1702 982 \n", "Q 1963 709 2431 709 \n", "Q 2694 709 2930 787 \n", "Q 3166 866 3366 1019 \n", "L 3366 103 \n", "Q 3103 6 2833 -42 \n", "Q 2563 -91 2291 -91 \n", "Q 1344 -91 809 395 \n", "Q 275 881 275 1747 \n", "Q 275 2613 809 3098 \n", "Q 1344 3584 2291 3584 \n", "Q 2566 3584 2833 3536 \n", "Q 3100 3488 3366 3391 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-6c\" d=\"M 538 4863 \n", "L 1656 4863 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-61\" d=\"M 2106 1575 \n", "Q 1756 1575 1579 1456 \n", "Q 1403 1338 1403 1106 \n", "Q 1403 894 1545 773 \n", "Q 1688 653 1941 653 \n", "Q 2256 653 2472 879 \n", "Q 2688 1106 2688 1447 \n", "L 2688 1575 \n", "L 2106 1575 \n", "z\n", "M 3816 1997 \n", "L 3816 0 \n", "L 2688 0 \n", "L 2688 519 \n", "Q 2463 200 2181 54 \n", "Q 1900 -91 1497 -91 \n", "Q 953 -91 614 226 \n", "Q 275 544 275 1050 \n", "Q 275 1666 698 1953 \n", "Q 1122 2241 2028 2241 \n", "L 2688 2241 \n", "L 2688 2328 \n", "Q 2688 2594 2478 2717 \n", "Q 2269 2841 1825 2841 \n", "Q 1466 2841 1156 2769 \n", "Q 847 2697 581 2553 \n", "L 581 3406 \n", "Q 941 3494 1303 3539 \n", "Q 1666 3584 2028 3584 \n", "Q 2975 3584 3395 3211 \n", "Q 3816 2838 3816 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-4e\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"83.691406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"154.882812\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-62\" x=\"259.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"330.664062\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"398.486328\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"447.802734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"482.617188\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"551.318359\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"594.824219\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"629.638672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"689.160156\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"760.351562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"829.052734\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"876.855469\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"936.376953\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-70\" x=\"971.191406\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1042.773438\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1110.595703\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1159.912109\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1194.726562\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-6c\" x=\"1254.003906\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1288.28125\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1355.761719\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-73\" x=\"1415.283203\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 49.807187 158.574804 \n", "L 328.807187 158.574804 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 0.2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 162.753945) scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 49.807187 112.080339 \n", "L 328.807187 112.080339 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 0.3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 116.25948) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 49.807187 65.585874 \n", "L 328.807187 65.585874 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 0.4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 69.765015) scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_10\">\n", "     <!-- Accuracy -->\n", "     <g style=\"fill: #262626\" transform=\"translate(16.224375 135.9825) rotate(-90) scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-Bold-41\" d=\"M 3419 850 \n", "L 1538 850 \n", "L 1241 0 \n", "L 31 0 \n", "L 1759 4666 \n", "L 3194 4666 \n", "L 4922 0 \n", "L 3713 0 \n", "L 3419 850 \n", "z\n", "M 1838 1716 \n", "L 3116 1716 \n", "L 2478 3572 \n", "L 1838 1716 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-Bold-79\" d=\"M 78 3500 \n", "L 1197 3500 \n", "L 2138 1125 \n", "L 2938 3500 \n", "L 4056 3500 \n", "L 2584 -331 \n", "Q 2363 -916 2067 -1148 \n", "Q 1772 -1381 1288 -1381 \n", "L 641 -1381 \n", "L 641 -647 \n", "L 991 -647 \n", "Q 1275 -647 1404 -556 \n", "Q 1534 -466 1606 -231 \n", "L 1638 -134 \n", "L 78 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-Bold-41\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"77.392578\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"136.669922\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-75\" x=\"195.947266\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"267.138672\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"316.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"383.935547\"/>\n", "      <use xlink:href=\"#DejaVuSans-Bold-79\" x=\"443.212891\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"PolyCollection_1\">\n", "    <defs>\n", "     <path id=\"m96f6d1b3c7\" d=\"M 58.525937 -78.102619 \n", "L 58.525937 -56.947553 \n", "L 75.963437 -72.333767 \n", "L 110.838437 -90.830582 \n", "L 180.588437 -106.563732 \n", "L 320.088437 -126.864558 \n", "L 320.088437 -139.280917 \n", "L 320.088437 -139.280917 \n", "L 180.588437 -123.735341 \n", "L 110.838437 -107.184462 \n", "L 75.963437 -91.753603 \n", "L 58.525937 -78.102619 \n", "z\n", "\" style=\"stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pe9f97cfc2b)\">\n", "     <use xlink:href=\"#m96f6d1b3c7\" x=\"0\" y=\"231.597813\" style=\"fill: #dd8452; fill-opacity: 0.2; stroke: #dd8452; stroke-opacity: 0.2\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"PolyCollection_2\">\n", "    <defs>\n", "     <path id=\"m8a142ef624\" d=\"M 58.525937 -68.652529 \n", "L 58.525937 -50.519687 \n", "L 75.963437 -70.093857 \n", "L 110.838437 -99.896809 \n", "L 180.588437 -139.835555 \n", "L 320.088437 -186.376514 \n", "L 320.088437 -201.719687 \n", "L 320.088437 -201.719687 \n", "L 180.588437 -156.573562 \n", "L 110.838437 -117.006772 \n", "L 75.963437 -87.947732 \n", "L 58.525937 -68.652529 \n", "z\n", "\" style=\"stroke: #55a868; stroke-opacity: 0.2\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pe9f97cfc2b)\">\n", "     <use xlink:href=\"#m8a142ef624\" x=\"0\" y=\"231.597813\" style=\"fill: #55a868; fill-opacity: 0.2; stroke: #55a868; stroke-opacity: 0.2\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_9\">\n", "    <path d=\"M 58.525937 164.072726 \n", "L 75.963437 149.554128 \n", "L 110.838437 132.59029 \n", "L 180.588437 116.448276 \n", "L 320.088437 98.525075 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"m437e77a3b3\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #1a1a1a\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pe9f97cfc2b)\">\n", "     <use xlink:href=\"#m437e77a3b3\" x=\"58.525937\" y=\"164.072726\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m437e77a3b3\" x=\"75.963437\" y=\"149.554128\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m437e77a3b3\" x=\"110.838437\" y=\"132.59029\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m437e77a3b3\" x=\"180.588437\" y=\"116.448276\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#m437e77a3b3\" x=\"320.088437\" y=\"98.525075\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_10\">\n", "    <path d=\"M 58.525937 172.011704 \n", "L 75.963437 152.577018 \n", "L 110.838437 123.146022 \n", "L 180.588437 83.393254 \n", "L 320.088437 37.549712 \n", "\" clip-path=\"url(#pe9f97cfc2b)\" style=\"fill: none; stroke: #55a868; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mcdae4f7a3e\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #1a1a1a\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pe9f97cfc2b)\">\n", "     <use xlink:href=\"#mcdae4f7a3e\" x=\"58.525937\" y=\"172.011704\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mcdae4f7a3e\" x=\"75.963437\" y=\"152.577018\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mcdae4f7a3e\" x=\"110.838437\" y=\"123.146022\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mcdae4f7a3e\" x=\"180.588437\" y=\"83.393254\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     <use xlink:href=\"#mcdae4f7a3e\" x=\"320.088437\" y=\"37.549712\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 49.807187 188.638125 \n", "L 49.807187 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 328.807187 188.638125 \n", "L 328.807187 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 49.807187 188.638125 \n", "L 328.807187 188.638125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 49.807187 22.318125 \n", "L 328.807187 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_11\">\n", "    <!-- Few-Shot Performance ProtoNet and ProtoMAML -->\n", "    <g style=\"fill: #262626\" transform=\"translate(24.172188 16.318125) scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-Bold-46\" d=\"M 588 4666 \n", "L 3834 4666 \n", "L 3834 3756 \n", "L 1791 3756 \n", "L 1791 2888 \n", "L 3713 2888 \n", "L 3713 1978 \n", "L 1791 1978 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-77\" d=\"M 225 3500 \n", "L 1313 3500 \n", "L 1900 1088 \n", "L 2491 3500 \n", "L 3425 3500 \n", "L 4013 1113 \n", "L 4603 3500 \n", "L 5691 3500 \n", "L 4769 0 \n", "L 3547 0 \n", "L 2956 2406 \n", "L 2369 0 \n", "L 1147 0 \n", "L 225 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-2d\" d=\"M 347 2297 \n", "L 2309 2297 \n", "L 2309 1388 \n", "L 347 1388 \n", "L 347 2297 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-53\" d=\"M 3834 4519 \n", "L 3834 3531 \n", "Q 3450 3703 3084 3790 \n", "Q 2719 3878 2394 3878 \n", "Q 1963 3878 1756 3759 \n", "Q 1550 3641 1550 3391 \n", "Q 1550 3203 1689 3098 \n", "Q 1828 2994 2194 2919 \n", "L 2706 2816 \n", "Q 3484 2659 3812 2340 \n", "Q 4141 2022 4141 1434 \n", "Q 4141 663 3683 286 \n", "Q 3225 -91 2284 -91 \n", "Q 1841 -91 1394 -6 \n", "Q 947 78 500 244 \n", "L 500 1259 \n", "Q 947 1022 1364 901 \n", "Q 1781 781 2169 781 \n", "Q 2563 781 2772 912 \n", "Q 2981 1044 2981 1288 \n", "Q 2981 1506 2839 1625 \n", "Q 2697 1744 2272 1838 \n", "L 1806 1941 \n", "Q 1106 2091 782 2419 \n", "Q 459 2747 459 3303 \n", "Q 459 4000 909 4375 \n", "Q 1359 4750 2203 4750 \n", "Q 2588 4750 2994 4692 \n", "Q 3400 4634 3834 4519 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-50\" d=\"M 588 4666 \n", "L 2584 4666 \n", "Q 3475 4666 3951 4270 \n", "Q 4428 3875 4428 3144 \n", "Q 4428 2409 3951 2014 \n", "Q 3475 1619 2584 1619 \n", "L 1791 1619 \n", "L 1791 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "M 1791 3794 \n", "L 1791 2491 \n", "L 2456 2491 \n", "Q 2806 2491 2997 2661 \n", "Q 3188 2831 3188 3144 \n", "Q 3188 3456 2997 3625 \n", "Q 2806 3794 2456 3794 \n", "L 1791 3794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-6e\" d=\"M 4056 2131 \n", "L 4056 0 \n", "L 2931 0 \n", "L 2931 347 \n", "L 2931 1631 \n", "Q 2931 2084 2911 2256 \n", "Q 2891 2428 2841 2509 \n", "Q 2775 2619 2662 2680 \n", "Q 2550 2741 2406 2741 \n", "Q 2056 2741 1856 2470 \n", "Q 1656 2200 1656 1722 \n", "L 1656 0 \n", "L 538 0 \n", "L 538 3500 \n", "L 1656 3500 \n", "L 1656 2988 \n", "Q 1909 3294 2193 3439 \n", "Q 2478 3584 2822 3584 \n", "Q 3428 3584 3742 3212 \n", "Q 4056 2841 4056 2131 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-64\" d=\"M 2919 2988 \n", "L 2919 4863 \n", "L 4044 4863 \n", "L 4044 0 \n", "L 2919 0 \n", "L 2919 506 \n", "Q 2688 197 2409 53 \n", "Q 2131 -91 1766 -91 \n", "Q 1119 -91 703 423 \n", "Q 288 938 288 1747 \n", "Q 288 2556 703 3070 \n", "Q 1119 3584 1766 3584 \n", "Q 2128 3584 2408 3439 \n", "Q 2688 3294 2919 2988 \n", "z\n", "M 2181 722 \n", "Q 2541 722 2730 984 \n", "Q 2919 1247 2919 1747 \n", "Q 2919 2247 2730 2509 \n", "Q 2541 2772 2181 2772 \n", "Q 1825 2772 1636 2509 \n", "Q 1447 2247 1447 1747 \n", "Q 1447 1247 1636 984 \n", "Q 1825 722 2181 722 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-4d\" d=\"M 588 4666 \n", "L 2119 4666 \n", "L 3181 2169 \n", "L 4250 4666 \n", "L 5778 4666 \n", "L 5778 0 \n", "L 4641 0 \n", "L 4641 3413 \n", "L 3566 897 \n", "L 2803 897 \n", "L 1728 3413 \n", "L 1728 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-Bold-4c\" d=\"M 588 4666 \n", "L 1791 4666 \n", "L 1791 909 \n", "L 3903 909 \n", "L 3903 0 \n", "L 588 0 \n", "L 588 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-Bold-46\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"64.310547\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-77\" x=\"132.132812\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-2d\" x=\"224.515625\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-53\" x=\"266.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-68\" x=\"338.041016\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"409.232422\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"477.933594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"525.736328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"560.550781\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"633.841797\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"701.664062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-66\" x=\"750.980469\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"794.486328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"863.1875\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6d\" x=\"912.503906\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1016.703125\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6e\" x=\"1084.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-63\" x=\"1155.375\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1214.652344\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1282.474609\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"1317.289062\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"1390.580078\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1439.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1508.597656\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"1556.400391\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4e\" x=\"1625.101562\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-65\" x=\"1708.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"1776.615234\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"1824.417969\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-61\" x=\"1859.232422\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6e\" x=\"1926.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-64\" x=\"1997.904297\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-20\" x=\"2069.486328\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-50\" x=\"2104.300781\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-72\" x=\"2177.591797\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"2226.908203\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-74\" x=\"2295.609375\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-6f\" x=\"2343.412109\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4d\" x=\"2412.113281\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-41\" x=\"2511.625\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4d\" x=\"2589.017578\"/>\n", "     <use xlink:href=\"#DejaVuSans-Bold-4c\" x=\"2688.529297\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"legend_1\">\n", "    <g id=\"patch_7\">\n", "     <path d=\"M 57.507188 63.41 \n", "L 153.831094 63.41 \n", "Q 156.031094 63.41 156.031094 61.21 \n", "L 156.031094 30.018125 \n", "Q 156.031094 27.818125 153.831094 27.818125 \n", "L 57.507188 27.818125 \n", "Q 55.307187 27.818125 55.307187 30.018125 \n", "L 55.307187 61.21 \n", "Q 55.307187 63.41 57.507188 63.41 \n", "z\n", "\" style=\"fill: #eaeaf2; opacity: 0.8; stroke: #cccccc; stroke-linejoin: miter\"/>\n", "    </g>\n", "    <g id=\"line2d_11\">\n", "     <path d=\"M 59.707187 36.726406 \n", "L 70.707188 36.726406 \n", "L 81.707188 36.726406 \n", "\" style=\"fill: none; stroke: #dd8452; stroke-width: 1.5; stroke-linecap: round\"/>\n", "     <g>\n", "      <use xlink:href=\"#m437e77a3b3\" x=\"70.707188\" y=\"36.726406\" style=\"fill: #dd8452; stroke: #1a1a1a\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_12\">\n", "     <!-- ProtoNet -->\n", "     <g style=\"fill: #262626\" transform=\"translate(90.507188 40.576406) scale(0.11 -0.11)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-4e\" d=\"M 628 4666 \n", "L 1478 4666 \n", "L 3547 763 \n", "L 3547 4666 \n", "L 4159 4666 \n", "L 4159 0 \n", "L 3309 0 \n", "L 1241 3903 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"58.552734\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"97.416016\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"158.597656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"197.806641\"/>\n", "      <use xlink:href=\"#DejaVuSans-4e\" x=\"258.988281\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"333.792969\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"395.316406\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"line2d_12\">\n", "     <path d=\"M 59.707187 52.872344 \n", "L 70.707188 52.872344 \n", "L 81.707188 52.872344 \n", "\" style=\"fill: none; stroke: #55a868; stroke-width: 1.5; stroke-linecap: round\"/>\n", "     <g>\n", "      <use xlink:href=\"#mcdae4f7a3e\" x=\"70.707188\" y=\"52.872344\" style=\"fill: #55a868; stroke: #1a1a1a\"/>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_13\">\n", "     <!-- ProtoMAML -->\n", "     <g style=\"fill: #262626\" transform=\"translate(90.507188 56.722344) scale(0.11 -0.11)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-4d\" d=\"M 628 4666 \n", "L 1569 4666 \n", "L 2759 1491 \n", "L 3956 4666 \n", "L 4897 4666 \n", "L 4897 0 \n", "L 4281 0 \n", "L 4281 4097 \n", "L 3078 897 \n", "L 2444 897 \n", "L 1241 4097 \n", "L 1241 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"58.552734\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"97.416016\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"158.597656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"197.806641\"/>\n", "      <use xlink:href=\"#DejaVuSans-4d\" x=\"258.988281\"/>\n", "      <use xlink:href=\"#DejaVuSans-41\" x=\"345.267578\"/>\n", "      <use xlink:href=\"#DejaVuSans-4d\" x=\"413.675781\"/>\n", "      <use xlink:href=\"#DejaVuSans-4c\" x=\"499.955078\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pe9f97cfc2b\">\n", "   <rect x=\"49.807187\" y=\"22.318125\" width=\"279\" height=\"166.32\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 500x300 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_svhn_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plot_few_shot(protomaml_svhn_accuracies, name=\"ProtoMAML\", color=\"C2\", ax=ax)\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "1e34a1b3", "metadata": {"papermill": {"duration": 0.023817, "end_time": "2023-03-14T16:25:58.435207", "exception": false, "start_time": "2023-03-14T16:25:58.411390", "status": "completed"}, "tags": []}, "source": ["## Conclusion\n", "\n", "In this notebook, we have discussed meta-learning algorithms that learn to adapt to new classes and/or tasks with just a few samples.\n", "We have discussed three popular algorithms, namely ProtoNet, MAML and ProtoMAML.\n", "On the few-shot image classification task of CIFAR100, ProtoNet and ProtoMAML showed to perform similarly well, with slight benefits of ProtoMAML for larger shot sizes.\n", "However, for out-of-distribution data (SVHN), the ability to optimize the base model showed to be crucial and gave ProtoMAML considerable performance gains over ProtoNet.\n", "Nonetheless, ProtoNet offers other advantages compared to ProtoMAML, namely a very cheap training and test cost as well as a simpler implementation.\n", "Hence, it is recommended to consider whether the additionally complexity\n", "of ProtoMAML is worth the extra training computation cost, or whether\n", "ProtoNet is already sufficient for the task at hand."]}, {"cell_type": "markdown", "id": "3ba6ae9d", "metadata": {"papermill": {"duration": 0.023227, "end_time": "2023-03-14T16:25:58.481586", "exception": false, "start_time": "2023-03-14T16:25:58.458359", "status": "completed"}, "tags": []}, "source": ["### References\n", "\n", "[1] Snell, Jake, Kevin Swersky, and Richard S. Zemel.\n", "\"Prototypical networks for few-shot learning.\"\n", "NeurIPS 2017.\n", "([link](https://arxiv.org/pdf/1703.05175.pdf))\n", "\n", "[2] Chelsea Finn, Pieter Abbeel, Sergey Levine.\n", "\"Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.\"\n", "ICML 2017.\n", "([link](http://proceedings.mlr.press/v70/finn17a.html))\n", "\n", "[3] Triantafillou, Eleni, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin et al.\n", "\"Meta-dataset: A dataset of datasets for learning to learn from few examples.\"\n", "ICLR 2020.\n", "([link](https://openreview.net/pdf?id=rkgAGAVKPr))"]}, {"cell_type": "markdown", "id": "fcf647f4", "metadata": {"papermill": {"duration": 0.021147, "end_time": "2023-03-14T16:25:58.524587", "exception": false, "start_time": "2023-03-14T16:25:58.503440", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/Lightning-AI/lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://www.pytorchlightning.ai/community)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/Lightning-AI/lightning) or [Bolt](https://github.com/Lightning-AI/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/Lightning-AI/lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/Lightning-AI/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", "   :header: Tutorial 12: Meta-Learning - Learning to Learn\n", "   :card_description: In this tutorial, we will discuss algorithms that learn models which can quickly adapt to new classes and/or tasks with few samples. This area of machine learning is called...\n", "   :tags: Few-shot-learning,MAML,ProtoNet,GPU/TPU,UvA-DL-Course\n", "   :image: _static/images/course_UvA-DL/12-meta-learning.jpg"]}], "metadata": {"jupytext": {"cell_metadata_filter": "id,colab_type,colab,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16"}, "papermill": {"default_parameters": {}, "duration": 129.935345, "end_time": "2023-03-14T16:26:01.672451", "environment_variables": {}, "exception": null, "input_path": "course_UvA-DL/12-meta-learning/Meta_Learning.ipynb", "output_path": ".notebooks/course_UvA-DL/12-meta-learning.ipynb", "parameters": {}, "start_time": "2023-03-14T16:23:51.737106", "version": "2.4.0"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"03b3fb8c1bf84ddeb394afe56a7e0a55": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04328847e9a644e185567e0e8ab419b9": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04ce7cc203a34c8da07bf2343ef5fde6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_376203e406fc4665b376cf10f7c5757e", "placeholder": "\u200b", "style": "IPY_MODEL_30e511c8508742eb9754d6e0ea5101e7", "tabbable": null, "tooltip": null, "value": "Extracting image features:  91%"}}, "05a1ae023af3460dbaf9f6ea5bb5c557": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_613d478ee02146ea9a40c7b6ed7e454d", "placeholder": "\u200b", "style": "IPY_MODEL_49c14a9ec6c445b883b6525f5f9a855f", "tabbable": null, "tooltip": null, "value": " 146/150 [00:02&lt;00:00, 62.93it/s]"}}, "07b6cf1f005e4c38beda77f571bcb50a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6e26373e64f4947848a5c2e79b3ccb6", "placeholder": "\u200b", "style": "IPY_MODEL_a9459385e5ff43ba8b063677e0b99723", "tabbable": null, "tooltip": null, "value": " 61/63 [00:01&lt;00:00, 27.91it/s]"}}, "0a749342f8a045f2b73cb3f2272f2a0c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03b3fb8c1bf84ddeb394afe56a7e0a55", "placeholder": "\u200b", "style": "IPY_MODEL_e36d6babe6644811be4bae33f20adf4e", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification: 100%"}}, "0bcb06e5df144a42b4355b8230a1d14c": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f4b2a352b8f4fa9ba96cf6a5ddbb097": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "100102155e2c4ac2a085efede8c2487a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_885b440d65fc49f783f689a0678c0a30", "max": 150.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7bcbdac4628045929202f8b9f9d24d2a", "tabbable": null, "tooltip": null, "value": 150.0}}, "14fae09c719c4e79bd28ed3071816a30": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "1880b5c4b06646ed8c79795301ad811a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8072fa1a361b4583b884e8fbf0fcff18", "placeholder": "\u200b", "style": "IPY_MODEL_a134a2f3a0b948beb5a617a58ef55e29", "tabbable": null, "tooltip": null, "value": "Extracting image features:  82%"}}, "1e111bf813194dd5aa05e25d232155cf": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c5bccf0df394250a41fb6a8697cef80", "placeholder": "\u200b", "style": "IPY_MODEL_8e073db341aa41aca62c032e830382d9", "tabbable": null, "tooltip": null, "value": " 33/40 [00:01&lt;00:00, 42.32it/s]"}}, "1e23a4d451d9441da22851408dc23dea": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e5e2596b958494ab9515ba818445e7d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2876a8a251dc4ab4be0e94478f8fca50", "placeholder": "\u200b", "style": "IPY_MODEL_aaca808a0393421b8eae3be8f16360ad", "tabbable": null, "tooltip": null, "value": " 28/32 [00:00&lt;00:00, 50.15it/s]"}}, "20143e83dbf048158ffdc7de0b2cd499": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7735e11185a1476385fe47d24d21dc63", "IPY_MODEL_4fc770b892e7493ab668caffbdd1c4e6", "IPY_MODEL_07b6cf1f005e4c38beda77f571bcb50a"], "layout": "IPY_MODEL_b2bfe80d10764c4c81b170c8f7e6dc6d", "tabbable": null, "tooltip": null}}, "2189a1536e1c4cb69bdc734629919b3c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c94d3d162a684aa9819a820789678832", "placeholder": "\u200b", "style": "IPY_MODEL_3a464df1fea345249c3591e2eb0f3d84", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification: 100%"}}, "255d8a7c157d4ee78c7a67b5b4beb6dc": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "26335f2b423548439677c49ca301dff3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04328847e9a644e185567e0e8ab419b9", "placeholder": "\u200b", "style": "IPY_MODEL_5848dedf3b244cc0893997e3f47774ec", "tabbable": null, "tooltip": null, "value": " 36/38 [00:00&lt;00:00, 116.52it/s]"}}, "279e08175b8c4441831a5016a1097b74": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2876a8a251dc4ab4be0e94478f8fca50": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "287f6dbe8c4d48b2b75567abe04de48e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7bba6d1588d948ee97df37fbebd731bc", "IPY_MODEL_100102155e2c4ac2a085efede8c2487a", "IPY_MODEL_05a1ae023af3460dbaf9f6ea5bb5c557"], "layout": "IPY_MODEL_973000f7c2ac480e8114f98d5d9c70c7", "tabbable": null, "tooltip": null}}, "2a5032f33d9649f295c1811e768c1af2": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ba8efb642e94a71b9fa8f5c862086b4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a83de7d160b6455085213f0698ab0d10", "IPY_MODEL_2be4fd6dd85d4784af61e6ec86214254", "IPY_MODEL_26335f2b423548439677c49ca301dff3"], "layout": "IPY_MODEL_255d8a7c157d4ee78c7a67b5b4beb6dc", "tabbable": null, "tooltip": null}}, "2bcf71b07c3249cabc813f0ee6ce2f33": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2be4fd6dd85d4784af61e6ec86214254": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a91404f1b6e404eb267f2ce71731a32", "max": 38.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_abe231b7bcda4c7d90ba82c528262d6e", "tabbable": null, "tooltip": null, "value": 38.0}}, "2fcb905604bf424eba0c4efb24c960fa": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "30e511c8508742eb9754d6e0ea5101e7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3152285ee26d45cf89e41e8bd241f7b0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4ed527c72c1487aa55ae928532754d8", "max": 40.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_78b6ec44aab540398e6bfda334f8fd0c", "tabbable": null, "tooltip": null, "value": 40.0}}, "3172a6a19b464162a2e9e5461643857f": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "371b0b16d7cf4a659f090978e7fce503": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "376203e406fc4665b376cf10f7c5757e": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "389e1107811348bfa9ce01211e00378a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3927bd15716f42a395c9766591cf661e": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39c2e8dab0eb4f279226f3dd74021e7e": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a464df1fea345249c3591e2eb0f3d84": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c09f222e9714e57899fd929978191a6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c5bccf0df394250a41fb6a8697cef80": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "407f6927e9264b60a2b1a054091143d5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_880b6f24f203481e8de3bb480ba52404", "placeholder": "\u200b", "style": "IPY_MODEL_6693640bd639498cad51a3eec37c0e5e", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  88%"}}, "42ae3ad2c6224651919861a49f7b10f3": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42be84a9a6954c7e954f868820686c79": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_482754332b0b4e1f97037850db9633bd", "placeholder": "\u200b", "style": "IPY_MODEL_67b55a5c37394fe7a0ae2af8524dbd26", "tabbable": null, "tooltip": null, "value": " 15/19 [00:00&lt;00:00, 148.10it/s]"}}, "4461c202b4a14107ba26bfd2132f7685": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4569856de10347328691fd067cf9a5a1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "482754332b0b4e1f97037850db9633bd": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49053dd673a5413d9a29023b077c61a1": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "494840d2978e48c69bcfe886232c2235": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "49812d97b2ea4df7aed3be30e3dcf826": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dddf2880dfb24444b0c696cf3b25fdef", "placeholder": "\u200b", "style": "IPY_MODEL_faf6d99d1e6a429f98d0f4ca3c360a0a", "tabbable": null, "tooltip": null, "value": " 249/250 [00:05&lt;00:00, 42.45it/s]"}}, "49c14a9ec6c445b883b6525f5f9a855f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a91404f1b6e404eb267f2ce71731a32": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b02832ffc72428ea7b7acb273037c05": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a698eb23cd78473e82b8404abd2f1b76", "placeholder": "\u200b", "style": "IPY_MODEL_b5bb2717d7dd4b3eac0e48debf40daf7", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  88%"}}, "4bb5a5578da9415a93d3efc056f071a9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6577982f06c0468795981d045f38bd7d", "placeholder": "\u200b", "style": "IPY_MODEL_389e1107811348bfa9ce01211e00378a", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  95%"}}, "4c947422dbca45d395fa51de6a4ec8e7": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d0bfac94e98412ea4f31b190f2d0e07": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d20b361c19d4d3bb52865886815c988": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4f31a6e99f4e45d9a98e103101dd2039": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b8db8559383940a982cc42137458ed23", "placeholder": "\u200b", "style": "IPY_MODEL_e0b5ba2c7d95419f832127c1a7f1b264", "tabbable": null, "tooltip": null, "value": " 119/125 [00:01&lt;00:00, 74.35it/s]"}}, "4fc770b892e7493ab668caffbdd1c4e6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e69b65671d504174897f15af467c3da1", "max": 63.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ed1990d02cc14403851e573941cade71", "tabbable": null, "tooltip": null, "value": 63.0}}, "53bff6918975470db391a9fcf5f5428e": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "548ea898672046eea3758c6a518fe3a7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3927bd15716f42a395c9766591cf661e", "max": 250.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_71c7953f87094d2cac7b2457362f48f2", "tabbable": null, "tooltip": null, "value": 250.0}}, "561a58f8bc154ed9a27a58a2cf792198": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04ce7cc203a34c8da07bf2343ef5fde6", "IPY_MODEL_61cc01f6fab44c1c9be3e04cd49c22cf", "IPY_MODEL_e5d1aa435c4e4e09a664f1ca1501e29f"], "layout": "IPY_MODEL_b6d1e32427b54aca8e9ef4bb89e97f82", "tabbable": null, "tooltip": null}}, "5848dedf3b244cc0893997e3f47774ec": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b255f65b7b14320b2983bfb25024753": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cf904604d114af295068bac7b7cc23c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1880b5c4b06646ed8c79795301ad811a", "IPY_MODEL_3152285ee26d45cf89e41e8bd241f7b0", "IPY_MODEL_1e111bf813194dd5aa05e25d232155cf"], "layout": "IPY_MODEL_14fae09c719c4e79bd28ed3071816a30", "tabbable": null, "tooltip": null}}, "5d395304617e4038bd11111fc410031c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2189a1536e1c4cb69bdc734629919b3c", "IPY_MODEL_cc01e08284584b4faf085cd53ce5659d", "IPY_MODEL_d7558abc450a490da6e8de190dd45e88"], "layout": "IPY_MODEL_bc8039915ac7410c9fb7df579c1a64d6", "tabbable": null, "tooltip": null}}, "5e1d4b6204ff4fc48e9fe0c2ee5e88b5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f1978a2aeda480489bd51c92ffda21c", "placeholder": "\u200b", "style": "IPY_MODEL_494840d2978e48c69bcfe886232c2235", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  95%"}}, "5e9eb214bb0a4972ada0da4eb391975c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_407f6927e9264b60a2b1a054091143d5", "IPY_MODEL_e01bc931867e436bb758233e3801b460", "IPY_MODEL_1e5e2596b958494ab9515ba818445e7d"], "layout": "IPY_MODEL_2fcb905604bf424eba0c4efb24c960fa", "tabbable": null, "tooltip": null}}, "60df67d61c41438b8700604cf4253166": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4b02832ffc72428ea7b7acb273037c05", "IPY_MODEL_6b32ab10435e4dd380b62162f4bdd3f4", "IPY_MODEL_d1f47e585e664f9ea550c6544749ae39"], "layout": "IPY_MODEL_d99bddae1f7b4e25a0aabf4fce18e647", "tabbable": null, "tooltip": null}}, "613d478ee02146ea9a40c7b6ed7e454d": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61cc01f6fab44c1c9be3e04cd49c22cf": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5b255f65b7b14320b2983bfb25024753", "max": 47.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f50d1c64e16445639c44e3839bba2da8", "tabbable": null, "tooltip": null, "value": 47.0}}, "6246822026fb43e999220980373232b0": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "627e55028b874025bac61f99e1da94b0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_39c2e8dab0eb4f279226f3dd74021e7e", "placeholder": "\u200b", "style": "IPY_MODEL_83661f06a3cf45c1a0dde03e1c700708", "tabbable": null, "tooltip": null, "value": " 169001437/169001437 [00:12&lt;00:00, 3437229.23it/s]"}}, "6577982f06c0468795981d045f38bd7d": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65853beab73b4a9689b72baa6bc5ef6d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_835ab9a0b8b6452c93791522b0f7f803", "IPY_MODEL_f3a8331c60114a85ac26de48109d9699", "IPY_MODEL_627e55028b874025bac61f99e1da94b0"], "layout": "IPY_MODEL_74f345b69a4e466688ea583b2ba80037", "tabbable": null, "tooltip": null}}, "65e0ff4c175f4c539613d604eb264ea0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_371b0b16d7cf4a659f090978e7fce503", "placeholder": "\u200b", "style": "IPY_MODEL_f6a3f961b0204119bbf5a3ffc8b6e096", "tabbable": null, "tooltip": null, "value": " 71/75 [00:01&lt;00:00, 65.38it/s]"}}, "6693640bd639498cad51a3eec37c0e5e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "67b55a5c37394fe7a0ae2af8524dbd26": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b32ab10435e4dd380b62162f4bdd3f4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc43579a48514b8b9fc03afef6439c44", "max": 16.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3c09f222e9714e57899fd929978191a6", "tabbable": null, "tooltip": null, "value": 16.0}}, "6ba8edaf28224554868dcffc34cddb66": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_279e08175b8c4441831a5016a1097b74", "placeholder": "\u200b", "style": "IPY_MODEL_dd4c87ac4a4b46bda013123805fcebae", "tabbable": null, "tooltip": null, "value": " 64275384/64275384 [00:22&lt;00:00, 3247191.23it/s]"}}, "6bebf2bb5deb4f628df93f27d68e0602": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5e1d4b6204ff4fc48e9fe0c2ee5e88b5", "IPY_MODEL_d880b8cd143b403fb1a05992598a7c07", "IPY_MODEL_4f31a6e99f4e45d9a98e103101dd2039"], "layout": "IPY_MODEL_d25f781e7ea8481281ee14491b3c6e51", "tabbable": null, "tooltip": null}}, "6e3ceaeb41b34af48528052d6eb1f03f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0a749342f8a045f2b73cb3f2272f2a0c", "IPY_MODEL_548ea898672046eea3758c6a518fe3a7", "IPY_MODEL_49812d97b2ea4df7aed3be30e3dcf826"], "layout": "IPY_MODEL_bfc30eae9a414b3ca95a8b10bfbf36ba", "tabbable": null, "tooltip": null}}, "71c7953f87094d2cac7b2457362f48f2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "73c1874188c540e8b8e06d12c36b2887": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74f345b69a4e466688ea583b2ba80037": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7735e11185a1476385fe47d24d21dc63": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c947422dbca45d395fa51de6a4ec8e7", "placeholder": "\u200b", "style": "IPY_MODEL_7fe36d2534324b1683e1155705e21fdc", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  97%"}}, "78b6ec44aab540398e6bfda334f8fd0c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7bb3bb30e1c34a55b59c176450d84184": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7bba6d1588d948ee97df37fbebd731bc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3172a6a19b464162a2e9e5461643857f", "placeholder": "\u200b", "style": "IPY_MODEL_e4f774643ba147eabd1d063c3a7f9e49", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  97%"}}, "7bcbdac4628045929202f8b9f9d24d2a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7fe36d2534324b1683e1155705e21fdc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8072fa1a361b4583b884e8fbf0fcff18": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "835ab9a0b8b6452c93791522b0f7f803": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0bcb06e5df144a42b4355b8230a1d14c", "placeholder": "\u200b", "style": "IPY_MODEL_7bb3bb30e1c34a55b59c176450d84184", "tabbable": null, "tooltip": null, "value": "100%"}}, "83661f06a3cf45c1a0dde03e1c700708": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "879c8533fcf944f3836d3fede506d374": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "880b6f24f203481e8de3bb480ba52404": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "885b440d65fc49f783f689a0678c0a30": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bcc60c29c834cbd86eab23caca1d2af": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d3c818cd369646f2b5729841a7f1518b", "IPY_MODEL_dfaf391e46da41f38e34f0a1e9009afd", "IPY_MODEL_42be84a9a6954c7e954f868820686c79"], "layout": "IPY_MODEL_6246822026fb43e999220980373232b0", "tabbable": null, "tooltip": null}}, "8e073db341aa41aca62c032e830382d9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "908e540e7fc34896805f485c6b1b23ff": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94e1163f5fa5457ea46bcbcf590abe8f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95507c8bec1842b6a9fefb103c497a9d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "973000f7c2ac480e8114f98d5d9c70c7": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "9797c2a7b20f4408832173d406141a15": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4bb5a5578da9415a93d3efc056f071a9", "IPY_MODEL_ed7d0616fe234204aa6cc529d4486481", "IPY_MODEL_65e0ff4c175f4c539613d604eb264ea0"], "layout": "IPY_MODEL_0f4b2a352b8f4fa9ba96cf6a5ddbb097", "tabbable": null, "tooltip": null}}, "9c572417ef104ffb80a47c46e775da09": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f1978a2aeda480489bd51c92ffda21c": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0689b070dbd469b87059f9152184606": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a134a2f3a0b948beb5a617a58ef55e29": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a698eb23cd78473e82b8404abd2f1b76": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a83de7d160b6455085213f0698ab0d10": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0bb2e0807c14e5f8555ca812028462a", "placeholder": "\u200b", "style": "IPY_MODEL_ce80d378716d44c49155912f711268dc", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  95%"}}, "a9459385e5ff43ba8b063677e0b99723": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aaca808a0393421b8eae3be8f16360ad": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ab1f2ba08f7e4d5f910020f468b530d3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53bff6918975470db391a9fcf5f5428e", "max": 64275384.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b34e464197c7411488eb0a7a5438133e", "tabbable": null, "tooltip": null, "value": 64275384.0}}, "ab7bfe5378a646bc9160ab3f89bf83f1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "abcd13b2c2214bf98c12bd56858451d0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0359947854640b6abf3b6ce05c1b2e8", "IPY_MODEL_ab1f2ba08f7e4d5f910020f468b530d3", "IPY_MODEL_6ba8edaf28224554868dcffc34cddb66"], "layout": "IPY_MODEL_fd6a9545bd164d16addfe555dabeba2c", "tabbable": null, "tooltip": null}}, "abe231b7bcda4c7d90ba82c528262d6e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b2bfe80d10764c4c81b170c8f7e6dc6d": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "b34e464197c7411488eb0a7a5438133e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b3e6898198674a0b99675a53ab1da5a8": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5bb2717d7dd4b3eac0e48debf40daf7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6d1e32427b54aca8e9ef4bb89e97f82": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "b8db8559383940a982cc42137458ed23": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc8039915ac7410c9fb7df579c1a64d6": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "bfc30eae9a414b3ca95a8b10bfbf36ba": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "c0359947854640b6abf3b6ce05c1b2e8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49053dd673a5413d9a29023b077c61a1", "placeholder": "\u200b", "style": "IPY_MODEL_94e1163f5fa5457ea46bcbcf590abe8f", "tabbable": null, "tooltip": null, "value": "100%"}}, "c55ffe0d8a9f40db994535af1b31ddba": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c6e26373e64f4947848a5c2e79b3ccb6": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c94d3d162a684aa9819a820789678832": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc01e08284584b4faf085cd53ce5659d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a5032f33d9649f295c1811e768c1af2", "max": 300.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ab7bfe5378a646bc9160ab3f89bf83f1", "tabbable": null, "tooltip": null, "value": 300.0}}, "ce80d378716d44c49155912f711268dc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d1f47e585e664f9ea550c6544749ae39": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42ae3ad2c6224651919861a49f7b10f3", "placeholder": "\u200b", "style": "IPY_MODEL_95507c8bec1842b6a9fefb103c497a9d", "tabbable": null, "tooltip": null, "value": " 14/16 [00:00&lt;00:00, 133.67it/s]"}}, "d25f781e7ea8481281ee14491b3c6e51": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "d3c818cd369646f2b5729841a7f1518b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e23a4d451d9441da22851408dc23dea", "placeholder": "\u200b", "style": "IPY_MODEL_879c8533fcf944f3836d3fede506d374", "tabbable": null, "tooltip": null, "value": "Evaluating prototype classification:  79%"}}, "d4ed527c72c1487aa55ae928532754d8": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7558abc450a490da6e8de190dd45e88": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db359057f32647e5ac82a897ee9ecef0", "placeholder": "\u200b", "style": "IPY_MODEL_4d0bfac94e98412ea4f31b190f2d0e07", "tabbable": null, "tooltip": null, "value": " 300/300 [00:08&lt;00:00, 35.70it/s]"}}, "d880b8cd143b403fb1a05992598a7c07": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3e6898198674a0b99675a53ab1da5a8", "max": 125.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4d20b361c19d4d3bb52865886815c988", "tabbable": null, "tooltip": null, "value": 125.0}}, "d99bddae1f7b4e25a0aabf4fce18e647": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "da04ba9c4d934aad8b15c097f7a37363": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db359057f32647e5ac82a897ee9ecef0": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd4c87ac4a4b46bda013123805fcebae": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dddf2880dfb24444b0c696cf3b25fdef": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dfaf391e46da41f38e34f0a1e9009afd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73c1874188c540e8b8e06d12c36b2887", "max": 19.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_908e540e7fc34896805f485c6b1b23ff", "tabbable": null, "tooltip": null, "value": 19.0}}, "e01bc931867e436bb758233e3801b460": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da04ba9c4d934aad8b15c097f7a37363", "max": 32.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4569856de10347328691fd067cf9a5a1", "tabbable": null, "tooltip": null, "value": 32.0}}, "e0b5ba2c7d95419f832127c1a7f1b264": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e36d6babe6644811be4bae33f20adf4e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e4f774643ba147eabd1d063c3a7f9e49": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e5d1aa435c4e4e09a664f1ca1501e29f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0689b070dbd469b87059f9152184606", "placeholder": "\u200b", "style": "IPY_MODEL_9c572417ef104ffb80a47c46e775da09", "tabbable": null, "tooltip": null, "value": " 43/47 [00:03&lt;00:00, 32.15it/s]"}}, "e69b65671d504174897f15af467c3da1": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed1990d02cc14403851e573941cade71": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ed7d0616fe234204aa6cc529d4486481": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2bcf71b07c3249cabc813f0ee6ce2f33", "max": 75.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4461c202b4a14107ba26bfd2132f7685", "tabbable": null, "tooltip": null, "value": 75.0}}, "f0bb2e0807c14e5f8555ca812028462a": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f26ff107fdb84d668a42aa7de4540744": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3a8331c60114a85ac26de48109d9699": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f26ff107fdb84d668a42aa7de4540744", "max": 169001437.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c55ffe0d8a9f40db994535af1b31ddba", "tabbable": null, "tooltip": null, "value": 169001437.0}}, "f50d1c64e16445639c44e3839bba2da8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6a3f961b0204119bbf5a3ffc8b6e096": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "faf6d99d1e6a429f98d0f4ca3c360a0a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc43579a48514b8b9fc03afef6439c44": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd6a9545bd164d16addfe555dabeba2c": {"model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}