Welcome to ⚡ PyTorch Lightning =============================== .. twocolumns:: :left: .. image:: https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/mov.gif :alt: Animation showing how to convert standard training code to Lightning :right: PyTorch Lightning is the deep learning framework for professional AI researchers and machine learning engineers who need maximal flexibility without sacrificing performance at scale. Lightning evolves with you as your projects go from idea to paper/production. .. raw:: html <div class="row" style='font-size: 14px'> <div class='col-md-6'> </div> <div class='col-md-6'> .. raw:: html </div> </div> .. raw:: html <hr class="docutils" style="margin: 50px 0 50px 0"> Install Lightning ----------------- .. raw:: html <div class="row" style='font-size: 16px'> <div class='col-md-6'> Pip users .. code-block:: bash pip install lightning .. raw:: html </div> <div class='col-md-6'> Conda users .. code-block:: bash conda install lightning -c conda-forge .. raw:: html </div> </div> Or read the `advanced install guide <starter/installation.html>`_ You can find our the list of supported PyTorch versions in our :ref:`compatibility matrix <versioning:Compatibility matrix>`. .. raw:: html <hr class="docutils" style="margin: 50px 0 50px 0"> Get Started ----------- .. raw:: html <div class="tutorials-callout-container"> <div class="row"> .. Add callout items below this line .. customcalloutitem:: :description: Learn the 7 key steps of a typical Lightning workflow. :header: Lightning in 15 minutes :button_link: starter/introduction.html .. customcalloutitem:: :description: Learn how to benchmark PyTorch Lightning. :header: Benchmarking :button_link: benchmarking/benchmarks.html .. raw:: html </div> </div> .. End of callout item section .. raw:: html <hr class="docutils" style="margin: 50px 0 50px 0"> Current Lightning Users ----------------------- .. raw:: html <div class="tutorials-callout-container"> <div class="row"> .. Add callout items below this line .. customcalloutitem:: :description: Learn Lightning in small bites at 4 levels of expertise: Introductory, intermediate, advanced and expert. :header: Level Up! :button_link: expertise_levels.html .. customcalloutitem:: :description: Detailed description of API each package. Assumes you already have basic Lightning knowledge. :header: API Reference :button_link: api_references.html .. customcalloutitem:: :description: From NLP, Computer vision to RL and meta learning - see how to use Lightning in ALL research areas. :header: Hands-on Examples :button_link: tutorials.html .. customcalloutitem:: :description: Learn how to do everything from hyper-parameters sweeps to cloud training to Pruning and Quantization with Lightning. :header: Common Workflows :button_link: common_usecases.html .. customcalloutitem:: :description: Convert your current code to Lightning :header: Convert code to PyTorch Lightning :button_link: starter/converting.html .. raw:: html </div> </div> .. End of callout item section .. raw:: html <div style="display:none"> .. toctree:: :maxdepth: 1 :name: start :caption: Get Started starter/introduction starter/installation upgrade/migration_guide .. toctree:: :maxdepth: 2 :name: levels :caption: Level Up levels/core_skills levels/intermediate levels/advanced levels/expert .. toctree:: :maxdepth: 2 :name: pl_docs :caption: Core API common/lightning_module common/trainer .. toctree:: :maxdepth: 2 :name: api :caption: API Reference api_references .. toctree:: :maxdepth: 1 :name: Common Workflows :caption: Common Workflows Avoid overfitting <common/evaluation> model/build_model.rst cli/lightning_cli common/progress_bar deploy/production advanced/training_tricks tuning/profiler Manage experiments <visualize/logging_intermediate> Organize existing PyTorch into Lightning <starter/converting> clouds/cluster Save and load model progress <common/checkpointing> Save memory with half-precision <common/precision> advanced/model_parallel Train on single or multiple GPUs <accelerators/gpu> Train on single or multiple HPUs <accelerators/hpu> Train on single or multiple IPUs <accelerators/ipu> Train on single or multiple TPUs <accelerators/tpu> Train on MPS <accelerators/mps> Use a pretrained model <advanced/pretrained> data/data model/own_your_loop .. toctree:: :maxdepth: 1 :name: Glossary :caption: Glossary Accelerators <extensions/accelerator> Callback <extensions/callbacks> Checkpointing <common/checkpointing> Cluster <clouds/cluster> Cloud checkpoint <common/checkpointing_advanced> Console Logging <common/console_logs> Debugging <debug/debugging> Early stopping <common/early_stopping> Experiment manager (Logger) <visualize/experiment_managers> Finetuning <advanced/finetuning> Flash <https://lightning-flash.readthedocs.io/en/stable/> GPU <accelerators/gpu> Half precision <common/precision> HPU <accelerators/hpu> Inference <deploy/production_intermediate> IPU <accelerators/ipu> Lightning CLI <cli/lightning_cli> LightningDataModule <data/datamodule> LightningModule <common/lightning_module> Log <visualize/loggers> TPU <accelerators/tpu> Metrics <https://torchmetrics.readthedocs.io/en/stable/> Model <model/build_model.rst> Model Parallel <advanced/model_parallel> Plugins <extensions/plugins> Progress bar <common/progress_bar> Production <deploy/production_advanced> Predict <deploy/production_basic> Pretrained models <advanced/pretrained> Profiler <tuning/profiler> Pruning and Quantization <advanced/pruning_quantization> Remote filesystem and FSSPEC <common/remote_fs> Strategy <extensions/strategy> Strategy registry <advanced/strategy_registry> Style guide <starter/style_guide> SWA <advanced/training_tricks> SLURM <clouds/cluster_advanced> Transfer learning <advanced/transfer_learning> Trainer <common/trainer> Torch distributed <clouds/cluster_intermediate_2> .. toctree:: :maxdepth: 1 :name: Hands-on Examples :caption: Hands-on Examples :glob: notebooks/**/* .. toctree:: :maxdepth: 1 :name: Community :caption: Community generated/CODE_OF_CONDUCT.md generated/CONTRIBUTING.md generated/BECOMING_A_CORE_CONTRIBUTOR.md governance versioning past_versions generated/CHANGELOG.md .. raw:: html </div> .. PyTorch-Lightning documentation master file, created by sphinx-quickstart on Fri Nov 15 07:48:22 2019. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive.