Source code for lightning_fabric.accelerators.mps

# Copyright The Lightning AI team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
from functools import lru_cache
from typing import Dict, List, Optional, Union

import torch

from lightning_fabric.accelerators.accelerator import Accelerator
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_12

[docs]class MPSAccelerator(Accelerator): """Accelerator for Metal Apple Silicon GPU devices."""
[docs] def setup_device(self, device: torch.device) -> None: """ Raises: ValueError: If the selected device is not MPS. """ if device.type != "mps": raise ValueError(f"Device should be MPS, got {device} instead.")
[docs] def teardown(self) -> None: pass
[docs] @staticmethod def parse_devices(devices: Union[int, str, List[int]]) -> Optional[List[int]]: """Accelerator device parsing logic.""" from lightning_fabric.utilities.device_parser import _parse_gpu_ids parsed_devices = _parse_gpu_ids(devices, include_mps=True) return parsed_devices
[docs] @staticmethod def get_parallel_devices(devices: Union[int, str, List[int]]) -> List[torch.device]: """Gets parallel devices for the Accelerator.""" parsed_devices = MPSAccelerator.parse_devices(devices) assert parsed_devices is not None return [torch.device("mps", i) for i in range(len(parsed_devices))]
[docs] @staticmethod def auto_device_count() -> int: """Get the devices when set to auto.""" return 1
[docs] @staticmethod @lru_cache(1) def is_available() -> bool: """MPS is only available for certain torch builds starting at torch>=1.12, and is only enabled on a machine with the ARM-based Apple Silicon processors.""" return ( _TORCH_GREATER_EQUAL_1_12 and torch.backends.mps.is_available() and platform.processor() in ("arm", "arm64") )
@classmethod def register_accelerators(cls, accelerator_registry: Dict) -> None: accelerator_registry.register( "mps", cls, description=cls.__class__.__name__, )
def _get_all_available_mps_gpus() -> List[int]: """ Returns: A list of all available MPS GPUs """ return [0] if MPSAccelerator.is_available() else []

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.