CSVLogger¶
- class pytorch_lightning.loggers.CSVLogger(save_dir, name='lightning_logs', version=None, prefix='', flush_logs_every_n_steps=100)[source]¶
- Bases: - pytorch_lightning.loggers.logger.Logger- Log to local file system in yaml and CSV format. - Logs are saved to - os.path.join(save_dir, name, version).- Example - >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger) - Parameters:
- version¶ ( - Union[- int,- str,- None]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.
- prefix¶ ( - str) – A string to put at the beginning of metric keys.
- flush_logs_every_n_steps¶ ( - int) – How often to flush logs to disk (defaults to every 100 steps).
 
 - log_metrics(metrics, step=None)[source]¶
- Records metrics. This method logs metrics as soon as it received them. 
 - property experiment: pytorch_lightning.loggers.csv_logs.ExperimentWriter¶
- Actual ExperimentWriter object. To use ExperimentWriter features in your - LightningModuledo the following.- Example: - self.logger.experiment.some_experiment_writer_function() 
 - property log_dir: str¶
- The log directory for this run. - By default, it is named - 'version_${self.version}'but it can be overridden by passing a string value for the constructor’s version parameter instead of- Noneor an int.
 - property root_dir: str¶
- Parent directory for all checkpoint subdirectories. - If the experiment name parameter is an empty string, no experiment subdirectory is used and the checkpoint will be saved in “save_dir/version”