Source code for pytorch_lightning.strategies.parallel
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, Generator, List, Optional
import torch
from torch import Tensor
import pytorch_lightning as pl
from lightning_lite.plugins import CheckpointIO, ClusterEnvironment
from lightning_lite.utilities.distributed import _all_gather_ddp_if_available, ReduceOp
from pytorch_lightning.plugins import LayerSync
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.strategy import Strategy
[docs]class ParallelStrategy(Strategy, ABC):
"""Plugin for training with multiple processes in parallel."""
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[PrecisionPlugin] = None,
):
super().__init__(accelerator=accelerator, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin)
self.parallel_devices = parallel_devices
self.cluster_environment: Optional[ClusterEnvironment] = cluster_environment
self._layer_sync: Optional[LayerSync] = None
@property
@abstractmethod
def root_device(self) -> torch.device:
"""Return the root device."""
@property
def global_rank(self) -> int:
return self.cluster_environment.global_rank() if self.cluster_environment is not None else 0
@property
def local_rank(self) -> int:
return self.cluster_environment.local_rank() if self.cluster_environment is not None else 0
@property
def node_rank(self) -> int:
return self.cluster_environment.node_rank() if self.cluster_environment is not None else 0
@property
def world_size(self) -> int:
return self.cluster_environment.world_size() if self.cluster_environment is not None else 1
@property
def is_global_zero(self) -> bool:
return self.global_rank == 0
@property
def parallel_devices(self) -> Optional[List[torch.device]]:
return self._parallel_devices
@parallel_devices.setter
def parallel_devices(self, parallel_devices: Optional[List[torch.device]]) -> None:
self._parallel_devices = parallel_devices
@property
def distributed_sampler_kwargs(self) -> Dict[str, Any]:
distributed_sampler_kwargs = dict(
num_replicas=len(self.parallel_devices) if self.parallel_devices is not None else 0, rank=self.global_rank
)
return distributed_sampler_kwargs
[docs] def reconciliate_processes(self, trace: str) -> None:
"""Function to re-conciliate processes on failure."""
[docs] def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor:
"""Perform a all_gather on all processes."""
return _all_gather_ddp_if_available(tensor, group=group, sync_grads=sync_grads)
[docs] def reduce_boolean_decision(self, decision: bool) -> bool:
decision = torch.tensor(int(decision), device=self.root_device)
decision = self.reduce(decision, reduce_op=ReduceOp.SUM)
decision = bool(decision == self.world_size)
return decision
[docs] @contextmanager
def block_backward_sync(self) -> Generator:
"""Blocks ddp sync gradients behaviour on backwards pass.
This is useful for skipping sync when accumulating gradients, reducing communication overhead
Returns: context manager with sync behaviour off
"""
if isinstance(self.model, pl.utilities.types.DistributedDataParallel):
with self.model.no_sync():
yield None
else:
yield None
[docs] def teardown(self) -> None:
assert self.cluster_environment is not None
self.cluster_environment.teardown()
super().teardown()