Source code for pytorch_lightning.profilers.xla

# Copyright The PyTorch Lightning team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict

from lightning_lite.accelerators.tpu import _XLA_AVAILABLE
from pytorch_lightning.profilers.profiler import Profiler

log = logging.getLogger(__name__)

[docs]class XLAProfiler(Profiler): STEP_FUNCTIONS = {"validation_step", "test_step", "predict_step"} RECORD_FUNCTIONS = { "training_step", "backward", "validation_step", "test_step", "predict_step", } def __init__(self, port: int = 9012) -> None: """XLA Profiler will help you debug and optimize training workload performance for your models using Cloud TPU performance tools. Args: port: the port to start the profiler server on. An exception is raised if the provided port is invalid or busy. """ if not _XLA_AVAILABLE: raise ModuleNotFoundError(str(_XLA_AVAILABLE)) super().__init__(dirpath=None, filename=None) self.port = port self._recording_map: Dict = {} self._step_recoding_map: Dict = {} self._start_trace: bool = False
[docs] def start(self, action_name: str) -> None: import torch_xla.debug.profiler as xp # The action name is formatted as '[TYPE]{class name}.{hook name}' # Example: [LightningModule]BoringModel.training_step if action_name.split(".")[-1] in self.RECORD_FUNCTIONS: if not self._start_trace: self.server = xp.start_server(self.port) self._start_trace = True if action_name.split(".")[-1] in self.STEP_FUNCTIONS: step = self._get_step_num(action_name) recording = xp.StepTrace(action_name, step_num=step) else: recording = xp.Trace(action_name) recording.__enter__() self._recording_map[action_name] = recording
[docs] def stop(self, action_name: str) -> None: if action_name in self._recording_map: self._recording_map[action_name].__exit__(None, None, None) del self._recording_map[action_name]
def _get_step_num(self, action_name: str) -> int: if action_name not in self._step_recoding_map: self._step_recoding_map[action_name] = 1 else: self._step_recoding_map[action_name] += 1 return self._step_recoding_map[action_name]

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.