cli¶
Functions
| 
 | 
 | 
Classes
| Initialize argument parser that supports configuration file input. | |
| Receives as input pytorch-lightning classes (or callables which return pytorch-lightning classes), which are called / instantiated using a parsed configuration file and / or command line args. | |
Deprecated utilities for LightningCLI.
- class pytorch_lightning.utilities.cli.LightningArgumentParser(*args, **kwargs)[source]¶
- Bases: - pytorch_lightning.cli.LightningArgumentParser- Initialize argument parser that supports configuration file input. - For full details of accepted arguments see ArgumentParser.__init__. 
- class pytorch_lightning.utilities.cli.LightningCLI(*args, **kwargs)[source]¶
- Bases: - pytorch_lightning.cli.LightningCLI- Receives as input pytorch-lightning classes (or callables which return pytorch-lightning classes), which are called / instantiated using a parsed configuration file and / or command line args. - Parsing of configuration from environment variables can be enabled by setting - env_parse=True. A full configuration yaml would be parsed from- PL_CONFIGif set. Individual settings are so parsed from variables named for example- PL_TRAINER__MAX_EPOCHS.- For more info, read the CLI docs. - Warning - LightningCLIis in beta and subject to change.- Parameters:
- model_class¶ – An optional - LightningModuleclass to train on or a callable which returns a- LightningModuleinstance when called. If- None, you can pass a registered model with- --model=MyModel.
- datamodule_class¶ – An optional - LightningDataModuleclass or a callable which returns a- LightningDataModuleinstance when called. If- None, you can pass a registered datamodule with- --data=MyDataModule.
- save_config_callback¶ – A callback class to save the config. 
- save_config_kwargs¶ – Parameters that will be used to instantiate the save_config_callback. 
- trainer_class¶ – An optional subclass of the - Trainerclass or a callable which returns a- Trainerinstance when called.
- trainer_defaults¶ – Set to override Trainer defaults or add persistent callbacks. The callbacks added through this argument will not be configurable from a configuration file and will always be present for this particular CLI. Alternatively, configurable callbacks can be added as explained in the CLI docs. 
- seed_everything_default¶ – Number for the - seed_everything()seed value. Set to True to automatically choose a seed value. Setting it to False will avoid calling- seed_everything.
- description¶ – Description of the tool shown when running - --help.
- env_prefix¶ – Prefix for environment variables. 
- env_parse¶ – Whether environment variable parsing is enabled. 
- parser_kwargs¶ – Additional arguments to instantiate each - LightningArgumentParser.
- subclass_mode_model¶ – Whether model can be any subclass of the given class. 
- subclass_mode_data¶ – - Whether datamodule can be any subclass of the given class. 
- args¶ ( - Any) – Arguments to parse. If- Nonethe arguments are taken from- sys.argv. Command line style arguments can be given in a- list. Alternatively, structured config options can be given in a- dictor- jsonargparse.Namespace.
- run¶ – Whether subcommands should be added to run a - Trainermethod. If set to- False, the trainer and model classes will be instantiated only.
- auto_registry¶ – Whether to automatically fill up the registries with all defined subclasses.