Source code for pytorch_lightning.plugins.precision.deepspeed
# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportAny,Callable,Optional,TYPE_CHECKING,UnionfromtorchimportTensorfromtorch.nnimportModulefromtorch.optimimportLBFGS,Optimizerimportpytorch_lightningasplfrompytorch_lightning.plugins.precision.precision_pluginimportPrecisionPluginfrompytorch_lightning.utilitiesimportGradClipAlgorithmTypefrompytorch_lightning.utilities.enumsimportAMPType,PrecisionTypefrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionfrompytorch_lightning.utilities.importsimport_APEX_AVAILABLE,_RequirementAvailablefrompytorch_lightning.utilities.model_helpersimportis_overriddenfrompytorch_lightning.utilities.warningsimportWarningCache_DEEPSPEED_AVAILABLE=_RequirementAvailable("deepspeed")ifTYPE_CHECKINGand_DEEPSPEED_AVAILABLE:importdeepspeedwarning_cache=WarningCache()
[docs]classDeepSpeedPrecisionPlugin(PrecisionPlugin):"""Precision plugin for DeepSpeed integration. Args: precision: Double precision (64), full precision (32), half precision (16) or bfloat16 precision (bf16). amp_type: The mixed precision backend to use ("native" or "apex"). amp_level: The optimization level to use (O1, O2, etc...). By default it will be set to "O2" if ``amp_type`` is set to "apex". Raises: MisconfigurationException: If using ``bfloat16`` precision and ``deepspeed<v0.6``. ValueError: If unsupported ``precision`` is provided. """def__init__(self,precision:Union[str,int],amp_type:str,amp_level:Optional[str]=None)->None:ifamp_type==AMPType.APEX:ifnot_APEX_AVAILABLE:raiseMisconfigurationException("You have asked for Apex AMP but `apex` is not installed."" Install `apex` using this guide: https://github.com/NVIDIA/apex")amp_level=amp_levelor"O2"supported_precision=(PrecisionType.HALF,PrecisionType.FLOAT,PrecisionType.BFLOAT)ifprecisionnotinsupported_precision:raiseValueError(f"`Trainer(strategy='deepspeed', precision={precision!r})` is not supported."f" `precision` must be one of: {(x.valueforxinsupported_precision)}.")super().__init__()self.precision=precisionself.amp_type=amp_typeself.amp_level=amp_level
[docs]defbackward(self,model:"pl.LightningModule",closure_loss:Tensor,optimizer:Optional[Optimizer],optimizer_idx:Optional[int],*args:Any,**kwargs:Any,)->None:ifis_overridden("backward",model):warning_cache.warn("You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles"" the backward logic internally.")deepspeed_engine:"deepspeed.DeepSpeedEngine"=model.trainer.modeldeepspeed_engine.backward(closure_loss,*args,**kwargs)
def_run_backward(self,tensor:Tensor,model:Optional["deepspeed.DeepSpeedEngine"],*args:Any,**kwargs:Any)->None:ifmodelisNone:raiseValueError("Please provide the model as input to `backward`.")model.backward(tensor,*args,**kwargs)
[docs]defoptimizer_step(self,model:Optional[Union["pl.LightningModule",Module]],optimizer:Optimizer,optimizer_idx:int,closure:Callable[[],Any],**kwargs:Any,)->Any:ifisinstance(optimizer,LBFGS):raiseMisconfigurationException(f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx}).")closure_result=closure()self._after_closure(model,optimizer,optimizer_idx)skipped_backward=closure_resultisNone# in manual optimization, the closure does not return a valueifisinstance(model,pl.LightningModule)andmodel.automatic_optimizationandskipped_backward:raiseMisconfigurationException("Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`")# DeepSpeed handles the optimizer step internallydeepspeed_engine:"deepspeed.DeepSpeedEngine"ifisinstance(model,pl.LightningModule):deepspeed_engine=model.trainer.modelelse:deepspeed_engine=modelreturndeepspeed_engine.step(**kwargs)
def_track_grad_norm(self,trainer:"pl.Trainer")->None:iftrainer.track_grad_norm==-1:return# the gradients are not available in the model due to gradient partitioning in zero stage >= 2warning_cache.warn(f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed."" The setting will be ignored.")
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.