Source code for pytorch_lightning.plugins.layer_sync
# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromabcimportABC,abstractmethodimporttorchfromtorchimportTensorfromtorch.nnimportModule
[docs]classLayerSync(ABC):"""Abstract base class for creating plugins that wrap layers of a model with synchronization logic for multiprocessing."""
[docs]@abstractmethoddefapply(self,model:Module)->Module:"""Override this method to apply synchronization to the layers of this model."""
[docs]@abstractmethoddefrevert(self,model:Module)->Module:"""Override this method to undo all modifications made in :meth:`apply`."""
[docs]classNativeSyncBatchNorm(LayerSync):"""A plugin that wraps all batch normalization layers of a model with synchronization logic for multiprocessing. This plugin has no effect in single-device operation. """
[docs]defapply(self,model:Module)->Module:"""Add global batchnorm for a model spread across multiple GPUs and nodes. Override this method to synchronize batchnorm layers between specific process groups instead of the whole world. Args: model: Reference to the current LightningModule Return: LightningModule with batchnorm layers synchronized within the process groups. """returntorch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
[docs]defrevert(self,model:Module)->Module:"""Convert the wrapped batchnorm layers back to regular batchnorm layers. Args: model: Reference to the current LightningModule Return: LightningModule with regular batchnorm layers that will no longer sync across processes. """# Code adapted from https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547# Original author: Kapil Yedidi (@kapily)converted_module=modelifisinstance(model,torch.nn.modules.batchnorm.SyncBatchNorm):# Unfortunately, LayerSync does not store the original class - if it did# we could return the one that was originally created.converted_module=_BatchNormXd(model.num_features,model.eps,model.momentum,model.affine,model.track_running_stats)ifmodel.affine:withtorch.no_grad():converted_module.weight=model.weightconverted_module.bias=model.biasconverted_module.running_mean=model.running_meanconverted_module.running_var=model.running_varconverted_module.num_batches_tracked=model.num_batches_trackedifhasattr(model,"qconfig"):converted_module.qconfig=model.qconfigforname,childinmodel.named_children():converted_module.add_module(name,self.revert(child))delmodelreturnconverted_module
class_BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):def_check_input_dim(self,input:Tensor)->None:# The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc# is this method that is overwritten by the subclass.# Here, we are bypassing some tensor sanity checks and trusting that the user# provides the right input dimensions at inference.return
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.