# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Comet Logger------------"""importloggingimportosfromargparseimportNamespacefromtypingimportAny,Callable,Dict,Mapping,Optional,Sequence,UnionfromtorchimportTensorimportpytorch_lightningasplfrompytorch_lightning.loggers.loggerimportLogger,rank_zero_experimentfrompytorch_lightning.utilities.exceptionsimportMisconfigurationExceptionfrompytorch_lightning.utilities.importsimport_module_availablefrompytorch_lightning.utilities.loggerimport_add_prefix,_convert_params,_flatten_dictfrompytorch_lightning.utilities.rank_zeroimportrank_zero_onlylog=logging.getLogger(__name__)_COMET_AVAILABLE=_module_available("comet_ml")if_COMET_AVAILABLE:importcomet_mlfromcomet_mlimportExistingExperimentasCometExistingExperimentfromcomet_mlimportExperimentasCometExperimentfromcomet_mlimportOfflineExperimentasCometOfflineExperimenttry:fromcomet_ml.apiimportAPIexceptModuleNotFoundError:# pragma: no-cover# For more information, see: https://www.comet.ml/docs/python-sdk/releases/#release-300fromcomet_ml.papiimportAPI# pragma: no-coverelse:# needed for test mocks, these tests shall be updatedcomet_ml=NoneCometExperiment,CometExistingExperiment,CometOfflineExperiment=None,None,NoneAPI=None
[docs]classCometLogger(Logger):r""" Track your parameters, metrics, source code and more using `Comet <https://www.comet.com/?utm_source=pytorch_lightning&utm_medium=referral>`_. Install it with pip: .. code-block:: bash pip install comet-ml Comet requires either an API Key (online mode) or a local directory path (offline mode). **ONLINE MODE** .. code-block:: python import os from pytorch_lightning import Trainer from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( api_key=os.environ.get("COMET_API_KEY"), workspace=os.environ.get("COMET_WORKSPACE"), # Optional save_dir=".", # Optional project_name="default_project", # Optional rest_api_key=os.environ.get("COMET_REST_API_KEY"), # Optional experiment_key=os.environ.get("COMET_EXPERIMENT_KEY"), # Optional experiment_name="lightning_logs", # Optional ) trainer = Trainer(logger=comet_logger) **OFFLINE MODE** .. code-block:: python from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( save_dir=".", workspace=os.environ.get("COMET_WORKSPACE"), # Optional project_name="default_project", # Optional rest_api_key=os.environ.get("COMET_REST_API_KEY"), # Optional experiment_name="lightning_logs", # Optional ) trainer = Trainer(logger=comet_logger) **Log Hyperparameters:** Log parameters used to initialize a :class:`~pytorch_lightning.core.module.LightningModule`: .. code-block:: python class LitModule(LightningModule): def __init__(self, *args, **kwarg): self.save_hyperparameters() Log other Experiment Parameters .. code-block:: python # log a single parameter logger.log_hyperparams({"batch_size": 16}) # log multiple parameters logger.log_hyperparams({"batch_size": 16, "learning_rate": 0.001}) **Log Metrics:** .. code-block:: python # log a single metric logger.log_metrics({"train/loss": 0.001}) # add multiple metrics logger.log_metrics({"train/loss": 0.001, "val/loss": 0.002}) **Access the Comet Experiment object:** You can gain access to the underlying Comet `Experiment <https://www.comet.com/docs/v2/api-and-sdk/python-sdk/reference/Experiment/>`__ object and its methods through the :obj:`logger.experiment` property. This will let you use the additional logging features provided by the Comet SDK. Some examples of data you can log through the Experiment object: Log Image data: .. code-block:: python img = PIL.Image.open("<path to image>") logger.experiment.log_image(img, file_name="my_image.png") Log Text data: .. code-block:: python text = "Lightning is awesome!" logger.experiment.log_text(text) Log Audio data: .. code-block:: python audio = "<path to audio data>" logger.experiment.log_audio(audio, file_name="my_audio.wav") Log arbitary data assets: You can log any type of data to Comet as an asset. These can be model checkpoints, datasets, debug logs, etc. .. code-block:: python logger.experiment.log_asset("<path to your asset>", file_name="my_data.pkl") Log Models to Comet's Model Registry: .. code-block:: python logger.experiment.log_model(name="my-model", "<path to your model>") See Also: - `Demo in Google Colab <https://tinyurl.com/22phzw5s>`__ - `Comet Documentation <https://www.comet.com/docs/v2/integrations/ml-frameworks/pytorch-lightning/>`__ Args: api_key: Required in online mode. API key, found on Comet.ml. If not given, this will be loaded from the environment variable COMET_API_KEY or ~/.comet.config if either exists. save_dir: Required in offline mode. The path for the directory to save local comet logs. If given, this also sets the directory for saving checkpoints. project_name: Optional. Send your experiment to a specific project. Otherwise will be sent to Uncategorized Experiments. If the project name does not already exist, Comet.ml will create a new project. rest_api_key: Optional. Rest API key found in Comet.ml settings. This is used to determine version number experiment_name: Optional. String representing the name for this particular experiment on Comet.ml. experiment_key: Optional. If set, restores from existing experiment. offline: If api_key and save_dir are both given, this determines whether the experiment will be in online or offline mode. This is useful if you use save_dir to control the checkpoints directory and have a ~/.comet.config file but still want to run offline experiments. prefix: A string to put at the beginning of metric keys. \**kwargs: Additional arguments like `workspace`, `log_code`, etc. used by :class:`CometExperiment` can be passed as keyword arguments in this logger. Raises: ModuleNotFoundError: If required Comet package is not installed on the device. MisconfigurationException: If neither ``api_key`` nor ``save_dir`` are passed as arguments. """LOGGER_JOIN_CHAR="-"def__init__(self,api_key:Optional[str]=None,save_dir:Optional[str]=None,project_name:Optional[str]=None,rest_api_key:Optional[str]=None,experiment_name:Optional[str]=None,experiment_key:Optional[str]=None,offline:bool=False,prefix:str="",agg_key_funcs:Optional[Mapping[str,Callable[[Sequence[float]],float]]]=None,agg_default_func:Optional[Callable[[Sequence[float]],float]]=None,**kwargs:Any,):ifcomet_mlisNone:raiseModuleNotFoundError("You want to use `comet_ml` logger which is not installed yet, install it with `pip install comet-ml`.")super().__init__(agg_key_funcs=agg_key_funcs,agg_default_func=agg_default_func)self._experiment=Noneself._save_dir:Optional[str]self.rest_api_key:Optional[str]# Determine online or offline mode based on which arguments were passed to CometLoggerapi_key=api_keyorcomet_ml.config.get_api_key(None,comet_ml.config.get_config())ifapi_keyisnotNoneandsave_dirisnotNone:self.mode="offline"ifofflineelse"online"self.api_key=api_keyself._save_dir=save_direlifapi_keyisnotNone:self.mode="online"self.api_key=api_keyself._save_dir=Noneelifsave_dirisnotNone:self.mode="offline"self._save_dir=save_direlse:# If neither api_key nor save_dir are passed as arguments, raise an exceptionraiseMisconfigurationException("CometLogger requires either api_key or save_dir during initialization.")log.info(f"CometLogger will be initialized in {self.mode} mode")self._project_name:Optional[str]=project_nameself._experiment_key:Optional[str]=experiment_keyself._experiment_name:Optional[str]=experiment_nameself._prefix:str=prefixself._kwargs:Any=kwargsself._future_experiment_key:Optional[str]=Noneifrest_api_keyisnotNone:# Comet.ml rest API, used to determine version numberself.rest_api_key=rest_api_keyself.comet_api=API(self.rest_api_key)else:self.rest_api_key=Noneself.comet_api=None@property# type: ignore[misc]@rank_zero_experimentdefexperiment(self)->Union[CometExperiment,CometExistingExperiment,CometOfflineExperiment]:r""" Actual Comet object. To use Comet features in your :class:`~pytorch_lightning.core.module.LightningModule` do the following. Example:: self.logger.experiment.some_comet_function() """ifself._experimentisnotNone:returnself._experimentifself._future_experiment_keyisnotNone:os.environ["COMET_EXPERIMENT_KEY"]=self._future_experiment_keytry:ifself.mode=="online":ifself._experiment_keyisNone:self._experiment=CometExperiment(api_key=self.api_key,project_name=self._project_name,**self._kwargs)self._experiment_key=self._experiment.get_key()else:self._experiment=CometExistingExperiment(api_key=self.api_key,project_name=self._project_name,previous_experiment=self._experiment_key,**self._kwargs,)else:self._experiment=CometOfflineExperiment(offline_directory=self.save_dir,project_name=self._project_name,**self._kwargs)finally:ifself._future_experiment_keyisnotNone:os.environ.pop("COMET_EXPERIMENT_KEY")self._future_experiment_key=Noneifself._experiment_name:self._experiment.set_name(self._experiment_name)returnself._experiment
[docs]@rank_zero_onlydeflog_metrics(self,metrics:Mapping[str,Union[Tensor,float]],step:Optional[int]=None)->None:assertrank_zero_only.rank==0,"experiment tried to log from global_rank != 0"# Comet.ml expects metrics to be a dictionary of detached tensors on CPUmetrics_without_epoch=metrics.copy()forkey,valinmetrics_without_epoch.items():ifisinstance(val,Tensor):metrics_without_epoch[key]=val.cpu().detach()epoch=metrics_without_epoch.pop("epoch",None)metrics_without_epoch=_add_prefix(metrics_without_epoch,self._prefix,self.LOGGER_JOIN_CHAR)self.experiment.log_metrics(metrics_without_epoch,step=step,epoch=epoch)
[docs]@rank_zero_onlydeffinalize(self,status:str)->None:r""" When calling ``self.experiment.end()``, that experiment won't log any more data to Comet. That's why, if you need to log any more data, you need to create an ExistingCometExperiment. For example, to log data when testing your model after training, because when training is finalized :meth:`CometLogger.finalize` is called. This happens automatically in the :meth:`~CometLogger.experiment` property, when ``self._experiment`` is set to ``None``, i.e. ``self.reset_experiment()``. """self.experiment.end()self.reset_experiment()
@propertydefsave_dir(self)->Optional[str]:"""Gets the save directory. Returns: The path to the save directory. """returnself._save_dir@propertydefname(self)->str:"""Gets the project name. Returns: The project name if it is specified, else "comet-default". """# Don't create an experiment if we don't have oneifself._experimentisnotNoneandself._experiment.project_nameisnotNone:returnself._experiment.project_nameifself._project_nameisnotNone:returnself._project_namereturn"comet-default"@propertydefversion(self)->str:"""Gets the version. Returns: The first one of the following that is set in the following order 1. experiment id. 2. experiment key. 3. "COMET_EXPERIMENT_KEY" environment variable. 4. future experiment key. If none are present generates a new guid. """# Don't create an experiment if we don't have oneifself._experimentisnotNone:returnself._experiment.idifself._experiment_keyisnotNone:returnself._experiment_keyif"COMET_EXPERIMENT_KEY"inos.environ:returnos.environ["COMET_EXPERIMENT_KEY"]ifself._future_experiment_keyisnotNone:returnself._future_experiment_key# Pre-generate an experiment keyself._future_experiment_key=comet_ml.generate_guid()returnself._future_experiment_keydef__getstate__(self)->Dict[str,Any]:state=self.__dict__.copy()# Save the experiment id in case an experiment object already exists,# this way we could create an ExistingExperiment pointing to the same# experimentstate["_experiment_key"]=self._experiment.idifself._experimentisnotNoneelseNone# Remove the experiment object as it contains hard to pickle objects# (like network connections), the experiment object will be recreated if# needed laterstate["_experiment"]=Nonereturnstate
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.