# Copyright The PyTorch Lightning team.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""LightningDataModule for loading DataLoaders with ease."""fromargparseimportArgumentParser,NamespacefromtypingimportAny,Dict,IO,List,Mapping,Optional,Sequence,Tuple,Unionfromtorch.utils.dataimportDataLoader,Dataset,IterableDatasetfrompytorch_lightning.core.hooksimportCheckpointHooks,DataHooksfrompytorch_lightning.core.mixinsimportHyperparametersMixinfrompytorch_lightning.core.savingimport_load_from_checkpointfrompytorch_lightning.utilities.argparseimportadd_argparse_args,from_argparse_args,get_init_arguments_and_typesfrompytorch_lightning.utilities.typesimport_PATH
[docs]classLightningDataModule(CheckpointHooks,DataHooks,HyperparametersMixin):"""A DataModule standardizes the training, val, test splits, data preparation and transforms. The main advantage is consistent data splits, data preparation and transforms across models. Example:: class MyDataModule(LightningDataModule): def __init__(self): super().__init__() def prepare_data(self): # download, split, etc... # only called on 1 GPU/TPU in distributed def setup(self, stage): # make assignments here (val/train/test split) # called on every process in DDP def train_dataloader(self): train_split = Dataset(...) return DataLoader(train_split) def val_dataloader(self): val_split = Dataset(...) return DataLoader(val_split) def test_dataloader(self): test_split = Dataset(...) return DataLoader(test_split) def teardown(self): # clean up after fit or test # called on every process in DDP """name:str=...CHECKPOINT_HYPER_PARAMS_KEY="datamodule_hyper_parameters"CHECKPOINT_HYPER_PARAMS_NAME="datamodule_hparams_name"CHECKPOINT_HYPER_PARAMS_TYPE="datamodule_hparams_type"def__init__(self)->None:super().__init__()# Pointer to the trainer objectself.trainer=None
[docs]@classmethoddeffrom_argparse_args(cls,args:Union[Namespace,ArgumentParser],**kwargs):"""Create an instance from CLI arguments. Args: args: The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. **kwargs: Additional keyword arguments that may override ones in the parser or namespace. These must be valid DataModule arguments. Example:: module = LightningDataModule.from_argparse_args(args) """returnfrom_argparse_args(cls,args,**kwargs)
[docs]@classmethoddefget_init_arguments_and_types(cls)->List[Tuple[str,Tuple,Any]]:r"""Scans the DataModule signature and returns argument names, types and default values. Returns: List with tuples of 3 values: (argument name, set with argument types, argument default value). """returnget_init_arguments_and_types(cls)
[docs]@classmethoddeffrom_datasets(cls,train_dataset:Optional[Union[Dataset,Sequence[Dataset],Mapping[str,Dataset]]]=None,val_dataset:Optional[Union[Dataset,Sequence[Dataset]]]=None,test_dataset:Optional[Union[Dataset,Sequence[Dataset]]]=None,predict_dataset:Optional[Union[Dataset,Sequence[Dataset]]]=None,batch_size:int=1,num_workers:int=0,):r""" Create an instance from torch.utils.data.Dataset. Args: train_dataset: (optional) Dataset to be used for train_dataloader() val_dataset: (optional) Dataset or list of Dataset to be used for val_dataloader() test_dataset: (optional) Dataset or list of Dataset to be used for test_dataloader() predict_dataset: (optional) Dataset or list of Dataset to be used for predict_dataloader() batch_size: Batch size to use for each dataloader. Default is 1. num_workers: Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. Number of CPUs available. """defdataloader(ds:Dataset,shuffle:bool=False)->DataLoader:shuffle&=notisinstance(ds,IterableDataset)returnDataLoader(ds,batch_size=batch_size,shuffle=shuffle,num_workers=num_workers,pin_memory=True)deftrain_dataloader():ifisinstance(train_dataset,Mapping):return{key:dataloader(ds,shuffle=True)forkey,dsintrain_dataset.items()}ifisinstance(train_dataset,Sequence):return[dataloader(ds,shuffle=True)fordsintrain_dataset]returndataloader(train_dataset,shuffle=True)defval_dataloader():ifisinstance(val_dataset,Sequence):return[dataloader(ds)fordsinval_dataset]returndataloader(val_dataset)deftest_dataloader():ifisinstance(test_dataset,Sequence):return[dataloader(ds)fordsintest_dataset]returndataloader(test_dataset)defpredict_dataloader():ifisinstance(predict_dataset,Sequence):return[dataloader(ds)fordsinpredict_dataset]returndataloader(predict_dataset)datamodule=cls()iftrain_datasetisnotNone:datamodule.train_dataloader=train_dataloaderifval_datasetisnotNone:datamodule.val_dataloader=val_dataloaderiftest_datasetisnotNone:datamodule.test_dataloader=test_dataloaderifpredict_datasetisnotNone:datamodule.predict_dataloader=predict_dataloaderreturndatamodule
[docs]defstate_dict(self)->Dict[str,Any]:"""Called when saving a checkpoint, implement to generate and save datamodule state. Returns: A dictionary containing datamodule state. """returndict()
[docs]defload_state_dict(self,state_dict:Dict[str,Any])->None:"""Called when loading a checkpoint, implement to reload datamodule state given datamodule state_dict. Args: state_dict: the datamodule state returned by ``state_dict``. """pass
[docs]@classmethoddefload_from_checkpoint(cls,checkpoint_path:Union[_PATH,IO],hparams_file:Optional[_PATH]=None,**kwargs,):r""" Primary way of loading a datamodule from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to ``__init__`` in the checkpoint under ``"datamodule_hyper_parameters"``. Any arguments specified through \*\*kwargs will override args stored in ``"datamodule_hyper_parameters"``. Args: checkpoint_path: Path to checkpoint. This can also be a URL, or file-like object hparams_file: Optional path to a ``.yaml`` or ``.csv`` file with hierarchical structure as in this example:: dataloader: batch_size: 32 You most likely won't need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don't have the hyperparameters saved, use this method to pass in a ``.yaml`` file with the hparams you'd like to use. These will be converted into a :class:`~dict` and passed into your :class:`LightningDataModule` for use. If your datamodule's ``hparams`` argument is :class:`~argparse.Namespace` and ``.yaml`` file has hierarchical structure, you need to refactor your datamodule to treat ``hparams`` as :class:`~dict`. \**kwargs: Any extra keyword args needed to init the datamodule. Can also be used to override saved hyperparameter values. Return: :class:`LightningDataModule` instance with loaded weights and hyperparameters (if available). Note: ``load_from_checkpoint`` is a **class** method. You should use your :class:`LightningDataModule` **class** to call it instead of the :class:`LightningDataModule` instance. Example:: # load weights without mapping ... datamodule = MyLightningDataModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights and hyperparameters from separate files. datamodule = MyLightningDataModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values datamodule = MyLightningDataModule.load_from_checkpoint( PATH, batch_size=32, num_workers=10, ) """return_load_from_checkpoint(cls,checkpoint_path,map_location=None,hparams_file=hparams_file,strict=None,**kwargs,)
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy.