apply_func¶
Functions
Recursively applies a function to all elements of a certain dtype.  | 
|
Zips two collections and applies a function to their items of a certain dtype.  | 
|
  | 
  | 
  | 
  | 
Transfers a collection of data to the given device.  | 
|
  | 
  | 
Classes
A custom type for data that can be moved to a torch device via   | 
Utilities used for collections.
- class pytorch_lightning.utilities.apply_func.TransferableDataType[source]¶
 Bases:
abc.ABCA custom type for data that can be moved to a torch device via
.to(...).Example
>>> isinstance(dict, TransferableDataType) False >>> isinstance(torch.rand(2, 3), TransferableDataType) True >>> class CustomObject: ... def __init__(self): ... self.x = torch.rand(2, 2) ... def to(self, device): ... self.x = self.x.to(device) ... return self >>> isinstance(CustomObject(), TransferableDataType) True
- pytorch_lightning.utilities.apply_func.apply_to_collection(data, dtype, function, *args, wrong_dtype=None, include_none=True, **kwargs)[source]¶
 Recursively applies a function to all elements of a certain dtype.
- Parameters:
 dtype¶ (
Union[type,Any,Tuple[Union[type,Any]]]) – the given function will be applied to all elements of this dtype*args¶ – positional arguments (will be forwarded to calls of
function)wrong_dtype¶ (
Union[type,Tuple[type, …],None]) – the given function won’t be applied if this type is specified and the given collections is of thewrong_dtypeeven if it is of typedtypeinclude_none¶ (
bool) – Whether to include an element if the output offunctionisNone.**kwargs¶ – keyword arguments (will be forwarded to calls of
function)
- Return type:
 - Returns:
 The resulting collection
- pytorch_lightning.utilities.apply_func.apply_to_collections(data1, data2, dtype, function, *args, wrong_dtype=None, **kwargs)[source]¶
 Zips two collections and applies a function to their items of a certain dtype.
- Parameters:
 dtype¶ (
Union[type,Any,Tuple[Union[type,Any]]]) – the given function will be applied to all elements of this dtype*args¶ – positional arguments (will be forwarded to calls of
function)wrong_dtype¶ (
Union[type,Tuple[type],None]) – the given function won’t be applied if this type is specified and the given collections is of thewrong_dtypeeven if it is of typedtype**kwargs¶ – keyword arguments (will be forwarded to calls of
function)
- Return type:
 - Returns:
 The resulting collection
- Raises:
 AssertionError – If sequence collections have different data sizes.
- pytorch_lightning.utilities.apply_func.move_data_to_device(batch, device)[source]¶
 Transfers a collection of data to the given device. Any object that defines a method
to(device)will be moved and all other objects in the collection will be left untouched.- Parameters:
 - Return type:
 - Returns:
 the same collection but with all contained tensors residing on the new device.
See also