PrecisionPlugin¶
- class pytorch_lightning.plugins.precision.PrecisionPlugin[source]¶
 Bases:
pytorch_lightning.core.hooks.CheckpointHooksBase class for all plugins handling the precision-specific parts of the training.
The class attribute precision must be overwritten in child classes. The default value reflects fp32 training.
- backward(model, closure_loss, optimizer, optimizer_idx, *args, **kwargs)[source]¶
 Performs the actual backpropagation.
- clip_gradients(optimizer, clip_val=0.0, gradient_clip_algorithm=GradClipAlgorithmType.NORM)[source]¶
 Clips the gradients.
- Return type:
 
- connect(model, optimizers, lr_schedulers)[source]¶
 Connects this plugin to the accelerator and the training process.
- forward_context()[source]¶
 A contextmanager for managing model forward/training_step/evaluation_step/predict_step.
- load_state_dict(state_dict)[source]¶
 Called when loading a checkpoint, implement to reload precision plugin state given precision plugin state_dict.
- main_params(optimizer)[source]¶
 The main params of the model.
Returns the plain model params here. Maybe different in other precision plugins.
- on_load_checkpoint(checkpoint)[source]¶
 PrecisionPlugin.on_load_checkpointwas deprecated in v1.6 and will be removed in v1.8.Use
load_state_dictinstead.- Return type:
 
- on_save_checkpoint(checkpoint)[source]¶
 PrecisionPlugin.on_save_checkpointwas deprecated in v1.6 and will be removed in v1.8.Use
state_dictinstead.- Return type:
 
- optimizer_step(model, optimizer, optimizer_idx, closure, **kwargs)[source]¶
 Hook to run the optimizer step.
- Return type:
 
- post_backward(model, closure_loss)[source]¶
 Run after precision plugin executes backward.
- Parameters:
 model¶ (
LightningModule) – the model to be optimizedclosure_loss¶ (
Tensor) – the loss value obtained from the closure
- Return type:
 
- pre_backward(model, closure_loss)[source]¶
 Run before precision plugin executes backward.
- Parameters:
 model¶ (
LightningModule) – the model to be optimizedclosure_loss¶ (
Tensor) – the loss value obtained from the closure
- Return type:
 
- state_dict()[source]¶
 Called when saving a checkpoint, implement to generate precision plugin state_dict.
- teardown()[source]¶
 This method is called to teardown the training process.
It is the right place to release memory and free other resources.
- Return type: