{"cells": [{"cell_type": "markdown", "id": "da3bd453", "metadata": {"papermill": {"duration": 0.031743, "end_time": "2022-04-28T12:55:01.902365", "exception": false, "start_time": "2022-04-28T12:55:01.870622", "status": "completed"}, "tags": []}, "source": ["\n", "# Introduction to Pytorch Lightning\n", "\n", "* **Author:** PL team\n", "* **License:** CC BY-SA\n", "* **Generated:** 2022-04-28T08:05:32.100192\n", "\n", "In this notebook, we'll go over the basics of lightning by preparing models to train on the [MNIST Handwritten Digits dataset](https://en.wikipedia.org/wiki/MNIST_database).\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/lightning_examples/mnist-hello-world.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/stable/)\n", "| Join us [on Slack](https://www.pytorchlightning.ai/community)"]}, {"cell_type": "markdown", "id": "8c5149be", "metadata": {"papermill": {"duration": 0.028475, "end_time": "2022-04-28T12:55:01.961385", "exception": false, "start_time": "2022-04-28T12:55:01.932910", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "dfb9657a", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2022-04-28T12:55:02.026114Z", "iopub.status.busy": "2022-04-28T12:55:02.025584Z", "iopub.status.idle": "2022-04-28T12:55:05.329954Z", "shell.execute_reply": "2022-04-28T12:55:05.329375Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 3.340052, "end_time": "2022-04-28T12:55:05.330108", "exception": false, "start_time": "2022-04-28T12:55:01.990056", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[33mWARNING: You are using pip version 21.3.1; however, version 22.0.4 is available.\r\n", "You should consider upgrading via the '/usr/bin/python3.8 -m pip install --upgrade pip' command.\u001b[0m\r\n"]}], "source": ["! pip install --quiet \"seaborn\" \"pytorch-lightning>=1.4\" \"ipython[notebook]\" \"torch>=1.6, <1.9\" \"pandas\" \"torchvision\" \"torchmetrics>=0.6\""]}, {"cell_type": "code", "execution_count": 2, "id": "b6076c42", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:55:05.401729Z", "iopub.status.busy": "2022-04-28T12:55:05.401163Z", "iopub.status.idle": "2022-04-28T12:55:07.701858Z", "shell.execute_reply": "2022-04-28T12:55:07.702297Z"}, "papermill": {"duration": 2.339285, "end_time": "2022-04-28T12:55:07.702484", "exception": false, "start_time": "2022-04-28T12:55:05.363199", "status": "completed"}, "tags": []}, "outputs": [], "source": ["import os\n", "\n", "import pandas as pd\n", "import seaborn as sn\n", "import torch\n", "from IPython.core.display import display\n", "from pytorch_lightning import LightningModule, Trainer\n", "from pytorch_lightning.callbacks.progress import TQDMProgressBar\n", "from pytorch_lightning.loggers import CSVLogger\n", "from torch import nn\n", "from torch.nn import functional as F\n", "from torch.utils.data import DataLoader, random_split\n", "from torchmetrics import Accuracy\n", "from torchvision import transforms\n", "from torchvision.datasets import MNIST\n", "\n", "PATH_DATASETS = os.environ.get(\"PATH_DATASETS\", \".\")\n", "BATCH_SIZE = 256 if torch.cuda.is_available() else 64"]}, {"cell_type": "markdown", "id": "56bda26b", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.029813, "end_time": "2022-04-28T12:55:07.762240", "exception": false, "start_time": "2022-04-28T12:55:07.732427", "status": "completed"}, "tags": []}, "source": ["## Simplest example\n", "\n", "Here's the simplest most minimal example with just a training loop (no validation, no testing).\n", "\n", "**Keep in Mind** - A `LightningModule` *is* a PyTorch `nn.Module` - it just has a few more helpful features."]}, {"cell_type": "code", "execution_count": 3, "id": "2b9004c0", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:55:07.828553Z", "iopub.status.busy": "2022-04-28T12:55:07.827990Z", "iopub.status.idle": "2022-04-28T12:55:07.830545Z", "shell.execute_reply": "2022-04-28T12:55:07.830954Z"}, "papermill": {"duration": 0.037885, "end_time": "2022-04-28T12:55:07.831100", "exception": false, "start_time": "2022-04-28T12:55:07.793215", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class MNISTModel(LightningModule):\n", "    def __init__(self):\n", "        super().__init__()\n", "        self.l1 = torch.nn.Linear(28 * 28, 10)\n", "\n", "    def forward(self, x):\n", "        return torch.relu(self.l1(x.view(x.size(0), -1)))\n", "\n", "    def training_step(self, batch, batch_nb):\n", "        x, y = batch\n", "        loss = F.cross_entropy(self(x), y)\n", "        return loss\n", "\n", "    def configure_optimizers(self):\n", "        return torch.optim.Adam(self.parameters(), lr=0.02)"]}, {"cell_type": "markdown", "id": "d1051b01", "metadata": {"papermill": {"duration": 0.029818, "end_time": "2022-04-28T12:55:07.891613", "exception": false, "start_time": "2022-04-28T12:55:07.861795", "status": "completed"}, "tags": []}, "source": ["By using the `Trainer` you automatically get:\n", "1. Tensorboard logging\n", "2. Model checkpointing\n", "3. Training and validation loop\n", "4. early-stopping"]}, {"cell_type": "code", "execution_count": 4, "id": "e5854cb1", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:55:07.955938Z", "iopub.status.busy": "2022-04-28T12:55:07.955411Z", "iopub.status.idle": "2022-04-28T12:55:27.894253Z", "shell.execute_reply": "2022-04-28T12:55:27.893785Z"}, "papermill": {"duration": 19.973059, "end_time": "2022-04-28T12:55:27.894398", "exception": false, "start_time": "2022-04-28T12:55:07.921339", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", "  | Name | Type   | Params\n", "--------------------------------\n", "0 | l1   | Linear | 7.9 K \n", "--------------------------------\n", "7.9 K     Trainable params\n", "0         Non-trainable params\n", "7.9 K     Total params\n", "0.031     Total estimated model params size (MB)\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:240: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "7666e9e388ef4e8f8adcf93a08f2dafd", "version_major": 2, "version_minor": 0}, "text/plain": ["Training: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Init our model\n", "mnist_model = MNISTModel()\n", "\n", "# Init DataLoader from MNIST Dataset\n", "train_ds = MNIST(PATH_DATASETS, train=True, download=True, transform=transforms.ToTensor())\n", "train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE)\n", "\n", "# Initialize a trainer\n", "trainer = Trainer(\n", "    accelerator=\"auto\",\n", "    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs\n", "    max_epochs=3,\n", "    callbacks=[TQDMProgressBar(refresh_rate=20)],\n", ")\n", "\n", "# Train the model \u26a1\n", "trainer.fit(mnist_model, train_loader)"]}, {"cell_type": "markdown", "id": "05c8b7d1", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.036078, "end_time": "2022-04-28T12:55:27.967422", "exception": false, "start_time": "2022-04-28T12:55:27.931344", "status": "completed"}, "tags": []}, "source": ["## A more complete MNIST Lightning Module Example\n", "\n", "That wasn't so hard was it?\n", "\n", "Now that we've got our feet wet, let's dive in a bit deeper and write a more complete `LightningModule` for MNIST...\n", "\n", "This time, we'll bake in all the dataset specific pieces directly in the `LightningModule`.\n", "This way, we can avoid writing extra code at the beginning of our script every time we want to run it.\n", "\n", "---\n", "\n", "### Note what the following built-in functions are doing:\n", "\n", "1. [prepare_data()](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#prepare-data) \ud83d\udcbe\n", "    - This is where we can download the dataset. We point to our desired dataset and ask torchvision's `MNIST` dataset class to download if the dataset isn't found there.\n", "    - **Note we do not make any state assignments in this function** (i.e. `self.something = ...`)\n", "\n", "2. [setup(stage)](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#setup) \u2699\ufe0f\n", "    - Loads in data from file and prepares PyTorch tensor datasets for each split (train, val, test).\n", "    - Setup expects a 'stage' arg which is used to separate logic for 'fit' and 'test'.\n", "    - If you don't mind loading all your datasets at once, you can set up a condition to allow for both 'fit' related setup and 'test' related setup to run whenever `None` is passed to `stage` (or ignore it altogether and exclude any conditionals).\n", "    - **Note this runs across all GPUs and it *is* safe to make state assignments here**\n", "\n", "3. [x_dataloader()](https://pytorch-lightning.readthedocs.io/en/stable/api_references.html#core-api) \u267b\ufe0f\n", "    - `train_dataloader()`, `val_dataloader()`, and `test_dataloader()` all return PyTorch `DataLoader` instances that are created by wrapping their respective datasets that we prepared in `setup()`"]}, {"cell_type": "code", "execution_count": 5, "id": "f9fce56b", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:55:28.053056Z", "iopub.status.busy": "2022-04-28T12:55:28.042329Z", "iopub.status.idle": "2022-04-28T12:55:28.055187Z", "shell.execute_reply": "2022-04-28T12:55:28.055599Z"}, "papermill": {"duration": 0.052173, "end_time": "2022-04-28T12:55:28.055746", "exception": false, "start_time": "2022-04-28T12:55:28.003573", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class LitMNIST(LightningModule):\n", "    def __init__(self, data_dir=PATH_DATASETS, hidden_size=64, learning_rate=2e-4):\n", "\n", "        super().__init__()\n", "\n", "        # Set our init args as class attributes\n", "        self.data_dir = data_dir\n", "        self.hidden_size = hidden_size\n", "        self.learning_rate = learning_rate\n", "\n", "        # Hardcode some dataset specific attributes\n", "        self.num_classes = 10\n", "        self.dims = (1, 28, 28)\n", "        channels, width, height = self.dims\n", "        self.transform = transforms.Compose(\n", "            [\n", "                transforms.ToTensor(),\n", "                transforms.Normalize((0.1307,), (0.3081,)),\n", "            ]\n", "        )\n", "\n", "        # Define PyTorch model\n", "        self.model = nn.Sequential(\n", "            nn.Flatten(),\n", "            nn.Linear(channels * width * height, hidden_size),\n", "            nn.ReLU(),\n", "            nn.Dropout(0.1),\n", "            nn.Linear(hidden_size, hidden_size),\n", "            nn.ReLU(),\n", "            nn.Dropout(0.1),\n", "            nn.Linear(hidden_size, self.num_classes),\n", "        )\n", "\n", "        self.val_accuracy = Accuracy()\n", "        self.test_accuracy = Accuracy()\n", "\n", "    def forward(self, x):\n", "        x = self.model(x)\n", "        return F.log_softmax(x, dim=1)\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        x, y = batch\n", "        logits = self(x)\n", "        loss = F.nll_loss(logits, y)\n", "        return loss\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        x, y = batch\n", "        logits = self(x)\n", "        loss = F.nll_loss(logits, y)\n", "        preds = torch.argmax(logits, dim=1)\n", "        self.val_accuracy.update(preds, y)\n", "\n", "        # Calling self.log will surface up scalars for you in TensorBoard\n", "        self.log(\"val_loss\", loss, prog_bar=True)\n", "        self.log(\"val_acc\", self.val_accuracy, prog_bar=True)\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        x, y = batch\n", "        logits = self(x)\n", "        loss = F.nll_loss(logits, y)\n", "        preds = torch.argmax(logits, dim=1)\n", "        self.test_accuracy.update(preds, y)\n", "\n", "        # Calling self.log will surface up scalars for you in TensorBoard\n", "        self.log(\"test_loss\", loss, prog_bar=True)\n", "        self.log(\"test_acc\", self.test_accuracy, prog_bar=True)\n", "\n", "    def configure_optimizers(self):\n", "        optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)\n", "        return optimizer\n", "\n", "    ####################\n", "    # DATA RELATED HOOKS\n", "    ####################\n", "\n", "    def prepare_data(self):\n", "        # download\n", "        MNIST(self.data_dir, train=True, download=True)\n", "        MNIST(self.data_dir, train=False, download=True)\n", "\n", "    def setup(self, stage=None):\n", "\n", "        # Assign train/val datasets for use in dataloaders\n", "        if stage == \"fit\" or stage is None:\n", "            mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)\n", "            self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])\n", "\n", "        # Assign test dataset for use in dataloader(s)\n", "        if stage == \"test\" or stage is None:\n", "            self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)\n", "\n", "    def train_dataloader(self):\n", "        return DataLoader(self.mnist_train, batch_size=BATCH_SIZE)\n", "\n", "    def val_dataloader(self):\n", "        return DataLoader(self.mnist_val, batch_size=BATCH_SIZE)\n", "\n", "    def test_dataloader(self):\n", "        return DataLoader(self.mnist_test, batch_size=BATCH_SIZE)"]}, {"cell_type": "code", "execution_count": 6, "id": "66816adb", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:55:28.141512Z", "iopub.status.busy": "2022-04-28T12:55:28.140982Z", "iopub.status.idle": "2022-04-28T12:56:00.878261Z", "shell.execute_reply": "2022-04-28T12:56:00.878683Z"}, "papermill": {"duration": 32.779357, "end_time": "2022-04-28T12:56:00.878860", "exception": false, "start_time": "2022-04-28T12:55:28.099503", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", "  | Name          | Type       | Params\n", "---------------------------------------------\n", "0 | model         | Sequential | 55.1 K\n", "1 | val_accuracy  | Accuracy   | 0     \n", "2 | test_accuracy | Accuracy   | 0     \n", "---------------------------------------------\n", "55.1 K    Trainable params\n", "0         Non-trainable params\n", "55.1 K    Total params\n", "0.220     Total estimated model params size (MB)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "c913d5cdf1a84bf6aeb3ce66641ba038", "version_major": 2, "version_minor": 0}, "text/plain": ["Sanity Checking: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:240: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "d94d7beaed274e70b3f4ce83a035f40d", "version_major": 2, "version_minor": 0}, "text/plain": ["Training: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "1b41411e37b44436adc2cdf8e9e56959", "version_major": 2, "version_minor": 0}, "text/plain": ["Validation: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "a851416ba0bd49f6bd4537685cfec517", "version_major": 2, "version_minor": 0}, "text/plain": ["Validation: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "b0f3fe4d77f945c7afb01e4f28a19fc8", "version_major": 2, "version_minor": 0}, "text/plain": ["Validation: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["model = LitMNIST()\n", "trainer = Trainer(\n", "    accelerator=\"auto\",\n", "    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs\n", "    max_epochs=3,\n", "    callbacks=[TQDMProgressBar(refresh_rate=20)],\n", "    logger=CSVLogger(save_dir=\"logs/\"),\n", ")\n", "trainer.fit(model)"]}, {"cell_type": "markdown", "id": "c021d8f5", "metadata": {"papermill": {"duration": 0.048069, "end_time": "2022-04-28T12:56:00.974852", "exception": false, "start_time": "2022-04-28T12:56:00.926783", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "To test a model, call `trainer.test(model)`.\n", "\n", "Or, if you've just trained a model, you can just call `trainer.test()` and Lightning will automatically\n", "test using the best saved checkpoint (conditioned on val_loss)."]}, {"cell_type": "code", "execution_count": 7, "id": "6f31bbf6", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:56:01.073612Z", "iopub.status.busy": "2022-04-28T12:56:01.072364Z", "iopub.status.idle": "2022-04-28T12:56:02.883287Z", "shell.execute_reply": "2022-04-28T12:56:02.883707Z"}, "papermill": {"duration": 1.861867, "end_time": "2022-04-28T12:56:02.883878", "exception": false, "start_time": "2022-04-28T12:56:01.022011", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1444: UserWarning: `.test(ckpt_path=None)` was called without a model. The best model of the previous `fit` call will be used. You can pass `test(ckpt_path='best')` to use and best model checkpoint and avoid this warning or `ckpt_path=trainer.checkpoint_callback.last_model_path` to use the last model.\n", "  rank_zero_warn(\n", "Restoring states from the checkpoint path at logs/lightning_logs/version_3/checkpoints/epoch=2-step=645.ckpt\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Loaded model weights from checkpoint at logs/lightning_logs/version_3/checkpoints/epoch=2-step=645.ckpt\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:240: PossibleUserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "46147a5285ee4712a703d338c52be49e", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"text/html": ["<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n", "\u2503<span style=\"font-weight: bold\">        Test metric        </span>\u2503<span style=\"font-weight: bold\">       DataLoader 0        </span>\u2503\n", "\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n", "\u2502<span style=\"color: #008080; text-decoration-color: #008080\">         test_acc          </span>\u2502<span style=\"color: #800080; text-decoration-color: #800080\">    0.9236999750137329     </span>\u2502\n", "\u2502<span style=\"color: #008080; text-decoration-color: #008080\">         test_loss         </span>\u2502<span style=\"color: #800080; text-decoration-color: #800080\">    0.25315943360328674    </span>\u2502\n", "\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n", "</pre>\n"], "text/plain": ["\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n", "\u2503\u001b[1m \u001b[0m\u001b[1m       Test metric       \u001b[0m\u001b[1m \u001b[0m\u2503\u001b[1m \u001b[0m\u001b[1m      DataLoader 0       \u001b[0m\u001b[1m \u001b[0m\u2503\n", "\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n", "\u2502\u001b[36m \u001b[0m\u001b[36m        test_acc         \u001b[0m\u001b[36m \u001b[0m\u2502\u001b[35m \u001b[0m\u001b[35m   0.9236999750137329    \u001b[0m\u001b[35m \u001b[0m\u2502\n", "\u2502\u001b[36m \u001b[0m\u001b[36m        test_loss        \u001b[0m\u001b[36m \u001b[0m\u2502\u001b[35m \u001b[0m\u001b[35m   0.25315943360328674   \u001b[0m\u001b[35m \u001b[0m\u2502\n", "\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"text/plain": ["[{'test_loss': 0.25315943360328674, 'test_acc': 0.9236999750137329}]"]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["trainer.test()"]}, {"cell_type": "markdown", "id": "7c7f9eda", "metadata": {"papermill": {"duration": 0.05379, "end_time": "2022-04-28T12:56:02.991785", "exception": false, "start_time": "2022-04-28T12:56:02.937995", "status": "completed"}, "tags": []}, "source": ["### Bonus Tip\n", "\n", "You can keep calling `trainer.fit(model)` as many times as you'd like to continue training"]}, {"cell_type": "code", "execution_count": 8, "id": "6a6fbcd5", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:56:03.104409Z", "iopub.status.busy": "2022-04-28T12:56:03.103870Z", "iopub.status.idle": "2022-04-28T12:56:03.285768Z", "shell.execute_reply": "2022-04-28T12:56:03.286185Z"}, "papermill": {"duration": 0.240786, "end_time": "2022-04-28T12:56:03.286358", "exception": false, "start_time": "2022-04-28T12:56:03.045572", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:611: UserWarning: Checkpoint directory logs/lightning_logs/version_3/checkpoints exists and is not empty.\n", "  rank_zero_warn(f\"Checkpoint directory {dirpath} exists and is not empty.\")\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", "  | Name          | Type       | Params\n", "---------------------------------------------\n", "0 | model         | Sequential | 55.1 K\n", "1 | val_accuracy  | Accuracy   | 0     \n", "2 | test_accuracy | Accuracy   | 0     \n", "---------------------------------------------\n", "55.1 K    Trainable params\n", "0         Non-trainable params\n", "55.1 K    Total params\n", "0.220     Total estimated model params size (MB)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "460f5141753046f9b54925aca37129ce", "version_major": 2, "version_minor": 0}, "text/plain": ["Sanity Checking: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["trainer.fit(model)"]}, {"cell_type": "markdown", "id": "ca97777f", "metadata": {"papermill": {"duration": 0.056861, "end_time": "2022-04-28T12:56:03.401171", "exception": false, "start_time": "2022-04-28T12:56:03.344310", "status": "completed"}, "tags": []}, "source": ["In Colab, you can use the TensorBoard magic function to view the logs that Lightning has created for you!"]}, {"cell_type": "code", "execution_count": 9, "id": "248d37f8", "metadata": {"execution": {"iopub.execute_input": "2022-04-28T12:56:03.519798Z", "iopub.status.busy": "2022-04-28T12:56:03.519287Z", "iopub.status.idle": "2022-04-28T12:56:03.863561Z", "shell.execute_reply": "2022-04-28T12:56:03.863975Z"}, "papermill": {"duration": 0.405875, "end_time": "2022-04-28T12:56:03.864175", "exception": false, "start_time": "2022-04-28T12:56:03.458300", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/html": ["<div>\n", "<style scoped>\n", "    .dataframe tbody tr th:only-of-type {\n", "        vertical-align: middle;\n", "    }\n", "\n", "    .dataframe tbody tr th {\n", "        vertical-align: top;\n", "    }\n", "\n", "    .dataframe thead th {\n", "        text-align: right;\n", "    }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", "  <thead>\n", "    <tr style=\"text-align: right;\">\n", "      <th></th>\n", "      <th>val_loss</th>\n", "      <th>val_acc</th>\n", "      <th>test_loss</th>\n", "      <th>test_acc</th>\n", "    </tr>\n", "    <tr>\n", "      <th>epoch</th>\n", "      <th></th>\n", "      <th></th>\n", "      <th></th>\n", "      <th></th>\n", "    </tr>\n", "  </thead>\n", "  <tbody>\n", "    <tr>\n", "      <th>0</th>\n", "      <td>0.439232</td>\n", "      <td>0.8828</td>\n", "      <td>NaN</td>\n", "      <td>NaN</td>\n", "    </tr>\n", "    <tr>\n", "      <th>1</th>\n", "      <td>0.314095</td>\n", "      <td>0.9080</td>\n", "      <td>NaN</td>\n", "      <td>NaN</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>0.268804</td>\n", "      <td>0.9198</td>\n", "      <td>NaN</td>\n", "      <td>NaN</td>\n", "    </tr>\n", "    <tr>\n", "      <th>2</th>\n", "      <td>NaN</td>\n", "      <td>NaN</td>\n", "      <td>0.253159</td>\n", "      <td>0.9237</td>\n", "    </tr>\n", "  </tbody>\n", "</table>\n", "</div>"], "text/plain": ["       val_loss  val_acc  test_loss  test_acc\n", "epoch                                        \n", "0      0.439232   0.8828        NaN       NaN\n", "1      0.314095   0.9080        NaN       NaN\n", "2      0.268804   0.9198        NaN       NaN\n", "2           NaN      NaN   0.253159    0.9237"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"text/plain": ["<seaborn.axisgrid.FacetGrid at 0x7f0acc58dee0>"]}, "execution_count": 9, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAFgCAYAAAAFPlYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtFElEQVR4nO3deXxV9Z3/8dcnCVmBQMJOblgUBREXDGq1i7uoVesG6tTWaTu2U+3UOu1v7NjpOHamtWNnusw4nTqOo21tBdeiVq11r1bNRVkFERFMAgiEnQDZPr8/zgm52SCBnNyT5P18PO6De8/53nM/9+Qmb77nfO/3mLsjIiISZxnpLkBERORAFFYiIhJ7CisREYk9hZWIiMSewkpERGIvK90FdNXMmTP96aefTncZIiIdsXQX0Bf1up7Vpk2b0l2CiIj0sF4XViIi0v8orEREJPYUViIiEnsKKxERiT2FlYiIxJ7CSkREYk9hJSIisaewEhGR2FNYiYhI7CmsREQk9hRWIiISeworERGJPYWViIjEXq+7RIiISLsaG6Bud3DLzIK8oVBbA+sXNS+v3w11e2BALhx9WfC8l38ENZvDdSm3S++CvCFpfUvSTGElItFwh/q9zQHRFAYAI6cG/674A+zZ2jZMTrkBcgZB8h5Y/SrU72nZ5vRbYNLZsPAB+P3/g7oaaKxrfu3pn4OL/gO2r4V7zm1bW9HE5rCafx/s3hIE2IA8yMoL7jfUtX2epI3CSqQ/aWyEjPDo//a1sHdnc0DU1QShMOFTkJ0Pq16E9UtahkhdDRx7JZSeDCufg1d/EoZIShhNuRDO+yFsWQ0/O65tDYWl8I3Fwf0nb4JtFW3bHHd1EFabVkLVfBiQH4ZJPuQPg8wBQbuiiXDcVS1DZkA+jJgSrB88Bj77SLC+RZuC5tdqqkViTWElkk7u0FAbhEDdHigI/xBv/gC2V6X0JsKgKP0YDD8S1i2CxQ82L6/bE9xPnAinfh12fAS/vDglZMLAKRgON70TvPb/nRcESmtfewuKD4MlD8NbvwyWWWbzH/xxpwZh5Q71tZBdEGw3K+yZjDw6eE5+MZz53ZYhkpULuYXNr/XZR8AyUsIkN7g1BerM7we3jiRODG4dyc6Hw8/s9I9D4kthJdJa07mPFkGwGwaNhoEjYFsVVLye0psI/y06DI6+FPZsg6dubu6pNG0jOx8+97vgNe4+Cz5aGh4W8+bXvv7NIIxe/SnM/7+2tV3wb8H66pXw5l3NAdHUaxg2KWiXlRPcbwqApp5JfnHzts7+XhCULbaRC4PHBuvP/T6c88/Bc5t6MqkmnRXcOpI7GD7xt/vf18OP2P96kZDCSvqm2hqoqW6+1dUEh6cAXvgBbFwOuzcHJ9Zrdwah8fnHgyB46u+g/H/abnPmD+Hkr0BVEh76Qtv1Uy4MwsodVv8pCIemoMgOD181OWImJE5KCZMwLAqGB+tP+gpMvaTt4au8omD90ZcGt47kDYHZv9r/Pjrqov2vzxm0//UiPcjc/cCtDnbjZjOBnwKZwN3ufnur9eOAe4DhwGbgs+5eub9tlpWVeTKZjKhiiaW6PeCNwR/8nRvgg5eDkNm9uTmMig+H0/8+OAdzx+FBTydVVh58Z31w/1eXwtYPg15GfhFkDwwC4ZPfgiEJeP95WL84DIiUHseoo2Ho+KDntH1dGEYpbdrrfUh/ZOkuoC+KrGdlZpnAncDZQCVQbmbz3P2dlGY/An7p7veZ2RnAD4BroqpJYqC+NiVkUsLmiJlQODY4T/L2/S3X1+2C0/4eTvu7oEf08Bebt5c7JAidnMHB4+wCOPGvghDKLw56IvnFwc0dzOCaR/Zf42FnBLeO5Ba2PO8iIpGL8jDgicBKd18FYGYPABcDqWF1FHBTeP8F4LEI65Hu1lAfDPmt3w1DSoNl8++DXRtbBlFNNXzhGcjKht/MglUvtN1WYUkQVrW7gqHMA0cEI7ryioLgGf/xoN2Y6fDVN8IgGhp8nyaVGZzzvUjftoj0vCjDaiyQOia1EjipVZuFwKUEhwovAQaZWbG7V6c2MrPrgOsASktLIyu439u7MxjOnBoyNdVBaBx5HmxeBY9c17x8z7bgeSOmwldfC+7/8dag55Q9MAiZpp5N/e4grGZ8MTi309TbSb1B8P2Y6Z/ruMacgTBicqS7QUTiJ90DLL4J/KeZXQu8DFQBDa0buftdwF0QnLPqyQJ7pcZG2LutuXcz+thgdNjy3wej2GqqoWZLc+ic+d3gZPuSh+Dxr7fd3vHXBGGVlRccZhtS2jJkmkaPAVz/RnBIbkBu+7U1DXIQEemCKMOqCkikPC4Jl+3j7msJelaY2UDgMnffGmFNvVdDHaxbmNLjCYPIG+Ds24I2v7o0mFqmZnOwvMkNyWAY83t/gAX3pwRNUTBoIG9o0G7CJ+Gy/20+39N0zic7P1g/eHTz0OuODBzR/e9dRPq9KMOqHJhkZhMIQupK4OrUBmY2DNjs7o3AtwlGBvZd7sEw6ZqUAQZDx8Oww4Pv3JTf3XbgwbhT4Ip7g3M5d7f6cmNGVnCupymsRk2DoeNaBk1+MQwaFaw//w749I+D8zrtKZoY3EREYiaysHL3ejO7AXiGYOj6Pe6+1MxuA5LuPg84DfiBmTnBYcDro6onErU1zb2OinLYuqbt+Z7T/j744uNLd8DL/xp8CTPV6d+BT30raPvOvOagKZoIJWXBgAIIRp9dNSeY4aCp55MzuGXwnP1P+69XQ6tFpJeK9HtWUYjse1Z1e1p+b6emOvhuzeQLgh7Rw1+Cmk0tz/fU74Z/qA5GpN13EXzwUrgxC76UmV8Mn/l5MB3Me3+E1S+3HVQwdLwOnYn0LfqeVQTSPcCiZ2x8N5hRoOnwWlMoTToHTvoyrH0b7jqt7fNGTgvCyiyY3iZzQDCYYNQxzb2bxvogrM7/UfCc/OIgqDIyW27rQFPTiIhIh/pHWK15NZjdGYJDZ3lDm4MGglmgz/iHVr2eouapbwC+/FLb7abSHGciIpHpH4cB92wP5obLKwq+6yMiEh0dBoxA/+hZ5Q4ObiIi0itlpLsAERGRA1FYiYhI7CmsREQk9hRWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKxp7ASEZHYU1iJiEjsKaxERCT2FFYiIhJ7CisREYk9hZWIiMSewkpERGJPYSUiIrGnsBIRkdhTWImISOwprEREJPYUViIiEnsKKxERiT2FlYiIxJ7CSkREYk9hJSIisaewEhGR2FNYiYhI7CmsREQk9hRWIiISeworERGJvUjDysxmmtm7ZrbSzG5uZ32pmb1gZm+b2SIzOz/KekREpHeKLKzMLBO4EzgPOAq4ysyOatXsO8Bcdz8euBL4r6jqERGR3ivKntWJwEp3X+XutcADwMWt2jgwOLxfCKyNsB4REemlogyrsUBFyuPKcFmqW4HPmlkl8Hvga+1tyMyuM7OkmSU3btwYRa0iIhJj6R5gcRVwr7uXAOcDvzKzNjW5+13uXubuZcOHD+/xIkVEJL2iDKsqIJHyuCRcluqLwFwAd/8zkAsMi7AmERHphaIMq3JgkplNMLNsggEU81q1+RA4E8DMphCElY7ziYhIC5GFlbvXAzcAzwDLCEb9LTWz28zsorDZ3wJ/ZWYLgd8C17q7R1WTiIj0TtbbsqGsrMyTyWS6yxAR6Yilu4C+KN0DLERERA5IYSUiIrGnsBIRkdhTWImISOwprEREJPYUViIiEnsKKxERiT2FlYiIxJ7CSkREYk9hJSIisaewEhGR2FNYiYhI7CmsREQk9hRWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKxp7ASEZHYU1iJiEjsKaxERCT2FFYiIhJ7CisREYk9hZWIiMSewkpERGJPYSUiIrGnsBIRkdhTWImISOwprEREJPYUViIiEnsKKxERiT2FlYiIxF6kYWVmM83sXTNbaWY3t7P+x2a2ILytMLOtUdYjIiK9U1ZUGzazTOBO4GygEig3s3nu/k5TG3f/Rkr7rwHHR1WPiIj0XlH2rE4EVrr7KnevBR4ALt5P+6uA30ZYj4iI9FJRhtVYoCLlcWW4rA0zGwdMAJ6PsB4REeml4jLA4krgIXdvaG+lmV1nZkkzS27cuLGHSxMRkXSLMqyqgETK45JwWXuuZD+HAN39Lncvc/ey4cOHd2OJIiLSG0QZVuXAJDObYGbZBIE0r3UjM5sMDAX+HGEtIiLSi0UWVu5eD9wAPAMsA+a6+1Izu83MLkppeiXwgLt7VLWIiEjvZr0tI8rKyjyZTKa7DBGRjli6C+iL4jLAQkREpEMKKxERiT2FlYiIxJ7CSkREYk9hJSIisaewEhGR2FNYiYhI7CmsREQk9hRWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKxp7ASEZHYU1iJiEjsKaxERCT2FFYiIhJ7CisREYk9hZWIiMSewkpERGJPYSUiIrGnsBIRkdhTWImISOwprEREJPYUViIiEnsKKxERiT2FlYiIxJ7CSkREYk9hJSIisaewEhERzGznftaNN7MlPVlPaworERGJvax0FyAi0teNv/nJnwDHdfNmF6y+/YIbO1ppZrcDFe5+Z/j4VqAeOB0YCgwAvuPuv+vKi5pZLvBzoCzc3k3u/oKZTQX+D8gm6AhdBqwF5gIlQCbwPXef05XXa6KwEhHpm+YAPwHuDB/PAs4Ffubu281sGPC6mc1zd+/Cdq8H3N2nmdlk4A9mdgTwFeCn7n6/mWUThNP5wFp3vwDAzAoP9s1EGlZmNhP4KUHRd7v77e20mQXcCjiw0N2vjrImEZGetr8eUFTc/W0zG2FmY4DhwBZgPfBjM/sk0AiMBUaGyzvr48B/hK+x3MzWAEcAfwZuMbMS4BF3f8/MFgP/ZmY/BJ5w91cO9v1Eds7KzDIJEv084CjgKjM7qlWbScC3gVPdfSpwY1T1iIj0Qw8ClwOzCXpaf0EQXCe4+3HAR0Bud7yQu/8GuAjYDfzezM5w9xXAdGAx8M9m9t2D3X6UAyxOBFa6+yp3rwUeAC5u1eavgDvdfQuAu2+IsB4Rkf5mDnAlQWA9CBQCG9y9zsxOB8YdxDZfIQg9wsN/pcC7ZjYRWOXuPwN+BxwT9upq3P3XwB0EwXVQojwMOBaoSHlcCZzUqs0RAGb2KsGhwlvd/enWGzKz64DrAEpLSyMpVkSkr3H3pWY2CKhy93Vmdj/weHh4LgksP4jN/hfw83Ab9cC17r43PKVzjZnVERxW/D4wA7jDzBqBOuCvD/a92IHOq5nZ14BfN/V+Or1hs8uBme7+pfDxNcBJ7n5DSpsnCN7ALILRIi8D09x9a0fbLSsr82Qy2ZVSRER6kqW7gL6oM4cBRwLlZjbXzGaaWWd/EFVAIuVxSbgsVSUwz93r3P0DYAUwqZPbFxGRfuKAYeXu3yEIkP8FrgXeM7Pvm9lhB3hqOTDJzCaEwxivBOa1avMYcBpAOIzyCGBVF+oXEZFuYmbTzGxBq9sb6a4LOnnOyt3dzNYTHIesJ/hC2UNm9qy7/78OnlNvZjcAzxCcj7onPH56G5B093nhunPM7B2gAfiWu1cf+tsSEZGucvfFdP+Xl7tFZ85ZfR34HLAJuBt4LBxJkgG8RzAEcmvUhTbROSsRiTmds4pAZ3pWRcCl7r4mdaG7N5rZhcDzHMJwRBERkQM5YFi5+z/uZ907XRhwISIiclC640vBXZlTSkREpMt0iRAREdnv9azioDvCSocBRUQkUt0x3dKZ3bANEZG+7dbCF9tfvu20cP1PaH/Y+I3cum0BtxZeS/Bd15bP60B3Xs/KzAYSzPfX5nlm9jngmwSnhBa5+zVmNhL4b2BiuIm/dvfXDvQ6+3PIYeXumw91GyIi0u2683pWe4BLWj+P4Ioa3wFOcfdNZlYUtv8Z8JK7XxJegWPgob6ZA37PKm70PSsRibnYnBoxs2UER7+GE0xAexrwY6DpelZHAhPcfb2Z7XT3dkPFzAa09zzgCmCUu9/Sqv1GoMTd93bXe9GVgkVE+q6m61mNou31rOrMbDWdu57VwT6v22g0oIhI39Vd17Pq6HnPA1eYWTFAymHA5wgvB2JmmYdyOfsmCisRkT7K3ZcC+65nBdwPlIXXovocnb+eVbvPC7f/L8BLZrYQ+Pew/deB08P28wnObR0SnbMSEelesTln1ZeoZyUiIrGnARYiIgIE17MCftVq8V53Pykd9aRSWImICBDv61npMKCIiMSewkpERGJPYSUiIrGnsBIRkdhTWImI9EFmNsTMvnqQz73RzPIP0GZ1OKltj1BYiYj0TUOAgwor4EZgv2HV0xRWIiI9YNp9016cdt+0a7vz/gHcDhxmZgvM7A4z+5aZlZvZIjP7JwAzKzCzJ81soZktMbPZZvY3wBjgBTN7oTPvzcxuCp+/xMxu7Gjb4fLbzeydsI4fdWb7oO9ZiYj0VTcDR7v7cWZ2DsFkticSTAc1z8w+STCT+lp3vwDAzArdfZuZ3QSc7u6bDvQiZnYC8JfASeG23zCzlwguvNhi2+GEt5cAk93dzWxIZ9+M5gYUEelesZgb0MzGA0+4+9FhD+ZyYGu4eiDwA+AV4A8Es7M/4e6vhM9dDZTtL6ya2hBcPqTY3b8bLv8esBF4uvW2zSyLYGLb+cAT4fLazrwfHQYUEen7DPiBux8X3g539/919xXAdGAx8M9m9t3uesH2tu3u9QS9u4eATxMEWqcorERE+qYdBJcHAXgG+IKZDQQws7FmNsLMxgA17v5r4A6CcGn93AN5BfiMmeWbWQHBYb5X2tt2+PqF7v574BvAsZ19MzpnJSLSB7l7tZm9amZLgKeA3wB/NjOAncBngcOBO8ysEagjvGAicBfwtJmtdffTD/A6b5nZvcCb4aK73f1tMzu3nW0PAn5nZrkEvb2bOvt+dM5KRKR7xeKcVV+jw4AiIhJ7OgwoIiIdMrM3gJxWi68JLyfSYxRWIiLSoThceBF0GFBERHoBhZWIiMRepGFlZjPN7F0zW2lmN7ez/loz2xjOXbXAzL4UZT0iItI7RRZWZpYJ3AmcBxwFXGVmR7XTdE7Kt6rvjqoeEZH+JOpLhPS0KHtWJwIr3X1VOPfTA8DFEb6eiIg0G4IuEdIpY4GKlMeV4bLWLgunin/IzBLtbcjMrjOzpJklN27cGEWtIiJ9TaSXCDGzn4d/l5c2bS9cPsPMXgu3+aaZDTKzTDP7Ufgai8zsa119M+keuv448Ft332tmXwbuA85o3cjd7yKY/oOysrLeNeWGiAiwbPKUF1stunfK8mX3Lps85WZgJvD0lOXLbl82ecq1wLWpDacsX3basslTRhEcoQK4csryZesP8JJRXyLkFnffHJ7yec7MjgGWE8yyPtvdy81sMLAbuA4YDxzn7vVmVnSA2tuIsmdVBaT2lErCZfu4e7W77w0f3g2cEGE9IiL91Tnh7W3gLWAyMIlgRvSzzeyHZvYJd9/WhW3OMrO3wm1OJRibcCSwzt3LAdx9ezjT+lnAL8L7uPvmrr6BKHtW5cAkM5tAEFJXAlenNjCz0e6+Lnx4EbAswnpERNJmyvJlp3Ww/HaCQ3ZNj+8F7m2n3Xqg3W10QtMlQn7RZoXZdOB8gst4POfutx1wY8Hf9W8CM9x9SziRbe5B1tYpkfWswgS9gWBq+mXAXHdfama3mdlFYbO/CY93LgT+hlZdXxEROWhRXiJkMLAL2GZmIwlGfQO8C4w2sxnh6wwKL7j4LPDl8D4HcxhQs66LiHSv2My6bma/AY4huERIJdD0XdYWlwgB9l3Gw92T4QCIGwjOZ7V7iZCwN3UKwUC6bcA8d783DKr/APIIzledBewB/pXg3Fwd8D/u/p9dei8KKxGRbhWbsOpLNN2SiIjEXrqHrouISIzpEiEiIhJ7ukSIiIhIJymsREQk9hRWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKxp7ASEZHYU1iJiEjsKaxERCT2FFYiIhJ7CisREYk9hZWIiMSewkpERGKvz4dVfUMj//r0cpat257uUkRE5CD1+etZLVu3g/95ZRX/9eL7HFNSyKyyBBcdN4bBuQPSXZqIiHSSuXu6a+iSsrIyTyaTXXrO5l21PPZ2FXOTFSxfv4OcrAzOnzaaWWUJTp5YhJlFVK2I9EP6gxKBfhFWTdydRZXbmJOs4PEFa9mxt55xxfnMKktw2fQSRhXmdnO1ItIPKawi0K/CKtXu2gaeWrKOOeUVvPHBZjIMPnXEcGbPSHDG5JFkZ/X503kiEg2FVQT6bVilWr1pFw/Or+Ch+ZV8tH0vxQXZXHL8WGbPSDBp5KBufS0R6fMUVhFQWKWob2jk5fc2Mqe8gueWbaC+0Tm+dAizyxJ8+tgxDMzp8+NRROTQKawioLDqwKade3n0rSrmJCtYuWEneQMyueCY0cyekaBs3FANyhCRjuiPQwQUVgfg7rz14VbmllfwxKK17KptYOLwAmaVJbh0+lhGDNKgDBFpQWEVAYVVF+zaW8+Ti9cxt7yC5JotZGYYpx85gtkzEpx+5HCyMjUoQ0QUVlFQWB2k9zfuZG6ygofnV7Fp516GD8rh0uljmVWW4LDhA9Ndnoikj8IqAgqrQ1TX0MgLyzcwN1nBC+9upKHRmTF+KLPKEpw/bTQFGpQh0t8orCKgsOpGG7bv4eG3qngwWcGqTbsoyM7kwmPHMGtGguMTQzQoQ6R/0C96BBRWEXB3yldvYW6ygicXrWN3XQOTRgxkVlmCS6aPZdjAnHSXKCLRUVhFINKwMrOZwE+BTOBud7+9g3aXAQ8BM9x9v0nUG8Iq1Y49dTyxKJgpY0HFVrIyjLOmjGT2jASfPGI4mRn6XIv0MfqljkBkYWVmmcAK4GygEigHrnL3d1q1GwQ8CWQDN/S1sEq14qMdzC2v4JG3q9i8q5ZRg3O57IRgUMa44oJ0lyci3UNhFYEow+pjwK3ufm74+NsA7v6DVu1+AjwLfAv4Zl8Oqya19Y08t+wj5iYreGnFRhodTp5YxOwZCWZOHU1edma6SxSRg6ewikCUQ9XGAhUpjyuBk1IbmNl0IOHuT5rZtyKsJVayszI4b9pozps2mnXbdvPw/ErmJiv5xpyFfDd3KRcdO4bZMxJMG1uoQRkiIqTx4otmlgH8O3BtJ9peB1wHUFpaGm1hPWx0YR43nDGJr552OG98sJm5yWBC3fvf+JDJowYFgzKOH8vQgux0lyoikjZpOwxoZoXA+8DO8CmjgM3ARfs7FNgXDgMeyLbddcxbuJYHkxUsqtxGdmYGZ08dyeyyBKcePkyDMkTiTb+gEYgyrLIIBlicCVQRDLC42t2XdtD+RfrJOauueGftduYmK3hsQRVba+oYOySPy04o4YoTSkgU5ae7PBFpS2EVgaiHrp8P/IRg6Po97v4vZnYbkHT3ea3avojCqkN76hp49p1gUMafVm4C4NTDhnFFWQnnTh1F7gANyhCJCYVVBPSl4F6ocksND82v5MFkJVVbd1OYN4DPHBfMlDF1TGG6yxPp7xRWEVBY9WKNjc5r71czJ1nBM0vWU9vQyNQxg5k9I8HFx46lMH9AuksU6Y8UVhFQWPURW2tqeeztKuYkK1m2bjs5WRnMPHoUs8sSnDyxmAwNyhDpKfpli4DCqg9aUrWNOeXBoIwde+pJFOVxxQkJLj+hhDFD8tJdnkhfp7CKgMKqD9tT18AzS9czp7yC196vxgw+MWk4s8sSnHXUCHKyNChDJAIKqwgorPqJD6treHB+8IXjddv2MDR/AJccX8LsGQmOHDUo3eWJ9CUKqwgorPqZhkbnlfc2MjdZwbPvfERdg3NsSSGzZiS48NgxDM7VoAyRQ6SwioDCqh+r3rmXR9+uYm6yghUf7SR3QAbnTxvNrLIEJ00o0ryEIgdHvzgRUFgJ7s7CymBQxuML17Jzbz3ji/O5oiwYlDFycG66SxTpTRRWEVBYSQs1tfU8tXg9c5IVvPnBZjIMTj9yBFeUJThzyggGZGaku0SRuFNYRUBhJR36YNMu5iYreHh+JRt27GXYwGwunV7CrLISDh+hQRkiHVBYRUBhJQdU39DISys2Mqe8gueXb6C+0ZleOoTZMxJccMwYBuak7UozInGksIqAwkq6ZOOOvTzyViVzkhWs2riL/OxMPn1MMCjjhHFDNShDRGEVCYWVHBR3560PtzCnvIInFq2jpraBw4YXMKsswaXTSxg+KCfdJYqki8IqAgorOWS79tbz5KJ1zElWMH/NFrIyjDMmj2BWWYLTjhxOlgZlSP+isIqAwkq61coNO5ibrOSRtyrZtLOWEYNyuOyEEmaVJZgwrCDd5Yn0BIVVBBRWEom6hkaeX76BueUVvPDuBhodThxfxKwZCc6fNor8bA3KkD5LYRUBhZVE7qPte3j4rUrmllewurqGgTlZXHhsMCjjuMQQDcqQvkYf6AgorKTHuDtvfrCZOckKfr94HXvqGjli5EBmlSW45PixFA/UoAzpExRWEVBYSVrs2FPH4wuDQRkLK7YyINM4a8pIZs1I8MlJw8nUxSKl99KHNwIKK0m7d9fvYE55BY++XcmWmjpGF+Zy+QklXHFCgtLi/HSXJ9JVCqsIKKwkNmrrG/njso+YU17By+9txB0+NrGY2TMSzDx6FLkDdLFI6RUUVhFQWEksrd26m4fnVzJ3fgUVm3czKDeLi48bw+yyUo4eO1iDMiTO9OGMgMJKYq2x0Xl9VTVzkxU8tWQ9e+sbmTJ6MLPLSvjM8WMZkp+d7hJFWlNYRUBhJb3Gtpo65i2sYk6ygiVV28nOzOCcqSOZPSPBqYcNI0ODMiQe9EGMgMJKeqWla7fxYLKSR9+uYtvuOsYOyQsGZZSVUDJUgzIkrRRWEVBYSa+2p66BP7zzEXPLK/jTyk2YwccPH8assgRnHzVSgzIkHRRWEVBYSZ9RsbmGh+ZX8tD8Sqq27mZI/gA+c9xYZpUlOGrM4HSXJ/2HwioCCivpcxoanVdXbmJusoI/LP2I2oZGpo0tZNaMBBcdO4bCvAHpLlH6NoVVBBRW0qdt2VXLYwuqmFNewfL1O8jJyuC8o0cxa0aCkycUa1CGREEfqggorKRfcHcWV21jbrKC3y1Yy4499ZQW5XPFCSWccngxpUUFDBuYre9vSXfQhygCCivpd3bXNvD00nXMKa/g9VWb9y0vyM5kXHEB44flU1pUwPji/H2PRw7KVS9MOksflAgorKRfW7t1N++u38Hq6l2sqa5hTfhvxZYa6hqafzdysjIoLQrDqzifcU1BVlzAmCG5uhqypFJYRUBXwJN+bcyQPMYMyWuzvL6hkXXb9rCmuiYMsl2srq7hw+oaXnlvI3vrG/e1zcowSobmpQRZwb4wSxTlkZOl4fMihyrSsDKzmcBPgUzgbne/vdX6rwDXAw3ATuA6d38nyppEOiMrM4NEUT6Jonw+PmlYi3WNjc6GHXtZXb2LD/eFWfDv/DVb2Lm3fl9bMxhTmJfSE0sNs3xdMVmkkyI7DGhmmcAK4GygEigHrkoNIzMb7O7bw/sXAV9195n7264OA0qcuTubd9WyOuWQYlOvbE31LrbU1LVoP2JQDuOLCygtzm8+RxY+1hD7XkuHASMQ5X/rTgRWuvsqADN7ALgY2BdWTUEVKgB61wk0kVbMjOKBORQPzOGEcUPbrN+2u25fb+zDzTWs3hQE2ssrNvLQjr0t2g7NH9DikGJqr6y4QCMXpX+JMqzGAhUpjyuBk1o3MrPrgZuAbOCM9jZkZtcB1wGUlpZ2e6EiPaUwbwDTSgqZVlLYZl1NbX0YYGGvbHPwb3L1FuYtXEvqQZCBOVmMK85vt1c2YlCORi5KnxPlYcDLgZnu/qXw8TXASe5+QwftrwbOdffP72+7Ogwo/dHe+gYqt+wODim2CLMaKjbXUN/YcuRiam+sNPx3fHEBows1crEH6H8KEYiyZ1UFJFIel4TLOvIA8PMI6xHptXKyMjls+EAOGz6wzbr6hkbWbt3Dms3hubFNzb2yl1e0HLk4INMoGZq/r1c2LmUYfmJoPtlZCjKJpyjDqhyYZGYTCELqSuDq1AZmNsnd3wsfXgC8h4h0SVZmBqXF+ZQW5/OJSS3XNTY6H+3Y02agx5rqGpKrW45czLBgKH+7IxeLCsjL1hB8SZ/Iwsrd683sBuAZgqHr97j7UjO7DUi6+zzgBjM7C6gDtgD7PQQoIl2TkWGMLsxjdGEeJ08sbrHO3aneVbsvvFanBNpTi9e1Gbk4cnBOEF5F+YwfVtDinNngXI1clGhpBgsRade2mrp9hxY/TOmVra6uYWOrkYtFBdnN4VWUz/hhzQM+huYP6G8jF/vVm+0pCisR6bJde4ORi617ZWuqa1i7bXeLkYuDcrIYNyzl0GJR2CsbFoxc7INB1ufeUBzo6/Mi0mUFOVlMGT2YKaPbXtRyT13KyMWUXtnSqm08s2R9i5GLuQMyWoTXuJQwGzMkj0wNwZeQwkpEulXugEwOHzGQw0d0PHIxdb7FNdU1fLBpFy+u2Ehtq5GLiaJ8xqVOIDwsOGdWopGL/Y7CSkR6TOrIRRjeYl1jo7N+e/sjF9/8YDO7ahv2tc0wGDs0r/kcWXFz76y0KJ/cARq52NcorEQkFjIybN8s+B87rO3IxU07a9vOt7i5hicXr2Nrq5GLowbntprho/k7ZYM0crFXUliJSOyZGcMH5TB8UA5l44varN9aUxuE2ObgS9FNvbLn393QZuRiccrIxdQZ8McXFzCk/41c7DUUViLS6w3Jz2ZIfjbHJoa0Wbdrb33zhTXDEYyrN9Xw+qpqHl1Q1WLk4uDcrH0BNr64gGNKCjln6qieeyPSIYWViPRpBTlZHDVmMEeN6WjkYjB58L6Z8KtrWFy1jaeWrOeMySMUVjGhsBKRfisYuTiIw0cMarOurqGRXSnTUUl6aeyniEg7BmRmMCQ/O91lSEhhJSIisaewEhGR2FNYiYhI7CmsREQk9hRWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKxp7ASEZHYU1iJiEjsKaxERCT2FFYiIhJ7CisREYk9hZWIiMSewkpERGJPYSUiIrGnsBIRkdgzd093DV1iZhuBNQfx1GHApm4upzfWAKqjNdURrxqgd9exyd1nRlFMf9brwupgmVnS3cv6ew2qQ3XEvQbVIe3RYUAREYk9hZWIiMRefwqru9JdAPGoAVRHa6qjWRxqANUhrfSbc1YiItJ79aeelYiI9FIKKxERib1eH1ZmNtPM3jWzlWZ2czvrc8xsTrj+DTMbn7Lu2+Hyd83s3IjruMnM3jGzRWb2nJmNS1nXYGYLwtu8iOu41sw2przel1LWfd7M3gtvn4+whh+nvP4KM9uasq4798U9ZrbBzJZ0sN7M7GdhnYvMbHrKum7ZF52s4y/C119sZq+Z2bEp61aHyxeYWTLCGk4zs20p+/67Kev2+/Ps5jq+lVLDkvDzUBSu65Z9EW4rYWYvhL+TS83s6+206ZHPh3SSu/faG5AJvA9MBLKBhcBRrdp8Ffjv8P6VwJzw/lFh+xxgQridzAjrOB3ID+//dVMd4eOdPbg/rgX+s53nFgGrwn+HhveHRlFDq/ZfA+7p7n0RbuuTwHRgSQfrzweeAgw4GXijO/dFF+o4pWn7wHlNdYSPVwPDemBfnAY8cag/z0Oto1XbC4Hnu3tfhNsaDUwP7w8CVrTzu9Ijnw/dOnfr7T2rE4GV7r7K3WuBB4CLW7W5GLgvvP8QcKaZWbj8AXff6+4fACvD7UVSh7u/4O414cPXgZKDfK1DqmM/zgWedffN7r4FeBY4mG/hd7WGq4DfHsTrHJC7vwxs3k+Ti4FfeuB1YIiZjab79kWn6nD318LXgYg+G53YFx05lM/UodYR5Wdjnbu/Fd7fASwDxrZq1iOfD+mc3h5WY4GKlMeVtP3A7Wvj7vXANqC4k8/tzjpSfZHgf2xNcs0saWavm9lnDrKGrtRxWXhY4yEzS3Txud1VA+Gh0AnA8ymLu2tfdEZHtXbnZ6OrWn82HPiDmc03s+sifu2PmdlCM3vKzKaGy9KyL8wsnyAAHk5ZHMm+sODUwPHAG61WxfHz0W9lpbuA/sbMPguUAZ9KWTzO3avMbCLwvJktdvf3IyrhceC37r7XzL5M0Os8I6LXOpArgYfcvSFlWU/ui1gxs9MJwurjKYs/Hu6PEcCzZrY87J10t7cI9v1OMzsfeAyYFMHrdNaFwKvuntoL6/Z9YWYDCQLxRnfffijbkmj19p5VFZBIeVwSLmu3jZllAYVAdSef2511YGZnAbcAF7n73qbl7l4V/rsKeJHgf3mR1OHu1SmvfTdwQlfeQ3fUkOJKWh3m6cZ90Rkd1dqdn41OMbNjCH4eF7t7ddPylP2xAXiUgz9UvV/uvt3dd4b3fw8MMLNhpGFfhPb32eiWfWFmAwiC6n53f6SdJrH5fAi9foBFFsHJzQk0n/yd2qrN9bQcYDE3vD+VlgMsVnHwAyw6U8fxBCeqJ7VaPhTICe8PA97jIE9gd7KO0Sn3LwFeD+8XAR+E9QwN7xdFUUPYbjLBCXOLYl+kbHM8HQ8quICWJ9Df7M590YU6SgnOmZ7SankBMCjl/mvAzIhqGNX0syAIgQ/D/dKpn2d31RGuLyQ4r1UQ4b4w4JfAT/bTpsc+H7p14meW7gIO+Q0EI3ZWEATBLeGy2wh6LwC5wIPhH4M3gYkpz70lfN67wHkR1/FH4CNgQXibFy4/BVgc/hFYDHwx4jp+ACwNX+8FYHLKc78Q7qeVwF9GVUP4+Fbg9lbP6+598VtgHVBHcF7hi8BXgK+E6w24M6xzMVDW3fuik3XcDWxJ+Wwkw+UTw32xMPyZ3RJhDTekfC5eJyU42/t5RlVH2OZagsFPqc/rtn0Rbu/jBOfAFqXs9/PT8fnQrXM3TbckIiKx19vPWYmISD+gsBIRkdhTWImISOwprEREJPYUViIiEnsKK5EDCGckfyLddYj0ZworERGJPYWV9Blm9lkzezO83tEvzCzTzHZacP2spRZcR2x42Pa4cLLcRWb2qJkNDZcfbmZ/DCd0fcvMDgs3PzCc+He5md0fztwvIj1EYSV9gplNAWYDp7r7cUAD8BcEU/Mk3X0q8BLwj+FTfgn8nbsfQzA7QdPy+4E73f1Yghk11oXLjwduJLgO2kTg1Ijfkoik0Kzr0lecSTApb3nY6ckDNgCNwJywza+BR8ysEBji7i+Fy+8DHjSzQcBYd38UwN33AITbe9PdK8PHCwjmt/tT5O9KRACFlfQdBtzn7t9usdDsH1q1O9j5xfam3G9AvzsiPUqHAaWveA64PLzWEWZWFF7cMQO4PGxzNfAnd98GbDGzT4TLrwFe8uCKsZVNF300s5zwIoAikmb636H0Ce7+jpl9h+BKshkEs3pfD+wCTgzXbSA4rwXweeC/wzBaBfxluPwa4Bdmdlu4jSt68G2ISAc067r0aWa2090HprsOETk0OgwoIiKxp56ViIjEnnpWIiISeworERGJPYWViIjEnsJKRERiT2ElIiKx9/8B5+v16HR8afAAAAAASUVORK5CYII=\n", "text/plain": ["<Figure size 439.5x360 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["\n", "metrics = pd.read_csv(f\"{trainer.logger.log_dir}/metrics.csv\")\n", "del metrics[\"step\"]\n", "metrics.set_index(\"epoch\", inplace=True)\n", "display(metrics.dropna(axis=1, how=\"all\").head())\n", "sn.relplot(data=metrics, kind=\"line\")"]}, {"cell_type": "markdown", "id": "5d01bb2a", "metadata": {"papermill": {"duration": 0.060433, "end_time": "2022-04-28T12:56:03.987777", "exception": false, "start_time": "2022-04-28T12:56:03.927344", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://www.pytorchlightning.ai/community)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/PyTorchLightning/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", "   :header: Introduction to Pytorch Lightning\n", "   :card_description: In this notebook, we'll go over the basics of lightning by preparing models to train on the [MNIST Handwritten Digits dataset](https://en.wikipedia.org/wiki/MNIST_database).\n", "   :tags: Image,GPU/TPU,Lightning-Examples"]}], "metadata": {"jupytext": {"cell_metadata_filter": "colab_type,colab,id,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12"}, "papermill": {"default_parameters": {}, "duration": 64.533867, "end_time": "2022-04-28T12:56:04.859046", "environment_variables": {}, "exception": null, "input_path": "lightning_examples/mnist-hello-world/hello-world.ipynb", "output_path": ".notebooks/lightning_examples/mnist-hello-world.ipynb", "parameters": {}, "start_time": "2022-04-28T12:55:00.325179", "version": "2.3.4"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"016b498eae4e4c20b31bf0afc40a255d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9ccfcfe1895c4abeae91f4ad7d3d5965", "placeholder": "\u200b", "style": "IPY_MODEL_a90b27982f6546e088fdc1e2740d226a", "value": " 2/2 [00:00&lt;00:00, 17.54it/s]"}}, "0500b85120c141a1b59da79092af1d1a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0e9a8b724f0d4893be87dbe359f8197b", "placeholder": "\u200b", "style": "IPY_MODEL_e546a75a847b44ad9e106eaf46782500", "value": "Validation DataLoader 0: 100%"}}, "0e9a8b724f0d4893be87dbe359f8197b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b226521693646f495d43f8df1a644b8": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b41411e37b44436adc2cdf8e9e56959": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0500b85120c141a1b59da79092af1d1a", "IPY_MODEL_ced56a905ba74bbb914026042294097e", "IPY_MODEL_2e539b32fea548a7afd5aaf7bacfc00c"], "layout": "IPY_MODEL_77640f152e2d465e8098493fcee731cf"}}, "1cd9a8d893324c0887da3a2862b64fc3": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e5fae6db8f84736a510aa15eb72f3f9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "24757eecf97a4fea8e49933b3e82a488": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1cd9a8d893324c0887da3a2862b64fc3", "placeholder": "\u200b", "style": "IPY_MODEL_79335fa2e1ff4f58a58104207bfa449c", "value": " 235/235 [00:16&lt;00:00, 13.92it/s, loss=0.803, v_num=1]"}}, "26f0059c4017487f9c2a122c21225f71": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "29cc35ee2ad046b48fb0957336ea9a89": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4fc4dc3b17b74b96ae193168d2cee35a", "placeholder": "\u200b", "style": "IPY_MODEL_9a3737f871e04a23bcc02a1e7b1cda68", "value": " 20/20 [00:00&lt;00:00, 22.43it/s]"}}, "2c180b364fe547cf9e9feb158c10e222": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2e539b32fea548a7afd5aaf7bacfc00c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b27960a6f40b4116be216d6669eee028", "placeholder": "\u200b", "style": "IPY_MODEL_4ba391899a684b99bbab098f94d4bcf0", "value": " 20/20 [00:00&lt;00:00, 22.40it/s]"}}, "2ea0ac10531a498996bba9c0cb2901aa": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f29eadff5d34e7d9922f649085df747": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7c0c32587c3341628d69545315e7c956", "placeholder": "\u200b", "style": "IPY_MODEL_9a4f3932cf35485d8ff3948f69a183ec", "value": " 235/235 [00:32&lt;00:00,  7.22it/s, loss=0.32, v_num=3, val_loss=0.269, val_acc=0.920]"}}, "2ff521ad02fe4f4eb43c333dd8fba376": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9ccaa8162d434709bc26662b84a42c8f", "placeholder": "\u200b", "style": "IPY_MODEL_7e45b13e5714492099cb3a4122e422ef", "value": " 40/40 [00:01&lt;00:00, 22.73it/s]"}}, "35c279284c0e4c49bb75a86f48671b16": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2ea0ac10531a498996bba9c0cb2901aa", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6081ed05d3484f849df92850a501d203", "value": 1.0}}, "35d1fc0cc16343a0b5173f47d64b965a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38d47fafea214d72a42578628fc5242d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_70cb0eec487d4d97896206ddd3e9a62d", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8738be9aff9c4a8999250c4e9aaf7f89", "value": 1.0}}, "3a0fea88dadf4d2d83eb4b0682544c38": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a99fcb783b34382867e0974ad38f0ce": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3d3310617de4474ea99f3d8f0237da5f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8f12d5de46224fcea45039e1cc1cd69e", "placeholder": "\u200b", "style": "IPY_MODEL_c3d379c06ba64fc29b91583774e2f42d", "value": "Epoch 2: 100%"}}, "3f8e719a82534586acae495f7ffee25a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "425bcebf875a4899ab37c60378f63d2b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43878566690343cb98d0575153fb6044": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "460f5141753046f9b54925aca37129ce": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c022d328724a44ff9dd1a990a4206db7", "IPY_MODEL_df88d1f518074e7babc2d4722606e6ce", "IPY_MODEL_016b498eae4e4c20b31bf0afc40a255d"], "layout": "IPY_MODEL_ed9c73b86c644c25a451da79f56c97bf"}}, "46147a5285ee4712a703d338c52be49e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8423debd5d624630a3788bfb7a08c59f", "IPY_MODEL_38d47fafea214d72a42578628fc5242d", "IPY_MODEL_2ff521ad02fe4f4eb43c333dd8fba376"], "layout": "IPY_MODEL_4992581af8fc457480218e23fcde300c"}}, "4992581af8fc457480218e23fcde300c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "49e8996db5fa4b71b0d996eda1adc696": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5f0a3118f30f43df8f87f00e309e7942", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5ca941accab24f41a247d049e509c5e9", "value": 1.0}}, "4ba391899a684b99bbab098f94d4bcf0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4fc4dc3b17b74b96ae193168d2cee35a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "506d61c7b5ef4e9eb1edbef05e0fd514": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b8dbb20ca4746549d7939d8cbf1dc53": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "5ca941accab24f41a247d049e509c5e9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f0a3118f30f43df8f87f00e309e7942": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6081ed05d3484f849df92850a501d203": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "62433bc92f72404c825a6012aabab73f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "654c37566b2b43919cb5300651f4ed58": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6c0a6c7c3eb2463aa4b2f2c1dcd8b38d": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cc851519d6e4d62acecef685ecee8e6": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e638d4a2efe4c4c9fa41cc28ed1afe0": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "707d22a4bd274fd8a5a3217e1ecac44b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70cb0eec487d4d97896206ddd3e9a62d": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75c2cfa6844840819528350a5902c570": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3f8e719a82534586acae495f7ffee25a", "placeholder": "\u200b", "style": "IPY_MODEL_62433bc92f72404c825a6012aabab73f", "value": "Sanity Checking DataLoader 0: 100%"}}, "7666e9e388ef4e8f8adcf93a08f2dafd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a481dd897ed6456cb61cdc1d0b006044", "IPY_MODEL_af29a7bae55e436d8b25eeb4aafdee77", "IPY_MODEL_24757eecf97a4fea8e49933b3e82a488"], "layout": "IPY_MODEL_ed06d22549e64d2984a2848b11c78acd"}}, "77640f152e2d465e8098493fcee731cf": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "79335fa2e1ff4f58a58104207bfa449c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7c0c32587c3341628d69545315e7c956": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e45b13e5714492099cb3a4122e422ef": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8423debd5d624630a3788bfb7a08c59f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8aeb3d4c217f429ba259afa063c6b640", "placeholder": "\u200b", "style": "IPY_MODEL_654c37566b2b43919cb5300651f4ed58", "value": "Testing DataLoader 0: 100%"}}, "8738be9aff9c4a8999250c4e9aaf7f89": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8aeb3d4c217f429ba259afa063c6b640": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8dede57496b44416aa3973064c6c0405": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6cc851519d6e4d62acecef685ecee8e6", "placeholder": "\u200b", "style": "IPY_MODEL_98eeaf01b1534af2a3243c13e1bc1514", "value": " 20/20 [00:00&lt;00:00, 22.38it/s]"}}, "8f12d5de46224fcea45039e1cc1cd69e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "966c6438bd9140dbaec496fd39536f8e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "97f4583f65804aaca1b63cde456c95e4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "98eeaf01b1534af2a3243c13e1bc1514": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "99925865e68248209a44e949b06ae680": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_506d61c7b5ef4e9eb1edbef05e0fd514", "placeholder": "\u200b", "style": "IPY_MODEL_3a99fcb783b34382867e0974ad38f0ce", "value": "Validation DataLoader 0: 100%"}}, "9a3737f871e04a23bcc02a1e7b1cda68": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9a4f3932cf35485d8ff3948f69a183ec": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9ccaa8162d434709bc26662b84a42c8f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ccfcfe1895c4abeae91f4ad7d3d5965": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a481dd897ed6456cb61cdc1d0b006044": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e748b7bd4a5140bfa756b81fea039f2e", "placeholder": "\u200b", "style": "IPY_MODEL_966c6438bd9140dbaec496fd39536f8e", "value": "Epoch 2: 100%"}}, "a543d72f41784ab3bbe9dbdd85b7475b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a851416ba0bd49f6bd4537685cfec517": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99925865e68248209a44e949b06ae680", "IPY_MODEL_d1582939ef31498da853ec18683ee20a", "IPY_MODEL_8dede57496b44416aa3973064c6c0405"], "layout": "IPY_MODEL_43878566690343cb98d0575153fb6044"}}, "a90b27982f6546e088fdc1e2740d226a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "af29a7bae55e436d8b25eeb4aafdee77": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff7156d9856d49b196e719beb93b4390", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26f0059c4017487f9c2a122c21225f71", "value": 1.0}}, "afa0501b3fd344d3bde915f4fbad370b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b0b25e9ec0b64502beaa37a3db921715": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0f3fe4d77f945c7afb01e4f28a19fc8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f8bc7575b5004ce7b4fe374dc16246cf", "IPY_MODEL_f0f340f800e0442fbec086c244863e9f", "IPY_MODEL_29cc35ee2ad046b48fb0957336ea9a89"], "layout": "IPY_MODEL_df556f05222a47f1801ec802ce61e70c"}}, "b27960a6f40b4116be216d6669eee028": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bed1d2523df54972b20c6217eeb8b01a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b0b25e9ec0b64502beaa37a3db921715", "placeholder": "\u200b", "style": "IPY_MODEL_ede2ec53aa204af5949d2e2a70405be0", "value": " 2/2 [00:00&lt;00:00, 16.52it/s]"}}, "c022d328724a44ff9dd1a990a4206db7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_425bcebf875a4899ab37c60378f63d2b", "placeholder": "\u200b", "style": "IPY_MODEL_1e5fae6db8f84736a510aa15eb72f3f9", "value": "Sanity Checking DataLoader 0: 100%"}}, "c3d379c06ba64fc29b91583774e2f42d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c913d5cdf1a84bf6aeb3ce66641ba038": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_75c2cfa6844840819528350a5902c570", "IPY_MODEL_35c279284c0e4c49bb75a86f48671b16", "IPY_MODEL_bed1d2523df54972b20c6217eeb8b01a"], "layout": "IPY_MODEL_6e638d4a2efe4c4c9fa41cc28ed1afe0"}}, "ced56a905ba74bbb914026042294097e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c0a6c7c3eb2463aa4b2f2c1dcd8b38d", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_97f4583f65804aaca1b63cde456c95e4", "value": 1.0}}, "d1582939ef31498da853ec18683ee20a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_35d1fc0cc16343a0b5173f47d64b965a", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_707d22a4bd274fd8a5a3217e1ecac44b", "value": 1.0}}, "d94d7beaed274e70b3f4ce83a035f40d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3d3310617de4474ea99f3d8f0237da5f", "IPY_MODEL_49e8996db5fa4b71b0d996eda1adc696", "IPY_MODEL_2f29eadff5d34e7d9922f649085df747"], "layout": "IPY_MODEL_5b8dbb20ca4746549d7939d8cbf1dc53"}}, "df556f05222a47f1801ec802ce61e70c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "df88d1f518074e7babc2d4722606e6ce": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6faf9e775314f6e806b1ebce9eca363", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_afa0501b3fd344d3bde915f4fbad370b", "value": 1.0}}, "e546a75a847b44ad9e106eaf46782500": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e748b7bd4a5140bfa756b81fea039f2e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed06d22549e64d2984a2848b11c78acd": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "ed9c73b86c644c25a451da79f56c97bf": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "ede2ec53aa204af5949d2e2a70405be0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f0f340f800e0442fbec086c244863e9f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a543d72f41784ab3bbe9dbdd85b7475b", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3a0fea88dadf4d2d83eb4b0682544c38", "value": 1.0}}, "f6faf9e775314f6e806b1ebce9eca363": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8bc7575b5004ce7b4fe374dc16246cf": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1b226521693646f495d43f8df1a644b8", "placeholder": "\u200b", "style": "IPY_MODEL_2c180b364fe547cf9e9feb158c10e222", "value": "Validation DataLoader 0: 100%"}}, "ff7156d9856d49b196e719beb93b4390": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}