{"cells": [{"cell_type": "markdown", "id": "976839e8", "metadata": {"papermill": {"duration": 0.013333, "end_time": "2022-04-09T14:37:30.852431", "exception": false, "start_time": "2022-04-09T14:37:30.839098", "status": "completed"}, "tags": []}, "source": ["\n", "# Tutorial 5: Transformers and Multi-Head Attention\n", "\n", "* **Author:** Phillip Lippe\n", "* **License:** CC BY-SA\n", "* **Generated:** 2022-04-09T16:34:55.714521\n", "\n", "In this tutorial, we will discuss one of the most impactful architectures of the last 2 years: the Transformer model.\n", "Since the paper Attention Is All You Need by Vaswani et al. had been published in 2017,\n", "the Transformer architecture has continued to beat benchmarks in many domains, most importantly in Natural Language Processing.\n", "Transformers with an incredible amount of parameters can generate long, convincing essays, and opened up new application fields of AI.\n", "As the hype of the Transformer architecture seems not to come to an end in the next years,\n", "it is important to understand how it works, and have implemented it yourself, which we will do in this notebook.\n", "This notebook is part of a lecture series on Deep Learning at the University of Amsterdam.\n", "The full list of tutorials can be found at https://uvadlc-notebooks.rtfd.io.\n", "\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/course_UvA-DL/05-transformers-and-MH-attention.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/stable/)\n", "| Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)"]}, {"cell_type": "markdown", "id": "acbeb1c6", "metadata": {"papermill": {"duration": 0.011303, "end_time": "2022-04-09T14:37:30.875464", "exception": false, "start_time": "2022-04-09T14:37:30.864161", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "cdc43926", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2022-04-09T14:37:30.899343Z", "iopub.status.busy": "2022-04-09T14:37:30.898792Z", "iopub.status.idle": "2022-04-09T14:37:34.408514Z", "shell.execute_reply": "2022-04-09T14:37:34.407706Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 3.523932, "end_time": "2022-04-09T14:37:34.410576", "exception": false, "start_time": "2022-04-09T14:37:30.886644", "status": "completed"}, "tags": []}, "outputs": [], "source": ["! pip install --quiet \"pytorch-lightning>=1.3\" \"torchvision\" \"seaborn\" \"torchmetrics>=0.3\" \"matplotlib\" \"torch>=1.6, <1.9\" \"ipython[notebook]\""]}, {"cell_type": "markdown", "id": "3788f0d0", "metadata": {"papermill": {"duration": 0.011526, "end_time": "2022-04-09T14:37:34.434868", "exception": false, "start_time": "2022-04-09T14:37:34.423342", "status": "completed"}, "tags": []}, "source": ["<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/hGZ6wa07Vak\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "Despite the huge success of Transformers in NLP, we will _not_ include the NLP domain in our notebook here.\n", "There are many courses at the University of Amsterdam that focus on Natural Language Processing\n", "and take a closer look at the application of the Transformer architecture in NLP\n", "([NLP2](https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79628),\n", "[Advanced Topics in Computational Semantics](https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/80162)).\n", "Furthermore, and most importantly, there is so much more to the Transformer architecture.\n", "NLP is the domain the Transformer architecture has been originally proposed for and had the greatest impact on,\n", "but it also accelerated research in other domains, recently even [Computer Vision](https://arxiv.org/abs/2010.11929).\n", "Thus, we focus here on what makes the Transformer and self-attention so powerful in general.\n", "In a second notebook, we will look at Vision Transformers, i.e. Transformers for image classification\n", "([link to notebook](https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html)).\n", "\n", "Below, we import our standard libraries."]}, {"cell_type": "code", "execution_count": 2, "id": "58c0e503", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:34.458897Z", "iopub.status.busy": "2022-04-09T14:37:34.458462Z", "iopub.status.idle": "2022-04-09T14:37:37.002927Z", "shell.execute_reply": "2022-04-09T14:37:37.002262Z"}, "papermill": {"duration": 2.558559, "end_time": "2022-04-09T14:37:37.004560", "exception": false, "start_time": "2022-04-09T14:37:34.446001", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/usr/lib/python3.9/site-packages/apex/pyprof/__init__.py:5: FutureWarning: pyprof will be removed by the end of June, 2022\n", "  warnings.warn(\"pyprof will be removed by the end of June, 2022\", FutureWarning)\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/tmp/ipykernel_1570/2689201066.py:34: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", "  set_matplotlib_formats(\"svg\", \"pdf\")  # For export\n", "Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Device: cuda:0\n"]}], "source": ["# Standard libraries\n", "import math\n", "import os\n", "import urllib.request\n", "from functools import partial\n", "from urllib.error import HTTPError\n", "\n", "# Plotting\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# PyTorch Lightning\n", "import pytorch_lightning as pl\n", "import seaborn as sns\n", "\n", "# PyTorch\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torch.utils.data as data\n", "\n", "# Torchvision\n", "import torchvision\n", "from IPython.display import set_matplotlib_formats\n", "from pytorch_lightning.callbacks import ModelCheckpoint\n", "from torchvision import transforms\n", "from torchvision.datasets import CIFAR100\n", "from tqdm.notebook import tqdm\n", "\n", "plt.set_cmap(\"cividis\")\n", "%matplotlib inline\n", "set_matplotlib_formats(\"svg\", \"pdf\")  # For export\n", "matplotlib.rcParams[\"lines.linewidth\"] = 2.0\n", "sns.reset_orig()\n", "\n", "# Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)\n", "DATASET_PATH = os.environ.get(\"PATH_DATASETS\", \"data/\")\n", "# Path to the folder where the pretrained models are saved\n", "CHECKPOINT_PATH = os.environ.get(\"PATH_CHECKPOINT\", \"saved_models/Transformers/\")\n", "\n", "# Setting the seed\n", "pl.seed_everything(42)\n", "\n", "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n", "torch.backends.cudnn.determinstic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n", "print(\"Device:\", device)"]}, {"cell_type": "markdown", "id": "db0e6f77", "metadata": {"papermill": {"duration": 0.011684, "end_time": "2022-04-09T14:37:37.028587", "exception": false, "start_time": "2022-04-09T14:37:37.016903", "status": "completed"}, "tags": []}, "source": ["Two pre-trained models are downloaded below.\n", "Make sure to have adjusted your `CHECKPOINT_PATH` before running this code if not already done."]}, {"cell_type": "code", "execution_count": 3, "id": "204d80ad", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.053272Z", "iopub.status.busy": "2022-04-09T14:37:37.052867Z", "iopub.status.idle": "2022-04-09T14:37:37.349899Z", "shell.execute_reply": "2022-04-09T14:37:37.349259Z"}, "papermill": {"duration": 0.311497, "end_time": "2022-04-09T14:37:37.351709", "exception": false, "start_time": "2022-04-09T14:37:37.040212", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/ReverseTask.ckpt...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/SetAnomalyTask.ckpt...\n"]}], "source": ["# Github URL where saved models are stored for this tutorial\n", "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial6/\"\n", "# Files to download\n", "pretrained_files = [\"ReverseTask.ckpt\", \"SetAnomalyTask.ckpt\"]\n", "\n", "# Create checkpoint path if it doesn't exist yet\n", "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n", "\n", "# For each file, check whether it already exists. If not, try downloading it.\n", "for file_name in pretrained_files:\n", "    file_path = os.path.join(CHECKPOINT_PATH, file_name)\n", "    if \"/\" in file_name:\n", "        os.makedirs(file_path.rsplit(\"/\", 1)[0], exist_ok=True)\n", "    if not os.path.isfile(file_path):\n", "        file_url = base_url + file_name\n", "        print(\"Downloading %s...\" % file_url)\n", "        try:\n", "            urllib.request.urlretrieve(file_url, file_path)\n", "        except HTTPError as e:\n", "            print(\n", "                \"Something went wrong. Please try to download the file manually,\"\n", "                \" or contact the author with the full output including the following error:\\n\",\n", "                e,\n", "            )"]}, {"cell_type": "markdown", "id": "44446fb8", "metadata": {"papermill": {"duration": 0.011934, "end_time": "2022-04-09T14:37:37.376064", "exception": false, "start_time": "2022-04-09T14:37:37.364130", "status": "completed"}, "tags": []}, "source": ["## The Transformer architecture\n", "\n", "In the first part of this notebook, we will implement the Transformer architecture by hand.\n", "As the architecture is so popular, there already exists a Pytorch module `nn.Transformer`\n", "([documentation](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html))\n", "and a [tutorial](https://pytorch.org/tutorials/beginner/transformer_tutorial.html)\n", "on how to use it for next token prediction.\n", "However, we will implement it here ourselves, to get through to the smallest details.\n", "\n", "There are of course many more tutorials out there about attention and Transformers.\n", "Below, we list a few that are worth exploring if you are interested in the topic\n", "and might want yet another perspective on the topic after this one:\n", "\n", "* [Transformer: A Novel Neural Network Architecture for Language Understanding\n", "(Jakob Uszkoreit, 2017)](https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html) - The original Google blog post about the Transformer paper, focusing on the application in machine translation.\n", "* [The Illustrated Transformer (Jay Alammar, 2018)](http://jalammar.github.io/illustrated-transformer/) - A very popular and great blog post intuitively explaining the Transformer architecture with many nice visualizations.\n", "The focus is on NLP.\n", "* [Attention?\n", "Attention!\n", "(Lilian Weng, 2018)](https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html) - A nice blog post summarizing attention mechanisms in many domains including vision.\n", "* [Illustrated: Self-Attention (Raimi Karim, 2019)](https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a) - A nice visualization of the steps of self-attention.\n", "Recommended going through if the explanation below is too abstract for you.\n", "* [The Transformer family (Lilian Weng, 2020)](https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html) - A very detailed blog post reviewing more variants of Transformers besides the original one."]}, {"cell_type": "markdown", "id": "899fbed7", "metadata": {"papermill": {"duration": 0.011614, "end_time": "2022-04-09T14:37:37.399352", "exception": false, "start_time": "2022-04-09T14:37:37.387738", "status": "completed"}, "tags": []}, "source": ["### What is Attention?\n", "\n", "The attention mechanism describes a recent new group of layers in neural networks that has attracted\n", "a lot of interest in the past few years, especially in sequence tasks.\n", "There are a lot of different possible definitions of \"attention\" in the literature,\n", "but the one we will use here is the following: _the attention mechanism describes a weighted average\n", "of (sequence) elements with the weights dynamically computed based on an input query and elements' keys_.\n", "So what does this exactly mean?\n", "The goal is to take an average over the features of multiple elements.\n", "However, instead of weighting each element equally, we want to weight them depending on their actual values.\n", "In other words, we want to dynamically decide on which inputs we want to \"attend\" more than others.\n", "In particular, an attention mechanism has usually four parts we need to specify:\n", "\n", "* **Query**: The query is a feature vector that describes what we are looking for in the sequence, i.e. what would we maybe want to pay attention to.\n", "* **Keys**: For each input element, we have a key which is again a feature vector.\n", "This feature vector roughly describes what the element is \"offering\", or when it might be important.\n", "The keys should be designed such that we can identify the elements we want to pay attention to based on the query.\n", "* **Values**: For each input element, we also have a value vector.\n", "This feature vector is the one we want to average over.\n", "* **Score function**: To rate which elements we want to pay attention to, we need to specify a score function $f_{attn}$.\n", "The score function takes the query and a key as input, and output the score/attention weight of the query-key pair.\n", "It is usually implemented by simple similarity metrics like a dot product, or a small MLP.\n", "\n", "\n", "The weights of the average are calculated by a softmax over all score function outputs.\n", "Hence, we assign those value vectors a higher weight whose corresponding key is most similar to the query.\n", "If we try to describe it with pseudo-math, we can write:\n", "\n", "$$\n", "\\alpha_i = \\frac{\\exp\\left(f_{attn}\\left(\\text{key}_i, \\text{query}\\right)\\right)}{\\sum_j \\exp\\left(f_{attn}\\left(\\text{key}_j, \\text{query}\\right)\\right)}, \\hspace{5mm} \\text{out} = \\sum_i \\alpha_i \\cdot \\text{value}_i\n", "$$\n", "\n", "Visually, we can show the attention over a sequence of words as follows:\n", "\n", "<center width=\"100%\" style=\"padding:25px\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/attention_example.svg\" width=\"750px\"></center>\n", "\n", "For every word, we have one key and one value vector.\n", "The query is compared to all keys with a score function (in this case the dot product) to determine the weights.\n", "The softmax is not visualized for simplicity.\n", "Finally, the value vectors of all words are averaged using the attention weights.\n", "\n", "Most attention mechanisms differ in terms of what queries they use, how the key and value vectors are defined,\n", "and what score function is used.\n", "The attention applied inside the Transformer architecture is called **self-attention**.\n", "In self-attention, each sequence element provides a key, value, and query.\n", "For each element, we perform an attention layer where based on its query,\n", "we check the similarity of the all sequence elements' keys, and returned a different,\n", "averaged value vector for each element.\n", "We will now go into a bit more detail by first looking at the specific implementation of the attention mechanism\n", "which is in the Transformer case the scaled dot product attention."]}, {"cell_type": "markdown", "id": "baf076f5", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011622, "end_time": "2022-04-09T14:37:37.422711", "exception": false, "start_time": "2022-04-09T14:37:37.411089", "status": "completed"}, "tags": []}, "source": ["### Scaled Dot Product Attention\n", "\n", "The core concept behind self-attention is the scaled dot product attention.\n", "Our goal is to have an attention mechanism with which any element in a sequence can attend to any other while\n", "still being efficient to compute.\n", "The dot product attention takes as input a set of queries\n", "$Q\\in\\mathbb{R}^{T\\times d_k}$, keys $K\\in\\mathbb{R}^{T\\times d_k}$\n", "and values $V\\in\\mathbb{R}^{T\\times d_v}$ where $T$ is the sequence length,\n", "and $d_k$ and $d_v$ are the hidden dimensionality for queries/keys and values respectively.\n", "For simplicity, we neglect the batch dimension for now.\n", "The attention value from element $i$ to $j$ is based on its similarity of the query $Q_i$ and key $K_j$,\n", "using the dot product as the similarity metric.\n", "In math, we calculate the dot product attention as follows:\n", "\n", "$$\\text{Attention}(Q,K,V)=\\text{softmax}\\left(\\frac{QK^T}{\\sqrt{d_k}}\\right)V$$\n", "\n", "The matrix multiplication $QK^T$ performs the dot product for every possible pair of queries and keys,\n", "resulting in a matrix of the shape $T\\times T$.\n", "Each row represents the attention logits for a specific element $i$ to all other elements in the sequence.\n", "On these, we apply a softmax and multiply with the value vector to obtain a weighted mean\n", "(the weights being determined by the attention).\n", "Another perspective on this attention mechanism offers the computation graph which is visualized below\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/scaled_dot_product_attn.svg\" width=\"210px\"></center>\n", "\n", "One aspect we haven't discussed yet is the scaling factor of $1/\\sqrt{d_k}$.\n", "This scaling factor is crucial to maintain an appropriate variance of attention values after initialization.\n", "Remember that we intialize our layers with the intention of having equal variance throughout the model, and hence,\n", "$Q$ and $K$ might also have a variance close to $1$.\n", "However, performing a dot product over two vectors with a variance $\\sigma$ results\n", "in a scalar having $d_k$-times higher variance:\n", "\n", "$$q_i \\sim \\mathcal{N}(0,\\sigma), k_i \\sim \\mathcal{N}(0,\\sigma) \\to \\text{Var}\\left(\\sum_{i=1}^{d_k} q_i\\cdot k_i\\right) = \\sigma\\cdot d_k$$\n", "\n", "\n", "If we do not scale down the variance back to $\\sigma$, the softmax over the logits will already saturate\n", "to $1$ for one random element and $0$ for all others.\n", "The gradients through the softmax will be close to zero so that we can't learn the parameters appropriately.\n", "\n", "The block `Mask (opt.\n", ")` in the diagram above represents the optional masking of specific entries in the attention matrix.\n", "This is for instance used if we stack multiple sequences with different lengths into a batch.\n", "To still benefit from parallelization in PyTorch, we pad the sentences to the same length and mask out the padding\n", "tokens during the calculation of the attention values.\n", "This is usually done by setting the respective attention logits to a very low value.\n", "\n", "After we have discussed the details of the scaled dot product attention block, we can write a function below\n", "which computes the output features given the triple of queries, keys, and values:"]}, {"cell_type": "code", "execution_count": 4, "id": "9070779d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.447403Z", "iopub.status.busy": "2022-04-09T14:37:37.446989Z", "iopub.status.idle": "2022-04-09T14:37:37.451657Z", "shell.execute_reply": "2022-04-09T14:37:37.451096Z"}, "papermill": {"duration": 0.018657, "end_time": "2022-04-09T14:37:37.453028", "exception": false, "start_time": "2022-04-09T14:37:37.434371", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def scaled_dot_product(q, k, v, mask=None):\n", "    d_k = q.size()[-1]\n", "    attn_logits = torch.matmul(q, k.transpose(-2, -1))\n", "    attn_logits = attn_logits / math.sqrt(d_k)\n", "    if mask is not None:\n", "        attn_logits = attn_logits.masked_fill(mask == 0, -9e15)\n", "    attention = F.softmax(attn_logits, dim=-1)\n", "    values = torch.matmul(attention, v)\n", "    return values, attention"]}, {"cell_type": "markdown", "id": "4a475896", "metadata": {"papermill": {"duration": 0.011788, "end_time": "2022-04-09T14:37:37.476729", "exception": false, "start_time": "2022-04-09T14:37:37.464941", "status": "completed"}, "tags": []}, "source": ["Note that our code above supports any additional dimensionality in front of the sequence length\n", "so that we can also use it for batches.\n", "However, for a better understanding, let's generate a few random queries, keys, and value vectors,\n", "and calculate the attention outputs:"]}, {"cell_type": "code", "execution_count": 5, "id": "f6b4422f", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.501387Z", "iopub.status.busy": "2022-04-09T14:37:37.501015Z", "iopub.status.idle": "2022-04-09T14:37:37.510585Z", "shell.execute_reply": "2022-04-09T14:37:37.510000Z"}, "papermill": {"duration": 0.023453, "end_time": "2022-04-09T14:37:37.511961", "exception": false, "start_time": "2022-04-09T14:37:37.488508", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Q\n", " tensor([[ 0.3367,  0.1288],\n", "        [ 0.2345,  0.2303],\n", "        [-1.1229, -0.1863]])\n", "K\n", " tensor([[ 2.2082, -0.6380],\n", "        [ 0.4617,  0.2674],\n", "        [ 0.5349,  0.8094]])\n", "V\n", " tensor([[ 1.1103, -1.6898],\n", "        [-0.9890,  0.9580],\n", "        [ 1.3221,  0.8172]])\n", "Values\n", " tensor([[ 0.5698, -0.1520],\n", "        [ 0.5379, -0.0265],\n", "        [ 0.2246,  0.5556]])\n", "Attention\n", " tensor([[0.4028, 0.2886, 0.3086],\n", "        [0.3538, 0.3069, 0.3393],\n", "        [0.1303, 0.4630, 0.4067]])\n"]}], "source": ["seq_len, d_k = 3, 2\n", "pl.seed_everything(42)\n", "q = torch.randn(seq_len, d_k)\n", "k = torch.randn(seq_len, d_k)\n", "v = torch.randn(seq_len, d_k)\n", "values, attention = scaled_dot_product(q, k, v)\n", "print(\"Q\\n\", q)\n", "print(\"K\\n\", k)\n", "print(\"V\\n\", v)\n", "print(\"Values\\n\", values)\n", "print(\"Attention\\n\", attention)"]}, {"cell_type": "markdown", "id": "8d4dd42f", "metadata": {"papermill": {"duration": 0.011801, "end_time": "2022-04-09T14:37:37.535654", "exception": false, "start_time": "2022-04-09T14:37:37.523853", "status": "completed"}, "tags": []}, "source": ["Before continuing, make sure you can follow the calculation of the specific values here, and also check it by hand.\n", "It is important to fully understand how the scaled dot product attention is calculated."]}, {"cell_type": "markdown", "id": "738d26e7", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.013673, "end_time": "2022-04-09T14:37:37.561299", "exception": false, "start_time": "2022-04-09T14:37:37.547626", "status": "completed"}, "tags": []}, "source": ["### Multi-Head Attention\n", "\n", "The scaled dot product attention allows a network to attend over a sequence.\n", "However, often there are multiple different aspects a sequence element wants to attend to,\n", "and a single weighted average is not a good option for it.\n", "This is why we extend the attention mechanisms to multiple heads,\n", "i.e. multiple different query-key-value triplets on the same features.\n", "Specifically, given a query, key, and value matrix, we transform those into $h$ sub-queries, sub-keys,\n", "and sub-values, which we pass through the scaled dot product attention independently.\n", "Afterward, we concatenate the heads and combine them with a final weight matrix.\n", "Mathematically, we can express this operation as:\n", "\n", "$$\n", "\\begin{split}\n", "    \\text{Multihead}(Q,K,V) & = \\text{Concat}(\\text{head}_1,...,\\text{head}_h)W^{O}\\\\\n", "    \\text{where } \\text{head}_i & = \\text{Attention}(QW_i^Q,KW_i^K, VW_i^V)\n", "\\end{split}\n", "$$\n", "\n", "We refer to this as Multi-Head Attention layer with the learnable parameters\n", "$W_{1...h}^{Q}\\in\\mathbb{R}^{D\\times d_k}$,\n", "$W_{1...h}^{K}\\in\\mathbb{R}^{D\\times d_k}$,\n", "$W_{1...h}^{V}\\in\\mathbb{R}^{D\\times d_v}$,\n", "and $W^{O}\\in\\mathbb{R}^{h\\cdot d_k\\times d_{out}}$ ($D$ being the input dimensionality).\n", "Expressed in a computational graph, we can visualize it as below\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/multihead_attention.svg\" width=\"230px\"></center>\n", "\n", "How are we applying a Multi-Head Attention layer in a neural network,\n", "where we don't have an arbitrary query, key, and value vector as input?\n", "Looking at the computation graph above, a simple but effective implementation is to set the current\n", "feature map in a NN, $X\\in\\mathbb{R}^{B\\times T\\times d_{\\text{model}}}$, as $Q$, $K$ and $V$\n", "($B$ being the batch size, $T$ the sequence length, $d_{\\text{model}}$ the hidden dimensionality of $X$).\n", "The consecutive weight matrices $W^{Q}$, $W^{K}$, and $W^{V}$ can transform $X$ to the corresponding\n", "feature vectors that represent the queries, keys, and values of the input.\n", "Using this approach, we can implement the Multi-Head Attention module below."]}, {"cell_type": "code", "execution_count": 6, "id": "fa28f1cf", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.586727Z", "iopub.status.busy": "2022-04-09T14:37:37.586295Z", "iopub.status.idle": "2022-04-09T14:37:37.594515Z", "shell.execute_reply": "2022-04-09T14:37:37.593932Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.022557, "end_time": "2022-04-09T14:37:37.595903", "exception": false, "start_time": "2022-04-09T14:37:37.573346", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class MultiheadAttention(nn.Module):\n", "    def __init__(self, input_dim, embed_dim, num_heads):\n", "        super().__init__()\n", "        assert embed_dim % num_heads == 0, \"Embedding dimension must be 0 modulo number of heads.\"\n", "\n", "        self.embed_dim = embed_dim\n", "        self.num_heads = num_heads\n", "        self.head_dim = embed_dim // num_heads\n", "\n", "        # Stack all weight matrices 1...h together for efficiency\n", "        # Note that in many implementations you see \"bias=False\" which is optional\n", "        self.qkv_proj = nn.Linear(input_dim, 3 * embed_dim)\n", "        self.o_proj = nn.Linear(embed_dim, embed_dim)\n", "\n", "        self._reset_parameters()\n", "\n", "    def _reset_parameters(self):\n", "        # Original Transformer initialization, see PyTorch documentation\n", "        nn.init.xavier_uniform_(self.qkv_proj.weight)\n", "        self.qkv_proj.bias.data.fill_(0)\n", "        nn.init.xavier_uniform_(self.o_proj.weight)\n", "        self.o_proj.bias.data.fill_(0)\n", "\n", "    def forward(self, x, mask=None, return_attention=False):\n", "        batch_size, seq_length, embed_dim = x.size()\n", "        qkv = self.qkv_proj(x)\n", "\n", "        # Separate Q, K, V from linear output\n", "        qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)\n", "        qkv = qkv.permute(0, 2, 1, 3)  # [Batch, Head, SeqLen, Dims]\n", "        q, k, v = qkv.chunk(3, dim=-1)\n", "\n", "        # Determine value outputs\n", "        values, attention = scaled_dot_product(q, k, v, mask=mask)\n", "        values = values.permute(0, 2, 1, 3)  # [Batch, SeqLen, Head, Dims]\n", "        values = values.reshape(batch_size, seq_length, embed_dim)\n", "        o = self.o_proj(values)\n", "\n", "        if return_attention:\n", "            return o, attention\n", "        else:\n", "            return o"]}, {"cell_type": "markdown", "id": "c83e0f14", "metadata": {"papermill": {"duration": 0.011887, "end_time": "2022-04-09T14:37:37.619972", "exception": false, "start_time": "2022-04-09T14:37:37.608085", "status": "completed"}, "tags": []}, "source": ["One crucial characteristic of the multi-head attention is that it is permutation-equivariant with respect to its inputs.\n", "This means that if we switch two input elements in the sequence, e.g. $X_1\\leftrightarrow X_2$\n", "(neglecting the batch dimension for now), the output is exactly the same besides the elements 1 and 2 switched.\n", "Hence, the multi-head attention is actually looking at the input not as a sequence, but as a set of elements.\n", "This property makes the multi-head attention block and the Transformer architecture so powerful and widely applicable!\n", "But what if the order of the input is actually important for solving the task, like language modeling?\n", "The answer is to encode the position in the input features, which we will take a closer look at later\n", "(topic _Positional encodings_ below).\n", "\n", "Before moving on to creating the Transformer architecture, we can compare the self-attention operation\n", "with our other common layer competitors for sequence data: convolutions and recurrent neural networks.\n", "Below you can find a table by [Vaswani et al.\n", "(2017)](https://arxiv.org/abs/1706.03762) on the complexity per layer, the number of sequential operations,\n", "and maximum path length.\n", "The complexity is measured by the upper bound of the number of operations to perform, while the maximum path\n", "length represents the maximum number of steps a forward or backward signal has to traverse to reach any other position.\n", "The lower this length, the better gradient signals can backpropagate for long-range dependencies.\n", "Let's take a look at the table below:\n", "\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/comparison_conv_rnn.svg\" width=\"600px\"></center>\n", "\n", "$n$ is the sequence length, $d$ is the representation dimension and $k$ is the kernel size of convolutions.\n", "In contrast to recurrent networks, the self-attention layer can parallelize all its operations making it much faster\n", "to execute for smaller sequence lengths.\n", "However, when the sequence length exceeds the hidden dimensionality, self-attention becomes more expensive than RNNs.\n", "One way of reducing the computational cost for long sequences is by restricting the self-attention to a neighborhood\n", "of inputs to attend over, denoted by $r$.\n", "Nevertheless, there has been recently a lot of work on more efficient Transformer architectures that still allow long\n", "dependencies, of which you can find an overview in the paper by [Tay et al.\n", "(2020)](https://arxiv.org/abs/2009.06732) if interested."]}, {"cell_type": "markdown", "id": "0c2468bc", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.012032, "end_time": "2022-04-09T14:37:37.645572", "exception": false, "start_time": "2022-04-09T14:37:37.633540", "status": "completed"}, "tags": []}, "source": ["### Transformer Encoder\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/QdTgJ85E6YA\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "\n", "Next, we will look at how to apply the multi-head attention blog inside the Transformer architecture.\n", "Originally, the Transformer model was designed for machine translation.\n", "Hence, it got an encoder-decoder structure where the encoder takes as input the sentence in the original language\n", "and generates an attention-based representation.\n", "On the other hand, the decoder attends over the encoded information and generates the translated sentence\n", "in an autoregressive manner, as in a standard RNN.\n", "While this structure is extremely useful for Sequence-to-Sequence tasks with the necessity of autoregressive decoding,\n", "we will focus here on the encoder part.\n", "Many advances in NLP have been made using pure encoder-based Transformer models (if interested, models include the\n", "[BERT](https://arxiv.org/abs/1810.04805)-family,\n", "the [Vision Transformer](https://arxiv.org/abs/2010.11929), and more),\n", "and in our tutorial, we will also mainly focus on the encoder part.\n", "If you have understood the encoder architecture, the decoder is a very small step to implement as well.\n", "The full Transformer architecture looks as follows\n", "(figure credit - [Vaswani et al., 2017](https://arxiv.org/abs/1706.03762)).\n", ":\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/transformer_architecture.svg\" width=\"400px\"></center>\n", "\n", "The encoder consists of $N$ identical blocks that are applied in sequence.\n", "Taking as input $x$, it is first passed through a Multi-Head Attention block as we have implemented above.\n", "The output is added to the original input using a residual connection,\n", "and we apply a consecutive Layer Normalization on the sum.\n", "Overall, it calculates $\\text{LayerNorm}(x+\\text{Multihead}(x,x,x))$\n", "($x$ being $Q$, $K$ and $V$ input to the attention layer).\n", "The residual connection is crucial in the Transformer architecture for two reasons:\n", "\n", "1.\n", "Similar to ResNets, Transformers are designed to be very deep.\n", "Some models contain more than 24 blocks in the encoder.\n", "Hence, the residual connections are crucial for enabling a smooth gradient flow through the model.\n", "2.\n", "Without the residual connection, the information about the original sequence is lost.\n", "Remember that the Multi-Head Attention layer ignores the position of elements in a sequence,\n", "and can only learn it based on the input features.\n", "Removing the residual connections would mean that this information is lost after the first attention layer\n", "(after initialization), and with a randomly initialized query and key vector,\n", "the output vectors for position $i$ has no relation to its original input.\n", "All outputs of the attention are likely to represent similar/same information,\n", "and there is no chance for the model to distinguish which information came from which input element.\n", "An alternative option to residual connection would be to fix at least one head to focus on its original input,\n", "but this is very inefficient and does not have the benefit of the improved gradient flow.\n", "\n", "The Layer Normalization also plays an important role in the Transformer architecture as it enables faster\n", "training and provides small regularization.\n", "Additionally, it ensures that the features are in a similar magnitude among the elements in the sequence.\n", "We are not using Batch Normalization because it depends on the batch size which is often small with Transformers\n", "(they require a lot of GPU memory), and BatchNorm has shown to perform particularly bad in language\n", "as the features of words tend to have a much higher variance (there are many, very rare words\n", "which need to be considered for a good distribution estimate).\n", "\n", "Additionally to the Multi-Head Attention, a small fully connected feed-forward network is added to the model,\n", "which is applied to each position separately and identically.\n", "Specifically, the model uses a Linear$\\to$ReLU$\\to$Linear MLP.\n", "The full transformation including the residual connection can be expressed as:\n", "\n", "$$\n", "\\begin{split}\n", "    \\text{FFN}(x) & = \\max(0, xW_1+b_1)W_2 + b_2\\\\\n", "    x & = \\text{LayerNorm}(x + \\text{FFN}(x))\n", "\\end{split}\n", "$$\n", "\n", "This MLP adds extra complexity to the model and allows transformations on each sequence element separately.\n", "You can imagine as this allows the model to \"post-process\" the new information added\n", "by the previous Multi-Head Attention, and prepare it for the next attention block.\n", "Usually, the inner dimensionality of the MLP is 2-8$\\times$ larger than $d_{\\text{model}}$,\n", "i.e. the dimensionality of the original input $x$.\n", "The general advantage of a wider layer instead of a narrow, multi-layer MLP is the faster, parallelizable execution.\n", "\n", "Finally, after looking at all parts of the encoder architecture, we can start implementing it below.\n", "We first start by implementing a single encoder block.\n", "Additionally to the layers described above, we will add dropout layers in the MLP and on the output\n", "of the MLP and Multi-Head Attention for regularization."]}, {"cell_type": "code", "execution_count": 7, "id": "c55bfef0", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.670726Z", "iopub.status.busy": "2022-04-09T14:37:37.670245Z", "iopub.status.idle": "2022-04-09T14:37:37.676639Z", "shell.execute_reply": "2022-04-09T14:37:37.676067Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.020505, "end_time": "2022-04-09T14:37:37.678049", "exception": false, "start_time": "2022-04-09T14:37:37.657544", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class EncoderBlock(nn.Module):\n", "    def __init__(self, input_dim, num_heads, dim_feedforward, dropout=0.0):\n", "        \"\"\"\n", "        Args:\n", "            input_dim: Dimensionality of the input\n", "            num_heads: Number of heads to use in the attention block\n", "            dim_feedforward: Dimensionality of the hidden layer in the MLP\n", "            dropout: Dropout probability to use in the dropout layers\n", "        \"\"\"\n", "        super().__init__()\n", "\n", "        # Attention layer\n", "        self.self_attn = MultiheadAttention(input_dim, input_dim, num_heads)\n", "\n", "        # Two-layer MLP\n", "        self.linear_net = nn.Sequential(\n", "            nn.Linear(input_dim, dim_feedforward),\n", "            nn.Dropout(dropout),\n", "            nn.ReLU(inplace=True),\n", "            nn.Linear(dim_feedforward, input_dim),\n", "        )\n", "\n", "        # Layers to apply in between the main layers\n", "        self.norm1 = nn.LayerNorm(input_dim)\n", "        self.norm2 = nn.LayerNorm(input_dim)\n", "        self.dropout = nn.Dropout(dropout)\n", "\n", "    def forward(self, x, mask=None):\n", "        # Attention part\n", "        attn_out = self.self_attn(x, mask=mask)\n", "        x = x + self.dropout(attn_out)\n", "        x = self.norm1(x)\n", "\n", "        # MLP part\n", "        linear_out = self.linear_net(x)\n", "        x = x + self.dropout(linear_out)\n", "        x = self.norm2(x)\n", "\n", "        return x"]}, {"cell_type": "markdown", "id": "0fea27f4", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011884, "end_time": "2022-04-09T14:37:37.702098", "exception": false, "start_time": "2022-04-09T14:37:37.690214", "status": "completed"}, "tags": []}, "source": ["Based on this block, we can implement a module for the full Transformer encoder.\n", "Additionally to a forward function that iterates through the sequence of encoder blocks,\n", "we also provide a function called `get_attention_maps`.\n", "The idea of this function is to return the attention probabilities for all Multi-Head Attention blocks in the encoder.\n", "This helps us in understanding, and in a sense, explaining the model.\n", "However, the attention probabilities should be interpreted with a grain of salt as it does not necessarily\n", "reflect the true interpretation of the model (there is a series of papers about this,\n", "including [Attention is not Explanation](https://arxiv.org/abs/1902.10186)\n", "and [Attention is not not Explanation](https://arxiv.org/abs/1908.04626))."]}, {"cell_type": "code", "execution_count": 8, "id": "59e4943c", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.727879Z", "iopub.status.busy": "2022-04-09T14:37:37.726612Z", "iopub.status.idle": "2022-04-09T14:37:37.733398Z", "shell.execute_reply": "2022-04-09T14:37:37.732829Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.020849, "end_time": "2022-04-09T14:37:37.734822", "exception": false, "start_time": "2022-04-09T14:37:37.713973", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TransformerEncoder(nn.Module):\n", "    def __init__(self, num_layers, **block_args):\n", "        super().__init__()\n", "        self.layers = nn.ModuleList([EncoderBlock(**block_args) for _ in range(num_layers)])\n", "\n", "    def forward(self, x, mask=None):\n", "        for layer in self.layers:\n", "            x = layer(x, mask=mask)\n", "        return x\n", "\n", "    def get_attention_maps(self, x, mask=None):\n", "        attention_maps = []\n", "        for layer in self.layers:\n", "            _, attn_map = layer.self_attn(x, mask=mask, return_attention=True)\n", "            attention_maps.append(attn_map)\n", "            x = layer(x)\n", "        return attention_maps"]}, {"cell_type": "markdown", "id": "a5d9e15f", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011928, "end_time": "2022-04-09T14:37:37.758957", "exception": false, "start_time": "2022-04-09T14:37:37.747029", "status": "completed"}, "tags": []}, "source": ["### Positional encoding\n", "\n", "We have discussed before that the Multi-Head Attention block is permutation-equivariant,\n", "and cannot distinguish whether an input comes before another one in the sequence or not.\n", "In tasks like language understanding, however, the position is important for interpreting the input words.\n", "The position information can therefore be added via the input features.\n", "We could learn a embedding for every possible position, but this would not generalize to a dynamical\n", "input sequence length.\n", "Hence, the better option is to use feature patterns that the network can identify from the features\n", "and potentially generalize to larger sequences.\n", "The specific pattern chosen by Vaswani et al.\n", "are sine and cosine functions of different frequencies, as follows:\n", "\n", "$$\n", "PE_{(pos,i)} = \\begin{cases}\n", "    \\sin\\left(\\frac{pos}{10000^{i/d_{\\text{model}}}}\\right) & \\text{if}\\hspace{3mm} i \\text{ mod } 2=0\\\\\n", "    \\cos\\left(\\frac{pos}{10000^{(i-1)/d_{\\text{model}}}}\\right) & \\text{otherwise}\\\\\n", "\\end{cases}\n", "$$\n", "\n", "$PE_{(pos,i)}$ represents the position encoding at position $pos$ in the sequence, and hidden dimensionality $i$.\n", "These values, concatenated for all hidden dimensions, are added to the original input features\n", "(in the Transformer visualization above, see \"Positional encoding\"), and constitute the position information.\n", "We distinguish between even ($i \\text{ mod } 2=0$) and uneven ($i \\text{ mod } 2=1$)\n", "hidden dimensionalities where we apply a sine/cosine respectively.\n", "The intuition behind this encoding is that you can represent $PE_{(pos+k,:)}$ as a linear function\n", "of $PE_{(pos,:)}$, which might allow the model to easily attend to relative positions.\n", "The wavelengths in different dimensions range from $2\\pi$ to $10000\\cdot 2\\pi$.\n", "\n", "The positional encoding is implemented below.\n", "The code is taken from the [PyTorch tutorial](https://pytorch.org/tutorials/beginner/transformer_tutorial.html#define-the-model)\n", "about Transformers on NLP and adjusted for our purposes."]}, {"cell_type": "code", "execution_count": 9, "id": "97458a86", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.784031Z", "iopub.status.busy": "2022-04-09T14:37:37.783642Z", "iopub.status.idle": "2022-04-09T14:37:37.789832Z", "shell.execute_reply": "2022-04-09T14:37:37.789242Z"}, "papermill": {"duration": 0.02026, "end_time": "2022-04-09T14:37:37.791228", "exception": false, "start_time": "2022-04-09T14:37:37.770968", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class PositionalEncoding(nn.Module):\n", "    def __init__(self, d_model, max_len=5000):\n", "        \"\"\"\n", "        Args\n", "            d_model: Hidden dimensionality of the input.\n", "            max_len: Maximum length of a sequence to expect.\n", "        \"\"\"\n", "        super().__init__()\n", "\n", "        # Create matrix of [SeqLen, HiddenDim] representing the positional encoding for max_len inputs\n", "        pe = torch.zeros(max_len, d_model)\n", "        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)\n", "        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n", "        pe[:, 0::2] = torch.sin(position * div_term)\n", "        pe[:, 1::2] = torch.cos(position * div_term)\n", "        pe = pe.unsqueeze(0)\n", "\n", "        # register_buffer => Tensor which is not a parameter, but should be part of the modules state.\n", "        # Used for tensors that need to be on the same device as the module.\n", "        # persistent=False tells PyTorch to not add the buffer to the state dict (e.g. when we save the model)\n", "        self.register_buffer(\"pe\", pe, persistent=False)\n", "\n", "    def forward(self, x):\n", "        x = x + self.pe[:, : x.size(1)]\n", "        return x"]}, {"cell_type": "markdown", "id": "61da655f", "metadata": {"papermill": {"duration": 0.012048, "end_time": "2022-04-09T14:37:37.815452", "exception": false, "start_time": "2022-04-09T14:37:37.803404", "status": "completed"}, "tags": []}, "source": ["To understand the positional encoding, we can visualize it below.\n", "We will generate an image of the positional encoding over hidden dimensionality and position in a sequence.\n", "Each pixel, therefore, represents the change of the input feature we perform to encode the specific position.\n", "Let's do it below."]}, {"cell_type": "code", "execution_count": 10, "id": "35e0dece", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:37.840839Z", "iopub.status.busy": "2022-04-09T14:37:37.840293Z", "iopub.status.idle": "2022-04-09T14:37:38.380487Z", "shell.execute_reply": "2022-04-09T14:37:38.379879Z"}, "papermill": {"duration": 0.554884, "end_time": "2022-04-09T14:37:38.382455", "exception": false, "start_time": "2022-04-09T14:37:37.827571", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNDQyLjA2NTI1IDIyMi45NDg3NSBdCi9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUiAvVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJytV01z0zAQvetX6AiHKlp969hSKHCiNAMHhkOnMSGdxpkQSv8+K+fDa1uRzQwHZ+KNve897Wr1Mruu/qweqs83V/zNHZu1dw87BvyRzS6BL3dc8ke8XjjwG959SGJ8zYxRQjqrLN49kTullIgmeItR2btLT/5krEacJd7cYPIlY0YKG6XDd7UX1mh8eM20c8LbbvSJRpWUwql9uM1Ao4j0g215Jr1WToDj4LSQgf+q+Fde89mlSrpxCfB6aeh1dW/xPc+TCnAml/ZhzWcfgF9v+C275dtjRoliU1YpwiEvRvKqSdAIeRDNrnC9XtgWPyW/QPT0hgEZ089pfRMyu5rz2TvgIPn8R7PU8wX7xl/Ba/6dzz+yt3N2yxoGzAOKD9BFJsESsjMiyDAFVw6BQVoBRveQabQEHYPwYYpklYPWUQD0RdNoCRq0wrabIlvnsD22WRzIJtEidmp5PUW3yWAr6XFf9nXTaAk77SY/qdw2h20g5e5jk2gRG391k+rtctjeCjmoN40WsV0QblK9fQZbyyDioN40WtzbUgk3qd4hh41zOA7qTaNFbO2Em1Tv2MGm7WqV0Nq4lCQK5RvQ83k+vU6MEp9Xm93q92pT81XNd9X2uaofqqG+3KRHfdjOw/mfqasXqqkARCeCakj+0+hs4cFLXMj0jcK30fx2EsFDAk2bWpmoy/iZ+hICWCvpoU/gFB0hgBNNeVMmkBukhAA2qoyDFThFywRwmqs4sgC5Ydri4x4F1dd/CpbR8RjTakS96bV4ynCRcoERvmGOEzwoOyLi/WqxqGq+WK2reof9TZMq/nHvsxpn0HUbI/6g0+h3Wbu0PmeX8Pl/8Fydpzu77mx22ehaEi+1pHVAr2EdNK+5w2tk/dRwQqBBsAnmOCPunziOh81iVS/55k/1i//sLfKOrvLB0O49597UnrynDhH3y2AhIg4KZfrms41SvSTFwH0mF5iDwC61Ju8/cYDA3nanDiY2smRMw8GW6oSG18FzN4ZU7Q0pMaNHI7qkkqwXUQVpddNmeO73w7kdZaQ5vW8EaADvrdNqsB8Czviwb6FjYRHCtmXa7oUnGacvif47uLiuHu+/PN/d17uL9ap+3h0M9vHEayV4REEOVnUltOERCd4IC055D9HDNAnU9/wPCTgWXcSh0pPQhkckRCOiBO3ROck4TYL6z1UAwH4PWlvoaiDxEREAVqjgjHcGPwqzFTnmPBDhggYfvYgZcGnjY1xw+DgP1jsZQ2nOdxcyx8VGEay2Ay5tfIyLxcPdOuetx9OryCXnxymXgHR1cLZH5RQeY+KdMCZtdjwEhrtdntnkGSb0QCFMyj6OMpnk5Hp9Ujp3zx4JGv+l+vNHwoSDok0x4fzI0WhOlTsU8BdPR6hMCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTA0NAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHAP+A87TT6YLcf1vLmXSDFGPLL0RXdOyVh8fGlI33aGNPhC1c5XQaTlMZj4u7Zl2gy2Ey02+8mrnAVGGR1eyi+hi8ofOsZoevVTMxhDeZEhpgKndyD/X1pzjt25KQbFdh0J0apLMwzJH8PRBTc9BziJH8I19ya2HQmeYXFy2rGa1lTNHsYapsLQzqjUF3yvXUeq7zMBHv8wPfQT5kCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDcgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMxID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NCA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMiA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDMgPj4Kc3RyZWFtCnicTVG7rQMxDOs9hRY4wPrZvnkueHjFZf82pJwEqURDFEnJw1O6ZMphfUpGSI4uD20aS2y6PDdCU4eKgqlrieqUq5mmzFMsTdDz3lmu5hjge1U31N/0iF4CkVGCVWGBDpA7uGD42WsmbFELIjGGUDOAacIKc7gSMQQZjLVnGJQqDE7VzypX+y+nZdgqsHgwnSI/sppop1+6HHjrKQdC2NyVu3ohTQjujQZjzCxcd6mynQAcTHSZiYxYvA3H0yEMDV6aBqxw1o2YILEbI6UPXgcZ07B3RR51txjxvlvGlLvVz31RfeZd7R8IwRsn+HsByhtdXgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcwID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxOCA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MCA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjUxID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc0ID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9DaGFyUHJvY3MgMTggMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggL3NldmVuCi9laWdodCAvbmluZSA3MiAvSCA4MCAvUCA5NyAvYSA5OSAvYyAvZCAvZSAxMDMgL2cgL2ggL2kgMTA4IC9sIC9tIC9uIC9vIDExMwovcSAvciAvcyAvdCAvdSAvdiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTYgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE1IDAgUiA+PgplbmRvYmoKMTYgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTUgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTggMCBvYmoKPDwgL0ggMTkgMCBSIC9QIDIwIDAgUiAvYSAyMSAwIFIgL2MgMjIgMCBSIC9kIDIzIDAgUiAvZSAyNCAwIFIKL2VpZ2h0IDI1IDAgUiAvZml2ZSAyNiAwIFIgL2ZvdXIgMjcgMCBSIC9nIDI4IDAgUiAvaCAyOSAwIFIgL2kgMzAgMCBSCi9sIDMxIDAgUiAvbSAzMiAwIFIgL24gMzQgMCBSIC9uaW5lIDM1IDAgUiAvbyAzNiAwIFIgL29uZSAzNyAwIFIKL3BlcmlvZCAzOCAwIFIgL3EgMzkgMCBSIC9yIDQwIDAgUiAvcyA0MSAwIFIgL3NldmVuIDQyIDAgUiAvc2l4IDQzIDAgUgovc3BhY2UgNDQgMCBSIC90IDQ1IDAgUiAvdGhyZWUgNDYgMCBSIC90d28gNDcgMCBSIC91IDQ4IDAgUiAvdiA0OSAwIFIKL3plcm8gNTAgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNyAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzMgMCBSIC9JMSAxMyAwIFIgL0kyIDE0IDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyNTUgKP7+/v7+/f39/f78+/77+fv7+/769/r6+v749fn5+fj4+P738v718Pf39/X19f707v7z7P7x6vT09PPz8/Ly8vHx8f7w5/7u5f7t4+/v7+7u7u3t7f3r4f3q3/3p3P3n2v3m2P3k1uzs7Orq6unp6ejo6Ofn5+bm5uTk5P3j1P3i0f3gz+Pj4+Li4uHh4eDg4P3fzf3dy/3cyd7e3v3bx/zYxPzWwfvUvvvSvPvQufrOtt3d3dvb29ra2tjY2NfX19XV1dTU1NLS0tHR0c/Pz87OzvrMtPrKsfnHrvnFq/nDqfjBpszMzPi/o/i9ofe7nve5m/e2mPa0lvayk/WwkMvLy8nJycjIyMbGxsXFxcPDw8LCwsDAwL+/v729vby8vLq6urm5ube3t7W1tbOzs7Gxsa+vr/WujvWsi/SqiPSohvSmg/OjgPKgfvGefO+beu6YeO2WduyTdOuQcuqNcOiLbueIbK2traurq6mpqaenp6WlpaOjo6GhoZ+fn52dnZubm5mZmZeXl5WVlZOTk5GRkY+Pj42NjYuLi4mJiYeHh+aFauWDaOSAZeJ9Y+F7YeB4X991Xd5yW91wWdttV9pqVdloU9hlUddiT9ZgTYSEhIKCgoCAgH19fXt7e3l5eXd3d3R0dHJycnBwcG1tbWtra2lpaWdnZ2RkZGJiYmBgYNRdS9NaStFXSdBUR85RRs1PRMxMQ8pJQslGQcdDP8ZAPsU+PMM7O8I4OsA1OL8yN15eXltbW74wNrwtNLsqM1lZWVdXV1RUVFJSUlBQUE5OTkxMTElJSUhISEVFRUREREFBQUBAQD09PTw8PDk5OTg4ODU1NTQ0NDExMTAwMC4uLiwsLCoqKlwoXChcKLknMrgkMbYhL7UfLrQcLbIZK7AXKq0WKqoVXCmnFFwppBNcKKESXCieESebECeZECeWDyaTDiaQXHIljQwligskh1xuJIQJI4EII34HInsGIngFIXUEIXIDIG8CIGwBHyYmJiQkJCIiIiAgIGkAH2cAHx4eHhwcHBoaGildCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMzI3IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxNjQgL0xlbmd0aCA1MSAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAzMjcgPj4Kc3RyZWFtCnic7ZwLeFVVfsWxNDBASSM4VhJTaMhAQJJGoFQEDWEARVDGVkZGSAciL4tggiJSKhCeJr4q+EYMiTjQ8QFSWqRgxWl4DAxDAUFRgXZ0kI48Ooi8o/Nb+Z/ck5MXES9fbu+31/f5qeFmn73X/7DW+u+zz21w2WWXbQXvv//+D8DevXu//PLL/qCoqOhrkJ2dPX/+/PPgqaeeuhvws8WLF98CTpw4wcf3tmvXjl9+nzEaNmz4W3D48OHW4L333jt9+nRvsHLlynPg3nvvnT179jcgLy/vPsDPVqxY0RecOXNmHejYsePRo0c/BTExMb8Cu3btSkpK+hgwq5tAcXGxZjV8+PCnn35as3ryySdHAQZ9+eWXbwPM6j9ASkrK7t27fwkaNWp0EHzxxReJiYn/CU6dOtULrFq1ign8PZg7d65mNX369NzcXA365ptv/hgwq5+D9PT0Y8eO/QY0adLk12Dnzp3x8fGfgOPHj18PlixZ0sDx6HiMJB4ZYBaYMGGC1vrWW2/16dOH9Z9ev379X4AjR4589tlnDQDLEl/JyckfffTRl8Z2kbEN2dkLFiwwsp8aOXKk1lpYWDhgwACWdeLdd9+F7Hasa8uWLQ2N7cPGtpEttv8FGNlzgJGdl5OTw6DLwcCBA1nWmbVr13YMsQ3ZMdu2bdsVYptlHYfsV0CI7KeN7CdHjx5tZL9sZJ8Ikb3byG4UIjvRyD6VkZHxr8DYnmtsQ/b0iRMnGtli+yyAbMej49HxGIU84jOLQGlp6Q4wYsQIJvLfgE9Krzt06DBt2rQPAAPPBFxmzZo1UmNWcivIysraDpg4pKLETV544YWvABVAtnuCkpIS6TicpaWlTQLQoEI888wzLVu2RKSX8MsQsm3IkCG33367XIG5awmXX3450xfTe/bs+Qdw7bXXUsWPuPr+/fv/GkCPqstiCgoKvgc8Uzt06NDYsWNhfyC109WXLVuWkJCgOkP2/4HHH3+c4lKYtfzpJpCZmUkVfwdOnjwplnxqcJYRlanpEKDG8eh4jCgeGUShqkuXLvcDVoh0PAdiY2M9nSExDQWDBg1CKT9jkNWrV18FCIPeCv8RXHPNNYRJ8XvgwAGFKrIml5d8LFy48I8BWZEJ/i9Abn4I0CWurojWtm1badjvy6D/4gf/DPhjPqTP8iv6TQZgmBWMxqAaG21Ej0dyPS6rqzMJpnINM2Jimh/T/DPApPlT5VsWchdgWSxOa2SpWjELZ/liATLESYAabosjfOJ5wOe9HOtT43h0PDoeo5BHxHQy2LhxI3paynVZli5z9dVX01jP//zzz7k8/eUxoqXo6dGjB9orbecy/wUwAnXmjPX2228rwaHyakYffPBBZF8tOXPR2MQ/QunfAezjCWBVkeZjKerpU1NTcQvY38nY+hf/16lTJzXzfEIc83kVE4+Ii4v7KcC8zhq4inJss2bNuPKDTIB5aDrMSn03U5w3b54mzNia/ksvvQRD/QDWpAUyNg4nJ2LtogcLUiGYOuxgaKPhiuw4kYoxtpzynXfe+VuAgTkeHY8RxWNgxp1sxlqaN2OWy6o1YzjQdBmVGYseWPJnfM5mDJuDbMbz/BnDOzPuQhECMz7oz5ja1XnG6mLRJcZGAPcsXryY9i2jW7duBD5pGGNLSMmmbdq00e7X0qVL1eShZps3b1YGJeLSBU/Yt28fanvCdv/uAWRZmj5t1zG2YiHSKWkms7722mu0jF8wtv5FQE5PT6d/7kP0/RDwecej4zGieGTGg0F+fj6X2cxi+KGuy4LERt++fQkZdGu3M5ZkjzUxnLSKiWg/5eabb24KkFQUR1vr6OA3NhMI16p79er1p4A+bfny5UoedI3nTXXp8RRzrrvuuisA1YIXdYgUTGPs3r173bp1dF/TkGU4v3r8+PHaGKLrgwONAXNQ/M6jjz7auXPnJEAIUqdJFamKsgnJSBFqypQpKSkp2sKiWyUErab/O2eAGm6Bt6kbrR4fSuGztJHLuL2+NjDaq2DUqFEEsrYQy/2jy1rdzjMXx6Pj0fEYhTx6tG3atOkRMHDgwIYNG/4IIKb/A3za9u/fj3g/gxM1btz4J4DObAvwaSspKaEJm52ZmfknYMyYMUi/vAop92j7+OOP/wl0794dUW9JkiwsLAzShptpy7lnz55q5saNG4c1kWE/92nTbt5jjz3WtWtXTCcBv1Nrt337dmjTGNCmTnPq1KmkUaymTU5Ozr+BAG1rAL1ex44dtVH/0EMPYUZLfdp27NjxM4DfJQM8ZdKkSf8ODh8+rAGsu9W+3n333ffnIC0tzfHoeIwoHtFHtKcH83kR0GahBWeMGw0JPXClUfPy8oYA9IEFaiOcxUirIPsosIVqI5x5Ip37IBHFUStJ0FQ2Rf0QXG1AE/9Uu2/KoAAGldKwOXPmZGVltQfIKbp78wMPPLBixQoquJ8lfGWyyoVOQifREopXIlRqG8m4xFZFUfRY2kYKZFytgEsom8I0UosN5I8YMYKFpyH7yDIs57zxxhs6agDTXsXh6pg9+hdZRGhSsdQ5Pj5eiZQ6o8A6Y0CA9S7heHQ8Oh6jkEf+0aYWbTCJcSPxjQ5UXWWLFi30RAy3WLBggXSZ3Ce74RpcSS0vIU6a/9xzz2EH4whV+M+NAHkmSb5EeES5vZLoElyUhCpXIA8qs7Zq1SoxMVGmRoSUF3z66ad09ufsEup8WRoJk+T6Goqux4OYoFr17OzsgoICPGk9VT9todeK/gEBVlWfOXMmViibuPLKKwcAEiZF1+M+K7pXdZ1HoOg6aoDx9OvXrxkgQmp7b+7cubIsihwqepkn8wN+rIMBVF15k19xPDoeI4pH9FHb2fR/el5E/CsuLv4F4MPal/KSnVEhKSNbkTUlQcgpKW0qDaGWFhsbi26iONfR/z0OUB06J7WSCKa3T27acw6GjtjBob17974FyJT3gptuuok0RjkaI6dSosmTJyOpasnIpjptAFFnQ1PSf/ED/XzDhg18SAmYMKjfZACG0WEdBlWduQRSqwObXFZX506wGZ33tuZglMmq3UPatQIWQtLtzrJY3F8CKqMVU0Lipo4OQIY4gRrHo+PR8RiFPHo5Ea3WOUKyIilLpwRnzJihpwkZGRmkJolv586dtX1GpHv++ee18USC0w4+3uPJtpcfSV7qiD/55BPCl1ry3Nxc5U26WWxCG0/YmB7tEfWKioqIrO+R9nQQ0WvVbUpSdIwKa1K0pJl/GAwbNkwnr2jOSYzdwB133IGDPPr666/T/2pDwCtaaEbn7fH+UWwSy1LknD9/vp4r9O/fn+77jwB5VQeq8EesQz6IReocuN1GZ0O3ke4jPXDEj+FRUXTKlCnK1N4+hePR8RgxPKKP5LhW/O3XCxgwhwAoGhUWFkoE0SUSmZ4ookQKg9YGeWvVZViuHgpyXQRDb28wERSkgO4JwdVlyJSS4KZNm9Lu6VgyMU0P/+AX1YKC18mOUi5oIJRq1cZEORXWDUrDqJEOKBI0aeS0iY2UkW8XUF3UTGcJyLEkxitjYmISEhLU8RJUdXaRIqCeOohN9kNON9hrJZI3W9XXoVVpWfo5f6xNPWijl9VvMoD25rkFUGDVMykpSWpOTR2PjseI4tFPNeqvECkEQFsZqJb6Kxo8ZIww8RDSpJezaINQJ53vb926tWIObZ3khpyAbmoDiF4R6Txw8OBBkoRaSTTT6/X83KOjBkgZqqXdHLRN8efZZ59F65SAbrvttr8CxBYk9fsgNTVVD97p1tCkKcQzJFyb2EiZNuUJIN4xPW9b3Bc16iztJRwhtWollyxZoq2tvLw8FFFHmXr16qVt8ebNm2MDehJ2/fXX/w3IycnRQzi60lWrVr0LaCql/IQm6uxtP3lwPDoeHY9RyCM+0wIkJyer84EojGE4gDki5AzaskWLFunJOvKsU75MBu3VOyJMzlPpUnvk7s9fYm0nHvUJPqjP82v8ssZAtjUiVKDcem8LauQF9F1ES3WZ2JKeKDZo0ABr0tuzXbt21fuuFE1vqE6cOPGJJ55QNqX7ZJGrKATGo10xKiMnYq1UUNaEQ/lV9F1LJ6RgQ/ve1FP00BTu27dPW4HYnk5Pc1/oNOSkSZPGjx8vY7zllluUWTt06ICT6cU0qNfZAy8/Oh4djxHDo7/y0tDKd9vKt4VWrm1hFq63m1g59E6xles4ANRr5RTCFt4gLi7OX7layXHjxuktAFaOAOpFKRaubRVWTmL8ra1cqZGVs7qTtnJ/1d6zd22Q8wl9kJUjv78JrHz58uV664BEOim0cgVKFi7Ns5XHAlt4WmZm5p133qned/LkyTp7QGjGDdQX0odqy4s8rNOQGAb5WHvtyK8Sc+CW8WTY8eh4dDxGIY/4jI4vEtH0cI2YdsMNN+h5IR0kiXEYZHEZvbCFHajvJnnReutqpDc91OeCetJI5IR2bSvRi6sQ9h6oWnI7VV5a5fJ++fiEsh8lJAWqW2cMbXOzCgqpbpg4q2KSaIsB9czPz9cL79RUZ75HjRqFNyoM0k7DUCaNNUlXJkB19RYuJGJZepqPTVDjroREfEN1vueee5SAKTUhWC+7UA51/SRanQPAw+j99bUe2Ji+hARPovB60ohJ/d7szPHoeIwoHquEPtakxcOBJCGwJvWLrAnmRCA8ak2kQG2T2Zr0GIhuS2Fw6NChrEmtZM+ePXW+p23btldccYXWRO10QvKqq65CuDqD7t2765QO6XDs2LFI23jW9BggvSGpWhNxTmtas2aNGjR/TcikNuVZE7KpZpNMKCG1XvR8dTC1PcknWL9ogA09+IIbGNKBTVRbJ5RgTzKO9q5cuZKg+gaBUpt0CD0KrG8gIsqqgbz11lsdj47HiOKRNWlptIbaFmet7du3Vyxg8fr2KpQSNpRvsrKyRM/IkSNpGSWYRAV9YQWaqUc+CxcuRDdF7KuvvqqdGNRs/fr1agOhXu9CbNmyhVroAZKJ6E5qZDr6AcIoffS11HvXoIqeBqseKrwqz++fsuLvMZHdtWuX2lFuAQW4rVu3MgcpOTPSszXuhGXLlmlPC61fDAg93A96SWP27NnqiR9++GHlO+6L7OxsHfhBfolKd/bt2xcFxkduoJPW+R6MxfHoeHQ8RiGP1c2u1Lcbm92HluwUC2122212en0L79FRl5KSEvxHzwvpqsQjfWRRUZGOFBA5dfIGJyKD6oEbgU/vzt999910ZUqpQ4YM0ZN4POnGG29Ul4kt6RFjQkIC1tQcxMTEaKOqWbNmlwNSYJs2bfQ9FARBbcrTgQ4YMEBHKekG9fIqXpWbm/sAwK60q40/YFkvAAxDm+80p6tXr9bJTvpKfSkQ5nXgwAGdJcBq9D7uoUOHfmdBERfSBpvZ2HHsyZzsK29PDjgeHY8RxSP6qO+tozXUtjjtYXx8vM7gtGvXTn/1UUpaLB1XNrH8IculZZRgEhAlGvRjequdzgzdVI+GrEw37URn1ErCoR4soT+QKiVCRLUfjjShUGr3YF+SRSEohzSMwiisUiZPUqmb13PqGJIpq3TQxPVDam366vWhZ32N9VCL1FYRXf9W8rX3tH9HmQTrpjIV1o3leHQ8Oh6jkMfah/va5uMNFzQeL6nZcF5a01q9wAYBJMZfmg2JG3MiPYmHNrFn8U2MQqz4hWYLcQVQrwpQCKxJVaE4qhGl0tczUzfKpypSTNWU0pLqVGfKrWRH8bkFdCdgV7ovuD2wLN0r3DK6c7iBGjVqpJOdcXFxerk2MTGxdevWetklPT1dXX+3bt10rrlfv379+/fXCc5BgwapnR4zZgxOpuMKEyZMwM1y77//fsej4zGieGQ4ne1t3LixtsVjY2Nbtmz5fZNJvSfODJiIXp0k0qlfJNwxR001IyNDO8/MXScnTTd13JHuSS9M0keSDtVK0lXpXQj6K0KjOq2pU6eqsSRJ0n3pHMCsWbNmm5hCoLpM5JRGc+GiRYvgln6zkChabLKqtxdMWXXe2cR1HcUxff2F9aEbTGPVjlJInQAyqVWBTW0ltxR+pyEouqa7ZcJr2mvyW1F/DX4L63h0PDoeo5DHOieqkOmU+uP43nParuZd+gPPgwIpy2a8w9xIK2FB5ke/YpFbzJRY+CbzJbEBKVCjaGnuJHsSe+ZQYtRMqhiaIVvNPNSrAhSCcjxifqUaUSoKpu0wyqcqUkxKqj6fAqvOlJui62AAt4DuBG4I3RfcHtwkfc3HdOdwA5mT9eCm0r3FLeZ4dDxGFI+ePhKoGptGNm/eXKdgCFr6qiyUslWrVlLKpKQk5bDk5GRaRgkm2ayTiaZOTvq6SQ+prxIkyPXu3VuRrk+fPprF4MGDmZI2lJmc11gOGzaMSWcRBH9qYspi1GWyLOVEX1LJjlNNVvVaF1SQKWeYus4ydZ0zZ44i57x58x4xkSWGvmg6q9fqfaklqBaZ3L7yyitLTHG1Lb60DMtMeJVv165d62uv17dqf58gvMFgKiwZdjw6HiOKxwvoY81iWUEwq+hmBe0M7JacqqKi5TpaJqRei+npaWVJ9XpOX1m97nOrwWtCNxt8jQUsvMSXWlNbyS1E/dwUV+wZjz8z4RW/0OxpL9QXmv7q6CJVMQV+kVLlmww7Hh2Pjsco5BGf0WFksxp5TZMmTZqa3TQ3y8Fx9A6GmY5cJ95g3pNk3pNM99jOYBYkD0pNTU3zbCjkRHpN1MyozI3K/KgXoay3mVIfgzWaA31rMneSPd1lfecwg5mUXGq4wbwq27xqpPnVaPMroBfTzLXKbMv6UzOuaQHzEmbOnOl5mNlYmY+FrCzfUGB25nh0PEYUj99GH+smmtVqZ3UKGhDRoJbWJKkBZa2grr7A+hpbWWbLpdZX24Dg/joguh587fX6Vl+CNxk2GhyPjkfHYxTy6PuM12Z7nXYTQ9Om5aYTa2hRBs94vA68iv94/bjfkntO5JlRe0NKiudHMqRUz5Qq2pJ8ybMmc6cyewo4lJlUmUtZM1/Fq8yuBptl/ThgWz8x3GUYWgbfv8oMzOv8K9rYCH8bwHczx6PjMaJ4/M76eBHSWSctrUlSaxHXqgJbWWarVduA4FbR3aD2BvXXl2HHo+Mxonj09LGyRJbLpK+UIbEsbxkra2a5bvrSGVBPD0ERDelomZAaAnL6g0C/2b6KsnqoqK8VRLaLj4DUlsttSHCriG658Bp6B/Q3IMEeHI+OR8djFPJ4KX3m26DOnlRnh/o2lnUB86rdxgTHo+Mxonj09bGCRtaglFUEs4JoBnSzgnbWoKA1CWkVPfUlNSirvrLWJLBVdNaX2kpyWy645aisu6mpVfQ31L56Mux4dDw6HqOQx/r2l7DhIo0qTB7meHQ8BlHPPAb1sRqVDCpltYJZrW4GpLNaBa1GR4NaWq2kVlHWagW2ssZWldpqBLd64Q1ob7US7H3Ph+PR8eh4jDIe69se/l/gwp7keKwLHI/hQR14rE4fa5LJWgTzQtpZg4LWoqW1SGpNylqbyF5AbmsQ3VrkN6jCjkfHY0TxWN/SEyVwPIYHjsfwwPEYHtTmM3V2nbr5T13NqG6+VDeXqqtl1d3AanAyx6PjMaJ4rG9hiRI4HsMDx2N44HgMD+ruMxdnPN/NjS7Snr6TZV2chzkeHY8RxWN9C0uUwPEYHjgew4PvoI+XRDoviapeEsENwvHoeHQ8RiGP9S3QUQLHY3jgeAwPLo0+1q+Q1ofcOh4dj47HKOSxvgU6SuB4DA8cj+FBPevjxaMelbU6OB7DA8djeOB4DA+cz4QHjsfwwPEYHvwB7ZHo5wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjU4MjkKZW5kb2JqCjE0IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMTYyICj//v7+/v78/Pz/+/r7+/v/+fX4+Pj/9/P+9O/+8+z39/f19fX+8Oj+7+by8vLx8fH+7OH+6d3v7+/t7e3r6+vq6ur+6Nv+5db949T94dDn5+fl5eX938793Mn92cT818L807zk5OTh4eHg4ODd3d3c3NzZ2dnW1tbU1NTR0dH70Ln7zLT6yrH5xqz5wqfQ0NDNzc34v6T4u573uZz3tZb2s5TLy8vIyMjFxcXExMTBwcG/v7+8vLy7u7u3t7ezs7P2r471qon1qIbzpIHyoX/wnHvvmXnsk3SxsbGtra2rq6unp6elpaWhoaGdnZ2bm5uXl5eVlZXrkXLpi27mhmrlg2jjfmTie2Lfdl7ec1xckZGRj4+Pi4uL3G5X2mhT2GVR1mBN1V1M0lhJ0FVIzk9Fy0lCyUdBh4eHhYWFgICAfn5+eXl5d3d3c3NzcHBwbGxsZ2dnZWVlYGBgXl5eWlpaV1dXU1NTTk5OTExMSEhIRkZGxkE+xT49wjg6wTY5vjA2uyo0ulwoMrciMLYfLrMZLLEYK6sWKqUUXCmiE1wonBEnmRAnkw4mkFxyJooLJYQJJIEII0JCQkBAQDw8PDg4ODY2NjIyMjAwMCwsLCoqKiYmJnwHInkGInMEIXADIGoBHyIiIiAgIBwcHBoaGildCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgOCAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTYzIC9MZW5ndGggNTIgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOCA+PgpzdHJlYW0KeJw9wedaCAAAQNFLoRJSKbQLTQ2hoa0SRYOirIxUKEpICUVoKYpoKD1pf+7nHLbEP7EpNsQf8Vssi1/ip1gSi+KH+C4WxIh4I4bFa/FKvBRD4oUYFAPiuXgm+kWfeCqeiMeiV/SIbnFL3BQdolk0iUZxRVwWDaJeXBIXRZ0oF2WiVJSIc6JYFIlCUSDOilyRI9JFmkgVJ8RxcUykiGSRJGLEUXFIRIoIES4OiP1irwgRu0Wg2Cl2iP8CxC6xRwSJYBEq9okwcVBEiWhxWBwRsSJOxIsEkSgyRKbIEidFtsgTp0S+OC3OiApRKarEeVEtakStuCBaxFVxTbSKNnFd3BDt4ra4I+6KTnFP3BcPxEPRJR6JUfFWjIl34r34IMbFhPgoPolJ8Vl8EV/FlJgWM2JWzIlvYl6siFWxJtbFX20DycmcqAplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjMyNQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTMgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDQwOTE2MzczOCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjUuMSkgPj4KZW5kb2JqCnhyZWYKMCA1NAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyMDI4OSAwMDAwMCBuIAowMDAwMDEyMDg5IDAwMDAwIG4gCjAwMDAwMTIxMjEgMDAwMDAgbiAKMDAwMDAxMjIyMCAwMDAwMCBuIAowMDAwMDEyMjQxIDAwMDAwIG4gCjAwMDAwMTIyNjIgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQyIDAwMDAwIG4gCjAwMDAwMDE0ODIgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxNDYxIDAwMDAwIG4gCjAwMDAwMTIzMzMgMDAwMDAgbiAKMDAwMDAxOTIwNyAwMDAwMCBuIAowMDAwMDEwNjY1IDAwMDAwIG4gCjAwMDAwMTA0NTggMDAwMDAgbiAKMDAwMDAwOTk4NiAwMDAwMCBuIAowMDAwMDExNzE4IDAwMDAwIG4gCjAwMDAwMDE1MDIgMDAwMDAgbiAKMDAwMDAwMTY1MyAwMDAwMCBuIAowMDAwMDAxODk2IDAwMDAwIG4gCjAwMDAwMDIyNzYgMDAwMDAgbiAKMDAwMDAwMjU4MSAwMDAwMCBuIAowMDAwMDAyODg1IDAwMDAwIG4gCjAwMDAwMDMyMDcgMDAwMDAgbiAKMDAwMDAwMzY3NSAwMDAwMCBuIAowMDAwMDAzOTk3IDAwMDAwIG4gCjAwMDAwMDQxNjMgMDAwMDAgbiAKMDAwMDAwNDU3NyAwMDAwMCBuIAowMDAwMDA0ODE0IDAwMDAwIG4gCjAwMDAwMDQ5NTggMDAwMDAgbiAKMDAwMDAwNTA3NyAwMDAwMCBuIAowMDAwMDA1NDA4IDAwMDAwIG4gCjAwMDAwMDU1ODAgMDAwMDAgbiAKMDAwMDAwNTgxNiAwMDAwMCBuIAowMDAwMDA2MjExIDAwMDAwIG4gCjAwMDAwMDY1MDIgMDAwMDAgbiAKMDAwMDAwNjY1NyAwMDAwMCBuIAowMDAwMDA2NzgwIDAwMDAwIG4gCjAwMDAwMDcwOTYgMDAwMDAgbiAKMDAwMDAwNzMyOSAwMDAwMCBuIAowMDAwMDA3NzM2IDAwMDAwIG4gCjAwMDAwMDc4NzggMDAwMDAgbiAKMDAwMDAwODI3MSAwMDAwMCBuIAowMDAwMDA4MzYxIDAwMDAwIG4gCjAwMDAwMDg1NjcgMDAwMDAgbiAKMDAwMDAwODk4MCAwMDAwMCBuIAowMDAwMDA5MzA0IDAwMDAwIG4gCjAwMDAwMDk1NTEgMDAwMDAgbiAKMDAwMDAwOTY5OCAwMDAwMCBuIAowMDAwMDE5MTg2IDAwMDAwIG4gCjAwMDAwMjAyNjkgMDAwMDAgbiAKMDAwMDAyMDM0OSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDUzIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA1NCA+PgpzdGFydHhyZWYKMjA1MDYKJSVFT0YK\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"442.082438pt\" height=\"222.954375pt\" viewBox=\"0 0 442.082438 222.954375\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:37:37.982625</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 222.954375 \n", "L 442.082438 222.954375 \n", "L 442.082438 0 \n", "L 0 0 \n", "L 0 222.954375 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 40.603125 185.398125 \n", "L 366.763125 185.398125 \n", "L 366.763125 22.318125 \n", "L 40.603125 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pcc0eb202ff)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAUcAAACkCAYAAAAE7uzzAAAghElEQVR4nO2dd3xWRdbHJ6RQEkJCQguhCVIDCwgCCgiissjq2hvu2tey6y62VeSDHVnL7qK+uq8iZdcCay+rgKAoVZp0AkhPqAkh/Ul7kvcPP++cc4a5w83jk5Asv+9f5+bMnXufWyb3nPnNTERKSkqVAgAAIGhwqk8AAADqImgcAQDAQkRlZZCF1RGn7kwAqAGqqpA1AqGBL0cAALCAxhEAACygcQQAAAsRkPIAAMCJ4MsRAAAsoHEEAAALkPKcpkDicvpQWVl5qk+hXoIvRwAAsIDGEQAALKBxBAAAC5DyAACABXw5AgCABTSOAABgAVKeGgAymfADOUr4wXPqBl+OAABgAY0jAABYQOMIAAAWIOUBAAAL+HIEAAALaBwBAMDCaSPlOV1kC6eL5OV0uZ/4nacOfDkCAIAFNI4AAGABvdUAAGABX44AAGABjSMAAFhA4wgAABbqhZSnLnbz1wfJTF28bkrV3fPi1MVzrIvnZFIX34tQrxu+HAEAwAIaRwAAsAApDwAAWMCXIwAAWEDjCAAAFtA4AgCAhVqV8tSmFKG2JQW1+dv+m46FZwLHOpXHcj0T+HIEAAALaBwBAMACpDwAgDpFgwZ145utbpwFAADUMdA4AgCAhbD3VoejdykcvYo10csVjjrrSh2cunK9/5vvWbh7yuvK76qJOuvK84gvRwAAsIDGEQAALKBxBAAAC5DyAHAS6oq0pL5T365j/TpbAACoJdA4AgCAhZClPKF0lfvtog+1G76m9wu1/lCkCTV9TvX5N1e37M/ZR6m6+dzW9LUKVU5TV57bUPfhvxtfjgAAYAGNIwAAWEDjCAAAFiDlAU7qm/yiOtS331YXz/dUnlNNH7vuXW0AAKgDoHEEAAALvqU8ru7wcEgdwiEB8FuH63xr8zzqwzWtK+cRqhwj1Dq8yoajjurIZE6HOqpTZ23WgS9HAACwgMYRAAAsoHEEAAALkPLUMnVRjmFSm+dY348V7jrDUV99r6O29+NERFC/S91/UwEA4BSAxhEAACw4pTyhSDzMfUKRZ5h/D6VbPhznYR471Dr8yiDCca3qyj1zHTcUWUg4nolw1B+q7InvF6rMJBz7hbv+unTPvPZz1eHy4csRAAAsoHEEAAAL6K1WtTCAHT2aIe1XV+oPdzneI2oSGRlZ5+uob8cO9Vj4cgQAAAtoHAEAwAIaRwAAsOBbyuOSY3jZtm2Ol8TAVYdLHuBXglKdOlz7eZWrzWvlOlaoEppQ6/+5dYQqB6rNc6xOHaHISVx1uP5e03X83GPVxDn6rb86Up5gMKhtfDkCAIAFNI4AAGCh3kl56oMEJdT9XOVqso5Qj+vyhUNyEQ5JR02X83uOvFx1rinf5rZTguKow3UeXsdyHS/UOmr6HMNxHvhyBAAAC2gcAQDAAhpHAACwIKQ8ppLCJbMIt7TE1fUeDllIuH28y786dfD9qnMefL9Qf0tN1hGqtITbFRUVP7sOl89Vzu+xw3EermfHJS3xeyy/9VfnPLzkMKHWUZ39vI4XDimSeR78eceXIwAAWEDjCAAAFk6plCcUaUxty13CIX/xWwff9isZcZXz6zPrDsXnOpb5O6Oioqw+81guOUZ0dLSnj2+HUq626+DXg9tmWa/rFmodfsu5jm3eM75dnefKaz+XDMdvHdU5D0h5AADgJKBxBAAAC87ealfPkN9eNFfvbCh1+K3f7IXi29XxefVsuepw/U6/xzJ7T/l2KOVMn99yodZRXl5ebV846jC3QynnOq/q3DO/KoVQfK5eVr8+10QfrjpCndShOmXDWUd1ynEfvhwBAMACGkcAALCAxhEAACyEXcpTHXlOKBIXV1mX9CNUH+/253IGlzzAlEHwstxnyl9c9XtJMPzKR1z7mefLfX7raNiwoa/zNbdjYmKqXa46Pn6O5jV1+fzW4boXXvfdVYdfiY6r3IkSF1a2oozsoMyzCl95qXBVee3H/66UUhVsv6DMwVaVlVjtn+qnOqtKAz7LGT5ePzsvs1xlOcubl8jzrywjH74cAQDAAhpHAACwIKQ8waC3TMaUKXhJUvyWc+1nyipc9fOyfs/DVb/p4/WUlZVZ/x6qzyXDKS0t9fTxc3RdD9dv8VuH6zq6fovrXvBtLhFx1WHKTnjZUGUn4Zi8wmsfV1m/kpPqlq0tQh2JFkp6rDrlQkmxuVJb+HIEAAALaBwBAMACGkcAALAQspQnFBlOqDkCl4TBSy7hkoVUx8clKtxnSlf4tinp4FITXs6so3Hjxp4+XkejRo2sf6+Oz+t3mfuZdXj5zHIuOZCXzyUbijTXvyonuYcy5R5lAY9yAVFOldN+lYEiWUdJkdXH/66UlIlUGr7K4mI6VDGVCwakfIT7KkqMXHMR99F+QUOCUh5g+eQib19FCcvVlslcLfdVBIz+gXKWl2flyipl8xGgLowTfOVV3j6+zao4oVzQUQffj5cLmsOiHT4OvhwBAMACGkcAALAgpDzl5f5lIV5yD7Mcl7Fw29zPVc6vr6SkxGqfrA5e1vRxSU0gELD+3dw2JSnc52Wb+7mulV85UKgz+4RjbRWvfU5WNtzUtCzE76gV1wgqvykfv6kQMz3B9/Nbzm/Kx5V24WmcUH2u+l3pK7+pIdfoMHw5AgCABTSOAABgAY0jAABY8C3lCUdOxpUncc1u4pLJ8FwIr69Jkyae5WJjYz19cXFxwsfr8bJP5uP1u+Q63GfmZHhZL0mOUkpFR7NrHCgQPlVC21XcVyLLVRbmkl2QK33F+VZfsFDWUZpbqO2ygmLhK8svsvrK8qXUpoxJUkrzyjx95UVGnpttlzAZS8AYHstlJyUnSFKoLJeMuCQoLmkJ99VExpW/dabsKZLlO2Ma2O2T+RqzShuzWX4aOco1aWjk82KZbKuxIZmLZ7nEWCZ9izckbcwXEy/fs+imTZiP3vGGCXFGOdpuEJcgfA1im5KtAAAAnAAaRwAAsCCkPGVlMjzhUhNTGuPl43KXk/l4HYWFFIYVF8swjG+bvqKiIqttHotvmz5ep9/f6Xf2HtPnktqEOoNMKPiVsfiVnbjKudIkLtmGVzriZD6eNuFpEjNVwdMfrnSK61i8Ttc5ev1m03fCSCM+Ua1XWsTwmWmSYMFx2q+IfJXs70opFWTplCB7H5VSqiyf3pHS3ALr35WSaZLyIkPulk/bZYXl3j6WFuGjdpRyp0mKWB7DKy3yk89fmgRfjgAAYAGNIwAAWIhKTW3n6fTbC+1So7vCCR7+8DAmPj5elGvalHqQEhIShI+XbdWqlWcdfD8zhOL1mz6vczR7vFVRjjarCnOkr/CYNoPHj5KdfUgUC+ZmaTtwVIY8gWN5ZGflkp0tw5/AcZbGOGakOPJ4GoNC/8IKGZ7ks23TFwiWMZuNLHL01PpNApj/qXmv64m9pw2Y7e2LjyI7LkoeoWkjeoYbJRrKgUQWLicxJUKyvO+NkuKZ3Uz4mrRI0HZU8xbajkxqLcpFJrbUdkR8C+FTcYnMTtZmSYQ830AEnVdRZVPhK4ih7cIyel4KY5JEubxIesZyq3KFL7+KVAp5ipWrNMoFqVx+Wb7wibBXyYktSmLoHpawtFFZpDFxdLT3pNKuddT9gsluAQDgJKBxBAAAC2gcAQDAgpDyFBfLHJVLGpOfT/kELsMpNCQAeXksP5Gb61kH95nlCgpIOsD3+emcSTrAz9clyXHN7FMdeY0XfqUxrtlCzJEvPF/rlQdVSuZMmzWTOTCeh+U5WFd+1szx8vq5zfO25nmZ+VmxXZyrzaqCbFHOK1drbgePZwlfSRblfItZ7rbkmHx2AseYfCxbSlJKeO6W28ZonDw2CWz+CflZyrHx3O2J0hLymZOvhpI5izZGyHiNfOG5WaVkTtbMz/Lcrd9cbaNEQzqVRPed52qVUqpxS8qteuVqlZL5WTN3G9E0yWrzXK1SSpWy2cd4m2Fu48sRAAAsoHEEAAALTimPKwT0mmjBDK+aN29utZWS0pvWrekTuU+fPqJcixb0aW3Wwbd5GBlrDHqvOpah7cqs/cJXcWiPtssO7BO+gv1HmE2hXH6mDNEKDlHoX3hUhmhZpRR6HWdhWF65DO8LK7ylMV7hlfnfjctazNCoWTStt5MYTb7kRvJaNW3DwuUUQ/aUmkB2O7p/Tdu3FOWiUzppO6ptZ+Grat5W2xHNU7VdGIwU5fLKKSw7Fi1DtJwoOq/sCBmiHVX0DB6upLAvOyh/ZxYPiSOMcDmS7mEglsqVRPpPyXhhjibiKROX3I0/34mJiaJccjKFjvy9Ukq+Py1btrTuo5T7XeXplYaKrlXVsUxRLnh0r7YrDu4VvpJMeu8KMo4IX/bGXeQ7yNJ0h2SaLj+b0nvZxho4OWX83SI7YOQqzElGvMCXIwAAWEDjCAAAFtA4AgCABSHlycuTeTQuw8nJkUPi+PaRI5Q/OHpUSi74dlaWlFxkZ5N0gx+LS3eUcs+aw3M+LqmNa6YZ1yS5XnIVMyfD8zpmzofnebidlCSHb/E6TQkN346poOtRlZMhygWP0nbFwT3CF8gkn8ylyvvC86mFR2T+NC/HnvPJMfI/hY4hiOU+V0rnkhSX7KRZtPQlx1DusjmbLDWulZQUxafS/WyaKu8nz6fGdqAcaVSbjqJcVGvajkhKFb5gLOX0vGRrSsl3yXzPDh8+rG3+LvF3Tin5Lpl18GPz98yU57kWofN6t1zDis38qWtSaZ5P5e8Bf1+Uku+WmTPl/Rau/CnP15oytqhArrbx5QgAABbQOAIAgAWxhoz5icw/i02JDg8J+adux44dRTm+3alTJ+Fr25bCFV5HgrG+RNWBdG2X7VgnfAXp27R9bAuFkdnb5WiLYztppERGQEouDrMJNbkEQCnvENBcO6M5C+VaG9KY1GYU2iV2StB2ck8Zfiel0fWJ7dFb+KI7k7wpIqWntrNz5Ow9hw7RTD8HDx4Uvt27d2t7zx66VhkZMjTnIZsZovERUGaKg8OfJTNVwUMZHhqlpKSIcvzZ6dChg/Dxbf4cKSXDq9hKCh0r2XOklFKl7FnK27JD+I5t2avt7G00UicrQ6ae+LOUVSqfK55OcKUSYpn8ij9HSimVwp6lFDY7UPMzDSlPjzba5s+RUko16vYLbUd1Ys9VqzNFOX7fzWeHPyN79+7V9r59Uvq2fz/JdcwUG08nmCPpzDBen6+RAuPPkpl64s8SfybOOOMMUY4/V+3aSSkj3w9fjgAAYAGNIwAAWBC91UePyl5L/ml94MAB4eOf1jxE45/VSslP9ePHZQjIP629PquVkp/WZojGw32vz2ql3OF9+/btPffj4X7j0lxtBzNliMbD/eObjRAtnUYRHNtOIdqRTNkrf7DEO0TLK2cTYLC/u0bItDBGCfEQrXULuo5JZoiWRr2uSb3ktWrYrZ+2Izv00nYwsb0o5wrRMjPpevDniIf9Sslnzuyd5b2u5rpCXs+Sa5SXOUkHVx/w0MuVNuLPkVIyTcCfo8hc+S4F926kc9+5UfiyN+7U9rF02i97m9GrnUXX4KCx7gpXEvBQ3+x/5s+SObqqRUMK99s1pjWBWqUaI+K60LOUnCavR2JaV23HdJGj4CLbp2k70DBB26bChT8T/NlRSrY93Ge2Sbxn36WMwZcjAABYQOMIAAAW0DgCAIAFIeUxu825sjw1Var/e/WifFPfvn213bNnT1Guc2eakaXx8b3CV7L6K20fXrxa2xnL5MiO3UyGs8uYbJTnU3gOJd7ImXSKpTxJ1/ZSFZ86mHJKqSP7C1/jQb/UdrAdSSLM/Fh6OuUgN2zYIHwbN1Ieiec/TJkMl8aY94LLX/i96N69uyj3i1/QOaalpQlfly5dqL7yXG2XrVsoyh1dvFzbmUt+FL49Wyhfs4Mt0sVnHlJK3otYYwGs9k3oXnRvRSMlUodIKU/b4fRb4oZcIHyR3Ydpe+9+KUXavn27ttevX69tfh+UkrlynodSysg9MVmSOaKC5xLNe8Fnl+I2vw9KKdWiIZsId8Mi4ctZulTbGd/RM5a5XuZg0wtoMufDRs6Ry4i4BK2tIZnrmUgjWFIGthG+dufRs9Rs6Pnajuo1XJQ7yCYU5vdBKXn9zXdk1y6alYfnl03JD8ccZcPvBW93+DuhlGyvzjxTyplS2CS8+HIEAAALaBwBAMCCkPLs2bNXOLdto9En69bJkSmbNm3SNlfJm6p4HiqaI3B4iMJlD+anLv8M7t1bjhzhIUpyFIXcZRu+EeWOLV2m7cwl8nN/3zoa3M9DRaVkiOIVniglQ8VuCXLAfepg+m2p59H5x597vigX1fM8bR/IkiE3D1F4SGKGJzzcN++FV4hihopcxmLeCx6i8FCxW7duolzreLoG5Zu+Fb685Yu1nbF4s7YPrJLreG/Lp1DxgDGqiU9Yaq6Z0pZJTXo0JflOSn+55ki78ygF1PzcYcIX3Wekto8GKOzdsUPKtPh7YL4jO3eSDIdPIGHeBz6pgylV4/eCj/QwJ4Tm74gZ3rdLod8dTF+i7YLlMp2SsYiepQOrpPxqB1tjZ38xvWdFxkSy/A03R4p1jaN70SFNrg2TOoyesxbDz9V2TN9RolxeJEmHfvxRpnw2b6ZniadTeDumlBxFZk4Cwu8FvhwBAMACGkcAALCAxhEAACwIKY/ZNc67w88/X+bHRo6knEz/vpSHKv16lii3Z/Zn2t78xU7hW83WA+Zr/iYbM5MMSiKJQffLpVSow/VXaTti0OVU9+rVotzXX3+t7cWLFwsfz9OZM83wmT+6dqXhT6NGyVwIvx49O0nZU2D+DG3/+O58bW/4Rs5osiGPjm3mcvjQv4FsAaye1/YV5dped4O2SzqfI3yrVq3S9sKFlG9ayuQiSskZWMyheHyIJpdzXXCBlNoMH04Sj85JMo9WPI+ux9a3SLqyboUcVreJXQ9zVpuOLMc7sHOC8PW4ZoC2W193k7Zzm3cV5b7//nttL1iwQPhWrlypbT5kzVxEi8tHTMnIhRdeqO1hwyin2TbKmED4s1naTn9X3ovV60jWsr3Ae4htF5bPO6uHnES51zh6DppfQdfjaLScSJY/B/z5UEqptWvXapvnT03atCEJ0IABA4Tvoosu0vY558hnM7mYhpRmffBPbafPXinKrWbDb/cYsj6uGOvWlGbCOsvINfcYN1Tb8ZfeKnyZJfRc4csRAAAsoHEEAAALQsqzdu0PwvnNNySHWbRIKve5TIGPJjBDcx6K8tDT3O7bm0K00gUzRbldsz/X9qa5cmTKD7n+QvMhLWn9kG5GaN7+hmu1XdXvYuHj4TkPzb/77jtRjsuZXKE5l1mYofmIESO03aODHKEQmDdd29vfoRBw/bdmaE7yF3N9Xh6aD0ol+U4PIzRPuXYcHbfj2cLHQ3Meii5fvlyU8xuac2mWKzTvGC9lIUVf0PVIf3eJ8K1dSWHwViYHcoXmg7rKdUa6X00hYatrKRQ9niDX4F6xYoW2v/rqK+Hjzw6fmchcj4XLdfr16yd8o0eP1va555LEpY2Sk+7mstB86zvLhG/tRpJ0+Q3NBxpSm54sNE+87GZtH4pIEOWWLaNjm6kKLq9xheZ8BNhZZ50lfDw0HzJkiPAlFTBJ4fssNJ+zSpRbuYNkcnuLZWjOZWH4cgQAAAtoHAEAwAIaRwAAsBCVmkoz0pgLHF155ZXanjZtmvC13Es5prWTXtX2vBWZotyRHTS8Knm5lPIk526ljc5TtLksRs5aMr2C8mMr4uRau5VNKH/DpQOX3nabKDdm1Ag6p6kPC99Hl0zU9uLs+4SPr4l88VmUB3z46dtFubzelKt85513hO/999/XNpePmDP78DzMLbfcInypZ1BOtqJkrrbNxcJ4nnGAMYzxgjsof9j+z89oe1m6zFs+/jeS2ixdepfw8fwhH8J2//33i3K//vWl2s55VV7vpc98qe35G0k+svXfMm/Jh5i1eeo3wld+yZ+0vaZILlQ2u3i2tvk1NtcvThg7luq/+Wbha1lFebpNjzym7blf7hLleM4qja2RrZRS995I0p7OH82i883IE+VmzKDrbeb2eR6Tz7J00003iXJX3Pa0tvs0elr48h77VNs72fDYGGMIbFpbGprX//5Lha9qzO+1Peu997T91ltviXJ8eKW5ABbPF5rPd1ocnVf6E09oe/4/ZR73y1f/o+2dcXJm9zFXUT6/2+NUx+HRsi04yK73d0ZelK/xjS9HAACwgMYRAAAsCCnPxx9/IpwzZ5KkxpwolC9WNHQoKc5vM8LZc7rTIjv7pjwqfAtmrNE2l+SkGLN5jL2go7b7PPWA8GU0o9lgZs2ape3PP/9clOMz1JgLIV17LUl5rr/+euFrtolCwNWT3tT2l2vlDDJ8AazhyXJEyIgHSbLTavxz2p779bei3PTpJE9Zs2aN8PHJbwcNGqTt22+X4f3IASSNyXxxgvAtepVkFstzKD3RqqGUPf1yCJNSTL5X+I60o2Pz9MGHH34oynHpiitdc+ONN2qbp2qUkumaL5bLdE02m+T4nOaNhW/UH2k0SsoDlK75ZuV6UY6niviIGJP+/WkC5DvuuEP4Ro8gec2Rl+Tz/e2LbFQWm9WGp2qUkumasyffKXy5vUjKw683T9UoJSdRbtlSjny57LLLtP3b3/5W26k5W0W59ZP+pu25i2SqhS/axdM1PFWjlDtd8+ab9P6Y0i+vdI3ZnvhO1xwp0ra5WNgYlq4ZbKRrAufSCDN8OQIAgAU0jgAAYEH0Vg8ePFg4X375ZW03/ex/hO/1CdQDlvPWt9puES174kqmvk31VUrV/Qdx9OnbMa2jtsc9+6wo16uUerlnXyB7RXl4eOO5FA4++bUMq1999xNtv/TSS8LHw1k+ekMppW4YRiMWAmyijOPlcpTDmFY0AufiuS8K34JD1IP8+FCa0NZct+TWW2kQ/Af/ni18666intWZcygk2frFWlFu0Bs30zle9Ufhe/t7Cr22bNmi7YsukiOXujz/vLYPvyRDlzdekNv/z4cPnSe2G/+JQpxHHnlE+F555RVt81FYL74or1ufu2j9nrU/zBK+vHIKq9OGyYk+UibSs/rMFEpj8F5hpZRKTKQ1lvk5KaXU6LaUavhyzIPa/uQj2XvfoBtN8nDB/OnCV9GWUhBLnqPzMEdQtR1HqZyh/eQooR8voRTEjmWUWvhdolQiXP8ehbNrGskJiidMoPQKD22vuuoqUW7yB/TOxI+/UfjemEET+R5ha6rHtZXv9L4Cui9Tp04VPq7UMNsafu95W/PmuIdEuSWlpCa54yZjoo/dNCJp8aRJ2p7NeteVUmoF6+V+NkHWMfAHatfw5QgAABbQOAIAgAU0jgAAYCEqM5NmT3mcqcqVkrPE8Ek9lVLqmU9e0/bIRMqhfP4rKR/5+zSaAefq3jI/8dcV87T9r4WUL7jrLpnX4ROM3jdZjmB57UrKSy0ZS7mbu5OGinLD2IS5mz94XPhWKMpZPfqolGNMmEDX57rrrtP2yxsni3K77qT8zUMD7hE+vtDQ/Bev0HbOhVIW8tBDlF9J7dBJnj+bLPX5vZTbavjeX0W5qbeQL69cjmp69Xc0gqjNR7Rgl/mbuXSlUyd5Hs99Sznkfrkk73r7hr+Lcj9MHqjt20d0EL4309dr+6UZJE/hEh+llGrUiPJqE19/UvjuOZtGUS0Y/TvhuzuaZoIayyYG/nGBzDn+50fKj09iOSqllLqXLbx053iS1/zjPpnHXXP5Jdr+Q8fLhK93Mxoxs3I63ev0jjLHy3OyU6ZMEb6LL6aRV899RhNH5/9lvCj35MU0KsYc+TJnAknJIu8kCdDDD8v8MV9MzZy494UNNDKlw7oPtD39HjkabOd9JOl67EpjHW+fbQ2XIk3++FVRztXWTJ1hb2teYO2MUv7bGnw5AgCABTSOAABgQUh5Jk6cKJybniA1/SO3ygHmSa+Q3GPL09QN/3C8nExz4CiaJHPkCzJ0eb4rqd35qJjN2VK5z9evef3114XviisoTC05ThObxhuq+Ks/o7Bj4sdyNMScOfR5bk6w0XX+v+h8X6SQ5GDEEVFu15UU2n248G7h+81vKNyP7UUjWCZ3v1CU+z2ThfxjrZTo8ElP+aiBr+bNFeVSnqU1amIaBIWv8yRKBdzARtasNY715Zckwwk8+Cfhm3UO/Zbeb9HkAcVPylTCp0y60vf6ccLXfTaNxNh2H0mW3rtcrn1dOZEkXddcc43wzWWjsmZ+M0v41nSjZyKfjaRR3eTa1H+7m56riAgZivIRSqsGUlj66GNviHJPLZuq7Ybd5KQRz35A4WeXeApTO/3zBVGu80Jaf3n6xNHC98MAknDxiYHNiRuemPcEneNFMm207UOS4XS/na4Hn3xWKbkm0BeffiR801v21fZ8Nqn0+N1yYoir76IRbNds3Cx8n26nSSnGLJGTRWfvp+v/wvN0/6ZtlW3BLS/QtXt6ipxgY3JxurYn3kvvavJ9clRdz4ee0jafqFspGd7jyxEAACygcQQAAAtoHAEAwIKQ8owaJYcuTTt+XNvzDss83YbzSGKwcCDlCLZ897wox/N7HQZfJHzTPqT8XrcFJBG5u4GUj8x8iBZa2jpCDifiC/CMG0e5rWd+1V+UmzCc9hvdRU56+gBbCGnMmDHCx4eYfV1BwxhntUgT5bJfo4WW9u38RvhuGE+51rTbKBfy0brPRLmSh8dr+6k2cnjVMpbfm5VLucnU9lIm8/hfKN90RwM5K8of2lCO88+/JtlGhDG8is/iYi5i9K/9U7U9heX2+GJVSim17zAdm6/frJRS/5tHEpoF2ZTv5Lk9pZRaNPhqbW9bPlX4HplDOasO54wVvhmfkmSn0+ckbfpDtJxE+e2JlHNcf/ZlwsdnhuH5vSfOl2tfPzKEcrK/6imHnj7IhstxSY4pi5tftk3bPLenlFL5FTQZcMZumlWJ5/aUUqoPm6Xn441fyDr+SPngyak0i9DyOXIGoGmHSO6W2lEuJPb0Xym/d3MpycDuaTlClHuMTThbakyEO5ZNLswXT1NKqel7SAr2TA/KL3c1JrTdc2CPts0F6v7BhmV+lUN51hX95DkuGUqSvB0rXxO+B2ZSDh9fjgAAYAGNIwAAWPg/66zY4CRB1gQAAAAASUVORK5CYII=\" id=\"imagea7ef39bdab\" transform=\"scale(1 -1)translate(0 -164)\" x=\"40.603125\" y=\"-21.398125\" width=\"327\" height=\"164\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"mb5fc83c4b7\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"40.603125\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(37.421875 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"71.180625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 10 -->\n", "      <g transform=\"translate(64.818125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"105.155625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 20 -->\n", "      <g transform=\"translate(98.793125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"139.130625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 30 -->\n", "      <g transform=\"translate(132.768125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"173.105625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 40 -->\n", "      <g transform=\"translate(166.743125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"207.080625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 50 -->\n", "      <g transform=\"translate(200.718125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"241.055625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 60 -->\n", "      <g transform=\"translate(234.693125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"275.030625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 70 -->\n", "      <g transform=\"translate(268.668125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"309.005625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 80 -->\n", "      <g transform=\"translate(302.643125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#mb5fc83c4b7\" x=\"342.980625\" y=\"185.398125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 90 -->\n", "      <g transform=\"translate(336.618125 199.996562)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_11\">\n", "     <!-- Position in sequence -->\n", "     <g transform=\"translate(152.387813 213.674688)scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-71\" d=\"M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "M 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 -1331 \n", "L 2906 -1331 \n", "L 2906 525 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"m66b1b3d0f7\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m66b1b3d0f7\" x=\"40.603125\" y=\"22.318125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(27.240625 26.117344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#m66b1b3d0f7\" x=\"40.603125\" y=\"52.895625\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 10 -->\n", "      <g transform=\"translate(20.878125 56.694844)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#m66b1b3d0f7\" x=\"40.603125\" y=\"86.870625\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 20 -->\n", "      <g transform=\"translate(20.878125 90.669844)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#m66b1b3d0f7\" x=\"40.603125\" y=\"120.845625\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 30 -->\n", "      <g transform=\"translate(20.878125 124.644844)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#m66b1b3d0f7\" x=\"40.603125\" y=\"154.820625\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 40 -->\n", "      <g transform=\"translate(20.878125 158.619844)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Hidden dimension -->\n", "     <g transform=\"translate(14.798438 149.090937)rotate(-90)scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-48\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"75.195312\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"102.978516\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"166.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"229.931641\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"291.455078\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"354.833984\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"386.621094\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"450.097656\"/>\n", "      <use xlink:href=\"#DejaVuSans-6d\" x=\"477.880859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"575.292969\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"636.816406\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"700.195312\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"752.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"780.078125\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"841.259766\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 40.603125 185.398125 \n", "L 40.603125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 366.763125 185.398125 \n", "L 366.763125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 40.603125 185.398125 \n", "L 366.763125 185.398125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 40.603125 22.318125 \n", "L 366.763125 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_18\">\n", "    <!-- Positional encoding over hidden dimensions -->\n", "    <g transform=\"translate(71.633438 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-76\" d=\"M 191 3500 \n", "L 800 3500 \n", "L 1894 563 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2284 0 \n", "L 1503 0 \n", "L 191 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-50\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"969.324219\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1001.111328\"/>\n", "     <use xlink:href=\"#DejaVuSans-76\" x=\"1062.292969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1121.472656\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"1182.996094\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1224.109375\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1255.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1319.275391\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1347.058594\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1410.535156\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1474.011719\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1535.535156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1598.914062\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1630.701172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1694.177734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1721.960938\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1819.373047\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1880.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1944.275391\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1996.375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"2024.158203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"2085.339844\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"2148.71875\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 389.083125 185.398125 \n", "L 397.237125 185.398125 \n", "L 397.237125 22.318125 \n", "L 389.083125 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path clip-path=\"url(#pb7665575fa)\" style=\"fill: #ffffff; stroke: #ffffff; stroke-width: 0.01; stroke-linejoin: miter\"/>\n", "   </g>\n", "   <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAAgAAACjCAYAAAC31F+mAAAA/klEQVR4nO2WSw6DMAwF409yjd6v998BSRfdeypZWNCWbZ7GY8cg5CmP1YLHh0p03twEAh8QwvPmnUrkHfKSJYTT21Qc9dA4IAYBJmiWYMOoBLZJBLhOJmjaQTGAkj3bpnYnB7gsHUDAfdDR44CRJC4ttslrf76D0RwK2lQHh6a0cp0IPoBAC1NBMGiz0aAEAzRJLsGS6UEZ3SYGsIRmPyDsIEgAh4oSgh9zIvCo4y5kzRn/T4anrTWfc8aBtWKGH8eRJKBDQYl8ID+oK9xFASE/hwLJvMMtJNFh3/dkACV/hHALyTxh27ZkiTwBJfG9+Lf5DhRIXoFwC8mvaPMFhZj7x7gJVREAAAAASUVORK5CYII=\" id=\"image57e4395cc3\" transform=\"scale(1 -1)translate(0 -163)\" x=\"389\" y=\"-21\" width=\"8\" height=\"163\"/>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <defs>\n", "       <path id=\"mef2038efba\" d=\"M 0 0 \n", "L 3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"165.013822\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- \u22120.75 -->\n", "      <g transform=\"translate(404.237125 168.813041)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2212\" d=\"M 678 2272 \n", "L 4684 2272 \n", "L 4684 1741 \n", "L 678 1741 \n", "L 678 2272 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"144.628723\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- \u22120.50 -->\n", "      <g transform=\"translate(404.237125 148.427942)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"124.243623\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_21\">\n", "      <!-- \u22120.25 -->\n", "      <g transform=\"translate(404.237125 128.042842)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"83.789062\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"147.412109\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"179.199219\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"242.822266\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"103.858524\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0.00 -->\n", "      <g transform=\"translate(404.237125 107.657742)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"83.473424\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 0.25 -->\n", "      <g transform=\"translate(404.237125 87.272643)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"63.088324\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 0.50 -->\n", "      <g transform=\"translate(404.237125 66.887543)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"42.703225\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 0.75 -->\n", "      <g transform=\"translate(404.237125 46.502443)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#mef2038efba\" x=\"397.237125\" y=\"22.318125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 1.00 -->\n", "      <g transform=\"translate(404.237125 26.117344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"159.033203\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"LineCollection_1\"/>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 389.083125 185.398125 \n", "L 393.160125 185.398125 \n", "L 397.237125 185.398125 \n", "L 397.237125 22.318125 \n", "L 393.160125 22.318125 \n", "L 389.083125 22.318125 \n", "L 389.083125 185.398125 \n", "z\n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pcc0eb202ff\">\n", "   <rect x=\"40.603125\" y=\"22.318125\" width=\"326.16\" height=\"163.08\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pb7665575fa\">\n", "   <rect x=\"389.083125\" y=\"22.318125\" width=\"8.154\" height=\"163.08\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 576x216 with 2 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["encod_block = PositionalEncoding(d_model=48, max_len=96)\n", "pe = encod_block.pe.squeeze().T.cpu().numpy()\n", "\n", "fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 3))\n", "pos = ax.imshow(pe, cmap=\"RdGy\", extent=(1, pe.shape[1] + 1, pe.shape[0] + 1, 1))\n", "fig.colorbar(pos, ax=ax)\n", "ax.set_xlabel(\"Position in sequence\")\n", "ax.set_ylabel(\"Hidden dimension\")\n", "ax.set_title(\"Positional encoding over hidden dimensions\")\n", "ax.set_xticks([1] + [i * 10 for i in range(1, 1 + pe.shape[1] // 10)])\n", "ax.set_yticks([1] + [i * 10 for i in range(1, 1 + pe.shape[0] // 10)])\n", "plt.show()"]}, {"cell_type": "markdown", "id": "e08d9502", "metadata": {"papermill": {"duration": 0.027847, "end_time": "2022-04-09T14:37:38.424774", "exception": false, "start_time": "2022-04-09T14:37:38.396927", "status": "completed"}, "tags": []}, "source": ["You can clearly see the sine and cosine waves with different wavelengths that encode the position\n", "in the hidden dimensions.\n", "Specifically, we can look at the sine/cosine wave for each hidden dimension separately,\n", "to get a better intuition of the pattern.\n", "Below we visualize the positional encoding for the hidden dimensions $1$, $2$, $3$ and $4$."]}, {"cell_type": "code", "execution_count": 11, "id": "2b42637d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:38.453883Z", "iopub.status.busy": "2022-04-09T14:37:38.453450Z", "iopub.status.idle": "2022-04-09T14:37:39.725682Z", "shell.execute_reply": "2022-04-09T14:37:39.725093Z"}, "papermill": {"duration": 1.289441, "end_time": "2022-04-09T14:37:39.728034", "exception": false, "start_time": "2022-04-09T14:37:38.438593", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNzIxLjkwNjI1IDI3OS44MDg3NSBdCi9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUiAvVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJzFXE2PHLcRvc+v6KN9WC5Z/D7asSPAgIHIFpJDkIMgbewVdleQN07+fl71zA6LPTvT3dPslgVL21w2h/X4VaxXb25/uPvv/Ye7X9583/3l191tefrwvDPdp93td6b77bnDX53uPuH//+HnN/y8u9F4fNxFMirrQB5PD+KJYlZJp+hRiqry8ffd7t87rbKJwUXtU+qGDy5rk4OOqfuDP/jNSYXjw25Qe7dzXpm+B4Y/kgJ+gW5al5ULOaUgyx9kOfmoXLJ9F4+NyMK+31+6Vz7AOMqd1U7Z8PKni1EFz79J+Lv74677R/fU3X5Hezx/6szuE/7d41kD7xNs0jmY2oRSLDu1+3X3tvvy0rBWxmOsMHR92/3jm0Pp7guGVHcYDNN5r2IwFC05mzoTSOHH5PeGfHjcff+uu/0rPl937zBUeOvdx90/u2/Mt92/unc/7X58t3vbf2wbLHYv/T3FAm/aFMlRjUUpXo5FdIp09N6R9X46FrQ5FtmrZK0nW2NRipdjkQmdswmtYW5Mx8JujoUxGLWYk3Y1GKJ8ORrGGJihDXAweToabns0LLpGQafBrifKG6BBWXkXbMYmj9Ynw+G3h8Nj3CLZEAZwlPIGcLiocqYQE2masW+E7eEIWQWTcGIO4CjlDeAIQeEsyT6bzLv1VDji9nCkpHRwmdIAjlLeAI7kVEqenDbsckxFI22OBumgvDGkc42GKF+OBmmrrDWejIlxxtaRt4eDnMo+uiEax+IGYJikfE44qULIbobzpbdHw1nltI1x4IqK8gZ42Ki0czb7AJd0Bh7be6MUjEpeaz9wR0V5AzzgnONKE2IInma4HWZ7j5SSVpSDtQOXVJQ3wCNalW3A8gvOzdhLzfZeKeWkosNsGHilorwBHnDS4aKTTejsnP1je7/UmqhwrMIrGNzGS/lyPKzRaDl7kwMlMwOP7R1TXNNUsN7EgWMqyhvgAT+dok9aB5PnXO4rz7TydD0OPzJWh2TQoMvwk3RONNLg377tLICDKd98fr7/z/3np+7+qXu++/Ln3dOHu83BLx+QAnanpNFaHRgq5dc7OipFw2Euk0h5vjqyGfYEpQRc0kvc7CS48gVNa25Ulx8+PPLrNz/cfXr/9z9/ff/0fPN4//Tnc/fD5+7t5hCyDxM8JmyuIRTl129vilxgCDG/cKomqy339sJE294xEvFBgwEiS2YARClvAASummQ8Tj90NUyNz33ZcSs33B6AjJkXoon4nEA5G30Z0tO1+/6hw7L9/PH+6bc14VZ+jwnsDSlgH8MDHOX9fxEPfdiXLLtGvwyHRcZI5QwV4UL0Fa/Hfn8VkTOHu1+MznGxjCGRVYR5aHg+yyhLdsAxEvzVhyrckGAjRYM75EN1v9b8I3rW1xcXTZtVNtYmrl9dubSCuTlxf8TlwxqVswY0XCyccI3Z5onffKic1P2OBhO5XDhlqE/Z7rsvnRNYiI/GmuPQuDykGfeET+NycVih+yGH8LJj6u6nqWP3x2/72b+f+sc3dpfeOKyOPoB9GGgdOYB9HOx02Cm62581dsZjdfweqwcIYOZjNLCc8FmZ/0yorTDaIWoe1LG6N8RbVtCYJdbShOo4Sr3DwAeLoR6tjvnhtIZ3EPV440zFJIyOdROatjw3MjEk1o7WhscVvfMZ3cgTus2jEyN8NEzu8cZv0BdsVsAcAzyhcext3vLA+wkDhNo5A5DsNXzFCahg4dlogtUT2saTj8lkoDil43xCYBVhxmoJ4lt5WBAzRViTIx6NdCZf5a6wOF+nwB7PUWB4Yx6VJl8oDV1q/7BdTAuo8RZnU++CwgmlYA8tiTOM6jPsx8NxxV7n7/cfP949dR/vH++entkTrY7KA805h5Pck6FDbvKE1hxwk1g49pX7YeRJPET6QRRX3GRp5ISd7E/jl9/b/f3wqjN598JSnneBsNWZyAziYPqV8uV3GWyNWK8RPU1Jz4kNnbgoG4HiCOe/DXq4Jkt5A1Bw6nK8DMddnMNLncaHNgIFDol+ZeMR5Q1AQQuJF1visMgS6nIjUNCuNwFO5ACUUt4AlBiUhRXsSPoZoaLTSNFGoOSociDnBtSMKG8ACnx3OCMRjryLM+JFp+GibUDBbICfj+vLgJMQ5Q0SQgxfdLJ2JvFlZAGbuREolh1tr4c5MsfiBpDgshXgWhIlq2fsKKeM5kaQeKssbil5iEkpb5E41N/WcL1JRDMyRE6JzY1AiQaX2+jjgLER5Q1ACUn5EFNyyczYZU/ZzY0wyTAh48o0YG1EeQNMklXJOhexePycKPRpMG8bVHAcKNw4jR34s6J8OSpBk8IFMHpcteOMpJFXuM6NUKGodArODBxaUd4AFXj5kaJ2mlKesam8wnhuhAouujgYQh54tKK8ASpw8020HKWbRWt9LY824EqeY8px4NGK8gagoIXAN2oizJhF5OdGqCRSjjz5gUsryhugAj9fB58S5p6bs618LZ826p4o83bg04ryBqjA0ffsrADnMCd4cI4I9ZwPilM+O2sSrUaEbnTXErEoSYiKWNRyPtSiCaPTMVfha5Cim8NZU08lhrecG7WY0a6kfiwgSLcHRRKlMrC5mCcdgrKULLUJ0wsXpiM2q1CmzQdA7TkCrRwv2QwImD/T/hCBTq+wpVWoVgyPjFZaLGCsSsMEpQzYaY+tMKeeiZSxLCz4gJneB6pFNAc/eu2N5bkvAxdwI5O1IXK4W1zesbNGsr6nY+X91VmlXbaaeUt5hTNwMVzEP1wurjepd6H20XTp4GfD3SHidqQriyUac8LdlsuFM9dnwMBwnqXSn2Ha2ESPEXyoTnRCPyNQ53J51mGq6mhxghQC5NKQCZL0cjXBjJZBtRwyLwN7WA7d7c/mMp2WovMa95NE49WZIcPwA8OkzYTW+aKcNG6EFPNodU7swsJO2ZCzo7XRFT7dbcyW/GhtMmg7JwyateM9ucGsjkAWUzJNMJMw7TRpuAqa3ITq2A15lmJDxNCO9pxTqbGlJnZqRitHJvqNz/HI1F6uzS1nzHSfJnRE+wgAc8jjvWYjmdWF5x7DhHnIzDia99jInWx9Bjt6hmw7w59hOb5Kwz2eoeGY7pxH59VvSIr07CfMYUhdgLsWHfum7J0uZkjpqzCkLwyyww7nTgjkY2ml3DQmAj7NsQMh3axKCzt68gFzdZs8DrvLuk3ReSHmlP1pIdskUtlPdXBWtr1kWAnbhXhzue21THPM9vO58O1tL2lkwnYh1lxuey3LHLP9fN57e9tFrpwwXqozl1tfyzDHrD+f5b6C9SUjUFov8gQbWF/LLsfMP5/UvoL5JfFRmi/SIRuYX8ssx8w/r65cwfyS3ynNF2rLBubXssox88+rKVcwv6SxSvOFurKB+ZWMcsz68+rJ9taLZF1hvVRTLrd+IJscM/+8WnIF8485ydL6Ip5sYHwtkxx1ds6LAFawvqReS/OFWrKB/bUsctT+Lb09kWIu7ReJ5w3sr2WQo/Zv6fGJVHppv1BDNrC/lj2O2r+l1yckA9J+oX5sYH8tcxy1f0u/T0gj5D1VqB2X2z+QNY7av6XjJyQg0n6hbmxgfy1jHLV/onqRG02GLjV1pW6xPcylafYqTtV2pXi5XtHhzmLOUknryhVXRC4mGHgqzyvFy9V50SsdJ/BNWzooIghmOK8TnRsoN0r5cgRwL8UlhXzK3NMl+kSO4SdtrM2XsbxOnrgA591RmBjpQLzgIRBTJX2co/rNJWGinJElQJYzC++w3VWyRIMzwGPjMgNZIgMeog/e17LEbFQOuufkxC08asX3J6oliZ45PpezrxWJvKeEiJ7WgkTP0ft+dKUekV2UdFA7Cu8XBhDRnr2TTqHOmEQRENVqRC4H8NjwazVi5nh2ot4ccbZivWE3jy7WWkSOjSYCmFXkfMpo1VLEY/nu0htnpYjH4S10G12gUDRvrA6jlKMbrc1rllP5sVG/SPou1L4hAO+Ytox5vCc3BvgZGOsNOTOhcSwIn6LT6MyExuEOMFWE1Uc0Xj0ws5RyDjmM24mzCasXEyaacTPNXnCJ2Yb+jA8PALfeYdU4P6Ftdti99T5gGYzWxqI0FpOEtJ4AN6fnZ6sjtoUJkPDoYD17nZz3U1rHuQB/k6xJWdS+Qoko3MHXiZhaiPg6yzN8YTopVIkWSysXW1+gQjRk903tT44riTb7VYi2wkRKxuZIRApQBZ1ZEW2C/XydaqtzXK48fS99C0PJX5HzTggTl19DBgrE+Zzb6iCUZB0JghAiNgChVhzOJ99WB6FkJkkQhPCwAQi1wnA+C7c6CCUNS4IgkrMagFArCueTcauDUJLOJAgiFa0BCLWCcD4ltzYIIsNOpiIIIWGDXIRaMTifmFsdhGM6ocSg6AYbQFArBOeTc6tDUFInJQZCKNgiJ0VLReB8jm51EEqeqARBCAMbgFApAOcTdatjUHJiJQYiU7YBBrXi7wrCbm0URAawQEHmBS9HYaDwu4K2Wx2Fku8sURBCvwYo1Iq+K8i71VEo2d0SBSHsa4BCpeC7gsFbHYSSyi5BEEK+BiDUir0reLzVUSiJ+xIFIdxrgEKt0LuCzVsbBSFTkAEBIV5ogEKtyLua0xsI8dpzeqvfUkT0RXB7IvyymNobSO++Br+3IYoVq3JEcTnNNxCXXc/1bYhFxfnJ4N1iym+AxmLebyC1W4f9a4j8gQNMvQgrAIQeI2DK3+Pn+4f+ayydN5fldtUQyVgdOqV10M7VcrsEtyToPXMmAjoBDaIVO1DbucwuKAapFts5mIi6/fiXe7DPHBqOvbRN3AwTf/em8y7VSjuD8wBOIoWB0I6TVXzywQ6Edjoo/ibHodAObxK8I+NqnV3gFyOHqCuZnQfwGQdGqFV22CMjUej3SHFO+aBIY6YmGd6fNGQVEVje2F1647zyrozxYXV0tz/bCyQMfykpJqqGTWa8dv/ojeMd3Y9XJ8MMjwuedHATWsfscFmz4NBNaN0ojo+TSVMaN4Q5FshE7CTjhlL/VaP8LZn6hWi81HbmnLloMAFMHq+NWQj/XKPjE2rfYGlizjpMzwmVsey81ZjLnL83aXywohNvAmHK6GMlYfA9TnRHU3rOGwBQDBMQz9jiscAznAfZ8auEdzIEe4YuqnR3r1JRJ3TgdOpqINKTjOD59heI7toQgvUVaPd/ub7YlQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjM4NzcKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MSA+PgpzdHJlYW0KeJxNzbsNwCAMBNCeKTwC4P8+UZQi2b+NDRGhsZ90J51ghwpucVgMtDscrfjUU5h96B4SklBz3URYMyXahKRf+ssww5hYyLavN1eucr4W3ByLCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHAP+A87TT6YLcf1vLmXSDFGPLL0RXdOyVh8fGlI33aGNPhC1c5XQaTlMZj4u7Zl2gy2Ey02+8mrnAVGGR1eyi+hi8ofOsZoevVTMxhDeZEhpgKndyD/X1pzjt25KQbFdh0J0apLMwzJH8PRBTc9BziJH8I19ya2HQmeYXFy2rGa1lTNHsYapsLQzqjUF3yvXUeq7zMBHv8wPfQT5kCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDcgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMxID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NCA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMiA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDMgPj4Kc3RyZWFtCnicTVG7rQMxDOs9hRY4wPrZvnkueHjFZf82pJwEqURDFEnJw1O6ZMphfUpGSI4uD20aS2y6PDdCU4eKgqlrieqUq5mmzFMsTdDz3lmu5hjge1U31N/0iF4CkVGCVWGBDpA7uGD42WsmbFELIjGGUDOAacIKc7gSMQQZjLVnGJQqDE7VzypX+y+nZdgqsHgwnSI/sppop1+6HHjrKQdC2NyVu3ohTQjujQZjzCxcd6mynQAcTHSZiYxYvA3H0yEMDV6aBqxw1o2YILEbI6UPXgcZ07B3RR51txjxvlvGlLvVz31RfeZd7R8IwRsn+HsByhtdXgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM0ID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDAgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1MSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3NCA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIwIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4gL2VpZ2h0IC9uaW5lCjY5IC9FIDgwIC9QIDk3IC9hIDk5IC9jIC9kIC9lIDEwMyAvZyAvaCAvaSAxMDggL2wgL20gL24gL28gMTEzIC9xIDExNSAvcyAvdAovdSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTggMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE3IDAgUiA+PgplbmRvYmoKMTggMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTcgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjAgMCBvYmoKPDwgL0UgMjEgMCBSIC9QIDIyIDAgUiAvYSAyMyAwIFIgL2MgMjQgMCBSIC9kIDI1IDAgUiAvZSAyNiAwIFIKL2VpZ2h0IDI3IDAgUiAvZml2ZSAyOCAwIFIgL2ZvdXIgMjkgMCBSIC9nIDMwIDAgUiAvaCAzMSAwIFIgL2kgMzIgMCBSCi9sIDMzIDAgUiAvbSAzNCAwIFIgL24gMzYgMCBSIC9uaW5lIDM3IDAgUiAvbyAzOCAwIFIgL29uZSAzOSAwIFIgL3EgNDAgMCBSCi9zIDQxIDAgUiAvc2V2ZW4gNDIgMCBSIC9zaXggNDMgMCBSIC9zcGFjZSA0NCAwIFIgL3QgNDUgMCBSIC90aHJlZSA0NiAwIFIKL3R3byA0NyAwIFIgL3UgNDggMCBSIC96ZXJvIDQ5IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTkgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDM1IDAgUiAvTTAgMTMgMCBSIC9NMSAxNCAwIFIgL00yIDE1IDAgUiAvTTMgMTYgMCBSCj4+CmVuZG9iagoxMyAwIG9iago8PCAvQkJveCBbIC04IC04IDggOCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxIC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CQm94IFsgLTggLTggOCA4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0JCb3ggWyAtOCAtOCA4IDggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQkJveCBbIC04IC04IDggOCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxIC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUwIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA0MDkxNjM3MzkrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My41LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My41LjEpID4+CmVuZG9iagp4cmVmCjAgNTEKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTU2NTUgMDAwMDAgbiAKMDAwMDAxNDM3MyAwMDAwMCBuIAowMDAwMDE0NDA1IDAwMDAwIG4gCjAwMDAwMTQ1MDQgMDAwMDAgbiAKMDAwMDAxNDUyNSAwMDAwMCBuIAowMDAwMDE0NTQ2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MiAwMDAwMCBuIAowMDAwMDA0MzE1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNDI5NCAwMDAwMCBuIAowMDAwMDE0NjM5IDAwMDAwIG4gCjAwMDAwMTQ4OTMgMDAwMDAgbiAKMDAwMDAxNTE0NyAwMDAwMCBuIAowMDAwMDE1NDAxIDAwMDAwIG4gCjAwMDAwMTI5ODQgMDAwMDAgbiAKMDAwMDAxMjc3NyAwMDAwMCBuIAowMDAwMDEyMzE4IDAwMDAwIG4gCjAwMDAwMTQwMzcgMDAwMDAgbiAKMDAwMDAwNDMzNSAwMDAwMCBuIAowMDAwMDA0NDg4IDAwMDAwIG4gCjAwMDAwMDQ3MzEgMDAwMDAgbiAKMDAwMDAwNTExMSAwMDAwMCBuIAowMDAwMDA1NDE2IDAwMDAwIG4gCjAwMDAwMDU3MjAgMDAwMDAgbiAKMDAwMDAwNjA0MiAwMDAwMCBuIAowMDAwMDA2NTEwIDAwMDAwIG4gCjAwMDAwMDY4MzIgMDAwMDAgbiAKMDAwMDAwNjk5OCAwMDAwMCBuIAowMDAwMDA3NDEyIDAwMDAwIG4gCjAwMDAwMDc2NDkgMDAwMDAgbiAKMDAwMDAwNzc5MyAwMDAwMCBuIAowMDAwMDA3OTEyIDAwMDAwIG4gCjAwMDAwMDgyNDMgMDAwMDAgbiAKMDAwMDAwODQxNSAwMDAwMCBuIAowMDAwMDA4NjUxIDAwMDAwIG4gCjAwMDAwMDkwNDYgMDAwMDAgbiAKMDAwMDAwOTMzNyAwMDAwMCBuIAowMDAwMDA5NDkyIDAwMDAwIG4gCjAwMDAwMDk4MDggMDAwMDAgbiAKMDAwMDAxMDIxNSAwMDAwMCBuIAowMDAwMDEwMzU3IDAwMDAwIG4gCjAwMDAwMTA3NTAgMDAwMDAgbiAKMDAwMDAxMDg0MCAwMDAwMCBuIAowMDAwMDExMDQ2IDAwMDAwIG4gCjAwMDAwMTE0NTkgMDAwMDAgbiAKMDAwMDAxMTc4MyAwMDAwMCBuIAowMDAwMDEyMDMwIDAwMDAwIG4gCjAwMDAwMTU3MTUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTEgPj4Kc3RhcnR4cmVmCjE1ODcyCiUlRU9GCg==\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"721.920312pt\" height=\"279.814375pt\" viewBox=\"0 0 721.920312 279.814375\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:37:38.953536</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 279.814375 \n", "L 721.920312 279.814375 \n", "L 721.920312 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 45.120313 99.975268 \n", "L 349.483949 99.975268 \n", "L 349.483949 22.318125 \n", "L 45.120313 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 58.955023 99.975268 \n", "L 58.955023 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(55.773773 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 77.401304 99.975268 \n", "L 77.401304 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(74.220054 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 95.847585 99.975268 \n", "L 95.847585 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(92.666335 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 114.293866 99.975268 \n", "L 114.293866 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(111.112616 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 132.740147 99.975268 \n", "L 132.740147 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(129.558897 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 151.186428 99.975268 \n", "L 151.186428 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(148.005178 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 169.632709 99.975268 \n", "L 169.632709 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(166.451459 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 188.07899 99.975268 \n", "L 188.07899 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(184.89774 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 206.525271 99.975268 \n", "L 206.525271 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(203.344021 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 224.971552 99.975268 \n", "L 224.971552 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(218.609052 117.073705)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 243.417833 99.975268 \n", "L 243.417833 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(237.055333 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_12\">\n", "      <path d=\"M 261.864114 99.975268 \n", "L 261.864114 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(255.501614 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_13\">\n", "      <path d=\"M 280.310395 99.975268 \n", "L 280.310395 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(273.947895 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_14\">\n", "      <path d=\"M 298.756676 99.975268 \n", "L 298.756676 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(292.394176 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_15\">\n", "      <path d=\"M 317.202957 99.975268 \n", "L 317.202957 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(310.840457 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_16\">\n", "      <path d=\"M 335.649238 99.975268 \n", "L 335.649238 22.318125 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(329.286738 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(146.006818 130.75183)scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-50\" d=\"M 1259 4147 \n", "L 1259 2394 \n", "L 2053 2394 \n", "Q 2494 2394 2734 2622 \n", "Q 2975 2850 2975 3272 \n", "Q 2975 3691 2734 3919 \n", "Q 2494 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "M 628 4666 \n", "L 2053 4666 \n", "Q 2838 4666 3239 4311 \n", "Q 3641 3956 3641 3272 \n", "Q 3641 2581 3239 2228 \n", "Q 2838 1875 2053 1875 \n", "L 1259 1875 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-71\" d=\"M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "M 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 -1331 \n", "L 2906 -1331 \n", "L 2906 525 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_17\">\n", "      <path d=\"M 45.120313 93.503839 \n", "L 349.483949 93.503839 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(20.878125 97.303058)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2212\" d=\"M 678 2272 \n", "L 4684 2272 \n", "L 4684 1741 \n", "L 678 1741 \n", "L 678 2272 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_18\">\n", "      <path d=\"M 45.120313 61.146696 \n", "L 349.483949 61.146696 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 64.945915)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_19\">\n", "      <path d=\"M 45.120313 28.789554 \n", "L 349.483949 28.789554 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 32.588772)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_21\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(14.798438 109.613103)rotate(-90)scale(0.1 -0.1)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_20\">\n", "    <path d=\"M 58.955023 61.146696 \n", "L 77.401304 33.9191 \n", "L 95.847585 31.72443 \n", "L 114.293866 56.580456 \n", "L 132.740147 85.634663 \n", "L 151.186428 92.174747 \n", "L 169.632709 70.187783 \n", "L 188.07899 39.888487 \n", "L 206.525271 29.13389 \n", "L 224.971552 47.811719 \n", "L 243.417833 78.749666 \n", "L 261.864114 93.503523 \n", "L 280.310395 78.508663 \n", "L 298.756676 47.551292 \n", "L 317.202957 29.093472 \n", "L 335.649238 40.105239 \n", "\" clip-path=\"url(#p727774ff2b)\" style=\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"m8e8debfec9\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p727774ff2b)\">\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"58.955023\" y=\"61.146696\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"77.401304\" y=\"33.9191\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"95.847585\" y=\"31.72443\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"114.293866\" y=\"56.580456\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"132.740147\" y=\"85.634663\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"151.186428\" y=\"92.174747\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"169.632709\" y=\"70.187783\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"188.07899\" y=\"39.888487\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"206.525271\" y=\"29.13389\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"224.971552\" y=\"47.811719\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"243.417833\" y=\"78.749666\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"261.864114\" y=\"93.503523\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"280.310395\" y=\"78.508663\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"298.756676\" y=\"47.551292\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"317.202957\" y=\"29.093472\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "     <use xlink:href=\"#m8e8debfec9\" x=\"335.649238\" y=\"40.105239\" style=\"fill: #1f77b4; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 45.120313 99.975268 \n", "L 45.120313 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 349.483949 99.975268 \n", "L 349.483949 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 45.120313 99.975268 \n", "L 349.483949 99.975268 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 45.120313 22.318125 \n", "L 349.483949 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_22\">\n", "    <!-- Encoding in hidden dimension 1 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(101.073381 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-45\" d=\"M 628 4666 \n", "L 3578 4666 \n", "L 3578 4134 \n", "L 1259 4134 \n", "L 1259 2753 \n", "L 3481 2753 \n", "L 3481 2222 \n", "L 1259 2222 \n", "L 1259 531 \n", "L 3634 531 \n", "L 3634 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 410.356676 99.975268 \n", "L 714.720312 99.975268 \n", "L 714.720312 22.318125 \n", "L 410.356676 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_21\">\n", "      <path d=\"M 424.191387 99.975268 \n", "L 424.191387 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(421.010137 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_22\">\n", "      <path d=\"M 442.637668 99.975268 \n", "L 442.637668 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(439.456418 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_23\">\n", "      <path d=\"M 461.083949 99.975268 \n", "L 461.083949 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(457.902699 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_24\">\n", "      <path d=\"M 479.53023 99.975268 \n", "L 479.53023 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(476.34898 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_25\">\n", "      <path d=\"M 497.976511 99.975268 \n", "L 497.976511 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(494.795261 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_26\">\n", "      <path d=\"M 516.422792 99.975268 \n", "L 516.422792 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(513.241542 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_27\">\n", "      <path d=\"M 534.869073 99.975268 \n", "L 534.869073 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(531.687823 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_28\">\n", "      <path d=\"M 553.315354 99.975268 \n", "L 553.315354 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(550.134104 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_29\">\n", "      <path d=\"M 571.761635 99.975268 \n", "L 571.761635 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(568.580385 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_30\">\n", "      <path d=\"M 590.207916 99.975268 \n", "L 590.207916 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(583.845416 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_31\">\n", "      <path d=\"M 608.654197 99.975268 \n", "L 608.654197 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(602.291697 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_32\">\n", "      <path d=\"M 627.100478 99.975268 \n", "L 627.100478 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(620.737978 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_33\">\n", "      <path d=\"M 645.546759 99.975268 \n", "L 645.546759 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(639.184259 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_34\">\n", "      <path d=\"M 663.99304 99.975268 \n", "L 663.99304 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(657.63054 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_35\">\n", "      <path d=\"M 682.439321 99.975268 \n", "L 682.439321 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(676.076821 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_36\">\n", "      <path d=\"M 700.885602 99.975268 \n", "L 700.885602 22.318125 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(694.523102 117.073705)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_39\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(511.243182 130.75183)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_37\">\n", "      <path d=\"M 410.356676 93.503839 \n", "L 714.720312 93.503839 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(386.114489 97.303058)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_38\">\n", "      <path d=\"M 410.356676 61.146696 \n", "L 714.720312 61.146696 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 64.945915)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_39\">\n", "      <path d=\"M 410.356676 28.789554 \n", "L 714.720312 28.789554 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_42\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 32.588772)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_43\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(380.034801 109.613103)rotate(-90)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_40\">\n", "    <path d=\"M 424.191387 28.789554 \n", "L 442.637668 43.664057 \n", "L 461.083949 74.612019 \n", "L 479.53023 93.180025 \n", "L 497.976511 82.296736 \n", "L 516.422792 51.968198 \n", "L 534.869073 30.07833 \n", "L 553.315354 36.752573 \n", "L 571.761635 65.854662 \n", "L 590.207916 90.628268 \n", "L 608.654197 88.296653 \n", "L 627.100478 61.003493 \n", "L 645.546759 33.841994 \n", "L 663.99304 31.784311 \n", "L 682.439321 56.722271 \n", "L 700.885602 85.728026 \n", "\" clip-path=\"url(#pdf051ed3be)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mf333c98b60\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pdf051ed3be)\">\n", "     <use xlink:href=\"#mf333c98b60\" x=\"424.191387\" y=\"28.789554\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"442.637668\" y=\"43.664057\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"461.083949\" y=\"74.612019\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"479.53023\" y=\"93.180025\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"497.976511\" y=\"82.296736\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"516.422792\" y=\"51.968198\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"534.869073\" y=\"30.07833\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"553.315354\" y=\"36.752573\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"571.761635\" y=\"65.854662\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"590.207916\" y=\"90.628268\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"608.654197\" y=\"88.296653\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"627.100478\" y=\"61.003493\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"645.546759\" y=\"33.841994\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"663.99304\" y=\"31.784311\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"682.439321\" y=\"56.722271\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "     <use xlink:href=\"#mf333c98b60\" x=\"700.885602\" y=\"85.728026\" style=\"fill: #ff7f0e; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 410.356676 99.975268 \n", "L 410.356676 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 714.720312 99.975268 \n", "L 714.720312 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 410.356676 99.975268 \n", "L 714.720312 99.975268 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 410.356676 22.318125 \n", "L 714.720312 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_44\">\n", "    <!-- Encoding in hidden dimension 2 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(466.309744 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 45.120313 239.758125 \n", "L 349.483949 239.758125 \n", "L 349.483949 162.100982 \n", "L 45.120313 162.100982 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_41\">\n", "      <path d=\"M 58.955023 239.758125 \n", "L 58.955023 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(55.773773 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_42\">\n", "      <path d=\"M 77.401304 239.758125 \n", "L 77.401304 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(74.220054 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_43\">\n", "      <path d=\"M 95.847585 239.758125 \n", "L 95.847585 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(92.666335 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_44\">\n", "      <path d=\"M 114.293866 239.758125 \n", "L 114.293866 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(111.112616 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_45\">\n", "      <path d=\"M 132.740147 239.758125 \n", "L 132.740147 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(129.558897 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_46\">\n", "      <path d=\"M 151.186428 239.758125 \n", "L 151.186428 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(148.005178 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_47\">\n", "      <path d=\"M 169.632709 239.758125 \n", "L 169.632709 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(166.451459 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_48\">\n", "      <path d=\"M 188.07899 239.758125 \n", "L 188.07899 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(184.89774 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_49\">\n", "      <path d=\"M 206.525271 239.758125 \n", "L 206.525271 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(203.344021 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_50\">\n", "      <path d=\"M 224.971552 239.758125 \n", "L 224.971552 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(218.609052 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_51\">\n", "      <path d=\"M 243.417833 239.758125 \n", "L 243.417833 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(237.055333 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_52\">\n", "      <path d=\"M 261.864114 239.758125 \n", "L 261.864114 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(255.501614 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_53\">\n", "      <path d=\"M 280.310395 239.758125 \n", "L 280.310395 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(273.947895 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_54\">\n", "      <path d=\"M 298.756676 239.758125 \n", "L 298.756676 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(292.394176 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_55\">\n", "      <path d=\"M 317.202957 239.758125 \n", "L 317.202957 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(310.840457 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_56\">\n", "      <path d=\"M 335.649238 239.758125 \n", "L 335.649238 162.100982 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(329.286738 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_61\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(146.006818 270.534688)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_57\">\n", "      <path d=\"M 45.120313 233.286696 \n", "L 349.483949 233.286696 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(20.878125 237.085915)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_58\">\n", "      <path d=\"M 45.120313 200.929554 \n", "L 349.483949 200.929554 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_63\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 204.728772)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_59\">\n", "      <path d=\"M 45.120313 168.572411 \n", "L 349.483949 168.572411 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(29.257813 172.371629)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_65\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(14.798438 249.39596)rotate(-90)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_60\">\n", "    <path d=\"M 58.955023 200.929554 \n", "L 77.401304 180.551117 \n", "L 95.847585 169.27126 \n", "L 114.293866 172.12622 \n", "L 132.740147 187.841315 \n", "L 151.186428 209.400055 \n", "L 169.632709 227.17688 \n", "L 188.07899 233.234779 \n", "L 206.525271 224.869018 \n", "L 224.971552 205.814747 \n", "L 243.417833 184.57933 \n", "L 261.864114 170.643974 \n", "L 280.310395 170.230546 \n", "L 298.756676 183.523619 \n", "L 317.202957 204.588128 \n", "L 335.649238 224.019151 \n", "\" clip-path=\"url(#pc7c98015ff)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"mb1b6efb026\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#pc7c98015ff)\">\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"58.955023\" y=\"200.929554\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"77.401304\" y=\"180.551117\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"95.847585\" y=\"169.27126\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"114.293866\" y=\"172.12622\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"132.740147\" y=\"187.841315\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"151.186428\" y=\"209.400055\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"169.632709\" y=\"227.17688\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"188.07899\" y=\"233.234779\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"206.525271\" y=\"224.869018\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"224.971552\" y=\"205.814747\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"243.417833\" y=\"184.57933\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"261.864114\" y=\"170.643974\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"280.310395\" y=\"170.230546\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"298.756676\" y=\"183.523619\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"317.202957\" y=\"204.588128\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "     <use xlink:href=\"#mb1b6efb026\" x=\"335.649238\" y=\"224.019151\" style=\"fill: #2ca02c; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 45.120313 239.758125 \n", "L 45.120313 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 349.483949 239.758125 \n", "L 349.483949 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 45.120313 239.758125 \n", "L 349.483949 239.758125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 45.120313 162.100982 \n", "L 349.483949 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_66\">\n", "    <!-- Encoding in hidden dimension 3 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(101.073381 156.100982)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 410.356676 239.758125 \n", "L 714.720312 239.758125 \n", "L 714.720312 162.100982 \n", "L 410.356676 162.100982 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_61\">\n", "      <path d=\"M 424.191387 239.758125 \n", "L 424.191387 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(421.010137 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_62\">\n", "      <path d=\"M 442.637668 239.758125 \n", "L 442.637668 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(439.456418 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_63\">\n", "      <path d=\"M 461.083949 239.758125 \n", "L 461.083949 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 3 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(457.902699 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_64\">\n", "      <path d=\"M 479.53023 239.758125 \n", "L 479.53023 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(476.34898 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_65\">\n", "      <path d=\"M 497.976511 239.758125 \n", "L 497.976511 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 5 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(494.795261 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_66\">\n", "      <path d=\"M 516.422792 239.758125 \n", "L 516.422792 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(513.241542 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_67\">\n", "      <path d=\"M 534.869073 239.758125 \n", "L 534.869073 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 7 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(531.687823 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_68\">\n", "      <path d=\"M 553.315354 239.758125 \n", "L 553.315354 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(550.134104 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_69\">\n", "      <path d=\"M 571.761635 239.758125 \n", "L 571.761635 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 9 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(568.580385 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_70\">\n", "      <path d=\"M 590.207916 239.758125 \n", "L 590.207916 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 10 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(583.845416 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_71\">\n", "      <path d=\"M 608.654197 239.758125 \n", "L 608.654197 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 11 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(602.291697 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_72\">\n", "      <path d=\"M 627.100478 239.758125 \n", "L 627.100478 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 12 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(620.737978 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_73\">\n", "      <path d=\"M 645.546759 239.758125 \n", "L 645.546759 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 13 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(639.184259 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-33\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_74\">\n", "      <path d=\"M 663.99304 239.758125 \n", "L 663.99304 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 14 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(657.63054 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_75\">\n", "      <path d=\"M 682.439321 239.758125 \n", "L 682.439321 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 15 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(676.076821 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_76\">\n", "      <path d=\"M 700.885602 239.758125 \n", "L 700.885602 162.100982 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 16 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(694.523102 256.856563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"63.623047\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_83\">\n", "     <!-- Position in sequence -->\n", "     <g style=\"fill: #262626\" transform=\"translate(511.243182 270.534688)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"421.082031\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"448.865234\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"512.244141\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"544.03125\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"596.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-71\" x=\"657.654297\"/>\n", "      <use xlink:href=\"#DejaVuSans-75\" x=\"721.130859\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"784.509766\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"846.033203\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"909.412109\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"964.392578\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_77\">\n", "      <path d=\"M 410.356676 233.286696 \n", "L 714.720312 233.286696 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_84\">\n", "      <!-- \u22121 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(386.114489 237.085915)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-2212\"/>\n", "       <use xlink:href=\"#DejaVuSans-31\" x=\"83.789062\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_78\">\n", "      <path d=\"M 410.356676 200.929554 \n", "L 714.720312 200.929554 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 204.728772)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_79\">\n", "      <path d=\"M 410.356676 168.572411 \n", "L 714.720312 168.572411 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(394.494176 172.371629)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_87\">\n", "     <!-- Positional encoding -->\n", "     <g style=\"fill: #262626\" transform=\"translate(380.034801 249.39596)rotate(-90)scale(0.1 -0.1)\">\n", "      <use xlink:href=\"#DejaVuSans-50\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"56.677734\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"117.859375\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"169.958984\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"197.742188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"236.951172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"264.734375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"325.916016\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"389.294922\"/>\n", "      <use xlink:href=\"#DejaVuSans-6c\" x=\"450.574219\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"478.357422\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"510.144531\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"571.667969\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"635.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"690.027344\"/>\n", "      <use xlink:href=\"#DejaVuSans-64\" x=\"751.208984\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"814.685547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"842.46875\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"905.847656\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_80\">\n", "    <path d=\"M 424.191387 168.572411 \n", "L 442.637668 175.795831 \n", "L 461.083949 194.240974 \n", "L 479.53023 215.67244 \n", "L 497.976511 230.521489 \n", "L 516.422792 232.158311 \n", "L 534.869073 219.852094 \n", "L 553.315354 199.097327 \n", "L 571.761635 179.160615 \n", "L 590.207916 168.943312 \n", "L 608.654197 173.007253 \n", "L 627.100478 189.537961 \n", "L 645.546759 211.154797 \n", "L 663.99304 228.206249 \n", "L 682.439321 233.079196 \n", "L 700.885602 223.597927 \n", "\" clip-path=\"url(#p9e0f8db502)\" style=\"fill: none; stroke: #d62728; stroke-width: 1.5; stroke-linecap: round\"/>\n", "    <defs>\n", "     <path id=\"md7eb8148c5\" d=\"M 0 3 \n", "C 0.795609 3 1.55874 2.683901 2.12132 2.12132 \n", "C 2.683901 1.55874 3 0.795609 3 0 \n", "C 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \n", "C 1.55874 -2.683901 0.795609 -3 0 -3 \n", "C -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \n", "C -2.683901 -1.55874 -3 -0.795609 -3 0 \n", "C -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \n", "C -1.55874 2.683901 -0.795609 3 0 3 \n", "z\n", "\" style=\"stroke: #000000\"/>\n", "    </defs>\n", "    <g clip-path=\"url(#p9e0f8db502)\">\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"424.191387\" y=\"168.572411\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"442.637668\" y=\"175.795831\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"461.083949\" y=\"194.240974\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"479.53023\" y=\"215.67244\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"497.976511\" y=\"230.521489\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"516.422792\" y=\"232.158311\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"534.869073\" y=\"219.852094\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"553.315354\" y=\"199.097327\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"571.761635\" y=\"179.160615\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"590.207916\" y=\"168.943312\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"608.654197\" y=\"173.007253\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"627.100478\" y=\"189.537961\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"645.546759\" y=\"211.154797\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"663.99304\" y=\"228.206249\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"682.439321\" y=\"233.079196\" style=\"fill: #d62728; stroke: #000000\"/>\n", "     <use xlink:href=\"#md7eb8148c5\" x=\"700.885602\" y=\"223.597927\" style=\"fill: #d62728; stroke: #000000\"/>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 410.356676 239.758125 \n", "L 410.356676 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 714.720312 239.758125 \n", "L 714.720312 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 410.356676 239.758125 \n", "L 714.720312 239.758125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 410.356676 162.100982 \n", "L 714.720312 162.100982 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_88\">\n", "    <!-- Encoding in hidden dimension 4 -->\n", "    <g style=\"fill: #262626\" transform=\"translate(466.309744 156.100982)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-45\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"63.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"126.5625\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"181.542969\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"242.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"306.201172\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"333.984375\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"397.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"460.839844\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"492.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"520.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"583.789062\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"615.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"678.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"706.738281\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"770.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"833.691406\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"895.214844\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"958.59375\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"990.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1053.857422\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"1081.640625\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1179.052734\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1240.576172\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"1303.955078\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1356.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"1383.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1445.019531\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1508.398438\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"1540.185547\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p727774ff2b\">\n", "   <rect x=\"45.120313\" y=\"22.318125\" width=\"304.363636\" height=\"77.657143\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pdf051ed3be\">\n", "   <rect x=\"410.356676\" y=\"22.318125\" width=\"304.363636\" height=\"77.657143\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pc7c98015ff\">\n", "   <rect x=\"45.120313\" y=\"162.100982\" width=\"304.363636\" height=\"77.657143\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p9e0f8db502\">\n", "   <rect x=\"410.356676\" y=\"162.100982\" width=\"304.363636\" height=\"77.657143\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x288 with 4 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sns.set_theme()\n", "fig, ax = plt.subplots(2, 2, figsize=(12, 4))\n", "ax = [a for a_list in ax for a in a_list]\n", "for i in range(len(ax)):\n", "    ax[i].plot(np.arange(1, 17), pe[i, :16], color=\"C%i\" % i, marker=\"o\", markersize=6, markeredgecolor=\"black\")\n", "    ax[i].set_title(\"Encoding in hidden dimension %i\" % (i + 1))\n", "    ax[i].set_xlabel(\"Position in sequence\", fontsize=10)\n", "    ax[i].set_ylabel(\"Positional encoding\", fontsize=10)\n", "    ax[i].set_xticks(np.arange(1, 17))\n", "    ax[i].tick_params(axis=\"both\", which=\"major\", labelsize=10)\n", "    ax[i].tick_params(axis=\"both\", which=\"minor\", labelsize=8)\n", "    ax[i].set_ylim(-1.2, 1.2)\n", "fig.subplots_adjust(hspace=0.8)\n", "sns.reset_orig()\n", "plt.show()"]}, {"cell_type": "markdown", "id": "9c2aaea7", "metadata": {"papermill": {"duration": 0.016073, "end_time": "2022-04-09T14:37:39.761079", "exception": false, "start_time": "2022-04-09T14:37:39.745006", "status": "completed"}, "tags": []}, "source": ["As we can see, the patterns between the hidden dimension $1$ and $2$ only differ in the starting angle.\n", "The wavelength is $2\\pi$, hence the repetition after position $6$.\n", "The hidden dimensions $2$ and $3$ have about twice the wavelength."]}, {"cell_type": "markdown", "id": "89e4eacc", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.015755, "end_time": "2022-04-09T14:37:39.792307", "exception": false, "start_time": "2022-04-09T14:37:39.776552", "status": "completed"}, "tags": []}, "source": ["### Learning rate warm-up\n", "\n", "One commonly used technique for training a Transformer is learning rate warm-up.\n", "This means that we gradually increase the learning rate from 0 on to our originally specified\n", "learning rate in the first few iterations.\n", "Thus, we slowly start learning instead of taking very large steps from the beginning.\n", "In fact, training a deep Transformer without learning rate warm-up can make the model diverge\n", "and achieve a much worse performance on training and testing.\n", "Take for instance the following plot by [Liu et al.\n", "(2019)](https://arxiv.org/pdf/1908.03265.pdf) comparing Adam-vanilla (i.e. Adam without warm-up)\n", "vs Adam with a warm-up:\n", "\n", "<center width=\"100%\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/warmup_loss_plot.svg\" width=\"350px\"></center>\n", "\n", "Clearly, the warm-up is a crucial hyperparameter in the Transformer architecture.\n", "Why is it so important?\n", "There are currently two common explanations.\n", "Firstly, Adam uses the bias correction factors which however can lead to a higher variance in the adaptive\n", "learning rate during the first iterations.\n", "Improved optimizers like [RAdam](https://arxiv.org/abs/1908.03265) have been shown to overcome this issue,\n", "not requiring warm-up for training Transformers.\n", "Secondly, the iteratively applied Layer Normalization across layers can lead to very high gradients during\n", "the first iterations, which can be solved by using Pre-Layer Normalization\n", "(similar to Pre-Activation ResNet), or replacing Layer Normalization by other techniques\n", "(Adaptive Normalization,\n", "[Power Normalization](https://arxiv.org/abs/2003.07845)).\n", "\n", "Nevertheless, many applications and papers still use the original Transformer architecture with Adam,\n", "because warm-up is a simple, yet effective way of solving the gradient problem in the first iterations.\n", "There are many different schedulers we could use.\n", "For instance, the original Transformer paper used an exponential decay scheduler with a warm-up.\n", "However, the currently most popular scheduler is the cosine warm-up scheduler,\n", "which combines warm-up with a cosine-shaped learning rate decay.\n", "We can implement it below, and visualize the learning rate factor over epochs."]}, {"cell_type": "code", "execution_count": 12, "id": "3ff0b95e", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:39.824950Z", "iopub.status.busy": "2022-04-09T14:37:39.824523Z", "iopub.status.idle": "2022-04-09T14:37:39.829883Z", "shell.execute_reply": "2022-04-09T14:37:39.829320Z"}, "papermill": {"duration": 0.023188, "end_time": "2022-04-09T14:37:39.831291", "exception": false, "start_time": "2022-04-09T14:37:39.808103", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class CosineWarmupScheduler(optim.lr_scheduler._LRScheduler):\n", "    def __init__(self, optimizer, warmup, max_iters):\n", "        self.warmup = warmup\n", "        self.max_num_iters = max_iters\n", "        super().__init__(optimizer)\n", "\n", "    def get_lr(self):\n", "        lr_factor = self.get_lr_factor(epoch=self.last_epoch)\n", "        return [base_lr * lr_factor for base_lr in self.base_lrs]\n", "\n", "    def get_lr_factor(self, epoch):\n", "        lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))\n", "        if epoch <= self.warmup:\n", "            lr_factor *= epoch * 1.0 / self.warmup\n", "        return lr_factor"]}, {"cell_type": "code", "execution_count": 13, "id": "4d743412", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:39.863573Z", "iopub.status.busy": "2022-04-09T14:37:39.863112Z", "iopub.status.idle": "2022-04-09T14:37:40.202301Z", "shell.execute_reply": "2022-04-09T14:37:40.201715Z"}, "papermill": {"duration": 0.356913, "end_time": "2022-04-09T14:37:40.203758", "exception": false, "start_time": "2022-04-09T14:37:39.846845", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNTAzLjQyNSAyMjguMzcwNjI1IF0KL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nLVYTVMcNxC9z6/Q0RwQ3a3ulnS0nYSKKxfbVOUQ50Dw2oYCHANO/n6etMDMLJjaCjtULcw02qd+/S0d/LT65/Rk9e7wVXj9fjgY306uBw5nw8FLDp+vA34FCmf4/Ivnw/Y+EN4uBqMUVQzP5/fPIiWmTI7HcyybvX4Zhk8DxcrZNZOVEjZftBJXp1zCVdv08MGC+5dhY/UwaI0F26jE6tY2vIDIo8xk5/cyIY+k98L+3Zmsa/stPIBV9aiBPUXCxqvwe7gMBy9lbao3+JzhszbVaNMBNs0Uma1Snek4Sme7D++Ht+HbHTDWGNxwh91fD2+lwzd4i8I+4V/u0TsYdUCL3E1/cjG8OgoHv3BgDkefuvuOPg5/hBe0F/4MR2+Gn4+Gt33D3dFloVi8mJUZ34l4B4SZKaaOxip5G8ZiS3LOHF1AMc85j+JdcHaO3NG4qm3D2WhBziKCFE/FfMZ5It4BZ2GOpaOJetqGc17Sz5ITXOBG83ozEe+Cs9VbNKmFt+HMtKSjkyT4oLLpjPREvAPSieotWtK6VQnjRTM6ZY2euFCakx7FuyDtdIumxFtVMV40pdHIYyqqJvN2Oop3QFqR0ms0tbRVGeNFc1qzR06ZaYP0KN4FaZc1GhxoW9Ux2cjpaYGAPpnUS7ZQY56CyBzk15vV1fHN6dfL6/Dhxell+Ov45uTL6vrD3oLmXCMZ+nMuCSEzjmOj7H+XRlmrCdfU4hgJs+Snppy4ZNyskQpF9OTKZUJ0lD2TKGKQEgotYdZ5mqgsTrSNXKRZS5ownQifSZXJMB/mXK3Cr09y1eW5JvwtQlqnXEfhc7kmQwJLwszu5E9y9eW5OmoIO3SZch2Fz+XqFi15lQyyT3Mty3OtNZrxLFlH2XOZVrTJzAqq9nQ/ixuVvYHsNzj2mPBV11jqRnvYqOy/7bXF2IpKaj/hxer46oHs8vTyc0AHWIVPxyc3X692YuBo3RgYTilVYcs4k+v6dC5o6IjZu/O5hndTR7QLhsm5d9oiSo2OxBKHFSVmhF5t/qhAxqNXiAtGJSlrcY4mkqAonkohVQiZMJoJvgoprEDZtQUvY9yoGLSqdAd5IUEpbfIaRaF3glwRCThNtsTG5B0zzpVuXRVDmubWsDhhkWexDDlFU8zmHUeBX5AqgUuJiZWEuximrdAC8AXZXrR0Ja1EGEcrUAqsbgltrMlxgk8qNUHLjG+y5o6CcbN4TRnL0QsSLFA7TMHsTVwU6LkpmUGxySsOIoqWAReWCAvVnsBCzZ+5WPesJuzaVBdO0WECgsmaXjVZH3GQFehfTjjOsDV2MEdfn4BJOMQDXqFYFpJmMjFFE0gGn7bKVptXm5ukMAKjQuN2+GdvIx/E6GYRWlOGnDJMQ6V7KnF7KQVMkJJeax8UUqK2unWYRo6wc18Ms6dUCNYrOYJC6gmcoK9XblUV5k1u0hmh0oK2I/BCRsRk1bUYwWioS5UDTnCVEAJ9S3ggEeIpByyAtbz5AjZDsmQEafCMAxr6cpMipqri4OItawUKtU4IF8BvBm8F7JyxiJqh2uhruWZ8E2c8OMc7hrZQrArbBQOXjIBvGyoisZAZRhxDBGGE7NCIQ0YrQn5a29Ct9Jss2ENx9kZawdeGROkQWrA7OYLJBD5C2nUM4MHMpNCDsbV76hgYUqEGFGm5md3hjSbOrcd7S2eItVmxg+TmaiVstM5k7Wn4A/G8skqrJVHsQa0OY62eX+g9vKcD4sN7vovH7/n62q2uCceVE4AfoxKIbH1/A2egNLWpHdPhHcwPSnyr8a+/Xp9eogbvBW/pLvdl/ZFKf7H//e/weFMYHmsK7/ZCu5BLdz8ARZd4j9PBx+/nq9YohvtGMfwHRqimsQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjE0MDMKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUxID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XBlcaAL+MDVYKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDYxID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2NwQ3AMAgD/0zBCBACxPtUVR/p/t8mEeoHHwbZGGBhszXgwdnAl9LaN72kRZPaCFa1Rd1QnrsUpVhdR6VMwk+ZO39SdBztcA7b39blOE3j6F/30P0BD0oeCwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDQgPj4Kc3RyZWFtCnicRZFNcgUhCIT3nqIv8KrkVz3PpFJZTO6/Dc28JCtaheYD0wITR/ASQ+yJlRMfMnwv6DJ8tzI78DrZmXBPuG5cw2XDM2Fb4DsqyzteQ3e2Uj+doarvGjneLlI1dGVkn3qhmgvMkIiuEVl0K5d1QNOU7lLhGmxbghT1SqwnnaA06BHK8HeUa3x1E0+vseRUzSFaza0TGoqwbHhB1MkkEbUNiyeWcyFR+aobqzouYJMl4vSA3KCVZnx6UkkRMIN8rMlozAI20JO7ZxfGmkseRY5XNJiwO0k18ID34ra+9zZxj/MX+IV33/8rDn3XAj5/AEv+XQYKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMxID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzYgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5NCA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQxID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY0ID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzYzVDBQMLFUMDI2UTA2NAJiE4UUQy6gCIiVywUTywGzQKpyuKDKc2CqcrgyuNIABRgOMgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDcgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTggPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYzID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTggPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MyA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzOSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1MCA+PgpzdHJlYW0KeJw9TzkOwzAM2/0KfiCAdVi23pMi6JD+f63ooB0EEaB4yLKjYwUOMYFJxxyJl7Qf/DSNQCyDmiN6QsUwLHA2SYGHQVZJVz5bnEwhtQVeSPjWFDwbTWSCnseIHbiTyegD71JbsXXoAe0QVSRdswxjsa26cD1hBDXFehXm9TBjiZJHn1VL6wEFE/jS+X/ubu92fQFgxTBdCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTEgPj4Kc3RyZWFtCnicNY/LDcMwDEPvmoILBNDPsjxPiqCHdP9rJacFDJgwySfZFoORjENMYOyYY+ElVE+tPiQjt7pJORCpUDcET2hMDDOcpEvglem+ZTy3eDmt1AWdkMjdWW00RBnNPIajp+wVTvovc5OolRllDsisU91OyMqCFZgX1HLfz7itcqETHrYrw6I7xYhymxlp+P3vpDddX9x4MNUKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUxID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM0ID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ1IC9oeXBoZW4gL3BlcmlvZCA0OCAvemVybyAvb25lCi90d28gNTIgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4gL2VpZ2h0IDY3IC9DIDczIC9JIDc2IC9MIDgyIC9SIC9TIDg3IC9XIDk3Ci9hIC9iIC9jIC9kIC9lIC9mIC9nIC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAvcCAxMTQgL3IgL3MgL3QgL3UgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9DIDE3IDAgUiAvSSAxOCAwIFIgL0wgMTkgMCBSIC9SIDIwIDAgUiAvUyAyMSAwIFIgL1cgMjIgMCBSIC9hIDIzIDAgUgovYiAyNCAwIFIgL2MgMjUgMCBSIC9kIDI2IDAgUiAvZSAyNyAwIFIgL2VpZ2h0IDI4IDAgUiAvZiAyOSAwIFIKL2ZpdmUgMzAgMCBSIC9mb3VyIDMxIDAgUiAvZyAzMiAwIFIgL2ggMzMgMCBSIC9oeXBoZW4gMzQgMCBSIC9pIDM1IDAgUgovbCAzNiAwIFIgL20gMzcgMCBSIC9uIDM4IDAgUiAvbyAzOSAwIFIgL29uZSA0MCAwIFIgL3AgNDEgMCBSCi9wYXJlbmxlZnQgNDIgMCBSIC9wYXJlbnJpZ2h0IDQzIDAgUiAvcGVyaW9kIDQ0IDAgUiAvciA0NSAwIFIgL3MgNDYgMCBSCi9zZXZlbiA0NyAwIFIgL3NpeCA0OCAwIFIgL3NwYWNlIDQ5IDAgUiAvdCA1MCAwIFIgL3R3byA1MSAwIFIgL3UgNTIgMCBSCi96ZXJvIDUzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1NCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwNDA5MTYzNzQwKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNS4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNS4xKSA+PgplbmRvYmoKeHJlZgowIDU1CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNzc4IDAwMDAwIG4gCjAwMDAwMTM1ODQgMDAwMDAgbiAKMDAwMDAxMzYxNiAwMDAwMCBuIAowMDAwMDEzNzE1IDAwMDAwIG4gCjAwMDAwMTM3MzYgMDAwMDAgbiAKMDAwMDAxMzc1NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAwMTg0MCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE4MTkgMDAwMDAgbiAKMDAwMDAxMjA4NSAwMDAwMCBuIAowMDAwMDExODc4IDAwMDAwIG4gCjAwMDAwMTEzNjUgMDAwMDAgbiAKMDAwMDAxMzEzOCAwMDAwMCBuIAowMDAwMDAxODYwIDAwMDAwIG4gCjAwMDAwMDIxNjggMDAwMDAgbiAKMDAwMDAwMjI5MSAwMDAwMCBuIAowMDAwMDAyNDI0IDAwMDAwIG4gCjAwMDAwMDI3MjkgMDAwMDAgbiAKMDAwMDAwMzE0MyAwMDAwMCBuIAowMDAwMDAzMzA3IDAwMDAwIG4gCjAwMDAwMDM2ODcgMDAwMDAgbiAKMDAwMDAwNDAwNCAwMDAwMCBuIAowMDAwMDA0MzA5IDAwMDAwIG4gCjAwMDAwMDQ2MTMgMDAwMDAgbiAKMDAwMDAwNDkzNSAwMDAwMCBuIAowMDAwMDA1NDAzIDAwMDAwIG4gCjAwMDAwMDU2MTIgMDAwMDAgbiAKMDAwMDAwNTkzNCAwMDAwMCBuIAowMDAwMDA2MTAwIDAwMDAwIG4gCjAwMDAwMDY1MTQgMDAwMDAgbiAKMDAwMDAwNjc1MSAwMDAwMCBuIAowMDAwMDA2ODc3IDAwMDAwIG4gCjAwMDAwMDcwMjEgMDAwMDAgbiAKMDAwMDAwNzE0MCAwMDAwMCBuIAowMDAwMDA3NDcxIDAwMDAwIG4gCjAwMDAwMDc3MDcgMDAwMDAgbiAKMDAwMDAwNzk5OCAwMDAwMCBuIAowMDAwMDA4MTUzIDAwMDAwIG4gCjAwMDAwMDg0NjUgMDAwMDAgbiAKMDAwMDAwODY4OCAwMDAwMCBuIAowMDAwMDA4OTEyIDAwMDAwIG4gCjAwMDAwMDkwMzUgMDAwMDAgbiAKMDAwMDAwOTI2OCAwMDAwMCBuIAowMDAwMDA5Njc1IDAwMDAwIG4gCjAwMDAwMDk4MTcgMDAwMDAgbiAKMDAwMDAxMDIxMCAwMDAwMCBuIAowMDAwMDEwMzAwIDAwMDAwIG4gCjAwMDAwMTA1MDYgMDAwMDAgbiAKMDAwMDAxMDgzMCAwMDAwMCBuIAowMDAwMDExMDc3IDAwMDAwIG4gCjAwMDAwMTM4MzggMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTUgPj4Kc3RhcnR4cmVmCjEzOTk1CiUlRU9GCg==\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"503.407187pt\" height=\"228.357813pt\" viewBox=\"0 0 503.407187 228.357813\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:37:39.992650</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 228.357813 \n", "L 503.407187 228.357813 \n", "L 503.407187 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 49.807188 185.398125 \n", "L 496.207187 185.398125 \n", "L 496.207187 22.318125 \n", "L 49.807188 22.318125 \n", "z\n", "\" style=\"fill: #eaeaf2\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <path d=\"M 70.098097 185.398125 \n", "L 70.098097 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(66.598722 203.256406)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <path d=\"M 120.850746 185.398125 \n", "L 120.850746 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 250 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(110.352621 203.256406)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <path d=\"M 171.603395 185.398125 \n", "L 171.603395 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 500 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(161.10527 203.256406)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <path d=\"M 222.356044 185.398125 \n", "L 222.356044 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 750 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(211.857919 203.256406)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <path d=\"M 273.108693 185.398125 \n", "L 273.108693 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 1000 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(259.111193 203.256406)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <path d=\"M 323.861342 185.398125 \n", "L 323.861342 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 1250 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(309.863842 203.256406)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <path d=\"M 374.613991 185.398125 \n", "L 374.613991 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 1500 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(360.616491 203.256406)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <path d=\"M 425.36664 185.398125 \n", "L 425.36664 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 1750 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(411.36914 203.256406)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-37\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-35\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <path d=\"M 476.119289 185.398125 \n", "L 476.119289 22.318125 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 2000 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(462.121789 203.256406)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"127.246094\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"190.869141\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_10\">\n", "     <!-- Iterations (in batches) -->\n", "     <g style=\"fill: #262626\" transform=\"translate(206.709062 218.662188)scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n", "L 1172 3500 \n", "L 2356 3500 \n", "L 2356 3053 \n", "L 1172 3053 \n", "L 1172 1153 \n", "Q 1172 725 1289 603 \n", "Q 1406 481 1766 481 \n", "L 2356 481 \n", "L 2356 0 \n", "L 1766 0 \n", "Q 1100 0 847 248 \n", "Q 594 497 594 1153 \n", "L 594 3053 \n", "L 172 3053 \n", "L 172 3500 \n", "L 594 3500 \n", "L 594 4494 \n", "L 1172 4494 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n", "L 1178 3500 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 3500 \n", "z\n", "M 603 4863 \n", "L 1178 4863 \n", "L 1178 4134 \n", "L 603 4134 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-28\" d=\"M 1984 4856 \n", "Q 1566 4138 1362 3434 \n", "Q 1159 2731 1159 2009 \n", "Q 1159 1288 1364 580 \n", "Q 1569 -128 1984 -844 \n", "L 1484 -844 \n", "Q 1016 -109 783 600 \n", "Q 550 1309 550 2009 \n", "Q 550 2706 781 3412 \n", "Q 1013 4119 1484 4856 \n", "L 1984 4856 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-62\" d=\"M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "M 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2969 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n", "L 3122 2828 \n", "Q 2878 2963 2633 3030 \n", "Q 2388 3097 2138 3097 \n", "Q 1578 3097 1268 2742 \n", "Q 959 2388 959 1747 \n", "Q 959 1106 1268 751 \n", "Q 1578 397 2138 397 \n", "Q 2388 397 2633 464 \n", "Q 2878 531 3122 666 \n", "L 3122 134 \n", "Q 2881 22 2623 -34 \n", "Q 2366 -91 2075 -91 \n", "Q 1284 -91 818 406 \n", "Q 353 903 353 1747 \n", "Q 353 2603 823 3093 \n", "Q 1294 3584 2113 3584 \n", "Q 2378 3584 2631 3529 \n", "Q 2884 3475 3122 3366 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 4863 \n", "L 1159 4863 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-29\" d=\"M 513 4856 \n", "L 1013 4856 \n", "Q 1481 4119 1714 3412 \n", "Q 1947 2706 1947 2009 \n", "Q 1947 1309 1714 600 \n", "Q 1481 -109 1013 -844 \n", "L 513 -844 \n", "Q 928 -128 1133 580 \n", "Q 1338 1288 1338 2009 \n", "Q 1338 2731 1133 3434 \n", "Q 928 4138 513 4856 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-49\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"29.492188\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"68.701172\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"130.224609\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"171.337891\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"232.617188\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"271.826172\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"299.609375\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"360.791016\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"424.169922\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"476.269531\"/>\n", "      <use xlink:href=\"#DejaVuSans-28\" x=\"508.056641\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"547.070312\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"574.853516\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"638.232422\"/>\n", "      <use xlink:href=\"#DejaVuSans-62\" x=\"670.019531\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"733.496094\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"794.775391\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"833.984375\"/>\n", "      <use xlink:href=\"#DejaVuSans-68\" x=\"888.964844\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"952.34375\"/>\n", "      <use xlink:href=\"#DejaVuSans-73\" x=\"1013.867188\"/>\n", "      <use xlink:href=\"#DejaVuSans-29\" x=\"1065.966797\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_10\">\n", "      <path d=\"M 49.807188 177.985398 \n", "L 496.207187 177.985398 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0.0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 182.164538)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n", "L 1344 794 \n", "L 1344 0 \n", "L 684 0 \n", "L 684 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_11\">\n", "      <path d=\"M 49.807188 148.150832 \n", "L 496.207187 148.150832 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 0.2 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 152.329973)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-32\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_12\">\n", "      <path d=\"M 49.807188 118.316267 \n", "L 496.207187 118.316267 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 0.4 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 122.495407)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-34\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_13\">\n", "      <path d=\"M 49.807188 88.481701 \n", "L 496.207187 88.481701 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 0.6 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 92.660842)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-36\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_14\">\n", "      <path d=\"M 49.807188 58.647135 \n", "L 496.207187 58.647135 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 0.8 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 62.826276)scale(0.11 -0.11)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-38\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_15\">\n", "      <path d=\"M 49.807188 28.81257 \n", "L 496.207187 28.81257 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #ffffff; stroke-linecap: round\"/>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 1.0 -->\n", "      <g style=\"fill: #262626\" transform=\"translate(22.81375 32.99171)scale(0.11 -0.11)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "       <use xlink:href=\"#DejaVuSans-2e\" x=\"63.623047\"/>\n", "       <use xlink:href=\"#DejaVuSans-30\" x=\"95.410156\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"text_17\">\n", "     <!-- Learning rate factor -->\n", "     <g style=\"fill: #262626\" transform=\"translate(16.318125 163.486875)rotate(-90)scale(0.12 -0.12)\">\n", "      <defs>\n", "       <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n", "Q 2906 2416 2648 2759 \n", "Q 2391 3103 1925 3103 \n", "Q 1463 3103 1205 2759 \n", "Q 947 2416 947 1791 \n", "Q 947 1169 1205 825 \n", "Q 1463 481 1925 481 \n", "Q 2391 481 2648 825 \n", "Q 2906 1169 2906 1791 \n", "z\n", "M 3481 434 \n", "Q 3481 -459 3084 -895 \n", "Q 2688 -1331 1869 -1331 \n", "Q 1566 -1331 1297 -1286 \n", "Q 1028 -1241 775 -1147 \n", "L 775 -588 \n", "Q 1028 -725 1275 -790 \n", "Q 1522 -856 1778 -856 \n", "Q 2344 -856 2625 -561 \n", "Q 2906 -266 2906 331 \n", "L 2906 616 \n", "Q 2728 306 2450 153 \n", "Q 2172 0 1784 0 \n", "Q 1141 0 747 490 \n", "Q 353 981 353 1791 \n", "Q 353 2603 747 3093 \n", "Q 1141 3584 1784 3584 \n", "Q 2172 3584 2450 3431 \n", "Q 2728 3278 2906 2969 \n", "L 2906 3500 \n", "L 3481 3500 \n", "L 3481 434 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n", "L 2375 4384 \n", "L 1825 4384 \n", "Q 1516 4384 1395 4259 \n", "Q 1275 4134 1275 3809 \n", "L 1275 3500 \n", "L 2222 3500 \n", "L 2222 3053 \n", "L 1275 3053 \n", "L 1275 0 \n", "L 697 0 \n", "L 697 3053 \n", "L 147 3053 \n", "L 147 3500 \n", "L 697 3500 \n", "L 697 3744 \n", "Q 697 4328 969 4595 \n", "Q 1241 4863 1831 4863 \n", "L 2375 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      </defs>\n", "      <use xlink:href=\"#DejaVuSans-4c\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"53.962891\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"115.486328\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"176.765625\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"216.128906\"/>\n", "      <use xlink:href=\"#DejaVuSans-69\" x=\"279.507812\"/>\n", "      <use xlink:href=\"#DejaVuSans-6e\" x=\"307.291016\"/>\n", "      <use xlink:href=\"#DejaVuSans-67\" x=\"370.669922\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"434.146484\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"465.933594\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"507.046875\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"568.326172\"/>\n", "      <use xlink:href=\"#DejaVuSans-65\" x=\"607.535156\"/>\n", "      <use xlink:href=\"#DejaVuSans-20\" x=\"669.058594\"/>\n", "      <use xlink:href=\"#DejaVuSans-66\" x=\"700.845703\"/>\n", "      <use xlink:href=\"#DejaVuSans-61\" x=\"736.050781\"/>\n", "      <use xlink:href=\"#DejaVuSans-63\" x=\"797.330078\"/>\n", "      <use xlink:href=\"#DejaVuSans-74\" x=\"852.310547\"/>\n", "      <use xlink:href=\"#DejaVuSans-6f\" x=\"891.519531\"/>\n", "      <use xlink:href=\"#DejaVuSans-72\" x=\"952.701172\"/>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"line2d_16\">\n", "    <path d=\"M 70.098097 177.985398 \n", "L 89.587114 35.592052 \n", "L 90.399156 29.730852 \n", "L 97.504527 30.48331 \n", "L 104.609898 31.456105 \n", "L 111.918279 32.683463 \n", "L 119.226661 34.136891 \n", "L 126.738053 35.861378 \n", "L 134.249445 37.813933 \n", "L 141.963848 40.049729 \n", "L 149.881261 42.57891 \n", "L 158.001685 45.409884 \n", "L 166.325119 48.54904 \n", "L 174.851564 52.000456 \n", "L 183.78403 55.855814 \n", "L 193.122518 60.128835 \n", "L 203.070037 64.928363 \n", "L 213.626588 70.270225 \n", "L 225.198192 76.378163 \n", "L 238.19087 83.491721 \n", "L 254.025697 92.425912 \n", "L 281.432127 108.199226 \n", "L 303.154261 120.582905 \n", "L 317.771024 128.66423 \n", "L 330.15467 135.262305 \n", "L 341.320253 140.962432 \n", "L 351.673794 145.998525 \n", "L 361.418302 150.489325 \n", "L 370.553779 154.456898 \n", "L 379.283235 158.01014 \n", "L 387.80968 161.24043 \n", "L 395.930104 164.08312 \n", "L 403.847517 166.624241 \n", "L 411.561919 168.872118 \n", "L 419.276322 170.886789 \n", "L 426.787714 172.61752 \n", "L 434.096096 174.077165 \n", "L 441.404477 175.310859 \n", "L 448.712859 176.314657 \n", "L 455.818229 177.067115 \n", "L 462.9236 177.596962 \n", "L 470.028971 177.902597 \n", "L 475.916278 177.985306 \n", "L 475.916278 177.985306 \n", "\" clip-path=\"url(#pa9fe2280c9)\" style=\"fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round\"/>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 49.807188 185.398125 \n", "L 49.807188 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 496.207187 185.398125 \n", "L 496.207187 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 49.807187 185.398125 \n", "L 496.207188 185.398125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 49.807187 22.318125 \n", "L 496.207188 22.318125 \n", "\" style=\"fill: none; stroke: #ffffff; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_18\">\n", "    <!-- Cosine Warm-up Learning Rate Scheduler -->\n", "    <g style=\"fill: #262626\" transform=\"translate(148.179062 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-57\" d=\"M 213 4666 \n", "L 850 4666 \n", "L 1831 722 \n", "L 2809 4666 \n", "L 3519 4666 \n", "L 4500 722 \n", "L 5478 4666 \n", "L 6119 4666 \n", "L 4947 0 \n", "L 4153 0 \n", "L 3169 4050 \n", "L 2175 0 \n", "L 1381 0 \n", "L 213 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n", "L 1997 2009 \n", "L 1997 1497 \n", "L 313 1497 \n", "L 313 2009 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n", "L 544 3500 \n", "L 1119 3500 \n", "L 1119 1403 \n", "Q 1119 906 1312 657 \n", "Q 1506 409 1894 409 \n", "Q 2359 409 2629 706 \n", "Q 2900 1003 2900 1516 \n", "L 2900 3500 \n", "L 3475 3500 \n", "L 3475 0 \n", "L 2900 0 \n", "L 2900 538 \n", "Q 2691 219 2414 64 \n", "Q 2138 -91 1772 -91 \n", "Q 1169 -91 856 284 \n", "Q 544 659 544 1381 \n", "z\n", "M 1991 3584 \n", "L 1991 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-53\" d=\"M 3425 4513 \n", "L 3425 3897 \n", "Q 3066 4069 2747 4153 \n", "Q 2428 4238 2131 4238 \n", "Q 1616 4238 1336 4038 \n", "Q 1056 3838 1056 3469 \n", "Q 1056 3159 1242 3001 \n", "Q 1428 2844 1947 2747 \n", "L 2328 2669 \n", "Q 3034 2534 3370 2195 \n", "Q 3706 1856 3706 1288 \n", "Q 3706 609 3251 259 \n", "Q 2797 -91 1919 -91 \n", "Q 1588 -91 1214 -16 \n", "Q 841 59 441 206 \n", "L 441 856 \n", "Q 825 641 1194 531 \n", "Q 1563 422 1919 422 \n", "Q 2459 422 2753 634 \n", "Q 3047 847 3047 1241 \n", "Q 3047 1584 2836 1778 \n", "Q 2625 1972 2144 2069 \n", "L 1759 2144 \n", "Q 1053 2284 737 2584 \n", "Q 422 2884 422 3419 \n", "Q 422 4038 858 4394 \n", "Q 1294 4750 2059 4750 \n", "Q 2388 4750 2728 4690 \n", "Q 3069 4631 3425 4513 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-43\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"69.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"131.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"183.105469\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"210.888672\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"274.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"335.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-57\" x=\"367.578125\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"460.080078\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"521.359375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"560.722656\"/>\n", "     <use xlink:href=\"#DejaVuSans-2d\" x=\"658.134766\"/>\n", "     <use xlink:href=\"#DejaVuSans-75\" x=\"694.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"757.597656\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"821.074219\"/>\n", "     <use xlink:href=\"#DejaVuSans-4c\" x=\"852.861328\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"906.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"968.347656\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"1029.626953\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1068.990234\"/>\n", "     <use xlink:href=\"#DejaVuSans-69\" x=\"1132.369141\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1160.152344\"/>\n", "     <use xlink:href=\"#DejaVuSans-67\" x=\"1223.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1287.007812\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1318.794922\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"1386.027344\"/>\n", "     <use xlink:href=\"#DejaVuSans-74\" x=\"1447.306641\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1486.515625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1548.039062\"/>\n", "     <use xlink:href=\"#DejaVuSans-53\" x=\"1579.826172\"/>\n", "     <use xlink:href=\"#DejaVuSans-63\" x=\"1643.302734\"/>\n", "     <use xlink:href=\"#DejaVuSans-68\" x=\"1698.283203\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1761.662109\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"1823.185547\"/>\n", "     <use xlink:href=\"#DejaVuSans-75\" x=\"1886.662109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"1950.041016\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"1977.824219\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"2039.347656\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pa9fe2280c9\">\n", "   <rect x=\"49.807188\" y=\"22.318125\" width=\"446.4\" height=\"163.08\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 576x216 with 1 Axes>"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Needed for initializing the lr scheduler\n", "p = nn.Parameter(torch.empty(4, 4))\n", "optimizer = optim.Adam([p], lr=1e-3)\n", "lr_scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup=100, max_iters=2000)\n", "\n", "# Plotting\n", "epochs = list(range(2000))\n", "sns.set()\n", "plt.figure(figsize=(8, 3))\n", "plt.plot(epochs, [lr_scheduler.get_lr_factor(e) for e in epochs])\n", "plt.ylabel(\"Learning rate factor\")\n", "plt.xlabel(\"Iterations (in batches)\")\n", "plt.title(\"Cosine Warm-up Learning Rate Scheduler\")\n", "plt.show()\n", "sns.reset_orig()"]}, {"cell_type": "markdown", "id": "c6d66245", "metadata": {"papermill": {"duration": 0.016995, "end_time": "2022-04-09T14:37:40.238619", "exception": false, "start_time": "2022-04-09T14:37:40.221624", "status": "completed"}, "tags": []}, "source": ["In the first 100 iterations, we increase the learning rate factor from 0 to 1,\n", "whereas for all later iterations, we decay it using the cosine wave.\n", "Pre-implementations of this scheduler can be found in the popular NLP Transformer library\n", "[huggingface](https://huggingface.co/transformers/main_classes/optimizer_schedules.html?highlight=cosine#transformers.get_cosine_schedule_with_warmup)."]}, {"cell_type": "markdown", "id": "9dbe84c2", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.016824, "end_time": "2022-04-09T14:37:40.272544", "exception": false, "start_time": "2022-04-09T14:37:40.255720", "status": "completed"}, "tags": []}, "source": ["### PyTorch Lightning Module\n", "\n", "Finally, we can embed the Transformer architecture into a PyTorch lightning module.\n", "From Tutorial 5, you know that PyTorch Lightning simplifies our training and test code,\n", "as well as structures the code nicely in separate functions.\n", "We will implement a template for a classifier based on the Transformer encoder.\n", "Thereby, we have a prediction output per sequence element.\n", "If we would need a classifier over the whole sequence, the common approach is to add an additional\n", "`[CLS]` token to the sequence, representing the classifier token.\n", "However, here we focus on tasks where we have an output per element.\n", "\n", "Additionally to the Transformer architecture, we add a small input network (maps input dimensions to model dimensions),\n", "the positional encoding, and an output network (transforms output encodings to predictions).\n", "We also add the learning rate scheduler, which takes a step each iteration instead of once per epoch.\n", "This is needed for the warmup and the smooth cosine decay.\n", "The training, validation, and test step is left empty for now and will be filled for our task-specific models."]}, {"cell_type": "code", "execution_count": 14, "id": "fba3970c", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.307736Z", "iopub.status.busy": "2022-04-09T14:37:40.307446Z", "iopub.status.idle": "2022-04-09T14:37:40.319189Z", "shell.execute_reply": "2022-04-09T14:37:40.318619Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.031287, "end_time": "2022-04-09T14:37:40.320713", "exception": false, "start_time": "2022-04-09T14:37:40.289426", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TransformerPredictor(pl.LightningModule):\n", "    def __init__(\n", "        self,\n", "        input_dim,\n", "        model_dim,\n", "        num_classes,\n", "        num_heads,\n", "        num_layers,\n", "        lr,\n", "        warmup,\n", "        max_iters,\n", "        dropout=0.0,\n", "        input_dropout=0.0,\n", "    ):\n", "        \"\"\"\n", "        Args:\n", "            input_dim: Hidden dimensionality of the input\n", "            model_dim: Hidden dimensionality to use inside the Transformer\n", "            num_classes: Number of classes to predict per sequence element\n", "            num_heads: Number of heads to use in the Multi-Head Attention blocks\n", "            num_layers: Number of encoder blocks to use.\n", "            lr: Learning rate in the optimizer\n", "            warmup: Number of warmup steps. Usually between 50 and 500\n", "            max_iters: Number of maximum iterations the model is trained for. This is needed for the CosineWarmup scheduler\n", "            dropout: Dropout to apply inside the model\n", "            input_dropout: Dropout to apply on the input features\n", "        \"\"\"\n", "        super().__init__()\n", "        self.save_hyperparameters()\n", "        self._create_model()\n", "\n", "    def _create_model(self):\n", "        # Input dim -> Model dim\n", "        self.input_net = nn.Sequential(\n", "            nn.Dropout(self.hparams.input_dropout), nn.Linear(self.hparams.input_dim, self.hparams.model_dim)\n", "        )\n", "        # Positional encoding for sequences\n", "        self.positional_encoding = PositionalEncoding(d_model=self.hparams.model_dim)\n", "        # Transformer\n", "        self.transformer = TransformerEncoder(\n", "            num_layers=self.hparams.num_layers,\n", "            input_dim=self.hparams.model_dim,\n", "            dim_feedforward=2 * self.hparams.model_dim,\n", "            num_heads=self.hparams.num_heads,\n", "            dropout=self.hparams.dropout,\n", "        )\n", "        # Output classifier per sequence lement\n", "        self.output_net = nn.Sequential(\n", "            nn.Linear(self.hparams.model_dim, self.hparams.model_dim),\n", "            nn.LayerNorm(self.hparams.model_dim),\n", "            nn.ReLU(inplace=True),\n", "            nn.Dropout(self.hparams.dropout),\n", "            nn.Linear(self.hparams.model_dim, self.hparams.num_classes),\n", "        )\n", "\n", "    def forward(self, x, mask=None, add_positional_encoding=True):\n", "        \"\"\"\n", "        Args:\n", "            x: Input features of shape [Batch, SeqLen, input_dim]\n", "            mask: Mask to apply on the attention outputs (optional)\n", "            add_positional_encoding: If True, we add the positional encoding to the input.\n", "                                      Might not be desired for some tasks.\n", "        \"\"\"\n", "        x = self.input_net(x)\n", "        if add_positional_encoding:\n", "            x = self.positional_encoding(x)\n", "        x = self.transformer(x, mask=mask)\n", "        x = self.output_net(x)\n", "        return x\n", "\n", "    @torch.no_grad()\n", "    def get_attention_maps(self, x, mask=None, add_positional_encoding=True):\n", "        \"\"\"Function for extracting the attention matrices of the whole Transformer for a single batch.\n", "\n", "        Input arguments same as the forward pass.\n", "        \"\"\"\n", "        x = self.input_net(x)\n", "        if add_positional_encoding:\n", "            x = self.positional_encoding(x)\n", "        attention_maps = self.transformer.get_attention_maps(x, mask=mask)\n", "        return attention_maps\n", "\n", "    def configure_optimizers(self):\n", "        optimizer = optim.Adam(self.parameters(), lr=self.hparams.lr)\n", "\n", "        # We don't return the lr scheduler because we need to apply it per iteration, not per epoch\n", "        self.lr_scheduler = CosineWarmupScheduler(\n", "            optimizer, warmup=self.hparams.warmup, max_iters=self.hparams.max_iters\n", "        )\n", "        return optimizer\n", "\n", "    def optimizer_step(self, *args, **kwargs):\n", "        super().optimizer_step(*args, **kwargs)\n", "        self.lr_scheduler.step()  # Step per iteration\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        raise NotImplementedError\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        raise NotImplementedError\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        raise NotImplementedError"]}, {"cell_type": "markdown", "id": "e2f853d7", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017029, "end_time": "2022-04-09T14:37:40.355127", "exception": false, "start_time": "2022-04-09T14:37:40.338098", "status": "completed"}, "tags": []}, "source": ["## Experiments\n", "\n", "<div class=\"center-wrapper\"><div class=\"video-wrapper\"><iframe src=\"https://www.youtube.com/embed/e7xvF2yS4Dg\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe></div></div>\n", "\n", "After having finished the implementation of the Transformer architecture, we can start experimenting\n", "and apply it to various tasks.\n", "In this notebook, we will focus on two tasks: parallel Sequence-to-Sequence, and set anomaly detection.\n", "The two tasks focus on different properties of the Transformer architecture, and we go through them below.\n", "\n", "### Sequence to Sequence\n", "\n", "A Sequence-to-Sequence task represents a task where the input _and_ the output is a sequence,\n", "not necessarily of the same length.\n", "Popular tasks in this domain include machine translation and summarization.\n", "For this, we usually have a Transformer encoder for interpreting the input sequence,\n", "and a decoder for generating the output in an autoregressive manner.\n", "Here, however, we will go back to a much simpler example task and use only the encoder.\n", "Given a sequence of $N$ numbers between $0$ and $M$, the task is to reverse the input sequence.\n", "In Numpy notation, if our input is $x$, the output should be $x$[::-1].\n", "Although this task sounds very simple, RNNs can have issues with such because the task requires long-term dependencies.\n", "Transformers are built to support such, and hence, we expect it to perform very well.\n", "\n", "First, let's create a dataset class below."]}, {"cell_type": "code", "execution_count": 15, "id": "678b995e", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.390306Z", "iopub.status.busy": "2022-04-09T14:37:40.389769Z", "iopub.status.idle": "2022-04-09T14:37:40.394655Z", "shell.execute_reply": "2022-04-09T14:37:40.394092Z"}, "papermill": {"duration": 0.023865, "end_time": "2022-04-09T14:37:40.396024", "exception": false, "start_time": "2022-04-09T14:37:40.372159", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ReverseDataset(data.Dataset):\n", "    def __init__(self, num_categories, seq_len, size):\n", "        super().__init__()\n", "        self.num_categories = num_categories\n", "        self.seq_len = seq_len\n", "        self.size = size\n", "\n", "        self.data = torch.randint(self.num_categories, size=(self.size, self.seq_len))\n", "\n", "    def __len__(self):\n", "        return self.size\n", "\n", "    def __getitem__(self, idx):\n", "        inp_data = self.data[idx]\n", "        labels = torch.flip(inp_data, dims=(0,))\n", "        return inp_data, labels"]}, {"cell_type": "markdown", "id": "d5c57b9a", "metadata": {"papermill": {"duration": 0.017261, "end_time": "2022-04-09T14:37:40.430322", "exception": false, "start_time": "2022-04-09T14:37:40.413061", "status": "completed"}, "tags": []}, "source": ["We create an arbitrary number of random sequences of numbers between 0 and `num_categories-1`.\n", "The label is simply the tensor flipped over the sequence dimension.\n", "We can create the corresponding data loaders below."]}, {"cell_type": "code", "execution_count": 16, "id": "7d155c78", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.465826Z", "iopub.status.busy": "2022-04-09T14:37:40.465300Z", "iopub.status.idle": "2022-04-09T14:37:40.483277Z", "shell.execute_reply": "2022-04-09T14:37:40.482703Z"}, "papermill": {"duration": 0.037365, "end_time": "2022-04-09T14:37:40.484763", "exception": false, "start_time": "2022-04-09T14:37:40.447398", "status": "completed"}, "tags": []}, "outputs": [], "source": ["dataset = partial(ReverseDataset, 10, 16)\n", "train_loader = data.DataLoader(dataset(50000), batch_size=128, shuffle=True, drop_last=True, pin_memory=True)\n", "val_loader = data.DataLoader(dataset(1000), batch_size=128)\n", "test_loader = data.DataLoader(dataset(10000), batch_size=128)"]}, {"cell_type": "markdown", "id": "108b3cc8", "metadata": {"papermill": {"duration": 0.017281, "end_time": "2022-04-09T14:37:40.519172", "exception": false, "start_time": "2022-04-09T14:37:40.501891", "status": "completed"}, "tags": []}, "source": ["Let's look at an arbitrary sample of the dataset:"]}, {"cell_type": "code", "execution_count": 17, "id": "54622080", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.554479Z", "iopub.status.busy": "2022-04-09T14:37:40.553970Z", "iopub.status.idle": "2022-04-09T14:37:40.558389Z", "shell.execute_reply": "2022-04-09T14:37:40.557790Z"}, "papermill": {"duration": 0.023559, "end_time": "2022-04-09T14:37:40.559783", "exception": false, "start_time": "2022-04-09T14:37:40.536224", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Input data: tensor([9, 6, 2, 0, 6, 2, 7, 9, 7, 3, 3, 4, 3, 7, 0, 9])\n", "Labels:     tensor([9, 0, 7, 3, 4, 3, 3, 7, 9, 7, 2, 6, 0, 2, 6, 9])\n"]}], "source": ["inp_data, labels = train_loader.dataset[0]\n", "print(\"Input data:\", inp_data)\n", "print(\"Labels:    \", labels)"]}, {"cell_type": "markdown", "id": "73604b92", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017109, "end_time": "2022-04-09T14:37:40.594221", "exception": false, "start_time": "2022-04-09T14:37:40.577112", "status": "completed"}, "tags": []}, "source": ["During training, we pass the input sequence through the Transformer encoder and predict the output for each input token.\n", "We use the standard Cross-Entropy loss to perform this.\n", "Every number is represented as a one-hot vector.\n", "Remember that representing the categories as single scalars decreases the expressiveness of the model extremely\n", "as $0$ and $1$ are not closer related than $0$ and $9$ in our example.\n", "An alternative to a one-hot vector is using a learned embedding vector as it is provided by the PyTorch module `nn.Embedding`.\n", "However, using a one-hot vector with an additional linear layer as in our case has the same effect\n", "as an embedding layer (`self.input_net` maps one-hot vector to a dense vector,\n", "where each row of the weight matrix represents the embedding for a specific category).\n", "\n", "To implement the training dynamic, we create a new class inheriting from `TransformerPredictor`\n", "and overwriting the training, validation and test step functions."]}, {"cell_type": "code", "execution_count": 18, "id": "3157b207", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.629517Z", "iopub.status.busy": "2022-04-09T14:37:40.629034Z", "iopub.status.idle": "2022-04-09T14:37:40.635426Z", "shell.execute_reply": "2022-04-09T14:37:40.634853Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.025464, "end_time": "2022-04-09T14:37:40.636801", "exception": false, "start_time": "2022-04-09T14:37:40.611337", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ReversePredictor(TransformerPredictor):\n", "    def _calculate_loss(self, batch, mode=\"train\"):\n", "        # Fetch data and transform categories to one-hot vectors\n", "        inp_data, labels = batch\n", "        inp_data = F.one_hot(inp_data, num_classes=self.hparams.num_classes).float()\n", "\n", "        # Perform prediction and calculate loss and accuracy\n", "        preds = self.forward(inp_data, add_positional_encoding=True)\n", "        loss = F.cross_entropy(preds.view(-1, preds.size(-1)), labels.view(-1))\n", "        acc = (preds.argmax(dim=-1) == labels).float().mean()\n", "\n", "        # Logging\n", "        self.log(\"%s_loss\" % mode, loss)\n", "        self.log(\"%s_acc\" % mode, acc)\n", "        return loss, acc\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        loss, _ = self._calculate_loss(batch, mode=\"train\")\n", "        return loss\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"val\")\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"test\")"]}, {"cell_type": "markdown", "id": "1eca170b", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017272, "end_time": "2022-04-09T14:37:40.673633", "exception": false, "start_time": "2022-04-09T14:37:40.656361", "status": "completed"}, "tags": []}, "source": ["Finally, we can create a training function similar to the one we have seen in Tutorial 5 for PyTorch Lightning.\n", "We create a `pl.Trainer` object, running for $N$ epochs, logging in TensorBoard, and saving our best model based on the validation.\n", "Afterward, we test our models on the test set.\n", "An additional parameter we pass to the trainer here is `gradient_clip_val`.\n", "This clips the norm of the gradients for all parameters before taking an optimizer step and prevents the model\n", "from diverging if we obtain very high gradients at, for instance, sharp loss surfaces (see many good blog posts\n", "on gradient clipping, like [DeepAI glossary](https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping)).\n", "For Transformers, gradient clipping can help to further stabilize the training during the first few iterations, and also afterward.\n", "In plain PyTorch, you can apply gradient clipping via `torch.nn.utils.clip_grad_norm_(...)`\n", "(see [documentation](https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html#torch.nn.utils.clip_grad_norm_)).\n", "The clip value is usually between 0.5 and 10, depending on how harsh you want to clip large gradients.\n", "After having explained this, let's implement the training function:"]}, {"cell_type": "code", "execution_count": 19, "id": "237c583b", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.709513Z", "iopub.status.busy": "2022-04-09T14:37:40.708933Z", "iopub.status.idle": "2022-04-09T14:37:40.715633Z", "shell.execute_reply": "2022-04-09T14:37:40.715064Z"}, "papermill": {"duration": 0.026011, "end_time": "2022-04-09T14:37:40.717000", "exception": false, "start_time": "2022-04-09T14:37:40.690989", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_reverse(**kwargs):\n", "    # Create a PyTorch Lightning trainer with the generation callback\n", "    root_dir = os.path.join(CHECKPOINT_PATH, \"ReverseTask\")\n", "    os.makedirs(root_dir, exist_ok=True)\n", "    trainer = pl.Trainer(\n", "        default_root_dir=root_dir,\n", "        callbacks=[ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\")],\n", "        gpus=1 if str(device).startswith(\"cuda\") else 0,\n", "        max_epochs=10,\n", "        gradient_clip_val=5,\n", "        progress_bar_refresh_rate=1,\n", "    )\n", "    trainer.logger._default_hp_metric = None  # Optional logging argument that we don't need\n", "\n", "    # Check whether pretrained model exists. If yes, load it and skip training\n", "    pretrained_filename = os.path.join(CHECKPOINT_PATH, \"ReverseTask.ckpt\")\n", "    if os.path.isfile(pretrained_filename):\n", "        print(\"Found pretrained model, loading...\")\n", "        model = ReversePredictor.load_from_checkpoint(pretrained_filename)\n", "    else:\n", "        model = ReversePredictor(max_iters=trainer.max_epochs * len(train_loader), **kwargs)\n", "        trainer.fit(model, train_loader, val_loader)\n", "\n", "    # Test best model on validation and test set\n", "    val_result = trainer.test(model, dataloaders=val_loader, verbose=False)\n", "    test_result = trainer.test(model, dataloaders=test_loader, verbose=False)\n", "    result = {\"test_acc\": test_result[0][\"test_acc\"], \"val_acc\": val_result[0][\"test_acc\"]}\n", "\n", "    model = model.to(device)\n", "    return model, result"]}, {"cell_type": "markdown", "id": "170c6143", "metadata": {"papermill": {"duration": 0.017478, "end_time": "2022-04-09T14:37:40.752397", "exception": false, "start_time": "2022-04-09T14:37:40.734919", "status": "completed"}, "tags": []}, "source": ["Finally, we can train the model.\n", "In this setup, we will use a single encoder block and a single head in the Multi-Head Attention.\n", "This is chosen because of the simplicity of the task, and in this case, the attention can actually be interpreted\n", "as an \"explanation\" of the predictions (compared to the other papers above dealing with deep Transformers)."]}, {"cell_type": "code", "execution_count": 20, "id": "da3e1d49", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:40.788473Z", "iopub.status.busy": "2022-04-09T14:37:40.787980Z", "iopub.status.idle": "2022-04-09T14:37:44.274530Z", "shell.execute_reply": "2022-04-09T14:37:44.273926Z"}, "papermill": {"duration": 3.505945, "end_time": "2022-04-09T14:37:44.275998", "exception": false, "start_time": "2022-04-09T14:37:40.770053", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:96: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=1)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.\n", "  rank_zero_deprecation(\n", "GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Missing logger folder: saved_models/Transformers/ReverseTask/lightning_logs\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model, loading...\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:240: PossibleUserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "193ce83655fa4e29bf45db53f6479208", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "765cb12491a549dba9e5145f9eec3a16", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["reverse_model, reverse_result = train_reverse(\n", "    input_dim=train_loader.dataset.num_categories,\n", "    model_dim=32,\n", "    num_heads=1,\n", "    num_classes=train_loader.dataset.num_categories,\n", "    num_layers=1,\n", "    dropout=0.0,\n", "    lr=5e-4,\n", "    warmup=50,\n", ")"]}, {"cell_type": "markdown", "id": "97c40edb", "metadata": {"papermill": {"duration": 0.018062, "end_time": "2022-04-09T14:37:44.314089", "exception": false, "start_time": "2022-04-09T14:37:44.296027", "status": "completed"}, "tags": []}, "source": ["The warning of PyTorch Lightning regarding the number of workers can be ignored for now.\n", "As the data set is so simple and the `__getitem__` finishes a neglectable time, we don't need subprocesses\n", "to provide us the data (in fact, more workers can slow down the training as we have communication overhead among processes/threads).\n", "First, let's print the results:"]}, {"cell_type": "code", "execution_count": 21, "id": "979831eb", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:44.351363Z", "iopub.status.busy": "2022-04-09T14:37:44.350923Z", "iopub.status.idle": "2022-04-09T14:37:44.355034Z", "shell.execute_reply": "2022-04-09T14:37:44.354446Z"}, "papermill": {"duration": 0.024528, "end_time": "2022-04-09T14:37:44.356427", "exception": false, "start_time": "2022-04-09T14:37:44.331899", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Val accuracy:  100.00%\n", "Test accuracy: 100.00%\n"]}], "source": ["print(\"Val accuracy:  %4.2f%%\" % (100.0 * reverse_result[\"val_acc\"]))\n", "print(\"Test accuracy: %4.2f%%\" % (100.0 * reverse_result[\"test_acc\"]))"]}, {"cell_type": "markdown", "id": "bbab7649", "metadata": {"papermill": {"duration": 0.017964, "end_time": "2022-04-09T14:37:44.392392", "exception": false, "start_time": "2022-04-09T14:37:44.374428", "status": "completed"}, "tags": []}, "source": ["As we would have expected, the Transformer can correctly solve the task.\n", "However, how does the attention in the Multi-Head Attention block looks like for an arbitrary input?\n", "Let's try to visualize it below."]}, {"cell_type": "code", "execution_count": 22, "id": "c8d2704d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:44.429196Z", "iopub.status.busy": "2022-04-09T14:37:44.428820Z", "iopub.status.idle": "2022-04-09T14:37:44.436248Z", "shell.execute_reply": "2022-04-09T14:37:44.435661Z"}, "papermill": {"duration": 0.027384, "end_time": "2022-04-09T14:37:44.437643", "exception": false, "start_time": "2022-04-09T14:37:44.410259", "status": "completed"}, "tags": []}, "outputs": [], "source": ["data_input, labels = next(iter(val_loader))\n", "inp_data = F.one_hot(data_input, num_classes=reverse_model.hparams.num_classes).float()\n", "inp_data = inp_data.to(device)\n", "attention_maps = reverse_model.get_attention_maps(inp_data)"]}, {"cell_type": "markdown", "id": "a0f1e662", "metadata": {"papermill": {"duration": 0.017949, "end_time": "2022-04-09T14:37:44.473368", "exception": false, "start_time": "2022-04-09T14:37:44.455419", "status": "completed"}, "tags": []}, "source": ["The object `attention_maps` is a list of length $N$ where $N$ is the number of layers.\n", "Each element is a tensor of shape [Batch, Heads, SeqLen, SeqLen], which we can verify below."]}, {"cell_type": "code", "execution_count": 23, "id": "59364e79", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:44.510010Z", "iopub.status.busy": "2022-04-09T14:37:44.509466Z", "iopub.status.idle": "2022-04-09T14:37:44.514032Z", "shell.execute_reply": "2022-04-09T14:37:44.513456Z"}, "papermill": {"duration": 0.024284, "end_time": "2022-04-09T14:37:44.515442", "exception": false, "start_time": "2022-04-09T14:37:44.491158", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/plain": ["torch.Size([128, 1, 16, 16])"]}, "execution_count": 23, "metadata": {}, "output_type": "execute_result"}], "source": ["attention_maps[0].shape"]}, {"cell_type": "markdown", "id": "d9ce1e83", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.017929, "end_time": "2022-04-09T14:37:44.551386", "exception": false, "start_time": "2022-04-09T14:37:44.533457", "status": "completed"}, "tags": []}, "source": ["Next, we will write a plotting function that takes as input the sequences, attention maps, and an index\n", "indicating for which batch element we want to visualize the attention map.\n", "We will create a plot where over rows, we have different layers, while over columns, we show the different heads.\n", "Remember that the softmax has been applied for each row separately."]}, {"cell_type": "code", "execution_count": 24, "id": "40c1181d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:44.588212Z", "iopub.status.busy": "2022-04-09T14:37:44.587738Z", "iopub.status.idle": "2022-04-09T14:37:44.595498Z", "shell.execute_reply": "2022-04-09T14:37:44.594933Z"}, "papermill": {"duration": 0.027654, "end_time": "2022-04-09T14:37:44.596896", "exception": false, "start_time": "2022-04-09T14:37:44.569242", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def plot_attention_maps(input_data, attn_maps, idx=0):\n", "    if input_data is not None:\n", "        input_data = input_data[idx].detach().cpu().numpy()\n", "    else:\n", "        input_data = np.arange(attn_maps[0][idx].shape[-1])\n", "    attn_maps = [m[idx].detach().cpu().numpy() for m in attn_maps]\n", "\n", "    num_heads = attn_maps[0].shape[0]\n", "    num_layers = len(attn_maps)\n", "    seq_len = input_data.shape[0]\n", "    fig_size = 4 if num_heads == 1 else 3\n", "    fig, ax = plt.subplots(num_layers, num_heads, figsize=(num_heads * fig_size, num_layers * fig_size))\n", "    if num_layers == 1:\n", "        ax = [ax]\n", "    if num_heads == 1:\n", "        ax = [[a] for a in ax]\n", "    for row in range(num_layers):\n", "        for column in range(num_heads):\n", "            ax[row][column].imshow(attn_maps[row][column], origin=\"lower\", vmin=0)\n", "            ax[row][column].set_xticks(list(range(seq_len)))\n", "            ax[row][column].set_xticklabels(input_data.tolist())\n", "            ax[row][column].set_yticks(list(range(seq_len)))\n", "            ax[row][column].set_yticklabels(input_data.tolist())\n", "            ax[row][column].set_title(\"Layer %i, Head %i\" % (row + 1, column + 1))\n", "    fig.subplots_adjust(hspace=0.5)\n", "    plt.show()"]}, {"cell_type": "markdown", "id": "b918b716", "metadata": {"papermill": {"duration": 0.020232, "end_time": "2022-04-09T14:37:44.634993", "exception": false, "start_time": "2022-04-09T14:37:44.614761", "status": "completed"}, "tags": []}, "source": ["Finally, we can plot the attention map of our trained Transformer on the reverse task:"]}, {"cell_type": "code", "execution_count": 25, "id": "655c60eb", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:44.672583Z", "iopub.status.busy": "2022-04-09T14:37:44.672183Z", "iopub.status.idle": "2022-04-09T14:37:44.958647Z", "shell.execute_reply": "2022-04-09T14:37:44.958104Z"}, "papermill": {"duration": 0.306872, "end_time": "2022-04-09T14:37:44.960097", "exception": false, "start_time": "2022-04-09T14:37:44.653225", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgMjQ1LjE5OTM3NSAyNjMuNjM2ODc1IF0KL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nKWYTU8bMRCG7/4VPrZSO/H420coLS3qJSVSD1UPCEJaBFSAVNR/33Eg2MmsrV1yyMe+8vp5PWvPeD07Wv79fb78dnwoP5yKWbk6fxAor8TsAOXqQSp5RZ9HifJYbjdSpN8IbR1gSiY4uryuL7U34I2P9PeaGu9c5sa/hLgl1ooujgmwEkIrcO7pbgMxYG5NDBMgpR35eku2CAY3eumklol2Ke7kEEJjAGs3P/dL+V3eytmBzgGgWNDnce2xBEBQAKgvjDIPJf8O9Xt+I2dfUB79kXMxl3ebLhUNOXerID53TIrQAYyzbOxFVWA2QxeHFLdHcUffSr5X1Ju2gMGuw5tAh4g648XhQs4+oUQlF5frqC8uxA/5Jr2VP+XiRHxciLlY2xBWQbIMX6ldPD2K4EfjLcc7C84wfKV28Q5zlMbiA8f7CKgZvlK7eG9zlMbiFcdHhIAMX6ldfIg5SmPxhuOTA6MYvlK7+KRzlPYYPaoIMTF+LXcNoHI5UGMd4IADrcFG7qCS+w4w5Vjt8QjQeFCBO6jkvgOjc7DGOvADDmwC77mDSu47sD4Ha48cgFQiNE+Btdx34FUO1j4zMXiIPAvWct9BMDlYYx3oAQdJgeWJsJb7DmLIwRrrwHEHWllQPBfWcr8SKZWDtcdTyHXY83RYy30HaHOwxjqIAw4MguYZsZb7DnTMwdrHwct2wiiaUn4zEUHtqoMVATRtuMj4tD1AgVpLs4hBi9qC0n7B+mmrvkBdgOf8UUOL2oLSLkFNrPcFGpDmCoMWtQX1NBntxHn9Ao2OpgeDFrUFpR2BNtMKS4GmSMuHQYvagiYLUb92pIialgyjVnILm8u/xWl1vOJq2hMkzi1yk6t7g+1GGA1tAyKHFrkJNQ5cmlawK67TkALnFrnJpepOLy+vXLDoPTiemyq5yfUaQi879SdVVIA8PVVyk0uV3PQS1EBJrrjJQOAZqpKb3JggTS7EL2+Uit4CeZKq5GYRUAbcq9OUpr+J56lKbnKpNfYyVbfkaUPvfTxVVXKTS3Ux9NbvFlfLk6cDjvWL+PbxRuMoYvhsQZwOH1LcNA8p8h1TDju225eeugS1Ht+qOsNY1QGjakKr5Wk7Y8Pmzip2ejt2X8/+Le8lvpOfl2cXciv9zsV/E6Kq/wplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjg2NgplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcGVxpAHGiEmcKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzk1ID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk0ID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjIgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQwID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDEgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE2IDAgb2JqCjw8IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NCAvY29tbWEgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbgovZWlnaHQgL25pbmUgNzIgL0ggNzYgL0wgOTcgL2EgMTAwIC9kIC9lIDExNCAvciAxMjEgL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9IIDE4IDAgUiAvTCAxOSAwIFIgL2EgMjAgMCBSIC9jb21tYSAyMSAwIFIgL2QgMjIgMCBSIC9lIDIzIDAgUgovZWlnaHQgMjQgMCBSIC9maXZlIDI1IDAgUiAvZm91ciAyNiAwIFIgL25pbmUgMjcgMCBSIC9vbmUgMjggMCBSIC9yIDI5IDAgUgovc2V2ZW4gMzAgMCBSIC9zaXggMzEgMCBSIC9zcGFjZSAzMiAwIFIgL3RocmVlIDMzIDAgUiAvdHdvIDM0IDAgUiAveSAzNSAwIFIKL3plcm8gMzYgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA0NCAo/eck6eQZtd0rn9k4l9g+ldc/kNZDjdZEiNVHg9NLftJOacxbU8VnT8NpXCh7jlwpeI4vaY0waI0xZI0yYo0zYI00X401XYw1XFyMNluMNlqMN1mMN1iMOFeMOFaLOVWLOVSLOlKLO1GKPE6KPkiIP0WHRgxfRgteRglcXEUIW0UGWkUFWEQCVUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMjE4IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAyMTggL0xlbmd0aCAzNyAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAyMTggPj4Kc3RyZWFtCnic7dzJchMxFIZRQ5jnIYwJM4EQ/P7PR3mn3w5yTLU61+Z8Oy/ardMr32pZi0X0tO08Wu5bCzS0SqGhlQoNrVRoaKU6ZNqz6Kjte3TRdt3LvkpoaKVCQysVGlqp0NBKtfgZfWq7Hx237cNQgIZWKjS0UqGhlQoNrVSHTMuPMbl8i262vYtqQtHQ0OYJDQ1tntDQ0Obp/6FF4bz40HYn6kBng2yGhoY2T2hoaPOEhoY2Tz1aFiv+GCX0tO1HNBCyGdoSDW2W0JZoaLOEtkRDmyW09XKP0PPocdurKC+bVrIR2npoaGNCWw8NbUxo66GhjekfadlZ9LbtYXT89x31U6wjQ+uHhjZVaP3Q0KYKrR8a2lSh9fsdhfNzdDd63zb9vIPWDw0NbWto/dDQ0LaG1g9tH2lZOHO3z4voUdvLaIp5B22X0NDQLgltl9DQ0C4JbZcOmNYphoKzk7Y4k/7oa1v+HffKN0ObKDS0LaFNFBraltAmCg1tS2hDisklD9G51xaP4ORX1Pl6tCGhoW2ENiQ0tI3QhoSGthHa+HK3z5u229GXqONEGx8a2iq08aGhrUIbHxraqjK0LIaC/OX/IHrdFledo80dGlqp0NBKhYZWKjS0uuWK4+D501tt+d4A7VpDQysVGlqp0NBKhbaPtCw31D9puxGhFQoNrVRoaKVCQysV2kHT/gAjoz6HCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKNTI0CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozOCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwNDA5MTYzNzQ0KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNS4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNS4xKSA+PgplbmRvYmoKeHJlZgowIDM5CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5NDM0IDAwMDAwIG4gCjAwMDAwMDgzMDAgMDAwMDAgbiAKMDAwMDAwODMzMiAwMDAwMCBuIAowMDAwMDA4NDMxIDAwMDAwIG4gCjAwMDAwMDg0NTIgMDAwMDAgbiAKMDAwMDAwODQ3MyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDQgMDAwMDAgbiAKMDAwMDAwMTMwNSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDEyODUgMDAwMDAgbiAKMDAwMDAwODUwNSAwMDAwMCBuIAowMDAwMDA2OTk3IDAwMDAwIG4gCjAwMDAwMDY3OTAgMDAwMDAgbiAKMDAwMDAwNjM1OCAwMDAwMCBuIAowMDAwMDA4MDUwIDAwMDAwIG4gCjAwMDAwMDEzMjUgMDAwMDAgbiAKMDAwMDAwMTQ3NiAwMDAwMCBuIAowMDAwMDAxNjA5IDAwMDAwIG4gCjAwMDAwMDE5ODkgMDAwMDAgbiAKMDAwMDAwMjEyOSAwMDAwMCBuIAowMDAwMDAyNDMzIDAwMDAwIG4gCjAwMDAwMDI3NTUgMDAwMDAgbiAKMDAwMDAwMzIyMyAwMDAwMCBuIAowMDAwMDAzNTQ1IDAwMDAwIG4gCjAwMDAwMDM3MTEgMDAwMDAgbiAKMDAwMDAwNDEwNiAwMDAwMCBuIAowMDAwMDA0MjYxIDAwMDAwIG4gCjAwMDAwMDQ0OTQgMDAwMDAgbiAKMDAwMDAwNDYzNiAwMDAwMCBuIAowMDAwMDA1MDI5IDAwMDAwIG4gCjAwMDAwMDUxMTkgMDAwMDAgbiAKMDAwMDAwNTUzMiAwMDAwMCBuIAowMDAwMDA1ODU2IDAwMDAwIG4gCjAwMDAwMDYwNzAgMDAwMDAgbiAKMDAwMDAwOTQxNCAwMDAwMCBuIAowMDAwMDA5NDk0IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzggMCBSIC9Sb290IDEgMCBSIC9TaXplIDM5ID4+CnN0YXJ0eHJlZgo5NjUxCiUlRU9GCg==\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"245.2025pt\" height=\"263.63625pt\" viewBox=\"0 0 245.2025 263.63625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:37:44.777704</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 263.63625 \n", "L 245.2025 263.63625 \n", "L 245.2025 0 \n", "L 0 0 \n", "L 0 263.63625 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 239.758125 \n", "L 238.0025 239.758125 \n", "L 238.0025 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pd9b2cebcc4)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAEvElEQVR4nO3czYuVdRjH4eccBubogMrYMgikpeOM9ScUvY0vlQVCBmM7I9KKAg2zQUWqTeG6kBZDWExGL0ZtrK2ltI1WbaJaZE4LpyZPqzYuhN+N85Wj17W/uZ/Nh9/m5und33ti2MEI609MlOZ+3j/dPPPNvrdKu/qlKaCJ0CBAaBAgNAgQGgQIDQKEBgFCgwChQYDQIEBoECA0CBAaBIzd7A+A//XGx0tzl2enSnP7nz7TPLP9lZdKu7xoECA0CBAaBAgNAoQGAUKDAKFBgNAgQGgQIDQIEBoECA0CHBWzKioHwpcf3Vra9eChb0tz7x3f0TyzYfFiaZcXDQKEBgFCgwChQYDQIEBoECA0CBAaBAgNAoQGAUKDAKFBgNAgwPU+19UfDEpzf+yaaZ6Ze/XT0q6FQ7OluQ2fX2ieGf7zd2mXFw0ChAYBQoMAoUGA0CBAaBAgNAgQGgQIDQKEBgFCgwChQYCj4ttI5Tfdlx6bKe3adfDr5pn357eXdq0rHAd3Xf1AuMKLBgFCgwChQYDQIEBoECA0CBAaBAgNAoQGAUKDAKFBgNAgQGgQ4Hp/BPUnJkpzf26bap7Zd+Sj0q53X368eWbd2e9Ku4YrK6W5JC8aBAgNAoQGAUKDAKFBgNAgQGgQIDQIEBoECA0ChAYBQoMAoUGA6/0bpddrHumvWVNa9fvuLaW5TXt/bJ45+caTpV0bv2r/H/4oXOFXedEgQGgQIDQIEBoECA0ChAYBQoMAoUGA0CBAaBAgNAgQGgQ4Kr5W4Ti467quv3Zt88xfD2wu7drz4tnS3OmjDzXP3HHmYmnX1eXl0tytyosGAUKDAKFBgNAgQGgQIDQIEBoECA0ChAYBQoMAoUGA0CBAaBDgev8alSv8ruu6SzunmmfufaF2Gb/w5sOlucmP23/T7Qr/xvCiQYDQIEBoECA0CBAaBAgNAoQGAUKDAKFBgNAgQGgQIDQIEBoE3LLX+/3BoDT3254tpbm7nvqpeeb8yXtKuzae9j/8UeNFgwChQYDQIEBoECA0CBAaBAgNAoQGAUKDAKFBgNAgQGgQMBJHxb3x8eaZpW3TpV1zz39Rmvtgvv033ZOf/VDadfXKldIcN48XDQKEBgFCgwChQYDQIEBoECA0CBAaBAgNAoQGAUKDAKFBgNAgIHq93xurrVvaMdM8s/v1L0u7Fo61X+F3Xdet/6T9N91+0X378KJBgNAgQGgQIDQIEBoECA0ChAYBQoMAoUGA0CBAaBAgNAgoHxVXDoSX75sp7Tp84lTzzPzhvaVd6xfbj4O7ruuGDoS5Di8aBAgNAoQGAUKDAKFBgNAgQGgQIDQIEBoECA0ChAYBQoMAoUHAWH8wKA0uzU43zzxy5Fxp12tHn2memVy8UNrlCp/V4EWDAKFBgNAgQGgQIDQIEBoECA0ChAYBQoMAoUGA0CBAaBAgNAgY+3Vua2nwwIEPm2dOPbeztGvy3PnmmeHKSmkXrAYvGgQIDQKEBgFCgwChQYDQIEBoECA0CBAaBAgNAoQGAUKDgN6/v9w9rAxufufZ5pk73/6+sspvuhl5XjQIEBoECA0ChAYBQoMAoUGA0CBAaBAgNAgQGgQIDQKEBgFCg4D/AI1BhPoybSTRAAAAAElFTkSuQmCC\" id=\"imagec1a34da256\" transform=\"scale(1 -1)translate(0 -218)\" x=\"20.5625\" y=\"-21.758125\" width=\"218\" height=\"218\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"md1fd4d93c3\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"27.3575\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(24.17625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"40.9475\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(37.76625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"54.5375\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(51.35625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"68.1275\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(64.94625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"81.7175\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(78.53625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"95.3075\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(92.12625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"108.8975\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(105.71625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"122.4875\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(119.30625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"136.0775\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(132.89625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"149.6675\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(146.48625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_11\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"163.2575\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(160.07625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"176.8475\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(173.66625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"190.4375\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(187.25625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"204.0275\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(200.84625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"217.6175\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(214.43625 254.356563)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#md1fd4d93c3\" x=\"231.2075\" y=\"239.758125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(228.02625 254.356563)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_17\">\n", "      <defs>\n", "       <path id=\"m2731f767ec\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"232.963125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 236.762344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"219.373125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 223.172344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"205.783125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 209.582344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"192.193125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 195.992344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"178.603125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_21\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 182.402344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"165.013125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 168.812344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"151.423125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 155.222344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"137.833125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 141.632344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"124.243125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 128.042344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"110.653125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 114.452344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"97.063125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 100.862344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"83.473125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 87.272344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"69.883125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 73.682344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"56.293125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 60.092344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"42.703125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 46.502344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#m2731f767ec\" x=\"20.5625\" y=\"29.113125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 32.912344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 239.758125 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 238.0025 239.758125 \n", "L 238.0025 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 239.758125 \n", "L 238.0025 239.758125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 238.0025 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_33\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(81.600313 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pd9b2cebcc4\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"217.44\" height=\"217.44\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 288x288 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["plot_attention_maps(data_input, attention_maps, idx=0)"]}, {"cell_type": "markdown", "id": "9d4769e6", "metadata": {"papermill": {"duration": 0.019048, "end_time": "2022-04-09T14:37:44.998918", "exception": false, "start_time": "2022-04-09T14:37:44.979870", "status": "completed"}, "tags": []}, "source": ["The model has learned to attend to the token that is on the flipped index of itself.\n", "Hence, it actually does what we intended it to do.\n", "We see that it however also pays some attention to values close to the flipped index.\n", "This is because the model doesn't need the perfect, hard attention to solve this problem,\n", "but is fine with this approximate, noisy attention map.\n", "The close-by indices are caused by the similarity of the positional encoding,\n", "which we also intended with the positional encoding."]}, {"cell_type": "markdown", "id": "737558c4", "metadata": {"papermill": {"duration": 0.019071, "end_time": "2022-04-09T14:37:45.039252", "exception": false, "start_time": "2022-04-09T14:37:45.020181", "status": "completed"}, "tags": []}, "source": ["### Set Anomaly Detection\n", "\n", "Besides sequences, sets are another data structure that is relevant for many applications.\n", "In contrast to sequences, elements are unordered in a set.\n", "RNNs can only be applied on sets by assuming an order in the data, which however biases the model towards\n", "a non-existing order in the data.\n", "[Vinyals et al.\n", "(2015)](https://arxiv.org/abs/1511.06391) and other papers have shown that the assumed order can have a significant\n", "impact on the model's performance, and hence, we should try to not use RNNs on sets.\n", "Ideally, our model should be permutation-equivariant/invariant such that the output is the same no matter how we sort the elements in a set.\n", "\n", "Transformers offer the perfect architecture for this as the Multi-Head Attention is permutation-equivariant, and thus,\n", "outputs the same values no matter in what order we enter the inputs (inputs and outputs are permuted equally).\n", "The task we are looking at for sets is _Set Anomaly Detection_ which means that we try to find the element(s)\n", "in a set that does not fit the others.\n", "In the research community, the common application of anomaly detection is performed on a set of images,\n", "where $N-1$ images belong to the same category/have the same high-level features while one belongs to another category.\n", "Note that category does not necessarily have to relate to a class in a standard classification problem,\n", "but could be the combination of multiple features.\n", "For instance, on a face dataset, this could be people with glasses, male, beard, etc.\n", "An example of distinguishing different animals can be seen below.\n", "The first four images show foxes, while the last represents a different animal.\n", "We want to recognize that the last image shows a different animal, but it is not relevant which class of animal it is.\n", "\n", "<center width=\"100%\" style=\"padding:20px\"><img src=\"https://github.com/PyTorchLightning/lightning-tutorials/raw/main/course_UvA-DL/05-transformers-and-MH-attention/cifar100_example_anomaly.png\" width=\"600px\"></center>\n", "\n", "In this tutorial, we will use the CIFAR100 dataset.\n", "CIFAR100 has 600 images for 100 classes each with a resolution of 32x32, similar to CIFAR10.\n", "The larger amount of classes requires the model to attend to specific features in the images instead\n", "of coarse features as in CIFAR10, therefore making the task harder.\n", "We will show the model a set of 9 images of one class, and 1 image from another class.\n", "The task is to find the image that is from a different class than the other images.\n", "Using the raw images directly as input to the Transformer is not a good idea, because it is not translation\n", "invariant as a CNN, and would need to learn to detect image features from high-dimensional input first of all.\n", "Instead, we will use a pre-trained ResNet34 model from the torchvision package to obtain high-level,\n", "low-dimensional features of the images.\n", "The ResNet model has been pre-trained on the [ImageNet](http://image-net.org/) dataset which contains\n", "1 million images of 1k classes and varying resolutions.\n", "However, during training and testing, the images are usually scaled to a resolution of 224x224,\n", "and hence we rescale our CIFAR images to this resolution as well.\n", "Below, we will load the dataset, and prepare the data for being processed by the ResNet model."]}, {"cell_type": "code", "execution_count": 26, "id": "cc71ab85", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:45.079178Z", "iopub.status.busy": "2022-04-09T14:37:45.078745Z", "iopub.status.idle": "2022-04-09T14:37:50.004285Z", "shell.execute_reply": "2022-04-09T14:37:50.003611Z"}, "papermill": {"duration": 4.947683, "end_time": "2022-04-09T14:37:50.006276", "exception": false, "start_time": "2022-04-09T14:37:45.058593", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz to /__w/1/s/.datasets/cifar-100-python.tar.gz\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "8e9c7cfd6f554ff0afc421a3bec240c1", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/169001437 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Extracting /__w/1/s/.datasets/cifar-100-python.tar.gz to /__w/1/s/.datasets\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Files already downloaded and verified\n"]}], "source": ["# ImageNet statistics\n", "DATA_MEANS = np.array([0.485, 0.456, 0.406])\n", "DATA_STD = np.array([0.229, 0.224, 0.225])\n", "# As torch tensors for later preprocessing\n", "TORCH_DATA_MEANS = torch.from_numpy(DATA_MEANS).view(1, 3, 1, 1)\n", "TORCH_DATA_STD = torch.from_numpy(DATA_STD).view(1, 3, 1, 1)\n", "\n", "# Resize to 224x224, and normalize to ImageNet statistic\n", "transform = transforms.Compose(\n", "    [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(DATA_MEANS, DATA_STD)]\n", ")\n", "# Loading the training dataset.\n", "train_set = CIFAR100(root=DATASET_PATH, train=True, transform=transform, download=True)\n", "\n", "# Loading the test set\n", "test_set = CIFAR100(root=DATASET_PATH, train=False, transform=transform, download=True)"]}, {"cell_type": "markdown", "id": "ab7d9a3a", "metadata": {"papermill": {"duration": 0.019525, "end_time": "2022-04-09T14:37:50.046339", "exception": false, "start_time": "2022-04-09T14:37:50.026814", "status": "completed"}, "tags": []}, "source": ["Next, we want to run the pre-trained ResNet model on the images, and extract the features before the classification layer.\n", "These are the most high-level features, and should sufficiently describe the images.\n", "CIFAR100 has some similarity to ImageNet, and thus we are not retraining the ResNet model in any form.\n", "However, if you would want to get the best performance and have a very large dataset,\n", "it would be better to add the ResNet to the computation graph during training and finetune its parameters as well.\n", "As we don't have a large enough dataset and want to train our model efficiently, we will extract the features beforehand.\n", "Let's load and prepare the model below."]}, {"cell_type": "code", "execution_count": 27, "id": "8351ec27", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:50.086409Z", "iopub.status.busy": "2022-04-09T14:37:50.085915Z", "iopub.status.idle": "2022-04-09T14:37:51.259607Z", "shell.execute_reply": "2022-04-09T14:37:51.258932Z"}, "papermill": {"duration": 1.195754, "end_time": "2022-04-09T14:37:51.261484", "exception": false, "start_time": "2022-04-09T14:37:50.065730", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Downloading: \"https://download.pytorch.org/models/resnet34-333f7ec4.pth\" to saved_models/Transformers/hub/checkpoints/resnet34-333f7ec4.pth\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "10259a280f164d3d9263a1a594353a81", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0.00/83.3M [00:00<?, ?B/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["os.environ[\"TORCH_HOME\"] = CHECKPOINT_PATH\n", "pretrained_model = torchvision.models.resnet34(pretrained=True)\n", "# Remove classification layer\n", "# In some models, it is called \"fc\", others have \"classifier\"\n", "# Setting both to an empty sequential represents an identity map of the final features.\n", "pretrained_model.fc = nn.Sequential()\n", "pretrained_model.classifier = nn.Sequential()\n", "# To GPU\n", "pretrained_model = pretrained_model.to(device)\n", "\n", "# Only eval, no gradient required\n", "pretrained_model.eval()\n", "for p in pretrained_model.parameters():\n", "    p.requires_grad = False"]}, {"cell_type": "markdown", "id": "40869eea", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.020351, "end_time": "2022-04-09T14:37:51.302474", "exception": false, "start_time": "2022-04-09T14:37:51.282123", "status": "completed"}, "tags": []}, "source": ["We will now write a extraction function for the features below.\n", "This cell requires access to a GPU, as the model is rather deep and the images relatively large.\n", "The GPUs on GoogleColab are sufficient, but running this cell can take 2-3 minutes.\n", "Once it is run, the features are exported on disk so they don't have to be recalculated every time you run the notebook.\n", "However, this requires >150MB free disk space.\n", "So it is recommended to run this only on a local computer if you have enough free disk and a GPU (GoogleColab is fine for this).\n", "If you do not have a GPU, you can download the features from the\n", "[GoogleDrive folder](https://drive.google.com/drive/folders/1DF7POc6j03pRiWQPWSl5QJX5iY-xK0sV?usp=sharing)."]}, {"cell_type": "code", "execution_count": 28, "id": "bb6a628d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:37:51.343510Z", "iopub.status.busy": "2022-04-09T14:37:51.343092Z", "iopub.status.idle": "2022-04-09T14:38:23.333962Z", "shell.execute_reply": "2022-04-09T14:38:23.333239Z"}, "papermill": {"duration": 32.013591, "end_time": "2022-04-09T14:38:23.335836", "exception": false, "start_time": "2022-04-09T14:37:51.322245", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "f06c41b025b242e0871cd4c0c4344903", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/391 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "19d0896443db42f2ba3b872fb5c2caeb", "version_major": 2, "version_minor": 0}, "text/plain": ["  0%|          | 0/79 [00:00<?, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["@torch.no_grad()\n", "def extract_features(dataset, save_file):\n", "    if not os.path.isfile(save_file):\n", "        data_loader = data.DataLoader(dataset, batch_size=128, shuffle=False, drop_last=False, num_workers=4)\n", "        extracted_features = []\n", "        for imgs, _ in tqdm(data_loader):\n", "            imgs = imgs.to(device)\n", "            feats = pretrained_model(imgs)\n", "            extracted_features.append(feats)\n", "        extracted_features = torch.cat(extracted_features, dim=0)\n", "        extracted_features = extracted_features.detach().cpu()\n", "        torch.save(extracted_features, save_file)\n", "    else:\n", "        extracted_features = torch.load(save_file)\n", "    return extracted_features\n", "\n", "\n", "train_feat_file = os.path.join(CHECKPOINT_PATH, \"train_set_features.tar\")\n", "train_set_feats = extract_features(train_set, train_feat_file)\n", "\n", "test_feat_file = os.path.join(CHECKPOINT_PATH, \"test_set_features.tar\")\n", "test_feats = extract_features(test_set, test_feat_file)"]}, {"cell_type": "markdown", "id": "e84b7b8b", "metadata": {"papermill": {"duration": 0.020553, "end_time": "2022-04-09T14:38:23.411349", "exception": false, "start_time": "2022-04-09T14:38:23.390796", "status": "completed"}, "tags": []}, "source": ["Let's verify the feature shapes below.\n", "The training should have 50k elements, and the test 10k images.\n", "The feature dimension is 512 for the ResNet34.\n", "If you experiment with other models, you likely see a different feature dimension."]}, {"cell_type": "code", "execution_count": 29, "id": "de4021a1", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:23.574686Z", "iopub.status.busy": "2022-04-09T14:38:23.574349Z", "iopub.status.idle": "2022-04-09T14:38:23.578767Z", "shell.execute_reply": "2022-04-09T14:38:23.578169Z"}, "papermill": {"duration": 0.027778, "end_time": "2022-04-09T14:38:23.580205", "exception": false, "start_time": "2022-04-09T14:38:23.552427", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Train: torch.Size([50000, 512])\n", "Test:  torch.Size([10000, 512])\n"]}], "source": ["print(\"Train:\", train_set_feats.shape)\n", "print(\"Test: \", test_feats.shape)"]}, {"cell_type": "markdown", "id": "e809ba22", "metadata": {"papermill": {"duration": 0.019547, "end_time": "2022-04-09T14:38:23.619686", "exception": false, "start_time": "2022-04-09T14:38:23.600139", "status": "completed"}, "tags": []}, "source": ["As usual, we want to create a validation set to detect when we should stop training.\n", "In this case, we will split the training set into 90% training, 10% validation.\n", "However, the difficulty is here that we need to ensure that the validation set has the same number of images for all 100 labels.\n", "Otherwise, we have a class imbalance which is not good for creating the image sets.\n", "Hence, we take 10% of the images for each class, and move them into the validation set.\n", "The code below does exactly this."]}, {"cell_type": "code", "execution_count": 30, "id": "03c66c46", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:23.664063Z", "iopub.status.busy": "2022-04-09T14:38:23.663498Z", "iopub.status.idle": "2022-04-09T14:38:23.683008Z", "shell.execute_reply": "2022-04-09T14:38:23.682288Z"}, "papermill": {"duration": 0.042618, "end_time": "2022-04-09T14:38:23.684858", "exception": false, "start_time": "2022-04-09T14:38:23.642240", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Split train into train+val\n", "# Get labels from train set\n", "labels = train_set.targets\n", "\n", "# Get indices of images per class\n", "labels = torch.LongTensor(labels)\n", "num_labels = labels.max() + 1\n", "sorted_indices = torch.argsort(labels).reshape(num_labels, -1)  # [classes, num_imgs per class]\n", "\n", "# Determine number of validation images per class\n", "num_val_exmps = sorted_indices.shape[1] // 10\n", "\n", "# Get image indices for validation and training\n", "val_indices = sorted_indices[:, :num_val_exmps].reshape(-1)\n", "train_indices = sorted_indices[:, num_val_exmps:].reshape(-1)\n", "\n", "# Group corresponding image features and labels\n", "train_feats, train_labels = train_set_feats[train_indices], labels[train_indices]\n", "val_feats, val_labels = train_set_feats[val_indices], labels[val_indices]"]}, {"cell_type": "markdown", "id": "a9113185", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.019822, "end_time": "2022-04-09T14:38:23.725832", "exception": false, "start_time": "2022-04-09T14:38:23.706010", "status": "completed"}, "tags": []}, "source": ["Now we can prepare a dataset class for the set anomaly task.\n", "We define an epoch to be the sequence in which each image has been exactly once as an \"anomaly\".\n", "Hence, the length of the dataset is the number of images in it.\n", "For the training set, each time we access an item with `__getitem__`, we sample a random,\n", "different class than the image at the corresponding index `idx` has.\n", "In a second step, we sample $N-1$ images of this sampled class.\n", "The set of 10 images is finally returned.\n", "The randomness in the `__getitem__` allows us to see a slightly different set during each iteration.\n", "However, we can't use the same strategy for the test set as we want the test dataset to be the same every time we iterate over it.\n", "Hence, we sample the sets in the `__init__` method, and return those in `__getitem__`.\n", "The code below implements exactly this dynamic."]}, {"cell_type": "code", "execution_count": 31, "id": "f6c12b79", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:23.766868Z", "iopub.status.busy": "2022-04-09T14:38:23.766595Z", "iopub.status.idle": "2022-04-09T14:38:23.776490Z", "shell.execute_reply": "2022-04-09T14:38:23.775914Z"}, "papermill": {"duration": 0.032222, "end_time": "2022-04-09T14:38:23.777891", "exception": false, "start_time": "2022-04-09T14:38:23.745669", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class SetAnomalyDataset(data.Dataset):\n", "    def __init__(self, img_feats, labels, set_size=10, train=True):\n", "        \"\"\"\n", "        Args:\n", "            img_feats: Tensor of shape [num_imgs, img_dim]. Represents the high-level features.\n", "            labels: Tensor of shape [num_imgs], containing the class labels for the images\n", "            set_size: Number of elements in a set. N-1 are sampled from one class, and one from another one.\n", "            train: If True, a new set will be sampled every time __getitem__ is called.\n", "        \"\"\"\n", "        super().__init__()\n", "        self.img_feats = img_feats\n", "        self.labels = labels\n", "        self.set_size = set_size - 1  # The set size is here the size of correct images\n", "        self.train = train\n", "\n", "        # Tensors with indices of the images per class\n", "        self.num_labels = labels.max() + 1\n", "        self.img_idx_by_label = torch.argsort(self.labels).reshape(self.num_labels, -1)\n", "\n", "        if not train:\n", "            self.test_sets = self._create_test_sets()\n", "\n", "    def _create_test_sets(self):\n", "        # Pre-generates the sets for each image for the test set\n", "        test_sets = []\n", "        num_imgs = self.img_feats.shape[0]\n", "        np.random.seed(42)\n", "        test_sets = [self.sample_img_set(self.labels[idx]) for idx in range(num_imgs)]\n", "        test_sets = torch.stack(test_sets, dim=0)\n", "        return test_sets\n", "\n", "    def sample_img_set(self, anomaly_label):\n", "        \"\"\"Samples a new set of images, given the label of the anomaly.\n", "\n", "        The sampled images come from a different class than anomaly_label\n", "        \"\"\"\n", "        # Sample class from 0,...,num_classes-1 while skipping anomaly_label as class\n", "        set_label = np.random.randint(self.num_labels - 1)\n", "        if set_label >= anomaly_label:\n", "            set_label += 1\n", "\n", "        # Sample images from the class determined above\n", "        img_indices = np.random.choice(self.img_idx_by_label.shape[1], size=self.set_size, replace=False)\n", "        img_indices = self.img_idx_by_label[set_label, img_indices]\n", "        return img_indices\n", "\n", "    def __len__(self):\n", "        return self.img_feats.shape[0]\n", "\n", "    def __getitem__(self, idx):\n", "        anomaly = self.img_feats[idx]\n", "        if self.train:  # If train => sample\n", "            img_indices = self.sample_img_set(self.labels[idx])\n", "        else:  # If test => use pre-generated ones\n", "            img_indices = self.test_sets[idx]\n", "\n", "        # Concatenate images. The anomaly is always the last image for simplicity\n", "        img_set = torch.cat([self.img_feats[img_indices], anomaly[None]], dim=0)\n", "        indices = torch.cat([img_indices, torch.LongTensor([idx])], dim=0)\n", "        label = img_set.shape[0] - 1\n", "\n", "        # We return the indices of the images for visualization purpose. \"Label\" is the index of the anomaly\n", "        return img_set, indices, label"]}, {"cell_type": "markdown", "id": "5864ca11", "metadata": {"papermill": {"duration": 0.020134, "end_time": "2022-04-09T14:38:23.818378", "exception": false, "start_time": "2022-04-09T14:38:23.798244", "status": "completed"}, "tags": []}, "source": ["Next, we can setup our datasets and data loaders below.\n", "Here, we will use a set size of 10, i.e. 9 images from one category + 1 anomaly.\n", "Feel free to change it if you want to experiment with the sizes."]}, {"cell_type": "code", "execution_count": 32, "id": "ed1c9a5d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:23.859404Z", "iopub.status.busy": "2022-04-09T14:38:23.858895Z", "iopub.status.idle": "2022-04-09T14:38:25.413135Z", "shell.execute_reply": "2022-04-09T14:38:25.412472Z"}, "papermill": {"duration": 1.57685, "end_time": "2022-04-09T14:38:25.415045", "exception": false, "start_time": "2022-04-09T14:38:23.838195", "status": "completed"}, "tags": []}, "outputs": [], "source": ["SET_SIZE = 10\n", "test_labels = torch.LongTensor(test_set.targets)\n", "\n", "train_anom_dataset = SetAnomalyDataset(train_feats, train_labels, set_size=SET_SIZE, train=True)\n", "val_anom_dataset = SetAnomalyDataset(val_feats, val_labels, set_size=SET_SIZE, train=False)\n", "test_anom_dataset = SetAnomalyDataset(test_feats, test_labels, set_size=SET_SIZE, train=False)\n", "\n", "train_anom_loader = data.DataLoader(\n", "    train_anom_dataset, batch_size=64, shuffle=True, drop_last=True, num_workers=4, pin_memory=True\n", ")\n", "val_anom_loader = data.DataLoader(val_anom_dataset, batch_size=64, shuffle=False, drop_last=False, num_workers=4)\n", "test_anom_loader = data.DataLoader(test_anom_dataset, batch_size=64, shuffle=False, drop_last=False, num_workers=4)"]}, {"cell_type": "markdown", "id": "cd49b542", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.019961, "end_time": "2022-04-09T14:38:25.455965", "exception": false, "start_time": "2022-04-09T14:38:25.436004", "status": "completed"}, "tags": []}, "source": ["To understand the dataset a little better, we can plot below a few sets from the test dataset.\n", "Each row shows a different input set, where the first 9 are from the same class."]}, {"cell_type": "code", "execution_count": 33, "id": "b41d7af9", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:25.533543Z", "iopub.status.busy": "2022-04-09T14:38:25.533074Z", "iopub.status.idle": "2022-04-09T14:38:26.723486Z", "shell.execute_reply": "2022-04-09T14:38:26.722841Z"}, "papermill": {"duration": 1.219496, "end_time": "2022-04-09T14:38:26.730572", "exception": false, "start_time": "2022-04-09T14:38:25.511076", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNjg0IDMwMC4wMjU2NjIyNTE3IF0KL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nF1Py07DQAy8+yvm2BzYtTfJJjmmLY3KrSUSB8ShCqFQ5UGoROHvcYKg0JVG1ow99qxd1u8vVb0t5ljckj2z6kiCA9lcsD+CcVCcICjwf4hVb8mnkdZmqiGzYRd771TgSzpOPRN1NCAxboL3mfFwCZuYWedcLAneatyhg83deF+jKE7qLtTok3EPq0V+l1Qt7Fqw7LGhDYYfI2P/1zxyGvRnjCtW0UWRyeJQXAyXhiY5369ampewK4E4lE9T8vKR7jHLu77dNZ+oA4g3meZOw/Fh9rFrX5v6iL7DYr0KkImRKP7uajvfCnOAB5Q3dF2S5qQvWC5VtwplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI0OAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkxID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc2ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNyA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg5ID4+CnN0cmVhbQp4nDVNuRGAMAzrPYVHwI9IvA/HUYT9W+yENJZOnxHKB2vkAYLhjS8h+KIvGYS1Cw8q+0h02EQNZxUkE8OvLPCqnBVtcyUT2VlMo7NBy/St7W+DHro/3Y4cCgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQxID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSA2NSAvQSA2NyAvQyA3MCAvRiA3MyAvSSA4MiAvUiA5NyAvYSAxMDEgL2UgMTA4Ci9sIC9tIC9uIC9vIC9wIDExNSAvcyAxMjAgL3ggL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9BIDE4IDAgUiAvQyAxOSAwIFIgL0YgMjAgMCBSIC9JIDIxIDAgUiAvUiAyMiAwIFIgL2EgMjMgMCBSIC9lIDI0IDAgUgovbCAyNSAwIFIgL20gMjYgMCBSIC9uIDI3IDAgUiAvbyAyOCAwIFIgL29uZSAyOSAwIFIgL3AgMzAgMCBSIC9zIDMxIDAgUgovc3BhY2UgMzIgMCBSIC94IDMzIDAgUiAveSAzNCAwIFIgL3plcm8gMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgNjcwIC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAyNzEgL0xlbmd0aCAzNiAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCA2NzAgPj4Kc3RyZWFtCnic7P1ZryRJlh4InkVEVNXM7r2+RWRGVlUmyWlWD7sxKA4wDRD95/jn5mXIeWDPgFUsVmVlZGQs7n5XW3QRkbPMg6jdxcMjsgozwABESHqGm9s106sqcuSs3/kE/+N//I/wy/hl/DJ+Gb+MX8Yv43+UQf//voFfxi/jl/HL+GX8Mn4Z/78cv5j2X8Yv45fxy/hl/DL+hxq/mPZfxi/jl/HL+GX8Mv6HGuH5P95+8W8uX/0GEQDwxx/FZ//98c8cAAD88WP+6YcREQChXdzd148/uzjis0/+5PDzl9bbdHeA+7tvrz/+vr1vIHf+Tw6K7RepmamaOgISxRhT6pgjUwghhRBjDExYci55cQMEAgdwcHcVzUsupYoaIIaO0xCGbez72HUxUCQPoOQCbohI7q7u4I5OMXRd6okCIrVHT6EPFMdxnKZJrAD5ZjOkvhPVeZluH25O43jJv+Lzovzrf/2v//qv//pnpuL/+2FmIlpKKaWIiLkFDjHGGGMIoU1uWytEZCIO/POr08aHDx/+y3/5L+01M/9f/7f/ve837u1K7oBt9c4y4wB2/i3ggOCrqCACgJubm7WPIyICASAA+jPxwbPUtN/wiXSt313F7587HPy//R//z+Phof3z17/+9d/8zd/8C74N8Lnt0h62ui5L3o/TnYGEwBxi4M7MTSGli767cq9VTku5Wco9YQq8G/p3fXqDmAD4X/AYAA8PD//pP/2ndVYQ/+L/8j8PVztsGxKBABiREan9d53cp7t/3Ldtmzt4ewZbl7Nd6bya7tD+dx6I6AgGYOsP4eXSPB9P0/XZT3z7X//hcH3XXm+323/zf/rX4zQf9id3YA64fssdwNtoYoWATaugN4F+fnm39SbbX+sX0Z/djPtP3e+j4vJH1YbnWYIm1aaqUhFh6Lrddvv61aU7/L//9u/MrF3h3//7f/+rX/3qc9f2T6bh2W2Yu1VZSplVi5scjw/397d3d3f39/f7h+O8LK9fX/3q11/81V/+9le/+oo5AKCq1FpLyWoSY+jS0HevU9wgISI5IDidnwB/ejWe3v37v//7r7/+ur2O/fYv/t3/jkTwqMjXaQdCIABCcAe3xwuYg5upm7XNScgIoFJrHsfjzTLvTSYESRwQXKSYqbk7oGNAihz6mDap36VuG2OPyA5gjg5IIRJHJMJ1acABmuw5gJ8XyAHQwaT+8F//71pLu60v//Kv33zx2yY9P35u/NxfsOqls+F8egWPOgme//hH49kG+omBz6789M76L0IgxPff/fGbP/z9489fmPar17/56q/+5rOmHZ/2OT6+8/zHz8Ww3WdTEOvF2pPjWQuctfyzB3u6V3z896dj/fxZR53fdQf3R9PuoA/+jUNlJHA3ExGpUoGQEvc0bNI2hi5w52mgbqA+xch1HPV0AoMmimhgalLqNB/HMueqTjjEtItduujpckibvgt99B5KsAyuDABqVk3AgByHLm03KYSOKAA4og/dLlJ/fw+OuShg8Ms3absbslQ4znU6Hk83O3/LuC7KV1999R/+w39oD/hTBnW1ZP6ofj4jH+27eFZb1j7t4A6iUksdx3EcT6VWVev7bhiGvu9TSuvVzRGRmUMIMUVmOi/B4/LhJ7f3t3/7t4+mnYj+z//r31y9emPqti48OqCvMuKO5qZm4mCAYAZmAIiERIztts3MXcGdmgECbgknd3y8gVWz+7P/PU4IOj7OxD/DNTnLlX3zj3//aNrfvXvXluOnB55/43NH9/mb7i5mWeqp5PvDkW4fjura9ZRSl+LWDETgYvPry4u/cCi53u+P5TjumUKXdq8u//Jy96+YLwj7z+XbfvK5/vSnb/7zf/7Pq/ME8MX/9Lur33xBhIRI4IwYiSJiJAqIAZ6sO0JTys+MFoK5G7i4q5k7wmra8ewPrwOe+WKGoAAKq6n9rKl8dO4d8IVr8LgcAPfff3w07X3f/+5f/e7u7sH9GoH6YUtIZ7l2dzdzM3fzVe8SIjTxtxeOl6632fxDa1vkU/vvn70leNxcjgBIjs2PcUQHMzdwk5LnaQTToevevLr63V/9JTj81//294+m/d/+23/77/7d//K5x7VnDjCCP04buotaHqeH4+mm5FMt88cPc63l/v5+nL69uf14OJxC/OovQvzy1//mr//6i5Q6cCwlL3kex1G09F233V69uvjtdvMmxMgcHCMANytMSGdpOm+pp6gNHl8cDodH0x7S8Jv/+X+jEGHV96vsMwIhBAIGMHPTtu/bRhDRqlrNHZAiRwKUskynW/6I+FAkL+QwJCT3UlWkmrsBGSKFxCn2m4vNxbvt9vWwuSIM5qiOhhy6IXQbooDE6E0zoAM4ogEaogPY+ZHqMn34b/+PR9P+5ovf/u6v/2+r9JxF9VGFnv8GeGmsVhF7+uc6A02i14+/tJzP7Szio8vxJFiPk938g2fXfHEFBGCEFnL9pGlffZvm5eDTe4+v8OVnnxb6pdT7Cy9kvbHm2/qj4/7jS3264X8c93zeh/UfqQpmAiTGgO5GyMwxRQoc+xRTiJGJAEFEF18UvHNLgJaGiACElFJiZqk1z4xRacAwZ0fYXQ0Xrza7y64fgqOK1UCRQ0ALCqwKYlDF3AwdkAvVHB2IRLSq1NM4EfA8LnOZxDKaj9NRoRQt03wwK4FemMgXWvKldfdzPG3molqriqipOhitKqyZcWPmlBIRAYCI5JxLrbXWpudFtZQynsZxGt2dQ9jWTRWd5oWJwAERU4wppa7rEMlLbRvFzNS0TTUzxxjxmeB/siDu3tTs+XHcfHWfAR3BxXLOU61LkVxlqZoBiSn2/bZLW6YOIaiKiYIDIYXQMydcfXJ3MFjdBkdotr9FIefwc1XwbRZ/1jt+lLifkFX4KcuEL7bBakYdwA3cDIpDdZBSjtN4fTh8f3j408P+24fT94Y5DZxiH0KPGAjT5fY34/TbLm2JfDruj/t7IurTxBCReEhfpfiGKDxmL87u808+16fLYeqqDgSEzdAagACAebMnDECABEDNJ1112qND7QCO7uSr1m8h7jmaX+fDz46heQvZW9T+ZNpfuoOrCj07fJ97CnihIqrUu7u7h4fD8Xja7a52F1chpGaC/axzHv1PRG9Re7sSttC62fNnutvPQZaaVhFvbgsREzdn8dFjOd/IqqOwTRMgOFpT0u4ARuDLPN7o+/39zcPtzemwD4hdl34uD/AyRHr5uk0qqmou08P+w/cf/vHwcDMe97e31zfXH+/vH0oZQ9TtBaVe1U8P+++//Z6Z2c1rLaXmUqqZMvMwXIxX0+XFl9vtxbDZdd1lCB1AQAgvgkt8DHGf3xiuk/XsLUJgPE/v2TNAAAKE5jGJiFRwdZdap1LmKotIURNwSGmIHFylzPua9yqjWzYvS67kZlrdFQEQFFxcVEEKCOjieS/TFonN3ZwMYxou0nBJnJACEyMSNq+VI3AkDo60qgZ/aVDX3SHnhA88Jg+fzCqeY/RHC4uPPznH1quAwaOlb9Ny/sJZ4s5feUyhwVPc/yx1cnYR1hfPApX29ZZ1Cy9zeS9Ne3McVi34QsperurLN5/8ucc3muuMZ42HgO6f7s1n4dNzj/CZJvrnxFefi1aRCAGJEAkoEEFEJIpdSn2iAEjWAkGVLKUiKrNxoC4FIiSmYdPFGHMmmgGSYQ80gbvvrrrdZTdsEzNUyeAuGBEDIJtbES+15lrdBcGBCDhEVyYutZSygLorSFEpoi7IDpNmZfEyL7NppR9ZnUfT/uzhVlfGzNSsFC25zkvJS6m1mCsz4Gp5zc1SSpvNJoTg7suynE6naZqXvLgDEolarXUcp3mZA4eu70opS8lNMgkghLDZbDbD4O4iq8S7Q6txEGGz+kTE/JNZ4rNJXw26uZk18yIACmi5TNN0HOf9OO6n/DCXIyCG0F1s311efNHFy8BDLSKlmhkBb4bLvt8GDkgAKOZFLauKKyDFFDeBesAWgsAzxdTM0p8Tq2aoHB7jqj+zImdv5jEj1T4HgGDmJqpL1UPVk/k8zTd3t3+8uf6njx9+//Dw3XG+Aa7dhkJMzClwiqHfbb962H1/ufv1prvc7z883N8gStf1gIwh4W5g3iEAUFi3thPgyy30Zx7QwAwI3AgQDEDbk7obAAMyQMvMMyAhOiA95hubYkBviZfVpsM5unucXHzyjVqYbOesxXlynt/vown2nzHt8KIEAyqy3z8cDuM8zxeXby4uX6VuY/5oqZutaVrXnyIneozPgdZg/pyQaO4yOgAUqfOyOEDgVqBKAPCU74JHfeNPd2yrwbPVCXBEYPTptJ9Op9uPHz5+uD4+3F/utrvd9mdN+9OcgMPL9MzqGJWSD6eHjzd/+uM3f3dz/f3+/uF4OI6nseRSa+WgPSOHUmR/e/8n8xGbRtCqpn7eCl3aTKfx6ur+6ur1q1fvrq5koCum7hxN8vk2HpMcz40AfSpv2GJHfx6ttklAMFBVlZKXWmb36paX+bgsh1JnkSxSwL1LQ4yJAWqZZbl3GcGLW63m6I5uhIAEtLoJClLFsteT5b7GDhEN3DAAdjVf1XxJlJAic2AOxIlCR2nLaUPYEydo3j/CJ1qXwAh0Tdvgk5VtO4DW9M/LosVaJsRH075a33NJ4vwDeP7m6iCskroaSwJ/kRl49AxwdUUe3aan9ABAQGCA+LOmHfDZf+Hl6uHT/byQv2cL3pxgAa8GguCEwSECtLiqXS8gBEQANHd11zafhBEx4AsZwp+PRR6f/8efcUN1F5NA1K0xZxf7lPqArI7FTFW9ZKtFKShHSx2FyCEGjoyMimKqnoy31IXoSVQFYy06YS5IqFrJyQhIq2cuC8yziKqCEgEztdR8sj7G5GAQ1Fy06lLyslRzRYLic6xEwasVs+pmn9kyz8zG83fUNOdyOi3juExTnudlnqdaM6Kai0p1U3AY+uHy8pKIaq2n02m/PyzLUqU+iomDi4ipMvOc47KM6dgRERN1MfVdB2Aq5XDcm2qVamYISETEPAz9brcjoq7rfm6Z6PFXORCig1vN5XSc7nMdRbLIXOr0sL+5vXu/P16P872ZEaWryy9eX/1qt3nTpYtSa8nF1JnTm9e/fv3qi2EYQqBSj0s5zsuh5EUqduni9auvdpu3Ke6YEgCdc1D+KM9/Vq2eQ71/trH8ZL2af+3qWMyPc/5w9/D74+n7XPfjeHd/d31/d/Nwe7s/PJymU0i+vQgxKVFBJMJwg1Og68vdFxfb1zWf8vzgpqlLSLtu88V2yLjaJX/maf8LbvVc/nx6Pne31Wpjsx8GTgACyICMRA4E0KzkY6BvTwbqyb9+LDY/zsVjiEcO9vTZ53f8bFn8mQr83J0/jnYbzNx1/WZ7sbt4lbqNOjrQ8yjoqdi3ZmRXfUoEqzpGb1raXEVUTNXURKoaM6dhsxn6vusA0PS5V7dOVDPj52dGdzyXBADBmZwJLna7YeiJwFxFpar8ORl8VIAv5gGBHEy17I+333z7j19/89//+MffH/b3ZcmmEEMvApZF1dTKNJ0eHgDAlnkEAgQnBiIkQiIKMUCVmzvdH+43t9s3b371m9/Mb9/8Zrd5Q5FgLXg93y6fWPcfebcAzMCM2MLTx7ytK5hInep8Gk8P0+kAUNFrLaeSR9XFtJhXd9OZCTlwdBPJe9eF2YAYdC33EgGzA3qA1WogOqK4nJZybItKoUeuZZQyH83AHULgEBkpcdykzetu+7rbvo7dBVMCDG0rPX+QFGnXkbqrubeqVMu1t81GZ3P8os4OAEjtSk95+vNXz2H/sx8BPrsMnvNvhL5+HJ+uC08JAAT05z86FwagVSj5ZY3uhWk/O7nn3/2jxXvaXGeX4nmwcMZDLWJH99ldCCJBD2AOCkiEkWmLODi4u6hNahkcCAPDlimdMyB0Bvf8GYW13oV/eremqAauRoGwCyn1m802DTF0jFwd0UxEFFAdNETgaBw9dMARiVFcRaV4VRRMEJkhRBEHM4GMooAgIqBYXFFmL5xnm+diDhQxxJBCADcVMapOAzNhADQHUrGSy6yqjk4CoUJIBKBViqoAfRqjf1rsMHBwNRPRXOrxNO73p/GUx3Eax2POs3lWLVILuBHQZrud5wUJ85KPx8PDwz7nrCqOAITEzMxISEhEiEgjEzMzcYxx0/ebYag1M1POpZRcSnE3opBS6vvh4uKCiFJKosLcyrKf18hIgA6GLS2Xcz0ex+ubu+8Op9t5PqgXh/Kwv/n48bv7h4+H420tAk5Xl29fv/7y8vLNZrgUkVKqKsTQz8tf5vLVxcVFiDgvD+N0N873yzJL4e3w1rw6+MWGukSEwZ9UJPp56wE+19Fn4f1E2D+nf3/0gP7y/VapFfdquqgcS77e77/+4f3/cXv3T/NyN46H43E6HfLpIOOpTKOGBK4ekxKpu6t6rXuVD7vN9cX2FbmBFleLqet3767eHuWqABh4tRZTPIPB/TMNPJ3V0AvhegQZteS5r0lFdSBX9EfcDLY41x9T7rAWhszNwYmIiM7RyNmBBCQHQyfHxzzuo3I6Q+seFdmn4eDLmX56m4lCCF3f98PQD9vUb9Vo9SUeKwgtDHpp2qlVj6h5AesdiYpTkWK16pzzaZpS1/XuxNx1HSGZfnpPfl7y9f7xE9MOAc21DMPQdZEDAbq1Gvznx4/lDZ+9je5eSxmnh48fvv3DH/7+62/+8fsfvi/LjI5d3KS4IQTTbErmkHM5nU7gkHMGdCTvutB1gQhjZKTeTObxqELM6XB6APSWedhuKARGJHB6thT4M3a9DSZg8jUhDy3/4Sqidcnzfj7eHO+vj4c7BGFS08VkcSvu4iAOKmLuGLhDgJInN0EgQnYnd2x6DxCJ/BwqrKioUmrJBRCZQ3BgQBER8SpVRWKAEAgoUtz0+agyowtaRd4gJ+aIWp4/URdw27Ooibk5mKM/1dBbaerR5sKjFD/eD5yD7NUWN8F7CrUfkwBrwN3ep/NOfnznSc88cw7O2fjz9jqbY350LJ6NT6N2WK+OP+k5P14QAc7Pcpa8LDpV/ZDlW9V7sxGM3SIgIXEIQ4oXXfgy8ms1rzIv9WOVByQPHCO/Crh1AMQQecO8IdwgxJ8Jnc7by/1Hn3B1QuIYU4oxRk5MESkSR6aAyKgmqAKsnIwIjUxAXVxLFjMDNwczc4fAgZgocMBIBEzEzKqWs5apSi6ozBCletZKxIlT7LHrCdHdCwR0QsdEGGNIIcbCunipKtWKiXpWYnewkqsKePjxpPs5O4KmLmqqKqpiVqrNSzkdp8PxNB7HaR5LnqssZsVUAZyJG6g0xAjuombuYlarGBgQtkQ9ERu20ryZqbsxUYihi7GLkUMgRNUVpk7MKSW1HhljDqcpxBhSl4goxkjPZf88zKuDAKGJTtNpnO5P08e7h+8+3vzx9u79/f2Ng8SEpcyn8TAdD/N+GsclZzk9zIeH/cXlbrPbrAACI6Zunj7e3V71fccBqoxVJ7VZVc3SNN85WK3V3sJuB13aMsVVXvzRbX2K4H9OtP4F41yDgmI2ix5KuZvnj9P44XR6f3/37fsf/ulh/z6XMUsRtVJd1N2ckEAwn1CTU1AzE2lZTFjmk9XiKloVDPt++3o/L6eqObuOVcysqik4Em2YNyFsmOPZZfm5UL6BblqE4c8s4bl6iufcuAOAmLlaKbWWggAcOKXUlvucpAdRK1LnvJRaAocUY+pSDJGehdlISIDmrTj3LHDHlt33xzjhJ+PZlzYfkWKMUZyr4QoaeCwI+6PZXbfOswQHwnn5HQyB8FwadVTwueT7h/uH/cP+cEgpimbTN4Tep54xnHOjz3PyT+sPT1N4TlcQIaGvQAQDMFxRXP+igS25raL39zdff/P3//SH//r7P/zdx+vvD4dFqxKgdWCJ8kwlM9EQUwxsblAr4KzmCqAqKlWILEQyM8I4TVqym2HOxd2WvOSlvHurV5ecEhNGaI/0FM89TuyPAz8P6ARmruBmq3VzyfN8epj2H6f9+9PhZjo9EFlkJzJEBRdwQVcA44ZvlyJqyzRXKUSESG6kCmoGCMwQAoZAIVBgjjGk2PJKARzd2Q1cDQF5xWIaqJm7QzUps4mWSeZ96i+RBwqb2G8b2PLxQRLDJroQiIEYqK/tEo8h8prmefLusCE5CAHRH8P0NSw/Z+PPLkCTjifT3XJv+LgNV8fohQZ9StzjY8H+mWF3oPW3v1iUl6Ydz14JfKqdH8fzIMXBGwyqee5ip1xvcv1mkd+r3rqdTMGEkSJximlncIW4IC4iUGReyrdLvUZSphjxFeMOgJiHvnvb0RvECBg+ceFf5KWf3dOLDzmAGRKEEGNMFBkZnMxRbVUmZIiGAIEIwc2rqVaHCsuScymACGu5nlKCwGTqzWOkEEIIAIYgqpKXCqYxIiAAOwbnBKGjtGEANxEiBCIAcmf0gIjoBN66zkS8CoiCmKubo9OnRbiGlgNruHERr9VKrVXUwZdc5zmP03Q6nk6nY17mUhaRbCYATkQeMNcK0xRjCsxi7kSAaA7qvnbsETe1LmpSpZQsWpkxBFqImbFBpBEQCVvpUVUcnJgRsZVpOQQA32y2HgLhirB7fILD6ZYixDjUquN8ut9f39x9fXPzh483X19f/3B7dw1gwzYhuIqUaSmTLKc6TblmEclFjnOJ3O7CCCFMp+u7mEIgYgCogBVZkRCwn+eTilcxAyoiF7s3KW6YAmJADNhiSnR8jEsfq6bnFwSrpfmp8UwI/fzNVlXWIsdS7ubl+2n67nT65nD49uH+/f3d9d317fF4rFoVHAKroAq6ARqrwlyQo4XkBqbqTBQYqhcpi1aRqq5cCh7uT/vbh/3uQ6RkVkUX0eyAMV71/dvt5lddd7Emmp8KgfjyhgEAAmA8K5bHUBkdCJ+pDgB3dPQiMs/L8XQ6nk5ElLq02262vo2RG0DJAXLO0zzvD4dpmUMMfdfvdttNPwQOjG2mgYih4SvXYgcQIhASoKM3a49PpZMfTf+PbD4iMAUiQQQHNzd1N3uhlNbcwjkMar6It7ylQcMLVDMAR/Qqdcrz4XS8vb+9ub152D8w0/H0kJcZ3a8uX+2GbRO4Nqdnn+EZPsDPnZtn+4dI7ZPm7q7txuhnZOt84fWZ/UnCTDXnfHt7/Y+//9t/+sPfvX//3el0zNlNAFy1Vom1FHCNXZc2WwIqSJUwgrOpm6kEAFC1TORmGFjnWfKiIpBzbfUIE3SLMeyYEjIh0ep3Pfk0P+WXOOjijqrVXFsNERHzdBwPd9PhZj7cLON9XY5E5gFiAGJwUzM9p34aUsFUVFWkirubgaqLeGk+L2FKoe9Tl2KM1np33BEptBYwd1RVWsG07uTeMAZuBgB5XsbDfLznOCAN3O367Wsk9meoGkbv2Bm8QQfEV0dwDbLPuwUfQ9+zTV4zYY+2/BHV8RTHP0XzLwR7zSi2PNPzePxsxh+/+8Lgn/fE+is+tdifScg/qyV8Jn5sewZX8RX3YpDdi3qd8/Vp+qbId+bvEWdGIwQgAqyIxWwpcgA4qr53iOYAdI+0F8lZ3OQevWMOXXcJKMQh0A5xeJYVeBT9T607fjpbDq4O5q7makDqWi1bqagIaA5WVapUW6eLCNDNRWSZl1xKKyQ3ZGwOQkQABgAhUEoOAzOFYdiiB8LFFWKKCGhq0FJIEUNkRFM2ckdQ06oVpZpnyHmpNatWc2tYC1OvqqYC5yTn8wl3czWrorVqqVar1apVREyXZZnmZcl5KXMuS6lFRMCBiJAoxtB1HQcGxCI1l6KqAECBOQZXMFN3NIMQQgzJvVRXdwJvJTl2ADMgOouzQ5XVB1bzWnUc5xjjNE55yUt++/atdykBwLLkx0cwt3/4/f/r6vWbN6+/SmmT6zJOx/cfvn3//uvbu28Oh7t5HJmJyBBcqpZFTIA8RIah67ebYTOEvmPVqlW1KqholcqMCEROAZHcoQI5canJVDCXchoPb1599+7tb3bb1323S2kb4y7EPnIHQC18xM+0kIE/i1P+3Dh/zMFdRabj8fuHhz/c3//D4fCHXD9M0/X+/v7wME6HusySxRXdg7ijVayFykQ1owhwxNQTRyByYxB1ZiBCcEZANZjnev3hA+PfzYfT1dU/mItaUVuQcdhevX7z29989TfMvwthixw/bx3PIyCmtUbSMF9wVj7rn8eikDos0/Lx9ubD9c313S3HsLvYvXp1+SpfdCnGwOhk6qdxOhyPt/uH43SiwP3Qv7q6urq83PRDJNZawSGlRMQtBGKiFEPfdQHD6kmtQOXP2vVzcPJyVdxB1UStqoqZuJN5i+0QHN1x9Rme6z9AghUcBeDgpZZpORXJiFBKPo2n+/v765vrm5vrm5ubWjIz/8VXv6ml/vYvre+6yIwAayP46nQ3sOB6c6slflS6azjffA13N3RD/ynr+LmxeihQJZ9O99fX3//pmz/c3lyDU+RBSbLNJedlPhHUruuGYXN11V9cRfNZLacUQ+Ras1rtOnLUaT+Vkk1DSlCySgV3VrVpOt3dfQQLhP128zqEtBmIMK25rufW/XOYTTct042B5TKrVHNDJEJa5nE+7utycMtMHhOBm4MWUS/asA3MRLxGNUSMAftNColrlVJq1VqkLksRUQcYhj6GKNySjFUVQgjMoTVzmqmJKBEiuhuAqtXW/FxFVN0dOXRInWPH3cXmcoqxfw6YRTdUIQdy4LMwATqtpZxHO7pGwHB+8TxqfzTDj6H2o6V+THmfheBs8Z9ePxP6Z++8yBTAy4sg4KcL8qlpf7zpZymDp4s933joIGaL2EH0vuooMo/zh+P0jdkN8yEG58CITESABl5FtKqJ3FceQtgSJaTMPNeSa6klH9xC6noMpvbavTgogJ2dokfn5jPP/OlOQYiRDN1dxJAUUMwykTgAmJuYlipFpJn1QExAIlJzWXIupYQQQghETMRIBRGJkJlCZDNkti5xCKEf1kwZMRMiwNrgFRKFFIksWGvpRXVzVHMwd0fFAARADg5oaxvso4f3yY5Zjeg0L9Ocl0VKkSomqlVkycvheJrmeVmWUnKtxUwZgYg5hJhi7DokFJFaay3FrHnHQIEZAZXcQcRDQAAGb8hoJnIiJqa1o6z5lGuvnQqgmlfRJddWlV9WVh91x77vAPB0Oj0+gZn9/uu/3d7uvnh7d3n5rkv9tJwOx/v7h5v9w908HVUNnOtSzbwWqUVNkSl0Xei7vu+6LnJgcFVRNXETd1c3AzdAZ0IgUK+IHpKpuorlPJ1Ot+P4flneX1683Q6vhs2bzebdZvMG8BVzahhweuZIPYrYz1nFT+Ts2b5wK7UeDodvP378bx8//N1+/7XBfS7H4/00HqXOXCqJoRJY66sRVAGpmGfIi3MAE+p6iJ25gZGjIQR0IzcwdVM9PDyg2XR8GPrN2vbomRNevn6V8367uez7zTBg4N3PsUwiRGxROzqgIfhnrLuDgZhmkf3h+P7j9bfvf/jh+jqkcHF1cVzGcRn7LkVmEKhFD4fT/eFwf9yflokS90P/ahpfjaeLzTZyqMsC7n0/tBYsAoyBN/1webHb9H0KgYnOim2NGvzZIjwuyI8XxdruUMtVltKyX0zoRN6SZeR4hsa7IxLRWrIlhAZYkLI/PBzGfa15WebTeDoc9vf397d3t7c3t+M0mqiI7HYXV5dX7959EWIEJFFzl7OLQI9z5tgC93MsD24Gq+m3td1+rcP/C0ZrydBcxof9x7u7D4f9Q54zMxOmBmV0cNWi5sOQNtt+s+37IZi5GsQYQgjMaB6YvUqWCnmxFMzVSlUVcAMVAxA3rwX67uLLL/5iu71IXR8ZAUKjsnnSwZ9LaZnJdPjBXJc8ilYza3CGsuQ8T5In04wgzNCqflWK1Coi5p5SDADm2nA8zMwhILE5YBUzVxU1UVUHsBZcGGoLcQUAERkRwNzUxFTB1hjW3URrqSWXknMppVRxokTcYRjS4BCGmOzFiqzuV+v8pBahAwLTY94bEAAJCBEJkc6Q+ecwurO8noPvZw2BT0br3Iv5UrafferTecYXfwHAcy/r0w9/kpDHZ6YdAPAZ2qjJLz0ygaiWUvdT/mGcv5mX22kZczlUOQSeui4jAFNgdOKg2kxREakhUIypHy66tCWCyKbBLbYeGe661KVtDDumoYkLgiM2EFrbnuttremIJ+T404MR0tWrXZZ5WnIpol5LJWIIgTigmpUqpUqp6oiI3ALSWksppZZqpo2OjZgRydwBkAOnLm6g12A5VzcPDETQbcit4Yth5ZwDTl2KXQpMhG5iWp2ZITB05BUodbyxOeNScKnZxCNj8MicGJlewhwdUM1zkcNxurvfn07TOGdt5XbTUso0TfM0zvNcS1ERBKdASEyBkUjNWrGp1DrPS+teI+YQQoiJEi1Lybm6FzNSVXNECszEgYlApJoptTSjt+Z0AwBWpSqBA3MIHNzRHVVtnnOXEnO4vb17egS3Hz7+wT/6H/7w9ZvXv/7db/8NYCXGGKM7IHJKyR1ztlpryeLq4MiBE1OMCCZaFQFdHJXAAIAYOXDjwNBaq6iYOwckJlevMJpllZPpQ51/uOt2XbrY7X716vVfvnn7uzf+265/xTwwBX9Cp/xECfHPjbMtMtHTkt8f9n+8vf2nh4fvT8c7x0lqKQtIplJAFTBijAQBVUGqAwKyOUIVMMdQKDAEdicAJHMCIxWp1cyAyNGr1XF/t+yd3MgdDGrsWbX2Q7/f/8NmlzgiBULaAIafehZCZKDVn3zWvdX+T41PxP00L3eH/fcfP3z/8ePH29uHwx4Yx2Wal2kcjylGQihzncd8OI7HccpaFS31XZ9rLnI4nPqUGElKAfeYEhGaGhN1KV7uLt6+fv3q4vJiu910XZcSI8LqkrxQgavf4Z9ZHUQ0hyI+LvJwWmJkd+aAMUAM2NgrqJnxVvhtznRrQyEA9Kr1OB5++PDd9c2H43FfSp7neZym02k8HU8lV3eY5vk4juMyZSnRE4GP0zQeJ0KOIfX90KUO1vYC9zOdnRuCmwPV6iKqaq13ruENfxpQ8CMBc3BX9TzNDze334zz3Xa7KeVqnnNe8jSdkOrFRUIkhLi76HYXDJSneUSqSAoqBkSMDF5lyXkh5BS3iJ0pa9VlKdM0EcLuMqqaVNof7o7Hu/n12+1uF0IAJARzbzRz+FNbxLQ+3P7RwdTKWhtpDa9iKqI1a81mxVzMRLWWkksu7q0gGJDYFUTNagWQGByQqoIYiQEgd6nrkiNijF0LkznEmLqYOkSootWqewVXcG9pFWiBnFbRWmvNtUxzLtUoQOq6i+12c/F6s72KsTu8qII8JtTbA6PTSpXXrDuueWIggiZheAaVtI9/bnpaPR6eSjfr6j4F8+1HP57cF+/8S3zCH0ft56LUk9dxBpqu7qiaFbUl1/00fTyOf9qf/nCcrqd5VC2I2neK6IxE6M5OaKJWq5RcqxQJYF6JkcgR0AwAlNkwOYDHhMwAUFVPxRzpgBiZUoCBKOE5rHwK4z87i4SXV5u5uHpdikjDwgOESDGSmdWqIqbq2mjOzFy11lJrMTUABGc6NxGKmq8ZtsjMzAFaVzc6Bu66CABrogegbW4gUHcmJmYAcRckxAAMCE48pLBAzBRm9FF1qaSECF2XUkg0IZyTQy3dV4pOc9kfxrv7w/E0zktuRrbWmktZljnnLLWIiKsiAjmau5lXUVFvfqYq5Co5ZxWNMXQ9JGRkMsNSFUCJWnWCmQnIgEDdxFxV21Q/7+d2cGptn+hOKGLTtKjakkvfdSl142l6viKlzONyOjx8d33zkYPvdn2VBdARiTkETiJWaimL52yIEBhDwBgJ0bRadfKCaiCCtbo12AghErpBY7QCYGIGZ1cXLeJzhnE53Z+QA3cpbC4ub6ZxNIUQNpcQh6Fr4Kafhmn+pHw9vjpDt8RsLuVmmr4bx+/H04d5Oizz7F5ErMxYF1pmd/TUESfEQFBd0IGcOw8VQkUCRHIzr3mNOBrTRi1QqxNhjKBVSy5aQcTd2B3MNfYcEu4ubvaHry9ebfvN6xAvAnaInwFknh/g04des2F+bgMDKGqHaXp/c/vDx+vrm5uHw2HKs7ktea5Scl5CCOiwjMt4nKc5L6UYAgbqVFVNRJc5NyBL4/mKKSGhqiJiF8Pl7mLKy5xzVbHdBRHhSmK8JjIdz9ay3eHz2uP5HSQyxyI2LvXhNMcUCGOM1CUwJ3BnIsYnRYZmtkpNi8RczarKOJ7ef/j++uZjznMpudRacs1ZTB2Bp7yM83icTofxqG4I+HB/2N8f+tTvNhfNwMNacW8ESm5uri2TC1JN1W1l5W0//hfJm5uryDLPD/f7H5ZlPwzDPNXxWGqponnoYHfZpZSYYteF1KlILnXm4EzoWtWwo0iBQA0J+37TpcAcAVAViVxqcdPUIWFRGQ+H+/uH91dXl5vNgIQxNDN3Dg9/IqmlKseH9w6qVt31UWEgMiO7VbOiWtVq4941VTWjlQgxIDRYlYuImZkqYiMFJMQQAgQCoobFJDcrtZqjQVBXNxUp4IWwMGFgBluFxcHb7JuZVKvVcjFUc/LeyJw/T33YNuA5FncEJCBCJjwn5KFVtPgM14cnn+fskn56yWc/PAfN+JRybl1eP2O6f+TbPpaZnipZL8bno3Y4A/LOUPtVbt1E9VTkfs4fx/n2cLg7HD8ejh+n+ZBrAdIYgRACI0ME6yo5oJqZmYsEU0ZSVShFTac258zIjCkxYXUYRW/molk+ghFi4NDFcNHFN5FfBbpg2jIOCGGtkuKZFeF5jgJhs+3j4BTgNOZxbl3caBXFAIAIKAWKEUqVXEoVkypSzRURmJgid13sU9dxoKLF3VIfN5vh4mLbD92Z+VQAMKaeOTRZFJVSailS6pKL950OfYdu5kpoGIwCRuZgMVZOheNMFkSp1lIAsB9in3pa6NG0q1muMi35cJoPx/l0mqsYc+DAji6jyWJVpNbaggJzRYeqYO65VkBCpJhS3/eAwYyqQMlSqleBGC2EUIuIegwI2IpVDepkIlmkilQ1fWwuRGzMNM0ecyBOMfVdT4hmJlUL1sCx75tP8yRTX37x64fj3f3tH+/uf/jm23RxMaiccj4xI4SEFFF15eBRJYaW5AJ0FdNiSiwYSoVSLFc197qN/UAUFEkNhBk5hBADIpmqiEuuJSuYB+QUcopVlqilZ7xK8R3TRd+9xvA8QQU/qbR+apudX6tMpdyexm+Oxz/Uckeg6ADGUqkuWCZcRp9G8eC8xUhEBIAgbh4gdcg9xS25IhlK8WkyV3QjQkOEWl0EYoK+B3K3CjH0gaKBm6qZaIU82nicxtP1OP6w3f0upV8hXeKz+PfTu1/rLLD2pvsTaNbBAUjMlyr7cfpwc/vx9nZ/POaytHpMztJ6P2IIBFSWWkSJuev7IlVVtYhQ7buEALXUWkutlVYMMYtUNZsXyLUWaayIDg6BGbuBOKwK9Sw5j6AeP9v759qKiA1gEfWldGPurU8pODkqENnqnbcu91WFIyIqAJq1YMscu27TDzvAsORye3c7z6O5qZhKK7WlpSxTme+PD99//CGFpFVPh3Eelzev3naxF1Gpdr5Jb351w3+hI4G3eB1avpb8x3CnPyNp6Ga11mle9uN0W+qYUgqBay3m0ve43fHuIg6blGKnprWO6gVIiJEJRdTMQ4AQ0zD0Q79xi67Bgdx8s6ldl8FSzpnQTEFATqf9Dz98ExOHCOZ6ccEpPh4v8GijPjUk7rZMY5VlXkYzQWybOPR9P/QDkSGp1pzL0laWiFLsmFLgRBBAmSEARqdStUpRAGPmwGHoOvDA6ESIiFV0WnKpS4uuAIODuUkXfehws+mYg5urylmKiCggCDoRRAITxXkudvdQKpQqferxubfVPEFCACRCR2zUjERAreIOj9V0a8zCj9C3T9PxL9bx6f0zLqMBQVoMeTa3K7biZ0Xi6UrnjP7nGl8/U2uHFcX3uITmrg7qVkXHXG7m/OE4fXs83RwOp3E8zMtBNCMaETAhOEql2bhkAhDzsiYugBCYCBFN1VRqzlXN+p6HPiAhkeYyaikZT4gBwJAoxBjDpdi7LrxL4V3gV9GvmLZMPa74+U9pTQEACQLRMHRqKNISt/gIm0IwIkJGMxASAYB1HzIzhxi72DcYJkfCCuq11QPdrTWVmWktVSOk5H3HTBFcXUCqLIuoVMDcd6Vs+kBI5IzAhEAKQR0JAjBgNI4dhwVrcVM1VTN9XvUptR6Op4f96e5u/7A/HE+TuSFhR2sAJI1jw42ICKMiupmaV6mqDkDEASkRd10fhmqiULI2ovLmFRkQc+LYcUyICGDna3gVUwN3apwv53Rts+9EzITEHGJMTGS+nv2hqlXkcV81OX796h0QpPT98XR82F9X6RiLSkFg5kAUjQTRkBRJmTEmInRT0ypWrZiDgwgVgSLe2llEsR889R4CcFjvyRVEsCyeZ5tH8WoMkqJ1HUg5qexTuhs2t/3wbrudESmGAETnHNWj1/zzqnfdTmue2E10WfLDNH0cp/c5H1WqitUCNVOeaD75dPRpBuy8K8DVyVyqmzkwUELuMA5kBTR7rT4vLgu6tiygu5NDIEQhmh21wmYb+64HUEBBBARzRxXLecl5qbWqiq/u4edVhLqLqTUQbBVzZw7MzO18DpVxWm72hw8fb95/vL69uz+dTmIVV2INdDMp4uoI1I4U4hAiEoDnaq6qtWqtRmQqZtry0m7uprXU5gEsuVTRZvPAICDhBcbNlunJeBiAm4urmK3E9c/kCsBtZXcQLzoXw+iNS48UiBzRWxBNDWHl0EiT3F1VzNTccl1UATGAU606nsZxPBo0cUaEwOzjNN4/3A8fBwcPFEEBnSJHZo5nbOB6MgM5tKp6o7V7Vsw8J0MJPwlE/vxw0TKO+8Px9nC8XZZ9oEtmSx0OHpC6YQCOnjoYBlwWWfIk2qhkI2A459qIKaYUmNkkSMWc1d1SikwMlqZxKeVkUgl9Wcbrm+9CdGYVVQO+3GLfp5Wf8EmoXkqXu9SSc57HUVQQgYgDR4Sm9M1cHBRxhU/h2c9pnTrQeo8YCJmRas0OFiMzozuDK7giABFixpxFaznNpQqoYSuEbwYijDGGwOZuogarKDUDwYG7lKK5SZGcS6mHUsVNN8Nw+aLHCp8sLZ2FngBXJN0jaQzgp64m/LNig9bvb5CXnHORWt0tpdR1KcZAobVgPOWln8/yS5L5c7z/BEF9MT5tfnseuTu4ezUv7tVsrnLI5WZavjtNPxzG69PpME1FtXa9bAJySIjYWsJFIS+qdRGtZqXvaBhC30PsPSUMiVSgitViIsrUWhWDm81TXrI5EDOljkOAalYliX2s8XWn7yK/jfw2hS9S+DLwlqjDRkH4HPLnPo4jkDpQ4NCnHl1rceLQyFVKzbY61R4juwUwJyA3SKnr+q51wwfm1iVlKmVRrbUuOYSA2BB6GkPSgtutb4aNO9YF8mTLKLmUqhLD2PVp6GLXxVaY50zEDE6ojEAmZqruUHItS9Ficyhfmj0uyThNHz5+vH843t0dDofTOE5VqrkNmz5Enpel1iwqgJhSF0Nws5LLOI05m0prFGGivut3MYZhcxHTvRmKaljj7kBIRNyloUu9qKhUX1mV0RGJIgAGZkRQrQ7aqgQtaaHAqupuMXVd15lpa5w7HvbTND4Xqu32QrxeXb1ydyZWUXVxdbfIFGLszMrKCQiQIvYdSi15kbpYzS5L0VqRO+SkDgYwT1XNuy52KXYDMKMaSgUpWGacR1gmzBNpBVSIAYYBTB2oDvt5c7/fbG+H/sKtbDcbDhFbtQ/57I4/y659bmue/7QNY6I5l9NSplzmJc/zvIzjMp6KFlimcNiX8aRZkI2mI6kBogCurXeiFCOmHix4ATPwXLAs6BWZIAaKibvIHBzc82x5WbljiADQnZ0T9pvU9wP6xmRAGIi6c1/M5x7CQdyKahFZSjlNk6jGmPq+3w5bAJin+frm7o/f/fCn777/4Yf3h+O+1EwMIXIX4oqvoOCAboCOTBSZiMidEUhUtS55AjAJMfQpeowAQA4iqqXWXIpUicKI94AN9gKqDLQdhogrzZ67i2kRmUqe8pKlVpUpL4/PYWZ5WfKSS67UGwA7sDqJUVUHMDdXBmUIYaXORQBEV5NpOk3zuCxLrqVImcalVmsITSmqWv0MzTLDw+Hw/fc/lFKPh+Om32767a+//PVvvvrNF2+/fHP1miki0IqSQ/DWPImtWkWBKDBx6zhZw6YWBv4z66YOYKUud/c319fvH+5vT6djn5QCvv1iqAXEgvpUay4VUodmWW3JOdeqAAOHQBg5cIqbFDeBEQDMdFnKw8NRVK5ebYZ++/r1qy7m6+tSRSmxSjkcbhxyrsdpWaqifUlfpG075up8V5+KVpNLRCKKqG5q4KAAy1xELATg4MwcwsbMVa1kEVFTQ6hdN4SOu8QhBlMSwVLBXVPXDqNyFS0lgwNRQI4OQXQcpyK1igKFFiEQItaq4PnReTIHVXV3otQPA0cglixHXWbxbFYiq8vmYvt6zUkArCH0EyD+zEh8/gPwhIRv2aj1hIIXS/pkl59YHHAtMLlBzfXu9v725vZ4PKrU169evXnz6vLV1Wa7Iea1DP6Co2KdZHx8CXAO+R9F78X4hLLm7FNiq/NW0aPa0WwWPdZ6Ny8fj9P3p9PNYTzM81yqEnlK2Peh68iV8+K5Wl2sFJUKtVRRkcrgiOTnk3jAjcwQgHEl6/bWcl5VSymqygGJWyQgZqQ2iRwlPkS+Cfy6jwcAAfwy0WvE+Im75A7TaUE25uhAkYMHclNkxhDAXd3tTGuNjBw4RANHE2BmogBA7i4ioFpLqVJaYaNQwZZOdQDHGNQqanbduhvM8zzP8zQvWUrVSoRx4jx0w5BCQCLHAMjAHqOHQBGBwLWFp2WpUjyTvtvYI7p5HKcPH6/3h9N+f5rnZVnysmSROs+RA1epVauKMjMRxZjA0YzMFpHqzgFTCANzjxCIYtdx180cE2BtGNQQIlNoYHqkNZF83rnEHNfOAGZwV4NG/Y5ozVF2d5KaSwkxdl0CBDMrJdda8zMVDACiGdA2m6HWysTg6gpSXbIzt2QSc0wJgAKn4CmCVpFiebE8e5m0Fo+JQxfasSSN34SJYwiMAm4u5hJQO1CwClrRjbVKXWohV3FHpSjjaTkeDjfX783seNztdtthc9EPF12/jWnDGFZH/M843/4sb4aIIYSh6171/RddN3M4qdI8WZ5wPtnxYMvijuTMy0SqhmjERpGa/YkRht7B3cwQnQNzQFFARorU9anvoplIraWCuYZUMGDqLERj9n7bvX775u0XX+wu3qT0up2a8/Nx4VLKYRqP43g4nfbHY6k1xm633b569ZqJxnH6/uOHP/7pT9/98P7m5nbJk5kEpphC13XUJTc0WjnXaimq1UKIgRE8EjUpqXkxranvU4rMjEjt2K+VBhbAzWuVaZq0lBTC1XY75jlLZWZ2cgB1HefpOI3703E/naZlWWqV5y7jYznXAZ0AyIxEwF1VLZBl8sAU2GLwwB6YmIHQas33h4f9/n5Z5lKKqNzf350Ox2Vc6lI1V1EBQArNCss8Tvdw2/j4+F24urjabbeXl5dD3zeoFsB6asXq9DUFaoiNo3c16o93i59EX0/K9+nvJ1CLueY8393f3t3dnk7jMk8AEDh2PRIjZLQKIi5Vm6kEd8QGhO3OJykEsFQzlSzmYmql5pwXNTVPHDxQkGJuZEqEgQgANOfT/b1w6GK6SGm3273BgZn6Z0EUfnLzRBhCSKkDgFIqAIKjiouUmDABdSmGEKSKmCFiM9vgQAwcgAOkiB45Wgyi7hQiExMCiqCDqNjK7E4I4KpiWs0AW8eJ+LKo1EpEzKHVBM2h0eanGEOkEEMHoa+lWvW8qEzL7OjFN6+engYRkM+v4KUxfWz8hkcehjMK7fGD/vIMqqYo/EzpgACgovOUrz/cfPPHb+5vb0tZ3r198+Wvvvjqq6/evHvT9X1IkZjPnChnPuPnk/7kuvtzg/98vEzI4/lcOnS1LHpc6odcr80Oovta7+b54Xjcn07jNJeqBmgUDMmIPHCsYnXxZbJlaUQm7g6qUIpNpApSFXihEEJMHEJIXUBQYkHw1itBFIitioAZOCME9GTmpVahB01HohumoXYPjhlJQ+gJEDA8fzZ3Px0LsoZgIcTIMTJpcEMQl+K1euuDtZXrn5ACo4KrVVXPRZRZAau5S66zSMUGoUACR1UDwMhswa1anet8mEVsWXKpVVQdzRkUXIpI1ZILByIGjMoRBuoQewpOyITG7Azu6qVIBfDh6UGmafpw/XGe8jwvJTfQ3JKX5XhsoHxFBGLuul6TWoCGNXUjhBhi6vvNdrsLsctZRAXRcylm6t5i8kbfQtAa601Uzdbj0qCxz4aQmKIbqQhAUXVzcXdq8I/Wl2WmKiIFCdpp0CUvKi8oa+7232dZOOB2s3Uj11pVtNZxzIC1r8oxxJQoskgNqOhiijVjnn2ZvRZQASdTqshOaF2kYeCuS4S0TItIdesI+kSXGIKEZHFmLK7zPEqt5qAUNfR1npdxOsqHenP7XUq8GdLbL/7ii1//9s3b31xdBWJC/Aw/42fGmXUMgLt4Fbahi/3Qv0LY5uzX748l7x/u5bTXktUcuGMArhlMnNZT1UwUSlEmHHqMLa9DfPWKc+dlASbqUtgOsUvxdNCctao6+VJOmCdKlALHLu6uNl/91e9+81e/HTa7ze5diMFdzmeVfH4cpnFEef/h483d7f50KqUS83a3++LdFyl1pZT3Hz5++8MPHz9eH4/HUrKJMEFg7rrUdV0MMcbExAAwTuM8TyGG1MW+71OXEgclXPIyLzMvS2xfiZGRETGlQExRUiOM0arFvKoqerF6LKOABg4ALiYf767fX3+4fbi/PxxO8zTn/Ju5v4B4VlYYY0wxpRgDMwGampo6KEBtSomQiCgyx8ApcgzIpDmP729u7u+vzaqUMk/T/c31zYcP+7v75TTJUlUVmcAJ2dCxljIB7DZbQnhzdfW73/7V29dviGCcT0tehm4YuiGESBQAca1L+Upe0/Kf2KJlU22dX3+++e3JSkgt8zQ+PNzv98dSVNRqnczQHUqWacrmShRVuRRXRaK43WyY+q4bUupMSASW2U/HeVlGtTJsYggYU4jIMSKgiiylVqnqRszd0Mdhi8TqaPNyvLn9frN5dXX5hgi3wxvE+Iz+80XJIUZiDogdrixmyBzMGtaqtXGyG0m1UoQDD8PqPcUQQ0QkM6jEzgEwhNV/f9RUTLVqLjkvMi8yL1OtSyvqA6iqTJMtk7byfIgppLjm4IgQSUphha4bQheueJd6etjrsixS58XleUnXHa2xGvl64sta9cVmxOHM8w5uQAhAa4u2nxkJ2+Ovcfw5zeGPZxQ5lFyPh9OHHz7+8Z++ubl+v8zjx8vdzccvptNpmf/y6vWr3cUu9l1MkVpQ+NgyeTbnKxzucRXWQOOFXP0oIY/YACdqOZf9cXo/Ld+qPpjvTU+lTLnkKmLtMGJyVatVY2gB6GoA4QyfbmWO1gaN1YEAMiJ5P8AwQBcwBEJigObQI6wcPgDmqmZqRAwOpmZWHZRobCdKh9jHcJniO6SASM+fyt2XpSJbSoTAhO6IxGQIjcDZwNUN3ICoNfO1dIaBq6oYBNfgiGwOom5+piZoYVYRAXewAOauqqK1VFXPuaqoumEgRgZEc6tVzTxGDokCO3sTEgfVFpwwQ9fHzQZqATd+rpCXZXm4fxDRBhqlxg9KpFXVBFvWw8HVSskIxBxLkZVilhtlTUyREVxFzUVVVu/tTGdo5u4qYHhGSbdTPBqkjXmtQdn59GsCR6YYUuDohmbeWOUdLIR2gLqZvyBuBPBpuc+yVBU1ACU3QVIkA1R3FUFgDxwJMTDTOkWMENxcRd1ohayYc4CYaLONu4uYUgTzMuOyuKkyigY1pVrAFM1ADdTB1KEYzQXjFB4eMDAxilVm77swzhMwp26z3b2KlJ7Dx39SAZ83kquoVpVF6piXeRnLMkqZXYXdQpPY2BkxhY44kGMDaqIDqrpkz5O7QmHsOuoHTgk3O4ydl+zoHtBjbxyaA90Y1lysFvEkpJaIY0yBI8eu22xfbXdvu3TB3CE+PwQKP7n3+/3BZvpwc319e3s8npaS1aDrutu7h5SSO+z3h4fDQy4LgAcmx9AcBa2aNQvXQvmZaZ+RMaZYNmXYDF3XIaPVtd+opRoIgGPDZyAzhODNwhFCDAERlprvDg/Vap+6GCIxmev7m/ffffjh/vBwPJ2mZVlyfctfXKy0wUBEXZdSSjFEInJ3M1cwc3UwJEMCQAOEoBDUggiTgeVpevj++uPd3QfXKiXnaTrc3x32D8s0Si5aZZVestYXbyp50Wk6jsfDNJ2WeXqgu/E0Bo4pda+vXocYyPnMuX0mKGl/0SPlftMW1sYnAvXpCq1BoZey3N/fvn//3Xd/+u76422e2wXKSoVnxJxQTUWWyWutzMCcmFPkLlAiSBwTAo2nw34/zvMJUIgvYuxTolb2rqXU6tNci4grSuXAu1dXF0h1Wg4icjje3d19d3lxQeiMlNKOqV97B/3FXfs689gOekZADsEUXQAcRBxARLTUqqoxxa5PzSQiuLuogSuRO675LFNdSUBVrVTJtS5LyVmrmFpL9TbkE1gFEzHRwBxjSr0ldwqBOBBQU+WuylqRIEZCTLV0YNLSys/3ujmq4vnEV8eV12xl94AzbH7F5hCgnQvwraPjbHWf43PXDlP3KiUvcnf98MN3Hz9+uNnfH8pSrOoyTYf7+9vtJhDlZZ6my81uO2x3m90mpGQOpqDqLVWAjWSNGplYkx9DR7OfMe1wLiC4VVmm5fCw/7A/fat6D3gKLOBm4EhODOioAiauxQO4JQsEm4HdsZ12rKaAiuTY2KEA1UgKqoBWcxEfHHpPkRFYhc3AxdGNEdy9FkHw2EHjBnUnE3My5Fr1lOtdF2+rPiD0gdKLreFQi1DwmNAAa2sK5vXBcE2bga/nUpK6iXp1r+s5nhYxGFFgYOYYUqs7t75YEUFzU1VYu1jRUZ0dgQIZOKxMCtzOlG2VacB2WDx3A/UQknHroDNUDLC93HYJa0EXYn/qa6+12jg29RCYG8qiS52oqBmiOYKpmkFZlpILI6uZyAIOCIFQAluMyIwiuuQCLoHRWnEIvCW1am0pFkoxxhgBzAxzrqVmNUtJwENzYMyMiGLstturPvWmnnM+nY6lFEToutR1KcTgkARrkfK459VzleNpnPIkjCEwxuip162jCACom0tRaIrQEZwZU4oaGBCdmRm4YadTws2WLq7S7iKEwCpacpxHr0VNZ4Z796DS+PpyydUNHUBV52UWV7E6LydidFBi6/rIqd9evn31+tcq1YM91sz8KQf244EI5l5Vjnl+mMab4/HD3d33Nzff3Xz84fbjx+lQA3WbTQmxhoAckBgAvR2oSYhmlAtIdTQriy/Vas8EMSXsBku9dYNrERUwcLFKUfstYCExI0RXL1lLlO0O3W2/v97cbbe7L1K66rsvU3xDGH6y1g5+c3dXA+yPp3le5mWZpnnJRUS/g++ZOcbo5qXUlELXRUJk4jU5U0VyqaVmmRt0rNRaajV3oGWeln6YLy4uuqEzAVQUqS6mHC0kShgCI6J7O1QZECDE0HeJQzieTtM0InpKse/6GAMQ3D3c3+xvp2laajZXZnxO0YpEXd+nLnMMgCCqxAoYmuY7H5fTaHlQwKVWlbxM+/3D9fcfPtzdvq/LJGVxqWWa5mVqTTIN345u7sbgTGSmIvV4ePjAGAKVsgz9LqX+6vLVmzfvYoyb3Y6CgRmeiXufiPkbFAvJG3/+2vf1HAz4jLjk/PcKfXObxtO33/7hv//9f/uH//6P93cf+54AodRqrkS0215cXbxe5vzwsM/jrF43u26369HRpboSJB42F4HTMt/f3ByrLF3HYCmGXSAzrypzyfOyTKdRahXTMI7+5s3m6vKvOFZ4+GFepmUa7+6/TwkQJBBd7H7ddwEpNlv1TOtaLou7q5paO/2SYwyqBIgNW1lyNlNADwEbWtatEdu7GzBFIgYwQCMCM6u1qho4qWpdT5sXVXRkYPZAbr4emGkmRaRoCFG1lRNjII4xIXKD0QCASDGtITIi9H3vDn6aTV9sczUv8sQjdj7xxVciOjqHQGu5HencUga45hha2X4Fza9lc0cEAzudprvb/R//6dtv/vDdw+29O766ep0iMVmKXObl5sPH03ja3O92V1ev3r75gr8ciNVcKrR9hojEGBg5EDMCgruBOZiL6vMH+VFCHsFBzfKSD8fT7X5/e3+4czsQLTE5ItQKtUApKOJqjRHZa4BalJKFCMxubqVqKVKriXh0J3Yz8hWdQi3jWrKCg2kI3PrJyBxUwdxNTWavxUP1ECkQNow9ODbiFLWiXtwF0H5cW6ylojsXMUQyo8DIDKujaaoqou7O7k4g1WoVkdbf3naVOFA7uTTGjsPKJOXuSEiMroYreyQoGLhgQ3gAWcNKuLWvN/eWWm7GEZTdgwq7mbhk0ApGxsQxJYJAuDzV4RCQEYk4hLjZbPqubzmSKlVERGuVuizL2kHUjlV2ZW7PUMzmUgMHI0qIgmCEHhjE1+Y9VWrxQ8sbxhi7LomUKq0hCkKgmAIYE0BhUkUzU3UEIgqEKKKwphpVRJnFvNX8nsUl7u3MuFpn0YoheMPGsofg7evWmugNW5mB0d2dmUOkGNmJAaJ6O0CJEMkUajWtKMXnE05HyFmlNoo6AjDzdj6nA7RwyqSKaBUtyzJyJGaMHasO+4fj7c3duy+O87x0YZNCW74Vdfpj224mqkteHpb5bjxenw4fD/sf9vsf7m4/3N/dPNwdTvupFHO1LkID4DuAiIlAVQW0wGCOtUCdvcwoBcCZiEIARFNRUSvZ8+w1awyaIoMhMXJAFVL1Rr7QJSSMKabAzBRC2MR4EcOOuf85jJbD7d39QjrP87IUKapV6pznaVmWBQBSSi0TGGJo2jmF1Hh0F59LdlURqda4V8wRqLV+qpiKoZOKuoOailRAYCdyCsRnKnIw8waRBkZ3y/M8jccqVbV2KQ6bIaZITKdpPJyOuRQRcXcw9GdZLQRAYlzPRHA1dTPks8Il5NB+CbWw2UVdVOoyT8fT4eHh/nY+HWqe0cxqLXlxV0QgwsZ6BmArNBoA1EqZ93uIMQDg27dfvn3zBcfYbzacOkNS83Oc/pi8bTm1VU+0iM9h7Tz88aKscKu1Jt+yX3oaj3/60x+//sM/XX+8WeaZeQOA06Rmwsx9IqYuhhCDLhlyNiQgNLDqqptB4IL6wWKkmEKKkdhTF5k3rt00TblkwMU8S/Ulm6hJcZXp8KpIbWSUSWSclwnAmJWQXPH1q3p1Yf1wkVLv8LTN3b3U0k67bFoCENgaH6yWsuScAYwIQyKkCGAqoq17t5gqMBkiVcnuGgKDQ26koeqm2jRMEVNjwzAXMIgcMFJqR1+4m6q5G6IE0Shaq7hTO9EO1ikVBA+Bmclhpa8zeeHDm5matOT5uaUBENthiA6PDYBra/v5XDhcs9TrOW9wxtgDrCzDBKp2OJx++P7D13/89uuvv61LJgfcdl0XUsQuEgNozoeSx3Gal2yAm4sLCp05iIIqmAECkKIFDO7mBODNtLu5vvRRPjHtiAhuReQ0zfeHw/V+/3DcT4iV2TgCgJWqpYIUcidaQ1MUgVqMSTmYuC6lnk51mmo7O9Q6R3QOGKN1CcKAzIhoUqVWKzlysHYeVZN+U1exUshcKUjqcbOhLoUUIrXuVA8A3NBhTCs28rktqaLu6rSwGafAHgMCI7XOLpFSqrg1VhmvpeZcTRu4D9y8qpooOjPFoY8pBmkNXeQpcIgDAppqLVJyNTU3IWLmSEiBQFXVKlrDqhEzA7pIxQVAyQW0Mbw6jqbZKgMFoID+CX9YCmEzbJg4pe7Nm7dXr16ZWimSc17yMk7TOI1SxVRbtdFcRRwBRA0h12qnUzXdwG5LREwWCJhAYZVdByOKMUWiGDhuhiHGOE5i2Zg5xGG32w2bwZVLLqrFtJSy5GVZloUxMrHbuZwIoCrzLGpSa0EHhqec8DJpqeaAHCkmZ1JzM4V2LGlLd5lizVqyMGEIbGZAFiJ2PZmwKaOBoYOTFDjta548UDSF017GUUqWWk1F3IHIHNTMmGMXEwK5NzrEUmXJGWMKXZeYLwjSMuvt7eH+/nA8jpv+YtObAzaN9QlnWIvj1ZYl393e/MP1+/9+e/Pt/c0PDw/vj4ebZRrncRmPZZmNKBERByNAEV9mPx11nqxUQ/Y0ACKo+DzBeHRm2u54d4mbS0W08aSnk5+Ovkxeiw+9brehTxwCAzIAlWyiCE4ypMDDZrh4dfXF66tfbYY3IewaU83PgOgc4P7+/mTFzU3V1dCQDFHMl6qiEMS6GDcduIEbE3owXLFfrq4KZugNQsyNFKYK1OpmNcsMs5Z27IKrKYB70XYsTtpUPJ+VQoghsNYotYjUeZ5KLWbS9/1mN4QuIlMuJedcRVS0LYV1TyDTlrRVN3VzdzVbKUIBGZEJImEIFJmJkAA8eIZYA7UqTj7tT/v7ZZ7ADNdDQz0EBucGxGnuMiIQIzs1up7D4Zi6zRdffvXlr379l3/121/96jddNyAHcTI1WgO1xnDV/NDGu4LtYKpzE9wna3IuyvrqAHhT1FrH0/FPf/rjt99+O08LAJqgGuTFzSBGKNlLNsJuu3krGnKFskgttSyjluXN24uYouqSuu7iqv+Vva7taMq4XWb68MPpeLyLXQ3JA7Nao0qWZcrDZntzc7+7CDlLnuvpNKkUItUK4yG/fTN98UV+9/arV6/f2bNToMC91qIqtVRVNQOVBO5qVnI9jadpGlOKm03fOgZEZJ5VtdbmKCowmxlM00mkdF1HRHmRkmsuVUXBXc2rYVUuRubk0PXdbjsEqXkZT1YngdnNRV1Fq0iVyWBBiADsTeOAAiq1emVKZl6W5RNuQAdVrysnQgtC1iy8Azqar/QKDaflBGta+pzvPkfra9YezvAlBxXf70/fff/xT999+Pb7j2AeA885L0v37tVm022G1BHBw+l0muaqyl336vQudhvH5lMQAKi3HUhmENwB3Exbf8LPJeQb4f6Sj8fpZn/4cDheT+MpzwXcEJ0CAHpVqAJaCZFShyF6jJ4ScEAkt7Wc5O3kBhVHByII7BpBk4annJojujtWsVKkyuJeiYVZmM0dWq3UcWUsJCQmICJHZOoC9YEHpp4wIvILbYY49BvFame6HJVaTYgAwJYll1JaCZywNd+2s3kRzMnRDB3UzI3RA4AQEEm2WiuAh0CMjWAePYCImrVzVk1MV7YpsObfEVPXpX5IDm6m7mTiUh3EmQkpIlZEJwyM3Hpuny8HEcXWn4bUcAwpdl3qYmQiLKW0xF9j7gyRzWolNSOoolpVDcAKOZMTk5mtTLTt7DnXRzbrhil1EFGb53Eaj8TQD91ms7m8vDKBJWbTalbMFjOf59kNY4im6xFPhBRCiDGIVmh4+meHW0e+dGTGznQGmFWrVNMKKixFS1ar4IIqZuoY2InafTI7Bw/ETF3strHrHUUsz9NxOi19CoxkRisDla1MnqtpRiTiRkupAqpiZmAC7oxmgQhC5B14VzLsH8aPH2+7OHQxxdYv8HRIyrP9AaZeRadpvLm7+fr993/4+OHb4+F+nk5SRLLmxWpGBEAKMTkilgplgTJDXUAUzjsUTFAzuBBH7AfqB+h6K9mXBcajH/aWZzBpUB10hRjd3UXQlNE5UArcu7EpB7zo0tuUXoewg5bSfJGK/+Q5/Hg4Hsq8JiUMtFZZiuaquUoVRZEqohK6GGLUKlqVW8NnlQYDM3dCChwCR0LOuSBgO8Kg1upuj6hwRDBEKXWZ5iri5+MvuSHXVUxqzsvxdKq1OripESPV6o09VETVVNSbN8j6qLHcXVqyQBVY1dzVEHTl/cBzhdSQCQ1cay25SKNrMHD1WmqeFzdFcAKndtgXc0wRECkEImxnHDeGOTVbcj4eT/vD8eFwvDicus3UFY9RI1ug0JpnVpIcIEYz9lyliDaqWTpXAz8/1pNpDcDMainzaTweDg/jeHJzIhZxVTBldwAPKpizBnJX1so1I3GMkUxqLUXF3VWsqM4h6GYXAAM4a9HxsBz20zjlHVGIjMgpcQxEVJZ5mqbj3d11laQ+juN8OoylEKJK8WWSaaqH43g8PbwdvzqeHh7v3cym00GqlFrcAID63ji0IFcRFVHNvFZgdmInigDcTnxYllKLuhdVm8ZTldpMey1Wi5SibsZEBliVikJWQA4xdSH0MSbQCbyCV4fqLqpeijguYq6KzB1zx9ia681XyJExL4BQq/JTU18TLAMXdwTA5oOujJ6wgl0aOfPqoJGvjmrLujRMyhm+jg3TdD5bQMWWuRyP0/E4HccZHSJzybksM7sk9D6GmFjEqkhtXOhVTJVCJCIEMnJsWW03UG/Ohfs5G/ayAPfCtJtrkeUw3t89fH//8P3h+LEsk1bTamaOAYDQgFVJhQMhRA8Mm4GGLXQDAUEVNVdEDwFjRDDQ6ipQK4YKXB1cTT1ECAFSikhcsi9ZT+NYqscEXQ+bjTMjBSJAjpgSxOgcnNga0DyELsZt4A1TjxjxJRcPEb15/SbbMtfcsI9VpEoxFW98xiIqbuYASkho0P64NqgEmgGiowBU1+yl6jzlnGd3jZG9ug1diIzeiA/RTETW+nvjawuRmIGC90O4vNo0hpmySJnNwRyMQogpqnfsHKlnCLpUl5f4GjwXdaWO08iM2+02pa6RyIjUWnNToyFQjGxmDhyFVEFUwRyZVPI0STstEYEaZbOtrTpibi6C6EzYAqSH/e3peBiGvh/i0PeXF5daPXA0KW7FLJe8LHkR0a6x3LgzMwcehmG325nJNE95XuYz1ywiXmy/clwc5pLvx/H9VLJUrQWt0jzK6ThrNnSKHFKMASkQtVojohFa7Giz2X7xxV9cvno7TtPdw/10lPGYcUtDF1MAHkhT3xSfqpgvamrmkfuu6wAguyK1Chhw85UAI/dduuriFeFwPCw/fP++T/2m73e7i67voTX3v7CQbo3uxUot8zIdD/vbu7vrvGSpbpVMVu+6FFS1mgEQVbFWR6cYgBiNVo8WjBAhRus66HqLCYnRHWvBnD1nU2UEdotSw2yes61lXIgpps2wGfpeKs2TSh3AX4XwOsQdIBoYAcFTB87LINFhHufTdDJVMGAiF8/zUufSGAjdHXLBzJxCSDGluMQlhEBEpuriJq7iFCmE1Hd9DIl5Bnd3raVxN4NZo+EkDsyRiankCqWqKxF2KUIK1AJulTIveZxEFYk0JRNTdTFVdVVTdROrpUqtulHon5l2kVqlVkFSNXM1NwUDUlMFrVjYGK1lEPIy5vk0jTlXd4wcOgdSMzMFVXBhhC6EwBRCD0TIrL7ynrobAiKRVJum+f37D4DpNNX7w3J19fbi4vV2sx26vpl24iZryMQ12FzKUksREVUiW6nVXyzIuk98Bdu1kKTM82majqVkM0NkcKzF26nlRMwU3HFZKgFq5Wms0yS73XYz7NCYHEMMiCCSl4JVM5AMQwdON8fp4eG0LDOA932/3UZmiCn0fT8MeZmL+Xx//6FKoqjjOB6PUypE5KYo4sfj+MOH9x9vP7x9+5ub2yc+aTV9uL9vJgmBYkrMaJo4UAjQ9wEwllLm5WReAQdmjjGZubuULONpLlVrlZKzms7TgkQqoAoqwMRdIkdyQzM2C0SJcEDowKLWUjNKxZZ/QbAll1yLqKthYxVL/SbGoNVrEVerUsSqA3AIXXrZi9hOw1zdw+bEtkTYI8R9PdmvZd/hHM+tZxSsS+oA1N5cMR9mIibVamkBEai6Sc1zXU4GsqDVrksXtPGzFWEiAmDEGJk4AIAZKLmaqZi7m7YSTGu/J/wZ0z5O+9u7727u/3R79/Xx+GEaj6VkFRAhMyBwWCHTayHS21E74lI9V6eWlCLrOqgFagFdY0MAR1WsBbVCRe96xw05IFMAR1OvpeTcjvlwJkodAVAM2A+UOmAyN5AqjWq6FYvdqupCMLm5WXkyiIgXu6vOuliWWfIipYpqkXo+8xSQQmus81YsXPMVpi2jsSIeTa3k6joBYOP5InJXIKyuGLoACGqGjjFEQquApu4GhitM3M9YPWJCClIN0DA4kBlLO6/JzJwFkJgQOawitMpYA6QQEk7zccmn4dTHlERkXvJxPM55KnUxM4MaCjVYXC65lFJKIeTAbIC6wisoBAxE4g7i5uqgDc/U+tfcodY6T8ecJ2LLSxqPxxiiipdcSlkAfOiHLiUm6mK33e5SCAiNvc76rttutkS42+6Oh8Mz006//vJ3xssyXx/2y3hkLaCFrJAJuUSvZmJgAIpg/oQ68UbIj5ww9ZgG7HpcihFq6KDf8sVV2vax7ZZaUa3lHkwtiIiKIwQmFGn0RMiRETEEiDGl1G+2l69ef7G5eJe2V123EfVS6pLLMCicE9AvVLCVWu/n+f3x9PXx+O3pdLvMR6mLtWOjiZDA3VTdFVxAzB1dDVTBwZEgslME7gARrVItUBYIyQGgFptOUAsicepgsyGtBBZiiIShoY1UxQ1ixBhSy5QwBsYhxsuULpkTPZmHZ2ytP4oTyQDUZCkqysSuXnKupbYQ2MwAEawdlWqatbZzjbHBlluXpKGhgFQooFZzFilugugNn0FMHDjEEGOMKRGRqktDO5gWMHcBiADGHEy1ybqLlTnPzA13AE4EgQCMIlIjTv0E+U/P+d1WzWpggAqA7by1BiRGMCBDquq51FxqKWINvuHeUAMAIKBgREzoBgZiVtsx4WcOGrAMAHf3t45EsQ/dBcVdHIAEjI3cEJyEiBwAmbyYzaXMTfWoBVh72z9NpJzR9SvE3t1BS5mn6XQ6juM4uQYEIloB4URQwM1yzsoQwUMpmYg3m+3rV+8ikkkF03nWUo8Op1ILkBNfdal3yI45Jus4Xr0aLi6TaiWG1HmveHGVVGzORwppQxHRmbhWOexP7oCEtZ6W5fo4nm7ubr1eAQxnZQWqWkWrKCGQrng6FzUVaZHVWuZohk1Lqapai1bRUmWeS1lJBQAckVcjW6s7U9eHwAEItUJVdcllNpClziR5znkRlbXrvLG6IzromR+ziEYmMBFXAWt0deLgyOT4gouupYvP/hYBgtuaZl+r6vhk4sENEF11vUhrlVtJ7FYQWKN1qFXmKU/TssxZqsEZz23qFWScl8MpHKcp9h3Hbhf5Ynex2277FBNTZEZGNXd0RGdEZFopHc7ge/gR7PeFaT8cbxbL17ff3N3/SepRZZGiom5OjuRoRAakDI4tU2Feq8Gs5l4VYmq+Bva9S4a8wt58xQwaacG6WhmIXeNXYfcIgOiNwLIiaOSEQMzIHW82mBKYmBYpWjh413EIRWSq9VDCnasR9qpPXBYItOkueur7ocT5ZKeHag4GJi7ZiDml1FqG1LRKtdqOdVcxbUC5wIGY1bQuMmlunNANVmaEZVHTwlWREMhi4NRHBKxVS5ZcqilUAGSPBlUl1xIhILK5OzkmIHTRpXHNq7ixdcH6kGKIzz0vMxOtXUgc4Xg8jOOxddM4gJkX0VIbo47YqAAQAiNAlVprlVpa//HqeRKHQDGEGGNrG1GrCrX1IFWoiIsbiEgts1mRAtPpcH39fjydWirSTYmwH4a+7/quv9hdvHn9eug6dJ/n6XA4OHiXuq7rui4xhh+++/5sW/A3f/mvDOePH5bxGLSQZPJCIAzC7DiETTUXUbO65KJmpsaMSOzOK9NRUrHTNMM0H6vu+20dduHdm27bhelQxqMDWkDablMIXDW2QwFq8ZLN2/EADYBOHhhT1/Wb3eXV63fvvty9+lXaXiGH2HXEYSX8/hyviNqyLD8cj7+/vf3bu7t/3B8+ljzR2q/Z0syQZ5O6oi3b6eGttGRugMDBug1sLpAjumFZYB5JxFRsPDqM3g7j3e1CiiqFtDJ6RGAzrwI511p0GDDFoBJcY6BN3+02m4uuHxBUdUFkwOBtQ52zhi/CRITWiVk9q4i5ulk7LMBbXbhlFhXXY05IFNXWTqQz6h6xZUDrkomg1FKlGBgxxT5sNkPsU0opdinGyCECQM21LBnQ2wGbZoTkdAYYMzGBllrncVGxfhi6fggcEAMFQifD3oJGjk/PgciNGy9EJyYiJGqHuq0dOY4A1NqXCDn2naP4EbPUaZ7neTFzQlJcaT3NrKgIINMZ7ueutlZR3c3ASESsOoET7l6/e1OyAELoK7KpIzi2Tk1wQCDWCLpIWbQWVTU/n9r+0q6/NPPYoOcmuSzjeNofDvuHE0EiCoSMhESOCJDVXc01cIihQ+ZhSK9eXb579wZd20HCh33JZVlKFi0xUYj46hVQkH4Djtwlfvtu2F7EaZJaq7ky+6vX3bJIrbmqE4eui8NmmKbT8XgixmFIc87H07w/jXR9+/rif7rY/MV5OYApMDsqtMZBNahV3LXWXGsWKYAYQmCOREFERRZVq+dyhYiUqu5IjMgcArdz9MxFDZFi6FJwdKwl55ynLDqtHU8G7ubqZCtzfQgcA7JIFXMvdQmMaMFqMS2ARuTM6AiNRe3Fcpi7tENBmxo4oyAQ0Imo8S8BADRDu+rjVoRd+8EIzruPCGNkDpSXcjqMp+M4TbNUQSAiJ3AHRjczm0sZl7JV3W63u4uLy1eXr66uNl2fmAOhATTF2LiZA3ODyri1NDBik9CfMu25nDLk0+n2dHpQKa7aeM3byq0E7LgeXdRcMFVHAciu5p166sAVTUGqlWymzux9h5stxohI3DoNNgMMA3YdELkLauJh0wF668mW4gCaImoidARDqSSVzGh1sr2IHufywZ0JrtCGeb59vjcIesIU4kDYEXUxHI6nI3kgKCFw6jtiNDR1aXVxDEiGjNgyIS39KFW9qoF5q8BF7vrU6twtrjdTrYIEA3fMgSiYYS5qqgCg4iJWc11CdoMQoIHaFVUIXdVdkYCIVGXRRYsEqFduj4GJuYqWYIjqpSyn8dT6c8AbGJcdVib5WtfONHBQlZbKRADV2rANIcTN0KXUMQeRIlKKZHVpwAhwBaiNf8ZU2wkdZrbMs9uakHK3GCNz6Lp+GDYpdWauqoHamTGh1rrM/x++/qRJkiTL0sXuxMwiompm7h6RlUMVeniNtwIeEX4A/j8RNiDCBgSiV91VWZkZg4e7TaoqIsx8ByxYzIesrjbyTURSeri6ijDf4Zzv7NpNe9/3+t1DlkQDzXvXrkoQS5K5SEFIPic7iSmoulmzqIhG6OpNtaJEEpQUgFvrT+63rhvSPs8qCVJuAd18N6+AxEySnAUMlFwpQAIi0GwAq5koiXDOeTmd7u7ezfM9IovIsizzcp5Pp3fv7qd5ZpY30MR3dXBv28vT3z5/+tef//Z//vTXv3z86bfbZd13Vw8NBAdrsF6t3iJxMCOSILiqtjaQ6ih5NL84FP6tQzeou9eq7oFE04TzzENcjUKCDEHu4X38ZbtqqHprer1siWGe83ZdL8+/PX78H+v623x6WM4f5vl9nh5EyrDX/ntVHQIQYcqCDMN/7B7add/3Vvs4d3LKgBgDhtA11MIMDk0RImJ0794UA9DV1UEHVbVMaT7PZSqS05hljP9LLgkxDBTI0EKEJCdOjExo42ZGDAwL6x4ZCJiCEXBAFRgpCfMXJ++X64QxJYIiuQgyGzAABPibmdzczU0dNLy1vnZtgJinaT7dmWm4tWoxGr7R/ryF53j4OA4wACyG+y/ckcLNYjBMo+99v2wX7oJEQihEQkU4jXYmKPqwe49jCTz+naTmy4+71Xar9Vbr+vr6/NPPP3/8+Ol227U7E7gBgA19xOhLVVtre85yOunp/u7+YVqWROwRvbW271u33UMdjp6y7tpaY4HTeSyqEUnNDUg5+diepJzTrb2+aoCqNSSaJjFLaik8at1VFdBb3VrvS9nvli/fBXGawKCrtt5jbbfbPuUsBESB5EjIQ8ISoGqEAYCDluEeiMAsKYGqjxlqBDILZMydAMCG2AnATCE0vFtv7hYQR4b6EW3BLHxgXjzcQ81GlWfM4IbgkkhSLlI4cS6l5Im+eUXGoDvgTZoGYe4+9to0VKM0zBNMyATMQBRADjiszujhYWAexxw2EoL01utW61Z77RAxMOZCSMBMZS70cH/64Xc//MPvf//w7t3d3XlZ5tPplFMCD+tmEU21qak6HJ1DmJu7RRgAEFKt7dvH6burvWt12Ftbe629mepRYhICy2CuIwIDkLtCBFGMWqF36N3dMALAqW24rb7dPMDLBMsJHh5QEhHRqAqWMy0nZEEApzAIQpKc51qt9zAz3xUcS0FrAE51B3NCFIEBbK5qr2v1vV7A7kHPt+3buwSjZ0aUJLncn88f5uszwkemS85NEuUpdetb3dRUh9pYUIgkMOWc8yBgQKud2sGey0nKlJfTnHNCCPfQ7nXba1McNg8hIuwHvTpCwxhMrTet3Ebar6q13iDGUAUYKeUEwm3TVuveNzC8W/xLYru79V6Jwoxr21urre192BsBOSViGRACD1ftw9M2YmoRgx27NaLRsuNyKjkXALytodpabTZSaXyUvXZ82QjCSWjQocLUODMRmQ0rCBEyEavq09OTEM0lR4SZtdZqrRGOiAOH+eWnta35bavXvVULIS7T9EOWU0qFsUCUCHYLdzVv3bbW18v1sd+eGFwYRAxirXXrSGYmHJJJBK3fWrfbWmu3kaHiUcGx9633Eb8pOWcz4b1DIHMqaZqn08Pd+4d3H5Kcau1qlpK8e//uww8/nk/LPBVheRsbfncEt7p+/vjnX3/+81//9c9/+9dfPv7tpbcIR4WwAOuuFdaL6Q7LDNNEwhQQ2m3fozVnoVySKbXN1X1dtTVUpW2L9aLuIAy2IDsjhvv41mRIoTqom7pHBJpG3dV7995LTufT51/++s+9fQKh5e797//wf/3hH/639x+ycB7TwjdVz5ejCzw8MPKcJ5lyyZISIana7XrbbnvdK6OcpgUC6l63bduO756OdCCk0eO6qoMFmKMFBQkyU57SfJrKVMZ+vfdO5MycU0JOCgKSU7AIl2liInAkNeQR8GMAhEEjVmLocrWbm+WURdJ3ugEMpOG7YSoyzQlZzNnjDao4VNGmrW2tbbWtra6trcS0nO8fWosIN7W+W0A4oB9p3ONqMfcx6AIH0x7qoepI4CyEJSVm9OjX9cWJxqFfcpnzPBeM/EaYDbBAHx48GkYs/Pc3ewAARLf+enl5ev7t5eXz4+dPv/z8208//bKtdbiBAMh07GU6EbBQq3XdbvMseaJc7h/eLblAbbd1u95u15fny77X+ZSnUxHOwqgKrWoSTudUOgdobbfuxzwyF2JOBJmZWt/NtfctpZxLCihIgRS1diDIJXUN2/v37B2UPEfz2tfLZdv3BhGCfJrL3XlaljQtQoQAaGoRnVmY+OCsAQBiygmRI5pqN1Uil8SZh1sYVGvX6gGm4YM6Ngg5I5Q1ggCFOeUsImrWetOuql3NfPT+xIQggkyUp3I+z8tpmkpJqdA3JWO4DzatOXT3boOQM5aqdCRNOCGgECXBqVBKNMxbPozZBoMzRoiSmAAJ0Zr2IYtzY8KSUxIuSRJ5SXB3N//447v//J//05/+8U8PDw/LsjAPWCiZjhGr711b19bMfcDthi/ERgYpIP99Q/XtP4xPodp96FBsFJkWNHSbgzuDAOAWCGBja+tgHqZeM2h3ANJKrbmFpRR5xjJjmViECcncAUJSiKAkBEBXE4uJWBKUWeqeb9eqZhENwgEL0dvMZIy6IkY8OWIj3IVCsHzrsATAxKec0rwsXNBJA/h621QNCCXTNAn2aIbQwAbljSmXXHI+nU7zMkMMHHrvTftwwDPmnE7npeQMGG6uzW+C3fY3biggADAQDdacOyMY4EGpTzllCELkAAd0MMOIxIkgHYKSbmGIXyGOsO/7dbuMQJp1vd1uN1Udc9EAQFUaSgvEscfyt4v96NTCdYDZkBBRRFJqAFhrjQAP0O42qgRmGdG04d8CaCFCRN69ezfP8xgMMLOqttY6YKs7A+o0Hd18niBwpHZ+g6KEiHh+vhnU8Fymd3f3s81lSu9zXlJOwkV4IsoEYqatb9fL0/Pzb7iym4lASuPE1zCwGPtXhA6mYeqtWt2hdQAwh4Y7EEHXFgHMCQPdDudIaGi3jp4ShgtBjkBVI6Rpmk6n093dXclJhBFpEEP+7vy9XZ/+9X/882+//O3nv3x6+rjeXt10TAPBwnuFukNdw9rQaSgxWvi6Wa2D7gCmVHe4rbbXvq4GmMs0JeHT2ba17utGYVk8JyQhZmbm3q11rzVqBdOBZQjtw05mj58vKTGgPT39FuzL/cPtVvfWI2BZHtQ6c85lqfvLtx9ngFmAkRgpcZpSStmHeyy8W8cAZASPw9X9xl8Z83MiIiANP45MCGQSwiRj0TXmOERMJOThDoYRDoQEqSTJTEIsLMymVvem4UCUSmZJEIPkQEOkNBK3IqzWrdZNlzOUQ0eH47kVTkkoS86CkjzSYbaPwcxw6Bb7vm/Pz8+fL6+Pbd9a3bU1104QjAge3s17H+YhfNs4jGkUMR97inCPoIjR1fXebrfL4+ePt62m/BmIWdLD3buH+w9+JgcBDnJSj9a0dVMNd4BxWOB3s4ehXhqs+N9+++VvP/358enz46fPv318/uWX327X3TQkMyEHAQ4zjjoq1Nr2vRGHWU+JT+e5a3t6evr86dP1eqtVTcmUIihlPi1pWZZcsg3+WoC7b/vu0ESoZImwUkCEiE3Eo5uaMkMqvEjOJat2tZ4Sc06IHqApfb0+ECmlOWfLZSrdYoCUHRCZKOU8LXMBcHMfNqohOB8D+Vpb3ZsHuUE4AnCEubtqE5GckwuqRlft3Xq33qx3czckFKGxp2AaEBcaUMzDdAiYUyJilsTEcZD9GZGJmIBcXUMjfa0ZPVxNzUENare9aR0cTUI85L2EjhjICCXx6STLkhdMzOgWqgPoor2bMIUnwnEHe0pyWpZ3D/fukXOecipZMHrmeP/u/Lsf3//w4d27h7vlNOecR6M1DFjqoO5NrTWrTYfXBzBo7Avi7RH6jljz91e79ehu7m8c/iF8dR8xkWGOADRWEMyAFh7hHVqPtkcS1w6EZCZNDdi4QJkpFWAZlEkcky4AOKAVhMjGosScJgTgXHLv6rsiKZAjCwslB+cIdGLyCOtd1YiaiPL0LuUs6etdgoiTnOeynE8PUrDDVmsradll09AkmLMEWTbZ6xAxIhFNZbq7O71///7u7uweOqAwqm3gbMJE+HRacsmjOrMeRNDaHmHEBBhBMCwvABAWQ1JHwEIpSy55SgnK7EAeoa3u1jVREsrTJODobmDAn+mLbWzb19frEyAOgZt2HXirA4urPQBFmIgB3uQUOMQNQMQB0Ltq7+7Qm/Zug9Q8ODMQqBqAOMQHpSQzUzMiHP36cGSmlD58+PD+/fta67qut9uttRYRCNBrG7Pc84JTmUsuOZfee+vNtH9ztcPT5xuIIt6dz5LI3bLwmSVJipRyTkvOc5Kiqtu6GtTXVwjrrg3Iv9R14RBG6AJB2tzdeo/WoXZSg0Ajb+Y6/jLGUiUcVX24q81dm7kzYat7780oGWcjpmkq0zSVUoS/yaz8d4PTy/Xxn//7//vl0/Xp5+v66rrJW3iqenjdYt+gVXQFAG+9O7i5N3VT8AhEMEWzuNz67da23ae5lLKcT6ec5fHz4/V13fc+TyoiWTBlJuJave1eN+iVwgPHlNkc3Hf315cVEbrq8pSC9fTwvFfrqoRwOp32fU15vn/4/fW6fs8EDYcDnGhuHk5CxJSKcGVgMNWmDXS43UbiyJAHDZ8kEZIHgR4yYiZOLFlKlkJIwyyGhJwokMf42sKGQ5ITj57e3bdtH7ceCg1QjkeYOyGaKxIQE0mE+b7urdb+7sdvX3PhNJDhLJyEMbGDfLtyNLXACNjr/vL8+W+//frTern01hInBLR9B9Xo6r1b76HjkyIRc2LhzMJAGEcUzlcZtKrWbX19+mweJJ+AMpDkstR/+CMAMs8ks2sAkUjo1rddWz+arf/J1Q7Dnax7XX/9+Mu//Ov/eHx8fPr8/Pj5+um3z7fr1nuUhMQMGOYEAKrqbrW23k2VVI2Ici7Pjy8///TL46eX23UfWbuANEDXp9N0f3ee5vz0+fl6rYxsrnvdzZsITrN4qLmX7GZO7OQWYQ5IknMqTPO21XVdc0nzMhEFkuWcv/86csnTaVmIaJ5Vm7r6lNI0zdM8z/PkrrVVDTsG7ha9217bvtZ12yMogiEYkA/+TGsAPs8ZUbCZ+ojranVXs7FyFmZKkkQYgcbi283DHCMIQIhyKbkUSRmJe1czGxYVVd/3FuZM/G6OLxiOgVLtBk1jq7pV26tWta/3YSD6+GVT5tqL+UwMOfFoCLdt0NgtiRxSOVMPKDnfP5x//PEDEd/mbZ7ylEXrjaLf380Pd8tpKSULIZiNxTqYh7qP6G5zbN16M+2mehijiJGIASjG+/kfXe3h5t48DNDHPUEQSCxJkMBdVb+sdVGEApAIPVB7dPWIkAqER+SnB6rF3iJXT9myIBFpd/PDF2AOIhEBNIB5gOFEb7YwZh9m2hh7VAIgJB6N+/CFMWESzrmUwTU7HjLAuZymPCeeYvAlu41dDBMRAwtOKXO6Y04ik/UO4YxMQd5dqw6VMTpQIPoA2hu499TwTXaAgJLSvEwelooQsTtwEhFhtqFAN/VWtUoT2hFYSkpJSEZQOFnvBIlRGBMCqrZQB4IvV/tbOuYxJhmdqEhCwoiovY/q0sO/ZESPceuBznjj5blHA8OtNTIAPBQrzdyCEycRZkQcIWxIRIhkOi6jIfnWN409jJbdzI7oOGImBjiy20RSSjlr0f7d1qeuRGUqc0qzleS9Wdt7XV9u/cpMOc/C+Y0Yr+vTx3b9bNtL1JsHGgslIBJX0AbW3LuHq4cFoAZ2AwsgxgByPwo1BHbH3vR263X3wWlCwgirbb+ul/Sal/AQ1t7fFO6MRBAO33vevvxo79v6er22bXNVRKZEARIIcIQJWqiCGamjBwGhObYe2n38x/fdmYmwMBNCJ+Ip54f75e5uQqiXV2H26c7mMywL5USERTts3HNx4pFWHeAIjmGQmZfldH//8OHDh9O5WHTAuD2tv8JfqHspadtv03L//sd/uu7fzrGBhYlpyC3r3uq299pTShCRUpqmolXBYyT4qeqYHxzzQWIRYeJ92yy0V3NzcBqstfDBdrTkQEQllYLgQ7KjbmrmrmqmTkI0HDXExMOUyETsqmo9PCoAEzEdqRTMg3P1nWzAfeCtLNS6KkL3CAvz6CzAHIAe0Fu7rdfH6/Nvl8df1sul7ZUCw8G097b3bQVVtCN8DwAdAB0HBmIMJoKQkggjJ+aUAKC3dn19qa0DSqBInpa7dx/ef0BCILQYzMfwgTZXNx1DjiGO/zvxg0eoW+9tv91eX56fXp5fnp5efvv4/PT4vO/NzbdtE+lEHmEpkTsd5zAyArvh9dI+fXzZthqewMUdmUgSDcarWlgwkLMAMyFQraraPBCRESicVKN3I9QIYCHABCC5MAsMQNe+7a+v69SzO9ZO2sHT1xfFzF5fL2oNw6fMcxFTs65CnAS019fX5mHuLpKSlHEQ9Watqmq4gaq7wVsGiSFryiFpGMsjhmwiPAKI0H0MUszs0Kzz+CAxFpJDIjV+Mxj7FXAwNVN1NetoqoToakTyj7//qnBq3W577Qa1R+2+N9vbUZk5DB0GgiN6QHjtpKDdtXsft3Lvum+1d3NzEdOIveLg6g9K7DSVacqqvSROQn232vZ15ct1ul3XaVolG7Eg8jBBdvXWujkAcFer+2g2jZhSEhEiIaIA5L9rRf4OWWMRHcCAAsjQD7l4niYi3Pfqvta6qzYizJmIMzMfk4+B9+yEhO6hBhbYOsAKIiFiVkCYtYd2NEczVItSggiRccCl1RCCk5QoSKhEZm7miIjIyDyUq0iIQERUhOeU5lKKyFcsMyLOZcmpMHLtfV/3uleIYCIRFgFmKlkWnnJZSmnr9bqvKzpatQ02rwdwY9ANqrbe+2gHidD1rUpgQcRpngNMhBBxAJVYhNAQLCy0WcUKbq6u6svdaRLmsfoGCJIxohdOCAENDO3bs8vdVTviEOAgIkmSkgsxR4znzA8boJsf/MoD7xMEyEMYMaa40LsjuDv0rqo6xoNMlBIThUdHBCagY+uBI7vPVNd1TSIA2FsbC3VVnaZpmZaSMgUw8wDXyJsCf9uu3zxV0KsIFppSTojFNrisr7++Pn28Pf8MrmWaIUh7MLFw2m+v7fWTb8/QVg9SyoKZczEH617X3rdu2iKccgIRDfDxdBASDTsUAZD22Ld2eV1VgSkPNXU4qtd1uxCDU/CUa9t7r246+vThmXoDf34HGAmggAyDE80hGFyCs6OD6TGx7QqqFkABOCiEEabuhGQGvTkVmfICoL3fcuKS6bTw+3fZLD+/CnI/P9hyinmmIkCe9tUkMXIgIYsjhTWwjt6lSL6/v//hhx//8Ic/3N2fe63berteXx7Xj3q9kkTtdTo/vL7eFE7f+q2GZE1b3/eqqiSyn+q8zNM8MdFUSguyTbVr3Wt4pJRSTiklZsahRWRGCvVm1k09vjyH5r2r9O7mSFxK4kQQ3mpfL3tv1ls3t6DgxLnkwUpCILcBXUB3660NPtl40aY8lVwkEUIm/mYnGmDmo5Kgpq110K0bdu0WrRTOhcN7a9t6e359/u368tv2+rler3XdWu3adFhUARwhaAypAOPw9JoqDu4xIRMTiRAIj4kKoalut+u6rhEIyOV0J0kQPefMzIHkgUNSZcevgfr5nwFrwsLVrPa21f22bevtent9vT4+Pr88vbp1iHC9MaMklMQpS4TUuhMRYiJMrvTytJr/lqQInZgrws4MKUegAqp5dCWPipQkETPfeu2t5zJA2sw8qvhQ9S9iYiaQjJLQtbdq19v68nLbttaam0tXXpK9ed/AzB5/+wzknCAXziVBRtfRIdq2rXurACCc7u7up1JMTbv15r27OwLQ0DsiOQCYK7GKEL4hUuPgUfsQ3I3RrZk1CHM3IiFhkvEQHtfAwTa13sDUAckO+ogpRK8YENqMWeIbjlvtel1rtWgaTaP1MdMZKxX34XlzjAgMb4o9etW2tToVycLh3gYvyIHFmx6ScxFmodo6wJiimzn2rvu2buvVrEdAKSdASbmkXFKZiMU9Wre9NncgFu3eamutqxkzQbgHkyOzEEH8L0Czw1FMSEzsZEDHytTNzVFt7HkRgBEAkQeyCQmFg5DDMYaXdOgikAHcDUxRDVkBwgddi4mEGQNNw9GRApkQJECQU5kLS3I3pN0sVJ3IKDBinErjnkMmEZqEJ6FC+E1AOOKyTKkUyslae9OUei6U0yIZJAMSRESimLKoSCd2w1q1V7vCSm/WF3fvpkEwLSmXMs+zELe119bMKzPlORMjhPWude91G6B0DwMzr+7aet2g7m3f6972qa4pi4gIEtPohALScFDY3yMoY7QMww4z3FVjInpcpWNCiAjDXHgYdCMCg4Y3nJCQHANx2EjedPvdiYaimYU5Qq3rW7aBAaBbeECQN+b1eiEIIjazMB060GPexTx4eWNC+LYa8Fq/CjoCoNabeiNO5sJCreq+1fVyfX16BG/LXCDQ1HMuNE0UW5Kas+d8eHynNJ3P91qwJt9oX2G9vNq2q0RwAIokwZQgZUkpEcrYX6zbervVfW9EqZSyLPfTfGdq+74noZQBqYWvvb1ut8fb9WG9zqXMzOLu5uZh4+fLB7m/+92PP/4/nz4+f5o/XZ+ft9vFvbn6vsW+W2vYGwGQJIpAZpwWJkYu0ZqEQxa5O81J2CzcQgist9fXp1yapBlo+/F3HBSSAclac+8Nba97M1XJXqZIGSRhGLuKVgQTs/7y8iIJ19sFg6xrXRux71TznFM+Q+TLy62DBdx9+T5ur5fXl+d9r602Mydi362tbZs2YjI3V/cepkNkCsM8WaaSc5Y0Fpro6Bp90BGYCBgsvJuiinQfSojeRmJFtK2tr+t627WrhwNDKgkDJMnoy4loTPVDrbPAYEwEgIW2DhYHBeSbAuUomsxHslyi2Nt6uayXy/O6Xac5LUtx79vt9ad/+5ef//Ln50+/7bdrr7v1pq31pgN0TKMYREThCB7hkAE+1EkYBAKIOMb+g6t/ELv1+DMSJwxjhAG4JUbioZgGxmGR8lFgD9H198IggJHZsV1utxft1bTdbteX55fL5bJtW5JAjG5dHQyAZcqlMKP5XPfWm5rF7dq7XW+bz/OS07RvahYpQ8owncq0TGXBeWYij+jMIWn8R3VU9yLjWw0mZE7url2RkLOMeBREQIpS0t35pOrrrTZtavRw+rp3U7Wff/pIHHmiecnzUpjwLXsD9lZrrcSSE4ooQneL3kIbhSYGyILCDohEAhCqgKRl4mWZlmWGIFXcN7Vu1mx0qGOgYh5krkSJQ8jHqGRIPseB6B7oOsS/hJSylDKx0Ni6btAHduzLB7mt7dPT2iyagQ4MkobZ6KDA4M2+GIEQ5KBB3aN7lGolEcaRWeoOiEY4erMADHe7Xl+fX56fHh8vr68jCKvuN+tt26bW3IJfLlsp07ws9/cP83JKKQUg+IAhmptDBBEyEDEFgqq6OmIjpNb/YxkdAEAgIjGTM8GxcfWu3QJ6VzNHYEYgwsPzJCSCLoAQqubmYy58XCtjmBxkhmYwjILMmBMlGUR3D9fAGENCD0JKOSfm1HoFUNWO6Mw2/n6IWXjoWAlHvjsIBsM3gWmImDKnTCCI6gDmoAEqGcupIAeAq/Xe1c0RHBERyM20hXW1kbYSYTaGrC5zKvP9NE3n04mC9Hptt31dtzyleZoyS+/Nat+vbbvWfe1aNSxiUDfRkKK1Vuu+tTWvRUQS5ylPc55SZilsjsRAAeT/PidxPEmBQAQ+cMcIXw1NY/sOiIFfolcBEBwPlcUwXB/K39FAWJgGZTxOKsLefWTMIMZR6noAgJMRwO0mEEYsEGBmGEOVH26GEGOQW2s99H0R7r6ut28fqba/QAcPaT3nPNV9r3ut+76vG8Ym2AnBzYE7Q2BqMXnvoJ3MgQmWeX7/8N6N2+y3vDLy9ba1vhlGJhSRxCwJcs6lnBBTb77vt9vtcru11rXkLKmc7999+OH3pnq7viJ0EUgliKv2l9v1t8vzPBU+nR5yWdS0a+veVLva183Cw8Pv/+//t//Hx/d/OZV//vjzv33+VfdrbDe7vcLrxd05gBFTTuzgnHA5c5loPqM2V43M8nA/E8B62VtVJu+9vb5UoAtyXu7o3Qd04KbWW9Tm6BUUt01NeylQMuYSkkCIIVLbsW2w13Wv27q9LMu0lHPmhOE5iysLn05374J5ra1ahS9XO8Dr0+vT47P1cVIgsUePvislQh5aDuLg8YIAAJnFwG6XlEtGwoAoni1mD0PyCACioBjz9rEL7M1UO4IDRNvq7eU6POtAyJkJ0MYcUUbRSkKUWUKSSkIPcxqbJu/WqsKbLP/7q93CnQAy45Sw7vt2+fT515+fnj5NUz6dJtW6Xl9/+rd/+fWnv/T1am2PI35qvFNvmJg36SgSHiqqoTQMHB7zQEdGyWPdxmpqfejqAgkZQxgTH8ixGJIQRgRMGMQgFEQO6HFwVL672t1ab7fL6+Pr86dWV7e+rrfX19d1vbVehWWYECGCHAElZcwpjyPWbetde6t7NV77POs8adubmQcAMd7fLw8fJhKXHIjee7PQAI3oHgogiCOD402oHGzq+96JkFFExhlDLHg6zcLT62V9fb3t1VqH3r/OSk3t118/E/l8kuVUTqdp+ISHIax1bb1LgojE1MMqOLmjqxAQMqXEJMEJmAUAeqcAS4mnqczTFE69xUo1LNwMCceg2CLcnAiDx7l5+NoBvzoZB8MIOBghC09TPt+fSsndrNbGXIe07uvVvqnD3j30jfMwOt4IHEWZHyKcMWoADdAAdWwSVWgM9uMYMXi8YV1ar/u+vr4+P788PT89Xl5fTPuAHAvTXq32qC0en66llLu78w8/1Pfv35/O55TSqCTc1S0IUXi46xEIhusqwhGgtf/4ao+wgH78oUdk6TisxzbX7W3RzMTH5tIsANEUeo+RY37ANjGIDp1pGPYKGAEphBFljDvBzAPGPDVCGQxH9heEmdtY1w7BmqTxYiNCIClTsEC4EF53fiZYavvatbvb55ffOCUUvtXr4+XzZX1e6zW6NiezXnt1s0NlGLivtW1Nu7k5AdJQ4ph5t65q4QChW49mKSRR2qJCg/1a+97nafK5uFvfrK3a1t7WamZHNCGGJJaEI9kT3HrdtXLHrtI1t+lUSmQJYiE0RGP5hoyEb3yjo1Icf22HN+P4Zzxcxt9IDQ5g0uGNOIo1AqIBXxjWOSQcwkaCgN51vW0DsHBw2Aa3n3qEJWGEIOKxHgNAZhkxeWY6VPRxBLSHmXbtXb+JrYzo7VFB9+a5lnl5gAhiK0taHhZ0LBMTRrjlhFwczNAM2ZFBGHORecnn8wyRejEE3XdmoRgiXQ1QJ0UxGtLxcGzV6t4HhQUB3L3WqmaS0/luuX+YwTeIXRLnSYRv6+WvH3Hd1o/nu/fzfDZw9d61duutfXXxlTL9+OPvt9tTWWg5Te3+HXSqt7DeayV3HCbgUoTEpPhytpQ9q9sUZigM02xg0JuV7PMUbDQy6NSsdycG8+jdrUMYEwZyFzERD6e24r56gKUEIgFOZtBVAdAUwBOTl4lGgnkqOZWUpymQLMA7wjfih7a3tjcCZJYxauckw3xVW+29hQcHh4ObI6H22NZwb2lNkhInYWYilCR3d+d5Lna8LjZiCbRr2yoBjDAL8OhjAG4AAQyUOSVKFKxV61rHCsnKBJOr2hCqIxEHAYLFIQ4ZsLxvnisIVwJPjEuRh1MJ69eJrhk2Mmi3tV9ut8vr8+Pzp1+315cYbhEfphUJekPVjJUsEyA6BBAJZxrDegQYI4UhNWr9eIXM3IcZV1hYcslJwPXy/PnTr39lliRSplNKuRA35S1RZmDyNyPid1f79fL06SP+9S//9pe//Pnzp1/39aa9j0sEMZCNOChUEp1O5bQklghzYkCMARoiQg+3XomZCd0VCdxdO5iFB4yjbMhm18t+u+y3W4OAeS7hsm8GoIhjh2BDUJWSuCFgYRFmSkmGqP60TIiE191v7VvKgLtv6y1lKhPBoboYrlg389p6V80ZwDjTBGk4Xzgcwt0DHAHJkIJo+E7Rg8K9t367bQgE4SXT6ZRyQeJk7q1rH6EHiMxYikwlC48homs3GNPhRClJSUkkYQAi5YwikEvJJSOK6RvaabwdPYLcYjToh64LjkQCsLduayxx3nomDAsL7wZ2lAkRb/m2vbW91tt6va6XWve9brfadw1Td3cCTIgZ2ZG6+b7Xfd+3bdv3erlc7h/uT6fzNE1D8jDi4pmQAH1I42wQJA0ivns7/t3Vru4VQEfL9xbN8vY0huN3TWOYDYwpq0Ktg9wUyMFveYjDAhOOrY0RbhBAEJhDf8PcMzsRulEEu4+gZDXrvQ/CdJhEspEdOfKZjMVT9ogN8Rrx2Dvv+9enzN1/e/wVhYB567eX9dOtPu394qBwi1r3dV09gojG4lubtdp7U7eYc0m5hJl6Vzfoh7Smr01vnR4gibAR9OhraxTr6xrqiKi79d36rtrUQ4mdGcYDVyZhQSIY+Cg383Dv5l2RnDiQEoR4x1A4fQ89HIN0eLvjh0Ik9HDsfplPvnXLo0g83LljYwgw8vmYGeMLxhXeAgUi3L3Vvq07EYgwMb5VEo5A4SZM8da1j1VcSqX3tm1r740J52km5uEajQgdJd43j5Xbq9qm0btmQhUpLD6fM+I9RJLkGBquwoRs2A26ATlQEFHKlBKnxITMCNuGIkECx+GlFhUAnQ/IeXPTumvdq5mNk9nN9m2rdY/Q5XQ+L+ewou2VE6TMAbf1um63j4+fptP5YTndIZOjd61qvbcCb1ljktLd/f1ymvJMy3mJTrrh7UWJO5K7OToy8VQkz5CnyNlJwnloegjBAZtDIHVOnguQE6XEgmZe69jFeu8xYkqAg6hzipSCgLXybeu1ap5gnrFMiZmQgQBykpLzNMtyTqdlSiUBpTyXPE1IQizY4Pntag8A6+bdKKWUZDnNZSqSkprGzeuu+221rgTCxJKEYDAetLYVCYlY8rGcmue5TNNMs6q23qHWaOrmWtt+3bxphIerm/kIYgQcXighYWBQ6L2v6+puzOSzoodH9GHwdOAhiCRwdO1at/37wysQjDEK46nIw1LQdb+f2rp4ndf1uq239eXzy+eP28uTbiu6Hdk0ToyILMOif4R7QYwx+5CMMMIx6x9uvADXYZBLQ5EEHiQsIimnlBMjWKsvjx8hcCrTaZ5PWU4pLUJN+ZapMDIGQowxxren7svzZ4zrn//1v//bX/58ubxs69W9EwIRMIckTAmYYZr43fs55+xuI6fHXMONCFIi9Wiu7tWcmFGYALw23fe+r2LR1BpgNfPr67rdqimmnOcZEaDWZqZEbtEHuBoRS8kRNGBq00QipGgBlotIKh7U1Yn+TupvRFRKLrnkVNy9tsOrVltvqq7EqLGECE9TyjlFhLuqufp4TOxt+OcDgqlqrfUh2k2FznfZPBGzu3fl2rj3DoDMNM9lmeecEhNve6t7JaKU0zTlaSqlZCEZfmZzB1BJhRNrD9XvoE46MqTepDfwxcc7EsXBh44OAGhkjxIdKSaDiTe48jhcD956u1wvzy/Pr5fX63YDBETSoOAEMNbjGMJc5jQtkhMg1H3b9n3btsvlcr0+PDw8DPsxsTALsYwTPvywtYfH4Tn4X9Do3Jv5GtEI1TGGEnuEJnq8lSGDABAw0s2JhyQe1cYU19Hd0JmRmYiQmQDBLDoABLqiKaoHZ0eMsQBhGoLM5CYW2KNHdCYfRwFEmAIzisggPuIoWZTbDlrbCpd2KwDpyz132y5BYIi73i7b862+1nZR6+EjH3gMn3FIfxGIkAkjwMZ9bxFveWvEEGToq/XX1s4NE9XL3rc2gPxm3rsiwoC9p5zDUa259zFHDyeIJJQkScAXuVEQoQgDQJgziIBU7VrtW5XjKHoPI3GM5vwIoLPwrgNe6TCYdGpdNRyYGUkACGJoRohQAIWZIpDI3soya7WbKRJs266qw/IwonGOnVVYNAOE3hsxD3oUIiWpI0eDELatEGIuJaVpnmZANPXnZ3p5+fRWnsBUQIICE4tkMeKGYTRRTicPCt9M1VQDQAM9esBwEoeZ1toulwtTJhTrfr1ct32NMCIcE3M07M4e3DUltghsTVUrhNIhMoBw7fV2vT6ez3R/dw+ghh3C3UEHJK+5WqRUSpnLUqSwuXpY6f+J4ABuEUlKp4d3v//Tn/7bnD4/pZe6++W6f+A03evLy3Xf9pSC0MgdLUARgRgYLOqute2tg1kM4NqAmLatqaE7ZoWe4Y3pEdb1sJ86p5TnMglnB1eznKfz3fkffv/j6TS9vr5qa/en82lZckmUxBCYqMzzfP/u/sM/iJTeVW7t59eX8WThlzoRAyhQgDOnIuyoKr2nkpLBsYHNKUkWEQ4MjwNLOeIOWm29dWEeAed9JCWbRQAxedcmMmZMpgqAJedBdjO17bYN8EK33loFhJS4SUs9dbV9a2oeHsKSWJiIWcaq4NvDChGEIQlmpsI8C+My2ft37DoLvLw+vzxT3y5rkhsOotDQ5QmSMCKLpDIMm8nDt22tdR/pscNjQURmptbBLGhETHgMOiUz8egpm5n11jWrdtWuEPByd383L6fEXHgqS8q0CBWmkRY5+ObffpDPnz+vV//46y9Pnx/rYFK5ITpR5CLv3p+Whc1aznx3ns3h8rqvW12vvfdImUQoZVY3VhexlNsyzVPO27bXul1eqpo5qJmqhR1C8dJ2227W1gsSateU6d2HpUyTCI85X0Tsa0dABNITTJPf1v31ZWUuKc2IME05yVekvwj/8Y8/znP+8MO7ZZmTpH2vF7iFVYUgIAZKxEVkKmmZ0zynlHm0mtQROvbutfZWq5rRF64AooINeQMzLufibqqGSAvN404e+5TBHB5Kz3kRt+l4gpMwj1BXz0CItG59r70buNPt1vz7NSigAxoewaTHqz/YdgBOI9iASYgSYWacsiQ+aEQxevxjrWN1X59fnh6fnp5enltXC0xlkpSBM+dZhJk5AoTp/d3p3Xk+ZcGw6+V129Ywb7XerhcED9d9WaYy5zLlMrEIEo9aFAMYCRmYiOjbhIV/d7WrbhGGaEgAhOEjCG3kFY0lrLmFO5gFWRAhUUSM8f2oAQzCRQgzBcPYtbgPewMqYRdgczHICTDRaK0AB3d3aAYUorMYArwhXJAJSxHmAf1xs4DI2sXUtK2g+OVqH2Nhj9CI2mtte63btm+9N7fR9h51c3CEQEosSSICETgxCXrgiGRlYQJCAN+jvbZ92V18fb21vRER5VGKR0AAgSTOgUTcKrY+Bh0UIeGCUIRGYtvYejgxECMhhCM5sXP0Zu27fveY/OChlENAs4F8+JqaC/6WcG9uphCANPA55AHhBkFE4D6CCz2O5aFHdzMdoIHWqpkRjQXWF2X4eB3AdmttZx4sF0SkzlUkpZSEcV2LCEsSETmdTyIJAs2+M78RWMKgxMRE0MNGt+GjBeltf8N/6XHjjaCtGMrN/fn5pe5OyGGw73VdNzNDBDPt6mhoThHspl6GFt0gGqEjAyCPD2W63a6fb1e8PwFEbfsNxdmPmIr1tq9rBUdmPj+clvPkaADxfvpjfntfEDjJ3buHP0HAlH9l+nXfraq/C1SLX3/++PjbJ/JOqOHuzR1Gmi6Zer31l2u73qxbyJuPSy1aczUCYHcUIxFggt6ibqNQ8znPp5mXpUzz1HpV78tpuru//8Mf//Du3d3nT7/t23Y+nacyjXq7m5HBLHlaznf3H8p8dgd6vsG/vX5pFg9jdbiHBTqwkwA6pkQlieXsHEkSS0pJhlwXEPzLCC/APfa97VsdARiDT3yEvQ7/pLoRw9An905MjJjG02/eR8LMQQI1ScyJAkLdWmvrtvU2gvskpzzlnHjIM799pg7KLBMlpkSYiChnO51DG0THUKvrXHJhYjjE9BjoCXlwd5hKycvpNJ9mM+297yMIPTDcgZiRAEzV3S0AhrgSzCAilcyYDNw0AhoS9d57b9o7IV6fP93u7+p59tOUTikLFqHMJEiEgV+mQG8/623tVbe1mjohMwkjEgUnEOb7h9PdfQ5vzFBK2tZmXmsfgvM0zXPOkhIFgjkggiS/v5fzaXn65Pu2Xy913auHW5iqA9Jpmgmk17qt9Vl3M42Ih4f5/v6+5CkVJ46I2NZ6eV21VevYq+ud3W7r68tVks4TAMlcsnx/tf/h9x/mubx7d1+mgkjC3JseeCURIV7KdJqmeSpTkZRJEpg5gaF5hPeu662u6603ZeGcUymFmd1NCTy0FClTNgvtlZjneSo55ySDrzVUz0NbJFKSyLjqASk8tm0z64CMdOR+eQUz3PcOQN8aFxCdyYZvfZTBQxmvquDKBII0cc6CibAIThmzMOKQkYZDBIKrdt1v6/Pn54+Pz8+XyxW55OkkqaQyc44cMc9zKZO5M+K7u/nduZyzoPehrt63Ncx6a+sNwk1706XPbgCRIpOkGAHWw6GBNGbk//HVfvQTx2R3/LuIsa8FFkZkADI9RKRD8e6HehWPPbC6u5sergMiQwxAYEIm7EQilCGQiSeZJmYGU6itqfZwjsAAJdYkQRRuhgjENE2wLJAzEbEpt51Mk2lWE+2BHl+eMiT68O4DCgbRZXsB3M027Ru4BaIpqBkgEFJKKZdMA2Sd8hgMBsXXakgyGoECqO2rvjzemPfX19tujWYu5zzfT6kIArSmkDrshg2Rg1sAjGRIRhxrYE88qr2MApIJBUw1LNrNHQ0aieav8x8YOBlGfMMrufWug4cMNDLlRuE0ojIQUSBgIF7MdeAFiHBsxWutbtBbDBfp2IEN5leARYC7937gGIiJCIjGZknNHTAIyWNECQw1ie9El6vknB4eHqap5JwBqFXVb9Jpw+OXv/2iVtNgmoogEeBI9UXEar5DdAqPcD+0DUSYREi11lp7vV1ZBQsC9z7m7a59oJ4jJ5HMgyMEHpyAC5tIrQqBOWUiBkTO5LY+PX6s2wt6d6vTKc93UwBq89vNb1cHQyZyb7V5gDr43e/t69VOKaX701lYFsIz0anM737/j/8VEFXbX//1X/725//x8vm39fVZe29ukgU5ANg9zNC6qGLrXsNEoBQmwpIHnxUBKBRrP6IUrWNvqAo4QSZszVPqOcPdicvEiaLerlf0MCs5L6dzLlPda2vV1RF6X6vvHVUXSdN8B/E1VeV4p80Bw7tabZ2JzCPCagPzIgkEj4hoIjjgwiMNcWyHKAJbN4ewrjDOlwAkysQ5p5STDDiSaddRy4a1CqZj8PPFahMEyCQlTcuclzmV3Jpa17437arInWtPSYhrra3Ww9c0nisAhWEBHTijcTesnz8//vTLT4+ffvv8+ePHXz8+fn5ab9vIZsWIULDw4UzUSE0pVtXe9+3a901VEQO8CxMTuxu0Fn54mkdpbNBHcg4wjU08Eo2IHRENNwAL6/vtsr7Odc4JYcgaEAnBCf4+fPOHH//07n4+Lz8+//jUtT69PLX2f16u19OSiFHkEA17eN2rapMEy1kkQwQxgggkwWmaSxYHjbD7h3Rasra8XtO613XrzVqAz0uZ55JyBieP1lq03dxcGEEFPTNOKTmSae/h5J23XV+eLtf79uGHGRAST+G4761MWOYi8q14GZIwhO37zawRcWsNQoVhnvg05yT5tMzLeZmm7Gb7qg7etXXt2rXWfrmst9u679XMJMl4rAhJTQFCEu6Zy6Zqfd+2JGIdbDLP+bilzC2cGEV4Oc1ZWNtgibt1G1seRHFHVQBITJmIETO9bTDHD2NkcuGBuGYiUY3WbO2taxfhImliSIwETqHg4KZI5G5mvba+tXq53p5fX59fX18v16aWypTSnPKJKYcTIrEQy0wyhTkgOIg5O6AMrkvOw2QiTMLICOHW2w4Qqi3lIqkgsg9ln8cYBJn9xwP5gbH8gux/69QDcLjOOAgBichVLUa8OfhhChw3u5qpm4aTRx/AqyACEhKhxGwc7sEFACBJpIyu0Jvfbr1Wg0Ai4AQjQhcpMIwIUoY8xTRHmVBErKfEue5SncPBNAjii+WVkH5490FKIpH5llu/9nbTtnIEhDfsg60tItOcp3kCQcNIyIAJAzDCCYIAk6ARGkeLdt1btevrCoi3bTf2SVKeUllyngQAMJMzACMlEgGTEcJBhzmNMMLBRxgAM3FKQgkVmrWuNcKUgFPIt6/9MJgeI3z3sYlyD2QcIQVw6ByHdI5EGI/Uq3C1Q8HiMMb4EQBBAQTBETTkDDDArQREMXxKAxABGIcl6ICyjRr2rcaIUA8I3ysgwDxPI3K0924W21b3un/zUMXjb4+1rWWac8mcZJSlkjBnZFHiKqzC4EOIoOQ21lgMoaZQtYc7ozMmG+iwQwcZRFCmlEty0y8Mo5TZjQiNCU/LIkmA0MI19HZ7fnlScEP0+/f3Lsyc3UQtmUYYOvC2goYGauBo2L48V8w8Dc1Vv/cIunv40d2Zset+WnJm/beobXut1Sx0AgACVe+K2sFtVMberToACxbmXBA5AMMN3LC3aC0QCIHsSEYn7Vj3TugQVgplAXC9vLy0fWOheVlymVKZWu2hrnvDpg25Ts/9/snLLGlK3ze8MaLNAbyj1aaE0BUCtHcMyCkhjsgL9DfCNxx+jfGwHWT6iHBzVyUARpKRyFSmqRROHIBVAcmJ0jhfvXcEipGRMgwuTJQlz1M5zWWeUhLZKiOie3TtroatExGgqql+50WMQdMLOA4rC+261/b6evv8+enz58fHz8/Pjy+Xy6227uOogghXB0cWCOjG0KxW7K3v29p7DTPEUENgRqHDLWpD2TdeZ3dQBXAPykKJiZmJjgiuEdUZar2u19drzvX+zDkBICG/BXj//UD+xx//+E9/+v2PHy63y2Xf118+/vT0/Pj0/MmsOZi7tT6MrgamHjbNkicOdHeMYfMmuT8t93eL2t76vpylTJhnyplvG9ZqtRtS3D3I6VSEpbcYm1brEQYQ5Ip9D20wLcOz1sMxXPa1X6573SwczuepTJOaabMyRcpE8v2KBEK7rj7osNnNmWOaGApPaZrnZZmXaS4BYG77mKbWvbaq6q319bbt+95VAb7eQYioqhFBjCIk0k173fckrDXa1PecDrWeewBw4lJkiMNqrdu2t2YDfw5AARzBAUyURSaWNCSc313tEJk8M5SEpbCw1OarWwsz64MvJghyJCO6qpsBInTre92v6/pyvT4+vXx+eln3qhapzNOy5HwSWTzQDYjHDCtFyOBjmdPIYEICJB63exglxjx0qxTu2lqo9t4ap0aUxuI14Hgl3f5jGR1iEIWaD86ZvwEjBembeEQIQhGJoAj8ItE73nMb2RMAFjo282bIzIlhEiGUhNOM5zOezkgUdddWvVbfd+89iIII/MhfARYX8ZxBECJUjVkRKVC8LAAApogYY2D2Zc6FiKd5KXNOJSP32+2u1bO3dQdwV8IAChJKU5qXaV4mj1B3HtBuxAjf9611BCBwsgqKSg0CvFuDoHAgYjKEDr6rAoy4qVxYhEKj79A2gwjkkTvJQizE0CnUI9A6SkJimRIBJ28depAJRRqI/i+Xog4UnI45ypcvET3A1cwHvTIG7VpkWDcRYmggwEdJET6wvkzIJADkDinxyBGHCLUBgkIYqbGI4/sc7nuhdAR4BR4J72HhoeigABAvr0/8M728POUyjd9/37ZvHiqYp4nZB/hESkJENbOmW7eUrUwehBHozqauHbR57dHNA0FSYiEIDkVXwwAaechDukI0T9NyLmYdAVJKOeWchdCWmXOh8/2cEgdCU9+qrrd99aGexWGinaY5SZmyzlO3Fm4OrCjOKYsQ87frKwvf9tvny+W3Vhu6CyUULlNGON1++N3lhx8+//wTk7jzQEuq+7b57RLrjh48zynPULuY6ciXSowWUA8gF4YTBpckpciUCZCmnEriWm29jZwVtBzWe9st531eSpLk1tGJrFK94fXFzer2ctkvH29P17/+S873V09fFZcAZmamCOiKPt52DwAIDyIuZYrA2rq5IUE4jhChrkcE8Ig8q7VbVwxIJBjBiAkpI2UkQYSheg4XoVwmU6u3tWsP1wDEUd8mSVPJS0lzTqPgE5qW6d2H+5xkv+0jGEa7tREZqP59Hgkcjs+huoKQlE7L+cP7H/a6J5ZEyVrftz08CNFMh1tuONYAwUwP2pMqULCgASCgCCdhYYqRhoADJEaA5IMxroYe5M6eCBgpCSEzl1SEeV/X56fPoTHnqTeLNJSYb26Xf8esWc7L+x8+nE6n9uFda3te5NdPf3l++aTaL9fL5fWaNipTyokS85xLmTMJOjgzE4sracMp5WXKrQsCa49a19tta9oAI5eUJkmFHh6W07kMVgeQI4YIO6C7r+v68eMnow3yMp8YGQcaXCTl5Krx/FTd6D6Ek+QskmSEGH57WPXWPYww0lmWeWYiGxhIQGFJKZecc0oYaBbefev7etmfXy+1jRxqNTtC8ga9sGsfEQIIQIZdkbBrt1Y7oe57JNkT0/gKh2m7TDlP+XprSE8DFj5WNwgUQbWZOaY8n060nPI8z+76xYb09lABOQhgQpIAMkdVVGNAodFvoOqRk0EIEO5mvdfb7fry8vxyeX293Na9780CmWQinokXxHLcEwHugAamMFo/Ihypm2bAEAAwSHMolIWycErMwiQCiBAU4a3uiB0pMQtxGg/X/yqvnRhIInRIE9UOACcdMaZvUfBIwDjS1jECzEPVzTzCIYLiYAWGu3XrXZHdAoQJCjNBLlAK5kRuUHfbN6s1VNEDiYEh3MLcWw/hmObgBGPHr12JAtBEgkeiHvB4sQG/vvMIwBECkAWXJKdSzmXuaSIzcyICFKTCeUnzqcxLcQttLiRJZKzyGYMFANEdG1kEuoJjuFmoIyAFkRJWsFXBAxNiwpSIMhFg4+AYaYmYMueSi6SEYnv0zVXDLECBE09TFgmV3ZuSJvTkO36xxphHG+F0aqM1pyN2CwG/7NcdAggDBJgYiAkRCQPGOB3D0fzYwbNgEoQBXzwsC0PG6b3Dm66QkHDcPaO5ksTCMnbvY7E6bJ0RoQYAcb29muuTPBFySjmX6dudDwL+8OG96kIsKUnKySNq7a03tUboSSDLSBE0ZxsQBCQj1lwo5YwkCNw31V2DIcmQjBCAB0ESLilFQoRgSiIjxJtZaDnz/bsihT1ir8YrIXiYdYEIl8Sjy5+mnCVNpfSm2lQDAqxMIwP369Ue3rW9vD79268//3MEC98hZeJMPjMHmo8lbozY7qAx+lt3v21RGyHiVASZk0qtbd93Mzenbn7btLUwhcx5zimlPJdBDYMkTAgvz3Z51ZxoKoPJPFKuOaUMMQyuTtawbbzdsO9Qqe4vj6+/PWFRz628i3/8P+BL1AvheJZ4qD98DJRwKIpLKWpRWx+CWzfXrmra2j4q+K6uamoeFoyjlgT0wACKIA80dx94DyfGlJkZeyVoodphpKQRppSmucynhbOADAxi5CJ8f2KiJNyb9ta3bR9ZxsPz+e1rPrJW4BAzh6R0Op9/sB+J6DQvc5m1te22QjgiDg3QuM5H0M1Y0B4JTsgDKoIQB8hJ2FSBgIiIEiEDYlfzkapkSh7hwIOBK0KEFAge+7peKJW0jPxNBBnp3QDxP7nYAQShCMokWUpLcXea7k7LaZoF2Zp17ZpIiEaE+ZTzaVkkU6Dnkud5Cku9CQMz4u12rbtdr+t1Xa+vW601ENMkufC8pNM5l4laN2RDMuQQYXPQrtu221PDXE/vXcqchAd4RxLlklrtl0tDEBEvC2Ue/KvvDPoIyERhHu4IVHJOSSL8iLwjIqREkpgY2BEqCTlq1e2237a9tQZxsHGIAZA9hvBxPK2Ihse8Sb03g4B9d8LB2LAIY+acpHVPzdW/aKUhp5QkIbIb3tbaDZbFWXKAswD5gTf4egkOILvHAIpaWK9qTTFgbCk9oquCjXAP8LDW6u12fXl6+vz5t9fX622rHkxpSrkwT8QzUgFKgAwRI2RtMJJdQ4QYD/fE8NoRS8qZGRiiJM5jzCtEMoTMI/9aPXwIDGTMkxAg/uOBPHGkBF2RGEHRzAOc0OOAiY7v0HEk6g2mvJqqjQYSEWVUkkgwgH8B4WEQoerObqEGrcO2QUC4oXZqFVQjAIEwPIKCcLDilZPzsYlE9+i9DyGYqWBAXXHbwgz5+wrS3Z9++3Va0rxOzXbsLUdk5KBkY9iBihlFeOI0oZAwIIEBWNABsCnM0ME7WMpDrZk8Y1TwPciBEMWJGvjN0IInxkAEkEI5J/ZAtb21bkqIU8pzLrNkSKg5bte275YCM/AieZopJgrXMArjy8/gX692713HoImYmWnYK4EAESUlFh6jkUMVeHhhkXD4bHCgbiiy+5igKCIwj9RhgAgkQpSUySwdLFsRIuq9qXX8Ekd5YIJAfKzEDy3fscM58gsCgmrrtO9Z0mkqxztP9F/+y/+O6G9FIphF7967mXWkLrkTG0K4g2po1957rXXfq3uEA5EgUNv3vtVQh0BArt1+/fjp9XrrrW03yBlEKEzV3bRLhkIQBCROHK6OYIw+FeKHSU3cLWdEq20zb7eUBmgtLJl7BOCUOafE9PW50r5fX37+5a//33/+//2/XCmlB+ZCnFPKEfDxl59//ttfPn/82GoFCCZyw97IDQFRmAFlxFeMxDUM6Bp+i13htqEZEOBpyvf382nOU2GECFCmQLRAM/TgTHmSUlJmAJMi892708MP8+khEazwjO4FIjNOmQld1+tWL7fd9VTpT//Hl1dkOZ3u2j0LiZAkIcKAYJGcS8pZUqburt6pm2l0rb0PXMHo2o89j4cbBJgHoAcBkLlGNEAIQ0EgCDCD8GoRgIQk7K25W7hyJCIU5pwSCTl6uGl3DACBNEvQlC3cXK4yJLYe/m3+BSKmkVsgPKKnmLmU8v7dh3le7u/u7k5L29fr9WWIakvJpWQa0AcMc+utq2kAmOq+beu69toOfMRoJszVXCTlUpgTIEKtaoY+7G82Vhu9Nk5JchrVNtzj6XR/Pp3fv/+wzCdmGS9JhH8hhXx76q6ffn3Oqqq17i/Xl59+/eXXv/716fPz5flW1y6JCpeJS2FhAGu2vt44EWdiJJrw7uHhfPqRUbTaX/7y15+unz99vjy9vLTaXZ1EJENZZDoxsqlpoBJ3SkbiriMjO8Ktdd0b7W2dFVgKoAd2FJPstUfbYt0832ytFbk/eAmZi+iXC4SFf/e7H2vdtm0lxDbi0sIlpVwKHryXODAyBhyRhU9T2U+zu7mOUjII8UhPPWLWEJDCISDMbNBHTBGBgsAQYEzUCSHIHGvz7l3NuhliMCGREgGhe0BAjwhzqf36cvnN/ZoTJknDvX5cgoTM2NVaa+NBP9gAHgjooaEjLcHHS1Fbvd6uLy/Pr6+v18uldXMQlkwyY5qAM3ACEmQBltF0QxDiEGpgEpwyLpnmhIMfNJ0S4uxaESwzJUYhGq/AEOqzsJiYDRpj76YjotD9Px7IEwIxiKAIqRKRD7rcSEmEgRJAB4xRL5iZvk3jB8lG0gGiHMCUQfoD0wMKaNAVagPawgzcwBXNyP0ov+NYsROLE4dIDPcpIkGgGSAFjejk5ttN1yuaogck+tYz5tvrozX2VgKNes0RMzFJtnABExISzMIT5ZkKBgdgV7XeR2x0hESEW9NQIpBMhGwcTqHhZMGODJics3MKFhzEKE9AmVhy5hkIqbY2S1nSdMrTLIUTewqyjaxmlhll4TQnJiZAdQc3un0c0WEAAG7eux38VyIaFo4IDxjeOURhUzN2M4yj72E6FPXDfIsYiKQKZhY+LGZHkNdIuRkBnJIYABFIDv0UUkePPkIDI+JIemWIGIG/jm+KemJkRmaOILOotYHD16sd8R/+8MeUBpsePNwtrOPIXY6oQftQREWgO5mreattr3U3G3U/I2CrW983MMWAlKfaTH2UAbq7Zc4iGO5H8h0SZ+ZMlIZpWTGc0aeCc0ke7O4IiKDeWgVgXCQvKODupgYOhSB/L2bufX99/vm3n/77v/3z/0cblPwulSXlYgZ1t0+/PT1+frpdr9o7EzGQG4ahGwwW+oDponvAgDeAGaphU1KVcEcGEZonngonRncwA2AHBBKXDJQIWQaAg8inKS/n+9Pdu/n8IOAlz86JkDJgYYqwWut+rZdb95juvvkgy2m5t85HbBQGhLkRccqZRdz9OCMcQq1rV20jIO4L2tNj9MCh7mCOEQwgADrOWDB2CoYepujAiMQsLDlRa64+dMfDXTrMH0QEFEAxbCUgyMHHhGrAxcJHiOe3V7swj9H+mEMBoVCSlJdlWaZSEr88Pz49PbbWA/G0LMtpSczEY/h5BB0hYd33p6cn7boTj3UbAA1BQgQQcc6FWMKjYx8aGsa3EQggelAAAxOycFqW07uH9z/++OMPH36clxNFAOAbP/57WC4AANTnTytuXdttu/3y+eNff/nl408/P39+ub6urWrmOVFOlBKKkLvqbd840bTkkpKrlZw+fLhnzHVtP/+catXbrd6ulTAkkRRIU5QF8wQA5mGSoMxUJtoLNo1oHuCBg89jgEbskiEc8jQKN9greGBrcVu74x60yazzHX4rfWCi+4fztqG7RsBe21iBlzIF8GFfpCAMD3X14QxZ5mJxjjAI603DjQSZiZgB0SIiCJwCwN1cwQYXyQnfiqQAZ0IBMsDQUNdoNrJjJBERJZEpJ2YOAMTo6lKQSXu/7rUz5STfb3kQEKD13lod/ICRijTqBwhTc3VtvW37vu3ruq6X6/Xl9Xldt9YVKeUyc5qkzFJmyZPkLDmRJCIe5OyhIB1oMWGYEi2TLJkwXBjnuaRM7g3DEoIQCEJAWKgfNnRwx67WsfduZqZB6GTfgsL+XkZ31F9UCgyBlRuHQwxB9rA6ByAGM3lEdBgSLhFmJhERTjiEpADIlHJCCOxoZhhoCq0j1rHoelPWx5HNM+CBFEAELCECzG9IO+RhcmSiCNq3uDzX62tfb+SBSHieS17evhuAgp7csUWAsfUJ0XNJiLsqWITanPNdXpZcCqV9b7fb3te9t15KkVLQMAy0aQ/FgigRCCjIEyMEmGIHJlzK9OOHd6e7Oc3coF771cDRInOa78q5LL33InnO0yS5cGYQIOCZ5yhMklKaglMnDsHh33gbMB5Xu3tXJcSRBxM+ZO2GhAKMiVNiSTTUizDyb4hFmIgg2N3e+GDDqivubhpuqupjy9LBANooHISZGMw1BoGekGIMS5oqllJGcvzQ0kf4cCQS8TTl892plJNwrrterxt/y4BAAAGQgwtBMTZvBEbg4c4eBAclnCJGKq3bGAapm8MAi7hW6xWiITgRr2t9fn25XK8vzxdTE5ynlD0AhWTO8zmfP0zziUvGsG7gjD0zAI4CiAEYgiBwhEwIAR95b26q1l07AyOnr/JM7fX15bfn58fnx2dtUaZ4eHDhuL6uj58vz4+X19d1hHFJToDc1Xt370MhHmpm7bgs1Lz3AKCUhAQIyLSHd7RurTZQRXBvHr0g5QmmBYPR1cxruBClecqn8zLNuUx5OZ2LMNb9te7Xl+e96uiY92ZNwwzBv5M7LcusYeNeJ6aI6L2rWW9tW7fWe29qzbUPpYea9TEtioA3psXY9USohRlCDC+vQ6ibd3cNA+uuQZimnAtJSczJAqwrII7lV7i1fU9UcilSkmRpte3rptZaa0kkSZrmafiSI2KAT78+WUSAONAd3YzcBng5AEhSWU7v3v/4hz/+ySPKNItISoJv+S8AcHfPTBQAt+u1Vd1ue0413EqeEKD3hsBJSk5TkmzurTXtGgEl5TJNIjIMVpJynubpdL7/4cOH3/3uT3/60x9+/8ff/e5PH97/ME2z1jrQON/8fHe1p9amHTl6rbf28vn66bfry+t6q21X6xETgaK3gIwlTU33ul/FcJ7zMNbv6+V2+cSY6q69ryxwPk+SsEw8TeRoRi4CxIYRzLycCwRaY2v00vZAC3QSmJd0dz8/vF/efTidz7O1mLJcLvX1tdYeeUM3uK1NipYZkcK9R3xrWBjjawci7da31rv2rjlbrVDKVFJxJgMd3XettVvPKb17uCemnPO+7b3r8GQMDR2ouwEgByAGBeCYk4xlb4Qd6C4mF3ortTAImVESTynd3c3vH04Pd3NKCQm2rdWuyEwiw1+3TCmn/F0ol6m2XVvV3hAwJxZJxDTMSGqm2tdtvVwvj89Pl+tlG2EMvXsAsqTBEC9LnuY8LXlayjSlUpAYAhwCwcNxGNAinJBSotNpOk/Sa4OIAVwQmRkDwyhsyM/sLQzXLdRiLNSYtbbWWt93/V+BZodbHQCEkUoqKUWAGbRurbnpmz72oLmMGIwjjWcY8BEYDmvykNYzYUZE7XjAaVAQUwS6HU/5COoaRBZmSALCIDSoVSPIi4ky0yCloSnsm19e9OXFb1cHQBZKeA9frnaE80TCMGZNjJywTIm31tZWt4Z7h5NM7/J5lsRIrnqrFlW9aQQPDZSpWjMLZaBBWAwfUn8kQXJggInT+9P9u7s7Kbjqza1tXq0bF15KoURoISAZRTAlEAZGRM40uwIiEzMgK1Ag0dAFI35jfhvKxBHl6RZ6jEns0LS5AzKN72MMVOANTvt2grxVtgiAInisTjzMnAiIh2HDmIiFI6X09rgN9vKou1RtjPEBABHd/dCsEgIN3R0QU85S8oTQ697x+50iF+T85URDHN7RIDQIxzEYggPriEEBdEwtTUfKAiFQeAtvADWigwMKzOdSJhnhAlMu5+UUFJylnKf5fjq9n3NGDPVWQQIdCTsR8JFROuSEWGvrvedDZ4FOCBLoTpAo+NtDWLWvt5f1erldtt68N5nKPE1T3ffb9bLvm5sBEnNKZUGUcNVQQhM62ojeTUdgAIIIscg0ZUBQNW3RuyUON3UFEopAc1IDMpdEJ6G2O7hNs9zfn+4fTqfTkks2t1prGKuHA/Ru2jpKBETt3g0s/l6SPc/FQPlYsoTaG8u1915brbVVte56CDgtYIQ4jxwXDAdHcBt4bhi8LkQEAiAIAkcYKaYahkE4OOtEEMgscNA/INxGtDAI5qWIpJSzWyDsbjE0egycJMkkbW7aOvN3zt1A8JGbNhZO7vhmUUaiXKaH9x/+UP+JKC2nu2PLPmZThJJknmZhVtWX5+feFAHneYGIacq9ttfXZ+vKzKfz+eH+oateb7dp6hFxPp/v7u7KNOU8tKE5T8t8Pj/8+OMP//APf/jDH3748OM8nae85FS897f8mS/k6O++jv3yejFUtOt+vbw+XS4v622te+/NzCIUrMe+NibImcxcmwKQa2i3bduvl9ckSCi9Rq1XRFuWPJ/ycpJpZoWm0dxhBCcS0UC4nM7eHsA7EmBvLAnuP0w//O707v3p7n6a5hQlmAAYDLw23FZfb1pbpQQpJxbG7+VnEVG7qrkFdI3etVZtTVNF7TxPZIUZfUQhmvXem4NN8yQ55zSVMkKI9IuPy9QC3RAAOAIcggIRlCKGrP8NrDmUjR4DPDOGKsgjw/D+dPpw//D+3TknRsJtbnvrGqF+5G6NweV3l6CpRlVtbj1JEqYkRMzmbmq9t3VbX15fnp6fPn1+vF6vTbtHIBGnLHnO06nMp1KWVJYyL2VaUsmc0tvw2zEICGBwV8OJICVelnKaywZoqkSMxCmJCKKPq93CFK07OgE4BZEbDXMGDv7Y8IH+h1e7qrc6nB40T2UQA8zi5bJG7BFjS8DMxEmI8O5M5j48g2NYBw5AGMzuYe5HJh8AEaecyjSVUylzZh48vkAIpJFsOnhzwBLERmgEQhEMyMSJM3MC4K7YKmybtt5b3bd1B0AR1vnrLIIQP7xbRCAGtQ58+G32Xm/7dt22te0l59NUGDDUCCIRTjkJYVjUba1qzXTESsbu3r1H93BCJ0WMYGAOYkdWpBYETurcAdwVOiNCypOkSTI7sxE6kfNYtU7BRQ788KASow1OMYH/3Z2IAEM6DtoN8eCCAKMRtuFxP04MxIHEjVGkc0qJCFhoeN4gMAQ7KcTx/o2/fVNX1UNPETCssgN7N/boo33HQ1Y9Nk+HmmksSohoSPxMbZ5ab951F+IvjxYiLvepzBRv+AMIxCB0AAt3CJcBvxvHs7laGIyaBQF8jMjiGxNgN9fmq0cbgRCS0unu7v2P7zhTKlJOpSxJJiYGCDNJzCK5dq1EQ6xbUpoA0AzSvtfa+EBZESHFTGBMUTCS89dI6gBzr6amLfbVrLf1pNOCESnl+Xyfy+StuzuWaWbJJC6pjwxcgGhdEFHdUmGSCIxcZJ4TArp6b9h2so4RJGm+Py9qfW9bs/16a/OC04yJSTj/8U8f/vSnf/rhhx9yzp8+fXp6evz0+Nl69dslXp7i+pKt5YAANAdzdAfy756pkshdRuzEvm9Wt7atvSsTTUIMKSNW8gphNr4qTFlKOXJdPcLUW2utdicCT6PySylxSikLCyc4dg5IlKdCzKbWWq/7bmoYR4w5pWOXWJapS/Vwa0ox5qsE3btWTMHEgjjl/C1v603qb3o4n8IicCR+AwAgS3r37oNwWpbzu6cPt/XWWstZpmk6353maZIkpna5vp7vH8q8/P5P/xhmiCDMj58//duf/1zrPpXyu9/9wx/++Cczv16vhJRLfv/u/YcP76d5zjkTERJzyilP0+m0nM+nu9M8LfzmjftyqyN8DRv59iX/159/+hxXZd+9/fb68qp1M+sWFuiBarDv/ba26wprTXx4HbDW5hit96FaImTtcbu9qu4iJDmnxCQ4l0Ipu0Nvfn3ZW+236z4e9XfvznfLvVbvrXGC+/fl4cf88D6lHKrNzYGgzHIPS+v1dtv3Zto68TRNSykiib/7OgJq9VqjNtibt2raXXXs88y0tR0PC+8Qn4UFxNYrUrtt+1abOwIkGowwChLIGAMubh5qimCE5ARv+WTHEHFEGIxocUQc0+J8tM/zlKdCmQK9OzmTe9/bWuteGyLup2Weff7dV9asm5l3cBtJ7xBDNeaqvtf68vr69PLy+PT8enm9raua01smIOeS8lTm0zzf5bKkvKRjjwPaNQL90MkdJAaKof0OES4lz8sUZrWCe7SmAJGNk4xlBhtA33czG87hnLPZIJPCwPallOyq1/41Tfv7gbyPMolEeJnn83lJSXQwsMOY0SyIRIRzlpzTNGVEHJjfvXbrIwoUIrB1ra0ThBD2qtpsmqfTeTnfn5bzNOBOg8uGOKirlIRYRrxTjxidIqZEpcg0JWIJ4E6EDjZb3DfXqytHoIjkXL49vHLmJIOrAoE82tiRciaMuTIRCWKoWethxoQ5MSNUbVqburvZUJC7R6AHukMABgZKUCbOyBwYtZtU7OHesQd6eFiwQw5GLCzshArhCB4YgDEm01+TiSJgiCZHafR9cgTCEbh+HM4O4w9BMeK4wI6FDTECuAFE6Li3D9lkIBIhySB+UVcd/nVDIhEe+7BRSSNEjMh4hKMchgNcNK72iJHeMRKdv8wWEZHS+P2RTV2tIiT4kuQMUE5pWoZc5/jYOEDaDuEYIUOaZ6YwEpfMRsrnqGwQRjgQqZEpakd3BzQSkCQ5J+F8frh7+OGdFEyZUmYSHK0/AAElKEjC4kJEIjmnOefJA02NJFOqgw6UUkqSmDJhocgQ6fU196/SB6tb7bVZD+uDVjLl6eEEBXgyc7PYt64G87JIKr22fdvX2623hohdLRVW75yDk5P4wIMPJYB17lNqjXpP0zTlMntF81obdINcQJiQMWecT7Kcy/nuxJwAaFv32772unHdeVtFO8PwRJLFsRn7trtCwIe70/lUpmmKiJfXF0ZHN09Spmn4Ere9XW/1SuhhAJSzzEs5nZZ5nkrJQ9D6+np5fb30qtYdkZiYDxjRkG+MfKrjl7lv67bve6vNzQjIyUyVTSSS9W6tWxJCFKRU5mQoBnWvvWrtTkjW9Tv38TiuIoZFqmtX62SKBBEGMSRKMM1LSllSnuflcrnUVud5Op1ODw938zIjQmttebmbT3d3796r9hGCBhF/++tf9tr2fT+fz//0T/+X//Jf/isA3dZVWKZ5ur+7v7+/P1ZUhIjEkogTH9k5RMQBNEz85t61997MnPlAdn/7MX5+/Pzz+knFO8VuelHbujZVDwggD2jdWq8aIZPPlFISIjZz29tWW2/Wty6SAGi4CZAEyToFMMnEpaSIESWz7+vIew3CVEou55mAVTtzzHcyn4E5zLtbB8CUEnOSHK3jutpea61DV/s2Q/1G1ohI03TPrCKtZG1Ne9PeDQIRWaSIZH+b1r6NfQEB3L0ZW2TA0W7DICQdI351bapm7qY5dRUARR4g83E+QGu91R4ERz4w8zRNp2V+f3/37v7u/nxa5jJQ9aaKQdatbrBtY7jdtad/+PFrcmgcM3+HsWUYu3XzrdbLbX18fn56eX15vWz7rmbjqxdJnLKUKU9Lmc55OuU8pzQRCwKNCPkAiMDDPRMHB84RiWCgglMWydIHMaabe0QOQk4szDSWq70rGuaccxLmwUo3M2eRnPPa12+fq++udiEuqUhKZZru75fTeRJBNXNXZmzNzICImTknPp3K/f05lwwBe+2366ZqCBgeqn69bdfrLQnNU9rXtq3t7u70/v3Dhx/e39+fLUyPUAAfmCs+sM3kEb21IZmRxKWknESEBqUlgsPFFHr35+fL4+eXABTJYDn065ezb7tK+NsNMkYH5gZqEjxL6WptbdrHO3S4pX2E+4wkciQzRwscsj5KSIFIAlSIJ04zZyGo+0behbGjegyvC1Ej7gQOihqKqABOOP6nAy33ZVR+MEECwMI0wGP65gthwDxWIDjkhGERAxU3MuVHOYA+Fu2ccGAR1bfeRsObRHKhktPpdELc13UbJ0tKaTlNvQszdW1jt61f8mO+bgSP2fiA5H7D7hj9eow3kFCEc0rZvbmrfX8IkxAlHn74MIMIIiAA5IEIGiULqyH0YDU3yiI5ZUJCOPILe2utU+/QO1TGXvtpWc7nU90gSTm9Py/vF2YDVPc2PpDHgIUQMbKUxEUkScrCmTl7BIgKUbAwc0o555xzEZmYivDEmNZ9/ZJi11t7ebps1+odGfOUT+/e/+GP//jfurV1u6qOdXVE0LIsIlz3y+3y8vxI220jYou477Xq1m0DUk7u7q1pGJIjYKQC0ymRnEFTr/1yXR+fbhbGmcN5JN0EtMv16ddfU6ua07LeduZ8fz8xRtEar09rbbDf3CneNjPjvfr26/jT73+fJznf3QHA4+Pjy/Pz9XYDgPPphIh7rc8vl4+fnlkIMTjR3Xl59+7+/YeHu/vz6bSE+17rLz//8tNP+Px0uek+hIJji9i6g3VJKVGeSpYkXbW3Vvd9X3dTBR+3HgeyACdmBgQ1tpg4neZ5TqVu9ZovT4/Pz9vLtm5jJURI8f3I8ai3Wk113fY1hlRW3dSFWESEGIlzyYufJSV3n+ZSSikDkoqQie6JpvPpg9nwNWC4dwWAz58/11rfvX//n/7zf/2v/+1/TymPDNOj8o0wADcQ5CRJcpGUh+zPfSzLRjR77G2//P/Z+68lWZIsSxTbRImZuwc7JFllse7q6Zk7c3GBgUAgAgi+ASLzAjzMv8zvXHwHRPAGwQMGGNI1PVMkM08eEsSJmSnZe+NB1Tw8TlZ1Ny6eLqS0oiLjRLibG1HVzdZe63g4HI8lZRewiXlfXsJTystpyqSVARyfFE4pzymrAREpABM678cN39zthsE1xWYgyDVPKc+HMrOMm00Yx5KoFshlEVtc5GHrgAf2CMC12DLJ6VAGQVMlEHPVuxoC+sCIqpqnqSxSnVfvaYjDZtgBUCpSpWmplZwKoKWl1sKfpbK9D7/4+V/DSm0kVadpPh6OaSlSdRw2282OmLG7gRS8Z+ek1pLz4TRNy9JSv0TAjJ7Z1NKS5mmZjrOIOMdITdYF4kDE0EmLi8xLmufEnsMQiJidu7q6urm63gzDGMI4hOBYRVOqRvNSp4Yycd6LaCkd3nsxcE2XtnhDc0qnaXp4enzc7/en07QstaoaNEo5Zo/sAB1RYD/4OPowOB+JvQGqdu63xm1gaIp2vkuNd5MdYfsjARC2IljLgzvG4BtSipF6OQYBx2F0zjvnaq25ZBLy3rWC6p827eO4Gbev4zCMm/Hqahw3gQhUZIjb66tce+GTidg73GzC9c0uxoCIOdXTtEjV1vdci55O0/E4Oc9D4Ken0/7xdH19/cXb11988ebV3Y2YllJaB00HxbdiHVKLCVQVCR1zjIHZ9Rix+3MOgRTg8eppt3kwQ/bx8LQ8fDiutghSKrXYmvrpj6s9qiblhEUkS81Sq2gnzyQGcOyCUzaorbhQTdSqGBMhQYuPA7uBw+C9d6haShZlUgJCcuAigK+eE0MT+hNAaQ2DSOSMGlFs14lpvQWtOCEmFV549ETsKAASIDpGcqBGZgJn/hlGbK3nzN61iJNVNOc0z1MpYqCg5BwQueCH7LTdanJus9nc3lznkid/PJ1O89yqKo3USVvDH0ADT7W0PJzdJFBubbot/YBIzoXt5urV6zfLsjzf9D5sno+C1JwAKBXNXFOTBQMAbdQjiA3xLjWDZkBPLNxYdoDNUDSLJNGsVg2FHA7beH23E2N2fth5joAoKjnXVFOpRWoxUQQm9uyD89F7p1XUO3NOFbueADn23scQQowhROeCc8G7QBSIn7l3Si77x/10Wko2U0Cgzeb61ZtvjDTVqdSmbu4IXYwOoewff/BuqaUzRomaMVpBzZ23VCuUZFIAu6wiDBsfnOaap6WmktutJUStmGZ1XlT16fExzXJ8WrwbUyqiEMZhN4TtMJJkiaHkWRUBkKDdvp/gtoKPQ9xut8xUazVVZAKAzWaDiM6HXDUe5xjjMBYf3dX17vrm6vrm6upqt9mOpuoWN+7HEH1z71rupjnnaj1pxI59jN47hQ4ZIgRkR66hbp3zHIY4bsYYgkNyQAF58GEzjg5Ii5yOEyLVKsuSmk7BZ+ByM0s57fcPc8lKOG6vnB9yrmkp3oUhxiFGx7ws0zzPIhUAisRUPE0N7gwGjUQKkImZgYAaczYCOfYQ4mZ0MRgjevbMTePudDpN0yQiiDgMw2azGccxhCgqKv3ykdsct6eHj+8//vjweL8sS+CwMvFf7sFBXTwtp5Nk8i4lSbmCWQjBswshOIfEvN357W4bI2opznMcYyqFTjMUDjoE3kU/ZG/eJ+LQYGcqtizVSNFcmvW0z9OhmpIJIqh4dYSOYBgcoOWSpSSsxUdEC+aIwBOxBdlspNyE+RTnqeYEy1LmiceZZTBYs6VEvNtekSN2hIgGdjycHLvpNJdUrq6u7m7v4jC0QM05NwzRey+15pxPp3mal1RKlYoAzBScN7XT8fT0uL+nh1LqOEbnEUlCwDgyoYpKTmWeM9GM6Jx3w2bw3ocQ7169enV3F3ybNeyZwbCKhk0Km2XYna7nJddOgtRVwNYhakW1irQ/l1JOp+P+cHh4etwfD3POVQSpUYavbGTkiT254PzAPpILQM6wYZ9b+AO4YqCatjaCdfYxRMSGhC6tjULVWh8TmGVP0Yt4hp55dTnnjvx17BwjmoFjNjO45P393LTf3b66un0zDl2wMQTfxN9qldbb1xQOEZEQmMkHbtGjbPTmShqAvmkk1apSDVBF5J37IOXT1e72+vrt3c0Xd7d3rfJ/mSzETkHRcPja+xnbvevFKlgbE7p0LlvUwmrEPtbl4QFW0w5QCgi2fsSGz+q0hdZKyoiiikKkjhVNq1rLIzoOLnJspR0HxEqpCjRwSKM1cuiZg+MYOLhGDE0ErYmHEXxAc8q8MADUpg+t1rhcFa2R8BuAateSavltwNYr+XLJI49uaE0zjMZkiqqKImqKzsfBB8fsXVPRiDEO3jkwmKbp06dPRzuVWk3ZlE0JoBE8IBN772+ub96+fZtSevK+VpmmWbT38qoKIjThJe4kOS201mbcrXfWWc9/OY4xvH795jd//bdpyd+PPxwP++l0OO+/P777AwdBQBTDqs4gEqOZaJeCUUIjrCZZSpWiVoP3MQRGJiOyJvBRa61itUmQVbO449svd34bAdANWuQIlmtJaZ5LEimwzHU6lSKKTM67ECM7x84P4zhuNsxAKEjAjICAjlAJeq92VSvADuy5vaeWeqzH+ZRyUhWLMYO5YbjxWydURRGAh7ANwaOlZfqUTu+tLqZFJKeSlpznRVIppRYRBUUTFvG1aE255CK1DNu6ua6l2Dypc+Prt7ciUmsuOe8fFhfABUQ4EC6OntA4pSpqIY5vbnbj16+uqASH5qghJz2TCmT4PNL9cP/AR15q9T4cDsfDaTocp1rL02lCRKl6PE1LKQJA3jnv0bmiepyWIrI/nlQ15/z4dJqXmuu5BwPYOR+DqBhaHIZhGGMI7F1V8SEM4+jYM7N3PrRcXBOgCY4ccyMbQtQqOaci1cCQmVvblwg4Nsdw0fzW4Hin4/GHd99l1e/efzdsdiGM05RO0zKEYbvd7rbbEPx+/7Tf73NJ0DQ5hthEKQHBDEpTMwzOhzCG6AAhlw/v3n389KMBmkNjOKRj8BEAU1pOp+nx6XG/35ua8+7m+vrm9na724YQ07LklHs3n3PIBKbH/eP3v//7x4/vyjztBtczdRfjzZu3aeTTH/8wPRyKLaWIFd2EMIzbGELLUbsAmy3H4BypIN5cXX39s2+A6TQly87VkZ0Dj58e3yPr7vrq+uZmfzzdPz2clsfD8QmUa8LD4zIfCxhqNQBIrljruKUNs+VUBKoDI8JKllFmK84DemTCEOHqOpRE95/SYZ/3j4pYrod8s+1XoaqnaUEGci0xjnOa57RMy1RTHjfBed1sebsdQgjB+zjEGAIAmumS8rKUJeVSREWJeIiDKuyf9t4PS6ppSeN29J4ACrEiqbbmnQrLovMs01TZaRXYbNC5gcixD+Q9OSbvXfAxjsGHt4AqlkvL8LeGTqlVvv/j+zMBey41l9b8lqdpmk6n4+k0TdNSUqkCSOyasAIDkgEjMrF3Pjo/uDAQh1ZGAW0+LRI2WbhVEIygM35Bq32aquSSUtIGg+oBliqoLgyeIDA5hiEOKlJyVtV5ns10GAIieM8qZmr/kDzM7c3d19/cxhBjjC1hgr1jtOFOm49BuBpkO1eM+/cejppqIx4otc7zfDrIY8xDvNqMt5vxbjveAZiorMri7fCdKK81/VmDRAA2OtGOKz0vCQIDcBw9B1Ek8p8rByMDAoAANPB4E6fqJY/mHzAyErFnUmZTxEai2+FaVapDZmBaCmoltWqGZgFpdGHTmjnYOSAGJiNAcogeUREJwQl162eNSmatondBFzzbdVVtOLgWAL/gRULy6MRMzRjUoRmiEVQjBIocBze2cHOMcYjDEIcQvGO3DAuBi3E/L4mYxmHcDFsmrwIlVwDwLozDdre9cW7JucYweTeDYQVSKY2EjpBa00NLYbRCP3UiMzAwqUJkjhkIkGwY3d3dTqppKR8RL037/v4jUDI1UnMKASiRA7WUc+vHACZjLCpZSrWiKI0yloCww6ChSlN4sAYvR2BFCCMAO1AzS8uspkVKzksqSbVCmut0WnLuXiQSGRIQxziM4+gdMqv3HCKPYxzHGKIPvskhs3eO2Od8d1YULKUc5/08z7WqKVSpiBTiZnd9w5tg4ADdOIyeYT69L+lTLWmZTmk+peU0pXnJdVmoChoGKVoWIXDODWSiVfOSl1lSTktRBTCj69vbt2/ellSOx9Npv5+nUqtxMYRKqEwVAFOqqlCKjIzLHDcBmMA5qrVxFPamFHtpEN99/FisPk6nGOI8z6fT6Xg85lIapRAh5VJPORUTJSimU0rF5LTMrRLU0q2n01wM0HkflYjYOxe9H4IDBcI4RD8E9GTYG0ddcMRd+iIOMcTgvScmorVzHbTUAsmyZBXLViFQ2A4jAY2BGBt693KVG1ipeZqP++kIx08uROfjtKR5SiEMm3Gz2Y4h+MPhcDgeSs4GNgwhhNC6lKGjuUwRqeHcfXSAmMv+08OH+3fInCmf6vHj8QOzQ8AlLdNp2h8Op+MRELz316fr69P1sBmd88uylJQJEJGQGRkBdJlOj59+TMdHrtls25JdlyPEAepYix2e5lLFFJzREOP1bhdCyDUZimf0jqKj4BnYXY2b3biJ43B7g6wD1yGVcsrHYfG73fjFF3dffPnFx/uDAea67A+HNC3LSeZTlQwaCFpVimCZstYiIt6TSEZWYlKiLCZLnvaHEHzYeIWktSCYYwDVkmqNJIXtghW71PrH7x8aTXvj8kvzcnw65HmRUnxw22MEEtHUTXuODYQISKImKlVqynlZsqnFmAFoXnKuakhGLIYmIlIMKiYxlSqyzGWayrTIvBixVq2GlXw9zSmcZh8LexdVKhrGEDyNcQg+tDnX6qIiklL+8YdPZ9O+5LSclsY/38x6SqmUYgjWKBQAWzoNybMLLjZOsiGMW+8HZgfYhRKwW83eFdGCdiA0AyNDACJT05LLMi9o1aQT64CCilXVnGwhjN5RdN6HYdBSai25lEqEjpEdEwEzAdNn/SMvlsrN1d03X3zbyNSJuK85aCnZ55AZkDq8C7rdXAuycAZ/EjERpZRBDp4fGQfHo3cb5zbMo6lamxeGTbvMFDr+WZ/L0ADNPPfidDft2CigcZ7TvGQ1pVrKRUsfIsbBE3GtDe1vokqVRCpU7flDWHtRurntzouuORQV9Y2tFBJbqQDVTLVGz1fD5mqIMThH5ICoYfyBDMlWfawOhW3zp/ku1uycapMVeJZd6VdLTdyWnz16NGgwcug8OU24hYJjpjD4zeA33vnowuDHMcTg/ODDOIxXm+vNuD3Op+N0ajlDIqoiUnQ6Jefc1bZtFNGReR7GuNttas4pl4y2IGTvufGSEWnKk5bSut1a4xgAVdFcBEBjdFWr2Cx2UHv0bri59st8UfUxS4dJ9SSlkFpkVnJCrmSZpoREYRzYOWUsUlLNigLOIKgVaf2LUqRkKaV2yT6mRkDW0loECAZ5qlYbrZbUAlKsfZERmmmp81KmOeWiVRCJiZwjcGwx8jD4YePHMcTBec9g1touHLvbu3/t/U27jppzenpY5ll7Ms2I0Pt4dfV2e/cKKBgSO5N62O+X/f7T4enx8LQ/Pj2djsdUaxE2CY5HH2LmUtOBiLeboVYx1VIqLGVe5FiLD26783ev737562/TlO4/Pn4ArEVLyVolRB+GEAfvPBdRMWKKMYZc62IV0dhh4wZsc9wx2uWaN/jj+x/383H38CmEkHNJaZmmqdaKSN67EGLDxlarxcqS0zEf2zJpFAuEjTgBMYThivw4tLnhBu9io/ll5x05FtSqki0XFPCIjoDAXEskqbICg/YgF4pqTQUKAiMgGSAMtHG7eLMRVSQgxjCGy/0KEZnROTQsOc9TPShCqVKrLuom8bw4Yioll9KasC0lpNLM+jOIVQmBGYkdEQtgqqenw9PjPTKf7DikTZzGVmqUWkuttdSKlYgMeZ/Lsj/giQCwSm0yB2ho1HvDNOc8H0BSNFNsWosvTHvOeZ7mw/60fzyamme3ieNVjHebkR0/HueUl6JmQww83GzG6EIMIR2PDnF3e7sJOw/Dx/tPn/YPYqc4wmbL262vsktJUl7maT7e3x8eT1acwxh42A6729trIHn//vtPT/v942kY/Lhxm21AdVpwqZLmaZn2PrrNdXDRkOvpWE/HkuaiVTzF3XDr/TMwKKXy//qPvxWrhsaeffCNlwNECEBNal1iDM63+dEKDR4IEdmxM6N5Scfj/PS4X5bccpHM3hRafTZLqZLmdFLJiD0LKxVqhZwtVyIDIdOlCM0FHw5LCoP30cUYxk28Xk43u+vr3W633Y1DDMFTY+MWa1qT5wuZ5vnhYZrm+TRNy5JKKYhEvvX7UVcKAkJyxMHFcdhsh3Ebh43zAZ1H5LUA1kNebGV27KFpl+zEpgRjUmVZlhOJVe/YA7qWom8dTyVbpppi8Y6C88MwIMA8T/M811IzUzBtPT/eef+S9eHFP0KIm3GHvWOxz02zJmd0nqsA1nl2sXUzQSsg2xrcN7NEYKgCtVqtWquUIjnXprdday0l94vvffhra1OnQ2mHfz6iNSLmfkcICZZyMkwGalAAyos1z61W3Gg1EAyQDMUhX9BQ91gZG6H02aHoBWA1ZiZkLaAVSI3M0PEw+N242QyBCIiQgRiIFQnOYlmg0vm8OsocOvamF6FtRc7h6gF0JiD6rCuG2LkwNJ4a4grdQdBGke7Zuw5V9d4F74JjZnatbzVEv9mNu2VrZs75lPJ+f8hLTnOCAKZQc12mpUoloM24JaRlnqd5QgBK0JjYWxZDqtWqLePT5UcNTbEJypiZWTXLOT897d+NfqNqiM+elhkc70+1HLRURqvOJSJQWlKdTgmJhzGzd022UkzRGwdUB5XUuhJJXuY8LzllaXJhwXNoDPBMwTkwWKacl1qbTJeYVK2iUlXEatFSZJ7z6ZSWLDlrEWsnz4wxuDi4GDlECpGdJ1BFgMZG8i//1b88Y1NqLdN+vyxzEWUiRRNLVQ9Is/cV2QMxOcwYDKg2imofjB26OPjNSCPz9bC9vbq9Syn9+O6HvEyOEVL10XxGnzkttiQN43B99/abn//yN3/7z9I8f3j/kTzmuhwPUouOW759NVzfXW12O6QN0kBAAfRKTiHttRAUVEYFaITXfRldzqvRATmJWJwJgRETBZaWxHIuRiZ2pqISpEkQ1bYwmmVvUhXee8e+ATnbbGfnvHfsnXPcmInVtKrGOkiVRkuLiG2Oeu9D8MyMtHZbNFuLZgTYkE7IPWnXgU0wngbIF8scAAk60Z8tudYK2ko8AFSEUde2UDAkg1Zf0b6pNJL8LnQIBEoERFVtqfNynNIRmS1hdTVTagzzrVJuCOYBiIQlm5SyWDlLXDdK1S4CiwhQRGtyTUYX9FlOcx2n437/8Gk5HTUXh2507nYcX2+3N5vBENKEyOgD313tvvni7d3VziNJqUtJkLNTCWTRKcA8zY85H42slGVZplIUAYILQ9gS7LVCILfb7L764qsvvnh7++pmSdP9h/vT/t4gj5vKuB0igXgwlIzLqT49JnYlVxk25AOUxWo2FUUDAscQ6cJ8iMiPHx6qVCNgR957QiCzIfjdGIkDkS9ZplOqIlV1VQDAJpaMxCWXaV72T8d5TojkOMQ4eB+d84igVnKe5+UkUrrhUDAjMBYxUSBsUB7VJRezOWcfnY8+RhencJzm/fF0tb262u422yHGyIyIoCY1N0e4j2mZH/f7eVmWlFTVAJ1rnMwOkWFdB0iO2Ps4+mHj4+jCwM5Dj3vbvteDVETo8TkgGHVr36UUgAibXpeKAXfIL4GhgdSqornUZSnB8RgbNN536jAVQlTRauaYG7T6cpl/1vxmDQoHgGZi2nWVwLqdQui2b00dY8PzA6z5eOtqsO2P0zQ/7ffH436ejs7R01Nk1lxOKaclzY2IXLSzp54fFyIAAZ2b4tc2q673xdDyeKLVDaXBudlf0udatcpgitrOFMyIEB2x0XrHG4LKAAyJqEPjOx6oNZw7ZgLMS01JSi4IEGPcbobNZhMjFykGZkzYetyBEdkMpBP2mFkvMvTwqQmkkoHo6tOAkpkaYP8yfLEFcwjD1XWppdYCsBi2lIaAKXdUEjanCAnINdamWiUhex+ci0McXOv5TcuyTNMyTXlJjFyLnI6nBs4kwqvteL3bHI8HxwBW0QTQwLRkrVpSqrkIorICkXUvS7HtyozAaIR1nvY//vi7MYwEbpovxTft04/Hko7OzDOWUEwt5TrPdZoLAMU4ETMROdfID1yMLCSqVdSK6Gmaj8f5cFymuYARkRu8i56jpyHwZgxIcDwtpylPc8lZRLGqqlaA1haIJlBFTdiky0ukLE2mdU7iZmUGYmCHzICghNDW0N/8s+cLkVrn07QsKdfqnK8gqT7Oyx+mWeO8Z3+NfO3hDsyR3/nNq83d2910mpRxyJvharO53mxuX7358quf/XJK829/+x9/+O73959+1JIopDDKaC6bJcXd1e033/7613/zL/72X/33pcxv339vLp3yvfCSlnL9JX/18+HLb16/fvPNbvPLGO4Qi837+vH7+d13+3SwBYJnYzND6WLmF+V2xK9/87Nbyi0dKlWqdC0NQHTsGuWwaJN+bKiXJpFyHrzSADB21IWaNvpY7HtMo9JYLTACovXcHgKsmXnvXNMQ62otfbX2r+YXX5aoDH+b4dPFSu9lfgVQRTVUxMb6hC2DBj06aDw67WTWX/as49pfyQCEDAQEWgHYmtwNkCEbOgMy1MaV2LtWqXEroQJZJ6ZoAY6YNeGsFpiQ9t3FoAswvACZwtPDx4cP39dlGpg2Pt7udt/c3ry6uY5DzFJmT9HHq9vtz7/56p//5q9vNmM9zYen/eOTQKl1mgohx5zzfpmf5jQr4v39Qy2aEp5OolWjHwe/GUMe/eaLV6//+d/8s1/++peb7ebDhw9//9vf1fyu1spgek2oHjUgEKoHMclZxPgEYGTCVpgRPKujAgo1WavZnx9FLVCVgJrf38hUbRPDzdWrr9+++eLN3TLND49PT/vD6XhcUsm1EXo0I9eqzppTFW1iqVaKOF9iGJBAJJeSUs7S5D6bflpvcMaWv1PEamZFxKyIuMI+l2lhN82P+5P3fohDjEND8DF3UQsAuGTMTSkdT8cqYgAuRGZHbXcABGLPjtg32k8k77wnFwxZDaG50aZnN7VFqoSEDKpoCNRC9TZbkJzDEP0QXQzkPQfvnfOIXgUSUkYoOZdS5wWCp6vd4HwM3g9DHGLMOdWScl5Sykw0xPCZB//CtN8/PP3u99+1nxsFTfvfarabTXoOzLFj2s4mvxeqexefWUppmuZP9x9O89FQiS2V0+M+Fsml5l7AR0BEXvWgiLo8AKz0jN3Y4gqjZyJSRPQMPvhWxnD+2Zk3g1wzn/tHLzaHtjC7xDOoqRkAWV98oHAmhLTVJgOiguVSBCxiYOdwZVsxUJMz7KBXb1RNRLRKI7Vum5Sh6do2g7jG5z1YaI1l1MpOKBedGGhAlVgZVKWqJtHFrCJYJcxlaoiEUp1hTsU7JucoBNc4shCxS1xUeXo87PeP8zyZitSalvl4JNHUBEGGcQjBs0MfechOxDeolwGiueA2jgOSMZP3zocQXCAiVWWG4Gl3Ndxc7RyF0yFXj97FVkM/P44P745pPgxEMfAwOFE5Tss8lyUpAHmXmyXw3g+x0TI6Ba2NTb7KvKRpSdOcl6UYEAEFdsHxGHiMnLaVCPbH+TSledFSTRoXBCozRkeekJECs2P0ToKrJUqp1nQMu2YNWmcNaEonaChn/7sPEc2p9diiVjvN5eHx/Y/v/gPgD8t0HcfXcXy7vfqlD6+G6F69+gIBxu3dzeuPy7wMPo7Ddre9ffX6my9/9utUatxd37x69f0f/8v7H37/8cfvainB4eBZ1X/59u6v/+qrL78chnFmPo7b081tefOFmeGy0N1rvbkrNzf17s5e3cTNuBE5lINMU7VYF2/ikJGkWqlmpvgStYUAX33zhWxg9f3PWtdd5rFxr1ZthF2t9NBcrz6ws7S0fRER4LmGhvDMqdrs8pmJrZv2VtpDZvYtMcItQKe+t6ym3Z7LWM/nf/j9Q4L54mq6d94pI7BXDXH9oW8u7USgZyHP9t7W4l8Tv0MkPO/IoqrWtFwRCXp/DrVjPPvruNb1+soGAAaELp5k0NMGjYpvLTvaS2nagLZlvBtC2ME2bG+3V3fjuPMOwaoIqTi0wfHgXAAciDEOEHP2oYJBrnVJyVSqsPNeQQHzYg/lVCvWCqbgKcQQr7ZXX7358lc//9U//9t/9vNf/sI5R+ivd6+C22ldHMebq9dvX7/a3exSKh9P9zkBiDOzmrEQkToRMXGedbNhz04r6AuPEb0fSAEb8RMhE3iHX7z94q9+9Ytfffv1N1+8nk7Tp/v7T/cPnx6eDsfpNC9NrbqBddrdr6PU0gSrzQyJyLV0NhE4hziANRIt7J5oA4QBGIGdcVkIgNYIBhiZ0AFgI+qutaQFeh8jtF56Gs2frYSoVlVAYmbnAzu/btmtsc6zC81eGXDXOm9F5Y4zb+bjnIE2a6YcgdAMG4srrIDQtvM751yMbojB+0DoRAygC7QXESqWqy/S2nlaiI7sKC1Qa6llSZzd4kr58xzyf/z+3Q/v33cT3XuzVNcYtwlDANrqVdvarN17y7qr0jPszc6pVF1SzrlUK1nmp6MP0bVkDDEycwg+Bh9CHGJLtDp2XVoUiQBWePxz7rxj6/q6MjCA4CvA4bzgU0rMPctCa2Nd9zzWnrN+39XWbaBVFxAB120Fc9am8zktczUdNoOY5loFoEhRUwYpSAG8QyJYBapqldoYEwk6BwZon3hoLfA9z4NOkt8hl7A8+14qS8mPAIAmpiepR9UEUBVqBakiiCcDIMSnEzlHjtA5Cl3XFMGaaTcVned8PEzLMiGCWp2nI2CpElxiH9yQY4zRTBHVBQ7qdBYRZXQ+eO+5BfdtE45xuLq6HqInUmb1bMMQNpstGJVSiwbQQaTCmjk1sx/fn+bDcevddgzbrVXV/SlNSynFEIlZwEBFHHMIwQfnHItpESlVS+eMUOn5U0HQXNQRlcKlclUltMNxnpcqytpUhYnYU/A0OBo8h4Y2ocY3bo1mpJHfXSaDW/MSgBCqY2Jmf1GlNrVaGiEQ5WJyXH788bvf/f3p8Eg3N+765s3t3c/ty//+5tVvdnEcv/zyzeuv0y/y8fhpWZ6kLowc4+3u6subu28N3Xjz5u2XX3/9s6/+8/97nI/75bAQlNHR4MZffX39z39zc7N92t9/nOenw9O9xx/f3s2BbEm4uyqDO1L9YIvDzQ7dVJZPy+FTnu+tPHgqGrBWskbpbYpddOnZtr99/crdeqZWMgezRi5wBvogAHSFv5VEtrW2dVHhZ4vWMUWwlurO1m4Fhq4bprWDdRBrR+vheu/hzKa4mvb1TeckYRsL7V/QZIM9m/e1lwjwnGRsQknnT2mBRD9d0waWrSZNs5CJAAksa1lqzSrViBCVUAkFV4dhBSDhmpXoyQVsahrY+zn7hFlvRuuR0ebjvwza4Yurqzfyaqvu6PPGb7ZxHIipSG0ZsyUpm5a6nKb7H9+7fHs7bkcfNmFIKgYsxUQrYrjevR4UxGialuk0d+8D2BFHP/CN/81f/9W/+u/+5V/9zW/efPGFCExTvrv74vrqDdh+t918/dXPf/mrr2/ubn58//G7P3yajwWM0EALFWRQJ9VKBe/iENm7wZQutQmIaLu9UiNy3jExY/S8Hf3f/PpX/8O//Nu/+uU3X799VXLeHw6f7h8/PTw9Pu2fDscl5VKrQdcnVZWUSk4lpZxLldK7Uw1M1FuXHkZCam7hOMbNOCCBqBSR0pqiml5D12XCEEKIwTnynmPw3vvGhVVKFVknOFxeCDN74pZyZyJulrlBSLipvACpmWhjzmAkZu5U2QBI9MzGjSuWioiNgFBQqEWTJqhiIiJqzDwMcTMOMQYzKkWr6JKTolUTVqiipUipGlW5cZhYMLNlSaKwLNlMU/rzHPJLmuuSGzKuWcEXBhtMQc+58Z4hp8b519q/Wve/IfU8GgOG6Mats9Y42vpcGkF8k6Ft3OPRD8HH4L13zlGTX1v9ZVrdYXjeNfqTIFpr5HgBTTGzZU6Est5oWkvdpqaNnLKn5bV3w3X0vT0foQUYperxmJZ5qaUYmJScU5pB2YGaAJi15mEC6/3DzdVQ5DWAIDiDETstq0JXB7C+6zQ4epsxl5OslGU63XeuGEmis2kFECWopArVkHtdBJqbhczoHdOaeAAFUVCxUiSnOi9ZtEpSEVmKCwv74HzwIcbY6szEZsx+GywQK/bm5OCDWzv7MfgwhM0QYgjoHXoHMQ7juDGlzBWMiTzhCWB/vpAYgsYhBjcMYRwGAwOkIaoaErFzLLWmJRFRozIlJkBsahCyMj4gIzKsvXhEgA4heNqMgdFurpdajTkgOSQmx86z9xQZPaNvAEBHbSqxc65p5lVpbnN74FVERBCbvCEg4nbzDBSyJmJE6BxV1VLksD98+DHlo0wbyK8f7bSnMsv0zo+vXHwVhtcueqgnsn2yJ1MDnaVKLY7cOPjl9gbIro+fbt9db8q9B82qYKSgJ0k/PH3KUp/m6Tgdp+l0smWKUJnVKehcF9CnXO1Ugt8syz4fj/K06LGoCTExICuwKLF2o3QxNsMQN7FhZS/jTTjb4TUw7WU2eK4pNcO/rvXmosM5sD3b9Pafng9psUFX8l7DXzzvp81AYg+Te24boVvJC8MO4F4kUtoEN1GtIrmU0jRkuz/QDPF6XrC286y5ARWtbbOsTbiyVZecVZUlpynVUgm5ppKJaq3N8W7ZRWwwgHY3+gJHpLXy0PwdAURjRBQzUiS18zm8bH4zACDyMcQCpjbnNOfZ0CpgVhVEHwc/bDlsFIO56HZXvLFrPwgxDwN6b0xXtb4pRQBV8f7+4eH+vrEl7PfT/f2eicHhMI67q93uend1c2VAN0+3VzdX43Y8TCdDJooAoRSap7p/mh6fjiZAjjiyy+raRCICRocuhnE7XHt/gWpEdEM0QHLBMwVHN7vxi9fXv/z5V7/8+VdfvX11d3MlKtvteLXbvX51dzidjtNUSq21sSaqSq1VSiml1JJrkylqUOiqkms1MCRoxaAQXAxhs4nbzQhgVUqjv2toiCZ+0Ai2nHfe+UYrH4NvgSQii6gqILCI/re//73UnpMnYucCtpaMxrjX5oZzjXJnhYe1mugKllQFANUGP8JGyA0Xe0sHiyJCR52jmBWAebbIcLXxgNiwcLU23aVaaiNUMx9IgapalXYgZMdgqurZOUBKOS1pmeblcl69MO3sjVnXTjbrCbXuWKNCW8q0trafFdmQiVynFyGE55iaGJmQejavR+L9ZvUcVy9w9hbq/mHt7dwVJ867TqO+AGpBNaKJXPC6Xaz4NCWAqgLWKmjQ95emgiG19LTC+taus2nPkX1LqVXRnErOFaswk+acTxOUhhMyJgIiYFBGJAPqdodcSzCCtRp/J8do5PskAiaN3h7a9tqeObfi1MXjKHk+Hj6uiANFkHYLDCuAGGRoDgGCtVb3fuNgjVywp6HUpJoI1CJFRKrKbLygDxSGplQevYs+jq2NLvghjjSMCGIMGEPw3vdELCISSqZi6HAA8qCeYGTaueDHAUVNquYLUCMifvXlq3IbB8/bEHabgQlLLQZIDXnlXErpeDgCgPe+zS7nvQ8BO9RwlQx25H0jakBQqLUgwGaM3pPWggBDiD6EznrqG5i7AVeEejhBRI2ozKlIrRVXch5Ta0lAIDBENRXV33/aTBe4LUUjxuBJBHLVNNene5Oj1Gg+P4aSbPpw+vjv/Xg7bN/ubn/OYbc/fDqdPs3zg6qxu91cfVnzH13YSK1mtgn2amdfXg9pCNVOqdQZlodP3/3hv+2Dn2s+pqnmWUuuKhXQiFEKp4XrPp1o/wnfgWGp1Yq5ykF9tMGRRyD26M1KVcwCLzEcjtB315pWe9xiz15Qs15fgh5MN7nsFlLruhqb44rgqKNfsMNvDc7LH5laq4+qoLSGn/PHrSFuO14PaKGVobojca6492+MfHkh1gm+NZcyL0uS0jd0tVWO4Tm+XvN0nd1CVWuT6+mVhzV5BtDaik2NkNO01FIMmy4UkSP2TI7IIXsmT9RxCA36BwZoiNpcCgVSIhHhCmRGDRBgl84KABxzqSkvAIkwpSUvuUoRNUPiGDZXu83dq93rL3evX29e38ZXt+HVLZPjVxKG7fbmlYsDeNdaRAlJTd//+O79j+8Qpdb827/7b/vHCQxEdF6W4zxlreAxxri52WyuB7/xRpZqOU7p08PxYT99/8PH+/v9w+Oh1srexTGw80w+DmEcgwEA6N318Or2zWbYnK8CEXlgM0RGcuQ9377a/OLbt99+8/rN3WaIJFIMzHu+vtpsNvFVva71slavpRSptddI1GqtKZdSi4qmWuecilS1xrjuhxjHoRHEBzOtUnLNuRZbe4/MoCkRY98GDQF9w8tvNsEPiA7JOfIpl+9+/8OzaWfHLkCHdzIxk2vhOwFAY41tnJxI0Piwm//a2uea7W1Frs/wKc67FkP2IreJVUUprPV662sdAYEIWz/eNC/TnOZUCGFEBnJiqM1DYAIzZSYWIofkUj5N03H+B0z79fWwuRr60l3B4udkeM930foPbGW0RmyCjMDnbF1zghGQ4Dz3u1GHFmj2JH5HvLesfjPfPXw+e/QG628b4gVAnl+J8KdMuy1zBpM1BVi7zVZreZLaQEMXn7ICBS6+rS3pzpDYtacUgFiNRAnAATlAh+SMGJDPLg+uJUmENZ2A7fSo3zADUzQCsOb2dKHRtVp4vhARKSkjvvR41r8SGhN4YkQs0Ko9cH5A687XYEathZ8c+uAaSBfYo/PkY6vKe0S2CkmyVCwOHDfvBQyJQMDIOQYGdkxAoKhKUrESIVBKgFidA0RqUIOcL9R6CP/612/JrscQBu8G14qIldmFcfDeE1FjhzCD3tIG0DDUq4OsANDWRgjBO4fY1GaLmYbgvWNCY8bgQ2sQ6GXRxtkMrdOy50Y6DIy4CUKeZ87ZyCGTITbuiB8OdIZkq0E1qGpVTUSlalkgn4zQxgEGqy7Np/fH/ftPGD648cfh6h3yuD8c5vkgekIE8rtx++7x43fORynCxI7i6f1DyKcd6swwk84ln/ZPP34/OcqSUlmsJESwpotIDIaGrN4bs6GaidViqDTwYI3H/Tk1jcTEjsE9W0QEHNBvqLWpMZ4rXGvw0epUTZ4HAFdcLKw9K92Ct5ickVozSmd3W7PUHR/TNQpNyZTM+j77fCbnn9oibAhz625Dn/KtOr7W3C+idkT2rgt7V8kp55Ib9Lcb2LagVhd+5X/UHnFpm1mtHw16EgJ7N1bb25x3ITgg1Ja3uEj6/6mvy6oEAdgawfQkgnasD1zSDADA9Zs3eOUPxyVMufGXNxZuBQjj5tWbN2++/Oqrn33z6s3d1dW4uxp3m5GJxSjE7bi94RCRuXUSmEpOy8PDg5p55tbHWGqttaac7x8fv/vh++FmTLrEOHz4+CnrNGzd9avdGGPcDKJ2OB1O08SeN7tRVNmxix4ATRG5MUNLEV3SMs2HWHcBOmeNc/zVF7cAhCsO5tsvX/3s69ev77ZDIIBa6vocm74LcwjPxR0wE/Eqet74Va3WWlVMtags7Wez1vsavAuNgNMxmIrWKrVIWZczAeAF7x+aIgI5F4OPwzCGMNBq2ucl0QUtCiIRu0ZK0znTnEMiA7Muk20tV8/sybkeua091W0RWd+Mse82DXbqXPMArDU9mQBCRSi19Y7ltGQEWJa6LGle8rzkJVUiGgSKWKlWRauIM2ImBhNpqQUngssiuVxiyT9no9t99bMRz+lcsF4zbwuREBH1hanFvl8CNFHoi6pe13ZbFzGuKThcWWhgtUWX5uzFWjcEXOtW5/B6zQ4irln0tm6f322QFgGrqmgrCR0YQK/m1FqbJmBPMCJab3PtF2Zr+EuIhL7NEkU059kxe2bPzISeehMvt9ICdkRWe5z9cvue0qoG1FoaEVlJzYwQsYNC0KyLlj/fBSME13abc+DSAhwG9MiB/RhGcrTknGtpUGbnHRKj9UxlW0wIBI2MHYnZMbPz7AKzY3bODKvYaVqmKS1pXiBx06FGdswSaq3Vex+a9FbT/kMyAxEFqKqWc2kPsj2nXJ+FCojon//mi02wzTAGpmYVa60+hO3VzvXpLq00dX7SzfqK1A7oM3ONdq83wyAYlFqaa8yOm6YwMTJx82qrdF25ZuBbiqwZeAQzU0JAplJqw9w6x84F5xwwtahdVWlVIQAABSiCpWrKmopKsbqALbC9xTdXdLfhkfDTvd7vc8FFaI/+h6p4PJVSJUTzATkEH36MmwERJRcy9hTlaPWxjJJuAkwODrmkSe4/FQazBCWRFPBM3iOxAVpWNazjFmMkNjKBsggZu8iCTpv0ZWu3MEAk75kcXwJsRoo7Gj07di311tMxBvgctq/upHUCBntRPG9wOeqhTVsul+71OXn0vK6oYc/6gv1srTfRDDXTdUM+e9tn5/0zzAAR+RCc90wEapKK1nLGvrYLaw2m2jOQBiuOFltbTQvI+tW3rGuDXhE3UG+j6Gk7R3OVXNtLiVpVse+ViIpraQzBABXMkMxIe5OMmhFaF8x4ud99/YtfboJ8/Phwmpar7XYcoomKaBGNcfP6iy+/+OpnX3377e7mir11CidARI8UmCMQ97jAtJR6mqaPHz7+8Y9/3G5ijP54PM3zvKQ8zfP7j+/JwSynH97/wQU/zcvhdL+5cl+6u82wvX11BWDz46lKvrrdjrsBqcUJUGrNqTpH7EHFVOQ0P5lIvL7a3t21qwief/Pzr5ov6R2PwX355vabL19d7QYAqZJhLbLYBRa77+M9gDRyq0cHwIAuOAPXUkVNiG31LoG68mRLgBOaI0anDN0FbTEkgVEnaMHG9x4aXSuTa62VCFzqy+fRa6yMrW7HHtsckFJFRSoCes/eB3IeiNsCQbRWINYVvn0O8s52nZlFFVvgXzMgtLgOjNbu3FlqXZLOc16WMi9lXgozL0lS1FwkF8m1eiXnu10gYmIP6ERR9cV1vGxydxyjb0u2GdK10KnQdLlbNdnwbAFbeL5Wxs5BNkAPe1fH6aIUfn7ZWuDrQJSz5bo4o3US2NmI97T56hz0dJ/KC3AgQFPYabloMbXe3NZ6IXuyoetPrziji2L7emHrtCBoZR5HjpHdqmi1+nXcUYtnJ3SN3FdnsJ83ISComrSOP9XVRzIzVEB9WRS9urr59ttft6CqRy3do0FGDMjRuTgM5LhIraqKTQHXU6NjUDPp1LC9dbHFJA2X7FpbByGzKlSxxuRcW06aneuOS8te99Fr4ec9kM8b40vvLOVpBTIjwOvr3W7AIUQmMlGRKlKd95vtBgmlVjMGCM3stnvVjlhqLZXbPWppUGbXG2XMPLuWuUEi57kFcIjQpitT5xiwBqntIVWbN2CmyG3hEQA3Np52La1k0ZXt1Z3nqSqkYiKghqooYpJRFpIJ60QLmXqZZ0sFk1rFirkAAgENgYYRQ0QmY0qUioraIiVDLqwnqge0k/oqW7RbR1eeXwcXI/EOy6IlSe+wDAQOkpiY+QjEoBlqUdVGZMgdGQcoqqKKQITgCIDpcnkQOkZPwKjcEgLap0cz5NSWl/Wpu7rgL5YwKCogtljULsyvnR3tFxVl7CvfurOL5yOurv05tl57c1ZPu2XcVE015xf0FYzEgM7QGXpFUFqdD6S1O6XZ8xYMGpmh9vRWq/rj6tcA9OTDWj6ktU14DbQRAFE60xhWRba1wIiI2rNluHa6KaACGUIRzkqCjnx0wbEndpc8HNvrq9srXwzdMN/eXG83o4nUKrlUdnGz2/ohAGGuRVIqZcl5UVEzFiUR0jXkAbD5dHh6+PSf/9N/+Pu//+1mDMMYv//ux0+f7veHp3lO7BDZCi6Px48hegMosow7t9nGYRjdACVlxQSu+AFIsMHTqlRAYa8++DAgU2CkwY2j8z48B7vB+1/98tvVjpH3fL0dbq83MXgFbd7IxfTp8Z51/CZ0TnVoqZYVqwG4Gn+0FYZkAKZ2ERD2eh2RM1vjMXSITI0FtqWWyNH5O3ZhG+xbIl/aJyJmFxqAjlu1uOeuwAyJXCvpNRaTZ3fjYg5bzzK+yMd3F2ZFfKnKWfBXAWq1nCVnYeJaTaqWIq1AIQop1yXlxeMycErOe2zqOGpG3Lg1N5tNSpZO9Ywl/6yv3axBC/A5kdWA/YZNja+thL5mrNtj7fEzPjukZr2DHFWhJ7w6jtVa1X5d1P3XAM+BwYvFfoFta2ktA1kh7thXqmp9adods7XWRzm7A/0EiJGBVivVKuHN5Hfi+p4BbD7Yat0JgRidpx6NIzZWDjM49/iubb59I+T12Z4tX6uHtZpuUz9vJZkWVWgnKHq+iru713c3b57f3jOVgIAM6IkCMXtPzGuvAnbUQ8MptY7fhuszU2nA/7adcSMFISZA0sYMk0suDYWADRhxnpw9c3vhu2AHhfS70Z79Wr5BOsrjiqJDxI2PGwdMjpHBoZEKCzESsIlKY0VtLSDsANddXpWxw5x7raNnjavC2gK9hgGqeEZ+qWnzYNS01AJmzCsUvE1BWy+SqVUEzsPMcspLSqUhfOTmvEZULWVrqWhDUDWtJAsvBzwy6Cw+woKgzjVkuXcYAvsYwsjjCNEbg2BVyVZmTAhLseUg5anmvdVkVGFj8Nq7N9vws7t4deOGwGnO6ZRFCqDS6CC6rFQUxKRWmQ91ytbWl2P0zI4YDRuKCIGZUNFezCoAAGfgRKnh1uA5lLLzYmkJp7VV5LPqMHQAhIG2mdWs8fPc7hP7PAEAsBfd16Q4AtIqXHMR31sXyG58jeeiIDQZC7nEALe9hg3ZMBhFY4e9/gVduOjCm1vRBmu2Ec6zCdcMcHspGrZQG7XLT3B3FIDW45xdAzwv7hYo4vnUoJl2BLSqLgsqRudHP3gfmN1F6QLCEMftMG63CjhuxmEYRCqWIgCAkGraH58UAQlTOs7T8TSfciq1Wk6ashapYtIirOPh8PDp4+9+91+/++MfQnRDDKfjvN+fDodjzhkZgK3CdJrjsBlCDOzCZhNDHL33QLnCDFzIV6wVoKppqXnJyQyYiD0OY9hshs0wbMJ29Jth+wwyDd7/7a9/4RtrG1MrF1LrcofGVkLnx9GSZ+s96GEbQbu9bQPuoGRc73O3/22e9tTtpWIVAPQ+N+KWVHFNS4yQca2XGtCLAk8LG1+GJcTOeWvMMYQMnTsE1LChg5gdsjPAVj6gc5M2rGCVtcre2gBxDSzMVlmwljpCWAtWUFWrWBVQaeEnaNXGrA2mKZXF0+xsWThlHzIRGRqIKjMN47Db7UR1lgkuZF1fmPbjPr//YQ3C11B5bS+11YU6O/jPpaWXTj3Ay53CYEW9wvq42i2F1Rfujxgul7rB+dOfD3t2NbqizprHm46XwC0SvjZcWSyosRZBS8f1dcisTRkYzz3sa9YR1svql0tnS1aaxHCj3dAVXWzIxiRrjL76pKtngM+2eb0vaqTCXSCmBzugSAakF4U4ZmbvPg+Ie20ECMiQtDXM4rrVNd/MWkv62c9aMQQAzeUlFQRsiYK2nlRBTToACKBx4RugNuK5dTN8sThxDYLXTK2tCbMlnS6eGdyf/CkDNVRx7wRFJHAO1EAqW0ucETI/v0tbRV/duRiM5wlxlpFvc623Sa6mXa09YTOolcCMiMDMjHpiABDMiMFxS5Z26HdLGeQCpVCtLIqlPt/8OF6//fZftMsuWWvWraftwLjBeQQJxt4qQ0WsCoZQGcGRRW+ejCCDkQmAKlplK8HyRjNoZZPRrAIYBEVE8q9cvfJpYPVUsRYqomKgFBwErorSNBGqAgh7DUXQ0IYh+wjsQbGEagIE1NQhJV6d57UBPL1/SlM619fPabFziAzNZzrnxF/a9XOKvUXgvV29v79zReuKNQI4V+jXve+csSR6ztrj83msO+Dlp5o2Vrx0QS2S8w/f/TAd592w+/LVV9th1+QYLiKwny6dy9+fP/kix9D3MlpPyQyArGf4n/cla6YFngsP56CmHXnNAPZedhEy9M5dXd+q4ZLrZYLw/nEpRfaHmhIolOPcwOLSusLccgpHCQ8zoOW85LSkvJQiIlqLlSJVVU3arr0sy5LBh6vbu6/ZkfPso2x25XZJIjKM4zgOceQQXYjeB+988D54H5kZzJxzVzty7mq3K62o3ODqYEDMMYZGlhJDiH4IHOiCaFZE3n+8d8284kXuooct511w3UQQzxt/zwutbtY5VFgfx7NX38yEWo/s15vY3kYEvAZjjQRnTaoAXcIh2kHOliWlVOtzZLgZ+dUtrBSJTWgA1EiVzeic2+srABVJCA1J2/k1y42o3K1CbZWdRt4gLAoSoairjsWzEJGjpJLmeX7C4zx7EUuppDKbLUwVEU1yWtzBnOlTyuMwOO8bxQ9I1VpsWZZ5XpZySfkA+O/+3b/7k9P/L+Mv4y/jL+Mv4y/jL+N/joP+8Zf8Zfxl/GX8Zfxl/GX8ZfzPZ/zFtP9l/GX8Zfxl/GX8Zfz/1fhM/7j9xxCMqPeMXiA+Lgqc8NmP//A4F5b+ye/4JxzQLn5UVV0p/hHRe39RZzvXEJ9h/c/4oGdY41oCXN9ozzB+XGkQdAX2vCjjdbyR2cVpvRhr3f4ZJtrPxs4NBX1cnnkrxr98wdob8IwJWL+dEY6tePh8qn/yjNbi4sU5nv/wZ9/yJw7y02P0Ghnzcy81r4Ap+OnL/+xPPz2FP1M5/ZPjAhv14tv5DF++/Dzz7eWfG4VGPyRRU777c5/2Z0/lp3/+CYL8z46fVrovf/1y+ly88uI2NpTFhUJMkx7/00eFFfpin/328+Ou//qnXcWfPLE//ft/aKiKrRfScJd/rpz+jw37h8/78rB/8qX/Uz+3Hy/nZyIkdo4QV1JvQGz4VbzYnM54hcsa9MuDwvOj0I7Rbk9+JSpYAWcXgK8z7sEasrb1Rn123Ge00+Wc6p9pL56jXQDXe0H7uRq+oqwuQTuXNxnW/RBXtCs2VY1+zJ88hA71ULs8Ej6X69sLzivkDBrpNX67aHtnugxxVzwP/IkN/Rk43HAWLxbgxesvDvFyS3negM7P4vnN632+wLT1bpFn8na4gBU/A2KgP8QLusYXpn2CsKi5w7udpV/97f/m27/5X8bXb93uqp0pPp/RCp/C9UbBxfczqKujVK3jzhDOHQA/Hda/o52pIvtNQHueRHYJtRFTUZGUa0p/+Lv/+F/+/f+jHWocx3/7b//tOI7rw9VclzkdT/PDNN0jovdDmtPxMOWUc0qPj/v7h4cPH+8fnw4hhHEcfCR0suRDqTm4DYFPqewPp3fv3++PByD1ETc77xhr0ZIkzXI8zI/74zKVktSKWQXEBqlFYr663ty+2lzdxu21M8Kqut8v+6fl+LTMxyJdZMuc4//T//H/fHtz2y7kd7/77X/6j//PpinRERoiZtp7kdFa865j50K8vr755mff3tzcIfGyzE8Pn6bToZakUsykdyEamOKzMwMNlAjaVK5WJ+n8/0aa2Z9C2wLMGorFDESfNwcDJHLoArFj5rdffPXf/av/oS8bpn/9v/qbzRhaTy+1luIGd3FEiNDEJNZeNFyBfbA2MncAZkM0rqCly9XW59oL2E3fv6ppKSXn0iDbzK03wjXJWljxniJSquSUS6mNNLBh7/+v/7f/8On+2D7n1Vdf/c2//l/3BnpqVFW0gmrOENg2i1+Aq/AFUAy166lAQ942hbsu0XKxkno79tn/BFATUauqIlb7FxS1rFrUCkA1FEQFbkKlaFbznKcDnB6Hd//5vLn/63/xv7u5ulPoGo0GcNZD6/fyjJjXPknOmLMzEuq5tQxWTbfO84S24pteAOHOXTDrgl9dabjc9s4+8POWjna+k//lt//3+/vv24u/+uqrf/Nv/s3F/vgP2OoLa/PsxFmtUmvNOTdI8zozHD7PIDADWYeaMrFrrfCdE+n55P8Jo2/Dj4+P/+P/+H8ppSN//7f/+//Dm7df/eG3f3z3h/f5VLbbzT//X/zVlz9/LVqnaX64P+RUQnDb7XBze73djkOMzLwaz34GolJFa60p1/tP6eOndDrq4VA+fvjxw4d3j/efptMxeB434+3tK+/i8fF4//H+/bvvnx4fcil3r1//7b/8F9/+/Oe3r1+FEFSkPbCS8jzNtYiZuUbPrI0LttRaFT8YPfRbrBKnR2JCx2hmtdh8gunIVhybD9HF0Y+3fnPrh42Lo/Oe2RM5QC5Fp1nffcz3T1IyiQCYXN24X/76+suvNtur4Akl1d4ZQ2SOq2mu+f2Hd9+/+wOijBvPjEgYtpu4vYrjhl2Yj9N0OkktWusy5Tnpk7iZBxqvstTH7383P3ygkj3C3/7q124NRRIeFttP8zRN07KknHOtVU2ctxh5t9tc7XbXV9e7zS76LUGsmWoFMcl1TulU6iw1lVJLLk9Px4f7g6F57xo5GHWDTd77129evXp9G4eABIf94Xg4pTkB4Ha7u76+uXv9KoQwnZb7D/ff/e67H77/4cO7j8u8IOHdm7uvv/3m6m4Xx1ClzPMyTfM8pS9vv/nlF399nm0vTHsVSUUsJ8VECDHEzfbKX92upr3vnmdE/LM5f0ZKA2CXSVxleBojmHWc4rNjcDnhV6ONZ9Nuq9dw1uSCFV7e+d8VVEzrvFRk7/z5eIh4c3Oz2WzMVLSUknRZNOWqc7GJgBhAoRhmsaVKqrqI5qq5SvbmAE20WM25zkWSGiD4lMq0HE/zYVqO7AGYci1qKAVy1pRkWdI8L2mpWrGZdgBFMGJ2BjmnaQLySZnJoyKkmlJd5jwf51xylaoI5l3Qi+gKEZHJxAz79ilSpRbot8YIjBCJyedAYPvNaCpEnFM67R/n+SQlqRYzWRMLANp97nOaQrtsVms36EwGTWm3SQGt3VGNC9Das2omYdUVwUb/xGbU9Cj4RaEnBo7RERqhNUk/btJhjRyg0wD0VnnEBu43WKUb1qzHpZ7IGkkDwsqAtML2LzZl1apSK5XATY6nmXbn2DcfAsxWztFSa/YkIt20g2nrmlsHsfPjxjGzOzMnk6OVXL83XOlzWuXCtJ+9c+u+FCg08UGraihKrQuy3dPW0ft5lsKanv0Lu141i7EqaYt6cFUTJARAVTJDXoBe8LN672OM0nRRkAFWqDzaatl72NGVj80uDHs/q3Zxje/xDJI3M11JFVcbel7lF91o5/kHAKtgy7NyG3Yd7/5aNOvUKUb8vF85525vb1e48j+aO8CzaW+nqaql8bTVambM7L1vtA2X7oIZNPNfRVTFOx9jvKA7PB/8nzLs7D1f/naz3V7fXA/j6F0oaIx+HDfXVzeAEuOgwmnJIfB2t7m7u9luNzEGJjqb9vbZjUi/lLIsJS3L4cjHw5KWJSWpRZn8EDbOs3eRMJhxKbDMcjrm0ymbgQojRKQBcQDwBnX1e9FMwaqpmrCi63zVGWtFdM/qiAjgn7mG1UxAq9XMVhyAU/IWAlog8k1oxQXnPJEDYGdaWRBUBURJu6SRdy6EOIxjDEzCxYqdTXsxpcLee1hx+Ni0Qpk4sI/Bh1hrdTkjmoAxAqhWwISO/JixnKqe5hnTFAHMFKCvkaoly5LqvJR5yXNKubZWBTBkV4TFgmEBEnJKoCjWqOGNUAwUzUBRRKGUmpY8ERMHRHbkoEfhKiCgqOSIA7ftU6wWyaoWJIgVIwUGZDPUaiXnNM+n02lCgrjxKU9D9axWtRRdcp2XMhf58/IwOS/ztGCelUstU0mTSSG0tnbRAAjRrHUJAUDXdbXVutvnUTutKu8IinregWl1Bp4X5EXU3kNEe96+oZsThG52VFpzD6JBLTolSy+4LKDnasqSjvvj/Yf7d+8+fr8/fUjpyTEPYSPFlrks87zMyzynU0q5JoVGY+JKmVKdFpmKJISq4pa5HI9TSglMgwvRO4dGRgDsEZVscLwLtHHgKYARiIlU1RpCCCEaikFOqegpxQ1zpBBtu+OaXS1iJmbg2A8xXKZodlc33/z8V7UWqUVFpda8TDnNWmsjhTeVlleqJZ+OTz98Vz99fE/EZia1qFTQaqZN0eCc3+v7K54fhq0dPdD0rptkklFPEp07EbFRQhBeECy3LlJGIue8CzGO47DZ7HY3l8+illwLEBpjW2Rr0sHQlIwadZqoMoAiARogXSTZOluSrnHdeVYgtJO/CNzbRaqp1HMHERB1Zkg6M5KsYXa7J6JaayUCbpkEaiIPLyhBVTWVUkRJtHU2MhGTdvIiQOwTd/WiWhwMAAC9L7I7T3Zh2pu6d5vUneWVARrjGXcFRELsnq4ZKYEwiFgVqKS56qJKoqgKCqYIBgqtd7BySb4mlQsefIBUpykHtWqITBuiYEZrAH25JLuKUfPtsN3sFzFyS/SfvW3T/ocLEw7ne/Hil6tF70/x4i8XbsFFwtcA6CcG/MIG/wPG1V5+dEvSaK21lKKqiHhJx/QyZQ2NmjqlVGo1VRwwxvhZKvWfPHoG9bP3UmPBagzOqqXWWsXMYvQAuGwKk/Oex2GIMTrnAKGT7Z/vX3tUaj0jpFpLeXr4+O67Hw+Hh5Ln6904vr5tmzIx51xTTkteSs2IuN1ur66vYxwAaMk1V9VaQY0Aay45FaliqhUFseSSU9PVqDXuSlxDKiIcYzAEIdRqRmiN3c+UGRoXOTf3vScdmdETkhkRAIECmlIngEQAc6BoimaISmTsmvQYEioRGZCyIYmCmuYihuwIxUCstfA6QAfEyL6tDqulQFzYs9tkK7PYaZrs9JChkSj0UUqZ85xyl6cptbZWYjQC40Z71FNUWNstB2LvvTPvXMzZckYErFUbO8gQh9ub281ujDGKaE41paIGTIHd4N0AAISTKdcKUjWlsqSyzLlJ17TipvfOB+cym7XW16qazRCgIkr/erk+Xpj2NM/Hw4FlLkEPj/f3H3/wd6/C9W0TYsOVQAAul+FFUIJr63pjGcK1QRabnmlP4RmAruHVuu7svIAvNpPVGT8nJFsA0akiDVrWThSwCr50hM20Sl7S6XH//seP3/3w/g/fvf/uON3XOnl2Y9iCkVTNKS3L0jy00zIvuTgXmJ1YqVKrSK4lpZKSpbksc0olA5hjF0McA4cwBNoyDCChFkupELkYBgIyNalFJDfLd5wOx9OD8gwhcRD04pwwkTZvWMXMHJNzfLnqx832zduvRUqtRVVNNM1TWk4lJylZSpFapAm/mILZvMxLWvqO1yNsRetM++3G4Eqj+yyLe2mBuuNFRl3vCImAXIuXz9R7RMzOO++9j94HYkdNc8X7MMQ4DET+8nFgW6TNswZq8iuIgEDYJsNl6scQu5t4cYLYMxXrZOsJJGjRPK4OJKC1Mo1IbRIbTeHBN06hlVn4PBOfixMGYG3vaR9hjf//4nFY63BVw2aaofk50qUf8UyXda5gdr+2XWcvDjXTrufcNbR4+8xwDqYM4MjANV5iRGrZaVvT1XBObBggA7IBPX8ZKSAYmXgQQ6koFTVfXMaHT9/vj5/UKrEfN6/GeO3Dltib2YX1fJ403Vs3RDz72+cCWS/jK3SOyotbdrap54Osm89PzOLljcY1BFiz/c/z858QnX82Xrx+jdelBestem77pnOfxev99Z2YWuoZyvP/4/hpDt8xe+/C4EP0QEtVrVVNjdnFgcdxbAmtEKJzbhVZ6Mmz1RnDnpq3NdkiNac5LUcC2US3G2MMMZWcaym1piQilZjiODrvb65v7u5eDeOGyElVAZVSwYwQWx1C2sQ1NYCSS0kl5ZxzdsPlPUHnXOPVBSYVBsfgHQCAA/PePKtjYzZmJTYiY2psvEAIpIogaEqmzY1DUEQFFERuWiNkXQGbSRSgonb91uoqkiOHBIZaTLIIKhoGF9gHc15PC1NBYyNvPJiykhckAJCmOrCOUsuyzCmlnHPJuZQChsxoerbr0PSAS8kAUqoROo/I3LZVNuOSaa2Ys/MhbobNZhuHWHIFyFUAxIiDc4NzA4AxByIHgKKaSpnmZZimRpmEjGEIw2YYx7HknLJKKfM0+8gKYqC55JJLLeWzKfrCtM/zvH98HNySTT/88EfF0d+8He++GMbROXfGcqyFzfWRdq3kjpPoIR5oZ7MAO4szUzfjqwj0OXRvWyI0c2RIfVXDWVhl3QERgJGAoZGPEKISF3qxIAFAtCwpPezf//D+97//7rff//jHHz+9X9IJtHoXBj97dkwkWouUU1oOx2V/WpZTqUVLLnFkCozmRGB/OB32S8m1lKpSffDEPITtzdX1q9vXr2+/vN29udrcBD8ysXPBB49APWyUnHKd5+XDx/fvP74rcKo4LeVpzvslT7NbCAgQmgo4Gn625cU43DqnKtqYAAFLTjmnnJacU8mplFRLkZKlVq2NlrDTpIK1+y/dKVqdpWexaQRqCfc1/l3/o00UlV1wcXBh4DD4ELzzIYQQYwjROR9CDENjsBiYnQGcucgBcVnSw+MF5aHj4BnRmIDpQgyQsYnnIa5exDkTjdh5Qi70QgGQCJ8zDqtdRyBb55Io5FxrFTBldmGIvomIAKwbfZsr1ALsRo4GbYt3zjnucbXRc3K/v43YuZZOr1WrNPLMngVsLKXtJnaETi8l99XRcgOyKpP1QkbnjUFYs1Qt9bUKmK32v1vaBqgBVRAxKVZLLUWKSG3kR9rXCAEEsi0bR1TBVOD9miMzsL/7+38vWkQlxvHN22/fvP727u7rYbzqDnM7s+dyeQPAQPd2zkVzaHpwzcCfYRGf2fXznnnOyl3ez/a9H+4cWeOZOersfYGBmX4WlZxP70X+7/IEnhFwuFIc1iq1llKKiDZ24RasM9Nax7Hze1e7LmbN7XPeu3PG5+XH/ROHXXzvwzkeYtzuttur7dP93Ok2tWlH4TCENvmd7zmcF9C0i134fE9bTOkcbTfRuyE4KqnO0/x0eDrNE5Br2/52d+WYCfHq6ub21avNZuecB8A295ovB0jIjGadR3PN+olIKVk+c3e634lojMwQnJoXRGI079V78IyB1JP3SI6QG2yPDMwcK6GgCagBNZobQDIkNVRDQ6BO1I7UZAPARGrOWTQ7D8ECs0Mjy7VCwgxsuHPDZhwYAOZ8WiTUEDgQemXywy7urpFqaFRk66ilmfacUyoplVwRCBwro1mfmVUk56xiYFSLOfbswHkCFCQFMG24GAVERuaVTafB34iQDJEpMEfmgGDeex88e7ZiueTTdGLPVeswRPQ47obdze50POacci5pyU/3T7WWYR6AQFRTSmkp5frPm3bJOS9zDmUGTenDXP3Vz/7q6ouvVa5jjGot/mhpJW2amA2zeg6vENtl1VpLLcVUAcwRB++vttvdZhNC8CuZ6LqBnxfiOi27I3r+w3PhnVoEBKtpN6hIRHS5ZRhYyseqy8f7799//MOH++8e9u9P89OSFi0auFYPQ/QxsGhdSj5Op4fD8XRMeVZTJCQjx2aplmWpp8NyfJpUlYg3m+3t7e03X371xdu3r29fvbp7/fr2y5vd3W7cRT847vEbtGKTimhdlnyals047rYb4wq+TunxtDwep8en/cOPHz+mJM4xYEPLvVzz7Ng5NTXTlk2Wuqm15JLXXFGRUqTVDEsuOffvNWstWqtKURHTVSRHtT2RhoQ4E2c+76qIQMRM281ue323vb4dtlcuDj7E4EMIwfvgnMNGFe2dc947bwBSq5qCad84X3J9O0JmJARGaFA5ojM/I64SJd2MrxvEGmH3h4vPjmUv6OH53QjdlZaqtYpUa4uKyTnnHTvkNVu+bn/Q7Xrf/amLNzITrezIqPYybO9nBajd51Q1UwFQRDknD3BVLVrfZNDIbcFETc7J6zOt8uorr19rfsMMTJVFmr/T4k01URCBKlZES9FcZVHJatWgGkgL3siQzLN5VSVVukizm333/X87nZ6qSozj034/zwsS3xGxH1o1Z50OdnEJ54XYwYJ2TqRdWio8v7478ef7tx70c1vYn+Y5XlhdAWyko7hG7z/5qH902IuLBlWVrl8gZkaETUqhweLWSQWrP9AD/Frl7PmF4J1zzbn8p5/GZ5f700toCL5xHDbbjQ+hZlG1JknIjMyNMblFS9aldfuhXhzyMyUMH9y4iaiiIsfj6elxP6WpSnWRWtF9GFi2OybabLa7q6sQIxEbQOs3WisujYQUFFRUaqnLsszz6Xg6TNNx2OEVPBfbW1WKGAHJTEW4MlKDyDoGx+KoEhKjMQkCgjIgWkNsnCs7qmrchabQDEVNVM9Mn6oVpJVkRUWkFlUxUQQgIFTTLEWSJg3OOR/YyDE2Va9oPCKYCiJcX98E/QbzdbBKF2CUpiMlVWqtUkVFEECx87/2idHosbWCkQgiSK0ZgAC1Vintq4hIj05FaikZocEUqlQxY5WGnQEiQKImO4YORWVJCxxQVAx3BEgOffRxiD54RKy5TsfZwIoqOTawLlT+InP90rSDKUotVU5W85QOM77+/rvrt1+mdBeHoflo7ByA1VLSskzTKackUmFtcEIEKaXkvCzzMs9VxEy985tx/PnPfvbLb799ffdq3PmGr6YesSCcgXKdPFq7E9EErAB6me9ZaZK0ywmsWYTLxKnpabqf8+H9x99/vP/uND+KLeQFs9UqKOYAzBuiVC1Tmvenw8N+v5yKFgouVq3TnHQpqeRpTvOx5EUd0Wa7/er1V7/4xS/+2W9+8+0339xe3243u+hHJrdqaxZNy4ov73NVxEB1jMPru9fj1bC9HhVyyqfH/YcffvyupP/w4ceDKnYNGxC7XPgrpMgAG3cieWy056rjGcPcCOlrLaXknFNOqeRUc6ol1ZxKzlJyLVVqqaXUUs2klUh6mvdMyYyAaOTZuXD96u2X3/zizRdfXd++ci6wb0oxhIBtv6udKVxSyjnnZVlqWmrNeVlSWtjH7c3r5+tAY+wRLq+syrQab1p1RXuAvkKp1l/iatpXk79agrNpB0BTk1qXJZdSzYyw+UIOFESUGkiA+sdCj8nUrDY71eX72h3pRkzJPt/DmzkmRjYwxWpaG65TxS6KHq0DYK06W9MJOUc9HSa6SrL0Z7FSTBgCAQpCJczcuXlbxr6KVdUq0IDx/btaAROz80oBQmDzBAaqUKvmquXSonz6+O7+4X2tyi48Pu7naYlx40K8vn7FPECjzMQzGOFlQuzCWp/vDq4h+9m16d7Ayuu/vrS/3i7fCWs1BmC9AGgGffXoWkZGwf4Bu46XR/3sN+d4XaSXsVuKu5n2sxDMOUXQvjfXTVXMDJGccyGEM37+z5/JP2X8xL8hjEPYbMYQgtasCtJ88dW3PLut3BowX0QyPdEBa/1CEYAoRB+HuH94eLp/+PDh/nCYhsFvtuNmuxvGK6YR0TUtROe9jwOzI0RttlXWxBUAohmomOSSljkd9/un/eP+8HQ6Ha7urgGuni+q8a47B1RVVRGLKZkBUkPPCqJiF7cGaJpeRqYqoFpbelKlqZWQNUyaoBZRNG6ZFxUxkaJVVGsBKSCCoAxAaihqqAZVigAUdR6iEAIT5VINMSBsTCTPzjn36pXebhiEtdLTB7iQPFg5mK3l3hCsKf/iJZBbDAAJCJAQmkB7NdCcyrI0MGMpVQ1AqqQlgWnipRYtWaUYkc8pz3MiIudAzZCJPLNnzVJqleNJpCKDd642CQlHDcDbenmQCdlzAKQuWfuZ3/zStKtKqZOWaiXN1ZX999//gbfbzdW1D6H2xBR3LyWleTrlnJtpX/dOUJFaS84p51xqVVNCjjEu06mkNH09ffH27ThsQghq1IQn11KRnVFIBnBOUOO6pfbUZQfr2Zpm66zVlxfx/tN3c9p/fPj+4fDhcHpa0ixSTVXFBFuxzXLWOS3H0+k4TadlLkVJHaAiaqlpyfM855Qk0Li9u727uXnz+tVXX3z19Rdffnv99g5jOCzytOxFSy5LXnJLjdfawmQ5A9GBzKi1Xm2uNtvrrQuMaCU70i3blmw0YammIqDVLvYvBGjF6DWI7YOZbW2wWqNPE5EqpYXMtZRaci25pCXnbuBrqSWXkrOpgErbB6wFMSrWJFDBCM0pAjr20fnBsQeA5oi2XE0t5VyGyrksKae0LPNcUqqtQFDr7ubu0rQ3cUjqQg2rvHcD5D2TNZ+Vsz4bqy0//3H9ZyOlN8NaZJqW02k5HadaxVHXeG3xWP/qAn2OnWuSdmtSnGgVuOtJbzUiMGtyws+rpYqcpqnNdBEQMVVsKqQt2rho7airtFSb3UqoaMbQVVSek/ItMGm4N2ho817UtzXtaz2/Zw0iJIZipIAC6w90TmutShRoudSpJp6fytN9nk6XseI8TcfDsRQFpGXOALy7fu384NhdXZ8Vz85e90WhyDqKvgsP/WSs6fSecOvZ++fU9Tnyv7yzKzB3/eVzasXO5wCr0Pk/bN0vn9ca/q81l9a/BtDyRtREndpkhItQ/bN3qXb5V7eqO/7kg/7RcXnOdoYbnkdLo5FzLvheGDBYyzHdkRJRACu5MCHRqoOzpjP7bYTn4FdVUyqn0/T0dHjaH2qV4N24GXdXu83uKg5XRBHAqYgBEDM739TJqEE4VFRawckANKc0z9N0nKbjtH96eto/TtNpSUsp4+WFlPYGRVWsBkU0lULYJNMcYOV12p9xFGYmgqamVUAqmJgBGLXLWEV5FdSQCc3UquScSqotlFeNjg3ME5GZlgJqCiwCqiDet3gGiZZSAGkgQKipHivGOEQadj4ENqPD/dm0E7WEpHhX1SkIrAIyZqa1lJwWAjNR78RzYIqAIFWQAKzpu6BKa1huyDGVWjMaIknRWlSrEerpdAxPj7UmHziVpYogknPeFE1LyVlqAVDHLEXm09w6eAHAVEvWFip5CewdUie9v3wcL0y7ipZSa6qgVcU81D/+8P2pFO8jEFepptbzqAAtWlQVWSuLhMi8/hnMAESliIoIAC7z/LQ/3D8+/uJ4/Nk337x5/YbOjjYC9gaiXtxbS3DdaV//dZEsg7X3VrSWYhdVHxH5w/f/NdXj/f794fR4OB5Tzgpaa8v2q2rNRYvkwzTvD9NpnnOtakgIRODYcq0ppdM+aaUvXn/xs69/9utf/fJnX351PW5HJJyn6f3vPn68n56ejsfjcT4dlnkuNRfNqsW0GFQAATAiQzZiRAIiF4Mf4mYzbjabcTMq2HxEkA2oV8FaK+jLfB12zemunv1c7TwbwL4DEwEzO3MWo4g2MQ1pdj6nkpdaRaqUUkspVqtqNakqJace5ZeUpSSRSmCUZZrSYX9kup9PS6mpltJTVCWXUkpJuZRcSso1tbbxkmspUgsTOe/IX/QiwlpfJ+hFdjxL259z8heh+4URvzTk8Kyh1MN3IgbAWvU05ffvH+8/PR0Pk4qMPnjHa5LfGgiAHTvvnQ8+xs12HLcjOwICwCYwTY7JAEwVgFQNGtzvcufK+fHhAXomiQGY2DOHVtOgtblbV8B4j8gRGMyZsTXAr6Ku6maqqmIrWUlvOwTIolksG2aFqlbVGvGBEQE5IIfkgZ2RA3JArI2sAoDQuClHqy15gfkB9x/Lw3stGVx4XuYKUkFqgwKdgN6H4bfEYbPbxSGMw8jEZgorJu5FlG5nA9t0TM+wmP4yuoghDezl+39imW0N1Vejbyt6tpt2u0Dw/H8xni20mUkvHaqZUdfPbp2XeA7rz98v39VS94i4xveM52avz5ME/9gJNVxlmyEv625iUKzrI53r+H0aQY+apYoqpNxkxBszyYsKxur5NLsMJevT0/HH958Oj095SdvdZrvZxCHEcfDD1vkBLJiREgMYErmWslpDLFCTWkUqmALINJ0Oh6fD0+GwPx4Oh9PpKI1p42KoQaotFdbV5lMuaUnU6BgETdj5CoOCCpi0ta7SulNMRcAKWqUmyWyEVtE6bm1VuVeTUvO8zCdRMyQG3cZgQNExqtS0KDlBrtVEtVRXipsXJuJqSEijg2CFpSbIOt64OAzbG4c443PJitkFH6EJ9ymS5VqkZTTNJOfFrOScQ0iDH2LcbAaHhK3plZCb2B2TX9VjoaXrRBTRqvSKIZju908CNs1jHL2BqBUAdD4QOFDIy7IsuaQEgFIkL2U5LqXUnsArVVTFNIiEMfrgnWd8Qbzz0rQPMV5d3aBVAAVAx855lpLADJFKraLa8hvRO+84hmDQ8UEqwoTetYpzT3SJaio15ZJKTSI/fvqkiFU1DvH6+iqEiNTQTED4gsmouesNtPNs1y/qfevqMpWqOWt9Nu2q8sd3vys6HZfH/fFwOM6lVIC2r4KQ5LqoGlBtyeSGlFEhNM0ll5Ic8dXmauvuAm++/fJn37798ovdzU1ROnzKx1N9fChPD8vjw3zcT9PpuEyHtEylJrFkkBAqQAUsiAWpKBQD6HQtjI5jjMMwbrY758N+Ph0Ps2Rba80vtoM1Ff28i6x2/bPYFnBtDoeWvBVpJtiVHGIE2za5WlXoHVYqWkutZZmm0zTNp2meppzmmhOAIrsllYf7h3lamDnnpeTUlrrWIlKrFBFVAzGoZquIp5iq956BDF9Msh43IzDhpdThudYOK2qO1gr7+pdz3P6M6G8OqhnmItOcP37av/vx/o/fvb//9JiX4onudrvNEHzrTgftKLAWuHvnfNjsNrvrq3E7DGMcxhCjZyJqCJJzlQfAXtIwS5X5NIlolWpGSG6IY4yja9kBanNY+3dQRmA0RmAAbsBZAAajdTM2BdHW8YNqqgpFaql1P+enJaVqRSgbFiM1UkBTtpbM5IaU0DUyRmzJU0Bsve2qIIJFMBfOBaXqhWlv1freEKTlcDj88P0fQxxfvXo9xsiv3oxxXJvh/iGDimuKHC+s3Iry6qbmebH+JI1/EcPb2UThs4XFtZoPcI79/6GcvP00CX+O18/18vM4Lzb7U8dc6zUvQvbLt+CFB/KT0/gTR1tPRlS1lBe9iEW0iLZ8QrtENZOV8KDUmnKZl9KyG8wUYzBu4eBzlcPADMQ6j1eVWk2VEDfjuBnCZhhiDGpaShVYWCgGz+wQe8qgi1WbmYqUktPSUOK15lrT6XTc75+m02k5zaUKE4UQGpb28hpnUUUTUZNquZRctQgzsBFWq1brkotPhAxmzExAVlWrmkDOilaiEwY0QgLzXEHmsgCAWQF1hCrS+rPnUxU1QC1pE5wBunMtTdUQm1FhU2qylQAOvSdmArWKRRCkSqS6GUw90nLx2Kg/cVbvrHqQ1v1rLWsDACKKKERSWd1KUIpIjpzzwTGQ1Zpx8TW5kl3mVf7zubZlpio5J5yOBrWIZ4cNVBh8RE+OndaWJTVQIHSO0QdzvpJbAFFVrRqklozk1ob72ep4Ydp3V1dfGntGt1ZEvXMhhBAHJM6l1ioI5h3vNsMwDjEO6LwatlovEw6+4ZZ6cbbWuuRyWvJxSk+H0/E0f/h0LyJfvH3zs2++ct47dHqhXwvdR18Ds/Vf9jJZ33wohNbmIfIS9y8q37//vtpSdJmm5XgqtbRFQUxoUmpNjokZag+ZzNRa6/g0p9H72+vr66ubq/H13fb1Vze3N87Lw+Px4++mH96V+3uaTlyyQ3MgI2QpWUvGqmzWiBErkhAmQGhYvFRyq0xbT2MiIrMn55VY0GrN3jkEa2Ho5xvDimk/23UA7JyQHZLWks8NEMRmVnKZYGpxoXcuBud98D4QOUTu24fUWsrxeNrvD/vD8XA4puVU0iylmJRa7fH+vqWSUl5qztpJ8TrYBYnYBfIRfWAfGhtDq9uFOPj4IlNH2EvsZwH4TiG5puOfrfa5Io6IQGd0fL8F0B0CABKxw2n54f3Df/y73//d33/3h+/ePz0ePODNdvzmzZu7q90mtF7C3uzUE5yISDhuNrurq9tXt3dv7l6/uRvjhpHoTP/WxX/R1gRUG2raICbLMpsZE8Nm6+zKx+iCD8zeoSfzbJHBMzoyR9CxAECMHEgdEpMRKHViP2geZzNBJed5Wd5/mmw5StYqZBgBo/kAHMRIgAybRjlZS3SdHd/G+9hZJcwBDsTeBwuxVHy8eByiKJ3cBk0xLenjp/c+hDev3mzHzWYYI3tHjPjsQcPF3mdrCb2XLM6Zt/XvzdI8G+bVPNvqtMPZLMGfNIVrHqC9qP30p171J962uiMrCK7+1K6fueTgz9h16BzP3bQ3mFsjTra+j+Nq3S8/+s+c05oSEJFSSq1lWV5QixSRVHupwFoyHkzViogWW1KZl3w8LYAABD64jTbZUIBn9fgW5jdiwyw1ay3Bu5vra3934xmllpzS4bTMKSuGMJTbu2HrN4gEjdK1uSqmVUpOaTqdTsfjaT7N02meT6fT4XQ61lJAbBiH3e56GEcfhnHzjD4zgCRWTbOZ1UK1QFU08OhGF9WoFq1zSjSJSi6JiRAIREHMFEoFAhx9475AMhpdsXxIx6Ukzc48EapoKTmnlOZcahWtUgduDXE9OFAkARI2I/DOeddyLYzgAIhRFAW4gsmUJiQfvIutY34diEBgTOiY1DnzioYGFoL3gQCMCIgZiZEdtkeGSORCGIa4MSPPVQqmuaQlp5zYYU/IABgDc+tbUjOpteQEBuI8u+BciA2qLMMApuxYqoIhoZOiS0ymNJ/mRAmhtAcuVaQqVxXSz7JBn5n2XdzsYvDRu2baHZFzLg4jkltyKaWgqXe8G2McogsR2CmQiNRSvOPNEJxrDF2AYLlWnzPFgiFXckrOE4ZhYOcAW+c0moKatl6HnkVtAOUey8EzIrcVnwCf03amJiKl1YnPawlyKVVLVqkVVEnNwBpsw1RFpXrvgvdVrK0PFAABNI5+c31199XrN1/c3G1gHA0394+wLPXTp3x/Xx4f0umkpXiHm93oBkbWMi/HxxPkSgBswGDEhI4YwMQWq5ZbcsdW8BogtB6CRckpIZA4IvsTcTusic01MjIAAGbyzg8xNlxPs+rc5plZKRVhSSkTV1bXUim+hR3EiK5XN4HZeBgJ0Mfx6uY215qk5oZTUSm15GWZT6dj2e9r0lqTiqwYHWL07CLH0cWRnceWY8dGXBPiuLu8CuYWqnfTzt20rxVzejbsCia9iwsBGsadWxGwlenVbCn1eFweHk9/+OH9f/vjj//5v3z3+z9+uH88lFRGz1rqwI5UcTsOwTGBmUJrRlcFA0VcZKqplpTTkghsCJ63gwvOTAFJQRGILjhVzs+CATyBsTFCcLAbYDeo94VJ0BSKKWpFM9LSqPfWJ84AwREFdA7YmScgNKJGrEFgaGomWrmOUJJfjnhcpCwJskXDUYOAB0VnwMCI2PkPOuVvq7Ai6FrRRjRS8EARGejzTJ2sauqISExmIKUc94/vvv/9ze7q9e2rTRwoDESsPdF7trCwfjvD5C7n6TOcvb0E1/a//np8fmPL7P/UHj7/ptcpzyH8Z3/+s+Myna49GKYWfH9m1z8bbfGdjfr5vZcS3eePuPjnP3ZOa/NLM+0pLSktly7F875GHXPQonZRM5GUGylaIcJBgkLvwjYAALU1tWdmIlpyyUtWEUe4GYJdb4JjJjgdDmmuJae0JGBgX80AOnqwkS6YiOQ8H/b7p8eHx0+Ph8Nhmk/LMqc055xKyQTo2Y3DeH19PYybEIcYMkA534ViWMSSCIg4NQfo2Q/eRz/UqlKlprrY5HJ2galdrSqIgaEp+up2QqaIgAQccrKnJSUk1kJQmj8lVWpVKVbFRB0Cc8fRtvSfIdnaCsOqTgTREFu9C8xSlcxSWZGw0FZiCHEcXriO1u5xy2fYeYtyzoXgoWGGnAshxiGGEHqjkA8hjEPcmCJaiT5755133jvy6L1jx4TErAwVrSAKMXEL5bTxAamQqkMk9sRx3CA5aM1z5GuW0/GUU3U+9AvugD4AO3/9+Vr7druhMGyGOIaA3PjJ2Xsfhw2Sm5dcSkFQRzRGx44NUJEVSUSllhj81WZ0jg1Aai0lGwg0orJI2yt0YRyDv7u+urq+cT4QOyAyEFFDFII1ZKOWDuwV+3PIrqb9GrAR10ADYqi8cFgQgMmLiYmYKTGxiqiWKrVRH9caQpABu19uyIoevOfh7urV129/9qsv33yx3eqHY3n/YXr/Xh8fbV5UKjrAgZfIZRfDlzfhavAOl8djgY/llIzIREzEeYqDY1MpdTLhwqDkAVu0HT16hynXJUmqklWb913hjBS+HH1zbFVHQwMDRzyGeHN1td3ufPDeB/YeAEU05zzBXHJBZEIm0panrVVLTWZFgRrxQssOIkIcxt3VtfMOm/NBjNBSX/lpf7i/v3/37p25D8u0r2UGU0Qkdt6HOA5hGMOwcT4weyamHhe5YXzO1AEC9yx8S4pTb2HHM4iu5+sbSKA1cogYGMTohyE66HS0hpRLeTrMf/jj+7//3Q//6e/+63/53fc/vn/aH5MBBmYjlFrm6TQ52jqMPDCxcwzkwMy0U9flImlaHlOaTkfvcLsdg+cYAyKDKQIByIoGe34ehBidCxh23gYPm4F3mzgOTkRqnVNecs6itaM6retPoCqDRbRNoLutvxppDBRdawhk8hGJG6UNqXhLiPMWj1s4HWU+LgLVVR00Zh0EOKKLhEDEjZqtNkpgQDBUxPWMzRAalbwzREB5Oasaiq+nSJAQwExqXj68+/52d/2Ln/389vrGOw+E8twq/xyMQy+OnY3basFbNaBxo61pcYSVn/65H9uekXZ/bly4DxenDf+oHT0n4Vu83lzGs0X/zEL/udFSgRdV9mfT/uei/D93YueKwhq115RSSumnr+zeLaERKpyxwdYItVKq3nPXeui8jCsoHhCAtGpOdTql02GuuXqHuzE4UEYwlQlUStZaQNV5dMTPznW7syalluPx+OHDj58+fLj/eH88HlNaRKp2+DUGH4Zh2O6urq6uh2F0IXhvZ9PesBfVNFclbbRLNDgfXYzsUTSbaaopT8IofT1Dw9iRIQIFcBFcB1UCc0ZIWrjTQpRm0FQbCs+ZkQExee8a9m8lsG79qS3NZ4QKiK2dtYrkPGmZTSooIp74RsL19eBfaD6dSxtqqqDaSv1E7J0PkZioUQzFMMQQfPTkgwvBj9FvYhgawW6bNMzsPLOnBvJxztWihWqP0DyzZ8eEiKYmRQoKsXhv7NiF0fkYwuC9d+zzkpncaT/1OGqFq2JfeM84jfN4yUZ3OtWnfWJ3cowIyNTyq8Nm50IUA0SMwXvvvA/kWLQF0X3SI0CDH6voUsvxeJjmaUlJ0BkFRvaBx81mt7uO44adg+5N2YoOwyoVpaPhW7e6dc7tZ5ke7En5TlvH/x/G/rTLkeNIF4Rtc/eIAJBZGylK6u575p0P7///MzNz73S3uiVRYrEqNwCx+GJm88EDWVnsZQYnDw9FVWUmEBFuZo89C3McBwlv7c8QjF25VcibrkvteKw27V+m1lopm/aDYODj3Q8fR5wO4fj7j+9+P473TeP50s4vdn1u5brpfNV8rXVVvLq9lJZw+ic6/Hjg0xhNWxbeEBHRENydCEPgZmDVqmpuZtbXt0YGMfCuxEbrdq7aMSn03x47uxCn92YEO4e6mzR2mi8BYDNrue74Tu12HNqxT0Q0t9Kqm6u5OTlwV1p1hZ4wR+SAQhxv3igMyICIbjKm4S7e1eA8rctzKbNrQ/Suag8xhpgkxiCBOXD3Uycmohi+u6+Y8RYEg/yNDNdXDAgAru7matDUc7ac27aspZTT3ZFIiCMBr5st2/rLl69//dvn//tff/7Xf//73/726+PjuTU/hHA8HO6m8f6QjkMYg5yGOCUZAw1RWPrD0zm//SOl3VBJWyu15NKaKWArtm1lW9eSc2+K3wr0A9FpEEFIRFOyKTqzOszndX4+n8+X67yu7vtWH5H7uY5mAjYQaETKoolywsjICIjkyE2tVgUwIRgYEkPdFmo5aB68FGO32pSgYUj3aRy6YxBSaCCL+mpezVo3ewfXW5kwa2C6O8V9vxXeOQ27qIURsAMr2lptrTvZ262uOr6VWt2A8o4RuL8BlPbICEPskMu+GvDvODKd9/B92/Rf1Fp/8wj8h6XAf/qnzV5p7d+w9Ldj9/eT9+2s+LYC3TuD17re/+6rS53vrIb/TyO77T4E3Q0EVK213QLkN7ABvaYg3Ar8Dq6bunktpWw5501Vti2WkrQZBLhBmtD/zNevL7/8/cvDl6eX5ytiEI5gVci6Uy6DDyG8Ox6PI3CaZDimGOhmYQcIZt5aW+b54evXL19+vbycSy5qSkTdyFGYY4gpDjGmGIKEIBLeysEdwAC7346bOVo/uDWXVbE1t9p1Q4jYbR7AATsNHqBL31mId2I8MAISWbfB5K5p6IYv/XPaJ4bdK2pf4gIRBEZ5e8+iowM216LqpdWtUq3YzHUzQ/30UQO/ndolSISETEDoANbtRvpvEaSXdhRG7pMKhRBiSDEMIUYRMVDetZrWWbTdiYsFRRgBXZ14d53vZvu211FGJGZuQQCCmRMxSZCQggRwDCn1/oCJ3xZ1gv13wf+mtJ+/Prx8ecDerCAgM8UUxvFwuhsPR0lpmMa7uxPDsQkzYrO+5reuqQ7Mvt/Wum7r4/PT9fyS1yWmYzy8cxRAYQkxDRICMTu4aY+g8L71qbWZ2f5EgSBQRx10j+6D2yPQBZyADiGE8XQIQ3r7Rqxhq1CyL3O9XK6t1d0Aw8nVXaGprq26IpG8//HdP/3+px8P7z6mwwFt9Aovz2VZ4bpS2Wj0SuEXz3+r9WmrT+v2cJnv8gH+OAUYY0w14Gq6tspE1pq2BoaMYG656VLavBZzJGRwJXSiAMRbrbk1IELu4QuK6N+neOxnTWf1u9vNrnS/qqq6leJezaHPKP1IAoBWm3WrYVDVZqWpWlNzJ8DuAkXWV7wCDuTYmqGamhkgA4i5mHHRBPJuug+cjtt2X/PVtYDrvju6IZzCwtSd5LHbJrN8d5PdCPH+qni7jT8IvqefqZsaqsG26TKXl5fLPF/N8XA4SURHfLlsv3x5+D//5z//n//zX/7vP/388y8PNTdBfn88fXp3/+OH95/e3707HYbIaMrggSAFGUIgRgDoBgO9QWSGgUTBe0hrqzXXtpV2vebzy+V6Pi/X2Voz1W37xngShlPCMYZTkkOsg5RctsuyXZ+/fv7l65eH55frvDfDaQxxICBCZPeAjuQkCCvkgFEwEBCCmddm87Kerwu6pcgf7w4f3x1qrlqbeBuwGVWG2hwR8BjHuxONY4ghOIRs9FT0JetiddXWdcGGgICGZN60ZdUKpmoKb3NuCFkIvB8HzMSIECRyTCyRQgRmu8lVoNNablh7b7M7v/+m+ANEBmJChs6KxVud2iv5W0D/dex/reu3J/r19V8M1v/9vt33YOedNPcfC/P/l3n9LfnuPxLo/qvv8Jti3+H8qtpa6y4LzOzmXTwcJMQQ3/51cmBH7cE+/fc06OZEDmZdyJqLNV0XyVtUndwDOgGAm+etXa/LX/78y//1f/zr5799Ob9cP3788Lsff2ACsO5S3QTxNE130wFZQJLLqBR0n1D7t/HWdF23p6fn56fnvK4ALhJSjGlIYYcuWKST77jjbL/pyhywVyowdTI3tdKy2ma57yq79cJe87vup3eJRMQmaAEqgCKAW5fUIPedcI+T2dWHCOBEvdbjqyM2OLoTATPtCGGnuPVLU7UymmWuzqU1ys1zaUTleqYU3oIxIcYxHrgWEgZANW9qDoBCKNxLvqF3vxkA74YHMcQQhJnAFG58RnDF3VTbCJ0IjG4jt5tZl5AaIbohoFlDbVSbOHhTJ0J7JenRLbQy7JO+38SuN47yb+/O70r7Nl/PX79Yrd4aAgGxiUCIaRzTMMZhGKfpdHc6nY7TcYpD6hZNMSZHUFUbUv8N+pUrWnNeynwm4JiOhlgRbmFL2lrrmHp3UO8cuXVda63d/XFIo4jsYcOv9Ll9Urgx6syJMU6DxG9Tu7sv87aWdVm3ZdmWZVVVERYSBBIgYoopxpDIJVD8h08f/+n9h/chHgGobp7nthWtlaJ55IZxvpafv2z/8vxyznrNZd42OsTm5uiKtml9yevzstzorUaJJgQFqGpbafNWzYCRiVwYijIpbdXWohKQAktCQnYGCeG7jv5mzfJ6qvRpt6ku25Zrg/NlB5pyNrMQZEzDdDgQY2ttXZd5XUop2to+ygAhsnAIEhEJnGrZVsQu7Nlnnr5TxogUAdkd3JUIQwiMI4Jgl2+/kvR3NhzRf3J33d7HTonc4Z39H44OoGqltFxqLrU0b83nOfckHnft+WaPz9fLvPzl589/+vPf/vTvf/3rz7+cXy4B8HCYDml8N00fT4cfTuP7KU2RhcnQTbWq9kmdiQC91rrm3PQ2liJ249CXlwuE+HTdMISn5/Pz80vL2VsVREEsb6b2WtfL5W84xpGikzlo3dbtOm/Xc7m+1Ou5XRZFVpZCVyLpg0hgGgJxIHV7yJu2hgQsHEQcvLa2btuyrFHo7jAQ8WE6IAjLAFRUW825VkOpAhpziBtHz1EGh4BOJyWoyjljzlvdr7QCEFF1XS3X7WrzSwOAw/vXN8KMTHvqAt00giQhpDGNUxqGEAMigDVQvS3DboTVVmvJpeZtW3PeSm2qThJDHI6nu8PxlMZBUtyvdpdj9XKOfQe6l/a9sftPePNv1vL7YPd9+fj+1e+mPVrH9sXc22Gd9oi2387r//FW7e/w1Vn2bUPwWrzf1IC3fx9fx/3Wai655Lxu25a3jvqklIKEXZ8RQkrx7U/37kieayulSzQQgByEkFgOU2pFuyN0FGYkcnT10uq6bC/P1y+/Pn7+5eHf/vTzv//p5+t51qaCfByGcQjChG4MEJnFuxKFDN1cb+FE/dMwt+7kQzGkIY1d9rkXrRilj83YDSD24fnGbv3+jbh12wyEhqZoxogk0Z3MsPWuK7LEEGMQlo7kCYswCbswSEDhDucLMTIF5oE5CgsigTsjiYgDmBkxh8AObqZEwhT26BICJOixzaZu7qNgcsPnqz6f88sFLheXiydQbM3K2/uKQ4g8EjMiWYNWrFI3lehQVocZXQ27SggRmXCn65GZN7WmVs0adOIAdA6HN21NvWnXYYKZQnUQ3m04REIMMUpgRHLQvbXuFCUQilFiCimFEIWYzLSjTK5mqq7k/w2NruZtuZwtFy8VgR15QyiIuyo4hjQM0zQdjsfD6TBMU5jG6XQ83d+FFIFoHAd3B0RiAgIF11a1bJAqdrq/e855XbdtXbdtCyEg7sQ+JzK1vOZ1W5l5GIbAgYn2OgI9bWfXst+gDHczIAxD5Pjtjbh7XsuW87buXwBAyABEKJHDGNK7u3cf33+INEQPPx6H340xtg23uWwveZubgSGHg2CKFerV11/W5c8PL1uD2m3mAIVIEN1sq/V53b7OcyenESG1cACvANV9a7psVc2FOAgBUnOshluztbZEnCKFgSUSBpTbiLkfGF3XjgjeKQjQRZ61aa4t11armlktbdsWAD8dTx/evZsOEyKWWi/z9fnlZdu27qh1A/P70zswCSK3Hm3k4ED7xOLgQCyJJYWQmLqJfXOrTB5YEFxvN3U/4RAR+Zbn99sN6X4K4u3S3C7i/jZL1nnerst6mdctt1z0cl6u1yUGPp4mNVyLfvn69G9/+dv/9b/+9C9/+svT82Vb85Ti797dncbjcRjGIKcx3U9xCkjamkIza6baGgIINyFChpzLZV62kktrAC6EKaYhjdVfXpaaza85f318fjlfItEUw92Yphgqh9fcypyvXx4u7TixnWCQwn69Ls9Pl/Xl3JYFS5ZWTLEZlKKqzkwxhGmIOMY4pqWUXz4/vlzXYk4hDNOIjM2qarXWjmNSlPuKFSSKSBK4bqXquizLtsW4Ba8eUKFVGYEjYgAMAyYwgG3xdbFtbSV7qw6uxAVttuplq8vsEsPh3Ws12s15zcxN9r0AonAYhjgOMUUhBKvempbiqqimrdVWS9lyXpd1npfr8/n5fD4v21aqSRym493v//DHn376A9OHGG6yAEeHPVNmz5+/ccz/3wH5N4Xfv18ofFdOdvNHVW39O9Ob138Bwv/mp+w3Zt/Qv13S/4Y695ufDLcj233vCba8res6Xy/X6+VyPS/LUnOPVpuOx+PxeDoeT8OQQgjfdTJqVmvLuW7Fe0KoAyEE5jiI3x0FJElszTgQI5l6XkvJ5dfPj3/+97//6V/++q//8pcvnx+en87MdJjGddnWeRYcOUXaMTNUcrNmWgybonuIQOSO6rt1VbcNPR3vvNZti+7KTB2Mp91qlHoeYb+4+L00tAu63BS8e8gpuhFClDikoxmWom5ZVTlIPB3GwzQMqV+kECILOTQS7/w84kgkSEQUggzEkYhVteQqzNM4NdV13ThIOgzaWt42DkMaxqaWtQE6EqAwEbVcTW26O8Qg/ngpvz5dPn/1wLaYBdIIRvr20naKHBEjkBYrUomK6Z7eAO49+4yAlHr0pt8Idz2XtDYtTatat8XszCI0N2utVattd4Lp37NLnYJISikOMaTIgQ2QqvVUre5yy4Tcq/sQYhQWVAVw65mVWokQ/7t4mP1s73kkDgZeAQoCQitYpW995mV+uaQhhWEIYxqO0/F0SuMgMS6Xq+Z6OE4h4PVyztum2tBdiKJIdsbmOefn5+fPSRjs/Yf3x8Oxb+s7GBVDADPsDZu7607R7VO7703mbYq/HRY3os7+IuLf//73l+XsD7+uZQMgM3MFQGTiQ5w+Hu9+/+mHnz59EnVfy6Cbna9bK61u122ey9KMieP9MY5DFPAYOTAFRCPo2NwUeAwhiDhQcyjum+2jg4OHHI+l7hQUc3VVcwQIgJ1DBvDNqJyFYwphECcj+c4skIlCEHcC165eNAc1aNa9Q7EiejclBTDV67b5y7m4u/v5fL5uOau1PcDbeiE28GZaWiVUAOz2dTtjx3cxrwESC7MEiUTs5oBO5CIk3W72lujSBXg9/7vr7vZkADDw9np2ftsg7sTjm1MboDZdtzLP+TrnedmWJW9rqaWJiAP9+uX5l68vf/nb53/7y8+//vp4frkOJO/ux9MYxhiQJBCOgU5jeHc3DsMwr3XLLWvnwFAQkZjiIENAnJfzWrPp2iwJTlGGIcUUti1fX+bLVi7r9nJdli0n4UMKVqY2Jj4yyH6E1Vafzuea13VexNxqeXm+PD+fS+l2PaZOa67bVktRNRChFFUROIVjCAZwNf+65GtuThI350CORmCCQIkKSkMxCI4M6AakBqXpVjpbw9Uh5y1JSiEFjsKRZSRHXGafr22e87YuOTtYFDbC6t5q3bZN0vGHH75Vk10lpTfdHMG+F9ZSt+v8/OsLFKtF81a31Vu72WpX1dastFpa2exybpezbkWrekhVF7sfsBypDtQCIPXYeEAy75f71YMMvq/rr/X7tfXo/xtvdl63hTB+V5zdvbUGAKp9sw6vy/VurPYfQfjvvv/t27w9/F7B/A4cdnt5+M9fu3NtziXnbZmXZZmv82We52W5buuybWstWWtFgMuQpulwurt///4jgOdcvmPIm5p1g6t919bhB0IMQcYxuaEarGsutTw+PJ+fL9u6vTy/fPnl8e9/+/r11+fHh3PdNEoch3R3nMaU0FGrVaiMiAatQaumLZtVBTSsWqFRVmTt6gxTa83NU0qHwzEEcW03Mtp3VpjYGVy3//j9R6IEHhgFgd1YSGRI43E63JuRFLXrta0LTgMdRjlOMo7Qp/ZhEJHSNiPj+2M4TIgBUAAQmIEThoAsVmrGWVniYSy1zq2kJGEaSsmzlhgZhliabtkcjQQlMDGt2hRgGGOYJm1e1rJersssuTEJQmD6nkZHSMCCjqheuAQSBtSdwQgEt9xxA1NoVXMpwhsAaghMmHNeS861u8wiswRhEdlp+gbal6v+mrmzE8t2GVF3gepXRC1vi3trNbt53rammRlC5DgEM7Vm7tZag7KrB95eje9Ke79g8PpIOMDr4+jmzbS1uuUV5/0XiSGkmMYxTUMax5eHx+vTy/270+E4LnVbrrOVyogiEmKMzgJaSnnOG3nVmoloSAMRIwKYE8CYUrzFiCGA22twWZ/RX/ezuyT4phsxeOPdyMz/45/+6fnymHW9zFdmcVUwYpdE4T5NP91/+OP7D394/86XecvXcnmZ17maZ7CXsp5rNpUYMBgk5gByCHKK4V2M2UHd3fWUwhRDkABdRgncAKtjUWuqKdf7UppB9xADdwczQLwtgvpqZB93u2o2cHsdaV9vMqYQgxuBs4gISzPwvpEGQyCmzlhBaa26b6Xmen6Zr94TrlQdmaTblRvejklEavtCyFurTaup9kiym72l9Se3EBOSAyBhiAExOQzIsdu1BgksTMwppWmciLi/XXCsJa+X1+S3XXdkAKp+AwF3pY/qzXU5t3kul8uszRBRDXK1Xx4+//Ll4S8///LLr1/RcQzpx7v7H+6OY0B0P6+bao0cjlO4v58kDueyzKpbAzMiQpZBptPhFO8nohCerg0yKGJIcnc3HKZBQlgfzi8vl+frclm30szMq/kGsEkNRMPBX4/21to2L+uSH/yyXdbL0+Xx8flyuY5jOh3GaUiEMpftMmf1numA5shAlQWnCWstEi4OT7lVU1FkERKIQmOgCaRRMAqOAk7uzbsjkFlRrWbFbM0tzPMY4hDjGNMQhyGM7qjXuV4v+XJdl3leN3fVKIUYkErTNbd0gE9vKvsNdt5JYQDgYGZFy7JeHp8//xUuD7rNbV3KMru2zpFyN6Q+nTi6cZljnU0bmUEtnJ3yC24vkEdPAUgcd7O8Gwi/e3DvZ8o+8+Hbgnu79fvhYzsfi277yTc57q/F1d1vGW5vN+uvsvV+rMF/+brR7vfupScLwW5f2Be7ePvt9r30jr23Ukretuv1ej6fn5+enl+ezueX63ypJWur4HuiCnagexguL3d5W5HQ/M17BQA3cOU9rgZhN4o1IBAhSFGbr1JV18t5vpyv18v6+PXpy69fnh7O1+dFmxPwIOk4TtOUjocxhejN8pa1YLda3rLm3Lxlt2oIRlKxKCbn4MBmYAau2loT4WEcg/DOfrGbvgoBoLf03gm/9FtA3tGUwSIjA6AqBuQ0hNMx3d0DiBQrkbYz4JhwHHAaaRo7ysuHiUPwFQ0MpxMdDu5iTrsnZAgeQwhBmXLOjSWlmBFWJhcaUsiuC5EykUgxWxGAkBC7EdWKrghFJMVYU8wprlHWwIVRGEEIhb+bDBGJ2BmJIXIIJOzY6cdyM8PuA4w1L6TrtvbzNgQR5pLLkret1KpqjsxBgsQgCtA6u7lzSJFgt93F3f593/iYK+gORJlaLWVlEXCvpZayIXscZJiSu5Wt9ga338C90319/SYeZq+YnY5zI1l8o6fa/iSgqqE10Frqtm1ruIrEOD8/P3/5ejhO42EyguJtCHQaI4REaYgoI+sGrpud5wUBTnd30zTFEAJze92K3SxLulQTXuu3336dfef1qj3129ftYEAIgiGgBBABBiaUQ5g+TKdPx7vf3Z1+OqSjZXv+UpZlvrzM67psuTpU90tuS1UArKDXXFOWKdoo9H4MPx5TMTQHAP3hMNwPYQxs1GNWCIABHIDB/WZ73gHC14R58w4TIdINNkRHq7Zes69evSHhWxUfE8cYO+gTJIgENudmYprYGrXW1For1J+rTsHdzSykr+sQnMihC7o66bd/gtg7JWYWdwU0UEM07Jze/USjfo4jkXAU2TeFQ4ppTCmlYYgphhCGIQ3DKCK3XEB8eX7+y7fSDimlYRhMtfuu2w6wdrVo6Y1kn9EcfK1lyUXP52Z2vlxfzpeyllOMd2l6Px0+nY7vDqMwFK1LzuZ+PE7v3t8fDlNxvJb2vFVDFgkpBIipkVCMp7vBHMZDjgWjy/E0/PDp9O7+EIcow8EoxefzNM++S/ZJiAah2POkX595oshSc1vm9euvz18/Py7rqtY4MjCiEBEZghGN03GcjmlMwxCnMZwOg4xTtkURq+lW8poVt4xIxJQitzEeg+RStan3Ab01V0UHREIUQDKT6j0Zw3pGQM1b5cUdr+s2L8ua11y2UrOZas1I5MDVIFeD8N0z39OEVAERS83mtuuD6rbNLw+//qzjINbYlVxJui2BEKFaq9pKqbnkWivs0xube6nl6eErIK3V7oum6RSGAwfcadz76fJWr9UFXP5a3f21Bt969lpLra2Lht+wyL+dVb3Y9rp+847dXQvf/rFvr9/W+JtDe2ullFJyzsXBRQIZaWvO1gU7+48za62WUtd1Web5er1cLpfL+Xy9XuZ5Xpcl11xbde8pZABmZSumjZlrU9Pe1prDd2tRCTwMkZHK1kIQpP5s3tBMty3Xx4eXv//ty+fPX54eXi7nZbku67zVokwiAp1GRgBty+eSnx/U3GLgYYjv7o4pxs9fnp5eLmPkIQoxq+NaQTGk8UicajMzIERt2moDB2ZhIgC5bTr2RPNX0sx3G5XbB21tc2to1duqbWnIlbgErJGJI0TANqIWGgc+TOF0jIepk17CNIYQPA3uxsPkklRRDdX3H0ksPE7TMGEcmWUcp1ALxhSjHI5TnKqMk0ga0tSaDrUAOjH2CIk4FFWdTvc8JFwqpATDAClBCI5WTUurb28SIWYOgK5GLcQsQZhbI0EJJMiEgGrgBs3VLWurJdecSgxBRFrRZck511r3LGAhiSE6YTNDaGAVGnoDAwfcZXIAaOqlNFSD3WbAVc2a3dz5XJuqNYlyOB2ZeBmW+bqU3LSpmVmx/3Zq9/3Id/Nuk7XbSN/oTwjQd2cI4F1PVFFrrZkIcX45P/HXEFMaBh4CDeH9+7sYUwNSRGSOkbRFrXXZNq319PUhhXBIKYogAbEM4xBTChKR9tDr21hxY9LB3kDDTeeyo/nfeQ54a5vqhliZIJKwxHfD3Y+nd//w/v2nQ3qfEPP1+rIs63bZtku1Wb05qnkulosjOZDNWxk2GgONwu+G8OmQmqI5INinMZ4SJ8HcPbZerT0caQ8uJ9r1SPsz4OC3IAy4ISOEDla05FKsVWjIZPoNfiDmGJNpc9cQUpBoZoF0aM2gqkJ1rVq3Vq1VqIXrHhHc+yPv7cWNhdg/qM5rfUUSHNGIu2GPgmo3TvZb9he+BquEIBK5mybFaRinwzRO4zgOvWx3jqhI6NQlBv/Lm/N0L+1m1jNOrPeIToAhhiDCt/OsqV239evL+fk8X+allgKmH6bjj+/f/TCdPk6HQwpDFAq4Nn68Lk56PB3u7+/SOGxLeVnz47xxHAYKzLGRZANDGqahNh/HbVi9Ap9Ox08fP3z8eJoOYxxPHKfj8fH88iIEkXcKrLaqqjPha1VkpCBRVy1bOT9fHr6+GFoahAOHJCExAgIBMB3uTu8/fpqO0zjGGCgFFmFY824pba2VrAruSIA6BLYhH2Kr1U0RzNW1ZtMKbgREJO7kLk3dTbVpY6y1FOYN2Q2utc6l5LabMjbzagoOhqKGTT39xrS8WWudPKy1FjMVQiD3VvJyefxKNg7HKFOSIYUY965SmHMpbV3yqpcl19bMyJCcsKlrafXh6bKWTbECvwM+hAQcmL4Dom4FdmfJw97/+mvDfnOpclWtpeS8QRpeQ/l+sy3vzC/cwcw9EPs3f+D2E+HNv/h3f8S8c07Xda2lIFGMu3Ltmw4ewVS16bquyzI/Pz8/Pz4+Pj0+Pz3O83VdF21qbthZ5CJCXYSitUKtJgJd4WP+VPLWmeSvv0EIkoYkLGWtEplumVfu4Aa16vUyf/77lz//29/+9vPnp4eX5bq5QZQQQkiHsS8uO3+tp3E+nV/O13kY47t3p3/4w+9Ox8O//fWvf/37r5/e33+4P8UQzPxlzgZ8d/8pxHHLzQyChP42AWAPoSFwI8TOdO4D5rdy8Jur6m5eF7cGVr2trS5VYsVUGYpQiAJOUBLqwMMoh0kOBzkc+iY6DCmIUBzdnZM4kRkoQkPva5YozCmFkNJhj29R1ThOIjymoGbDsREJS+x6KkdA8m6LM06tmQ3jAAggizO7CIQAxGaWa4Gyvn0zjBiIEMAYCofQ3VWJA0vg2PXG6NZctWnzlrNlKUMtMcbAQatta81bbUUR0QkQKHBAoQBA3sAIqnszVUe0wCIsBKjqzRV2G7UdSetoKrzi1AAxpSDhcDyMhyWky3xZlutac62tafsudug3U/sOm8G+3wYEp5sBBXamFADeEplkNziNLEK8G8wRC4bghGZwXTd/fFaO2ZGHg3NSdTBopeWy/aX928uvnwfhvmIepumnP/zh0w8/nk73KcZv4Uc3Yq37bp5hN4fnXlEN7K0bnZl9/fJ83Z63bRXyd8fpQIefTh8+TIcTUbCmzfJ6vVzPc65L1bnhZl3h2116egDn7meFzpFoEB6EMmAfjDva5taq+pbLZZnP86zeE9+sK8uth9PuSV797r/tnQH7LsW9Z6E5EQgxB3k7cDBzjEmVXFsIIUjE1qApbLNezvl6sWXR2rg2yTWUSqqdsQm7Ewl2BKap9k1Rbzp2Bq6/xiPvEkT1V1T+mw1ob5mFq7TAqtRlnmZaS1uXmiLFRDF6DB6ix+AiwuyX89vbaofvmBABDYjglj2CaRwOd6fzXLby8vhy+eXrw9fn56fLtZUmDndpPKX4YTq8nw6HmKJQtQbmH053x3RaAeatjtMIzGo+b/nr88vPvz4DSxqGu8Ph7jjdH6Z3RyptMgASDjEmwJRSDCEGiVGOx+lD8VY2LzN7C2gM5Eabket3jwo4uhKjJIlTGg7j4GhpksMQxxSCsGoXEbVSypZXFHcsakQYxjimxKfT+OH9yc3GlFtzc0eHmOQwpbtDOk5xGmSI6CW3cq1lbnXVlrWVptCMmrqpvzJyI3MkQoRillUVei6kMHdGJJCDG7Aa/zbfkdy6XQmDI/QdTFNXraVcLmfQCofRKDUEUsUMgAgO65Yvy/Z8vl6uM/fPkkSBcmulNqI6QjmUdqdmSEhigGDQHQxvB8zr7nzv0323vN25x10S0iHp1mqtmVmC+s2B8rsXETp0uVVnxfvNoM9fl9nfbYm/L+odnqy1LvP8/Pg0z3OtlZhiSiKyR2nhzkGppeRtm+fr5XK5nF/O5/MyX9dlqa2qtk4ERiQgNo4uHWZQk2a2e5MCBTNclrVngn17Ovoje/NDQABT6xFOJevlZf76+fFvf/n89e8P+VrIKElEQBEOu80k9ThQQnx5elrW9Tyvf/v6MIyxmH749OFAeM3bw/kchzQdDsAOBqquploqOtetmoGHriXp5n37xtWMAQGVzFq35+vjwu08fvMu3LBcyStYQysIVSgE4RhTGsaYJkDOpeZcwjDIOIKEBghdkGPg5rUni3bzTAbs+ktEiUwSzDHnVkollmEEbbptNYoJUlXdSmWB6Gzq2hQIkDEQEkJpWt3FHdzztl4v58vz+fx0Wc8zeiHhVDe09Nr/1VrbVsjRm7eetd3d58IwxAGIzN2tGTqCgpl5U7DGjuDGqsVLbi1XLQrm0KwIlyhxjBw4CGuUFqVV7QPekIZhGIDIEJr3xD21Wzg8MjJxZ5kBAQny2B3TaVvz4Xh8fnp5fni5nq/tqr9ZWH3/0P92ndWHTO8CxtudDoSEu5g+pXFMwxTSQBKR2GCvKwaq3szbed6Mn6rBcLiL44klAWArdblcL19/xVoEjMAd4e79u9ZaDHGIKbJ0x4ZXKP7Gu+48OrO9lmPT1rS0+k2kZGZfvz6u9byuKyHcH4cP4fjT8XhgCdqsaDa9bMvjMq9Vs9PWqColwSAojODU1HY3IjOEjraiEOZXJwrtFhStqa8ln9flvCyd/ssI3WxfO/GpV3fbP9vXQ8Y7oRQM2ZkRmSGgxLh3T/3kYg4xUQMj6JJGBqfivi716aE+PcD1gmZkII7RQFX9BmEBd+olqhnVZmBAe55y14tCN6o26IQ+s67U9FcJ0Q4LuyMzcoASoBSvVWsp2wZBlKmJ1BBK7zvCTd0pIW/fBWDcMA3solQE4L62daAgnGIDf77Ovz4+/fz568v5sm3bIcT34+HH0+mH0/GQYhJxRHXbWmbk300/vP/wbmkQrquE0MxLbcuan17On78+FPUQw93x8OHdXXn/7uOdbPmoBoAkMQzEMfaTEBBhSOHuOC6XuJ2R1AMYApvD5qD2m/kOXJFBxpiO03h3PDi2kHAaYgoSWMAUHLTpljeZr81zbdIGZhzvppASHQ/ju7ujqcUYa1U1Q/AQeBriYYqHIYwDx4i11lZ7aV9a3VrNW7PSvFRoCo5ExEEkBh+iBGEnckRmjyFgN+7sjNy+VK9NwvezrJHZzY+sKyOsWxpZrXU2Q4QQ2Rizmbu1fQ1ty1ova365LPO6TdPx7m7kGJ1k9W1TZUd0rEBOjMzAbADWBczwlur6WqN7/vWeRtqnis7O6qb6zXS3gPfutIHfD+1dampNm7nTHhCNt5G376a+Eebhty9396aac17m+Xx+uV6v2pSYY8os/PqjzExb27ZtudX1dZ7XdW2tmikSSGAndiQjBgogEUICFCClpLtBmjCF4GC1ZlVz+GZhYd1Xdhd7406GKFqr0VKeH85ff3n88vev58czAo9hmNLuVELdcTqGFOMQUxQxs69Pz2ttj5drKpFjyE2dODedt22trRiEPQSeoGe3Qkd0HQFhD4DrpHphYdqttLATFv1GabqdyN99nFSv6MqoiIYCSTiFECXGmGIaiHiJiVhIArJUcy3VDJDQEEV5Wzd3DynEoXONuzMkSWBAKlXLtl0uV5Fwur9rrc2XeYgB3XJp52WLKU6jtaYlN2AkocQsCEvJxY2EhXFd1/nlcn56OT+dy2VGyMRe63Ycfvc6U+VSVOcu8dpyac0AMHBIIQ1hdEQ1A+vO0Aqd6unqhqrgZlpBq2pVL+ZqtWphykEQMRISQg+ZFCZDQaQQbupxd23VHLo3vqsSY+TITK+jtXCIMaYYU4y11sNx6qpvNc05v60d8B9K+7fF9j4R79pHBEBH72LgOEyn9+9O796f3r0/3N2N0yGkASVCd/wDAISmrbay5TWXjQgoiINYU/ACDjVveZnX83OdL2gN3Zwo1/rTH56XeW6lWrw91G+YMLf6vv+CCOhgl8v58fHr09PTt/cAkHPdqpbioCAMAGVZXgxIzGPElHCrrTR3QGFKQEzEYGgNrLk3dwennknkbgbezLJpVijmZl4AFEmRqkN1KOZlb2HdAKpZVXPH197rG2OOiAlffY8dzNEkIY0kKYSU3orfmDiEQGCKICFwEAFDoYa7PR8AhhCI2JnRQUvbjY3AHT0Mabw7OtC2NXcgIaZuVxJYonZp040FYAbNmrY+hDSzVlu+XLZt3UiERbgFbcW11rIsSIwQwSNTd0uKIaQQQujQbZg5AH0zEeqtKOLOC+2fRK/HD0+XP/35b//rX//8v/7tz79+eZqvayL5cP/uwzh+Gg+nlMYYDWBttYIXs9JKgmDoEogF3W3ZFic7+dRtf9x1y9uyel7nsi1ey0/3YcvvCIQIYmAUiSEQdWSmmgGCCtoQcBiHJJIzXVfYvF3b90rRznA1IwAmEqFmsIdqAxJTAEwxpCgEZlq0aCNRDqCRO33bwZrltV4v67KVpg0BYpR6iMcxrP0g6dCqq1kz6yGQrVRdi+fqtQFKCEGCDMPp9PHDu8Nh2AVbe5psJ+J6qyXnZdu2bV3T9+aADtR1xm6gaF206PshZQBg3qpWzL7m7hKo3YC/VDeHzmRI4zAeJokDkLBIHFIMcjgcpmliYcB9s9cXzx0mui3a91cv1f3EcPCbazcAEDjuNm7EBqjmDoavvnb7UWU5Z1WtrfV0pU4I6PX+9ejA751nbid472estZZLLrU4QIgxJgxBYozE/HogmlnrxhhMIYRxSDlvJefWqqq6q7pVtWLWO2hkvgVwyHgYLcmuDiAw775UCG+2oq1q2Zp3uzpzcNRmJdf1umWCh1+fnh/PWlS+5RKzBBZhjpFTZAnM0iVFPEQUAWR3UodmXpqW2rpO39yrWlNngP6DOnbWl3c3g9bdx36X3gKyh/2ytY6N7k5y30MggOBRWxI8DAMFcgYeJwkCbjkXlCSRc63XealdkQ1kBmqGRKfTMUY5ny/uzsIcAiIaYE+MN+VGglAu5/nz5y8xpd+Z5lK/PjwexrHp+3ndHp5fxulwf3+Xt7ouGzBy4CmEiPgyX4spIZyOk3XgS60LzxhctAWtb9/Llstq1+5KU7dat6JNhfvabSBmAw8UhKQgVkYzdDDq7DAzN0czcXAkIGRCVmhrzmSG6oi7jA77Vtlbs1qqE2o342ht78dbwx4oYDc7QO5cp9jzqEjY0Y+15pxLLjXXmL6zQvotIO+ve+0+WXbn9r6FB2CREIfp3fsf/+Gffvj9H97/+OPx/t04HSQmZHa8ObsDtqa51GVZ5vlayqJ1Q+z6/b7mVVOteVvmq5bspsgsIc6X6zIv27rGEFtr++7tG+X19YbqLTm52/l8+fnnn88vz2+eecil5tJyNnaDYK1tl5qzYQAaLQLFqm6GSJ1FyaIIVl2LW3cZMgfu/961jMU1q2bDYu7uDUCJjKjBHuGqb+4OBWh7W9Q/R+yI9G6PtfMEgXqqAXlIHCaRFGOKb32AmSkGqaCIJoFDCAwGIpVJmSAlBuAQPIgzonnJ1ap1DoZ6Tafx/vc/oKR1UXAUESJghBAHSVMrW1lnc3cgczKD1kotW91KzUXbtq7X8+Wcy0YeGIzNDBTRsGGrDU2ja0Bi5hjDGGMMIsQkATnUwwk+/PStJpqaKe3tDIJbA99yfT5f//q3z//zn//0z//yl7/89fO6FAa+Pxx+uj99Gof3KTGSGcxWF6sZvLo1VTI2gH2687aW5uRjiogQhIXRWssl182h5Uh+uZxKyUmQCaKwEMfAhAi7vYajt0A2BjpNwzCMTxdtuWSnxTC+iad1d9Pqpu6KYIigZtq6zZ8zEgsOUcYozMBgZIhmZM6OgmQI6GTNS27zvL1cllIboA8ptJbuprRsuZb2uoO64UPWmtaqtVkzMpIYx/Fwuv/w4YdPP/zxjz/d35+61kZfKTJqWsq6XC8vT2d6QVWRt/KeW6m99SVd1oi3tFgmYHIAbbobGHi/jZGQUERicANMKaUUQ4zAQoxJw5DS4XAYhtQ/W9Wm7uaITv9VaYdXEmxPRYEO+e73iTl0GqP6Plbad3s3L7WoWqsNAVQFANxp18W+yXINIr3F7ultO+jX80q2bZnnbV3BVAhDCDGEEEK3KexNsqoqokASxBTCYRy1lVZrP39bq1XbWspaS1FvBt1UOjAzUUr8KicGVXfjIKqW6/o69dbStrW4Wt46Ju2t6bbm62U1bQ+/Pp2fLmCQQgyB0xDSEFIKEkVS4jQASVebam3ADNzVAtKjTZtqN64gJPM9pgGRvh2jcCM4vO7RcUdRdjYzu4Pzjbn8H9kK+9V0T9qOIX4YBxliC6ghmrC55ZwpjiSh1Dqva3Uz7F5V2tSIyFTjEB8fn9z97t276XBEQnfQHtCqzKRucH45f/n16zAO0zQuufz69eF4PMQUz9f5l68Px1Mxwm3J18sMBBLlGFMienx5Ka2+uztNMYF1hvD+YoABfAJ7u3irtS55c3Vv3kq1qqYamBk5coghAlKhEIg3hMrYnMyb7fEzXWrsgjdr2h6/lIuTKjZgMuyosKuaKXAuAA7UZcmt48HdVBEAsOxUD3LuhjHYfWuJMIB4HKbxcDrmNdfcUvrOkvU37fwr6N3HuX2lbADmqO5DTIf39z/8w09//N/++Ol3vxuPx5ACixNngJsTCbJTRA4gEThhGEuZa1kYlcm7C013KmQCEZqfn/Iydy5cLuVyvf768HXJG3R/+N206Gaotw8/PZbXzGzdtg7hvintdl2vy7ZclxwAYmTuaV6AQDygkIAoCLsBIsLeRFpDUAIlMjRHNEIjuNne3WB17Ug1AuxCkN1TZ38Uut+miAibAzB5F/f6Ho22hy113JxIgoQYh5iYuWUtpbydE5kwBUKH5h4DxxQI1SJ7YB8HmaZAzETm1spWa+aY0JCRrVZfL2GaTh8/xfG4bg7ALKHbL6ZxGsZT2eb1+tJUDdGc3amWpeZlW7a8bLXMTdyepBKEQBIZmVCIIjKRIaPuMehKrCwaWJn8NcLsu4cFviVzOLrjVur5evnly+Of//L3f//z3//8579dnq4T8f3pOMV0Nwx3wyDCq7dmXs0V3YQiY0BUlWGI3Y+JiEQYIw1TOhzG5ngYwhh4CIhOQhiFXKu2Am5EGITVwYkDI6H3jbUjDNEOQ4RxOAwpxADkBb0xewhvhVPmrfpiprXWXLdcci4F0FtRVyeAQDQIj4FjDCnGOMgwxGkaTuM0xEEbjGkch2lIYwpb4NqnPmtm1b0AVAQlMkYXdAYjVdTmrXX3e7q7uz/ef/r4w+8+/fjTj7/76Ycffvj06cPhMNkecmaqpq3ldZ3P58evn38xz+uGNnv7zvMlBA6BTK3bfSMiM8Yo05CmMQbyMYUpJQ7yijn1Z7tUW7JuRbVpztu6hFobMXcnzgIuwrXkVkvOK7IYsjmDMzpSl57fotdfB+h9x057ae/nrhuZQd9rUau4N7xu9o3qj4gdMmbmGKTDV0S7+kNVESCramsAPQWZbgS9VnMpeSvrui7zfDlvy1JLdrNKnPd7dT9K+tZfbc/P7DgEmIE7m5GbuAUHCWEIkgGrg6oBUopDkHCrnq9CHgCHWsp8/csrop23er2uLbf5Zd7WrFVLruuyPT+91Jwfvj5fzws6DjHFJCFxv2lra1XN14K7jTq7udYCbsKUUmBG3v1lkJF64AS4EfZoIkQFMy2tdlw89nnd/fUa9WJPxB1TIVX7rQHdm9IOENVHhwMyMWfBytQIrecO9wGnx7lIEAkIZoyIdrMDZgnRHVkicuiXu++Ce2CldR/N2L3rhUiJA7I4szMDCxBDzzTrOVf9E+/UZu/BmswoLKGHoLhwdD4IH0XOb5qVnnTR7fAB3Fyhn/2q1DQGEgoxcEQWpqxSvTStrbXevyEpoCMZM0bAKKhkGU3VSlYjMsBWoRWruapaD7Mj6VvsjqUAE4IEwL0Z7Q7/+0rQXPdNKrSmZsgSh/FwurNh/C5K+zdT+02qtXO/+o6UDEARDYiHePpw/+HHD/cfT+MxENVWS84KbrD33UAySjoBTYhjv6eIkNgJXQhYGJEmOwB4CJiSEEGPkSfhrZTn84sRnZeZEWOMx3EMPeums0yoB8l3C2F2g1zrsq6tlnBzyXaAXLctb9tW1am6NoGIaNQThpwYiYH2N0ruZqrkiqCITuBCt5yBfqPs0k4whD2xfD/x8JZu4+DQteBMHJhFuJnvJgEAxNhR7Y4K+m6H2ZHCIBzRqC7FtH4vfsMYqI+IwiTCoOyEzuwxhdOdTAdxaCWv5yfaEAMwSgyD5axWZRgP9/fj6X0sACAkCREQbDycpsNdXq4yxNqaAjqKO9Y85zVSXDEEWjHrhlE8ICWWITCSMPc0RiECJXFGQMfgMUAIRr1lcb3tIW43FbiaN3NEc2jNX17mP//y5U//9vO//PO///rLw+V5ZqAPaTwOw3HYKUwKtnjbzKq7MKfQVaNUVeMQSAQ7lSwwj3E6jIfDoA6nKd1NseSYGQOTCAta5+owYxIGAEMU7qgJ9mnVo48pwBBTEOzIBhNHEUek9vrU9zU6mAEaC6QkndQ5xDjGeEgxCufDyGYpjWkchyGmIY1jOh4Px2Gsze+Oxw/vtpwbAqYQ1jXXWkXoOMa7aTrGYeAoyAZMIAiMwAAMTgAeRD58+PCHf/wf//BP/78//tP/+N3v//Dp0w+H45RixBsWqE1LLuv1+vL0OKakpZatrEtRCm8P5BA4JWmtoZoqCqEEjkFSCkMUQUtCKXBMiSUQc4+jMPVlq0DbdVnNtOayyhJqIeKdfauK4GsahjQwS23NkAyEICIwAfAbywzAvhnE3dZshwUNCQk6huSl7uelau4QWmvfOByIKMKAGLw/XN0oDV//34541lr3fb6ZImmrXY2+XC/L+bxcL9v12rbVtEE34L81Mp3Uc9PYmu5pgLh743TooweAMMUYJMUQQmWuVR0gpSghgt+Auz7LEAJgXrdXmQAAlNq2pW7LNl+WslVtSrXlLc8X2tb15fkyX1fxgMIOqOrqVbM21d7zMXMMIYYkLN40CJ+O46f390h+dxynFCNzp2F3xkMUHlNkpFINwEurpar18AcncDQHvskCd7zR90jlN/3hb+d2BBgckkJohmrFCW/RQq/sYRIJMfUvIgNkMyeiEGNPXnBADpE4IOyhngTdopuAMMQwTGOMSSSIeUgpxMTSXfmHEJNIUGkhBEcnYWFhpMABnQIFwY5r7+tD2Dg5HZOcklwRXzckTBI4GqgaKlbsjDOA3m+KeiISQOLgaMAIzqACUBs0MAMER+t3cUQYGCq6oqt5q6ZIzckUtFmtrdXaQXw2ZmGgnaFOxMSIPQaMEBDMrVZraq021dZBLFVr2j+zYTp6/O+mdtyrV29NHTvJUaiXqxDu393dfzhy0C+//uXhy1/BvScQA1gIgZgQaTq9O73/IY53LOPlcn16+rqtz7Vc0Y2ZUzrE4cB9X3h/OkzD6XRYr5d1mc19zusvX78stQ7jSOhRZBpSYCHEjkyqGQAcTnfvP3w4HI6BA7xhc7/eZGmIVZtkE8MoMjANaJE8MDC7kylYhS4001q11hYYejwgGQpzivE0TcdpDExlZ3PvnHN1U9WeqAyq0IzM0BzBiEjIBfA1Vqmv2YKE4zQcxnFIidFN221uIQCqxa3U9dpa1bdTeyfDMZMqu1OtaNnapq2qm5E7dx5Ul9shIyGEJOPBmcscg0iUEEMwQAchCQhAsK9uRDiKIEAD6MkNwGRMjVAIlSAQTpHqKMMUYwroTohCuGPhhATGSMAhSCBmAHerbuZWIA5vLorPT7M0c6TabFnLz5+//h///Ke//e3X8+NZqv10vBtCSDExISKYa3FVgkaIRBEhUI+MBQevoODUwB0xBj4MQcZwGOMwSNP48X763YdTIF+37O6IEAMPiYUlsIzB2d0AErogEHi3SgSmyqLM3SQiBry/G00abS3nxWx/6l3diw0xjKf44XCvv0dVQ/S743h/nKYxBaIPx1PeqoS4A7tBYpI0xGlMTQ31/m6Uf/zhfllLzrWUWlsDsMD07jD87t3x9x9PU0AQiIFiCsMwjFWzO1VFiT/+8PEf/vj7P/7xp9//9LsPnz7e3Z1iDHuz2Cmc4iLSLfhSStM03b37cHr/8bqW8gZ+SIOMU1BlNTE1QhiCSCA3teaABgVs25AkxTSO4zCNCFhrE9nUbEwhCTMANgUApN2FqKq52gXJW52vZ4qxAQKHIR2jDEzS7bb26Rnc3QmJpXdIhgSE0HeKtWreWtHWtIE399rKprUwB8JvBLRufg/d5JH4TfhVt4AHNe2qwJYzAoC2dZ6X88vl4eHy+Hh9ftou57rMVkt3RUXiLi3Zdwfd5KPD++CtK1gB0F55NE7CFGO4O4b7e3r3Dg4HV2vqrRngarfcaCJk7heLavmOZIpO4NQBUjdDt47odrlzq21ZNisbOBCjgTWttdVcS3csHWI8juP93d3p7hSFf/z4bkjxD7//EdGHGH789D4GGYcYRACACN6/O/34/t4Nlq18ebzm82raDEh3rj35TeYMHWDGV9hmx3LhP3sRwIDMTet1MSubBj8AxuEmHgRCEpGQosQoISIZEJs7E4WOusTkgMzhW4SUAfXjpmt7YgjjEGKiGALAOI7DMEQJKaRpGMc4DCFSM0jqBBR4kBiAxtRULIbEFJAYhSWGmAJEiS7jEKcxYv7Wq8QYDzK1Vitmb9VaRaQglIgiINfmbWtuFbRAraCNUI3MyY3U3BTN+iFJAAamQH5LkUPv8W6EyN5IEVuXTxHgnrGLgD1FVyQEiSkw457f0KrWUrNrNTBEZFOrpbWqgBhiYPmumv8WkO9pNN8SVDlIGl0CxzAO4e7dcTqI+/rw5TGvK5iXUtb1igAxJeZAJPcfPprm8XjPIT0/fP31l79u67OW2R0QJQ2nYbqfjnfj4RTTJCkew7vxMF6v521dq7aXy1kRUt4IXYhS4K4yzDnPlzmXYmofPv3wD//4Pz5++uE4HUrOrRZT+5ZthShRuAgSEqAQJcaJQAiIvGdTKXg1d3c0BOiBQSiMAE7AKcTDMN4fDsdxiKytYzSIfKsH6I5u5I7mDBCIEjMBCWFiHpgHEUKLhIEoEI8xnsbxMKQhBNB2M9pBd2zNm9equlyrtrciPugZf0xCZOZozVrRlptWBTPcvXI63YWpJ/tJkJS80+5YhFmYxTpOTwRAO4tY+zNKCAJo4OZOANwZbkhKFJjHyDrKMIaYgqvBvrFjcwBw6feoCDMBYF9gojZ0fXWZBQA3+PrL8/oyK2Kuusz5L3///G//+vPz04uon+Lw8XgcYiKmZpZb1a4gRDTuKA2Gmyio1wN175yxxOiRQwpTCkMUMP/dh1PN+d0UlzXXpg4eBD/eHccYB2bglsjUbATolm9uRoDifUbGTosKkk4HaUBI9FjX1yuizdZrDkeSgcbjlFJCQAIfgkxRErMQTsfRxqFnUPaLx0ICxm0j93cDjjza+9EcEaiZ922tmyaCA9MgUNdlW5Zcam03WhaKBArDcH9/+vTx/ceP79+9vz8eDmlIO3K8L0kRBYkCs3QjgePxME7HmMavjy///vn62jMSoQQSIQcxMwIIzMzUHSehd6kbu0SepiRyHBMAFqZaamRKQkmkryrZnd0JdjYcmdVtvVqb5xcjLG4o8XT6MI2nKINIvF3S/W7pExsCmCkREGNnYuZclyWXVquWUpaa55rnVraPn/5hmu5uT8cN1Xe8mUTtd1yXn2irNee8Lt50N+vatuvT4+Xh4fnXzy8PX5eXp3y9eN7Q2j6+hIjMHYh+NZrqlKN+T7s77A19M1V3oyBhGMbl/aglBSQhrZ6LLqWW1s00kRlZePcHYNamb/nlrVrZWs2tlWZNe3VHgL68q03Xdc3XWqs6eGe65lpyKfucM6R6OgjgEENMMrw7fXh/D93OmmAIIec8dPMIRCa8P06//+GDiJyv67zmp5d5D9/s+OPNeu63BXw3x3jzH257yG/V3XY2SnMpZBhDdGdAx30jECTEmEJMEiKyIam7EZOE0CliDsTEcFvAEO4TUj+bKEoYk4RIUQRxHIauC0gxTMMwppQkcDBMaoQUOEkQoGFQUw8hEjEyI+/hNBAkgsQhxDFC+ZZCFESIxlqZAKxV14bmMcTIEhFR1UzVrII2skamDrbXBLrR1JCQiRu5Ihkj3GjTRMCATIQQXKu6KtxSanseEXSUAPpjTzGGELhLNDuxp+TiDRgFkTrRpNUGbt3d/78u7djXy6+l3ZEYQ8SYQgppoCBu9VJMt/mhbCshgWuU4u7eSm0MwNsM6wVrflKHx8eHx1+/aN0Q1BXM6YoXoi8SU0hDHI9xmMZxiiERYRpHVUNiV2u1ipC6r9Y2dzC9nM9fP/96vVxqLe+/fpqv1z/+8R9/+OGHp4evz08PIUiK99+qiblqqyWjgQakICmBIBoAooIbGJCRgzPjcEjCDNbca2SWGKY0HIbxcBimFAJ6IUyMI2MDA/CIMBFGwkCYRA4pvTsc9M4ZmRED4bvD4X465Na2Te+HXKc2DcP9OMYYhFANGjiYabOaGwE10NLalov3mKw3pR1JeoKVgalWa6W1am778RwTObMTcSAq1AOEmYGIb1/74e9AO28JW2u2bm3LtTYHA0JX7VsfRGISDiFYSkOKKaYUhhRSitbUHQmDOYECmgcyIQCCvr50U9AWGAKzB34VI5rZv/yvf2eE7N7539d5jUrvh2NiHiWEKM7Q0FsfnbqTPt4CwLvLse3+/RElolAzzzWpBaLIYRQZmdIU//efPnyahqWTnpsBgAh9+nD/8TBGhQG0eTVTUQmK2MgamjUvZrWhe49jdsOmNrAp+1s5ybrmn//+8DTFh5cUU5AgghgAjkRHoglxuG2PqTs89AvQgyAZjbkFNhEMjBKQWYGyQ9XStg1Lea7tq2psdl3W5+v89To/XNdrLltTDnxHo3kPtWZm6nnvALC7TAB6r0YIyICAKUWyQ3l3v87vm8K//3p9vbO2La9rDrJnP3dGZ++duigK1VouTUrdSh1KLcXdcy7btm7b4qYp9FIogVF2U6MYxwOH1GNEc9m2ltdWMAQhD+SBARHNDQ2h7zBN2Zmqu5u2hujEqFWIJOe6LNtW1q2s8/y8zs+mGaye7j6+lna48enhthUDAwM3bdpayes6z/Pz0/X5qa5b3baat3y9Xh4eLo8P58eH+fJStkVrJtNACClSYBgZYwCizsRD895Dczd7wx5srl6KFfUejMcOqGJZ8pXWkZi2Yufr9uvj87xuIaYhDeM4xBirhBBCjPE3urHz4xlLajnnZcvL1kprQappaa3UWkrZ1m1ZtlZaP5kNzM17+4iEQ0xDSEKEpoKcYhjGIY6p+wOg2rm2gH1ihU5AGVMYUjLzwHxDFmGXK7w2ijd/k53Tabo7c+2z+76HfH2Z+bIsA1OgoetpyRzUGIA5JJZInEIYU5IYQwykioRuikTMyIwi1C2IsH9nM3ADBPNdco1MFJmCkLA4dDVKEE4iQ4wpSGTiIKDRGEFIJDCQDMmak4gTAhIyhyhpCBhDtEqR4XtpKCEhM3ogB1QPKGA+SogxEQkq3Oy/Xh2SOhsNEYMQu6CrY1RGjWiJzcC7jUlTRyDfDegcEiC6gsGNgIXe5aDm7q05FugpBsKMgcDRFVpRd+9i755mZE27s+dv7qvfTu37it1vOnKknQMdg0hD28qaq5dtfqm1iogIhmimXou11sxoub6EoMjUWn18Or88PCO4MAOQG/Zg8U6p4DTF4TCd7o/H+8PxOKSxY3Vas5uiBScyVzBz0+v1+vT0+PL8nLd1vs7bVlqt1srD188vz4/H4+n+/rW0g6ppM+uiD1dhHhMLYTPsG3QBFhQkSImn4ziOqZZcyxZiSEMc0zilNKQYA6LWgJAIRoKGTuBOeCCMBJHpEPnj6fiPP3y8i6MQIwCj//jh9On+uJba1LSoOA0xHqeRAgF5IyOTUSRTYwDXV82Z4W8C2xER5WafCY6KoLvLAzKIgARwdjVk7uxJJCIA7wM93kx7YXcf2lVO1rR4K1trFdHQoWuswJRRAxsIBmDWsB1isGGcUoxxn9opmFNRQLcAyuiOqGq1qKkSeww8pFAH+Vba3f/y58/WagYAoigBAQcMhzGmIMwIPd6oh0u8Mlj7ktI7VXF3yCCkiJyQsZmVIq2xWUJMxJGQg4RP95/uj9W8qVfdS/sQwhQDLjlCM687YqGERt7QFTWrt4buzIxRrHpzHxkhEr+p7bXpy2Ve8vo8EzA4uSAmgBPgHcIRcUIQJEYg640UdrYeIBkhDjHcHcPpEKZRxkQhVpYFaGl1nS/1fLHzjEumta25Xrb6tOanrayqDWCaIqdaatM+FN100B0p3ctcf1772EDATJTiNA6nw/EyfbfcbbW1ooHCbZeHhM6CaQhjoJEgIBFKGKY4HCSNKLHkfF3LZdnmdculqbsgRRFBYPIoksbh+O5dGg/Lcp2Xi26ZQRkbAjBkhsxYGcXB3KD7JQAAguA+B1cHdydzdWyt5FbWsi3bepnPj/P1CawiqLZv9hU7gxrADaBnXvUEtpLLtq3zdbmeXx4fL0+P2zxvy5yXZbte5oeH+flpuZ63bVVogB7AEVlIlB0FTMAYwcAVeuIWESLvuJirYkMnBWQnNwUnAsEG1lrlvBGHvNXry/Xr51/O1/V0d4/378aYBJkcyIHx+zArgMvLxVa21rTUslZzq2rSWqml1k4nBwIjMIeOVQt0BjYCER2GdByGJNJh/EHoOMbpOCG4NdNcV8JIFIkSS2QmdzDdnZHxO6j9dofgmy+4MQ52M/keXdLpB29riZld19VDSCl510MoQFM2iMQROTgOxGOMvZqYsbRmxkSQgoiIRgPg2LmR7g4ITICOjMQA1OOoe2oPo0OMEoUCYxNOQaJwJwRZFCNwIRZGYIyB2EHYCZ0Q9+/DGDgYE/M3uPfbqYvMgkAEkuJRkMYY706nKSbPrdaG1hAMUQHQTbvQjSgABScyRhBjUBGIkcwNWmtFq/e7nBiIEGKoDq1aVbA9a6cfftR5oA0rlNr5whH3RF0hJDNrtXS7he6r1jle/j15+bvSvvPhOzm+M0rQO4mfCLRtm61Yzb3NSzOjEIMjJiZzLxW6pUbRvGxFGAj0clmvl0JEKVEIwAzUW4cuPllb3tblej0Pz3d3d8fjaRrHIKFHj7U0iETqC1h3RJY4hDQ0tS2XX3/5eyAK6Ofz83w9p/Qtrx0ctIEbMnJiGmM6DMNpksDYFCQMIQ5WaYuWIh9P8e5+OhwHba3WKkyBiVmCSEoi5C07mSa0Cd3AAhkj3TEm9xFpmEb6keL/H9clExG6I9hxDHfH4ZI3STgN8uF+7FkFwOgIUGPdkhCMgY1JEbkBNkDuqP+3x77zdfpMRUzCSIkhiYrU2gypIahp65yBHZx0a9VbD37ewfpengicHBCM3NyrWUGrAA1UoWaohcEZLEFzqh5am2D6OJTpKDGFENidHZCk9/foRs6dEFirrQXUhRhEJEQ5Y/xmR+f+cp1dG0aRGAkgMBFz76H3vJGeHtCzKLoaAQAceq/SoVe5NfQM7tasFsoZVbE26n7DQnGKAjggWQ8R7SSeTsryRmiMCtDTPxlAXlepYEbgUUiiQFddAQ/if3lT2kV4mlJzXWtZt7JpRYQAOKFPBBPCSBiRApE40a391puQaJqOP3B4P5wOOA5y4jSuISxAS378dXu4Pl62Lw942Wiuuehc7VLbpWoFd8bqmsZ4vVzm83m7Xuu62lRAR2B63Qvv0lV45cF6b5SEiL9vGZlC4C6QDiK7DnAc0odPH96fxilyYEEKh9O7+4+fhnFEpi9ffn3+enlc28tmL/O2zNuH0+mQRvBmtRkzEgzTcLi7AyZH4MgHG5xNoozDFFNkNsKK6FVrXmcAGFIaOEVBI2+gQCiCyAjgrlZFA9VALbErs7qaGb5Z9Kr7WrRv11tr6NpKruu2zNflelmuL/P55fryMl9etmXe1rXmraxLeXnJ87W2DahRICRgQERsbpqLOVhmRTJ3UBOA2DdOQVyoKaIZagMzB1ciQwIWl9BQ1AkMUU1LK1velrXkEiTc3b373e9+fzrdOTgzhRBqq1+/PL5hyG9Qr6DmzdQMCFWtlEZr1WpTGD7e3dUwaJdM+a36EHYx0xDDYUgpBEEKiBEpASTvD7l2q9ggMqV4nMYppVrK+eVsauvWWmk9hUQdehLMTvqDndS+D+iwWxrdHK1UTcm+OdgAgLkv2+YASY0dHcUNrTRoKg6sxlWj42G/9QK4uzC4M9EwJBFJFBz5OA3jkLwTlJsiODGgkDO72SEGEYlESlapz2nQaVL934G8x3o4d1Kgu3QyQx8UHBEIjNGRMSDjLZnwTY+ipgrASCmOKcp0dzzdH0+fjtNItF4u18tVty2X4t3upAGABRKA4MBtZ7EDOIIkmUY3tZIjtoaKTZuZ1y7cQObgBAi6B1cwIaE5qWpr1cxarQXJDRCp2/mbgzbTlnuDpd1GFLHntv+Xpb1fO7fuZgXgwACEsKu2tGnN1RSAEAcKicPIAsgZzfpfMfBSa205sgbSvNWclRmRnBhYsCc9do2wqqtm83VbF2/ZWwE9xhhrUXcUGUJKKQ0hxm62koZxqM0ctnm9XK6PD1+nIa7bvK1za/dv3geSi2BInBJTkjRIHFgiYwPv6aiBWJAjy0HCRDSAG2EgYTMy81qMmxkrg+ZitYA2ckVTNhNGdrdcMddDtCGEw/tTPY6dMYdmSODkDSySDYncQ9cPGgAAxUAHDzAO0X0BX92MxQWQCb4v7e5mrZk2NwVwQARviLt9Z66lbTMpWKnWzelrgZJtWzxvuM50GLqFvGlVQzdjdPFGVrwVyFlzZmgMDeuKNXfQkWql1pgRQ7s/BR1HI0HkCC4Ie1wmABia9jw5KA3XCD0moH8VE8hvnhZ0QGeCwBiFokgP9rvl+u1W0ej7Rv02gCLekgiZsEuuwVEYEd1NvRZoitpeJQfERMTAnV8I6IBmWrpZoTE6MaDdhiB0BVe1Wqq25moEJgSRyQUCkUaUNy5mzDRNw1LyspW51HNeAUAIr+SJYWQchCcJA1JAJIdaW651q6WpMtF7xKHpHUoI05hOPBxMIgFkWp6Lfblul+eLPc+0tFJsa76pbepGwIGIfV23dVnW6yXP17LM7XCyNBIEZAG42TDvxO7d5q2Heuy5Um9eKcYxDWMahhSDBCJ0tWkcj6f74/0hRSYWoMCHO5zuNEYzu1T8ei3nrNlpbX7N5TgaELtqt42rqtW0uTcHQ2YJgSgOHJMECYSsrmiF2dWK1QXBKYA4BkRHQ6qAxF1PCiiskc0CgDKOiU3zRqWUtxbxqnZe1q7v8rLZtuT5ul0v1/PL9XJeruflelnn67pcc95Kya1mzdmW2erm3lCAE7NwAER1rVZzyaUVxIpk7qgWEAfmGENIZkJKiO6kyq1hUwMyJANCJ1IIzbUacmtbLttWcrGmRDwM4/F4dzrddzNwYoLvje7VavOMQEhw835wraalQbPI4ZhGQzHdtXfgtisL3N0tCEemTgsVpIFlQI7muTUtPX4MQuRpGk6H8TAMbr6umUm2orsltnZPhG6YY7vs7VXhvq/h99pA3fDF9LdTu/ulNgx6QEokgMEUyrKhLCQXyK6yNVO0BtZjTXftByMJoIhFcxfHWqxwx6jBDMERiRTAWlAbAQUwmqlbY0iEgcAYB+HEGNjBIAgaoTGBoCNiQHRC6XbXwAiRaRAy4aiEr2jmt9JuDRRJmCKFuzi+P9x/evf+/bu7aSDg+Kz8sp2vCKvXom1t2oGrxMbaAFEBmiEiA4WB4tG0kQlbDdbMq1lprak3EGQRQ3cAYnhlgpJ3EdW+uVc1RAU01848RQVv2nwPfXftWSBo7b/Ja7/h/HvzBrvYYz8yCUQ4xsghDJPcEx84JMLqfoatxcYgJIDolWAV2Bg2YQOoOx/FwNRVvbU+U2D3bGEAZiespmvJWMu6zLlkNccQ0+l0dzgex8PkgGkc1d0A1VHdi+r5cql1a03fYhEIcJARxVx0IAwYUcULAjipY1ULVbfWmrWlVrX5Mm9kpmbNsCl0swChOIUwMrMty7bmOje91laqciDJ9XJeT3IZoMbq92u2VrsRALovrT3X+jDPf5vnc9W8G2S7uZPje0p3EA4GSKxaVlcJGGNw6Ty2N898zWV9brXUUlp3t93Wti61laYtPz/a+SkSByIDJne5XvR81uXqpTA6jYOXWkpe1rU0R5KBdITC2xPMj7W0teEkPohi27zmCtQMbNuglTikYRAOZhJWhaouYNL9aXcbKWgGpuDuzbF3bQ6kRmZY3y59EN9/vEOtABaYpxiYpWPKHR2ifYHn6E77Hgu6J1YfHHZvboJOR0opxCQkCKBm1UF34B7JnVzRfV88kwM7oCIZIBBTYAZyhsAQYiGu5tuW5+sKZWNvrQAHRAhRJIIAfgfIM3FKqbpzreCsDQGBkCohCnISGRJOh5imiOLN13me5+uz6qaNyEz8d4l1DDQOMowhjRkDNGvGq+JF/UEt3/TTtZlWUHMmjAC1tdaqlqx5a+tcl2uZryUknA57tXtT2vEmgO16d7XvPfUAjtMIeuylPcbQsZAhRUTYctmKqUMzgqcrf36UEInoy5cvn78+IVIaD3GtPG9O3IMXjDg3q8vaHp6e1ratueZMpFFg9OiGFpDIzYCYISC6CYGbW8utupCZe6ul+44RCRKjaiDnIY6RDzGtaTqfL9fr/BZ+qK39+vgchQJBPb+sj1/W56f18nKdL/My57zWspWSS8lNW9NmtVotaBVdCUGki8ZEHL1oKyVnvWhZHQp02qpFxEE4RQ1FLYgykbuYSauszZGNRVGB0CuisfAaquXrXObVmnZfvFrblotsWVszNwSv9bu8dhKQwDFERtZq2qzbSLGhGaK6N4OmoA17zO0enQwdHleT2ps7RiY+pGGSGJy2reV1VUR1kxSm03Q8TodpjCkiszrUzuFsrbVqyGpqvqe4+s2to48G/Ue+VvfX+f4tjc4BVvBAWGIIMZGkVkvZrpdZ8SlHHhIHYDRBDMIi1GmYgIIUmFnEmCGFfH7hccDASMRAQhREhIWZ0Tw1k+ARt325TRDcAdGiRKGBUIQYRAmNyYUV0SK7QxAU8oAwCsOYYh3yIrgRO6F+b8MMbuDg5B7Rh2LjpsOqQ+MjjEEsRjgEvDItfp21XpsRk41xioDNa7CSFY0NEUXE98hvNjQg61NRt4onQnRB1B7LCfBqoeKAKJ2pKoF67hGAIzBRCLILXQ3UXM217dN7rf91qGuXcDa3uifOOe+XjwC7IUDkEON4J+MPHE9MYrbWauotWMDGCgheyAM7kRnS1o9odzQjVWgNX1Nlb+uF3aNPtea8msHlsixLrkVDiHlbS9nU3qVhimlAEQwR+4YW4TIvqqWpvj28COnDdD9A4IyijZR0aeta1RSacYg4tlbBi2nTclZtm7fszawZ1gqqDcECxWNKdzHdpeyWm6/q12pbNUaIzZZs66Wk0sLWbN2s1p4uj+7XUh+2/Ouy/H1ergBVGEWIqdbqTV0acSLH3WUQmksgZtLdyeP1jbS6rden1lqrrdRaarWSvWSrTVstJas1FKaYaDiyu68LPH61r1+gVjkc+OPHui0F4OvXh2WrDnQI8D5YXB/g8su52MUCj4IHYi1WsyltDdqyYC3kU+SRBRGoVtuqNndBCAKAUBVq89b9Y1XVe16cmzU1bAazRDh8u8of392B5m1dwCEIImHVHXyHm48H3Jw9aOf69zvDCZ2JhImFmTkESUMcgwRGQ3fXbkGKAGigzdwdGHy36XdXg1axWadQOpKhE3E3Pmqq87q9vFyC6xhQO+dgj7vbUxPe9igd13BDbaDVJezNbhwkDEHGJNOR4mgGFdpK+Yp8RtoQGeFAkBlVCAJzEJEgINSaO1aDzeFqvnSLHjVt5gqoELjPxj3r1ckdVKFWy1nzpt3yAV5Phr7AdnS01mqpJeect/K92uowDmjT2ENyRIgQHJhJW5u11FZK1a1aVqgNiFlYLpfr09PTMAyIaGaA2NTmrZBXbUXNbNmes2I416KuFgSHxIfStiGEW/C5sMTYXn0i1FprWDuGp80dXMmoAaKquWpnBApz5L5UlbfwQ23t8fExMAS07fHL5Zef1+fH9XJe87LW3Fprunt73ahnCqZkxjePS2ESEfEOsUOtupZ2VcuOvbQnQhVRhQjoTibE/SirTlWBAZxaj6dtTgqBubWW56XlzVtzx5bzOl8vL89aa2tqpmCq9t10xUIhckpRKFSqDZo2I3cw12Y513XbLOduG9BL7S1du0cAOSA5IQh1OZxWhaLrvF2vi0duYCHwYRrGFENgInbAZvvza2qqagjaWmuNiJmbUDNhd4b9R77y581UlVprTMRv8+scsQpbSnQ80HTgEGqpedmy1kY1gCQnjISRulSxzyQMJI49GoeCQAo4DTBECII9c6xbzDCHG6ZjEnEYjKmRawyWkiJVg568bgDqO85swsjEaoCEeXNlKiW01iNf1btSDdC+w7TM+ndgBXEVUtoq5ArZOGFUAYvkiT0HCOyMjsbkQzoMaE1XUeDuYopIhPsy3GEX8b2aAzgi9Che1T3Pw9F85zwDdHkNh10wCe5mCkBdlWLGZtaaq2pT1dYb+f+6tBt4dcuuxRQA2JjcZG/VEIEdxSi6JIoTxxEByCp5kEjBB2wMu4luA2MD7LAnIhmIu5ihNm9lNzrfg8gA3bAxVDK31lS3nLdtK7nmbWut1Faa2rsP+O7jYQjH6WjDMEoI2/W6rItpvZ1pt0eF6B8//jSna8xU5yutZd4udX6WnKV5Okzx3amGEVH8mvPLTOuCebXavHVilTVEC4x3A36cArEPrM4VeHVcFNnw4FQxbMZP16Yv23K+1i2bti6EnZs+1vb3vD1sZWXSRGmUEOO8tO1ajKGwEWADf7Z6Fes2oLX2lvzbOyk5X8/PWlutrf/DW4PWMANUldrEWjATJErgCNAarCs+v2BtgRi2bb1cni4v//anPz29XGrzd4fh9++msc24PF+rXY3p/fEuHciwKV0aXopvGaB4TdgKcoOq9ry0JSsZCGIUQLTSvDXXPg21nhnm1tRqtera3N4D/O9/uBVE+HA6eOWvZc2lVe25M62Z3dimgLeeFcAJUQQDkTAGIiEMzJGZEQUxBkkSB5HAUHoRA0dwNqeqthVw4BSRCdW9Nc/FVcGt+zo2bVYbC7BxVSiu1+vy+PRyjBKPw+6k503dPQAyv/XeMbNSWtlKWUtbq20aJd3FwzgNwyHGQWKUQFKLbvM2X7fLulzKVpoZEqIb4D5HWwNQRmdwQWd0RDAAvemq1NANe+NjPWYXyZElxGEYhxgDMbl7aY2z6W+kSl0KRlpr3tZluZ4vL/N8eTtgjSmipdRNgDqVAxDAyrrUlrctb7ksuS5bnbdijojUWqulrsLX56c+MlznuZXqWlWLmhm40YuhmCEBD1GGIYxDTJF5l7RjCGFIMcaeh0DoUM2oNULALkR311rUrJRaalNzM6/VStZtWbV+5+mvtV4fPhMYeFkefj1//rlcznVbstWyjzF9wOxEenJ3cAIjNOzkuz2a0aGnODWDqlaqZnU1QzNgCgAaxB0ImUJkQDbFVu01VQnA3Ku2TVUYQis5l1aLaTb17fpyeQikLaXxNv0aEPJ4eDU6ZORAIsgM7N2IGaq7N7O11qf5+vjyojmzWxDmvmkCgG4b5+BEcBM+X5b1SXhlIYeny/V5XcIQIJAgTTEwgWlrxtUZ1GrfEOzLUa+1IpL1MB43ZJAk6LT3ivvbNd05nG7uY3tTSwh5muL93eHTD9N00Ga4rqDgVR2qtlKqOaqxdt6MS0CWfbNfFdSZGEV8TJqCMluXbjBTCMIkDtLnyz7iB26BMbDE4BycQxROgVj2xplZIAgEMWIUKXkzovr04tcZbYNt1XXRbfPx8BsanRuqkRN27Q9RrXWrdd3yyEzrUq+bLQWqEVCQMIRQY4QhHgbQGhyLkaiCOUAzrdtVe3AG2E1BTV3IJCREpK5ozcwcDHf/vJtRiXCKUUR6xLkqNrRuX2ZBVBXA3Jtrc1VXg/9m167uza2aFVMAFLNgff8COwnhpoEGRCIgNMeezynIqSlxU2tqytCod0vdYRR3vxcCEERDJ0QQFmbq3w2AVdHd9lAYACAyx9p020pY1vFQXI0TMHMILEzqvpUK4IHljdU3IOJJhpjcTzUD8brqZcmPW7leQzW4M8IAx8AxwGZ2znBZcV28Kmg3hnd3QGZS4CD40TAFR1LkApTBglMDbiSzw/OaLy/z0+NlW7N2Wbp5dp/Vnlo911ZjQMI0pRgOC9StLE9WNlREcoSVrBmm6kTQsn7jyfTSXsrlXEzNXmEyc1AXc3YYqXvckUigFL21QoiquhVsLTQlNa21aFmv5/nludQm7XgVaF5gs6Xq5r5lXYujQSkwN1+KbxmskMxmVsGtVD3PZc0NmpODMCFgbd6aW+2TkXcejtXmpbi6N2Q4DK+XA2AKydCFJaM2UzdvuuPE1G8k6BsmIMSuZgmEwhSQInHoZhPu4hAdg0NwQO/W/QiA6MAOoua1uDmToxGYW2mWs6khobbWam2tmWsAjojVvVbNuWxbTgjuQEhMpEW7Lzzx96RTd/RGoEweGAbhUWQSGUUSB0YiR61Na5uXZV7XXIuZdksZYZe+SdvvUERGARqEJ5ExhCHszj9+W2DtxLjOAlQoDWojVXJjAEIDUGu5QlFtam1v3/veFABqrdt6fXh6+PXz5+d5e3UaQYAUA2gQ3n2uururu7ZWtVRvzVVB1Vu1kvu6tjcGtdW6bd1FMectb5vuCLKZuyIZMIIwRW2x639LYWESoSAUQ7ediu4RQDpZixCSkOz0C2TTpuBC7gjVrOvRS9ParH633NWSn3/52b255fX5YX74VfNi2hqCItruN4P/D19/1iVHkqSHgrKpqpm7xwIksrIWVpOce8+ceZz//1dm5jbZ3cXKDUCEL2amqrLMg5oHAslLxkHlKSATQLi7qYrIJ98SALvdajAwIhuqI9gbK3w3kI6wcLWB3bt5UIQR6J54PPLpdmugcRSJkHAE6qCbd/faydC7NvPurqq2LdcLoveahzNdBERwSk9/O7whEFnylOckhZDRKDhMddDVmvbrun65XuqyoHvJSXgXKu4mrIQpWw5A7dA5Qq21SRIDXrZtqU20UyJtigG9tatZ1Z5qSpJr1dqHz3/coTN3N1dVbqbiVhgF3/i8iABkZr1r78a1HZ8YYL94iWh6PE2PD/l0olz6bdtH1QiKwK64tYgW2Ac/lnMpuaQgdvRNo5kAoojNBUt24SByQCOixAY4bH4ThCIBkRXRKYcQMIekkJIYM+NwkS0kiQQTg7CzQBIrCTDOr7dlWYC76tXbCq7WFckgvi16bGS5ogZ2kxWct8RLkeU2hcP11i7XernVdautNzDLnOYsh3LI0WHdDNFjUIbA3aL3HZW425cNstmQqzEh2Y663WlHd+c+QuFdEYCI4aYY4BziAA4IbtYbKypCjNHlf8eQj7fqbo7DXX187gNSx4DQMA9NoCsJiRjR5mIuyVDUyRS1sTbsFV2RCbMQADDr2NenxEQFAIloKllEmqq57RbjAcNGuMwpFdzNWFMO4N76tlzDNwBfL9fl8rItS+ueUqJUiL+F3oRHvy4c8cPpEcvMta7dXn75orpJU+mYbPebhUHPcyIjcEegzCQM1sMVk2JWzEE20AWiQArk0Tsq4dn997r+vFx+vp2XtZr5CAlwcPdxWQACJOTDdHh++tC7Xq+3Zd0urQbt6QGCEu7eQKvdr+V7aa/97Drc51OZUsramsNG1ovrIU1FCERwmvnp0WtbS0FhZQLbU+ayyEH4+eERLbTrcTpM+UAmKsGgcwSarNdws968GrgFNsROy2tv52aqvfa6trY16+ZqMJy+DVzdu5qG+d3LIgy9AzBgzrV/91x5IGDOpY7GzzzCEWGYQScmIRTEUc4zc2HmoQAFEkRxIAhSYw/pLg48Z4CR+k4QiIECkAHQw0yjhxuGo48Uu4gIrK0t66LmwXRIE5Vsrq4GHoO8AkCUJJWsuoV2dCcSfO/7yzEVD8IQxjSVlUuSzIZadVVto80fd2MnspxhHMTAIIRjmooUkUwsQAIkidMjyYf58MPx4fVwOh8ObalVatBOeMcAN1CAdfPrzV4v+nrW2+q9D6sk9Np7t/V6W67X9XZblmXd1q21pla1tbZcbueX1xcFSc//8jbbJ2EXGek4o9jA3TIspZwkTROcPB5qv67butW6NTV7i4AbM+PIHRkhgePmJyQmZGIRzomFhqunlCw58dhKCRNCmGnvMRbPTIgk01RkT2a7rwXVauvb1q/XDX1rW9sftftXr9tv//57gLo33W56u2A4DSSQOXxX+CCQJGFmkEBWUAAP9EbD2hxjWAIYho742tDYmRu7QZWFdzPrLQAZQk25dXZHYCJkuPt3Dv4JoqEZuIZ3021bGcC1JeZhEhUAaZqe4l/ekJZ5mh+OD0QCQS2aW7TaYhjhuW59e11u55ezahcR5iErAUIURCGeylSmbcRVXK7T62Gec04sBmEe0Td369pbb+pqbgGIzDlNZnBe1m42qPslS86JaNiWa0Q3a0SIwINs5ZSco6vV2sxW93j+dAI47KWd+fnD8+F4BKamttTW1QhZGDFE0NNoU9ExXMIfqTwlLiBi6IphxIDI4mnqZWpZOrOPpoKRzUWbWBczAHMiRewSCmGm2sPQGriBdUQBsqDsCBgGYERK6Bw97HJZa+/piDIBs6bEqr3HFnF4Ox2m2rdtVENA82SXCEac8qTdX8/Ly+vtfLltW3W3xHSc8inLoRRWqLupUN87v3AeJg4wqEVjOrMIA1AMoCAc5CAE2o8QDuXq8C0QFpEEEQ5A6MwCaUTuWniYephHNwez3Qz9f1naw3cD+p3f5Pte3yGc2UWsSJsTnNLnKa0sgaDuLSiBkBr11pWq8bLG5q1l8UMmg0AxIkVEIZaUEJCIhq4ZGHQfvoY6lyUEmYB2owVCDITedV2vCJIEvC99XVyVWSTPaTpw+mafi4jTlIqkMh1Yzc7Xl68vV0rujCMBGIlwqIb2VzjQhyFRS5m6mVkkwAQkiDw6Vtw9F+/rEtSIa29f6/brtl62+oZTAQBCSFBCEnPetyE2lKHNbbMegUQ+E02Jp5SYWVk72Pu1T7cAMxFIWYASUjEwNWBV0JYIJ2BgQqIsyTyc2ZCHYSEjcIR0OzB9knLIs0LPSFMzV2sVRD3MsC3LZTPV1nu36Bpj7mzuYWbatam1bq1rH4s88EAIcA1XcwOL4cxPMK5HkmCMrqd3L8TNGGDK2dy3Tc2dgYhGb8OZKSMKYmJMRIkpEw9gkgE5drLG3fsv2Jz2OQoDaM8BHcwj8+jaTRUwHFRdmwIiJu7mVXUzUxAiPs4TtoawEgIheoS6ARKLCLFDZ3V2xe8YaAGsDJ4BDsAokYgKB5MNeWaM+c49Y6TMSAmJkHlY1zwfT4/TIZOEeW0NaDVSDUDXIjzP0+F4uN5WXjZr7mSjDkSEBtTqt0VfXtbfP18+/bB+/KEfnwIGpyy6tdaXZT2fr+fX8/nycr18vdyu27K19bbdrsstHR7+y9O/fCerhP1b3bNAYgzQRISElAIdgDkhiXDKXNVsgNxmNq4EM1PnGPGViMPqi1lEsnBOkpOknGXKaZrS8MMdSr3RAhAxCREJDmawjEzEIYUY+U9eak/SRsjpuvD6vUGamW7XF/Nu3qFX7CrDxJaEWZjQfSRS4zDfJQZAitSiC5KxeGISQQIEgcSQGQqDBaWhLiZMCJmQIcDNu0YguId1cqUAQUxEjmgIEY7gIsHi5COvbkR2aq0V3IwJ78K1QNhpyqNlJBFOiBweMJgII3XUDQFYGBk302XdgIansCMGAgiSEJU85bIGYkTMJR+nklNKIkgECKrdVIlg2O5262ttapEkI0jv0XuYx5TLw+PxdDqJJGYi3hX0Mawh3QKAmDhkvB+mg13/LY+EEE/HwzQVRDTfQ8WGJzUDCWIeXmhoCC6IM8dRsDiIj9ezc2eNibJAKShiw9kDIfWeUVNgcgQMBYyU/eGhi1T3zWPVCO8UJgEFotSWqw49X0dAiIpm1vW6qim1lJ5TfsiSyMLMegxFzjgb4eiK0calAiiu1hVadyS9Lev1crm8nuu6EQRNIukokdCq96q99l61N4hAEUbKghrDTMMjNEIhdHSSEB6G4C1iXPvDMZT4npSy4zq7YoGQmClAAAI8QlhKzmEeGuARFvS98uIPNLrhQxce+/7vbjxkCCBsh2LPx/r8UJ8eesnFQcxBzZBY0mtXuGm3pCCdffVt6dl8jh5g6ICKgEPSfK/B6mFIxhiISECIwk6ByCGYDywFRcLM2tpU1+WWpZymKROAKSPn6ZTn03Q4pvQGAAMx/fiXPx2m6Xg42bKdIS45GaESgXAkDmEnMLBwJetoSrvKAoiJhCK5YbggCjAh004E3I2jIxCAAwVAPMgsenfVsbiwoQwFiDCKAO2wwevrS3W/XC9ra+q2M54CS+KHefrwcBp0ptaN36mtPKDvnzcDkHpstW/LGust1VVdnZCPp4RUHp7cYQtkQBvnJACb0nk5JvmpQzPsGtgqL5v23rett9pbD9NFre+MhuhjzDXdUzHM3T3MYk+3HSGbOCJBw9yDHMYOYwi5UT0Uv5uuAkC1M8expESwRA20BJiQhCkRZaSEwAHsQIDswOjD3wPozR9r+O8EEpEgEDqCIznupmxuHo7YI1bvYd3dHLpa7UZJMpEDBVJzu1WbUfhwQl7ltow33FRb6+oOxEWSsGP36PHdrh28h/bohopimSJTTAxJSIgBOBxUzdSRcDD+cs65lFJyTvk4zc+HY0bqW73Yy/W2NKDF43y7dVdKXI5zOc15Xb2ZVncdwyB6QO+xrPr5y/mfP3/+4dOnH366Pbk/JknDj2xbbUtWk26yUVjdPv/+269fv57X23Vbbq0+fuj/5f/17ZgPBr6bQdwtWfDusHNXM7sPo0LMIjiN04o+klpH7MfQLeyRfoT3zGIZMnAWpiTMOclUJGce/q3uY3cv99883BzYITSMLJAkMSMCBCEIAJi6Nl1yWtOIV/nWnwSDR6grAWRiQRoRIJhzAJrDCMQTQiEQIgw2RmcUZMmUM0kmCupGlskLQ6Sjh795nUagBSKhh6u5A7qBdUIXpsJUhAPIaWw1YspIBXtgYhBEdPLxPZBZ7FgMIIV9B5yOPHgAd4/em6pqU1VlISF8OB0fHx++vl6va+3azccEYRE2olOYN2IZV3VmKSndjfAhIFTV3edSpinnlMz9y8vLdVkZE1NmKsw55XR8fPz46cOf/vTpeJhTTsRwu21fv17XpfXeYmcsIIuknIqVO/3q28dBiFNKmYnAA1FEjNnu5YkgJBzBAwwphCmLZ3bxIA80cxsmN6joStCFehYfPYZ7Np+QZqLCgQiWhB8f89/+1lK+9X6p7VybWyPvJ+FH5HxeOVY2w3AFaOEV6QaRQdYIQUosOUtkqQb9Dzg2xcRDBu+OgcKlHFI+AU8W1Lu1Vvu22rYCOIBgcV9tO7fotd5e23btvdHoc1NKzNXUe1PXsA7eEZRQBRVtkDU0wMe9RkhCw6sOB+vH1MY0v6tYiSnA0N0cAVPKMBy5gQk4pfTdC/mutI/xHMIhENDvy6EI8zHZBkYoo87Jprx1TdVRLYTpYZLavW3N7S7U0RaDvRmxJ0gAjio1/tQRTjy4/kRjc4QASMhAiTkhJ0Q2cHdoqjdXgk5u1+u61eYwSWFEcvP3QDYR/fS3Px/neZ4Oy8tlPV9iLjpNdSqmlLNEIqBd2DHWTLzb9w4/QLdBUSDYdVewywL3XQgAAhCgAGSENASa4aOMxb26AxIFYHiYruututXW3AwBxrUhCKep/Pj88NeffjjO05eX81qbyDt3EbyvuGKnd3XV2jpuGy5XbJuDz9ZICJYPCEzqu35uUDFbj68vBDi9fJHbrdXNVUHVe8fesTfo3bqpWlNr5l29q5vpUKzetS8A4QFhg89FHEgeZAHm0QE6ugEajFkEB/z1nYYPAMM4IBEKMzGHQA5MiIyYAFIEB46tHY1ACIixUIzd9RJxNCvDVZpoYEsesPte7SIdCzVUJw8MIA9vXreOFpglAIhoa/236xrzPD89zrgXKXC3iK46oAAKIkfXsGrw3akHAB/uXepeuxuGUiQ1IcVgCNTubkHEwuBAgQakiIxhq1fvfrmtwoLEjtQAVotzq1/W9fV6WbfaRz6Qw1gU74J1gNFf9W619a6mPrJ6hEWQaDoeQBu6Qq99LYUptNdtvd1ul7quvefjdwx58xirnzsMvz/U+995F1i5AxFJEpK93XQjHQQfJkmcRqDYEOfcxwpJMgKlEJgQhShnFkZkAAgPGkEhSGOxNWwzwCJoHF3ae3wAkCAPEhlzTOB7wxoARBAZsAYwQAKSANZIGQUFhYNwqEvCDatiIHbD1lAVxGA82GYRjm4SMSOCsDoCy/DdHQu2neh5dwHCiMw0iRRJmXMgDwcoM1M16CNvengJRHh4uDkR+G5NAe7xnRv7smzsl2HNZH23GBvbBxE+PRwenk7zlzkty7a01ruHuRuAMxIzUiiYD+2okrXWA0Z6lXv4CGJ9OJ2CSFImFg9QdWCH3TWXDGHrbeutWSuREjKyePiyLufzrW4diXISZiagMY0Tjaifd0AQ4pwkMwsgIA2GBRAP0wpGEAShYT7jLJgKcgL0PSh7ABm4G97BEKY7CwGAwY6gAEwAiKAE+VAOP3zsh5l679fler2FVgE7zeWjZMKvsDaBYAeL6IANsARh4C1wPKicxbJYJzXAd5KFxIw5CWahEjRjPpaHh+n4gJzU3QIihjmLsyv2bluvtFwsRddtuVnvEDCa3JyL5Aytdu0YgW4YzjB2iRBgPmYQdECJMbkgCQsijGvY1EaSyN39lwD2YHhAFEkITCgjryKl/21e+/3HO53szuHC1mVFuSDOOX54dkRzh96wVpck88xIAaDrut2u27L1detrg7VjN7I7SQqcgsfFMUS3PhZ1PGJayZCyI8FQyGg3b67qXV21r7Uu2/ll2Wq73JpkYbdoa+u1PWaA5/EqmOmnv/7lOM9MAgF8nO10aM8PW9to28qUQBiIRuwAIQlyQgYKAPPWenN1MGaHCHobwUdo7z7TQAAHJKRJeEqUGBOjj7I0wE1EAUxIxBjkpluzFgbiMSBJC89IH47zf/rxw//zX/7y4en0+5evl9ta0rfSzox7F2zdlB2Tm5rZrdbttq7rZYn+DA0yye0T0wxqAyfcnWVqtd8+W9389990uWhrIwaymTXTbq4eFmABGmAOO1XPzO8HbPeOiYgAh1BAC1IMDe+BNbwCVKLm0d2DkYRBEqY8p2/PFQIIQA5Adx4ME8IUOGRkHEABhEDwNv/BUDbuJKshGUEc8nckCkILUL9zQkcrahaA4YYRiYgQzaGrm6qjcxdmIMR13f7xz1/PW1P3Pz89PGUJC9dwjCHrDQ/SgB5ezbbvKNmMUAjDCYNb1debmjsG8JDEIUAM9GeYqjMLDXK4MAuyECeRIWkBIkdUj2q2qt16v231umzLdanXqlVHKw9vnwMGEaRhDz6VVDKLoDCmJCz4cBKIhECuWtfH43yap7nk3CR7MoL07uN469gICXcj3wHxvfGoYpcuIwIxJ2IYxlfmHo7BzKmkkqUkTsNrGokQBiAnWUR4WNGP5Q2Ouch9sGWJ8VvO58AMyCMckFJKJDRI2XsMmyGAm+tIU3tvf0YIWVwCkhJZcDipU7gkLzOmnDBzV6ob1OtNr5t2h2a+raHNkzugbc7GHBjNoWnSYKcI2r+DAPdhgbzzgBmHLjKxjESTiWUK4u7Rm7be2lWtKkhyoJ3FDmaBHu5Bo9YDwHeEGoDXl9cVLeeUswix73TZQKJE6Xg6PD6dHp6Ol+W6bMvw248xdIjkXBBx3E4IIIhM2Aej0vZKxCxElHM+Ho9ZRGvPJLlMxLJV37o3bS/n13/8/PPa1ofT4XiYp2m6XpZffvnt9fW2rm0q5eF0SkkY0cxUNSIQ706I905rFhaiRAiAkoQTIxN4oBMjJsQizBO4eAjyxJQQzGPXnwUGgYc73rs4GjuFCA8KImAMCsPRfyeSxwM8PmYzSNxc3ZE40uPDaZp9q/33L6Iu4BSB4RxBFurAw6WTCEQ0iQLYve+6l/aUaS5yyOmI6YGnp/zhiY8nc6h9C0AWyTmxJVIjb325Xbv1BSgi1CAkyYhcmco0p1IsgsaY58AxdtEpMMyt21AnGAAAE4SPfHoktOjubuqIjnDfCDvsI82wah+9dMpj5VT+N6GusMM4+8u8Kxl3EYljmIK2aC22FknQQ5g4J0giTBmghpnV3pbeqtYetUMbTCtHRANED9W7EYKbhcfIA46diT/8+4lTZsmAEuZGKATGaB09dKvejShNnDLS8Jpp30n6EEuec54QsRzmh08ff/j73y5bwym//vPnKjFimRkpiJDYmVXYER1JDNgsIAjuzH4C5D0/YzhJj5wCIS7ME8tEXJDSno66+70OhJMYEyMx2AhsRHJG3c1YIBEdp/zx6fTXnz7+9MPTcZLXy+3K/HZ7jZBpd+se5AQCbhZuTdVa25ateUuZT1uDriROEYQQQhDEROQe6wrLLS5nWK6gHcyGx4Hf55HYZQs7y9J3lykf/q9vhb87tIAO0DE6RgdoAQ2gE3SMDt7DmVIuJc9znmaa5++eq+HXYxHmFCN+ARkAR2mHuL/VRGMr+FbX8dtP7/fhTndAQA/qBmvtvFQhDkRQhbAgQULC0ZyTR3QdVBNrXbd16/6VCfHTD/j0sG1qDsToga3btnXpCubm0cPfj1eJ6KmUiTyDegWlGOoFc+9DT2wjY2w8O4P3jzReR9Bu6U/jwsJAsAg17+bNvKvVpr123bpXh12uD8QoRCXL43H68Hj4+Hx6ejgchwJuRDoTcMo4TdFqmaZ5Koe5PBynx9O8eQ0OUTy8s2G+E573Vd5Yvznsxy/GTs7Hk7wjJ2Mxb3u9QRaSJCmJjE5lZDkTMSKPPoY5Rm8+5oKRczf4+EARe3rlmPnCDXb+y303cD9HA8wjJmI08Nq7fVcUnbyPCFQIR+3R3TysitXGmSQDETADuUNrUA2bYm3uPSCc0RpwBDlid1Bng+REQGQIOMgIYbs5ZzCBwFh17y0nozBPOB1ExPPBtsWgDwcbggbE+136zgJm7E49vsOCrucbqh6O02Ge56kMlHBEoEqih7CP2v5cVwdHhvNZtm1T1fAYluKIBIGSJEuac86J17YudYmw8fEi0lyKEBWW4zThx+fnx+M0z8h8WdrrbXu93Kq2X3777XK9HA/z4TAf5rnV9vL1crttraqaIWEWofG2+B3w/E4/Aq4eFK4edOeAExHs9xITJZYsbCkiIYvs8eT7Ewl4l/Ph/UPeaZWDbAMRe+Q4AISBr+DOoIm9SswSESGIx4mmCXJCIkSg+6zK4Bg+D3eIQa9CtB2x+u7jYBGhac6HeTpxPvF8SqcDzmXZ2gb7YMbMwIQGEObWDLsiZOZSUpY5l1MqpzQ9MOcYVTkMRpc4HmxA2P32It7cteP+h9Mgd43nGtzCMYgGD+MOqg85D8vOWGFh5pT/14A8vDvz9+PjsauvHMkJDMFN47YAM+c0zdM8g+RCbqDNTB3M2BwUTXmUkjDY7cLQYlfbAALcmTUEu59oIDox5JLzPEs+EaawO6naumnT3lT78KBkkSTJtLsNzuG3h6w3a6REKCl/+vOfKKfp6Ymm/HK9tnazCAZMRM4cIpqkhymFskyWJjXqJhCMTIjISIIkIAIpUTJIQompiEwsB05Hlhn5FuSwx6TSmEoEQDAJzowY6IHNsRm0XUQYibFkOR7Kx+eHP336gBA5pbXy26AYbm5dew+zBEgAw3mom1f1rbn3+DCDdxx5smPohSFXIYR7xUZ3jCCkoIAADuYIJ2Df+4dxuHYGZ4QGOpIhbR6bx+awOlSICtAwGkYH6IA+PLQJBjxehNJ8yI+PDw8Ph8fH9x+HOTUwVwOzPTKTGGAc5r2Ojy4KCOFtZL//2CGTnTU3fOWYiRxp0+jXrQOBgyam3skB2RF2E49Usrv2rg5mquYmzHWrv/38u3SjrbdN1YmYNGhtdrltqQWbO4QR3k1vAQCKyPFw7Gpbsjn4CLI1a2pr7av3pWuv2pq3boF0x3fuipb91gIYVFHYcznAY1dXW7iHq7s6aKAOyj5lobnIw3H608fTXz49/PTDw8en48NxKikx7pMljEXJILKJTCU9nuYP26xQOUVpOE/fnfmx4Yb7ts3d9dt9DW9VFQHQR7835GAGCDv4kARZgNgDw2L37CNERx+PG0YMT3RzRGRm5kJINpZVuMe2e7hZJyBOmZEBwEf6IZIjBhJQSEopZwdYe3tv9hIe3hqOoVi7tRrdIcA3NEYVz1JiDxdycidzMgN3GACEYig6AAWSBlnwkFBG0EjIcjffh5JAJAriXXbm3SMcCzMXOT3zwyOqklbRWrVqX/V6Jj6/GQ4MuwS6J3b698vddVl8bRiRiItkYhg2hyklmXNkcgFgmA7l+FA+f/56fj0vy1prAwsa4DDxocwPx+Pz48PD8XBdr+fbWQSTkJt3tdaVIhh8Snz64TllmY8zMJ+X+vvrBX/FL1/OX758/RIwlWmeyzwXQjR11bAIVV3Xre1nPYYHASJ+93FErGs3pxAzph1gQUQIcuddWZqEQAiCkEHcCWJYlt0Tc3ZJIuy/EPddHOI9tCzGCdpM1/UWh6wlGTsVBGAQUqEG3+AgAAMCDEBzAU/gKXxMLO5gHqqm+h21nJiTcJmmeZ5TmWUuMufI0rvy3SgTxjeIewPDzCnjPE0P8+EwP86HJ85HlENrvq1buIZphAIY0LAbetfqxUAlhpRxB/lgj3uBfeK6y2FHRs/4AUxMkvLgtRAiCv+v89qJWVJO2cxxMEtZGGnYI3gSPUz6ePSHk6c0aLFF0jGniSUQVkKfs9lspOEUfYVBuo79nQigQNpTbt6iA+9zGOzCPySWlHJOORNJdAwmCHYXt9S1DNdVh8B7clG40Tv2WQTUqozMgog4HaZHf2zdDk+PJtw7OXEiSiMthHFluLFfwDaIGeHIeAA+EkiRObMkKgIHhpNETShBkvCIUNQOmD5Nx/78aTWZr7dLrbX3bqoRIwxIGB6JPyAzUgRe3a9gxmKAKyAP52BO0+H08PxBHSlN//gF3+wCVU11AzP0gNbJaVu3ZVm31tWcullT3cyqh7qmOKt/bnbZumufip6yPUmUAIJgCN83qjEmMQdUiA7QACpiJWySFJIiGWIHqhHnrV+arhEVoiN0wDGva4w/jYYJAyACByVORVJmlu8S7Bzgt8tNXN2UIgqLEBGqICbANELGCQiDA3kIbO+m8nvfPg55BAYwIEUIoAa8rNtvr6+wyLyuzfx5nlM4DTESBQB18w60OSy11V5ra69LCyBzW7b2+eUy/B5681JkA69f4rzVHCSG2D3UW7yf2vlUpi6eqbuG9QBvvZsbDKZx69G7974fvYgxIuz4611IPfDv+5MK3yStsBtIBBhgYE7pMOXn4/zxcf7p4+mvPz7+l798+NNTPmZAa31bl2se+1JQjVZ1W7feWphhADlz5ISTYgQV+Y764O67HczuaRbmca/tu2YMwN+kaDuFioQYhSnnJCmN5PWx9Iv7S/AA8zcSTbiPO0qI2YMGp4aZRRLQ8MEebjEYHrarsDB4EC9GjvX+G8a+/Y3GPL7t3hQ9QKO3XrfNmoIDmyWITJajswg4WFM33+cMs3APih2pGHvv4RPzfiz0AceP7CCI4dcFAMSBOHwZWFbLM56MkOUwT/RE3qSt2+11q41Y7ghEuJkhxr20/yHGIyyGy7U2q9SUqTdFxt4VMgFGmdOHHx4543xMHz4+Xs6X221Zl62utS+tV9XmTHvFQYqU+DiX41wOc3G32vRyW3o3JiaiaZrmQzk8HChJPh34kEE4lfT65axdU8qlpGlKTBQRbmj7Knx3rtuxPiRE9Hd8QDP//PVcyjS7YJmUqda+bZXWnjr0bs2cejgGOlFgWCiadOAgAUD0bzym4X4aGBE0Il1in6/vyAd6RFdDMwgW9MLR3SO89r4opm5y53qOszZaMkTDfa8+yn007bVH4LdjPiBCgmAMphCCzAESc8KeuWbWRCYIjOA4QuglMSdIU56Oh+PD6Xh84HwMLHBdl1v36IhK7AwIvuspYaSc+x1e32Xu9MYURSREv5OEIyICYx+0zc187CpGDzQQ5ffUB/hDaWeRXCYPYs4RyMS5ZJFBk4lS7OFRf/xgTyeXFMzIlFimXE7Mzf1Wkj4cNIFPGfAaOrKBHFwHLyoCYyxS7qYL+zd2zwumCIYQQiFKxMS4p5UBDgaysKkkUTN13/2YIAB8iDHfzvy2dUbKQCxI5MKQEjKjDToYJ2ROBEGgjC/sv6H+ou2l64T8SPwx0Y85pVke5iTCRHiieOaIDBsSCz2ilXU9RnqYH+Y/P0wff/rxev388rJcr31Ztau5b24d9FOkP0fOyAb4ObZklVmQ4CVqDyZDC6JymB4/PEKifODfv4LavbT3vq7DoRy6Qa/Xy+31fLWtUbfcDWu3tbWl9aaN7Zeq/21p/7zU1ttDqn/N8/9RQjB4zz2Ke87DYI3GCrBGrAErw8rsJXspkLKJbBbXqr/F7aWvFd0QkCkQu5m6awRECIHA4H2gCE1FSkIhC69h78M3498+v4B2AEtMh1SEMMIZaBYpzMNKESGEKA0i9ZgLAJGB7m0gBSCgAIhxUd/Af72c//vvv3eE4+Goge0xJhEidFcHhJH/FnGt+nVZL8tyXbattu7oyBb+9bZdl2oOFjCVNNecbktOXCRnFnLAgJrKW5gHEeVUCA0cczKRbhG31i+1XWvfulV13cHtvarvrhB3ov39J98YDHei3B343/8VIdGhTD8+P/zt0/O//PT8X//8/Pc/PT6e8vEAOba+nG9f07Z2DTc3cAPtXmtbb0tvi/VNq1rDUEETcqbvBAtdrfXuQxmG++TwjlWKA0aHsfkgIhr6sZ09MHI1x1i0Xy5v6lAAM7O7EerddaMgkfYOGDmL5CQ5mWmv20g3AYCu6j4cuEiEI4DHynHsRYlZZLjZv3+umtqgSqy13Za11+4eoprdi/fc6mhBYGukLmrcDUYSig8aQAA4AsYeV+CjywnHMSuN5dTQhmACuytgzVQHrwUQphmmIz7NMh0RnfMUZknOTLKLke7N3V6Wvq+IAMDMSIyB1n21bdA6WWhZV0E18WCfj7nMT0/Ph7r9sK51XeqybNeX8+vn15cv59eXq5tvdb3cwqFBOGIM8CYiatNAXGsfcjInAhZgSVNmZjlO+TA/Pj9cPl21d2ZKWXKSgCH3CFPY1roumzaPPsQTAe4D03l7Far262+fy3R4MMono1LWdbtdLrz2SREdMaCpUTUpLFmIXZBmkNl5YA+AHoR7pxUw2NcEwI58V+bs+xBAiMG/BIYoGAe0JbR235Qu3k9bEwMc6MJuUwCOMEClQIh9owdNdesW6VvTOJz9zLppY23gjaIL2aFwaLIt+cbeiJQCWSDlhDk5i5MkKlnmko+zpBKRtnVxbxCdyEf+8b5a0PBG0fcHbOy56B6wHPf7Au/yH/AIdIAI22P3TI0AzczMCHH4KsG7BuWPpZ2IOZWZUp5GH8EpS0qFJKeEKVFJUApMBZMAEyCpcCNaERvRRtQSqyf3iNKiSGQOIVAejqADzNidZT12TdOAsSEwQAAzQoYQcAwLR4fwQTndecJ3m8M7dd+/34fuX711S4LTiA4d2KcRRSoJlDeP5F6Yc5Z0KmHrTf2r6u/WCOgL0mviGwBQyQQTQDJIHgcAZ5wdCOPYO76c8SjH+ePx4/Pz48Pfe3/5+rJ+eWlfX/uyaW3Xui5te3b6ASWRGNIT5RfahDkIf4blhZwUalV1JJmODyL5QHwG2Et7V1u3ysiJYRCOrdtt2ZbLpV+vcl0OqgvX83n5+ts5Zv3Xl+u/L/VXdQ18VCe1H1WLuUa0iKvH6rGaLw43oAVhBVwBNoBObElkmuQwQ86GdKv90u1KuIp4ZpI8HyZh6q3VWpd1c3MRGhJYFspF5kM+Hss8l5Rzyu95W3FpNbQTejJSj652vl0R8KFMhzLNOZtp3SozlVwi3NT2osJIhIOnNtB7Zs6lPNQawufWV/dzrS+1A8l5aZkFANVHSR18PLi1+rIs53W9LdXNEO5mmaZhqo6GlIezirztj4kAKeDhL3+Rsusqu9l5Xbt6bXpe+2W110XPi142W6t1dTW/l/I7wYhgrAr9jcACu6Z5n5d33vVdvXpH6RAwpXSYp8fj/HScTplnNOkbLNYlr06tGuRLNVU3xt0Ft67L7Xr+cn55vV1u29q02Tjz3/O2dHfbg/1vvQsMdiky7jYlO6xJyMySeC/td2r0vi0BQsRxJ40NknvAXQlHJECsFuiBzCycSiJG1a6mETFYkkM3Hg5EO0c1HFyA0QFQdXjjjD/6D0c9HMIgWvgWvpn1buQh5lI3ySJJmJiacrPULKklN0F/S/TDe8zn8AshDB78/KCg3WF7lH4Ym2EHABhXFblz77BtttxgOkTOQDjcmZg4ieQko30jj333hO+ejbdbF3HU+1a7RwXEnIWQtlYZO0zIzDkLci6zHI7lQY/avDddrh8uP1x+//XrLz//fjnf1nVb26q2pSQlp9b7ujVz33pf6rbWbhAK3sM6mGeKTCKcS3rEYynp6fFgbsOrh5nco3c1C7fYlnK7SV+7Nh2ammFC+F5H7eHX29LNMU0zSyZqvS+tx7ZuLZTEOCFomEIoemfmQvIsGMAAPMp2+PDCsqgayOiBhBREFmzBDhwBAWYggUQslJgliPtYDiKgWa9uavufCxiABBjAQRIkAWM3gKWIFsAV/yCCUWvmlSACYoYA4dyPHNOxlEyF45CxTdTXZFodHQojkQaCgq/aU6vStgmFiBzdycf2l2m8TMQA76jg2qjFTg19e6zjrc12v8uoEXaFBuyd9AgBHfRSGy60u6jm/Qv5rrTjSGPMQiyESDgyOQQopxxJKpEgMO7SwECuRBf3NUARV4DmYRFOQzg2yM8AiMOK5V7CA03DDIhi5ImPkR2AWTJFBifvYWiBu2A5dg5WjD5lpAYPOsHuTPu9tYiZefi4XnwwuKwzw/E0N62rmaixyJRTejhSX7YNF/IzmFrHgBfgizj7NLmX7iemUMgBJwBDIIjSmn59bV1Inp8eHv/2X/9LpLS9XrffPteff2uv13ZbLufz9XLO6gdHEnHiJy7XNhNzRwDn8Aoay1LXqhY0H05lAqb/9vYyzGxbGyIniSnNk3A4rFv77eXy+vUlehOAh5BnuX3Kv3Mpv37++mVZr0jAuAUezb/2nrSz+83is/qr+avFDfGGvCJtgTWiA5CwpHQs5TBPQaQeF9VLaxUCcsrzcT4+fHx+mor0bbteLl8+f6m1ihATIkLKNE1yOJSHx8M8H0TyNH3H1VQID08QFr5Zf70t//3XX938w/Hh8XQ8zPO6bp+/fiXieT6YWm0VEXmUESZB4IhBNiGikssP54+n07FpyFS2ZV2WWzf85et1qMB1z6f0IVXaul5aX2rbWqeIzHs/qdp77y1QgRgxE02lpJR0JB9HEMD/+8PHp3tp31r/+vW1a2zNXxf9cm2fL/3lZlu1pvdgTB+eEHjvK3bdFAa+jcVDVAoOgAMTvt/0O/EgxqabhVISYUS3bbm++lUz65StRa+GS7VcFm3qnlgIote2Lsv5/Prl5fPX8/m2Lmp99xn6HgEejL8x/cR7Zk4M5h4KM4swjS/kQW0QZrr7jcJAl8dMPxowVN17G2TKwiKZkCOwViWmw3Ge5iyJzPpWVzcbLjWIGBDhgQDh+CaLZfNhOVBbq7XV1vuONLy/rwJ3sA+NqRGuHl47VB0UTGJiYrIQ8+wxBcyIc6ISlGDnphAixV3R58CEd3Z7oDuY758XEiBHYDgwMqbhiwPcmy+3nosBgCCEuXYiKEXmqYw1B+6et3sHx9+blo82yd1ba00VGdP0gMKtd4BIIgRAIiwUDiI84cgmJevefmrPH77Mx8PP//z1119+X2+321onn4j5tjU1a6prbbetVtXS29bb0rbVWmSOzDNjyilnLuUAT8fAMT0FjLBj1bHcbbUfl9y23tbem2rTbW117e+VuhHRW0WEui0yFSnJ3Gt46x233lNR5gjXsKqmEVnkKFlJ7j7TxBDhYM2Ve8dqDpTGE8LUjHSv7gBAFngndAqmIKkoTkAYpBGqYEbD0jWCAwJQUQIjKA1lHTNMM8NE+SbU/N2eB5p1s5tZ79Y1FBhyPcw2H+Yi8zSLn3IccyyX2BbXNnZipgabq683RwxkdZwKGngIQiLMTL5zgwHQiAC8b7QB9D3b+n4OPRB3rdJOO9ifEIAIemMYM+LYYg14I+4I+P+6tBORcMoieYf+hZkkMDG5+rRU/Xp27X3OKUlmYRxCHgIkadt0u55abb3bebHbqrUPCt4e/haBbqFqtZp2F7kv7RDNDCBSTkDGtQEwqSJBhN0ppnAn3I4kpx3x/AZ3vnsd05xLSePi2NUGwh+eH/7lP//ldU795XrZttev6yPKCfGMcRvDa4QCAsDFA7rOtxVeeEnwOElbtBsjDNYnmMfLWlc9v/ivDyk/zEmm2bbWbpe63Wq99bYtvS7aoSubh7IRrV23rqCoEL/37QKaeq9bu77eXr+c+zwR0vvLy9XatqoFALJHHA7euyAjoAJsHuGxVb1dljP9yiLX28uyrE0tIPqy/jPi2Nuv1mJrt2Yv6heLxUGFPEmIOIkN0IQJhGuALrWZ167Lbdm2BsBlOpw+fHj+4cdPn36YD1Nv/fL6SqWslzOjM2FKnHOaSn44HY/HUynTsGp4/3mwCEMk8Cycc3akp21rrUkSh2hmq+pqjoHhrm6b6rhfNMLCdzLbmIAAc0qv6j+2/vHh9HB4mK7bbdPrVs9LXVpv6hYjr3y3GOru1VzNwOJxLk+Hw1wSs2y1Xtf169bW2h0DA3JEBNSma23mCgH6Djvduv1y2bZqy2bnW3u99vOtXdfehxB5byYAdrTvzkbFHUfcH823Dv3OsRq/tBMKBvMRHcC1b8tyeXnVKW5wIy14ynKc52ODg1F25oA8IG8mM9t6X5bl5fz69Xy+btvW79buDvb9+bhPBj42AQiwm1wP7H1kbeU8pHp7oUMACNr/u3f3OYxEqqH3dQSUnEgEicyiWYsAIpGcylRYqLVNe3P3UZ0w9knf7rv/vVdgZiYRZsK6tbrV3vuwDH7/Kix8GGMbODAgIwpGv6cuuMOO2QU5JIACeGJSFAgWQhYetm2MQDzMv980IxAQQTTandilLwSjqSFARCcJxN673q6rR11uyEQUjAbup8NBEHyP38A7izIiQvKE3yvCiSmlJCllCCDilIasAzEyje3HzpKhPTiNiTgylCIBTgzzIT8+Hm7Xa922JCmnggGu1n0FtFxKnqbDYT4e52kq83E6HA8pJRo07LAAGFJ8fFuAISHhMMgZT0gSzjmZunWbq7bap8N3HTwRQLj11utKK3t4Phwx2FMzwBtRoHSABWBDlbCrKamJOKBE4uTkEVfT23JbW9MknLkwH5A1IpvOQ/5DGIymqpdFU6KNa998q0LELMwgcgdlYk/boQAI8pAeVD0CHDCQgROhEL5b5sJovIgDo3tb+4Ir82USkSmXfEp8SIXmDO1K7ULbsmy1u3ZtoeHQzYBSyk2K5rE0GLxB5tFGAhIDEQB5BxFnch/qsPuVgLv3ywCpiJGYhHd3E1OwMHZKwEjAO25KwECG79dV8D+VdqThx8bytmNjEsCEGF3nyxKtwfmqU+KchDmxMMtuUNkqLkuqrfXeb7d6ua2td3MNB3eMYXLSola73WqrNk2llJAkiNjVAa2AAGUkcQ9kDsQ3gcUAsna80x3H4LPf9t+1K0h4epjnKRNjQAAgE085/fjpA+J//u0w/fzvP//zP37+5cvLg6Snef5N7eJRDcx3ky2LuDT/j/NyU/299edDmT0mTwUwEwajh9601vVilybL7XB7SfNMAf221vO5LVvfWttqXau2vhvgIHQLdRuc5JurMj3b0bpdX6+ff/28TIUQ36v4zLRt67LV3g21eXvQ7oWl5Jxy2rp2VVdry7KoEaH2zawNwxnt6y+1tVUSmPa6dbtpNAsFLMwHllJyyjkzDxsYjGhNb7fttrVl3Wpt4X48Ph7m+YePH3/8659/+NOfpuOpe8wvL8CwvEykLQnNJeecc8ol51IKSxrWx98+DsAsCQAS+FzS6XQ6HI4kadu2wbfyCCCUlFCEc3JCdh850mtra2vq4YDDMyciEtXmAESfnp6fDoeXeVvWvqlea/39cluq+tjc3dUmAeAYgnQg/nCY/8ufPj2fTlMu13X7/fWCX79udmaMOfFxmkrKZlFrUwvz7/JINvWfL21Z+/VWz5d2vbVarbU9u+dO4h+34r4nw13qsqfSQ9wNI3bi/K4tuz/gYwwdx9taX8/nLl3iJm2SbZJTKafj4TnEZH6cTuWIhzJLToS0tW3FW+/1crueb9eltX5/b8dN9t0BGSVmbA+GmJORkYiAiUQk5TyVadDlECDC1NRMd17jN3EsDPaum0c4E6eUS5k5p9Z6ba3WioiPj4/zoZQpmentdjXtw+ScCcJd9/xAU1UzG/2FsEjikkWE6la3rfau99io+/sVe3aLDtMPRk6UjAJiVHf1AVjs6xlCzEg9yBlz+IwoLEXSCLUNjMBQCPW7LAnQAw3Rd0rCWLTDcFcAoiA2wNbbZn5ZbgsSEkmi05wPk5xOx6eH44jA4eHWEHdmBckfS7vINM/z8cA5BUKtdetrN5XAlDglGdDGWL3urAZ0IqAUj8/TNH16ej7+9NPHbd1areEYBnWpy22lVyESZM5Tfnw8PTycDqc5l0w8jIXRw1o3M/XwMdkhDX7yMFNwD2dESEyEkva0uKGZPxzfvwoYgUNhvW2LY1BKx4dHm4629ba1tTUnN+YV8OYQ6jc1IWNyJAySHGRmX2p76XqN6IycZWI+ITeRueRZuDAjkRLV1urvX6NWLKyg5l1KKbMIcBIU4lEn4k2DExQRzWIzgxHZO3i5Y2X/DtVKORWex2PTrS3bDc9fGPnxcKJ5LpKmQxYv5Nm79AZL69VaN3MHDKLUJ7cDQDChMDIBERDuSVjDKT+YkqBwCIftGY/jTRx9LRAwODoM5efYwkMAYHAMtZMQAScSZhEBAGfgu+Hh/31pH4xUFtkjue4q3PHv3bF1DAXrsaIFxMhVEgZOYAa1SmvQOq6r1c6jUA2sQTV6t22zdevbqr1ZOJmCJGPhACKOEa2BrVrE+It3KRTAfQwaPxsf2P+0Y7/fXESB6LrHGrm7pyTPzw+HgzwcD6fTI+bpBni7XF9u15/P11+v63lrTX00foGhEefq1dsWfKv4XPJJUgbMAByhEa9Ai/tmDV9fMzjnBI691rosvTVV067aTFW/xcnvfG8Hcso8Hw/Pnz58+vhhymKtV7fBJ3h7Ia3beamtNletSSqhOrpqDLNp3IlMEL03BQB3I6L5cEopExK4Xtvq2tWsebRAQ4DARIiy85YBMHZzrDHGOYIzYk5MlB8ejh+eHn54On04Hg5JGEG1U/RjkXSayCUR5ZyzjAds9xzju2T5rWS1rt57D1MzC2CRQ8lTSuG+bNvrddlaa+aEzmruOzbCzPNUSmZ16A7XpkvXiGCIACeIWfj5MP/0+EgAq/cvt2VVrYNjOTSXEAHDUo0fy/TpePjbD89//fD4dDiWlF9TCqDPW83XNTM8zfnj6Xic52Mpp6mstXbV9A5yXJv98+uyVV3Xti69VtUew1Id3tg9EIAQw50F7glQd5r5frV/q+axT/YUe3gzAe+HDnMCZnfUzf3czULPFgfg9qDoMbFgLimXlDJC9N7Do3W9bfWybtd1a289YgTrd4A8hiMGE8DurUNpV0jft+T3uEbaSfLEgeHfnIQQ0Tz8bmnHiCIpSRJJHmG1N1WPGAm0h9MsCddtGd7amTmLCCK4uQ9259iw7Y7GAaZkoowQAFJbW9d122qr/TvZ2N5DjaUr55IAAAm5WROljthgyLccACIcoANsEWI2N5W1I5NrMHH06EvTzbR5+N6OjSHC7suTcQGN10/MKAzB7rzVbTG/qC3uSJhz6o8nfH74+PxwOh12V5HB3tiPBVrgl/oOyBl+9SVNhznl0l3Pl/NtuXFCkSTCTASDsBYR4G5jrtkbSCIokwBOLDi3rF0JmUH6pttSL+fb7bZFBDFNc5kP0+EwlynvnsIRaipYWx8rdBt+OLDvWoZ41iKABrMNwWkAD4yALN9FkvgY2ntzgG7G08RlcgMNWN2X3oMxCBuKExhZQNyIzoTovlgTU9X+tdaX3m8eisCNCuERUMt04AdJE4gAxs31/PryslY4HvLDNLDgVEqZD5PkCei0LRSWxg4/9i46ArrZZjYm40bckTeDbZ8F9q/MOee3cFsk5DDTuum22LakUhhcvIt3tGa91q1urZoHIgsLS05lytOcp0nN79kIeP+00JGUUUZhpRjy+7HzGnxKEgTEQQEIdIcw2EFqdVXvAU5yD+1hQsIAQAIwhHca8D9Y1uxGH8xCOEguQDjSCALRER3DPHozNIPaQg0RMCUq85BDYFfoHXoHM9hpQoHu0Ltvm69r31Ztzd2ghZlBUk95BPFxAJobarWwPQRnl1Du88872uAb3on/EyAfEWoGauoWAQHuIjKVk6TT84cPH3/4E82Hhfj/+m///R//cfll217WtnWzgATDP4UCYlXdzCzU3BA5KA8GP4I3x1fkK0E18FrpqwKAW/TWa606nGV8SCfdbfBxMadUEjNREnw4zR8+fvjr3//6n/7TX54eTkLgqurfQY6123npoMpu1loX6oFdBwoATAQ8mm/fHUUCOB8eHj+cTg8iUtfb199/3uo27OWAiCMAQJgS09BCmrmZxdCXoKeEM4gQORRJ+cPz08fnxw+nw0NhCbd1adeL3c4Zes48ukkhJuaRV7qzUHf2x7dPo7autYErISy1Hsp0PMxzKUjUzLd+vm1tbZ09gBgCzAMAmeWUy1w4gDb1X843vS4EPic+TnKa0iGnx1Li+ek45Yr+eL2qWThcltqgm+06ssR8yPnTw+lffvj4tw+PPxzn45SYWD0fJptSEZE58dNh/vHx9Hw8LUe91rasa+09y7cDsjX9+euiar2btXtM345W30WuQ+60j+d3+eogXcO3axD3Bxf21fUOtGKSEY+GTDAnnBMmoWBcIDZ36jq1ThEHlo+lwDRTKkw8AFU137rdarus9XXZuurb2eH+ztAJACF4VERmGQVZ9tkVdmY7Du1euAHhsDobRtZ3+AwgRmkPRNyN8lNC5LW11tUjJMnj0+lwmEVItd+uZ9M+jVx7ZozwCHQnAPpmYkD7mG3mHoPRWGtblm3bamvtPWkAEUlSIDFYSoMoxJKsZ01da+3M1LtyR9Pwu0FTh1jNL1UJmxvUbIRkGuvWa9WqZj5Qll3253fkA3YSBCKh5CRJ2CWI1tZuW73WunVFxFwyWpsyffr4dDwcUk4pj/hw3umZiM3i6/84fzvpCIgoIiklSdI3XZbldrs9fTiVUsa2ebgpD0KxYYDtcwLvnzCJUJ4SJXCXnEpJExpZ821p622nKiACJ5pKKXlIVIc1viVOjdtgyG6tau/mhkRjHIwYSBJFhAWMHmwE7iB92y+NNgjcw7uag3Y0Iw0PVPVla7etRSYkASakjKhB0DhdmLvpS9dotfd6bv2qukUoAPVIAIcAs3aciCd0wgB41f7b+fzzqnw8Pv7wBALmnSXlPM2lnHL+tFkKT7g7iO9e1ODq3twREEkqpRq09Fiq8fSNIZ8pHSQNncuY+Qko1Kxutt4CDDGgr9A3q2vftm3dtlYDMCXinHKZ58Nxng9lKtpbGlQhhNjJLTCcR3i/coMIEEnelXbkAdGEj+ChgDCFPQ5RVRWHZooAB/P/rvX/3+3ad5oPwJ48g8PXmxCQMJhUqGZaMTZr0XrcblZrRGDJeDIuBXPCnMPFMvSbt9atWfQOrdm2xbpZba4Gd7nqiNBIqWRJRXJiTnRfkwyDLLwnhOyG3/vVhHdD1/2Uf/8qQHtnDHdHQCZkSQzMAswgyUXK/yNCpvLx09OnP334t//x8//45bfLdR1xmCOqVEcKE6A7qkFzqLvrZ0BANThrXJttXc0D66D1xo4r+oifHIjP/uwz4nSYPz49Pj3MT6fDx+eHn3788H/+y9//5S8/PZ7mKYupNTWi7e2FNLXr2hL4hLut9xjWU5JpykSgnTEAPMwc0Q0gp3w8PpwenpgJISRlYjZXBBTes0LvzKg9ISucmGH8y2EqbQFInHJ+fHx6ejxNRRiCtLkZtRv3Jawj+Fj07AkfRMTEO/UK3+ONgDjPR0spTMcV5UC1edeqEa+37Vb7WnVtCs22phAwmGhZ+OPT6e9/+jCXKQL+/bfP/+PzC1EcS/rLh6e//fD84VQmATzk4yRY6OPTIRE+zvPvr5fLbWm9jgzLktLDNP3p4fTxdGSm83pbeyWWl6X9dl4u2+oBzJJTOU7z0/GQexcGiV7R5N1qWT2Wpm67AfvQOgMBAQ3iGyEiBkC4m++GkLiDgm/PwY4P3vvVe8AT0bBOwyRQBIrgMfMhcRYiwu5RfWBWaCnxNE/H0+F4EkTwMPVqcdn0y63++rr9/HW7bntp34Gi/J2HfJKxTeO9nIyd9sgniXhbeAOCmaLDoAMy0bCusl3ytCeqicigy2ytm20ewUyn+TDM1YhgW7dWNwjPIlNKwmRm4Ba7fw0wU0Zh4WT7cw4AhCDCI921tW5q8V3fC4icy9HNWEzMkpplV3Pt2nvPubdcW+u9qundl90cIgxiU6Otmfm6MQCp+dp07VptyBcB3nSI8Q5oGagGYwErWAqjMCqEgqmp9hYIiNF6MzNmLqXkklPeVYM85iym6PaOczGk9aFua6v1crnerrfbFSDKlKe5MPFYsrubDurS2C7QXb9AIkwALEweYNbUHLAzMiZKh0wiuebeumkPN+t9Ga3egGWIEHFK0yxTT32Tbd3Wdds8Ag3UrLeRkoTdbfB4kGCaCs30h5HKx838BjBEC4WRn1VrU/VAQPScSJgNMAiApRO16KZVt6Vt26Ja3XW3VwWGqO6AJq9+1eXjNAHirdvXal+rHwozPwJDC0drUn12bb1lowOAEBIKDb0ZBFJQJjDZEDcFq7AZvK523fSxfKshYRAd9tX4TlkjQZQIDuXosJP9qrWqrWlX745EnChLKillEUZAU9RO2lgbDTjICVgCKUzBO7gh+BixRIhGJLT3UHeI1lc1JbrLUz3MzVR7N0Rku3eKdFehAhww5Xf37h9Lu98VdYhIe2gxAxBiMHvmPssGtqzdVX1ZdVnc1adCGMSAc4qSgBHE3ZtZD+vRNlwrbNW3GqYwzPOZJaeUc06lpJwlJRKh+213n36+FfPx7d1H9bfDtv+/7w49hJm6IQKwUBIRIeHxm5womNPfc/r06flvf/30n//zn//1v/3Hf/u3f/z+5fXr1/PX18vL+XLdtrU1GOx+3EnXdRhxQARhNbg1u9W2tabm+8IicAcWx9t4RzSJKBCZ+OF4/OnTp7/+6Yc///jh08fHnz59+M9/+/NPnz4IA4Srau/G9PomfjPz2pQoIO2rNkBk4TKlI05JSLvankfi6IHhKeUyTWWaCEFzKjk3EVcNBNrZIrGPECI579O2CAqNTTaOjKeRbXA4PhwOcxLGMLAK2lk3thbeIYKAhz3TbumahbMQMgYiv1vCARwfTjBkNO6uGmpNvfe2abusW9WwIHMw1a32MbcR0TRlkfTjx48/Pj5Oko45n7Iw4XEuf/304U/PDwcSwRASSTI/TD+6TSyP0/Q/5vJyuax1barmOEl6KNPz6fQwFbX+6/WKTCRyXurn83KrNRCAGFFYUk6iYYlx4sDvl1cR0fV+RBCA8Y2/+kYmHzVc+z6170DuGHZxf5xxH1THxYo4qLwEQiAMiWEWPCR6KHIswkyBqN27OiBmRkqpTNPhcDgcZjTT1nrE0u1108+X+vPL+vPXdW1VzWIHEjAderwj7aUknpPIoLGme/hEDJhtlPY9mMPtzt4iGhTmCDOLgJTSVHKZppSyqtXalnXrvU1zOUzlw4eHw+EY4eu63S7X3trhMM0l58Th3rSFGd0hOGJKyGl37HnD4AIgRqusqm7+h6mEiKdy8mHgMf7nYWOy6Vpyrbm1Wntug9Tdu6qamoVZc48WXV0QI1AtFtXNbDPXnZr7ZjXwHnIGQmSmmcAEIRiABld7LMYG+WAEshKT5JRzliyDGThuPSTi+H4UAbCIpqq32+fPn8/nV0A/nKYy5VzGZg2JKMytuWo3dyDYsz8RkyCkNEQMFB7Wq/XaO7EIiVDmIsjEwlqxt9pqa61rVw8Q5pTzNM8jnjBKlFSEEzi21sPDm9alDZpD7X3rHTBYOHy8/9918I4j/hFwKN971xYeI4LPwsM1EJwAMpAjOQMhd8Qavmmv21bXtfub8zAihkE0cGumtr2s8pQzEtWALbhSDonHOYXA1szV0bX2UNUZ0wmT0DASB/SgUOTgzGiyAm7NbzfbyL/e9Lro6THeFm+uruG4G0OP8GHOyAkjoTFYhINrWHftrgo70wMT0m7ZBYDWva5Rb9QWbAv11d2dKEyM2FRNO4QR7M6azDiSpbsBAlr4vbQj4u7ZPPKHVA0Cdltm4nGNAABgUJ5O73iN/9PUPsSj32YLQiSEBCgBs3q71qrVr1d9PevlFusaprBW25rdVrguMOXIDNvq56vf1rhVqB2bohp4IIskZEkj8TJJehPMCt5d2/ENn4N3fmQ4yFH4h1TaP5w9ALgjhAnhjVA6WoJhBQuEkJMwE356ngs/H+e//vjh85fXL1/PL6+XLy/nn3/7/OvnL1/P1+taHWyzdqms4DJMkYfNWduPiZl9u3NiX6vu7/7I9mMZVD5gMoCqdl2bnG/ENJycj3OaMgtTIoR3864wzyUlMKIYIdfI7EgThTMKU916BRvjDEJgqIdv65UZUpaIXorYXMY6/S0HeJ7L8TgfplJKIgQAp52AebcVQ2TmJCJIDDF8ksPQtYMrRQwYcDB1ARE58TTLoaRTigir+p0OYzQ4Yy0UACmHuZl37ayZUk5lejj2rbXWeuu99VaHojbsfLv+8/cvGSk9PTwdJ8SPzDyX8sPTw+kwWeubWeYkOR0Pcw6fp9thyj88nE45jYrqiEJcSDDQPK7L9uW6TNP09Dg/nlIpE+UbnheEuKzrLy+vtbetbbVtAiHfB2DAzgHG+IZOw056G3sh34llPrS7BjvR884+22Ht8Rt2O/nBb73nhSecE82JDkKHkqYsSGQBbH2nmETAHgVp3i1Ma9Pb2s5Lfb1tr0u9LH2pul/G+yn+jucPACISOe2VZn+BuyhrXCL3qX2vWAOt2if2CBGRlKYylTx5xLbVZd3qVpFoPsxPT6fHh+NcEni/XZdl2Vw9cZpyTsJ7LKRpuPvdDnSYjQ3mOYww330fED7Y8+pwl9G++yyY8+ldztT4ClVV7sJZpJU89d7HU9Vb76211rR3cDOPzW2Yd6rHZt7c1eP/prS/PcgjIsqCegMMC289mXkfoYH393H/tt0BgphSEh7YxlAcIAF2fDe251KQipq1Wl/Or+tye/5wOp0OkniYLwzPawpJVEjY787iu+kQOKGxJGZJVJyjWVPrat3QQZAYmZFLSkKl5D71VnvdaqvdzNrWTb2uNaWRvAsYJJSDUc0wejiGIwKGoTVX04BuPdpmOU2HQ77ffOiUYlASYeyWiZDAISAYUJBs72LMHYIxHI3VLHrv3czHXoKBAHYHeBxiwzDw1Q1bb10BsQNBnukgkLMlUbSbm5uSgYIHxUnkTOhmq3VxlIgZPcg7R/V4qf3r6+LIFfHl81W3/uefvn3WXRv0/pZRnERSShSG3sE6RhqdLpMIpcLpkEbrxJOkBIhd++26tmYI9fLaXn+366suSw/vREaiJD1CVRlgSnn3qxnLEe2Ehk4O4xKxGOx+H8Lv4UQX7hFqd5buuFoiAGbo8L8p7QPxGWS8+yIRATkQLWY17bWtS1zO9Xpt1zVaBesAYdfFz9d4ucBconC0ZrfVtw22jrpz/UbwXE4pl1JSyikJsQwtwN1J/tvXQA92Tui9uiN8o2jt/wH8wYQHAHCapqmkcUKHnuU7IvLApTEeDtNxSh9O899+/Pj6enk9X6/X9eX18q///T/+f//2H//2z1//+fnrtbZm/dqghxaWJELMTbX13nvT3tXs7dt7jx7Qm6GH8Bh7DGBp7cvl1s1fr5cv58va9LJsnz4cPzweTvMkwu8vlJz44VDAurgTM5JwSpnZmN4CtFrvjhZEAY4e4bYuZ8Q+x4wRZRLwGQHCA8cHIDzP5XiYD3MpOcUe9TXaOtybbgCiwewEcAezgSubKoQzwjCSFREkASRKhaaTnKb8JKbdcAF7T/0em5FgojRApMAIULfJ+0H10UzVe7fa6rZtS92Wbb1tW+3tuqz/8ctvGUEwUqIPj0eRXFIpOVvgtXfteswkAMAMDt09Ig4lP83T0zynLDEUix7n6/rbl/Na+3ntIOWjpA+n45QkT68Gn1+vy+vt1rV/OV9qr+H68TQ/zvP7SZEIhQd9cyCvsDM9/G6+byPCM/bRzxHu/w1+awFgj3Ei4KGlZsyIJcEkeMh4yDTJSBRMOUkAogd3E1TAYASKALMB8rhq3dp12V6v2+ttuyxtrb29YcpvkrrvD4gIQ5J7FkvEYI6NpcKu+Rou87hLVOKNTw/EWEqepnkqE3O6Xpfb7Xa7LV3t8enx4fHhw/Pj6TiZ9nVZrq+v29ZSKlMpWTKhb7333tz9Te+H+z3z1kLsj8zuS2U2rDj2RKx3Hwci5Xy4R9K9VfcgUqYh3kkDiO9de+u91taqbFurW+/deh+TpINrxC4vfnM0vb9535FG9n96Vx1b6soVAEejNdQRAWDuXbX2VmtLOadIiUagTh4hbPb91F6mgjzdtu18vdxuN7M2z+Xh8cCjuDqGA4UIpzKwR4pmvbZN3WIk95gFByMjIwqMbrybOqgBB8kwJaCc9r1h13XZ1mXdlq1trS51jQ0AOKVcMgQM7/zhcziMdgEJg8BQq7fee7Vt0ednBshvH0hwjqC3NegeX2SB9xUHjkTbMHUHphBS7EBmzcCCkJPkOxAGiEAQgdEZINy0babdDQIUKQscUsKcg7m7bWZuRgaGgEA3hDNjbcprZYsc8JRAwG7er6ZfVvtFfWtRA9p5YfsudUh7N13GLJIkoecgRFewDtYhHIlpN/sphzKpu7qRSEo5MYNqu90CrtW63s76+kWXm21bA2hEnUVJDNEchOiQJ4NhkBcB7g6hTkBjWTHumPj2tW/UPVzVI3znm909M3r6jlLzXWkfmcPDBAbu3F4nQKwIiKCmULe0brl27XavZ4Tu5I7RwwC25kLhhqpggchUEhFT2vG/nFLmlFgSEiNxfGsgvpV2gPvZf9sX3o/btz3u+Pz34eT9mDguKRrEjkEDuc8Cu/XW4OqMQFAhPkxFkB4Os3bbtvrj8+Nf//TpX//xz3/9x8///edff/nyda39stWFBgdS1H2762zvKAPu7/zbYxIR7moKbYCOvK7bK3Ftermtwliy/H5e/v2Xzx8eDx8e5sfTPJVcq7yVk7nkj08PrTbtHfJsaZacRagkDSa3qNWG9Ppti0IITJEEpykJopJlhEnYI4B57GVSTjkJjphyuIdSjT8CBm0baId8GEmAJZDNu4cPkwBwIuE8zyTZgTEfsDw4Um3dTX2Ecb27EK/bRgGHkikhx1jjIhOlEGPykS3roTaratNee1/rttVNzSLit5dLq22eUi4ppcKSEMDcrtvm7k/z4YflcYnQsP/r59++vl4OKf1wPB6nfJiyD+aGR7jXdlh6X82EqG01PT78+PwUQL2r9Xa5XnpvV0R1ZYQsidkO8Q2pI8KSBe6suf3md3AddqQjX3mYNr3zmiAYcvCRxQDD8vKuiUqEiSgzTELHjKeJH2Y+ZJlSEknMogZVLakmI8n5OE/HwzRNJSUhIgPs7retnm+3y7KsdTXvTC4JESUQhhuE8HenY1jKvY3ssa+0xk0ykJ1d/3XXhzsxpcQpUUo8Pr9l3Vq7brX11qd5fp7K09PTw+mYGLdlvd1u67qYWUpSSkqJzIb+X/fz+O2kYwwk5I17ONhYMeyyTYgPZaq5927vlReIJJzdzYZX4X49BPH4hiNhECE78zDiKrn0KU+l1lK3rbU6MHowI3NWBw8atp+x83neqvx+Pu6jwuiJ3Fwj4O43P16Fe7TaLpfrr7/+RgCn0/F4Oh5Px7FAKaXknF3f8ZgBiMWVrrfl9fUMGMfT4XCcckmAYaqISIFBMQI+WAgIuDf3AOsBsavt75uUkgoiMGDDbmYJhIMokBDvNiiATHnKzHyYD9q01bYs6/l8ud5u5m7qasO0CZpqbTUgkMjUMZiAMSwMrNv3ggWElAMJLHAnI49dXRAiGwE5+k6juRuQQpijh3ggsFH4Hsg0qsqY2gdCFsIoyOQjlJCZ8x4eCWOKltHYIJKytJxWkettabdbuy1U64dME8eX2n4x+5zLeYJOkyG6IcV3MLBpj20lYuZEEU6EkBHQzbWrqY3tW8p5nmdzl5KDMJeJRABocLi9N6+r141MBYKJGJCZhj07A/qeA84aNqr7ju0xIhMgJBJ1Uzf1IUMIJCAgQqdAwD4UraP2DwLQHwyMvy/t7kNdambhgAA+su9QAQHcVK1V6p3NeSxYkxAihFMEAgwjsGh7uhMJYyZKwjlxSpIkSUokCUkA2ZEC6A5sBsAe2b2XmAEdvKvr8P227T4NjWsJ/vAVsIdURgTiiJMa0YCxj1Z7mp5HgIgkkYfjgQDC49Pz01/+9OnHTx8/fniapkwIP//+9aW21roDEnMAdFWLCNzliuO73nW0O+gRPjR/7ohkJLiu6pHWyiwIQUg/fzkf5vJwKA/H8nSaD9P049//T0k7qjKV/Pz4cFu3ZWuR5y4HSpIyJe+B2JsitQFxDbiSEIUgMZXEc0lCqJEzgmfZYykBEIMGNB6+NwXx7Y2le2gl31cJJIk4I1GYDRrMkD9LSuV45HJwTM4Hk2P3apcb+AbeEQne+UBclg331gFJkIbfAoEAAVMMgv64RnGPyWq9b7Vebrfz7bbU7Xa7TSWVqYikQNpaW2pdeweEp8Px0+X20rq5/3/+8Wvd1r99eP50OpYkc8nDS8w9esmngz92XdVa77VW8DiW6eOD37bt6/n8O+EuBo9Apuax2Xcmh3tp36GjO7XCYvjGj1I0XFRwZJ3jPVR0pOiMXEr4Vh6YI3EkjsI4CRwSPUz8fEiHKU85I6cArhrWNPc+hc/Hw8cPj09PDw8Px2maJCVVU49b3S7LbVlvvW9MNhecMo+YWnVXi5y+M5oZqZQisq/xvuky3mFm9w54MAuEZZrKNOVSpPW+ruvltlwvKyLmnJ+eHj88P5+OcxJebrfb9Xq5nHtr82EeXQgi6MiF3IvBuw4+9nN5P7TfYAIzczVhPs7ztvXWvkuBQkQWQaN74meM7LmIcDZAHlChu7NI2k3uLLWSapEtS916a7137Z3VeGgmddhcjllob+HiPjwNBcEbFIP7nTlIZvcJKqK1drlcfv1Feq3H43w6nR6fHh8fHk4Pp+PxcDgc1L9D+z2gq12u18vlcjpNDw+HMmVmtPCwIOIgGEYmORURBsYIrNRHNzGO77jVEicWYkJBTtg66gDJxmU0HMvHey9ZSimCHBpta0yvt+utbtv1tuyUt0Aktgg1BXqjyYqzu4xbmb4fqBCkAAjQMHjAPexwpDhboBGNnEMYmRYII3jMQ4KEWBk1aCy1CHFItEZeGAYIENOYUZCJiQsEvgkfiBiYhCmQnLnntLDc3F7X2/XLl365/pDpkOis9kL0csJVJjdEFsLEf7CadR+hGURO4eOoDhqDqqtZmACiiMzTHAiimZLMhyMQ9a51q7Wv2tVrxdYojBCZRZCcBYWZxxO7Kx66q4UNL7m3iJjBGu+mW68Q6sNMHzAI3L2N9MAYFOrY3Vgtvs8K/mOoK0SEae91ezcpI42UmSFKMUWAxIK5CLNn2+G1nbO5L9B47z/uDCMeO38a/jrD7Z+AdnAg4NuBecPbI/5Q1/fDf3+QAO4y4fgj5jhq/nA4cY97Im/EsLLc/64hNdjbg528rWa9s9A8pR8/Prr/JYv88PT0b//87R+//v7r15eX67LV1lVtZxMHESZhZgIisxG88fYe7zcnYkRAbdXcGydmQQAiaqa19XWt56t8eblOJT//+b/K3clNmOeSLVAxKU4LTAjECCIAYEmYGfZTGwg4HF+oCAl69M0Q3ToMSvywKRhu2BgAfq+l+ww6+H5IBAFImFJJeUq5SMopT0i4Q8zjsEGkMh2ePpTHjyDHTfm82HpZt+s1+g1Bj5Ofnj68vQXXZR04iZpZylNKSTgxCY9LgwDRd9Bm53Jm5inJlPPD4VBr7b1GRIA3tdbbdVmvW731ru5fz8svX8//8ftXQrhcrg9Tmcvh4fQ4H0+5pG5d3Q28g25uLXyIODXwtbZ/ni+td4f48PDwf/yVxmNhZhExxEr8rpYQYkr3hW9ARKi6dtVu2s11jzfACMRghsFiSkLvMuhpX7XTrv5nwkSYmI6FjhOdJjnNMhfJSQywja4NIU85H6Yff/rpL3/927/87V/+/NNfHp6eRXK01l3XbVm3q/uWkz8/ZDvglAkxunlX72qn6Tu/rbf6TUTuPsZ32tcvA7kzd0cEYiollTJYVsXNb9d6vlwvl6u5I/PT4+Pz89Pj6XSYi6teL5fXl5fb7UaE8zwfj4ecU4TfQ4XsDV+Eb3087Kv9+1rofvjDuvbWMCKlNOVcS+d3kYKImDg58lDb+DBO8+jcicjdIu6rSYfhbB8RqZQyzeVw6L321lWbdt1/tN5bH0vqcYRxB6543IB7+7vfMHsfYubDz3VnrwOYe63t9fWsvd8u5Xq83i7Xy312n6YJScK/vZDL5bqe43ZbzCznNM+Tua21Dq5rklRyyTmnlJg4Aqypdg2LQSLf9VEe4YECwgI0WnLpqqojsNd2dARg7yvojjNSiNDhMH384TnndFuWZVmXdWvdVKNpNwMIYMIkIxSek47lMufyhsYDAKKM8KTdOTnQDW3Eh4AFWozIJUAw3HXN7MgBTAHEyA5ptxmifdgLHBFRu2c5IQUCAnEAdY9mVrUreHff0yKJQKQxLYQXiBez88gCd5gabgBryk4ppcmJESmnXO4s9PH1cDzORxllFohYkuSMkkKyUWqOpOEOChjMgTRUtsgdAGut27pty6LbEnXj3sV8WP0RJ+GEJE4M+1wQDo6Itvduo+Mmkl2X2FURkLGPLeng6Lp7I0zo6hGA6qFg6BAYf+Cg/VHXjghu1lv7xlbDGGHqsFtbBSOiJGGOnW7iRLDbQ+7kA2YEGRPt2HUieqD5Ht03vDRjON3vmNcfFuaxI++I40yO8/6OfXJfheH/VNrvPTzsnNW43yce7jgcLvdOY7d9QQBwczMNbWYaTkJPj8ec0oenx7/+9Ke//OnXf/3Hz//f//jHf/zy25evr7d17X1ooHB3/EiCTF2HYy687UbuL873xtlUWJll2Afs32i4u/dudXga3b+YMGfJARJSPfdIAlgwmCIJi4w8edjXpTuVgZMwQ1jbDMDNMYZ/KNLd6eyOvO9cycFxuPdfDIDEnHLJ05TKnPLMuQCCq4LY+D1OUOb58PRx/vgTlqe4dV++bJsur6vWK7jio8DTtw9k2farT9W02KH4lNKUpAAlARnasf3buKuriUDkUIqfjk21da2tbrUu69K7QWA4mMba+tnWgLP8/rkwT8ynXFLKnIsirR5Nbfx43erXdT2v9TYicZE+X9dGn0e2ytPx+OH4IImJsat11dZVzYS/HxOHRnD3PA5V671rd1V3g53MiMAMnDAnyplyYiaA8D2PeZArBwUYAgEEMQkeMh8nOU5ynHIpWUQ2hTAfVnKl5DLPP/30p7///T/9+ac/P3/4OKUpLNSt9brVW6s3inbIIE8TQiqJ3G1rvXVrHY/5u9L+bjgfgBO+VdnYF9xmZsyUMpcix1PJqSDKdVvPr8vL6/V6W6bD9PRw+PDx44+fPuYk4Ha5XV5fXl5fX3vrT48Px+NxngsztlbdNULdY2/d7g/5u/HhzgV6d4rNrPc+gs6JWfh7EzdAZkFy3K0692z5QUYf+InF7vhwBwvAIyx8MjXTUdJtfN6999baWlutfa2jIuJw5+S9QeN7Xs79vQKPGC3B1urWupqZB0G4x7ZtrlrXdV2W9Xq7zPM8T9M05ZIlz+WHv79xAi+X8/mrtlqZaJpKKdncam2lTCkNi95pKlOSRIDq2lvXpmEOgBQ7wWeMgQTIzASInJSFe99ia9YGwRPxji28IQyh4IDopaSPH56Oh3nb2m25nc/XZa3r1tZtPP8xImpyTik4eyImSZzzu2qCiJwDDHk3XHQ0GzAhEFIA+XBIGXV7GPRRgDgyBbIHgIejmbtj3O0xAjEYLRhwpOwMK0BD0ojadatNwWtTAnQCJmbACgBhF/dL+BWgAap78kFIljzN6XAIKUiUOfK3tg0A4Hg4fCjHYXFjEYGUS6YkkLJLakFoEQAGFCyOVLu5dw90h23btnWr66p1jb6JtzwMk3YBXUIQDIbdJyaQHBxoX0cjITMyoSCihwdCxoQE47OjYRrqnhEShnoYUFdrgWHuZN9Bc38MdWUaPlGwq7fuHuywu9whBHDAHqG675yGad0+5TDyW+QLBgDulxMg+L2Q708h7Ivwd3wr+EZEQ3xjYr0Bd/gWhAOIuIfJAYzoz/cvZPdw2X2p484k2t8feiPmwk7BNVfrXXvvvZv2iABJh5yPD/jB48ef+o8/ffpPf//Lf/3nX/79n7/84+dff/7ty+9fXy7XZa3NI/jtgiQiGmEQ37qNO+QIiIH3vEIhEcLCMSd8Os2PD6fHh+Nhnso79/UB2AycxdxbuDk7UESAGyKwoAixUOhYXw1QhMZqIMKtG0AwEgghMA1fJCYcwS44kqhgH9l3vyJhyXmaynw4Hp9ymdW99cYEPoobE8nh8PjhcHpM88m5hNe2XawtiOiG29pLfh/qCmbemlpEM2vd1tannA45H6c851QSjIJHw4FzJBbvvREFQEniE7jPatZb21pb13ZZ1i+329fr7bIua6sRzoS5ZCf4fL34P+N/fPkdIFS1u6vBed2+XG6XZVvWTsRF8mut6fJymsrjPH2Yjk/TzELIaH5nokZcSN5RU/ZYItMwc+vWm/Y+UNx9uU6IzDBy60dYYmJMjCMkQvDu7YPjynOGGFP7XOQ4pXnKuZSUE7IQOJqCxYg5SYO+bK5bXa835eqql/PL7XrWeuOoswTM7JEJIzF2M0Zk6ASY5I+iklFfEXEc5Yj4tomLEOF5nlKWkhMJquq61Lr1dWnb1pnTDx9/eHg6PT0/nE4HhLhezrfb7XY5b+vKwvM0HY+HnFK4d3O903cGo3tHkL/t2t8VeBpEQwx3AwVEda9bq6teb+uybebvttQ7KPw2RVPQSNcgZo59lB28/mHodG+3xzgyftksYnzeal17rXVdt9uyrUvdVlUND4LgiEQ0NooiiZmQKADco/dWW0tbSqkO1/6BPeFgnET01q5m21Zv10G1yuVw/NvHvyHu/dbttiy3Xko6HMrxMKUkjj4Y2iJSUpnKXEoh4jAfjo7ujoF8N1MARGFOyAxEAcOvHFggwERHnhZEOPhYeo0FESPugEYEYaTEhEWEU6KcZVvbVvu61mXZam9qigRIzoiMPHzQ6PtiMorVztYZKWEIu1EvOCJijPlibDlwv4IRgQKcGSJHODO4v9teITmhA/keCRE7QRmAwHpfXq8KXntDpMTCxcUdPSrior0RRs50OAREIDGLHI/Hp+fpw0eZZojotzNY/26fS4SJd+4XABKlLJyEUgpJCgj/f/b+pMeSJFsTxM4koqr3XjM394jIfO9lcQCa7Ca6AYJccMs1VyS4IwH+l/pf3HHFJYFeEU2iqlhvyIwIdzezO+ggcgYuRPSaWWQWUUXWponQ9IjICHMzv6oqImf6hgBEBkECwFo9YNuKmrl72cq2beu61rJZLeya0ZIIi2jjVZlaGFIzGyIkCqRme+ZdL7HHO+8DdHNwxCBCkB0kkyixqHs130BB3YmciD8Gwd+YupIItx5Pu1sC7Iocu79B657TXvESEjMwNyOZ1mIFCm+YV9vnU7E3gzB2KGz0fsuOl7uf5vet27Fp9438vmpvGWjgzj3/eFfW92130HnLETphkpoRdISZm9ZaaqnbVrZNTd1DkqSc8pDHIYmkAPjyw+c//OGHv/vp89//9OXfPD08Hqcs9AsiIZaq3rKG3tJuzeX+qN7dTceOEDiDCVImGAQPmT+fxj98efzph88PpxO8N1OC1klrQpkNJtFYmoER3R5AiLlhbjFak6srA/fDC8IDkXr608sQFtlp2NGbczu0SSRJa8KOw/F4HPJhXmerGwEwIQQx0zBO4/GUx6OkoQC7m5ab68ZE0eRo6oexTzSuVlg1N49ivmkXBdr5T0CB1MbALZ/0Tidq0sfUspIGBzErm17n9fDyklNiIZ6pamHCPGYgfJlvt21pDGNztwAPvK7lZV7ntW7FxjQch4jFAusPj0ch/DIep5RZMCgceMfJ4bKZ+j1Faw3YaHh+rc3aMrxPlLABf4QpZ8mjpITCmAgS48iUmVMnC0LDtxFgQk+ESWgaeBrSkHNKmSUBM7oCWTMmax0VjPBay7ouJAVJa71eLut89bpy6MBBuQmAAyNuu+ZBOAh9rNrfdlu0pLSUUmuttbb/klKapmkch5TFvK7rcr1eX19upRgEPzx8enr6/PTl4fHTkRnV9Hq7fv/+fZnnMHt6/PTw8DAOmZlao9pN73IP7h31tG9YfBM4alUEInVDt0YOiK2U27wu67pt5QNuq38LEFHr3jUkICJ6dM6890VgburNlq9VrW360HzN2sNwd7VayrbMc76IMEJsy6pRm7+IIGaRnIecs4hQS7QiSkksAogN4+VNyy88tIZVaJtQddu2BalxSqdq//AOHbRt67bV4+np4fE0jgMx9dFNs6lPOaUsKROghkLA3vjvujUtYW9SZt37GNvHwdidZBqYAh0igrg5xxHthMZ2TDERJWRGZsyJtmHYtjoPw5Dz7Xa7LbNjAPiumrbXfe9XFPTA3faDIwX1ME+MgA0s2ZBy0TsIHSwFSNCa8OGO7ntbJACQgskBfVddaDN8DCAPte22aHgxJaIQl07rCERcTQ0Jc+JoQhIkkobj6Xg6PTw+DIdjuF9sK5v/FjSAvbffAGUsTEwoDMzW+Bp9UkMoqwNUrVWrW5sgNaKl1qocahjOMCB7YPWoprU51TJJm4gBGfQMuKkz9AZzREDQTpRlRgggaYuCICU1p6quoUSCmHYd47f7+Nf/+l/f/+V6m5dl3dPo3qj+zfu793L3LsL+m1qBvz8k7ONI2Kv0/q6g4+73xfDxnx//Bf/274i3j3G/xiFPUzffZKK//+kLE97ndu9/+F4p9J+002x2Vuwb1py4tamxyXK5qpVamjTHsq7zspVa6258DYBtIN3fzQegDN7/0Z9SJ7137uSQUs4ppyQiweneqXMtpsU8zKEGeZAIJQYEh6ZNZFZKnwzizs4Spl3Qr1kKdXnBjxf91Vu9V06NQk/EnCQTse2FQjsHW3uCU5JhQhYHKqWs86y1dIqFapL0cDr2Jx5xPl/Nu8tGh14gNpvQjsbYGZot5ep5UQ/t/YW09daHKx5qXrrDpKpZo4II9QE57iPIPVtEc6/WBEyB2zQEPCCy8JDSKGkQAeyZ4z4NgvWdXfC8Lt/P39tP9A8bsC9L7K8YdhH2lrpARwp3Adf7yg2A6HpX/SRvepPcvtO8M1FbCtTUzYZhTNJEZsAjtGoja1ct5u/4MC24WP8JLPnx04/3d61lbpOpe9XrHUvX4MfQHR+b42q4dx2YLsInvfhkEQZo+UattTStt9Q0SPe8sT+jXjHvz+p9tf7hmbx15lsjoQ2L2wI0j9PTUx6n9jsJMQnvP7K1+vt6e7+w9z95H42925Dx9h/6adXBe9qWcW1PH/c13wtVets+0aOj35sSb1c/TOJ+4O3bH4nl9PTlfq7eLsVqpNSEAYmYoqPHiFkSN/89ap13c28sA4jYsXzvEvOO6O27OSLMevDeuQf9Ebf33qr5+7OP+/N6U/VvNAUzszbI68saEQAkwd0Hyt2v1/n9QR37qd8tdfrD7kgV2Pcz3g/6++Z72yCwv9u3L8X+2mLPBKMp+gEQUiuFe/pczVTDvI3/OwaYOQ0D50zMENF8CPOQ768jCybagwTu30XEnBoUaV+mGNHU5dfu6RX3SNL/hhGETSWCozEpdv4F7oSwHertsU+O4TfBA/dQ2wu3/vDb2mu8z3YlGYZ8ePvG96H99+v36/fr9+v36/fr9+u/79dfKbv9fv1+/X79fv1+/X79fv33+fo9tP9+/X79fv1+/X79fv3/1fUBRrf5rcbyfsqA/R/BSF3uvcHs3AGDmQDfQK9tDIIBEB0y/25wFm8jp/1/cP+rTV3gLgiLEWAWy1bO13mrNdpIknaDLEJm7HZabcoSR4rHdhcefi7P0XE5bx4esI+fuw7H7sdVttKsoMPjt+C9v77w/TjpP/pL/3EXEv7p7/8+7SD5oApcDuNwGMdEDftuEKZa1NRBHBPwAJQiwNzNatVStDYlDtM+hOc+K8J9Bg1dfqF6LVYbHMwcAAghJRoHfjzJ8UBDcmGL0Iiw4Ko0b7RWLDUikLhB2UGrlbXW6lbBDSLweJz++Mcv+23Fti0Bvk8pCRCse9B09zgPMy2mVa1ac7hvwF1CIhZJwtIAdokoITIGdVjnfb76DlfRBmX7eFURtZlJIwjSgMQ7nKFNJO9DUOhIvjbPIkT6vtSyazxhGHm9+yrSjl9od9Q/BQQANhboPjeGBjuNCDMjpJQTInZkxz7VpK4Fyu1L5tZACTtwCLHBvjzeQxLekUv6RsB9Dgo78tTd1GF9R6T+8dPnnHIQIwDZRjpjvWBUZApijaQKtRgGEokzKaM3/mtAeJcq2bZ1KytAIIV5k3MtZgrwDiG281mgzaQbTKFhQJubBAKEOWhEhc4bbMD8MfOo1bUoMTORQ3g4Yb4DyyPc6rqPJ/cz6A7J218OIPRBPUR7BRDQFN2lgwneAAH9M3+Ydd435/6yd/2Ofrzsc2yIN8hCvAFw+lj0jYEbgUjDeLg/mi+HYUwcEea21m2t21rXzaq7O+wCcveP1Y9aIsBEMnAaJI+S94H8Tmrqf7tvhjtqrQ+d38+S78AxQHiz2IUmurvDEgIgvNuG74/red4uWzcVNKvfzz93j2hoJhQppxTQCDK1lNoEkJu+8m5W+2aa28EEZhCQUkop5ZyJUF2bJpeqb1spm2qxhoFgokYRIsamyfPeUPpNK6U/FKC7Z4KHW3SzYpJPP/3xroZ0K7HWd7hrvEMDfrsW9vfbz7X9DuLdi4YOFN2xN32v3sEncId53yFQeIdx3PEf/Xnfjyx8O/beAivimPDwzvrtQ2h/0X/8Xv99m/DvT5+IMGNMWT5/Oj48HA7HgRlVV6SYpkxCbtrfjAeYoxFaGtNxmk7EiGgGtk/7Yz8TG64I8X5H0ICPhg4IVA2ui/37P3/97379f/787VkhSDBnHAYYBzyMNGVmCgwFNwgf7L8a9X/RF1nof/fy3yo4S0LgCGBA6UbgVkvdtuoK6BiKtvnXn799/fnbthatjtC9y6CjSpoyVd9SXeQh9m0B+yNuQQbj/l3/X12Ykvyf/o//h89PT+3fPV3w9O0Pf/q7/+JPT5/Hw0kkxRp6Pb8+X263FY9VvuDxR0+f1WIt621+fr58+/n18v3l+fvLy+12K+tGBOOQpilPKefMwugetdj1tr0+r89f55dvy/V1XW8F3LPgD1/GP/398X/+P3v4H/80/vHz+jDNbueqddHjt+v0b39Ov17466tX53HITBTml+/zr//y8vpruT7HtqAq/Vf/5f/of/u/+1+3u4iIb8//4q45pyRpkBSIK7jk6Tg95sM0jMNWb8v1dlu/3S7Pl+vlertt21atDjkfpuPD6el0/JTzOOQ8cnoUPqGN4Bh2VxyEhgVv2kTNxcUtAAzoiviKtBIEwZHTH2Q8AKV+egWjMwYzE2ekjJxFRCTnPBCn/8u//f517ocXexm2b+fz+fJ6FuZhHOWd7UfnUIUT0XGaxnFsYMSIIMTEbGZLnUXky+OXJLwWq7Wqai2lahkkH6fjOEpKaVnXZV1zzuM4qpqpNeB7LapVWaSZ5zYAEXRATZgpRnTn9a4Dg6a+rOVW4R+36X4q/S//p//1jz/8IYYDgo2Xn/Prv03Pv4p/o2Ou6Xi1T+cLvP66oaYpH7bjeD6lLbMSmpErcUrI+Jdf/unPP/8MVImt+O1Wzs8vv15uL9D4tXtS3/5ECy+1FLVioUqmktPx8fQkgh5LtXPVF6DCiR6Pn788/N0fD//Dw/EfLt/X+XzJwzCOg4ZWrzn9JNzhmabldvlLg3h519hBpg5JFGFJiSUB4jzP87JEuJnN8+LuDw8PDw8Px+MhiVgtTXWohWWMBnbqmx4R/W6Zk1JKklLOWVJKTMRMHTcF4e5V1UptrzW6ShoBogc0PyRVM3WR9Md/9V/eM7D/5u8//w+eDmp62+Z/fv7LPz3/8nL9l1+v3xYtxWp3f+oR0CMCHAVkxPQ5P/7h8Pmnxx//fvzxaToehzQypyaz0ZL5ftTuPkS0E6fffQWIkQmY2y+kBMRAEsxOnR0F4egeWqIW0Oq1qGo1/b/+uz//t//yrd3FWm7/t//7//m2bNdbIZLDePjy6dMPT08BNK/1168vv379XuqG4OOQDtNwGKcxpyYu4GrhwYxufrvewuHp8emHz59/+unHNMqtXAooJDpf57/8y/fvP5/Pv862KQccDunhcTychnFKpdRlKWGITq1uIwhCkJQkCQpQwjSyJIQAr1auxTdIkMbh+L/63/zv89BR2P/yav/4YhDRsKtI2EjUHckIgYAiu6EqImNzJ09E6B67GIO5W/sJKaWUk4hwY0xag4WqRwNn1766uPEqhYha9Pb2O1UbMbXRQxpOEgKaboOZmnX903/1mf+LP7xxp//K1NUNEakJ87eVHmAOarFV34rl0YkbgaylwYHRq5ZWVVBAgyj3hAN9zzk+6GO8qy3uiZbfU6AwW0tZt007MrPjAiPC1FXBlEiwJ2wQBAz64UYCzIMIexVGCG7ujecPAhDhsM7r7XW+Xedamn0l7XDNd0jNnia//w+/jd5vMpn/P9Xte2K2X0l4GIfjmA+j5IQMRtG1TM3V0DQMXMOLWuzSLE2Gw8xCPbTZO6ACVaTiwUnQDUq1tdZiBcjygIdDE7jTRHAc6TjiMISwBpi6R7ADOWagLCmNBz4BanBKwohNWnWZtW5rKeoQUJE+aqQ0ruFOEERkTiAsiVgQqR2LalpUt1prI+L2dJTeSpHm34zAO+AcdnRtg7TfSwwAAMQgVvfF7Rp2da9MnMSJA6KpWu0MHNhbU70qo50ZcS/H76/nXmk381BCjEahDgcAYkokSSTnJEwsDIBu2j4d4u4JZhYszNzuesf9RnMnJaLG2GzHRMO+IiF6NB5gRJhacN932NJwosbiDmjcbmwftWlhfbQjgcge2ZCVq8mmPCPOE8SJkpAxrXN+0ePLwjocclqMCtFabQYzIEIZBZiEKABdrYKrexAKgIQzRFMO6YaTEVZKKXUrWjv/Pzii1QEQgBHkRlUbqyeNw+PT0x8+P/30OH3ebs/m5/P58vL64uhO8cPnT/fQjogiEoSEaNA+HIkI7a/S3UNrAJgZIrQ63dRUlWnf6dDipb+1TxCl0QMAPZrmRUPMG6hpFU1mmiwbC/fTfj+fEJGZ3Clit8ZAitaYuNMFeibwVga2YLCU9bxcnm+vz/N5Lktp4e7tHIr30PEAKwFXnXltTQ1yMMCAnAFT2wbSu4/UPR3DPYAcmrpIBPXTEQJA4L7BwiDu1uvci/j3iweadGh0PsV9jwM+8MAJeKQIEDBd5+tLEOcAmXJ+eny8zbd1nbXqCpGIMiOBJ4aWnjOjE+SMpgHNwlQLe/d3NXQHD2oBJpCBAFioWRJbdStum4UhuBMGUZBQTjJOeRgHkAAJTAAcZm7mKqjVS9XG+Xw7OQjvVuhEBAhaLcJ6HyQauxJ6Jg8AUbFgC9y4r5mIQIiWgjuCuntVbHmieZhFNCUm4hBwcw8La6q8mZlFAIAkiJSZskj74/CdhqOaqWmtpKrt07/X14K/1pBvyS90tmh7gWCBRWFZNaU61CQJerPQen8JgaJxQy3uf3x03qgHuHesP++5DnZ20r5ke9VOnZJjofOyXOe5qPp+wCNiuKlarVDFmZqEBDIBR4bt/fJzAIew9p1MyAiuYWr30K6q82X5+su35bbVYk06oVHC4WOExvvfIu6n5DupnZ7KwX/uK4s8HsaHQz6OMlCwGbmGq3tVqwW1UIW6OSymUeta6lrq1uUyLdSimoVXdwskJIlgd3SDrUSpWt04wfGUJmGfLGrlsC8P8nSiw+SS1EKLAkRW5+qTwcA5TUeJUQyYBREIHEmSGXss1RZMxluk6aMUEjGg9263CHEiYs6jSGoMY3MrVbda11JLbVJgAdELMGyiSNT4uCCE3LsmCLCbAxBiADY9hcb6RyoRZ9eXur7qBiIjTibJm1xzh5l0+tmu0dAiO+984A8q2dF1XRzacVwKEcmurdZU2cchDzlxo7GJAEAxvZMGw90AqpqkEJEI3wpAp01CO8xaTIJu6LCHdugfDQBaCk9ByASALK1EI3czAG88n3381JvgHyE1PmiMhQGlmCyVz4CXIyLAwIgbvZ7Tt9vD1zrodBhScl4SP7NebHWhPGQZINGIZACutVoUYiTKhAPEEGEA0NMNRrNayrwsa/Ua4EBNTAabN3sEerAa1UIsaYDpePjy049/+vHzP5zS58tLtfj1+8vr5fKKgix0mv5hp7gCEeaUPJjZlBAriEhOuZ0snbXVHqApAeScmDnMS8E2VCR8F91bneKGzM3DionNdNu2NoOpLcllTklqzaqZ+W3JSGqGrcgs7UiMXvOj7655rdLxrnX9dmnVdd3Oy+Xr9fmX16+/Xr6ft3kz9U5dxfc5f2OMtYLPQjcr1bU0SzSEgCNCAKT2jHv3tsu/ODbyInpTkcBAdEIK5J1h1XW/2+HpGBFdBQc+9pFjlyZ9uxFG+pIOB5AD16K1WrX1+jpfUj6O06cp5/RlJCLVUrd1rSUTjkw5EQs4QUSwhAeYkZYANLVSdRNHEmTECmqoQYECmJAcGUmy5JwI0KrrarY2xysQBk6YmKdRHh8P0+ngaEpqpBVUS1SLKrAxlE1TLe/fByGxoIgIMxK1oHYXCcVdpsd20qNqk3wFIhKW9rqQkIkAWJgMwLTXndGozBEEkJOkphcPuNWqoYGI0tRthZggIojQnaGLOCJCS5kDQFVLLaVyLbWZN2Z5n//9jardP1hCBQCCASLGVm3ZylhYchoSAGKTLyRCCLAIt9bzJySKANPm/xJAJExI0j5Wn0IiNL3OcIuIfchJiBRA1ez58vr8+rKWtdkeUO8SYACaQ63OFMyQmhGh5g/BuAvIADMIE0OEGYR3ywLF9bZdX6/nl+s6F60e3lLWXsg1iaT3SXKrEbuRRZOUa8XWjhTYmav/WS93UAWrGBs4hWv45lZq1XWzBWytNWxxpvAodVvnbV3qsui62LZ5q5KIImWcRjmdWvXP7lGrHwZ+ODhHSpFJEar7tqHVhxN/+SyPJwSKTamaAAxqfF74+RbPr/VS3AgxEbf1T8KUhYacp2Fa5mstm335YXr/NoSZIpipkchFRpCMkkkyITXadK3drUNrq1X7lIyIAPvhQu1X+G4I8psGCkITb0RWxAJxsThrvdRtqStHSil1JfNgAHpDW7yN6XEfPRJ87AIAQK31dj5vW1HV9qcns9hDu6SUUhrHccwp3KBHDmy9+p4uM7cA72ZtDyRJhDR4brPNBgRBxCQCiKampm5OCam5uUkv972HIg+NLr62Nw/uq3Yv+t8lpO0x4ZkQOQZy8/JquiENkAQSVb1u23ctlcBYIA8oKRBrqbfrcnbhKSYSs1iX5VrrBgDCmYQYYhofawXrWvFdvr2olaK19nFpBLh5rcqgqgbA7qjKpfJALHQah6fT6YfD4VOmwzAdx+NRXl890IvWGk3Feb8LZCEODG5iQUDE/UDsEihdhvwuUBXe3D520E04IjFhCDOTEUINJmYhFk4siGBmRKV1UNQ8Ars8dCOWQ29HRdcDB4Cus7bXLdhKHWYiY0I38N+09pZtfYnl1+vXP59/+fX6/bxeN+saAu+ah4D3EWtryBJ4+ObbuVw8WrCvW/2kx08P43TMYxdqhd0/d0fawJ1Z3ocOhkHQPpdBi9qADu7AzcyZu2aA+56QtUbH3VUIAICQHvJjlpKjznVZtrlsazXVuq4hkgPTOOZ8Op7mgLLOXk23kigxMyI4BGIQheS2Bd2xbDZjNSQwdg9FVGLjFDkDAA8kQxYiDA/TptvWneDywIeTPDxOD58Oh+Mx5TzX1apX9+pRLKpFcdMwpwix928koKtOGkAr8LeylVIDkRBTSizSilRkDlVXraattSZiTIyEHExIAaDWBMfaJBoBEZj7WB7QA4QlpZSHwTwsAgJdVbvwSZsYYma+vzvcQRQmnBPXKjWViADEYajwrsD9rT3MfdtAqwAQMZAQzaOoriWWDVP2Vip0NQ2ICFB38MDdzA+iFxBEbRYhRELITbCoN+wBw0HBm9VPmw8BkjpsWl/Or8/nl7Ws0YM+ARgEIFB4VHUiI5ZhZJYR+L1XLTJhK/mEUQTBwtzCkZHdQTe7vs7ffnmer0st7tYwQu8m6P0Vd/wEdixekzTev4R36FaHZP1nL9tdTbfNymp1cSY3A6tqtVRdN5tDZ6y2zU6OEVrLvC7zZZuvdZmtbGbqASGJDgf+9Dh+fpqOUx6yQG99uGuMMh7kIEFkUZfVyjrkGEcYDlWjboXMEHEoVb696rcX/fpa50o0ep7gEMwHHJLkA415nKbh9DgsS91W/TS8D+0gLAAgiYaUxpxTGoEHkAzCBm7m2hy1a62liTJFF+TYu+J36SNs09DeD4z7FKOlzQEYSBVlA7iFvoafrc5aqyoShVm4gVug7ViUfkTvbtvY+5XvNJHvl9Z6OV+agkdLnFtJ3b5KRDnnYchDEq3QXJQIQZhaIwwRpYX2iIY1AgBJknNiJFPTUtpsAgklpS6bUqurJ5GmbtQGvhHRHliEu0GtuyGKd0MlhN783wVW31ftwf4stkqMbO52jtgoS+TRExerq4KZp0SRGB8EjxBD1fm2rs/OjFgCyrLJ9XouZZMkOQ/EHBCHCSCyWq1WyrZWXczqVmrZ1NRJEAHDwaqXxdGrToYYHmRGqjzkQeQ0DI/T+JjSgTAP0+Hh09PtOq/rtm2LWv1N9kytqug1Z7+73aUYqMnaAUSQQnOJsejgJm8oDUIQ4eYSpdIGifd+7I722o1z7u2ZJlPWnXHbtA/CzHepqLYgO8AJ3n6rGxsa4se7uK4327Y/v/7yL5efv8+vc121RdK4/7Beer8NB5F2/J8tthStamXTtWppGQeLYHDzVuv6dHD3o703vGBf4w6BYAgB0Iox9KD+JQxvT7Ghmppcfxezed/HRjoMDwmqUKVCgYpgCF6rbetsDgkwJXl8fOz2DwG11DEzRgt1fT6DgoyAEE612IKqxBgQQQFYmS1J5IxINLaRIECYe7VwIKKgYMbpIT9+mT7/cHp8OknK5uBnX7VWt+reOprmFmCSMOcPy6pPZkqpiOGuZttWaq0OQcSBODIj75YGhMW0zaTAA80BUaCp9VHz9Gs/lpkRqPvONlSsmXpk4XHIKWVEWNZtK8WrVTUmZiJpcoOIqc2ImtMgAgGIUAbWxFolAAhxpPk/GNr7uHGflEM/OLHr9BsU9VJxK8GkZoSBTCFMANSskhh21GgXQSbOxCIsAtjQAd6yonY2xj7rapVZG4zdtnpbFnUDBhYMB2y+e000HinQPaKaY6m8VKIi1fjDjQAjdhGnaLJIzQpQ1rKdny/n58t8Xctm+7K/K1G3bw+Huzxu9yZ8Px6Lt8S9xZ3WpbnDSf/jrt+M1v+q6DfVdVnLtqpujhzh5lVNS7Fls8Vt9rr6tfoMplrLvK0vt/V8WeZlKVYDXAgOY3p6nH74PH1+HA9jykkYsLkDc1CWIfMQ1W2rC8WCGlGXUm9WjEptFlOG61q/v9SX1/p60a0iSs3jdjhOx9N4Oo1DTsKEYOPokvB4kgPy+7sSQmY5TcMwDCJDEGvLX4khoIY1iEAL6g1jjE2PvTdymulnw8U0bHx/dB7QDJexQYSIFHC1mK1cSp1NFQl5SJhylpyGRNI9LvcUbc/L7tP2+z8Bf/NKsPv5NpsT7JYcbSaFOaVpHFvwTsLBBNAavb0b3wA17Sdp82jG/gXAZrQqffruiAj+pkYX+5wWY8+TihZ3a03RNttzM2waroT31mkbNTDsM2EAAJjm52N6RWOYwermGO6ZSuKL+FJgBTcsEBvblitMaTrwo8dn0auWctVtW4LlOs+1qkhmzojkEeNATKO6qpaFL7c5Stm2TWs11RAEaJCdNZZbmJZxLABCIkiJeWAZhAemjCjNnW88Hn78w09J8tPTl1pW1Xo8Pb7bPaFau068WdPCA+gaeO01tjY4QuuOQgQIMzM19HUSYRYWbm1vMWYigGihvlVu9wySiRA5NyXg3nvn1PXk0UzNbV9GrR4gACDC2P8rNY1ncuIPGI6vl29gr7/cvj0v59WKvTsX4p587h6zH5YjQFDz9CyXCs1euFhdrdbwz4fTw3QAkpZ5vP9e6vkBwt6s7A+0mWRGAO1QFr/jsQPcotsnaNEy11W9vvs0RMPIwAOKoakXIuAsqYIpAzJSSKJMgvGQGUMrgwOiRUfGBEZLuAwcI9RAjdgiAQdCgAEYUQhjZg5HiDDVao6BhJQThQQmTCM//nj8/OPD49PxcBhUbVu24neoJBBQEsEcKJJIpuHwXpsz9iZib84hInEaBgAg5pxTM+aCHW0+DANLc0rba+rdAtUdIox7BtgBleEBYehBbgxQmbPHxJJTIqBEXJs10S4k3HGQTEgMvVfewDjRXMe4I9ga/ODt+m1ov0/p+1Sl3S1GgAOGOhfFtQYCqhADCUcIIaU23AncDzsCZpLUQH+MzBGNOtHSBYtwxAjop5djh3psqpfr9TrfHCNlyYOARp+jIjRXWCQCdLNYowas5nD0cny7j7YTomXhEd4UThElQMp6ffl2Pr9et7WG733TO+ED4M7hc7SA2AfwuEf2rmHcWTztsbV55p5g/yddHXv/Lmu4X6q2zlspm9pmLBwIYepWzEv14rGp3rayrGplrWVbtvK61POtzqZBLjmS0HHKnz8dvnw6fDoNU5bMnChlkkQpcSIQCFzn9abuAEV9rWXTrcBWoBbzUmHbbLnF62u9nHW5WdkgYpUk03E5nabHT9PxmMaxCWm7CPLAGeAN1YjATKPQ4zSNw6ghW2B1IzeBPYaZqartOCtoyRl1U+B7aEfsPfmG47FwA6iI3kzK0kCSNWLb1puXm+nqHpQkJ0IaRIaUEidBondzFNjj+h0K9Y7X9OEiopQz1NqQnYAI0Qx1AxFzztM4EjSx1YQIWmuN2kcLgEjYCm4AaBVP327RDlhiFo+qrXcNAPA2k3X3ahrgDDtryE2tRgA0Hp07RNwRh53f2Z2QhO1DpjVdng+mvrlt4AU9JDRHTXRj2FZaIhRr6IJlkBWHdDjyD07LgFDq121dUZTTVtU9AIlQGi5LJEnCgDCrxGSu19u5tjmwOyIGYCmxLrbMYVqXaWPJoyRJKfuY0sCcEZskZzjFeDj88If8+ekHK2q1uurX59u8dMKCh5eyubm3fND9rajtQsG9Gmy+CX1uIkLEechNrj+JAHdHxDaLDO8mjWqqqtYt4ECEkdI45JxTJ0cSiQgLI7Xv8IbU2MeGO4xuTzQ69ZPpzrNq16+3b9v6y7nebra2OIf9mLn/r0dcv4tnt6MCEbw5dsTmWymlus51LaGNOkJEkUaQOz54P6Gh+cH2Yq6NoQLaQKhRQH3/vXcYXyvU1axWrXNZXrfbZm+hHRAiCUYIRI5keUACDnFDN1Qls2ACFknHw5S4bouWDQgsAomA0NEsorqbGRiER6qUhk7V87AAQwhGFGKDcGsmCZA5DSk1ZzU5yPCQn3769OnHp2nKwrReb41rUK11x6l5dQ5MjDTmNA0HfOdz4+611mVZtm0jRElpOh7zOLYQK82kGcCjk2ZzzgMNb9C0lo8HwO4PyQzcBuQB5q5mbgZmDCEtLBEdpgMzj8MgxDvD4o5SJA+0++gnwKOJShs09e57EgD4Pnz8jYb8HQZ8X0ZE1LzT3dAMTLESugdYZQIbOCUkEgR3LeguKEIaIBHoDmEtIbtXOWam3V8ZvNEMCAkg1HVelpfz+XK7enge5BBjUg+ntniYkTl6+hEREdtWSqnE2/HdrYQ1vDsSojsQCqe8rXp+vrx+P9/Ot7pUMHjDR++RtfXSHN3RHK0XZk6BiEH34A7dwQ2YCYNAAX1/rP+JM/cP3bmPZbyqqZdtK7UWFRSiwHAkTmmcJo8xNBdbVl/K/DJfr7el3DbfKhmSDJgZT1N6OOTjmKZEmWAgGiUNPAwyMgkCb1udl+X7y/nb8+v5crvOS2myywSGVAOrxaawaMwGq8K6QZlNNyOw9cWXsd4O6zDxMJCkYIk8SD6kp2l6fHx3j0jEMuRDSkMpttR6qVWSSUqAvQHWfMe8E9rb1IaakH+roQmD97iOER6xma7uK4FBGlJOzCxiAeYWmpwEORJzs6vLzd+hnSJ4j9u9vOvE3r1ep7fO/7uXE6FmVa1UbZLwao2qjhjAAN0uKpCwjSert/4lgJvtQ6W3ZRYRrg1AH0zc0O+7ZwmyJKEEQJtv87as9ZYSDSm5K3NSLeHaLHXcFZpAPXLbYuoWEM0EiIkrvoslAfR8wfNit61qaDqED7AIroyFRXVQV4tm8bPZkjHnNBxHfpqGy2q0RZKcxinlMAuR7I5mrh4AQUwpSxJGdLft9TV1zJWBIUSgG3lFLRXC1qWMB2PhlCRPnIWZqRsAhRF6mvI0HTNkAY5qpjav/+Ye2sOjbPXe/u4IM+gQod4tDsTu44GE1JBtrZkqLM3FmKS7OoU7IVvVBouvu9eHmwkzCknqtun3braHIfQijUWki34gAvreQPfe2NtHSL/t1cEW2xyzkiE0e0wkAGJO0uyfMMLb/GXTah1e3zNLJGpDfccIghVK2BVnKmizrXOZv0yPT9PpkMcxDyA9SAI4BXk4EXS3WwxEihYeMKAl0y263NH9pq661u1W5l9vL7/eni8b3yNIRFidQytqZd1EXd2Lm6pZDTcEo2B1roiQwFtmZGHm3fEv0N1B1ddFbXVhYZQ0RHKAQDPQClbRKlgJK+4e3B4+AhHkkdNJxqdxejocnx7y4WAO61zOl+VymbetQFhjRiZpsbaX3r/R/m9lBgAkEWaWnFsrzhsiXOHe0kZEbpw1YhFBRHevUV0NAgBJiKA1JkvtUvzRgrKFO4EzQC1FawXEqtp4qw4BDZQR7u5gVqxyFRbpf3QEAjQbjj0ggbnzx97M34DRwV6y7yMrinAAciczrDW2LSAQI7RWJjenMWjIjOFWC4YPkjykpV+Bhk5A2ChL7fBqmFPvoy9kZsQAs7WU8/X2crlc55uHpcwHxlrDNFpdghwsDdxJrQlZi9aq01DebiXaSQrY6HaBBElguG7l+7fXl+/n9baaOu59qY9XAHqgBwfxXtAZhvau/v1oDgxiZCEMekN0/SfFdcQP+3yfzr1bZF5rXUvZap0G9uYcQ5TH8WiJ6cBVqq3bXBe76vZSlq0WiJg45yxyGNPjUR6P42lMY+JMOBCNnEYZkuQIUvPbsn59ef3zr9/+8v37eS5LVUcCIkqETI6h6Bv6SlCIlULd6wb15l6cwGcul7SygGRgAREYDjKeBv/p8U+PH+4UUYRHoqx+W2q5LHMym8aJmWIHU/bqK2AftHdfhhZvGYAxGBwDAcLCV61nLTcMj+E4TiNiQgpEZwFORFmEiXJzbhJwgcqI3M+v/hrvAf1eqiMA/gZ4BgDNjqXVLNWIApG8u9KgNBfjXVumFdxtJtlerLm187pn9wAUbmadVwOBgg1E0vDUACBIzFKqVrVlu6rO48jHcTDVLGPVEmGA0hpfAEAi2NACERaOiCTcKPDcW6t9nenzbbPzepmLA3xyZKeF8Ia0ADokcQHDqB6hsDFW5hChnJKwMBrlaXh4ciBVdwfzqKGm1dwBoaErc07DMFDr1XVgFmEIhVBYqGn4thZVI6ZpyiiZMIigwcEsqkCWLId8PObTgaeoEdX/3b//M8Dz/bCq1RDbYPNthtLB2xFmAc2OzwPo/oJxn6H3qxmyc0MOBYFD8/S9yz9FhDDf+ewsDB2cFhbWzc6YmJCplfBIQLufUmDHzbUzYv//77c5qrEiBzt7dfdgpCxyHIcp50FSuN3W+YqLhcUOlcRGGm7IAYjWHfDwBTYrL7Mvc52v2+0fTj9q1afDQ0QMkSESE0MQEFB0D8nWZO31Uu907GVKK8Aiwl2r1rpd19v3+fzn89d/vnxdtk8An/Zl5V5m2AquBbWSaXhtGEqtlZzYJbAaCTGhoFAQ4aZY3YnQqW07UI2y+nqzRDANfqjgjujkRqaoBXQDLWHVI7xz9BkpUT6mw5fh8MNxejoO4wQky2W9vS6X1/l2W8wqRDABUwiBCBCyO9TqDb729jrczZ1FmsWfpLSP4cwiOs6mRUYEZyEibM40iB1p7REBnUNLpKqlNA8n3SGtERHojuCVuLHXiuqYcxK52xKqWwMVB0RzAWzAI8IGXeZB+tivXUwO78bSH0K7mZVSflOvAwACOYZWD4talhsXESKMcBWhZbXT0R9OkfZxibuFG7B5RBg0QjKEdRfP/dR0D9WGmFKpZhGX2/V8vc3rqmYBjhhMgQmcKYI8HMGBnAiICAJ8n3nwR0of9OTGmVjSaAWXS3l9ub18O8/XJRzofnTfJ0ktJqMHOiWUMY3HnAbxGrradilm3RGy9TkbBytaKw56j/4/rRn/hmZ4+xzvLzXbapnXcl22achD8+tNOB0wJAackqLG4D6gjyzjcKCp4jEGk5zG/Pgw/PB5/PJp+HIaTpMcEk95GNMIwGp2227neXk+n7++nr+u57MtM3tBRGaS1M4oREdzAmU33pAkEGt4RI0oaI4BaBQd/8BAFHmEfIAjVfifvN8toAGl8e7UitZqBY2qKYDslQoCwF12CbtbZau3gDAYQ9rUI8IAivulbK/bvGCgq4xHHhQ4kBg4czJJG5IT99DOXsiUuh8xAOzn7I6vaH+7Rwj6LRt8H5cyE3v7ASw8juNhHA/TkETCmyP5vgS7chz1zixRSunuj26uYRZWCShJYuqT+TuIb9nKdV7P59eX15dlu5mXx4ehHMeZ10GGPCRJCYPb5Avu7qh7Ot4y5m6R+7Ex9JfrttZVVyXgwwqTAFdniwjX0GLVqJJYnobxNHqWF91+nm//fL183XQDOeTD6fSZUwLAWq1UXdayrOv1dlnXRW0lBvNyu53n263W6uaEPKQp8QQxUZTb1au34Wd1V8BGGmo9jmpezauBWphFM1J8w3293z3uwXRXhmuzvp4Y0h0PDggQHt7COHQxH2LmnFLKCRAIkIECw8kNKXaUQ+w5JjOnnPLQe0OtMQ1vuQLtTDe8r5OA1v98M5Oknqr6+8kuAIhwDiEPAFf0XiZgXzPCHITCSbgQEZLTvlb762xrcy/HIEJBZ/NYfK3bbV1ebucfj08/HD99Op5O03FKw5hyoLQh/F6XhLfa/Q4f9kZQhGgiK2rzNl/m68/Xb3++fPvny69/mb9PJAf5dN8/2bshoy3ruq2bVwWPpkLmgW7oAWFBEQQoREIJkZBcoRMWAoVSSuiDMSFlDqF2uoIzKEWFVmURBlBIAs6QTjI9TMcfDqcvh+E0SE66lWVZri+32+ut1DXMGjiiPTM3KwYAZga1BjO9P3obJkaYRaSZ8bWaGCGop+oOd15/wAboDubQGj/mjiyd860eoaXWWqqZedyHf42cS4SQhEmkRsxlK2bSPGQB3a3lBFqrWpvfUctLRSRLGpNMqWlXtZGcUdLj/+fQ3uky+zCJCCMwzDWwWGgp4dBBS+w507SqWyRhGihxmzyrgwVYg2YgMUXzTo7m5AkAEWgWtWopVd0BsZqer9fbshSrFn4P7S0rAmjD7aYMBbsgRrM+tPQ3JgttdyJTKlXPr7fn7+fz63VbKgX5b2PqDooCRwrJPJzypx8ep+NYN1sva+hlrRv0OoCCAQWAW2ze5+Wxz/j+o693ZXrsYeXdDYQX03Wr81y3g/tIjCSJJxDKkSGzhUWOGAkOabBDqSeF1ZNRljQ8ng4/fD5+fhg+Hfk4yJR4SFk4LaUuZf5+Of9yfn65Xl9ut0vdVjLLBCQoiSQzCyM5OJoFUph6hirWo6JDKICR731rb0KuCGtyGeqPj/ruHsEiavNoD9rUqqmZmquaImJ4YCAjd6PJiA5Dog5U7qEdYA/tUMEX00tZzuutQEj4pMUsqP0cZhZPeSQzotxRzuYUSF2mJvbiyaHPWe54C8R34Iv374OIhpTAwQ3cHBGSpHGcpsM4jUPnpJn7TmCL5uvcFwcSU+vwQT/zDcLBlFmGREioEKBhAWrhHuu23m7X5+dv31++b2UL9KoH15LwNsjw9PTpmB6aPfldKQJ3SBT1B0d7NPyQNf5l1UsxVByJecOxBq2B6o5aqZSYDZ0T5zGNx+nC9H1Z/uly/rcvr8smSI+nNI3jcTwcWKRW20rNy0p8nefbtq3zUjxq1XVZrrfbtZbi5kl4Go7T8EnwRL68yKLrYkXLVmrdVAmFAIzcqm7VNo2awDRqtVJqEc9YETR+0zvdd04D7jb4tgMGQTvHmzIuNN6BNNftXaevZVoppTDfgRy99rr3LGPHRPVjPqeUE7NALWoGe8DGe1CPPiNvGZ13TEhH+hATOXETjH53NRWEACfvKzPArelXuIt7h9M14+62A99Ymx2Y0mB20bsWXt2qlus6X+bb8/X8Ml/Py+2n8vlL3R4Pp6NPQ+QsiYOYCKFbxOM+Z285wv5ErZiuZXuez1/Pz//0+vM/nn/5ZX75vl3+7vTTYT93ESA1CrS71rre1s3VmpMxIjiEBqiBaYQ5OiWmLJwziWjnPiEhJUk+MoARI40MCZ0a2ADRqQnzMDdwG6WBh0mmp+H45Xj6cjp8mojJ1ZbLfH2+3l6vy20lAhYiQQTycDdXbxBV9EAzTOlDs5SJc8rSVeSyMHu4uTH3b7/DWsHDIcw8UL0L1mggBeZoCixVVZsIYaezvR1oOzZOhInQI5ZasVYiSl3dMtys1FrKVkrRJjrXyDMpDykNSaZm8EwMEW6WDwbj2438DcmaBrhtAbglpuFhEaZQi6+z1eoQQIIp4ziRWoxDjmj5DhLj/ioCe6uiQ47MrSWIZq6q67Jdb7fL5XK9zUst1QywSQy3E8qJQnan21ZSeZAqAAZS7FgWJCY2hjfKa5e4d/P5trx+X64v5eXX+fxy1dJiUGATZ+rTrdbTgoAACmIcDsPDp+Pp03E6HUJjzaNv7iXqahAgOWEGFw0OJIwaah62t2Lvn+HtH/ts7K8vvH8Rdw73u68SAIcFFCVzAchISBjsKmAGxuEingbMx2EkY7cx0EBIxiEfHw7Hz6fj45SPA42JExMCqPttKb++nH85n3+9LnPRzck5SxZCAhKSxJKkiZlHGBEagpAxCjtTIaLWqYAAcIRoOucNehMWHg5a/P1dFq2AsZZVxNS7wkNDHqlp0Wodn9GV8sN978a3q4vQMQAgaPhNy+s6X9bltq1AxHnsWzJNxIN5JfaUJzIFaMhkEYwEKmHUT602/+ic3x1Gt4/h/1ZszykNj4/zsjEubRon0nQovdYqTIxQq6oat7krIxEFYa/FA1SbgBWa1lpWq0UIB5EhC7JgwGx1XsttWZel3G6X6+28laVYLR7usG52ky0jQFbzIyEKS+O7w54m4rtIY2Zh4ITmH+rdeZiAlEtloygBVuqlunlMaKIVzTmYhQOjxKLb1+32l++vf369Ej08HgdHKlpJSxLkLKPkACpFCcirm7m5btu6znPdipthQOJ0OpweDk8CJ99k5Lz4oltdb8v1fLUokgHRmGBeblvd3BUxwrXUjXx2DKgQFaq9h2T3SbPVatAeQOOzIRBxNCDbXspDuLO70V2SCvfoBRadwdgyeycJ5AB2dCC+45OpDWcDXM1qrSwi0AhQ+7IJaMd9H6vs5AiAfrAzMwASv6mBAsCmdS6lI8ggvHU+rdjmq26JGQLMtKpaUyTENpAKbLPYPgq84zc6Q61B52da3cLDV9vO9fZtPj1Mx4fxOI3TYRjHNAwpJ0nCSSRRU5aFJppsarZpWet22ebX9fb19vLr9fnr8vJtOV/rslhRe5fBIxRBy1wtqWV3DaUmWmINQdLpYUENEO1ABmRCgiSMmZwV0BIGgCEisMsYkM2pQpBbQHgWxkOCQZhAEuVDGo/j4dPx+HjMYwaA5bLM59t8uS3X2YoiBCJ5YNlU1bTLtbb+W2LJaRqn4fC+ptp3E5gZqiIAM6WcWZja2KM/78ZhjRrU1ILANcDNQdFrtbqtWqppQ8WicEslGyKD+D4VhHCPatVcI4KJHHBATqlD0HNKJZeqquqOBMSArIBetZTCSLIj30/pw6n722L3bcq+TyEB0D2sRt18W32ZrRR3CxIcJvRgoijV9tDO0ktr8zB+nwxaRISFmqF7mOpWtvk2v76ev7+8PJ8vm+rx4Xg4TnkaWCgwiDClRvwPgEAm915cIwYSMDU5CJBC70J7r8kQsWzl+dv88m0+f1vny6Zmre+JCMxvmu9vUBwEYhrGfDgdpuM0HkcOSpK321ZWdVtMXRJTJmOgBGlIrl6gKJj1HOQ36Cv4AJW7dwpaUIkmSY8dzPxxrIAElDCQzDkiASYipHCiIHcKI1BE44Qy5syQEYCJOeU0HoaH03B4GKdDSqOQEBFi1bLU5XJbvr5evl7nl7VoRGAikcy9smBuli2MCE1fEQSD0QSKmIggVcAuxABvndLeow4L8/D6fpFFY+KtZU3haurh90WtHmvdqhkiCYlwMqsB1rDETDuPpItegkds7pdte1nmy7qsZZOUvKOjEstInL0GkYqMiNVDCUlYEuPAkXTDWjs06E1wiADpDqS7V+9A7/MsEObpeCBEcC+Foi39iForuCUhYVLT2nTLIojSXR+5gapUtQGPTWvdNgrPzDmn1BRwzdZaXi6Xl9fr5TrfbudluXJCyeLIGrApbEWR3QQgnLDTSnsRcRfMQsTmMaNqAISoSm9wJ4AYD5CcYiVV3MxXtcuKGDhmTaEMwIQkEFRXv2r5fn799nL+fpkPh8MDi7rd1quxDWTT+JByNvUsmUkoiIDdydWt8SYjEEA4TcPhNJ3Yj4toQiGHYnWbl9s5qTGmIHIRvN5u67aaGUJ4WLUtFGrUuppuWur2/o3g3v9owRsgMCKIWkDvKmr7roswdwQiAuxiWWEWqF49DN2RgAUZIwWqQ1Ggzq0hYkYmIIy7WnA4A+wShkj3zsE+SW3jlXuooD15R0Qkfp9prVVvpQSiQxj00KwRxRUqYLy1XTDaOKlJgkQ4tHh5xxI2slwf6BuCh4YuAQG+ebnW+Xl5PebpMEzH8dB+HYZpTEOWnCTtAuHubtVqqfVWlvM2Py+X78v52/z6fTlfdV2taHgz7LnfhQNsiQ2kglccgQKroJpp3apWCA0Fd4pIhEKI4OjIbuwulEgSCAWYgCMSC4K4TIHZnCAqVvVQJ4JhkiTcyFPDcRhPw3Ac8zSEQVnL9fl6+Xpe57mUwkKcJBDNY1nqujVXraCGnKDELGkY8jR+KLsQAMkhwB3MECklyTmNeUhJWkBExDZ8V/fNoJprbRVeFI/S1eFVrZpZU66VxHlIQ845pTZEatgIMwtTc6/qEe4c7OEARJJEMHkMg1lV1aJuAQakHqqmtWy1tLZIO7L1Ywb/V+Q3JGiyf9yVNiGi1tgWa0JjGExIuAML3Byhc3EiUNLAYF63ahW2OaWUMAEhBBMSNwJoo+G24QrBOI6n4/E6r2upWrSkyplIEu3E9IgAMGgsNEJAaQq3iI5v8654/25YQJKcDodCMadKGNXWYmt1iwAOGsdhmgYPb2WWqUPLh4k5MafEzIEQ4U5ImabPx2pu4dttC7QIZ4LpkJ9+fCSA+TJfX9fb81rW8O59tdd+RETo0JmI759272T3cQAFRdCH3yDCQ2o9wESUiDIAABiA7n3uZmmGzHnAxJwkyZCHMacpD2NKI2PmYAIkCIBN7TKvr/NyntelqgMBMe3wh1YnMzM3ixFE81CgEPKEmiBl4yyUGLh6hw+1k6WRAwkhmuTwb+bUZgrhW93a1AoCALrGnJkt27aUrZoi4ZQGCIWu2MBITMit0dw+5FbrVuvzPL/My1rVHJqSJ3T4caOl1oZ2YSIM6iZUlIaQtCGagb6Tv8YO8KT7r3t/+2OjpUGJMCIxQ+pKk+u6JiZIEjESUZKE0AjNO+ONIgCp9b1MG14jwolZULKI5CFY5lK+ns//9PPP//7Pf75el21Td0OknIc0Dgqubh5gESyQB5LERNzwve1+2xTAzJppDbQmnBkAVOPYdzoC/jgOT6bpVodS8jLralXdMyNDZIlxImagcZU0qz7P6/kyr/MWVTEMYFur1+vr4uNoJws/jtRALdMwnQ6PFlVtAFDTbV1vtWwIiEFh6DXQ3Ks3uc0It6LbsgYKZQAyZrjd5tttLrW0B95whmvdnr+9nl/O21zfvY5Q1Wijja707B5hZrUlJ9SbJ7sIZk/b2pMx1VKLo1bYApUkcpY8jgiStgFFq20B4NrsxURE7j8iDZmYhEVEqFENe/BuBDe0vfL7kOXH3j//iLW1AL13EhB8bye01/UGru0iSk2otGlwGTZB5h3Di/uCBkDgQApslo8MQbbFarXebJaN5ZaypDGPQ1N84JRaa7hNeU2L103rrGWu67Vut7ouum1WNMz6J/0ILSKs46CMlcAIQFDU0MzWdZ3n6nWtFuQEMTBnIUZChKoKvmYEgcABkIGBUxZJBxrCxzVYzaMWW6663Uw3H4acT9N0GsfDkCaRkYGg1G27lvVlXV/XetMwZErI6EhVbau2rGUrFQhZWIZhGIc0TJyyUWyu798SEXPqJRYykzTxmNYh931FEUAEIrsLuqMhulM4wmwATkxpkIPWZFrbRGYcZJw6ErPx5q3zNjtEhxqXh5mYAUjdyTwxpSSSh4hQdzUv6qXWLaI4aRB4EIIwpibQ8G709iG0E2Aby7fOwE4xAzesBZalls3GgUR4r4wNwwk5QmspqkbE1IKPFosakREDgDAIoOvX+t6WBwgiOhwmQLjellIV+1cdMbqrSyNcou/a9EDE4WBmDTzSTuD39RUCjuMwjPnp8ZOOaAW1xLZVRFilWvEwGI7p9DC527pu6+K+GnZPEOwC0xBmWo0EA4SG03i00FIB3FQ9QpDGQT4/HSTzeCAUqFYU3FYHa9p2EQHMIIkdQt28hluH2Xcm4O7dhU1i7eNMlIXGlFNOLAlJAKT1BQI4AJu6P0IwUk6DgKQ0DjlPQx4zDxKJQBrytEm7BMylvMzz6225rltx78qcLYy3tK6pajTqLaJRIJAzGkNNwUk4MQkBI5AH+vtjCruOC+wa7W+Xu0N40QJE3sGlnYWppmvZ1rKqFogYUvLIHtqwb7Q3yduZCg6r6mXbLst6W4taRDRBbTWrpsW0AIbVYl4bBo+6uDsnphTMpghLO2cRAqh94nfMtz60frO2fH8XtW4QkYQQoRq627qoJ+E9GybqyjPYyHuI2LBJCG4W0c1bCJGlWcikIC4Wr9f5z1+//csvv/zl11+2TSMoieQ8oAycR6oOVAMd0CXROKbUpdOgBTPV2lxh7jE+IrTWZilhHxp18FnoD0DJgFe121qKbyw1CSbCnHhIOCTjSUFuFt/r9jovy7J6Vdel2llX91KTTpM9EonQiMZMdJgO9ukp0FVXIncvy3It26qG4KwlChl71aqu3uwnTLVsFTg4KEiRfF6W2/W2baUV4g1sWFb9+v2Xn//y80k+DTLtgTJMG367Wc72etnN3E0Rm+RnM+fre3tvnLtb1YoFaoTKBllTwnwY8kNOlKxCcF4LN0FgJso5cRLqRpjIlDFnRCRoJlgODRu9W9O06I7vwLEdHfo3kbbYvxMAAhx616FP0KGj2XovwPcJuO1Uuvsavc9joE+YgACYkYmFCAkUrUJto2YAQCARERIm4fZXUxFtYzKvm+vmupnW8No+BDUQDAJ0YZ77TQRgSVyRapABB2dyJ3ehYK/g6qbW2OkUQJAIGFDNorptIGApWHLnQh6OI4+wMWy+Wi1l02UpdfVwGISH0+Hw6TAeB84EHA1vppva5gmH4XgABkhg5Ap2m9d6W4AY2Fg4D3k8TsM0ShqASM3B9R3mCUiYMzanJeR21hEiuoeh8y5lgh0/EwiQGHKgKxQEUXTHlCQwaa21FjcD95ZAiRBRp853gjv218ZETYABkRxC1TCQkYh5SNKCcjUrpW6IApEIVLDNLhNLTiknAyj3G/nYkO/Lsrem28QIIYQlpRZqFcmIkbvVMRA7gNa6XG8vxyOVOiSB7phk1lpXUoPEkaV5LROTW7PgDGYUSUj49PQAFMUUuAk9NgXHjl3c+UrRtmh4q4aaaEDbbG+tbCL66cefxmn84fMfmYYff/i7P/3p9vx6fnm+vH6/nl+v82VmwnEUdx8K0dkdKwIQokV4aKnrsmJkBTGPRJiCME/56cenIaWX55dStn1Y68Q8HNJUh2mbDBbHAhaC2EoTGTCPGADsWGbwpR1Z2ARz75sjAFoj4/3bEOE05ZyFiAJQPQiJQryTqIkQE9GYKKVMnFMaB0lZSNgFCoUjQAQpcHVYqn+7Xr6ez+dlKWrxvla9q7X0kWKTd0WAcLzDjpAYiRGltU8iMAIdAaFbPwICAVh0kdZ3V2tHu5GpI+5ECWptZDertWzrzOEZSURGGCVxYxwDQgfQOTjGWvVWavEAoKaj6ea1lmW5pPklMBPnqiuAEzALSxqaenFj2PVHHLGDp/cPvvN+9pMZ3zBp++VupWxMKSVBioA6l62UAjGMQ76PU0FgVyRtFvPQxUGIALBF/XYAE6IBrVtdttu//Pr1//Xnn7+/nh1imHLiIQI9qCrg5g0K3l7NOMrhMKYkLZTdkXTQDPRUVbU5KG+lMNE4jkKM5S1tPJT1ocxpW2GrS9EtUMdUjmNMIyZmDJFBHk4r8msp367+tS4vy23ZNmDjVGhwEMt+cqxTfjikR4GRGE8Px3HKksisDt84oF6v1/m2mhVVmueKuibEUmtrVbcuhBajRCQMQIG+bfVyva7r6u5NYNQ9qtZ5uby+fh8ep3tobx0aAL+7O/bioZOB2tw7ECEJ55Tuz7+hoqyW5kISh00oeEx0DH4YhkToFJSWNZlFiRCSnBNLooae2Ps5Ed2h/Z4WQtPcRkRCjg6Sbxv7nZzIb9CZMEieYoyABp3TaBoBvt9lB+hC7/PthT9gRMtB3w4R3CH6CMjNsITaGmzQ0CakjNR3ABq6QY2ooADaao7wCAvXsBqmEI7gPWeHvflBO1rzXeILsdhWdatWG5+zTSc4y3Q6NELkclu221o9QiukxElEMBzUa12rguRIMGJv9BKiC1S2FerqpoZMwzSeHk/Hx4fxOEomoIhwipRYjp8/Tz8cHqZPD4cHSuTsqy639fb8/Pz9+/P35+fr9QqEkmQ8HFJO5lCbgiF9lOpjSZlNmyo9mHdHRSJscgXaAHgQ6D6QHxM8Cj8ksM1eY20j94TsLEWYqOX0gQiqWqtagJm11vV91tJO2D5Xa/1dJPQo7uiO7t3VLSALJ6HDmNWtYR24qxzixPN/OLTvZxu8Dd0dkFgk58iDeKhklASJ2wweCT28luLzrLdZtnIAEHfzMHcrgRFUFYmDRaiZ0WJ4uLkGOBGIEHP+9OkBCS7zXELpXe+soaWJqEVDROBWUAI2Car7sPfdLdDx8DgdptPxcRyOnz/TT3+0ZdteXy/fv71+//b8/O25lhVCIdw0cw5kMwU3jGLqXhR4c9oMxcwHZgMTJD4cR3aYbzfVEg2nYo4IklIecz6kVIsagEEisBpWlAeSyZGBHd2hbh52d5zqx0FjOd4Jym/vRjiNSZIgoUVUCyLkru/MiMTAiTEAgbNwTpISkzQ7tlAICwgNrI5z8fNSvp7P3y6Xy7JWd+A7Quh9C7r5agC1bnsANVnKPnoOImACFmAG5yYi6BgBXc8pkAA58ONkgRADwt3UFUj65Ke10s3dVGspZSUIlMRIQ8oiLJKaihMhMiAAqMdmvtm+V4AizM21lHW5pmFCGiVN7koIBs5CzEIkAQBgsY/Y20GIHQTRkCD90N0RdPsKfL+wAiCACEU4wFBb8afZpMNPm+dCDzO9gmyAmSZrwsHUnGICAMIdqtnlNn97ef3nX37986/fim5JeBrHcZi2EutqZmAawjQIjxLjgNOYp3FKLNQR/ngv2ADAVBsDyt3KuqWcEZHf6f4ChKxL3pZcapht7k5UE9UxxZAxiwv4MPrxsBCcZ3she9blXJZ1XY22kFlq8AAaFVG28VqnFZmYUsqUch7GHGFbfbzeHsfxKHKpim60bU6uIaYenS4J6N48R5rMOSFQrfV2u63Loqokgoi75W9V3TzeYWUBots6tZyqDQ8xmk6Wd+IWIDJRavT+wIrq6h5arbhvgEWgUiacRjwQTAlSUAitygNyoiYlloQ5SfMgvsdRN9sxbLBnVxi9emdAgCYYv/v4EVJ08sWH0M5MKSQCyAPQwgHDvOl6tjugffXdM9L+vhGbJw22ntn9AAeEfWszEu6WOS3D3NOCNi9oNO73isaNjm8QBp2++b6tdT8r4uONRMRma7WiVsOcHNABA4Apj0ObV2OgVq/rtlZFJBZLklioFlNX0EDBBB4SLkCE6IIuYIxBKWUe0/H08Pj50+HhNEyZ2u8BEMwDD0/Hz18ef/zx849PT59RULHe5sv58vLLr7/88vPPh7+M379/VzdkyuOIxFvRqNrUot7vcyIkZuttEVeLqixk1NTOzToUNoLBB4Yp46cUn7MX0xLb4DQEU5YY0h7Zu72yqpaqtdreIkUAaBO61j7tQvTQGp8R7hZQAQjAvDEZqNU8ROge1RuQiNtxk97FdfhbGvL9Hd5vQRhEkCY+2ZBHTE3bKVr+G+5WqnMB5m1e0205RgwYQYDECYEtUKtGMeRGuxci7H71pk0PgZmPxyMQVQjfFgCw3kNsvNzOv+u5aueWQNMPQUBCIrM76jQi5lt150E2U2YWYBrG/MSfhsPw8DR+/vFwu17W5RruEHH8lB+exst5uZ4Xu4Vu6hBqXitQDTND4DAm5wFShI/jYKZrXWoDNnhj0LI7IEGaiAAFpW7uGCEWXHkQJqoFacYICNv3OOwAmT1yvL+IKaXEzUbPoqojuSCBUwBjCKNndkIEAiKVMPEm2db8G0IdFrXrpi/z9nybn6/zy3VeVFuhx+0XdxHivgbaEzSHJg5gDj1zNHSjMMHIgpFIDToVpNUDBIjAKThHGj/cSOsENdRI0wreNZbdrLZfagpmbjqmNOaUU05N5XtvGlQgiyjtEwV08rFFBCj5tpa0zpLnXrchBBgxmTsJCFPGGABFd+PeXQcecS/b3119N3ysriSl6fQAzd/FrdaKhHkYSMTC17LdbteWJTETApoZIOScJUmfvTeZT49mxV6rLZt9fX7555//8svzy3Vek/CQh2kYhzy4WyFklMzy6ZQeJmGixHgYU+JBuFPh1b3xR4k5dg44E2FEa6zdK737pUstW6WgSLmIF4jNtbiJCE5HHwSOgw/jYuXmerVytXLzsjYH18UGwAGZsBbeaimmxVEidJ5vZduGYUCiUjck5jSkNJXSHCASkFBKnIREUJiCmYklMSdCQTIkcItlXZZ12cqWOLMktyCCccwPj8e7CH/fINhQtK3B120g7jxtQhRhQowwU0UGRKZAQnRwha3GFXHLI6SDyIEhLxtoreeodJvhukZRDsytiyNEkhIihkdV1drxDW3LEHO39QMAd3CnZiZihmaqxgQhQNZa4e8zLahuxZRIgIkQBMM8GtK+70fsrTFqA7w9P8DG2OuDvH254ltJ3xwXnLxLxt5/B+y+IA0g0/B5OzK2CStgA/jC3sJtMe9NJwHvp8W+ySOwBhTzLbR1mpv9HiGiJJGUzWIrWotudVNbi9rhAOM48DgQDshAWXAQyAwJIRGZpDyMFiIZn3gYxsPpYToex2nKYx6GdJgOD8fT08OXL49fPj1+/nT6NA5jymKhxdZ5PpzO45hkJAZ19FjWtbozCRBHQhYBBKHhfY7S8aeNnxtO3TGno4caxLy1kFOEp2ADLLWW23K53J5fl0KVTvSAw/GUJDG6eXhgVa2kAAWhYhdiQYAwM48QJmHBN934fUIDQIiO3vBLiBgIBlbV3ZqDO1qbH7snqTC8O68+HMEfqvY32AcRMvPxOAwDYVMzVqi1nXGuZqqhhqUs83wl8CSSODExBoej7bLAiGSpu1KqqocBOhGw8CQJiK7rsmrp9SsC4K6+24ID7jMOgKb02fZwALwnvLrHt2/nlJcyw3Q4piENhyEfBhLMEx9ppKQ8KF9r2/wP2+HTD6fX79fn75fxvCxLAQ5OkDIRhFsNU6+IzkhGQcMgqmnebqXUsqlWR+YwqNXcgZMQIgGjEhA4mIYmScOQdIGSQy2aNeXuNXe/fjNqbzla10JS96LW6DdtNIHAhCLkbW9iKLlC1WbzXRWLYw24FH2Zl++3+dttvq5lqeot+PTBMMsOpIs3rkBjtxG4gzXJXUMzchP3DKEEKFA5VMKgKax2f5Y0Uj7gePpweCFiAwc0s+rW2ANojSk1q24apqZqBow45sTMOWXukgwUiDUwImqgA/U54w6ONoVmCmtaXDIRA6B3IDMgNl6dSRiz9XlTq2KQGqCvP1XY4/rb39/ejzBPh0PPSj3UlJiHLIkJCWvVeVkIgfeETFV7dQ5BzPd6r23Kajqv5fWy/vr928/ffnm5zqVCkl1mSlISTgkT85jky8P0h8+jB0XgkKgRGUTYA827BSURt0WEiE3nxFSoWyF/6AZtqy2roRMgF6JiWmqptQAi50ynYxwHHMQ2d8RghMyeuFb0CNwMWFhICHRzq+amITUC5vX19fUVoWnfxrKu4cg8iIQ5MCeSxClxTpIl5eRkPDTDN6GdR2Pu67oty7Kuy5QnyZkIiGCahk+Pjyl+U4rs/aS96wTQSM+dTd4NQ91NFQOJsbPDQA2K4spSeEj5gHkEyq6wunqZ/TbTvGXXkZtQrntEUHdKt1rKtm1dBJA6MKW94lasQ9+UXUnePZyCgqHhU97r/gJYuIYzOAHvo2yithvR9/x/7/X0+XuHDTTFeu/RhvY+xRtQJDCcdkjPDoXZKUSA3n4ate69Nxmglhh3tfk7nu89rGmnFX1oPwRA9Shmm6l5DSYWzkJIIkkysZhZgy03phKI8JCH45SG3ChRyDgch+EwyJREOKwXHxCQch6GaTwch/EwjOPxcDw9HJ8en3749OXHLz/9+OWn0+E4DCOAm9WtLrRVV9EhHfJwHMZDypnSFiWqWVhw62NAE3n7cAr36N2OaACEaHhxc2wocHdAFMImBccRUedleT6/PL98ez0XXPg2MQ+fnwYZMiYLtMCiaZPKhKVN1rifkKrqHknkfhDTDr7YV/kuOYjgGBoW5rWqm7USsQE5w2Kc/sOhHd7ieue/7SlwEEHOzOxm4RatrWMaCBBCiCTCEbjMKxPzUQAImusaBEZQH0s1xG60Mx0gmNt+F3Nm9TZlbxJU0Kwo988DCHxX4kBEgNT2nDs4vBd4MrN/8//4x8A4Hh8Ox8PhYTp8Opyejmlk5FBdS1nKtirWwzSejkdGDouf/liXucy3ssxl3Zaiq7qqaVmtbtacZx2AUFLmVDnAts2utysnHMapFi1LrdUlSQCpgVbSwsARGIejDMPRD1UPPOtmpTZ7xUYZ22v23wwWGpwzIXIAqnmpikDAwM3uYeds7U00C9VSlu12W+ZyW2ELNk5X1e/L9XVdz2WtEUHEnFhYdpYb3bnc2OYCu6hX0xgyBzMyZzVRS+5DRGBry4dGGDcBJ5LMaeDxJNNJHj/4tQNiRxu1U6PJ8UMT5dBiu+Rwo9NWLlUlYOrGiQ2rH2gADuit4x/YRIrbmB+Cw7FJGhGhsABSYBBLB0cKEFSqM/raXP0a17zHh99g6Hrn8b1wIgAAEiVORBQRjXGQUhqmAyMyRgBUVe4UU2ho+UaxUq2JEIJahr4nxHFbtq/PL99fXm7zVa2ySFAUg82IXUjiMFEiOGR+Ok0/ff6khqW6e7EIFJFhCKdAz2oASMJuDghEmFLD9XZDqt8Meq4Vpg1sc95sq15Nq2/byFaLEMnhkI6HlGACf5ymL4+PP/30Q0HYmLxocUxVrGSnEVIOa87ODuTV5svt+8vzdZ43bur3aw2klMcEKJIlswwsymlMow4CIpnHY0YBD2tvwc3Lti3zPN9up+k0DlMbDo+H8cme9Jr8A0beuwsfAnPvFhOhO7WJTfNYu5MyGNAgNGrxUqGCRBo5T2kYhjxMWQTRS61aVt3Ciln1qMaktaEokFR128q2bc1ItymXvWmRMLUQGI7d/pQDgsAwEJqM8rsYvW9zQiR803T1gOgYTECKe5jdJ0cdZrKvzr6WARHe5krti4iBTQoO7gS5Fqyg41/cMbDDvQPNPQzN295vz3g/fREi3NqP3PPgD7EjwrSaVq21rEWL5TzklNOY8zCyCCIFTiCQJ3n8fCSkLOl4nA7HcZyGNIiDAwElZhHihh0xszyYRWO3UgrEPAxfvvz0008//eHHnz49fHo4PkzDNA6Dhd1uZ7NS67qu12W5ztfr9fX8/dfnr3/5+v2Xb69fn8+321IqJQYmgwgCZMx5jJ/87ppGSEJMgtK8fhGFWJgBSS1qVTVDRBCmUbIgY7Vtu76+/Pr168+/vpw3Mx5YMH35ND58xmFQlBq0aWxJVpGS6q7ZgYjQjgRuaObYj9wI7vk7A6JG99Yw86JFVWtRMwvvVX7bCpo+jKv+hj3MvV6PN6ZGq8lEBMrmxe5qWgQoEI0RKuBpW01YsxiB7eCsAAJsynstYw5qhUar89oh1AfpLckFiNh7T9D5fwj3pdtRWCICTczPnfQtETbzP//z16p1GJ4PD9Pp8+npx8dP9ilPjOzmRXV1M4TgxGOYZBmmYTweHj+Dbr5tOs+3ebmtZVvXdb5uC22b14DIqdk4JmCflmxggebQUI7h5q4QSOboNXQFLQjU8NEyDgc4VD2CFtOiYG9w2Z4/0m/lcolYJBMLAJlHdWVv+EVHdAwLN61atwYJVyil3G7n55fX8/J684IJD4c57KXcbratYZgoDVnozulA7idEwC7y2pUxHcPBzcEM1UmNzZJZbl0gDGaQhMoYRDym4TikSdJBxqNMD/LwOMBfXdFMsnv7MBqyXbWoNkJNe8/WRvIevo+HwPc0sx84ezHdZjEBgUjt07pXCGMm4hQUwowdOOQYhlAwFMN2WW9ofhi9GLm34t869R9a8tjnqSApvdl6poTQjuVwcwKKIGgCZEIU0SwaiRjJq6q5A2A1X9byfL5+/f5yud4cPQ+MkpjFgDXIUYaB0wEy+iHT0+nw6fSgjluxtSzuCizNRCwBZUtAhCgKupevTUeS2hT1N5OFCrgFSDVZ1YuDWVD1batVHSCGkYcRyXJKxzz88Olh9j9o4iJ8e1ntqqZsNYdkjIzO4QDgSAZkFuXl/P3btzNhYs6MiaknkCJEjECBAmnkMQZAoIwps4G5aitHW2i/zbfL5fzp8dMJHhCDGIYho+Nt9VLj3YqCBpprgpXN4wQRGly3N2WwS6K3frOC1dDqxbmmEYdDGqYxj1NOUxKGcA0ALV7DKrTQTqQE4B5b0Vrrtm2qamZ3l96e7d3jXTv1+sh0n7z1GvqtJX6/EucRBvewDj62NlRvMxy/fyMiIrVUtmUVuFPjWgmE+0z+bSljRFMFhbal71CTTtAhak0JaGlyOBEaWVPd9HsGANhTAnfv+Hjo9f/98oiyllq1NdLcAZEkpXEcxsOExN7OdAwRPhxGQk4iw5CGMY9TyiNDR+YiALYw1uadIM3SiZlEUj4cTj/++NPf/92f/u6nvzsdjillhAizbVvW9Va2pay3ZT7frufb+Xx5PT9/ffn66/Pr8/fb9brM61prEAahoTe923Gw9wh5JkzM0NzY+zi4t7FNtbnfAVIzgDKzsi31en59fv712/PX59etWhoyzA9p+T6NLPxgmDeUxJSRM2JhjjemJLo1ODkRQfPJ0lLDo1GZhyEhYhtYFtXibhaurYsQ4RFtStPrsY8o7N8cv71cj9hxGr1JQMQiBCBmDsVrqbUG4cgcBIDO4CmUlWhb4hKrHxwOnhMRt+7YXfuBmcgQEZpCMgGCh6n5Lhbk3lYrImA3i2va3GitEx+B0PiaGOjkYUGV39/DctN1W260rrWEQDqmcZuMyKCoblo3M4PweSnn6+0wHQ7TYUhDlkQgaaADT2lKJ/da6uV8u77crnhzjcfH4ziOADQtObKq1ePDeDhMeRi2oimlThOpVjfTzbwGUDhFAjkOIxvrUbVUU9PVvfou+RKIKIlTTu+nPkScZGCSRgH3jqH3xi50L7Ws82W7nsvtUrZr9VXX8+35l+/Pr7eXxTTn/PlRM95gU7YYMEnf9E2fhnd24/6Q72Cajot181BDMzITtWQ+mEcEIYigEgILj3l8PBy/nPIp8YQ8ggxwSPm36woCuhVFB3/1VVyLN2/G8D5W7BBnc9duKwKt+d7Eiq0pMDMhRjuZiBDBXWspZRlsPMghD9watYDmgA4MdzZaP+djb1y+sdj/umz/zSm893gxp5xEELEpToRrYuaOQ8Em6ZhzBoBSipq1Vu1aqgUgyW1Zv35//fXr91+/vzjYw8OjDAzMZoNqJhIieThNT8chk48Sj8fDmMcAGjIMmopVBN9UM2dmHvJA4h4IiCmlcDdVb9OcptdWoDH+eiwZORnRtWCpqdrgMDK4oRqEoyMbkoYGhDA+PZ7omOU48jj+TN+/r+fwMEUIYUgQ3GhsRDAdx9PjMY/JwpalhC85jTmPwzAQJSB3rMXAoKSBJsrQlAyxc9ybtY27l1pvt9vr6+uXz18+P31GAhHMScBgpgp3aaqejjWcdjcQhL0DszNnoenONmmZQDC36lVBgz0f0+ExH06HaTrkNDFRuDEERgUzr2DVvTqghhtsxSNUbQdxYrMIU9WISCl5ODh67Gi0XshEh8wTU9vE7h/nPHAcjimeTG0r22291WVz09Z/aqE9EIIAmVgSiqAwowgKIEYruru0E/U2O9wnfaFezXVv6O4D9rbDG/ez4T76B3UC4M6wvQOe9u0LEYToze+hDT3ejUEtLucC4IkGzkNin8ZpOpymw3E8HAKgqlU1jy6yEhGlaK11XuY0YxpQBiBpwB4wC1UvWgEw5ZzzOA7TkA+n48MPX374u5/++MPTD4fpQMSqalprXdf5Ns+Xdb6s8+V6frm+Pl/Or+eX15eX1/PrZd5WIJOBEslWtdRqEMAgIC4felqMlLlpFnCHRkK4RVVtGpnYHVqjlHLZFqjf7PXnl1+/fX95Pc+LMH1KwwlLXp/5ClgX5LGRSokGJk5JbNcZ8vA2eRHETqF1Kn1wnoeUxiEjomotiKsHU7CgADKwch/EtMYtuBO/2x1/JTQbXbmwG1q2NUg7UkQAIqVc2VsSzNSmZIDBockrOUAJAFMCYAIATns2yyyNZcoozZZ7x3CBh5fq87LOy7puJRibkUN0iVnwCHBw9JaNElLzLiIGCPROIr3HEdASZfVAT2NGYJHEWZDBNKp5qe7mEVHqNi91WXQey5CHIeUmu9h6FsQsGVJKkoUSE8XhYToeDw6BA5Q4WujpNA3DIJJLqYfj0IyVFZ0M2MMRSGI48PGQD5O4q4wgI6ZC4E1wtZnLNCU/TsOH0N5kktuwGQC6yhQGgLnVui7z5fLtl/n71+X1e5nPqre6nZfLt/PrdX7d1MY8zICnpIPTASVxI8kSOKMzOgHBjlSwtsN7dIdwxACwQHWsytVEzdRyBBBwQmdyYh5yPk3Hz6fTT49y5Bg82II0wQfHhXeQtH3Ms6uGqBYz9bAu09GqHdw/lBM1A1f3cA33JtyCGH2K3HhBBLu84bUWARiIIFAcuLqCSfIE7MSJxIAN0ADtXXT4TVB/m7x/zE8Aoms0tiQ1GmBWNdwIO9zQrGfITR/A3VVro7MUMzXQqC+X26/fnn99Pr9el3GSx2EcD5mIS+WCLARCcRjS58djpshkQ847ihaBAI1US6NTExFxEICpQ4SwBHlEmFkDdrUs5f19jKOPZoglbCMNiRiB3Ggr4RXYGYEcQMMqVMn4OR0hsaRBKulFy23pWtTUyPXU3vAwDqfH0/HhNE7ndbmsa/FAJM6DcEp5YGaK0ECTTMECCOZamkpzS3JbKma+LMvr68vtdq21JE4psadwDaI3ZVOE3uXadTbvM+a93Un31jdCdz4JDdOwIOMBx1M+fpqm4zQMU5KRkTyUw8kFLFzRamB1IIBoXrM9dejz9VbJmdVa2wMJ6yqzsa8W3xmtRCjMGqBu0Qri/Z2MMg508qSFpXXINDDMsPfucb8HaqKsSIkwEQogGuyt+J0fvLecOksDndClJbLUfQFb58wxQADBA1DB1VonlgAokALbpKPzcREajssBqNf8v7nc4/q6iRAfGn8bUx6IBIgbIsAjSrFl3spatGg0kEgooA8j5gnHI0nGCHLDWqNWK7UA0TBOEDTmwzRNP/7wwx9+/MMPn398OD4wiZmXspWytEbP7fp6u7zcLq/X15fb+eV6udyu5+s8L7oEg4yUCBUgtFrjswSBxEdjsSbu1tzpCPsp2AXWAqBhNgGQITy0qN02K6u+rvW6VdU6pnwaOUHZzl+jrJQPLqPRiPlA+SAyIQ0KpIF+b5AjETC39g8AEwcQU3P0ZcamPxKUIBOrRDHbkhb12oSGI8AjiJj+ww35CG9SMM2uujcq+7+COwjzOEzgUjcG13BkJCYCZy9sQBzobtWtUCxUWoeFSYQafyQLD0SCQJUY0RtDww3meX15uT4/v87bOj5MlNgi0JtLUutYN2vIwNYtbhExGv1fxewdcAsZhCkBxTQdP3/54Ycff3r68slZcaEANEOkQAC3cLNlsW29IdwIYczDkBI0z04i99iWbZ7XpayM5OSQAAFQASQSy+Pn4zRNEVTUHr8cpiklRNu8LFq3atXygIeH9MNP4+EUS92cZpDCuenIYYMMNlE4Tij5A6CjlSStHYatR4dBEBButczny/dfvv/zv3v9yz/fXp79+mr1Vm2usW7bprNZHcoSN6ljekrDlBInwUBXdOA3nDhYQDVXdTU37YU7RqADe7AGb86beqlJzTEoUU4MRJhTOo7jw2F6Oh6+jDBAgVLc1GqEvl9XbzETsDfem/SPVrXqrrF7LgA0fh1Ry5LCwLkN4U3Vrbp7uAMEdT/DiHAHV7eoxpuPm2kxlaPCaJA8xCGnnENEhswVI3MohBniLmL7m8Id9mD/2+MrWsxUM3dr1XmtFcKpc8pruCkiIsjesVetqlVrDcRg2aq9XudvL5fv5+tlXjcNdjSnMG62rEgxsA1UR/JJOAsKigOtqoKOjRkPIcgo3crMI2qt87K5xyDCnCDA3LfrtcHtagi8A9ichvKgy8xzwQ1AMHgCIRVa0BZIRojkCCvUl3oljImnL8fp03RKBepl/uWXbT5fAQ4ikISFBYAiQiQfjqfPX77crtu26rZdHdzRSGAY5eHTkZnWZa0e1AQqISKsCTkhenMoB0QIL1t5eX05ny/rusiRU05ew4p/gD4giLSapw+zmJlZ7tiRlkRG9y9rBxhUMwOlTMMxHT+Nx8fDeJjyMCaaKNC9FlA0DjXXMAVUB4bW5W+adDnnFtob3zEiWmukAR1gT2OjR36/q7cxkYNZVQ9Mx7eNnhq7ThLAcBhlPY1127RW6AiB3swnRk4CyAYpgAO4GSqauvWOFiA38Yk2/iDipqpibaJFPcHuTTqCkEaxQ3UtEbX3BaPP9ZuJOjUlzd7H3QWY+g2+2xsWt5c1ZRHIOElK5B5r2WDFoBbX9Xy+fP/6ervM67yBN7CeMcPxMZ0sOaYhhEjC0aprUVUFJCaNIZKkp8enP/3Dv/r7v/uHx4dHEVHVsm3rNi/rdVmvt+vL5fJyefl+fvm+XC/rPJdtqVFpwDGNasgV9FpADbD3L6Bpz5G876IwIRO46aoVEDxCuykMIOBdKwrDJVgYJIFajfMrpduYlmPG4yhu5devPyN9kzQSDyRDGo5pPMH4EPnklIIEJCElAApid1IDdAwPdQzHMPQK7ioEgi7EaWyFX1TTtZa56FKsqpmZY0QE/0bM9DdHV9dM7COjplHCsFPRg4BZhoGmCcBVS0AAAVEIekIjUAxQj1LJmLx3fZO3hjw36UfKrTnqroCGgOG+rtvtNq9bVfOWGUeAmxsQUHRUaB+yt8m2t0Hp35oyAAIRMFCklKfDYTwe8jg4pwkckIhyOBBSWLi7abVaTYuaOUMImYaGm1d3N3VDCCZHWLVQWQBpM3UEFsREIBAG0LLClE9Djhpl0bKWWurxmB6exsOnJEPFXCIVSBXEQAIl0BwgSIhSA4d9uI2+BVsXLxC6nKqHm1Wta1nOy8svl1/++fL1m1/OrrNSjTEi/P/N1582N5IkaYOgXmbm7gCPOPKqfltmdvf//56REdkPKzv7Hl2ZGUESgLubmR77wRxMRlZPUySrIiSZEQDhZqr66HOAeqi5cYec8sPETjSiFcMoiMEJDCLcQT16j6be+yC0ebhTOIVnR9TA6rQbNWX3IpRPjJkxCxXhOec5pTNQViU3rwbNQB1+6B8/npxjnX+A1mqm/l7XR7wmc0rC9wTGA9W8O87cO4ABpL9na5mFDkxem1o31+p0MpgsCg+REi6UZ5pmW3oYhPZAOsx2PrQe7y8W4e/FfVzf7gOSBSIankwIACMkJsDRmFCYgcjMYHifHnQvQgJVfb1cX17fbre19z6WwV1BDVmkCEvCJfN5To9zmpMID7kc1K4GyACDYgoEOMweYqzoHNwRgIWZ2G1YXQ0UxntE3Es7Aky857SueeupuwYCUkg29obQKXkKyJWbMVUEChPtS5nP53P/+dP1+sX0pu2aMpWSS8k5p2E0DUg5lefnx31vl8tWq7HIskyPz4+fPz8/PT8BxPdv32rfSQAPwphHOGAw8zyV5WFGDHeFgNvlerm8Xa/XeZqnMqs4i3+EH471+V08+qF7RESMI5xhiLnGXDP8ns3JpOC05NN5Pp2Wkuckk2AGQ48I41AOoyEBG0iNRwiLJJmmaZom+kvf4R6OAKPS490Vb7BQ/W7bdUfdhnNu98OKAO+1hHJKp/OSS9audW/7etu3rdem1u9+HkGMzAyUHKfAFEHdYu/eWvVWTc1dkQASgbAnoZwwiUgSye+P9fgnICIcIxgi3AXViR04gMIGOcruNnfhFjhyOOEerRN38t6Hazci6tZNPUklIhaysNCAHl4tAnrX1vfW617rum2jtCcZueEEQGagGiIEzqZu6uEjMouT5NPy8Pz06cvnr4+PjyJpODLtddv2dV0v1/X17e3P19c/316+Xd9etVZTdfQQwhDwCAwzV4TDBxwIIYa5u6T08ZzH8UGZuo1bZ1yKRCTEgIEjug2InJEyAOD0IMtDWV9Tu8wSmUJ7vVxXD2BOwjlxznlKZcHpjOUMZcGyUJkpTYDiIcARkYYdgwc4oIebmlokgsyYmTMfZLtR9xzAAwjBCTwoIoR/GKj+NrXDsJ8DDB55WZxEBAAHHoXEzJgSLctEaNutW3cEIJCEc0LmCPQeAd5VWT2hKwVxIDiFsyPQcCtllt63EU5vZrXV1hsxZSk5Z2ExN/NAtFHV6TDYpUMNFffzPMh4H8784K+8y8Tj8LwwTjwti6QyT4pBDDKiS3uvrW691TA9L6d5Wta637btuq3qjXMqqSCL9va2bde2M+cA6IHgeFm3vXcIWevetE9Z5qfMQbrbvlKr9PS8fPrpFNx2vUauNFts3VgNwzCcABGlCCdytG77RwGcR+hwpg0UDCN0cycL69Z7KISi7rFd9PV7e321UCyASYQByZQ1UCEZFhAOimYhTjmYYjAczEItmkVtUZu35lrd1cKcQBM4OpIFbh67RTUBKEvhkviUceIQdIYga7DVunewGj0gaASZfoQfPqRmwHC7Cj5E7Xde8EE4YM4p5VxSysyCI89gXCGISAI+vDAMYDhChYc7WIRGWHiEqXcLc2YCZAghdAxFJMoLwgSKYRhthbuN2Dv1Ce6Upw+//uF0qA1G0uHJC27hgYgBOG7xICDklPNcCovA8a0MOGLtUdVu1/V2vfVWCaMkZsamLoopyzRPn5b8uOSHJT8s53nKQ21lDgbuEexh75nLTJB4gAeEOE0FAIV4zMIAmFIaKtMfwnoACHbC1cpeZ9NAqFw8OLAYJ5cpslIB8VTOMp+t3bqpWReML59O/8///TfVtbXbeR4clXmacvfauzoZAj4+nj387W01QxZ6fHj4xz/+7evXn07nc217bfW2X5EgxlYaHAmEOOX89PT85etnIui9vr2+3Nbb5e3t7e3t6fHp4SwswBIfZWMR0Xo/oBeKQUYJcw44nMMQAQ728H1fHY4KbKnAvMhpXpZyzjySlZK7m5IqaSdwSYQhaEN4hMAi8zyfltO8zBGhpn5kyMKgDQ02CRwc0TB1GxNVBA92sNnhPPpjwsJ4Ys6PX56ePiOk3vTy+vL2+v1y+XPbr+YKYwPFiEycikyPJDOh1GZ0q2HQtcbeva1EAQxBrMI4LzzEDtM0aDV3GONu8hcOYe4ubCCdOHUVUtbO0DuQgjrooEHcM8oHoe44r3fW/f3jsG7uelsBJWRCDAnAbuatA4RZkPhySu6FMEwVI84nOZ1kPnOe0MjMjQIgUNVVgymlVKZ8Op+ePj9/eX76PC8nZK7aVK3WVtu+t+223y7Xl28vf/z553+s66XVjZBoYgoG89566/2293Xt26atx0gCAiQhTqlIKh8Pupl3Ha7yOEhgR2ApooP33tyUh3sRYQD3YJAyLWc+LbpTBoNeXaOrmgWBKXfj2veV8A0kU56nx+f58ZPEA8ZClJwTiaGXHmGOMRz/wdUJAjqiOveg7kHk4wNwQMCxD4OQQQjA/F8B8ve6gnf2b86ZOZnZ8F7zkRlLKRcOJ1NvEaDm5qEReFiXAiFYj07W0fvgcyMIHr5Rh8UYmbaAcLN7RKYsyxIEKWUcSoBwcydAekfbPwxXo7oPkS/9KBW9CzfDzHvX1ns3wxigQYKCFMwoJU85pbpv23oNV0I8L+ecCr29qXNwLuEiDODbetvXtfXqDsyZkBMmQL1tjZsSpdrNAA2hQwAjZAGVcIvMkNgwuhtkyGcp3VyhRyi4YriDFCAZIRP2EeQy96oqCIHICImpWye0aFVrNTNCYhJCNvXaFJ0JWQd/xgDAoVrs6luHBaAAAyURYQFEs2jmTaP22Kvv1dvmbTPvHmqCpujH41yNmqL5uFjyufBDjoId3UK7m7prc4UwDCIa2cjwt88jBgfXDv9AxBjhQoeldSBiYp5KmqaplMKSBsw7jJEiYgh67ljg/QOGOwcYDUAPsro6GhIW4gyREc0MzT1QIC+wFNh3SBOoHj477yrgj3X+Trb+eHlFBI7IGnYR745H4J+DO2CgyBEUOU9luLsP9wA4RlQYD6SZMnoSKnMCSY5kDuooLOdlfljyec4lJQK0OHhY43U4xNBL+zBzVguIqj0gcs5MHA6HixDAMJBorbfw94MeAA29slsJm2NXdw81yAQCgRZSDVtwlpyW5fTcmbnvRIJMy2n5hem23Vprgo+n5aGUSRJrBR9DDnnO/Pi4/PzzV+GJOc7n0y+//vL509ec58v19ZDz3odhRGCmMk0PDw+//PzLr7/+atre3l5ul0vb6+Xt8vry8uXzT5+eg4gll49J5xHR1AhRGNEC0dAcAIVZZDhV34lCSIDgI06KgVLkmaYlTTkXLgKFQgDZw8ygt+gVvAMDJT5SlokhJck555JzyQN7P54HwPuv79OEH8jU/XN4f71308LBRHl/soiBKagEzUgZwSF3LI16ZQD04dt6z6LGBJhSPs3TuTRHuEVzpRUQbfjTBAzdPnXChpgEJXERFjlYyWPipgMTDDBzZzPmTpqoC7GQdO1dSZUM1GB4Inq8V/d/GdoBAIHuODchi3ASThDgXdthRdnV7MiXEZac6OGpPD4myY6s3YfxFXiAqmv3EC/A83x6fvz09ctPz8+fci4RUHurre37vu/rtt/erm/fXr7/+f3bn9+/t7a76SAKg4Op19q2va9b33dtu/eqVs27AQARQ/CH6gIw+MnmdwIHIQITBMTgDY74EwyIMcYiQCBxOp3PoI9g52x1QndwjnCzOzEIIcyjRV99v6hX9QrtRtPJKZnkaDPkYkBASfKElNXBnCLQkKqLGjQarW0gOtGBYR4Qyvj5f3yo/hPLmvvYwiI5l1JmZh56D3ezMPcjvFgSpISuQ+oH1ZkcE01EiZAoGF2ih1ZgcCagMqxDDxEMMCLSYe2kPaX08HhWGB6HbuF4+JxEeARBALkHDU+6ob4e8jhCAUHmv72R8fyp6rbv215Ln8gIGbKkxJlACHiZl3meCcG0TuW0zMucFghad0tJT8+f85yBoGt9ffnOOU9qCCQ8AZD2ttfrun6P6CWzBQHnZvFyrYmdIVfFvQVsPa47JjVCLHkGJExFrGdvybZra9U4IcoI+vqhHqr73rsgBiETJqOq3R10W3VbwZWElnM5P0552ll6GEZgH/pZ9XD3tfWM+4RUlnyai5R5SpLRIZrq1rT2qA22LfbV9qvW1awaqCeMQoPPFqImZoSRC0FGnAgyGHvVVq314XQwgt+ER77AMOv5sba7R0CQh4Ij4rCUMfeRHBsiNJV8XuZlnkueBtHBXcPtHSEHJAT3d4B+rBhhEOucMDAcHdCcnBOuwQVidrDWojXtFiiZyjmms+cZY8dhJnYw5w5z2XdVCPzt8xice2IiTgnUoxt2G+E3MRRYkqZ5nudlmafcWoeROjqkAeZqbmYImJgSUpnl9FA6lZuKI419nhAzMjiaOkAfeL5QEpGxMKOA8BhEhbq12mvtlYSeHx+lsI1REgBwmBh6ba2FfDzoV5aUkk4GM2qj3WKlSBILGvSarte4MmbJ0/R4/qxlgrpmYeCcmB/S9I/fVKTUNUc/pZyR4GC/mAY6c0wT//brT5+evgT0UvLnT59OywMAY7CaqenB5IKR2pweHx5//fW3f/vHv/32629vby/bbQvDVvv1cv3+7fv1p2trKpzzNEKxji8P6GpMdJAuD7P2yCkBZOEx6I5cLCYiBQ4wAaRCZeZp5sTMIRyJIgGgQZiCNm+7WXMMESYhBkJiSjnLSIgZc8lw/P6AKAGAv+9fBgpFRMwxgHq/Y4n4w7ALAMGiFJe9N7gCsppt262amiSaH+iIPhi5X2pGtllKMpXPU0aBCVrv2xtjjlIQfIjUARyxY/e4RVeD5YHmhUSIyI7wjvvKGI5dsoiyZubEls167723Sr33rti7IY4Fz33HPjbyP0BzmBMx5Hmal9N8OpcpIXvXWtumXXvT9dpuL3W91Lbb6TTND9P5PJ8fk8Fm3hMNewLqHqbWWif1eYrTcvr85cvPP//y/PSJRdSstrZu6/V2HVv2P1++//7HH9++vby+XAc5ubfWdh0ye+2q6odMuUWv2m7VuiKgB84aYD8MIhbR3AXocE9lDAgHPxg2dx+MQ8AV7hHCfHo4z/K5lI33i/cG3lZCIvCISXCe09htaO3Wq1/73q48naksSsk5YZkoF5CSpnl+eJayqGN3chR17m4dFFACaCRrETmDMwyVhhlgBFHuywdl0t+mdrh3Yu/axcGneGca3TeRCMSQMoYTBmL3sGqOXYk4y9gOgKMHKDj1YAPL5BmdwSDAzVR7b73X3mo3IOAkcZCiRjuCh1yK4M7Sh7su/ni98X5afiRkH//aQbtt676t27wXTgDBBMDIgyAomee59J54l1zyclqmNIPTNE1La+fHx/m8dGvrhrUU9Eh5YkxmpF1r25EOS4mcS28WsHbtCo6YSKZQcNK1hV+rFKNMMaJwlpwxlKKLprTvewuOgDADhh+qiZm3bo4APCKIYjB463rt65VbV1XJdHqYHh6m2xZtR2jYO7gFOWEENPdN9drgaZowzzJPkgOs9bpX23etHWqD7ebbxda3Xi/dqkf3jKiMIREUKVzQJTkCKhmzAkYPr9E6qKH7nWNDI6gAmeBvIMogxnsM+0wkouFtYGPVKkwiNE15nkvJZcx24ffo1TsQOJYrx5OBw0zLAAzIiZzZCYfDbIAh2A14Qnxw49ZiK7X1ymTMgiSIjIMmdEiFRoGnY8VDB8D0N/HbwNdHikGMO9wdj+0dAsJY3RHL+2Q6xPAc0C222m8jv9aBkJBFUgJKGYU5LVnmzFmYiGIYMhoOIsJgHgQgEh+rwMC92cvb7bJem7Yy5Wk+SYJjxT60FwDDLPpveWNXzAknxsjIggjIO2EN87rF9Q2+/QFFq8xGuZymwgyUMqFIHrTr5ydIMt8uXNc0ilfOOaKQkroyKgnmp7OfRW1loYdTyYlrC9OurWlvwx2PkFJOpUw/ff3pt1//8enpM4HUtV9eb9utWvd93V9f3y7X6163ZZGcysc8kvsH8g66hJmPK5uZIRB44JQ+YoTUtYPGuEhnmeackgiLoCBKBIBraFh36x4GNAzmUJCYhHNOHwI9gXmwO33oSgb/w4+J/f0WffebPPZNoyeA+IEtu2vb97qZ83YLIHPvfTfrGHY8VYSIgiwCDkHgCVGIi2DCmfb5VvIUtgU1ZhChw/nEzSO0N9cwjV51xLITIQulxJQSIjkAjRab0yAisiazxtyImLghNyVEAusAOoSKo0L8gM2NDZEkKdNcpqXkJSdB8ojo2MK7qWntvXX0yERTkqkIJ3RyDweCQolBrGMbihnAXMr54eHLl69fv3x9enou0wyBXbXWtu/bvq+39Xa7XV6+v3778/Xbt7fL66pNTaNufd+adnUdnw6SCBKDgd1F4sQEHgz0Nxqduje7K92J+W7VOYbKoepilgN/BmKkGeHM8LzY09ngmtbXl1CrVTNSAJxO+fwwE6GbaW19a61rbze17tutBxkySuKcU555OXvffTq5E1KSPDMXwtSDu1MABQ2nFEcCJnC3ZqYWFjiRwf9taR8T8gHnu5py1zjc6IhYhJEwIXIgEEHKRMg5pWgOtbtDtSDDBBNhFmQORA3AFlyhF+gJgNzCvDfdt31d961Zr+rd2QJb124eEA54eJIGBQHcJ6oxsDsMkmMEeVh4HMYZfz1nx2iPXW1d9/W6ztdCFGY8Yp+EU5YCaJJJ0uDsQ6ATIwsvczafz8tUcr5tncxToJT58+efUprf3m7X2xruSejz5ydJTETrupO8bvtubinlKc2AqVuobpdrTQrFadimCnOeKQiseJ5T3ffuTa1rvxs23L/co3VzAnBgCAzrLcD6dn1rtzduCnsA8fmcnz8te8e3V6vu1hycBAWB3A1b4O6p04nmEy+ZZLet7rpXHaW9Vdyvdnvr60vbXpvtDi0ykwpFIheYxHJyJ0OAPZo5hJJxdDAjOBLNAoaDyqDo0o+KkoPpOGZXAyTDkeziFuBMKExTyfM0lVxEGPEQ3YyOMsJgqKf9AOgRgAjM71A8ObETB9Hdaqe7dgJanK2r7bWXvO51TVyZ7O6s/hd3n/C9Ez80//ecu48P1V/dupu12nprrjYiaOxobpAQzb316Gp69yIFwGh6Xffv1+1tb3u3JEhG2ZiJS0qnKT+f5qdTKYn5PV3m/qWqeJfUR4S5d/O19X++XL69vljYw8Pp6dlLRrPB9TvwYHNnFoEfrNcvPiVfnhUXbWagwTtwVYvb1Zh7weB1h1Omp/P0KaWJc0rEmZO5m+mUuDyfl5z2WVrbVXdmKlOqtba+OW5IUcqEWPaqiF4SMtmurbe1t117j6F8QTot58+fvvzj13/89suv4Pjtj+//47//r//5//uPt7erG4zB/Xq5rOttmiZO0wc8HhDhSLc+MiIRwQ7I2+w4z+AGEdyRcFer0IF1EiwlT3NJJbGwQEIQA0dH1wF3BQYIEYMQJWKhdFA7hzPC+MWgSb5L2+PeZ8TBNRsTvd+x60A8CgP+uGu/bK+1vRIJDql6QLgB+P3BZKaUJE+pzGkhFDWgJOYhiXI55XxinoiSuYz++OhyTLUbNO19160FX6epzPM0LTktZeLEiRzZAsEcKch9rDGYuSvf7VoIh38uDkgCMdzBD5nqj/MUIyWRKc8lzcKFiZE8kSl3JQ2vEMEQuUiZ03LOc0HzdquGrIkxS86Qt2rRPRxSKp+eP//6y2+//faPr19/nuaFkFSt1V5rrbW1Vvdtu1yuby+Xlz8vr9+uby+37bbva29771XHnYEERCQlS0qMhB7oQQCClJlLSiXlj8fc3HvXYAqPxCPHNiIcPAgxSRIRYmZEJspMJfGJpxOlZ8JfAOMNX6J5671qFySmx6fl6dMDC0WEVm17f327vb6te29N696smRNSSgmmhZbTenujPCsIlXl5/FROD3OZG/LmoU4eDIgIzsxIMlgT3bxb9P/CjS6OJKnBSXE1I+0WAWHD+QGQI9hj5DIAJUyCEBhdPXdrFlqbMe4STgSZMSEycSYrXqkTQyYW6GZ7b9etXva9hfWI4fvUzdUckWJw8scyCMFtCL/wmOZxbLmCBqnjsFj4+EYGlw61+Xbdb2/r6bEwR7i4mbYukrq0aSolp9qqudVeaUUMKJKJfSpUBIsATpl8jlYj4vF0Is7Xt2u4MkGe5qfnMzO11sx8nksumVNOkoRkm1YR3DdubSWM0OiqEJaYEzESkAAXTsgc4gGugCMg4kNpdw3iQZgcrgPqrdbWa1PqxgbEqcx0ekjLqtsedTUdZYiExgk0wN1htbh0O/VO3qkPk+cwjA7WQqv13era663b5qARzJQ4OSRAYwgiSAEJVQxIHTFopLXjIZf1QCAKJmBG+dvUHge56IC20J3QIWKIxEgwi8yllJyHse47NHTIiCJiJKNSDIQDgz1GgM39Qh1mNAHm0dVbB2kNqQONK8nNTa2ZtYgOpuAG4QAEh77zA85GBPcI2x+m9kG9du8jblm7q4aZhwXS0OAf8BggMqPaHe0HQjKL18v6/e1y3TY1DeTkWBWXJEvJn87Lz8+np3laSiLACGARZh75jwDgR6zcYftTW7+s+7fL7dt1KyWdMAFnkoJIBk29DWQYEFMugfnj+eg0mzzkKS9zjdpVozmTA5uS7qBr3+D6sklWmOi0nCfKQCk8u5kpcJKUCEvmSELSlZAM0GqurRWHguRZHhByEQe08zxHyI5NEKacT/NEOJS08vzpy6+//uPz0xcC+fb9+//1//m//uf//I/r2+oagsks1tt6vV6u17eHhzPS6cdPg9JHbvNd0T66/wMVP7htAWPxh0qjZDLigEYiDgPXd6vMOwI4NBg0qp0MJdnRco3B/WDFjyDt3s19mIPTXVh63xwd9hVu5ofR8g+lvfa69isOv1n4qMUECDAAQumWIyaKmVDUwzDiCiWdBGTvq4apu6kxg7kjMowkZAoST+gjBnvOOGebkiYRwrv9wrtj3uHiz/fcKBFxwAAKwmB0JmCK3qD38OG68uELAQQoASdKmXLCnJAB3VEZEwIjICNkwQw8JZnySN7QcGUGRBaS5LKbo2GSLNP8+fOXL1++Pjw8Skq9acRmFrXWbd22bdvW7fp2efnj+/c/Xl7+fHv7dru+bdt139c2zDLu8jbkBERDVALDjpoRSua55JIk849YUAAcqdv39TQAIXEiJJRhVHXforsTQLCZYN+TR5FcpvPpbN0BpJshwflhfjwVSYIIqtGqCQuxXG57rLuqWleEQFRyjBZvdW3BHZjK/LC+nZ+eH56fSzkxJWcBHjJ3sYDqBgAHhnkHiP7z0g53csRdu2ENOpsDDtdDIkQfUD+OSFBgCiYGJ+/QNq2r9rq21bQ7OBOkzJkjk7vttqlbwSRQPdZub9f+ulXlMAKDsCAfHotAcVfijQ0t8jCmCASiUeDB0Q9v7Pgr0vDjk0YIaD3Wy1ZmWR8LM0Bk7Vp5mOYmBDTVg2pU675tre7LVMKHo0Yn4KfzdJoFvLXWp0Rmpm3VtrLQMs3PDw8B/r1tEJYSPc6n589fmcR639ayFNnXsu9zb7X1uu3aqlomTwzDW9zVwVMZ4mBgFOKPvC1wi0AiORJ5B+nMAwJ56NwpcS5RZi4TorjTWAeREzH4Yd3Y3S51/eMS0LmyTxEpGEiAehiYhYZ3t2a9du8Bhox0MNcPehvIzDRDZDSJEBxUiZEfOxbpA25kZ4Z/AeTvVy/cF+Rx+L9TSakkKTmXlPm4PQkA4ZAuDZMQPjwfjxsIY+xFgyAIMY0OYOTKdYPagVrk5pKMBgdbEOkADSI6WkdTDId3o9kfvt5v17/bDCCR6uE2aqruFiPnyMMjmKlWaS3jmXIug5kyxrkIbF1fLtfvr2/bviGCSFaLrgDAp1K+PJ5+/fI0J2FAt/CIlHJKaSzTBuT7Xt09YKvt5bq+3LZb1enhYT49TvN5mk8Y1urWVD0MEZlFcoIQqH+9EUonIZywn6mC3sJadKyKEMgMKYVB3a5Xl9bZ9bHj/AklBaIadsPwMcmwUMISKROJI3pOXXsjboiBvkSwFSKOuTyowip9zuXz01NEv15XDyhl+unrL//tt39jTtfL+t//v//j//w//t/btiJCogKc3Pu21cvl+nZ5+/TlU4R+3LshHhIAH7mwSEgkd9nxnRcJAOjhEebggT7CNnwgH2q9+2hIAxGCBlftwNA9guJY0BydIxx/3X25fq/A0FVbayzMklISPCx+beyPIMDMh8PBkEF+PBhupqEjfXVMykIycjo1zLS1cELWmjpnJFYE3qfr9i3LKeHU1q3q2rT2VoddHFMByuEpQHJJsyRKLsnnoiUbMjiHglpvjhKj+R10+bBD/Hoo24lBAIMxEkUWVMHKdafozUzf3XSODyQBSZAYspMAj/wMDEJHdEAAEaLCGagwMAeiwZigR7cVgs5oRMDLlJen569fvj4/f8opa9e3yxuRAGDrfVu3db3drrfX729//PPbt39+f/vzcnldt8ve9m7VwIJ99P2BgOQkwHKY5QcBMOMy5dOSp8Tpx8pOiEzERyTuCAsORkw5EZGajQ2+mYIHIWXmG7RrvFHZH8/9GbAs56dgSXPvGmC5pCKcs6QkathycCp5OeXXK79diVemPcBYqMxs6C8vb9/Xujuh5NPLH18+ff6H/vL8+etyfuKysEDOkku5Vvv9WsMBkHFM8vxjJvjfLuD7Wu7d4XXsRgNgxIA5mgMQ8IglxiOiU5iZA9xcw7t5aOBWA6FjtIgMkICHaBJDoBptFS+v9v3WIgEkch7BCXxEZcOgVI97NjAwHFxHXw1jPkMYOoGxc/9PagkGhEXfdX1bX/7J2tu8TlKYhEUkSfLd67XSkPqHI8a+3q5ZJEkS2epa9vzw+MDCwQYpDBWEz48zSTjE6TSdTpOZXoWT8Dzlh/Pp89OzqV16E4C55DkxPJ73bVvX9SZpTdt4g6pdO/QGbshIgJwSJvnBjW5wIRk5scylLEVApTMxQqWEPagHNwBtZULJjqQOXYECoAIMGqxYYAO7tv33a1hNLcmnnJ8zsgS6MSlTFk9iwsiMlJGDS5FcOBWSidJCaUFZgmfATJAIhIAIgWLg392tOwA4wzFf/wtF/v33EQHgQ12ZUyLkklOWo9M6VBr3G+MvfhsMxo8fkZwwKBkQTkcUlYcD9AAG3xVZgdTJjKEnWYhOUzmznBDTYchztOPw3gXixxc6ruz/ZLGLZlZrbbX23kxtCMpHpwIB2nttteuY5WNwGc2sNX273q63tfeaJXKW05xTTggEDhQhBFlIGEPj8IYmyjkP8ch7RYEIc2+tvr69/fn929v1Ui1E0nI6nZbT+fzAGHVPXRVpjwAWTil5ENa/fqiyTGnCxJE+1ZLxNO14jVYhDGBmENhAyertqqu3/br3U1vyU+ZzAFioZE8TIhx5PcCHJRqTkHBKhQmsFzcEQpYoMneApeinp88o9vB4ulyu7pDz9Pz0+fnx+Xbd3r6//fnPb9//+C7Mnz49pSLAft0vTbd13d7e3m7X6/b0OACM+2cB7yb5EAAUGDDyYe7PWcA42WPTiIHDcpaQmAcAjiiAAsgBHkCAjMzEQhIYfGSej6mdabiqqeowDzjw6vGoxF3gMpYyEUMXfTDmAsy0tlpr69r/ruY5VPAYNDCEI4cNIsK7eVNXBHKoCoxEjsCStN92KhTJmnWrCpujalBTyikLMnERmvJ0nub5dJZ5duG3iOvatluvt+7N9wCKd8bQ4Z13GFIOp+cAG9Q8HLQKYSQBNMRo6D9QHyK0KwSs1xsTYwQnBrTat71eu1ZQF2KcMQ3VVgJIHjSEV+w48uaIJc1LPi3L008//frbr19/+jIvk7neXldVO5TMaut6fXt5+fbHt9//44/vf77ernvb1RTCCYMJDzfckUPLzAVZAtE9wpkxCS9TmjKjq/X68eOgkc8N4KCDFYYAfrfu72Zq2k3NHNwhsIPuvm99TXl90G7UJu+m0YIUyN1170315POJFkCWxA8pz6dTLiXnlJizkLmOaBzzsNDa662Hwb7X6tYp9LausjxwmZjzPC8P54fN6br76rJDaUDq9F/Hw9w1QPeOd7g4jcWnOaAhgMIh9QS7N7WMREIpkysSuItZu+1987iYL+aPEQ+RJkiJEN2iKe8bXl7t5a3jhDwRpCBBpoHH+r1XBkEaqY4Y4GNMGnazNGIjeGCU8C+lHQEQKNy92fa2h+t+W+eHOc9Zcso5pZz2t3pJV0kiwiRIDBcy4ihzyTkHOCd+7s/zPDdrgLj7WtL85efnJz2v25pTKkVUYSq5axGm0zyfpmm93tpt660ywPn8cFqWfVsv18ttP2211tb2rVnfVK1X8k7YGTvLwkjpYz3BwIFvZymnaXk6TxTd2nQr0z616ADN/LZFv6SMkhyoG6gBDz2WQYg5QqTAuPUG19DkmiQ9zk/nAwPggMJaok1eJ+kzo3NiKZNME02JSsEySvvsNAEWwkQgCEhh6B7WzapZNY8gFnM38JD4OLePx2U8Tx6OCDSUBlgIIwkLHSqj4yLEg490kNaICcld3Q6TE3c3i+FPikAIIzsYIxzAklIyF3VxhWiJaSpPp/lLSZ+ITqAMQYiMaD/SRQ/br8AjxwL/5qeJg+jvvffWWmvNhy/eINYBIqGZ1r3urXJLtWvrama1tst1/fbyuu4bgJ1nfljyw2kOKtUI3P0wTVKNMPXwofQ7kh8/Lt3HEL9t2/eX73/8+efb5cK5SJLTPJ9Pp4fzOQntJTdVYjE3RBQh/cgBRpBzSk/ED0hW0hLzwvl3s0uogpXUOTJFBrN9+/b28pbe1uV2nr4s5ZmIg5yzSXHmB+YHTsgpKCERggsDMeREjJiH2x9TEBRBWiYkTk+fT1u7Xq5XUxcuJc85z5eX2+Xlen299r2dnp6+PH+eTsXJ41u0t7pv9e3t8na5PFyuo9H5+FgBQPjgCsZBfbyvLYZLNd49Lkb0wKjrwkkkixTmwpQRJVx9DGycJGfIziiEwsLje4d8xePwG2RiHG5vdI/6IIQjrGz4DVuYHx1ijOm71VqtG8kPOqXxxPnY58JYykPEEX3mYXGEMIL6sS8KZ5S9BZlC2EhgdkwRGAYeBJKEMIss0/Jwfnj8+nV5eABXuW392m/XenursWl4HOUPR5RoAIaPbjoiBhXmcGWmIAKW0Qfw8PjDHyDG2PeKWFW11n27XVkYwFV31R05OJNklpyYgQiAPdg9zNTQozsrugvJXHKazp8///Trb//4t98+ffqMSLd1fXv7fr1dVRUJRNJ6W//889vv//z993/+cXm91a2bAZIwIwlhBAOMxDa693Fkw+UoUKiUtJScmazXNgRX718+TCQ0AO0wiAFCrLUioh9LG7wTfKOpQe9rrbytp7pVapO3sAEHe7h6b+798/NjIKecRGRe5lzmacpTkeEq3bV3dwUAM2ZmEe+9dR2q81ab/P7NJAUKEj+czp+fP+N0ajI3OXU+dUwa9JR+uK/+ZWr/8Ta777DDIdAHZRPRkAB9FHgb/E0gJhLKM6WEYGA1rCr65mDNAlu4VdXcOjFBi9q6eiCSeHhoIA3ZWwdQd6ARaJoGjkGDWRXuqlp7N3VzTymXMgkLM5Yef38nY1sWGE5evUbzZvvaUxZOaSRHs7AIH6ZaU5JMQRriZS55SkjAibtrmQsxMsve2lyW8+mBiYnDQ9ftSojLaSLCfa9TTkJQEj+cl1Yxwk/LdD4viNb6hrLkuVxvu/vaNsNQ67XdolrbGNpJllP4z/HxM8EYMW9AgUKcaazjUxK1Frb13o2EJGGeaD7l5Uyh2BGau7kX8IwkKOJINeDajFSXpOfJZwKOzElysgJ9sr6UUA9HJkoTyoS5UCpEGSADZMIEKIxMgegOrtCr90372vqqFKwc1iIMpSgsf3uwBhJ02NfQIQ/PCH5k0B+P29hEIhCMIey++RtJ2xqhdtBePeDYmh6XUsQwhVSz1kE6UDOsnRizPAh9Fv7MNGMwckJJg2L1/uriPYX6/X///jjB4MqO/bebE4IIl5RzSoNs083cbF23CBzgZliox8jGMNNww0AeVCxJxHlKnCloyNQB3QGQmTgA9J5AMur6fV8AEa7aW9tbq4mYiXMuOeeUswhliOXhIYjqvg8fHfcfFK/aV7XuU0EB2Rk38YvbFurQISI8RUwJqLf99nrVy0q3Jb8u5VPKmRNKccku+UHSk2TiTKmISMJIjClcShJTDCNgZQ+QgGGGkTyLiwAjRWCSibkg8Gk6Pz88/fTla1v356fH337+uZxmQ2/aruu1NX19ffv+/WWel9Y+kJkjRqiMCI8gzsGqIyIcEQU2XN99CDEN/cDkjywV5oM0JgAJAxAZkJmkpCIlmDJhEsmSk+Q0qt346C2cfAxyh+/qsPcaZXk84YwYQ9cwlOP3DGLA4cP+wx3r4HfyHQQGRFdEwoHR3Fek9+0vQQx2V4z0dyYSIWOS4ADGSEk5bUQBaGp929a3t9mMun1f69vL7XbZtrV7tXt4DR1+JIMESEhEAgD30h5ABugIBmAG7gfF+QddUsAIoTBzU+37vomMny8wg0jKWTBhiDewYeoRYeoa4UijZAIlWR7P58fnr7/89tMvv/7809dlOZuZqZac1jVqval2ALxcrn/88e37929vl7d9b2YBgDF87RgYKdHIHOTDKp08KAb1MiWe5iJzBuFuato/lr1W6/XSxpqdmIcxDdznkyNCmI4AIghwNdaarHm0q+7dNmi7au9mw07GenVtm0UFfDzND6epTBOTJ8GciCgcTM2benNoGoypSGRBNYuAqhZbxWbGDCTEsne77o3KGacznYyWpAQaZPaDoufvbnTvFkN3u47B7QyII6MF7no4QgQgR1AFxBhUTuFEGDzWRM11d627BzZ1t9x6SkzEYOjdu2SaY6rRFHRoo1SbW4zFbcoMUKaSkkhO47iaq/fab7e97o2lzJMN9hWCT/9S1xEwgCMADHzXvba4tnGtDqYUCyXheZnmpczLVJbkYpB832qecppECm9tH6mvIuLmU5qa1rnM7g4O+77O0/z48JhTYkRmdGs585cvT7XmWvdpyqkQVQCOnFKiYgG1qkgnbN5xu1q9bWC2ndPppPb/8ne378PZ0cN1+MI4ZpSUHQQolLx5Vb4hI2csszw+L62bmxto3auaE4QjCedMyK6wd4fep9s+sZ+STZzPkubiOVruumSIULPAkAxcQGaSQsFmKUiQBiyJ42EMbd523W9tv9R63cmoiWpzd5ToH0v7X75V8Vddv3vJOh5xdkNABAMNh4DDx39c1ggA7t7Nuw305nByORyQHBDAAQRA3UTVWg/Yw1kRMfOC/sjwzFRIDFNByWE9rB8qy79uqTiUu/8iqMR7BzLsbgFAmJecH07LaZ4CUM2v67r1vt223p1kDLOHOcvYaYWaNezd1XDKvJSyZJ4TMoapA0AACQml5AC1NVXV3t0sIt7FV3zXYIWadQVAYhnXUACSyHI6B6BbNN9duyv8haJE1Ov3PVXVE85ZZqMZjBxNwdAIUbsEToQJ1Nrt8tZe9++Jvs35ucxznlKePU2Q8oPkK2eWwmWec5koslDunUtO6AohgDsz+iRMI84X47AXFaY0lTNhDsenx+d//Ppv6Hgq0/k0//T1S5onjbjern98+1Obvb5e/vzze8ol1094Px7D7QoRUpIkKUsSSTKiTiNqa+q7qprqyIBzjkgj4fQYTPBYvBAikwcCYyAR55zBkDkRZuI0rEIPAmOHsT9XN0ZAQg8/oqREInyM24hAwgAUAabDzQcJRRjCkfhv5GU/XlUcv2mhCEF48IXHknTgAoIoHMIohIHISISJuXAAWZArgaVUJVng6sBbxXXl6y1JZsW6x36tdR1L4GHfCABBNAwbxtYLaVz07sfuLMIDbTTWatrdegwewd/eRqibNe3atrpKklzS6TRPyzLNWYoo9hq1W1evQIZoR+I3IAEjS5rLp6+ff/nlH//4x79/+frTPJ+IpXe1WR8fznVfr5fX7Xbb9u319fLnt++vby/bvnZzGGtcpCAHchZJMqBAdIyAMPJh3kiZ0zylqeCUDLF2x7CPB33b9pfX69gDSkrMclc7OAAg81BjIJNIIkR2Td4W1qy91npb1+v1ttW9Ws9CS5HQZr3e1FeLnz61QEtFmKl37dpq39e63TbbG3Sn7hiRstAkZNabeUD0wQlippRISjW4vN5Qukw6R1nyk7OohxsA/GX88J/ltb9bErz3MhH3fMtxS3vcnQdt+PEYIiIxS2bhEAowj4JW2DrSgdQhgSP4mDncW57iVFI0dYW7lw4NLa67qrYIL0VyopCBeNHI7EWoddeIaCvk3FNOPLfHfxkTR5MbyCOr2YdbBMLY6yC5kRmr7dbXupdVioRESKQplSXlOadZUFAKT6e5lESIlhQ81qG9DgzzLa2tNiY29YC67bchEwQMmSjYqm2U4/y0OIJ6pJ2YAcJdrW5tu+59HZ6O6K35h3UJM0pmYQKA1vW2VzVggm7RFbSD6vDEFMq5zNPy6Kema2003ODVKLAiVEC2SGbiKqF8qfRti73jJNIl95z3XvY+A0BhBw5CZGAGROoRFqEQgIxAYASO3aJ3aDX2m68X2950u3RyqokV1EWn8uOpHwfjaIRJhi0L4+Gbf1hk+R2Sf5fNvnPnBs7ZzbqZ+thh3gmsB+UtMCCGRbQFd3PqEXVySBhBsWXZT7MmmpAycgZOSAT2sc2Nv//i74yBIR45WMXD9vzxtDye5tM0jTxvbW2EeatakkzEbtHV99pqa8PmXZ2q0q0FFZgTLZOcJ5qSwAgTGXObexgMM94RYj+aIyISSaVMj48Pz89P3657M79eb69vl9u2n88nEQJAlpTLVEqHCEPqMPwpj6++r329werIxVe1zbR1MwhnUPfaXSLEITpDD1u31Xbbdt7KNJcllwp5QUkbyUaJOXOZl1wWhMTEy0wlJ4YHiBywM+M81ZROAAxgQatHUzUQdDaSIOQ5T5+ePzHip8dzTrwsMzDvXU/LueT5sl9eX27T/B2Jf8rLTPfS7tF6G3IyYQYAMzXVg9fWm2qvrWq3kqacE3CMzW7X1lqre0tYKTZPTFjVTW2NaAhK6IF8eHr8JZT4izc3SCERHo6HpB2RmeOwzfGw97ALuN9bLpKPQHKWjzQOJkoohISD33cIPN9ZTzQ+unEwHN8vtrE3dQAn9xw0BSZAASQHNLcUylbdq/m+o+04rEG7ez9kA/hXXMjgjd1PHI1sg3vAfKAHmAfZMaoHjJr8twMSMXoaFpYsZcplLmUqNOWOUGttUbtXJBfhpczzlBNzQk6cljJ9fv785fPXn3/+9evXX758+rxMCwRZtV5b31t0BwPvvq3795eX6/WmqpxoOk1Uu3YLBzzCvwEIgtwJYBicYyBGEFDiSMMeFK9b1W7bVonSR0AeSVgKIiIfzhYW7u536rgg8rjPVI3RJNrM9WuO1KJt/brVP297847iIMgcEWhGFzO/rYpetb+u7TRdVf22tn/+efn9bbuuvrboeiiNNKJ2GxMMMaWpzMs0LTOXGaXUDuumDkJpSikziXtY1/+qtI+Kfpch35WZOL4d4dAEDKXZ4XqFDghkBgAoiUg4pUjih9/nxBTCkAWTABOQqbXm/VbD95QYWdqKfT8ufmYEIPeuqq3v5jrPOSdmDmRGRGGZy7RLi1jrrrttzF1Els/145h4PPsQCANOIQyhUdePNVGAOaAburfat32ImYMCBNMsec5lyXkRLpJmqavOyzTN2ZPXdReRkgsRhwUBvX5/KblM86xue9uIuZS8LMuyTC2aNcspnZbZLPbaOSGiu2tvdV/3/bZHAzKsZtGHxcj9s2EqZdhqYTWLbZfmiK4WphCKoQ4QkYWmkhaf1KfW82q0g2+u3SvyjnAFD/eiuohNGHkzeauwqyWmJtIktZprWzBYCFMCkZGLoK61W4CLAwaBszQEx8Oedo/tGreL3y62XowiWjYXhznO+sPAa2EeToHIIMjH8MkjlfW9VTxG+zvP7n6LDrTGB6Tdj8CNMVrjQbNDZDzqbjkcQz16x8DFvLi56qvI9/PpKcuUpgU5Baf3NNB3icuAUv+FPPfX6XjPpwMkFpmn+fHh/DiXKSXthg57kqZSAz0G5iCm2rre1m1dt3An5MDUgqFHVieCufB5yVNOCGQOGhHmQebhQkPgH2PNP34gIjJP0+dPn97W/T++Xerr7eXl7Z+///Hbzz89PJ5LJBFG4pTyNM+EqNw6dLhT5ANA2677DW5AXtt3ba/eK7sxmphHr72zWXL0ltiZ1GPX1ptr11U9G5ABojSgCkIonPcllxmAmGjeYSqJ8RGjeOxEOE9ryQ8iE2EArhHdHSw5Q4Y8HgQ5zaelZPz582j9qzpu+zTNU1lerpfrvkp+8fCHn36Zl8d7HfE+CO4RTEykpqa9D56cuvbeamumXtKSUnEBZfPw3q3ubdt2ihTOxZyIPKxr9dgi2ghnNXMkiEHgtcFqPx66+wsY/Lwh4zxs5N3vYYQBdHhtAROHjF8PBucP1pnCUiAPZr/G4b1s8Y4NxZ3PfCy1CIAOZvPwPVUPlOBT8ByQAQPIETVhE/DwFlo323r0wX8biOUBvh7NMdOxk+a7EOUuVKGjtwYzq0eIPAIRMunfSjsiMHGaUlnKdJqnZSrLRIQevu3btq3dKkBfprSU5aeHz18/fVpyySKMNJX85fOXL1++fvny8+PTp5wXDKpNt73e1u16uw1VW911vdbv395ab5R4Ok0ovK7bettMfTj6hCKE29BPIwZFcACEEzKzMRqSq6/Xbbvtde9Jyg+3bi7TwvTuIWFm0BFRCokIUcZgt5Gp0gG64HZO+tMD4A3+w3Xv/dIVE5zPORVGRlAAjuZh2uubva1b4WsiMYPW/eW2vtz2y25r9eHTOOQ8PVABDLBkmebp6fnh6ekxzUtwqUq3Gt0IIPH0wClZc1d1Q/jgWfOfbKjH4+Th4O/8JwQc+sdB3zUPxTiI8g4j6Y/UUI1SAmRGpAilsdWklDgnEkEGh5Ek0UH38K7d3ALgPYNwCF4RsGv1Q0DcVIPQR/c7zeV0Xs6bIrS2BwC7U/i/XsgBcMwq+H57B9I4oAf4iwAA5u4xMN3hkuVVdfV66ZyJCqUi5bTPp3J6mMqUiFGE9lQP9h0ABHCSUtYg76GAQSuWrUy3MoQzKUnOpeRCJIRDSdC1NdMebhgEgOHoPzAcAQlJaJCRnPC+iI3D/ioAwIkBs6S55OZSG5eeTlR2mTT1TMkEjKo5qSH6TJxTysjcQFWDOss0FXN1M08Uc+KyFJnmbdfbVtfeFTQ8DKknBMB9zCQBvcNeY6ux71FrdD2ox4koI/+NBDw0jIhAxCIkKQ2X79H8GhxSCAA77ksAgmFEQgBo7r23fnAshqHIQTY6IPnBYgsaWr0RFmJG0CeAqYW7XW/55Xr+Xso8lwUPDOqo6/DOpntfpL2z6n54F9HNPIBYkM0NDhGoCIt0dYtgSblEb+oQ4/qMgNb17W29XFeAmOcyP5w5Fx9K0lCCSCIiMnhMEI7IwpSYE2G4BUAAAcOdHQZItCzz0+PD4/l0Xffb5fL773+8vL48Pz34Mk0lp5REZJ5nRqqIYvBe2hFAJpASYFXXpq/a30j3ySr2ba9gt24bhS1IAuUkJ53c2WomW0hEMnEOTECCIGBoztoBBgeIj6w0YegYxayBQbVd9jfhwoSEHTEQuCc1w5y68BSO2l0YcxY37d3cPAwy59N0zvxq/XJ9XU3t3x/bewePhJJkqMUcQlVba3WvCIPaFj6CCVI6nZenx6c9Ljt0FUZyIII7fHTsYo+HAAPAzF0NzcLVsJEzDPtkIoigESf38RIZczwiEiOAozsM36BhLokjtZkiyImFAX/wSxBJToUICBHcKALdyN+PeQxC6aj0jqFwt6yFkbYdARajOfZADw50JK2kCBboCMEjfgDv4u5RtuFojImJhEmEWQgPwPn+nYgU4BGmyIAEyIhM0AmUP2wWkLAsGQWm8zSd5rJMA3ZW1d6q9uqmDCEij/Pp6+Onf/v8229ffz5PcxFxUyI4L+dzngozBWjran3b23XdL5fby9vlz+/f//jzz9///OPb99d1bYGek0hKKAKEQKitWzetqu69ezdDHJxsAIYIJ6Y0EmM1XH291PWy96aR8SPDjJkljR0O9K4RMLDiMklKQpEwGAzCOwQk0AemTyd6fJDduHl3jodP83zipychMG1NOzAzAmKQB94cL7tp6717bXbd223vtbtaCJEIIr/nBA7HkDAz7WraubfQYMynXJAL8QRpDmJ0N470I5X87wz5O+we97jKQSMYuVUBAB4Gg78BgXxAMw4EQWrQOqREAAyEQEE4eCqcRCbJWTIjm3oP30zX23WrtXV1j3TIZhgALWVAqG093lTvSeKgvaSck5xsqS0Q6g26GSKM5Nm/1fX3ZSm+/wKB8M7A/vFdw0hHHkXDWuhmQT0oUJAz52mfznl/nOZzzlOSxMx7zrmUMgRRgUCClIkyGahqR0a+c/SIKYl8fvr8sDyCG7hZ79pbmB4oFv5VZj68h3AcobnkRIbgGIdNHwwxj4cggSQrqRveOiXIC88qHYvOwSa4e7t1dOOASCIlEyNYeFd35UVnhUFiKRSB8TDlfF6+2wa3Zj3M3BwAwRhUo3fTAGA2g/aeF6cYwc5iKXWRJqwfYzwAHMLBmZgYJUlOSUQQaeiW0CzuajO/p08MfRISQqCb9d4OPtl7q/aO2R+BQ+QQ4w4jQgQKZ7fsWMJD+229vVxvj+fTU5w+HTNw4J0fHwc/5q62OzZ3P34i7l57twBkQdIYECBAIAWRRqgHiWSiGpvbcL01d29NL5fb7baVDNOcn55PlHJrmhjwiEhhokOUSgjCmERK4kTkimNRPoQg7xK4ktLD6fT8eH69XK/b+v3bn9+/v3x+fho6HSbKktI0MWK4Svsh7bGcuSwA0Pru/Wp2kailV79d95v3dbatkEbiDJPkM5EIQF8kHgDJ0SF1zEalQMoKaqDB3ckQ3cU8hUkCDPDJQU1jr7dwYUxMTBiDupqa1qZJ9kQTBLlHyQkxm1qtrXfXronTeXmY0oKetluve2v/3v86tEhlmg5WBIK5d9Xa+pihR2A5M2XJD+fz49MDVlXdQpgFD4J8TpKzcALAMEQyRI4gtTB1VDPsGD4kQCKSUz4O6bE/OiYfAgRED0TCQCQPDzW1CKPhRYiEDBTIQR4jSvhDLRm5qxgIwYHkQU7mR5ao3wlQw7Qq0O0QJgNhEAzJnHtAj2gWZCFAgdgb7gFVUAlRiAHYMZwC+f7gHydo3J+EwiiDiTgK/rGDQ4pwD71bOQmTEDRC5Q/cZSKcHwsnWh5P02nKU0YEM43WtG2hXdAl8TSl54fHr09ffnn+6R+ffn2cT0VSrataSyzs4F3rtqm32vy21ct1fb1c//jz+//8j3/+/ucf316+r/tuYZzYA4WlCA8Gd9tr3WoMbl43U0cAVEQKIAgIZg6BELSIXm2/tf3WXF3irlE83gixIByrFTc3yZKKlJJSEnahYHSgIA6bqD0kel54Osm+4uaNMvz0/PD0lD49Ut3X19faKSzRUFqqc+941Xrr+772be9r1daNELPIMpclJ2Jyj61ps3BAFolA66atY4BH5TzPUypTKvMSXHqwgLPzLD8UkL/FwyAO1l8EuOPxoCIFuNM99tgJIMRCEqAjASGPttccahuHGJKwMB3Yzd3SiTgxCSLkspTScGtuuxv5wMzvlCiA4eeXfJCjwro5dCRGQEdGYCiTtOatBylCCPPfSjvAXfCOf6Wgx8eN4/GOj7udAABjHJTDHtyNgDwUrEdr5rXqquvEUlgSEaPkNE2FEx/wFQVl4kKHvh8DCedlXk7zYI2RcezRtoYG3l1rd/P763QEBPxhRb23tl0uwlnubtfMQOzgIw82kAYHgnhKqWeZa1p48mQMNLH1IBO99J3MCWr1Fe0SXntAVwsHBgoUQFaXqgkxI509uPe6163WhPyU5s37tkWz3sjWiE5EmdyiNevN3ICIU2EsQkv2SZpg/5dPYzimS0opZZY0pEJ/rcsBRl2/L7KPkECAjykyB2/uTi4ayWF/fZIENLaehIjDjStkqGUDQ1XrvrW2m3cenK6xszlsOu7c0TGyIN5fy19f5t56b33kTYTDMLnF7pHcfVhVEQFEcUfthOHWa933fe96uL9GqHlnlKmkh3l6Oi/LVIYzGiAI0xGxTQMg0wiDY/d66KxG182Ep6n8/OXT3rr/80/V/v3l5Y8/z8O9KSKieEk54h6j8+EHlRiZsYNX9b5jbCQb6h69ti3qlWzv3ANDaM4LJizECZ7n9AWYHa3j3mmHRJFYoSl05KErMxHMGZIIBYWBdYqq3Xb1gDhcC5lSlkWoEe5ZpizzkBROZVJfXL3WDkHumFN6PJ3P82nJczX0wTX7cAXnkodEaxBxkIhZ6l5bq12dHJPIkNaoqbkGGDFwQkqAEiAjo5wQBGPQ6tmNzMgCGMDj3ks7uaObHRsi+0uwEBF011CPa5A80AMIwB2OjRFAIAkyEATH3+YQBMDDwi6cYCSjAwE4Yfg7ATVguCjcSZkB79ASQkUA8AohGEQKCJvTpqChwQ4IktAU7b0Veq/s77FI4/4LijiykYYiDsehAmJkoHTMIcEASibvIxIxPXw6cablvExzySVDuCol9ATWO6ghJy5zyXOhJE3tcls5OEqYhQd2Na+1I+JWm8K697fL+vJ6/fb99Y9vL79/+3a53VpXYmFJw9t98LlTzkjDcFiSFM1ab71y67Vr76ExXh4TC08pTW6h1tXB4rj1P34ahMiEEOBDIB+EiOHoHuCOYQwjmqWyvyW4JF/d7Lbzrd+UNZ/o8+fp6UFOxcmpCnoPNbfxYpOUkozc2UEgEmCmJej58eHr89MvX788PzyyJHPYat+bNR1GVZ4zn+YE4XWvEUgcS4qHhWUqwFNV3+uUs3+k/v5Y2g8CBYSH4Zgmg5DcEc3ibl+NEBEaoYgjFVsAKYDUI1rwwFInToWJD1ej0QMCMKAgIcskaSa6RXAEhcMwP4HDB2KgImmMc+bW1TyAPAIsKCCEM6ZMkhkRIZj4b7r24SHiMFxpjxM03M3ww0z/PtYT3q92BBr0aIJjbRYj0rBau3WSIAEUIEbOnKaUSkpFkNHRSYAzDevVwQurZ9MWLCTEsGMvRkahMIIo3O5emHdg7eNns9d61beUck4lJUmZUyIRYHTGSINHgAGIFEST8MSyyIQIhfJDcgNQ3kt1bwq9Q9zCxVXUwLoQlpKOH36z2Nss+SFobgq+l+u6bPt0XiiV73u87O1lb52wMrUkCOHmfVerGgbMkorAnGBJMXGTUPp7B4VIMhQwKTHxEPve+RBwN6uJIx8AD81bOIYPV/RR2omGw8aBPx7gy7vNMN6vUhwiGKAYlyygmbfWatt738gaDZMwOCgFPAyNx21919jHj8EE7l5br10H0IREgWgA3b2qOSBK4iSEMIVhC0TYe9/2bdt399GGmHlrdZMky1weT/Pz4+lUCiKNQBdhSvkwkQ/XIVyDI4QERNLIaXUzQphL/vnrZwvY9nbb6tvr6++/TzmLMI3/ioDcbBAPP5wMGH6/W3esAJV5F9lJqrlahb667p4cDCRNS2GWbDKnz4/n3zgnF1/9turVxFxcUQwbkRMHszO78FCzF7DUNveIfd81WniEgykQJHUgNPCWqJZUIcKt1z6rVzfszRLnJLkkOS/LeVmWaSJFA+MP+ZtIlKcykoGJSFimQJ/97e2t9Wam7kBIEVFblfXWfDNqxMEJSTxIHdWxBxYEBOAIciNzHIFU8b50HkFE4HFH2McHAve9+7FojxguWcTCgzd/PEsDDhrIHMGgL/24pD5uXoR7/zq0Dkh3oQYeiaJjB69jShnj9nBsUgId4KkGogdpB1QHDOPwlEkY+z1IK+5Elb/IKng/fn78GzjiauFYfx1vkyEAgSIxgFDwx9J+/rSw0DSVUnJKAuFGnkIyptq8G1BOaSqURTFetptptKqPy8ID9TeHXmPbDLA1v631++v12/e3P769fH95e7lcLSJPUxp/OIaBHm0RSxkoDUmUCI2a25a26+utN7XuEZAyMqacp5znbdu7HclUgzX4EZ5DBEbwCISjtIeDq3sHC0+khMHR2VbSb4RvAHsnuwTf2g1SzHN+/lQeJkrRjLEkqbu5tR4BhFNOZSFKSXLkDLmg9shS/v233/73//bv/4//7X/7+aefJc0WtO26Vd123WttdUfQkrDtt7eXl/V263s7oX4usZwpTdmBzOPW90vb/vPSPnQ1R7bEwEZ51HODiMGTjFCEADUAQ4qxbWSM4RIMAK0BQSeIgetwwjHRjlS9OCgg6tE91NGAAiJ670NimdJAWJmZ3UfH7YHK4QwQaI5GUAISCkiCgaf+3eDp4FrDEQOC907174a07xXo3pu+/xbvy6yDInpomEDDOYBcyUG87caly6BLDPB8iAYJB5dmX3Q/9eGKs6b9Ld3mtJAn7yiYCSSiA1Aci9YfXl3retnXJJbEJElKLIlSwsRRGFwgGI0gILrrbr1Fd7a0ME6c3FTDGlhQ0YxoLtCqvZmSKXQtzC542TS9bXXd6lYTkot3rUCN1/2s9hjAgdG8r30H3xlbyQau3nvXeq2xKztJSjKVmEUnsoTOYzx4v7dAhAExpSySjsIZAYfdDAYiHjqcA70ZWxyhZGHgbtq1VwuPu/aERviHR6D/1aThUa5h7FLvG1AY9tgeqvu2fXt5kyV6jprREyFFkLvch6P7hXcgNx9RHnOve2uqTY0l5ZIpJQNoqgMqDeTRk0xTFhm7ee29bnWz6MSRMrHgsByFEkI0pZQTDwoyQpgZ9hZ2oFeDwPQ+dA9ST+/dzUS4ZP709BBA695///5aa/3+8vL8/LjMEyEKc0klzEzN7QcSx371101vvZYrPLydHnrJngDRBY3IpwRTpjQjFuhie9it+9Rh6ZxTWkSV9wYK7qTEQyicRA4EE5yAck4PwLnvm2rUuraKKaWUUi7ClBPPCBJGBIwUZr3r7r3rrYVjGCzzKQsNbxwpniZkLCiU8g8I8DRNg202pnYIMLNSSylFO452sLX69va619XTDkvLZJQYSB1r9xspBDlFcgO1ZrEHKglSYuFMwHBnZTAJHbzLkTTtqmZuB7x0IECjNBOLeIQdV0y8L5DGJeI/ju3jBh0ED0eLUeQBMJxGDYa7H06EhXkIgBM6YwgCHUIOgkAdjRzEoTM5PJ9chFBQAjQgnIb8/j6x02AhRbi5jSxgDGT4UPNHiPbBWCJC4OFy/eO1S0wAYb3vahXAtPfeujbV5mBAOFHmlDT8dbvdfH/Fy1rr8/6QeRxQ09Du2k2b6rb3622/XLe3t9ttq2YDtn1X1HiEu0YHP3KpkHIulBGdsrTEYt3aXsM9HFJO0zTlXIhYu9W9mx5Exb/lj0B42GEiaapmBkDk6ADhARyI3XUNexP/HryCWASqCyV/fF7Oy3RayiRAPea8xDmZbbWv1kwVtKrQTggTR3CQgJT8sJz/20+P//7L03/77fPPv/ySyxm4dMWu0BVa67Vu4D1xrJeX3//X//jn//gfv9/+F9aL1JIKFnEPVLP9R6rW36Z2GuSmEVcEY+EwLBUGQwMM0XD406kd2n3mgEBKBARBPSLcCYMZmTknRgKgIZ/oDgiIFk29WrQARXJw72pmziw8XByJmdgIzR1MA1qgh0OYWiiTMU6BTIIMGPYvydr36n68i3HwxlUJd+uU98rz/n+BgfBujHwoTuBOqQo4nioPB3Ma8WKK3aghyjgGAebjKA4D0r3YOvXhpCqImdPj8rSUs1VgzIRy8Gbv08HH6t7V1r0yu7CJCAtLoiQ4Z/CMmIkyjnirprpb370bGefEiOxAak1cAotn5NCEcWt10wgIBQNEg5etGdx0W63WhFKwd9axAykES9cEuO593voJoyVWDgvXUN1bv1SwIClYWEr2SbREpHBWxx+esiQCHIdI9E7TPOjo94Hd4whuR8KxvBFiNwtX16a9Dc7xcOVFYjwEPHH/tO8EvACjGB/2hzsV3bW32+0KzHsTmtEX1MDgAD4McA4e3fHpx/3g37/MfK+1m6sHp5JyQWI138MN4XDIABxAcUqoaute1Xrr1V2RIxeSRB7h5hggSEVYmNUGkRDdrLkxU2Ief97oMAY17D3Zwd0SUBbOUybJWzdD+uP332/X67attZ7Grr2lBqaDpvDx4+hr3MzrRdMVYU2TFYcUHCbkQjAR5UI0gWXfIW7dbr3H1vtNADmlwGbazJuBCqII5SSJSburQUBGmBM9I6abU6+t7qxdSjnNyymXKUkhSuAUFm7mqoYGruq99waOBDwTcy6MJs3KDMuZx8BXyl8RdkRUpNzBNgSAMDe1Uso8L51ZtYWFql70ghvI2cvkmYkTA5tDU0fUCDIKCcNualEBg5koSfKMwfeckKB7aEsAEGIQDXInjQuLDk14xBBe8Lvt/5CB4H1H7+EeP7Txd7LIaHiHPy7ggU0dAz8daL+Lu7khOpMJhVAMCjMiI3J1d7UIc3cMEECBEAoRAEaR4Bi5SAjva697UsLRQfrQgjvdWfRxDDiHTePwbSICJvw4UQWEuYWZegt169p6a7316AbGidOUUyAg7b1r3605Oa1bvc5rJqaAbtqsVd2bVjXtaq15bbrvqhZMREKEgOFhGjAgZA8bcrtgYhnOD0BJWAjrvm1bGiubUtI0lSSCgL1p3auqHrFi8Q7fAgxIxs3NTM1U3QxgpFkpuEGygN36C9krwxtgRyBACUw5y/On5TzP59OUASIQc0LwrXK+RevNTbVaCyuZM1MQiMBpSp8fpq/n/OmUns/l+XGeTk+Sz44ZQgDF1FvbwzuTX779XtDb5fXP/15t3fXGzupRPcK6Os+QHt7fyL+Eut7Njw4HkbGJHi0SHrQhwEOLgUaoFI3EjVmZUlACJARqzTaqwilnijEsoweoBwagelOvDg1JMRzJzdzC3aeBYyMFM5KhuaM7p5GgHYDu0cERkAISEjNzIP5rkPNBY8Uf39/oT+/fcnBJ4q7ZP77Z71wZOG77uDcEQQeSjIROI96AEHCwWwHBAX2s7QdLy71Cd7MaiEoBjLUXWHMHZ1cMp/v6kMbI+vHlunlrOgAiEZck3MkSMVBmHgweh1CHBtAxnCEEQSIQXC04eMIEEgCS0KdELaSD3Xq/VF/71kxrvWjzWrH3jnVT5AgCE46SkS2ScFurqD+UBChevVuvTbF22tWBvLgVMARg5EQkBhT8EZBHlJSQXJgJycNi2BscAKCFW5iG9XADiGErOyiqYb23zXoDc8Qx2HYLgwGS+OH5eG++MNDvII0fucQGY08YNSzezF57n7a5LCU3xLPDDDINMklY3GFUBBzurh8beo9o3YbieAzQtYUbJMLMmBMlcjB18EQ+5uZ08E0CyQhskE6AUsn5YZpOU8mShCUiWCSn0nrf9x3CCYJJDMHNzZ0ls4h5mCkNqxQCIGDGaUoPD6fnbd+urxARptqapdTqfoWw3rfr5dY83o2QAD6dptlPbw1hxyKnxDMCWnRHNATzsOr+qlDJhV2JRVBCY11bizWuut7q1QkoMWLmQN+1OpgywDQtn+fpuaRFm/e21p1ME1Ne5s8Pj0/LcpKUEcjNTXvd1vVWkX06JSIkkvBwizQFpZ4Fzsw/6RnmrygiJU/xMcIOGY50gbFoD3JDmucJILRn00MOt/W9R0N2F6AkknloW5juzvCOx+5tRCUNP5cxHAyjrkNzNirckLQfwnYw9MOaDPF4GhEQ/AhOum+Zxuu+M9t/+PqrsoxpHQ6zXLhfYaNTvcPoQsjkQiQURCP7HQkJiME4iNUGeQSHzI4JDvoQBhMExB1lGEj0gco7AAIdYjc8BHfjX90htsF0AQByMLz3K8fpcH97vWjv0d2HA8U4PwwoRJwosneuN6u1b3vz7ui4f6/f8IV8WO2ao2MKZECGgOHhTrnkfDDz8XDhG553rgEeBDykhjIo33H32Ik0yelppoTWLS+JC2p0r32vW2vNbfhUH5yevz4NHwtgczMEECYCY+wCG1l1bxY72oVwTaXlEjKR5EB2AMgsj6fT56fPHFHxdtF1r2utpjbM7SXMvAflVCRTYce+JEngfX27vvy+Xj7VT89leRhZQQhMKE4umIcjRs6jvxWGaPv6+s173abTAoju3pbP/2VpN/NhyoxHeOoAYwZtCY4nbYBvgK6gNHjALJY4kJE4BUA3h11TwmkSz3cqCbiDWUD31qw5KJJRDFeGsVhUDw1gRCcemdwREUTEAswO6BEOoB4dgJh5NAJ/K+34oXofvPdx8x9nK97L+J1PAgc1G+/7qOO/fp/hxu9pkE0g3l3ujRiIcUhgDxD1r7+cwME7WLPBQSTHzrFKn/JMIBHjz7z/dT9GILuHdoOIDiHsoiFCYZxZPDECIbGHa4QCGlEkBvdgiIjDVREZGJApJsEzZucCotdev+/X79fb91tt3VXBFM3r1q8dSI3dlglPhfa9J0KzCOZSJEC22reqdWu9mqsro1N0cwrg4csogRjyo/v6mNoPU7nRP6LDfYvspm7dtAMYAkCkd0Nus2a6uynenbXD1A0ABZEOb8TD6xPg+PHF+Meth6OpIwI7qDXsrXdsLdV+qqezp0QkjFNhcTQP9b/SgTHchgfchzMfqhqIgHQA446KoIyWGEiAzXqIw4h6P1KTiIiCyANiLJqQpeTysEynqSRJRMzkWfI8TwCwb1t4hJOZjfMYEIkp5YymAU5BeKhinBBY+Hxanh/r+nbqrYJpr7UL7xG91t7avt52R5C/PA6/PuQHnHJHbbT0STZ2NevmA/nobtcOffcpdE6aCbJE9h63bddq++r7bk1yKTKDcyjVvVt1xFMu8yxfzvNPGKy2tp1qhYiScl5Onx4fvsynk6QEEKZd265W9doCNA8Gcs5ubt2SACZNzDzLT+lx/pRBGEXs9+y3v844fsCIhSmQCDGiMKGpubn2vtfaN626GZsxgQDJsJg9+BxIDDB6OwgLV3MdbtejINq7pGyECh1wjh9xrQ7ujuPf0d3MbdTVcbDtfUwCHBbmf9u7DVgUDo35wTY6jgocLfC7iJcAiFiIEjkR0MGIAiQCpCAKBEJQO9ioo0sYIxuiE3ui+0b/3jUAYty1IQh0v0xjcEPxHftCor96kPDhAPl+WZlf3q6tNu/mGm5ByCTCmUWEoBAUa7i3flv321bDAB0u9YZNoyuYIQMXms+5nLIUGXZ+xCRSmAe6CWaDwjgmQbNwuKf1OSIQBYCDmXcLTROfcKZMvfeSEye06LVpa1W1QwATMo7s9Y+3rptZhCMAH+NIo1gFLuw38OpeOTbJmnOUCaUgp0NLwCHnaXl+/ATm0OH1Ute97bWrmjsAHGIGRJFcGDGEMiJBr+vr5QXfXj8/Xb8sD59LGB51yghAGB3JHZgp55RTEuZba9/rtu7rtC/MI75mhr8q+4+l3c1Vx+wyIJsBJ3ngfet44J5+YBjmgQYugeZ9rHZ4OPQDhKrvVde1z2nGKY0NUgSre+22tz6oR8yQIjSBOXioWZVIgE4cxMhBxIJHuuIonH6comCKFJAcE9G/MuQB4f1RxAOeR//YJMPd8vkQOt0x/KOOQ+DxrQf3NcA9aLSwo4slJpYYXIPwsTSHOxiA72finmgOCKDNvO2hwJTAXRhNPUae3o/8/QgICzN370ahPUTY1QtDT2SeItACDSlYIGUukxxBqxFI42x7gpw8NKK7OLIjJ+E84RL8wK323rTeWl/bVWk3hEA0nCpNhgkt4VBbEkWLFAnp2acMaYr+au0asauHO4MjRsKQCEaQj+5OACwC5AOxvM/qw5bDhr+2WTfvED5M2hGHTY2aNQ9lgiwyHOgOS5AjuwXHTp3G98edD24jorJGIAQRhXsgNbAWAYAy2p05iuYUTIDi0DW6jfUojp1R9MFy/OvjCPMRwR7aG2LknCmJBXR1pg4IwgSOaACMqRS6p0MKERGnlJIkIM6CWTDLWLLywebrGu6H/S5grV21E1FKKWBE0BA5kZOFdzP1yJQoyTwvnz+B1brdroxQ15v1llISYYhw04+xBAjwXNoX6dOTbDvBH+v+/arf+64t5s4REtG31npdJ1k/Ffs04VwyWbGtbeu2Xjt5CFHCiNxqrb31a/OGDw9Py/lxyU9TOu173fe273vvPeW0nM/L6aHMC0shZhzuYE4etm43s2qeHKZDRkYjBNSGDzRP5zOeSRhF/rji7fb+cbhpPzpsGI4VQAQpMWIyIm3HzzPA1bursqI6u2c1VTVCoxFn6mhq1t17hEIYuoaGYhCAAwUQusNIb/GB2A4v+VFU7vJzJBxW8+F/sTQQ4D05fmSq/QvhZ/T0RETHH0EjD+tg5iHE8PGEw2ltpGkPoDDufBIcVyQyEyDTkW7IRETk4OiO7jQIJIMAcIf//+qP8K4aeQcZ4v0ifNf+j/sPeQw0Hy6rVkeWNxFzzkkkSxJkQkZhoWBtrl23rbdqCExB3tWrRu8QJoiIEgSHVS/iePnjLxnvj1kAwoPFmDqpmZmBh3dz6AYYZohgZkAxnMJl4q4mxASs1cYKmBNKYkamIMl/rx2ImHM5pCqotr96e8v4ynELbegmaEKQhCkRCiGDIGTiQmUpU6KkpurRVWtvXbvfjaeCIlKYuHEHNGADCGDDJEB13y+36+tT2yNsJNG4OwIKAwp7ZJ2n5XQ6nc/L+fz69nZ529bus4/3Qums5cO7+KG0m7l2AwwAP45fOCLGoBsfWPZ9C4ng5oGOI2kMDAIY2ZgDxCHAvTXdVmyThiHw8PomD2garQ9LByZHJkgJUD3Azdt4oImCGd3pOAhx1GYcya/j6XbxEAemvy/b/2qN8a+H0t+X7PjX9+C9/A4yKMD9cT64dXC8cRy0SXQAHrM/EY68OCIIGG0eHByx0REcXNgRMD9+oqiupj0chHSsjx1GJCnEj6V9kGJNQzsYAnOYeLhXgZaxa1IXA7DAQEEBzmoHHAWJcUB78D4odyNz1MCEMgktMz9KbVarxVvVt72vXlc3BzdITtKBPQS8cBQ27jWlmKbTiXIGZ2zNfHd1jTDnCA4HI8KQcPmBWg7MEjjEACMpW7s2N42RtB3hru5D4k9xqBru9R6cGQnYjm2R47tVHd1ZQIdj3dAAu3uYuWlAIDFHQIBjdIhOBF0jabfeXRAcgCWwO6iFxnv/heAQetfEvX8a7jYABVftEMKMOQHEaEPYiCAc0DwUKAPcTb5YmAMiMSdhZMqCWUAYkXiwdN2s1uruwzMVEfdd972mnDilO8v6iA53ha4agJRjIlnKnKSQ2ltK63ptda/7xiKlZJExd/xQS2baHtNO0yw5rm1tl72/tGbuARQgHbh2v7V9plfu/eRIUNBza10vm11guHB7CbPeQbdo1w6dH5dU5FTSLJRM133fa909bC7T6XyaljnnUdcPcGsQLNR67w3QAtzUhpsBiBMAUCQeOY3COXGSF+nvjhQeoa2Op0DcIeI9YpWZwwLvoSfHGti7OrqbjZAXVScxNAwLC+tu3VwBjCg4hqx9AOxjuR4Ag2Cs2nvX3gGADlO4o2YfbPUYkV9Hmtv9sYwIOB7SHzEtvAtz4AiRfUf3j/uAIIRs4FgIgMAwlHJwSDj8QLTutDkkcPa4zx6EGEEUGDF0xsf4MsIVfRjOjlXRsT/w96b2Tmc5ppRjRxt3Ct4Px9w1IohZcpqmac4ps8jYjtHdAWZbW229qwsxIUWM0J5ACBCihJgQ+ZAC3yGHcDAMFJYkRIQBwUpI2FqvQxsb3SEcEZiAIMCRYhC3ZGI1p8AwAA8WTIUnS5kTk4BjLvkj1jqcg1lkmqaSiCCaVtdLoQvHpqQRkZgSswizMFAQoTBOIqc0LbkwcPduboMSaKERg4YNxIEJnE2pAypiNxxQPTrovq/X69u23ea2ESGCggMTMQ8KJ+Wc52VZzg/Lw6Pk71UvYapYUxJhPnX7vy3tEeA2gHc/MnxHqzgCcAVhCMLex3YEDUVAJ6OAYAM3DKOwxMQEZl6bbdu6rhmnuZQyXJmQBmFtiB7i7q02nh1w99H7Hj/rgzbhZjY6eiFPHOj32flvj9j7kfmXXxxw+rHSfi//7/87SvnHJu5+Cu+1fjQ3AxojQmZkjkMRDzDmyHDwwwvrOLrHMRlQSFCEWddAJ+SBqNF7a/zD5wHgEOquMVCB8EDwffc1+7IJJzJCH55Rd0LriPmiwyht5DmNlCiHbtDMWZ0MCSQTGJFmOuX8uPTr/5+9P2uSZDmyA2FdzMzdIzKz1rs1uoHuRnOmh5SeR76RI58M/xd/GUkRUvjA52FzegHQDeDiLrXkFou7m+nyPah7ZGRWXeCiAZIzIzAU6mZFRnj4YmaqevToUa072V8f6v0kwIREpqjKKtSEwYeMLwn7nN0s/JMGZplcwJrprELGWZjU+RGNjogMzVzNmkpVmVubzRQcCZd+67jsSykoRcv+csp2Y6hvG6EjOdPSeOlMhWEVEQnYMAKaIPswLK2tOKWEOfGQ02XhgYmXbdkAIgxaJLUdQM2eRO2B2nCilNnd3ZdW1ozEBCWnklLOnAgJLDGllJNCil7fyO7K4IUgdzz0KWeiYB8DEFGIqdG6jAEg52xmpZSSCwC2phCOjbmqtaZEnFO/2VyWstHeyQABRZpIU3cEI4ScqJQiWODsgUzjeGi73a4dDywmjg1dTESOrgKYKANsSp4G9OIz1+Z+mCvPB9fJYU5QgFMoY2XsutxRUQciLCZuIiJzrcfWDoCSC24u+uGizyVRWvMsUlsd5+mYCF+9fDmPx7nOu9vxzXhNRF3O237YDj0nxkTOCInKUEqfx/HqJKWpqrvdYUGxE+ecSykl51h1S73FUrSFRCGKicQQAl/muprfZkpSTaqBEDszFSMSMVXzpa8bLYvMbOnqO8+ImDglTkxgagISsbRFwaxaa1JrFVE8VdGZq9mTeh5mxpR0KbZEcGCkcPAAAo7wTEu+8JQa96XQGiyEF2HJTwREb4hLP3Fz9TgqEhLyssdGdmBVdw5NZIJl+4j1tABkyz68hj2Lho6BP+zQp+01pYRd1/fd0HUdEQfoH+KAYOauajXkR6MShgq5UbTmTgNyj5BMQTQqARiYAMGio1cIwYefhOBL2ygDaaIi6J54WT6E5ASUiBij7hgd0SBBypQIsW1aCvV1hZL783xuExnnKXZtMuvwWHxHPPbZGKkym3omzB2lHG4UEFJJadN3l5tN32cAMxUwIzAmI3KkpeiMifvMmcBdzJqbYGgVNs21lXHs97vrm7dKmbBP3JVUcs5z45DvVJGUc7+5GC6eby5vt4dxmicRBXdgN30UUX2Qa1+emK9uqjo4gy/U5OXZLlyigJoWNgK4m4BpQhBCxsxIql7dx5H3mQg8khrRodI9XD8G13C8zIwMzUB0USpZnF9wbe7maE7khI6MDItCHpzq1h9Ps7O/H7/uBGBrkg7O8vLx38eo+EcOsPg0hLA0kidwjIw/RslANMBdi14WUH/hxSyylmjm5poIKRpRLIqUj0fUJqibGIYdAIOG06x5tMMxUybM0QdqQepw0SKNVueAoQpNQIgMjsmcRQkbOjNZdogE3KZ0l9gOPm1qNR1NDNiRRdibyEFclMQ2Kqlzc3CBSXxq3tBMCcStmo7SzCkrsWh+HLYjOLhoU5lVJpGptQruhClq4SIpQsScMnPIjICv4MeKGxpC9LiFxJB4ybdoNC1dlLwRITTBkFJsKxjCPsREnErGvkvbLl2V1DPhEuIHK5mXrhgA4K7qTex898JFKo5KTjFjMdgjjAjEhDlxyYmZyC0RckosximllJjIHQpBn3Do86YvJTMRullQjQGgNUkp5RzJPyylAEApJecMACIKsOy4K62Jcy59tyndxg1BTVs77O+lzWrKzIkwMZWUEPlk2t3hdj8DjPc7nY85O3ICTG7VdRYVgMLcp26T8wXyxjS1SZvqEY57dsnsTkysQqoEfdcN3VVWN0KmzhSkNeBpno+tTcTeDXlz0W82QyopCtRUW6vH8bgfx522uaQi2OrxeP32/u3b94n5YrN9+dzwWQJqajpbE9DUpdylfkq8mnZT3e8P8VyYOaXU9V3f9XH3Qq8gnLZAqVPiXJbWRBEKBrbujtawVdeKrkSemLISKIhDKDsDekgZr2bVXc0IMRgtuIiNmwM4L/lUUWtNxnFqTRAxMjNRn47sfrbYmRiJ3VXXRB+T51UKNrpr0IqLEzqRL0x7cHcXQ7UFUEQyIos9yg1VQwYc4eT5x1SL9COtecNF0pEAV9gSyaK3m6ktCD74Srpa1D7syerAnDIxD8OmdF3OJcgyxJgSgqmamYmomIebAcihCo2YkQjTQNyRk4speMg9M4ChL01sjOJ5+UIGCzTVQgZXwZjcCYCJfNHZ54BtaNFMxcIQK1SacMpAbAaJu3NYy9xEtbaayDqvyPuCx5JbycGVQXUn9JSRExACmKNDLPdSEhNIq9KqmSBYYkjshAao4M5IOeK5MG/qjYDcSZVR+lnGabrb3Sompr7kftNvUsqAwMQpl4SJkPphc3n14vLZ/W5/MPd5Gn2pi3xkCB8LzTr6qkoMDyz52EcC/Vk7UIWvF9G3mKMbOkMoZnlOyOTgYq7N7HA0shZljpRyczgc9vM8aYj/ooOritTaVFGN1AjRRZquiKiDO4RzQUhAkMESOLmhqonYk2qrJ1VkZ5tzvPgkaocT/H72QT/71emoS910JP4X0462NrtdykKWVbB8h60ryde2EKupcjA1Xw8MH8APZiBi4cAiGNAis15VD7OmIxt7GUoqJajCTJgIFV3VLDZ7VIIUjlAo8HNJTjlzGedZ6yxNzIVLLjn3mbqcW50VKiADkVatR5sUajMiNAMa666imU+t7t0rkhlSBT+quns1z6qsc3lk2sWa2NTq2NqkbVRtZkorDRRxYbkzceaSKEf6mYBipVlM3ACQ0ACAoqE5kjvYQkF3WjrGOca9iHw8GpIhGSVLGYYhXVx0F33ZMJJrNUvOAuq6AAcLAmPQVKvIOSLPRENXcs45pxM6O49HJrTEHQOUxJRzSmCKoVkEkHMuXcmZwHDT0dWQN9vN1Xaz6YfEycxi92Xmvu9hTcpEsTgiRjlPVIaoqam5YeJEPadUmNhM1QyBckpD311ebJmW6oPY/EWbPJ5X/3gNvfo0G0z2nMt2gLwFVbDqru6Omrk9y/bc05Wn1HCaVSfTBggZ2BVkds/M2HflYtM9EwAlLHmDyE1EJq3zaNa6rnBK2+1FNwzMGQHcRdo4Hu5297e73d14OEzH+e52f/3+7vr93d3dfjts8HX/yfPt88vPHGycj/Ph/njc15ujWvujq88vV8zRzKexRT44xAunqR3zvHRtX5XQzQ0RUqKUOWfsulS6xLx0xHVrDqaV2gw2M9REwmjE4IkBCTWIZbxg+wwMANZ1AEBIiTmllIhtpdWFHAg4BulymuZxnMyciEru0uLn+QoQrhtT5JUh8PSFtk9oweJT8aaC0JhaSs7RV8lUxZv63KCqyxIsxTpPRMkUVRdRuagBOmWvAAFwEYpfZCSiRwfikrSkiLcNMfZKd3BHc/Oo6TVTk0dtXZFwGHpi7vqOmRdJmIitmZroNE91rtosmulg1PewYlEmzCmlkoBJBMA9MzNnhkwQ8AUBoJmJNAAPA2/ursZkXeFS+lJyLoWZCcjc3YCYibIjBuaJZOzACTn1qmbhCjkl7s4B+VLyZmMMTl4Zpkzzhq3DeGaeUuhtKXGIHAKhK7iwzLUdxrESukx1nmudEb3rcp4bcWMC57VyT6JwMMT+UB1HcQZzypy61nQax76QAs0Oo9tcZ3Aoudv0F9vhYuj7Tz/99LDf3968r/MErqCPOWQA8F392lccZjE4sWFCiGec2vpRiDZFeGVAhgRM0GUa+syEps3U3LRWP7ohgKoCp2a2P+zmeebSEzNRkJZANTphRLsCUA2WZ6i+h3oYogeXLoOxO60Cyot7/ng8mO2VDu9nBPbwbB/F7Q/58bNbcgq71yMsJDtcwkFfTciJyBIZq+XPifK+fDeulj1Me/SYXZJtK+1uHWbexKKUZalXQQD05gZiNE5KvnEfHApmTshIiZOgGIR8mwbBNiJZQ1+Sv5gSF0dSCH0rITImJ6ZEfPmydxIgcqI2y7jDWeeq4o2b8r02EjOHZjoBCJIbQQM/qplpdWUVtrqx8zuoUkWn1sZWR5HZTRERgZkCrQjaJjGlzF3izMiAtv5uUUI5VTesscaJAgQAQAB2kh2kwPmjWlKBFNk4Qym8HdKzTXeRUsGoo23JWDAs7ELgCZaRqM0i53FJSny53UQrgwgYmkTLmhDWyeH8BqcYFiPtKaeuyyUTGm46vtyUi+2wHTZd7ojY1MCV1sLoYOcGrT6lBLBUNGuwCkXNnAiZc07IKZlrrZMBMWVwS4k3wxBxY5M2z7OH5BPK+eP46Tv3ScWwE/y80QukbXLNWBsIoDLXnsYrnC/dOyWvNI1ozd2d2ZxNWR1BEkPJPJRywYYKkFIHyNLERGudzawrpRuGvt+U3BGxu5nMdd6Px/v9/c3t9c3tzd3dze7m/f72er+7H8ex2vP0bIuFL188+9xd+XA/zg46T/vxcBxfd3Iq4jOH1sxPawlgphZSV4mWNGvKjGwIQEyJPSVMiVPiSMAvgLu7zlQn9Jm4oQktxW5LLxX0SBohwJL9BS+FwjYhcbykYLjQZULdLOL41to0zdIEiX2IIxA/RRkdwGmpO6NgkoIbgKJrUPClVQCB1JiiOidsv5ObmdWmcxOxZfrllBKHyicRpTDti+A2LgB88OYAKYT8EpISEqAv8qHkEJ3OYaG+RpBpa3G0ibuuqjyxIWJXMhIljlhNEYEWZoWrSp3m1sTUEQiCk46GbMCeM+VMhOyGIo5GGRNxJk8UNf4Y2TCzhSNgvrp0pUuBOqSUo8eSA5g0UXP3BIiJkQhR0UMm1IgTu4u5LiyDR1SULufNACATe2MYM46FpbA3iTJUQiYARzAAc3VHN0IRHcdZZYc6S0VTNZtFhRlTppxIsxMCUwgLwKK77GhAbqBNKgGlLneDO6goJEdzqa1JPY57N5fck2GfupLzyxcv717efnt50dqcEqk0Vz3v1gMfrWtfPH43d2depfiWBPu6w66d4RDAzZGc3FJHm65cXWyeP78EszqNrYGKJ2ZOSd3HaWpmU2u7/bE26XOfOashk6WUc1Z3CdJ8ypxS1IZFVwwFdI5V5gjKFnWOSIRAaI/DEvggZH/i0dD66goKLGaTVsLdk88uP6wFCSFQGEwWQ/BAE8L3JgCjqL5cWS4OQTxZUge4As0Aa5nscg6PM7ugZlVMzNcCPwZGYDfGhn6oUsGqe3O/IOopI3FmgOwE0Go1MwRFQAByBgUSdATOSImo6zJij2gOKipz0wQdpbx9PpRNcSIHbFXGiwmJcj7q5DaDV29NVF0gxJURwF3NZg3cxsgVQa4euUcik+gkbVKpYIqAS2MzYgSLGjNCTly61OfUEVBk2SP3YydcY3E0IdRh3ckcLXpmr3kIR0zBK0JFUk6N2IC9lLzZ5KtN97zrsqGJNp2r1kLZ1M3QnE5pE3dvqnN7FLX3fbf55HWT1ppEeYRBUVNtDUwJwSOsQESzSKQjUaD0fU/kfDGki75c9Ju+DEzFHYNnTWaBiJqZiCxqspGQAjD36GjrS+OTknMKLsJ43E+15m7OqSRwt1YKg+e5zhAlWUsg+TCp3f1vv54OuxGINs7XjT6t9GKm7D6xaWa4pPEK7zZtx/N+PlSbWTQjOCfwpJKQCqfONXtLqIk8O6IRIDEAtNbERKqCYS59yUOiDI5uJlrbuBsP99Nhf9zvd/e763e3b7+9vr8dj7s6TiLN3TilfhiuLi9fAjqlXoxEyTW5ZqaHnpUISJQWyQ3z4KxD06WmjShx6vqcC8UGtcQGy2YQ25e5o1Vtk9cRfeLSgATUDNRCm554cd4h1LcBEYATR4LsIVQIYG4hl+GaXF/2DHNnd1ybW8Lpt/FRBwBnUiAAVzeszQUskRIqujMqUAPQRI4AppATd13qCuRmjrWpVDHVBoEogoEzIyWizMrMBh7ti0Q8kleRfQ+wkSklXMgEEbLQwjt52KLMPQokA14gtJSM5SygcgC1CM9CoSzn3OWC6NJaq9KqmgBFDgMgGFacgJhzoUSkgqrgBmiJIBOm6Ki7pMiCi7AgfOGRhEZNRopKYCJkNW9NpuO8Pxxyad2g3dCXrnBiInJvuha3uUP0BVDC8403Z9x0BOQoLcEItjcbFWsIavFSSUCIQG4EkcYjFTi0et9u59GnoxBC6YDQzY0I+j4TsTQnMmYL+pOptrZ0iExGyKXrL4bhEiknLJm6TAXMkTJ2AyKW3PU5gQph2vTl2bPLV69fE9N4PKpUU+HtWV/zjzR1XTIqsGZYIrAK3ikRJQQFcAr7ZEtoAmhEUFLa9v3FZrjYDK5KrgQm6JlTSgUAm9o4TYdpmuYqS1lXcMMj28NmigDEYdfDyUQ3F6XggQZdsgmoSGbpip2o52fXcBb94gl+WMkjEJpKJ+jdFz2KmJ7BGl2pWyuH63z+xkt2EmgMPl208Dyt5gX3WrCGk11ahW9PQIKvGIE7PtarAQB1r2rmJ7vOwIQp2tjq7Fqb6lQNiXKhlEpmRkR2UkMUW1E0tPDBIEx9SKZlZuqyem7WZJqbNQVP4DzkvOmREyCrer8ZkLnru3aUepT50Oax6ewuK4WWgqCHYHQStbfpkXuk2lSqaQNXhGjlkJjSkhN1R6AwgiX1TBkBGtQlo7eY9sX7wpPXFDQoQ3/U9CdsLiIZYWOWkoUSANHQ0XbIl6VsMZnr1Gq1Kl4VbdXYYsSo50FzaKqzynlflVLKi83zaRrHcXQAWjAHn8ax1TnkzUXUPVhB7A6E2JV8se21XRDwxXazHTabfpNzj85qDh6qzsrsy+JbBwAgYoCPtYY/gSmlQFDNXExqq1bn1iTnXDguFJlDjNxWshM5PCpB/tVNe389U8It4mQ4O82QhkSS0AfCZzBe6F1pezxOcnRVNGJODBk8GRTwgt6jFGjkFby528q7sajUbGZAmHPqu9wzMpiZSquHcX+3390edrvD7rC73d/d7K7f7477uc0uAg7MKZduyN2Quw0i9AabuV7MrVZzSzk9qNEhAqeITQ1gScG6uy3zwkyVGZgTIiRkMNVZZTatBogc8hjqbXQ5UD0STsrqrK4a1MzIR5PTAlRGJVKMZYNaU9ArOufuFmgmIjJxSpxSUrOQ1+SVV3E+FoodKICFt6oKCgDuiTCjMwEnB4hkH5g6MIa6JZGreRVpKk0AHJgoIST0zJYT5ISJQB1q9IG3CBUimHAx81iPQLjy3oOZwEjryQZ/18VM1DioAWgERmdpUHdvtaobii7NwDAnYtVW51qnKk1Ml8K7qGEFR2LMJadMhBzsOiZKVFLqo87tYdv0RdQvZMhT4pRyyaWUgisr2wFRTBVMYZ5EBcCIICVMQAkJ1aCJiYpqSEOgifNDuT4AQCYckqs08CPa3nynNCk2jwZNQcmJzd8W8g1TQuTa7Hhod3fz/e0hJ7y8LF1JKRERlpIIXcjcBYL+b+5i2gyREqfSdcP22WZ7NWwuwChR16W+Sz0CAKpDF/lKMGzzFK0Dhr779NNPhu0wT1NrVVsd8/Z4Nq8+3q89zCCdmBcOifnyctt3GUAJPTGBuzQJaQi1al43Xb/dbPrSJQQjLDmDGyElzikVcFBVg6q2bNTzVGsDBxI1FY0YJcx35I2WmY+RZY5KT2vq0zgf97UrcrVFTslXIsDDPMOTCmk0Slqqh2DJHy3rcKFY40ImAQjP1v2hDh6eGPaV7L5yUxZn0YFwFZewE78EKYpRQxhqmX4h17gaRgu83EOl8nFVjAMq4tIjOSXMwZtDZHM2BzWwycCr8tiigIEYCbAQpZRNSdFPHZyWK1wWqhI4R6uxzKzk6lVqVQk2WOFN6UrB1G/60uXLq209tnk/H3fj/n7c3U9+FGuGFmi/c5QlGsVmR/JE03+RgIg0YuQCw657gJGUEneZO+bMyEHSEdUAAG0Vkom5GGABhn9Ja1jq0fctdMmQSZjmnKRko5SIU9/lbe46YK5eaxvrPHuzaLpJmTkHg4/iXrmLe7VH1W/MNGw6TpAS2dp+ftl5wDlnpBRnTLkQcqQsLzcDwsuLHtHmiz71w0XXbYk7FQAISRBz1zXNsyTXA59n5taa1Bpq3MzMRB7NlKL0z8VVxUeXBomNiZfigoWpau6gamTnfmMVH5u5mBJdcNpn3GayQjWDDm6XbRpsh9Oss6ARMVEhKgkKYCHqMpWMXbIOZ9KDzHA0YAPSJGTkAGpGyJRyl4eOe0YEbbUex8Pd/u56d3e3u9vf3e7vbo/7XW3VzJAYExNx7i/67nLAQpNWAJ+0hcXvhwEQUz4z7YS5RAAAoQm60AsBEcCCWmbu7pkzp67WOt3X42ZOibuLxB2ZV6nY9iyH5Mecmlmwm5a+LoWYidgRDFwXMf9oh0lLMSIGsholmW4SSCchEDN3fTe0wdyZGQBzjtj4SUoUol0ArLq0IcAT38EITJ5IMaWw4GYGBOpapTEzMw8lqfXuAEZMWDJnwkTODMzBTqcm4A4VV4jRMfh8tMh0uYN5zESQhMBKRIgJAN2iC/XCdPZEieKS4XFpqNm4H8WVEpeuH7ZMCG7aap0O4zzOrUqUvBg4EGBihqVPPCETUErIyFxyptLlwswOGhqR5mqARJRySjmlHFpDCJyMkCDSDQ6OSJYSdEPeyuAOSGCq0hoxGmAzr2q1ijRBQ3bMwJwe4bQJNUMz2bfxGuCGeJ/JEoXUPyYiXhjYhAgcFfycEZOZU2pq8/44JwZK7ug9ZiZOjBDQfWxWZm5ozcGgdN12e/n86vlnrz99/vzlZrgARYbS52HoN31XOCGgiLY2t+PueH+3k6aIhEyfffrZ5/wFINQ6jdP49W76+d38cCGPZtmjfO8DoRIAGHno+svLTWLKibqcEECqSBMREZ1F582mu9xsu1xC+5ApZXZ0TpyZS1DGzFHMzUDNpzqZ15Q7JPZF03gtSFJdrGYYBIiiRTcFV62zHg6TNsicSsnEdF5t9UAYQAPwpctw6PUoGMCSIUJHQkoEZL564wqwFFx9BJlfV+UDJAC08ukWdZsH/ly4L2sg72d4AbmHyDmsgJ4t8dqTRH+E/wuOx0zMGLFucmAHUHUTVW/OkxDVQpw7Su4MSJycKKp9ncmQLL4H3EA1oBK30GyPxJ2iKAiG3pszQUqZc8nEm27IbZJ6nPtdLheZh5z283Rs0tTNcOUbuCIYmjnpo1u3xKDE5Kt8y2JBDQCJEnPJacmyI6K5h3a8uS4hrAMs8FG0qYYlFRiPGJcaHogEDUFiyTznbDkhZ2BOfUo9pqSoTWqtozRFSIsCepdSWRIESACobs1sPvkUy3oAZsw5AfhSL8eMgCrNVINwK62BWWJ3QHdgpk3X5USXm+LWEnpOhVMHQGEniBg9FMaAeW1WC6Aam+sSo9DCNwRcIh5bFRYD1GqGqp5AURFl6Wy/dHYPssL5Qg9tX0gEKdGmxz5bodr52HvtXLo2s4w+qysQOST1BNBl2hD3zH2h3GMu3nFDOcxj22POkDI641KRxDmXlMrQDSUX99bqOB7u9/c3d9fXd7d3d7eHm/f7u5vDcT+36gCUO86l77fbF5+8uHpxxSWNbVKRw/GwPx6meVbXpc/4+XYVDQVC2prW9ebu5gqioRxsnilh6lVmmWS8NfDaj54GcnAVtJF8ApzRDZfSqiWawIWKhye4LRZppGxw6RgW1I9Fh7iqCBMvIoREOZe+MwB088jpRq7zhEMtu0OAM6u8IkdFOlIiKplKgsQiOo/jvmkDcDWvrWWwnDAxbkpSLW6YmfrMiYHQgCxQd7UlQGFiZlBbIUR0wmDdL1lXc5CA0GLXBDA3BRVTDZpeTGt3NTfT7qzayt3neVYXVObEiB2AqHqdx2kaa51FwjsCQ1urDiJxQeAJMHqHJMacqCTORASoBmom6IRuzFz6knMm5jVSitrZU8+Y0NP3vmOzPkShiWOL9QXBdFRDC30VQGYq6ZFkDVojOXrd6XRPdLA8mZEaAzktwjNL0aADOCJ4AkjuvCa/yBENXB1FvYpmgsjfLDJCa9yJjgzUd8PV5bNXr16/fv3J1eWzbb+15uQ5p1JyNwyblEltttHrfDwcjvvdrs4NES+urp5fXW0uL7qhb62O03H86u3P7749XciTfu2ABGRgK2EkGCELA8whc7q62G42fR81BECm1qIbllVm6PqcOHgowTHJyEyUEbKa1Ca1gag3sdrkODZR2F5Q34ewRiIGoqD+KDkCQDRfQGdXNdWTVgIhmLVaR/fGjJLqYwMcnHljxpI55ZRzMnWZVdzUFsVcTpgKRR/XkIESMHQ3NXskCfnk78gM4FIlEKS5hRCNRLiU9sW6j7ITg3jJyZ0MOD4ZqAGagWtUaz7iBCAhZ44mDpSQ0tI1JZJQgBTen5qNU2P3TaIOE6MQWiJkSsDsABJ/ol4VzBx1SfqbqImup8sES9RSvR3ERbR1uWNi7iFSl2WbNs+G7XM57ObDfpqOUx0nreoNrKFGlxWDx+hDOG0ElBExUQoc+2QvEThzyVyYMgK6mZhEK9KICwLIweWOGdHCYTEwdwU0AmNe7jShM3pJ2hflhMbEzDmngsyC1nSc26htBk2cOxr6fDGUTVdKSiFORQHvNrdqeg7IR0GzrsVn4clFnF26DjCgVPelX5S5AyHlCDKgAwjVWDBDVRFZqMIp5ZyjOE7PR9iGlNLQ90w4p6TBPzATFfeQ34el6BIBwEW0BnYvcsK9zCwYXqdB7gWxbIYXzzavn1++3KQBqlPzIo1khFZNFAww+kBybZBT6sumKxdd7jOm4tRDykqyn6rPeRjSZiAvHOFqTiV1pQzDZiCC43QcD/v7u9u76+ub9ze3729vrne3t8e72+k4zq1pyqkfhhevXr3+9NPP/+gHn33+aTeUaR73+/3t7c1+fziOR7Pq3rrL56Vsz56IxtQiRqIU4gWhg3MqE1SxAiVTHpJXS/NdnfZz6lvuU8oppy5DSdaR5+QFDB0BmRDRERRDAhFXas2yA4T75W7LAo/yK7Na6zSO4MDMa2E3MHNO2cyiaMLcwR7ZElXRVg0VyBZkGZnQmTQnGvp+6EpKKDICGNajiKo2UTFLCIBATDBkJsfE1GUmNAcTt2ZeFauAiKsSEpWUpImoBRkViRLiSU/fAasBGRdnRkQyMasa6q7KQEyMiGpWm8y1dWDbk38CoG4KxohO6qRitapNdZzbFMVOi4tOTglSxpQREEwBHYkTh4ZMIICOCMSJUkqAORLtxJxLCRriOexKCOTuom7i6uieE243nToYrBkGJiAkpAwJzY0Y3TNyn4IQcAbNtsmme5920A6UhQmXpV1V0ZiInNeybBRG80bk7tSq12pMfHV5SQRdnwF1nquApGBXWyD5i+JZQkuJLzbbq6urZ5dXVxeXF8NmUzrFAGA4MoO16TiNdze3796+PewO0pqbE1Krrc2zDz0jpq4rJQ3X+/N59aTzW1j3ZZOEM+q2m0lrJlpyudhsh650OWfObl7n2qSqNkAljjhBdGGZIhIDJFU6HuV+dxjrVEMLYvGAIjlKjIkBOROSmTVfwzVcnUoHAjdwwgRdV7bbnhBTQmZnBnoKZWukWXLmbsil5JRYqlpTXMzn0rUeCTEDMhLjAsw7SgNYwh4649YhQGilBrNvKew8efMrzrHSPhapNHQnJ0d3IAdyTAvIHjAUQVQPgttjsRwAJsqZAQgJmZEY4s+iQhN8EnQBaK3N6CICHqExhHBlysmR2KOOftFiVTcEN3c0F43QGBwJ2JEwHHKx2doiMdGlkjlT4sREOXFOqYN+22/HYT6M8/HYJtHZ5r2OO6mjmbg/zo8g0lLqBrik2H2p1VloxpwTrSG7WejQqUrsnri6U3EwCE4EiIMBKKMyW6IlE8loia3PPnSInCowcSqcsjM1l6pzrZOLMHZUNulimzdD15ccRBuGxeNWcRV/LDR7khRdTsPd3cBCC9YAwZyINNi7pyRCpPE5AYCArI0ibek0Bxg7FJyyRL5wUCJkj4rtmFu1NlUNF+FBHAJgJYO6qs7T3Bb5VVpyae7nVwEAV32PlxebV5fPX26vrvpSHETFW2WbXauquEUptTRsFeroXrCkxDl31PWUClA2IoE21tqEkVM/pDhf4pRS15WuZEKXVg+73c3t9e3N9d31ze27u9v397c3+91+Go8iYgDYdd3F5eWrV68+//zzFy+e55LnOo/j4fr65v37d4fjYZ7nnC0VkE17tEKW61oA9HCGYgIHKhS0xFajEUyfgdu0n9s4k6Viw5Z56LgbCnWR0Y5sT/DhDQNzdgJiZF8IeLiCUL42MV96BYm0Wus8z24etfU5lyXKjwJsW7rEPBHiQDVE82jvxJEvVFxKODlnyiWnlJGgtN5cEcQFoi1ZI2UCBCrM3DEFQd1RDcVgEqtKoojgzBBqoElR0CL3F5njlKhLqc8JkcVJFUHRzRzk1JYBHYgwhwOFODtUdaUHlBERkIEgEoNm3qpIazLVWVTMghKNhMCZUwe5UMBUqp6ImbqcS+LkFltXJiZOyBmQLJK0yJRSBliWGOBqHUAxRC2jNE/MFUxBI8pwRBcyihrGhKnPBDk6ywCv+8ZpaB3leGfzAWTGZBhl54Yqbm6aNAVDyEDcQbRKRRAzVAFtDu5D38Xer6razNdaICJ2RItYzjwzc8pD1w9dl3MijNZMdlIoN/emqir7/bg/jONYzaF0wyo34FLbfJwSE+eEhP54Xj3NtUdSe+EArhggOpjp8XDscn71/HmEuIyh7Q4hTB7VSonJQVXR46Y6gZMqzdXevbv/5ttvMWnpkJgS54uLHjDnkJ90B8ScmcnVQA3t1KDBgxXpxFGXSZn5YtMDLLoxTNhzeXwdRhSq6nkYupQZwVXisdtqG8xcRSVl5hSCPJ4KMVAkvhwWcvGqHwsIS7jpBiIK4kkQksW0o6XUI5azIxIzhwRA4DSGFrM/nZqbAaKhk5sAKi59FNfBTF3hWFbMAZMtoj2AgLZwRqPfWWR/M+PQZQatdW5mjIUTEyztjBDU1dy9uZEBmDdzMVAnA/JFzSo8FwCT1lSlSiqFS0kdAZtEdwMeLtL2ovjLQepGJtHJ7q/H99/c39tcq5g9khmILFVAQissuWgmrHSFRMxBIFY3tRq17+Dhda8tKpZMVey5iqBMWpJmtsSAAObObEOyvqO+z47JvSPsOijZCJo1kdFaRUdMfeovy/ai227KIooZlUwSGuHRfOIcRAFkTgvGsqTMFrG8lJIBRm8KY43yKgPXBf8xaRIVQapmpgBIiwCCNlG1OZzCwPTOiznDfgdziHl5MWxJmP94z0KJMY+Avus6Zl48iKe8Lfzi5YvXl7j97Fl/lcGnSY8N52rTUeu8SFoxIbZm0yjzhG2mVhpazd4GNu6oTxmbq4qJuGgi2nRdGTY8dBqF1UyINo3jfn//9u0376/f3t/d7W7udjf7/d00HavMBg6JGTldXFy8fPnixYvnl5eX4Hh/e1fbPI7Hd+/fvXv/bpomd7163l09686rrQCCqwy0RtOwCqOH+x5yV2ame6u19Zsh5yE7qKVWqzUi3uR8UcqmYI71TbCsSw/duSWFhUtvXVspcwAAp+wJuntrrda65EHW4uGlUsxMRKQpxFNnpsdb8KBEwDNBRQdyh+Cz+/LN0MyzGJo7c+rKkJNTnbWim7UKxpCiaXwiR2wOYtAEDlXHtshFDB0VhlnAm6WECU6lO1FVi0y8yaXLGSjP4rtZa2txswuQIjlBIswMfabEbGazCPnZ1ELMXTJELoTsTaqq1VlaFbVIlBMGAN5jGYgyAEIo0FCfu37oS5fTatoxESGxI2nUiAXMYCE+ESSfhzAKQRUU0QjUtdnxOO/HuaqKO3Kg7qnP+aIbNn3fl4GZVLVJnerU2qO8m9axHm5tPpIKAjmwGJm4NQdwUwcFQnYAM62iYqIKrhFOIiOnlNS9VjFVNMiJc8qFE2NSw6qxLXhJue+HSPC1Oh8P+3su2Dxzl9MAlEBFZ6it7g+jCFxcPmfmvuvaPB92OwQw0cNudzzsgrFw2O3O59XTqD36DxEx0sKQwrXmS1qr01znWZpAV9BBxepU9/vDNI5VWilps+0AvWlTFdVoxyzz7PuDvHt7+/bt7eYiP0ub0pWu75AzUnKgaJiA5ImZ2cmBDFXllLeOqASiYTdx7lJKHFA4ohNCkQJnPamJMSUqXe76XLpEDGa2Nu5cuHoAZiEYh5HYCjzdkZEzJA9gftnUn2TfY51bkGnFITnT4hHB4ujSUvm+SACtHhUuVdd4OmxUp62qUOePo2S+2PZmaA7RY4QTMi9k/GhG44DBEgxshQhyJgKbmpk7m4AHvZlSMCwNFv82SrzM1dEc3WmR4sEAI2EREpLmqsbq5ozZNIJMT5xSxkSE3qO6NyxdcjckQpq7zaN5tUhPLQAQrDWHkcekFd4gCIVGba0FDrRslJHRWm77UrsRuUNLrIm1JMtMjODuzNAlKAmZyCllK+Q5KaOAilRpo4kyEaXMpU9dxyHAzLg07HU1bdrEmlg71z5CJKJFq8Ajc+AG7pEmCWecgIyVlq3fVNdkt69pVKbQS1kRfTPz1jTuOy39Jc/gwZOpX+03rPYe4MGEhEfp8CAtFubf3ZlTwrP2MAh//Mkr8I5fdFLk7rif2xFtbD7PLgIImMBQxKejHfYyT6iSrSnZnGEqxB1QTwxmYrJ27wwEjgg5OqioNJF5t7u7uXn/7t2b6/fvd/e74/1hvJ/qKC7ImPoCmHIqZbvdltKZwWF/FN2P0zjNx+N4uLu/u9/dA3nX51T6fls4nS2QVZ95tVKLC4Mh20JIhAEli4qKEmYwdmGUjOLgCJKgMSoj83LABUqLWRvLNbJvi0u/IrcP+4AvsrKiou7OREhBmY757GoqIrU1cCBizo70aHVc8jAkP2AboTVocuLBALiLSJ2RHBq4ggICEwGzMRYF8WjAiUszmGbYDFTJDMwZwRNzl3nTcUlks82moYEACwfIlkI8TEgpp5w5M3tbmMnOZkDqRk5OjCnTUErJSRTGZiz8GA8iRA+ftVWps8yjaDPVoPUAM3OCKI9xD2NJnHLJXd8PQyk5ZXAK044IAAoQAIQZxiPm8FUTBukLE5kH4cei6Zu3ZrVKnVszVTCyBYRApNLTNnfbfkgpNa3j5PN0XIRa12FStY5gDaM+0NDFkRwNHECrNbCUCIDcTMWnKiJRO4sJiDLlRCY2z2KumRCIOKXMOVGexaPdhSpgl3LpALHWdq97mTUZJ0uXF6kUImYkFJXaRNVTLn3fd13X5TKNRzMHtZxomsbDYS8mjn43P3J8H5v2oJshIDkhLv3WcKEfk6OZj8fpeBy3w6Dq8zzd3dx9/fU393e7udbtxfb1Jy85UZMZCThRrXIc635f7+7GN29vdrux9Cmlst1ebC83BqgKoiAaxCgnQqIo3kZBMjcECsAbzEyNOCXOXVf6rqRESIsgLhzzybQjAqfk6F3f5S5RCmVZi3KpKLVCCF1WWLICHPPcYg1TogxstpLdH6hxj2j7IQiFyekk+AyLBxBGK4Bwldid1wbgi/vpYEpBAiEP0ujjxsHQ9+VVuhQDkbXbLDmSc1ANAMUh9HFklVEBUIpHyCCih3kspkM3ABEnTuAcQk5LXyFQR3UyD1YXxQokXEGqyOarNHEQYDbEhEDqptbUvWTqC3d9yVxy4ZRTvx2Gi/HZy0cVlogUpJlF0SrwLPAoH1yaRztESm+u81ynVlvEQFGqE9FYWDpc+HJUGLsEiTyRd4yFI93qgAZI4gksseekiQRNVUQnbZMbAveYQr4nZGmX9J4DgjeVWWqV2rS6l/NHErIFgSIBEro5AKeUc1EHM0/EnsxEFjHMpc0ShB5Z3/dRDSMq8zRFs5mIrc0MlhLTRbJwtfSg4WG1drLrJzOvKw4QNfGI2HWdLt1PFlH6ru+JuvMt+IeffsIw3OH4Xo5TO+zqgXQ20EoOlBiziB0P9bBv+52qUHh5bjMYqDYwAwQ2NNXRRFyPMpd50ikXIiNw8lbH2sZ3795eX7+7vbu7u73f3e6n/WyzuWLmUjJhyrkrue9TV0T03bv3b968n+Z5nKYms9jctDrY1bOLl6+vPv38xatPrnp9EMOP1CFA1DzB2i3Mo+Q4JTblkE1zA3WdxklaULkUEZnITUNynznsMUebsggQCZnWNDtEbjACEIrNAsyWwuVTfB70uZyWwjQLspmINGm1mRkSZS9I6ZxF96q/etFt9zrtbdrBfLQqKADG6GA2z/M8q6ojembgoNgrkBNAiLSjOKqiKMzqzSAhZuQ+45A5ZyqZu5wACVvz4G49yMD4ci3AVTkrJoZCeFlSh9SQ3QkFkQ0JICEWGoZcSq5GxwbJ+SGgcmgzQEJK7ObarB5t2qs2i/IBYCydAeUibg1VTd3LUIZuMwzD0Jc+dyVENzDEWMGtmauDKprA4iOjISIl7kreMDlCay41dB7MqmpVc8RccqIceRkCLJyHrt8Om+1muxmGxFw1RSPHJxAjuKFrZEw9uvs2J7QCjgB1FlfoOgKOnA2quqmROzOXTH3HXclV61zV3bAQxNzKiSmRmYGLQ3PoiYBZ1A7HY520cMnQXfRXzzgNw5CHwZHHeUaE0pWU8tXVVSkl0M6hNgLocq5N73aH3f6+1vGQB+ivPm7aS+o23SXRukhC+w0ggCEE7LiAZq2klQWoTjAdbTzo8aBzVSabR+SETYkTgbM0lGptllaJoOvyRZ8vu3zZl6uhbNRAwMidQkdh7TBH6IDGtDS5BQAMVTUwhpRwyNRlyomIObLGZtSdng8iPb96pi7Dpi+FU0IHFWnshayz3sEI0JyX6ocypNLn8B2gOSgisBvOnbRq4Bwi+gB4KrFzBAfFbGkw7oALcGbiHKhq7NRLP3VzlYdKpDXviUuggxTNlsCRjDIVPgvcC5eLdCHqkhZoz9EALSESogEKALkyqCB3DAkyWnHNThytp01RISklYkZAMmZDNw0KGjiwWwZzVEIFUAAhMF4E7EDZFujZiSGzF8KMSO4WOvjklDDn1HWp5627FLTC2F1ut2fTChkzLuKVoOFdg4ZZjyY7CMmBzQnMzNGdETORARo9KPrFLQsSbEDxNSdhEmIjSsyUiJBc3QxILRP25IN7MWMza94EUDExFsBBvVTjUZCrzSBsjdkBcJR5Py2FuOfpKwOoGlnM4CChOUcDdQJWAHVHBEdTjBoQiNo6cFMnckrARBmZzEAiGkJScAGKOmozWi473BcgMFTx1qxJOL60pJKJEFEWTgqgExgiRV0SiWozrBaaXsX5zPEF7IcLBto3hzYC9IgboITomRA5J+pIbaYpUeuSGjJiSdTlVIiyexJjMQ43E5IDqEKqCtzcZ4VFIrJNc52OdZ7UhNALY58TIwBmwmBNlZy6Lvc9EFnU7tfaZpEqZg5AmbtU6PLi6vnVi8vti+1wweOZaUfKuVtKYYKRigsrB9wBGCE45rIIyRNDNAnFhAQpMXNGZHcyW34LSAbkvmCXS2FqhObu7qE+T2u6/IFps8jOJiLAnDMv/QYVyZEyJ2GLnDoSZ6JH5VZIhRDWwhdEJ6TmEDE5aiNzVzFE8EJMhACi4OIQa8XQCMWhOjQFMYiyOY7qdsfkiJocCJRQhRcREFqY/iHBBaQtCbIBEWEKQrkn94VqRYuyDrFn8pQBCyLDQy0iIV0MzyB5NyQAV9JZW2pN2d3Q0IE996kf8jDkviRVVfN+uNhsLi/6i03ZdilnzkQ5ysTBwSW5q6EpuEZhR/DriDL3XR4I3Z2Rm6eKQIRimi03xK5kQ0ZKAWhAJh5KP/SXfXdRckdMjqlk6/IRXPDseaScu2EgzEiCKSykE3omyAhkjsRAHXFi8gSStRJpAiiJupy7riulK5pzAXfLHacuc8mUO8JMbmzClpyNyxbz4MTmPouK2HHWQ5Vj09I0czPQ4zTVualKIZrNVMTUpiazOSG6w6i2r7Kb5mmc2iZBfzav/u2//bcPm5eruT1JzZ0PXKgQS0VITI2lf8DSnQNPOPNiBf2EPS6u70Nf4HX4w/EfvfyYZ316w0Iie3yAqD9b/hEtF8/e+HAOH7koPH3z4xN5ePd5RP4ILl0//nCgp4c5o2F95LvP3+SICInT6eYsp/zozU9v1fkV4Vpqu2RtH96Hp+vz8+OcpZjOXz+/vvNvR/hgaiyZhaVMAGAt4ltzyethPpQB/shhTm9f902Aj9wyXy9p+efp6Z0d5Gz+PT7nRzdlZYoiPJpRKy1ymbBnJ7k+4UfUuvMZcP7yae6s0RHCw1zz9QGs7384L3zykB8WEjz57eNzwQ9eWT8SC+DhJGk5vyCB2OMPnUPNp5cfLTuEx8vX4axO9tHcWbLRvtq/x2f+5P3LSTxM6PW7l1RFuM3n2Qr/6HJ++OXT2/F0fzlN3fMniPgd7/7YXHy0gvzsZiGuvz27Jn+4keepN1opPCs86GfvfZgtZ3cLH33x4zPzx+d9/qQ+3E3Ox8PdeLiij1x13K+VZYDnE0a0nY60PswPvmX9moe5ibjOqKf/h489w7ND4frN61vOHrp/cPnxkfPZu05Q4LMUSUhpnL72wZqdLuvxXvFwkQ8L/NSQ1087S3yrn02HdeN5uFBauK+EK2n47Abgo/NeM1D2wAGJMzvzUc6vnJAJn/al/+g4X/a0hPbnt/D8bn6wRj4Y3/X77/zcd0/Q+FQ+k7b4f+9YmeG/4U2PxjLDP/jNUyfl4//8DQf/rnH2dR993B8K7f36b8WT8f6eJ/BwFr/x2Gfv99D8On30OzzJs+N/sFXhd3/xuZ/3+G3+wXvOf/Nkn/5e3/Udv/mOubNK0yEAfOd6//53/rHv8fjr8fss/+87Pjz+r1kcH/FDv9+XfOcd/k1r5cOTWbfuX7+G7cHzxbO/wR/958nc+M4jPt0P/Nf99ul46n195BMnB+bpToKY0xMu8+88HvKfv/ZNH3fjv9fhP3w0RATfe7/6Tsv1Hb942Nk+9roDqMMT+bXvdx4fWWa/1Z77h/GH8Yfxh/GH8Yfxh/H/9PEH0/6H8Yfxh/GH8Yfxh/H/qfEIkB8+edE9v/BTamfNya24/wnhx1N69SxPclaOEwIuKyi25rPO0KlQXFkTjggLE/XsEHD2oYfOPKesnduSDY1j1dv99O4u3tN13b/5N/+m6zr4f9sQkX//7//9fr+ICv3pn/7J//q//gUCgtk83u92795889Obt78AGV1lUq9q2Gqv7QXWK9SOEVOe0yVe/aD//C/LxafMHVNiAjGtLRpDGBPmpa1lUP5cVU1VpYnWUFRRc12pe6cn6stUiF7YS7N6REJiRBaV2moTVbOmOtaFuOXgb+Z7MQN3AiRMBKH66wC6dNUyAAdTN/G51mkc97vdfr8DVyJgDsVPR1ylDEKDKrKWSzk+wdp6c22DcJ50XnNcaw7UFuH5U4IzEqNRQrtcNyD873/6v19tFtLpH//xH//Lf/kvf+8PXc1UNOSakTDaJKbEvxZu/u3G+/fv/+N//I/LqkT81//6X7969er3dOz/oeO//Jf/8qtf/Sp+fv369b/6V//qd7lJj3kq2Fo7HA53d3fv37+vtTLz1dXVq1evtttt13VEv7coaL/f/7t/9+9UF0JgXwpzWtJPfkrQ//bjOz55TrBZ89IWxbtqCg6hRU+cCHndpvFhUXzQkXKptHQP3cN4sUn7+tuvAXzVSnr4L57a4Z1eJ8JHGYyn5KlHXxb/iX89TjA8JNj9ZA6WbcrDJGk77O729zeH+7vpeBQBUaiiTU0RQuGkdN3/+f/7P0/2Yj/Px9ZCUSqnRIjSapvnVidps5u4C0TDTwACBEcVa3MLDYlUcukLJjJwNVOROrc6N1X1UD1nLCXHH2ZuTWpd3pCiHW9KiKhLiY2Laq21SRMRN0DPz5998sXnP/qjL/70j774Yd9tMdr5cHr37h++/uq/nW7OI9Oet0P/+vmyi5/oEbGfO4QExKJriRQWFyFqthxPVj3Y12ua+GTXH0h2K3HixC7BtS91PJ5VqStygY/YUX42ztqwoDWB1bSnlP75P//nm82j+qsPh7urmaoRLjpWv7+99J84Wmv/+T//55Npf/Hi2V/8sx+Ro4vud2/evzuO9/MO3rreW5tNQZrQNEMdez8+w3bZIZXhkF/BVb+9gP7VtuSLLvelpCZ6nJqqAFhJ0GfiqOJWM3UV0SatTa2NrbXWmqiKmoXkiurpqTqAA63CeLTI+BEjpaYyTRAaFVB9XC/KHQ4yVxV0J0yZgBeiiAEquROFkwGmruLjPB8Oh+ub6+v3b1UrgXOCRAt5GQgXTT4OlV4kClEqRoi+lBDC8ifr/kBd8aUxj4MtbdEg+PrrJu/ojmami9Ig/i9/9L+cTPvz58//6q/+6vf4uGMOz7WO4zRN0zxXIiol933fd/3aJub3MC1/+ctf/qf/9J9Opv3HP/7xn/zJD38fV/A/ePjf/u3fnkz7drv9q7/6q9/x5pxiCTPb7/dv374187u7u9YaEW02wyefvP7kk0+fP3+ec/59Wff379//h//wH06mPXEqOcOZyYTHbsf3vpj46+kHT1HRut+6OZiJaLM6mzvmzNDllFdBRjp5x3HAkK47zZ/1YH66BAAw1dv7GwAICUV6PHCVW4gRan2nZ4dnluLJeOBnhkX64Lb4o2GnCMQACExbvb97f/3mq5u3397f3LYGc/NxlklVABTAATab7f/xr/6Pk2mfRO6nWdTcoeSckKTObRrrdKx1NJvdBEERLUV5nKHMMh5nVUOiPJRu22MidWsi81yn4zQdZ1VxcGJImfu+9EM39H1OaZrn8TiP4yhNcsmly7lkYta1+0Nt7Tgep2mS1kwRvXz2iW62n37+ebfZfnp58ZKp5NyV0s3z4Wv4DtO+RitRlxXUXgCAh7Kt1THERaiOVl1kt4ed1N1taS4EsHR1PyPXPmYprjPDbKkzWWc1RRXv2dN98izPz/u39XPVXUR3u/1uv88pbYZ+M/Rd1z04HN8x1c5P48O3/bafffLmJ683mQ7HG1CTWu/vvrm+/fZ+vN/pLK1JbbNDUyNxmyAfxazqlvLA+zxKvrl/84vSfOivLi6eXT17oZbGJioGruBYEvBS58CIS9F7ypSVpTURaaIiKhLCqEsPtuhybL66eY6A6kqIjNTALbFrCNnSeTwEGYlSdEDKOQ1MeWnXFM0G4pYvfZFgqPXy4mLo8rZL03HfptHdAMxRHdXX3nkBAcBCm0aIwsmYc4CrdQeIWOhEePfw/HGN4IPju6JTCwhFdOI2/ff09lqT4/F4fXP95s3bu7v7w+HAzMPQX11dPXv2/PLy4uJi23dd15XQP4kZ8k8wZv8UO/H/6fHkftTa7u/vv/rqq7/7u7/7+c9//tVXvxrHiZk/+eSTb799++Mf//gv/uIvnj9/Pgx97A+/3xgg5uW5XX/y2+99oI/zMk+vLpsbAqi28Tgd7ve7nYiUrttsLvDZi36zxVxgEcvHBUb42Pl85FRXGYYP7foav+OTfz6Y7cem/XwThnX/D6r2KWo/ncbpvp3WtofViID0oSDrVLt1dsqP/1qOrCBVp3me5xkcGLFwykQ5DykVtequTJ4ZCzMaSNWaGuFkZpiJCmMmNRNttVqtomKhHUSMIdaPyCYo1UFNJtNZrao1WeVqNZeSS4bEaqaq0RUeOBsgKKvIYXd/ff3mzbdfjYcx5812c7ndXi51Yev4wLSf156sD/fxg3SP9qyhwaJqouZmYMSUUqJFSCKOEd24HyLvDx/q4gw+YCsn206nhxez4fy3Jxfyt9m2lonuAGbeVO92+2/fvBv68uLZJTN1XXd+tF+zhs9vyJk38uvcz/XN8NHV8tGPjOPu3ftfmkibp93925vrr+6OtweZ5ja3OisSGJC4z35zp9aEGpXaduU40bVvfpHqNPSXL+pnwsZ0OVUyATRjRCkQgi3AhETkgMnZKBlrEV1NexOR1gIsPjPwtqj6GQBYCBUGjpMIlK2qIj5SgcjEjJBzKXkoZcNcEBarvHSSAnDAxWirwHYzZLrIdLzvx/1ORdTUQBSiaYwpogLqun7BMUIN8NgBDHytJ3qoWVn+uK8rfPnlKWA/VRb4gi/99zGIS3xhdjgc3r1796tf/eoXv/jF++vr/f7AzJvN5sWLFy9fvnz58sXz58+vri4vtpu+73Mu56sAfpP7+D91fJ8b9z/o5NfU3qNX4CzubK3d3t59/fXXP/nJT//6r//rL37xi5ub62maAeDNm3c3N7e1tlI6VX316mUpJQzY7/Hmn5Dk9fQ+lkj63sc6jdMJ4uN/u5mptPEw3t3sbt7Xuea+16sXXU4lMyRGJEeOTzyIRX2PEWpLp6A8/v6oaT+9spRQfGDgn0xywugBetIT8A9sga/RJzgAelj3EMo6fdejsz0ZqSe/kNbqOI3HwzgdpQoBXgzbbT/knJkTIjtaYiiJu5TQgKC6Ni3J0bkjzAQETdUhqYCgOQNnouj1xYwhKI+csCRkI1ICATVTaEvhnSNxKYQU3fkAIJoAkZMbWZPDfnd7/e7N5qvpOPX9pYkSUmuPeqQ9EZpFxMXI4umyH8XYiIgqOo/TeDged/tpHNtc1RTQ+83m2fNnm4vtsBkQ2ZZbDR7tdNcZ/KH75merDc58sQ+D9ceP8wyu+S0Wmgfyr2rHeb7b7UW6ruSL7dbdQ6HzNx4ivjd0wURERQAxkqS/C4L65IPXN1//7d//ykRVWp3303S7O76b5DjJpCopRRdSIzcVOE5wA45V7so8wZ1tv0K9ZyzPD9eHphebLxI/J09oUMSbGDMtPbNCHcLD2XWMVplkxJaSSi6LuFlrawdfUTHUpfmRm5+soSMgqHt193OGZuTkM+dcutwNiQsAr0vK13Yqjm7kSm5IQF0eri6ksF5uVU3dBERMaq3TPB9qHVub3drJGj/06niUuDttEcsNhlO2KaL7Ndv08HdsCady+d+/BULE1trxePz6669/9rOf/fKXv/zq6693u32tNaXU993NzfXXX389DMN2u3nx/NmrVy8///zzTz/9bLPZ/NMYJP8PdgL+JwxcXbzWZLfbf/vNN7/4xS9/8pOffPnll+/evWtVri6fD0ObprnW+qtffQ0O81z/2T/7i7/4iz9//fr11dXV7zHvDgCnFPiTQOXD7e6DK3k6QU/HeXjHaR6vJlPDnTke6v5eDzut1aVORNPFpuu7VDpOCaOxZHRodILF/f51ARWuUftHofgndn3ZJE92PQz/spnHeRqshmD9FeFj034eXD1YdwAHtKXfMTiHSNGaREb7jWt6Pu53N2+bVJVqTd2hmuA8c8rI7ARA0QQbciJ0NDGp2qowI2fsUuk3GyQ2w3Gajoej1Nlac4hGQ4wpMabE+WLY9qXTWsfj/vr67f7+xr0CiptbNc3qhmIh5wewiue7gYjM0/Gwv7+/u0EjFe9yPwzb8/wIfNivfU34rIS5x3MkXptru7u+vX779v2bt4f7XZtmVQWEyxfPPvv8s9dffFZKwRICsctnToHt6dGcvhBW7N/9I5Nmtd2P5u4Tn+4jLtlvHA7m3pqM88xLT61TNeEpzvt4PB0WXVVbk7oOZu77SJJ2+GFLjvWYHyzGXzd2+3dj+8rMXQ2gqs5j3anNaqIuxaGAd6ycHAtjTWODpnDdZCwHP75Tu5Nqd4dj0/71y/Li2bYwo3oTaOIpASdGTIgJfLWwq6g+oxOZMXModZpIziK1tcpCUo0l9EzdwBYQzFXVmlSRWRUBHowQAQIQc0qppNKl1K8K3eAercud3NGFtBFWdCuM2GfKhNtBLTpmqFibpmkcp9vD/m4cQWqk+3w1yu4rJO+n9NCTx77E4qdC0o9EJIvR/66S7H+ymXzYlaZpevfu3ZdffvnTn/70V7/66vrmRkQQMaXUWru/34VqbEr87Orq9etXP/7xj0X0s88+O/cdH0/O/7nG+3QTf5fT+KhL/RsP+Ovf8NDifTFLgeqoz3O9u7v/5ptvfvKTn/70pz/92c/+4fb2BgC7rmy3W1EF2B0Oh8P+TpqM49xqRfRotrvZbHLOv/d7/mRze2zaH2PrcSX++LVlb/EVqMCV8gwnYSZzU9U2zfPxUA97nY7WmqnUnOfx0OaLbiscPSgxJOGfnmTs2IT4YfF1KGmGDQ9Q/pFVR8Sz1x9g23WsExvjCk73gRbjTDHpz3DS85DQTy/7ehciaidae1QssfvZJX1sxrU6zoc7QEcwNDGxuVWBY8jsU86UHrTYo10ZGLhDIi6pbPvN1eWLXHoHHsf50B2kNlVZNM6ZiRM4MfK23wxdTxuXzVSwu8+DyLHJPMts4OQFjMCA3BM6sEaixAkTZzOrdR7HfUk9U2mtqojbo2fy2LSfgI0VOF5nyBpDO7j5eDh+9eWXv/zHn7/96pvD/U5rc1MAf/bi+XG3B4SrZ884JV+T9Wdb0OqiAYYm+skqI6KTo0MoMj/MpA+C8tNmfT43vl/YfpZrQcC1XSzSd3gGC2r7KKFgZrXWcZx2u8P+cDgcDuM0t1b7rn/2/PnLF89fcMISHWIfbuE/bYgepb1xQzBwEHcBrCl5TkiCWaUDe55ge4U5DXrRHfc6z1rdRw2/pY77aZ4y6reMr68ufgCM5iDmTbE4OWagApSDWLZkqqi5IWDI+gOElDJhIqJEnFklazFpKk2kBaHe1b21djgejm2atDbN56YdTnsQMXGmnOHUKsbWqMUNFdGV3FGFpLJWckMET+zICmiGPcAAyKE/P4G1eY4OcWAAGALvAHZq2vuYkrHM6vM/j89w3VWX4P73D8lH0/ebm5tf/OIXP//5P37zzTe73c7dh2EYhg0zuftut7+/383zpCJfZ774cnt3d7ff7//Fv/gX4T5Gm1f4GNr8P3t8/xv23yfb8bGDRwIkOoYnTgAw13Z9ffP3f/+Tn/z9T376s5+9efNmHKecu81mk3MCB1Mx8xDyn6b57du3zFTbfDgcaq1ffPHFy5cvV7V/+B1t/Dmc+SQYXU8ebVHKRwCnpQHV2VjjrvjcirfiqTE3Lt4quFob52l/nI/HOo0mzVUc0aRJra01EzE1DxZa8KSD3hLEuvXQDgTwKOzBRewFwq4zETGHOX8I2R/j86et+7Fph4i34xbAQ8QdwcBjc77epzPrHlC8uzu6ARMTMkXzVg/19DOXHpe23Y/upTEpMQHwrGIuc52smQogpjJsun4oJROTgQEhJ0o5Jc4Xm83zq4tnz55dXT3jVNQx80yQbVg6xYE7JUak8TiN4zgepU3Hy81mO1xtfrCVT38wzrvDuL8/7MY2A5EjsGnOUlI1M0QGQAQiTMw5pRykJwAHN/xgu3qcawfwtazsNGNw+XEJFEx1Gsf3795/+/W37968Pe52VsVVwW2eKxBdXF2+ePXJtjYgWowj4JqyWZOi4UaFRwWAgITATKkUyoSPZy4+mMlH++/Zr37jwCeXHY90nXhnnsFZA+LlLkQT4Ojg1No8z4fDcbfb393vd/vDcRznuZrqZrNRR065G3oAT3yaxHC28n+7LcChOeyXgDa47KAIBurQjFw68hcDvdxy2ZQ6wDtvOxOVNqtpnSex434UOm7oWKeKCMTojkDkwEAdpR45A7C5rWLkFnuBE2D0xYvWNU5ISI6UiFNScWZhViYhVlEDc9dWRefaZmkG9LBeHEQUAAsgRveolFd4DcEQDMEN3NANBdCUTMgaaUU38OgaTMGhJ5Hk1iEOicfMk1PsRQDui3WHhfb+gL2fAub1x5V7t+aLTvPqlEE6ef+/x4EArqr7/f7du3e//OUvvvrqq9u7O1Ht++Hy8uLy8tLMjsejmY7juN/txvEYmZfoDfPy5ctPPvn0tAvCI0TWH3/Rf9fxEat8CpVi2Gmr/YAZ8GhbP3PQv/93fZ8Tc/fwouZ5jjbqrTUz7/uemY+H6auvvvnrv/5vf/s3f/f1N1+P0zT0/Xa7LaUg0jxPda4qBoDESU33h+PX33wzzaOqevQBSmmz3eacCfF3vfnrpz/EmZcLcdA1JMcl2LCVLwrn9umEMy3JMVyyUwgAbmBurdXjcTrs5+NR5tki1DM3NY0O8Kp2KnF6kC18oKfGUQ2RPrhUXvLiyNGcHHGx7jFhz637uvN+x2w4u42r/Sd8NM8/AOYfhaQR06MDKKbVtHP0/8UH5O7xn2WYirQ5Y8eUEiUnA1R3IwAEYwN2yMiJExIyM6eUc86pbIZN321yKgjkS3WhmQFiTqknYlruB2jFCbRJVbChA6Bu23cp0VTHYTqW42Gs09J+OzqLqbh7eCzmIKrahDn7GoB8dPU8pdHZiRS2NlOCBftZ7t/c2jTXKgJMm8sLYprH2VpzM+Q0z+3tm/dcfjJsN8QJAKJizhHUTM2WG+lL5wxCAjV0T0zb7faTH3x+9fIZl0SEDtGfJho3Lv9bEgXrsz9/qr9pAT26UFz/rLGZn2bxaYQTrWq1tWmeD4f97e3d3e3t7e3t4TjWZu7RiZyI2Bynue4Px+6ua3PNifq+RNvs7+1/PB3MQAWluVQPVF6b11mPu1n2rU9eNvRi4M+2iZqOZPPRb6uzmEx2uLUJQPa02fSbdLHtt5u+9H3WRl1J3dCXfpPL4I4qJs1UjBAYE6IDRR/ZmDF+spFL32oAdCfHBISYKBkbkGMj7ExmcFA9R4Yc4DjPaFYcgGO9pMWf82CjE5qhNnBwVTQjUzRFE21NRGf1qh7EPm0iohWsuRF6SVQdJUwJGDgCuONZ1A4PDuFqt8Nvx6jpedhXH+y8r9HK79FILt8zTdPbd+9+9dVXX331zc3tLbhvt5vnz19cXl4Ow3B/fz/P0zzPqiLaaqvzNAH47e3t9c3Nu3fv379/h4SAWHL+XabW7+F6Hqd1EaI1o0kUO4tI2Ilo3Pc4MgtWyhMq9Wl7//Vf9D3PTlWneX739t2bN2/evXt3c3MzjqOZP3v2vO+HcZzffPvmv/23//urr75SU2bmlNX8frc31bZeg7mv7rnXWt+/f4+Etda5VjX94osvXr16lVP6vaTe/WPGKv62gN4XtNoAFKI/U0x3xGhss+LvS5jugGB42sDRXZvYdGyH+7q/b9OorYblWbLeofZgEe+uuyP6KRw8R16DkYSPt8vzXDvj0ornQ1j+/JUPXbyH460vnpv+9V59eMMWR9IcaFnHgADAtMhuYATuAX0g4lqX/tiuA8B4mG6vd8PGhmGbueuGATsjgESZKQNm4sTMpSt936ecHyJOx/1hHKeZ+M4B1Hyc2jg15r4r25K7nAoTI0Ftiil3qSBhQ7ob69Ss5JxLv7nY9pevDd086uAxvDYzDTM0TtPhsD8c9kQMi++G0TXryUhPX3h8Q9dZt2xMojoex8PhMNfZEbvNBokBSSq7GqbURG9vbqtI1/ellLWeDcy9mYpGZ9ylGw8TkYOrgnoiePb8Wepzv+27hMwJlwzqSoJ+BKDiCUU4Xxi/7XjyVH2dKRFzqFoTmabpcBzvd/e3t3fX1+9vb2/3u31rQlxK6fp+oJyQ2AFrleNxymk/TZwILi+3z5BKwZToO4KP37Rb+dLwSNTNXMRrtXmSaRIb1TtMPQzs22KAYllyckZ1NRGb7lFTKb656l69vPzk2faqy6nL7Jz6rhs2277vU+5E1Lw18TYrJyyJQuIm1sli2t1CLCZCMwcwMIu2gOQIyImBuGfYgs6qh2kCf7TZKTJhwlQ4FeZExBRlKU6RsQIQVHQzE0VV8thmtLU6TfNhlmPVuc1NZmmqap7ZM3uXSk4dASQ2IzWIMvwo3P141L4WusWqWP+sXuMjwP73Mh6OY+4istvvv/nmm6+//ub99fU819J1z58/f/36dSlZVadpvL273e3uxvE4z3Nt1cFzyjkXZp7n+fb2LuXiDkPfl1JS4pQSrrvqGb7133ecVlvwTiIsnuZ5mqZpXv7XWgvlCVrSr0u5cwikpJRyjvanDz8Ek2BRUDkz9r+NdXcACGjk/fv3P/uHf/iHn/3DN19/++79++NxdPfnz18Mw7bWdnt398tf/OL+/n7YDMMwqJkvwiAafe7xsUET1drqm7fv5lodMTJeRHx1dTn0PSKuIM9vH8GH9X28oa33eUGf0cWWPt8NrGGwTcO0QzToDMkmX5rbruHL6hAAmsvcpsNxurue9/c6j666/B6jFike5tIbJS7/ca79IZr+8Fngmms/D81pZct/kHN/+OHjRztPxK8/PX3ST217UHEfkvDk7hSAPDERIZzIew835kOT6ESQMvV93valy5zBjAAKZ6bUxC3alBomyomyqKpF+ZCE1tcybZBEvFZnljlpziVzWbyexJQT58zM0qRJrdJKkwtKm1K6LiOTmoRpz0wlJQevrR2OB8S7VtuIIwI9qt/94FKeMOQfLDouRIeHG4eIrbXb29vr6+vD/qgiKaXSlVarmwMZEZn7/nDYHQ9932+GgYkjbaLgVVoT8cVDdAAgQHIAXWpQDsfDyy8+efb6RepzKsnOaC9xbgvPLk5zlahbF8NvF7Wf9u9gQvtK3xD3KPNq0sZxOhyOt/f3Nze319fXd3d3x3EUESbKpfTd0JUoSYr+za6q8zzvD+R7Vamv6ouUCxKv0ZWvS+D7jlqtzqICwXw082mS4yhNgYlDOE1rk7miVGsqDVq1OnlTdsr95fNPXnzxwy9+/Cd/9MNXz18mosSU+24zbC+2lxFtmAGgqlkVTUBITDkhMwCgAaK6h+AAAFi4ZA4YiJCpqZqaU8oppz71nnCURvs9PGZLDJfPqPT95jKXBZgicAIiYgQK4iqamgi0BqoIruDiNrW2m6b7Q92NdWrj1OYmYg7UlTx0XaFUugvuByBzak3H41TrZArR7xJgodWde/lh3df6eFqTb77a/9PPH+EQ/RPG6RjSZLffv3377ssvv/r220ju5pcvX756/erVyxf7/f7bN99++asvv/7qq/vd/TRG7K5XV88++eTTP/uzP//Rj/50s90ex/H6/fU0TcPQ9/0w9F3f96WUaCQKjy3Ef9eYPjCt1to4ju/ev3/79u379+9vbm72+/3heBiPY201dvbEnNNivE9mO6x713Vd1w3DMCzXs/wdP5RSwnH5rS4kzuqbb775u7/7u//r//rrv/3bv7u7vTsexyYKAF3/dc7FAURkfzioWxWBaRY1QlzreRURmRMsDZrVo2ojJVG9vbv/yU//4X63P06TOvzohz/8/LOOCU8Oz2972/HMhBHRE1ge3AncXbROdTy2+SjzCNZwNe3muHiyjuhOvmCQ6+YGEG6subYmU50Oh3o8eJsJAYmB2QjBPXQsTNVPidvfMiV1HrXjasBxrYJ7YuCfZtyf3JOz18///nA8seu2/gQQpW8PPDoiQvTlqLiIW65HeTjgs6vnP/j8h5dXz7bbS3TQpvNhrPM8WXOba21NxME5p8PhgInbAk+pgRnEzOHS9V2/4ZR7JlcUnVubwB0ZOdFwse37LWZERnQ1V21qJmkicmszO/hcZ1UBgpzTNmibhCba5tpqUzUM2cw4/Y+5KE+i9rN7jcuNi/r1MO3S2vF42O/30zS21pgYfPWAMFxD1ypNhZCGYSAmJgYCBiBjVj1DA5Zt1VVlbq3NY52naa51Dq/5dMNPs/zkgD55GL/9wHNnT82qyHGa7w/HJjLX2lqrtR7Hcb8/3NzeXt/c3txc73d7NWOiYRiQmJiJF3dwmVtmtQlOs2qrraZSNvtDSqnkRExwAiGeRlffuXqOB7ndT0TExDkTImr0Y2bOBRBVVWv1eTRSmWY5THCspFYSD9ty9fzZFz/8oz/7kz/6s08/+fzZ5VVJucu53wybYdP1PSGuOWoT1bk1w8yeDMgJgAwpShY1ps6CzePi3TcRFQ0iHWnu2I3YwA3QHMyDz7o8tqsXr6n0/fYilZ44YajULgQXRDMAda0gM0hFbRF9N7NR2n6ed9N0P87HOk5tVgdk7gCJM+au9AOVDjm78zw3MDRV0RriOieH6gHhxOUfIYG4JIPDGi4uAK5gPi7FP7/ziOkxzdP79++//vqbb7755u7uzt03m83Lly8vLy8B/Pbu7pe//OWXX/7yzZs34ziKCBEPw/Dpp5/+2Z/9+Z/88IevX71m4sPh6A7mJhL6lGWapr7vu64LQ3iKd3/3035yEef/iMOHgtubN2/+4R//8ec///mbt2+ur693u91+vz8ejyJSci5xZrmcAnQAWG0nD8NweXm53W632+0wDJvNJv7ebDbb7Tb+GY5LRPbfB5wTkXEcv/7667/5m7/5m7/5m5/+5GfTNKuGvgYSE66JAHcnopBKVVMmjrVo7qfJYW5RmUlAgNhEp7nOtR6Ox5RLTgURc06XF9u+62AJW347TZtz+xaJ07jMRW3TY4E2mQ7Hu+vpsGvT0RcaioG7WvwBW7WcHkigK2kJHdDMxbyJNXEVBCVampm6g0VRXGhMm+FCjFph7Q8j2w8eBGJU0sYPTwXpvo9pf3LTzizRr7ubJz8IzZZs8qp8hghOsVUzBzcfbcX9HRDQP+K9911/cXE59ENK3OY2z/M4TnWcwdzVWq1q6uCUkzkgU1VRNwUDNGfnkIhmyqXLqSNIqi5NRJuqIhkyATWkBgsVUchFVVShAUytEaCZ1TaLihPkklxq1/cp51ZnqVVbc1P3FE/ZVnjmCaX2aV37KW8Umn3m4cVqVOOISKut1drm2uZKBmamTVzVzYEADZGocHdxdfnq0082203uCmVG5nAkMQh0ISTmAGbSZDoc3377FsA4sWqgQstmHN/rJ+GaQFAdztTFlnP/7qf/kWHmyzxWn2vbH0bE2/1xnKbpOI6Raat1nuf5OB6ncVIxYk4pB85kqnVu4ISAKeWYe3GnRBWAKOUqdnt3X3Iehr4ss9dXisD3Ijbv7uuXX+6GobvYdpeXXd8zc07ZElEnjvNUxcYJDgikuBvpZvRdy9A9v9q+2nz+6ac/+JMf/fDPPnv9+bNnz4Zhk7tu6Idh2JauQ0IzU40pJbXVuVVMpIiy6MdmIiAjIFEDcLfAmBxDNtndq9Rxno7zCIRd7RVwan53v5tqU6WyQvKI+OrVZ9T1TCm4NYAEyMG2QTBEc5ut7b0dUCfQ6iZmKiaTtEObDjIftB5bq6Kp9N2w6S8vt1eXw0XfbfpUesodYipTbc3mWmEeXZd9bo3az6UUAQD9QYojIClbsz7oYL4g+b8Hux6+hIjsdvuvvvr6V7/61fv378MeP3/+/OWrl+7+5u2bf/zHf/jJT/7+zZs3+92uiSDiixcvX79+/Wd//uf/21/+b5eXlznnqOkvpQShprVW5xlxV0rpui4M4WJJf3+qqL9mqOrbt2//5m/+5r/+9X/9+5/8ZL/bH46H/X5/OBymaQrfZRiGoVvi7xittf1+H0qul5eXr1+/Dp5BRPCnaH6z2VxeXj579uzq6urZs2cvXry4vLx8Urn74XCH1tputw/NgDdvvj2ORzfAhbyLALBEKqt4RhwzgEDiJcqMq4tjIlJK5B6o61r06fDll1/GIjLVH/3wTz795JPAGH7b23iyebjmBOPEiBbvQqpYq3W/31+/P+7udJ7AGriGNRaxFhWqvtBRF77IGRk5Nk1UR4vCbGfClDgFX5YQVUOwYtnqzdEMHmK2Jzf5hII9WiDMj+raT9b9ZNe/j2nHFXaKz+DZK09u2ulklkFL/f1iFyKlwitdfwne8VEW9sMfIsiQue5mu7PxOI6HSWcFhYIpAYE7AVBKnHJJGRNTSgrmBMAGyVPJXTcMw8V2uEpUgr0HAO7NvBqIgyETYSNzMKZmSRRbgxYd7xlOeRF0SujOM6rJnHJXm0SR28KJ8JUhhHhqoHEaj037crdOhvOkOBemHWIem6iJSm0RoEW9BCzqZMjMKaeu74bt5vLls83lNvddyjmkTcGdPChUgO6uNh7HXcnjPLXagHARQtOgaq9dClZHeAmrfoctN3Tjj+O02+2Px3GuFZqo+VxbTnkcx3Ec17W/iPurKAImTuH6IaIZSBMESsxIHBU1Zq5qKkaJOZWmdrc79F233Qy46UtOEfPCsoR/8xYwT353I1qZIQ2dQ8eJc1cgO+bmNrex4X7GAg7Cu4l3lrW/urr4gp+97l8+f/Hs5bPLZ9vtRd8Pfd93/dD3Q9d1nNjBww9pdZ7nqbUqJg6ARE1dTTuEAmyuqAu1cl0USIBMBAhiOss81tHc5jYbUFWqrTngSRg1HtcwbKnrQ4sYllQMAzIggDlodRmtHUFG1AmsujbRNouM0g6tHrVNLhVcibuu7y+uNpfPNpcXuc+plFz6lDvmQlj7fsqHI8JObcmh4wo+wVmGGB44crE96dI1O9JWp/bZ4PA9wsRfOxBCHOlwvLm5+frrr7/99tvD4RBW7eLigohub29+8Ytf/vznP//666/v7++lNWLuu+7582c/+MEf/fEPfvD555+LyPF4PBwOqhqQdU6JiQIrCug+lEi6dUSYG3va73YJj8YCdKmGhf7qq69++tOf/uQnP/3Zz35W51pbPRwO4zjWWgEgJB/mMkW+ILb7aZpub2/neUbE58+fR1OWYRhO7zmH6zebzfPnz1+9evUnf/Inn3322TRN33Vep59ak3E83t7evH377v5+11pD5EgDn3y7CPKI6LzO1twSPNyxU0QRF21monLqWyEit7e37h76dAjATM+uroZh+G2t+yMLt4q0wIPRQgJwEZnn+XCcD0dvs2sDE5EmramaLs5pJAXcwRb6yBkgDw5kjg6MyABG6G5AxMgOhGYWCTYzM6dg4HvAvI/T/7AmRwEeb2K/IWpfisuXvgh03jHm0U1Yzje+h85uzAcr0Vcg9FQ0+KFpj1OJhkspISnAB5f0eKhplblJa63OU5UmTClzLlwKJnQkREyUutJtBkzcosaAwJNT9lRyKUPfXQzdhiFFUoAJAZNDclQHNTNTQAeKqkJMSm6oyYHA3JQ86BNL0R66g5qTAUCKa6EThfY7kawPit9iTqy2zRZuhcUaULWFpbDMdAf30DSBuJ3iJw/Jwbmk7bOLYbspfe8I5u6iJgoB2rprEz1aU3FGzKxmrdXWmkjDpTcGnwiRZoYhfwIAsKyBeP37bMGBQtQq4zTe3Ny9fX99fX17PIxqfuQxdsNaa2uNmVNipkSJGlYEYkq4IA6Li6GuqNKaEKfECQDdwcyaaGHOKUur++nYlTz0HRHmlBB/y+yVk0uRitNR28ZhQ10qiROKg2rzdJR8O4MZtErHmqfuRf/8i+c/+NN0cTlZBfQ61yD7lK7fbLal70NvwKPTm8g0T4fjYW6zu3FiznmeplYnLxmJoKq3BtYcFRIuyr8EOTMLGWgzad5EtIogZqfCxF3pzNDP5ROWah3HwG1imQOiO1izNlo9ejugjmTVrZmKqMwiR6kHaaNJA/ecEnJ/ebW9ej5cXJVhQwmRGCAj5MSdZ+7KppQOEH0x7ae9/JTfia1jKfRd9kE0BwWwaA/ji/YtPnz8nz4cAJq027vbb7/99ptvvr6+vlbVi4uLV69edV1/e3v7i1/88u///u+//PLL/X4vIki03W5evHjxx3/8xz/60Z9++umnfd+/e/fu7du34zgiYomRc9/3fc9hn8LAz/PMzDnnUkpg2n3fBwb+u1/FabTWpmm6v79/9+7dL37xi19++eW7d+8O+0OYmjDnIe0S5WduVms9rdZxHO/u7uIVd++6Lk4+HJHIKYgsYlAiMgzDy5cv//Iv//LHP/7x/f39bzhRd1UNWl+ts4iYGSFakMUdHQHQ16m84N4RvTCzu4dmwMnAL1udiJq6Ky6wMxKRqu73h1/96lemEuHyj370o1LKOenh+4ynUftZ/OruboCAbm4Bu6st59TEWjNp4JiIgUMgFhbrfp4tP8m0eKTlo5jXVQ1DvhmZ7GGvX3h0cFpBK9vp4YzXf+H5VQARwlmu/cywL6Y8fhGvPGHHP4ndl+84KdQBPAUPHPxBmi78mCUfsUC+7uhgSESJU04pp5SRBFBOLIZ1fT9a5SI61yrSzKR0ebvZ9N2mz0PHXXIGcTAHwlRStx0ocXURVyMHdkzAKTF3JZVEiZzC7wDzJQeZiKmYmpOjIRoyJiASaMa2bIvmCLbskYmc2ZiAE6TC5kjJ3GtrsJRurH7MBxvVx4RmV7u+/nmAvlcPIQrsHMOin/0azcxt2RTdiCjlVErpu84R1M1YjdX1lMMyR1ewgBRsZXOICEOKbMgZILOkR/xUoLd6cx/dgM9+4Y4gTeY6Hw7Hu/vdzc3d9c3d4TipuYqKqJmtLUnVzRCAC0c+GJFCzvcsGF0c+WiNFqcSGdzojhdtT838eBxvbu9yTn3fZU4fTt9fM54/e/nnf/rP3GfCmhODRXrfzU0MxLKrH4zRWYl12HZXn+erzy9fvfYE4/2+Tfs6HUwbp1T6vvR9Ci5GYC7zPB6Ph8PheDw6QNd1Xdd3pVM1VWPOgDDNbd7vXCsl6Ldd6jI5+NI81dW0aZ2lukFJqStdKpsmzlznqtN4hp36slEgrHWP7gRGLtCqz0evR5QZpYI116baamtjrWOTUXQ2a+DADJwVYBaFaarmUWGTeE6p67oa27o7qJqIhBjz+X1e/xNYAS6PDM1RgQzRl+r6pSzuo5m47zMefUpVx+Px3bv333777fv31+M45pzD6DZp33zz9Zdf/vLbb99Eu7+A058/f/7pp59+8cUXX3zxRT8M4zje3t6+f/8+nM4wmfM8PTs+u9gu2eiwQyeALYxihPLb7dYey1T9Uy5pjdTrykQJfOt4PB4PB5EGAAFlh29xOp9aawMkopxS2Kp5nqdpCgHHeZ6PxyMAjOMYcH1kE6ZpOuXs+75/+fJlIPbx5l8zECH8g67rAwk4ef8n/RZYmgOd2pk5AsYtOhmj86tWVRF1sAhJT0o1ZtZa3e12RFhyclOI2P3Zs2EYPpgJ37nYcRHNepJqBvAVDw8ZslPoFddj6u5MjEhIaemzvOwrfirqjUOdIHF0UBETMZE4nDmgLUJhYdd9lYXwhYEPKzNoSVOvS+PpFdFjoVl8sOKLHT8B4+sLD8YbcaVsLQ/pPGo/uykPSYslIxA5c1+FzCP1sBgIcwoQOZdU+lQ64ubQHrRLVjbX+ZNiSiV1iRKCl1L6buiHTVeGhJmNvJmrOTgzpZKREZESmKItWCQlxkTGKy8sPEoDVVd1I0iQfHmuAEhIgOSc0J2CY4xAgZISUU7GrEhGDJQAlcxPmgKnnMSSXHy8XT0F5Nent9j2SLbDGTz1wKLHU+HzqXvX+rE1GQBmkeBxNaDoBxb9ttHdXCEE4U55gmhjp6qqhmRIRGZ+lpWBhV0SlKgHmtSvgVjid6Z2nKa7u/ub27vr65v9YTwe5yaWOEfu3M3FG4AjgJpCg5yYmHFJ0lA4swvAu2BfsJZBL24RLL1uERwSs5fSRK5vbvouX1xscaDy22Tj/uSPf/iXP/6ju7t3t3dvWrs3PQI6mpu4VGyaFXjCkvOQNxf98PLy8o+4v8Jk43R32L0rqdTtlavmUkrXpZKR2NzVtNV6OBzu7+4Oh8M818324uLiYrvd9P1AlLrS98zQ6mGcb97fWJu6jl7xy5yTQ/R6NlVt2uZax2kqudtsLq4unw+by6lK3h13+3EaDw/zCpGWKe4MgKBkQG5ozdro8xHmEaWiCqqamajNTY61HatOatVcAJjICY/jNE6ClIiYEoXyFaclkuVETVoQQkyag+MqnbO6/oiLEGJ4Y+hkgEbsiBHPrNUSiEjfjXZ9vxFFE/e73Zs333777bf39/dmFgQxALi7u/v5z3/+q199dTweiGi73eacN5vNq1cvP/vss88+/ezVy5eq+ubmzdu3b29ubgAgpTTN883tzfDNcHlx8fLFi9evX71+/TrMCRGJSJjew+Ewz7OIpJROTbV/m/HowkUkIvXdbgcAzGxmpetyKSnnrnSbzSCqZhZA+ioRYyrqZsxMwxD4wQnuRsSw/WFUcl7scdd1+/3+7u5ut9tFrmEYht1ud3t7+z1OG0spFxcXr169/PTTz+7udvf3O9VAYRzxzCIt0MzyrzXRZkHugdVPeijhI2CKtl0nXwEJyUznafryy18edjs3A/A/+7M/i/7u33Olh9XFlQfwBIBcQC4M4XKwoM+5mRkx5ZSIGJADhcdlg1pTsAALyZmIE5dSiFlaq3OVaTLRKFFxhwjZ9cG6xxHMgdY99ixMX8zKU8bQkxB8sd+EDxR1JF6L2U8Z+Eeh+/l/ATDq0E83ZDH8a64CTmm1eJ6L8dFVKsnBjTjlkstQSs+5A5oWRbrVMwAAhEeO79ANz7cvCZEZc8q5dKXvUi4YMWhS1+UJqAgYYqZIULoDKKJShKCGSgvHDMBdRFWrAhhTSZyZcRESEDMUAwVkJCfOTI7obkhIqaeUHQmAHMl0FpmaqIhQgEMOuHAjnkYiTwF5ePzvR27n4kMGGYGRCIjA3MlA18zlsiwW32rF95ejIQBhgKhuQAaKTIvYAiIgLAI+7qtn4LEzn+z6mRWPQy+z4LtWUfgArbVxnu/u7q9vbu/u7nf7wzQ3USUiTjnAg5jTuDJr3E81MFxKiWAokIOleoCYE0cKhxMRLeSBJk1HbW1ahIfaPKncDP1msyHEcnHxwf3+zvX/8sXLP/3By3fvvv7223J7881ubypVTXQGbWiQgLHRpvGWuqvUXWHuFWw+3B4O79t4V4bLhFZyKl2XSkFmB1DRaRp397vb65vbm1szSyl3fXdxcdH3fc4JiVMuBVERczekbhBwYEBKiLzY9aBDqIpqa8JcEqdSur7rmIs7ivgNHM4uxQEMTUmdILqxNnABrTDtcT5iqyAKam6uak11FpuaNUcLaRwASoyE8zTX+SgC7rCU0QESp5zzMAxXzy7MK4ATgiGAgT+0JoqJtLjsFpt9uPzoqBDeqS0bJDiEO/dPN+3u3kTu73fv3r178+bt9fVNrZWIwgbf3d19++2333zzzd3traoFCXwYhu12+/r1J59//sWLFy+6rnv//vrt2zfv3r0Lw7bwzEtZqsjH8XDY73a7YNpvNptTGbGqTtMUOabf3rQ/Tq+6Ry/zm5ub3X5/sd1ePXsWXos0AYfSdRcXF7H1qkgTqfM8z/M4TbVWEyWikIELbto5CtiWUUsp7uBu8zztdvu7u9txnFQl51TrPI7H3W43DH3Umn4wls0BEXNO2+32k08++eM//sH79+/fvXs/jbOqEayW/WzB+UlG+sxCRDCz8IeDZLcGM7Di50HXd3dpMsI4T2Or9eLn2yAMEtHV1VXE7r/RwJ/HLWe73BpiwWKe1zBvvVxEZio5/HUUVVPFB1xx+dwJtYSQgE1LpS5Ed3FKTmxLXTssodyDLMT6ycWYe2Ttz07x6YWcLucJS46QHuXeH3PmH679FDvGAemhzmYJLM/+eQ4kLzDMWhywdJwCIuau6zfb7XTYdv2e+LAm2s7vzqNRUrftL+KE14rNTMgAYBTJOzjB2ZSoUMHMHpLZjm6IQAScMDEQO5iZhiK3mAMgoWfAQqGmQzkBJnE0J0dC5MyJg/zgrkjmZE5iUf44jdNUawvH7hRXnmDs8/Gk+G3BMh7m2/rDGrKvT4oZUyLmSP+cjnt6Ny5wzglQitcXw7iC7LhwUgEJo0enm1swIHAp33hi11d/Y4WeTinwjzwlX2gD4zhd397e3Nxc39zN82xqhMiJaaUkEMFpGUfmL/SowCElJux1IZhEESDFVM2ldH3fdeX/T9t/tdmR3VzCIIBtwh2TlmQ5lZU039v9PNM38/9/QV9Nm9e2SlUsx/R5zgmzDTAX2BF5MkmWpO6eEFUkk2nC7NgAFhbWctYCEjOnFEOYQog5x6qq2qbJOeUc7u/vnbPeuVXbHklP/42jbdpXF5cGWHKUNIWxH4acphAD5ySIhpwTWyeqCStgCMMhpXDYvYvTg+SxWq/bpmrbpqpr45wAZk4xxf1+d3NzdX1183j/0HWr8/NV13Zd1znvicgCGgIDgCKb0zNDMA17hOSbGg1p6jVrdRXGDjOwILNwYkOma9pxeBZLEASZISVMWaF4FJYcOI0SDhhHSlGSSEZmzFlCyiFzYGSwZCtLTCDGEgJknoZhnMaYEuvy1Edije3WHRH7Csmg95ZQOEvpOnJB7AABUBkiCudRAbPmno+Ur9BPpf+Tol0X0s3Nza+//np1dX0MuccYf/vtt5/evr27vZumyRjy3td13bbtZrO5uLh48+bNar3OmXe73dXV9d3d3ePjo/aDV6vVaq4d7+7u1CZutVqdzcd2u12tVsx8OBw0bC7TpP/QseyezHx7e/fv//4fd3d3IcZPP/10vdmOw3h3d7c/HHJm7/1ms13m05hzSmkap8fdY3/oU04ExTG573ucq975MyOzTNOECMzVOOaU8m632+0ec86IlHOKMY7j0Pd756z3v/f6iIgxtmmai4vLL7744u3bn5vmpxBSTEFliJVzvXzykWzGU3xduu/LpkdEpfHNgCjeV1XlQ4hBySwpVd7GGH97904/P2f+6qsvnXPG2iVnmM/x5U51/KOPmX1Ly3GOekvYREICQzp/izpynDnEiAC2aBCXEr7kCMQCEksJCcYYcI7RIBlBSjALuWrdO/dgEWTWa/vo3X5xHceX8zyyz0Kzz0P7s+iO2sect/Kl4Ht2O15G96cD9H0u9R6LqHZGXde4XoV+tds9loQMnuL63AJ4ugxrrHcVCRGgEUNsIAJnKcs25RSjpAQChoxD19jG+gqIWCDPgjaGjLUGdKgwpTgGZkYBBINiBI2QMd5XVVW1rasq9cgIUVjQGEuIWTiE1I9jiJmBQ4z90E/TGNMQYoB56Qq8vAdPF/L8Uc2FpLpk4uzwuty68n8kIjLWOivEnBIIKUOlwCvaRj/6gUWx+yi6L4tgfpYIBZCXZy/B85g9n8aL9+TD25a+YyGEQ3+4v7+/v3887A8xKZ9U2ZrKOXJ2Zu5oh1K/nJkzZmutc6aua0TU6keTX2ud9dZZBwiTjsn1/TAMOvEvzMrvNURkUMdl2qbZrNdNXS3RHX+XLY8ghsBZU7uqqbquXgMLCBKkhFksEliyXtBkYUmTxJjimMY9cGwqv15vTs4uVtsTVzVIVkBCiPv97u7u9urq3X63z5yrqtpsNkU9m+gpgQMka+vVGg36sZEcvUfCDDkrrxPReFvVVdvGZK0XwRjSiIMxHt6vq3ICAQijxAwgwMwchSdOA8QR4wQ5L62zxBIzp6N0UbcpU5TTcSb3J932MgsDJpOsszEG6yyhovcEzDppQWZeZmXCVwwIF9qN4nGiFbpoy0GB+Q8njH/zQABRqHm/22vJ/vj4GGPUKTXVSvvll1/evbsahkFEvHWq3LJer0+2J5eXl29ev6nrOhXJ0wiKgecyhgoCxlrvPAKkFBW11hWoS9R7r8u14MbPjd4B4OMNrJdXnFIahvHq6uov3//l4eFRv09Keb/fvXt3dXd3LyLWWEL0VeW9V97+NE2GjIDUVRnZdN7lnHe7HSAMw3A4HAAgZ44x6HvgnG+aJqU8TSHGEEIQEWutouLTNA3DsFqt/8atPxoKT0m7EzGnyDmBjq0jkBLD5xp4+VXuy5E91VH4mZW25pVhjDWGEU3OkTk7a1hgGMar6xtAGqeg2+TJybapmxd72AdPG2dGEeJTX1Rk7jsePR8EBCLlSOv2WubdyneX+SkWQLP06UWYM4BrmsYaE4cpTjFlTlzMWGQZjHoCWp+d9jH+/n4geaoCn5fshUP3jBH/7NP0P1qgwTKf9qyiQ4CCNtMRCqLnME8zzSdU7hoiCjACGVtVRrq+beu6JvMEajwV7c+XvHWubgiyctwMEZEhMIAILGzEWHJgMwF6het9RcYCIrMkzIJCFp2zVeWQQCSHYIK3OTNnNa5CawyRI+PJeDLOeG+cBzIucs6g2qbInCTwFBJHZYbGQu47esLHT+f3Q/vRRSOi4DwGVL7syJgIEa0xznmmnEPQvrOC9QQ4czL46b4fR7DlT0teNi/rIo/DhduyHB9bT/IEEX14q8rMaujy+LDb7w8hxJgyM5O11nljyDtbVd5Zp7RepRnrhijzXIAatjrnYowgon4A1jskEs7DOO72j7e3tzfX1/v9bhwHAtK9zHvfNE3btcM4jiFsVqvTkxNCbJsa/o6okVIYh12YRmGuXLXutsYY76oYQizRDw0aJBTR/Ys5RQvsqrrbrE7PX5+9/nR9dmGrGohyzsM43t3fXV9fXV9fIeCqXW+2m+3pSdM2RMQimZkQSHNnY2xToyVT1ZyjwSx5xBgALZKztmoqzgJIlgVEcJymHJO10TifYnx2JTEKJhh7iAkQgTPnkfMEecIcISeUPLNNJAsn9VXQDDEnzlkQCJ011lJhQDCVpJVVIwGQCsF90W8oZYimKaqCplxjtbIqvjsAzEfJry5DyLwsz3/4KKFlHMeHh4er6+ubm5th6AFAiV3DMGgpf3d3m1J2zjjv66pq6nrVrU5OTi4vLl69ukwp3d/dI4A24BFxHMeUkjLpnLVN27TQiPDSXJ+HO6xKucUYRUSh/n/o5GHOoRExhPDwcP/rb7/+8MOPh0Pvve/74bffftvvD5qvCAgZwtlH0XsPANM0CXPlq1Xbrdbrruu8cynnh4cH7REAwDAMzDmEaK1xznVde3JyMgzDOI74tCGwBukQwjiOR87LH78A4RjjbrdT6fj9fjdNQ85iDM8OaMqJIZxXDi4MtAJKCz7HimHejLg0pYWzqI9hBq0VAAAzy6Hv999/f3t3rzNX2s7T74LPIPcPH8efUwKUwMIln08FiBAMgUjSFwoQEQ0ZVIorlfQA5/6T9iFEgIg263XbtMO+Hw6Hvh/zFJ+qdS75ddF3AJi59X/XW6B0wBf0+GN2/AuUHo+H24oM7FxEH/HryqpUbfL5/izRvDyUp9cX9FNZStrgnHNQ6xthyCwgNjyVjs8eifUeGSARZiKwhsg4IqP3T7hiEMYslqh2FRnKwiKSRUjYChOCtdg0tlvV1hlAYJbMEkIKUwxTjCGr9C0ay2iiALIQofUGyeggXRaBBIwogFk4xpBSgOI+b1kMJHxKpnTdvhcB3/Nrn+vguUB/Ql1kYVjMJHBjCFUckQiw+NciwxE786gzXjpHz+vUUoRr4xyOqBwzgvD8HPCIr3d00h9EGxFApCTv6vRgnK+QcsrZOlfVla8q54vNxpIA6rqUOX/OOROiCmk570WEEFlEW4n7/e7h8f7h/v727vbu7jbFgIhd07rVWi3yYkpjmNoQBODm9nazWhki7701dJwEf/BVySlM4144WENt0xJCXVchdFrJcWJmUSqjKEMgZcmE2dd1u7m4OHvz5friTbU+IeezSIjhcbe7urq6f3iIKW5Wm9PTs6ZucuJpCixAxiKZxTwFENFa5b9ANsBJJDMaQSKyzvjKQWIJibOIISMsU5ymKQDafjwK7SI8jYiA0wApClKWxGmSHJCDcFJBAGFOnGIOMYUpTDFOOQZOEXKEzLpLERQCadlvi1qWyGLVKIVII1l0SFchVC7gfZnZ1H6K3n/OkvKyqkGnTRHBzAXFBx/N3zxSSrvd7vb25u7udrfbxZiISHf5h4cHVW0bx8kYctbVvqrruqmb1ao7OTnZbk/W6/XQD8ba9Wb95s2b3W633+33h8M4jsZYQEophxCdNUS4eLwqUERE+/1ef9ZixPJ3nvZyH/QPKaXb29vvv//+7du3t7e30zR5X6m4rA6nKfPcOz/jqbTovYQY9QTatt1uN3XdMLP3LsZwf383jgMzpxTUNGoB77S4PN6sC0U9pXnq4XeOD2JghdvPYlnYGpnb5c/DjH49lpuw4IVLgkhkrLOcC3QyjpO+ts555xwShZhYBAOmlFPm77//wVe1sUZENutVVVXwu3H9qd45ajYvZ1KiHM4FuBQZFM1cAQ0ROmePOphLzEIoHy3TUjrXc2QE9pTMqdWYwFOf4vm9hadzeYnGl7u3BPXj6K5dZZxH3pZ/xfkVQyrcaqA5JSnp+fwCioAAwRNjvhTsAPC8izEDMEgogqiUSF5gZFhm/UvKUnKZ4weBCMYYcha8QWfJGItEwMhZOWDMmLNBIudAOIWYOCGKs2a9qprKNW3VdU23ap13aAwgMeMU4jhOh34c+ilFzgwAhGTQGTGUscyLqWNIyDzFPE5TiEOKY0qj5EQoZBHJArqYzJP+ztGCOT5eMORxSYiOMPynP3Kpqcs+iohqfCYKlRaK3SL+gVCED56Fenm+bmYgqLzVKhF3lEUsQRaef9WSMlD5Lh86ZB6IstY1DYpAzDmm6Lyvm9paq9mIbh7Km7PW8twJBJGkM9XOeu8FgFlSSpNqYlxf/fbbr7e31w8PD4fDfhgH791mvV6vOi2zQozjOB76ngXqurm5vffWNXW9Wa8JvTFPo3QfzItzjiH0IFw5a6ltKh9Tm3LMMaQcJbMwY6kzUubIOXMGZNesTk9ff3rx6dft6WvXrpFsHqd+GO7v799dXQ2Hg7Nus9leXF4S2d1uN0xTVTdN1zVN+/TugAihgFGxTQTJQFlAAJVF5AFDytZEFLbW56TThTEmntKzx8FhQAGKA6TEiCCJk7pcJFCzWs7MKeUQ0zTFYQpDmIY4DRwmSBGYAQkZZmknHUjnOQGdl+wyrcms828pKWkLJUXmzJliTiEGNGSdI2MAKIYUQ9L3HgmI0Fg0FskU+P+D6+r3D+2y39/fX11fq4C5CFvrrLX68bu7u2EYlRbunJt105tVtzrZbterVVM3OeXK+4vzi816e3d/f3t7Wz087Pf7lBkAxmkSkMpZ1WDVVv1ms7m8vKyqSvXgttvtogPzsbcDnvcsjwglqCopKsb+4w8/7vf7lHJOmWZ6ERHFGHNOylhZRmmYWWffrbW58prTtG2NiIiy36+7rmvbJoRpGFQSkXPOIUQt2WOMRT9jbnsf4X9/++YjojG2qqqu67qurevqcNjHFMrGpUA5zvriz4L7XNnIXLse/ZGInHViRHH+vg/GGOdsVVXW2hCmKUxTACXxhJh++uUXQTDGiMCXf/hiEfn/wFNYCh/QYCxLFJ0vCHGWUkO10lTO75yCEwLSLJNbXJ1K37OktKg1NQnzMAxJ9bSnkNTEXi+6zLWXqmoefyo5wvvB4ygjevaRUo4fi9DN4f5lXJ8/AxEBSQhnDGXmY+HSehfg+SKOf957f1xCu1IUACBrmhliilGYYTH9nCvdF/liFk6AxjlrWkfeGmMIECUrK545pwycRBhZJMX90DNHZ01bt2dnq/OT1XbTdau26RrnK+McoGXBKcRhmna7w25/6A9hHGJiZEAxKIQMwClyTDnkMaYppDHGcQrj0IcwSoogbJCMtcY7QDtFU6RBSkKE70eQl6auc9ouT2X7UYYksti7zEFXc+Dy/xnVmrs1+PGcYn4QM5EBYMYFZuXkox//3qN8ucg+BhmJSM4sAMZah4bI2JxdimaWsy7mD7kMvTxpTLIyIVnrvJQzT9M4TX0/7Pb7h8eH29vr+7ubu/u7/f6xP/TTNMUUc0qI6F1V+ZrI5pwTMyI565umyyx3D4839/fb7eZks+10+BWXHOX99IWFEwCQAURl/Rlmx94zF7lB1KpVEkvKnIUNYtuuz89ef749e1XVLZFB4DANj3d3jw8PYz9actvtZrs983V7f/9wdX1jnetW69dv3tRtBwhqxKmS22TQgSUCjikBpxxTTChi0FpLVYUtkKA4Z1IIvUgMaZqmkAHAw3xhOUwIwjkiJ0AAziIJJIsS4nPmnLIObcUpTOM0DmEc8jRxDJCSMDNQToldcQhd7tDRQtL1wqADb2oty6z7jwjoc04pppRQDCCRAACnlEKM2sBGggJqooFZpPYfPRSK3+12t7e3tze3u/0+hElX9DRNh8Ph4eFhv98zszHGWasN+LqqVWaubduqqoy1dV1vtlvdxn1de+9X63V/6A+HwzAOKaUYQo6TBtqmaZSS7b0Xkf1+X9e18vI+6P26RF+NpjportRRTXAXjv3bt2//+te/3tzcKP9URDoAVYRlZhWOVRB4eXfGcdS5Oy3SrDVEmFIKMdzd3d7c3jw+PvR9n1KcU3kW4d3uUSvslBIiWGtynmvVJ4Gz3wdR5l6htWdnZ1988cUvv/zy7t27XA5mzhkIIANEjUTHKPGL9+8otJe/HmEJ5R7mJ1UL1GQoA5AxIjIMw9W7q3+zNqVoCAhhs9kol/BFhlIQS8XMtRQqI/fzP5bQOsdAAB0sV4RYZ7JU3nO+BzLD2kuEB1BJ55w4JSLDmXPizDrRO09o6blxQb/nxABfBNHf2YdxhjqWezuHBixkuuf3HGcQH8gU5bU5kMxfV5RZkBmZ8Ulh71m1joRamx+hxKC+HZxSHKc4jmmahLP2LGjpNcPLfXcKoR+Ya4uVZ8AsTKASvhCFJzXRicEIV9ZIDv04iGQkbwx2bbXZdCfbVds2vvJWm+hIDOS98ZXxjtrGDas4TjllSAJJJIvEnEKMY05BwhD7fhyGMIUwpjRliUARRAhQxHK0MUbOExkPJX+Zc9PnF/IckJ9L1blSf6Iq6C45b6wo/LTQtTFC+q2X92FevXNCjMvSfVoKsMBPiE9cj6PPkBJiZO78HS+jp+//8dxBQEpeSsYgGOuIM5rSp12K9cwspTmzAF0Fz9GEYwox5fHm5vbq+vrd1fXt3c3jw804HjgrVydlZkRKKR/2PaERQO89kQ5l1V232m5PUoqHcby5e1h1t866pqrILBMl7y2xkoFKkQ8ob4UFIbBGxJbkupQaBSsSdGRX7ebVyfmb1frMG6cKN2O/v7u53j085sSrzfri/M16cwbkbh52//HXH4yxJycnVdudnl8AkM5xAII1YMgAGSYJGYRzDFMMkyOrGnyVdVBVROAdxmkygNMUct6lJGD9sqg4TQwinFRkEYRBMhQMiLPO0iWdgZrCNIVxiNOYYpCUIGdJOQvqvJ0sVE1YdjGcgzorkqR1gq60ZQdR/IbnxJFVVkGwzD5kFhFiAEEmYSrdq7+rTjxebgDM3Pe9GiTe3d32h0OK0VjLzDqu/fDwMI4jIljrlGtdVb6qqiW0KxmtbhoyFpBYhIy11p2kOI3j3d3d/f3dbrfrD4dxmjSbTClpja4xu+97Fcbpuu79YlFZOTopfnNzc39/f39/r/owyiTVdGHBHq6vr/eHQ4qRRZV+UCfZNDsxxuScRNgaAwCHg9pHjSmlqqrUdhYA+v5w/3D/008/vX379rd3vz4+7oqsqTAnjiHoWS3De845Y1hEtKGgsMRHJt+evzWIzrmLi4uc8+3trUr9hBD6vg8hZWaRAtLQbCBbAtJch8DS4oXS8MYZilg2IpWuyzmlFMkggFLz8lICpZQed7vhfw19f1BlfyU9vL9V6dwUQSF8zOuoVJS6BOfASKZsBwujPZcxYVii3lKTPe8qzLF+nMF6AEJjkayYpS9acC+YB0OfwsZ7N/kDd/5Z3X4U45fg/ryyX15VJAJjhCwYq9X98olESOpymRPkJDmiHO2WRCgMrNJmT8Dw0l5B4BRiGIcwDGmaJGUDYhAMIXKp1s3zmDiM48PjyGwEjcNgwBgWZGCEDDKmOKWYw2SAG+eE0zANBsVXhAS+cnVd1XXlnCuXUdRQxJBUjizVbe3TRlKWyJCyhCQh5WGaDuOQIfVJ4jiNvBvCfgo9QBKMSBl0f8/IgcIkMYHDWS67lO4vH8r7vfal3/YE0y2rfF40IFKkS+Zvtsw7YonQSjMuc0RFMqK8F0epFcqS3RXYsMgnlFX2dALHsfz4hOeN/mNVO7BwiHHo+xATAOh7rniD9vUBUa1frHPLghORrD+XCFhSiv0w3N7dvrv67bffru4f7oZ+l9IkkvXidGDAWeuc193Z+8o53zTter1ZrdbeeTKUEg3D+O76pmuarmmq2lv7e7vV/A6qyh0hKiJt5re/XDsBA7AAoKlMve02p023rqrKGOKcpqk/7B8fHu5jiG3TbtYn6/XWOh9TnmKaQmIOgnh9c7PabFZtW3lnDVmrWrCABAKSUwhhjGFMKThXOBaWCNAhsQVGJ03buf2BUZ2yjq5CEoIgsDKXRZgW4Y2cc+aUU045qshwDClFzhlyRhZiAYVnmUFvwWzlhNpsJ93UBOfdiIxxzlVVlTkv9YHyn6xYxwza2wMUAURjjGOeRy4JyAiZlynw7x5P4V9ElMOlDqe73W4Yh5gSIKaUh2G4u7s7HA6q/ltVVdMWYX+tsNUQpWkaADREviJASixgiEGQ0Ff+5GRb1/70ZNsf+rmRH40xarKiPFBrbdd1+hFdzMdn+OOPP97f319dXd3e3i6S70pB7/u+73uVidX4pB/MWcW3JaU8juN+v9eAnXNmzt57a8w0jYfDQef0xnE0xlSV994z5/1ht9vt7u7uHh7ux3EAEOcMOKuRK6WUYjp2c1eKgJYTTdOcnp5+8sknX375JZH5OzH5tm1Vef7m5kYBiZubm91uH0M+TuWfFZFEUNqIHygWZDaSAQAd89MWfspZxslYFUev9FbHGDNzSilGuru9+/77772zmh+snilbPH1zXjD5J6770fI6Jvw9YVWK0M8UqnmDPKYhLZkvzK3R+ZO1JOLCjSo13AyaztXsx16DD6S8c9X4rOhawjx++ChnjQSoejYGZwdYKEm8kusECjj/vFkBQECMjFSUaIoclQCouAVASnEcxjBNOUaH0FlHDirMWUf4AWrnji8zhOnQH6ytvK/QCqDJKXNMmXPiFHIMOeYUATgmQpRM0RocEXsZ+tRPqU25cpkI5pFaLCPaVjUZyTAgA2XBLJAYYuaY0hjCybDeHTaPu/X9Q3d18+vDQ+z7IaQRICMKGmREFsoGmaDo1CjnXjX/n2OML01dn1od8rTOnj3IEsDLOpi7G+rGVtBh7W/qYFERlZVcSMlAAARZABA0PUTS3ZoMARVBOtWuMfMo3IvM8fiv74kRvlyCWnw8PDzs94cYpmmaxmmaRe8BAJyvqqZdrdbd6gkpIsSFoyEgMaVhHPf7x4eH+8fH+8N+l1JgTsyZEI1x3ldN0+qAeF1XvlJ9tGrVrTebbdu2iFT52nsfYri5ud2u15vNGg0Za34/iCAA4iwEOGfGgFC6ztpoA9ZNybjGdyfNauPrxlpnEFKKw+Gwe3zc7XbCsl5vN5ttXbcZYJjGnNlYl8I0jNP1za2v6vOzs9OTbdc2hFbvoI7Nxmmcxj5ME6co1iMCAhkiMCiCwkxoqrpx3gsCAz8P7RnL2uDMCTRdZgYlVpTonouvYEw5ZTUcAlWOLAtYlM/ovY8xiQggA87aUCLGziIQ6LSXypyXTeRJCAlh1pcAZplp9YWRB8ACieel+dGF9XKZld+1tnt4eFCRmf3hME0hpYSIMaa7u7u7u7txHEXYOV9Xddu2bVtCe9d1anHWNA0opQGJEZlTiKkfRxC2htbr1fn5KQCMw/DzT83V1dXhcNCvbZpGkXN1VVmv13Vdv99o/7d/+zcR+eWXX+7v7xFR9eMEQMfnlC63vDtF9dlY6zwAcua+7+/u7tRzIeUEIkoUOBz2WuLvdjvvvYrpeu+mMO0P4fr66uHhQScF6royOoWBBIA622aNrbw31mpBvAynrFbry8vLL7/86o9//OO7d1ePj7vffVcACrvNrdfrTz/9VHOXYRgBIGfZ5z7GoGEMZvReMwk67vV+qDBdygy1o40xAoDmDRU4zWMQUekCkJI1pqqqcZx+fPsWQBaR/I99W3g5oKhV+1INEyLposdCc0VAQlI7mKcKp4CnuNwRVBAOXhDkZhBezWFhDu5SfJyW+h+fn5G8+MPT9/vd4/1/hqNvjYBQUAlaZg31k5Qpi0uF+v5TRyRYFrmKUYEAChECphSHcZimkVOsEDfe1oDR5MSSRUTEe3f8XVVEoamHGBtnSFASjzFOKU0phcQpScqcGDgwkEHjjVjTY95l9zC268G3jTMIaJmESawOH6I16Kx1zjiPxgAZRhIgBhJELXpCjuM07of97e27H340P/2Sf3vXp0NOOWoRLMYwIjNIAjFlcwQ8ju5Px8t19vQc5gW+PEgspholiwK1K6CyLRZzXyxNEjLGesfCY99bWwhjzGzIEBoWUCiuKMMgWGdtdor0zyjUy8XwoYf6gcX3YiHmnHe7x7c//nh9czONfcppgQN08Ldq2vX65M2nnzZtowOvdDThrZeGhNaauqmbtjaWkMAYssYbQ5UG9W61Wm+6tmvb1nlrbREksMZp/RFCqJumqmphjik97HZXNzfGkPdOu0n4PmPrKY4DEoEQGktUdABn6oRuSEKAxhhbNVW3rZoVOS9EgjDF8Pj4eDj0zFLVzcnpad20IaXdob97eEiZT89OU0oq7PP27dsUEyJaYytfg/JokXNK0zCMQx9jgJxSimgsIMUgQ04C4hCds855Y60C7kcXoQZHpbpgEclJ7SlAU2Ftt3NOKYcYQ0ghqtC1MAsn4ay4OznnqrrbbE6mKYQQBJKoOZEIAPjKrTcr723OiaUSbueOxXEjUbF74ZnNIaLlu2amrGUkQ87CAPj+RvyxAxGYRYfQlCi33+/DNKUUU0zMPI6Tir8qyFzXddM2Td1UVa2BUNVmVEEhxIiYhWiK+TCMdw8PD4+PdeWrVbfZbrabNYioRWHTNMxcVdVqtco5q4XM2dnZxcXFB+O6iPzLv/yLCrkDwHq9Vh2PEKMaCqRZf42FM+eYUozBMAOhIeO8NYYApG2bzWZzOOwPh0PfH8ZhuLm5UeZ/jKFp6qryxlCM4XDYD0O/2++maULAqqp0xmQedSalJllrq1kMX5+U975p2vPz808++eSf/umf/vjHP/b9+Luh/ehpIGjH/csvv9RGAzOHkHKWlDjGtMjMKSBfYHmkMoL14nvBEiRRoGQ8IsVXTJPWlLLiDVoeqFemSjEMff/u3bvKOwBZBP//3lUFBR0XJCDVN8MZYNLOu2j7fdkN4UV/b7kcLEZuMtfKul0X3p3ycY94i0BMQtr/Rzzqis6g7rMzne/Vewd9rGZfPv94Az/KApZGwvISP+VbIk+ntJyAWepMAAQV/YeY0jCNY5hiCpZyV0FFKn0JmYEBXAXHz0NmJaUYx2CRrQ0yRJrEZ6iYEB1aI1Q87QnAYAQJeboZH/0d6u3M63TSrAjAFn8AgAyAKBgFQTIJoj5NYy2iAUQhdMbVhhpnG4MGpHbGG3x3Ze7u74ZpyJLUEz4ny2Kf7na5+y/Dx3t+7fPDfj+cPj1a1KKehRmA5k1zlmhGRFRXGAci4zA4ax1payoba42xKXMRc005cUZtSuecUnyBwJfVceTUdPx0lwf8MZROf+jj4+7Htz/++uvPw9AjgnMOAEV4mqYQYtOuTk+H1Xp9eXm5xPUipsAqWA+GqKr8ZrPe95u7u9tp6nM2zpimrler9Xqz2ay36822bdqqqhQqVsOVFLPWbeM4+qqyxlrrWXh3OLy7vmm7tlt13hqjveEPvC2Ixe1udg6yDovAqnLFEQBJwKhAbN3VzdpVLRqrfjzTND087oZhIDLdanVyeoZkh368ub17d33tq+rs7AwRY0y//fbbzc0NCHpftXXbNp0pU2acQhiGfuwPKQaUHFNUvtkY48NhD4hd0xKRrRwQ5lkP4OlCWAqXggtzTlKSlCVnKPR4lY5PIcYpxinkEDlmKZYKuUgAOufWm5O66ThzzilzZE5JS/FiBGEQJcYAIERHqpvHZCiN7igwax6Wqh1AuUmsb72wANi/dyJcND9QoXXtXmtEySmnFDmK8tXUp9x7r1bmdV1XVVXVtXrBbTYb7ZeHEIRIkHb9cPewu7m7e9ztjNk677fb7cX5aU6prisQONme6DjGfr+/vb0dx7HruvPz8/Pzcy0i338jvv/++2EYVPlOG/wxxpySkukQ0TpLRJgpMysUAZByNs7aqvLOW2NpvV5dXJwDiBIIxmG4vb29v7+fppGIvHdV5QFkGPqHh3u1owWtd+u6qWvCeSaq6Iujc957v7QBkWiz2Zyenn3yySefffb5d9999/nnn//bv/373/c4tEdGm82GiFRcchiGw/5QBiKYQyg1twLyqhxH5mnisdw6OVJq0TlLwZxZTWkRwTlrmFSAz5iC+SkRAUAMESKmFB/u71MMIrLdnrRt+zIuHoU6Oep7LmtLfbARDSCxLG1O3Rvmih9mKzR4ipUy8+memFDLv8zxU2awXp4ESeZhE2KF2p8V64gfQHOPruK9yYNnvx//0xLZjzpGS6B6WdbPSYAsN+o4upfmBAACFjItIiImziHFkEKWZC1bBLbADElDu6CtnmEBqq+RcxjjAA4smkmGaKL1ZJ1qzuL8UDgLp8whTlMKYQgpjjlFEIGULaMRsEBEJCigRio5c4wMwgJoDJU63gESIlkwBsg571dbj9RYa0QwSb/r99N+iGNiAXQAlVpjLDcRCk7+7BX4cFGicU0AkfH4g6ioCT2lWnN7hksQmnMIS1QpR8g7N4NsiGisJWNK1xjEOmussdZwzjEE/YbHFLyn9fQBCGjeBV4s2uefoXOxzBkQjDNEaGzp65Ml6521Thv8T6sElRqIgsilchVjqGmqk+3m1evLqnac2Dm37lZdt2rbrq4b7yv1rUopTtMIgNY6Y2iRFRuGQaNzXTcpp8f9/u7+oa3r7XrV1PUHHwMRapREIkIrKJwjJxEAYyyhEQEEQnJojLG19a3xtXG+qB+kOAz9frdPKXddt9lsV+v1FNIYHx93u9u72812u96s67qpKr65sTHGx93j1fW1sx4E16uuqRxzjGGcxn4c+5wCgYQUGAByPAzD3e0dkqETMYRC3Pf7x919zlRXJ0/XMTfviogrS56DNnAuHfeUUsopcUw8pTzFFFPWiffMwkRKujLWaP8YtLxWYx8Q1ZlSUF/Dt3OW6Ii3ucy6wAJdLb2k+V3V3gJkwZxFAORoQPFjhyyLM+WkJbty4Pu+nxReiDGlrJpxCskqfb2qKudd0zSb9fr09PTk5EQJ7YWpLhBZ7u8frm/vDoeDAHRde3p60nWtc84aZSCZnNgYczgcHh8f7u5uAUDB+dVq9THIoes63XxDCA8PDzFG9YE9PT113t8/3I/DoFIQImKsbYjIGGdt3dSKBAjLoT/QLd3cXF9fX/f9YRgGhfGVpV9VlQDv97sQpqEfFAqihTQ1s2sM2dJet8Y7/2Trbm1dVZ9+9tkXX/zh9evXl5evzs/PFWD42FP44F+Vc/D69esY4+HQT1MQoazdQOiVQRvChIg64dRQYywtc2Tl8c6reP6PAMg8R4DOeWuNDlepNq02OLzzgMDCIQRDCMKPj/ndu3c//PBD27bHue+yyz0PVC8uDAFJiARQQQ6ShLO3oSy/jnXkZpB/KZGOv6W2+AAJMDMZMBYtuJyY8+zJWcDT5ZzeTxN/5ziO3h/vwc+F4vOyHQB4MeKb04UnJGJJuY4OKTtLmdmjOYwgoXW+auqqbXMaJRvIiZmZs+HiP2r8MwEx5fFNYcoHjpg8umhSpjxZICILhhhVuBKViB3TNI5D30NKPeB4GMJh7B/2w1l/sd6edGvnnLab1WMdETJzBiarnCBvnUNjiCygnb3Tss2hs3S+6h679hekPEy7h/uQmGzt3Mp7B0ZRGCq/kOD5A3qPIf9UGSMh5fewqVJFzw9KZhmjwmos918MGe+rpm6qpqpm0ycRQWPIkCnxEhARsjjnxsOAgHM6KjAPvz81ogB4NmWC8hqo6CMD0O9U7ZyzCJMh5x1ZRAJSC6eCBAAzWhUoL/kgPF2lQmfCgEhEla8263XOab3uOLFzft2tm6b13gNQzkIlSU99P+SUCaltu6qqRCAO4zgMALDerOumHoZDP4739w+N95VzdVUDvtyfFmAKAHRppJxzijFFZvHeG2OVCIYGwVVkvHG1sRUaB2hyTiGEYRj7Qy8s6+1mtd5UdT3FQ4ixH4f9oXdVFVNqCJ0pxM4phNu7e0IrLAivvVlJDmEax+EwjT3kYBAiQOYsgIf9fvdwZ4xrnEeSMeLd/c3d3Q2Z+uzk+DGUTh/Muw+zCOfiEMg556xzV4k5CWTBkCXErPtMZgCrVq1ZRIxB55wxpB14Fta2P0sehiFLUlcJq0nki61Om3C6OWghcQTiMQqjCGZGLmNBH6Vkv9xZtL+zP+yVR3Y4HIZxnKYpxhRDDDFO05Q5I2JV+SW06/j12dnZ6emp1tBH3y2PIT4+Pt7d3qYU68qt1+uTk5OqrogQyBpj66pVKeWHhwcl7q3X69VqtVqt5gQInm/rgIiffvppjHG/3y8OrdosB0Tr3MPjwzjD9coXc1W1uLUqeh9TvLu70ymAm+vrvu81P6h8pUiEczbGuN896veZ1Uaf6Y/qB7TPXSShnOpC+aZpttvtt99+++c//78uLi7W6402qj8UXY7qPXn5EUR0zp2dnRHRMIwxxhjyNAXlVA7DoFK0AIWk5b1z4K0xWHLHZfMpePOxxocIA5C1pq5rncoLMeScnHXFtV1kClOIoa68CIYQHh8ef/7pp7brPlbvfmihKZ6EagTKIErQA05QzqFMabM8MerKCZf4/ay1qoEUF1keJCaDlgloHiHRISVZfvzHWqG/E+z/Zh5wHNplDv/LNS82QqAuW1hYXB94/EcBQv+VAPiouK/qqltvchyJhLMSpDiz5DIWA+QqPGqRqKnqFKchjcnm2tVskZ0kyMxg2BCDZEZmAwiJU4jTMA79kMK0y2nYH8bdYdgdxl3/uDm9WG2bunbee2tdwWY5S2YU9ZF33jnvjHVkLBoLREjFZI7itHK0qX1tEGLo73dDSNbFpjG2a8ULsHrYaWh/eW8+kAXLMxXl4r8rS+95BnZkzgRK4a4Ks8jAjCxGLXdWq6prVfFN77y+3CUj1L68RchgiKB4DpVfsqyxZ6vhxZIqbdSPVe26ekQkxTSOUwijgBChMdY5q0qQAARGiNDq3OyS/c4ZBhEZa4wQc2pyI1vp2pUCWoaMtc4Yl1JaoEgA8L4SgGEYiawxFhFVlyrGkFISFmsMgfR9f3N727Vt0zTKoX1xvUSkKazClpBYckLOBsEiOEMIagzPswUIanMLBHPiaRjDFACg8vVqtUKi+4fH3b4PMfmq3p6cWGsP+4OI1FW12Wzruu6HcZrC3d1dCrGpfFMZSX0/7MZxP009CTMhgGBOWYRT8JYIgdN4d/14f7j/608/vnv3y2p19nJNaVwvMlhSgHFRY4uUcphSiJzZkGubzjveHeLjPueYEzMAMuYkMaZJbUK8U2fjp+WQMXEawxRiFGFjrCFnyciS7h/hfoLLDofzf7VqV9NMNbsRAfjQIPWHaERYJsX3+/3d/d1uv9MqNoSkk/QqaRLDhESItbHGWFM31Xa7vXx1+dlnn11cXFRVpTPxAFB5LxCnENI0huFQ1/V2tW58RYj6amjNS0gi8XA43N7equxr23aaInxwnF1v1n/5L/+lruvD4aBwtIbSaZp+/e233979pqgDABBRSsk5l3NeBGr09JSaOo2jktREQOfT2rbxvkLEw+EwTeMUJmZ2xuLzBvaykctxqDySpvHeq5z+drtt2857j9pU/t2AcRy8jq9XjRK++OILZokxa4KYUgSQcRxTyinFaVSjd0dkvHOzu3zZ/hcqm8y92JzLWStQBIWWgSKsi8E5a4xRtZimrgyRGuzyEdP+g0/naKGVFSYAQKTCJCgsOXIOnDIrG3S2KBVhNWzDOWctldYMoeu7UnZgnCvgmb9tDKrWo5bN833Ep3r5uDfxkWNBsJ69HR/ODvSbPivKAUQ4M0jOCQTQ2TJg/5S1PcOdjwrRUjocBSbdDk3drk5BmqYJ42URNyiap5JFt1ZDRwOiTJKJU8qSOQ1TNIBoWSDkGDgLA2TBzBagNtYAYmLLWIEhY5lESAaZrg53OYb7+9tfXdu5qnG+q+qm8hpzbGXJGTRA6vJDZK0x1pK1YKikXQQZmFP0Ere1P2mba2enKeWYoom5SrzspSWvY3heb7w0dRV4kQctFWwB9wsAWcTjREklwFwkfoCAGXWUSAOac4AmaXKJoNqoyngs2z0RxxynGEPgnI/C6tN7/4TgzLDV/FCfzvxjh9b3MaX+MBwOu5wTzkRrteFyzjvjdaqKCJegrveKiAjQOgegGvdgyIgIkVN1Dj3NnHOMAREBxFrT1E0IYZqCMaMSZ5ROnFJMMaTkrTFgKITw8Ph4OBymcWOKZdOzlV8qHBTEJ9FFQ0iEzhhvDZEVwTFwTomfNAEQBHLK4zClkKxxTdN0q1VMcnN7fRinKcSqri8vL3XkSeu2V68uP/30k6vr619/e/f4sBuH4fXl+em2y2HX94/TeIhhIAAmEmFEZBaQ3NUOACWNd7dX37/9y9t3v95e3xD65xdSqhydKWCe90VglpwkhRynGEJOGcA2VWe7hGYMOUbI0ySAxMgZcsohTMN4CIlIFXxI/aqBQWKOYxg5Z6OacuSssbotA+g8AZYdoMT0MtwHc49uxup5YQI+teuPX5O5GVreBCi4a9/3j4+P9w8Ph8Nh1FAeY84pZh3ZDyEEYw0gGEPWmqZpzk5PXr969eaTT1Zdh4g6ulZ5XzeNYzaIBGKEV3V1tt3U3kPZlnQNEAKllGZe+h4AdILuaH765Z6KiP/0T//0+vXrRVUGAJj5519++e3db4+Pjzc3N7vdTgVrRUTLcXM0kqQv4OPjo5rRIWB9dCCijv/1Q19EcLVNfHQmx++2ZqUwJ+7KV2/b9uT0dL1ZN01j7cuU973HIUtEWcbKl4vVo6rq169fWWvDFGKI4ziO4zB/7ZhSijHgoJm6bZtGZzFAJGOJ7YAFwxOQnBGgTOimFBHBkLXWWesAWAcCtQ2vzcimKqG9bVt1o/idyzl+VEU4S7dOmoOyJOAkIIIEZEEFcTgDZ8gsWYp7F5kF51AREgDR9EVD0rx7CouQMdaZgozo84HnEyLvh+ePEpyeP5ePxvX56cyZ3hxSWDMmABAhLMIz8ym99zOXM9SYr3WZarOwACJVdet9tV5vdeYxc5l5LqIKIiKQ5CkOZuRocsYMIjmkfECDIpkSpynHFLPkTMIVkvXekDWCRsliBBkBSRLxQzj0h8MNUydubfzaVpu6XdWtq5yrbN01VVcDMgKTiEVwxjpnyFmwOvDAZAkIMwKGcVO5k7Ztq2p/CGMqWiwy68qAcPn1O6F9eWCaH2oR+PQIAJYFwceyhMzAzDpSjMA55xgf7x9//emXwzBUbVsSAii5A5ZZo0KFB4EwTddX7/rDvq5829QFIYXy2JeH91SjzayPpwf80QVW2BU58zCM93f3ak2hMKBCo5vtSVO3OEsrzDiU+jsVxmuZPtfBqSzMbK0DAW3X6VkpV5mZmcl7Z20h4o7j2DRNXVfTKDoaPo3GtJ33ngCtJeYc48TsX6iLIOiEPS/dJWOdJwMghGhdRdYhEmfJEkAYUUh9npgZJIcUxgACq27Vdqu6avb9/S+//XYYRkCz2WwuT052u8fbm1stMTeb9Xa7tc7WdR2mQEjGkkgep0N/eAihzzkKIIgB9QIh8s7W3uUUx2mI427qH9LUE+RnjFOAlBMKi8r6pZBz0ok3YU5as6c8xTxM4TAFU9fe+bbrEAzCfQwck9LVy85rndEuobXWOU9kBSBxysDGOgQiQTLWGGeMBV3DBEe43/z7XLKUBzuj9AxFklQ+Etrn6xIAYJYQwzgOOvB2fX21e3wsEuuzuJvu9Sq5BwgiTITeu9WqOz073Z5s26ZRtpdOxylEj4hEeHqydcboUFxdq5YZIKAa1avyzNXV1fX19TAMGgidc0cc7A/sv0qgW3zh9Ofe3tx8//1ff/jhh/u7+ylMAKARXbcPBa6VKKCvhKYF+h51bde1rdb36n84TQMzG1NQ9HmPfxZ9mYVIEFn71iqA03XdJ5988oc//OHLL7989epVXdd/c0hBRHQuf1HBW/xY9W4oXdFae3Jy8uWXX6aUFZxHJAWPpklSyir1Y4x13iNR13VGGTnHoR0REdiQs5QSxRQ4p8BcVaiiOsbg4XBIORqiyruqqrxzbr4PJycnn3/+ubX2+vr6OP9Y/iAv4iXi3BRHwDL1bQ1S5Ymsa1q/2lBVoTXMMYdxOPTTYbTGVVWlegkwyyOGaYopEtFms+26zngHhDmmEKZxHFPOSMaVWSaZ8Vg5rtSPY/SCtfzOQ5l/e+qIHX2D5/i7/kjOMou+GgIyOs2KxTdqju6yUKffa2oUvPUIxhVARKOeOcboHLggM+eMM0jEIjk+nWWCGGBCgwYQhCWwDIxMzlgBDBAYxCA4g5bAEjhAADJCkSkKMnDmxCxZhDOxZGdMZymBDGF82D+GGExlXe19ZevKNc613jW+EufAJiEQyKBnCZw49zFgTA7AsEjmGJlsmouKMsivugC/22uf+xNLHaNPQUO7iDx9tcouZlXJYWBWX3hG4JTTFB7v7umHt3e3976qAAvvQESKvReUWWSl4MUY+8MekM/OTo9+JLwAqJ7+gjrZAFIwug90Gp6+CtTJxiBijEmZsYQpGu3uStetdRUd/RAsPLq5HzHTqZCzTGMUEJrpHmqj6Zyr61olPqRMxVjVtRiGwXtvrc3WpIgxxmEYra991ThPtTOIxB9y1F7wkuWfyFiyKqxBZByQFQDmzEWTEedJAuYMKcY4BQRcdeum66yz0xRub+/2/WB9tdqs15sNC+92hfDV9/0wjiLia7+WtTWmbjxAnsa+7x9THIWjDjsCMFhjkLw13tk4cRgi5BF4MpAcwfNZfUk5AyfJKeeUU+Sk4rLMGtpzjplDysMYD/3gBLGqvK+8q+OU+8OU+pF1cyVjrXHWMmQkdN7VVU1oWUDiRMzGMAIiE5Ezxlnj9D7qhKCQPtrib6B99mJ5uXTfi9qCjvoCZno/OCKWEiLnHGJ4fHhQPz0NsYe+n6aQNI1JmTnlrAN6TxJM6iW4Xq1PTk+1yNZ1cn9//+7du81mo6gSAGxWq5PNRnXldFOb1TdJWPRL9Of2fa/40Meg+OXQrrlzTteVLtrb29tff/nl6upqGIaUk646la3V9HQYBmOMjrNrDqqruvK+7bqmqpl5GMaHh8fDYW8sKSJNRFqhs3DZQ5C4CADjDEqR3pC6aS4uLr788suvv/76888/X603VVV9LLtaco5pmlRZ7/HxcSEQ6KV573XEX6kMVVW9fvMKAHQKUdXgZzypGOMSHay11hjvHFUVkQoTQnkVC4vYirgQCScJYUopeOcMYVNXKtETAtaVb+p6tWq99whkja3r+vLy8osvviCi//bf/tsLJt1HH9lcTelepOAtovNV052crc9fVauOvMtpmob9w+39zjx651fder1ed10HADGl3W633+3GcSSi8/Pz0/PzqmmQcJzG/nDYPT6O45CylCxKW/jyvET+G0j8By7kKPbKh6r+p6ZMieyQy4Q+aQpvjA65LEkGyBK0n9V1pehHTXuVFLvUftpTLZ+ErBKjSIICmgy8OC1GzpS0XUuJUAAmQRFfWTLGILBBQ+wMOmMsoVXLaSYChAypAA/AiGwkC1Dtqk3n0GHkw8PDze1N4IQWu1W3Xnebttk0zbppG1+hMUW8AHLmmHIIOQTOwKxD7Op2ZnKZ33lidj4tk6fjpWRNeTAEWvstFmxLLTvn3iLMkrIGeWRWGAQRUs4ppsPjPgO4ame8x+PmR2EtwVy36/fjlJPzltVLc14OL0AhZi5nKIg0d4/mrulHlxph0zQXl5fjFFarleqHFGljADLm9PT0/OK8bmq9RiKyZvmGT7MwAGCMc46dcyyScgbEruvGaRz6gZl1N9SNdbHNVsRbd1LrbLtaD1PYDWOmAwNt16tmtaq7lasbYz5Qnah2jjZDABgQBcv6ZSEU0sEv75213jklCzBrqygnATHGVk1Nxg5TCCmRsWhMZpnG6XA4iEjXdQg4hTDF9O7qGgmNNa9eX667bt01OYdpPIz9IYWJcyIwQiBUuisaGQ1h5Uzr7aq2fUUhgjfP4mFMUXKSnLj8UtBHEXnIGVKSmGSKPIxpzH1kWa+3bdu1Xbc5iVmgHwdVptHqCkgMGmutryoEk1KGiFx2JDJoDTljvDFW23ll+J+edh4s/Lmjqr3kwLP0NIiA4EsdiKdDRPb7/c3NzQ8//vD27Y+qix5TUn1DbU6ylKH9RcZYKWNq5bI92W7W66qqAUDxfNWVE5HFfH2z2ZycnKgHiYbtpShPKd3d3f3666+3t7cPDw+Pj486OPf7cf3F2wHzduyc22w3pycn0zjOAi9ZK3UttXHOZZcxNqW8eecNUYzxcDho6z3n7JyxRo0wReBJOkjfY5gBDw3tSun/7LPPvvzqq6+/+urLL788v7hYr9fOu98JKSISY7y/v//555/fvn37008/zUp/ceadgN7qi4uLN2/efP31159++lnTNBcXF999952U2ZksIsoeCyGqMsFut9OEfrVaqVq+4mezTWvJnersQuUOBxyHQYRTjJyzIdysV4hd17VNW/vC+bdt015cXLx588knn3yiW9DHHgc8j1v6D6V1PqcXIGaGTIy11jhHyJycnRX9ZvJ1pcWPYi04d7V1X1eAD7VdggSQ5cgf6AhUmBHU5yf5wSeyfM7HkpWjyunZ1+lIrAAaay2hjpghLtJ6c7goDYpnPISleQtLoHlxYkuoL7nB03/nb/V0Nt6ZrvUOvWNnI5lAkoEjAoiz6KxDZ60DQ0KqqskZklgRZEHGLMSARGSN9WhqdGenp5+8etO5GiNH4Ov9w+Pj/rAfmjisYt/sq67y66ZbN21bt21VN42+UDmmlArZWEBAdd0KBM4iUqR1nyL088t+MddesHhEzJxh7oo93aD5NxSAokZXKG8gwgjAwDnnlHM/xpTJDWRtoUfrjZz31OXBlOBJaI0pMENpgh4BBy+hqgLVz0vjQwtt/jwiatv28vISkE5PT6XIQhnEAqd3XXuy2VRVDVIM/RBUVGO+J/NhDDnnva9S5hADALRtCwj9oV9akipQE2NUMDDGqICY937lNlXT9iENQ88sJLxua+e885XxHg3Bi3FwNWsqo6cwd5FAze7me88AYo3xrmiJqOJCjKphpExqHzMfDsMUYtXUGTCxxJTUPLtpGu+rEOP+cLi+uW26+uRke35+enl2mqexf3gch8M0HHKcJKdCYhFEIRBBYBAN7a6t3Kqyh4rGANXxshIIMUqOkrMK0DBziZxSQnvOmJgSY2LIQwgxEzhnK2tdt1r14zTESWCRkohoAE3Z6KB4riuKxPiExjtj3RzaFVA9bu8hoOr9wKJNWQL8U2gHDB9YW1osjuN4fX39ww8//Ou//ev3f/3LMvpFZKm0cgwhpaMOooZ2tV7VabeuW2nJPo6jDn8ruTqEoF0SrZvVsLxpmiXG66K6vb397bfflEO33+/X6zUA/M2q/cVBRNbZrusuLy9vb2+nEOjhIcZYkvvZzd5auxAXAcCQ8V4nW23OHEN4fHzc73cAoIFEK3th4ZJEzW+qPB3W2qpym+3m888/++6Pf/rzn//8+eefv3r1qgRUfDmqe3zknB8fH3/++ef//t//+7//+79///33j4+PqghUYpiI3vOTk5M3b97o7f38s8/X6+3nn39GhH0/6Mi7vqQiEEJMKfV9j0fsoqoMCJC1xjnrrLXOGGsAOOfaEKCSnnMSzoZwtVrXjdcxARExZHxVn56cffbZ52/evDk/P+/7/sW1vAiEx9ud/sMcXnHeE548THWxgaj4MpXhQsUMXXkPnV0QlPlgnpVqiqM6QHHDyrPH3lxr4/uF0/sL7LiP+eJfX8Sd97OEp5QCUWkdhQnM2otELQJ4hhOwtInnYn75QfNf3kdAjz4oLz744lObyp2sW4PegjMT0QixzzFwDgAMzjhrjHOIhjkFThE4E4sVtEAWKINhYIPWWV8Z19rqZLO9OL9Y1y0yP/Y7d1OHHd+Phx7TAZMbjbe2OxzWdbtt19tuvc2tdxTDmPLEwFlyYB6mkLiIDgIAv4BEPpTQfLhqX54QPnsTpWCWur6Q9MYfiRktOI4s2+SCGigfTd9t/d7ax6Hy3piqqg2ZJf4DvlwQc+mwZAawpF0f2wKKPEjXbU9OQsqKzLdtq6XPOI7jMHrvqrpSDr92czOwCCzOksc3h8jUdZNZQgyKMTpboHhtFlprdV9W6LKpa0PEIsMwuLq2vgJOJg/Q7zPvY4thZWNXpbbJTl4gj3Ps0kepH1GbXwOAOXNKU+YEwM4bsZZT4pSFUpI8TiHlaCsrjFNKj/v++uYu5rzdnqw3mJnHcby7u2/bdr1Zd+vVimicpsMwkCUR9t7VlX88PB72j2N/iNPEKYFkQARigsJvKTcZySuAbrEx0hj29JSjCECMkVNY6B6zLbDM8A8AkfGVb9gnHscxhrB73Ocszlez/klFRDnlFFOMwYChbMZx1BNJmWMsLXxUfz/jrfX2KbSXwh2LKJNmmE+9dp5DO8xBnUqvPc4eUfPliChz7erq6i9/+ctfvv/Lb7/9etgfkIodsEgioqr2KTWqW6LGgapfZq1drVanp6fn5+cnJyd1XQHAAikjYgFRYwQA51wI4ebmRguv169fLwJz4ziquYv6u/R9z8xqAaf0+A+/Dx95R5q6OTk9+eyzT4ehz5yryh/2hxBCSpkzM4hFgmK/RqV+NQUgCjGEcRyGYRj6nJKvKu+d4vBHS6D8psXX7J7sTk7OPv3s02+//fZPf/rTF1/84c2bN5vNpqqU3g9PIOKHjnEc/+M//uPf/u3f/ut//a+//PLLw8MDES1ThUSksf/x8fHt27fv3r3b7/e3t3f/5f/9X7777ruu6968ef3nP/+RmZXfqIwIEYlFOnBcxgRAMzZEa0hFe3zlvHfWEqA0te/a5uFhH0I0Buvan2w33aolKlfqfX1x+er1qzeffPLm9PTUez8Mw4trKXjme9EdlxbpMuI980XKhoxojPHOMQnkyjtvnVNsQQcflBURQlA9ImauvK/rumnqou0NklJMOcWk1HRlmMlSDL6/t75XaD27CsUvjz8KxWzmqZo/PmTGT0QYkECycOLE6vJQ2q46qsAMR6Nbyz1b6vXlvix/fXFuL66i7AbP/2XddGQZyKIYEwi9DDCNHEJmTmCSsdk6sIaEnRE0nMka8YhCNiJEDkkvVoAQrWq0kXHGEFHbVJtV23aVmyzWJnsSgxF5iIf7OFwdds297ypfOYOQERkQYs79FG53+5uH3TAFliXHmyvc+Ta/qHFfVu3LY3s5Dlnu0NOnaZgUESBW7+CZ6AjLnxQE1e+hPUBNGNUpTpTkYK12UL33RGaO6zifwLNifT7N+SqWUc4PrTQAUHXSuq66tu3bPk6j83693lR1ZYzd7/cAaAiRjAgoOkdEYpB04pr5iUaCIoJE5H2Vch4GG1MEAd1Q1DJL9279g6ahOq47jKPqluScLXCNycSDHQD6Ku/buNnGuGHmF6NWeo81x2GAOa8SQ4hAkiTnzDkCsroOssr5gUkM4ziJSFVVKcuhj/cPj7++e1fVzeWrV1VVs8C7d+9u9nsGqdtmZW1VVdZ7RLTWVN57ZwkhTMNhv5vGIaUAORGw0JFKwgzAIBlrnbeuMlRbbB24Z5FFYko5pQLgF2itZG4a6hHJVbZC6tAIUkp5GKcQU9t1dd0QkncOEWcX9oQGOfM0TcyCYEQgcVQJCoNmLlqctb7MuR0B8nPpiTPOqS6wBQ9RR1ieU1PE9GJVaUf2+vr6+++//8tf/vLjjz9MYSrjkcZoYMjMxhhfeYV8p2mcvUrRe7/ZbHSQfb1aLV32vu/Hcazr2nuvM2bafs45Pzw8MLP3/uTkBOaNVQfeVNv14eFBU8m2bbuuO5po/7sOY0zd1Nvt9tWrVzq0Zoju/cPh0E/jFGNMKc9ZOJmZe62ptrBkzv3h0B8OasbqrPHOkbqY6Dagveqn1i2pjtNms/nDF1/86c9//vOf//zHP/7x/Pyibdvnbkn43h+ejmEYNLT/67/+6+FwqKrq9PT08vJyu92q311K6d27dz///PMvv/xydXU1TeFw6L2r6rr56usv15v1H/7wB2be7XbKqkspq85CjEmj4EIbVN6DIfLOVpVvmqqpK187Z01Yrw6HFcBv9/ePul9VlevaRkRnxGG1Wr95/frNm0/Oz8/btv3gI/hguYkz3DwHRW3zE84zeAuRed6MrTFutk0CVOjIWiTylXfeGWsxZzvbWJExLBKTUxQTAGbvjidSSOlWAyyDhx+topZE4Ogrn/4NYB45feoBLdgtc+aUBIVIhLNkzIz8oracm8tLalPCfvmez8L5cZgvXywiwmoLxMeHsrmPFljn6tqhkBFA8iSGKQBMDBwTg0lkkqFoirSMMEoyIlZl7I1VCXU9SUIqU1cgCGwRGm+3q3rdVc3gubLgiQ2ySBimNAVMYgS8Md6Qd8ZZQ2Riyvt+3A/jbhhCZAa74F/4wRdjPp6H9jkNKM9GjbbUw0YgS4YiFSqASNaQdyKS9LNRkAiNYTLKtWIRZCHhMs0uZbxS7/oyp3WECCwpBdGyjo9OnqhszzID94BAQMetoBeHJggG0QJ7SZUkyggpcrKAGFIcxoFIBTUBEJxzvqqIyDibZxhi7ueAECAiGfKVb9oWxiGmyMzKRFVYDwCqqiYyOadpGkUqlRI11hkywNx6s1nVNE5OQssjhYPEkVMUZsEXxRYVFg8BzZAJIRkiBOMcIpBlRGTnnTVGRGIIKXBkiDH5qlqtVtOUdrux7/uH+/umjSplaqwlBBZWYVQi6rqurvwnb16fn5++ujyrnBuH/rDf9Yd9igGKRGDRg6anY3lJqfitedd5R89ju1rALL358u4JozBLYs5orHcV1Y1rV8Z7QBoOhxCC7Ps4xZwzCeiUceZcVOOFc0oAaIgBAVW+gYRUksgaY6yxVub0Yw7ttKwimDnzUiL6AsWD8jgEAHEAeJpCFim92F9//fX777+/ublh5s16UzfVFKa+H/p+Pwwjoo6tKYffGWNyTjnnRaDm/Px8u92WQfZh1JH0pmmU2qa27urbpqxvlYjXclw/QaF4NZd7eHgIIai47Gq1+sdUygGIqPJV17abzfr09GS/u8iZjbFN3U5TGPphfzjEGLSuEgEdn1a4I+UUQ9SJAGuNc946t8xczcFc23eFKNM09XZ78sknb7788qtvvv7662++ef369enp6QxIvP8if/jVDiG8ffv2+vp6HMfNZvPll19+9913X3/9tY71ExnmfH19/fPPP//Lv/zLf/zH/7q7u/vxx7dd9//VVPSbb75er1dffPHF4dCL8MKr171Ic7JxHHY7q6M0lXeIlTWm8q5t6lWnotIeCacpZDUlDtP93W3X1nXlrDV1Xa3Xm7Ozi9evX5+enGh+8P7B/KSD+SwiztscLAAeGkQDYEVSZo4pTFNvB6cioDnqqDMmScM4HIbej7USg0JOWZkfzDGlECKYiSyFEJV1mBXwA1peLp5DIpXqGJ4aqh8+SjccRViY5EmAXJ/hXKXPlTiIQC6CVSkyJzVi5hSzFPV9KISVktwY3XGe7tOCT4MUUhYuYqbzzVOOJOsLmDKnzMVaVH8vMtV+WWZOjMcKyQARCiSXgiPr0GaUBCTIQQJHHBlNEp54GjJnISJ1YxMg0VTfERkgZOGcI2eDhLWRlbcb7zbeTZbYYCaIOTOHEIcck3BGEYPkjPVanAiGkGIWQmMQOTOkWezriTZwBJDPxwfsYZ6WlwABCtKsHlY8tfNihOpcgVOYAQQNFZCn1NWL6ku52U9hcsYRNPWEnAUxZauhUZkdNLsXHJ/b/JcnpGqeY/rggpPSPAAgYStcoYgwpxijAZFpmrTkAgDnbMo5xhBjcL4y1lDOmJE1uis6q1iTIets0zYsPE2jFse64WopY61T2O1wOFjLSMZba0UQMcVYG+qaxlG0mSyRqOvZ0et9fL2EBgzCPOxB2tdAg6ACOyRCRGCdQWMy55RD5JSBiEzlfNu0iMGYkuilGMdxsM75yhtruq5j5jCF3W7HOXlfbV9dXl6en56sJcd+/9jvH6fhkHPUF5IQZkSWZheMUrojEhnrXNVUteQgz3cxZs7CKKz28/OC1NCeBRgQ0BprHFQUc57GKYTI4zRNU5oCIgIRcKEyzzUFZGbMGUCQEFCUAo8IxfXVWjIOZkUOmLOSuXAvpFk5YtItUHzB55V88fzQ0H5zc/Pu3btxHKuqPr843263d/e3qmSw2+2scdY5Q1b3IyRUtLeu6812e3FxcXZ21nWdtTal3Pf9brdLKWnk1vpeIWuVIlcynRq7Kb6qJftxl10nuy4vL1er1fPht7/ddC9Nq7Zbrzcn25Pd6T6ECAKVr6YpOucEoO9hHEeYb/8ywKZTZyFMzGyMV3fX49dWRIqwQMHP6ouL888//+Kbb77505/+9Ic//OHNmzc6Q798/vN3+aPnr/dhv9/HGOu6fv369TfffPOf/tN/UosdpSM8Pj5+8cUXm82madr/8T/+xy+//PrXv/5gyJ6dnW83mzdvXl9cnH/77Tc5591uPwzjOIZxDCllDQYhhMNh752t66qpKpDWGPTONnW16tpu1TRN5b1PKff7w2F/uLu7Oxz2h/1uvWo3282qW7169ery1evT07O26z4eFJ9A7BehHZYPoRoBqkC3AUFVa1ZDJROCIQtCCIaQlP8YYgwxCqEA5MKLARXMSSlhiigmppTUnyllSVlQJBf9VZnj9JJ1/M75l6sog4KaD5RyrSDFS/nMAphFlMslc8iNzEzGIujM2OLFXIgqSoECYwAIERZN8OKGpzsKL9W5PNNFgaKLFVOMieNMYWfVumQWwNo/xRliNDpETMCJIWWUTMQ69SMCnDiFzJAAA8CIaWDJQGSsQWsQyQAass44Q0ZYUoohDNkhWuMIOm9X3nXOIXEAtaMGA4ySRELMKaeMAJa8d7nKSGSymmMZxyklTpC5SG8AHy2Zl52F9yRrjteWXi4LZ44xDn2/3+2Hvg8hCIixxnonIjlGplQcPKwha8gYLr5HREgAUJiNONPyjursnHJKGWIElJS6pZ4vpKeyyJ8W1vyHWR8f3m8bLJcjCxNAWAip8j4KZZY4xRTiFELp3yPWdbPZbACx7/cdUdVYMgbNPN0nImq1wKBQUVVVOafDwSzDb5vNJoQQQmCWuq6Nsd6XSSFjDQD209SPE7W+albWeJCUnAfqIrjZQ/TZ+ZdUXVBfGQChOd/R7IgIiSwZct4KYBxTShnIVb6p21XTrqyx3sF6vbq8vJhCGKcwjRPzg6+quq6//uqrQ9/vd7tpHOM4vnnz+uz05HSzbqvq8X63e7wfh31KI6hxrTWGSPVAFcE7qtoRCaz1Vd10sbMk0dfh+YPQ900V5KGgPCptBESUgNWrPTBOMQCRcdY6l6YQUxQBJHQWLXt1C1YjQwIl+erQgNLbi8cBmdIQFjXhnv06Z71TDe1lcczDcMBQxC6Wqj0/9+PTYLbf78dxzDnrYNWnn35ycnpCRLvdnogU2rUpqy6bbjg5szFms91eXlycX1xoyS4A0zTuD/vHx0dtkyNiSsl7v91ujTE6I65R/+zsTOFc9V29urq6urq6ublREfi2bV+/fv3JJ59oxvCBl+HjByIqm3K72e63+7v7h8P+ME1BBI0JM1WJU4opFXo8IKrksdLQiNA5Z61bGHzLawsALFnN6c/Ozj777LOvvvrqT3/6k9Ll5gqbjk9Gf/97zlx/HDNP07Tf7/VeEZH22qVo5FXO+c16a60jsvf39z/88MM///M/d11bVfWbN69evbpMKT7udodDf319fX+Pzhlmyhn01d4f9s65tvLbzYoQvbNN5dvGr9qq7RrvPbOcn5/tDn2IYbfbj1MYp/i66S5evX71+pPTs7OqemqRvB8g53rnvQ6xPEXFGYo2gEY71whAhDoL571zpgLGyY+9qxCDCjpZ761zAmCdI2OR8CjgFYwfZxslUXmcUtLONZm+X3/nEylvDswFP+rEluaCxQsCEaLSfzlzcffQUzEsOZtlQ1nwf00ODS1nCrOJbbEjUK8UvXOLr03h8yCwSBbOnFPOkSEyMGOxfcvau5f6uBJJwiFpAhRjijFOY5CYLBmDlDLEyDmkEIeUDwhTZRgNMAEykhgyxpBx6CxayBzzNA6Hoa+CBabaGPDO1pVvnA0cQk6GLBjTWI8ujQIGIAGCoDW2sr5y3pBl4oycIDNJ5IzHydLTeb+E55+H9mOJWf1ElpxSmMZxGIa+n8Ypp6Riiuo1LixY5JB0uMeQDucVg3Htqc8RfQaY8PkPzcySJUbLMyYGS/Q/Sv/nN2NhSM7f5iPdn3IhZaEYY72rO2FgMIk5RvVyMIass3a16k6223HowzTlnEDYGLTWcn5SuxURBkYGKi+OXwZ/l61ZXUByZt1iFEElJGOtiQkgMtps24QNogAZtI1Yh/RBVrO6MQOawinQoARCwqXWLI0LQGaOYYqRydW2qrq6qusKEQ2ZrusuL84R8eb27vbu/rAP4zi9quuzszPnXAxhGscQgzVms+qa2hvgMPb97j6MB84RgInQknXWaJvOWmutKiSW5h8hWuurquXYWcyj8e+FdpWB4ePQTlIs2FmAcxpT7mNOIWXOgojWQECl9QAizcxdVSLW0Y+yyBeEH4p4MemkiLWARcZrptFpPkL0hMaXiQ0VwsDjDQqE4aXVrg5Sq/BR0zTn5+evXr06OT3p+75911prQSCEEDExMyFN0xhTBIC6qs7Pzy9fvTo9PdU6NYRwOPRDP6SUlPi2zFY0TaNNfRFRy1dF2pUadn19rTZrSqDTkv3169evXr3S7/w3C6wXL4j29TebzeHQn9w/9Id+HKecM4DkXAkUBQ7VP4g6Dx6CcsuFua5r5/2xzPuy5xCZytuuW52fX3z++efffffdt99+++23356fn6vAzvHu9A/FdXVkv7u7s9aO4/ju3bu3b9+en58rzFrXtZLZdZy9a7thGKcp/Pf/9j/u7u7+1//6X+qPt1p1TVtvt9uL8/Pz87P1etU0DSIsEH1KYRjIGtO1zckw5JxUwKryrq5cW3vnnQhst+uLi4ucuev23arbbLfnF5cXl69PTs9Xq5Xyhj92Ibrrvl+1HwX7J4oTYGGkaUZKhMaQNdYaC8qCWGJjKaxISp46k4dm+pn25035PH1FmYuM/NJjf7lUfueJiDAyCqIwChIjlzsJeea2zJ8JT8LCAGCstZZkVowsV1kGq8ppZGZEAWCYCfxa5sy4/RF7Rnkd8zUUq3eyxhlvrfGUGVIqeEGR+zu+LAaMmMe8rHBOEfSnoyFBFEEWiRzGADKRF2ON6FiMOItePQQJKKZximNvaV+5beVyZRHBOqPzRMMYx8xixCBZIIdWDJOABQZAS84ZX1ln0GbJibKAGFBD+zJBcFSKf+C5vAztx6kAAjDnGMLu4bE/9CJCAOrggGU47ZhsDEBoiJhoeTi6XkDnkxaYZNk85+VijBEElYV54jfAy2JcUwQuRgmL8O3yGN8/yhI31tm6tYnBJ7UFyDExhArEW0NEdVVv1uvT0+3B0k5YOE3jZH1Vea+mZMe59NI1MMauVitEPBwOzKzD603TasanY07MrErd1rlV27RN5Z0H66JIVs5a1VRVVXtr39MrL3XmkYrz0q5St7ucJOek5UVKaegPIbFLqfKeIBNwzgkEK+dOtidV3SDSfn8Yxt0wjt2qG6dJRJyzdeXZUNtUTeUlpyEMw3439fucJpSMwoRgrXXeOfWinzeEGZQnArHOV1Wbw0HSQM9dVTQyALNwkXoTASr6/MY7SywpJZmmcejDFLM6xYAIoRCpSCYLKEOWGZmRdY50Np4RbQRnAINIhozVX0gE5VWg4lJSBM1V+efIKgaVx1sofgwFSXmxpDSTUxipruv1er1eb1arddt0dd3UVe2cm8ZpCsM0jQCgKmnW2e3JySdv3rx582a9XhtrdRD84fEh5bRer7XcV3xbx6l1mq7ruvV6rSI2IqLKcb/99ptS59Sy/ezs7Isvvvjkk09OT0+rqvqH4vpyWGtXq/Xpadjv930/7Pf7cRxCIGPIObvZbLque3x8LKy9vl90ap1zzjv/XIyWZ+euqqouLi8+++yLP/7xj19//fUf/vCHy8vL9Xq90Pj/984WAOq6/vbbb6dp+uGHH+7v7//yl7/ozfnm62+/+urry1evzk5P66auvLfGnp6d/unPf8qZd4/7vu9/++03a83Z2am15vLycpyKxsPJyUnfDw8P9zDr5KtE8KE/PO4e7x+67XaV81lhvRAZQoPICHVdn5+fn51fGGvbttls1pcXr05OT+u6BnhPQPr5cbzrLnF3+as8UZCef8kxS0yEhSVxTDGEkDlZstpITillztM0jdMUYuCUhFkBPx1D0CR9TsgKEb0U7eVp/j5b6+mkICfRBAVRiJkhq6djLILn2oqlohFgDRXJSCQLaIWMEIEpiNoy3lyEbxU8z4tSNQvEpUQvw2BEKverM4D6QrMYQOtrZ13tfEvWp8QppqiCZSLM+XD3i3Ch1BiwBpCJBbkoEApLzCGNGQhtbcmD9yA5TiZGiZyMA0+1NXVTr513BklQMqcppGEY9sA7Z4euyatWQIio9rarqn2abA4xpCSYxswRSKxHAw4RkFSNWgwKMAMk5pSBWYlEZAwSHWnNyvsP6cNCs2V5qY5mCA/3D/uHR1WGMkjWGkBgZs5JRD0/CoQDcvQdoJTWCsu8CNPLv0NhLeG8vEqD/iOluDx9bXnov1eza6VmjDHOk68RM+ZsUraCzEwICBYRvPd1Xa3a1gCg8DCFEEYlt0djk9H8TpNQvb4i/qpbsJKftXZfrbpxnFT0Q/nPouJ0hMZYKsgwMBAa4+u67bq2berKGfOU7iynXzKY5UbNob1QHQ3nXIZRY4w5BclZCCVPkifOtQAgWGsMNdZX/nA4rFddCPEwjCqrKSLOuc1m7Qxt12tvTQpjv3scDrtpOKQw6jin1tbuCY2fa9+i/IMEZKzzVROnOoxW2yXLE1s4K5Jn4sLcdDFkvfUEkJEOOEJSO4HEWQAFLCGrQlZpe2spDVLaTIWTt0CAggBavRgy1lgLiisQzjG+xPl5tB113yzqHaUgEgHWMuaDgWeui5bCCHX8r23aru2auhn6QZV0OecxTMzcNM3Z2dmr16+1WkWAcZr2+/3j4yMCrlcrEdERLP2Ji5pK13UXFxdL7F+I8Sp6qG2gzz///Kuvvnr9+rVyJJf4+rvHi08QIlNV9Wazubi47Pthv98pg48IiLCuK3U50mWj81Q5Z1VE1/pYU1PtcKmgzWq1uri4+PLLr7759ts///nPX3zxB2WJf5zl9w+E+bquv/7662EYfvnll7/85S9XV1dv3749HA739w+3t3effvrZ69ev15p5bdZ1U52fnX/zzTc//PDj9fX1L7/88sMPP56f/4sx5osv9ta6GNNms/n222+6rvvll1/evXsHcxqnqgO7/e7urt5u12f7k82mjbHT5m0uWoPcdt3p2blmV3Vdq1PO30N6KLF51rx68fHjm1NqUqWIq+GmkqCYRRIHDiGkmARZRNRHGCLGlMZhjCEq5J5yjiHY6NEYWChnUrraeWGzvCfT9jcOAckJGJkENBAD5FxUTnBOhkh7e9Z7V3lXOVsZ68iY4k6jeTnO4irzSp49KLKkxBrdJbHknGPOMeUkKSXF+AUFUIistgmFRFDQGNNU1brp1tY3C9Kurxjn2N//utzolDgFjkFilJyybkhhmsYYBU3V1c46Y40wExkRiDFZRACy5JytVAGTc0pZwpSGPhxADtUwjkF9krWn09a+CfYQMGeBJJAAUhE6l8JHAmbOnAEwx5RjVkhbm43vMVXh+ag4wIvQrrv1nC6W3XIK8f72/u7qet2tqroWY1DZyTHEiUAgpcg5MbOkJDEpfw9FjFEOESnHUfQHaGg82n0KyCrAnEv59NQBmifxcMnill9PS/9jS1Aj4rKZs0AUhYDU500b6SUpJUBjzHa7bmr/27urh8c954wenLPMfpomHWUBAESFtvL8wik3j2OMzvm27YjMNBWleqUOzRJWIpIlswA66xrvTrbtxelms2rqyhtDOT0btcKiMlv+/LTgAQHBWiAiY5SHF5HAeTSZjBWUGMYejbeVKSRIBs7c1NXrV698VT3uDoKk9KvKu5Pz09PNZrvuLGE/9vuHh+Gwi+MQpz7FyRIYa60xrkDxpWp/yjMAQcQY63xjbC1gniNcUEZllf2hd1H0uRR5NY9krQ8h7swhYUgKrRv9H6GlzEzW6KKh0mwXykAkQAsiBEqcJKNmF46Mw9k+tMT1mR6vlQEo0Xt2emWYC/fSpPtAaNeBKN2FdR798eHRkAGA1Wql4nEa9lJKAcAQOWs32+3rV68uzs83m42zVrXWHx8fHx8eq6rarNe6itSvSPlfOWedXDg/P1eHde2yK3UupdQ0zevXr9u2/e6777777rvz8/PfMXz7WwciCCE1dXN5cZFSHIZhmsa+3w8DsjAwkKGq8icnJ/v9XhcAFH3lyjqLxcqEEdFa27bt+fn5l19++c0333z77Xeff/HFxcXlZrPx3n+w8fSPnzBUVfXZZ58xc855vV7/8z//88PDw+3t7ThMv/16dXZ2fn5+rsMIn3zy5tXrV9vNdrvdfvXVV3d3d4+Pu+vrq3/9138dx+Hq6vrNm9fb7fa777415k/v3l398z//87//+79rybskMf2hvzE3TVM1ta8q1za1MZg5xRCmGMHUTbfR8QfV311u0d88lri+NEOXj8MMSZc3rUBO+q8F3cw555RiznGM0xQyZzKIiDGG/WGfmUOMIUzMyVorSGEKj7tdAqhyttbklNJihSYlB5eFXTRnE0cLBRdQ4cXZSggCKJQTRgYMiUNKSMZ539RN2zZ1Vdd1XfnaV5V3lbWVMZbQAKIQzOITCp9pu4Fm3iuSIIhKmzPon1idDaYQphCmMYRR05fMnCODKMuGhYQ4u5SZY2ZJOSfJGUq7nYXzs2vZD9N4P+QUUggpTDGM0zjEMAmirdrWVr5uWSimLGSyCAozCBIAavsahSVpPjDGaUwT0lTnMHGMjCKI4i013rXONcbmzEmEwBBgZkmcC5yQWYd+DVFhJSQ1waSFMVd235kj9+KRfIAhr2tKi0RByMx93z/eP/AU227lu/apTtTENkZOSYeSMoQcImQuOWb5/1MEftEZkMKihCeuldKtkZYgPu8Fy3/nb1T2c/z9naFoLelItbCoygkhEYoQl2qQAIAQu6bpmnq/Pxz6XjhrE9RXVco6OlEKQ2bhXDgHMUYtU6y1dV0pRD8Mo6JJc1FH2oTAmb/dtc1mtT4/2ZycrNumttYQ4guvR41A+kCWPxfaIAAVERFAEgBlpVrhRIgEKYaenCdXKaVWB8cq7y/Oz3zlfVXfPex2u31dV5V369X69atLgxLHfjjsdw/3h93j0O/jNAoHMs7Optp2VtrUghUAytNlNsZaX1vfGNcQP/FSZC6159WnBTISFnMRZ601tgKaprhv+pxiTjGhAKIBZEGyJme2yuEAABBtiuOM8Myq0ToNQ6RAn3XG+mehvfTdS9ddU78lruvLIgDas1f/t/cBee2zqCqcIsBL6nZ2dqYVra6HYRjGcVRlNgW0iSjHFENk4RQjiBhjCFExIe2y13WtOnRE1DRN27Zt26oO0sPDw7t37x4eHqZp0u+p3LRvv/32888/3263R2Nv/zvBEhGcc6v1+iLFcRxDGNX4NYQx5SxBmGVpxah9WVVVznlC0gaaMaZpmu128+bNJ3/4wxfffvvd1998rcV6VX3Q6OV/E43Xn3VycqKQmPbCfvrpp6urq/4wvHv37u7u7qef3m4227Ozs08++eTTTz/97LNPV6uVtfb8/PzkZHt/f3dzcxNjHMcp57TZbC4uLpQ54ZwlKqQZrR9CmEIMu8P+6ubaOkMGhfP9/aqpqxhDZjm7fLPanNV13bWtGqj9Q9dyXKDLyxmB+U6VsK5So1A43nNEjjEeDv04Djln6yvvPQAGNdaNU2FGNQ1kTin3hx4MAQE2DcBxexoKug1Lo/rDDOX3D+a8u78HRDKOkbIgAwmapqu7brNer1fdqm3bpm6qqnZlksIUlF0tNWnZ3ZcwpRidzhwDChXQ3RRSgVI5iznQNA3TFKcxTX0e+zD1wlkEMhgwNRhnfWNTQspJJ25VeYBVk+npQkJKh2niFFMMYRzCOHCOhFR3Xbs66danrupCTEgDA0dOkgKRDGG0oRJjDVlhSSnFHFNkEWTGlCTGHGIykEGEEJ2hyprK2illA2KR2GhNrfbolHXmFkkpw3luPPBMFZwr5HKf3kN832PI8xFrQ5simk5O45SnGELcEkrKkLNymoUlz2N2mSjEMkdBZJTmNPeR5l96zInfUVGO88jiU7IGM0drGZCdn/cMtc8g7UcL9zK19dRl1Zl74jlzIEIU0h8hoj6M2816nKZxitM4tN26drW23DilnJIUC9cpxah4nTVUN81ms16v1m3bImJMaZpCzpkDl4k1Q9Yab03b1uuuO9lstpv1arVqmsZYAljYMUcnD0hE2vots4AakZ5yL0AgIkB0SEyYmIUEETmnMYaBXOMqS2QIgHN21tZN66oKjd3tD7vHxxybVVMbwqpycewP+/3u8WH3cL9/uO/3j8LB2Sc3EbWDXEJ7OZ3yUBGJrKt81TbdJkT/XMNNoygpYwUL7c64GeL31hPZk47VbZ05x5wYQMAIYsqcmBGQDAkBzxS6QqRDkKdxNRQkMs5YT6Z6Cu1IWhPMVU+Z2Ss4fEkadTGpDl3xHp4puctyQuW4tW3bNM3hcHj37p1KmlxeXp6cnKgfiR739/f7/T7EgERN0wjL3e2tNSaGM19Vhmi1WhkyMUbl5WnAzjOPqWkaJdwhYgjhcDhcXV398ssv+/0eEdu23W63GorU7l1H4/63Svb5EQkggUWr7uYiMk0h5TQMQ9jvxzjFmMIUQgiIqLWpOqrpBmmMqer6008//eqrr/+ff/p/vvvuuzdv3iixXw3XPxa0/rcPItput0rvf/369du3b3/88e2PP7x9+/an+/uH+/uHq6vrt2/f/vWvf9UAf3FxUdc1AFxcXIzjeHV1dXd3Z4xZrVZffvklEa1W7WrVWmuISDmM6tqnLegY4/3DQ8qx7w9X796tuqauKiJquq7utnVdV97TTIf8+6P7AsgfA5nLn3GmIeMc3UFIRLFu1i4hGUw5HvrdMPYpp851XdcBUcxJSbJN3dRNXTkPLPd392MYabSucl3XGmOD0/EXgHlSeiGZF03G52f7watIMf3y80+AZH2FxoOxTbden5ydn1++evWm69ZV1Xhfee/09mbOqtY8TWOMIeWEs+3yAiwvOwzMShQAUHnfNG3TtE3TWFdZVzufqyo2Ma1iHPvHcU/3h93h4XYa+xijkLP1Cgz5umZuGDyLZMlZchIVp+bjSxIEJgBLKJSYI3NVVavV+tXrTzenr5C6kCDtHrJIzGmKYwp9jCgiIeUusSWPXNIkAPSustYBUEocpmgpKd0BVarZOmfQUc4GLKJ1rjYkyudKSTIjQuY8TUEZrVlyzBljzJznsXKcteRf8h6f59EleZx5G1iUvZTwMo4jAHSbjZI2OGXIWcqy14IbhbICTIAzKWwJWKXu5GWZLgulLO78lIscjVXNlepy3jNvDucJut/fL+YlMZ/LQs9Y/lHhWQAo8h1+vV5NIdzc3fdjFGEidM5Ya8axKIvlnEWy4iQ6Ftx1q67tqroiqzPVTiUAlMTpnK28q5uqber1utuu1pv1atW13nujGvsfOXUgo7UpHh0KAIiIjiGAoEUDYEFMTkqdF8kxhyHaPSJZbxDQEJF13le6zrq2a6qqqeu2bry1wHnsD4/3t4/3N7vH26HfpTg5C2o7430hxh+X7HMoLGgQoTHG+aptuu0wEsw62TP7T+ExUVjREBVVLGtnGS23qpu8YQQxBsYQVD+BAbWflotqlOScYiQkYMhZDHGpuVlQxAAYY7y1tXW1NXWxviBahGYV2Zyxg0Kgk5mSq7ZvMybA79csGkiU2rbb7e7u7hRH3Ww2b968UXVPlaa5vr5+fHwMYWIRa11VVSnEh/sHzty2bVVV1pj1eq2yxErUYObD4aAzV03TnJycNE0jIuM43t3dKTFebb8vLi5evXr15s2by8vLs7Oz3/do/3uPmRSrkx0xxhAmEU4xAfx2f3+fYtKpPzOjOLoY1Cdmu92+urz89ttvv/vjH//85z998cUX6/VGQyk8Cwn/d6K7Pkrvvead6/X67Ozs8vLV+dn5dnvy888/v3v3br8/KGNARXlVrq7rOmW9DcPw8PDw8PDw888/f//9X7uuq2t/enp2fn7+9ddf9/2BWdLSIyOo68p7571jgN3+kDOnlquqqlvMLFmTMubnKr//YMP6eeB8AX0jYMGs1T+TYXFMYc4xhZQjS1ZmjADEJGqZDJ4tkXdenSdSjCmGrPrnxhAIwVKHLaw0+VAp+NGDmR92O+NcSwYYU4jGN2RMVdVN21V1Y41HMiKYMiDnmGIM0zAO4zhoaBfOT2+cSKEQq4C8EmjIGEMp52VAi8iKCDMKGCI0BlQoJuW06w+7h9t+OIDxVbMB35h6xaZ2jDFLnF3PtaXxDMxG0XdfW93MjGRcVbWrTbc+SblKQ2CBxDnlGHMMMUQAFsPoyaXKGGRQIJjQoK2QMKvE4RSEEmc1e1b3DwVgOOY8ZSBLzti6rr21WES6OKY4jtM4DlM/mClQzFYzyJnhqLvY+9SIF1W7zJwKvcNCRM7auqqrqkoh6FQrKo+YWWKWzFJs4VVsDEvqZcrS1CkjQVQdEUTIUOQXQISIlG6UcgIDOScNYwtTQN57OWbsqlhplcj+kei+xPWyWktXHQDnhisIlYBfUF4iWq065jyM4zjFnBPmaIxxznJO4zhoilPXlfO+QrTOqx+lr2pASimHGGMMKUVhNipwseo269Vms9qsOqXNOVuy199JS1R8DgSfhXbQxmgpWHUtIhORQXRK/gIQhCxxjD0AC6JF03jnAS0zEpqmbs7PTlNMXducn500lZ2G/eP9ze31r3e3v+0erzmOlqSpqqap6qpSYjypp2yZeTtui2hWbZCsq5oGpUKGIwsMJZzJrCNtyVhrvDPaukcyOmveVJWxxnvbdVU/TsMU9B0IKU0xTymFnEAkpzhBTnkyzipZFIgEANEgGRFrbON861xtXQ3zyNvcyaOZilQiOsyLFhAYkMqYfDGd+VjVfnJycn5+/uuvv6rl2uFwePPmzTfffHNycqJIzMnJydXVlfLYc0pKZ40hhmm6GsaqqpTetd5slJnYNI1qsNzd3SFiXdeaQKga0m6307i+3++1+/75559rsa7hfzFa/b9yEJFz9vT01FrrfWWMVUKoMk4AQNF4M/uMqVqOTrWpH+vp6elqtdLJz78n//4/PKqqOjk50YD9yZtPvvnmu59//vnt25/evn2r8vJ93797906ZCufn5+fnF6enp9pKu7u7e/v2bc754eF+t9t/9913n3/+6eXlxX/+z/+ZyIQwAQAStqv21auLbtV578M4xXHqunazXq+6br1ee1/tdjvtX2iz5u8/+aWS+ehnHFGbFWlUWpQAziz0JJKJZAbRVIkF5kkSBu0z2yQiWuznHHMMOU5GrKQonJB5hqjnITmZu1zwt1MUAYgI1rt6s86M474Pxaw5jWFiQMJpKQkQIHFKKeoAmn73EGNKccElEdEaCwCzQnPlnEE0zDiOgfkQY9b9v2jHZs45xTCOMfYp7mO4PuzvH+4AXV1HdhuxqyFb18SYclRtuqwOeNwyL9eHIAicU0xh4pRFJDPHlPspuGFipJByTDGmkDllyVkksUjIPqKIR6zUXR4FwJAxRiBPMY1TmKZJiDnHaUrDlKaYU+KY0hTCrh8OMVOaGllVTd10bVs11hBnjimO0zSOY+iHcZiGKYqtTFWTsfNutlCDnx0vNOTx2QpDRCJDxjlnnSv1IimyiqpbKClBLitJVX+JSpGklRAvkPtTVJ6zwyecvXyhsrCfhjPLwn76tLk5r8v974X4nuqFssmgMZSz0Yn68hlSfhgiVt53Xbder6aYYs5hGlXlX+GRGAORsc63TWutdd5XVWWNFYAYo34CItRVZZq6a5t11603q816te7armsq748KrPnKPnTgXLWjPGeMihRJ7gUtIyExRJaJhZOuV5HIwoiGTG2rYlUrXCiap9utM7aufNfVJHH/8Hh38+7u5rfD412cekdSeVfXVVM36nMzV2nHs8tKAZqnc8pycc7XdkoAcbk4Q5ZN1qBJRJaMt8ZZ1d61RReB0AA11hiDdWXGKUwhan4bUo4xjTFNKSU12UJWCx9RZIoA0Vjnqqpr203bbup67VxrncfnoV2OuJjyNNRe/ooF4ld7KRF5GdpBFdfrWsFwVZ5RnSLFb5qm0Yq2bdv1er3b7cZh0L0pxXg49Pv9frfbZc59f9CUVBvk2r9Xet3i8qIDb+oE8+7du8PhgIgKD3z66adv3rzZbrdt2x4xtv5Pwucz2BWRFuFbvWp9vjEmNRpBRK2VT09PP//88y+//PLbb79Vov7p6emSapSEGt//Ef/XDkRcwIO2bbtudX5+/ur15WefffrZZ5/+9NPP19dXmhgdDoXbv1p1Fxc6rXb+H//+71dX1z///PM0TSnlvj+MY39xcbFarb744ov9fl83zfnF+fZk8/kXn603a+/92A9jPzRNs+5WTdN472MKSoZQT7/ValU6HEd7z8fO/xkGNrcr4XkFr3uozEsXSFFj0FCdU2JOwgVpTilqRpJCyDHOlOdJh9djDDmGGCiM49j3bMw0jikEzhkySy5CztpQWzYdwqfdc2HyH29iSNSsVk3bNd0qJDYhkXPGOUEMMbFMKkS+6FeWcbjy/QCZmSWmRLM9wVx6oWqEiKiNuycyIhJjEhlJdbhlFo4tZDNMYCKYfch3+5E5+B4yXvWB6tu98XViThrXmQXAEn37ZmNNedOLYF/MMSYdA4wxHfrh7uEhgfc1pwyBY5LMKGStqxthJKjQVESVsY01iCCCjFbQMnHIHIYpPzwOFiKncd/vHvtDH8Ihxn6KuteNIeaUp8SWrPKDmqpGROtcY6x3FVdtaMM4xYkxGmdUsUA5Ee/R4+H90E5IWoVp5FDOPBljyhARkTUigoYEQd0hQIX7ZixQCNGSGGIdyZ4n1J8UQkUQcB5Px/JmGqrr0sI0xh4R318geSgzsjD/9nvRXZarnqELKrW+XXSE5+7SMkEqRsnA2y0LXF3f9UNv2tYSKosMkcjYumm79cZr2DMmpzSOY4whpQTCdRGa7jab1Xa9atumqetiYv3ybD++35XFDQhlwLJgMLB0lvXLtdmCxuhst+j/QbKIpDAwPFZCVePIUNFUN7TdrrfbNSGg5N3D7u723e31r/e3v4VhT5AqX7Vt3TaNGpZoaDfGkI6mLHH9iUOhd66c7IsM0hgrzIJMgITojHF2KbkNGhKijGIACbFy1ttm5Wv1qlAdzJw4JI45R8kTpyFPQ5rGFCdOUSADGePrerU9OT89fbXZnLft1vvGGAskT712LPujBngpfwWYaXQouqcJKYdO8ssnAmCM0Zr78vLy9evXt7e34zhqc11fFDWAqet6tVpN05RCZGYETCn1Q/9wf//u6kq13+9u7/b7fdu2681GUeKu63LOOjamVPlxHIdhuL6+fvfuXYxxvV5rc10jqBaI//8riK21alam9ALvvZKSQwjaov7DH/7wzTff/PnPf/7uu+8uZpW9eRDu7yv3/m8cCzBgjGnbtq7rzXbz6aeffP3N1/d39zc3N7/99u4v3//lp59+7g990zSvX7/6+uuvm7a5v7tv6vp//s//+eOPP/7009thHG5ub66urr777rtvv/1ms1n/0z/905s3b27ubk/Ptp99/pniKDnlHJN3zrvSuXj79sd3V7+pp4Bzruu6v/+Z6LI5Du0wt9uX7XImjur+teT4OHtChRyT5Cwp5RTDNI7DAQRiTCGMMUyG0CDkFFl4GvoQJkQZEByhNSYMo2qRMYNGdx1SLeCADhktt/gZevh0kcaa04tL76uqbTHmJkG7WjVdZ5xNnDkKKolKucBlxgu1xTcr6SBzAWJhRliL2ASo4ZN3rlI+it6ihefIzJxBmFlQ0JKp0bZJ3GGUFBNAfxh/e3ezJ+vBUBnYmW915d1Xl/8fawrzl7PExDHllFgABWic0pQPQa76kLdnbGwVOTAIkHFV3bQtgpFs62plXO1919oKETIkIRbDkgYJ42Hiq9s95iGGw+P+cXfYBeYIMGYeskZRHMZhvx+mftw97g5nZ+v1urLOe+8rX1eVq1pueJziIaZdZEICFpGsKpoCWZ7zmz4AHB3D4PPsLqFC30TO+8ra9cl2GsbJ9mmcJGbmzOXdIrIGjTHOGmMAkYX1y8vyOFocNB/GGFe51WZ9+epSib6o/YOSKP7/2vuSJjmOY01fIiLXquoFbKCBR5GSRja3GZtfqJ8nHXSRmS46SBTnUSRBVK+1ZWYsPgePzMpGNyBwJFF6z9rZRlRXV2VGZkaEu3/u/nnWzTkUSKCVf+P00lF/ICiUoVZAyEFaa23hnE2JAEIIwXuRRCPJxnQHDJumqWNK+93e910ceh8jpMTM1lllWiA2RIygxXARJBlCW9jC2aos26ZZtE3b1HVdOWetOSr1h67MxwRxdCrzKtPLIclk7NOVCxEym5QSUsSp+luiBB9l75EZmV0kU2opNlvLbILvDvv95u7q+t33m9v10G0QYuFsVZW6RRauMPahv44ocsyPfJAgOW5WDzf03AxUiEgxKiUtzAWsmLQ6DwUxKazEGVxHYESb26ymBCFBgOQlHOJwCN3e9zvfb0McBMmWdbs8Pf3s7OyiaU/KqmW2xIzaW3H0ywH0xuFEMSszKln9DSVpjbuMltR7T0TzwE9OTl6/fj21bzk5OZkq/jXFTMnjFNMDwJTi0PfLxaKq66Zprtbr+82m6zvtx+q9V31Q11VRFHVdMbP24tQ48W63U7rZly9ffvbZZ2o9zPT6P16D6pEn60E9Y2W+W6/XGlz/8ssvf/GLX3zxxRevX79W3T9+W2bH+KfKZENMfgIiYlkWbdssFosX5+cvX15cXr46Oz+9vHx1f3dvjPnl//jlzz7/vF0sdrttjEFZW96+fbvdbr7++i+H/W6zud/ttxqYX50sV6fLs/OzV69e1k3jrNW6bSbSosd+GAbfhxS0bcR2u1ULQGH5v4ksPlbtR8dlYgfVuByhFsYAIQBoa/kgab8/DF1/2Oz7rovB77coMcDYpdB7n6IPQ6/xke5wCMGDsq96b5iTD37wMQQRkpgmrkccyb4xM17m0T4GFQCAkOp2Qcp7Yk27MO1iWVY1W6fYrdKkjDSlRwCAiEb9rJuW+jOKSqJMimDM6Z5gg4c3Ckb/gpAs29IWDVIZxQwhpBh92O/2HghHqDFN366KYp5Ih8REFjEAGiRgQ5BECAcfdoe9PexcmVJKCv4impzLzGZsW0rabQ+AhROwRJQU4rbb7YZd8vsw7Hf77eFwAEIwnIgNkiV2hAfxfhjuw6bvh2Hw7WZbOFeVVVs3i6peFDUDWTIWgTEqCn/c2973p55Oo4PZrceJLVxzF4qqrJrm4vIVE29vbrvdPvY+BM15AmUeAM7dHzW3FImMYWMMj3ufMhwyGzZsjS3Kol20q5PV6fnp4nRZFiWODqpCQdq4OCfUIb2nxz/CW4OzKEOMoe86w1QWhYbYD4f90HcpJRSIKcJYricASFCWhQgclns/9Pf3293+oLtAkeMcEEIAkcg54GNJirKs62rRNovFoqrK0jljDfM8ND2N62/LOHBQ+lTIJE0wq9XKeISIQEIyYiSloC6ymvsgEiR0scMuiYvBVYmsQzAomFI8HDa3N+/W775bv/t2v73B5BVvqJu6qirlwFfLWu07NZPmrRiSRlbGQInMKx2PqyVT5ups4lkJhBa+RK3oQco0/RIZkBENsiE2zIQEwAIoBBElQBzEd6HfDN31oduGJLasl6uzs89Oz140zdIpazdRVuKTIj/e/OMIJwMJx5/x7Sdmle4s6rhfXl4aY7Ro7cWLFwqt6zNTBa83KB9OpKqqsq7qtlmdrE5PT9+9e/fDux/u7++vb643m/u6aZRiRW+7SOq6w3p9pR3etHr79evXFxcXp6enivz/8/T6XJh5sVio735+fq7jqapqtVpdXl6+fPlSIQfdcH+aIT0WPK6WoyiiVpTFcrU4OT354osv9vsdAFxcXGg5Q98vjOHFsm3a+o9//OPXX399d3e33dxdX6+///7b//j885/97PPXr9+8evVquViURWnZMDGCmp95Q7LOvPjshbFG6xc2m01Zlqenp5+Y/ZBVe97Hxry5vLhwTBPCnHlDuU+2AAxD34VO7u8TiIQkXhnfkvf9fnuvx9AMZ+xwT3n7kASAEGPww9DtdozIMMICZGd6HUgUIMgBg8eq/cENRzTGCUCIiY1rq6Ztl2VVG+uQGCWHvCb9c4y7I6aUNKdNNGuHGHIAXvF2nJh6ZSYwsxwRNW9bQBBZjK1c0RpXE5dAveQgQ5A4LfajVRCNma90pd5KQYJPCCwihWFgCilJSsPQAaIkYTKMRiL2vicgy5hMiMnHNESxBCyaZm8AhCPhvu/3t/fR72Po4zDEmKyxlq3jwrHFEESGwacQpR+GYdh2XX9tb62xdVmu2sX5YiXL09KVApQSoACNt5A4d5r8mGrXPTqjJZkPTucvaG4bW1vW1er0BBCbptnc3h22u+HQ9X039AMgGmvQGFR+caTgfRg0B01hXZf9NZPzyLWsuSjLtm3aRdu0TVGXxur6mSJLI02bjMN5iNWPauVDkrO8DLPLrCskWg5ruHAupmRtLkWVmQdAiEVhV8uFpJi3q54ASfMXCBEkoqBBKqwpLDtn6rKsm7qpq6quFcLOtw9yBbYe5mMLfSYxhSF0BMxgAHmmet7fxVBjJyDARtvxxSCZmhUSik8BMskrRI4lGRd78DHc3Kyvfvj+6t13u/sbiUPpqKmLpm6qui7K0hxz/RBH7zazPs7+L+ObR+3+8P5rTQECCgEIxASEQCAo2VhImBKyNq0ESAiJ1WYmRBn5qXRbIO0WLwbAIFpES2gJE7ExtigqV1TGWjas1PEyzmIdCc4U90zNj+PNHuA8dvX0vNKIu/KTKN+q5qhPJU9HxHIK1guIYTZsrHVFkeuRymK9fnd1ddX3/X63S2OgdBhqZk5JtA2MNn+7uLi4vLzUcrJ/QD78x+S9Y4qGYz777DNNVdvtdspsv1wuNV3u4YT8ifX6dLoHDyvremIeyywXi4X3g4jUdV0UpbLBv3r1Utu2npysVqvlX/7yl+++++7m9ubQHW5ub66u1uv1+ubm+vL28rOLi+ViUTdNOWafTNy6Gn8py3K73d7c3CjPtHPuUxiECImJ9SImpaV6niRFQkmQILExZA0aBiLlSowphpDpKDFl5mZEkZiCjBhkPqySPcMIqpOyBiaACMjKIwKMkFCSjNqdxhbSdETks2rXcqj3Li2K9m0RRnKudGVlXGGsU8hXqdBGMHgkmzWGco01W+sQyDlHzAQsANZYxSv0GdLYaGMOG4wQMKBIIhEQJjbOWlewcUgMgGNwTQAQiacIoxqjztl5Sk0McRiC9zEm0VwzYy0QRj+klMLgCZiQHdvSlaF3h65LySfgGHrvD71hQ0iGhTGllHwKw8F3u22333b7FD0KKGqJ1rB1zpZkLFIE4D7ELoZ+8D7EkKQfPCP5fmDBhotUCzkmtgETpTDtiHnHfYQwPgHIZ+0O2ayBMSKNhm3pqro+OT1tFu3Zi7PdZrvf7rr9fr/b7bc7RCzK0jhL1jARAvq+H/qO2bjCla5whSNjyBgy2WVXChSlbHOFs9Yw85HAEwiOMfxp7U5V8aCJGI8W9fxitIwCDFNROPWlAECSIIhzbrFsU0zGsLMGJlBnjGMz8XK5KJx1hSur6ub2frs7DDEmASY2BJahKuyqrRdt0zZVWRbW5cZoOK2qj43vYxLCcOg2jh2aAsUSCgiLJseOZuxotQqCJGJ13AUEIAUvAikTsES1XGOInmxJtui93x527374fv3Dd7u7a9/takdtVbVNUzdNUZbWFcRMI02MZjmMwPtMteu7+VfQcrUHRAMCfhhC8OqyJ2EFjwQxITIgggRAxjjS+wAiMEKElAgTYUzRsCAlQUwxRYk+eR/9EIYuDGEYkpCwgKAy3mpeniaNPlTaT+hCefByrtE/Zi9q0pZyoU9J4zPV/tRujoKAzFwQaUV41dSL5WK1WjZN8+7du+vrq7u727u727qu27ZFohjize3tZrPV7i9v3rzR1Lkf25H975Zs8iit7Gq10pzBjL6N6XI/Afj+CeOE957aBOjpbi5SwVE/CRHVdf36tTs9PX316tXFxcX5+dnvf//7b775683Nze3t7bfffvvVV1+9fPny888/1xa0SmCwXC411VEPFULQzK8Y49XV1c3NTdu2c1j+Y4Mmokex9tE/JZQEREAQrLHWsjHAJIgRRDOUeWTvpLGsSVAgm9eiO+dY+gTjWs09E3C8RUlEMFHu1AbK0amHZSIi1lrmMaCa8fD5ExeRIXgRJLZKCZmZo9gyMSHoLAFJY9wkx3cQ0RhxTkQgumSMJaJggghYawSAWZtbltbY6cE94bhDDqUBCVtma7RCLIFEiYCIIIBsjCmbxWKxaNvWOpuiWENzfKUfhu1uF/ohhmDZGGYgAoQkkKLEISSMxrJj05R18vsw7EKMmEKKw+D3B0bAxJETgRffxyH6PvaHfbc7BE+oSFLhmJzyahnHbIgFiA8x7oM3xvsYAVFEcqmcDwJgjC2Lio2LwbMy6L3fx/aB/O0iDRlVOxt2RVGURVVXRSrKIv/cMRGRlnw2bWtVfxMhQgwheG2OYqyx1ljkPFmmSDszG87txCYHUT8xTX6cvCwZcyyO0YOPBPRQAX1GIARreGRfMYmTiAUEa41IMkx1VRjDmlKgl61zWfdrAbTWVVV96Dofc/Ma5RCtCtfUVV2VZaktXMfyKoDj3Z5G+GNUfNd1N7fXhSlKp3zLzpBjskQG8diKQ68/o13IzFbUShdQimQQAEgokiLElFLfJaFtt7/fbu5urvabW0i+crZtimVT13VTlpVxjozNsf2xIkEDHxP2no4KUEZCwZzK+x7cHUL0PhASRYqcElFENKAwkuJumip4ZKU3RAY5MAQCw2CSAEVBiRJ9DH1QwqAwSApo2RZcLcp6YYuKrQXG7NoDQLYzZJxFeUxy5FxW5od8DdN1pQ8/q8l10DxwnYUTwDhe9OM5mR8WoYyZqaT06865qirLstAyrRjCZnM/LdbVavXq1aupC6oWnf/0enRamFr5NpeH8bB/EwWvcnQD1BiaO3wqqmCKotBmgUVRVFX91Vd//s///Obm5ma73a7Xa/XFv//++xcvXrx48eL09PTk5GSxWGgLXUTs+17r666urjQ18uLi4vz8XB1THcmjsY0DQBr9URybkeZvSG7ymCihuDJVddc0pq5hv4v9IUQlghT92vGaj/bpNB1H5FAZMTSIrUTKeS4TkjHW2bLksmTnyBg13Ig5Dw9H1Q40NnI/Xk4S2e06IuMKVnqWvhuc60EQTA6m0giaTWcdHw1aa5FYRIgNItoYIddlQCwKQnTOanATMfekSPG4RmXcmZKkEHzfdYf9vu+6qXgdtYAcASkConXFYrlqmiYJsMIYo1hrq7oa2MTgERCJkiaMgyRIIXoOpI3MmMjZsiobr4TWzEGST4ElYIoppj70ne8kBUgRrXFNY5itNY5ZbfMEEMgIsQAQGydSA0Rk40oAyBSixrqyYleINQNK8sPBBx8TKxgNjMCQfx7Mrg+rdkQc+Qu0ct8wO+cK55yzKSUmYsA4+I0AE7m2bdr25PTUlg41RyoHP9IRNTnOJIBMFIzEOfKOOHbpO34W8anFMKn2+WifvggARmRCy+gsA7IrnDZkM8xFDDFGAjGGFk1VODOWQMxCOACGuWkazZzK5ZBK5ovIRCP2QHMH98Oj+hG6vTscrtahsLYsiqooy6IsXG1tZcgxmzEzkWYxeQWc2IDNppCkqFB8ThALMYa+j/vDcL/b3m/vu8MeY19aU5du0dSLui7K0lqHrFaO3u3RitI6k8mjyE/3qBazXn8U9gkhBR8RkwJcAZFzWiDMePhQHQXdZiyzJeNYLINhYSKgJBh9jH0Mh8F3IURAMcxFXTTLcnm+WL0o64VxDgmBsu9ybFST83Kml0fHfPpJR72Ogkpf8zFRdf6e9/CJogASMxljqrpaLNrVarVer9fr9eb+frfbxZSIeLFYnJ2dv3nz5s2bNwrF/1NT4j9FpnV3dJj+9f76x+Q95/Lx++qANk3z+ec/WyyWl5eXX3/9yz/96U9//vOfv/rqK212d39//+2339Z1rWGI1Wq1Wq0mpiBNoLu9vd3tdkT08uXLn//852/evKnr+hPGR8qjjogi80QinaXCElMiKhI0TbdYFMslH/apP8QUJea9hiDndGha6BQUmyF72ZCV0R1AzUPJTMyWrcOqsYulWyxMXXNRsLWKyqgjMeb0ImI29Oc3NsW03eytdYR2oADQIWxByJehcNpfc2zKODp1Mcaxyh01mAt5C0U2DACaHmAAEEeKUiYEwJQAMOU0BE0nyNzxIYS+7+7v7m6ur3eb7dANKQSJUTNukngADoOXJIUr22YJxIzKi5GlbluQuu+7vuuD9yGEEEMIkhCBMEL0aSA9HqF1RQ2rGEOKSRAEORJFQkAIKfYhDINHAmts4VzVkmVjjWUiBIgxxBDT6MkCiGNureOi9sErwhFDsIaburZVHQ3vUjgchsHHQbDUGDkaRIPIgPygKdej4rfZMsiGUEpJ2dMTM2vrRm3ZGSWEwe/uN2uNBa5WRGScLcqStDMMTWHm2TlyxOX4B5oyq0ZRBf/+/J81OnxieXwgjw4RjTFNXb84P+u9ByRtQSkiqqElKf0ZNVVVV9UMmZnD3cic+VZFa+FH3H5yZZ48+VOj/BGboPdpvx0GE/qD71xfFp1zfWEP1pbWOGONGhXK04REaqULaHWeySXnSCnEJNpWISEIQWCIBUltyYFLBRfOVUVZVdqTVIGsJ7RajqY/ylp8iFyrNqWHH8CY2WEEJQpISlGJsXRZ06jaEUC3AF0Dlq1ywRsmIBFIQ0o+SUQDZVVWtaubqlmWzdK1q6o9qdol2wKYBUDLZqYbLrMNTttX6/PQrjCSe73lYncRjSx8knxAsf1tG44IEQ2itm80Wvy2XC7v7m439xtV7cvV6uzsXCnnHqbO/YgTPb1kfpwcsW4cK5ce/unfU/Kw51ocHil7/XXKn1AywfPz88vLyzdv3iix3f39/X6/994r3q4fnlrTTjWBiHh6evojh4hTQVsuPH4gIkCMhAawgrhKMYhzVbNY9d0h+UGdQpCEkgDUGx9Ro8mPmkUzYQIzc58OUmY3ts5Vdd0s2sVJe3JatgtTlGQcareZo6d9vJdzvyuldHtz61wJQClCGMJhd1i/WxPmYphRNdOEb00o17HRw9jOdSqHyhcw9XQiAoBMURP131G9a2OP4Ie+v7m9vbq6ur669v0QQ9K+T5I9E98d9vvt9rDbNXXjysqwOZJwAFy8fOP+42S33W2299vNZrffDn03eJ9SBBFEYkJ1AU1RFLGKMUiKSZubASrLpoCYGLgsi9BoSgcTMbIhZlLTXJQ6KCcAEAIAx1CE0AafUq5yEklM6KwtyxLKKgKmhGjEoTFFhWxBvaQMTH/Ma8ejBs1QvCgNQIzROmesFhQhIsYQd9vt9Xr93Td/BURj7fLkRACAUHPl1C6U6XB6AhGQ3OckozF4BOGnuTPFkT8thvf0ziW5dNIsFouyKGOKAqA5fKCKKomkDCpo15acTPcQa3rvBhnmySL+8Kb5D9jvYoS+B9+HHv2Be2sPzh6cKwpXuqIsi2Jk2VTyFwPIuXcEZP4fREQ0Hr3EIGmABERiDULBBovSQUqViBhjrQL+xpJmOOTauQe3E2YJi49SF6ffs23/4EIAUwZCQVIKMfTDEKJPMWnDMZqQeUzasjnrdWOtsYatVVcVMYgkMrZuq+VqdfZieXLWtKuybsnV7EqyBRmDlFsIT7Dkk49lDCVgpp/L9aGYEAQwiSYN/GiRT+2okecOETuHxpi6qtq2PTs/3243+9Frb5p2sVjUdfMBvf6vkX+TYfx/yOORz99BRE0maJrm8vLyyy+//NWvfvXXv2ZWu7dv37579+7q6uru7m63283LZdW71fQLJTbQUsBPSYkYA9hZntjxRACJDBmyjLYo69XJ+X63HfouhCHFkFLQvQyUg0mOkxDHRKsJnj+eKavSnBpM1lpbuKJyZeXKyrois4fBMXcXjro9r/VpjDHG66ubsiwJKYVkrTsc+vv7Td8PIQTUxkz5tA+2+jxIZYOe3QeYnfHhYxrBd5EpWKz5P6Juu/dd1ymxUvB+isEBCCRIErrdbsPmbrEoi2JJ5PjBM3r1+vNXL//n7e3N9c16vf7h5ubqcNgNQ6/nVfWpZL8wEldO7VoESQhxND5kLOCmYx4wTYm1MvtP3ZokIpDpZ1GrBTJhplKSShRxTgSJwLApyToiQ8i5/9VHVPv8tgpAlKidDb33MaXa2bIqjbFIhJJC8Jv7+83dfb/viqp0ztnC4WSeHZMqR/hutCNxfJ0taKIpyProKY4BSsCHFsJxqo1A8NOix7SIhjnp1B8h/ymjZDrNhzesR9vBdFGY2489+uoHjYNH8pHRG0Dj45CCR/DMoXDifOr6YLu+cK5w1lnjnLWuMNYZdlOZWr4eYjLAiECYokAEERASw4jOGJMD50SGxhC+JtLIpHnGFLkxw/D4pwcp/4Lj6nniejrvu2HQ1Rdj9MH3oQ9Re/iiIWLSAAMQIhOKQTRaGWDEmMQmaT6Osc4Vtmqa1Wm7Om1PzprFsixq60pgK2SADahBCaBYwBOZoziF0kUmBP7ososIziiBfrQO+2Std9zGj7xQzK4oqqoalr2IACpLXakpYE+sjp9a/otq9B+xElXrKDGRxuA11+H6+nq9Xr8bRamKtDscAGhlYNM0p6en2sr29evcaO4TRve+Xh93tpltjYjEjOSKkoyxRVm3ixBDjCFJkszsNmaL5D3xQS1Rvg+TvsdMVQITJs/MbEhbJnIOtOtimgjKp7n3eBKmlPb77eAHRAwh1HXrfYjBd4f9brdLksYLfaBlxkNpafbxb/OTzD88Xk2GbwVAZqodxja32o33kd+lnTdiGPrDfnd3c10455xzhuZ60BV1257GhCGJDyLIZbfTwgoY4xm51j7zYoyIgEZDMDuNmpCFIyYDMF6nuoQPryW/zgs8b7Q4NQwASJBCGhndgQiMFniVZdPUbVmU8/IclUeA/Bj8UIMoSQox+OCVZaksS7YGCSGhD2Gz2Ww3W4lJKR6LqiTDo5VCudsW0GTsgTpnR0NS0Qg15YimfObjk5t1QMp9B+Ep+aCHPX/BQKO+zagUjK7kdJfzPPs0mc+cT4j7f+zrT34FicmUPsoQ1MFNIWFISBQI+8Kys6awXDhblIUrSucqawutMsj1YgQEbJAQIZIgSExpNG4IxIIqMCQY6+tEBMYU1DzOUbXDeOuOY5cpBgDTintPv4vIYfD7bhDJCNAQvI9DEkEmJnKIBgQIDRMwkiWxLMaJcYltMi6yRXZkCi6aZnWyWJ0tz18sVqdF1bqi1GhOBE5IgiQAApo1g3AE5Mf7i2NYAUbzeNTiGZbXQLtG8p42u/5R6k3n/tEERERV4UVR5CWca4r50e7248bwL7UG/gvJMeigM9k5d3Z2tlqt3rx5M0XT1+v127dv3759q70DvPciUlVV27ar1erFixdv3rzRGsW2bWe1/h98BHOn/dEf5RjDQwQAMtayMbaQulUmpxmYlhsijuvvifjlcRlMXbN1jeCkYikj4HlAgpA+ZfaISNcfcOiVo56IiIx1lphiDN77sX32+6oax+QA1WmTXocZnjF/Z37GuXbP9TraaX7eSW8EgGFMF0op9d3h/vbWuWKxWFRlIcJwVDRM7Kwty6JpmiEJlGUdwpA9gdwsctTrMDbZ1S49mH2cNEMTNGMc4WjATMrvAQYKKMfmdzJT7fpWipKiKI8eIhCTYXKFq8qiLsvaWksPeRQeqPbubiszlzql5IeBdsPL9qR5xW3bLsnJ3f7gJaUEm8OSCzl7ceKqsq5WtnJ9gvtDPHghjqPTPrnXMI+f5IcDD94/Ii5P6fDRfRzjfdO7CAD9Zjd90Hv/u9/97nEe74Njwfgc5+/+qwt4lFh0+nUY4t2uDz4Gj5IIAAfBg08IgBiZouFgGA2zsR2bvckW91iHqkcRZaFIKQUlbhXN8Ndk2XwHaGycg6PNfwTkp8mXF9K0YUzafvaWzuZ9H6arQKJXFxeD97rgYkoxxihRl7GG3zQNN8M9rLk2mkNgiPQj2jKeDUbx+35zDf5wsI7Z4LgpTEV3mfAW4X29roM9GiswXcTk6miAS0a+qtQfpm+u1+vf/OY3/9gnPo3q4W8Prb6/e07e3t4eDTWRP/zhD998883fecx/iVxdXU2v7+/vf/vb3/5kp1bw8nA47Pf7w+GAiFpGq1ynapNp4763b98qdaBuQY8fn/IPTr/u9pupLQpMYfLjLniEFWGOXB79o9m/MLfAP+wKwehDwugkzv5wfJHxL5mf6ggEgAx9P32tLIr/87/+NwBaa8uyquuGiCWlw6Hb7/dx1l1tBiY8OKM8Ml4fxBSmUcN0J/TFBCGOK3u2gB7c/GONDxBRUVZN256eNnXF809dXf/fJGkY+r4/HLrD0HchhpQiwOxpjFujeupjCGTmAE0oJwCMfVdRKxNgPqLZUWV0NafRomS/P29Q2sxGAJQzk5LwMGwluSQ3XVdut+8e3NZf//rX8CzP8izP8izP8iz/XeSnJL54lmd5lmd5lmd5ln+6PKv2Z3mWZ3mWZ3mW/1byrNqf5Vme5Vme5Vn+W8n/A3h5kE0KZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iagoyNDM2OTQKZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM3IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA0MDkxNjM4MjYrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My41LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My41LjEpID4+CmVuZG9iagp4cmVmCjAgMzgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAyNTEwODkgMDAwMDAgbiAKMDAwMDAwNjkzOCAwMDAwMCBuIAowMDAwMDA2OTcwIDAwMDAwIG4gCjAwMDAwMDcwNjkgMDAwMDAgbiAKMDAwMDAwNzA5MCAwMDAwMCBuIAowMDAwMDA3MTExIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAwNjg0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMDY2NCAwMDAwMCBuIAowMDAwMDA3MTQzIDAwMDAwIG4gCjAwMDAwMDU2NzQgMDAwMDAgbiAKMDAwMDAwNTQ2NyAwMDAwMCBuIAowMDAwMDA1MDU3IDAwMDAwIG4gCjAwMDAwMDY3MjcgMDAwMDAgbiAKMDAwMDAwMDcwNCAwMDAwMCBuIAowMDAwMDAwODY3IDAwMDAwIG4gCjAwMDAwMDExNzUgMDAwMDAgbiAKMDAwMDAwMTMyMyAwMDAwMCBuIAowMDAwMDAxNDQ2IDAwMDAwIG4gCjAwMDAwMDE3NTEgMDAwMDAgbiAKMDAwMDAwMjEzMSAwMDAwMCBuIAowMDAwMDAyNDUzIDAwMDAwIG4gCjAwMDAwMDI1NzIgMDAwMDAgbiAKMDAwMDAwMjkwMyAwMDAwMCBuIAowMDAwMDAzMTM5IDAwMDAwIG4gCjAwMDAwMDM0MzAgMDAwMDAgbiAKMDAwMDAwMzU4NSAwMDAwMCBuIAowMDAwMDAzODk3IDAwMDAwIG4gCjAwMDAwMDQzMDQgMDAwMDAgbiAKMDAwMDAwNDM5NCAwMDAwMCBuIAowMDAwMDA0NTU1IDAwMDAwIG4gCjAwMDAwMDQ3NjkgMDAwMDAgbiAKMDAwMDI1MTA2NiAwMDAwMCBuIAowMDAwMjUxMTQ5IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzcgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM4ID4+CnN0YXJ0eHJlZgoyNTEzMDYKJSVFT0YK\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"300.018787pt\" viewBox=\"0 0 684 300.018787\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:38:26.015951</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 300.018787 \n", "L 684 300.018787 \n", "L 684 0 \n", "L 0 0 \n", "L 0 300.018787 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#pa1b71a1aa5)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAp4AAAEPCAYAAADrpMToAAEAAElEQVR4nOz9d5MkSZLdi/6MOAuWpKq6qunM9MzOLAVwRS5EAMGHw8eDQHDfA7B3Z6eHNC9eSYM6MfL+UDOPiKysJrML7EJeW0t0VkZGODE3cvSo6lH1n//zf4781H5qP7Wf2k/tp/ZT+6n91H5q/4ub/pe+gJ/aT+2n9lP7qf3Ufmo/tZ/a/3+0n4DnT+2n9lP7qf3Ufmo/tZ/aT+1/S/sJeP7Ufmo/tZ/aT+2n9lP7qf3U/rc0e/eN5uEp1ckMhQIgxkgIgaHvWa1WPP/2KevlitlsxsnZKeePHtFMGkIIbFYrLl+94fb6mu16Qz1pePj4MdPFnLKusIVFa4PWCqXkDApQSs6FQs6r8tlTy1Goh39Xx3+PvCNUNf0tyj+Aw+9GiPJLt9rQXa/Gr5VlyX/6T/+Joih+QDcenlu9/dcY9/f4r7yFEPgv/+W/sNlsxveaqqBpCtww4IaeGDwQsdZirUnPEIzWWKOxRmGNwRYWYwusKTC2wBiN1np89gBECBFiDITgiMETvCP6QJA/oIjE8Rs6/VvLSYnIEw4wPuP8IxKj9H8EYty/d/BRYowHP6N8PsK2c7xZdvu+iZFvnj2jHwb5TAj4EPDe46MnImNZa4XRGqMNRmu0lve0UWgj78s8sGit0Ur+bYzF2pK6mVA3U+rpjKpusEWJMXYc+xEIqLFPVLoTpTjop7vjLY49Fcd/7+fN+HuaLyFKPwQCMUbabz8n7PZj4smTJ/ybf/Nvftig+mdt98zzeHf2q/9l8+3m5ob/9t/+2zhmlFL8+3//7zk9Pf1fcr5/ze3v//7vefny5fj72dkZ//7f//t/wSt6uznnGIaB3W7HdrtltVqxWq3Y7Xb0fY/3nhgjRVFQVRVN0zCdTjk5OWE2m1HX9bgHvGtMbbdb/st/+S9478f3FosTqrKW76RlKrKflfv96GBzg7xI7cdzfns88uFIP1zE9r9/b9KGyjsv43py5wPH/1ag0tqo7lzD4U4diWw3G3btdnxvu93y3/6//x9AURQFdd0wmUzR2hBDYLdr2W638hzuHvet7j4411vPQu1vjbef1eGvMR7+O51VNgq5t6P94P7jjbgifVxrTVU3TGczzs7OmEwmnM5K9MH3Hj/+C87OPqLvO7pux67d0XctzjtC8Pmw4/XtV/L9WqPy9an9mj3ex3gv6bNK7Y+j4j07wp3/R3XcUfK18bsHQ5lIGPeIiEJFhVKylxljKWxJVdfUVc16/Yar62+OjvsW8KxPZsw+fC9dtCLGiHOO3XbLbeh4tb7h1cuXPHz0EHUy4cHJhObBOd45NjiWzzueX11w8fI187MTivMFRXVCuWgwdY0tS4zWKA1agc5DN3eUUujDB30AJHJnymZ9MGEOBkrkDsiLEGI4Gmx3MOsefB4Az6Io+L//7/+byWRyt4vGb+4XkreB593BrQ4ne/6kOv7Ofee4e6z72g85zg89xjAM/Pf//t+PgGdZGk6mFV0X6FUk+IAiUNWGqkzASmmqwlAWlqowVGVBVVeUVU1ZNhRFRVFYjDEYrdJTj4QAIUS8d/jQE4YeP/T4wROcJ8ZwsBgrUBqwoAwKTVQBVCBGeR3ccTKa5N5DjAngHgDPEZBmwBnS5+V1ueqOgGcMgZevX7Pd7Ygx4r3HOUfvBgbfE2JEGY3RmtJarDEUxmKNRhuFLTS2MBS2xNoSawqsLTGmwJqSwlZUlcHWBlVMqObnzE/OqJoZZVUnwKrxGILSRKWJgCak55fm7H3jQGV4vn/t4br8TDgfHyMhBkIUQB1ioH/9/Ah4Pnz4kP/4H//jd4y5f64W3/Fzv9iGEIghzfG8PmhztPju2z/ter/99hv+n//n/zkCnn/7t3/Lxx9/8k867v95LfLs2bMj4LlYLPgP/+E/oNT/Tkfa4Rq5n7t5bu52OzabDTc3N1xcXOCcY7lc0vc9m82GIRmRTdNgjMyv6XTK48ePef/99zk/P2c+n+8N5nvW8cvLC/7rf/2vR8BzOpkzny/G78Q7C3BMACJhiEMEMa5JeT8L4//3axVEAQUxHiCQPYi6u9yrw3+pZLSrg/VCsb+39Pc9ySOAR8XAIUwdgZHak1TOuSPg2XYd//3v/ydKaZp6wsnJKWdn52htGQbH7e2Sm+trhmGQ9fMAOL4NHlW+8xEw7z+zB57H3z0GpGP/HwA1WTsipL0mhvQzrS2HxNihJTAeI4ItShaLUx6+9xhHybmqOJkedTwPzj/hZz/7v1ivlyyXN9zcXrNiCX2Lc/2eBIhqtFLk6SSqZQSeaSyoBF0yxkkLuHxVo5QeL1mp3Ld7QLUHrtkqUkSl2ZsTEZWeiVaZJAQI+LTfhhDkepVOREpJWTbU1YTF4pSTkxOU1t8PPKX/474T0kPSSmONpbAFWmuGYaBtW/zgxhsurGU+nzObz7h8c8EwDGy3W7pdy2Q6lYOHIJ0VFEFBYA8W8u2OTOgB6wqgEuA8XgTetkbytasEnL/fBPzuDxwuGuNmF8NoWWQGd7+YHFuxeeH5foB4fxsxeDz+/Z/SfswxYvAE16IZKC0oqzFGwGVZFhS2EMagLOW9wsr7ZYUtSqwpE+AUkKrSzYQQCd7jfMD7geAHYTvDHjR6n5jQNKFkcIPWoHRmr/eLqFzwwX3y9tMd31NASNArA9LxE4c/c58pmrJART/OE+89gxvonMF5YYKVUlilMChsiGg8OiJWYXAoH1AuoG1A+4AxHmM8yjm869kMW/rNLe3mhu3JGbPTc6bzBXU1oShrMAVRWzA2zYOYxqJO16x5687HhWz/iRAP7zSiIwSEU07QfYzFefdw+d7J9c/Q8rM5WCrTJjcMA13X0XedzDulqaqKqhKmylp7Z534p13vXQDxU/uXasfPIa8DXdexWq24ubnh6uqKq6srLi4uePPmzfi6urqibVu6rhvBYlmWI9t5dnbGz372Mz799FN+85vf8PHHHzOZTCjL8s65v2tWxLf2DbnOYzZRhmQGA7J/BO9w3tEPPUPf4bzDe5fARTLGD5HDSJOpcY6Px8vXecgEKo3SaY04+F0ZYav06KGyaGMwxqTlZIR9h53+nU0pRV2J1+ZkccJ8vqCuJwyDY+gHgg/izdF6/PwheDzsrz0wVsJ4vvWZvTfzfqNz/xzugs4ReAYBUyEZLs65++e8UkeGblU3LE5POT07o5lMKcryHlziCb5nGFrabsNms2S5vKJtNwxDf3BtGQfFAypB8IOKBx4rpQR8EokhGeDswbdWexSl2JM9h3fzlkE0rpVpvB4BT7meQMAFj4/CeoJGY9G6wJqKup7iJ56yLJlMJoQDgyy3e4Dn3mqUzpL/aa2x1lIUBUZrhn6g3bU4N4wPz9qC+WLB/GRBNalBKfq+Z+h6ok+sRAaeShHVMT08PtMEFnXidvO1aKUTmyEv6SDpYKWPgccIBPMx77nP/JcfAsJynzjvGfoBH8S1arTBWpNOKwMghpCOqzBGj5b0u91/929mh8vb/QvXYftz0egPuXkH0VPogK4U1hQUhaEsKsqyoipryqqmrirKsqQoCmE3bYHRwk6O1lqynIWlElbTuwHvHTEMhLSwhhBxPjL0jt51ybKSMVYUkcKmZx+VoKg842LusP3diZWohCEgOe4TWNuPvXePlcNWFwU6MauyTwSct3S9wfkhscFiqOnM3gM6BnSIGKewBIroKXAUKGxUFIAKDlxLv1vSrq5p1zdsV1d021uG03OmsxPqyQxdTjBljS4qtLUp6kAjt6TZj/y3EbgiohGGU8UEQBUJdAqLosbP5e6MvGuM/pgW459jNO1Bp8xBGTs+sVnb3Y71esV2s8GHgNaG6XTGfD5nMpkeMVnwXfPnX0v7rn7+137tf27788dWXheyEXJzc8PLly959uwZT58+5cWLF7x69Yo3b95weXnJ7e0tm82GEMLRcUwCWEVRMJ/Pubi4YLvdMp/POTs7oyzLA+D5Q24pvr2pf5fREqOshyHQdy27dst2s2a7WYs71vUE75IRnrw7McGKeDy3jr2F+z8cgjkllvv40saii4KiqCirhrKWV1FWUEiY1GHbkyl7cui++9NaM5lIyMLZ2TnT6YyiKNntOlrbUzcTbFEKuNH765PwJH103eO9qcw8KO4C1Hf9zB0Sj5jKOI6fDDxjWltcItbatqXve9wwHAM2OThKaWxR0kymnJydc3p2Tj2ZYosKOAZcfbdlvb5mtbxmeXvJ7c0bbq4v2e029H03Xl8m3DLYy8yj/D3sQbPSxETkhLynsneLa53hphIG9CClJ4d65J8Z04e494OpfF6VAtyS/RITJvPZo6gEeBpbU5QT3OAhKprJVJjsO3MN7gGeeYEfB1jqYK0VxhisFXdpCB43DIQUIxNjxFjDdDbj/OFD3t9scM4xmUywRuIACTG5TyM6c7fj7n9wBWnChJgJ3/QBLazRXQpcPi4767ssne9u3/15pRQhBJxzrNZrbm5u6YYBlKYoCsqiHEFpdvspIsZopk3DdDqhSqBMZUvpO1qMEZ/p/3R191mAd771vffx5zZjoKrAWktpLVVZJJDZUBU1RVGL+7iwWGMxNscwGlng8sAWEzP1pcSLOufSmPBkt1EIisFFdp1nu+vY7Da4oScET1WWNFVN0zQ0VU1RiFX+7lvPC1AeJ/HgGcSjz2U30shW3POgDBGdF1wFSmsKU1BZDaEkMwKKDDr3scxag1GKInkOClPIv5M7Hi2Tvg+BIQR8t6a77rhu12xu3tBMF9TTBeXshGZ2yvTknKqZoooiLdqQ7yovWOMdHP0jXWOU/6mEKwUgp8+kBVoffP6f2v48zCeMrjhL/Bivt1mvubm54fr6mtvbG1bL1Qg8FycnnJ8/4NGjRzx48ICmaaiq6v8A0Hnc/k+KDf/nbO8ysu/2R4yRYRjYbDZcXl7y6tUrvv32W7766iueP3/O69evWS6XbLdbhmEY96P5fE5d19R1LWwe+1jQvu9RiTDJ3+37/t7N87vv4RhoHseRH30ybf4e5waGvmV1e8vV5Rtury5Z3lzRtTvC0BODg+AhBlQUciOmtWxc/dP/Dsn9QyNUkUia0d2uhRgwFlOUlM2EyXTObH7K/PSM6XyOmkxRRZnW2byaHe43e0B3d800xnD+4IyyrJmfLGjqKUVRMluc8ujxE4lvNxqT4+BTfHwml3Jo3R5IJnZ2BM4HbJ66AzhVck+rPYjNAM0nIiwDzxAzMSbPoe86rm9uuLy85M3rN1xfXzM4J6RSRl8atLHU0ynz0zNOTs+YLU6wZSXXdgd4vnz+LVdvVmzWG1brJevVis1WDIt+ENJF9ifpD2uNEAPBExPrnY2T5FtDW4stCiISrja4HucGdPq+0RqjDFYbjM7en+xJ9CNho7X02+Adg3M4J9ejMiCPAaMVZVFQ17L/gqLvBryPRGUp6xlmbgmVI6QQrZACRe62+13thxM/MVVKSdyUgArN4Ab6YcB7T0idgVLYsmC6mPPw0SPatk0gNeD6gU4rlJaBJgxlorc5tlzU4eTJDBWKaA4AcaaStRb2JoRxcB3fz/F33ml1fs8Cn63qzXbLxeUV27YDZSirkqqqUgKWDA7vPZqItZrz0xOUVlh72NX7pUClTveJKnfeS3xSArEg92m0xlgjwM5otNL7S1bq6Lj33t54zh+/kRWFZjIrqAoBnE0lQcNVOaEoGqwuR3eJTlZgtkbl5ALkFHFkqzLw9HkyJ8uKKFAnAJ5AFxTbIdDueoa+pbIdXd3h/YAKjhhriqJEGTO6a96+dzVagdLd8c7f923/ZEJ6vd2PJsXLKKXRRu7ZqEIYzkTAqpjZVjn3uAAqTWEMhbaUB6DTaA06EJVn8J7OO3Z9trrX7FaGdTWhnC6oFw+Yn7doYyXBS2uUNmQrdQ84E6hE1sk81vIdZrtPpzvds57pRXa7//j23Qz9DxmD+/PmGOCu69huN9ymDeHi4oKLiwtWyyWbA8ZzNp+zXK4YhgGlFOfn56PL/Z8a8/m/Dgjez44dg637nsX/ycD0bWB29Nd3vKeUwntP3/fc3Nzw6tUrvv76az7//HO++OILvvzyS66urliv1yilRpffyckJi8WCk5MTTk5OmM/nFEWBUuooFnSz2dy7l/y4O0vsVFoB3g75OjRyZQ8dXMtut+L29oI3L59y+eolt1cX9Lst0Q8oL6BTxzCCzKj2/oh8+D0AzX0m/xv/rtI1JeApQK7AFCVVM2U6P6F/8AgVA0ZBYQxGgVIFKAGfcTTU1XiOHJN62LTWnJ6dUhQl0+mUqp5QVjXTyYzpbEFdN1RlKXHwyTDXaT3UR6/D+NoMmPWIEcbzJTAq9ynnN8ZgrMQ7ZtA5kkQpNjKmmPYQxMXedS2vX7/h2bNneO9ZbzfiYnYhYSJJqNFFQd1MmMxmNFNxsUfAeffWmHj96hnb1bd0XUvXdpKs6ySswjmf3PoBYzSFtVRFgVLgBtn7+r6VkAsfUnynoSgr6roGBc4PtF1L1+1QGgor+RSy5wjZYbT0g/dC+Ki0X2utiUR2Xceua9m1LYMb0oOVPbuwhulkwtnihEY9kFCMrscNnj4qtDLEyQyiR2KS888fADzfamnA7rN1BXi6NPG7vqfvhU51w0C729F2HUGBD4E2ZQ/2fU9RlWhrkwVDorR7ceMXiQWyBcpoVM6APhh8xgjwsoVsuGiNSsyn1jrFeOXJd/+CfNdiPrzP7+wGJOnCh8jgI/3gJfki5ASZQN919MOQAtYD1miZcLM5zoeDI+VNRd7x3rPd7thst6zWW3noOasbyRYvrKWpSqaThklTU9eVhD2MLpARVR3c7Hc/2h/a6qbhwcMFla2oy4qyqITh1CVGF2htUepOMoc6iCjJbg3vE+CUSSeg04uLOEKMiqgkxqiaGIpGYyZzTDPj5vqS/uaK3dAx9D3BD0Q/MPGOum6wZYm2xRjXMlr4KoMshY5xXKhDionSIyTPXXYQ73PPmLBWE6PZh30YjdUaoxQWJQtnuoLMeB7GJWsFVmusMgmAGlEA0Bo0RBXx0VN7R20NnRsYvKOPnt5t6DYOFz0YzXR2QjOZURY1BGEy5IrDcR/Aflc6ZEf2Nz3+rvcfE5d83EeM/pAWDlgE4Ii5+HNaCIG+72nb3Qg437x5zevXr7m9vWW73UKMoqCQxtFqtWKz2eKcS4ZxwBhD0zSj1+Ffe3vXNX5/yM3/eS17zO66R++yhIeJOpvNhpcvX/D551/wu9/9ji+//IJvv33K9fX1CDhPTk44Pz/nvffe4+HDhzx8+JCzszNOT0+Zz+dMp9PRIBGjZsvr16+5vLxkvV4zmUx4+PAhs9nsDnHwQ25KgIyATjW6SPd/34NTHwM+CNjZbjbsViu65RK/2aC7DuMH8QghSZ15bUmdM8b5pcPecSQexK/nvVzrAxdsAK9RIaJSgt6Aoi9r3OwEP53hhwFfFKB18nBndjEZ1lGPXqK7xoI2mtl8gtYWWxrKyjKZ1EznM+aLucRiWyvrpjpMYlFH+35eQ7z3eBfG2Eud4txzHGFmsH0IaKUoS9kTopeOyclZGhLLZ8DI+wEhyWxRYArLouvZ7nZMX7+mrEsG78aYRyHGhG20ZYHSiq5vWW+WhCgA+r3JAm3283S7XnP1Zi0soRtkb0hkjVWKkPCFMYZClxSmAgIudAx9x3ZzyzD0woiaAltUmFBgQkTpBPysJcaCGBzRDXTDgOsHSXQtLKUxlFqj5c6x2mK0IQK99/S7DevtmtV2Q9d3aYhJzGtlC3A9s6LAuFOmRU3TFGytY9UPaJWMqOiI0SUvpozbu+1HzaZD2ts7T991dG3HbrtjcAI6N6s12/WGdrtlu9mwXW9QSrG8XWLLAl3YhLoVQ9fRdy3GWMqqFFCTwam1aKsxyXUrTJ9Jkgw1ZVWOWdIqoXUUGMw4s4+mgNrfw36RO9iNv7PJjhYi+ChJGYPzDIMjhIjWhuADfT+w3YlMQvABaw3z2RznfIr7jOO1RCAGYVG7tuXm9pbrmyXXN0vWmx299zKAUwxpaS2TpuFkNmE+mzKbNgI+S0mg0NqMYHs0At8CTn/eZlXXNWen55SmpLQVRhdYbVEYSNlzmbW+228qpriR6PF+EODpZOLF5FrIMC0qgzYVumjQhcQwlsNAOdsQtWXwgc3tFbvdGoWH4CVBKUIVI0UEbcwxG5wX2MwMxJgSaPbTYR99mt3kue/eZkYlntcK8Ezxu1ZpirR45KSizAkYtc/6z96tDFILnYCnNlgjRlZUikAQ8Bksg7f0rmfrepZ9Tz943E5jt1OGbocfBhmUadgrle8j9+sefI7yS4f7n1Li3rlznzm+87Cf3tUOAcKQDK/smiyKgrIsD8Dnd43BTM+KnJP3fnSl3t7ecPHmDS9fvkwJIpf0fQ/AZDJhNpuhtMY7z/XNDbe3t+Ncz4kjdzexf23g7TAjO78ON9+8qd75Fv/nsJ7fzWoexdvB+Jzy7zncabdrefnyBb///e/57W//gf/5P/8nT58+G5950zQ8ePCAx48f8/HHH/PJJ5/w5MkTHj16xOnpKYvFgqZpqOt6PEdOhH3+/DkvX77k5uaGoih4+PDhCFD37fv7W1y6/ghEj/d6GGMYAy4GXBho+5bdbku72eC2W+g6TBCZoSBuE2KUuHYdswcnEtUedI7jIeYdMMcD7j1eKrmk9wayxN3H4NBDT2hbfNvi+57gHCGNxTEBSMvx83GUOgSdd4CnUkyntVy30VirKauCqi6pMnmiDVqlJSwb/RyvK3m+hhDHhELvAzYlOwsQhaKwwjgOA9poYmwgBqLdj6XDZzEaOzDuE1oZrIWqrmkmE6q6HkMMvffJmychCsYYiJGh71gtb2nbLcFHCquJj2eMCzOiGLPb7nCdePoKY1FFgbGynwwoSdMxBdZWGFMSwoAPgX5o2bUScmZNgS41ttTiOVMCHoMGYw2msPihw3c7tsOOfrPBKfDWEI0GoykziWfFW+lCJAw9/XbNdrNks1mz69q0oST8U5RMCovvO9TgKGuFKUqiUrTep2GXmU4P4+tHMJ77B5ImTnK7j4uB8wxtz2675eb6mtubW5bXN6xubtmtN/S7lq5r6bteXPCFRVkrTGZyFbuExgVQlpIJXZRom+I+0sM2VhjOwlqqumY2mzKbz5jOplSTWhhQJVaHRo1AaHTfsncv7O8tb6upW75vLVH7Z+B8oOt6ttstk8mEpmkS2ySxQavlGh8CVVnSD27/ZY4XBx88y6VkYF5eXXO7XLPtOtpuoHceydCtQRuUh103EMKG7a7l+tYyqWsm0wnTSUMzmVAkCZ9kikKeyP/EZm1JU8/RGMleUwK+OOrTAyY3fzFP8uAJKWDb9cJ0ktxFUWli1GAKjK6w1ZSimUnyjC2pgGZxhi1ryrLmwhbcXkSca1lvd0QUISp8iFRBko+sPQQXe+te4qHSonYwruN40WocEXvwdjwGirIcg7YFEOgEPDWFFuCZrXajFEaJbq1RisxYGJR8R6eXMRhtUNmNpcXl7Shw0dG6gtAbtii0CwStBD3GAMETfYCkRCHTdG/g5Ls5BKGHN3T87t1JcODa+p42xkCvVqzXa5xzaK2Zz+ejS1OA03eMx7RZBu/pUyznerni8uqS169fc3EhCSJd16GU5uTklOlsynQ6ZTKZpLCeSFXXGPOGvu95+fIldV2PMZ7WWsqyfAeI+5dq+z5p23bUmtxsNpSluCgXiwWz2UwM7X9lgPn727uf+SEwE0DRjxm+k8mEqqrRWpiu3W7HxcUlX3/9FX/84x/57LPP+Oqrr3jx4gXDMHB2dsaDBw/44IMP+Pjjj/n44495//33efTeeyzmcybTKXVVjWoHh30peQfiNTPG8N577x0lFuW//dC+jykzeu+IOgSe+XdhO13wDH7ADRJn6p0DH1AxYlAEpYT0QAwyFUSBQpjBODKn+0497HmhPoWM2Lur82o9sotKIGj2yiQv/OgdCiHlHSiSZqMcX9bZ4wTAu8+3tAUhpvOTk6gc3kssYgx+VNnYr8yMDGeeq1orib/sO7a7LW5w8myMGZN/vC8AxTD0aGOwRiUFlOI7gWeMWXJP+tP7gB88fhDgTZS0TaMMo2keFdE52s0K37esb6/HcVKWBf7Xn1DY/TpTlSWz6ZROafq2lSXcewn+19LvWIUpLbowBAW9d2zaLdu2ZQhe9itt0aakLCY05ZRpOUVbQzSKoANBB1y/Y9husC6i247gB9QwEHpPT4TCoooSVQa8LeicZ9t37Lod/dDtYzwTI2u0MKa2sCjAuYG226Gdow8Bn54hOu25aaztEcJxewt4ZitmfCgjdksBxCAp/T7gh4F2u+NW3fDi2XMuX71hfX1Du9niu8RspWBcZQzKaDACKjNLGLzEZVmbEpeSK17cmCZlhQvrWVjRhpzNZ5ycnnD24Iz52YLJbCoSPyTKP1t6aVfNkyRPwrfv+YdtrtmSDFESifrBUTgncR8koX3n6VIwulZ6ZH4Ouz+mAd51A7fLFRdX1yyXazbbHd0w0PYDbTegjZWsQmWISuMihN7Rdj0KSbSZbHfMZ1PmvaNpaupSknxMij3MQdf7k/+A27zTjLaUtoaoIGgEsB/GQN2RDjm4Twng9njvknt9r4KgVGY6C4xtMOWUsp5TNjN0UYKRZKZGK0zSvYze4/qOze0lbbsBOmJUSYcyUpaBEAR8Cru1B4IqOaqExdv/PHq+5M/eFw2rkoUbJCNciQElAdw6CejvXUZGCxuqlZYYKQJEj0GAqE3f0SksIRHrstgruTYXwcXIECNDkFcOgO+6HX23w1UDxni0jkStIWu2jWEPx1B6f2f3DIbxrbug87vnh/eetm25urrizZs3DMOAtZYnT56MSRx5AzmSNAkH4yaFY3R9l1jOW64u5Xiv30iiyK7dUVjLZDodQa1kr9cjQNBaNodXr16xXC55/fr1mGDUNM2R5+Z/P2N4/wSUuLKOi4sLXr58yatXr7i+vqZpGk5OTnj//fd5/Pgx0+n0iKk79ty8q/1LANXvvqbs/o0prr3vO25vl9zeLtluRS/2vffe4/T0lLIs6bqO169f88UXX/D3f//3/P73v+frr7/m9vYWYuTs9IwPP/yQjz7+mE8++ZgPPviQJ0+e8PDRQ87Pz6mqStzq6fzqYG3MY3e9XtO2LSBi+I8ePWI+n/94NzvCePrgk2F3kHwjNz/uASGId0NcyI4wOKLzEEJiNdXo1bNKScScC8TBk7PbldYYZcd+DXG/vupExqDI6RTJZa6TYSweGqKwqeik/5jQZ1QCCEOSGkIJixkPhtT3ZbabtB4KcxPo+5a+3eGqWgx0bZK0W0zXmmPy90Ax90NIIGcY+uTxCGgrwFO8bnL+fugxweB8QREKYrRHxzseh3H0nGUpP+89rh8Y+g7v9kVThNgyqKShHGNk6DqGrj0C33VdHxsDCBtZlpYwGHyvCE5UXRwBjCbGIHH7ZYGtSomd9MKEd64naoXWRZK7qiiKhqqYUJcTtBHGkwKUBWcsQwBdt9i6xQ9bvOvwvcP7nhgLPKLLTXDsnGPT97R9iu0kUliTFGokBHJS11JUYVKjrSLg8T7igkgsqQP0RRpTo4Vzp709ow5cUCNPkh9MSiKSijIQfaDbtQyD4/WLl1y8eEW33uLajjikpKN8TKPR1ohWWCFVWlCZXwo4h0jR9MN4Dfl1GGRsjOGqKpgt5mzbLe8Fhy4MZVOO9xiTwOr+BjKr5UcPar5HneNdvmdtzoMsD1pjhH1V2khMawh0XUeIUFYy6MqixGgzWrikCRSCCOuu1mtulis225airJgai7td4pywxcYUEBlZGmvEJeHdIGLu25b1ruV2taa5vmU2nSY3/ITJpEkam3sX/P5OftxGtI8RSrZyjGQHrID7PdjPg0z6OwVtJz007yV4Ort2hWS0KFNj6hl1c4opJyhbJ3F0iaMx2tI0czhTuK7D9yLPddP3tIMnhN2ewUz9HKMlxog1KsW/7F1MwEEBAj1OlhhzdOQdsd3DvgiyOMkUkKxAL/YUIR1T4pPFzW6UGRd4caRIGIBGEYPChYgL4iYKAVwAR2CIjp3v2bmW7dCxGTrWLgVxFw5HQVm9wZgaYxqUMhhToI2RxTcH4x9sEsLuqlGrTdaF47EQD17SvtsoywoTWT/xxYsXfPHFF3RdN272mTW66zL13o8qF6AIQcJ3VqsVFyl56PLiguVqRdu1aK05PztnMhWWUyXQ0Pcd1hqqqqauGx4+fIi1lr7vx2o1z58/ZzKZMJlMRmm4Y+D2L8cieu9ZrVa8evWKL774gj/84Q88ffqUi4sLyrLk5OSEn//853z66af87Gc/44MPPrijKwn7J/aviw29yy4dMobDMNC18ryvr6/55ttvef78uYRlWctf/PrXfPLxx8zmczabNb/9h9/yD//wD/z2t7/l1atX9MPAbLbgvUeP+MUvfsGvf/NrHj16xHQ6RWvNerOhrCsm04nsPclFHEMcK4sBDL3j4s0Fz188Z7fbYZMe9dnZ2ZEawjsTU+9pIVU0uwvKjoyusWBFGBP6EsrbezCAsqwopxVlU1OUJX3bsVtt6doW7wZxCTc1IGOp6zox/Aore5AxxBjZ7SQkzhaynzRVhTWGkDQ1+97hY0KJSo24IajEtMYgsseHHjW+B3jGiHM9WhuKssB7x3rZQVSUpfStLkoyqTMmQaZjZuImH1vmrhBSwouF5JnPq1ZK/lFxDAE4HHv3Xev4bEIcE42id7hhR9+tcf2W4FsIDoXCaIvWVkIf0vdzhbeY9kgxso/noneDEAV9i3fibg/B47sooLIoqcqSMskTer/FB4ePDmUiVVmiMagoeRVGFxhdYpRFoUXj1aVYYucxITKvKhZnC8Jgcf2WzTay2znQAdRA7wPOd+x8YDcM7FzL4AdsYaiqCSeLBbPpVNRk6obZZMq8mTCvJhg0gw/0vSMOAj4zPgw+En18V6rEu13t+4dyOEmy/mIS3U6lNH3Xsbq5ZXlzi991xN6JUHyIo2an0irFbRqZWIXCWIU2Rs7hA1Htg8clCzpZP2pv/cgQi6w3G7TVVJOaxfmJ/C25e0fQmX+mvUV0d9PgUDkhKY/xH4I898NbGYMthNbv+j7pe0r1GlsUEGMqEXqcHRljxHnHZrPldrlis+sYAkzqCh0i6LXEtvUDwabsM+8IQeIzlDaSwaw0LrhUKaJjudqwWm9YracsFjNO5jMmk4amrikKSWA5Vg34cS0DOqIadbz2f9uLsEvLHZ4XYCfJQEmjc4w/VBplC3Q5oajn2HqONhVRWWH8YsT1EicigeIT5icPGPqOtpVSa/1uTdt3aN0e3dfe7kr/pWy+8SOZ1T+cFEod/H4Qk3tw1EMpDgFxAWUMDjEKQhQXjM5sg1IJbCrA46NMSJmcAe/keN4FehcYvGeIni44dr5j5zpaN9AFxxDBa4NxgaAMxr7BmIqmmWNNQVk2YtDpKPeby4OlOZiB5whGR1C632RGJip7DUZD4/5NN7MDu92Om5sbnj9/zpdffknbtkwmE95//32RzAphBJx937Pb7ei6DpcSExUK5xzb3ZbbmxtevxEJk9VqhfeeoixECmexGFm/7XbLer1hSOEsTSNgLEuXLZdLbm5ukov2YkwoyVZ8ldyux6zh/x7gludKrqDz4sULvvzySz777DM+++wznj17xsXFBcYYZrMZl5eXY+JM13U8fPiQk5OTEdzvs34jowD1vxgGPR4rR6xSCGOM3nK54ub6JkkhvebLr77k2bPnbDfbFJMrXrFm0nBzfcP/+B//k9/97nd8++23OOc4f/CAjz/+mL/41a/41a9+xS9/+SnWWlarNVdXV1xeX3F9c03btcznc6qqwjtxn5ZFQVlUGGMYhoHXr15zdXlJVddMp1NmsxmTyeQIKP+YEId3Ac/876P3slEfQYVkgWYQihAPk8mE6YmEC2w3O/HXKOg7zWQ24+RkARGGwbHerFFtK7I3tah+hJRhH7uWqiqZTBoW8xnWGPpdy26zw4edkJpG3wGfErmnMw4grZNKHVf2ua8fYmC7XlGWMk7d4FmvdoBiMplSFoVINSWWU2fG9c6eP54nkTdZghQlV5cB51gaMmOBFGubvz96IA+whvye8Eb6TgwDfmgZug0xtBjlKG0Ea6nrCVU9RdsSjE4s7HF8clUWo0TROA+CJ4SBGB1E0a32zuFDQFlLWUyYNhMmzRRjKzrdJrzi03eEjAljic0UruGcGOFIqeloAtG1qDAwrS2z6QLlC4besqxgVUaR7APalOE/BE8fHFFFirJgOpmwmM95mCp3VVZi9cuqpDQWgyG4IIUAokuVjGKymTLDr3448Dyk6oXhSnZEYjaC96mTAzEkujiI6z27H6PZM5kRYVoUSiaVCygd0EZo6xwTEUIYqyTkTSrLz2QQMW5ewaFaxXa7Zbfb4b0bXZXSjsHVyPglhkcYrWML6Pva6I3PHZI6N6T+cs4xpL6Q8+9jHfLFyKDxdF3Pze0tV9c3BKBqJihtkwaXSClJJpmj3W3RQLezFGlTtcaOcUo+eLq2ZbfbsWs7bm6XTG8a5tMp88WMxXzGfDphOhXZirdrz/8AtictOAmRiL7qQfxGDiqPmTY8YB+DF2rfj5mZWQPTgDbYsqGcLLDVFExBUIaIThl+ntV6w3q9oa5KptMaW9Scnb9HuxNJitsrxXbt6XoHtAe77SHwTIVZs3t1PxyOwWpMAz5bKffMGO8dzg9ELwyF1jrJQaX4TS3SI1aRfreju613js61tF1P1w8Mg8ho9ClRrR0cnXO4lFzkVcATiFoRtVx/ROF9T9uuiTcaY0rmc5EriTGMYsyyOOe6tHvAmV8j25k7YXSr7ROtAjEVeXh3elFmWFarFW/evOHVq1e8ePGCvu9ZLBZst9txE+77nvV6PVaWWa1WtLsdzjmUUrhhYLPZjp/xwVMUBYuTBfPF4ihJqev27nhrLd77sbRhBmMPHz4c2c7scq+qakwwOjk5GV14/1T5nD+nOee4vr7m6dOnfPHFF/zpT3/im2++GfUnJZZVjezwzc0Nr1+/5ptvvuGXv/wlP//5z3n8+DFnZ2d3FC7+ZRnc3A5ZPjFOWjbrDZdXV7x5/YanT5/x7NlzLi7ecHFxwdXVFZvNlrIsOTs749Wr16NR8/rNGz7/05948+YCawseP37Cb37zG37zm1/z61//BQ8fPqSqKl68eMnvfvc7vvr6a16+fMnJ6YKPPv6Q+WJOWZa02x3tdkfTNMyns1HpYHA9SmsePHjA+++/L8lq6nDB/3HtXcDzPvZUijaofQnMkXnbJ+woLSFntigxxSCha9ZifJTiHc0UANP39IPDh/37VV0RY6TtenyMlE1NM50yWywojWGbAH7bDXgXRO4wh8apfRhTSC4hreI+KVHt9/C79wVIst/FG5rJFKMNvQvsNiu00uxmG6bNVJIrbSHyRPpw3+SgoEguixvSfh/ROjGcJMCpIAnCJXJDPutczzBovDeJNTXJWJMg1hgjQUWiCgQv6jUuOoJviW6LVQPTWhFKQ1lMOH/wmNPzx9SzE0xZ40JI1aUyISHKJcYcwyttFIXVYA3BavwQUQTqylJPppw+fMT85BFlfYLzUOiNhB4Ez9C1tK4jBoWmwgSNb+b0WhO6rbi5VUDZiLIBHXqK0DOdNDxaTLFUBFdzMi9Zbhu2fc9mGFh1A7Ht6bYSqtVMpXDAw7Nzzk9POV0saFJIRESy7tuuY9sP9F1P2w10QTGYgqqaJE+bJB2LX09KW99t3125KDGDRGE3fRJwdqm+rVLqoFJPSuk3moglKi+BajEbTzKJszth1AlUSligI0qc/b+ze+SA7cxAVaR5pFrMeN3kvTT7F/PsPmCzfiToPGyH39izwXtB1lwb/AiopnPGGOkSw7FardlsdlTNlKIUS1wAJymQV9xobujZxiiSC0XJUNfUTUNTN9iioFQlwQe2W5GxcoNkfW63Oza7Hdvtju1ixqKdMp1OmDQ1xZ0EnO9bWGOMksSS7ldn5iy7R1JnHDOepDJeEkgegwOS1apEN04XtSQT1VOUqcaCARglKgGD4/r2llev3jCdNDw4P+XsZMrs5Iyzth0rZw1DTxha2l4yGff4KumdyvQlcnDPeYyltO09eA4EL0LOErt7RKOK68O70dAKQYnbgoBSAasihSIl48kxfQz03rFut6x2K7Ztx67rRajXBwGkg6dzjt47OaVRouqQlR2MxDyjs3TJQNdt2G6XbLdLptNZyrhPMdV3gOeYUj8C0HyN6WcCoYEkSK0S56lkAX8X+Mzxcbe3t2NlmAyYchJPCIFdApiXl5dJEukNt7e3Yjg6Jxn9ITD0A86LWkRVVUwm+1jODDi7rsM5R9u24kFIVYzatsU5N4qDn56e8t5773F7e8vt7S3L5ZKXL1+ObvYM6JqmGZOf9kvCPxdwe3tuxRjY7SSJ6OnTp/zxj3/kyy+/4Ouvv+bi4oLNZiNlQFPWfhY3z4D84uKCm5sbbm5u+MUvfsFHH33E2dnZmHyU5erevob/fWA0g81cWnm73XJ5ccXr1xc8f/6cp0/3lYWyLFYIYWT3yrJkvd7Qti2vX4t81vW1JG988MEH/OpXv+Tv/u7f8Ktf/YqPPvqAGCMXFxd8++23fPbZZ3z++Re8ePmCyWzCs+dPmc6mlMlNPbQd06kwOrMUK3z+8CGPnzwZJZiqqvon9d0heZL74/AnHDOoYu8md3t+heymSx66lGirtU0eDYMyktldltXojTNFgR4GbFFSVBVV3RBjpEigtShLyrqmnkworcU7T9t2sr5E8eaNWtt6/zzz/ppXxcwYHorr3wWeMQR26zWEQF3V+KAkW34Y8MOAijGVWK5ETP5Afk1B8uoNwlQnpi9Gj9aKIpfDVfuqRyYZkNHkGOiYtDl7jClSIrOlrupkbKqx3GTwAlQH5fFDxOIp8MxKg5vVoArqesHjJ4949ORDJqePKJqZKNyk6/MJi6gYMGHF4fzXyciNhSE4y9AJ1ikKy3TScHZywsnpGUE1tK2j1AVWGXRUBOcY2h0xRAoTiL4jhA7vFMFl/IXEBvtAoTxGR5rKcLJoKHVF8Jaq1pS1ZbnboXctXmv6CJXzOKXRdU0znXF6smAxn1GXFUbLfiwJReJt7Lc72l3HrhuItsJM5tjkudp7kA8B0HF7O7kofXgETglcSOKMSwKlHcS9ZlYkMgrRFoaolWTephruWceQGI/qdo4B1unlg0d5tbduGL0Q4yTOOqISu2JHQOcP9APfBSj3oPYe4HkfH3w4gbJLhIPSXokXkovM4DdRzvmYMZVnTG7a9XrD1fUt210rcknGYk1B3/UMg5NKCHVDUZR4L5Ns6PskrdLSdy3eOYxSNEbKjZWFqAHIRhrwIbJrO7FO2o7les2kqZnPp5zM5izmM2ZTWdyNtUcM4L39Ni6C8opqXys39z/Z1R5Tv0ZFFkaOcSDi2CcTGXRRU0xOKOsFpmjwQdEPPdpGysIwOM+u3XF5dc3TFJ83OEddV5yenrA4fUDXSikzP3jWy0v6bs2u64mEvQSNlpcLYFQkoo/AZwZXkSAujeAYuh27zQ1dq4H5nXEg4yw/bxUVLsp3VbQCPDVErYnBEFRg1/XcbjdcLW+4XF3T9r3otCLJToNPC1eQhb0oRdO2rErKqsAWqXCDOYi7iioZOA7vdgz9lmEQy1Ql1iBnSx4ZWklgObOdh+BznGsxGXiK0ZV1H/A8BH03SWPTe8/JyQlnZ5LscX5+PrJ12RX/8uVLLi4uWC6X9H0n4SlWXN+i1DBNSUOTxPCbt1z0fd+PzFgGZrvdjtVqRVEUTNMxHj58yOXlZTpXz8XFBcB4rLZtOc/upMSU/q9sOdzg+vqar7/+ii+++ILPP/+cV69esVqtcM6P7GsWwAdxQeZ+3G633Nzc8O033/DtN9/wq7/4C37zm1/z8ccfp1rY9dEzgh/nJv7nauJOX/LmzRtevHjJ1199zZdffj1WFVqvN0dGSh43OU6zbVuur6959eoVt7e3FEXB+++/z7/7d/+Ov/mbv+bXv/4VZ2fnKKV49uw5v/3tP/AP//CPfP75Fzx//pzr6yuuri+5ePOasizkVRTURcGkaVjfSsLZyekps8V8DMXIzHp4R1GSH9IyILvr0oV7nsXB7/uQJjFmc2iS1qLnbIxoJoeQ5j+JIcyAS+vkIRHZHF0YKaubPIqyLopYvCkqiQm3BUpbYjJYRvCXEx/VPUTKD2wKKCLEfqBdrkAXWKUojaEwmtJa6rKiaSZYI/uRTclUSkUGJwk+u3ZH2wZCEGF22fPMvu8S25N1nItC5rHWYkwKWLXUdcl0Mk1xwDZ55cRIyuCq2wYYCia2YFaUxOmMiVZgSqpmwcOHZ5w/OGNyckZRzxh8ZEgC8Fk3OHiPX26k0lR+tvIk0bbAlhFtW5RTSafbMKlKJk2F8wXBxaRrXmK0HXMFtFHUpaEqIkr1xBQUq0DW6+Bx0VMWKhV8ES9poZMsVrBS4tkZ7JCE6svIPBpKD7quKaoKFWG32dKut6iYE6cH2rajbXd025147gaPbWZMTUHj3YGnMHnFR3/1cfvO5KL8jRHYJT0vEG3HZjLBFhbfJ7bTGpQ1kqmatCtjCCnb1+4TCdSBUE3cn4cD4DaCznh84dl1rc3eKsqT/IitPSLy1Iihs1bX4Qz6oUHjh+BzvPR49xr37pHDzTqEQNf3rFZrbm6XDINPi4hO2mQ+bTqSJLFnDDocA8DodoowlqU0WrTFRP4gJj1Pua5hkPiRPrFDbScsYd64ZzNxNRmbKue8a3M6YDyJce+6FcQizy11SGakiZL575y4k0Pw6KhR2qJMgSkbimqGLSXMIKY4meAGolJsdzuW6xWb7YZd16G0Ztvu6J0DbagnUxan57S7Ld1OgrVDGAihZ3Aix1P0g+i/apPAZcRgiAehFvmaIUpBAD/Qd1t2m1v6oeQQeI7jUTKMUgJAWlBCQBMZdMRphTcGpzwhDqzbHZfLW97cXHO5vGHwLkWQGqJSOB9wyVo0xmApMCmcoixSKVKrUUZAckCKFkhNAo/3Pc61uKEV6ZCQjMCwZzxH9xUHoPsQgELSEE1jOjvb1WGc59vtEPAtl0v0gbvyo48+oqoqVqsVl5eXvHz5kqdPn446iev1mn4QF2fTNJydnrFYzDk5PeH87JyyqohREpd2q00qzJAyThOzmQFKvo6bmxuappHsy7rm7OyMhw8fslwux/rbFxcXR0ycc7KZZWPlnz3haJwXHCVhffnlV3z9zde8evWS9XpNiAFb2FEFYNzEwt6Qcs6JXvJ6zc3NNdvtRkIWWqm88+TJE87Pz0fWcP/c8wg+bP+8YDSvvVkT8/Xr14ndfMq33z7l22+e8vTpM25uhOE0xlDX9cgyvv/++zx8+JC6rum6jq+++moUc48xcnJywgcffMDPf/4zPvnkEx49egTA69dv+PLLL/nHf/wdf/zjH0fQmft0vVI0Tc1sNqE+O9vrIFfVKAdkUknoXDHn3of4T+i3d8WK3gWl47wjivt4LKeevH8oSdSxJYPpcV5IG+fcWL9cW4sppcCKC4F+6FO8qBLB86LE2AK0GY3fkNdzldeKDDpzhvmPvmVA5tTJfA4qJfSZgspYysKmsLOW3XYjFYeqROpYjTUCGgU/J+NLKQZrcd6l+M63x/Xhuo5ir+yCyBk1TUNTV1RlgVJizLkkkJ4lnpwXKSFrLPPJlFIrFrMFURfYesbJyRmz2ZxmMsXWU5xLwNPv9zrvHJvlHUE+KTeESuRHJtFi8Axdx3a9xBY1Sk8JnlRsxGCNlFdWRUmhFfPJhNmkpqksVhtU2I+bwXu864hGEo+KQjTSrdaEweMGmzSjIZfXk8pGuYSqQflAu9myC5IYHH1AKSSsr+ulUE7X0Q+OwUeiKUfJqQzoxpwbdf++cQ/jmTJ+84Yc4yiGmxfAqq6YNRMm0xll09CHIDJJKWg/xjhWpgleqoaURYnre3zwslGP4/xQ70kdULWZcN3nZB8Cy1zVR+JAcvxHvt4o3s/x+6MDfjTd9vEzcr7vg54ZYIZUYmvP0uZz7j0kuZ5rCDH7JCQId+i5Xa5YrlaU1YSqaggh0g+yccbUv6ooUMj3C2uJtRxvt2uTW2pH1iqNILFuN7egFHVViRs9M9BKYnK892zWG9rkhl+vtzx40HN2dsJ00mCqMjvI37539u4UcbsrgpIFOz8dNfaRaGX6IGNgcBLLGIMkCBWFprQ1RdlQlDVKWwlIRsTf+2FgvdmyXK+5vl3hfGC+WFDXFbYs8UFkqIy2TGcz5osT2u0G51sijqFbE0M3uvkGK8DzyGMe47i5qORaJkrIiBu6BDyX9GECJXdazD1CQhTJNa1kAVKRQSuGnDSH42az5uL2huv1ik3b4kI2vjwhKpzzIoZsDKpUqCDRMSpNkvwT+Ro56lmRMk39IMDbd3iX5VASCxIVKqi9TEo2vPJuksDnXvkiV3YK42IW7hhRh/2YGc8cb11VFScnJ6MUzjAMvHjxgqdPn46g8+LiYmQbu77DGMPp2Rnn5+ecnZ/z+PETZrMZIYZRF/Ty8oqyKMZ4Rq316MrPDPZut+P6+pqTE0k2zFnfjx49Gs+32WzG+tvL5ZLb29txXSvL8o7Y/T9Dy8Z7kDJ6y+WSp0+f8tVXX/L06bdcXV7S9y3aaCa2IVSRvpRSkDHGseobJGCsRQcZIl3b8vz5czabNZeXF3zz9Vf88pe/4hef/oKPP/6EBw8eUFX1/3IW97CFELi9veX58+d89tln/OM//iPPnj3jzZs3bDc7+t5RlgWLxWMWiz3g/OCDD/jwww+YzWa8eiWySVlaSmvN2dkZT5484fHj95hMJsl7tGW5XCYh+d/yhz/8kWfPno1rZNaSLYqC05MT3n/ymE8+/pCPP/yAk8WMpq4Yhh4fIpNJk8ZjT/B+lPX7c9uhIsuhu/2+cTWqT5D3mAhKNnuRE9RjImzwEWsKppM50QV2PuAGx2azwVYV2mqKspSYRUQXttu14MWAqUsJQykKWUslfC6XaIY9+EyJkem1h2/33+e7yBtbWN7/4MNEFhUEpfFREdC0ux2Xl2/oh575fM5sKgldTd1IRaOk5GK1YVo3NGWNj0GknbL6/QHhCQfeSLWXjFJpT9ZaiTKM0Xg3iFt9EBKm6zrarmOXpJFctyUaw/TknMn8hBjBY8DUNLMzTDFBa8ky1ypilJACKBH7Vzocc18IBtMBggtEFwQMao3rOpZdT9+2TC6vmJ28R1FNCcmzWRhLVdSUytOUBWeLU+azE6pmhtF2LEQz+IFh14kOp4lANQr2GxQuDqnYjoDI3g3ibQtRZJFcxA+DFDRwUs7TO5EEK+2+QlR0UsHJKA1Wj0UAVN6jiAkb5Bu/Z1zcN1gOGbyYnqqKQvVPJhMWpyfMpzOquiYag9rt5CEXBUVTy2askztWiwCsqUvZLrtulIrIYI6Ez/JJ8wM75BxUAsMpnW7PzEbE/Tkmv8SRgTtmLg6OmOnPH9ky6BRjNFmGRHzMGZuZec2bdEjfi2x2W/quY7Pd4lygakySfHH0qZKBkIl6xMfGAMVegNYlxtgleaK27QBJsmrbVjaYqpLrkGkicX9KoJLzgcFHfNjhPGDMyIgYY1KM4DvGQwx3SC8vFlxalCKSjJnlFHI9XOdEbiH4gLERU1iKckJRTtC6SALyyEJhoNtsuLi84vr2luVqQ1Sa+Xxfsm61XvHqteJkPqUpS5rpjPnJKf2wxQ0t4HC9GAIj42rcPrubPUOeDR7pIKkH7voW1+/ww45wZ3qMWE2T7j2NNZVI4RjwPsXk5fjNEFm2G253W7Z9Tz+WQhXR++AjLjHTlBWF3efjj+7vMawhy1ClBDnS2E+WundDci0dAE+dMvqTpZ0X5TwH9pg2JReR7mXkXdJ4fsfGkvUnc9zlbDYbhbwXiwXX19dcXV3x8uVLXrx4MZa6dM7RDwNdkknSxrDZbAghpDEiBqwtClAiJB1yQYnE/MUYxzjPqqrGRKftdst2ux0z2DMQvrq6GrPct9stXddxdXUFSNjQdDodk03eFrv/84GoeB8GNps1FxcXPHuWq+NcS4xriKL5WhQM/ZDixcOYAZ5LfhaFRZUlRTJqQvBstxsR1N5uub29SWD6htVyxUcff8zDh49YpMSst8Xn8/3984DsHArw9OlTfvvb3/KP//iPfPbZZ9ze3tL3PZNmynvvvcf5+QMePHjA+fl5Ysef8N7j9zhZnOC959mz51xeXnJzI+Pk/fff55NPPuaTT37GkyePUUpxcXHB9fU1r1+/4bPPPuNPf/oTL1684Pr6ms0ms+NQFiXz6YxHDx7y0Qcf8MnHH/PJRx9wdjpnMqkZ+p5uGMDUeC+eoc1WEpyyyPxopP5IY+RuAutdOR95AnsvWgadMUnzZMZuX7tcvi91zxWu7+nbnRRc6HtsVVJWlezDQ0nfd6Ix2Yr8XFPVNNMJk8mUqm6EVQ9pXc8u23xOfQA2M1/zZzStDfPTU0ChtOhRBxS9E0+c9wObzZLge4Z+y24rwLgqa8pKyjNLFZ9UuERJgY3UOdKvSNDbSIGovfdOlq5A9J7gAi57tlLsqABPebV9T9sLAaRCEN1NO0sZAhofNVEXFFUjFX/S+CAG0JGYDXxARf3WtCqtZVpVeKNwCkqEpOjanSi1bNY4F1C6oA6eEHUS15cKRcqW1EVJU9ajAaEz8PQDaoDeaVQniVfWKorCUBYWFSNukLKcgw90TnIKhhDwRFxM6ipRjJFR/tAH2S+i5EuAFEYJaYzExIznkAzxWucJwDsHzlvAM2evH39XDlyVBafnp1ijk76ZZteLa1SnjLuiqsU68J7gZWNW1qIKCymJICRGTIWADiEBufScwt5VDfsJumdGpaxgFokWhjGOGW8culHhwJUKOdkD9gvCD3Gzj5ZoyjYkRrSCQmmijqlee0xWo0dljUtkA/fes15tpaRW10vwd9o8hkFi1/YyD/ms8mCN0ak/3WgxZys+BM96vaJtu/H7OXt4GAYJh2jqtHhalJVJGaJi1wdubrfEmAyGoqBRFfdtQncDyHO/HzLVRMRi8mHcOCESAwy9gN4iKupJQVlPKKuGgJbJih6rTu3ajlevX3N5dcNm13J6fsbp+bm48PqOV69ec3VxwccffsgHT96jrCfMTk7Y7lZstyuc72UhCMMIfgc3jItUZreUygu5sIAaJRZwv8O7FoXnrcpF7FmncYRmrTix0CRkILGtDtgMA8t2x84PDDEmfdKYCjB4XO9wgzzbkGKOIkkTVIsBFwwErTCZtI+Z6xbEG7wXC95JFTC0RsUENpO8k4oHjGfeSXLIi2J0u8fEPmfQmdnOd82THLOYgXxVVcznc8lEn89HCaAsbbRer8dwkayQMTjH1fU1zWTCxeUl5w8eiOB7WYqhu1jQtm1ip/fZwRlk5so+GQBvNhsuLy8BRlmc8/Nzzs/Pub6+ZhgGbm5uePPmzXj9WmsePnzI6enpEYv6T2txZI937Y43Fxc8f/6CV69ecn19Q99L6IBWOoXIaFG8uLlhs9mMrvZ9kk6HVlpYmxzHi8zP7XY7JiC9evWK589f8Okvf8lvfvObkf28Kw90eJ379uffc9d1PHv2jM8++4z/+l//K19++SVv3ryhqirOz8/5+ONP+PnPfsEHH3zI48ePx6SxxWJO3VS0u47nz1/w1Vdf8fnnn7PZrFksFvz617/mb/7mr/n444+xtuD169c8ffqMq6tLXr58NRo0Nzc3Y9hFjKKlOJlOeHAu5TPff/99Hj44F6WP2YzZrEFrMQDXrcMFxWaz4erqiqqqqOs66SFXP5r9PGQ7D7O+D/s/xmRCjiUn816237wzczfGrFtLUVgKXdBuN6nOtszPoiiZTWegFYNzrFcrVoPHuS3BeU4WCxbzOc18RlHXQKSPEZurCWpRE5HYzmS4ZmLhgBS66z36vn5QZZn6waKNRRtDDWmvELbVDTtWyx2bdK/WllhbUhYCPgtbYWzSKU4Z98oImNUqg+Y7QD+mvgzC0mUZohDdGFYlrnWHd07KRsKoGqN1kQBVAl5REZVokBst7mlrjcDeKMQLUYB7uGcezZqK2all6PskTF/ihopuV9J1Le0gWMq7jr7dEjD4oUMFL8yt0kn/OZ/HjISM9gpMZPAFg7NUjaFqDGWlKQpNcFIgoHeBXT+wHQZ23tEDXoHop3jQYI0QRCradB5NYSyg8IMTDyYQUl7CnjnkYC9M3jp1/4pyvw9GqZHhyANL6xQAfnoyutP7YcB3Hc6JkLYwF7J5Kr3XjRwp8cNJJwdPp4lHjOfBhew/nycmMMYRMu6fIwP07nbAy6djqHFS/RDwmbPXPX7oCX1LHMQi8F42LxnAPTEM0hdK0bYd6+2WzWrFarXGFAVlWYPSY1yIJBHt3TBK7RcunWI4M6OUZSAy67Pd7saazsDIkOSXT9ZQSIL2RaHRMaB8pG93bI1iu5WymyJ4/467j3swncfZYZhEDIosHAv7AHVQGDvgCShTjS9tCiKG6IWZ7HrHrpPqJav1hl3XEmKgKES/se86tps1m9WK4ByLxYKHDx9QlCWT+YJmNadaTxmGTp5P8IToE6hIICttRvnaYsyhCJLangV+h76VLHx9x708sgEHpVYTExwj6Cimhg+O3kEfIjvnGGIEW2AKQBl87wQMu0AcHEI/y0I5Pv99IWXG2ZutSiVWfg6fCcFLjFJaQEemM1eayrXicymzpAGIOhaXRyXtarJA/gg9v3OOHIfAZOkTCUvp+57tbiuxum0aqwdVjJTWtEkO7OrqitevXo1saVmW1FXFbDYTl2Hb0rYtWQA+g0ZgZEKVEvCQxdcnk8mYbHR+fj4m5yilxjrwT58+ZTKZ8Itf/IJHjx6NbBf8GJbrXcDcj0k2WTZIWNdtigeTkJq+7/BeXMer1Wqs/FSW5cjuDsPAUFisS1XezH4s5trukjTVsmtbVusN2+2Om5vbMSZyPp+PMaTfDUJ/PABt25Yvv/ySL7/8kq+++orb21uapuGDDz7g008/5dNf/JKf//wXPHrvPc7Pzqibmioxsf3Qc3n1nC+++IKvvvqKi4sL6rrmww8/4C//8jf89V//FY8ePaLtOq6vr1gulymJ6IUwvKnEaDbijTFiBM1ECP705IT5bE5Ti4KBLRKAKwoCsO02bDcbNpstL168EJ3LxZxHD9/j9OyMyaQZlUbe9awP232u9vz+4Vp/yHimXWbc44BU/CKHTekxXyKCjNPC4oMkbkoRhQptDWWqbta2bdIw9lhjxH2diI+QE1+UOthzwKjDzPL7zO8f0RQoI1n4Wu/LX48uX+9xQ85W33tWonf4GOmD7Le92QnraQX4qazKkspvq7Qm7jFG9n6mMLwMOtN5sicnx+srBTZJ1tl0jSYD8IQuVFIZ8H5H10VCdGi7wTkJdxjGIikxnee456zVmDKFp0WFyA4ZQijETW8NPq3Ng5NY037ohMxSkv2elUtcGBhcBzpglEbpKElblaUJJdNJxXTaUNcl1moGL2xnPzi2bc9ucPQxErSGQoFDtNczyZCAlSaVLzfJla5kf9AhoHxI7PE+sTs/8/2IPsZdY1+8NU4OrIZDCQWpPFAyP1lgy0Lcu8Mgi2GqrZtSfRKgzA8eCPus87xLq7yR6r18S451yeMmT4bcRqFWYqrJugc4OlHc97kEx0Ug7dp54h9nGt4/b/LF5E3VuwHXbnGbJUMv4u8OgwsB7zxd39J3O4y2hBBZrlY0dU2729L3A9OqoaornI/0g+h23nPFI+jUWtP33SgcnSdF3oh2uy1aG+q6AYR1MMaMm2eMkfV2x65tWUwnnM4mFCpSqAjOEDphjtreMXlHFqc8sgSw0kIZiWSBdKIwl95L/5pU6lR0RgMuKMwQ0EWNKWoChoAYKYRAN4iu6cXlFZdX15IYVJTUjQCGuqrEShykXKgferY7kSQqqynNZEYzm1OtZuy2G2IqMRqSy0AdPD/pP0OMCfgoDUpMSDf0dN2Wvm8FrOPf6otcd11KU5LpcBlTUUJSQvS0vaePUolIGUvdTLHG4buB1u/wOFRm/dNET+teeom7RKv8OpgPOdkguQpiENCZX4wxnWrMag/jZqJTyTtZRPZangI+Q0zRqzG72r87uSiHaeT5tK81vsRYzXa3oW13tJ0wUdoYcfVVFVpp2q5F6SWr9ZrbmxtevHzJ2fk5Dx8+ZJZc39PplKEfuBocV7fCRp2enh65QruuGxMfcxznbDbjwYMHWGupqoqzszMeP37Mcrnk8vKSpmlGwPvtt9/y4sULPvzwwxGc/XPEeTrnWK9XXF9fJdAp7vVhcORiBMPgxuSsHAKAUpK8aW1aYyVmfuiHsb+13q9lh/O26zpevXrFer0ZJYZEYP2X/PKXv+RBYpTz+nD3ef65rW1bPv/8c549e8ZyuaRpGj788EP+9m//ln/7b/8tH374EY8eSfJQYQuR3otyvddX1/zh93/gv/+P/84333xD13X84he/4K/+6q/5q7/6Kz799FOaSc3tzW2qWqW4ubnh4uKCtt2lGN5u1M4sCsleXswXnJ6cMp1Mx2oywk6JUa4TodG27Shkv16vmc6mPHr0kF/96ld8En6G1u9RFJYY1Q/qo8N99O7nj8BnJovumWL7xJ7jY+kcW5dEvQeX9kGlR6NMIyC0rip2RckQYor5TrkHyVB1ScB8T+ToJKV0kIQ4ehn+HKNEgUmyR2O2emZwNaosoMkBT8dxpDF5kMSYHQhhQAUL2qKCRWHEuB69Nxl/HAD3VMFImSD6o1qc8loV4xw6YMb2TFZy35Pwj4oRlLjo+3bDbhPx0eKjxgdwLiQ5pazlHWnscU95HBHHEAaGOMjPMEgSaqGwZY1RBh8s/RDoeicSidGjrEpqJwa0x/mWXRsZfEmR9jRtNVVpUaphNp8wn4uhZbTBIWpBbe/YdB2d8zgUlBartADIOKQwMdFzBYXVBYWS2GGjrIQ5WI32BpxP+QVCfMQQxnFzFLd8z6i4F3hm18BhdjlaYayVcpDpgP3gMNYmKhph/1IcYvRhlOCJIYjQvPejMK480BRIzZ5xGZ9UzE7x42sTV6LIJeiDajzjQE1AICPJPSsnk0BOvXfX3R8yfX/bxzp6vOsZ2g0uaqKtsNpCaekHSRaJBnF3rDdS6kqpFBMipUJ9mvQC2MdbHheWLAORZWT6JKlUVSIGvNvt6Pt+7BNjNMPgUqlCSZIIMYheWrJsdXQYt8WGHhsdFCXGRpTLVYXeZdvuiwqEg1CIGFUqDiBALqYMlRiSIC+y2BVllSQ+ClzUbNqOoAuaiQjgbzYb3lxc8vTZc9quRxvLtJF4pQgiLJ02ZKU1ZVXjvGe53lCWBZOmoqwnTOanbNdrdpsVYRC1ABeTAPGdhd3aPNZFcFiKAAjw3LUbibspe5jemR8k97wK4saWgZGAJ6gggePeeQF7pqQ2BbpQdKqlHaQ8XnSSBTha1SmsQiX2YZTfVHubMf9NBoxmhIY5K9N7yULUmjEtMiTLVUkgu1aakCWV8rw58EaMbvYMPNXey3Bfy6AuJ/LsdjsuLy+pqpJ+ELfxdpcyxxWSYWmKsVxeBIrdDpAyspeXl7xJmo0ni8VYXWg6nbDbbbFLO873HHIi4G49ViMahmGsCLRer8fEIWHJRV5JxMo3o2TPzc0Nr1694vXr1zx8+HDUDf1zgVg2dNq2TWEG19zc3rBaLVNMdkffS8nIzXrLarVmtVondQpRAjFJ3qlIlX6GQTwXQ98naZ39In/swg10Xc8w3NK23RjTulwu2Ww2fPTRR7z33nssFosRgB5e93Fs/A9vWVlgvV7jnBtjaz/66CM+/vjjkXHNiTLD0LPZbHn16hVfffkV/+8//L/88Y9/ZLvbcHp6wqeffspf/uVv+OCDD5jNpnRdx+3tLReXl1xeXrFarQ/ktSS0BhTWFiIQP18wz8odRogA5zxdP9B2A9r2lIlxvr0VfdRXr16yWq05Pz+lKgsuL94wmdRSelhFqqrB2n0RjneNj0O2896EIg435Ey2xPF1uGVHOIibdygMBIUPPlWJuettSGFbUdYrrd9OcsohQZkQknzHtPfcCTV51yh4V7LU232h98oaOoVVZQbUpOzuVF44lzeW+w6jfnjW8MxroNFjEv9okMvXMmEmFz7Gxma7bCzwkuSitOg85+6Xj+Ta7ak/03+yFkcIDj8M9B4GKdI4JmqFMcwMGjM5ZrQ0xELiuYuyhEHDoAmtuLAjhhi1xHaqSNQKVWhKXaIQ/U4pWqiI2uPVkNZ+Q9AFFgmnq23NZDpjNptTVY0kIEVwg6cbBrbdIGxnqlDlVRzLNHd+YPB98mIrrEkVJZ3B6DiSfz4756MYb+Ih2xtKjCP3/nZvVvtbsY/530kgvigKmE7wIbBe70S2AyUZUCluKYNMQhQJGOf34DNGYVeCJAWNzEymdYDsRzy8DtEyFF2yuqmTELTeA7ckBJ6XzLuTYnTXxzvC4ByDkrf7JDOl6XctQKXre6K2mLKmqAoqW+CGnl2etDHStjuWS8PpYsFkMsfaguBT/3hhgHPd8JxxnBnc7KbLlnxuwzCwWq3IMXXWivXmvaPvuxQW4WXixIjVmnraMDEOO6xR3RJ8i53MqWpDwZByb+K9/ZAXqnEi5sUuQBzdEYzWtPce7SFGjzIS12O1ZQhagprXa1yEoqroB5GYevNGki6KsuLx+0+YzReUVcnt7ZJnz54LW2kszaRhOmkIKK6ubzDWgAZT1swXp6xvbtjYGqe3sih7T1Bu/+ySlRuCGq3hSBT9M9fTtTs22w3b7Yo4Wbw1QfIzkuSytKiODL+MKq9SiTYjtZILU1CiwQXasMYPDjcMoNiXbNQabW3S4JTr0kSydkHeREigIIc+jEltPsmdaS8uk5EdTZan1qggweDqMPheHbrbc2xndrO/Hdpy1BdKwm+ydJExZswYjwTWmzXXN1fsdiIOXhQF1hTYokgegSAxVAl0d33P8vaWN6lG+9npacpyramqmtl0xm6xG5PrMtuZKyKdnZ1xcnIyxka2bcvV1dXoss6xno8ePeL29nZ08a/Xa/q+H6su/exnPxuP/+e2vUdix+3yltvbG9brVWJjNwkwDaw3G26Xq5SFLXPcHBjUhbXEVHFMAFaqw23NWAQiTb2jNS8nAnRdx8XFRVIGuODVq1d8+umn/PrXv+aTTz7hyZMnY/36w2vfg8/9yP8hLYcN5QpSWbIth0Z0XUfWyMzVpH73u9/xD/8gyUgvXrzk9PSMTz75hL/8y7/k17/+C87OTnDO8fr1G7744iv+8Ps/8M0336QwoyxFJ/MhG0Kz6YzFyQmT6UxAZ3Iz7rqectejjMFHKEuRsbu8vOLizQWb9YYYPXVVUlcFu92Gi9evMFrUOs7OHjKZ7p/Pu4z1fdjUu42X3MNh7OsI0UP0ybkrxw7JY+icF4CtZV9t+52EFnkvTJlzuL4nEampuIojhsgYja+SpyTm+Md9MqzEdO4TE0diJu5B7I81RlInpHPn/jgM+9nveUabfSiUUWPsJsh+6VIsu1Q5tMnw2sfRZvCZCRIhWc1IzCjFW/GzKiW3xtQfIYWhqeQFQx0AWRQoTdBGAFlKKgpEjJL10quEQ+7rJ6vSdZeUWoTfh3aA2zVuvWPoAs4HIXGMxlSWqmqolAFalNuho4TVaatRFoLy+Ojw0VPEktJaSltRN1OayYKymqRwPSEK207c7E4D1uKBwXt2rmc7dAxOCpvkbHapUtgDBq093ke8E7H9IXi8jthEXByTfLndz3m+M6v9eODkuK8gaTNKqijYlJRi9F4cPlc18s4TE/0KELRYA4wbdDZVGGu0Z/NFJWB6eAfj4EwB1vYg2zBmlm0s9Xl8/YeySYedcHif3x3nqRK4CGmh0Dil6aJYiIUVAXddyKJXpWD0qkw0uJFKREWxB+i52lLuh7zIjC6OINnOu+1udJ8f1ro+jPfM1WO8d+NmFA9kMupmgi0KnOvZdDt0u6WIPbN6Sm0M2op+3bsWSMm2lGveu2VyNncE7VEY0aMcJMtaqUARC2yh0EVFYUoUliHIBOgGif3ruhQXk8aVLQrquhEgk6pqbDabMdYzizyv12tevn7DkEpYni3mTKYLJrMF62bK0K1waUEhSsyND2Z0b4ore+9iyiVKh6Fj17Wsdy3a9nfk41Ny0RhTlDaHtKCRFtGoAopU6cl5nIt0LtBuNrTbLX7okcobIv6fA+zH2u76QEMvW+1JDB/FUV1cHfdB+j4lyey9B4nx1AoVxPKPo47nobudI2YzkrLbDxhP/Y75UZYl8/mcBw8e8N577/HmzRvW6xWXF5dsNmu6XmLAq6pMLKJk3Qe/Z1xiSLG3SglDeHvLxcUF5+fnLBaL5Eqy4/Nfr9e0bSsJcQnUGCPl8HK8s7V2ZMgkgWWBtXaM9Xz8+DGbzWaUVOr7fkw4Wq/XDMMwyjalWfAd68PbLYQU37rdsFotubm94eb6muuba65vbthudnRdz267S1nYKVxJ7w3PQ9ZpjLNS0LXtGM+5Z2049vKkK44pznYYBpwb2O1a1uuVVJq6uOAXn346lt3MxsO7dSy/G3RYa2maZhR7b9uWV69e8cUXXxBjZLFYpExciS+8uJAqRr///e/5/PMvuL6+pqoqfvazT/ibv/kbPv3lL3jw8AExRi4uLvn88y/4/e9/z1dffcXr16/YbNYMQz96jrSWEKPpdMZ0JutEUZagFN4n4NnKWuqjp+t7lFZ0Xc/ri0tul0tQavx+3TQi27RZo16/xrkwmoL1Hab4vvZdjGfuUXKvRkbd6xg9EY/oeMpzt0b2j6IU2Ts/DIgcW5BSjEWR6s8XFAloGyQOXEQ4snKJFKfQVvZsn5J9sgY36JS4o5MRrI7Wogwef0yTMPUMOA8Z+mxI3wkl0LlQTAohURBtxHpPr3TS8dRj35ikzrJ3m4snNRti5nCOmEN4kI0Hma/oiAqgVNiTCwcueJVyAoyOYBVKBbQOo/EfzTE5c7ebgo6prGVakyWTh6gMIeiUCIuwmlZTWJ0SqQwxaEIHJnhKrdEaggq44PExkXxeYbRC6SJVs2owVryNQ4BN71j3A5thoCtEXcADLoJHE5VFKSiModQil1QYS2nleDEq+uBwMTB4kV2KmgP6WeenfXDv8d5l4+2Smfm/MeZDNifRrAyJ3s9Z73udL2JiNbPFkYRHSRnyykMMXsplqrzBqrfYl3RSiZdLn4uRo4Gp8qaarzfJKWXr7a5bUKyfVM4pXXfuk5AqD31fglG2inyMODS9snTKUpgCbJHAm6G0RYqrUFRVyWwyZTadjWDU+yi0ug8SWpgthNTPmakIPtB3PbvtlsENkmTg3ZGLPW8QXSdxdXnRtdYktrSVeMmqAq3Z9p5u3WIGR200WtdMyymqqNG2GHU/327ZHRMknjBK5ynFWFJR4RkGGHovmeUqEFQEbalKhS1LrK2xAeKuI4QoLjkfU9zfhJPTU6q6oUqbk/cJXClNXdcsFgtOTk6oqoqLyytevHzFrt3i/cCkqZmdLJjO5kymM9pNSZfKrcpCtHd/7l8SRxkh6WFK9nDXD2z6gWLwbwFPo43EKpFCzjOwVchCoiSWSKzDwOClru1m27JerdisVsQoZeIm0wl13bDZbOl32/RMZRzpceHXKZO1SCEN4KK4WGJIdZRTiIv3Du30KJE0ehBSXFoMGcjsjTwx/BLzkl17KjGecf83Fd/O08yM53w+58mTJ+x2O0IIbLcblqslN7ciSWJSXGddNzgXxgztXHHIe5/KgkoiXc4svry85OzsjKauJdGoqcfs9evra2KMY3WjnFW/2+2QDN+9C75NQC274s/Pz0cX++XlJScnJwd6oZcjA3pYAejHNikYIfJpy+WK6+sbLi4vUpznLZvNlq7tEiD0Y3TQyAblzTJt/jaNARCWKstYCSi5Uwo2IRmFGMZ5ZWvblrZ9ye2tVJB69vRbXr1+xW9+8xv+4i/+ggcPHib2860nnX5+N/gsy5IPP/yQzWZDXdcsl0v+8Ic/cHl5yRdffMHJyQnT6XRMjMwC8y9evGC5XLJYnPDxxx/xd3/7d/xf/9e/4+OPP6SuK66vbvj222/53e8+43e/+4ynT59ydXU9Vj7KCWbWStW3+XzObDajqmqMSW5GLy52vRP5rc71FFZ0gzebDa/fXLDe7Dg5WXB6ds58sUilJr2wRO0F210niTLK8MCY7wSeh6DznUDtDvEhXiWpVgdivBttKWxJVU2ExZpOicHRK482SpJKjOw502bCrJ6Iwe49rbFSKVtp0KIJXZaFCOcbg0YT0rww1qKtIaKO1p4MOvXRvah37BP3NVln9pqgx/2iDvbifZJi3o8TiEGAllZaFGSiSpqZUgXIJI3JQ8Zt75VL65iPI7sKe/AsutN776ok1jAOcwGmilx4Q+aGRuuANoEi3N1T9nvL4I8Tswbl8XTEYKTmutPEITAMATckHc0A2EhRKorGYipECcVBMBHrI5XWED2D7/DRE1QiULwiGANBlDKMKdCmJAKtV6x7x7IfWPYDQVkBvSgCBq1LygKUipgIpTGURlMWhiIVqxmcZ01L8JLD4GMgaDnOyJKzf67qYC262+6p1X6HCRzdr/dEeanj78QQUoWoJPAej7PVM1SUwSjfC3FPxUYf9w6GKOUIwwg8U/xZlNrXyuiUlbeP69xf691ZkRdMOb5Sh++mIOJ3TqT0vbjfMDfbLZvtjl3X0zsRxC9aYUfaVENcyrOZke5XKoUW+OPSnscTWH73PtD3SRvRu/H6svswuwGVUkdSNjrFs7gU4xZiFAHetPk7NG20WDvD1iVMzjGzU4p6IjGzWnPfIMlZeiP4TH0szylP3EBQYp1pVSA1w8UK0sZIOEBZSt3ZqOiT9E0MitJaTk8WOOcZvKfd7dhu2+RecsyTJE5hLd45diHgemGIJGarpx8cIUJZNUxnczbLhm5bSoJQlKzPzOTlcTQ6lVPSWO8GOh9oXWQ7QPNWbpG4Pg2pclF6xeTWSQMRnTf8ODD0A912x2a1pmtbiJ6mbphMpxSlSJKFGOiHgbq0Y1JWZrN1ki6rqwkKjfOB0EtMkVbZ3R5SzPCwn+xK7cNXQmZiVdoH9sAzu9lHt/r4+97lHgET73UejdnDDx8+PFq4RTLomuhkPOUqOrttS+s9fddLzd+DLGSbNsws7n51dcX19bUkmNX1GLs3mUzG5J8srl5V1Vi/PTOjGbDlutt5zmXW88GDB1xdXY0xiaISsWWzEVf4bDZ716Lwvc17T5sKPrx+/ZoXL17w/IWI52/Wm+S1SDFhuW+VQkdNNDr9NFhlRlbHKiksobWWDO6uY3AePQyUZTEarelQ4zBIyyMxCsu83UpITvCefujZ7bZstxs+/lhc7zn28/7a9e8Gn03T8Mtf/nJ0o+c67Le3t6PLv6qyAe5ZLpcsl0uUUjx69IhPP/2U3/zmL/nrv/4rPvroQ6qyYrVc8c033/D730s9+2fPno1anaIEkJOJclzn/ChzH5DqbYND6Z6IyN7ZToOKbFMc8O3tWmRi0trWdQOb7Q5x5mV2PlK8epWAiMy7pmneOQbuAs/jfXX/oCIZ9ByQJwfEz2iEKDWuxZLIIvH7RtsRbOVQB+dEH3roUyGXtJYOg8MOAzppxLphSHtIUtbQWiSK7gBnGU8JKKq37/GdxM04DtVb/XH0IWAvd3gMBFXW7kYMc22TpraSa1VJ3iirqKhE94sXK8W8HsgB7s9/OKb3fzvs+7fjWCW+H7TUMOftwhrE+/HEZmjZDCtJjooG02vUTspbtznLXAE2oK3HFAplJHs+KkdQAaUiDkkoHbzDBZfCFTWGrCW914qOaFyM7HrH7bpltenY7XokR8iKJ0UpKlNjJxNqXdIUJdOqpCoMCi/3q8Qlv+16rlZr1BXcbjtCBtcjEfjDfEP3mGz7eDXpw32S0dsD5yBZZ3R1j099/IxSopM4pkmMm2O+VPkRwt6Vn2NLDm9FRVk0cAq0qO+PvGf62IGxMl7/28Gu2eph/P37LLjRdbbZcHtzw+3NDZv1mkhkvVoeJAOJrMl0OsFqhZ8IOPbBo5yT+M4Dzc7j88Z0Li/1ULsWIIGYmGqltiOjA4zW/mGW6i6VAswlBauylHAIbfGmwVYlZjajWLxHOT2nqBupB65VCr4+bqNREfYDWq5WqHWfAVcCTTpa+V0hi1iypk3KtiQaggvs1jtAytmdLeaUZcmbyytevn7DdtfhQmQ2nXB2diqMX4xsVmv6tFhOm4aqEkDT94NopNqS6WxBPZmy21Q4BpF4Sm6AgEqSQfuOz7I/XT/QusjOK3ZeY8Kxy1EhMZlRk8JInEiGZtZcCWuvcjB7CPi+o99t6XcbYggUpWW+mHF6doZzgc1mJ0kmXUfZVBhrktRLiTJSuSQ/R6KmH8TV4VKQt4pKsvd9j3O9LNIj8ASJ2ZK5G/K8yqgkieofpjK87XKXn8U7NpYM7k5PT1NFlGLc9PtBKoLkmD+d4jq7Vuqk73Yt/dATYhgBd94g1+v1yEjOZjPmszmzWTHqhOYqRJvNZtRczAxqWZapao8kPTVNMxp+uUzj6enpCDyXy+VRUkyucnQYV/1jWwii3XlzfcOzZ8/55ptvefbsObe3twzDIGtVZhbjPnxCWB1xIeb4d2NJ4QNF0hgsx1hqAeoS83lgTxywDokBUiAi0Am8eMfNzRW73Ybl8parxMb+5je/GZOPqqoawWf2On1Xq+uaX/7yl0njWfGnP/2Jr776iuVymWLV2yMQFqMI/z9+/JgnT57wd3/3d/zVX/0VH334EfP5CdvtlpcvX/H73/+R3/3ud3zzzbcjIy3JVqnohtZj6c3MquZrCFE0hFVaJ32QcrogxtpyectqtSb4iLEF3kfatufmdknbt9R1lbLZIyG0vH79mqF35L3v0SPzTtD1LrZzZNj2b6T1dZ8olHbz/TESqOwHqVLW9Z2oogyDxHeOUlqSqJfji3NSWoyRrhdjDyWhcl0viWeZeY8hlw7NiipqvxcfXssd4Jl/fl+8673auHe8LnvW8+0XCDA2QAzZkDYoLfuLHhk36bsYAlr5fSjXiAX2saCHl3wINL/rvt51r2OSV4zJe3R8r6vdhjfba4wqpSxyp9EtDFvP4AJeIS5861EGFB4XAsH1BDdAGHA+4qIC7/C+F8YTWT+jIo13J9qoQYgcFQLbXcdyvWW76RhaR6kMxgQKoyitYVo2zOsJJ5M5J9M5J7MJZaEZ+i3OdwQCPnr6EHh1LWWfex/pd07Gb+7LNHZHpJX3ojvtXsbzkPbes5UHtDgHAC/9I6aNTCXWLOrk2o77wOFojGysdUm9mFFUNSbFrBzS7IfwMVvqh7F4zjsRj80fi5ld3aPuPBAOQbJK5n+8A4x/SIsJGG+3W968eSM1h6+vRK5H7cMGFFL68ezsjOgd06lktsWYtPZcSNmXcm753n5yirxKn6x5hzEan87bdu240WeQeVgWDvY6nnkxbpoGRaTfbVAx0DQVk+mc2XyONpZhSGK2fUm09l4ALpPp0BJPrmaliaPgpIR5GA0q6pQl7mBwVCnbVHToLEVhsKYXY8OLQkBRVCzmU5arFd1OgDPKUJyIe30YetarNdvNlq7vqZuahw/OJdErBC4vr+nbntNpgy1r6mZK1UyJYUg8t0FJSuBYCSgiYR4+xDHbb905Nl1g20Ph7nSEgrIoUoa+I3hF8AJicxxsVKkfDBgTsTpgdcRqKKqSetownU8oSkvbbtis13S7VkIvkkVvrcROo+NodISwDxXJzLYxOrHQbhRD1kfAU40/D9n1vUv2OLFIgKe6B3hGYiyA+0W085icTCY8fPgwsTSK6XTCcil1uQfnaFth4TNgCjGM4yi74DLwzOLwuQTm+dkZVVUxaZqjGu1934/JQxlUZjY0vx9jHAFwfr+u6zHW8/b2ls1mAzCyo5k5+nNbCPtShm/evOHVq1dcX12x27UorZJOoNkriDhJRtJaU+h91rQPfmR1QdQ8bIo9NMZI5aMk4+K9TxqJB2UO7xAFe+M2Jo+JZ3m75OnTZ8SIJGqtVuy2Wx48fMjJYkFRlmj9/WU3jTEsFgs++OADAE5OTnjy5MlRNaHDfs3P4eHDhzx58oRf/ELE5ZtGylc+ffqMP/7xj/zpT3/im2++4eLigtVqleSoBExZWxyF4cxms7Hsqay5ARDJOh8ixjvEq+Toh47NZk2722GLitJYlDb4EFNp48h0OqGZ1JRFkYwpKYyilErxxGo0/u+2o3C1O+8d/r7n+Q4y1O9UC4twNHekQEuOL5QwIedSMQqS5qvL8j7hmHE8AoD7MtDAyK6avGZwtBuPXsL77vXeBMT8U6nv/Mx9hNHhvw+BYJYZjIgxLZnV6br0fj+SxTKigx7LWR4zmvn4B9dyD+N5X9v/7e2+kPjQt7+36wZuVlsK5ShCgR00ptdED0FrQqGIFpwaUL7HDmB8RMeARkp+Bg0uRDwBR8DjRVczOkQS2uMHz83ylov6gl1Ro4bA7eUNw7qljJrTekozaZhNJzRlxbQqmTdT5s2EST1hUtU0jWh6DzYwOIWLDhc9ZYwst1L7PeM2YF+56PCZqv0YutveyXhmFlNkBGQhCwdk5ciApieocmk+K9G7MYErhcSM6BSLRGGZLmacPnlEPZtRVpVsgEn7SsCuSplhjHXRswtiGAa2mzWoMNYsPrxZQcHxaLAeZWwSiX6/tcpncvXrd7fcH7vdjos3b3j67Te8fPFcNPfIpc2MMD5VTdfuMFrz8MHDseNDCCkzL7k1FMS41zQD8F50UcUC9RRlOca95YSHoiiw1qayVn7cTHPiETC6JJumoWt3tLst2lrmTc18PmU2naCCY7de0VaGobL4qnxn3FIGnbJhRSSb+zCWQ1y/SgWpW+sCfT8wuEg98VQhIrExFmsQEWAkE7/btWhtaJoZpbWSiek9trRUdcV0OuX2dkg16W8YhoGTxUe89+ghu3bHarPh9as3XJkrzCcfcb6YUNVT6skUN+wk2QlNTmxBSb54TCy8AE/PtnesW8c6Ac/Gvz1lCluAVkSt8EmKIiBi9SpKzKWOAjytVRRWURWaprYUkwmT0wWFrfDBs91sWN7c0u3alAQgLnprTRK29uRwir7r0MqO8bVZIkTlkplhwPtegGceXGNGe160c8A9bzMNIwCV9/cC8mljjN8PPJRSsvFXJdPphCdPHnNx8SYBr9e8ev1mb9mme8WIfIj32Y0YDkrCihTR7c0ty9WK6XTKJJW0nEwmLJfLcfwfSjqBxDNm9/0hi5HHt7WWs7Mz2rbl4uJidPlOp9MRDP457W682DAMLG+XXN/csF5vcN6NjPBh8tKhAPOYRHmQUOiTXJY2U5pKgFZVVanK0ToxHR5jc8Z1kpE5AJ8qJ8Wp4/dijNze3or7e7US4Lnb8Ytf/AKtFLP5groWDczve/5FUXB+fs50OuXJkyf86le/YrlcjnGzGTAC43M8PT3l7OxsvKftdsfFxQV/+tOf+O1v/5EvvviCly8lNnW32yZpuTAmE83nc05OTsbvHxIMuQrfyHwqcWn3Qycx8H2H94Gi1KOwug+R5WpN33fs2pZZN2U2myT1lhQ+03XJ6DHfO17usnb3fGB8HXqXVNhXrnLOY5wjaIV3ouvqDipbuTE+XfajIc2hw+Ik2WjdG57ptEH6JD/Dw8S2Y9Cc9/5jYPZ9TPhd4P2dfcHhHMpM+3iktKwJMM6eGpfVczSY7Ek4JLByMY1491oA4tHxD9eK++5KHfxPPrcPmXvLuL/T+sGz2fYUIVAET+E0RTRoY1GlIlQaZyJDGAjDgPHCSFbGpIQiAzbihoDTii5KqcsQAwSPDo4yKIZouVLXlF4xUQVmCKwur1G9Y1HWnEwaprMp8/mUxaRh0TTMGwGhypiE5SLgUUWqeujFOPFB3O65QmFMDyjHosfD+7/Pokjtnt0kM405XuuAHTxkQtmzIulM5JrLMUaizuAqVRfQksFVVCWLs1Pe/+Qj5uenVLmMW7L8svmncuxgoq4zhdt3HRdvXrPdrKmqg0oSI1t6TJ/nexk7I8JY5nD827trUR8dhzjqn4m7244TNm9yVVWmjGwjTMQYW3IYKxv3eqZIZZ1cJ13iFVthz9jrnOZM3by5tm17ZMnu4/zc6F7MQfzOid5bVRQ0TU1pDUTHMPQQNDEuRk3Ue+87W+FjbKpcaxjvTyShdFFJkpLS6CiWGgmwSzekDdFK9npRlXR9y3qzIhApqpqqKjk/P6NqGlAGjWK1XLJZrxn6Hq31HlTXNW3X0rc9q+VKBMkf9bCYU9UTJpMF7TZ9L7GJxpoxYa1PMizeeYIuwNSgK3zKvnf+7phQ2DQxY85AJ+IR970npjg7DdFQGE1pDU1dEFSDqStJaOg7dhtJNurbVurxaqkNLqL3nsG5jA0Z+gGilJwT5saR67MH5yVuVmu8H1AqZqtwrHq0V4iI4zHJrO8h43kAPgO5bnQCnqoB7pcXOnQeGGOoVJUSxSqapqFpJngfWK83rKpylAKyVmQ+QgzHlZXSK6s1rNYrbq6vmU0lUS9nT5+enhJjHEtmKqXoh0FA3mrNyclJytYWV7xoHspCncfR6ekpjx49Gt3sGez9GMZzLJF6EG/tvadpGs7Pz3ny/vu8evM6sfXdGJKQM8jzzwxED4XxczJhFpGX5SpSViVNUxPjgrIs6Lpd0juUrH5jUzLEHbmZPaA4KCig92xzuxPQl6vTee958v77PHz46HtLR+bnlu8ts+Dn5+djEtAhEMoJU01isaUQQM+rl6/5/PMv+OMf/8SXX37Jq1evEyu9PYoJLksxSueLRYqZLsf7GL1nSkvoYIgo5VOseqrT7QaZ07Ycmc5d26W4VykiYTuLsYYQI2XRUxg7xtjmhLUcIvL2vHib8bx38hwArayT6JwnDGK49ykjWVcVyhpCGPB9y26zpdu0WFPQ7lrW6/XI2Od8AIkDHkYw2bYtphTj2Q8S69u2Lc77MV5SLvpAdu3u5d9P9H1nuws2j4HdO9DJnZMpxeit0mPdd2neByKeaBWG/VhMVvYRY5qv561HEOPoQFUJuGbDLUaBuXGM7z8wFO6Jzb1v5dBRY4IlDrI+GCBqA5UiVoreOHo8fewJ3mF8wAdRGdU5w94nr2iIDIjCjlIKlYohaK8wEUI70LGhsBVaG6ZNQ/Hee5jKUtQlZWWpq4KmKJiUBU1ZURWFJBxpiHggEFVBoKYKnu3Q02+2+LRvqLRWWWOOJBUP7/9geB+1d5fMJLukD47AHWvl4Ki5rJdQ4KkUU3pf632SiVawOF3w5MP3OX38iGY+TZvu/tQqAU+i6BdmeKu1ptvuqJuSi9evcU60EI9dFXuXxb2D7I61tn//+1o2vyTurmlqTs9O8d6Ni2hZliPzUhQi4zHGfMR9X0rsUUhuEAdEfJSM1bZrafsOF4QZiE6EgnOCUFEUYyyPUiq5ldSRIH12OSolJTud96AtRVlT1Q1KRYahE803LFobiqI6eg7Hdx4PFvO9m8K7gb7vIIobQKrweLGQYq4trokpoSgmV4hWGlNayrqENaw3a3wI1Cke9f3Hj9m0HV0/0PcDb968oeu6MZg/b1QAbnApW7fDKoN3AaUMdTXFTU9YL2/o2x2i+iDl5mRzigxOypyBwpiaop5TTU6w6x1htXsrbFwhdXxVDKJfikw2FcWNp4gSAI5GYYjWEApDjCXKGIKVuL3tZsP1xTXb1Y7ghgSKZT75kF1mHmMlJs85iSXV2gsbyb4+e/Ae0ARvRuAZMzXh9+BzHPvjWpyAJ2qcQ/lnUJCLZY6Z7jZ872aj0tKstaKuKsqyoKpEg3O1WnN5dc3t7S1lWVIWfQpTgRDNmM1vU3a7UlIAoO8H1usN11fXzGdzTk5OmU2nlGXJ2dmZZLWXJXXT0Pc9bddzfXPLixcvONtsGLzn0cOHKc5zbzyi9xn5jx49YrUSiSFgjBU9BhPvvvkszp7BVQZn1lrOHzzg5z//Gdc3cu+r1WrUzcxzNYOv+2LL8nV47xn6IRlxgYWeU6Y69k3TcHNzxXa3vWMgHid0HMo07Suj7ZOXMvDdbDa8ePFi9NBoY5jN5iPD+ENaXpuyzmvuy7fAx2g4i+bxzc0NX3/9dZJY+pynT59yfS1ssSghiHs7y6tJ/O9sXO9yX4UReMbR7RmJYxJeCG4kD+S+Dc571psNEv/pUVoSk7pelC6sMTRVhdF69C7l+7zPhX7fv+98KHkT9oxn8BHvo1S263p86AjbHfH6lmi0hPkELwoxPki2dq4EdJAUBKQsedkZtdbstjvRPR4BmfRKiKIsUlQVpqwkszotFCN4uwOe786Gu8Du+8ZG+scdt/33I9zRq6kNaCNSUVHkG33wI2DWybOlCAfg8/j89z6zuNdPHW87Imt7lH6PfhgrFPnAKMLvU5xuHnuR4uj4loKSSmJOXYRCo0qNajShgiE4Wj/g8ESCJFF7jTNi8scYwQWJBw0Br0R+zWqDRSpfNkYzjQU1Bu0C1iqasmYxn1NUlnraUE1rUAGFVM2zCgojIXC6sGBzcZIgsltaSfzpdsNN3zMAXiuU0RI2Z3NRD3nFxGJI7u39yPN+AXk4WgRjZj4OmK8RuGV6WWWaXk4sADQxnlqjjCIpio2ALHqpAKBLxA2fhpXWeyuDGEedT41CF4aiKihSZR4OJ4baT5aja4/72I78t2wRj4Pxra55u8n3obCWybTBFvuN1hip/ZtlYUDuW+JyAsbEYwtSyoPvM8UHYX66oaPtdmx3W4bBkaVwTIr9U0qlTULimMqywHtHmxKRMuMqcjLCxIAwjLYosbbAuY7gHXVZcLIQvbuqrsaYwbdvPPdjrkue2TDpOR9EZkp7D07EjyW7JiUUZQ21fDAlxQDqpsKWFuclEH6zXlNPZlJWb73l6vqG1XLF5dUVZVkwm85Egqiq2Gwk/m+7a3GDYzaZMZ/OUkZrQ7SR4DuqekrXbtExYLRkpSslCVHORzbtDq0M8/mEswePUXWFbqb0GCbTe7Kao0puew1awGDUhqBSrG9y6aMimIJYBIKPDM7T7zp2bsNutWFod0Q/YLQASaUj2ki/lGVFU08pyuJA2kT6WilAK2wwKKKItftUlz4MshmNZpSSdPUMLGEvtbRHoAfAVP4eVIKdKozPOZp3A898bXtjL83jtClPEkA6PTnh+uqKuqroKgFpTsni5IskEJ00+ohi2Tvnpazl9Q1VklV6+PDhKKuVY5u9cwzO42MUcS+lWbcdxe2S+WIBRhQCRMtU1jCtGBOjHj58yOvXr9hut2y327Fe+v6e7qd5Yoz84z+KOzjXCs+VkpqmSbGlsFgsePDgwZhpnQHCYejMoYsdZG2o65qTxWLMtI+RpK7RYrSmLKW60Xw+F+azFwONKP0azT72PY2gI/d7PmeOG8+biGS/b7m5vma1FNd7WVb7ggff0+66ab9LjN97kX579eo1X3/9DX/44x/5058+58WLlwl0rlNJ1DAyw3XTMJ3OqJtG6o5HMSTHTOYYk1EVpHBCelYhscJ5LRe9wwqpapSlrQK2MBS6SP0tBR8Uop+ZgScxHiVM/aiW987EsimhO9M6q4gql4b0omvtB8ZYtxhJWY1J2F0AqPdBsqIzm5jBICnUIAS82783Gp9KJTk9i3MpyelwfTjYQ/dfvveh/+Db3zOSP6SrMmND6hv5JQPMTDgJtND7a8+eH3K/3X/skVDJTGf6nCb1jQIXA127pd2uaLdr+nY7xs/6A9DpYyAEUNpw9viXR7HRJmoKn0IRVcCUFjMtUROLqsB6SxUUZQB8RPmARcgOUHgXcDHQO6kuFOJAZTRNaTkpG85nU07LCSfFhGlRpez0mqYqKWzKr6ksujAok3MytBAyOfnX2pyokfJ2wCPnvHWeZTdws92y7TpcDBhbjh6a43KZev+65yG/M3ArL0p7sMGRTtWeMZQF+RCwAiljc18vWjYTcWvnhWa7XuP9QN00qEPJEyM6hiNTmEAtPtL2IrND0rjj4KXS610D9+2YlHTt91h0bx+D8bu2sJLtWBqUTuLO+ljQPsgKIAuaD9goz/MYJCeGKQSCiymRYJBs2FspNRhcoChK5tM5TTMZk5hEo04GzG4nLpOqFPdbXUs26jBIBQIR+i/HxIO8wZ9PTnhwfs5iPqMqS2Ex78nkzcZGSFUfcuwvSqNMzviMItjuxeWglMGaYpR9ErZcQJFSEWM1VVNTpnCJrk+uonrC6fkCrY3EhXUttzc3nJ2fMZ2JS9Uay7fffpMqHZXMZgvOzs94/OgRp6dnNHVD9IrgOup6RldtwPcYRaoRbYkouiHQO3HbaVtzdnbOww/eR9cNy12HNvfpOKrE7MnicugeFqFmTVQyLpSJEpOjHdoHhu2OTWJu4jBgiCgrwB0dMVaSR6q6YTKZURSlZCsmESgxtGS8FdGIREiM9CGXMhuI6m7YSDxgM9VxLCfqcOYmtjOVO1WiDxdyhaQyviO3aD+X7sZyEcXjURQFs9mMs9MzLmYXkjzSdVK9CUl0KWM1ZmrnMBTvJB663XXc6tvk0pFz1HU9JpJkD8DgPAGFrWrKZiqL5XrFru9kHUnrQ0Tik3wUhizLKy0WC4kh34qwfM5s34/h+9aFyP/4H/+DYRjGOMYcCnByciJyO0pRldUYGtC2YiRmwJld0+I+LseyuLnak1JKdE0vLiRRK8mlqQT26xQH3Uwa1qvlePx9uNRbo0GenDpmHe8K1/d9z2q14ub2ZhSFzyD1x8TB7j/29udjlMSv5XLJt99+y+9//xl//MMf+eqrr3nz5oL1eiNub5c9SwVVXTNpJkymk7Gsrngu7sYPqvHnIXGy3w80xlisLeh7MYT6JORvbYNUWBIFgK7vISVY2iQHVVeVlEL+ARWuviuuUYHMZQmsFpmgpMGolRvPC6SiHUrKKuoDj2S+1wSo74LP3AviRdzLd+VKPERhWn3WvYyQJ3zM393blD8KZMrH1fjzrbn0vYeK+dbG9St/UWnxoo7YNIcIZLC5/+TBUrXHA/JrAtYc6XukLToZ+9HTbtdcX75hefWazeqG4HtCcGntzTrnskfqouLk4c+PgKcOChNkfwhWY5uKYlITagVlREqsgMGgA0nrO2BQ4AKOATdEOjzOO/CeWhkaVfFoesbHZ+/xeHHGw9kJTV1TlFLJqDAaoQFD0v2M6KyeUhYUZYFJ+6ISCQ1ZJ5UkMbVDh9ss6a9uuG17brY7doMjKMZjCMF0sB+SCBp+KPA8YgQTwxnvbmb5+e1jHPYMWAKtShN1ZiTHoYNCJYDVsWt3+OBQCPLOi62xNgV5hzGGMKZKPu22TSX54hjvcXyO48UU9slFhwNeKWFWMzj+vrGvlEpxkFJ1ZegH+qFL8ZlWShWS3XQOayumU5OSQfIAP+izsK+pK1aB3HvXdyxXK169fsPt7U0CngXz6YzpdDYKcUut65IYdYqlaqiqmmYiLsWu66SSjTGJHZjK+20LMTKpa05PTzg/lxi4bHze1w/Hi7Zk2sYo7K0pSpQtiEjCkFYicq5SIhFA8D1+aPGuwngrJS61HoHyZDphvd6wXi+lNOJsDjFSFgWTOmXf1bWUDwyR3ksZ0WEYmM1mnJ+d8uTxezx+9IjZbJLKaJaUlWS3t7sJvpcUsqKosLaEpGs67yW2qZlOmU5nlJOSs9WKs7MHeH8P0sqGNHt92TyWojbjOI+AMgFSDIzVGqvAqEhpFKowBCOL/RA8QTMaEsI4RWIc5FhRdPZ8Au56TERzon0b5H3nFDr4I3BB3IONvRs9j8kEONNqLoxnlBK3eKLyo1RWfFvU9O2OOTwp+3lorWU2nY0JJDkj3aWYxYhUaMkgZPADXdej1D7e0VozCstnBtVay2w2OzpPrSWzunOe5e0Nw5DA080NVWGpiiJV9RrY7Tq822uIPnjwQOZgJyU412upBT6ZTBK4eBs8xBh5/vz5UehLkxKgnHMsl0vJFN9sBCRWFTYxdHm9a3c7cXUmtnGM+bQFZ2dnzOdzmrrGaHNQbrNLWeLi8l0s5v8/9v5sSZbjytIGP53MzKcYz4CDkSQAklX/L1Kv0H3bIv1M9UjdIt03fdnPkP3nDZmZRYJJAjjnxOSTDTr0xVY1N/eIwEQws7oLKnBEnPDJBh2Wrr33WjSzmrOzc5qmYb/bjxI5kXg0p8dcuamiBsLYY8v8GLPGY9uJ3I42hr4feP36NS9fvuL6+prz8/PvAJ7Tjf0Uo5ykNyVJJbi5ueEvf/kLf/zjH/nDH/7AV1/9ZSz4EvAvOoXOWeq6YTFf0MzmIg5PltiLk/6ZpiPguX6ZNY+95BEPQ59zIXP+YIkmRAFc1hqcrUYgUlUVZ+dnfPjRR8znc25ubp7sG+X7nm0FkKWDGYVG3HawVqq1U1HZLZAoP06jmAf0NYmQPHH+hXzJjFSUUAtqklt8sKI+gPfvXCNTAYffvxn5oRuWp187BdulqaNIgs7r+Zin+R3XfxoBzZ+eIdrxJi2lRNd2bNcPrO/v2T3ckkIHwWdSJmTwKcDdVM1hfS+fITp+1K7G1o6mmVM5x5A8YQhUVgi3ssEuBdcqCSHkq+w4ZQDvaFBcz5d8fHHNx5cv+eTqFS9W51wsVpI+kgk8bdS4ThWfdW0NJtdZWOeE7NMWlM0uRIqYAp3viNsHNsMdD21PGxK4ivnFCusj2jY4N0NXNjsypawgkBWzn7nX31mqWpisQyHM8XPC7KVRf2zs2IXhjHkhg4NIMuCj+JybriORqOp6DH+EINIXJoEPJclfCkD2u5Z2J1ZzoxamPt7ZnOYQnXayw+sOO34m4cbnWlkQjBFkT4IwiFOTSkpEDVLM1Y4Ds7lGLQ4yMUfHlyZ5n0qNXu0hRPb7jrv7B6nSvnkvCezGMGsEkK3OzjhbnbM6O2c+m0vI0EhVb12LpIwfwrhwO1flYhyRKOmGlvms5my55PLinPPzMyk2eiaUWC7WQWMOyR1SXnbk1okPrj7YZZV4rtSlBYJv8b3B9jXBSvjYWIupHLPZnOVqmSuYtzh3z3J5htKWxlWcrVa0XSfMRpI8sGGQfFbnHGerM16+eMHrVy94cX0lMiAktHE5p3VO08zpo0elQGUrXNWgXEUyFZdKcp5mszl101A3NfP5krPVBV33BPs7ovPMHCiy17jJICq/DsTqLNlcSCMWaLU1qCR6eSFEvI5ELzEzk4vwQg4vi62kVKzH6PEldy9/n3UGpVKWc5Ew4kRD/NEiX5avqNJ4ItIdJxNvlh2R6engUhbOn0jBeH60SKSrRAiMWFVeXFyMkjelaCZmGZdSfW6MeeRGY62lci6DID1KLI1yYarIE2mc0gSENQp+4OGuz2kZdyznc2ZNLSYE+z23N3e0bcc8FzienZ3jfeDrr78WBYX7e87Pz0eppudaCYPP51L5XJjOIbvi3N7estvtRptbcSELAh77fvQvD3VNAWcljWAxX3B9dS0bbx9o2yXtfs/NzQ13d3cjCK1rGefL5YoY5XxKAUxMcazqjSGiowjUiyB1cUpSDE4KE5mQDkpr1psN3377ljdv3vDRRx/zxRdfoEu4+Xv6wXGbzjHSb7fb7Wir+S//8kf+7V//ja+//oa7uzt2O9G4LekAVXUoVqvrWnLPxjzGyfxeJvfJYRQG3ow5xNJHfc5Tj3nDVtcVLtvYFnBvjOZsdZar2iPOWhaLOa9eveLTTz9lPp/zz//8z0dpSt+V4/n0UpwgCcOlSCKIbg06FfXhvAFMZMkzldf09HhtVweGT+UYc5p8sSJRUuDQlqiNFLkY0YnV2uR1deqnzkhK/b3tOLydxm6RJvftKYY4Y+kDwSQvlDV0Knh/8p7x398BeKdR0EK0RA4MqxBfPd2+pdvtaLc7lO8gSJ59jEFkjjLwtHV49H0xSmV4XdXMc5qItYbO7xn8gEVnw4gSzS1AOBJsxFuHsaKAUwGXtuLDiyt+9fINH1++4IPza87nC+ZNZutVEhCplViiGpOLRmVt0s5incM4N25CwJAQ+ane9/htYusj7zdbbrc72hQxs5qVvRA1AeWAGoUBy+hkOD6eIS2f0PE8gKJpB3nUtycd5IDicj6nniYlHzqAvFb07fp+YK7E87aez3DNoRrPaINWBpvKzZId+NAOYheXKzyLLtdpsvBpLur03J46hx/KeIpO3YpPPv6E2WxO1+7EWWgi/FsqW+vZnNXqQvQys6ZcSfo/yEPlKjoloLPreh4e1tzfPbDd7kX3MHh6BHCV3LP7xT3L1RmL+UIcfSoBN1VVU9c11rijCnutxd/W+54UIqvFglcvrjlbLKisZbTIy5PLoz6R/1+OPScCkpAEfRXEq/UQttWUQpOEIoWelILsqo1Q/MVtoq5rzs9WbDdb7u6kev3u9obl4oxZU3N9dYk2moeNsF1yfRPWWj788A0fvH7N1dUF83mDtQebAq00tqrkPs0XxKGFMOCspB1gKxrrOK8qEgmnRBdTbF7zxK8fD5ikZQnQCACMWU9TKUfSGrzO+p4S/9E6YI0Ap9o56sogyVkxhzNUdnOSHN9hGLi7uyPd3tN1fWb3JXctxIPKQVU7VmdLqsoSghd3i8J2jgsOR+NXpoQskZT/kJJsFsrCjMrKnSmrxCVJEvWvBnjepOW5UTOOnaK1eHFxwcXFBdvtlt1uRz8M2Ogyiyuvm4pfl+IX8WsX5rNYWxbms6oqqlpcoJLWKG0xxuF7YSSctQx9L8VDeSLc7/d8/c033N/dy3jNVpqlcE20Yd+zWCzGkP5z88KvfvWrUSAdGH9Kdbkdxe1F/FtCxiGGzIiUPEvJD48x0XU9WhkqF1mvNyglBT9KKanUv7gcZaHu7u6y7q+wxALGhQ2czeasN+tRAaPre4bsaHawLhSd4OBFA7TOGphj3wHevXvHbPY133zzDd988w193zEM/ah9+qN7RZ7vHh4e+Prrr/nXf/3XA9P5/j0P6zVte8jpLCkITdPI/Jb1hiXlJz4Jho7yEUtfJ1FlJ7Cpk0+IAWMO+sgFVBcSBATgpiTGHecX53zy8Ud8/vnnfPjhh0cFPdN2muI1HtvpsUIOg4tPOymOerxagU7luTJuDwCrQPk0wfSj0c+INg8OgoeNcQF95QzVCCwPKReH9DVhQA/jeXpusobJfPfcdSivn6bpHc4n/34SaT2s53IdGGWSTi7eyVU93t7IOarJG6c44eg4M0DP9dzj5StYyGZL7MpWtMpKrmUPfgAvtV6EKO91T+AtSXXSGFPRuBkzO5NiyqAYfEfaB2gjUQWJOiWxnU4k0KCMokLjVMV50/Dm/JxPrl7y8QthOpezBVVdY5w9cGlGC5PtnKgZFB3rXJylrJXf82YmZPKvG3o223u+fvs1f/v6L3z11z/x7e03dKHD1IZZNctmLIbgLWGYzBnTfqUee9bDM4znYbFK482YXsURsHHoNJSTNAe/zjTZeeVVTkI/IeD7QTy453Oa+Zxq1pC3PblauFA34sxi2p7W7iFJJbMfBqzLZfzqcEynnXZ6vI/P83vCIJNWgOdqdcbHn3zCxeUVQ7a1bLtOFpEJQHdVTT2b52rQLKo/AdKHY0x5s5sZjX3LftcSfCRFsv3VQOwC+/2O9WZD/fDA7O6OxXyR7QRrqrrKVaQ1y8WKs7NzZrNFXjATXdcSgsdZzflqxcvraxbzuYCm4z3kExfq+LqWBRM/jEU1cptLbo30AZ0NxYISfdKkRLOsrhuUFceh2lWcnZ1xf/+A1oqu3XN3e4vVlsV8wcX5GbZy7PZ7bm9u6foOay0ffPABH374IddXV1ycn1HXDkWUsLfKWm/WUs9mNO2cYSeSTcX9JWqLsxptGlKKqDhAFPH+4H3uger0MhDVJGtFSQENxqINeQB7glLCuqWIjgKWKueoKkvVG0KUXMQYchbMGJXIIc6NWIZutzvRiVXCiIZcJRhTYjZvCMEzXzRZgqmnH4S5maaaxDhJhVEyucbc92M2Yx8Zz5QXQCIJn+vaZVP5/ezWM10nj7GqqkbW8/Lykvt70ea0XU9KjJXFRRS+WMO2bYs1Jlcfy88Scj87O+PFixc456icQ2nxHrauwlWObr8T8JkVJB7uH2izs0u73/P1377m7du3bLdbFrlSfrVajUVBJaz/+vXrsRL9qXnhd7/7HSkl/va3v3F3dwdIyk1RuFgsFqO8TcjKEwopGHRWQIExFmucbD56T+VkjO12meEPHhLM56JlGrP6QQiB9Xo9blxDkJzwxXLJcljK5iYl9nvpS5vNWuS5MugEJfqPXYc1AjxNDrmWzTtIcdA333zD27dvx9z/zWb9U3oEKcn1ubm54U9/+hN//OMfczHRX4XF3e1HFr9U2xd3qipLJsncGWUDPCEQDv2uaFcekxJFrmqqFiCqIW7U5IQDSVBAmPwbZnNhOj///As+//xzXr58ORH4/7GX4gCKFElC6lHSBoSVFIkchYzhsn4eFf4cLuvJZ2fkmX9Mn07T10xAgkQqDuo04yOvsUzW2aN18zuImxHonhJZ4yNm9nayQX5iDT9gkGPrXsEexyc4AmESRdY4HZ3nY9BZvqNszEc1j/G9UlQ8qxvaqmZvK3axZ9tB3yPi7RFC/poq8VgVRU0NQhoqO8Npi1FSLOp9h/c9Pnp88iKbR8x1JApTiW+6szXXzRkfX77io+uXvL68ZtXMqbNvPdnFKCHMJtagnJM11wjgjFnLOlBUZ7I7Yxhou5bNfsPNzbf8+as/8e9/+zPffPtXNtt7fBwwlcYqS8IQo6FHkfzJfR5v2tM940kB+bEzpglV/VSHGz+ciVVgWa5zJyljJDEOFpXyA41RBTya8XUqvwY9ChtkTBqlgje7NpBzIXSubjP6OLT9VI7NUYdWJX1aP9qdnLayE6zrWkJp8wXAmOhf2MsirYBSo0e5NgbFCeOZP7fQ72YMp59xfr6lbQdiSux3a7xPpNyTUoo5NBTpu5bNZp1lRRa56rSia4UBcU6kTLq+x/uB5XzG1eUFVxfnrOZzKme/l+k9vdWH4zgkYqfxJ+NuXK6GIKqEhLR8UijtaJoF1tWgLdo6ZlmLb7Va8XC/Yb2+p3KyYFfNTCRMjIRONTBral5cX/Hhh29YzufUlRNL8uQxKrsTaYUyRrRBmzldXeOzp6107UiI4BMoHbEKQgp0bcvQ91nQ/THQSMpkRjDmPidarjpF6UzGZFbNCHsRDcHmJG4nmoDaa0HjeXOWSrqIzhZ/Waqlz2FYlVnIkEo+ZqLyIRc+RAY/0PUt7X5HiOEo7DQ6m6SQi/LU6O6REgSfq2HzxklBnugS2uQNxY8oJDkeM+NvYzXy+fk5L1684O7ubpQgSinlXE4RdQfJUd5uJTzddi12ZzIAdaNd5v39Pbe3t7lAR0LEUoAlW9fKWeaNAPMYAuv1Rqxo25bddsft7c1R9fr9/f1YGFRkhe7u7kYJpCLhddq+/PJLVqsVb9++5ebmZgy9l/tHZhGAUWezREf2e4lkjLqhGezM53MuLw/MZsjhvBAkDaNU46eUqKrqCKgXz/LFYj6GqN+9e8t2u6Ntu2yrWNIs0uh4U0woSl5tYQULSyX5lp4//ekig7TvL6rJo+boX8MwsF6v+etf/8of/vAH/u3f/o1///e/8P79e3a77XiNyGkakkZUHxU1xZgBxxhZU6Ns0mkBy/Tf5foV7VVtdB6Xhxzj0tdLnpzJ7F/T1Hzy8cf89ssv+PWvf83r169pmuZJ4Dnd/I3r5ymQygteCe2mXEQknmoFZJW1OE6kaQ552XDCrCl5V9kYTyjOw10YgeK0AnnCeJZNiTp85nMAYpoj+V0FeOXns49CTJ28rnzHIxYzRlAiLyexY+nPOp9PMW1DHVjPU+A5fcSs7xvzJj2Wa5aJlpRJi1kzY1c3aOvoUuKh9+y7gc5LjmeM8t5GD48whdgJz6iqGc41aOVQGJyeYZwjmBneefowoMKA9mLtWlmNUokwDNiomJualVlx3pxzNjtjXs+pqlrSAK0VE5+cSiIssmYYxFY5iygRkiIkActDiOIs1/es91vW2zUP63vu7m94+16MG9q9J0aTXZZTtmpW4BXaK7kVKuO2pOXBwajltD0GngWTjR1KHQ2iaYebdkeVqSY9Vq/Lh6lJd1H5dYXRLKKoheaXgZAOoYJJx08qTfzCwyHHE52BZ96tPXGsT3W2cq5Rpez28t0Lq8osWuUcs/mcOoGxjhiz2Deymw7hwESEDCqLEkBhEMoiD2T2E5yrmM81V5dX2ebN4CrHw72hbbfErNM5DD6zGy19V2RKIlVVvNvDKBq/Wq24uLzA+4EQB2azS169uObi/IxZ0wiwmI7o72iFnBVmTibRMlGSAimVhZNDSIYwYdtadBcgWZrZElPNUKZGW0vdzFkszzg/v2C/77i9ucWt71guF5wX8OgsdSXg5OL8nBfX17y8vsYaLUCPrEdHOmzkURhbUVUNrmokHqJyfV+M+Bjoohcc5hTD0LPfbRm6Dp1ERuPRdVCWEoqGJAnZhalQoLSoMgj4tNlZyBFCURZwaOOhMEpJSaSgeG2qYo13YGNUZh5DlN2p0kUrTc4zFteSrnsEPEuf80E0S5UxGCeSUiTFMHj63o8SNFrJ7tpVGotBGf2MbPz3tSNeAqVEOmi1WnF9fc379+9z7uOe4EMuajjoRK7X6xG4dV0n0kFZTaJtW5xzo/bmcrnk7OyMEMUtCyWKGISIRlQD+q7n7u6eu7tb1us1u+1WXGtK6Dszh/P5nPPzc7TWo5Xmer0eQ/pP5Y1/8sknfPDBB3z00Ufc3d3x/v177u7uuLsTKaDdbsdqtRo1PovgeNd13N3d8e7dOzbbLV0rrjPWmrFqvwDAIiAvG90Oa8xYWGWt5ebmJqcn9FnSybBcrGhqkVYTsLdBGM68eS8yMOGg+znqYObvLILtKaURoP/tb3/DWsurVx8wn89/VK9IKbHb7Xj//j1fffUVf/zjH/nTn/7E119/LakXvUepnEtvDM66kTkuebYpZeDxxAB96v4U9hYOGq0l2lQ7iRalMkaGfpSxKqoDsrGxXF5d8qtf/YovvviCjz76aDQteHYEZBCXD3q6Ezv8jRIQPIiSk06ky0bQlA5Y8kBbTvClzAkqL6DjCj0ur1OmNKfF5dBrkSwcyaMJo5rG7/nuc31yc5rXBCGOngd+FPB98tzR54OwwilKWpESAw+yi5FSYqGpdSQlqVtQhSkuIH68nAfAKeDyMRgur81iA2LPOmtyONsxJNj6gc3Q0w6ZCMiv93YoVMzYqqpmMU/MmjmVa7DKYTAYm1BaCj8DCeMFdIa+wxCZOUeKnv12jUmJJjXM1Yy5nVPbBmsc2rjMblrIkoHjeI6RMIi3u88ascUgpfeJ3gf2Xce23XO3fuB+/cD9+o715p7dbkPXD4CTQjcluasqJlRUqKjF1jOKQL5KJVo9BZ0/BHgq6XgpxqMQdlnIjmQ0xs4k+W7jgkfex8VE1CcYModljztgvsPTHdq07+YecNgZcgCxp5OPmgy579mBlU9PKn0/44nK/rWQYpCq4ygVld4PuRJfC6OV9TtjiNneLRxN6PGoc8s51JVjpqVy+2y14tXLl9w/3HNz84672/fc3t2y2TyI+0l2o3DOMV/Muby44OWLa7S2AnxjxPue7XbD/f0dTVOxmDVcX57z6sUVi2nYcET5z7dx751DsikXnMXsoBOD/CyV+ooCTCX3UPLZDErtGfooyczWousZlatQxtHMl1xev2C73/PwcM9+v+Xd+6/RGq6uX3J9viJ+9inWORbLFRdnK6wR6zTZXZHDCxofswd8CKOmmqtq8B6VJxvvveSxdHuSSjhn8H3PbiNajMaIKO9RgFkptK1lOHnZcGttIIZcq5PQOpGSlnxWGMNkIdZUdU3VzHAxYZOip2y2NAY9hjhlE3/MzJdFZRRX45CbWdI3ym2cTppKyeYkpoPLlc5mDiCMqNZxvNElrFNsbrXVIrPxHQvs9zd5b2HyLi4uuLq64vb2jvVmK6kq6fC8Uor7+3v2+/2oXtAbTdfVdF1PVXW4XGwkYKUXoe+25WG9lsUiJm7v7ri9uWGz3bLb7oSJbEsYV0Tu9Ww2spwFXJXIRqlm3263bLdblssndF1hzEEs4HS1WmVTg3Z0HZra25YNqviR/4U//OEP/O1vX3MTbokhYq24BhXbzynwlJqPQ+pDEWgvMkvCYIbx+fl8IVaQuYho6D1aSXV81/Wk5NFO2OTFYsFqtRpZwUPlfBz7UQhhTIWI8fuUDo5bub7FDvOPf/wj/+N//A+++eabMV1AKanoFpkjO8rATfNOBYSko7ViZBU5zPslVD51YTq1GS6pN0PspcBowtyV15ytVnz44Rt+/etf8fnnv+H169cjK/5cJEBxSMlRqDHyfRij40HLsjdh3cIEjElRrgJl8lqnMGrCIhUUWta9DDAPv+d1cjQIMFK06HPOOEXXgHG9H2UJVZ5u8gpQGMnpTHCa4vbkfc/36jGoK+CvpBqkR3mepcUYiwo4As+S/IwHC9AC9FPJYyRJsVaMR97p05SxY8aVyaNovxbsrDGVo2pmVLMZNrtIBYQ5nMpQxZRD7ifXYdY0pFSxaJYsqgVOV1hlRvPmCAwpYnyg9p7oakyK1NaQQo/2npQCVltShL4baNuOthbjB6UPkn7FFlrsoCP7fZsfA20X8EGifT6JBvcQJAd92HvUoHCpptErUlVhmOOHjhAHiAMkUV5QxqKdRauBEFu0do8Z5niKt6Q9FpCfMIYpM5AHWv8YfJYJQBa4CdM47VAxZbZwugMrO6nDAX43/JnsVMbbqXLyc+l4h9KW6Xn8kFYG+Xc12TlLGkHwnqH3pARDCAICqwoUWStTY5Ui6TS6CZVJbwSeJbSZw0nWHIqDVssV11dX7PY77q6vePvuLd988zU3N++4r+7Zbjfs2z1V5Vgtl5ydLTlbHSwDu34gxMjge/b7LYt5zeX5GdcXF1ycn9PkYz2EUL776kvej4UQM6DzWbC7x4eBMMjPFDLwTGUizRXZIQghGNe0bS9hcFdRLy+xVYPWlqqecXZ5ydn6gffv37Lfbrm7u6GuKrFKnM+Yf/wRtqqomxmzxSLLj2TPb1WyExHB9kGOUapENdY4krOy84sD3g903Y7dbkNIEWsrgvf0XUtKUlWMT/hJFE0Bpqql0jTFzIoqUF5ks1SeQI3Jfb6QMhKCqeqGehjoYqJNJc1DieNTzknVmfU8HqzqiZ8FgOYpS4kc0+F9h7FqsplDTAmVJZt0NjnIBMLotqG0SEMZqwSAaj0e09/btNY0TcNqtRLgeXfH7e0tm42wj0qp0fLv/PyczWbDw8Oavh8YcvpB13W5mM6OwLNIh7Vty8P9PX12vLq9u+Pm5ob7+3uxxBRLlqyVWVFn1xoxfjBj6Lvve+q6HhnHtm2Pw+HPnFth5s7Ozh6xJ9Ooh1ICHLuuY7lc5rSKge1uh/eBKoviS5qFGoFnCD5b1B2MHupaKr3rupaq/5x/6XMqRtEJTTGx37e8e/t+FLofhoAxCa0NdV2xWp1xdXUpmqhZ6qoIqk8LQg6b6O/ZrY8tUxEpjbmdX331FV999dWYF9t13VhgVeSzirh+qUJ/NCaOOYyTaNdhXTqE5+NIOkrRkh6Ji3JuJqdvFRA2m814+eolX375JV9+8QUff/wJFxcXI4v63DpTAOckqJ3nh/x9qhCeh7XwIEtYQr250mGM5mmRq5uKcqdD8cYUgKEy2M3n7yontqLW4buevu3FGc4HAZ75WMbzKXa75eiSzDQF4JczPgWRT7WnmM4xYqkUKiaSzhG0CEnr4+fzOQieyHqmk/xepQ5h5VKJX46bmCQDaiL3UUDnUQF1UeYpm/uyM0hp1BTQ1uKaGtc0AjyzfF5WSRoxa/nq01ZXFUYZGttQa4fTDmuM6LUrEZ/XMaKNJhgNRmNSpLKG5DXJD8Q4YLUhhMR21/HwsEUh4fJZjLiQMD6CssSk6PqBfdexXm9Zb7bstj3tfsBHJedllKR66YwDIlSqIjqNTg3WDLS6p007+tiKkUFOWTNKipZCbNHFIOdAOx76xBPX4nFVO6e5FdNQ+/HgPiQel4WwMDCTkLJKeXHORRSo7A6QGMOyk/cXEPQU+anyrq4cx2j3ps2hAu9o8nm6HZ6bvPZ7QGoJ2Sgl+Yr7/R6fnVV8CNheWI1qtMw8iC0bY+j7fgSh5aEQQXNnLSkxMjcS8lTUVcX19TXzxYLr62vuH+64v7vj5vaG29sb/CCWbTFI+Mpkn92mEWH2+WJBXVdcX13w0YdvuLy8oHKO4t5ymD6++9yNcVTVnL3fi7PSfkfb7ui6HX3fZkZnIGbXC8nfJTPJIgKeQkCFRLNe0w070Irl6kKqBJsVxmjm2Tv71cuXvAPWD/c8PNxTu4arq2vOL66oZzNcVYkI/LhbLblUSpw+QkAFj44DKkqNolHgEZbW+57e9wyhw4c+MwxyFQoLgrJs24HdzeboWuhqlsdoAiUFciQvO8ygRhUJnRlilTTJKKKF2nnqylMFqXrUJQM8SE5w0oh+ZpnGVAb9o/+6nKuesBIlNCYaoAeHC6XUyKAaozHJipqAFjYTZSApjLJYe2yHKgmuafy+ODVy/ztbAWgXFxe8fPGCd+/ecf/wkIFVGHMMLy4u2O3EnUosDnPhVbsXSRFt2Gw33N3fs97IRqzve7q+5/3799zcSEh9s96w2W4ze2ipm4amrlkuFzgr80aM8Sin1lrJNZ1Ws5fje9LZa9KmbNm0nTI9BVR98MEHwo52HTe3t3RdN25Ay7xR7GIBYugY1IGNK+BH8seazBia8Zx2O/l9vV7z8LDOagKimFHsfo0pleNuZH5l/pKiksJGnwrM/1gSXDbgPufvbsecU5LC2VLUJEVWo6D1dNPEYbtVGL7E8Zp0PPfLOjT4IUuTSUrHfF5TgLCkcrQYI7rCRUdXNgCWj9684be//S2//fILPvn4Y1bLxZNFZo/6AcfbxPHeF7A8UmkH4FNAZ5nP0Fq0VrPuKuTpJcasD31IXxuXMHX45iL9Zpyl0nq0G+62e5EADBEf4libU6KWxTlQGM+CBSarcXn9d/Tx079Pn59WtpffVUQ4Yp0gxrGga8p0j+kVCYlL6zwvHQFuDoB5JLWUGGucsLPPP/JrmJBjCOOvsuC6dW50WMsKdOPdlmvzuI8YlcPQw4AfdiQ1ELWRTb4mG3YIWWdiRKWAVZpKK3AOZnN89CiVGDzc3GzYbzve325YLGYslnNclUPuShOjAM+27djuWva7Dj/EbImqxQClMpja4WoZcwlDVAljE66KuCFgbYfConAMSIFkSIngQUVP13vZxNoRcpJGXYCnNyPP5Hge3qBKBz7paCU/5GiHGcURpOQPyWSZc+4KMNDmZJt6+lONu6+jVti5MrAUI5tzCPGro896LgxwDDzzwH3y8owXRFjMIrehpNJ+6HtxS4mTpOQMpqegvBzfGBbNO66pRV4JAQ2DUNkmMxV1XdPMZlyci+XeevMwuphsNmvadp+LYCQ0WgSs54s5zWzGcrXk+uqK169fcbZcSk7koxXje4CnraibJW0b8GHDbr9j/XDLrt3Qtju5DkMg+khKSgrGtB2FzmOIRD+Q+j273ZrOb6mqiuvrN8yaJdbUGFdRZd3O/uVLfN/T7na0bcvt7Q2z+Zwrq6lrEYaPObwxTjwl79R74tAT+54YBowKqDigU8j5lp4h9HTDnrbf0w0tMUHlNM5aKisC88ZVJL2HKfBUCl3L4k5MoMVVRscAWhODFA2poFHBS39MUUR1TcLZgbqqcT5gfEB7sRiFkCd5JtqZscx3pHSQpiqvKxOs0gpl5KGjQcdE1Cr3Qcmb1OoAGIoVmnymsJp2tJ07hJ2EfQkjy/Acm/FTWrF4vLq65vJSQu7CXAr4K6xh27a8fftWxL0Hz+AH2r7DtDJmNhsp/rm/lwIg74XlXj+s+frrr7PrzX4svBFmsMrSYy4DgjgWc5XCkt1uN+qNVlU1FqOUMfpT2hQQpclCdnV1BcDN7S1fffUXttvdWAk/n8/YbER4vmzuBi+ScsVXvRyPMaKcEDIbudvtUEpJhXgI3N/f8+7de+7u7tlstplNBedKwc7huMqm/kgbUR10jA/Wmt8PwKSlk59HV2a0GDamWOwehMwLiDhizcr8lRjn7+mcdthAqVGirKSjVJWjaeoxZWAYBIDPZw1VI8og1gqbeX5+wa9+9Sm//eILPv3kE66vr8a14odG06avKmTD9HwKQDqMu3QY2+oA8A4EjaSRDD4ICFccLHXVgSwqny3zg0CA4ueujpRgDhRPCVUX6aTTHMXJmYxnNgWVz7WUMcWUxZxu4AQXMIbSYz7PKfhMBXTG7DWtJb+QrEmcykZIxaP+IYzlcfrEU9GIp4FnydnMf1eFKJvom04A5/hbvq6PVtmUIHiCj8QwoLF4rTFO50LO/J1RwlAqiI5uRFhQ6wwmid1ziIH7Tcd602Hvd8zmexbLPdYJvopZU7TvPX030HcDQx/QymTCzmIrh1XS302SdSAqjdTnarRNaCP5skMfpcg5KmLqiTkCk1KgGwZ8CCijD2BzBP1Pt2cE5PM2l3ITprhQHQ2+6WTqQ4BBtCJDrj5PqmhVymSm1FM75+Mw+cl9zOdR8jCmk6MacxvKQDliFE/Yh9PBMTKoj77wcSuak4vFnLPz1chMlorfpIqbTKQfPChF8IfFyhhDXddjzlcBpPIeyfeaCmeLBqBUxdvK4qwkup+fXdDUMy7OL/OiWhxK4iEvTUtHXizmXFxe8OL6ivPVirquvpfZfapZW9HMVuz3HUpruqFjvb1nu3tg324Zeo8fAikoNJa6aqgrg7KS9KyNxquWru8Yupb4MHD7/htuvvkrs/kF9excQmxK8mAuLy4Zuh4/eDbrDfu25eH+geXiDq0t1lUoLUxeVtSU+ScE/L6l24uXbgoDdaXQKuQQgSfFAe879t2Oh+0Dd5sHrK2oK2HCmrrGmAq0wbZPSAg58TRWCTBBOmeM6OhQsSJ6C0MLQ5frBQSMayQ3y47WqnkCM1bYUYTx8MHjo+TFhqzdWRagEoKT4LoaiwLGAEIOD5WJLwZhoD3kbfkklDfKKBXZjxzqKp+VRUViUSn4WYCnLHIl5H5+fs7LFy9EWulhTdf1owNQ8Tb/4IMPSCmNZgpD39MaSRVw2w3OOd6+ezc69ugc/hLryx2bzYah70lIiF0YMJ+dfUTtISUJSS8WCzmmly+5urpitVpRwuJKqTHP8qefu1zn6eIngvMXfPD6Az799BPu7x9QSvH69Wtev/6AzWbNt9++5W9/+xtvv/0239OAsZaY0qioAbJYdO1eUhTWa4mmVG4snHr79i3v3r0b9Tedc7koUWWx+x13d3d4H47SCsboVt58F01NY34o8MxXINunrlYrXrx4kVnlleSr9cNho5R9nwV0yjFkAbcRUh1FvkZAdhqena4JTPKXlZiTZN3bEloHMXZYzOe8fPmSTz75hP/y+9/z6aefsFotM2j7aXf/qbxF+fc05FsgYMrTSoIQMVpsmkkqWzL6XHRIBmCFlyl06iTMjoDMGCMP67XkAu87hm7Ah1GtMl9HPQGxeWU8eOz+pLVDzlPuXmE3T0FnVLEQnQBjasQU1EaEDJULUwixPJYkt4t4xHbLXDNVWppuFp4HndmgOKXDhj/fo2EY8JPc7RBD2fkcPpcyDz8GXb7v6fdByIlYCBqNDuJGJHxGJAwDwQcIQdQ5rMNVNVUjxbgoKaLySpOisJ9+7+lji9KQUsgRnC4TgWSqXIkyiHXoOqGTxilwWtIdQh8YhkgIjNJ0xDhKehmlwVXExFjkHGLejJ8y+PkWPEfpPZHjedgDlZ3KFLkehTTK/c0oPQaPJ5FCzBNkMZ5KJCWImnGHdvw5pcZFTTrbKNhTOuF4HPJ/XXZok+MfKfZH55UlH1CPOsT3gc6UElpnLcL5gosLWaxiShksSsjCZ6/pYZDQjtYCKgsrMe34ZfeZUmTwcSxGmOrHlbCoGw7iyXVVU9czlsuzscK17wdCGAR4zmaSgxl6Ls7PePnyBVcXF8xnzTPuK98/mSQUIcLgA+3Qse+2bNs1+25D1+/pe4/vA8krjHI4rVHOYZTG2RplZ3jXEELP0AX2Xct6/cDdzTvOr+44f7GnyqChqhzL5Yqhl8GnMDzc3Y9+zlUzy+H2Gm0sMRYmIRG9p92s2d7f0O03KDxq2VBVGqJHdD4l/N/7jrbbsWu3NLVo5rnK0jQz0AYfngFaxoKpICmULu4UEZ1qUqjAu9E6M4VIUj7fe7Ba4YzGlsk9X10ysAxJJolEyuFzQ3KHVBCT8jgylroR6SytVWZ/48HFJff1ECabtcIGIDthGVd6DIyUcTzu9tUh7EfSz+5cf1zL41ZrKYpZLXnx4gUP6wfevz/IEJUowNnZGW/evCEEz36/Y7fbSmV+zn0sj7dv37JYLHjx4iXz2TxXI0ue5OiENjJokqPdD332ik9jPufV1dX4KI5FMcYTGZ/n2N+ftijb7ILz8uVLfv2rX3N7e0s/DHz44Yd8/PHH7LZbFos5bbvn3du3ufJ6GGW35Jhkg9u1Xa7YF2MLjR5933e7XS5QFD/5Ekp3rpLNiQ+i6pCBv+hnCgMoxTj6SFNzNpv9II/y8c5PrlkBsKJnmMPqIWVmXsxDlNbPZncc+LYDKAZGsHwgHSRNJWWwX+6hzI+ixKG1Qhsx0dAKZrOGly+u+fKLz/niiy/51a8+4+WLa0wWrX/cviNWdtJPCiCR38c/Pl6uUl41s4KLVmbs65KtNmHXxqW9fHYpvDpOSQMObmhdT/RRwMWkUGkkYk4Y1qfO+RGb98xrx/kkr2mnAvIxRVQU3Q6lc4HRCUg/GMFolCrvF5Y0Tdb/pCbs8Mk9SKc44eR7xtB6SmPkspABMY+xoevodlv2ORIXwyTtRnF8H5+YIvww0O5bdBJdn1g2WXmOVVk03veD2Al70e5ttaHyNXO9wKpaomsJQj42AvQx0YUsX5gCfd/SZTwh0oAGqw0ki9Epy8UqYrCEXuOHQEDRD0JKiP21kjVp8OgUsXnzmQAfvETmvB/Xjif7ydFm4NCeYDynOY9P50A8vnGir5ly8Yzw00GShgtXo8qClgV/i4RRBpQj4JzsUEfeJQRSDBO2Rt6rOC4sSZnpmYLVaThhBJ1lIR4r174nlDhS/4rZrOFKX8pCZiz39w88rDdEL7mMISS8z5IPqRQUHAZbmRxLuGroB/quG6vfyzHLNeVQaTnem6wdicIYR10bZnMpGCk5WWHoiEHy5F69eMHyB+YlPdd2+x3fvnvLu3ff8O27r7lf39L5HckEbKNl8opxDLcrZ7DR4FJFredUswXJnNPMHNttw/r+LZ2H3b5jtxNdxWY+YGqdRbXdyIQYZaldPcrPbHdb6u2MOYqq1vgg0kOVUoS+4+H2hptv/4rvdjgHlbnEmRmKUuFa0iXkthZZS61kc6GtZvCR7X7PvmsfXYuEEncca0nKZJXSXASQanSoiVqL5Jf3YHtJcE8JYxSVNVRGU+mExhN9hw8hC86LXZ3RUmXt3IyUQI+WpLJIOie5eMvVUsIeQUIq3vvs76tQ6bjy98DqK9S4y5Pfk0pZyk/GXYwFqOZRo/VPZnqeayXX8/r6mt1+x7t371mv12M1dd/3zOdzPvzwQxKJh/WDANC8QSv5liklmqaRR92wWi5ZrVa8fPliBGZwsN405pAXeXl5yfn52Qg2V6vVWMmulBrHZMmhfL7Q5ce36YSslOLq6pIvvvic29tb1psNy8UCpaCZNcIMLhYYo+n7nvX6gUwn5CI/T59lp/aZjYk+jCoBpRq9nHeJNBUxazkG8kbGjta7B8Ai+p0m972mmTGfL0eN0R96viU3/t27t3z11Ve8f/8ug6FwAJ36cSrQIXeP3CeP16JpBK2kRBzATimSU5m1PrDcKSWqXFwmaXSO169e8cUXX/C73/2Ozz77jLOzsyfO8wds1k/YzcOGZaRwOLBih8jiyBjFXOUeYi6YDJKmhuTkVi6n+Uw3sOW3wlhqjckFdMbavD5lYsQHtLYkbYjKoExO7VE51K6noEGdHPfz7THIeA4znOCHnMb6lOh66bNTJ0JJd4ojVhk3IvrY9qP0+adAZ/n99GcJr4/gM2/q27aVnPHNRmo8ciTkFHel/L5TLOaDpx+6UXM8KYvVCeNcljYU9lpbUVRJOcUgpciQBvZ+j1I9JfKVkiJFhUhTGmwSN0CjFcpaXFON6UeJQNKgrEJZTaBj33k634Gy+KSISdZypQzOWEzOf48pYZVGO01EvOQr52j7in2rSbtAP+wP7PkEcP5g4Pncpk6dXMQxJ4U8oFLIFc0ZSBbQOYK8fFijxsRhMpmy46nc9Fz1LQBMHqQ4TjokJqLxZXFUR9pu01DR4zNTh13KySTx9CWQ17vs7DEdENK596TYSZVgtmGLobjIQJlcUGByUVSZKKeSS2O+bO63Il6rMMZjveSHKCt/U0rjrKNqGppZTYqBYegwusaZhsvzMy4uzp8Rvv7hSOLm9oZu9y339++4u/+WYXggxhZtE0bJZGF8Iuw9OkRcTLgQMV0CbUjVEmPOWCwuUEbR9j3YCp80/SCLpu97nLU5hG5omhnZ1wdjxK2m63q6tmOz2eTCAysVz8NAMgaGnqHb47s9cehAa1KUPBSROirpC/IdxRHHaCWTQt9hbEXbe9abHfv2MfCU66alEChXqcpmyqBTREUn9y/0JN+DbyXnM8qC4YyhtprGaZxK6ORFjilBRKGMpnY1TSXnp3WWNMphSNElragq8e3d7deAsJ6FCip9dbr3L/31IC6d/VK02HdKVaKEu2IO76MyU1C8m3/GppQS6bAzCbu+evUy52ve0/fCvJVwvA+e29sbYfjffjsC05K2YnKl/vnZ+Wh7+fLlK4bBj2E9ay3G2rGAZrVccnV5yYsX17x48YLz83PquqbYJRYNS6XU6Akv+X8/HGw9c+acrkhKKZbL5RjuX6/FEahUWNd1LaFWBX3X5Qr98Kgo6pDLKGxZmWOKnFD5runiXbQqxRteXMVKlXwBnlqvx6In8Uufs1qtgEN4++k2AUNJlCa22y1v377lL3/5d25upJgqTiI847rw6Kqp449Uh2t3mrp1GkJlYgtbag9UjhxYJ5u8pnZcnl/w2Wef8cUXX/DJJ5/w8uXL8TN/bHs6rD7ZBZbfy7gtyHOKTfPfQwj0w4DWESkKFBm3soweAGx+67i+ynHHGMEHsZrObFr0Qca8gWTU5C0HQ5aJRxtlNjmspNP/8+j302sxvQaPbTOTeNzF45GRyGo4alpElo9FHeaxsT+D4A91Qj+qaf85ZjhPj7MwnmFkamUNjiHQdS277Zb9bkvX7onBFyrredJv0nrfsW03aKUwRuGCw6WaytRYXQlZMJEfUvoAkJJO9LEnDRBU9lVSCiVCfBhc7j4WVNZf1k66vonZ20ShLCSTJbtiIQsVg4cQ1agqkYzgKpJYO9uqwVhHUOQ5pUKbBMrT+z16r8djZZxfnmfCn6hq58AK5hsstLDki0xDTeONGQd4ZubSQZdrvPdKHcRpR5Cox3J+lW2eBHTmiSMUtwZhUVNRZ80fW1yLSuWuPgWhlJs4DbWUv0knPrgIff/kMm66jWbeNJiiv9nU3N7ec3N7z/16S9d3UsmNJO9bY/E5tGO1hKuUNodOXRwr1LH7Q8lwyjzVAUgUNldPeFwFPoPYxazm6uKMszPxO7f6ILPzUybRr/7yZ7795g+k1KFVz2JpWC4NGEg6oUPCVolkBgw9Teqphz2hvafd3LG+2+HOPuDi1SuaesVi9QJnK6rZEmUMQ9/Td53ksToEfGqDy0UWMlClmCTGwGazwVjJ89zthTGNlaNSsJjV2OtL0T2zUDWVyEVkJyydcsjQOOqqYhYaUkRklXxkvW0ZfGK37+n6x4UkMkkermVEjQnbmiyHFAOqnoPvSEMLXnzUddRYo6mdZV455pWhKdI4IeUdfGK+aFgszicpBTI+rHFYW1PXDSkl9vstw9BirVhGJiuiyYfeevLbGBHIkxmQVCSpAFq+W0dIUfKm0siM/rTF9/tayXs+W6149eo19/cSci/uP8Ul7Pz8nM8++4wYwxiOH4tncuGPUoqLi0suLi+5urrm1atXR6LrxhjxOb+85PLyQoqHFvMRUEIORU4kj2QD1LBYiDVtcc/5+9tjVqhoiVprWS6XI/DdbDb0XcfQS2pA10uUoJgLFIa4pPM45zBOwneleHG64MNhvi4pD/P5fASgJYezFC8pJdXzu91uBOCr1YqLi4u8Gex+4Dmn8Xzev7/h229FuzNm3d8xRJpOCM/JQlZaAS4FbE6ZzwKsR+aTQy5nSQ0YX6eF9a2bho8/+pBf/+oz/svv/wu/+c2vRxOBn9rvhbWMhxDvM8RGYTdTXuNUVrtQmVhAa6IXZqrI2kn+69RZaEyYOWAfhQh8Z31GlYQdj/lBAqtE31OW4oP0mp4WDiM+SmpchSa9t9yrKcP3xHk+xXiO4DPm+VSRK8/z5yWFTmX9k+tSgKdSmR1UiPFGOQgEeB4AajmAzJwVkmk8pkNktbCUU8ZzxApRIq5+6Bn6PX3fEoZO0rdSyg/ytcq44wnXu3235257Q8yWqFVV0dQzmmFOXc1EUD5q0pCxD0k21Y1DGYVXUfL+RTYFZSjVZaBKSoXYNctGQqErg6bKm3MlubRJ+oa8x6KDzutTQqeIieV8Ur7GGnyS6JrSRG3EdVAFrFU4K+o9hfQT8yJxD0xaPZky8xh4FhA57iSK2iAjMDqiu/NlLknexbko5VyMsgNRucq77MiUkgXXD1JRij4Az+QD0QeKDYBKSUK4SfC9EloUrRQ2n7S1VnzitTqaLMbOmhfb0+VYNkeJJ67N8SsPqzeKlAGlxhphUawxI/jbty1kVk2YBDdhZwwmA4RiZZgmdl2lw0yZqpIPqksYIR06hi4Maa6E01oxn8+4vDhntVxQZXZ23GCnAm5/WOgE4O7+hn/9H39gNtMsFpaqWYCeE5SEIJRKKB2weqA2PQsNKwVDDOz6NZuHjnbXS+dfrlCqwjVLqmaBNk5y7toWl+WgjJPNiTWWVNcoMuUfE7tchNV1La6u8ENPDD0hJNCapnbUegVxEEBls76nGruTMMja4ExFbSvRKsyh/HZI9ENk3/bEqAD3uDOoyRyr5LNNGSvKoVwFcY4aOqLdgfUQIspETIziflVVzJxlZg0hM/o+RIgDBqitYdE0NIs52qrM1NY4V1NVTXYcalGKg5SSOmGfyoQ/vc8lp6sAT2JmbCUDXakyWRxyPH949fL3tceAyxjDbD7nxYtrHh4e+Oabb9jv9+z3e7ZZBmk2m/HmzRuGYeD+/l6Yh6zfKXaFMkGenZ1zdnbOfDbn/Oyci4sLCT/nvMXrawGk1zms7pwZQ3hFmxIYcxkLKFssFqOTzd+TsvKdV0apcR4rNowlpWA2mzGfz5kvFmNovKTtlNBpsZksWqI2y8yNTHd+vRRgCagoxYhnZ2cj6C35lwV0F+vOogpwdXXFZ599xscff8xXX331g4FnStktzHu6rp1ohZbczoMs3yHn8AB0puvOVA3kFByWDUNhAkOE4qo2FfAvrM1qteL1q1f85je/4fe//S2fffYZL168OMlf/WmMZ5ysK4VhE9A0+VshbNKE2JATyZ7phqQCPnghJ7REkcRxSM4xkfJ4Ldynkv9GGlQikDmcASlhcr6zztOWnlyXohlawpMH0PnEZjYB2W3wuajhU6y4UrnIKBepJy0EV2E9kxL2T+tCuMQMdCfh23R8PfNleww8H92cctXIJE65PwfGswBPuTfZcjg7W/m+xfddZjyLyufplTmC6ACE6Ol9l+XhPPvesNvvaPZ7GjejNjU2GVF2jwm0wlaWWs/Q1tAnj0+BqBOYhLJgbCAaUMaSTCbNo/Q7KRbLuNQCWorqUkgjjWVyjkMI2b0uClBUMcm5FTOBoEnGEI2Yo2CrbBEq/ZJxi3B0I566DMAzofbSzdJYXUahQceJtyx4MlfkQVKQbw71lBtbniudTS6MIvSe7f2GvhuwbifWgZkm13kHIXKCiRQiBo0zFhUSaQiYPHmMxQSl0+WOPc1pKmeVTgd9fu1399THTQFKK6rKYswCpWTC9iGy6zpQsgg0TY2zblxMC6MSos96WCHvyj0++APAVDmfUxmssaPIdT768bycPWiLaqNYVnMuzlbZFrMeT+vv4qtURNkeW9U0c4NrFJhI53u6YcAlJeF15ZnbgYtacVUncIG1Gmg3A7eblr/uW8z5C5qrC2bzFVVd4ZwlxkDftdI/EtRKZFXGAhtraeqGGKRgxodW8pWGAecMdTWjVuBSRCWD0o4QEVcJJWGcmBQxwjAEgo9oDE5bnHKjekBE0wdNiMIspSj5psfXImWtObIbiTDyKRUAB0o7tJtB1RHdAoZI1FFYRROkOMha5rZiYR1hSAQGwjDg40C7fpCcGpXQOuAah9YVxYbMB0U/9HT9jr7v8hg77PwPbP/YXY6PPy9M8r8sYqKgKCXK+yeVp6owHj93k+N11nFxfsHr16/54IM37HZ7vv76a/b7Pe/fv+flyxdcv7hGWDPRtNztdjw8POBzNXbwgaaZiUD9csX5+QVN0/Dy5Uu2W/H/vri4yIDTjYtISnEEWzJem9EbvGwaCyD7R7C+0+swbQXklmKe29tb3r17J+kID/f0XY8ZzAg+i194eU9T1WNOagFqxQmpCNNfXFxwcXExAs/p68t7ynUpjlPX19d88sknvH79mvv7e25vb3/YGWZAKOL9ErI/XFc9UXqYzMcTkDEFjAV0lveXNWnKVhcgr6PCh6x9GcN4D8XxacFHH33Eb7/8gt//9rf8+tefcX52Nubx/j33e8rqlbXo9Pkxv5E0FpKqLBxOPORoJiVWtiFEfBLgEHOfGdPdyr8mh1zKKHRmsIxSGLJBhJHoi7FGctb1QSWm3JP8KZSK9iNgfHQycJQqcHSeh9Sd5+SU0AcGLr9AAHKek47BZjr6t0oF8KTxrYfnnwfDhfmcMqDHoHMaxS31Gp7gRdbM+4EUs33k4YpzNLeeXChrDXUlBaHDAF3bs+v3bNjhlKMxNZWyqGxMoqzG1hV136GsYUiRSBQrdJvQLmErR1UFUq3RdYXBUmzE0aJfGrOhRCJLPwZhMXXSKJ/D991A7EN2UlJSs5OjqkorsBqsRjmLdhUmRoYY2e1bdnsxANGuymSMGsfwcwWCT4bayzUsi434Osuz00FZ/HS1lYetHJWrRvYgIcUOU/eUYZDqy/12hwLa7R7tTBY9ZdwValUy/JQMoMyOttsdm7s1IKEJ62wWHj5U3j41aRSM8HM3U85tJuHP+XwmDgXWslwuWC0XNLX4S+/2e4bBZ93ALuc3eenEiJRO0S2z1koFtLUiWGslcbjsLMrkYaz8LfieetZwvlpwtloyn89w07DgeD1+/GRaN4rzS8tsZpktDLZSoAI+CEALQZN8oiYwc4llnbiYJXQI2Bi41R0Pbc/dPuB3e+apwzQVZ+fnNPUMayuUMpJ3omRHVaGk2lUbjEm4qqYOCdf22N7L/YyRyhkqZzHBo3xAywybJ6WDs1aZnkOUHZ7VhtrWhEo04eq6IaBoh8TgZRcb0/FOPQH7/RYdAybnXxZNPFIJy+fiCFOh7Azt5iTrRXopFuDpqK1lZh0LV+H7hFeJiKePntC1tJsHjE4oFZilBqUaIBJSQKmeru1FQ9W3JERyJY07zAkLkMb/TfpCIo1ioFC0PHKJ1AhAS18roZyfv8lxGaPF+vXykjdv3oz+6OUxmzVcXl2yWp3x6aef0LYt6/Va0i/Wa4ZcYHN3d8+///tfubi4YrU6Y7VajQxfjJH5fE5VVVlAv4CZAxiaz+djfuM03Pwf3aZAqwDfDz/8UGxEW0ni36w3bHdbNpvNyAzL/CPnMKubMSd1LGQchjGMr7UeZY1Wq9V43kW4fgo4V6sV5+fnnJ2djekK5dp+z5nkn3KfnbPMZnMuLi55+fJFLtJoxZpcMMUYmRpB51gIdQCdzmaAbI43A6eFIuV9VtlcyZ5GQHpxccGHH37IF5//ht/99rd8+uknXF9dZ33Sv7+vH+V0TsDNNLeRDDwjoKzF1jX1Yk6IA6HTEC2kgMtucd7LYi/2jIpiO1bgZ1LHI11l0kYFYTyL+JzROVLoZP2OY46sVFmPIvJMNgPj/TyeS9Tkek/v9fTfxVr1u8ZSSb0jpRH0JJ2yHNQx+DxE7ZhssjMgzdKex6l2T3zXyX36PuAZ48G1byzYiYXp+2GrqtGGytZUribWkb3es08toRMTml71RPwIVLQ1GD8wxIiyBp/D7CVvEyvAs64DwQNRY3WFxhzm8jRIiFzsU1BGo7VgCcmdzWxulO9N2mAQUdWifRtzGqDWJT0jb5BiFPk/n+W9xmv9PYwzz4Tapzu1kuCqJ/dvmvvjKoerKlxd4YZBxL1zInNMCaVipnw1MQSG4Nk8rDFas3YOo42cJOBjYAjhMOnIEUnOS0J0GruB3WbNbD4j+DDmdqpx5jrIa0w73xgapUxuh/PNv/2ArvN8E5vBHP4xkvu5XMx4cXnBxfmKwXu6HG7v+57dfs9ms+X27o4YI/t2R9wHhjhkr+IsCF+77KjhHuUzlQKZEAaiH6jsnIvzM5aLOc7kgpASD87tp8ypq7OKjz9djSF/6xIheUKQRHXfioXrUiWqWjNrEouZ5H6mELmcwcNu4P36joeh4yZt2IQ93g/07UBKhpQ0Ve74UUs4eKat7NyMxZiIMZbKVdTOY7XBpIQlSidOAzGK97QoIITs6Js5AVVyiWSCqmyFQuNshbaOej4jakPvAwnFbrul6x+zFO/ff4OuGhaLJU0zx7m6PCm2b2T9s6RB12i3JLpA7D0qelQSvUKrLY11LFyDtxAMKBcwRLmu+w2tipA8sCAxoH2PMo6UDF03sN9v8EMvjLSZspXSvyVl5vCzBOKkI5BDTof3HLKdj4Hnzxdqf9wSQJ5LVqslH374hv1+z+3tLcMgVdB3d3csFgvOzs949fIVfe9p246mafj222/HClPvPe/evePf/vVfIcGnn37KB69fUzlxGpH8zInTT10dsZwFqE1DuNNF7j+rGWN4+fIlKSXqpuHFi5d8+/Zbbm5uxJ1ps2G324lzmnNUdU1diSFDAZ3OHeSlCvtY8jVLDmsJ6Y+h/ZxmUP5WwHgBwz9GTkkpsobnkjdv3vCb3/yG7XbP+mFL24reYCHMNCXMfMjhLMdsrRhTTB1txmKh7ORUlERCyMLbOSokrzHM5ws+/vhj/rf/+l/5/e9/x+e/+TWr5QLnxPnr52hH6yjTNUjG2Fgrkf+uXUW1XLL019i6Ymh3pNCjiqdtEhk0eWQnp/yYBtmn4FOkeyPJR9LgiYMnBY8ioDUYayG73Oh8ba2xE9Zb7kP6ns3X8Th5fP1CiCP7+F1AcMqInj5/xHo+8ZrxdeU4Rvzw9L2Z/j7emxifB54hHiTrxrqM3GFPcfczkMIoAZ7z+YKqrhm6gXbXsl/v6PedRIpDZMgaoWJNDXiLSoE++EOOp4okkzDW0Lse3wZiD87WaKxEBgcvltbBo3REW02zWDBbOpSuMcYSybrRLoflq5msiWRHt0FSCqIGU1nqxYK6abDOQdti2vaobkf6e75HKR3V5EzbE5nyh86RcgjvsAOX0FzpZNY55vMFy+WSppkxdH0O+XEYZEkWe60UunJY5ajqCoU42iQvYYJAovfiyVz0uEbkX4BvkN2QRjOrJIxdVfWRxMnI66kSVp+ez4HF/XlbehQWMlpTWcu8qTlbzAVYe4/P3u77fctyPqdpRLS8qRz3TcMuL6JaIQAqC/FHfSh0KTv5yllmTU1KlsYbzpcLzjLDKvmgU7r/9Lx/+HWYLyx23hA8FOOWGCPGCAPfh8DQJ5KTZOiqUtSzhPKJZlAsGphXEaN7fAhs+4HhPntLAlXVgDacOYsaBuJuD0l8iV0JxyHMuzWG2jkJE6mEJst2xUEeOXUh5vBIKh6W465NHIqMytJNUYCndQ0+JTxRAtpKJJaOb3Pi4fYdumowJGzJvbU6V2VKX0/obBtqUKYCW4OtSNGhYq401pqZdfi6JnoFyVBZRTsYBi/e75qECQNp6OhbCENPQBOTZhgkl9iHQRYupbKJQTownpPN2Pj3fO8L4ym7XunDpUhNhsuBXX8mwPaztTJmmroReaXdjnfv3o2uQ7vdjpubG5RWXF9dcXF+zieffJIjI5qH9QPtXnJ/+67j22+/pWBtaw2vXr3ifHHOcrFkvpgzmzU0zYxZI6BzanE7XdyeDdP9Y67Cyb/TeOu01qNvvKsqLi8vef/+ffa5F+Zzv9vTD/3RhrSYThSQOA27F0azaHLOZrOxeKj8LL8XQP4UIPgxrRRQvXnzht///vcMg+iD3t/ds9vtGbxMLnXT4FxFQubMzXZLyFaqVU6t0kpciYr6SVnwBPuIr7doPMvC56yhqSvOzs559eolv/3tF/zud78VR6Krq0k06aed22mbgqxpKPf0IaynAuOwzYL5ucI1M3y3hzigkkRfFEi6UGKU0lFJZNoo4xYehdpVTJLC0/a02y39bksc9qToGXlMxVjAOZInI5CAA4P1/Hh4Kp2gXIfnGM8piPwuUPkU8Hzq+5/6jO+7j6ds5/hzIgUpjndptF0NsbgVToqT8uUZc2yfaG3XstmsZVNl7JiTjZeIlYoCfvveCg4iYZylmc9R1uC8x8f8/UQiOWc56QxYO8IQSUnsm0UIKEHSKCPROaIjRYfULjhSEjF6sm2umy1o6pmkYJAwfUcIHrRELBa5EBGt8DFhqwrjHKoz48ZDMTouM6ZgnLQnGM/jQaPIzhDq+AaD7GAvLi7YbXZ8+8037LZbgg/0nVRgBj+QQkTliWK+WDBfLanzZKZQ424jpsQQhXIuLJ3KQNJojc6MJyFhNZxfnHN5dTXq1BVQeQosD9GOlDvGcb84dMy/Z6I5zn9RuReqcVJQWKUwTnzZm6piXs84W664PD/n1bWIaN/d3XNz8567uzs2a3Fc2QcIPtI0CeeqcXEshUvLxYKqMlgNq9WCxazJeZ8/x3lJqypNXVmGIdH3KQtOK5rGomIg7YLojSJ5waZy2DpXvjmPdQlXBarGSx7mfKBVd3x924OCqlpg6hnziwt8iAxDSwyyW5rPGqqqlskrxQzoxd/W6STfn7zIFyVPyZk6gM6ya5WHNTmHRUVhQWMiKkMYEm3fstnes99siL4T1nJy+VJK7Nf3aLdnltkyVzU5JJ9DXRFxeogSNlJaclSjc6hgSIOkjzilaZyDpkErS1XVdEPF4DsR8w2R5AzJGYLSDP3ANuzpQiRGLazHaNKA+DqPzEcOj6XcGfNceJgSDzk4hxPME22C4ss8jp1/IOE3/WjrhPV8+fIFH3/8IbvdloeHe7bbLTc3N3kMK6rK8frVa0iyAWpumoMP+X7HdiuV4FqJU81yseDjjz7i6lqE4WcjmDIjoDqNkpz+/p/VyjxcgHFVVVxfXdF2XfZ4b+najrZrD3JKSeqQp+Hp09zIaRX79PeSN/lU8U5ZF35q/mNhmj/44APRop3PefnyBV//7RvevX/PbrcnpcTFxSWz2YK+H7i7v+erP/9ZzCOsbLTrukErxeAHcVnSB61jKRxUudhPcumj91SzhvPzM37zm1/z29/+li+/+IJf/epXnJ2tZNFXmf3/ue7bhPCAA8N5WuENZBcyi6rm1Lahnq8y6Awi0cbh3FKpFsl+ZxoZxorMdsoO/bAWxYTvBtrtjvt373jQ7+k2kdB6WU9TEvZAHQp1dQEpk+jJ39NOi4uUUsIu5n5UCuNKnyqpMdPXT5nvp9ojEAsjGfRUe6rSfgo+p+y0LsW/o1TZqeMRmblOZfueD+r4O+8f7vj3r//McnPOcnkmedjGybpWQWUcRlsGL+sSgKsrFssl1jl8CPgo5FVxDIopjFEjlGjl9n3CmBpnZ7imwplK5gKjUNaggiUNlhQ1yRt0SBhtqYyjaRY08zmudiijmUUBwDqbn1TWkkgi72WNRLordxR5HpFHAZ9PtOe1QdIUxR/IkunOxhrDbD4TqZGqRqVEt9vR7nZ0+46YrRytkpL7i8sLPvj4Q2aLOTpXMKfioqIO7itTAKfJAsFKS2VwSlijWSwWXF5fUxW9uTSdOMoInIjGT/jvMeT+D1hkTpl3yrkU1jj/zVnEN7iqmM9mrJYLKQo6W3F/d8fd3R3b3Z5+kBCU0hqy0K5IMVjm84azsyXzpsJZTdNkfcfRyu5nmkYVKAM6KqxRBCUWaCppVLT4JuB9QtmE17APim2v0YOlG0SQPSSFMhFroTnTtHj6zT0P3Xtu1m+53L7h1eBRJhAGka8wRLQKaJVtJ1XEWYXGoFXEqIhKnhgHyMC0mAEkyk6rMJ4BldlMUs7fzKGNEANDUrTthu36ga7dCiOQHg8PkwIqeZLvCV58nrWxGdTlnK2kIWpUzBWPWpNsyWOW0LXS4gyjlEFXiTpku8wwEAaP94GeSJsiW0THrxsGWh9kRzv2cUAV0eRJzysos4DPfCNTYTC+o28cb1D/kazf9BiEoaqcY7Vc8sEHH7Ber7l5/x7vB7q24+7uDlBjTmLTzLg4v8APgWEIY7i9C634mg+ij1vXNRcX51xcSJ5iNSmieX7c/+eDzknQZwSR1lrm8/koau0HiRKVc48hSN9OxyxQOdcCPKdFRFMNzO+aB/8e0FmupzFGNEudwxjL+dk57z5+x+3tbS6+TLkwbMZ+3/HtN9+igb/+9a+jTaSZFF3FHEEqufOj1Wfe9FujsXXDi5cv+Pijj/jd737H73//O968ecPl5YVoBys1OcLj335ymxIez12RspYqRcLkAiPQrpZweIrZEDgDT5UnYnVY4DPOlL5SQsxlWsjkTeg9ptrRDVF8tYc9YRDnnZSE0ZPjKX1BHas1lf89MS+UNfe5MHpC1vXxHUrJvKjU6JFZbKdVrgNJSSJT5XeldU7bmwDK/PPwRenouecY0kMUtPycPCjg8/A6+S+rXsQ0cYgrUoylhqDc6++YL1Uk4hliSzsYQuwxStYJDVjtMNqBcuiip6kTPg5jMas2mspolK6OUvLkOif27cC+HTCmoa4WVK7G2UoULjT0wyAh+zAQtcdqTW0ramvFTMEqYuzZt50QMymMwLPoHMQo61FbDCuGjphCzi3NhGXh3J4Bn09YZgrDGWHUp8oYLve943BEnXOlKmshRHbrDbv1mtiXHVWkqRx17Xj56prPv/yCxdlSFuOxO8quKqXC1+S0ZnWQaNJ5cRUGNkvIVBXa6cyYkkGmEn2b0ulGs9ZDoQk8loX6+4Bn4dMOGokj/3nAu0etDFKjtVw/51jMZ1xdXNB1H7Dd7livN9w/bFhvtqJX2fXZ5SPR1BXLxZzz8yXzpsYadbSA/JwtBPB9IoXsnpN3BMopSIb5qiYYjUmeXidu9wHloRoM/Vaz3g7sO0VAYxvD8qLC6shO7Um6Zec3bNstu7YHBpIPqOhxDDgTcCZijOQDa8fB0SF6xN4pZMA5AZ6TyUOlKI8QiEGsNf0Q8L1n8EFY1pjo9hu67VrCXCmglT1y0lDAvK7BWqySCxO9J2ovYBIkbBaj9MFUQvxIqENrUvGj1hZTaYwDp4TVlF21GBAMw8Cm6whdS+x29D7iQy4qkGDGOPEe52QextMIOo/63imLURYMNY7vyfZNzj89ZTP7c7cD89o0DS9fvGC33XJ7856+7/j6m2/ZbncMQ6BtW1arFTFG6rrJBTEWa6S40WjJ67u4uBhF4q+vX3BWio3+J2Ayf2h7aiwnDnn2RosWZ2FqOAEAp5vrnxqS/KGv+f6W80ubhg8+eM3l5QW//vWvJgL4KfvAG3bblr/+9WthW6zlb1//jX3bEvwg899yiVJa5Jl2e3b7vTiohZDDu4lFM+Py8pzf/PrX/P73v+eLL77gs88+Zb5YjCH7f2R7Lj3hqBAqlTQZGZuZrwYVR5mkcURmtjONYz8v9EqAIznVTUAnQAJn0Y3CLc6o2j39/oHQbUkpEGIco5zy8QeXpxE15M87gM8DeVPml1Jmkx4vdI/YSzLoTJn5VClJZX35DCVnpcvfMzg/6r/5pJ+8e+Nr1OT+Ho7rMeg8+Tc5NTEDSZXzhWMS4fWQkIhTPGCWw5iLHNKUjtts0XBxtcJVNUZrhqFj3/b4rsN3g1SbK0tdL6lzmosdLGpX0iAkOuFsxWI+Z7mYsVwumM8XKG3wEba7js22RSmHs2JDLVrnUgS7Xm/o1nsxxwBmqyVns5lgCKtp+z3bzY6H3ZZ93xJSdoxMpcDKj+tFAek+yJolOqKZ8y1Rxh/KeJbdwpjhNd0N5p4x3flqY2hmM65fXLPbbNApsW0aQp/lBkicX17w+sM3vPzgFZcvLmkW8zxwDkzMdHdfOqjOE+sIqCYLYsqsleRjxMPBj53rNNl5SgGdvubHtKevZOHWJKflsAgcTmj6z3Q43CzMbww4LORK0sViwWq1YrXastluRTi77RiGnqZuOL8453y1YN40wnLq0/P8/mP+oU3hUCzHqumkPFp5hij2XZgIThNxdERue+h3CbfrCdvIbissplGJ2hhSVWNdwgwws3OWq7kIvSeIIZGCfKYiQuyI3qCJIlNEkp2j8lKplySvs4BPYYXToX/EIDIYYRD5Kh8FdA4ZfGab05AkbF9Zg0+OZBJDMPQnyNNaI7JfpOz8MIigbhZZVgjeLOOEFFExoFR2G9EWrR3GVDmMBknl0BYRYpDB7ANdSux9oB0CvY+INfC4/Trc5wmIPLrdp38vv02pjFQWlEm/Gf8uk+4/HnQeH2dhxV68eMEnn3xK3w+0bcfd3T1tu5cddy+ORcKOSKGM1orFYo51huViwa9//Wu+/PJL3rx5w9nZSgDqUZ6Zeub3/xnac8dznMde5q8fXubzcx3Pj+kV0/ceCoWKVmjKC1vIDJzN0bD2bKCqKoahp64qFst5LiZrszJIj3MWZy2hruiGDvpEDB5jNLPZjA8+eM2nn33Mb3/75aQvnP3dOp0/5pS/b42ZxisOQ1M2l+PwLH870Jkj01Y2vIIVT+YEpSVa5RzVfE7TLhm2c3xbE+NA9F40NLO0ksmhdq1FALzsccuetgDLEWQWwqeEqZ84v3AEslOWShLJnlhUC8rXZLCZQELxU5b9lMEvXzA5LjJIHR2PVNEhP4DlY3a2kBSTjRuHtbwwwiEmfC7sCsXvI+Vc+cTkDh6uzukY0cZiXS0MLknC5tGPai4SR9QEDUHBkMK4HuqgMNExBI81HqWgcpq6cSRmaC3e6lJ4BzEOeH+QtBQ5S03vWxI91oLVGmuA2LHd7vBDx75bs91veNiu2Rf3PyWF3+Lu1+eiOUNZh7SyGONyBI+RePsOsv+JUHt+4/HkRibvjnNUQKG0YraY8+HHH9PUNVeXl2wf1gxtdtNQsLo85/UHr3nxwWtcXY32eymV3fb0ACY7kCySm8p3jy9Jo5ftNO/o8HTKQLZ8D48uQnlPSpMO+6Pa6QfmMZVOk5OfaWV+eGJSKo4iElabcTVcjNZ4fd+PE7aIWpuTXfvPP4laM8e6VwKoQwR6QugY0lpCml6Am7WWDs1dG1g/9Kj3e9SmwyFV/5WzzIwmKUdlHfVyxtn8BW9eCfMhi4EU9litcIYcTh/yTFDUhWPOgepziD3neGX5B7LYfIwlBNmPHs2+j6NncQgph5tkOXfGsFouMd6huz37XtGfumZOd9AxEMNAHAR4lqtfJrI4TlweHaNMhsaibYWPAR0CKkZCgEjApyA6nm3Lft9yt91yv9+z8T19iMSy+xvZET2OzfGYHrW8O4UxZ/oREC3nNQWfI/N54FP/o1rp/5eXl3z66ad4H7JbT+Qmh2Tbtj0YRyg4O1uh1Fm2zjzjxYtrPv/8cz7//HNev36dgelpccN/4En9Q9pjNufHve+0/UdsMY5BKJQ1pmy+So+Duqq4urrk97//naRKXF7wL//yL/zrv/4bd3e33N/31HV2N8t+7CIVFmmaGS9fvuSLLz7nf/vf/wu/+tWvePPmzVgT8I/u0VLo9N1V2ONrFZPq9JMje/S29OjnmFCW5eNUmqTUZN1eZTRuVtMs5/SbOcNuhh86ITSNlQLLIiGWlQPSCD4VZQVOcBSWHlnKQgKdrKOJQ45nKidb/q615MNPwupRa4r/WvFdf4rxPJBiKoPF4+8uLoYFuJfUi5HdfQqInoTOC/hUKeFDHBUFhO0U0DmVpZucGRzFysr3aEIU2cBIECJBSZGfqS2obJPsHNrK3J50NljI5zwMnr4TPdEYOobY00ePqxoShv2+Y7vd4nupZi/knDJG0huTaIMv5nNmdSNE4f6Bm/ff8PDwHu93DL6j8x2RhGtqMJo+erphYN91UocTs71nUFRuzmJ+xny2BCXC9WWdSurp1eMx8JQeMDIjT42XIzkCpbCV4/zqgqoWbcZ2v2foRBIAlWjmc84vzpkvFxhrxollysPKbi6VDcuj8HfZZ40SBjzu5MfHp46OvYDMKdg8SjD+eyddJZWBzllmdf1EvuXhLKbH9Fyb5nQ552iaetQPQ02kRZT6jgV0yu4+/v4feiyr5QtevL4i+kDwA323oW3vSFHTdR6jRew3KkOPJgTQXmH7QBM8s0Yxry1Ulna+IM5foJZLjKq4OHvDB68/ZTm/xho32sU5C84qrEEq19Nki58SKg7iw57tzELI4ZAgBWqhaK4NRfC36K+JQ1CMZYOQbx6MPvGOhA0REx5fLyldilnPrUf3nWx/ER3aMvnEvAuPecesU5BJVml8SPh2wLd7QidSMiFFfJa26PuetuvY9j37YaBLET/eqOk9m/zpiZDS4b7nHb8aR9EEcOb3jP1jynqOvMZ39JyfH6yUsd80DS9evKDvRYKsqirqpma93tD3fXb5KVXZIvmzWMy5vDjn+vqKDz74gFevXk/AxvF3/KPP4x/T/pGA6ef67B9+Lct8Dyf3JElhWN1UXJoLrBMTjcViznw+4y9/+Qvv3r2jbaVSePDCihujuLg856MP3/D5F1/w5Zdf8Pnnv+HFixejMsCPPca/t03Xnudbev7qP/u+dPJ0oUAPIDSPfBKiwe2amnq+oF8s6YaeoHt0VVPNFtSzBa5u0NrmzW3+ingAdtN0jhKWVoonQWdpJcezpM+Vj9UIfpgynWW1TNPXT5jPAkBPI5opHexgy/NJKaJKB/BavufkWA//PpxTQo1zuDCehzVjKrn0qBt9xy121Yx6cc6Q6wNSTh2rXUNtxQtdGSM6nVpUVbQCZ0UlJfqI7wNDLxqive/ZtjuClrUrRsW+bdltd+KsNIg+eNJIwZi1GCUpSTEuGHxN6Hv2uw03N2/ZPNySUg/Ki2mBtRgltprgiarHpz1D8KSoiF6RvEJrl8mCmtlsyWy2oG5mUgydjWBO2/OWmZMOoCZs5yOaOu+mmuWC2XzOxfWVJLh7SXKPFC01O+ZpAiOCF1sxlRftkzyOSScrxwYHvPpc/sz3/e30fOXnd77sO1refSGC7vO65ny1ZNZUzGcNztmjc/gxbXqtCwuEc2Nfn+YL/WzFUU8c59XlG3735UdE7xm6lvXDW25v/oofIu1+j7KJIXQENEOU0IpTmtrCvIHLlaKaW2ZVTXtxTjr/EHv+ilmz4vLyNS9efozRK9pWEz2oKKDTWY3VCiMiriPwVClJfmcUXbrgc66mD1JoMUhYfQSbIWRTA5k8csE8oMYdmYRlVP4Kg1IVKttITlvMYHIIA6rvUBiiCRL6Vpl5OPJOlkkzZkaWCNtuYPOwYfdwz36zlhSAGIh4AgGfE9iDUuK+lD1vKZOoKrWTKTOeBRqWvx36RfnbAWyesp2PGZT85vye+L2bln9ES5lBXy5F99E5x3K5ZLFY8P7mhs1mizFmtHS8urri6uoyO/GsWC7mOSJQ/awi8D9lHP/SfnybznHOWc7PV8znYiTw6vVL/vjHf+H/+D/+P/z5z3/m9vaGthXrzvPzCz788A3/9b/+V/7bf/tvfPTRh1xfX4mKyg8CgD9TOyFPTteAUyLkpxzT0+9JR2vZ0dqpEGWV+YKqO8MMA8b2uKahWZ7TzFe4epYLfwujl0DFkdU8XYtPf390NOlxjuf0M6ZqEk99zogBJuAzwSHH9WiuO74uKbu/wWPg+ejajPhmMpMmcq2LEBpFH7akhoyE1Q+cEur5ktVlZLvbEtudpKyhqGYL5o04h2mjCcmTVMQaqKyhthYVYWh7uv1ASyckglbiHrjpGULIKUl72v0e3/ck70VfPBv0KCPRUa0Mu63Y6vZdR7vfs99t6bs9SkVRjKksttKYSuQCbTSYpFEdlNxfpSWn2FpL3cxZLM84O79ktbygaVbM5otR7vK0PVlcJDe37J7yEydg73DBS86FQdsSmpvuiA58Scqh0AIwQQpVpsDzaMBOQv7T7x6/ZUKNA0ch56fCHKed7u9bRNTRbyI3YDhfLfMuxTKfNdRVNR7Dc0n/z37D9wDrH3P8Kodenhvc39VmsxUvrj+BEPF9z6yaYYDd5pbd/Vtq5/EJugSDj2gbaWrF5bnhKlquFho3czg3x19cYV9+SnX5CbPmjOXynLPlJSFadPQELRnblVNYo8VLOCXJ4Ywhh/sDIfT40GVG8wA8C9A8Bpwl51OAYBJ6GqkG1xLm01pYxxTwQSOi9nAKPIcowvQhh18GHzHa5fCCiA2LSH3ul0llCQ4Ifc+w33F/8467929pdxuGdp9365GkgjwyIE5a/HEPnskTegjFwZs95d8n4HEEi4fxp1SZKNOB6eTwMxU7zdHxqWih/se3aS7XYrFAKTFoaGYz7u8f2G63WQS9yY46F6xWS5ZZx7auK6bC9/9hgOM/pf3/7nk9d0tK5se0HxTbYOcs1hq0lhSLv/7139nv21Fo/7PPPuPzzz/n008/4eLigtms+Y8FnRyTKHDc/0YC5e85puna/OiJCRY6Ap4KbSxutmAWA0FbMR2oa+bzJdV8hXYNKDH0OP6Inz4LhBCO/l3A5nRDeFr09tTfExMMcLLWn65rAlbTyCOryfNPRjyPWM9M9FKmyngCOp8Gm9PL9FQE1TpHNWuIWqGdgyQ2ppWxWK1JRHwcCLEnpSC1DkGBN6iIsJ3DQN+3kmfpNboyKKcJMYq8WOgIqceHXsxFkOijtmY0U3DW4lOAZBhixxBbPD1RR4zVaGfQdYVyNq91UlQVx3PL7lkxQrJoZ1ksV1xcveDVqw9ZLS9xbs5iLuDTuerxtTj9g1IqO96U7I3ja6y0Eto3L0jHg0sOSkHOz0joKUWvREom0zYC2NRhx3MAnEAOlR/nYRaQpwu8pRTzlM8AjnRHy/se5Z5M/336+p/QjJKbe3G+YrVciIbgSZX5z7er/f7nfup7nnre2YbF/BKdFMkHrFIk33H39is2pia5jkhkE6BNHm09iwZe1JaXKrGqFbqqxL/88pLFq09prn9N5ZbUrqFylsEHkoOgJahc2dw38r1LIYpXu/e56rtlGPYMw8AwDKJxFg4OEzHLqsR4ME9I6LxLE6CJMihdHmKr59s9PiixAT3Rn0sJhhTpg0elHq0GnPYY5bJYdQTlRYC++LlHiD4RhsR+v2e7XnPz/h03798SQi8i8TZL6ekoyrtaIbIpE3CZ1GH3Pt6iMpYONaVHY7a8Pg+clIFxCb4x+f9kSyTANx3cOVLOo/rPai7re1Z1xfn5BW3b0nV9jgI4yXeuG6w1x05mk/ZzAY7//wWv//O16aUu3a+qHFdXl1SVY7GY8/r1a/7yl6/Y7/dYa3n16iWffvopL1++4uLiAufc3zX//vRjf5r4eOp1f097DHAef950/UQb3GwuFp2zBTGl7EZVU9UzlHWkXDhyEPCdrpU/8vhPGM/nWtlcPKqAPzmHH5YzOyWayh776flrCjpHJpOCZVSuUc+ORnECTp8B4odZlUfgVBmwlaExDfWsEUc1pfF9x9Du6ds9fb8nxo4UxWFKqYhVOtuGK3zn2e8kPUtpjZtV1ItGfN1NIlWalKxEJ3tFCD4XJw1YZ6So1YrttbOagMZEg44GrcSC09UOVzm0MQwpEQfJFQ1R7F1DTPgwEINgQWMti9UZV1evePX6Q1bLK4yupE9VtbgcnbRHwHPY7mnf3Y2o/5CRkS+oOtywjDzJNOWYFlYAI8BoxHcSph/lGTjpTGp8dmRBpzdSMKsed8RTiryweur0ffm4xvDhJGclfwl+e1xF4r3nn//5n8VZ4H+h5r2n67qjv93e3vPHP/xJ7kqMdPsH1usd612N5yWYJQmP1gmrI0r3UA+0qudeBVqjUNbR2RWKa/YbqNhijMdoi9FSNdfnDi5C8QpnMthKhS1PwmIGyTX1oRcgGsKosZZSGqvax3ydPIlAQunMDmoNKssgaYNSRqr2hp7Bi8zIEE6Fj2Fha2rtIGXRE2XR6KxiogEjofA8LNAQTQ611zU6RlSM1M5BytZ1RsnhlPfJrgWKPEoeXzpLm+hRQLoMoGPQWdppmA1kDJdN4+kUKmyoLDhTFw8UNNWxL/fd3R3/9E//9NM72k9oIUphmKRQBJRW2CwzYrNpwj8aWrx///5RmPFf/uVfssbo/1rt9Jy32y3/9E//9LMDvKfYrGEY2G63rNcPeO/HkO5ut+ft23fsdnu+/vrrnzXN4rm22WwegSsf/GH9zBzOjwnLfm8rn/fs0+n4tWUuIJLQYBy6FmMWbQxkkBF8ABUpJYVHc4N6+jvHnMonQKY2houzSyBNtGL1KNlUrBZLFfrR85lgOu5Oqvz3fBvngUmR9BPAc0Q1U2wwzpmyZqR8FZI2nJ1fo5VmNltx9WKH9+AD9D4whEhQRX4OqrrOFr2H1ljLWVOPaV4u12h4pxmsZqgMfqikdiF5srVAXkZkXg4+sliK7BhK6muqpkJZqZSXOdLTdwN9N4iuLeKzro2Yb5SHMUaKlVaH19ocTTBZ3zZk1yZI4iff99m4wYumeHJcnL/kfDVDq47d9lui36KUkbXdWNbrbx/fov/+3//7fx6V8Uv7pf3Sfmm/tF/aL+2X9kv7X6b947eDv7Rf2i/tl/ZL+6X90n5pv7RfGr8Az1/aL+2X9kv7pf3Sfmm/tF/af1B7lOMZk8gg/ZAsHTXmnk2KgnI+SfELLlV70+enH15yRROHRF9JNH5c4QYnhU5PPPtc3kDJ+Rir5x99qp4kU8tf/DBweFtJLDk+3mevzZjc88xRp+OCjqMvPvlT+ePR5VBPvKe87+iwvisT6OQN2f3CGnt07aeFKMft6bvxOCeLMf9OcnPTyWmqo0s1yaB74m+Pnz+9VI/T7Z/pzWNK8SE/uRy/pDaqRzli6Qlh4OfaU/1szEs+PpFHrxvTNyd/m3ap488+GVRPFhgcP6WUkrwhpca+rY6+rdynki97UqzDpAue9Lf8Bc+e2nGxwpgA9yi/+3AvT/LVpqdy2t+Pxt3kxB+Ni8eHfnpFH39GyXg/PreD+W8ac2i/69NL/zo8fbjZx9JyTxzsmAd3esRM7lUa55fnKnCfev94xEdz02SWGivM89w8Ec8ej+CHFKFNP//xYH18rPmAy8/H5/Edb/6u2e90Xpmqjkw/fJJPeVSoMxmLp1qFWk0Nf46lzI5G6+Pu//iJ7zib05E/Pezpa37IbTm6ztP3f8dkVfpRmdPVSZ9ISQpRJt8wftZzxzSt1TgaenmumvZddfy/ow/9rlNWk8nr6PxO+uY41zzVL4+Op7z9UFtg9DG8KpXx06M7gkTTy/PEfHx0wY7mSnWYU5iqBB3O81APMzn/6bKb/16E96WORj1xWeXg1PFJ5x4ux1PcJNPk76cX8BHw/Le3/8y/3/5rLnYgFzwkSjE6SaHzojxzlYg1X13y8vqauqro9x2372/561//xv39mq7vWa2WvHz1EmM1Q+gxVuOcoes9u13Het1y/7Dn7v6B7W7Hi5dnvHpzyeXVGcvVnBDB+8jgRcImZckaLTnRUkFMFAmdaVUcUpASfcQaS1PPmDU1Te2wVmOMgiwZE3cvCOs343vbtuX//v/6fxCSZzZvqCqDtYpEwPuBdtuzXXfEIUHMvromokxCOahmlqpxJMS2kSFBUCgMKSq61jP0EZLJj6z2nw7HL45NAeUidhYxNZgKjDNo43LHT9mlJ6LQWUg2EXyRgDgVu1WSLJyQJG7K4qTQUeN0xf/1//x/4Wx5Nh7HTt3zoN6J8HkoDhWRpCKoiM2bjxgVPkDnA10QF57awvXKcb2quFw4tI6s93u6wZOSonI1s3qGNoaIoguB/dBnEXipZI8Beh/pQqTPAvEQAI8mYnJRjkoQfCT4RPRA1NnjvUJrh1JSqa5UQqtIXWnmjaOpRcDXd4nN/cDDzZ772z1ni0u++NXvJoM/sQt/JSYvOrSJXNAUSdkWUyzENEYbnKmobINRGmKk7Xds92u6vqUbulw1DocUfpGnJ+t0ahUwOjCzPZXzGO1xNtIYS201TmuUFrmLqDVRO7Rq0GmGiRV2MMQQGcLANnrWBIytmNULXsyWvJqfcT67ZDk7x1YLjJthsobf3nc8tFv+/eE973Zr9uua4A96bMsK3sxVFun3MuEpRE2ASFXVuKoWX+Mgnr0pxuy4EaRuKvtCkysmtRabw6qqMEYzDAP7/Y4QPFprQggMg8/J7gpjxC5RKk7DWBlrrc1eyAOD96O6RJHXKkUORXIrxVwhmsWOYzYg8KHIl4hY/Wy+IJiat34+mWPg1/U9hh3vhnu+bW/5ZvuWTfeAij1JJaJWKOOwumZoI+t1y3YzsN8GYhDNWKtrnKtoasd85rg8W3F5doZBk4ZI3/V4H1idnbO6uGC2WOKaBrQi6URKA2234/37t9ze3bLd7tisd2wfdvT7AeVBRY1S2Rqxcti6zp+hiSmJDmDX07YtbdcSotjSohO20lxenfPy1RUvX19yeb3E7d+g+8V4Lfp+z/vbP8kqVQgEMjGhVa6BSwyDx/cD/TDgB0/MJg5aG7Q2pDKetVjUVrUYaMzn0je0tVJUZnQuTtGTRbb4c5fiOLHSLUUrApIY1VBijGJP27b0fU+KEY3COSm+SEnkgPqup2079vs9XT8Qg3ymrSrqesYHn3zJVL7rv1xYrirYhZaN3/OQOjapx+uBpAPOJbRRJBwxF40oBXWlMdmxx4fA4AdR11BJBNG1wifoE/QBfIRKK2qjMAqsSjinsE5hjSWhudt71q1niCoXtuTi3AxEUhT7xMZa5pVhWUlxj4/ImttHUtejuk7mJa1IFnCaeuZwleVu2/J+3dK0r2j89Xgd1tt7/p//7/8b2EQ9s0Ai9IFuN9BtBoJPIkauEpiEayzNzDGbOZrKjoWjzXLJfLlitVqxmC+prcMZJ/bD2qKUEaDoxUI5qihSQIg5R4hJakqTxpmGupqjVSKlnr5f03UPeN8Tg6frPF03SJFpiCij0FaNzm9OG2ZVw8XqnLPliqau0UYz+IHtbsPb92/pes///vn/CWsPxcl/+/MfePu3/4FWHqU9yhYEltAqUWlwCnQUsf+qrtHWMqREO3h2bS8FQEBlNbVzNLVUjj9se7692ZJSpK4NZ3PH+czRuBqrHG0f2baeXdfhQ2S1FOk5Yw0pJXbbHoPlszcf8cmbD/ng1QdcnF/jmoaIZtfucwGSp6oqzs7OsdYSQ6Td7cUuXSkq53j37bf86c9/4uHhlna/Y5gvCWeHPgFPAM/ed+y6dR74Kcsd5okgw3OdQCeF1nMwc0wVMVXAVsJyNnPNbGEYvME4QzPX1LOEsQntI0pHjI3Y5LGVx9URV0UiHd2woR0U3WBpezC9J6IIeZD5mEiII5I1xQowEFPAR5/ZWkHJ2fGVSERh8SkyxAETK1LUeFKudosQV0fXIaXI3cM9Pgx0Q0PdWKrKAJEQBnbbls26xXcJFTVJRZIJKCvAs/aOKjgBEzGCBwZISUTSC/BMyY7gU407lsxWqERSEV0FXEzYkNAejBOLM523hDELjmslE7cAT/l7mVxjYZaTGtkWnV2CU0oQZGFyujoC7wB96Nn4jVx/n0TvUUlHUDqJlJSCGAR4tiEDz9ATFJyTSKJehFIBVIvSEa0txnmM86AFhMXkCbonZOa9yFgEFRmI9MkzJC+AHI9WEU1EJwVRJusYEilpFOJCJLZpEZW16TTSp6NK+ASDl+vYbgP3d3tub3bcvdujwqn+WCKkgZgGuUtJIVWi+ZGSAHBM9jjXKMKojqRVQqlASgMxdiJPkSMDU4kjVESpiMITtcfQo9RAMh6jIlFZQhA3C7GTkz5vdQVqgBTFplM7dEoQA5YekzwqBcQ2raLSgZlNLCpNVVtM5cQ9Q2ncAFENNK3F9Zr2ZMeqgcokfMpKAblTRSUyVkZFDKLfp1RRGoiQAlpFjNZ5c5s3kSmKVSoBHQcB8MljiVnrN8pGkjjqjVod5XqkSCSgUGgSlZZNokFjRkYiYrTcKZUlqpSKaBWJSr7b6QQEhjigYsDluQ+d0AR07ImcMuCJdr/BsCGoFlQPtKS0Q8WORGBICZIlqAYfIj72+NjTeU/wGlKNszOSmlO5DGh0wOqAiZGYAvgOfMDgqQxUTlHVhqgh6YRSDmUrmn1F3Rr2XSSpnpBaBt8Ru0gcMpOvNco6XF3hmgZbV1jnSErhKkNIFp8syQtQH0JPv4/YjcI1imYJ1TywCtdoDsAzpcgwdDKHJVkvBHjqvMGQzcfQD/RdLzJoQ8jW3QrnaplHYiSlIKA9aoxNpGTlfumEIow0niYLPwjXkmkenTeBCaJsSuCUmZLnFTH3h0iKYkYRUoLkSdbKZjXE7JI2EPxAGLJftdbooIjRPaIeU+xlTUotXrUE1ZHoScqDiWDFP1vEtfN4VglnEkZn3Uvv8fSyqSUJeC8qFyhS9rco8oEhr3VJyWRrTBT0bgaSCYQky1COcTBWqmswxmBcxFYWXdn89YlBRQblSapH0eZxSL6eGqscRjkGWvq0xzEwbTFFNvt7sJEei1KJMET6bmDfDYQhCvAkgVFU0TAkR8QRUgaeKTHsPV4HlFMoq4ipJkSP0gNaObQyeXM7yGaDQFARz8FpSEWFihqfEkEpjE4oBobQMviW4DtC8AxeNkVt19MPXtaurDqiUVTGEUJP7TSVU2gdsNHIOBm2dMNW3nfCufphoNvvUXQo3aMrja6UzC8qjgSE1aKWIpbMhhAifvAMQy92zymRvIFgs220l/HUb0kpoNF44wimJiZP1I7YR8LgCb1sYEOlSINGaTHYqC1URjOvDYvKMneGuTO4SuS1NIlOaYYOrDbUWlNZCyahh4GgRdOlVjAzmmVlSU1NrSNb59icrKSPnYui+Fcj10MmtZTBZ14XRYVI2IrZvGE+n6GNwhiFmzcYranqina/p/cDVWWZL2pQiSH0hOAJIVLXjtmsYblILJceESbtsVbhfc92u8GHAWUcSsvuLSZFxAsojiJdE5MnREHjKYExFlOoYq3RRgamDwNdlwjBZxCdMvsFlR+YCielhLjfDANdlvWxWqFNYbVM9lBNjD4yWU5RpA8gBWSyUIYiiD8MgaEPBC8DrkwipRVHmnIQSUWZO6x890E6Z3wDZXefVBylKLAKHckgFAhpBJ86h4YEuChiDKI3GbKjz0mMom173m/WxLxjVkajrcY4jbEFUAmT6mOii5E+OwVZXQQhTGY2BORaZWjqbKtlLD6KRqcPYZRFUilhEGUhrwTMaCWMZVlk8m9kFSZCFHBtjMWaito1GOWIAWF1MVhtcc5gNSQf6bpEO/Tcv9/x9q/33L7d8XDb4dLydHgIu0kkJgHt4gess+xt3qDBaE+JAqMNVhti5RlCg48DPg6k4EetT1IJ4Ma8ycvmnCnSBwHPjVKYqOhCwscM8EyitlHAltIk7enjQDIiZ2G9oVKahkQfhAWQ8ZLF+GPKO/k0WrQppXDGUtuKylY4Uz2d9pI7vFLC1RLjCJ6Dl7EYUcQIwYubmQZMZjq11hRR5iLJ0rZTWbM0hrtSihNmrMiyqLy5io9kXIwxIwMaMoNZ3heyxqtSanzd9LVd15FSomkajDH575G+HxiUgpP9yJ+/fQtpg7msoapo3AIVB5TXDLEDvOjhpQGlFfOFEaCoEl2rCB5qZ1jMai5WKy7PFlwulpw1MxiihCq1ZVCKua1Z1g1102CbCq8SSYtMypwlxlZUdYO2FaDR2uDslv1DSxc7+m5g6BKRPWrvsNWes/MzLq8bzi8uWa7O8CGyb/e03Y7dfsv9wz0P6wfa1vP+3QNaJ7zvcauPmWpDyxxYJhAZnBFZtFNSpCg6uz6bPcT8pNIJow3NrKGqawbfZ9mWnhAjShusdVgrLGQBsDKd6Qwok2xWM5gqeq5iwyxjUYTMD6HHWMLDE3mfEAIhawMbbTP7Lrq/xlqss4d5VBuMsyKbczI83rcP7PyOrRrYq4HBDngdpf8iUUOrNXVd45z4bJMChFZAN+ATmbkLqJTQSWGVRDrQitoqcYoLQi60g6f3HjtYapdY1InK5ihPiqSQiCFNwqdlrgFtLJXRVMaggC4m1r2n7QfiMBB9B6kdZe10Ulg0norKD+z2Hfu+pT4Ri0eBqwVHaBMEJ1hZl5MxhEFIJZUEyBpjcFbLeucSqpJrFenZdzuqfSMsYoRgI6QBUodWNvcDiYZF5QWGF696ZUbSZfCRPnqsls1rij7jGY1OclzRBLqUGPohm4ZEOXatCDaggO1+hzUGUsRaK8Czl43XkzJeSpOUEVwQE6aSPqCcbAaTF7Ba1Za6kqhsRI04xRglhEp23+t72cinNJBSoq4MMSWsFho7hkjAo7SszZqELfc7RggBazTNbM7FyjGvZ1xdrGgqRwye/X6PT0rmkoz7+q6nbzui99R1Te0quv2O/XYDIdJbTQw956sFi0VNUolvusBmd9wvnrDMLOBDGIqyc1Ux7xDzjtk6R9XUolfl7JgiaYymmTdoo2kWNSEMKJWwTpMI2JAYvJjdm6hwTlNVmqpOtP0FPnYoGzBGJrew8yJoqxyuEuo5Jg9RmJaUEiH2EhaKUTQOjfT4MX9BlbCK6FvFrM9Y5BKNVixNT33i7BRDwvuI6ga0Uhitsc7kHaOAT5XtxIRWk9C1zttIiZpnVjFqUkiEAfyQiCPo5AD08gRaEioEN6ucUqAwNo4ReVIkoRjdaLK1oYCBPBlPUytS2VRw7O8ufZfoBRAm/TiHsR8Cm22bGT5hsW2yWKWISkuqgxKxdp8SnpSdDgoMEfAxDBFDQicJJzltMcqIPmcUD/UQMyuTMhjI5xG0olcpg9xIyacTgCrnQVQo5TDO4GxFZSoqW6MxRBWJQUE0pKDxQTGEgO9bfOsJbeThZs/NNxsebjt2a0935R9dC2FhhWrQZLHywyXOi1zMTPIhp0drgzUO5yqcr+hNLyHylMNoeT0o56z1SOoQk8YHg9fSq2N+bUxg8vVCJ7SNpOQZUo9W8n1GGSyWKiVmKdCSCNEzhJ7Wd3RBwtEmBExJwdAqpwo4rJaH4njiECAYRiAu/fHgnyws/CDAM8HQDUQfqKzJoTGNMZqCFxWGRMogMY4slUzgMp6UAucKUIQi+Hy6UyogsoDZovM4Fak+yj3P7yk5W0WPMMYoTJApUYQBjz4CninBX96+ZxjuWMRzmjOHTpa5nmO0hESDEkF+L9Qe1imauQZlsU4xdIq6MiwWNYtlw3wxp6orCblqhdIJb4ywWyIYmzc/gaR0BkVObIm1xRgnfUQrXOVwxkhKTQz0oScMnm6IpH5AdT3GGharOVrDYjnHuppEoh869vsd796/w1UVbSugyPeJdtsTZvEYhCfZ6I7RsQLyJtdK5uFi+iFzqjYaV1mqmcU58ARSHEgMYDRYDy6QjJxvDgcRE+gQyWxA8TdEuLzcR/JxnOaoyb/LhiMJWZG1YEOUHWwyCecsYMR6UBsBmTnfWWmNNoW1PG7rsGfLhk4HeivzhWxKM4sKKGWxtqKuGrRxxNDTd20G5YkQBkLqScSsw6iz5aGco9ZgFXglDmq9kjQXHwIpSRqW9zB4sgGHvG4yW8lnjGy0YfACZjufaHvRVk5hyI46XuwcY8QmjcOQgD4Edn0v3u8pPALhsjbJxlEbg6usnIvRDL1n6ANEjcqbeRI51SWhHWirCEEijf3Q0bZ7iBFvxTOcpEVPWSu0SSidHeBUzBEOjdwiue4hDTmNRGgeTRiJNSGuCi6xErUMWjbnRmyxlbUka+hTZDt0BJUwJqcC+YGkhZQ5zWvUtsJUM0I3kEJJW0jiFiTZWELRVBpX5dzGGGVjZhWNtoRAdjQCoiImxeBl7a9rSwwJFQfIep5Dgqgy3kgJoxOyx/EMfccszakqx2qx5HxxxsXZOYv5XNJMshGL0mJfXLlIZxTdvmPdteyMoalrhq5jv93Ivasczlkury7ELclq2vcPfLW7OboWj4AnZAaGHJbKq5xSGagphdOG+WLOcrXAOCsnlmTH6ZOWyT4FQn5AIIayEPs8YQpDl1REW0utDS9enFHVsO+39L7FZ9p73+4JUbFYntHM5zl5X4RuvY7EKHkdSiioyYKSHVjyTi/GyH7Xsd3scj6CHXM97aznfHF6JWRhHPqAYkApqILDWkOKubOrkEP5skBqpbF51xi9iLaCIvQJ30YBnUFltlNzEBZIlKs+ur9rsQm0VtxtjFFgBOiWnDZZgA8AJwRxO0j5PhS3hRQScRAgrclh+Rxsj16eTzERzQH4lhZCpOsDIAsh2qCj5HSqWPzOE1GRRXQlHF/6S0owhMS+81Q6oZXFapNzMnMoJacLpJg5AZVy7qjs9kKMWI2wnsTxnGOImbUzaGWpXEXlampbSQ5QMsLqEglRJuF272n3Pd12T7fbMbSe0EW6TWC/9vhOoZJF68cLith2ekbrzWQzwCk+xll8WSXZdYdA0GI5htIYXWGMk8/O967kepYNgVayGZKJsuzUFb0XQV+b9e+B/N6Ys0MjyngGOpnYtQAR6xwuWWbBEdPALnla37LutzTdnMYt0LbBWAnPozMbqI08lCbzyofrgEQOSjrEYSEr+ZMi9B5RhJjou47gAzpVGQjJ5+scESiLd8m7PABQ8riSRb+qJVyXUhitUacJ81O3MPmMw+fZLIpcWM7ChE3Z0aglH3xIktt5ALBi5fp4UU387eaW9eYt837PxdWCl2cNZ1WNSwGnEt5oYSXw+BiIKWGcYmEtVa3p94q6ciwWFfXMoZ0mEGn9gEuyQGtrUQl8jOy6jt4qNB5TSX6oD1E2/bMl1lUkJS4pE71W6QABAABJREFUde2orMIo2WH66BlipPPCPEYf2Gw22BtLVTc08wWX1xVn5+eyMQie5XLFarliu9vSdR3OiY+0Uo/HhwBPWTAOG9wS9ZB+XOZJlMpERU09c6AjPu0Z1Aav96gmoStLbHYMVjaepFrGejKAzMMppgzIcu6iSkeC5FqX751ObYfnUxL3nhgDQ9czaPnMKROeknhTW2vz/HQA1U9FA/YmoqyEe2NJWUOjlEUpYUhVcihcng+tgLvg6fq9CHv7nhBaAUKVw2i5kjFHk7TWOCOsnbM5VcUoyf0MgX3raWVg5DqJAT/EMRojc4hY84ao2A09ex/wqScEmcx1PFjm9jlfMkVZ8STjIaJ8Yt+LbXHUJ2MkJYbOEwnEKJtON6twVmG0R9ERfTeytiRFDOKQ4xPUc0ulBVSCIoaBrt1DDHhjR+BptMMYjXUK4xAXOHI0x6RsviFkhU7SR5KGpBXk1D2JHEYwCeM08+UMN5sxSrnnVIcyx0Sl2KrErt9LT4iS+mGsxZl6Qn1JM9WManFBh8d3bV7rg6xrVhGSwqSMGYys8TFvDpoq+62jiVGiJGEQR7wQJA2jrpywnL3gocEnUpAoYVKSJKG0RLJ9GNi3MBtWgMJVNfPFkrPzc84W56Qga6DRFmcsVV1TWUPyHWFouX1/hx8GySPOkYymrtG2YbFcsljNMc6itOKbPsHfvgd4lhqUFHNehMo7tVymVyr4rHNoa+iHns1ui/c9eyNgJobI0Pd4L7lMxkDdOPHe1mTAmXP4YhzdW+ZzizYLzDaw2fekXmeWgAPDFaPsVpLkrGidj1EzmUhyGCXlnV4siv6BruvZblusMZmxzB06PZ48lAR6Jc9pEHo9eNkFC5BlnEgPNYyaFBVpSBLezsflu4TvhXGMsVTQn9CSeQEvE0OZNGVxjpnFFFBDmLosZFCQWdCUvbaJmYGLCqIi+f8vY3+23UiSpOuCn4gOZgaQdPeIyKx9+tyctfqi3/+Jeq/uXVVZGZE+kADMTMdzIWoAfajujVxMD6dzAAxqqiK//EOnp45Nneu4ooZG9tqHIvHnRz1ev1iXL9px1UbzB/elSx8NiCExQiMExxSPUZQ+SN5jLG88GOMdDTbAONsFJ4qn48TGzrk1fDUCvfRmr7/Za5OueDcR/MQcT0xhwolDG/TSKblRUiGthetb4fq2c71sbLeNtG7UVOkZWhbqLoaMyiFG+PH+MDSutU6TYwxyvPdjfAV0KhWlaMb3OBC2Q+wUcM4jRR/rerwXA84e608RPKNvp3allTbW1IGOdko1HlvrFec7zRkXULTgfWUKgsej3TapxE5tiVu5cM1nzvtGDIkYKs5XtHsTSInDjw9DPB+Fp2DoW29HRti7NStKazauRAY9pg1OwbGXvAP7W+/0koFOG6M6SyJSOyjf3St90Nbuz2MUksdI/L1wKKWdfbdxLQPh0jE2lXYUtu1eKDF+1jRPaNY7UspA1nmHkL5/vG4bn98uvFFJJTGlZ+aTJ4xDJUalqBtj4E4l2+/ycp+QBN9RX6iS2ds++IHKjCe6gFuiPa85UtQaDtcqvVV6KQiJ3h2L8/gwcX5+BqmGqIgdcCJ9dDWO1jf6upOSUQsub2/8K0bEOVDHvJw4fXhhmT8Qw8Q8TVwuV27rjdYSvWe8+zkK776nDeS4Nmw8q6Oxbd1oMd2KTu89ITpcgNQ2cr8hc2I6d/yshFnxoaJ+p6Kk1tAe8D1aUzsO/KPQxTlMnGdiJunHc7I/j0L4QLetUoXuOt4HYoy2Brs1JDHGwZtv98PRJlG2ztrgdf+0TzilezWhlDL2CAfi6OKNytWUnBteM70VSllJaSPl3ZqCni0NzjtD+lFqM4RxTw3vlCk4dHBUvTZmb3zBhHE0azUfjtL6XQNxPGoDuk3v6AMpRUgNtDlidzgRK+IeIxm62D2bm/FJdVzG6AT3Q7FlZ7CBEVI6NEUl4J3HuwZVKHul13oHSVqHnq34VG8cX/U25u5UatvJudGq6SMUZ9e4O+qoFTimYr1ZMlPneyBh1Ae2dKwx6GK0KVQQrw8QoD/qHnGWeY4KtRdqzZQ8BJO9E8Qx+4D7xVHq4oI/fSCXFeqVLjudMpp8tdcoigsOccrBaQ7d9i1bi57elZw6+9a4lp1126w4Xaw50XBw2w3Cqq0OofJgkaqQk52p676x7ruJNnsHp8iYRPWD6iZCGBSI3hdq3thukWvJpH0djZ8iOuNjYDrNTOczIlB7/eWe+XPhiZ0PrXNHzESwBTUW3Zh0kGvh2+WN23ZlCh4BSjKVaymFUndK3TmdJj59euF8PrHMcRS1NoorteLpiAOnjRg6MYBPQvNKF49ooHUrdg1paZRakNJwHqbJGco4uhF6HxzKgYbxsBlpY2GrBmJciDGgTvHu5yB7Ezg46xZqJ7VKyY3kim1a1eDxuw1TN1FPp5lYRqzYEOnUBDWDtVn203k3jnpc/cefNrocMYp9dGsjNlGUx0Z+FKDH/x9F9ziwpXMnVlt1x8DHRsHQHm/qg7z+7lm1Ts11XF/r4JtrVBUOBTbOSq3aTRjgBJZ54nyamKYJH3XwSQ31ybXSso0lunM00YGpHTQGwYmV/tIb3hkfRWWoY2uD0lEcTgNzODPPZ+Y44yVQU6VsmbxV0m3n9rZyeTW1+uWys91M2GD8J0G6Q7rSu1V1TTu/qsMPq7DWiiFQ2oYFhX3fHfnsjYyg6gkt0pmtYRsxYqrufmDdSf6jI7dJw4jGFO4HZO9DxlQ6xyI4xvKlF3IzNCrEPhqLgneV6jtRPZMqNTUTtVDY240tX1jTjTk9M8dKqBbpqU5xIgRRoroh4Hg8VJUQIlIKuWVba8fBhCGXad9xPqDOG1ov7p6nLmLFUy6FXDOlbPSWTZXrI9PyhKqH3qjVVnYpmVL2O/XkuKed82PM/EA6121jXVfSnmzTDsEU785b8VeV1vexF1nx5xArhEKglMI2lM51FMP39/mHRxMh9U66rbSSWdYdPwc0KmHqyNwJE8gUcE5YGdOg2lA6U4gghVxv9v7URNTALIHuZ8Q7pmUhxAUJAXxAohsFpGUp59zYsyEk0xRxPrCcn+iYmEul4r0SpokQL4i+Il+F3jfjB64rf/3zLy7XlZQrqp45znz68IngAjFETsuF6/VKzrtxPP3Pe6aqG2WnIVe11rEsrEmz2FsDA7wXnDcKVm47a3ml6I3Th8jyYWJ+DvjFmrNaKm1NlK0jA4wIamdOb9aYHbzh46BrY/9/H6l8KNtNCf8oPA8qVYxGcXD6aGYOfu99lNo6Idi/uVGE/vhwzqMh0khjlx38PtTG4E3JBdZto5YN7+y8XNcbuWbMtUUJfjI+uo/UagDKmiuXLROckqvDO6z4VEM9Jy94FbIYSrnmSiqGtMsAj/pATjNQm5CLXZPWjS7lcdADQR3quYv2ClDvTYUJ9pxzzMETXSdm5T0rR8AmJn2M0ptDmsMH4872LORQoe7kOiahnYHqdUq2j2j90KB1FaNktYaTYJSHIUBsd/7wMY0xukydCyFY/vi9jumHvGzQlXADBrY1k8vObU13+pdztjf4OVhEZbP9a8+JmjPazGelu4pEvZ/L92sRZnR+QdIV8pWmldpMDKoiuGhaABMP2/Vyo/H1zg03ngA4dt/pLfPabry+vZlQSmaW2TNN9r45UVrpQ8BXB63LgLnSG7UWLrcr4fWVKU4s88LL8wsxzLTc0R5QjYAV5pb1vuC0E7zybf7Gty9fSXtGZNB6pgnx3qaYKbFuN9Zt/en++HnUPlCnx8fR8T8Kktor677RB5FXpeOdFXwlF9skqgmFWk+kesJPDh890xxGpqjxzAxVGOPlDnL8PBWKgutCWGbERTpKqQ0pRwFQkSog3pCMY6zTbTOq1TpBAdCGOIiT43yemeLCMp9w3g965vdjI3n3PyNWtrsYo9XKwfOkvTuRuyEytbS78lsGetmL0NvY9I4Lfb81f1igvB8JMVB8oz201rlXATK2kO+6+n5/747nxBARcYzG+/E9ffzb4xXfO4v3z6dj6ulaaU3ortKqosVQP7mPX4zL5AWm4HmaPeclEidn1iFNKK3T6hhBSwc1zqxxhPV+aKnYjaMDSzNxgrWo0jquOxyje9ZIlAlPgCzkWlhfV9a3jXTL7JdH4fn2urHeCim3Bx9Nh4WJYnOIodhv7ocLAY8R27iRe6t05+k6Ch9M6d5aoQJZHMVP1F5xGMLuxArQA3GXQVW4uxn04RYqZv9hn9MHGnB/f4364LrQu4m3zP7G3gltBfWFKRaCc8zqiRJZpLD1nSaF0hK5WCFRa77zNsHcCoIqk77LhT+WVTdRQ86FfUtjOgI6OMLbbgKRAESxg1Cc4tSukIgh6bd953K7cLt9QdrO0+x5Oj3ZRMU91MmHA0Dv1RwMcO8Kz8e4/M7PHAhKG29nxyp0UX2HiBjCIW5wI73Dj4JbVUcmvI3qD0TtV0WGOhnWOA1KoV03eipoCMSoECAujvYc2BYHsbOzm3CyFRxKlZ3cOpDRnmga6W7CizCFGX+eWM5PNBwNRbwhL9aDNUpJZh3lbR37yRGmheUO+1XUWQGDKLlWOzTTzr5V8t7Y98rtllimM799fKX+j8ISZgh9WIKZaKyVQq5C/3nSbpSesfnUUofIrHO0lALGse9WBIqKIXFlo2pC58ryUXn5W2R68rhJab1RkpC9nQmdjuQxCm+CmRSYeKarQ7p7TO6OHWUgnHd/wmNFjzNOYNCvIt3b2FY4LLhMUbztG/uWADG6jHP3Ef+PzToDPTN0X40SwMHPNoeG0kDycZ5kWk+Umu3+ExOexGHrBEqphVsqXPfEZUs4FbbiCCp4Pe6DA421dWqC3Toyu+31HkdOG01ylyFiGUVfp4/R7BipjwLd4cDZ9K22wce/TwrELK7aD4WnCNM0UbofKv5gzT0e5yJx6sxzGeLQ3SaJdmCP5+loTccwsIHY4LvUQq8F1ytNGxKswOzUu4WWeZJ3uqvQG60UfDDnF1EB50EctsM8zsGDP73tlet1G0Wns2YvHE4Nxp1UMd5kHwU93e7HVH4QWQFdA82fkPiMm2/mlOE6qs2QSpH7NOhAJsHOXhkF94Hay3BIMbeWMeIfTj/Go3dWj9BoQ1TVx75ra9OsprZ95fXtGyomXHt5emKKE1TBUfEukLJH147LAlJovRCnwPl8opZKmavdV0653G5c9w0EUtpYt5Wvb9tP1+KXHM/jdgXuY2vVQzktlFp5fXvlcrVCkYHEfT/etc1dXcXtyvV2MwV8P9NbJw1/vFIyvVW0Gzeu927ejHoUZJ1pjkzzmZQbW8q46tA64GAeXJyHue+Bbo7CU+1NCQ6c2tgouIUpnk0QU+v387vjphl7tgx0yTh9A1EcS/T7q2XFUW/j5tbjK2R4fSqH2PnxHz8XnRw3+/sG4PDqrKMJuHfsJu5poys7qGj9WL33HVgGsse9uDQy91GY2ibxq3G70HH362mjva4mrzkQB4a3pmpnngLn6HhaAufFE8Iox1qntMZerMC583H7gTpasePl8P9z9N6MO1xt3F9zQ6oQJeD9hBscKamOtlbWWtivia9/vXL5fCXfCulW2K+Zfc2kvZkl1Oh2u9qBiMPEavrgMjb/s9AKsRFwh/t4W7sh7yJWLJnIodG6oRi57tSa73upqPGA3TDr7Wpr97DT6n2MprrxZ1u3ot24nse/WzEu/TjOdawLG7HrQIVFMz7sxMmzRBMKLUxma9OTPc+WTchQ8p236cZh7EUG4vn9uqjV+NLbtrKuKx1GoWiIwbZu5JTs9Tm9K5LNhcL2jNY7b7eVPz9/5tvX/0RZ+R8fT3jJuDAToiLd2TVpo4CRd8V/N+GQiX/sED0U6+rcmJCMNXYcxqL0gYZ0EcR7fFgIIRCd4sEa4aGCPxA0BXPI+MU+Eb2wBEW94yzCUxOeSudcGssNJoS+CJID6yeB4BAnbGWMyttOc5XiC/SEtIQQUc0UDfSp4c6e6flErUopA1FzSqNBzaScqDWxZ4eLgvSTjY7nZ3vttOGwoZSh3N+2lcvFxnZ58L87ne2ysb+t9NSYXTRQ0BVuCNTKtq68vV2YP3z8TpDZWycne5+s8a93n1Qr7g7BoI1NZdz/qQ0k+wnml8jp08T5U8BNQwFNpE2O7B3FK0kUWRWtxlI3K7VGI9Or0l0wp4mDyHAvOh9gwt3X+LAz62aV47wVIiZC66SU2Led9bZyu67sKQ2RkSF2Ntr/eZuoR7E9RhJdjILVWoVe0cH71jaoOzUBwy5qLDEnjugDiJAHj/Jt3XjbNq4pQQe3O1NnO+N7Bq8ED34Mt3Jr1qweZxOP4rINapaKDLZ/v7uwqBj61+TxPg0fDwNT5LA2U5qMounuMPBuu1RleVqovVmD55xRb7qBPSFG5vMypkg2UdRqUwT0aFRl0OWy2cGJo5ROSUBRPJE2L8RgPqFiT9MaYWwtlmTXuGSbungfcOFBmTiM7+06Yd6ua+Z6WfHeM8/uvqf44Gy/r0bzctFT3aDPNdNM1GOw+e5RuiMT6P4Jv2RCh6iKDxuqeYhsDdHvaqCLSBtTn0ZKlarFXGAKtFJxCk+nieCF8xKZgsc7K9RL7ZQGdZx19vZZM6SDOpLKTrs045yWzG8fTVxEU7yW4QXbWbcrjCmaiDm1aHB8+PQRwc7EL9++8o9//hdv1wv7tpn9U06s4Qzzy3fX4teFpzzwDTtHrAjso6KyNIJGr1Zxc/8YXezYhEQ7rjVSKVy3jfm2EmdTpJmPm/mm0YxLELwpMFlsvFQReip3a4yDMNzaoagdHMVa7Y1ohyH34Hk2Iw27QSQ2lacjRo8T47EZgnTwyN4/+vcrp8tP2ORRdn638bxHHw/Y6ijujjf/aDvlx6X57nvfFRPH6+yNYQ/BQFNtMziQ6aPwvD/9zkMT0o/39Cg+B8bZ3z23X+2ggBMhOh1cwoa0aiqig07QG+o63pvq+DRHzkvkNHmiPzrkSq6Z1DK5P9SGphY1AcXhFOAwq6reIdc6jK0zKRXoQtCIZ0JbIK+NLW02skfIqbC+bXz+r29cPt+oW6ft0A+qQz0QEnvfuhcIOj4eBahIR+ef3x/nAo1oBVozsVxtFapxde6Fyhi7t5YpNZHKZjy+wQW+83fl6EbfrR8Zh+HhnIDS1MRc/f7G2ntp68LcBpootXpSzraxODsgxGW8JIL3BBF8iMRa6ZVhO2YLpfc6PmzRHNyeyfmfRu0pJb68fSWXTM7lPsa0aYZZ0tDqUAUbZ9OHgLSHhUtrnT1lLteNb28XtK88hc4UJyTemCUQ3WRfPAQjOvaCu+BjNJ1H43kXgchAMdTdv651e272d0eM5n0ZphPBRzzGNU37jVoP1wgdjcbxu34uPP/PT4GPfgJVTt3xP7Ly96R82pSwd7bUqNnufR8cbVF0BvWdXY3PV2VYtkjFSbVNXjrdnyE0JGIehv3oaR/iL1Fh31dyzeSysWclzBNejRMWFaSbyX+r3UI99n2g0iYQuL0l1q1Qspn8p30l7yt5v4GYV+nt9srl+o3L9Stv1zc+nv/Hd9ehd0M578K/MQ4F7veGGx/e+Tuq3SuUXokKbnL4SXFR8eFoZrzZg+HIXZFiCL9Ltv85EagyashRUDW5o1DHJEJgCHPqY/97d98dOOgDFe1jpFzvYrnje+vgCP/SNocDMgGzWHFwF1MZsOKHd2PrDLsxeybBD9TSyOz2OztsuXHbM2sqpGLcWcbrQQa6VZXaldrMlqjRKf3hPOKFu91UZzRTIma7djiyyGPNH8jp/USS4/p2tFZED340RrGi0X6AwW0EG83NJATAztzWoTSjb8UpUkomp2STooN3rWqTSDFRUU4FULzW+3l9cIhDkREUMt67cd4Zz9HejT6mJqVVA0pqoeWMqO2xNrJ31OGAow6m2RNiZFoiYfFoNHVOx0Q/wStOPNXZ+VubnSHozxZbuXXWItADIie8JtQ3c6xRzDGgm3aE1mnDz1nvwtUB8qkQfODpHAg68TSdzBJyAh06i20vpFRIyQTNqm2sqz58fBU3FmmnkPbKevXcrq+stwuigeg7e4lWp7QxpS4bIhb8MseFeTqh4qmlsm47//znn3z58pn1dqMOQ3736d9w//8Kz+9UgF3Q/lC0tm7+XYwRghm1D1FEtxGPDqXjYcze9VBiJsLlhiUN2EJq1awZtJvlyBwiyzyzOM/SGg2lvl0RMRVWbZXaii3SnI3z0YdpeLdEoX6McMDUjcMAWrrQRMyWAjdQ0Xa/CX6gY7zbPn66QtxnFfevOSDO95vZgZfLu6/8EeX88ee/h/ytgzq8x2ybaAPR7NzH+DoK0vrgdT7Q6vG9dw7q6PZ/eHm2d7yjFvzwcKpEr0hvlGZm3/fiU2wjDQqnGDmdJ06nmWWZiNHhRrJOrpkt7+SSrXhWQ4i694YAqR+CIodHkWbrZt8z121j3RM5V5wGfJjQGmhJuH79xuvXi6EKquTdCs+vf75y+7oh2eFqIBAJ3Y1arFJrprtOHyNLnRw6Cz101Jk/pj/9/P54P5tNx0BxSun0ZlwdqaMTVLMNMSSjUWpiLxudjtdgiN9ACXRwIsfgl6NjsOLCRvIHL6wIJliTPozjj2Zo8MYwC4ySFWpF3LG+M8KOOsezj5y8IzDRMQNodWYpYyKFQ0gzDg3nmIL/CfHctp3rX3/ZuNEdCn2sEK3FPOOcY+6GeujgTvZWbIWJHRi5mGXLttmauqyFaUkw3eguGuo1FKuqblBqxmRkqIwPLh5wL0of3ovubk/TWiVnK2Cd98TlzDSf8fGE0wAls7eLCW6S7SWGVo07Wn6B6Ijw//o/ZvqnhdI8Uwn8jxT5dFHOXyo1FV5rYqtQtaGxo2dDTWR29L6y5xu5ZWovNrrzHWdVAOIyEgrdFZrkgX4zaDt2TZ0oa3LstZPLhmahtBOTzINGEnHyTO+NlDOnfec5ZWq18eQ0XfgaLujryromRCulbKzrK29vn+m98np95cu3v/jy+hdvt1du+4Xa0nfXwniDA5nutp6dGyrgIQDzanx8Kzwd4mzaYYiMvN82xzlj3oqIotEZTz1ZkeVsa7fxrgitOtNRjkacPppbMd5p7yYwLSVbQSqDYiPHdOjYoxv0g6P3aPSPexaR4W5RbWx8/7rH4jjEHK35se+aUCf4jtdqyHk39Lr2RmkCFKSNc83ZqPu276TS2XPjlppRHLqJFMGejx9JTr0rpSkNb6Emyj0FyofxNI+uT8c1PZoAUfOp5jhvhpofSxUapZudm63hWkPvKXbQhgfz3H4oxAVwwz5vmgwcKOYEs+edMIRTIZrIzJxsbDe077fit5ZMKUPRGgZA4YyLD52Gp3UdnE/bFWXsYTbpOJprA8xyyaR9tBrHdRiWZIw9eT4pfjpbwEKcECPTUjGalRtno4qg3TysuxN6sHvux7M0585tb1AE1wPBL8bLVUuoO/ao2hl2Y0bJ8KPQ7a2jzqZrc4jE8IzUSEkyqEU7e9rYto1bK2xbZtsrtYD3nRgFP/i66kby3ThrJRd6TezbhXV9I0yL2V21HW1W6+WWuQ0x0RQqSGBePK0Lty3x7dsb//rrL758/hf7tlJLptfKKT7zoyP2LwpP3m2uB/9M3t2EVvQwRiV37ucYw7fjzUbub3oXR22w58a6ZYJ3D9heMfPjeeb56Zmn8xPqA7mPr0+Figwl8RF/ZpwL7wUfFO8NtekDkr7nxo5UFEMPjvK5G6+wN/PIGmk//13n+mNx+AAphUM59+hvZVw74aFMsT9Ne3GUnj/jpu9+w7jpjDfUhxjYbCPkUZ50OfZp4/a198Xz8Z7JA/k8QNZ3wOYxHhk/8LG5/PCwDkvH82j3Z3ckWAVRZq88LzPP55m4RHyMw8tsGPHXMrpiQdQjzuG8R71/x5USG5lVOyBqKmz7bgKP0uhNaV2pRSh7I10bb583vv3ral2/KjVV0i1R3grcKlIaQZSXOTC5idaGWXzNrL1RVCCAnBy6KBobPkBwEJfv14QAzke6Hh2oPec7NxJsVMIY7dLplMFn3ofdi94tkI73oIv5xA1m56ABcG88fqx2jjH78fneDls3EyUhhoLJnRfZUS2I25FZ8dEZEoYS9XCb6KDN0FYehad3yjRsiN4/SqlcrjdCCIQY7bhuzda5DN9D71BnjgZglB069wMBhJItni5lUzTe9kq8Japf6RoJ6piDoi4ab0nkgVrx4HZa9KFxMr33d2T0uEnaULDXmsmt41tnPjlinAnTgmAj6FIqt3XldrvYZj8OWrM0Mssu3tm7CvD//EOYq2PbPVw9H1895w6hNFLubB1LSauVvjnktZPUrlOLkTZ3sy/JmyEcUk3cFTr4QiWR60pKF8oOdROYOj4YTUB8IG4T635jSzulNeK8GFIzTLnVT8TpieWUbaQuyjTPfPjwkQ8fL3z++I3P//rGt28X42UvnVTf+PLtH3Qa635jL2/gMvOTEk4Lcfr++FCBEIbDQ+cu9gwh3CMonY7gjbFX1m7OFtagNUo5rLgqzts5os7hJNBxVoTO5kBB6cMImyGINeuu2qwiVdeHp/NIP6vVRue73YvemUWXV3e/T95zro/JhHP2GuZ5okVD1WKY8H6cG78cFNn6bs3uahVLOjoKaiuwFdQEMz4oQh5cc0OlDh1D69ZsqkIMVnz0O6da0MFRblWoVe/F2uH5fN9b709LR9Oq75BzNTNzGVx67P2z/zyS78beoBgdrtu0q7VOG04RP1ps9W5TDXUO8RaF65y3AvAQfmGfi/NEKZWcK6W/O426GoWiWtFKboRoaLj3YwPUQsOoAWZUidEHxhp0TsY6qBwi41LaiOC1czzGwDRNY99S1Nt6dsHM7Ls80HyjhwG9WyJQbTQxdLl1aK79dJLu2Yz2HRA1UFnIvZHq1bQXA8ir9ThnDaVEdaT+DQqRdyzLxNPyTNATvXjSvnNb34Z9nDm55NLI2ahlokOdJceeaAWD0nFqwsrooZWdvK/EeTHaiRoVLPiAGlcROoZ4zmdcCKzXlc9fPvP582cubxeulyv7vhrVi85Uf/bD/nnU/k4Q8/6AeDiS2GKwhsmSR+jcyclgJu53bzw6OEcXN8xO+7hZjEfitXM+nfn08szL0zNP5zPiI6k23m4br7fVVLh1HNZiPlmTKN4LISohGnesFH+PYevUQfq3iE7GomkAGmAImpwzm4tfeTbeEahf7izvC872w9d8X3SO8uCXRd2Pv/HxJXoflVsnxOj8R+naj/dF7rZOd5rBUbR2eIiHxs8Xuf8MHaOFNlSm9IdC/v1DFbxXs+aoVlQdwyuHjeHPk+fDaeH5aUGCo3uHeKXQzMO0Ga/SinxvSudRIIgcRfAoOlOh7tk89XKhlYp0QbunZiHthXztbN8Sb/9auXxO9kzE0Uuj54bfDAnR1jgF+GOJPMUTvTTeNqh5tYg5VYhWeLqzw0+dKSiTE6bl52bEaxh1lL2W6hylGJ/luH5tcC+P98RoBgmnHtf9IO0fhafek48OG6zD2qvVQfrXh+jIOl87ZHWgKkdxdCCVqqPwtamQjeOwA97jiC6yOMfshkm8c2NaN5D00d6IQnCO6H9GPGtrrHuy7lxM4VlbY15mpmUxsYEqLkQY4ytKMbRcHyPrnI/4RHv+t72haya7G2hgch6vgTlYKMVRQGzbZkWDty2svstVt3G7mCWJihUWeqSGWbycc4Xzy0d0HLq9CbkU1m3n7XLlcnmjtmqIYAxMfsK7QP+h8AT4v36Djwivb8pelfCl4taOuybqXlCp4+AQXK7It4x2odApHz397HFVcK3i+tANu4CfBHGV2jf2dEGbUm6dtlvTP/WF4D1+nojTDb1e2Pc36rYS59mKI+eHdZwVqcvZRrM+Rl5eXmit8fvlym9/fOPPP//izz//hXeO88lRufL17b9AbdyMy5yeHS/TC2HyzNv03bVQFeYlHDvNAAc80zwxT/NDANY6rVjz0If5dSkNyZWclX0vpL3ggxKQUSAGeve4bkV3TUKz2B4DHIBSjdfWMJcU0LuH4bE+jNu6GY3EB6MC+PGcD9rG4Fwjto6M4ze983sdHEiRgaq+6+bfPYz6caQpKRVHbVYENh6qehc6MTibWOBMLzFEhaINFzpBO+KE0PRhc3i4uIiZ3JcqlCr3pvFAkR7hCONpDk6j+R8zUGEdhbFwh2jEsEQDj6sVofd9TawQ6grHc/GKlO/3zN4667qNqYjlj4dgqVqtVuO91pFcNc3WiGbLcG/H724K1dGTMyGaVuQEcfYDdBLolUo+VAeMyuO+T5uHb6c3Z4UhYkby+05KmZITrbaBaAdwJjpGoVEHP/aYIII280atubJeN0ouOOOGGBDk+GmMmlLmdtstlWiKJj5thVu1czIGu4dKGfxfsdch0eO8UQ1ddPhgyUbnZWH2TwgTt9uNUhO9i+XM50KrRkWolbuIUryAO9LeKqpGt1qiZ5kUaZladkJwzMti05IQmWbjjD/LSOILES8eafD5X1/45z//yb/+9S9utxt7Sux7womdH7+6N349ahcZ4yUZzZlaXCPdNnMn3H09++CsHeRCMV6GC8Fg6A7embF3iAs+zPcu0TkhBmVZzjw9vbDMi6kunUf7I+LuuIGRfucEPjpqG9uI9uEJenBBzUjWDcXpQZB22q3wP2bsA5L/9aP/8OePX9jvCJEVqYNgTH8Hs9vfO+09XPrDz/vh575zEDA1uyGahmYNu4ejEdB+98XjQMrsnXugnffnYHeNOhsz6RA79Tr4u+++/8enKTrUu/7g/7iBBCjz5DgtgfNp4rREqgpVoR00gIEc3bk3A37uY1SDMPh3DXKFVGmp0PZGTY2aG6Va1Nl+q+zXSr5U0lshfd2Qi412VRraKlLroNk4nFeW4HmZhDmYCUEuwhyEG0py0L2gUXGLJyxCCMVMfeMvUPB+IIGBwyBfxcx4TDgg9/V0bNqtVRPuaKH7o6mT+9t+8Gut/3yY/5fj/TcQY6DFVogePNWDc9V6oxa7lk6tkNRuylXpxeAo7VxDwYeCRGHyZszsRqRsGyOkA2kwtMfQ7h8Rz87gaQ1XfhMe2nM0SxK5I8C5GLXAV0Fp4NQysaupnkspIyYVUoOtdOqWCSGRFhtByfEzxz4TgudIIToeB5p1FJ7RGSpF71Q6Vcd7I51OHUrlG62bQv/t7Rtvl1e2fSPlbKEFveO8x1XjqpcfOJ4i8PFp4m9+YdKZ2+bIUqglI2VwECePi1C9UumkWyKrUCeHewrMLqDe43D0utHZ8dHZITOZx2XtO+v+Sl4rPSnTckIdFg4QZ6bpRAgzrdrBc7tsTHFligvRd5ooooEQT7biVFhvr1wu36g9E0+O3/72wvJktlNTCJznhdMyEn280p2AV+ISiXPg7f9zIn17XAt1jqen86htDPEOwbwxYwj3NVRzpXCo3blbLEmp5NTs4B0iSjnG7WqZ5hKUEBvERnfNQhqamvJ5tMImytA7L/ng/h5F4jFePzyfD9qGO1BtlbvwxjulBc+yzIRweBKO+3X4Q9+LunePOiZ0B+51FC21/TB26mO2dYi4u+3lbUw0rAcd43Jno93H2OCwaHK07k1Ey+Ose+AYB4Qy/nana8ARenE3SxlTp7Gz3C2J7tcQ7ufTUcgaXUjHtOPHfaKTS4ZqsZSHM4nqEBrWTukMsMtCL7zzRp87nmPt9Nxpu1nJNekUaThpowiyolbF3TnEJnRydws0HRSobpuiNcKGeAxKy0NMZSYJR8F9fEm/A0DSTSdQ90ZaE2+vV/KWzSJKPa1CDOWOHN/vj4GyxxCJccLFiS6Off9GLq9UKk4aKVda7QQVK3CtDjYfU2HQCispFYLCPEV8KOigZVkDJrTDulE6tQu5dRNDqUPHGD8ITCosznGePfPkWeaZD88f+fDb31GZ8W6y6OQQRqCNAXU1F7brlW298fb6hbdvn7le3iw2VBm1ogkpf3z8ctRuxGYdf+/jYxSBBhCOGmuo9roM7qd9n5kCh/ECheDiIKIuTNNsvUjNdzRhWU6cTmeC84aejrHY0ZFxwNu8T8PgfvNagdq/W/Q26hNC6LZxqg2w3RC0MBbwMU777x+/+rd3hdx3iOd7hPT9n8fPeWQFP9DQgYfev+wh9LFu7xgTdagM/u0oRLnXzuZBOX7OweN8TEfs2nR5IMZe7VrX0u4bjAzhyy9froJ4ayR0JM047wjRMc+B0xJZlsg8BRK2UZk96BindB5CmvHetvbYbXtr9FzRakkYkjok6CuU1ZKT9r1yfd25vW60W6PdGtwKcbeEGGvmKp7K5JQpWKcYQmCOHdVMrg31FR+MIqAeusdMdyeHX/yIMGtI+FUySxvcYUVdGOp7BXF3zjLdLC7oZshs67jQ/CMj3Cw93o3p+vGe6VB4DjeJNtCEI65NhpfqHYkwoVbtIx1pCJBGe4JtowUpIK6z5oKmSnSOJ8+d3wSM4u9BHxEY0aaOn49WKzBrh5aHAtybT2E7VP3tkSDTe6M5Mc/ersOTMxsFY7gDWDloBtZ5r8zB/Clbf9wnFmOphLDcR+6HCfwd8aSjXolzJARnX9NH0+qUEBzGNdu43d7YcyGnwrcvf/H67Ssp7WPEaAdq69b0tJ6ox/737jEvC+fpmd4X5KJcdLXvF3se/gRuga4WHXq7ZrZVkeSZamSWE9O0EMNCLm+s9Q3i4L3NgTh5+kFJSBmyo/XfUS+o93g/EeOJEM7QPTl1bpeNOW48nQot9qFvUVyYRhPTeLt841+fP5PzRoyO548Lf/u3j1aAiTL7wBwnwhQIU0RjQKPHxYALnvJnJn17FP7OOZ6fzxwhAj4YB/U9gNAGlYbRADD2h9bGeDCLpdwdhYO4O0VFJCBOreiMmeKzJQM16C2AGBcYMcTz7pM7+NDH2P9YydZ8jzNkmNnrEWY9JjS2XqxBs6kb9/2s1QaFOwf4/eNI1RI9zMCte6xd6PXhTsHRbqr5rdKPicNoMA+3GAa9yT0aw4oplg9OoBWr4+xTGeNx2xtaOyZl46wZY+4jmRA1z2rbOIb+odX7737c/t+pBIbWY0xq2vuz+fHofUwsmyVltVqJIeJGxn2hDaEliDhD2dQaP3uejZYabW+0Yten6MgkD2q+l878kZ16czkZ7iNGe3L3+gU5OPm2J6Dgxznhx8/pmFF/GxZdbiC9pRZKbWgXeoX9mri9bXz78sZ+Sxb0oB6aME/pfs2PR/CeZZpZ5pl5ngctJZLSF1r9Ru0J19sw1O90Z44NZWrmVIEBDKkUbtuO1BuOJ+ZJjdKkarqYZulGvY0GSw0A2HJFosOLHylYMElnVmEJjlMMPC0LL0/P/Pbpb/z2x/+B6gkhYHiBEiePc9ZkbNcLJWe224X18pXb2zeub2906UzLRAhj2uJ+MTn88RMWO+XGAWRbrwwzW1GxhJpRdJmtwnGwyOP7nZoRqrMs7uCj2U+oxY0pxneJ0bOcosXguY7J9bGuVRrRGyK6FejZoP7azDuwNkxYoBGRADRaS/foLb1z1Q6ocJR+R+FTzUC1V3uT2i8yyh+F5PG30SUdn5fvv/L4vIwj//jzLkW935Wj6HxXk47G1gYwo4hE7PrbaKojvoMbaPQBOfXHz/uOpylH4WnomOl5BI2eKc44DaQtjc1lIAv8jGzZExXLqR3dtBsm6N47YnRMSyBOgeDd3cbDYRGqvSRqSrScrLBtwxFh/M7WsXFb6TYib4JvCmunXAvr28rtdSPtpmpM10S/JUJRfFUoFemV2XVmLwTpptxWsc5sjvQQ2KVyrSs3Km89s7pCUSsMxOmI51RwQnNCUaX8fL9Qq/lkejUPOBkCtuChqaMPxaRxiTw6oIWD99wZkaFecboDarycYuiIAdfdOnPpw1R+rJE+lN2Dq2NjfTWl4nB2MeTbOJumYASGx1/wHucDLgTURaOcEJAeUMzpQdC768GxHr37tajGUChrNnU0m+rcfeTvDtuosfnYgWixfoaG2nWqrRrCQSHXihZLZkilk4qNT3urVjANBHKKkyGcKY1z0woEkcmK4HE/MAqFw4NXxa6DDDFFa4X9duVyvfHnX3+yXi8474jTbGhiCHfU1BqL/lPhubaF15x43YQ1CcQz8XnBlwwloctOi4XiO3WK6BKYZ8+Hl4kaZ6RNxK5M8USaIlOfyNro3qIAxTm8erxapF5LQneZvVzZ84qbZpx3zPPMNM1cr1fSnrherjw/rUxxIkTBybCmGoW8isO7gNBY5sDpPHNaFlunrRFdIIRo/C5xlgBWEpoq4j2lfL8oVIQYJw6BqvOeMMbYVsg8GoU+FO99cKJNlBdM4KIOd29ujQNu6n1DtiRUWmiozzY2lIqot4StQww7ohvlXlR1mvcDdfL2PGq9j6RtUnbc8EdzaBGqxpceedq9f2c5p639svA8EEMwqlNjnDuGx46G/GgOB3LKY3qmjDGoHiKZwensDCRUxnUcntl9KL3Fzg8rQtqdAlP7MSXrDF7P/f4wBEPgKFTur+Bxrx+aje8OvePQ4ijG24/TZbtG3mgRrWZSa7SSST7ig79PUEPwxODwQVlOcUxP8vgVbeyz3KdmlE7LhoT2OKaY46zsOuh8wye5w8iot8It18qe8xAl25mqEtDg0RCMqiSMNKVKSZW8F/aUyKXi1dKSzAGik/fKtmYKDScF7YpWx48XQ8e1rSOcohaL3K5lojUT/7mu9JaQbiErrnZKqfhiPODWzOB/a4VeNuK080wd57IjjIhLJ36gyAYg9NrouaPV4dsY/VU7p622cyieeT7Z9Hk5E+OC6gKj8Hw0/8Y9Timx3m7cLm/c3l4paWXyHRc8y2ky2ymxRv/Hx0+Fp3V+7m7zgDRDRQZZv2EHaZN6X5TmjWeinzCKTj+4Vc4Hgov4UXT2NroMr8yT53QKhGiLrA1fSafmQzYFxxwD1/3omizzO+dMb4rOHucm4/a1QqvGFzErlGFKO8zNuxxeckf6i40/m4WL0/Rnw9fHJtLejS24F5PvB9v38fj9ZnyUoo+b+D1udIwrHoinDORyOKqNMelABI7uevCDD8+w92a9Bwfw6GCP8YghYGZrEf3MHBcUT0qFUocYxqltqL/YREVABmcP/N0KxXslRkecR+yd2gbpMBstqQVyou4bZc+DVG4JNIYIOWqBsjV6akgSYjN0rVwK+5eNy5cr1y9XajIXBFIh5MbZR04+mArYdU5T4zwpSzBD5Vo7zQk8RbbguaTM1z3xjcRFKpurFOdsxKmKH36ArQtZxGI8fzFerqVYlq9zHGlFImrj2KbQHE2qPVeGoAZLb2Egvjb2cTgXzYqiJVIpA9IQKzrv99ZYn6PwpGNUFoTaLPnmTofBsotrOQR4DMTFEaMMZPrMMp+IIYx7MkIPKAEvYRQn3A8mZyOQnxBPG1m6YSCtZtE0TThn5bUpeM0AO4Y41LMWqxecjIleG2KQRmnDcitn1DvE+VF4dlKxfzvurQNNy2NcLwPlmabAskzGHRsHeKvt8TGI6uEQlQRPpbOuNz5/+cJ//fknOe38/vvvPJ3OnM8npjjhVMkpsd2uQ338/Zr4ukdqCnz+tlOuyqf4gedPkeAqfbsifKH6SonQp0CYZp7niWUJlKi0ooQWmFykTGeW8MytbWw1oRIx66eJsARKjNS9gRRu+ZUpfUNzRNQxz3EgKYF927hdLtyub8xTHIdpAMwEvpaGiuO0nOk9siyWeOJ9HNcKuip0Ry0m6ni7rVy2DbyzdJL1BZjerQmbAtiSOOJJB92mMTi2+REwMnw+BcWr7SfB238fFCpLunI8xGKKeKihokEQb0i+eouFtfSxYru8WBzzITLrvdO9FSdp30mtjaLzwYO8i0cGT/r9ftjv9+TA/TqjWP1Fh3o3gT6U3zbt6v1wSegP7OAOQ9qH0YY6foysVG3UexwzMkbJNlRpxuWr/d7Mo+bg0scUpIz760BrrTi1Qo2jkEXuo3JB342o9V50yjjfjsbyfWF12E4dVJj3Z0ecHFBp2RDPLe2GZHs/6CQe0QkfJ0L0xDgZwCWNXkFawwVBureJaz346/rAlcY1NC7qoFmMRrx3Awzq4DXmWsjNxK6GEJv7hQ4k37nhgkCmlkZOmX1PrOtOzpkpTsQQke4QPL3pyEwvZroujuJ+XU/03tn3nX3bRkMlaPNof4FuanfVHWWn9JXSCrlUYm704OniKAKtVnLfmfeN3DLQ8CoE75lCJPjBLR/vsbSOZHBFcTVYwV5s/R8aHNrEPD9zfvpAiDMmFLN77ogdLbUMoXdiWzdu1yvXy4Xb5QI183yyaN/5vIwQBoHg38F39vg1x9O5+wz3QDKPQ/D+v2FRcGiwu5jZq1dP9IEQ5mGyO7Kp1d8r/uCUZfAJLHqMO0fMLIGtUwkaiS6OA9U9xu/iBu9nwOqM8eQRYTluFOPWjS5SbV4s4lEJNJyRbqt13r9KqXlv7dm/+9xRTo7j+DsFu9ybyHvpOTaq9+hk/+6HHt8Jh7HOgdZ2rOui2U3YKoNALXcU7Hh/DtGKcWy5W89oN4rBeXpiiSdojrxZcXIoqeX+O79HcsEOdR8cIh4n4X5oO6/EoIQ4RtbD7kml46Vb1noz0QB5qABFTME38sXz1knXQr0V2rWiqeMz1Gsmv+20W8anyiImcml1R1rmwxL4sMy4buiAd50pCi/LRPCO19vOpVQ2ChfgNgmb9+wBQ0+3TkNs5O6UMDbSQ/CAE8pP3q6QS0FaG2R14x3aQcAgSel9HdhUtg/rG9vw75GtojgXcX5GXaJLuiPq4o44Piv4WjkUoMfdxlhnj78bn8ni49yoV9UJPsz42FlOkfN55rRMnKbIswinBnFYr2g3AcohGzsWpgz08Eck/BBdtG7X0Tnj8wWvBAdBheiE6JzFtwUb0bihnK+9U2odh4EMnt47xXq3VJ2328bTaedDmRExblYqCVYhZcs8l+Gw4ZwlDzUZaGpt5GSRd602y7lvzdJLBr+5VlPnf3298O1yhd753XmLlpxsJDZPEzVnolNcarzm95sE/PWWuLaN17cbrMKUJxYckxdccGixQluC4p4C8nGGOeK9Yy+NfS+InwjnM/PsOZ87sdy47BfLnRBTpIpXpnOExShzsLKWf8FameIJXCPOjWmCtO/knLhdIz40Sr3hQ7S9sppXZ00VL9EUvnuj5cSugwZTOzIHJjw5wZYyf/71yp9fv5rp/hR56TPTu8Kzv+u/wZCRzJgulcq27azrSsl5FL+VkjMlF7Q7E1hVYJhjm32eZdI3qQjVkoow5FqcGCfTm+WSHnZx3Q1w4OD2jQLyQL9pd8rWvbiSQ9g3+M1tFIedIUY5but3LViHx3jg+8foxziEuofHNBha2UdB0N+dCwMHNT5ye/ArfbepyrHvqxh4k2tjH24AtR1TNhk2PyA6gl16p1XLa2/37V3GTiX3s72Nzx4pfuLsK+7emPJwtzErwmP36Xce6I+XQp3y/PJEydny13Ol5nHf07E3vN2dwF10TFNEIrhZabkhTVjEImS1mZVc69V8LoNNe8TqIsxxqbGXHSTDQD2tgLI6xRrpjsOog845QzpHIIAM5wVXwUnjtq1cX1fW20bNFU6KOwWmKTDHQIw3vE/UVgz4YgjnfrwWw+atNob3eKUwYp/lRFMh6oS6hPYN6hul30hpw2vHu27I/aG3aYXLduPr6xdc7+zbFaVymiPrlrltmVyKqctH7nvvhZJ28p5oKSMhMi0z0+mZ549/4+XDH5yePuLDDGLAgjUc5vxweHkD9yjZNNDjECPnZeZ0PjGfT7amWmOfF37MLvr/7eMp44aQd4icHirkMSYQW+6qhnQGF4g+MkUTCokGexOxKDqnQoyOZYmWsX5wRDq8LwxB8BrxOqFEevMj5UMGB8kPgrJCN1WqjdkH/05HQskYNRu30+N0wkmk4sb3WPHZ/C9mBBw15aOMfHel7hFbx5/v/on3QqLHaOaHzvje6R6FH9wtmoYAoms1bma36CttQjvI49rv3Fd0YLm94yZHmI0j5r239BkXeDl94DQ9sb4lXst1iLAOfurgXfEz5UCd0SKcC3gXjeLgbSwSvBCjoWu2k9qm7k0sTuqCVpCRLy4iaHNIrdS9ka+F/Vsmve6Ubzv9mmAt9DXR18KsnnOY+HCeeF4milfqDr8/T/z2csI7e+65ZkTh5eWJEAKbvlKuK2+98KV3LvPE7jy1B/rmaG8dqo3anTOv9VY7NTfj/oqYEOCH96vkDK7ja71zNA9LKqOlYO9Fl3tpaDeQxc89yPogLhDigksb5G2874YaHXnu0juW2nMgJuMyv2sK7VcMA/4junNwmePkWZ4mnp/PvHx45uyVRRqnmplzwTVGgtXwOxy8qAMpv3NAf2xGRIjBkevRDMrgbHuWoHc//gM5Cc7jgkMw66lSq/n59YFNNkdrbnjSVnrP7Cnxtm28bDupZHRwlereLCGHYbXj9O7l6YaNFVgUYa2dA2luY9PszkEzlGjbCm9vV76+XriuyUQwzpsdmPfEaebp6RlqIajCmpCv5bvd4Mt141qv7PuNUIS9zOSqdCJO7LBwfYgDJkU/eDh5E7q9Neq10Ivg5cQSnwingCsXukyklqhS6F2o0vGTJzi1sXfe2eu/qNsN5CNCIMTMNDdut0zJmdsKojv7PhP8hGqAprbn1Yp2R63Ktu5DuZuhCYojdqH5QMqVy1vlz/+88L/+8RcaA2GeiL//jWn57gahctjMDC5grffCc1033t6u5GQRrUfT3wGvJuDS0mjZkmZMdFaozb2z7+n2swcKI97uYW1iqE63+0/EYaEDOkISxqoY/NKDh3pHUmG8/oGSqW3Ntb1nNMl3nMZj6/ylREDefRgLm8McXJBHgcuBMMrjawf6b7ztSu2Gfsqg0Rh/EfbW2Eu1rxlo/v25aSdEaxClm+F8qUPc1O31u8FxvXuTdqPS6RAKHV/3KMztPX7w9g8++Egxuv/93T6hysuHZwubaYay1VxIOZFyIvdMpSKazWc7TExnR1gccw7U1NCm/HZ64ePybClqHXItpOGPnMo+/D8rKTX2VNj3ZBQdjAbkQ7zbrJk42TQPXQ4RqkfUDeRXxlllU8C8Fa7fVvabRXq6Hphcx88BnTzztLDFnX3cUweX+ceawTjWHqlCQUYgQQNGxKV6vDuhoeLYaNnTqpJzI0lmcoOKF/SO4rrrlRiUCPRth9aYJ2e1lQPRRpdinOcAjcxeql2f3Qz550UJpxeePv6N0/PvTPMzImHElzYMdrZJWkqJ3jJO2wh22dmzWV7G+cSH3z7x/PLMdDrTutEiu/vfKDzvpOL+UGZbozcI3irDAmZYXnc7eN2AeUOYCME2OeciMtBLFUM65/hAO/1QO/WG8UucM64FHrrixApPJxGDtG0HCCPy6iB9w0hLaaaAjd58wUwJ1gavzJ6bMtFbMN5NqdTcj3rpl49HUfm4FseG8UgD+u4KvoMz+/175A4HYLY1938dN/Lxy8T4LOaObF2KenDRj1SPoRIbXa8OdMuKHesi59PMcl7M5887lhBZwswSTmgL5ovZE61b7u0DQz3oA9/fMME7TstE8JPxdYMh1T4oIQjBdSYH0Rt/z0wHbPxVXGXWQG6Nulk+cWmVUswSpbx19i+J9GWjve34vTLVjmZ7GhOdk4OPS+S3j2f22NnXxvk5sLwYtxQVvl1v7KlwCx4XPLc5sLbClcbNCasXUlRwHh+VII2+FdsMW6Xsie4a3Is2b2T7Hx5HBxlCNh6RO3hRh5zn4G7ZGlFxNHlwDKtUS+wYvp+iHvURH+Ld51SHes+oIsfB9j3SaSN+gy903F/3fucdKq/qCfHM+elvfPr4d049E/dvxHIl9GrT/VEc2rc9xAzAfQT540p3TpmnCS0FKWakmNPOHATvPLNXoo7kLbFn3Vsj50QpRryvreNdIIbJFJk5kXazPwuzXVujc9kB60cs3YG66IG8qw6nhgNxs0PjOACsiFeaa+P+FVKpbNuNz9+u/Oc//snnL99QdZyfnliWE9M0MU0TcYrEGOlVCSHis4m1vrs/TsLZKR/OnukCz//MhLzbIVErrjTzm9wqLQmtBeO0R480weVAmBdCOKMs9KxIibgWsaGfow8lq0gZhZCpuoVE10RuDVoEXQlTZporQqG1K+stsW3Ghw9usb202mTJq4PqoJgQIPiZ3mSMOGdqCtQEZXfsK9wulSYF8Tv/x1OGd4Vna42U97s/4z3HfCDL+76zrjezrmnVOGneDu44BVrYQHeodaSMOZSI14Xoz0Q9oT2YaNEly4/viVqtmOkt2b3zGDrgRyN23DutP9xPQgx3xPPe94//qIeZ9+Ckjpvhu/vA7u8xav/hIHjY1Qy0++BvtmPE/kBArRC1ldm6ceMtVta0Cm4IJx+zCLsPSq02DRlzj8aIR5RG1zYmMWIm9QWbKrwTr7bjZx0/W6yodQMlfo8Ec99Sjg1pCJ/uKVX116N2ZLhsKGHQkwSoJZNzIpexH2ARyk7sMJ7DhJ9O+OaYJPDb00c+np6Jg2/eeqV0G5nnWkilsG6WgvZ2WXl9vXJdd7aUaaXZRO6wFBq+pKpqgtkRTtFbMxpYKUhT8pbYLhu3y05aMzlVeoN9z4RtZzkX4hABTvNEzZVU2mhI3kH/42GNsaGv7uD6jvUjTpAQIdjZL7LgdULqgrQJ9EZnuKZ0z54qb683yt6YQ+DkQYtx3m9rZt1WUllpvZr7xRSIS6ALpFrZGqQCac0U2Vguiedr5sNlJ76uxP0buI1chFwgF7OD2vcVWia4zu3tK3/+4x98fbvSnO2V/vwJPb+gpyejDtSKVn7Cs34qPN+bM8Po8OQByR9WLX14jVkH163o9GEUJ7MhlWIRWSIWWxmjsiyBeXbEoDjtw14BaDIIrsPPrAuCoZ8qowhoIzIxmkWH9+7OFWtHLnC3UbxtonqPiYp+snFU86Qk9FIo+Sg8O3368UrwHZIpo8g86C3HzftYXO8KtneqoaMGkMPM/V1xZ8IR6/i7dsRiOEYXD+INbXTREeYw1KUecUKTNgpS47sYX9y6+eXpxNPz2ZR66nhezjxNT2hV9mvhy+dO6YlGQaSN6bq+ex3fP2LwPM8nQojEYGq1EB0hmIGvG5tjEPDjvaZb+kpxgSgBrYVtrWypmkK4AsWRvzX2z4nydUeuO7ErLyHcmxKvwuQ6z4vn08vC6itXnwlnj56V8DSBD9TeuLSVIjbq/xqVqwQ2GrsKyQk1KDoFQlTolSrQVzMV71sHCaDB6CHe438oPDtmnN7FrHjUCUHMu+1YB4c58RFzqqLHKjC+Z6toLcMDV0AV5y2NSWoZ46vBixvCpMMr9/2BCra3iXBXKB5FowzEvA30x/uZZfmNjy//D6b0hqYN11dc6/eD1zKRub+GR/zkQav5ofBUJcwRzQqSKa2S9o0WHY6J6D2zH5nKtd/N7LctsacNGaESIUws04KTQKtCThUfOrNaUYkKpTW2nAl6HF724p0zPzk3DiMZ/HMz0AbhwUN3BslTh2/Nnipf3q7848/P/Mc//ovruvNvf/8bnz5+5Hw+2Yh9npmiISWNPoylf25G5iflw+L54CZOlw5bw112E1/1ipaOo6GuwAYtr/ZehYk2e9w5WJygWpGXWyG1SivYweg9pdehlM4jWavhXLP7RBIpV6iB3hveJ6Zp7GstWWZyASUQQ0ZlgmZxey54tAezVQkL59PT/X0IEunFU1Oj7ErZlbx1trJTqeT/8/sCvLXOtm2WojLiJL3zlhpXm3Hb9p1WLWLVO+Pzvbx84Hw+sbZvbNqhJTOIbx7tE0HPTP6JqE8okSqN6jacmI1fKzstG8f/8KM0EbmtaWWoyhmq+m6CCstl/37N35XPpd0tv3p7FHHfbQYHWvkLXnzrBy95jLS7Pdc+kj6O1Lzj1JBhbWQoZ6OPiFPjS1uy32HrIw2DYktHS8PJSG3DAlyaVKprlKLDQQJqHSjrSIGylzDOnm4jVUtyMmGXuQk89rT3r/sAKQ4BVeuV2g93ip8RnFYbzisuBKYpWoxub9ScKPtO3jf2tNvUqnVqzviw8GE5c/YnnsOJ384feDmdbJ8a5yQOulNzwkiN623ny7cLn7+84txXkFdyvZiw6h2SyQDR1A8K2ahxch2IXun00tmvifViI/Y8LI56h5wy27aR0j5oZ45pDuzrYdPF92vleIgVmCq2R9lzGuNsp+ik5rM5RNzOn3H1jJYJkVeQDRETN7V85fXrjbJXns8LOiuhZ9Z049vlyvVmVJuGoj7gJ49bZnIubKmxVWEtUNbE23bBTa/46Rt+/kwqHh9eqV1Zt8K6F9ZthLnsG0JhCkLarrx+/crteqW4SJ+eKdMzOb6AfzKFvevUvEFav7sUv0A8ja+hYty1ww7lsCPQw5hZxpvZjQMWfLDIKRes4OxujAVMYRxCZ54cy6x434wEXEcsVzsO1wqjqu8NatkoeaW1hEi1IkmbWSOZbJX3asmSM62ZAsepH8WwWdFMYWYKCylBTdn84lK1jNyxMf5ipTziK3kUn49/fZjUMkYOD7Rp/P1+vx5F5rhZ6aMzxRTJwdBM88iz//bBkBwfLTXDBYsmZCiVNSpuMu/H2srd3mo5LZzOFnnlnePT8wc+nF5Y3xJpf0O84MbP5rhJ+sHe/dnwdZ4mpqcXG7MPla/3Mor6Bq0ivaHDhN7evGGBsRXqVim3wnYpXG+Z25qpuaPVU94y6WtGr52wC2evfFRP9Ib61d6GrUizwyQ6pEU2b8V3jXZD7XvlVjuvrVJSZpXCOgs1RoIq0+hwNQqtKm725FLJKVFSsbzxVqyIdkoMEf/jqH28tb1bSo6msR788M7kgXGP1mIslAcCd6ADrVXAjUPSxEbG5R1KS95557U2VuAYg79bU3YPHNVoHVMJa8j68VpiZIozISz4unNwwRiFsVc/kIhRrPQ+DshxD/zgXQnWvU8x2IgOIGVTCfeOA7vm3tFKphcrTAudbd1JpVh6kgss88Iym7evnW9mpxKnBXWBPRVeryuzV/Sp8+G8GDoqZm/TUsYPRazFro4Rey92tQ6T7fGcu7OI3XVP/POvz/z7P/7J19c3nA+8fPjA3/72By8vL5zPZ07LwjJZo1V6u9MfftgihuADlqA8TZU0Vdpcxjhc0OSYeuA0/Cgzjr1UttuNbRfSzbGj7DcBZ+K0LBtZNwhKD45CopCR4VSgWvG+EaOp9LXb+LyOMbU0h5cZDn6jdJwGoj/hdUZlJvqZ6Bfo1rzP08z5dKKVxu4zdOPd7rlwud243G7cto29blbctO8FFL010rbbGq+GeFYp5jm4J/Ztt4bUubu1lYgwxYnldKamRG4brdr+0IoizaPdimM55r/YWaCuDdX34Kk/Rg2jEx9o0sFRhBEB/UDyDy7wEYGLjJ27Fmotw+Tc7r+Hl6wV2bU0s6MTcxv4fts8Cv9h2zf2xTasjcpQmrf+7m7uDO6jja51CDWbWDox2ITLV2EqEPLwxlUF71mdsioUN47fjhmxjxz7sVw5BCedA0Cy331cExNkHTaK7yaf/TEPs2lCNRP2ajxdSwH6fk202rh8ueGi3jUY1ST+ti62wn6zCOxSCy6bLdPZF/wifFzO/O3lNz6enjlNk6XE9YIGcJPHzzPiAqnAbcuczjfO5w+czy+cz1+ZPn/m7Xol5Uzed0pN5u0dbJIAffAtC2nf2VcbQZe9sF8z+y2R92zgWRjXwXVqz8a99LZvBmdUQr3voT+P2ns3x5djanUIKzUMnnJwuODo3ZnBfZvAGe2waYRwI0yV55Oj7gL5C2vNfP2y058956mz126j795Q5whi+yJd2W9GwbleE+s1sa6Zfa/0nlhX+Pz5xr//x198fH7B+UBtsO6ZLVVS6cO2rhGj47xYCM++7fQuqJto3cMuvEqDNbGXxrZnYmws31FyflV4jmIOHTGGenSLh4em8VEOJMRsehTvwrD8OEbldgcfiMwUlWkSpsmQiFYylutu6RGt2giniZr9Q2mk/ca+X22E4myj0Wq8xOMAh5FKMXwBe7cRpoojODuQnDqit7F9qpl9K+xrJu+FWu0of6C8Pz4Gvnk3zb33qBx9zV0MdGw4x4fY4X1PgEDuVjldm6GcXnDREWfH/BR5eplZnsyg2Qf3KBwmsymptQ5eipmea1Qqll8vzkybpykyTdHyWL3n44cPPJ9eqOUb3YEGxU9h+Gsdr2/8d/+5yJhjZHp+vitN3UCSRSpINd+9MgqhZgIjSqNumXxLlLWQb5XtLXN53Xh93Shbx1WPbA2uDb/DVJWTczyLMgUT2awts7dipsF0qlfK5EmucemNrEIMgds8sW6F1/3KrWzUCCwOfwpE75BcKR1wQlW75hId1WEipz0j1VuhEgJx6YT/Zkn0ZsrgMhBHAdvIRL/bmO8qUhhjun5v7NqBotwFEIMEf3Cn+uNnSG9jJPNYYoe7xKHAPUxaUEHU302kLTlmIQ4LLTk67fvTGpGxB2ozCt2jADVw8ef+3akp1u8baCmUYc/hMPNjr4r2ZtMFOqkZ6pVqQ8OM+sA0BDzBH2bPIOJxGuhd2VOG3pmcMHvHyzIhfqDPtVFrIsLgetrURIYbx2G/8nittp/VXLhuO//81xf+689/cdt2Pn088enjR/74/Xdenp84n04s80z04dF8j33v+8VgThu1dgLC5JU+V9JiUXU1KyFFlib0qeKCsom30WDauNwK2xuQN3y/gqjxqkJGYkWnCcJMoVAp4I4RqPnRLnNnijZ1oA0P5CK4PhunXYafsvSRYjQR3IkYTgS/EHQeBWZniubHW0slekuT2lIh5czr9cJlvXJLK00Mdf1xftZaI+2Jo6ppYvvmtm2stw36cCQY482DSyzD4sipR5ozlXbutAy9CBSzOTMuYaa3AmRUqxWfbqDcMDw/3YMWpu9Q6v6wBTwK0YNzfb8nZRRVtZg1mpmKcnBe+qB6tGKFZy62ScSfNgms0GzDPKkf3sVmb5SHo8PhtUnvw0nGAImj6LMbcKCLYvvzVIWnrCylM9eO957eA1dV3jxsvrOruUGUYvzO3t5tVt1+JmOPGSfTfVoi0saAY7xmMLeAIS7qg3taWqbURC2GqudcjL717hZptfH25YoLSi2QcyPO5kRRa2FfE+t1H6BRxQejy6Ww006F6B3P5xPnZWbygX03J5bgPdM0sTw94aeF0hxPqXE+7zw93Xh++cD56Zk4Tfz5r7/4/PULt22jloILjsmFAXCJBUlsG2nb2VcrPtMtk7dC3Y2e45wa0jpoZEil1I2clTBih/1Ypsf1/PHRBtf20WQMG61uP1vVJmC9OWp3Rp3A3GJUHVk96irn2ZNDwlfPumY+f96oNdBflD01C+DoMmwCzdO0ZHMDWi+Z9ZLYbplty9z2QsqV1683/vHvf/E/l//FKYZ7StyaCqkOAWnwLEvk+Tzz4cOZEAKtKy4uTPNMzsJ2q/R9J/fGdc1cbht//+T5v36oPH+OzLwfnePAUR0F4nEAyXCKeKgCnVjBaT6dDhnIzJEm450JEbwbYpYD2RFoXUekYIEMRSo0yLnw9vrGdltRhGWayL1Ruy3QnHeKDF+rbNB3LgXnBOf88N8LIy7OxEf7Vrhebrx+e+N6SaStc8Rlmnjjx4f88HF87sCz2rurdWzEtlyO/xZ9dNGoIY0uOlyMuGjwepg803liOU+cn2emORjS6QevzI9NefwaF+ym69rIvXCkEU3zxDxP98YgBBtlTXGyZmDktboQTOHqPHfhxRgz/Xy7jIFSF4vyFkM2nY4UGkbnzhCkNZBSqHsh33byLdGTHSLpVlm/Fa5fd/JaCdUzV2WpytwcU6tILpS9EZzDRW/doCp18qwebgXeFDZMdX7dEp4bay5ctbMHIQc1b7cJ3AwhCPNkUWa1Q86gVehRqVEpe6ekijZwORNKIZaKb+2H68CwutKxjDslFw5U0NbRQzABj5G1/U3u1/uwQgLL3w0h2nitF1N71+NAGgXo8OTDgj5HcZoHVWIYZquibka94PyC9ydO5488nT8xzedBnh/PS/p97R7qePt17wrm9uCr/rgujnSbUgp9HNIWBDgCW3sz9f+YeKRk5u4l15FnbGlPOvx8n5/P7NkmHNua+Pb1iouFpiPbmYNQP9DigTxaelI37m3vIy3LBC1HcogbXqIiQuvm4fd2PQRFO/N84tNvv/Pp00deXl44nWZijKhz1NZIOZO2Ea1Xft4n9ktlB1giYRbqU6E+Kz0JYVLOTyc8FT9VZO4UEWoqbFvi8m3l7Wum7je03oy3GhW/dMICmjt4pUqnj6QiDVbmaDP/QqceJy9In6jVour8dMK7E95Ndq9KHuiVI4YT8/RMDAveGaez5GOfVpoWAx2cNWu5Zi63N7Z8o2tmOQWW82T86neP3pvZxMgjptCpNb8tBg4Rqgwv6JIrW028XS6oOra+UshUregQoZRUKD5TJBn1aLyHh+BOxvmiXpFume4a4lAoDyGq6h2FNcsgo2K838XboKn0wfk+wiBU7SSTQafpneEu8kA8D9T/fUtSS6a0NKyQ5G5YXlq9Fxx3Ss53HzZOd0Oc5++1Ykeajc61O4Io0XWCGJe++U6InXm2e7fWzl6a2fx026ltbPKgzZiifpxPw0qu9j4oP8MqjmM0r6NptWllqYlctztHMyfzWa6+fOdz21pnfd3NAqt2cqpMp0qYhm2RRny0Qqnsu73frRLcK8E7swLzwuu6MHlPqwVVeApPhtwHz7QsTBKYKoRpwkebzDnv8dE8JZfTxOcvn/n29s1stqTTa2Ev2WyBbislZVPcJzNwd6hFVYpYBOv46L1ZAzOsvFywhnc+R6tNUsHHn+lJrZnv550CoorrFnDRd0MTW6sWK9ydDX9bhp4JVJJr+F558R1SZ9HINWX+/Ocbl6vjcvUolZKEkoetHhnpI3K6CU+9MQclnwK7Vy5euG6wZ5vi3a6NtG7GpwdS65RmVI8okZMEm85G46V3CTSJrF3ZtozmGwShq3LdKm9b5bn8b/h48liSIA+7if7+zurHXSsDtRlWLGIWMzJMWVQ6bmwM3lkh2keCQb+nQAgVpQhkKopSSyWlzOW6kvYCwUzonSYOVWwdCvda23cZzapuFJ1HwWYHjiGoO9fLjcvlwr41enU2Lj54I798jBd9v1mHtya2iR0WYjaTt8Vj2bXD1FYHr0M7eCEsnrhEplMknjxu8oTFM59nltPMvFjaimCd7BQnK2iqqQ2Pz83LQmmVLa2oM5TzdDpxOs3WkbZKDIEQg6l392wEdnXG+YgR54MVI2NzO57zT6uhWbbyQSZXdXiswxMRSrekB7MJaVDH+HrdSbedsjfqDvna2C+F7VumrHZwzBKZnGcBYlekmT2D65EYvQkwgqOeA9vkuIry1pRNOnsDue0WsdlNgVeiIX6EiosQQmeaOl4EmpBKY1drnMhCm4WahJo62htTb0ytMfVK+AVfSQc302LnmmWMMw7/kc/beSCGD1PlAyEfHq3tWC827rbCM9N74vCeteb4KP76+NxhyVToPaFaUKptgE7woeKCJ8Yz0/LE+fkjT0+fjN8stmk+eMa/wOkPBKb1x3//4tZQFYI6dLOxZK9Gt+AwtS6FKqaodSLUkkn7bmvQmU+wjolIDJ6XlxN7WvnyZTO/vCaEpRKXE+Z96GlYnrp3BRfCuDVHvGgd11xlcOlshMpwubj7NLbG7bby7fWN18uVlCu//e2Zv/3tDz5++MjT09mylP3wky2ZbV1J20ZJyVwNvtspoWxQgoCb8EvAfyiEtcFV0V2JGokCMhfKXLm6Risr+7Vwfd14+7pRth1phThNzKdoaIUf6TMVxBv/PYQTURfA1NqzwCzBCk8mmttQFZb5I1N8xvt5eEDe6D3TGsQwc15eiPGE04mcO7uYWjXnYg3EIZxzkGriul1IdcMFePpw4tNvL0zT9zhfb9aIOTWummKIu3AoqO2jtGIIWbdJzfVyM4TU75RQaK7iDyPpsZaar4zYtHcBB/2ORql3Ri9QjwtxeMHqQKj7PcP9vpXLMa06GruDYnKEPzRrMcc0gnvj8703bC0Pf9n3pWcpmcyOd4YUlt4efrX9oNHw7ve2+08wt2TwIoRx7pRme455Rx5m+iYwK05oocPU8BFc7mgBGcy1A8V8nFPGDzmaTmnHftDG65RhJ3U8G5vmGErcaVRq3cllJ5ehTk/WJFT5vvDsrbPfEl06pTRyquRUmU8z02m28zrO92jdXM1f+3W9Gq3Ew943TtF4406UeYr87ju6TEy1MgnEGAhiQk31j6JzmiPTHPBREK3kupJyQrC1uu+Z223ldl2tiWjQS4cmhMMlQ4WuYh6wbly1kSYn2nHeQjZOzxOinX3LBB9/rDsHHbDcbQ4Pjn6rw/axF2r2qFrhaRSQQm0ZRyVLI/bGRy3IVoka0Cq8vd64XDrr6pknR3BCLwwwxfbfSZXFK9McCKeJWiHlxtfrja9XeNsqt90K417sDDscHIwWbxNv49VbEImGSHcTuSjXvZCrCS/drLg5shZYq5B/wWL82U7pfmM+OB/Hx2OrHV972DscWNCxuailPFhaiqGerVRytxdFbUbeToWaE9oKjglHGCXrOPvKhDSzM1h7JqVunEw1xKbWflcd2mY7My9DjRrMb1LHeKDUwrpvpJIQ6UyzJzhDNkIMnJaf1UWPobrcC00TLxQOJo5Np8ciGtxT53Qo3Txx8vjJ26L1nTAHplMgLpGweMQLfnLM54VpCsOmJnA+nc282jnbJGojhomnp2ecuhF1CR/lt4EuGF+F2gdaqOS8c72uNDEPt5qNXG5K54n5NLOfE1kylMY0O5aTG04Bj0epDfZCdIoXx+Qcz8vEFIxGkWsnFyjJyMp5X8mp0LadfFvZLo3ttZAulXYDLYpvytRgdvCEclIhRI9zjRI6aXHoy0Q9edrsaS8L5Wkhb0J6q9xSYS2FVna6pntyT4jKFCzNx2lnkkbU+uDHVpBsm4YiSLOuM+DQpszBcV6UpyjM/scBMzhxpo6UcdAyrCb8sLW6Kz2HwvMdMf9Qvz8mdyONZHAyvQs0F8xmZhhQt+Ng4igK6zi0CvQdekKl4LQRQidMjTDNLCflfP7A8/Mn5uVs47hWoGb7ODht8Hg+HOjnL2vNn/aJ+wgauy9qKazbyuubQKvUeaa1zl4KezblaVPPPUKzlXvheT4tXE8LX78prVekZ+uwg42vW4N1r1xkR8RxCtaQ+W6bfhgenk7GQIV2fxEHmlRrZd02Pn/5wp9//Yvr7Yao8PHjC3//2x98eH7iNE14b91+rSPPfV3Zt5WaMzn/jIL7OOPnCucn2vOEK4W4VvRzprrRuDklTJEwd1xs9LaRq1KbR2UxDq57ZpoXplNkOkE8CT48of7Z+F/RMS0n4mQxdk4dp8W4to5n6JHOhnPCMn+wCE3MvLurp/VEKZXgJ+I84X1AUOq+c12vvH77yvXtGzE4TqcFnGPLhW1b2fYbzsPzy4nff//I3/7+B3Ocv78WYpGUbvgVej/oTj7ANN/PkJTSnQJRxKZDOe+0nuhaRyOmTHNkWSxN6RRPhPCEiqe0Sis3E9oIiGSb5BwiMxk8WCffUS3uTi3jbGNM9BhnhPlEj6CRIfgw4MImBb2ae0op2czwhwep/MIDutTC3hO56kDau02G7j/f7ryj8IRB3cfGtQfApuMwdiID3ImUrlwbpN7wdDQ0JCgVKAVyVnryTGIFV5ZmH62R+2NKZ2P+MYXB4bpZDLaD6ynvUN4DeT28pXu+f1hDU0bk7s/XwiY8lb51A5W2xH5dmRab0E1zZHGB6fxE6oHcdkQbt7rz59u/uOQ3wuArBhc4TTNfbxe+3q687Tt/pMTvv/2d0/kZN3kW7yzu2AuFyrxHptlzepr4VF64XK6s2852Ne/dtGdKNiBLrP6j1z7WlLtz3NugRoh088ZWcLXjejNh9YcT59PEuu6ohp/P0bSz3db72rr7o45mvWzQXEG02JobaLSogARKX7jknT/fNkIC1DOHwHPwpJbJl4TLDh89vRRI2fbWKfDxaea3p5mX85nzvFBK43pL/PNfn/nzK1xujVuyc7wN0WvpnWuubKWSLTaSbd34JrCngptWxE/sGW5roeHRMDM/C7M70bCQAHU/45v/DeL5bsB83KSjm5PHpHl0jfJutD6qYjXPOu8a3nWESknmj1ixjqKmRtkaZe9oVxxhKKKV4NTQQvEonrS9cd0zqTeavQdjfD0MIVRwLozccEsVOLoKu8EatZpVQseKTucnlvlsRWr0LD+zdO4X4jGSrJgp5fDWVAzNdMqRkOG8ErxjOc0D4p+ZTsE69tAse3mOhNmbNZIX68yWydSztTGHmU+ffmOZLI96OHGwzAsvzy/U2rm+XXEucFqeDJnJZnWw7xthNjHJfk1cvt2MN6JKTo1aATGEYFoiy9NARGrl/OQ5n+NPqGetnZYqGgGcLeZ5YomGZO+5sadO6Y2U7flqKbSU2NeN22vh+q2S3hpt6/hqY7GJztTNMmly5phA8NRZqM8T7beFfg702VGeJmQJJK3sObCmwnU3P8guHR+FOKnFHIpFYHog9GY+CU4sDqtjIzs1XF67w+NH92j51Kez57R4pvAz3/UutOMhbCs0ah08qXGQSm/39ckd8Rxjq4F2NA4C//CYdaaob26MBQ8T4lEZmp+r2Dok08nAjpNMcJUYOnFyxHNmOQvnp4XlPBOiR9QUztSE1Gzioftze3/X/+K/f3GYDByFw+2Ce2G339O2jmjUUhtbKeTe7wWJ2StVVDrBG4oxxWhrFfDamHzjHIWoxg27ScF3IcTCSRh0D3M+MMW7IRQFKM1EacdB2IZVyr5vvL6+8fXrN/Z9x00LT09nPrw8Dx7ZyOVuhVQyad/Yd1OwtpIpBfoP22aYT4STg9OZforIWnBLgiiIM+4rXtHJo5MgvoIEKgFxJ5aTJ+gzS/zItCzEORCXRpghxGd8/DASXpz9+zSjPeI1ssyOKQakWU47YoXnPD/jdDJFczersNIUydnCPLwDMYPnNW18+fqF//yP/+C//vM/eTov/O2P3wnLbIfP7cKeVrwXlpczf/zxiX/7t78R1wnSuxWhYokuwjttABav6wxBPpC+w3fSa0EFWstDyNPxqgRvNlbTHE3cOC1Ed0YkoqWQHYhsWOKd8TDvOutWB2L3cOq4U14GSv6wBjzcSkZ4xGgWVb7ngtLHtOCIeC2Jkg2x1eM+enfLGI+zcFeQH4OD3u93DsM66LgJx2B7GOE/7jnbA2zvaKqkbrGJ2i3lKKiFYPSutOJoRfA4ljngo6PIztY3LvvOLWdKh9oN4TxK3t6g6bivm006GYXTMZ2xCN9Gl0q3uwxzpDQ7NYYN489bxXDpyDbpbLnQUqHuGTlXAjAvET9NTKLsXcl1p7Sdt/3CJdXhHihEFznHE7d957btrKmw5UYTz+/OsSxndPIEjYSakZvC0DUspxn0I+ocuXyh5sZ23ayZ7DreDqWXao5p3popPegJx3unzXx5wXQOvuKcN/DqZN7JIv4dWDfex1aoZbe6qYnRAZwJInXYIXYjyjN4bYjqANAsRGdt8Ne6cy7C7AJPywS1sO6w10wswuRkNEmNZ+f47Xzibx/P/P3TE79/+sDL+ZmUCq9vVwIZ1zLXUNkS5KbkJqQOt1xN1NhMl0Br5G2nlsJ1TWhYUT/Q09QQH/Fzx82J0Ao4P+KZ/zdG7Qf8+15r0PsD/bSTu48Cc+SxO//O+8uU76Z6NoVcG+NwQzuh7p26d6SZ9Yr3Z2J8YXKTiYC84hRS32n7lZK+sd42WmhIGM9PxQ4qhNZG8ekdITgzLi1muixyjCgbYQo8O8fpaSGEyDTNRmp3QkyKEbW+f/THdkaXiriGi0KYIn4JhtIFEwKF4MxY/Z3AJ84BH5Wuhe4b0zIR52DIaHCcnk5My4QObqrXyDKdeDobsrltGyrKMp9QEdYtsa0727azzB51kX3d+PL5G2lfbUTUFK+RVoA6+HW1mi1EGr5pvaChszw5luWEd3A+e07nCef152tgEJcZrntFvfF9cs7sW2bbCzV16p7pNdvCT519Lbx+vfH6pbC+CW2D0Gz0FnpDe6PURFIh+G4w/Ysn/HZm/uOFsijNdbIT9rxzSYlbylxvicvbZoECqlBNWVp6o1QsmxoxW6rS6NV4OqKC85iYqnukm0fe5B3aHbObmZeZ5Twz/8Bh+/n+OBobG78VoHYbVTo9EM6HqOj9Adi6cSGP6Fkd/m6qAaeNpp2uDAPfUeSO32tm1MVQTyrqiimcA8yzMJ0809LRcKPrK5VIbQsUh+bd8sNrHS4Ncg+remyTA944/vwZ+OXggsID+QRTjN/STu2d257uaFKuFXGO5bywLCcTEI40LhHQMTZFFfGG7oWgeGeFxG3dadUT1PPSxRo8xxinF1ruqB/2R6rkUVSZYOSBaNUjLQkbX7vgAROTHApmUaWVwu164Xa9kvN+53Udcrz78SrC9PSJ+Snj/UTPUNYbdTXfxOo8xUFzju4DRSxnOeNx8czzxw/M+sIpfuI0fSLEiAuCnxo+Nnx8xocP+Ki4aHxw7wPSA04Cp9kzBU8tM73amMl5s48DT20FmiVQ9WZUhdSrCcHchOD49vqV//jHv/P//p//k3////4vPn54IeXMdF6o0vjy+pk9rSwvMx8+PPP775/42x+/s/3Tk94Xnpihf6uVnC2Ws2jBuXQ/HwRrAqTLEDvp4Ip3e8844lnNFeWOxN9pK9VoJljD2ZplRte947L5Xnrf8AMNvPu51mq0ixHpfERB6ghMOJTNdzTSuXuyVe/1PoWzesyoLqUmc1Gpv2hQMQ7zvedkKNKHTZEK9G5IUht2abYvQJHj3FG6WFFYagXMPkmr2Ai1gxOh64Togh5uBdOJaTrx4cPC+azk+oXb/i/+fP3G5+uNa27stQ/K2EGX0/u1kH7YrPnxWqo10dIH8PJwxXAdpJpyv0nnpyshjEAROxtjOKwQ1YIfgHzboBVi9UgQYhC8C3QnoIUuldKKnW1qo/5ejcr15a/P5NTYUuVt3fj73/8Hp9MTtVau68rr24XbttFFWM5nlvMTIS7QPWWH2zUhLVGLwbpWj9s1r7mTa7Hnro4jWtWpUeekNlot5LLiSiOK4mNg0hFu8MOlWJaZjx/0juhZpKze3RePLbcfB4weGhsDTKypqNySJxD4ME28+MZvs1LKbHssHa9Qs6cVz6eXJ/74/SMv54Xn08x5PjPPC70ngs9MYeY0LTgKU2ikBrfSyGsilcRWdvZiAIhTIYzzolZDvamdKcx8/HBGpydkfkLPJ7OAG4CXup/vj18inj9yE45N5dC2KjK8//zgtvl70enUCk7nzckDLKourc1i2ZJSk9CzI7qZEE9E98ISn5nDPLKd7Y11RcltNyJwM8K786OD8TJUujYOuFs96YhizHVEE44dQ4VpjhzqVO89MQb7e++4Lr8sPME2gSamRA+TMD0FTs8Ty/NCXCI+BuOYxGC8yhDu5u3qxRBErajrVnjGSKfhguPjp48sy0LKCRDOpxemsNhIqZg3nQ+e0/JEKYVv3y68Xa/klBGdKA32XHm7WLSWwhiRWBrJvheu241139lTIu2JUhNdMi40prMQfWSONmY/hE0/XYO7Gh9TmLdqtidp43ozQUjPGN8yJVpplNxJW2O9Jm6XTF4dZGdRiqJ4rOAovVBUcZPDPQXcx4D/uOA/zLQo0IpxM1Phuu/ctsz1tnO97EizcR5VcLWTUsOnznQaXaprdA8EzJRfhsDBj0IPj1chBo/rnsnNTGP8E/x/MxCQ+//x3qOzlUqqaaB4Dn+3cRlf28dqGvzJdrffYhyyguARqTg1E+g20FVDdcb4WIqNFylmq+MaMTRLsIiOOAXUdypvlDZRquL6C1oXes1QMmZdpt+9JDlejbz75H/zuI/qBu/nyNNurZFKpdTdCk9kFPuOJUZOp4Xz09nU7ftOZditeUfw1sga71ipA4UqPbNXQITUAk30Ho9ZBwrVmz13f+Qsj0Lz/Yc9XcX7QIwzMWac99RWSWknpUROCZqSto3b2xvr7UZtFXMIsFjGHx8+nPCuopvQa6F8rqSvhbp1asHI+QhFlCydrUDTyHz+RAxPfDz9jaf5d07TR+Nza8PFip8azj3bRxBc6GiwfY7mcSjLZNetpGAOHa7ifCe4I8ktk/JOKStruvB2uVBLw7uJKS7EuHDdLnx9+8af//qL//jHP7itKy545vNE08a316/ksvMhPvHhwwufPn3kt98+8dfXncQ7zuuYBnTMKkd6pUp55xV7ZH9boXMIP2U0Uu2wOuoyDv9+5/PXVqmUATyNJK9eqa2wZ+ORu9xwMqKT+zGUOxDHwQeVwdsbk4fBaLHGsdQBahyEL7H1Vdu9idSD2zc4/aNS+cUWYROVgyppXtaWIOf18BQVKjbivQOm43k3hIpD8VZ8YrdsHX5EUjpelOACLnu8LnQ54f0TfvrAsrzw8nLi+RlaEeY1j4xy28eldBupHr6nh1dvx4SByL1oFzkKz9Eliim9rXCtJjwdvPcfNw1B7lOOaZo4nU6cT6fhodooZaOUzTjgqZp2QJToBFXzSO6ukrpQWn2ERQAtF962b1wvO9ctc9sziOfTp4aIsqXEnkzbME1n5oVx7w8/761yvWxIu7KvecT3dgOhK2blh7nPdGd8XzdM52W877VUWrZQkcnbexuc7TE/FlJxmnh6nmBYVNkI/XBjeCREjRyoO+2Jbs+pysi8rxGVyNNc+ajK3AK9VsqIBO6t0HKgtcxvH1/44/cPhDioh+qpTcmlk7LFFSsm/LbIcijSqbc8UqHsujh1TD7ytEz4MFF9oIvt1c/nJ377+Bsyn0l+Ifkz2UXzYO+Kcz+Tt36pah/YzP3P95uKyf4ZaKfZ6/jBr7E4KsE5y4g9is6cGmnv5JtQd0eQhdk/cZqeRgUemadAcIJ3FR8E76H5yiyd5w+O5AM9AEFpRxj1oaAfqvvDssI8rIZ6bHRW6vTOAeq94UJDwxjRtA7yKx/PY8Te7r6Zy8vEp78/8/RpYXma8ZNDvSk4gw9D4HOy1BWAbqKcafJM0Uyxg7difYqR55dnnHd8/fqVXCqznqA6/vX5K7fbjUbn6enMaTFfuW1PrKsVkepXTttGBeJ5oUsnpZ1vlze+vX1jW1dutxvX24Xbvo5rJfSe8b7Sp0bzjSli8WrBfEX7D4ukyyCUd0s7uG7Qe4Kyk/eV2+3Cvm5I7mjuuARpy+TUKVmhhWGzY/njiyqRjmK+mXiQcyD+cWL6LRA+BXjyrJIG7G+ZxLfd/BfX7bDEqvRSDcHZKnVyMCluVkJVXLPxiFes69KhudaOoYuCBPdopLA17YY/qvFvfl4PDM4TPJJLWjeS+JZ2VBq9B/ADnXpfyQ2ylIwNpY1IwYYdZoeZ/xFV6ZxQhoKtDxcB1YSqqRVnbyPp6LDCSD1IJNfGlr8ZIjcZGo9EkHf80/e8mfdCos4QMshAAX4JeQI2Ug0DxWjDm6++K/bAvBPjNJnrQpxYYng4Wzg1jqb3pFI5/fWF67pyWa2I38pq6HW0daM+4A7Fqnc46ebnOWxu6kCuSinfPQcBvPcsy8Knj5/4Y81sDfbhTHBdVy7XK3Ow0de+3bi8vbLvm3X73kEP1H5IPx7XoVwyuezUr51228n/+cb618bt0kn7qPHPHZ5mUhMSDjc/8cdvJ57Ov/Hb+Q9O8QPRPdEx1NxHS28SzsBi+5MrhtYr1NxsqkCCZodk6wJtozcTmpUOt+2NL69f+Hr9k9fLV97eLiYwijMfP/zG73/8HfXK88cnnj48EebIXhL/+vqZsHpwjet2AW3My8TLyzMvz888Pz/x1Rvl46dFwSje+hi539E8Q9n0sOI7qiwe68wmesNbsWYbaZed6nZqj+bbSUM5vKCzib5Sh2xFVMUjUgyMcPY5NzxUD/Slf9eQHGr2Prh37g6miMh96jA2Q5zzBh40yJJNzPjDLXIYlh9Ah1FCLDrWqxW9hY42SzY7YqX9QMGagPOB4GacTmgP1FTNizLfqHk1+zynSMO4piRKudnV6YXaXnl9a3j3Su872pWn6Yz4wNL8HVFFdASQjMz149oMy0Jp5TFlaUJvedy+jbQ39q2SdqPT9fj92SEizLPRyJ6fX3h+ebEzLziQyp5Xtv1CLhu5bOboccuEg3IXQKKMWEsrYoO3plN7Y18L6ZK47YW9dIKfKaVxPj+BKC8vnzidXgYFw/Yn7yZoQh7Rmk4cr7yxts10J7XSinkS1w6Z0TyN0IHJmVuOdL2PxyuZsCd0jszzibicfhq1W+Ek9ybMuVHIMsSaIaCq5FotArSOSM3R4IdgdKzoJv6IlX97Cvyuibklasrsex77nkMl4r1wPi+cTxOWta6st8TbJfHt9cqXr698+fLK2+VmkxHFgizEEM1aCopx8Kcw8en5iX/7/XeeP3zCn55x04xzkWU58fz0zNqUL1vj2jwbEwmlNGWKme84Ofx3iOd9A3n4+NnFGvm3B59R7dBwzrgyRx5CbwPNaZWWK3ltlE1o2UOd8OGZZfrIaXlimZdR+DSCM1PkMAkWbtCovvPcHS1GiutUNW+r2s2QtvejyzaLi3YfyXQTgehAR50O0YCVVVaY1vuIo/83hSeY0EOcEGbH6eXEx79/4PnTifkpWv70MSb3gQ8vH/jw4YMhPylDbzgVzsvCaZ7uFi/LtFgyyjRRakGqg9xw3VOrcHld+fZ2GXYOjtNps9F2sYzrdUsgV1z8ilNT/BZg3RPb7cq23chpJ+WddbuS9o0Yo/FftRMCA77vVoBrI1ceRsrfLQhDe2s3IdG6d3oVWtnJ24319kZab2iuuCyEEkl7Z986JSm9eXQw4zzKhBIG2idO6BHcU2T+2xPLHzPuk6PNneQqiUbqFvOVaiUVy+QtwzuxJVOsUkFLJxZHaX0Q6g1pEAcSPOLtjMMd9d/gcQXr9m1zwb7Oj0LsF8viPZ3LRAoKXe7WO1BGcWe84cNZwZB57ufzoRq3NdHHyJqBiA7UZFCtLHPXVIOiGdWMl0r0jdl3oh+InHN0Arl09nTFOU8tZ7r/MDrsR+bI49W07z7z+CdDZuWH5XD/ssHZnKbpMTqn0Itl98rhUyjGvZ3iZKimmljCq0XGhWHY/7Ilns4nvl6uXLfVFK49cSJwjsapbmKFeBqJLe4d59buuXQvPo+1fBQQTpUYJz68vPD7VnhdE2+3lVIyt+uV6+3K7BXplbSvbOuNnPN4T2wkX7rne45np9w28nYjb5n8urP/88r1W+JrFvYRUOHUEwpkPM2Z/+Dpb3/w4eU3Pi6fmP0ZL7Nl2NeMnyBOSmszNU/UloyXJ8PCrBUryrqJJaWd6N1R6xVt3ZTUBW77lS/fPvMf//x3/vX1Ly6XG63DNM2sezJbNxd4+fTC73//jU9/fmJdb1y2K5IauEYj46JyOi1mrv9k+7Zzlx/WA49mY6CGTvSeLHdQKTioGaOLu4tTB7JjSKcVn62VB62kFyyUxIpPeqVXsz5qpdOrt71fG02H4hyDJ8TJQHxGMfm+6OyPSYih94fVjxErhHpPHAIGaDBx2Jp0+fkYtft9UM9EBzXNGsMjHUkApx3Eo+KIGphdRNRRBJybmcIT0Z8JMpNuK9fylY1u4IHoUHqLFeFtN4V0S6QUuNwaPjSWqTDFijgIbuIpnKgy08SKz8aY2NCHoX6h1Ew+hIgyDAZ6sz9Lo+ZKyZV9L2x7Nf1A6YMP+t2FsICHaeL0dObpwwvPH1/w0dGlEXPAb8L11s3zOSfaluk4xHn8PFBxdYb2u+MDpDZqyaxrMQ/O2lmmE6rGiXx6fuHDh9OgDAgpZ/5v0v6zyZHs6NYFny0jAkBmZVU3efjeO8JszOb//6O54lVks0tkJhBiK58PviOAErQ5MwNasrq7VCKwhfvyJZZ56WEf+u9b2rTOKJlaCzXnHgqgfqIHqI1gRH0xES3YrTVItSpyboWwZvxUGZ48LvwsVm4Yakf9rfPaPDvluztzLzxNV9LrnVSg6bg9OseAYZLMXwbLXy+ZF1bcJmytIKlhOkIbh8A0jcRBPUZLhZIr87py7QlP396uvL3PzPOKUHHeMp4sGIczWmyKsxgfOU8nfvv4ib/97X/w8ul34uUDbjjh/ECMA3EYuG6VfN2QBDSHbZCb6Taa379+tWP6wbBffLoZYwiqTtIQ3yOKUo3dde7fdm9DUWmY5ELbso7WiyeYE8PpiTGemYYBH0BMopqMsxk3WqbJEaJ2N6YayI5nGzBxIIkq43Pz5GpJVErtFkbo5axKR9O7o14U73ZG3JMY9ixaqWqbYX4poNgv5YYPgdPTxPnlzOn5xPg0MUwePwRCR7aCj3z67Tc+ffzEPM+8v6sX2TSMXKYzg49cbzPbtiFDoOF5va7M841vbzMiwnRpWBfx8YSPqqCc18K393ecswgOjFNz5+2Nt9uqqVHWs8wz17c31uVKSrN+Pl5wI0yDV2WgtZjS66niyRTyltmkaEQfjvZvoqPphyWxW0fsUXC1p/ocpt+iozXToGVH2mBbKtsqSLHYZnGiCkDb9PJsUlXoEzzuaeD0+xPnv53xL47VrpRy0ySW7vmKQ21auhdqGIKOnowcxYw1uhYlV+oqFKsbyowOFw2tI7qt85Z2Q3XTvX2abVRbqd0v89evXpQid7HRg5AtF0XAUt4ow8AQI9HHw5Zl52zuF++OQO5jldJTU4xULQe7RZeQEQqO2q3KhOBgCDBGg48W4+4576V0FMcYjHMYG8AFxHk1x6ZPNuRXX7tX6OP3+vAERLnTvo/Z96LbVlUUB6/PpXbHiWEYiVEjHVPaqEXFJLBTniwxeF6eLtzWTRupWnDW4Z02olC5bRuf3244Cx+mkfMQ1Fu1fyS1R+fWWo+z68icFsEamIbIy+XEy3mi1YykleWm+2YNFqmZmtXWynYkqNZMWwvJROB7NXfLN0p7Y33dsN823q+Z11X42hxrczixhApDNlQGpssT/tMLz3/9C+fThcFGFYhYwVaBIrgANgg1qVH3tq3kMmuzbDT3PKWVxoKxjehfMERSfgNTySdBxLOVxJI2vry+8vnrV5Z1pTXw7qYpKs7x28ffOD898b/+3/4XWqv893//nT///INUNqQV/OCYpoGnpwvPT8+MccIcXdz3ayLn3BGczhk0BilN/W6917Gb9Pl230PWGjAO26RzrzXGdy/Wgu983964tV6AW+gj774XrTk+5z0NTyMiOc57tUOT+xru/xy8P37e9DWjxSjH+FsnY1rIImpTl23+5SlhnYoW9zG26QhoEaNNWW9YXVAbIO8iUxw57zSrJoR44Tx9YghnPJ53+5kyJ5pfcHFgGBzjFDHG6aSvJqRupK1RZrVtMtYwTY5p8oxTIEwBP3l8iB3AUe/Ou5gDne61isVQpQNAtWhIyx5zmRM5beRUjjhJper+OB0RMsq9VeCooW0peqaZdlC4BCilkbZKw0AAE9RCCtHYXT07K2IKYi3iGo3KvCYScP78J6fzmZePH/HB8/z0jA/6WW3bpi4BVgvLVJ7JZaPUrGu92yDukeCabHg/+6wVWv/+rTh8pyc0tO6Z14SbE8NzJf5YgEM3kG9dhK1hOEpq0Ka/1HrQAL112GhBohalzjIGz8kWLsbxl3DjZZiJs04cX1/f+PaqzbqxcHk6Y0OgGsOaC6UIaau8vt74+nbj/bbyPq/clsS6ZeWGeocxFR8DL+cXTidNWbPDxNPzC5cPLzy9vMBwZpZA2ywUsKlgF0WHKwr2UXUiI1XgF+E8v7RTsg+MTtu5OKF7Y9XakZrecZrezUkvPGs3/m0lI6nBJtjmcXYgDhPTOCmfzlfl3zmh2URzG3YYCOdROZ7OYZvDlEhxA/isqUOlsRZ3HDC6tPf0hYbtm6d7petCMnuB8IDg3t9hZ/P8PE68O50JPlqmy8j5+cT4dGI8j4RRRUQxDngXiH7gfH7ifH6ilspsHUMYOJ/OnIYLznhaXVm3hh8ECtxWRV2uq4704u1GCH1BWk9t6jNW6obvZupbH7cv60ptlRAiY5hY55Xr+xulLAiJMMLgLd73uMgGplYdZ5VG3Sp5reSmHW7JghH/U9dqrVGuqk6r0YAFRXEwAy0HTPZq31aFVBvbUrm9Z+V2bg2awaOpNjQt6pqpGGeR0cLJYZ4C7jkQPniqVNzqsKaoz1wA19R6KoxNnQKyUF2DJERnid4Sj/x49KDKDbLBF0doHhFLbXp41V7UCf0ONIZmKg1LlfLL3OGDxdTXkuV7jpSIHiCtZIpTz9k9gjaYHQmRA03cVy8oJ1kOpKf1wlOFF6ZzlaVPFPbIZWcNwVtN6IoRQtA8cvTi18It4lzEWC06+8Y4xurKh3u0bNq7yM6ffIRp91f//q1zej70wIZcRc2K9zFS50fu3T3sav12fw79UHbO8OHpxLwltlRYt4XgIFhh8AIU5i0de7+WhpET0bvuFXofr6vF2r3Y2FEujWgMPJ1GPj2doWWqVKxkqIlW7kWxBfXwk65SzomM/BRTE9qCK++kdaEtiesG1+KYBRKO6DzOj+BPhOkDl5cz8eMHLs8fCMFjagWbNQTANZzT0WaqjXVLrIsnJeXCqYVN0sIzLzSzYKwwBIcxA+v2jjENMSPOjhStY1lT4rZoJnatDdAke0GXwnSZePn4jLX/d3DCmq58e1vZcmZwntP5xOXyxOXyTAgD0uwvloSKDXchUT+cD77tvVHrEzIj6vXpdBytEQQAveGpWkCqzkIvaIM2Yfug4YFCrTvpuIh0BKqf3z0A5RD3PaCdpqNNXn/RsY/76aeq+04GNdA5fz2YhMdfe38NYQB36QjnPahDG752NKwBh7MKWoxhYAyDFp4VpuEjHy5/YwgjpkK+LXjTuePedRGuBRoVnYbsvqc5V4pYxHXPO+cQ75GgIkrHboVmjgnLTjfYI331q3T7qEwqibwpD1q/CrXsYRd0jucPawIoeqKSWya1RJYE4jA9EKZK1lE+0ulcHXktBbxjGgyWnsaGioxKK1gs4pR/mUtiuzW+fPnM+Xzmt99/59On3wjRM40Tpep5sIMOTTK5PlFEOcLrNiOmQBcP+9ErXWwrug5lj6q1mlJ3TM20oWgCW6r4Lal1XG0/bo/94rjboLPfO915p1T28ZL3irrrZMgSnWUIjtEJJxsYrcXUQtpWrrcr317f+fPbTK4qgsxYmo84nxERylZIa+b17cbr28yaK1sRcjPUHpksPtDshIlnnk9P2DhR8Nhh4vT8kXh+wgwTG46lCKWpiwJGPxfn7mJNBaJ2QO/nDfILVfvdYsL0TtE75SY659WvqzYdfbBPJA0au4byOddKXjMmG2INeD8yhBPBBQwaq1WkI1UejYcLajdEcBC7/xMRUw2FRKPislbktQnFCDF4rNNFWJqOC/sO4iBqd56aHnr2kFMYMZoE8YBa/bxp7ihp8I7TaeR0OTFdJi08o44ZhzDijAqtEEdJjZIbrShyaMQqDaBV5iXxfl1U4WotGfX4y0bY1pX0+Q+cCdRqKbmQSmLbbqxf3jEIMQ7kVLleZ3LR5BrJEXxhW1bKMuMjjOcBP1RsrGp/IZplXxehvAv5vTC/r6xr0s2LUKsqwX88SK01+ODwBqIzDNEzBk/0FieNwVayN7iUKbbw+XXjek18+zrz7etCWg0UgzeoYrupUlEs2OiQ0ZJD49YWTRRqEXxjmDzVqnpVUyKgdi6YQf0b69aQ3IjGMDrDyVsmKwQBbwTvIOLVqN6O4B3ZNjUdbaVz47S8M04Qa7BW1fa/QjzN44GtGwSMGjrv8ZMGLW7VAHgDUX6XQdGb46LsKl09tXv7YztyL43dQ1sxlh7A3JpyuIzQjD2+BxsiPpwRPyFGeVDGWKbpxDic8H4AnJr8m+MbuF/E8lB0SkVE07z2wvPHNfFdkdoL0DjEXugo76806Y4TcnjgadSm08LzQWVe+yO4nEY+Xibm6w3X1KN0dI3RVQqaOlSaoVYI1nEZhs6X2gWG9jjHvNcEs71B3cftwVlOMfDXlyemaEglMYyR02DVd7iHWjS788gh5aRxfWJ+Kjyf7MrFzohfmH3h6gyrCSCaV386XTh/+o3L7/8Gf31h+8tEfY6IM6S6Qlqp1kCIPXAClvXG7Xbj9u7Y5tDRWyGlhW27kUqmtIKLBesNeVn7iDThvCVm0fx6rwLOEEd8CKSSaUUL/9t8pdTO7fKe3z7+xqffP5LLypqutP9KfP4yE4fA5enC5emJ0+mMtUEjLX/kP3fEGcBWe2jXhB1x7Bzqzut1xuBMIzivPPwAjkCyjVYS26YOHnnMVF8xJu+sFsRqYo/13eDbaP55k9IHBA0rDjG6NvdCc3c22P95XyfSK4B97Exf36ZfhJrg0zrvuzeu/c/aRVHfrYnpA0/DSAg6jhRsb15Wau1pMuyAhwpcTams5YoqOCODKzj1miJtCyndqHWlNaXzlALrWqDzMqWnI2E9YRwZhjNuOKkDSwwYa8jdAcRmLd4baj22U2VKVU5tLolakxrEJ0U4U049RKEcHGM9i+1RMP0Cv6FKI5fCmhbGHCk1YpvH0MhtI9eN2ooiZUYbkG0r3EohGwPR83yJTIOlyoKIKq4rjWo9JijKltPG129fCDHw9PzM+Xzmw4cP6l7jlYJU26CpS0VDWJ5aZlmeWNYnmklY37g8D9QibEtmXfT9tlL7GjJYr6IaKtRcEavrpkgjVT2jtpx+OjOdtYTgu/WbKuVd94RusvO0dWLWpOGbR/roPRWdfmA2nJsJ9Ruy/QHXz8xvM69L4nWrqkAHFmZuTekArVbKllSpngu5Cs1HfIyMk9U8dx9wMRLiRDhdOH34iB/PWlzagMSJ1Q1kCWRxWth21bo2hkqFUkeuqpxVZ/uPje+54P/SQL5z0e51+VHQ7V2RdBPVvZgVBbLISUhbI6+Cbw5jB5wdCT7qQyCh8uei/BZPN8BFE01sQvQEwqDKeR8CsYY+zszclkTNpfdIe3GoYxc5/hnoSQz0DW6/49ipeOJekP9ix+zPxIIPuzen5pKGYSBEh/ehFxtq/1FSZVk20pqpuZBsYrazCqPEsq4r87JQLMx5BQu5bKzbxm2+Ud/eMFi8GwFLyYl1uzLP3xBpDHGk5MZ8U7X/OFi8GEw2mLJhW+YUI8+XARMS1WY18E6ZbS5sb5X82khvleWaSFvV3HKvnNmmk67vN4zTYsEbw2AN0QfGEBijJ1gYTaFYgWXT95YWbu8r7+8rt+uGVE8Qpz6LRlOkxAoSHXby+EuE0bJKwheDLQXvDT7AiOuFZx+BdIGUtWoWX7cKpRGMMFiYjGVE8KXhq6LxAYdvDl89Vrzaoewfd1eLS88u1ixlHdP+ctTei07T1aBH4dn/Xc3g9XYs+8gXtRMxaPzsPsZjX4u9ENzH9cZaaHuMpTZ1h6V064hsFZrrS9cZzQZ1Z7ATImraOwbLNAzEMCg/O5cjanAfn+96or2AlB1t2s20W1NxxS+6Vtj93YyOwsz9uewI1z6nrLVoHnMNEOzR2O5eqFV0sjANgfMUGYJjsyjq2n9v7gewqcqbW1IllcoYdP1qcXYfqxvbBX7so1d9n84IY3R8fD5zmjxb3rBewwO8BZx+f0rj0Ea81n0y8vNzuEjiIiuLbCQpFFEe2NiEYBynYeJ8eebp0+/Ixw+4Z88cC0tZKHmGbaZ5hzcj1jmKCN9e/+SPf/7JNkcknzmfzozTQEqJddvIteiYUhTSvL2/sS5KxxiGiLXPnE8T4HA9qcyHiFlXQBGWkgrrtqn4pvuXjtPAcAo8fTgzvQ64d8t4Gvnw4Zmny4VxmLBYzeX+xTiRh7VE5/c6Z7EmELrTh+9ouDMNbzodyuoeaRiyWGpWK7Z1SeRL0QLZFXUVsAasYHyPIA4W4xotqbhMK92KbTpm994fQSOPhedh3G7t8W33h3PMIXRPmAOd2gUjuyBJRTj7Pr4/gtGrld7p9MIwPoFxlFpZlivbquKgWh+LxqLoYiv6mVmDSKHVjSSJZXlnWd7ZksZUSs2U3Mh2/8bbQamxIeKGM+H0RJhOvVBSB4iCNoE2537eyL3wrEXTiPKqxWBVpDOnTX/MOwey9KmMHD2zPExNvl8Ku9VcYlsXtjWwpQA2YJwWuk10POy8U+pabOStkVplzYVhK5xzwDbbC3j1rDQ0nNG9b5wepmnbuL6/8/nzn7x8/Mjvv/+FcZyYzmdC8LSm1nKl6jTJWiHllZxvYDLOFVrRsyKnQloLJWvikPq2NqUnNKhJp6su77ZTujZr52D/eGYqcqmItesUNTpK35Au8No9brvQ1Llu9F9pLbO0Gcs7dfnM9f3vuPWdlhPvW+U9C1tWICWRWNuiV0yrlE3rEecDLo748YIdTniroSVmGLFxAD9gxwn79IIdTthmqM1SjaeIIzen6nrn2TUSOgFtnS1csQLRgXMGEUvw/xOj9qMO6whILYVk1GfIudA7Ws3idUZ9B8HTmu1B9EIpBmM83g+ayBECOKGZQpOEMyqOMMHgB4OLOsptKKfR+4JrmsPb+ljOWEOIQSen+cb725XUFDWL04D15kBgTM8qv/NUd+uCvjzMfbQuTTl1ro/WfnwWOxHee880jkxjT0Xqo5ZaG7VsWCk447XgyJltXUhJf3x/e+NyuhDDwJZu5Lzw/ucrRVpPHGos8411nkl5QxqEMGCMo9UCpjBGNcm31moqQU3EwfFymQjWIxl8USP1D1Pg02WkmMacRZXw7yvXrxvL10J+F8qtUdaOWhiLFeUF/krA7K1lDAFvIBhDdI7gHIMPDN4inBSN2iqtNObrxvVtJa2VWtBRuRGC74bzWMQZ7CkSnibGlwvhEqiusZUVuyYm6xkmT/QGjFcxmBOwDePBBUMYLS07pFS8qQTTmATGZvCbwyb1WnMYSIKsDYJaqgw2Ko2kVfX+NHooVxHNYTZ7wfXzy/TxmxZa99G12sZ01NMoYlhrZZV0VHjW2E7NUGuL1roy8pFbCZ03+vAlamTcULSwSVObFWsQ52l2JMsJqSNZumde9MToCc5gW6JsV9p6RdKi+er4faPrpdG/D77jeKoZ/s8vvZr1jOxj6JwoPbe9c+MxaMRsySvLUokOLZ5FOtrZ429lt0NSXqYg5NoopbG1wtY28NCcOkS43mmXVqmi2e0a3hA0LGL36yxJ0aTDKkWfs3OG83ngRGQrI4Lgg0f6eaF3edPpSXftGGJExHH74UlcauGSM3nNsFT8ZjllQ6yG6AxeHGMYiJcL9TIhsZDqytv6hby+4/KKGycIllzhuq7813//J//b//Z/4s0zz6d/I/rAMAzQlcjWe8Rqcb+uG//99y98+XzFOXXBEBkRccQ4IabiuwOJTna0hG5NKKXw9v7Wx9SVXBO1JHLdME4OtPPjp49cni7E6Km58/B+4G5ZA8G7zs3UiYSGBSgf1Hdbnd16T1eHerxSqwaMGKGIULfGtsC69BjFbiEmRgCH0HAefLTE0ZGjgh2lapgDdLqVMZQQaPGuXv9uzI7eC7ux/X5fIAYrorScVvs9pL9e90if8f/CQgjA1IJvwtMY+PDhgrWRUhpvCO85cV0yeb3SWkZ9QvWzdEZw4UQYHdYX1k19Kt/fb7zd3lnWjbQkanfPsMqqAWPx40gIE+H8RDidccOA8fZwJRGj77F0b1c9a+7Ibenc9JxX5T6WTOnpTKXUPlbfc+wfJYp3AOhXoxFJmWqF5AzL4BhHR20eF9DcdG8I1qvjgKj/qXWOdVaUbFlXrlfB2oCPDeMMuSlPM7hGs76fdxwN1G2+8eXzZ/744x8M46iuGsMIMfa1qsKs6D20gunTFUNS7nQtGCbdL51CuHVHlXnJrGshuaYFs0GF06AZ9N6odd8PL2cMsa99Y+SY9jTp5kkPNI8fJ0r7JLrVynW+cv32Bb78QawbU4zMFZYmPZ7SQBHakh8mvw7jI+HygfH5BX96wo5nqg1UH7HjBHGgYBEbWOKIsZFioBq1+sPquRNswNn9LNE4Vmv3mGIFBbzXhg0s0ZSfnsUvEM/7JtrtSRQmNXivCOLBnXJ6qEgzpE0Lj7RValHrHOvUL9H4hthKs7lDxQUTCi6oUMQGXWgY6co5tXHYoy6bVD0QnL4hQAPtV42DNN4QbTg+oD1f9TtJ8gOfBw6Qqaca1V9frvuZYlSoFIJXn07nOgpy74aMWBye2c04o3GVaVvIaUNqYT6dmcYT87aybQu3ZWbLaqyMoFnQOemH6AxUPYpySoRgOZ8HQvAgHslV7YkEAupfWVKFVDC5YlKFXHHOEJqDBOla2N4L67VQbkJdhJoA0ULcNVE0zjt+PEidtQze43rhGZzDW40vi95hTKG0RHFzFx/pZ+a8ZYgeKYYAeNfTHhoQLAwOM3rsFGBw4JWrlEshVGEQvfCjtYeXGlbRDecbIVodG1ZV0AYaQzPEKnivSlbZqvKjtkJjw4lgRod4g3GWYJ0GCARDprJJvh+n8tOj0P9wUFF0XCLdpskcRsNdPdsvqVwU2dBEFn+4QZjuR9ma0fXediRyRwuPBdj/5/Sq7mtVELA6ThV3pspErZEiup802MFipECaYV5gfYe8KkW727ocXw9FKDyO4X++UO6BEo3aVHxTinJaYRfw9XmDCLRCScKyLiAN1z1Sd8VzE1Vim45ahk7t2XIhZWGrmTBahpPHWfBWz4brvKBhgVU/Dx/2j6hr9bVMOfwsekqIdZYQlCvuiicXRXBaq91g3BxIzj4+jjHQmv8OyDBAFMtQLW4zuMUwJgvZMKgonIZBnKEMjhINlULKM/PtGzXdGKTRYkBqY15X/vH5C//5n3/nP/7jv7lMGffpwmm8MI4nBfOcB6uc4JQSb28zf/zxJ3/8/SvOW56fnrBmoJbG+XJhS+vxHvZCybBnjzeWZVGDcgOlZayFnDdqq8Rx4On5iQ8vL5xOI9Ya5YR3NfCPa0LPgz3XWYvNPcXo8PHcazY6v3jveG0vZiq0bEhLY52z+jHWDXGCMxFLYBe4hmgIA9iAnh1VqFn3pxPIuZBSUo2Cc/c7pSkKzgFO2GNNGzi4vfJAPZOHT323O7PuIPt9/2paTJu2YdoCrSCpQLoh2422XqnrtSNjFWOkq7UtRjJIJqcbNW9sqXK9bczpRmqFJEIVveDVWdBhvMOGEYkTEiMSHdW2Hmm57+vuaNGFV4qi6YRHOf698CwbJSdy7krvoraItT7apEk/B+UAdHQN/HheCrT7gIemYFbNekr4aPE+AkJ1Qs0J5wTjChi1B6pFcLbSime6OOJoqFYBptavK+8trSmVp1FZlhvf3r7y5+d/8vT8zMvLR3WRibGPuB3eGtye6NZS/zEzz++kbTmAhN3ndRvUJ9kHdchZjNoNFRGqUYqGCujrId58fO1czaOo7Ge5Nt50XryKZHf7r336bAFnhFYz8/VKfn2jfLtycoIJo+ZHGaPcYyxiHc3o+7TGg4/YOOGfX/DPaodkhlOfLgfsOGHCoDVfMxTjEOnj9K4H8Dvo5IMm/dldGFU7aCik1pTK1Zu4fzVM/mVy0d6NGkwfpRVVmMMxWvbdwBmsxtnNG8tNLxe9Dy2NQpYFKzpadLZgXcKGio9N7RF8U7sb57r6vBsQ19z9+DQHll2t7hxD1FjMdruRaialgPWKajrboxdtJ0wfxXN/f/ZxtNI3YY9q+2G73JtZcxw3nfOqnKF1nVnWhW1JR8yY1M4jKrmPJRLSKrdhZBwGqmhHL63h0bz6nDLrbcEa+PTpmdNlAqMiove8EazwdJoYx4FWLS01rn5GsrC8JiQLaSmkNZGTirpqKpw+BPwwYVKiLQsmBVy194OoKTpQ0HHPOESCG79rPoB78oRRC5xHw3DrHNYEJATlYXrBj4bpyfMhWeXgzkX9PUVtSZqD6g3GQ3bChoYD+KgRomrroeMM6yzGWXzndUGPLHOV4g2tGqQ1rKivW2gGV3a3BTWdLnNhmzfkljDXFRM9dvC4KRKnkXgZCMNAcY3YNlJT5O7XZPl9M92VqbqAdweI0O2T7ubxIo1SCilnUtrUh847nPd6afSLTT+TciCNe7GnugY1pGanHphuBeUGbDhj3IUiE0UCVdSzTYzay7Q0Y+YV3jNmfoWcUO++zn/sc8Rd7LQjGN//+8/nhPdOBQj17vnHzovrT0rFaPsFSTdob4zTpIXAIWZQBNcYfTbny4klZXIT8pooWbBBiN4yeMEazRD/57Zyuznep8BfPopOWpxWjLt/r1cijKJXiHKRevGPgO3cwHXdEGAax+5TbCmlkHPp79cTJPxoSUdjpMkJtwnDkglrwNTenBphc5XNFjaTkObYykzerpTlipVCiAPOBYoYPn+98f/63/+b//iPP/n65QZPJ57HmWVeGIakIrvgMQZqLry9XfnjH1/4/M8vfPn8Fec925JoTZjnKx9ePgDCfL1RkgoLjey0gZ7QUtWK5/X1m+ZkG9EzV2CaJp6en3l+flav1laoJVFLPhqg+5owxBCOdbsXbLY37prCYr5bWyoU36knut+seKiOvBWWuXBbZobNIm5icHIUhs73lKLQwBadhhWDVB3lI1BLYVmWo+C0ncuvzge6bg0c1nYHp7MXU86rk0jrgqX9MrDOaTxviOqf+uOraRF1fftM2t4pubCt3epuWchbotSO4BpQdb4+ryIbKb8hZkHEkquw5kaum6aijgEbz8qJDF1oFDwuBkzwFFso+dZpdb0g7P+3TzaMqNBTWj+bSib1VLtSU7cXUlV3e5wW7FOAo+g0iDVHCtKPlacxBhccPjgV2Y4TwUWdlqIG+DFGHW2jvM75lrm9b8zXFZq6zpSUWGbLJUUuz4F4csTR6bjaSC88G6VlJDdsMlxvr3z59pmPrx9Z5v/B0/nCME5EJyoK7eETbUx67raKM4a3b5Hr2ytl26irUiBaq1hpRCeY0ROMinWlVFoSMpUmldIaOW+UHH9q1l33K9ZQjNaF21pn1O4+YlFfZO+8jrBBBZpUgqlsZWOdryy3mZYafvIQBqxthFRwTifT3kWCi8Q4EoYTZrxghgsMJ9pwIg8ThJFiPM16vB1wNih9ErqIXAXEOt0WglWNR3SG6M1BFyhNSKX01EC1fDzABBFsyJx+cJf6ufC0O0HfHON2FRkokZSuLrMdsam1sG2ZZVlYVzWYdcbSnKUZRTrFWfAG4ys2VMIAcbLE0eDjvdvUartiSqFZyCkfAhrruqrRqiHt+XziulxpmyIsan3iulG8Lv7yOAgQJQbre+xdt+x8UPPjfum/T60aaELOiWWeWW8z41OgucKy3PS/LSutJ6e0Kocidh83up5eZEzrpHqlKLQmbMtG2zKm6kIcfeQcJ70gS+MmIEWQ3NRoXYAKZW3kJZNNpm6NtKgtUs2V+X3ldlv5rXzgw28XJEVMjnoQFQulIj1GkqocJSMoCviLQ9T0A0SVqD3Cy3ZZtVH7ERc8YYxMzxMvf31izZZ4alxfK/mWqXNG1o1ta6RqkMHingJ+0mSKah3NOh0dG0czltoLLf1ce9S6ab3wtFS/JzVIH6d25LYIVk8FWoa6NrZSKGul3XRkYGIgnIXxyTEx4KLHDgeTUpElfs6Y/ZG3Y5RZraP2hwjZRwRFmqJvdY8SrPX4U4zezCp2s5oA0vZsTPSQ34tDjbh0Sum0mvXr4wkXXrD+jGXEETDicS5ibQSxtLRh1gxzwmw3qAXjPId/pzx8/fA2D8Hej2vCmAO9kv4+FAnp50cvnK2zBLcfUua42I/m5Yih24VPWuB9eLpQqo7bcxXykkGE4ME7AVPYSmXOsGVHbsIwZk7nQhSjwjITGYLHdzsb05omxXRho+kwjOlIHFbTcmqpCpcJB29U01c8TTwm3VeBAGsdSfkEqRGyhdqpR169aNco1NAINmNwSC242hgErFEEYauN+e3Kf/zxlX//j898/jKTVsiDjvi2LZFSJnhNbmmtkfLGt29v/PnHZ95e31jmRXmcWMK3N2hdZe40xUwFjyA9x3wPKqC/52XdqBQdSUjjfD5zfrrw9PTM5XLBOdcRKFUz/9is658Ke5rX/f7oY+yH9aXriqOJs9wbNWtUeV22zDonbteF4Wyxexpe3yeYgnEV4zXKWIwgxu1DKh1NtkramvIMczmmdcr1bJ12YYkxdu713mpxXxvdbaDtw4H+PRurxWf7xbh9txer72/w3pjnuRecGyVn3drQzw797dYZVQWbTEW9LMU4usMW1TZkEOygQkNzeFrqpMo4izhUKZ7rcW7YA27cJxkNiwqDEOmj9F5slqxFWC1dHNm/6n4+PDSifT/ve1qR4J8Lz6FHS0+nQVPVjMH1dT+GkXEYVXhoCjFkYtgYhwqVo/BUVBj2E9q5PYlHEUTnLa5ZXZdG7+1cErf5nW+vX/n85U/GYSL6QeOyY9Q7g+6GY7U59cYR8UQ8y/WdVWbVrPTnQmuYanBNhdVKIunoJbpGdj77T816fz628zzZUdLdA7mjhIg6DTRjepNQkZqg3ZD1nTK/s62aMR+CITVDCANPTx5jPT6MWDdg/UAYzoTxAuMTEi8UG6jW03yg2UDt6ChWbbnUd1bpJUaUlua9pg16C940vR9bpYqaEuZaWHNmTYUtq8/4zqkWEUb7P2On1Md/emiYTiDvooM+qlJUFJpUtm1hnlfWdSPlihH1srENsA4bA25QxaINEIIQJ890igyjI8Qu8qkqxmgtUT04U9lSohQ9OL1RRS/GcjqNvNRGqht+dojro5UDolaLCdMb1N3+R++WHnuGQcnFOtaz+cciQ6gUatPOfllufP3yGX8CiQUbYSsLOa3Usj1wgBThUT7oyBAHhhAZQiT4cGxbLdor19cbrulImCpKiM/9iMhAMeRcePt6Y5sL3kdurwtvX2aW6wYNytbIS6EkVd9ZLwyvDrEDYXiipgHbTlCgppWyQUmihWdTj7RmDDULJf3as5HW6AHkWiBgaGJoaKPhQuT0/KSbyYxMTwuvXxLzW6HcMtvbwvvnN16vQtugjpHhtzPmEihDQ0whV9Tqw3rEBk0gwWGMmi47FBlwVvC10o7CUy9TLcpFLyEKrVrqJmSvkWspK2m9NUOzFffeiFfhvBpSdfizQwZBuuelMf6Xz2K/SI9xUy/AbQ8R8C6ojUovPpW3Y7rLS0+YoSOl1mAaOlbxglhLq13tXVY9/OuOgNJTWDTFYhzOxOEFH3/Hh7PadaFFexg0SctIoWwrrCsmrVBSH9crrcV+59f5WIA+op6/emkjgvd68S2rrn+rgrtWMtLUxktTvXRC4vq/j+OItbarggXnHYIh1coQPJ9enrHOHUVOzYVgBWcbxulBVsSRmoPqCC2wNstS1PUi2so0eEavHbtgVLzRoxGprcfuKjIZQuBknF7C/dxRGznP2IsuYww1/9yYXbfIsE2Y2gii/NTNCAuF2Re2SWgTVNcI0ggCI4GXcKHZhljPl9vCP76+83/859/5rz/eSLeGNRMQKYUemlAIeIwRSknMtytfv3zhzz8/s8yLPm8sVhytwLYWkNsxYm7Z0LJOgTHqj+isFk6tFxq5AEZ9YuMQefnwwvPzE+M4YbAKBmRFC39cGSLqwwh6zurd0Y59c4yndyqU2YtVc0QGWiA45QCW3NhumdvryjAZQtAxpF4xVtFXMuIqxvfP0yuiq/eANkOlBwps23b8/fv3q2K0yJ5ydOD9j02YMSo4Ew7BXa0qPXTBqzL5h2eRayNJUe/XtPH2/s58u1JSRrpfozEczZYeB5r1bbzH+IB1ARt8F6yInhV7EtNOGUMLHy22tEAsLVPa3S3D9lbgbmGmPqmilY9m1LeCEfXbpIsvTf+1+2i+7c/EdKSzF1I7b/hh4n4/JZzh/DLivWU4ObxWLSpkiwPTqEEq6nhReH5uWDE8X06UVJDaBY6iDdEwGuJkGE8WH1W80qqhdZ/XZgSsxUevXNCS+fb2jf/8r/9Qk/4w8OH5hRBip0r0wip4gnUE6xmsZwoD1zhx89+4vjtupbFtmXVZ+37s4qLauxEjx3vXmNefxUW1CbUpDzU6BfD0ylIuu054FZxIosWLQ4imYMqNsn6mvX/GbFdaTqwZfBJua+HThxN/eXkmjhdsPNH8SLUjJp4w8UT1E9UOqhOQu1hOl4g9ptjWmj4FLghCcEIM9EQ31DmjFHU4qE3RzlrZisZa57bz/lGBrHB4fj++fio8bUc8pX9ne9wZ7IeI/lhrAVoXFGToPKva1IvKCdp9+qIczmiJg2ccQy86B2LY3f/1kqtVaFI6t0BHI6V2O50KphOQY3CcppHTNJJrIj+MfDqApIhVJ0d85+d3cLd2btlDesV3OwZ8NERR7l6ITkvRkqmpYLpCOziLCZZqdZPGEBnHgdN04jSdGMJA9EF9yIBcCrko6lWSqgZLKrRcaUWY3xdaVrxtXhbevtyUdrAVTqdCHIT5lphvG8uS1KopK7xdcqXmDKWRsdzmxLwU0iqUFcoqmiKVoFXDESQsclhDZJt/ehbKQ8lY4zvq7Y7DRvlNDusCcZwU4TMDw3Tm+SWxXdV4e3278fUPuLw6zkulxEj8+EyJhhsbxVXENgQt4tRL0/axYFdLYw5v1h21uHvQ6ftpdk+dMNQgFO8o3pGMYW2QenFdWoW54ZbGbRNuSYiXgJsMbgQ/oCO8773C2cfQ+5Fv+nhJkyzA+4j3UVFP49jdBzk2u94yu7rdGNtFU0a9EZsaFO+pXEfCSlOnWtsRIe8H4nAhxCfgTGvTgcIEGwhOCy6k0WqmlYyrD3nvKKJ/FJk/Fp77vj9OqB9eB8qhv25XCzur/nMWQRqHp+Nu5h66xZFzrp83PTt9iPpnpozzMPaEl1p0fC+1KnVnWxEyOEetA6XoiKg0w7xlvr7diFbTnKYYeDo3atO89K1spJqxtLuitLUD2dmbBBVItR5t+70BvaJ83zep62pZV8coEeugelUnr66xukaJBhOg2opHjc+DcVQCt7Tyttz4z69f+T/+8Zl//PGFt/cZ14RT6M+glY6ItH1Dsq0b17crt/cr67IezW4MgzYcOGqGJBXvTW9CNNYw5aJb14qiHEYUCe6jV2PBess0TXz48ML5fCGEHhHZE2tK58T+uDNqbX1Z6H7o3+7RqN0jTPdC5Y6Baj1j1KvSaFNRt8R6TdxeYRgt3uuaa9YiUqkm0az6L1pvcUH5q944gtc9GkRUHPOAwhxpfN2Ddm8sjCYGHLzmHfm0Ru8kGirK6neHsXvj+f32WMtKkiu1VLa0cdsWlpxorSgFpb//B+8HDBrzq3ZQ2mR5UTGvGN39oEJQ8+DDu1Oj+m6ktKz2RHshRCcIHXzu7wvP2t+L3vftwcP3LjA8xEP72acO//0ckPvn+cPLWsPlwwCoAKW2RK0N66BNg3ZBbQdsDDE6ptNA8Hqv7RCzcmDRVMPB4Aewns6PRyljpZGK6lFCjMQYwQjLsvDn588Mw8Tl8oR1jg/PH/BOG+BwFJ6e4DxjiJzHidMwch0GxmEk+ojhFcmW67ZS1t6A5YqRnd5nu4hh96P9/tVEHQSkWbBKD9vvEbuLSKld6KX+x2JhDMqdPg+OcfS0MVCHoPZuzXBdK08fIsPz70xPH7HDhepGkolUN1DtQMGRRdHzO3Lf/6Wvw8reWHXBZ2vY1gt7r+1LaZoguOZ8FJupKNJZ9qS6fk/tgFX90XeNX0Zm/giX39NL9q/WtCoXKdSSgaaFWWssZUFqJWA6hJsxPmhk3hR4elKu4xDUHsns8YC7n6Ji1brZ+qWoXavmt1ujyIl3VTlc1mJFuh2Ofh2j4a5mV67X3p3di85SunVCa4QfFJrGGKazxw8TwzBwepq4PF04T5Oaxg8O4wK1BUrxPRJOuJwvfHh+ZhwGotdRp3RUctsK87wwLzfWtKm10nVjuW1st4xkIa+Z4DXGbr4t/P0ff1KpfPrLE63CVBzbqsTvJo0QHNZ11MkKmyk6igpGOTPbyrpklltiuSW2OUM1IPa7o0JEI7Ws+bnwbK2Si9o3Ie44JKyx/TB0gMfaSIiG01MgxMrludJygZRIt8invxpe30683hrJBMzpxCyVb8lyqxurKMl+L3yqyKEsdYZuIMxRIJg+Gj26q6Y/10Dj25wWndlZNmdZjdH4zdLdF1pC5oKbM8P7Spg84eQZz57pyWOf0y8Kz73Y5Bil0zlq1jq8j9pNu3BYK2ntphtyt1zSWDf38J468lwF0xJCUf7drsLtKlRFSS0+RGKc8G6kFsMmFbEqqorWYfEajSBdwCP7ZafTgMdL6NfJRXLs+7vY6fvXXnDm3gHnUrA+6iXuLDQtQJFd0HAvQI8CwFr1tQuxu1G4flAZnJ00bcvp5/zt7Svv72/IFYyPOHfCe0ML6i/8fp1Zl5loGqdoOQ2By3mkNMOWKmtaaK1wOXc+H1B6YZBKxRjfOZ1Z7X46mvuY+75VC5y+ew55reS1EY1OeDLCVgurheSkf2SClYqThreGgqFU4dvblX//+pn/88/P/Ps/P3P7tlJLUcsh78AoqoepGHenbiy3levbjbRmnHGcT5qb7MyuOHXaWDaLlUB0EwUhb41lSVpMRUOIOx95l1/tXqv+8EFU705PKV1AkAsp5Z/ERXqP7RGrgrX3Ak9Tu/q+rjqNMraPwztiZOl0FaPNk2+eUi3plpmHyng2+Ki/LwRtqiobYhI4URuhoNzBaL3SLIIihzlntm1TqkCtR8EZgroFeO87hUjtYfZ917ojh+mTCV3zaqxea7ufoXsv2l+37cZcv9Ga0seKb9iTx4pGJO6Oaq337ooBWDjoRg1M6cVg58WWhzH/7jvdR+kHT9yo2GM3ZActMnn4XHYw6Ugs6u/LADShlXv613e2aMhBCzhcY+yDIOsXo3brDE/PUc+HdVPEfNPc9xC0ORF0UtJEuiNGQ+uOolSU4BmGwDBGxikQx67hMNI9iU0fcTdtGvUi0PLHOGrJXG/vfP7ymdP5osrsELiczoQQCd4xhEB0nhg8aRxJpxPn08TlctaM+csHTuM3ovtKK5+Zb98om1pMGWuIIVJN02APr0jqj68qjVSLis5Sr096AI+ep32i1vbgDqWxxRh4io6/OouZ4Gw2vOh0YsuVOQtXiaTxI/HyF8z4hNhIw5ObJTXD1gvE3Y5wb5haP9uLCK1ow91apwo0oTTlcBZ0L+eqo/TU9GvbtQu5+7s3udPx+v3yo/sF/Ius9r62+z/s/3xffKr+LNSaewpGR0odGNtTw43QsBRRg+JhHBknTxzU3Npae/fRbNLvtrav6qOwsKJimFrVKsNYHZU+tNHKKzp4mvo9mt6lsjcV/bWrdEsp5JR0YzVwPxDlnbP82//6O2KE8/mJ0/nE6Wni9OHE5eVMGB3GCaWspLSQtpVSMoMPeOOQLKzryrZmljkx3xLLnFi3hVRWNb2vRc32t0rJDYrRbiNljDRut5XllrAejDjlHPYW3DqL9X3EhKWzI6hNwIEfDEJh3WaWObPcVtJaOppqDlT4/mHr57p/no+v1iqlJIK1EDR7PljfBUdWRznda9LYhg8deRv7QVI89ckwPRme5zOfVtjEUV3gWgrjYnldA29pJYuon1n/XoztN9SeHNIP3J38j1VuJ7Yji/0QEt9o3lGdIztHcpbNWlYxpNqRzyxUabAK7lbx0REGx3jxTBdP/NsG/+Nf7I+OzB7zQnQzexM76uk1vnK/JKyO0/2eErGP64VDyagARKPqQmX/hAQ5EAkR0++nbmVmnFp6tV2o4AiCIqxNhRFCVMN+0y+iHSGRB44nPyD/HWm4W3p8//4fUc6S8+GNqDzW3M3B5c4Ht7sYSxtKFSTJMe5y3h3UhJ2U7pxyomu5sG2Z2hLLlytLykjODENh8BVvGlaUaz6XSrCQB8+368z5FChVaRatJbwVqB5pmtCVcyMlPTitf/i+etFdiqqipX+v8ouxUUAYDAzB4UZIFKhOC85hwAePB/y2YoNFAqScuaWNz6/v/Nd//8E//vzM67d3WipKMPFqN2N8QExCrHod0gVBNIczkZfnT0R/xtkAWLY1s22ZklX0hVh9z80gRYvk9bZR0PU+niMaNb4PbVsPA9DEtaenZ4Y4oir4RquwbYn5NlNK4Ef0997078Ws0kx+TAwyhkP81XdPV+4a1IfAE2ykSaKsmW3ObMtKWlUXgPEY02gmg1ehqgtAsDh0ZBqHyDCMhDhQSiHGyLapJ+Wv0E7pRd6+/r9b+z/92MHa4875/pVrYs3bwVs1TnmN+7hbiyY5Umy0R9R9uPM/pWkWvTm+pTuiZB7M/44CEEUGTY/YZUc5oSfI6F+282tb079IvyV97/cJwD4duZ9D+z26U0a/dwIwR136+LLGEMeIGE003Gl6Io2SM+u60cR0oaUlrYl5XlmuC9uyddujwPk8dQeTRslePZYt2OB6g6jFjreOWlHDd2kYI1RrMCTm+cqff/4TY6CWxIenDzydn5iGiXEYGMeJIUTq6UzOF9b1zPnpifnpA+fLGzFesHZky8KSCtUYSB4bHDirpb4F4wwxjj8V4bWpddjexJoOXni7e9vqqHuPxlYxdRdmO08cJkae8ekjrRS2anjbKtUNcPpInj6xhGeMGSh4sli2KmylsqZMSvmB7qL10iPPWW3EOtJd9bOvrZIbpO5pXKR1upj0yF2DFeXX6rretSB9rbWfmxH4VeHZN9yxoEyH+XsBqhsUUupwcF/EO9Hc+d4JOU1lKaVgzKDm6+PQR1yt4722I1Xt7idpbRdo3Me52qU2StZOSfqoXzuy2kchd9sL9s15FFS7/cP9PeaslboipPZIq9hfzjn+H//P/yshBl4+fGQ6nQlDYDgNxJP6hu4c12W+8s4rt/xGWRrXfOuKzJXXL1e+fnnn/W1RpMFpDnOcAj545Vs0Q+t2PLsgJKdCThWDYxgCl/OF8/mMcY4QM3EKiKlgCrvav9VGjRXrdBwhprBtNy0850TtI3zl56BF2/cf/v2QeXg1UbsNkYBB8E4Rkeicph70k3I/GBvdoN0azQj3QowTwylwqY2XooToLPCeCtMcmG4z4Ra4rokll3uEmDX61fb1KB215v697gefU7GLEdEwAlepfdSerWUzhkUgdfVrKYa6W4wZNRN2rjK/ZeLJcAnLL7bHHbl8vFhbb3S8dYpY78ECvfC03hJ87GPQbtFjlauGUd6m7chG7lYnu8XKzpUTuv2L1TGXmO7FSDnGMq7uXavQCjQbaPakdlSmHpeEub8hPTD+FeLZlWc/rgppjdxyHwspOmtAqSPtRtgpMcOgOdjm7ibRupIWgThEvA/sLgD+sFmquKpEhfM08PvHFxULrDfydWbNYIIhOhhcw9tCTo15yYReSHy7LsQgqvAXwxQsw+CQUijbRhNHLkLKmVwqnt3xgV6UFpIkHWVby+l0Ot7D4+sS4HmAU2+KcrWs1hPGAaYTIURca9h5xphKGT3LtvK2LHx5e+Of//zM25dXyrzirBCDIYSKi61fahPGtT4GttAswZ14On/i+fw7oFYyy7Lwxz/+JK2bcs8bjAGKCRRbKZsmyq3zxlZW3OBojPjRqwl7L1Sss8RhYDqdOJ0VFdoT4KTBOq98+/aNKB/wTA9PwjxcbHtspjmAg/28Pu4XVC3kuq2Zd2oDZkQQCUSJtBZIxZDXSloy22bxmwEbsFa5jT5a/GA1CCNp4emtvyOa3QUlxuEoPo+Rv7nTWdouZDEc9Iuj2KyiqvYmh+jCGB1R/mrIvKvA1fVDUc5mu29j3b0b23En7Sfxvs/EaIu4C/JsnwTthScdoe7H3/Fl+681Vg4Wg9l/zQNwKaK1aetTFmkP5/euXEeOCRR6lR5FsDEWt6Nn/CpWYV8SRk3La8WHihFLcIKzjtYgr4laRANmnGd+X3j9+s7r1zeub1cQIXjP09OZy0VTmFz3JjXOMJwHhtPAMEVNJ6qVWjI5qVAixMgwTAQfSNvGly//ZFtnvn37k5fnF3778InfP/2F3z/9hcvpzHA+o1TCzJYvnLYb0+nGMF2wbkSM45Y2lpqxU2RMWb1SndYQzYD1jugHDQJ5XBOiFC/lcuo5bQxE5xlCxA2D+t4GfxScvnOlUxFqtLg48OHDi9YwEhiSYXFn4sd/I08fyQykbY8iNaTSNElp20gp98L23izqNEefsesevNbcI8UtArVAUjBxT70zhk57jD0YQkMFpHYrPbNzRQXvE/C9l+evDeT3Lsk8qtb0Z1vPkr7dNvVH66kTpne1u4+md+C9GkLHOHE6XRjHoed36sWix5Lrilcdz9muHrXWHGb1rco9PrBUtpy4LYseILUqh9TaB2HR/h52bgqI2OMC1a5z7zi68fcPSIa1ht/++sw4jXx6+QvTdMI533Nv0XHTmri9r7y93rhdF9ale9uJcLvOvL/eeH9buL4t3G4b25YJk2M4+54wYbAuYJxT/63miARaamzbyrZpZx5jIA4eH6ySvp2OmnLSdAUleaNdSutWH8YjRdhaZlszOVUVE+0H3F7A7efD/uH/fIZqlFrOtKAxb95aoncEa/HG6HiGRpOqcaitUZpRcZl1eBuwQbAIHuUtxQ7j+1IJUyRMI3Ea+Xqd+fo+s5Si8H9tNNceggvuqOe+AXZbI7MfyCKIs0h/rs06irUkDFuDrUCphlZ2OyZUMW6UhVBzI2/C+pefRwRHSME+TjBq/6Rrao8E9Gr27zzGeTxqph16UVVrJeVEMKpCFKuIcejG9MkIlrYD/x011IbPedTGJUac15H+gfybnces32cpymV0OGx1ONk/+/22032wIxuHYvUR9Tx+/P5q0RSW+UAwrTX47rtZUoEYCN2P8zRNWoz0Dl4PJo0OjTHiQ5cr90aR1kebpoIxnEaLMYFSKylnjP3G57cbINSWKNXiugBHKUCCy4Yv7wu55B6TabBPgSkMGkdr1J9O2DngHJfrjj6VqrYguRQtiB9HnA+vYXRMxjEUbbZj0wjXGCKEiBfBpoS5NqwkjJlwtWBFMFUgVWyuhCLEwXAaHENUjrELaFHVKTXGBAyW0/gBbzplwFrm+coX0YKj1o1SNuW+WU/brd2S8slzyqSccFjcYMCLClqkYlrFWcs4DkzTxDhOPSpZduofy7Lx+vbGy3jGhx/3x/2rNR237xqBo0mRdpjMS1cmO38HG6S1bh/mcUS8jJhiqBukWQix3ytjwHrHcLLYBdogpNUhpV+MO4KOrieHI0QVEt3HyPvZp/eaaV3w0e6F587pPDiird0twB7308PLGYvvlkH7gzmSwKQd2oJjXx3P7c4rNf3PNoiKZuho5WPruG9lI13T0CciOgbsxeIPAEP/78e0sbY7pacXn9JR2ft5sP8J/c/cAap9SLkXnz8AOPr7AtY0nBOsb8evt2hD2EolVS1O5uvC7f3GelvI66aRoUDdEpsxbPO6ywrwUSluNNGQkKh89pySxkcX9fYdhoXTJTOd9edSWpmXN67vr7x++8yXL5/58/kPPjx/5MPlA+MwEqKnSlE+YyosW2ZOG7dtZc6J1DLNNExQuyis0yCEXriX8rNI907Nun8MBg7vYo2S1Xro6C/Q6QtGvUKNPzEFQYxnbpGWLNgL9vTCRiQXWLesn6cY1ZTkwpaUnnegqP2w28WduTV8VR3KQaM7ClB9WaP2YtboHWNF+djGq693q4qGGvoETxSgiF6A7btn8XPhuY8AHy6gXREuoByftXB9U47iMHhC0CSb/Wlaq2TdITqmIXIanzlPTwzR03KilUKrGWMUPbM+YF3skLnvthY6DlfEs2Gq9AOjcbvdeHt/Z50XihRicMfYxvaFek93kW4mfydY70KCEPzBsXDth5GRMZzOKoS6PCnBGGNJ3Xbk9fWdL59f+fL5K18/fyWnFSXhKFL3+u2d16/v1KJCnpoMNI+le2yFkRAGfFAPP6rHNIevhi2rS8C2bbhgCdGrqbzth5Wp7I41eWnQoy5rFiQZjHGYGlQ93npCUZYD9pY+tmavQ/sI92678f2rVbVlqb1Dc84QvBq7O9S4WWpFTOmbVS2TcA6PR/zQCwsQCoYVp0YOyj+bDOPpzOl8IcY3RVduM9duUl1b60r62on1OyLfO+9OywDlDNON5sWqVcRuplvEkEqPFatWR9HNYnZ7maYHe236Geb152ehiR3695qeWKS1kpLnDy/P/uU7/3b0AWfuRaeqLwXbjY/FNCW3G8Oq4G13aeqBCP1g98Eq12k8EeMJ50daK1pgelWUO2vV7aD1BksEqxNJrPQ1sP9PjnLzJ7Szv+OjeXt8lZy5Xt+VIxXUlDmEwLpl0rYRrMGZiTEOnM8X/D7BePhz9655V+oqBUaj7Iw1OLHqYOA0cGQfj1oX2EollY0tLVrcALko/05rOcPnt8a398TohafJdNFAxdc+WfDKofLRYJyaOFfqMXatR5Eg94z7X42NJjVU9tcFyYlYCtFaBqupVlIKLDdsBseIj4bJwtl6Li5ycZHNRpxtDMFxniJ+FFyEMATiONwbDRtxBJ5OEU7CMEadLOWsNJ28kfNCbZseCkRohZY1Mq+Vot6DVZX96tdocAKmNYwpWGeYxolpnBjigDFW/RyrFp/rmnh/u3F2memHwrP1y0bPYHv0siI6pSold6SnT2miCpzcnn8tqkxWTrLF06dkEmlrJs+WEgOEiWF8YgqTqoRPhTrOXG+Z9ODUUFqj5dwRdXoCXsTtReThGCGdi6Z7Qwvtvp7qPctcDdcVsdJLln6/fP8K1hGd1zXVR9el1WM9HcijPqje/+2Umr2Qk54kp5Y/BwAkd4TxsASj8/asxkfuHDvZUUoDOwS6NwZ7Ub2b6T8mlx2TEDoNxzyO97vdj1R4tI3r+/r7A9Ng+qRMGw1NW+ri+QPoKqWQtsxyvbEtK7TKEBxTjJxGnRRZQeNiW8FHrwLGLUCskBXCba2Q08a6Lp1eVnEucL7MfPj4woffX6gtsyW43l7555+o7ZobeDl/5NPz7/z+8XdeXj5ivKGYzG1+5+39G3/88w/++Mc/+Puff/Dl21dKqxhniW7E0LnPWSl0zqaHM1Rfe4O1JxU5FGEc4sAQI8H7nohojqmk+q2qGKs6g0QFHSY3cG6BZbMsciLHE3NRP811S8cIvXaENeVCzn3iVe8FcJPueFDVOaC13vibPaCge5cbS/COsDtG0O8SoVtjeZoVcivdn9QdDV34Ae2Ef8HxfLx4dkTJdMuIWgopNdKmoy1nOlnZ3WF55w3GBmIcOZ3OnE/PDPFE8N241wjGKsQcY8B79ZwyTknxu5u/NZrVbrAKy2dVZL6+vvPt7U2Jus7gh4cNs6N/fcQuRnlDIlqESdvtae5d4M94jh6Ut/mNKokhjizLxjwn3t5ufH1949vXd16/XHl7vTK/zzhrVHHWGjkl3t9mrm8bBk0OaKKobvSj+okNg5LaQ8CaQDWGujbm28ryfiOlTGuiVkWdByeiF35aE2nO5LmSZ6D2JrYapHqqcYrooAdvWYH2vZiIPdd+H8f0z/lXo8RSKnXNlFGj0lTNr16JKuxS3zQR9UnMtbJmqFl5vyFYBh+IXk27vfGdgAyh4xreQwgT0gw56aG+lUyiG38bPQCt3DtHtcXS7pc+DmpGM5Y7bUnP9MPKSKcGtYJU7baN9NShHbFnBwDNL/l8TXY7MR3ntb2z64eJNZ1/63wXAI04aQRjKS2RS6Ki5Hjfus2NqKIQwFvD4CyDUyW+6cj9juD4GBmnC9PpmWl6xrpI1g9YESM0UUunD4oqGtntTu6oxX6l9Lb0Yd3fd8TO+zT7Rfn46peZxi5WatVLzlr3nRrcWtfjLe1x0YE2L7ZTI6Bfur3gf+Q/7R249w57PhG9R0RINfPl9Su35cq8rOSkzZNIp+p4Q06NNTdaFIIVlrWyrIJ3Ez50Q/6dp8t90qN8MzVDb91NQFEI0XjOHx5EGSeSLUgs4DLNWqwYQm60NSNbwriKE8Fvgr8FmnE8p8pLc3z0EzkmrFim88SHpyfs0MBXYv+sh/FCCCOOqBZrSZOi1Bc28/72xvX6xrreKGVFJOFcZBgsU/SEntSin6WOUXdAwVg9u3c6RwiB8/nMOE3KVe6cZKVCec1+94Oi1j8+DaPiNQ0e2ddSBwJq7QWOHJ8tvcDPpSqFBHMgkdZ4Bm8xfsSEgrBhkyBLQMII4QRlpDVLW6BuQs0aimFERRCNgm1ymNfvf68gew3X9+8OSNi+JbQQrVVNwXeB3h0V3NXeGq3546tWFd3plL5pHrqUXlju7gT6f9K08KTd99ouBJJ9miJahO7cfOnnoDbBnT5jUPqUtfqZsvOq9c86kMxOm1CLuo7K9v18oL+i/PcilSxVp0+yq/ClT8wM+/TnQF5/eBbGGAY3YttuV9XpeQimCbkb169rYlk3lnmhpoQFBa+80rmo3eNbDN4GdcdwXv1fi8EW1I5OCmILOPXzzDmR1kLN+jzC4BEZ8dGqQImmPtlF+PrPP/m7/U+epg88nZ6wwdJcYy0Lt/XG169f+fLlK1++fuV6vYI1+OAZT5UQg7pndAN1sbu46/7ap8W7it/0Ak2t5vqYG45wlp3EYFoD21ia8JqVlleLZzEDm7VsMrBVS9uyKsy3dLd37OBMDBG3119VHSnuGLrphSf9DlTrQl0mpiOyCixoXPhd2NaKUMldsa+Wb6Bph85qElNwBX5oUP8Fx/MuNDiU41a5bKWbYOvIwSDN0aqj1X6JWQjVAp4QJi7nF07Tk75x7kotYz1DVPK3DyPGRcDph1dSLw730ZbpHKHMvCx8+/bOl9d35c1NgfDA9TQGNOamo1MGpPPkmnSrgN7Z7pvVGIP9QaHZWuOff/6TYYyUIpRk+Ocf3/jH37/w97//yfvrzHrL1NSQCpfzieenM61V1nVjXTJ57fycHu/loieGkWk8qzI+qghFTb4raUm8/vmN2+uVWkr3utMvg1Vi/5xZ3jaW14XtrVBXnQ/vNj2IxTSrWa2IWhxkXUVmP1l6q7mXHmY/vIz9ZfdeSqUuiXQqBw/K2y4eaYU9slANdBW2X3Nlq4VGIoTCECPTEBmjOw6To6tCN170IEU0ySkl3paZ3CpVhD0buNFTM6wWDg7tdMWi66QfmLsiVTd75zGp/68WlL3o3NVndxxuvxQMvwyu7+tFCeGeInrJHbnmvXi3zqlSezxBTpjuf7amlYDHe9NpGVp0FhSgssYwBs+5Bra0svRiQGg9SjIyTU+cTy+Mp2cwATZDbbmjho2UNiWjh6F7I/bxiN4Euq/6kXNAH8fYb0c8724W8HMzYq0jxIFWlQtZqqZW+F50xuD79GEXIe2ImRaVoQtuDvGj8N3ZglEBnIVOUzAMQ+BpmpTyi6Z5LMuNbUmsUgjeE+NA8DAMitLdUarGumbmuTHGD4xjfxaYo+hovdMPQc2ph0Ej5Lz3x59TWv3hOoE5jrzbShgyblDzbpMafs3qMTwaTAg4D66Afbti8LRq+K1Yfg8TaSpUF7hcXnh5+SvGN5rNhHFiOj0zTs+EeMIUR6mZ6/uN97c3xDRKWfn29iffvn1hWd+pbUVQesDpFLiMI64NrPN2OOBolrqmhfmghYpY/WyGIfB0uRxeq3tFYq3aMp2mJz58+ETw8ee90ceEbadxtF6I7qPrXvDuscYiSpGoXQ17qKQ76OC915F6EIrdoBXsamhuoNrIZh01V67fMstbJs1ZvVZtIZmsww9pB9UDuZ93u+XLYRtm6PQWLaikddS7jyPbfU7wMBn69URgK4klrQdyVXfkXB7SvY6q9+ERdhTJ9ka47o3fjiLvX9KLgj692Ccilqb3ndXxp7M7eia9uetFHyro89Z3CzQtgiz3CU6phdQyWyvHV5Z22BeK1SnaPnF4bCyPcwLD5AY1W696Tql8UtfCmgrLdeY6qx947d6dg3UMXhOCKI1S9e9yY2QYAmF0unatV0FYR+rEFQgVN0LIFjc7bUBvC845xlPEmMrIgIsWnNBModTE9fUr27cEm8HWnu8c1Li/ULnNK7fbwu22aNy1d8QhMq2ZYRrxoU/2DpvC79dEq6rbUGs8ra2cNQcIQ28MrFE6m0aSC1SNx73mypYrr3OmlUJKhrdiuTbYqIjRyUfOqRe4jRgjYVQQxDrHuibWdVWbyloPOLx1iuAepmF7aIYzFu80KnwIgTF45W+KCqVSKsohTRupZNWC7BPl/vvCufLx/1PhqXGF7ejs9sPEQh+NKcdmmkLPgTbUsv9awUeHGEsTNf4OMR7RegblCDof1WswqM2S6wrgWh/H+x0NavcueJ4X3t7fuc6acz768W5Zs7v924YVHdmI9AuzmSM5RuTeCai6uG+YHycECOu6acyaeyWtwucv3/j69ZW3bzO3t5U8V6SAE8vWMtey0KTpRVwEKep9JVa6EvmeTuCcJ7iANY6aG9t15fb1yu11ZrtlfHCd1yesW+HrtxkLzO8z19eV9NZoK5hiuZuGaUHRKhSpWq70Mc6jxbGRblrcD76uh3z4/+9ftTTWqnGce7IFlI5G7Z/rzr1Uv9Mqik7ntupItHi2MjDmwBQHxhAYnSM65YHaTnk4xcjL6cT7eeLbPJC3lVIbVYR7oo92cTp6bTg8tlto1I7A5VrJtVByoeZCzZVWmooE2vdF5z7YOlBgdoT15wtl5xJHH4kuaMPTR2j7heSdZ4wDUrJuzpJ1c+ZErhlboe6/R9RmqPVGAAuj95hhINdMkcy8ZXLtzUvnjzqvo1djPaXF3YStN1haHFnjsa3ipBBKuhfVveAy/aDbD7yfhUXt+7ncD88hhIGtZXJJvXhoeB8Ind/pnT/oMbWoGBE4+ExNbOeK9SZx79CtPcazpRaoBt8aYVAU8sPlxL+13w6f3+t1Yds01s5IQcpGTUoRoSdwIELJjXW1Ry67lU5l6DShnYKzpxTtxus+BGy3BHH1Z5Tva9GRbXAwjJ6TTDhXGVIjZMHkhqRMtRVTsvoz+onoR25h4MNp4mvNWiD5ieCeiWPARYinkfF04Ty9MMSJKpWtbczLzLfXb1TJlLrxfv3K9fbOllZKzX0MWtWLeHS4qmJG63UUa7qSOA7KH7dRt4NzcJomzhdtjnc0TWNgPX4c+f3TX4l2ZHvP1Hxv2I0xGgTQrc0e18z+XF3Po1YkvGenl4ox2lhZ6Xx9t6PngSFO+GjJBKRp/C6zJzVLppK3zPye2G6VnFRUJ7YBmYDBGy3mqjE9kKDgnT+Sb3YRyI4OHgp82ffG96v/bl10DFp+fsk+Sejn1V487iNsefx197/A9IbLdf7j7hsqvXj8rk7te2dHbA+ksj8/+lQhOIe3sReaDu8C0QfGODKESPSR4BRF3Gk9raNXqWW2kplLYs4r17xxyytL2dhqokg9omhlfz+Pzwoh5orNDZsbeauklDQUolbKulHXDFvBpoYpYJthwBCbsqaMEUU9gycOI36KmEEnXdJERYe3ii1CG1fEFZwzxMEzTWBbpWxN9SHXGYvSL8Lk8aPDWI3/rYOnDEXdaG7qT95QHieunxtFz3v6nZT69EBqJQwNH6IWat2H+PHVSlXT+f3jo4HVdSGioj5n7f33HeeycnBr/6tN7cLRDHMVrk3Yqt7NJfc7uk8VGlaFAabhu3d0CCp8ba4ek6bcOqjUKrim8Zl4vFcapbUqMt56IlZpCjSkogldW+eNl5KgafFcnJ756Yf+FP4Fx7PJHlwvygfoxZwmpoBFxzbb2ljmSkqKZlhvDk9JQcn7zjuMEUpeoZOcgwsM8aSjQdvHXYbj78XQvf5EFXpGLUTWdeV6u2mMpjX4qKN655Rw30T5jkcH1u2HWtOUCx19dIuXPv6Tbun001hV+lhWCmbW2KwtZ5oYghuJzoDN7Oa5dWtct0X/3v1UQuGc1sDYSs2iJP9au1myippyaixfb1z/fGd726ilEXxUblXLzHMi/+OVVhrpPVGWSt3ANIN7QOuOb721I1b4l4civfgUe3TLBoNppvMdv3+VUtmqKgVrzbSWaS2BM+yday+n+8hOUxtqTWxZPQPJFrcFYhg5DU9chhNtdBCM2kWhY6TBO55OIx+WiefTyNoKa10VMcH0YnrnMzmc+I5oOIxR789aKqkLTXLu33c36acqmqCH/b2Q1QJ8HyR1ApL58cnSGwbHEDR6LeetP+RdCQreOaZhgJIhbWxNWPLGlhOlVXyz3aBX83317rk7Kwy9KG/0BKa20STjOofrrjrSIs37APQAgbYLF8CIBjuYthFKF77d3+6+4RVRlbvooXXE+BCG/GKUqEr9gKSixXX3fYtxYBxHvO3hCkabxlwyORWc20e3WljuBcre+DmnCRmIUXVqzzVOteCNYfCeUwj85eVFi2vr+fZ65f06c7u9sSxXalrJFD3km3r/OqMNctrUHaM1HYXpmaYIZ63KgdoLEn083fKpI2alWMzy8PgQ/lw3lroSqFyi5W9u4MkL7m1VMWWFkgpzXRFnwFbGk2cYL9xOI8/lxFg3TE6IccDAGJ44XSbG88QwTUzjE8ENrGmltsqyLVznN02pKSu35cq6LUrlkKLryjSMky5itNjQ+bROgxlc9AzTyHBymKAxs94bzucT5/NJxVH9s/Y+4BnwPjL8fuL3p7/w7//7f/D6+vawJvTZtVp1YHA0LOq1/CgAfUwPaq0e9JkONgJ3TlwMKkCzxdGkYoqO8VNSMGHbNpY5k1ahJq33xKoPpLF6B0mnreQtsW4roQd9hBCPMWcHnb4rOvV9cfzcw5uF+9zgmBwd54TpgzfTJa690dlTY44/Rh5afbOfg3dqx679a30Ufxf+7TWs3H/s7uDGgjSLFzDGMfiRcxg5x4nTMHEeT8fXaZgYg3pOh84PV45z9+uuuVt/LbxtM1+Xd74sb3yeX/myvHEtK2tNlN2a7ceDoglh3bA5Y7ZEWzeYF6WMFQ1kMbkSisGIes/aKtowoNZQxjlc9LhhxE8Ddgw0X6k9sCalSl0LLI34LISpU3Oih4vF00jdEzVdFyRlym1hOA+Ml4HhPBKngfA8MMaJd/dOa2/UOVFTxlVF34d9JC4NZ6BUbXbLtmnxWAQzqmPNYP1Pd29rlZo7bapzxpuxNF9pzWK6LZSgYjbTOfqt0z22CrkaSrZI0RSy1GBujS0V0jpTshb1e0PdsFQypRpi0WlDcAFve51Xq6a11a5K71Nhby34hu/CJxEtMJealTNamho9YNXns7YOMLS7vSWK8JcHUfP++iXH8zv11UMHuI9JbNzHiR1SjToytN4QomGcLOPoiaEXA7WScwNneifgOj/I3QGVpn+ZdnxamStBFoY4cDqfqK3ivOfy4VkVZDozwjjdsQ1h9+YTdJP3ilY7QdUqdal/B7+acoLiT/6V94clIoQY+fhbJLgTwcw4eeN1faeWqiObpkbn7M9uP5g6qiiiCMy2JubrjB/U41GKsL5v3F5vrNdVEQRRM3djKs0rrzLlgmShLA1JYMr+vO61070T3k8m7j/53ed+P90fs9l1LP3jc+gHX9ZUC2crxmSQzO6n2to+inI0DCJZ4zfXROrj8iKGisf6jSEWnk6Jj5fM8xQ5D5YxqFG4QTmhT+eJ39MTzTTENOa0seXMWiupNprGq2B9UM6Z1bXYRC+jVAqpFlLJ5JIP+4oOKvbb5AHt64emIm5Gm6jw44jZEF0gBs8YR7wPbK1ii70jFp3bMraB4hZmad2zNfdis4+8umBB+trceZ6N7n3nHE/DQJMTuWzdt05HMiJVPXTL2vdmPwDL2hPFdEZd6G1xWRhk5xztCO9DBbrzznaEZ9+U+9eP4wB0LH69zczLxrxsXQgIwyHcC2rg3S8z7zwERWy913NBDu5ub3+MfSj6TPffa9RuTp9SJoaCcfrRjSHy8vRE8GoGfbuNXG8jW1pIecNKxRth8I4hehS4UAdyteu6Gyrrkrife488d+e9YuPW8ON1YgCzzpBvtJxpxiKDZmc7sbjahRk544vGZkrQ+L8wWi525NPwgd9c5bVVbaBqwVvHebwwDhMhDlgxXZG7kUqitkLbudV2T+3RyZF0TnupmWWb8e6KB5aykqXQLDgXGE4T5+cL01NUY3ZTcRYu5zPjMCriyz0pa3RnBjOBBxngH+GfP58VdDW5va+vnaO4x2K6o+l/KKRQUaTtEaa6Rnuai3E447WPb65vYEFKUweKVcg6hdfEryrdT7p2p48+ceqAgzW7rZfcxWP9s6QXcftdZIztPOv7JGD3md0pJOpF+n3pOQZPk0gVpR6l2ukyRkWcvjewoRsw16rASOrgSNv/zn38z+NBv5/dna/Z7g0cxuCtZ3QDH4YzL9OFl9MTL9OFp+nM03hm6qk8YxiOKGfvAt4H3XudIqMARqXUylbUl/R9m3ldb/x5+8Y/r1/5c/nG5+WNa15Yajqe7f6ywJArdSvYJVNvK8ttQYpGUTsRBtFCU4xXjmoTrPSQgYPq1+25WqOVrEIYUylZyLlqGpdT+zHvPNaqU0bwQvFZgae1sNWMsyrSjKfAeB05fSicn4U4DsQxcvl4UUvCd89ynRW0qIJ1greWaQqEYHvEdzfU6mcztZC3jYT/uV8XQJo2wlapDd5pAl9KKt61W98X/UIRUTS1ipDF6sxYixukGWoHYZzTs1N5wju1otcRdDP4Ujr30jyAUt1T11rwCsTtv8YCrRVS0ilBzekICillv4MddNqcd5bBRh3PPyC33u7g1P31i8jM7y2JvjuIkaPzt06l9d4rGqn+UAbrGjHqhzMO/l54UnGiCBf7GKE/wKY832OkY+1uraFo0DgNWGcYx4GPv+lINdfC2/XKbVlIVbNpW4eNS60otqppGXpQKHnW7v6HRhGXWhQBqdSfqGzGWrB6sIzjxPjxwvO5MPg3Wm7cXm/UXKGZ44DoMNRxmB4fsCiBd5s38KpmrkXN49f3PYUkQVU0K6fcu48+bwDlclY44i747qx7+Mb/1U/88HpYC9JHQ4d33eOr6d/tDETfcLYACWmqyNbECKHiqM1SiiVvQrptrO8zS8osBdYWqDbhw8bzZWX+uDI/DXw4O86DZwqOIUS8C5ynyF/kWUnytvLtWvlW1cKrpELGUq3H1oarQnCamdxovfBUonWu+Sj6dn7qrt43ducyooXdvgmDxQ9GCeg/vKIPDD4yxlFV6zk9cMdMV/R5jG8sVgMUSsuKsB1q351TuH9plFntxSeiHJ9ziBiENa8UqSR2h4ZKq4mcF1wXu7SayGmh1oq1EXGAFKQmWt4oCM327X5c7I/Fp37+B7dzXx9HAfr9c0g5s7y9aX7xmmlV85dL0eJ6H+l47w9zaO/lwaxb7bekW9JgDNZrbrJz+n3upsYbsCWNaAupYKxQ0DPjNMY+fof1+cztduHr1898+fZFFctOGAfHeRoIxjH4AWe9kuFrUdueB2XurmjfP6M9a95aLRjczmV/eJ22hXOaMaURbMBEAzYSTMDlhrRCK6I57r5RrajAMhqmU+R343h3VffJ5jB1w0oj+kD0EYcjp8KWNCt6SyuNhg2KRhjxDG6kmcK8XbHJUUXX/nW+UqvDm8L7urDWRLOqlh/PE5fnC5cPE2G0QMW2ymk6M4QBaz0aWOCJfmDyJ07uoo2+F4L7nrilS6gdSGW/RQ4bIU0nepwy7LxzOagz1rreGnUazM5Nx2iAhnXssZaF0p+tUau4anWKULuTg9m9BPUMNZ1LHkLg4D3KXUkOd6WuoY+9raGJ7XvjTkE5whNKVUuhH16DD0Ak14YptQswdA0FFzgNI6dhYAoR0LCR67aoYXdRZ4a9xtgFHsfW3RFOlP/Z+kjeOIttjpMd+RAu/PX8kb9ePvKX5498ujzzfLpwHiaGGIm9IVSurRb8xoXDYeIAnDqe2zrAkGphTRtf5zf+fPvKf7z+g39/+4M/5m982d61wXx4GYFYhJoqZs2kJWFvm2oDrDZzrhf4tltB4RQpa+gky3YbQ0GLpyoN8ZVqGrkIW2psq/pXD4OBqAlixlqqa2B0ArbOmboWTGtKGRw8w7SS5kLb4OmTwX+YmJ4mhlNkOKmbxO31ynLTJt8Z0bpmDH0ypAWeClgV+MjLqmEwP1Sej4LtRzpPExUk17VPm2o7mhvRP1xvJ+OxvvM1Td8jXXFugyGYkeI8peQ7itm6I02t/QzbGzC1M/PedRRUmyFDp1F5h7NQS6bVSto2bXpTUs1HEzAW4wMhRIYONExBGypn9yS+yhC0Xnh8/VR4OueIMf7Qje6eaP2A7jnlbjC4J+3avLdqctsK3lumaeByPjGOA86JpjCIwRiPxfWxrO1Tw97V9q50t77QD0nUvicoUkIf51QRjdG6Rl6v78zrqskBItSe36o8VR3hG0RNtx8Qnd0kOqfKyRcYfj5AoHsjGqG2jAuG5w9n1k8bt2833tqNbc66QXeUs48KdbX1S94oclRSo103RF65vd9oWSjdHFkqRzHQRA/MZnQsr0lPcCCx5l42/P/62i/Z/m/9PPsZ3bLGEp1nHAKnU2CIVmPNmhbty5KZk7AZmIvh22vi69eVb3/OvL2+c5sTt2yYZaD6TBgz85rJdSOVgSIDW/Wcguv8zxHQf/709Ix3gcmNBCKmvlHWG62orYk4Q/NQfUWsoRnlnuStkLZKTtqd7QEHxqJJLbapR1lPcDBW9jRK4miJJ8/55YdD1NAV/VbHLr4LpZzXEbH1yh2zjmbVtqpKz0Huz5t9lNf2BIuuFhVzFxn1jzhgmZznKU5UERYjmGHokapd3CU6bqqlm4ZXPVRd84h1uFYwTTjCvsx+kXfR0P0mgwfsd68192npT71IU+pJ6l96UXtyyazr0tOsmqaUDUobcaJcKjDkvKngaFf4GoOpTQvXfZooKujAKE+pYtly6wbS+r07A8YZxBmCP3EaR6UqDCPLdqO2xPPTwPN5ZHATgx+Ig1Jz2AUcXWy4e4zuG2vnuTunXf2+T358Gn8bPS/OUdaKpTIMgvF6EVkx2M0QmqFaSxVVoqc1q+Bh8Hx6mshPFfOS+fOt8G0rtLywrjdyTf15KaqzrIllXWnSDmGmdVBb4nYb2LaZdZu7gXRl2W7dU3DlektsZUFsw8WBOES1dOvryaCq9eAHghvwJiitygSCi8QQGVzo9aAc1nW/PFtE7mdUP9OR7ntZ6x14YI/UtMdUiL7udiAh53wce9YaXHfs2L0wH5sGHWKo4LMCJVuy7Rxe16lcPKwv2VOq9qKgN0bd0aG1fSTHQRtR0/VdtFbvXp0Pr9o5cLXv7z1VzWAPRCj0L+kUHdMnD9Kf03cg6rEn9F8e7zGD/nmTH7j4E78NH/jL9IHfzy/8dv7Ah/OFy3RmCgNjUEGr76i0Crq0+DSd76pJa10H8LAfBAitMoSJ4COTH4kxMo0nzu//ZJq/MNnv42QFyEbPHazFh8B4HpWuharmpT18hq4LZG2PFfWKxBVjqEZoDsSBOP38cylsa2FbKs4a2mhhEmzrW7aL5lDZhzqaFIHS05lqwbHh6k2t+FpluAz4KTA9nfF+xIcJH26kvFJr6s4m3VrQ7wi6nmu1Qs7S99OPa6Jb6TV3UJqq98ixXtTNRfoHvdM+QJQT3b2gQxduStN44VqL2hpZg4uBGBzJZ3Ky3adzd2XoKnlDB2BQiySvIiBVrPsjrtfSub5GxdcedSLS99/rwV5AR6/Coyn47su+BzNUhvBzTfEvC899Yz4WoPsIxVqD95YhOs7nkWnUYsSIUHLCWcepmw8PccBIoeaM2nE49WtDx+3W9W7O3kcrRxfaX9YaQtgjpHrHCsSgVgS56OWX607ENeQs6j23q7Wc4HwfG5t+qNRKTsoFrL9qW2UfZSsnr+QZS2Q6j3x4OXP97ZmSG2lVw9bvltpD8amIpyaD1FwprZC2re9pi6kWSn//3Enkmj7TCyRj2H3UDmriz5/n//yrk6m+I0D/SsWNchYHo35ql2lgCBbXC8+aM8u88narrBbm7Pn2bePrl41vn1dev6283zauCW4itNgYToWtZIqsVDNi/ESRQIqOXJXXN/qJ4AeepydO8cxoRwIDJEuZG2wJk3XcghUIRg8k0xGJtVHXRt2UEC6i3bUJXTWK4LrVk/Pgo9EfPQwnz3gZeP4t/PQsnFXuVuz+koN3RK8Xs3exF6G2W1z1wgkOKxfpF+OOwO5j9iY6NrkXnkbDLq3lKQ6IVfuqtnu+OU+wekHWmqh5peSNUiu2NprzNOsQGhZRfqzIkYbymHzSP/zjh7u3Jw8Bm9+/7qNG9YS0HSWppbKua280C9M0dnGi/jl7MlGpSjPZEU9j7Xfd+f4diSgWbVxABHJHGJy3nR8n/csQh5HgB/UOPZ1ZtiulzIyj4zwOnIYnoh+VB9lU0akFzr0xsEaOvbGLjWqtis3ZPql53EbA3y4Df60jq2mkBmjfRE0Wk0zn+0WiayRWWrmRlsp6XRkuEy/+GXsS/CXBdmPZNkqauV6/0rA61mpqK7Z13jII4zhyOo8Mg6e2RAyO17cvvL0HUrGUktnyomO8MjPP6n1qnMcHp6Ipq64atUhP3jJYE3C2f+FxRvPTdQ3vKNjP4zPTC0P2tBsdAxzooWAe0EKtqmy/E6yxOg5s5dgn+/pKWRt7GxSh2wuvXaC3e93arojf6SJVhNwbrdYabk/FQh7cFPYCFhDp6/jR6aD7bvI9DaMdPy/8igteijYKBQ3KENnx3R3GfJjONU2G20e30u7nxm6ZdMcDvi86QeOLJzfw2/iBv54+8r9cfudv50+8nJ54mk4PCKeOeDXmuH83D0W7hR6koUWyYOgQmf7NxmDEq6DTekY/MMSBy3hhHEbG94llO1MebBsFSNaCVxTSWRhHXa+5biqEyflwyMF4pVA5i/EqzG1GNByiKaXEeKsIaNFpUs6JtFWCdbQUMeWeuoSt4BsmgPF6ce5pgQbwAlkKS14wrSEtU+XM5M4M45lx0sIzxIn316/cbkpzklLZU4CO0BujaUze6/P58eDc44RLKbicyTnrHuz0mNJH6rYXdTuYZY1y33cnnBBib4IqKWVK2kCU765e5v5QzKeko/HDSgulepmmigmqw4lSCU9xYOx+ojvC3kqhOM/gHDUOferdY0q7NkenfBoqM3inHE+5T/MG+z/h47nbwfw4dtpfu7XSnikagsLbQ+w5u1EPrHEYjspchyR6WVobVG1re8KLd3d4X+6om5GKVvqmd4DtKJS82zmmIyCsW6LUxpav5LQpmlYa0vp4AsE13b1iwZh2dBR7tT+4n61BrHPd62s/ZEAkgzGEwfLptw+U1FiXxDKrKGj/zT+fRUaLTxFM3cU/emnaJtimF+mPtasR07v3pn9m7YfDD53o/9evXyCbCqT+XGY4Z3EhMEaF1L31h90HrZHWlds1MYvhWgaus7CVgLgLfoDYEsE2TLZUsaRimNeCuxXiCKezJ0albfjWMDXTs3twVtfKeRoxgMMw+cDb+43rvJBqUQW/rVRTySJkkcMQW7pxs7dCG7TQt2cdA49j4HSKDJNjGCw+CM4LcfDEU+BlOv38jEQ5laWunfNjmELkCYMPA9EH/VytORKHbE/3sp0h8TjK3SMEpY/Zqxi11u8IkTOW0QewjmihhsBgHEEEJ0rwVuW3Cr5KyUDuEwRHtKabD1uqdBP0o3O5I7DHF/eiU/ql96vCU3lqjha8jjb74aONpGKn5RgR9S6pozXmuM90MnGopnevzIfCs/VnY71avbjO/zZuvzgttgcX7iblBumd/AVrT+ojGwLTcNawhmWmpQ3pje6B3PW7fJ8suL0JLpXSBLGOWnYnhPum8R/PDM5iLhO+CDmcaG2A4hHjaNHRSiGXRQ3UjXr3egacBKRqSEbKWVEPqeS0sL2jFJYqqpYNgybAeLUg2y1PWhNSykeS2/F8DdgusmmmatKKb0cIgfeaNrIsG1US0Tv8aeoctIAzAYNTYVS6UcjceENy1QZj+z5SVrm97n62HGtqb77vxZRzfYx+WLg9FFSdClO79d0+JlTBkNFpQlO0SznNqggOQZEFg6iosI8Ea4PYIBxRMeCN78W0Q63quqrX6XrVmOZ6d5tgR5/uEye6Z+mvdogTj6ue3IrycXvxWUX9idvaWFLC9/ttB0/KPmbd/879sR338I7CgscxuMhLfOa38wt/u3zib5ePfJqeeZkunOLIGAdFOJ3rvtg7ymkORf/jNBM4ojX3ZqFDzf2OFnVp6TDIBT3rChXvHP/1zfHlsc4wFhtPiA0QIlI2WlkxTfBNkOJweaB1qoRxPY3NgNC0IC+Z1uODFYzVwtwY8N4QRw0y8c4zjBYXVGCsNLmG84KP4Ado0WDE6jSC7oRThZYb6ZZ1StWgZEFeLJezZxo8/mXCmA1jMvMCKTU9T5vR4JECxqjeIzhD7Dz279ZEpzbkrOCKcw4fI8Mw4GI8+M13OtLDfunPX89EhQP2dWK6uasYOUb1GI0jdsETaz3svHYvXUvDgYo1h4GX52cup7Mi4XA0XdVoqpsPpnP0u7NK9zq+o+4qqLM7et9rN6zD/WIi8EtxEdy5nj8bwu6FZ5f/O3BeCA6Ct7iezBN9wFjfOz2LCx0Nsh5jPDpqd70AdUqKl91xQg8YLTpd77L1UlH+2O5D5zBm4qX7W319m0lbYb6tpCI4G+8Xvn4jiAjW7IkTMMTIOI5MbYD8/TNQon6922oYqK2oaswHnj8+sW2V9/eFIo06bzrSfXhmO150DFpktxzqBXY3L99Nvh8etP4O2YVLnbfUfiSi/qtP8H/utR9wB671iz/P+32DaLflrevKcIMVRT3XZeHWPLdiSMUgdiKeDMafsFOiLVl9T6uKIlItXJfCMFue1sw0BeIArjWkZEqDXKvabrmAc56n84lgLJcQeYuR9+BZ88JWNhKVhJL4E7B5y+ANxkHrYgiLQyaLD57pPHK5TDx/mDifA+OoJvbGNJzXGLSB6ceIWe3kamFLM8Y0LJ4pBMQFrFd+aqUcnDXfLWSss9hquuDtXnTu40I9UNSYqu04nlHXgsF5RVetpfWO0tWKNYUsmjVuasY25XSW3czdWMR7/BCoNij2KfYB2L43evcR+71Y2NHRX0UCml54im9I2DmZ4F23J+qjOi2mFWE2qNVTB3Q7p0vXuXVKo6m784TR39/6P1vXrWCMOwQMpuklun9/0hq5qtDJiDCNE+M44Lt9U4wj1hgddZfKfdS7p67JDtKxe7WWWqml0IyhWaFUx3fHpoH28Qk5TbitwQayGvLqkSkiPiA4yrayvW8UUUQxWB39GxlYsuG2Vr4tG3PWEWQuibIowllr43x5Ig5RR6GdX4UxfXyXuc1XrrerOn70usg6/UwEPT9sqPgIMTrGnm1dS1XR3nbjNA2chgH6yN0ZhxVLXjPzutBSpSadXrVSmJfb92vCGuIQ+hj6LqTbe47jDDwi+0wvcPR7PGIk+/FZasFVi29e+XNFjvfWWqPknnct+1TM96Lb6OhyS4oKla4mN+5ARb3rItY9PKIJtajRr7XmHpF5rHd77As6J/H4Zn7xGswA5kRpN7aa+zPQRqyUxpqTFg3HTF0r03YUmMeBo3u03TmmpunaH33k2V34t9Nv/F8+/A/+9uE3/nL5wCmMDD7oue3cMfp0R7F5d3U5eLXdL/u4BzoVQgGO7qTR94l0TqyIMJpBR9zSiC7wvix8ud35fMYYXDjRfEbI1AJlS9RiMeLw1WOjukXUajE+Yn1UsVXayLlRivJBneuUNaRzeOm0Pg8RgnOMkyMEDUbA6FTLB3BBcAFcVADIVVEHl35dtwZpreTaSLmxrQVTDdE4pikynDy0CVrue06biVa7f6pRryNnLGMMv6Sh7LxObYr2xkYUPdyRTvsosLw/w32VlFZp5d4ItdZ4TBXYww5CUDeIaLuPbEfXNbGs4hC8MUwxchlHPj5/4DxNqqDPhdw0wMai9wh2N5HXaYmzXRy932Md5Nk9Sg33GtLuKP/D69d2Sp0gvr/pOwq2j0YsSr2wfbYfmEZH7OMvZ1UlB1ZJqHvf9DBurLVBLpp60xGqPUXEHMjbviE0IWJHPo8ge6uJOE+XC7cldeVnIW2F0lR9j+igURq02i1zrOC8JQbP6TRyOZ/wW/yh8Ox1uxhKVeTJdTmtHpAFAeIYePntuUPYmui0m9+rWkmP3O+eu5hufd6tjHYe6EPVZ0Tum37vfPpFaTBHzuv/v69fDlJ/+E/eO8bTQIwD3g0qAGsNTMNbR3SWGCyxaZEkIRJPFmqh5MS8rdjbSh4WWBa2uiFUcmnclsTX1xm17qmkUVXjjk0PWDQ6MfqB6AYk6/jNAtFbgos8WUNzlmqdZtMWodbIuhq+nDLfTpnX98KWDcZH4jhwOk+cLyOXy8gQNY1BqReKOqSlmzw/7pC+blcqb8vC1tSPUWwkWI382/mR+xhGxTUdVTtGdXQkRgsC2T/rvt7aQ/GpI/eOlAtIrRjZMLVg7IJgGKpwFmjOIzZzyys5Zz0MosfbiWwninU0Kw9IeSd27GO7BwHFcQH+ChlHL/6cUvfG7XF+fVHuJuAiQkrKSRyiJzhL7h5zinzqWbKjStKkj5EhhD4aNKb3YN0H0jqk9iJB5CFDXakpu1codJK8898lgYiA6V6GKkK82yXtaKE0YTcutsYoFaIJrZV+nt0XhQDL00fmDxZTHcwg/9ywm4CPKnIYPSxvtPIFU4WYHZNExjKybYH5Bp/nxj824WoD/nTiHCLiPNd5Zp4XEI20U2RKvQtzp+2UkliWd9Z1xhghRIcvForF+X5QWF1TtQlxCEyngRg8IGpts60ErxZo0psDa5SjeptvfPvzG69fXnl/fSOnlVIy58vvhHi+P29jiXHQddRaT/7ZvSvNgdrtI95j1N3k4F4Kaocm5G41pv6easS5r5s+tkxKOVATdHuII3Zxm4iOvFv3+DVWednqK92O3HhjzZH0otx6c6jdD8TdCnvYwLE/DheQn2lafzn/BqPnj9tnzPKNuWxsLd+nCY8I7yPC+QsHCfZ92NTjMhodi/42vfDX80f+7cPv/I8Pv/HxdOE8jETrCdbi2L92EpeeMraj+mavuh6QNXYEunMyj6LTKM9Zr6Aey3mcDcIpTiCGwf0gJBEwuSAUilHR55o06jaVTMlQiwMTMW6gWcilsMwz6+2KlIyjMQ6KsiH1sHrDGIK1Kqy2aliuHpVB732hI9rqzlBFegCENs3eqzDHiNH/voGsglkz25wwVbClIi9nTqcB34TJR2YXCN0bs4kWdbk1SsqYJqzWsw3y02e5Cy73842O7rfaWBfNZ7bOMTQFeKzb0WhtpPaJyCMSqhSg/zd7f7YjSZal6WLf2oMMOpi5e0wZmVVdfRrdAJvgxQFBEARI8JbgU50XI0C+AC9IgLxgd1VWZmVmTB7uZqaDiOyRF2uLqJq7J3B4iD5XIQnL8PBwN1MV3bL3Wv/6hxtlZaO7oBMD24rZNQgIZ9U1oGQs6BSz67RZa9Zk23i+lFZArkEvBSOVZpapjRJlm14hVnUW9xSV1d/6k+vvZLXfis9Xik9uVkeuwcmd71oqjcM708xDXTMHFqpoRNRtgesGpFF0pSWFlaZgU56EqhxXQVN72eU+mms9ppV/uB8s+3HEGQsZclKlX11NwmtTh9WydUreGvrOsxs9+10HxX6WKKrjz9rsOeq2iVdKGwNVbGd4eHvUxRcDMLFMsQ1g1jHMNmxqa03Rwtc4QNuM7z6k27u8/f/t737WRPz/dv2dTv1Ll3WOYRzUvNf1TeikefHORrrOMvaWVC1VPL09UMywcX6H+YoMZ2ZnSA7q1B6iAtc58vRSAPW0nENH3+nITC0cCiVVBjewcztcNZhcidNCDom+g6Hz9DvtZnPWlCuRjhAdj3vPr/vE++fINRrMMNKNI7vdwLDrGfseg6EkmC6Bec5MU2aZE7nPfP3udh+041QeWqbQ58JuMMo/tk4L05LJqGWGs07zd53dxu0ihlK1010Tlu4LT+VitsJTbp2iUufUA6ymxDoPc2IYpJn8WE+xkaUWlrwQ44LQEZwhek+Retew6PpbV+B2ANYbqf2e6/nZWmtjG339bdT9WYOpaOw0z1g74prqveTUOEK3xkpH7Mrx3NKDrNoSwQ351F/r9ANpSsx2UOasKFs2oiEBsgoVDcJqz9bGhMY2nzzZ4j216NQN09wLHkQLEbWX+dw3d9q95fIw4uuAdQWeXjB10dFZ5zBHi/EznMBMFR+FPlv64Fkmy2SFl1n4mBzFWsbdnn4c1R5JTBPXKJdXPZIr8zJxvU6kHIk5EJaZmGasrfS9I0QVO6zjSXENQQb6vmMcO3znWgEVyXlRNCov5BKoVVFjQ2W+XHn/8y/8+Ne/8cvPP7Es+nP/43/67/nqq1vhKaLJRg1H19CAmLb/Vht/cStXahNwFRVVrEi2oo1p49h2XYexsk0IBCHlRAxBP5+uHbzWtAnZLZFlFflIMM3Gq8NaFV0g6vG8jvpX1GgtCqGyuV6UO6V3O79yya1gNvdbPABfH79ilIM2NBTK9ZlUEvVuh9fHe+sCt2ePV9+qvZaiQSUWx9HveTc+8Pvj1/zh8Wu+Pr7hzf7I2PV01uFkk+9qchO3r+37rj+orBA/rThfNReN69rsclbbHDbajCC2UcVwdK6DIjjzGgWvtVCWmUxkMZElTEzzxDJPhGUhRkPOHtdZ/CCkWEglcno5cXl5wRsYvWXoLHadgJS8UQNai4SINpPO9jjrdT+ta6hJphQh5UrIGSnapFin+3NNWZ1Sotpz1aliL4LkjMQIIcCbg9JdUHN4LTyVdxpbPOoSInnJSAnM3WqJdbtWNHNtlmtDIZclEJeFQm3FY6ND4LZzurSicAk36zrXqIquARw3muQaiKGNtOattwKVZg2X1VvXt0AHFTYlpnlhCUGRVEGb/2pw7TlQl4jbHljb+jFANfpZqIZBWcqmCNaUzxyD/u6oXReNfntjzFYYKR9L6Jxj6DxjPzA00rBGGXKLPkNwxigCmFeDWX1DCvnriCHnRKWoUf164w2UIu3hbEq/og9mqZVU19zuCijy+ebhkbcPM5e5cF10DFNEBSFrwShG8M7QeUvnBUMmpxly/PTdqyJxVaNnfcgsgjGOYgq5qpLa9ZbD4w5arGHJL8SQKQntDlekZXvstzJy/VHtH5Uqr4/5lc+5bVZfxij/m17GWVzfY7sB60fd5EnYKlQb1deyt+rTaT2131HsvvmPLlRXWYjs8syULbFYcjXUoBvN9arJR6Vmpkn9X1c/1mVKLHPB1iu+njFJIBbKsiA5cjxY3r11fPud8LavDF3RsQeV1ClC5juH7T2nYMmmR7zH9wZj1FInLYXrS+T515kP7yeu50hYMt9/NfDfvXt9L1JOlJo2HqYxgVSMEthLxkjfstp1pO87TejynSMnq16ezTNpNW3fRlor6rmOt2VlUjW7lxZ1Cjobkqoep77lJhsqiCFbryPemjV2zTZBn7FtU7qtw/Wnqj1HvY2yXn19jq477zk+HFmWwLIsUOtdPvvtSz3qAouz6jvYkC2Dnnkpt6jRRutJ+WYmrkilU2VlaKKjsiqAb0bvqyfniop6vCaYidwK+1aYahBBQ94abUhREkNK2mi2O6x3qG3moCj15xxoIZu3JPuI1B5sbtZez0i4YOuCjYZaFwYHyRpMzEjMVJJyzr3HsWcYMsVZhjU5aOiJsXC+XsklEcKMcSo6uE7PvJxf1NlBPdYan82C9SzRUdZpD1W5Vt7QYRXh91ZHlyVjbcG5DLKQ0plleWGaXzj0O6wxLNOV0/MTp5cnLpcTpd4an0+vVcxZq47CU4wYsx6MilzWuro5KGKYsv67RncaJMRWF61om6LOKeUN8clJRVbWNFcJYymizcX6OUMb97WXmVu0cq0qAiFXam3Ruw0VWsf+K0d/5dKvjdQqeFJRXTuTzOf34TDsedPtmvhRsYJyLUw5EEpq9K+GArO2gGw4hT7mK/VAMNUy2oGDP/DN7g2/O77j28MjX+8fOfYjg9F4yUZiY839lrZtyCqCeiWOW6cw7T5bQ4uM2pBOEUu1DqxtRSi3TnQtADGNF1yaB+vtqrVwXU4sJTDXyDVOzEsgLJEYCmI8/bDDdTvE9yzzxOly4nq5EmKgGzp8pzZP7Xatc0K9T6mSY9Xiynq65lwhTj1zc01QMzlbYhJCqBAymIgZVCUu1mC8RZpTQS2VmmE6Bd1jYyFOid3+gO86TFHevUWwJSOxKk/bWKVSxEr4wuOx7iW2JUTpLVRhpm0CIyOir6kVpjmu9IzUUpPq5sZirQrFdKnoxNVY05xDaHtcA8DyBpojaDHqjDZz8zJznSedwDUU1jcPZrXPpKGbGtBSc0aaX7Rs59RNmR9bbOfG1+4ju+H1vfi74qL1ha+/tx0GgDNC7y1j32mX5ay+ubqaBDcuhqhHl25IrYAsBXFNldpIwhqNV1RpJevhtf7M9XXcSq/17yh6URBR76i3x0eeHxfeP12Zw7WJHurGDRHWpBIVRTkLtUbCErEpfEaBXUcqescb4mTUigJB0VxR65Rh3+Hsg3Ym80ytC7HktnmsG1r7vp/dc+6Ou7X4pImNWpF6V5x+Xgb8N76MUbm39VTRPFqprtF+Ir4VnkUs1nsYRorfk1PFBksmMGTPuDiGYFmien2WpOTsGAqTSYhAChnvRXPpQ+V6SZzPmTzPlEUoc6EsmRojtma+ettxnQeGfc/bN5a+K/QuQV1IxWLdiHE9STxcHddsmwmvmg+nkri8BD7+dOXXnybe/zBxPWfCUunzA/wv729EbcrDRBELKWNNJBYoKWK7TGcFbzpc626993Sdx3tH8paUmm1MWQ/ghsTrp7yN2cuqOpe17KufLBxFKKUWrCha5FuJmJyn1F7V8U6tnkwLblCEcUXM2zpa11srPtfvzepv+IVxu/ee4eGB8/nSxu1VEUprtz3EGKO8yxiZZ6GW3EaipnnS1+3v2uZVu27EYjSrWIMkkiYfLSqeckYjSVeuWk6ZmNLmeCFGKCZvSnlgG62WtjmvxtTW2a1gzrmNsjeCPFsxqyrT/CpwYfsk6gOlviPTY0zGdAXrZqR8wIYLNlq8LPS9g87rdpIgLJUUhVo9nT9wMI7iDF3fsRsPjLuB8+WK9z150Txpg6hN0vzC5fpRX5NRWxTnVNzVGUvXOXJ2xKKKcBFUgCNus6azVkAqzmU6nzEmkcqZeXnifP6VvR8x3rBMF+bLhRSDjtq80kfWqNHbfWhOIrWlrUSN8HNuVeq2dVe4FZ5t1L7GQhqjbOBS9d6viHWttzjcnNWpIuWs7gGpkCVDUSN2/ZzrRne5jRrbGt+21XVTbWl2zQhe/e7vuZa3CdNqGr+ir59Bne0a+4E3e98m1IZQIqFEyqKhI6U2cYjcvYz7eZdWWOrgIIbe9Dx0R77ZveP7h6/5/eM73o57jl1P7/yrotOiFj9mVa+3e7ler9XsbU9ojelWeDbnGf19R22/v51TNXOjxrVC9+4zXq9SC6fwwhwD1xQ10CNHFROJw/mBYdyD7UgIcwjKVQ4zIlUN4fsOsYYWzEStSk8rBVKopKC+2KZ29HbH4AeKKUBSDniNlGzJUQgB6pIpUjXoo++Ul+4tJuZ1QEqtEBblLJZYiXMmPQrjoVKkqLuCMWAKtQjFirqItGZX0n2Df1tFq5hrXZe1aVtWwI1tuqxrYI0vL0UTgbx14GhTZ7fVR9ImYgK4lhh3v29vfrat0ZGWub7mxy8xkmrBek/X9+oX2nl9JmqlRp1KKDdei1ydSq/2Y1och9VkvvmQI0JPVaePu+vvGsjfq9uBbXGpiTiMg2PXq2eUEY2khIrr2uiroTHIuq5V/bV5r5lbgao00LL9t9rG5J/yS7dCFAFu3oyIJkLsxpHDbkfXzItzLS0aEsRUnDOt6FS0q9RAipVMxafAa117e+E0fks1lKw8EWljCesstTbxARVxsDuOfF2+4vnjCy8fz6SYqTlTWlf4BZDgVdH56R62HXSv98D/Wa+QEi/XmdM1cJkTxvfoNueoRp0KnPV0osUpvqf6kSRKeej8TOf75hVmm1mtUKzVNCsvDL1j7D1dZ/FOC08RRbq80cV8PUfmcyRcE+SENyDOMB4K18mQosOOmc5FagkIlVTVYS2HwnRJPF+FVJUkbUWouXJ+mvn484nnn2cuHxPzpRKjEKfPbSBWGyRjrBr7NquKiDZlppmmgyYYdd7Re0/sPDk6UotdLe3hraUlKq02KlWpbKlUckNftp2wjeNoyD+vDkY9pbpaeTAOuhFxPdG2DltWQdh95yuNPc2GvkopGFFz91wKtugB8ylPR0SaAbK2a9ZafNc1wV/r7NtBnlJkKlqI9H1H9b6x4hqSL7dGV1YSu1OFZ0rpjrepvCmxN6K+c27jB6rZuyVn3XQ3flRDqNbXbO5MsjdvxsZJZC1Med1w56z340sPsFkcMncUN5Akk0aPPIDNF2p9gt5RraPIgcjAtUxcU8/S7ZmOPdPeI95zpCNjMOJwZqAWpxYzqP+hE1EbmhgodQFZECnNRcCof3EVas10nQMZsMmSirof1GKR4u4KhoqRjLMF3xWMUd765fqBX97/FZsMaUzM0xkrlXdvHnnzeNDEJFPph9c7Zim1Raeq6j2vAopWWJpXBY82IBVURVwCIUQqgWnWcaLz3VaErv4kirDpCN4aiyDKZ85qO7fGAGrP5TSz/JMmsOu8+hSuI3bYeMmKmKZt3a3NmTYed4e8rMK2+hnKB+C8Yxh6qjlSTeWaJkKNFLRxDTm1RuaO7nJb5VDBohObvR157A58u3/H744qIHo3Htl3Hb3zdKvwzli1SpI71FPulOumNVxNLHLz71REc52KYNxttG7sVnSuyBatoLhV8DqZWSeir/bLWvgQr1yXhcusSLazlmHYsR9GjO0oOC5T4OV85XK9qN3QSuMbR2zXtalG0WSqKtgilFxZ5kJOVe+B7fCuxxqvKW5SMVZjlaUINUGNlRIrmUxymoZmRo/zBjdYbFERKEWt1aqpxFyZ5kSVK3PI6sHkKuLRYIIs+CSUBJJhMCrs+XRV6HvQfT+3zwS5TQnW5kDDFhrQ15TwDuibjZJzzXP1br0rCFex6ANl3c3ySESQUnXq3Dj5Bh3Fl6x0ETHq9OBaEAulUd1SA+BiasKklXK08j9vNWLKeUM8U0rben7oV6LH3fPx6QOjh4Zta+o1v1NvRMVZoffq4+lW0n5ZLQ4EsY2svX3PZi9TacKb9udM882jUotAg7r1jdxMSnXD0Y1HF39FdbKNP9rcBoeuY+h7PfzaA1Jrc/kTtqQl6wQxtXGLFJW0OX96K9r7Xi03rNJhMqiw3GCc8k1KSnqQG2HY9XjrSTExXSYdExY161Z+3ScI5lZXVtbDQP/7J+P4T64bKvrF//w/8Vrv8+srpkyaFy5z4DonerpW3Fuq6IZlmwrWiW5kxXRgK84WnO02vqO3irQ4ox2iMbZRNjqGvqPrrBalRQ/F5BcWK1xKJiyB6zUxXwKUQueEYS5c5sqyCCk7hKT0jpopREx1yt+NlflqOT8XYtFO1xpDzYXL88T56cz1JRAulTipyrKEz9fEeohq19e+aiZSqMZSchMsIFtX2jktPkNDmUxa73NpatW14WIrPHNVSZ26bt2Kz7XgvOeDtcoRKRkH7IyliCOLYTa6Xk2jfNAsjrYRnGw4O1uwwjoKLSsVoPzdsZHcbZBa1NlXxUVt9h4paSTgur8U2NAtI6vQhE00qN+HrWhsFertZzcroRWN1O5bEa5aoTYlrxihJi0qrXOt4FAq0PqWNuuQ5hyhn53+rC3JrYIQv/i8STBIsFRxZCOk3mF2FbNMUM6UrqP4PcUfCMAlOiR5Ujew7DvmnUU6y84IORtKMoh4VXIXgWpw1mOcYYmREhKQEJPB5GbTJZtlD6ggUOyARIOkTM2VUlf+VyusUSNsYwu+VjA6wZmXF56efqZnwERPWGasEcaHI8PQE6uqXr1/XXjWqskyJd9QydXrsjaOvhFtDpw3WKcJQjEmamBT+q4cs5UnVre96Wb7I+vnW5VLmpv9ng4J9N1t1A+vEwfvO7pOC1BrbxnUpSlxV1pGXnOnc95Gu6uY5fZabnxIFVa8XhP36HuVytvlkUu4cFrOXMJVjb8lrw8vt29we6gFSydeTeGHR77dv+W7wzvejHv23cBgLd6YVnTeoZyvzmzTik97V2i2+9iQTbErevdaSLQindWYxsVRQOn+Gbinkd00GLerUDnlhUtcOM8BYxw723EYdhzevKFiuM6R6fnM08sLIS4Iha7zDGOvcbHWkVNSSkaShphDyRCCItSIbXG8nVLhUqtHjFHngmJUxd7S/0ptSHnOVBzWmxZxa6lZkKJNc4sSIMRMIRCSTmyNF/xgcV7RV1sMLiVMUZHT4P1n6G8tOuHJbR9U1FPa9GudYDXcu8q2V637rBU1dldqkP691RtUleW50SoKptpt6mal0U1y0WclpwYsZLX6qmtClArvrFGUM0cFE8v691K62YzdUVlauUauZWvccl5FRdKcQF4XnvI//A//w6utdCkXYp3Y6ry12JN1cVWsqKBCxzU3Ur7aF5jtIFwf0nU31Bqz8UHaAbUOGDarilrXH8zKr9kOnPX/t6Lr9pDWCjlXpkU7pyWqglAPpNuXNdJSBe5GioCpe0x9uD0wtfASPrbvsT50bEiIvtSmbCyrAfF2ihMaj2XljGxF8/+YQvG+/f3/58/8T7jECH/4/vtNfQdQTQQb2A09u2FQxaQYDBlqJqWg3EccRTzYHowafmuyQiSmoDGWUbPTczuUEJr5s9GizKz0Cn1QUyqkWJrRfyZHXdyge6H3hqG3PBwc+52h9wVn1bxcTaQtMRmui2GOQoiN19VQLarm2YY5NnI5W1e934989909ybOyLBPqrGA21ANRbqCI3Yov04rfnAI5tdjOlG4m0VVHgcp/800koyifNwYvmkykCUDcPux1Y2q/1g9tbWZuuGSSZkaPLksnhr6JDm4zBP2+9+jeivJvB3s77D9MkZBv6l2pGVNiQ4bWgvJWiJq7Q+hGlVmV6WbbU9YzV4tP3UiNGOV1rWjkWmivIyejNlXrmGdLkFnH+/VOPU2bspRbs7s2WPePz72C//WkRf9d+X2ZVGAur0fMXz++pfMdtcU9mrxg0hWJJ6RG5acZS6qelCCG3KI6HcUaklVvStYCvLTXKbAsGpEJKnBUUaM+T6uH5avD/r6Ggbv71yyFqgpEnfPt/mcKiVpVIS6iOe6d6+n8QGcHFXyEpOiRMdoQ1YKRjlXIoPewkOP8qom5LdGt5d7QxbVQ2fiS1G0NUNniVtfRYa03itU2Bl+fjb+3F65F2L1/5bbWZfu7K8q4xSCumoK7NbD+uNomD9s6E18QJB8AAQAASURBVEM/7F7d+He7nsFbVqP7OS7ta2bJsXGNC7dlV9v3v70XZZ+qQXxvW1Sv06nCimya9WzeCs12j9f3vp6lrRjfnrtXZ+z9F7AmmrW/o6Yrd4Vxha36++Qz+XhdOC03VXvOkQ8vP21iXGl7gHealFNRp5AQIiHELTjGrhxGa7e9oZbb564lxm2teO8boq0WiquQC6P2VcsS1O0mtKQkaM2yUdcRe7Mt3M7x9bPnbl9YQwqkTXHX29L8QGlOLMY4Hr/5bqMtAlxCZY63b7x+n/WWfor53O9D6+e3NtPrX3zlwbxOY1nFRG0Pv23Er/4srAKoFfRa9/vb+9oer3r3TNydM1t5th1Jn9RyIgxe2HWv391nhedv12/Xb9dv12/Xb9dv12/Xb9dv13+L61M9zW/Xb9dv12/Xb9dv12/Xb9dv12/Xf5Prt8Lzt+u367frt+u367frt+u367frf5brM3HR+XJlmmZ4xRe55xl8csndPzYe6PrvNyX69nts7IRVqNt4MytvEja+y0YCuGMDfEYMuP8N+eR36pf/6BfextB3jONN82+N4ftv3mHNLTP17gVt33DjLt1xIm5ciJsVwitrKmO2+LKNI5gLKWVCDCxL4DrNTPPMdVoaLzLfGdI20UQj866Rh6/frrz61fY5sP7cVXls6Ve1Z1NkV+vvOD1QUlCuYss9jtVQqvJjvAW10lKFXMqZEDR6rFE4MUZV7K5ZmuitrI37Wrc/c68ivvFNPv+s7gVXK2F+FaR4p5m3SnC+Nzhn4yFa73H9iFhHwRBCYL5eSTFAyZuq1TvP8XAzyK618vJy3tTN97ZBdhXYNENe2/zPbpxHGufq9VLanjG5ca42znOpmqIUIyElQuOIqk0FqmK1qnpc7TNe8aVRA+3YxBKlqjWL2uAop65z+vkPztO71bB45ZvduD5zU9yv13We+PDy4SaKKrfXfB97uPGi23vVNI4bL20LSRFp8Wz3fO7tiVqDhDa7NtNsmTauuMiWBFXaa10J/H3f0/cD3nn98zQv4JiIMbSkjtBSpMpKfwNpPON8+77WdTw8fv1qPaZw3exFNn4rr/mCG5fV2GY7tfIWy2b1lOIazytNhd1pCpFTa5Zay+aRtyYC+abs3wzwP+HcfbY3bPvV7Z+v7/eNj7lyGVceb0qrOKGQS+Xw5g3dMG5/Tz0I7R3lsm587fX5+fR6nd5z+8TvX1N99bu84pyVnDfBREo3Tv26562RkKug7H5PqbwWlpUmZnp1bXv3+qZuKvTt2baOw5t3r87HyymQY23cQ9esrtQdQljFcW5L1lKVcuMtluZtvRJA73iZ62ez7o/G3Hic6/1c7Z5u3NV2b9v3WddnvVejtTu+cvPujfJVxFLa68pNkMONO3rHRXQe7F1VUUrhfL6+/vzaXdQjXwU8G1V5/cb3d1poSUt3f2bbpl4xte9+KXff73U9UfU/N3GYvuf1bDWiyn9Z91SBElVYU3O5+Qgjm+WbX7PWrYWqoSmlFI24vVsTnRO8+Zxje7NY8ir4un9WN+57YpnnxuvWN7M6o9wLQTUgp27rXt/bLcPnRunV97d6Gt84zbf9+3MnE+5e8/p83T779XnKm+VYi+90PX23e/W9Pis8//Tnv/Kvf/pLSyhSw2mRJia5I57WTSWjK+IWY9nilSx6KDaVlNP45i1EvlLVNqZCqqIq3lVA2w6z10RYbouz3fjXXmtsp9v2ymp99c+NtC2qNKyi2ngR+MPvvuXf/9M/bN+q7zz/5//9/5qhc02Jn+8ECOuxrr6gVlpBJUKpLcYuRvWzWhbCsqj4ptTNVFxV3B7nlGA9XReeT2d+/uVX/vrDT/zL+x/56d/+xr/+5Qd+fv+R5/NV82HRWC3jLDEn5nne4q1uB/6txBdWGyw9qP1G7FYHgMNux7dfveXbr97xzVdvOR4O8PD1q90jzi9cnn5iCoXTAs+xYyo9j4eOx52hY0Lylet04eV04ZdfLzy9LISkP3/sHcfR8njw9J1++msmLFVNhzUFy7eUH1Uo2nagmq2o4iYMaJuwcz2uH+iGgXG3Z78b6bsd1/nKlBbiMpNSgBa91w8jw8OOx+9/jzu8JdDxy8/v+fWf/wuXj2dquHA5vfDy/MJXb9/wv/rP/4vtPpRS+f/8lz9ynWeqqVjr9HP0HYP37Ieeh3HgMHYMnadzFi9acLtmGiwi0AQfuhZXv8qWI90e3pQzYUmc58jl6Ylfnp95f3rhdL0SU8AaYT8OHMeB427EW9MKHbX9Uc874TwHnq4z1zmyhMzge/b9SJVMlchXD3t+9+aRx8d3fHd8g3VCNWx2R+tu88OSme+etR9//ZH/6//9/0ZKVcVfMZNiJsfchGMVWh6yqfqceWvod55ucM1HV/AGvBUGa+iaStduzWuLyKXgpeBb+MPYe8ahZ78b2O8GnPdgLTEkLnNgDpmQCtZ6duOO3//+D3z39e95+3hgvztgxZBi5PnpmQ8fLvz08UcuTx+4zldijoipKkQUYYmJ02XhukSWkDg8fMN//7/5P90dKJXp6UdyuG6NXNfpgRNCK2pjbGIyQ9/37Pd7uqHXUIEamZeJ6eXM89OFEDJUy/H4yJs3bzm8O/Kw22Otmu1//PDE6fkD0/VKzZk3D4/sj8fNpSHnoEK2HJu9yaosb4X7nQBsK1zumz3Ue9lIS1ZJiZeXM6fnE+eXictp5nydmebAf/7f/R/45h/+3e0wsZa3+z2r6EE37LaX37sktM93PTBzy5DWhmE1+NKmElYLvrLd71oKNWViCCzTlev5xOX0wuX0wjJpnKfaNXn6vqPvB7q+p+u6TfyHqBl2CIF5WbhOE1MIqpZu+wy1UFOk5tjszpoDBbQzzuKdYzw+8J//t/9H5M7X9G//8sLpQ+TdV294+67n8WGHH70qra1hcAOH/YGH4yP73V69E1H7sGWeuEyXTa1sjDRhl+4R1thm1ea3aFlpnrkpZ6ZpYlmWWwxoaXY7LdjCW48BtXZbHSOq7kVrsRmTxh0viybyXKdAuM5cLhcu00yRijg9h0xTZ4sRHt4K+5tGlxAi//zPf2KNX1x/WJZCNhmkaE55rRrlWAVBPTsTqwH6LYXJVY381NZf14K0pq/9DqCG+6aAlHxXKwi5ClmqBkz0Djf0pFoIOTU7No8bev3yauR+fToxfTyRrhN1iWokKPpn+8OBx99/z/Gbb+h3PbUUTs9nwjLx7fe/Q+yt8Hw7WN7tNP1pFf4Ya3G+o+tH9odHun7XYnm1oRGjNcX55Zmff/gr1/NJn4lciM0XdZ415jLHBVsTVmpb9yOpGuYMMVdSufnV2s5pKlxZLZCCKtZLvoFZ9QZqGaFlCqg423q1vPPeYZwBo+DZkjX9aJpn5paC9Pbhe77/+j9wf31WeGr3nbVDu0e9tFS8Bb6/KsJqO6hqU1GtKvKmYrWqWF6jm7RG05tb61oeCVJu33YrPLn9egtuga19+bSL3v5dbrm623q//3PtNwrNwuAL3bh6aDWEJFcKeftea2dQiqpNqbfOc0VVjBW81Uz4GCN5zalOiVAycZrJpTIvkV+fXvjx/Uf+8sOP/NsPP/HXH3/mx18+8P7jE6fzlWkJmmlvLGI+MV6+u2f3l5Z4aielxuSGjEVaZSGpYkLm43kmywuXmNmNZ/7d7q0a1W7fp3mQbsh3K5TQgsK0rreWZlGRGhKb9QGTWqCa1mHfPGKtUZsF2+Lu1C+yqQtFk582a5CtI5WbHYgYIDZkTpWEF3shpqLehYrFauJMVf+NuRZM1zHOF2q/o7aiz3V7jDsR5hNCoe/U7/XTS4wWktZrAsy+6xk7LTR3Xce+9wyrbdSaukLLIy9rd7+ut2bWkQul6iGTsh6ocwhMU+B0nfhwufDxfOE0XZnCQq2tCBMDfc+b3Z63xwND37K3U9Ls4Awv08yH04XTdeY6aYpM7zp8Z/CdcBh6dn2vzU8M2Ko5zHntXJvRdzIdq99me7waoii69kWfb/WSKEisamDP6tMLiYIEVZuWLBRvqFZDBErKRJNwoojxioSKVAyFQNX3nNHnUCLOGTqvQRRSXUMkGupaoEiz5BHBeK/NyX6Pt46S1PLjOs8YP5DFsWRhChrdaqTirRBzZm5oc8iZVD632LrdE70P91YjayrS6rWXW2GQcqSPHuMU3Twcjng3MF0D86zODx+fPpBqIObA4bBj6DsO+wOCcPGeeZpIKXI6nahlxzD0LTHLq79krZgWYGHtrZlfXys0f81PEPNS276xeptWfcb7roPdzS/0XrG7Xev32DxPb/ukTiDSdpiVdSLU0LR7RWz7m5tjQWlIf8mFkhM5JuKysEwT8+XKPF1Z5rklG+k+UQRSrUhK+uuizac0I3RNRwssIXCdF+awkFbPUdHZg9SCoWKlASlWp0KddzivDXy/2382men7gdBbQoicXs70ncV3liKad10bqpliIEa/OVzUO6ePbNQia8u8LnrOOK0Sm2PFDaXMpW5I03o/qXVTpRd9HMl160IwbV/akNbU4h9bMT5PgXmJTNPC9TqzxKDpYlbDF0tWP8g1ra2+Aj7W86M2m7L1LK4Ys1on6v2VXDRdqZoNZKir35u0mqO0NVr03M6tSKZoUMytHhFMyUgBU0o7fyq6kwjFQHZgnaXfj1gKxICIUQS673Cdp+96rAjFToRaiCGSpxlDpYohWQcCl/OZ3A+4kKBW4rxAzp8hhreDGmotJECKuqEUp80ULrdzgxaR3JqfFNVA3qkHbSkFs1iomvUuteDI2AKdZLyArZmCuqRg1MdZtlCqdbZWsFSwBmscW0nYFnSpmtCYS6ag99kY0QAgI7rHZgUcUpuuxWYhmWolls+jQ+ELhWdunnvWetgO97WXWDet2kys2z/LbaR5G0uUVnyazULFWPWhsgJuQ0lhjUWj6iG0LtHaCodt4nCDMj/f8LhZd6w37e8hnnd/Q///79wcHd+ukYX62raSdR31gBbM3GDn1Ty7w0PXUXImBkU+wzITloXrooXF+Trz69OJP/3tZ/741x/5r3/5K3/56Rc+fHzmMk1qIdTsmqwzDF6QapDV9Ho1E389LLuhgmt5KIYqniJOR+XFULOQYyWeJ16WhH860fee7/79f8T3/d13MxjxiKh9izWGDoM16KOsM1RqhZxqG8kVamljrWa6VouBqtYVNGMfqW2N3Hkrllr1IZQNd9NCHtnSakzzAM25YHJuKShCyoLvArYb0PFr27iz2tCUOYJAf37L2I1Ir2hBNxyx3YsiU7ay23mGwXN/STt8us6xG3r2Q8+hH9j1PYP3DN7Re6MpMtY29F2L/lTZ7EfWk7WgyGdIiRATS1ga+nLlcp04XSZO08xpCVxDILZoWdeepbAETIGvDkf+/fff8fXjEecMIS6ElAkp83S+8svTCx9frjxfJlJWK6jjYcfxYcS2z6eUyvM04bzmyseWBhSijvfd4zvklW/jStkAZ6AUQ3YGI/qOdZKhSFtdD4kEpUbNBU6Wkg3VW7JB9wuaxUnzRrRCa1QVA3MieFeJbXLtrNA73UCdK5TEq+IzU4g5awymNbihZzzsGf1AzZWc4TItuH5Plp4pnXmZMiEFhEzvDaVk5hAJMRNiZkyFL133dlKrWf1aeHrvtRmIkRgTyxIa+u7Z7Qb2hx27cY+8cZxPE08fX3h6fuH55ZnLfGFarnxbv6Xvew7HBw77Pae+4/njE8/Pz7xc59boGkavPsaVZj21BnbcIYyfTope/XqNzVvHeG2k74zBDAOdFY3irNIax/sNtRWZqzdmVcR6RTtTijoOr1lN5htCr69rW1aUWslV4/fWEXpKkRy14EwxEkMgTLqnxmnZUqlWn9iKbCkyKQZMShiz3MaCVX+OrvHIHBbmoChxLrUVm0LnDJ1zWO/wXcduHBjHkXEcGIaBru9w3bidk+u13+/IS+J8PrEsC+OuZxg7xFXUnzsruhkXzKKekd75ZrKv4IXJalCv9lVrwwpFo2twlK25k6LxvzHFzQ91bQJ0wgdVmu3bXROPsVALuZZtbc5z4HK98PJy5jotTHNoKNai+7+zdH2PLS2uthSMrTiv+8BnhWetLVVn/dkVSsaQWmNZkVw1SaA07+01YK1ZB9VK8+Gsam4OhEa1KK243CqHKki1SK7YkjGl/VwxFGPI1pAb5Wr3eCBRYJkxCM44rO+wXcduGOjFUNyZuVT1l71e244uZGNIOVJ2IxdjqK7XsyQvdC147tVVCjVWbRZqi58Ug2BxNlFiRFzENqP4SgunWWZqWDCCIpnDQClg7awT6Sp4gWoqrkCnBQo5J5w10JLrirGNs3B7TjX5rrZC0m41mnENbS2FkCNzmIk5UlmfMZ0ap5KJKWqGfFFoMqZMKIVQCrEU3U8+uT7Pam+L27Qkkpv/GiCaoS5rsZbXdIp1c1BvudIKUW3Mbv5pa1qRbejIxoVrBZ6O9puprbFaLCGtU+E2EtgK4Bu/YN1A60bg+azK/ORfWjmz/f4nLeuKuLR/kVYob0QH1BNve5AoNx+vu7+7dnpOBLGaJzynwvPLhZ/ef+QvP/7Cn3/4mT//8At//fk9P3984ul8ZV4CMekmuCEVuRBNplAhmy1NpZTy6oVv/2tZu9qle6z1WOsaIq1eiX1D69bkoHVkd3/lUgkhEZZICkm7f2foWTvmrDnKqW6vl/bzqTST20pMWox33YARIYfQYrxuUWjQfCvl9qmsn0yhIrl1sYaGNIPk1NKADLnqmMa3IjVlPbQk68ispMgyTVyfP5Ar4M4syWLIDIODx5EaC0JiN/R8eu2Gjloch93AYRg4tDG7dxZvG6UEPcCRWzbuxpmqaz51Yg6ReVlYloUYl4b2FGJq3bLoIWWdMBrPoxsY+57Hwx4jcDqdEYNy/sKCq3tGo5zAzgjRGmrqSeOoHWlMLDFiEL46jHz/1VeEGHk+n3l/OvF0uujj0IqnWus2sXh3eMOdtSsrl0zXm17GaKpGLR6p6vGaG5JS1nuQW+vWitKctlAUNkPzNl5bx92m7RXeCL5FjhoBb42mXFXoPGh2TWu2atYc+Zj46aefMdYjxWCLII9v6V2HM5bO9wz9nq7fU+TENcDzaSbnyNApmhpzISb9XLrdFxDPbZR348UBm+foer820+hGV8q5siwJWEg9dB14b3l43IEpWKc+uNfrlY8fPlBL5uFwYDf29P3I4xv98ZfLhVQyl8sFpNJ1ntp8QhWhyFvxub6e+8SRe8Sz/ePVPriaoadaSbQ4zJWDeH8b2mFXSiGV9RxQpLKWqkVRDO339L+Vtg6KknKptW7pJ0vU5yIGPVs0+719hagIVEzkeDO0vpmkZyRqk7mtz9tb0qOkreGUMyGlxkvXUbozmlc9DAP73agexvuR4+HA4bBnf9iz2+0YhgExjveTvDpijscHXK2EGJimi44dl8C+G+j7DmuFUpMapt8BJV3Lx/adJ5MJJUJJlDVoBe4QzGZIXqtGiEYtOlNO+r6NPgsrYLQGmKzPuHqwakO4LAtPz8+cTxcu1yvX68R1mglR9/XVgxkRnAAhUYvZil1pfOv9mwHuMwBrpeagCODGjwQjBSt5Q5XJlZpro9rd3mNdKWxFm/faCtS0TWSUAqHlbis8RSdJUqHmjK06zgehVDXGd2LpvWPoOxKa6S5FNABFdJLXA3uxZGOILbkqUDkaYTDCTGUqiTRPLNcrZQAxlhQXsrkBdet1uV4p16UBepoGZZ3HiE6hiEEnM53SQUqpBAqSE6YWem/BeIZRPWO9X0NZDMkJdQEbwWWNIC8lUyU1VLxqkmRbRaXtU7mu4Quot3ArSE2tGktKIdVEqBr5Wquea9Ka/1IKIejUIBVlMKcWbRtz1gnCF3DCzwtP2gjNeXw/sIYy3POC2uyZlDQCq0ZFY0JYiHHWjSGvApu1gqiseenKO7wJXLyzGqXoHd55nPcY5zXKS7RYq9xIt+sjfts8V/aIrtj6SUEKt82nPQu3AlK+9CfYvl+9W8zmnpwuINVQa8tzzbROvrSxiHb8K1Jn2g/OqTDNkV8+vPAvf/mB/9d//SP/5U9/4cf3H3k6XXTBIMpvdE6715ZPXGvVFKGctahZEYytkGb7jEwbRxvj6LuebhNXOC3lxTCMPbux57jrOe57Hg+jGsT710hGyplpCczzTJgDviv0DjocpmrXF0LSQrmZryPru9ZFGExmSY6+GsQPKtrKlZzbQVSEatf1V5tgx9wqz3pDtEsrwk1D3fWw1D50bVpoyRwpqoE7OULWVJW4zFyfP7LMC0U8xe4Qt2ccDV13gGKhRDp5XXiKCIfdiNTKw25k3/eMztFZ27jNulbqKippiGdtASWlFWEhasF5ulx4uVxIy0xNgaH39ENP5zzeD1hn8L1jaAfo427P148PfP/t1+RS+C9/+jeWeWJarpzOL0xjh60DpXFWbKl4KoOxdGKUeF4rzlQe+47vH448X6+czhc+nk78y99+IsS8FVDOGh6PB467HY+lcI//llqJcRXitMlFVRqE8x4aKqYFhjYT68g954aspUKyOroRuyZg3Ea0uk7VSHot7Pu2RgyCs0lTrqohF4NYz5rKQ4UwK1K8xMz1OlNjwRZwRbDHRyQXvHGMw45xOGDMQIiGp1NgXiaGTtH5UkVHR7ky7D8vPD8tOu//eXsm9cs33tha9CxLYpkzXRcZxsgwdOwPPb437Pael9OV82ni+emJ6XplefuGt2/ecNiPHI5HjDF0ned0emGaJhDIedDUHHEYszaueaNHfOmrvdAGFrRGt/036x2+aIMTY2QOgXkJW1Tp/X3QHO7c0MrYClF9JjS9KrwqSO+nNisVYQkLyzIzzxPLMhMbTzbF2BrcrPGJqTXdqzB125jTNoLeePl3o957MGXNjM/1dkCuNKC+73h8fODtmwf2+5HD4cDD4wMPxyOH44H9fsdutyMV+PW//nSLcAaOxwODtZwuJ0KYCSEyTTMPj3vGvic38lpMEbbzsMUjOovrHK46JK5FQ9vlRW6imIpqB1Y0PQRiSq8FVaK0mVLLq89a92ilR6VUuF5nPvz6xIenj5wvV5YlkJKij2KsonPo7c2lQkrkpBzZJQb93tbwbjG8Kjyp1LRQUkbaWbU2XnYdj5eiRWeumzCw6EOun6PRvUUHV7qBpKSUwNKmrkjbf1dk19oG7iWkZo2MRAspg8EbobOW3nlMTYSW1uNQpN+kRJcLu1YBFGtx1hGd56vOsPOGl5R5MsJTicQ4U7pe73cM+vl+0pidLhdO8zPGOJzzeN/RDyO989Q+IilgS0dnBqwTUoYSK5IzUgveWox3DL1vRatOVp0RkoViCiIZE8JWh5QcSTTq2gbkrbe9Eksi16y0hqKoshSDyaYV8FW1JHEhtKayPUXte5Q2rUuNn93OuVRIJZPqSsN8fX0xq10zbm2LHNNz366dpPiGKgScVahWR8m6keSGDmzJNLVibcV7ND7RqMN/SpCykKthaYind1p4et/hfYf1Hut862AtG+m8wZErinBTVbVeVv5O8fkJOtp+0RKVvnB3aOVcW/jSuGyYOyVei+TcED59IU1woShhCIEUM/O88NPPv/KXH37mj3/9gT/+9Uf+9OPP/PThI1OIGGsZvcZLWudIpXC9TsxNkawJJLnB8K0w3hZ3vW1eTjNXRXQD3Y0jh/2eoR8Yuk5HlJ3j7ZtH3r058vZhx9vjyMNhZOg7frw64t1qmZfA08uJsARSjHRUvKuY2JGrIRYdE6eW0ywoUtUQf+UIFoi5sMTMtEScCGkJxHkhNv4qawFnBN95hq7ThKymBq1lTYhq3Wv72KQ2HmducWApUqzBVIugnKq1wyu5kGJkuVwwS6RgkW7B7DJ+MPS7jpIreQFb7Gfr4rgbMBV2fUfvNR95TZLITRyxKqBze10p61gtpMgSI9MyMy+zcqVq5WHoeHxzYBw8Xe/xvtd1j2bDn+eZUgqP446vHh/4/tuvSDVDWvj4fGLnNSVqiQm7hBbpqsXdvATO14mX84Xn8wXnLPtxB0a4LMr//Pn5xMu0EEvFGIsVTf4wAp0RBtsKy7urlMoS0vaMyB3yWRuCtXFvWzRhm6i3MROULOTSpihZ0d0Gy9yaXaOkjLWIBzAJrCmYWRuwkCqDLziXsdaRMs0hIjEvkVSvII6v3pw4nS7MjzNp2FFLwRlh3w8cd3t24x7vB3KxTEvdIj6rsD1/IZa7Nq/di5aXfL/H3B86K4qoLLNbBF7VXZrSxsrzrI1YCJY1d/6439P7XicgIfL8/MKyLDw+PnI87Omc5fhwwFhhmq6kmLleF/pe6DqPcx3WWmKc22u8NXDb3im0iN7GB6TxqEuhGhWKZqfr+DJNTIty/V5PWlrhmFp83yYYusVmKlezbFzP1XUip0zKmg2dYtS0pmVmmWdC21fWqL6Ui1J5WlLMvVp3fe23HZG7/eLWyKwC2FdRl03UKm3Ndl3H8Xjk2+++4XfffrOhnCvSuduN9E2wtITcVv/tMzcC3lmOhwMpaWFyOl158+bIbj8i7qac1npfRUAhLuRqIENIgVQCqcRWsDXNQZsillIoKRPSQggLIUVyznjX0VmlweiE0WLQSUEttU0+FkrSRCqNIp7IpdAPA67rtHDIeWMHhaR7fEVjKHMqxJCIWfnIxupr+yKvMS2Qkj707eboOap8/poKuTlHrNSozYXF6sQTY6hGyCU2AUyipLztCaVNQUwTDafWfJcccSW1RCLIYvEOvAxtHehUspRMzRnNaDeY4vA2snOG3lgO457wTjD7A287w2ArH5bATzkrnc4J0VayJEqNyqP99DKaYFaNoYjZCsH1bBIjONecUayocDMlpnnicrlwjTPVCJdpwjiHVuaKQDrvoPSUEilx1teQEwkh1Uyqjlxs03q0RLiSSTWTKQpWrI1pKz4VLGkFZMlKneKuOWguIillQs5b6tRWm4ggVu6lAdv1eeFpW7j8mnNr2FAHaxwiWtUbCtWCJSIlkEMm2sqy/uSixHZjCr2vjCOMfaW3lRAyl6kwz5CSsEQVYFhj21hHC8++79uvHcYqrwUa7/SuuFy/1hHCugvdOnnWAdyrTZJtLM8XHhg2jtL6bXWTbkjAdnsbQmzN1pmVAqlkrvPC8/OJ55cz5/PE0/OJP/7pL/zzn//Cn3/4mR9+/ch5CcSi47HjONK3THNjLUuIlBhJMZCELXpzhbs/oxO0mCxnlY8k7ZAbx4HH44GH/Z7jbmTsLcf9yB++/5bvv/2ar9/uefuw4zAOOGf5v/w//0qc4vZtpyXw4fkEOeJKAVuxHqokcrYsKbHEsI3RVO3PRozXEbMWGTFV5jkitZKWheU6MV0nFd6s+dvOMo5ly3VWzpYu+nbbFU1r3SjQHohCLZlaEmSLxrsCYsjcVLUlFpgmxEQQg80ZsYLpB/rOkZNjCeaulNqWEYdhQKhbbGiVlbpZlVxdNJM8tq48RkVw5nnmusxc54nLrAf3Yej56uHAN2+O/OM3X+G9aZtPR+97dkOHs4bz9UKKiX038Hjc8+3Xj8SSCdPEz74jhERFuMyBUApV3zSmVE7XhZfzleeToqsPxwPd0BNL4ZenZ/7yQb/OS6JzPbu+Y/COJS7UkjgMjn2nxej9dV94sh7YDRIRWQvMSjW6+VgxFFMp6Sb+0cJL7580tGK16aDZy8g6WyxGEa0qSCN7V3IT5xUGlxl8pvNuG/fEqLZecQkYN3O5qtIyxsYHbJ/jfujbs7Fj7Ees8eRiSClRyfpz29tP+fN9QgUv6zj7UzRxXTm6YWNgDS7VArSo2KXqWgkhA4W+7xmGkd04cDx4zucrp9OJy+XK6XRmCXrgf/X2gcN+xHeOvu/4+OGZeQ5ARMQqrcVYSklbAbgeVlXWgmyNOW4rfh3JmraPW8FY5XNdl5k5BEKMn/HiFdXU2MNb0XkrPEtWbmfJuU1yUqPhJGKI6gASFi04l1kFmTHq/V057VnpPKnU1ui1PYb1/fBZs7gOuIzQ1pU2Q87qgHZFZEvWw9cYoes7jscD3377DX/4w+85HA/s9q3Y7BswYtV1I5bAp1fJCamOw35HqZn3vyxczleul5n9YUdve6xzW2MmRihkHWcnqKYSciSmhVSUemON2wpPERWVxBg0hjPOjQMOKth0SnGjicfqSmPIhDkwXSfmq06wVuTQecfjbqTrO6gQG60hpsQ0TZyvWiQhRpXUMVDIVCm6d3v7ueCsVhXupISURs0xOpmiGEU5kzbrKVeN+a1VVeOb1xpbnnzKiUgTqZW18GxFKmCqosOxTU90zJ+wzV4qicFkR62ZtRlRPnSi5ETN4MUqV9JExmrpjcXu99hhR1fh0YMjc7hesCEQjJC8Zx6EpUKYVSz16WWdR4aRVZxrncdYt70KFQY6rLtFAccQmKaJl/MLL9OVVDJmtVrrBzrf03sF62yLCk3zlUQTiKK8Xi1AhSyqe0htGrEWneryU5sYWMNaEUU7S1WBZm0ATuYmZEv5hmxuY3j0gdPB46qTeX19VniKrLzL7TvcPcBVYWsq1kw4d2G0F3b2Qi8JLwmpiYlEthlnK+Mg7HfC8QBDV+kszJPwci5cpsplgSUKIYl2vaVSw+qxF7V763T8bp3Th906xBjK/aho/VrHvNu4SA8vHcN8QaXMipR+elXmeW7vt3WORkdv663ZkI911FuFy3Xm+XTi519+5aef3/Prh2c+fHzh6fnEh6cXfvzlV37+9QMfX86cp4UqQuc8h25k7DtcE89gDLXUZpnRkap+iK9eahtP1RV9Fd1UFXnQA8waiwV2Xce7456v3jzw5jjy7u2Rf/z97/jdN+/Yj56ha8hiKyLurxAzp+uCJzOY9QBJlAghZeaoI82wBJZFUU9TC7UkpFRKzYjpGXcP7PYHfOdIy8QyJ65r4VlpthymcTObFUjOxN43xK1wy3KXdYIGIlj07+uIxoC1iHVt8CrKg6yKIApASlirf1eiocxnkokIXtfN0vDU+yekUUOkCTZiUhVjzSvSH1lSZAqB66Jq0DkEzSFu9lpLVAGDGDi8G/mH777h+6+/5s3DUUfv5wvWzox9jzVH+t3AwetopbNWh1g6q8Y3xOS6BJZl4ZfnJwCKCM5YeuMUyRJh7D0Po2dwQk6R909PLDHx4/OF9y9XDMLjfs83jwfe7EfmoBnhjordxt+3qxT1t1z5jfdTg5VjbBp6JNaCVQFClkJJKphYUaZ693drQQ+mogiotNxk5QnqCC5nSBZiEkI0jN4QXab0ioqLUZ5vroXUVBW56n3BKnHeeU81epAeSuXxMPC4HzjuOsbe0zlDULevuzcmfGmrSEmLJ9OmRNY214XtGW3jd4U9qdI28rIqXxv/UoScG/dzDooCpULfDVhr2O/3iLEs80JOmdPLCSPKqxyHnn7ccXgE42cViYQF35tGY9Js9hhi8xxtn0+9Fcd128zWt2vAqDeg2AYpyaooXik+d9tRLYR43QrPvBWdWnimhmjGuE6BYhsR33+F7b9RdETqKqwSsyTarVRKQzvXO/h5H749ttuXTtX6rtksea/PbUzUGrbcb0EnfN45et/R952CAbKKlVQ5b21GxBBC/OxnLvOCROic4+FwZLpema4wTQunlyuu7+itCvmstRhbKVWbiVzS+g6bAn31Or751uaaiTmypJlQAlky4gQjthW0plGxMjUHdY2IkbBElnkhLIqOYoR+12++sbZZTcWghYmYirFaJxrTuLit2MRWXG+wfc8w9gzjQD/6T+5ERVrxZ7azpVm/YZXnXdSvOJZKXpsDq1z1aoViBderZVquiRibbWEKFBqP3pj2DGkBVUrFUrA1M9jK6FTsGbXzo8ZIDQHJqgAfGqdSiQKWnTHsKzzkysE6xtHgiuBqZZRCzZGzCRxs4d3gkMNAeXNkEeHJJtIcN1xrvZz3eLdrFDi1DHTOIdZRjQPr9WuztUqkHFjiwnWZOc1XQtJ9ZhhGds7TjY5uv2f0HZ3A0g9kmkjKeLqq+6EzjmQcsVaWpKPzKcwNwRaMU/9SY+z260JzkGgNNSsKLQoUrJu++vcaELtNDFbXjAp4/zmj84uFp7Su8Lav1LZ5CpUIZIQJZ66M7gpupjcFi45RrChheegtD0fDw1E4Hiq9BytwvRa8z/RDpZsr0yxMC8xLYV50XBOLbkTBBqL3dF2H73t81+F8xbSNoG7eousdMa1/aIBmbQuzqr3KPZ9pWxdfOExqrYSwNAMGtV7wzuHEtCJo2+4a3y0xLYGf3j/xbz/8wB//9S/865//yvsPz3z8+MLH5xNPLyfO88wUQkNOhME5Bttx7Ad2fbcVktUIxSrJvMtZ7UBy2dAeVdnfzOnLHSdLkT/dHKtRSwYL9M5yGDvePOz55u0j37175Nu3DzgLrBysmD/bwZXjGcFUOi/bODnXTCxZldjL0kbxiRzVGkPKzUjfyMgwHtjtHzECOSSWJXGdlHRfQVHttt5W5FQREbdZ7DgnOKPjAi32tamwzlHF4KraKHmxGNthjCr6WRaKyKbYpSgfRoyh5kieoZZICQ7TlILi3esnZL3PrcurpVBSojZT7Rgjcwqcppmny8T5OnOZZ6Wd1FXtqwjEMHQ87A98//U7Ho8HrHE8X2b+8suH5tHZU2vGcGRnHL2xUCopRC7XiaVkpjlynQO/ns48nU5My0RIiVyEwXmO/cCbw5G3xwOH3YCRpMhBibxcF359ufLzZeF5Sbzd7TiOI9+9eeS7xwPXsHCerkwXVeV+6VRfkd6qsNN2+gvNpHoVDjaRA6btI6iSdX0uV+uKdWJRW9FZK0gRfRaMdtqGSjToVzLEJORkKH5tMapOH0SpD7U94LWhqBij/oPettG+Pj8Pu57H/cDjrue485zODpFEym383CYe7gvde0qJECLONbxpQ310A7r54uk9KmYVH2UtKoQ2+jXUalkN5VfEKfWJfhgYBi0Qlq67a9j0z75795bdbs/+eMQ4T/z4sdlyWUQ6Ou/wYii5otpTbnt848VT2Si2N7qi8rTXgAbj2giOz5dEKZkczqwWSHkbq68jOX0/YdFnPiyL8hJDIoX2fhuHvbaCwCF0xuJEn/eUK6J4DrXB5msJ/KoQ/mwYpFOp3ncqFBpH+s4TQ2QSRcEDNzBh1R/oZ7mii2kL+jA2bcbvS7MIu7/CskCA42NP1/csD48YIIbM+Xzl+Oaoo3NnsE4QU8kpEcuiCv5SFB23N66mc+qLjalk9M+GPJMpOlWwDmccTjxSjd7/kEjL0lxVtAlOMVGq+q763jOMiuT2vqNSWZaFEBdSCapkripMkUYxK60RsZ3Bitr77A879ocdw/jplKhiygpG0CgmBbBNENos76g6yjVq5yadxXhPERBL8510lOTJ1jbj87TZ5lHXgADdI6DQCYwWHr3nsev0s6owV53SEQI2JoyDvbEUq4XVIJaDWI4iPNTKG2M5Wo8tqNdoVjtEn4W+Cm96z/C4o/vdI7MR/lYWzqfpM6qfdx1DA83W4tOo4TlFLNVo4VnFbPznXBKpRJYcucaFOeq6q87hqVTv8PsD406LT9P1LLkyV4MTB6VgjaEaRzaWOSWyLOTpzBwVqbfW4I3HO/UmNd6ppV4tyNqMrVNlsxac60RL3R/Ul3QViDdUG1jFjp9eXyw8V//OzW8NveHbUhLdukL1UIYmHKg4V9mNGWtUVNR3wv5gcb1oqRq1oJiXyJQWMhHrMx3SeB8GyCxkYlAUKafWPW9k9Q6XelynKu3VfFvaG/7k3ehhdFdsrrD8WnjeKvnP/66iq3oQ5KwLPWf1I7QO5T7lwjwnfvrlI3/+20/88c//xr/++d/4899+5G8//cLpPDHNYRPfpKpKr9T4UbW6Zkkj9Nbedn6pWAuxs9TSzKHLyoPTsbsS7VPz2GoyqNosiVoxkIuSmn96/555ufDrx/e8e3Pk52/eMk0T18tVuZ2dIzcLnvwJd8taQ9859TvjbqzaSMTLHLlc54ZUpFZM3KVdoMKEZZ7puh5rFSVYGhk+10ytQqaZGVNxTVCVUyK0A7yWosEETWe2om65ghh1YXiIUIrDuh7fW7Ad4MgukG0km4QUNeLPVc2IpVZqztSgr7uagjVOH7K7qwKX05mcAjWnzbHAW0vnPEPXM9YOMcK0zExSsEY3TdcSXVb+UucsKUV++fCB8+VKrfBvv/zK3359wpjKvve8XCdOlzf807uveDvuWWIiTgFZZp6XhT/+8At/ff/E++cTp8tVD4us5vG99xyHQKiC857j4Pn28aHROBw7HzDSc0nPvMwntbuqiZwiISZVcefKnIUlCyOKKt/vE94JJZv2+aGK04ZganlTKKZ5IrbuuKxCgroyslthdw9btVG9NL7nRuBqaBtVQydMqyUnaUQMSaRS6ZwWu7VUfFHkzuZKiZFlnrk21W4ngingRdh5y+Pg+OrY87s3IyWOnOeGat/tEW/3/tOhg9rQhEjKBZd1r1CevBbD9xZGtaqid+XE6V60vmctpExDZtc9eF6Cfm8Xmnm4sBsHcucpVakrHz+emJbEOA4YZ9kfD4RFzdSv8wy11wAJ14HRwm6dlOTV93blTZZGC6BxFTu3ORaoAfuXvGJoe/t5SzDLuQmB1pFcm2ItS1RruRCJi4on9c/VLZHJUumsZecsO68CPjCkXBhDYoqJJRdVzd59FrXdM9ZpiG7lbaQtimDajl4sDkOqjWdY22mxNQFWeZS5kEIkiCqlrXWYUrFF/XeNNW269OnpQQvGcAz7Pd55DocDHz68J8XMMuuEyHjd24sUaivmxHmsLhRFoxof1RqLs1BrVlRUEmIr/epaIurRXKI29nFpyv+kKLfzHrdaoskqUtKiNtVEXvTzmeeZaZ6YwkypKv4zndDT0bVzpisdfXPfEAPD0NP1DmPXTnL9UJRytyJj60NrnMe6ToWBuVKWgNSIcYJ0huIh2NJEWOBqpq8WJ4bBedIwEIBrSiylkER9W42ApeKL8Lbz/MN+x7f7gXeD2utdYubjkvm4FHZJ6KYIDiQpT9cZx+g7Ds7zmA2HDPtSGWornCuUImpFGDI1J0YqY2c47C2zM0x7h2T3ygcdwDiD60yjuWxDflKFUDOxCrFaPLZRDBxiVWhtnANrqBmyVGItLCmqtzBQrcf0I9JHSrejdjMlrAEtaqmkQUAJWwqInuZKY6kY63DVIOLwtkOcxaL1gzEJY+pWI9VSyTaTTSJKZnXrsBs902wIdAUG6fj0+jLiKXfFi9SG8AlQ2pxfC6ZcelIdlTBfBethv6/0g47avDf0oy7smJs3YIyqVoyKfogpeH+zdmhza2ouhNzMhTdAPetxVlqSUKfefsbYG9rZ+J/3KKi0rWADRdfiE75QcG7PpT6ozqlysDn/p5SQHHHNt2xeEs9PE//yL3/m//H//i/8y7/+iT//5S/88P4D759emGNSex+rdIFViEJVlb8xFWehM9Ab9D4CYip9heoE01l6sRQRTFOcl1yJIbIsygHKtaw2aM2+pnFTa2W+TvyaIk8fwTvheBj55t1bLqcrl/OVf/z+W949HjX5YuWB3V1dQ0pJEbMmaRgtPmtDe+c5MM8LOaWWcgVbFF2FEAOXy0nvq3Msk0ZUllXwQCVn2U4LLVBUjJDkhp6Y5o5QmpAtxEyM+m6d74hRAE8/Huj3griOaqF0qaXqrCkk+tC71kjZ1fioAlYQey/cum2i03QhLQus4htv6e1A3xlNrDHqdHC+eJbgKLVgndqyUGkkdxXaTNPEv/0YqKjF1k8vF349XzEURm85XyfiEnnoDox+z/M18DJPLFJ4fz7zX//6I3/79ZnTVWNV15i9jND5xCVlMJah69j5Bx4OB/ZDjzWOziWq9Px6Cfz0ciJntXa5zBPeWq4xcV4C1zmxxMKx1FeqdmeEXed0zMzN1qUqw6NNSPSW5vbc3U8J1gYDo03txqNcb3krQldTjPX3q/JmVFAmlShKuYhZxSsxF0Zn6K3gRBiNwQBDrdgYyfPEfDlz3e0wvqczusH2VjgOjnf7nm8fB0oaeL6WrfBc95M3+8830diETJIKNqmJsndZi3zT1vS6lhriaYyKAHU/aAhhS1kRo8koIvKqYBMRhq5X/mfnERmYQiDExMvpynUOPL7J7HYjwzjgvOXl+YWQoqLsVdO0xJh26KjHqT5HDW1Ma9ydvl7b+IfDoKliXacIl5jbHnp7PDJhuWwFZ0ypJeBk5dvG1LwideSriG4mp5tgoaIG6Z0xDM5yHDoOQ8fQKWcxp8o0R3UDSBl19GrCs1bYlzaZ2G65rJM8wXW+pYhZRVARHKpYdr41VF1H18bOOWdNAaqFXHwTsN0dsiLEXG/rtl2aFqeUl7HrOR6O7Pd7lmXmdHlhmQPztOB3Dc2VAhacWJA1upZt7dl1DUITYyVKiYio+0TvPJINORbiNTBdFOHUdQPWG4ZhtXJaE3GalVQMLEHR52VRL+EYVcQjxiAt1tN4085QQ66V2EQ5pebWaN3416/uxQqkiFXajbNI32H6nTpGJN2/U8lUb7TwtLAYBZykANnjjWMQg3M9dYBoLS8hck6JuSo/1IjuU7sKvxtG/sPjG/7wcOCrcaACz0vkl2ugdwnrBvZZ952hqrVR16ll3aHreJgz+ykylEyXlaJVV6/xIpSgfnBDrfQOHntYOvg4WlJwnz0fYkF8I4q0CTIo5SDVShIhiyOLx0gF22Fcj+16XNfhvMNU5fNnyiZWDUlrjGod1XmK68iuo7iuTY+aRaUofxPj1Xcb5cxKBevK1qQbo6LuuhWeus5WOhC1+fKahJPU0Hh7ey6s2aY+VcDnDtLre/FFH8/SuHU5p83OwLRuquGECAaLoYrFiG8qOsNupwIgYwVnlbKgtiEZE/R5yrmJ3PINgTSGlhTTDGhFQBIxZLrONp6nEm8rjTeIJvk416vp6moIuPGV2oPbTrRWr28juduK+FLxKYi4lp/qqE7tkVIoxEW5iSFMfPzwws8//Mo///Of+eu//Il8OvOt85RhII0zL1KZUtZF1+aKQmV00HvLm73j7c7y2GUOJtBVoQOsqSRTGWvmWgozBul7uscjtvNQRJM7rldiUIK4+tspCpok38ZlIkhqxXtQNeLHJfM36xms4+Gw4+F4VFcBQGR+dSd6b3nYecKiFArbKbGZIviSsPYKcMsFF9MOLB1nSlHk8vTykXm6aAdWEpITg9XNP6yqxqqFRcr6vWwuiNWHx25m4lWTS2JmWhLzrKbkxszUahHb4fcPmP0jh9Fgh4HOOIII1+lKCFdMSXijxWJXUR6R0Lhk60/5dOcQ+s7jpWKrpXOW3ThgnSOXwrQsWrzHwOAd+6HTbtI5hs6rfUWMDdnJPF8XPp6TKv4LnIMm5KxJL5dZIzOvIfKyLPzw9MwvLy9MJfLhcuWHj898vFwJSZGqW21TiTlzCYH3p7PSCmpRlLUaei9clsB1npmjmm9PNfF81efpGjOnaeHlOjEtCzElvvl3/47x7lYMneN3b3fMS2KaAhORpSjiuNEZVvJm1YLxk8GDFl2t0K+rw/X65+/Pr5V+shajRb9fyZDirREq3oA3uB6GZnmyN4beO3ad52sRjjnhlwXmSVtZ322ftLOGwVv2fcdx7BE0Su/+dey+wFeqaBQfpbRphtqeeZtwZm14W778OnXZXELW25Sb9+uNY13bzVoTYQQ0s3nR/dk5LQatc3r45MzL85l5Wtgf9nSdY394IMVAWGamsID0+hpEVF2b12nJ+j+NHzRWNmsf75W32vcdu52O/Ncm69V9qFUdJfKNerIWmSHoXh5a8RlCUqS1xavqdE2wGLwVRms49o6Hfcfx0DP2Gg1ZYyVeLWnOpKC839VSb11yeS1At32czRfSWIs4LX6Kscyu59rv2SXdZ8WoG8CbhwO73Z5SCpfrFbM065qt4Fwz3/Wzr/WTddGa8jU4gGYNt9vtVJBT1Ttzl/vmLVnbsdeS3aS5ZcjKldbte7U/CnPcJkyzRCwzcU7M14XTy4XLZUbDMNQ2b9wNaqgvFTGhYR/qmbqE1riu0ycv6iiDZoeb9pzWkrdHWirYVtSYltqXm3Dwky1Ti2ZrFZX1HdJ12GHA9oM+wyFhSsHUrElmTghSWEhKNyqVLnuOxvMojr1XSkFyHR9l4clELqWSpPlLG2GP8Lt+4Hfdnm+k501R7urgLOPbBx6+G2G/ozsOVFEfT98rT3pwHQOGw4cX+vkZXzNupckAq0GiM4auKrWvL4m+RIw4dl6YekuQ1/1IKBFa0EHRTQwjjt6PijD2A3bcI32vH3bM4GdsP+KHgSEOZKvCHhEh50hYJqbrhanf0ften7OsKOraD638+wLt99tktAmhNWq1TZizniUmV60bqsaPrkWna6mMtVasJExdrZva+jTK9zdrhbViDZ9cn+2iytlSdElSohqNECgrWb6NzWxD6zpXGRwMXui8mpVbZ7Gu2aSY3OwaEovXDsygVgihVdQNrMR5UT+/OyWUad1239+yU2Mq24bsnKfrenw3INa2VIAV72s3XtbxS22HcCMQ/D02OusoV6jV4JwaSdeaKSkQY+Lp6cT7X9/zy99+4sd/+5Ef/vIj559/4eg8j/sDvmRiXkAqeVma4rIVy1J56B1vdx1fvxl4s+sYS2UogT4LHYIXoUhmR2ExQrYd7vGR3e+/w48jpkK8TCwvL4TrTJwDYV5YzEIKShzPQJE1pzVTq1pwXOZEiheeho+8fzgyh4Tt1ENSuU2nV/ei85aHXc/VQIyWfhzpdwdqLJi06GZJ3QomsQLi8V2PMUKKMzkHpuuZa1UV7c5Z3vaaW59iYa6ZS6mE0jrXUqkpU1yiZHPLAxbREXfL/qpo9x1ippaIMReMH3CHM+ZwxewPDB3aCYrnsiSu5xmTQsv9Tlp8+o6+6si+PQg67rrfRIHOO5CKxzL2Oj6LufD++YV5nnWEWSudU6RxWdRc2TvbxEhle76msCjft1QKSkdxbdrQtLcUhCllnq4TP7288MOHD8wpcV4WLtNCznXjionKkLf1m0vhZZ5JIeLE0HvPNRaGruc8zfz6fOI8XZsNS4WaKRhOS+T5MvFyueqBVDLxk3Hi2Fm+f7vjOkXOzvCC4VyFhayJIpuP5XpS6f3bVOutIVxpL7XZvbCNSe/+WW4xlCuaWqo2j2kboxpsNQzGYKpjMI4H73g3OA59z2Hf86Z3PBqhy4kaFqJRpqkRpQuIETrv2A89x1HdC2KLuS3NBH1wn3M8lZN1U0enUrFJyDa1mOCWyOSaKLKuTg+1TQ1u0aTbcKm991WBvU7kSyvo1hHZsNtpIyqwlMI8zSpswWCa12T2XbPbSdiUqFbH9RVFbpCVz1g0ArUhFooCWrrO4Zyh7zrGcWxjVf8FBTOsdgW12SSpmEW/QsyKfrbR+hb5W1YKAir0EGFvLYfOcRg9+32niKsxSGxsSpM1uDvrKPq2Z7N5cjZSkK4v0YZs5flWa8nWEqxjNo69MVyb96/zhsPYMQ6OmBMvLy8NNQXbCs71MNfv6TAP378CMNa9MC6R+ToRU6IK9F1PlcISJwUIGrXJbCCnUs62QBVjNlpTKpkwJy7nmfPLhXnSFLxa1Ct4uS5cLxPPzycu1wmxlm7oeHg4cIwHQo50odPkuLVZq3mblpTa1OltnZpVVd4+z5JpdlgturQJ/qgqsCu50netq7y7DGCMutW4ccSNI8Z7xFoyeXMbcN5TTCFLBRKxBKQUuiLsS+GhVL7B8MY6OuPIxrOvjoNJnGslWsF2jsEqR/Mb5/jadbyplmPSIrkzlt3jG95+9z31uEN6SyKRS8S1wtNh8bHQXRNezjgitq47WW3nD3hrGVAKlS+FrmSowmBhcIbwibA95EAKc9NgKALsXSvK+wE37LDDDpwnl0wyC8l4qu2wvqcferJoGlsp+qzlFIjLTJgnQjcqCNUavzVWG2ktpTTngFJbwSmsXuD5k8KzpKqc/DbBEjEYDBa3NSJiDNVUUlG6DEZdIQp3z+SXyOD8ncKzlKw8uGygaHeeUCJpFfXjHLqJ43jhze7McYyMnce7Hque723OXxATCPOFS3du0H/mxWZsSZynzLQUIrIZHUtt6UZOD9MUi3b23m9WEj7rS/ddT9f19MOI78cW86Qjny0lZh29lJupuxafZiOn1y94btVSlSBcYLfvcU4a9KwRer+8/8g///OfeP75PfHpzE7gn9694UEcBxHiZPnFCM+2oZctrcNZ4dg5/uFhxz++O/CHb448DI7wciKeZySjCQqoNcTOGfrxwO7hW45/+AeO/+GfcMNIngPh4zPLL7+yvJyJ15nr6cxVzuATNheq0dSFKSbmqCPDROXH5coHkubSesvh8cBX337FbhzUB/Rf3nOPjVvr6IYR4wdAePfwhofdjvdPLyz5olzNoCpUb7Sr3O12HB/fYZ3jfHniej0RwkSl0nUD340D/3HX85gD9fzCRRaeTOGUC9dSFbHNibqoJ2oWLaKtbQbL3vPQdwz7kUPcc71cm40MXKeJXz98IIslhci4G4ghcnp+5ucf/sp0esFK0TQcr2j60HccD3seHh7o+0G5XP41KbqiCR4kjQ4DRWjP08y//fKeEAI73zP0HV3XqxgoRiQX8poPHgLUihMYOxV9NIofq0IXhM57vn3zyDePR0pJfLw88zydmOKCs45jP2DFElLRDpZGXWlrOpaiHLis3LmP14l//fk94/Mz1jrmZeE8TXycAyHFLTrTmFn9VpPyYMUq7+lTSsrgDL87dsyd5dp7XvrA8xB5uQTO0y22b7Mka+3viuJs0r6GVpV6o26scNV6N1bz7PXaEMHaDkVRqk7nRx4ejnz9OPK7h56vB8PbXjh0jv04sn9zZHcYtdmplWWZKHHGt5FqqeB9z3F/UKuYnJlrodRMKSpMM19o31dkUqwWCc1nQnnhqCrZmNXnVSmrMSWsDSsQ1v6varP+ahjTJkJimmm+bUWp+vAty4TJUQ9V71RIUPWZma5LKx4N+/1hC1OIOQG2NSxNGGA1wKPWuvG0VoW+c1qoplQYhqD2dsbwyZJQGk1D7IoRTFXvxhwLMRZyrJQiDS0CbPssa1WuLdAjHKzhaC29GMyKyiV0kpLA1IKtFQsttrd9DrWSRfnz633Wtab3pAgarai/QKxh8B27cc847lmGoSl7K1YyNU2cT8/M07V5FGqai6bttB2hVlw38Lvj7149I4r+JuZJC8zcit6u93hrKVZTpWLMuJjoGg1rU+lXXd9SjdrSpcLL08yH90+8/+UDv/7ygcv5zDLPeOfpfK+NSVKv1eu8EEuGF+HlfGK/14Zh3A/sj3vG/bjRJpzXL2k86nqnjVsLk4I+Z7k2m7IQiUGN/HPMhEU9q53bsz+Md/dBRbFOLGI93bCj3x8IKXA5vRAvM2UKeITRWKqoiKsQEUlKl3GOb6zlG2N4myoPOeGLCjat69h1I5PzJO+wnaW3lp1YHmtlnxNdzrishZFzgnQd/ddvMe8eMYNliTPX+Uw2hsWyaSdMyQwNABCRJmhChVZS6KwwoL6cvjbkdzP9/bymiCGS64QVgzcO33fshj0PD+94ePM13e6BYnuuSS2vzueF8yVwmRMxgRVPbzNCohqwGEbnGYzFAZI1772unLv2OtaXlFE+cokqiJWkrhHr+bN+YKUBI2Q0FayWhnKr4Ki0ZiQ3/9WU1IdYDNhqqO5u+pYrxpTPDIW+UHiqpxVRIVgjog98Vvk/RpXVzszs+itvHy682Sc1+3aiZFjjG3JZEEmEbqaTM8EHTTsplbBUYqosETW3ZfPU183OG7y35Lz63dlWRSsKCWqv5J3F9x3dMGC7ZrtTmvdUrS2yr3HQWmxXaTw7qmnWQF9CPivzFOicox+8KmXbhxJT5uPTiT//6QfC0xOHUjn2HYfDnkMs+Cnwvgp7YEDFCy1Xh4MxfO0d/7gf+U9vjvzjN48cBsP7NPFxuqHApYI3loex5+3hga+//pbH73/P7vs/UL1nfj4zh8JymglLJSTh5CNnt6gdhBVVARrLiwTOBIy1RKH5TS7gPf3QcXjc8/jugbHrqEVR5vvLOEs3jPRi8c7zeHxk1w18uEykqgRzB+yNKs6PvePNccfX33yL7Xt+/lX4QOJcVDe62418/3DgPx1Gvg0TNs1cSuJXA8+58pwrFylcSmIKhblGlqp+CngLg6fvPLtdTzWGVCon7zidJy6Tipjyx4+EkEjTlaF3xHnmfDrx4dcPLMuiCtE2BvWdZTd2pBSxVlFh5zqc/zwyMyfN1EVqiwpNnM5Xnl9eKLnQ7S2m7+msZXSOsaFHozFko+KM1ffVND6ME7BrA9QO/r7r+eqrdxwOe0JceLlemMOMSOUw9Iy+Z1X163h7LfC0I59j4hSi2joF9Vx8vl55mXTsqKbWkVgFbw1WBN84ayLQN5SLqhYjn6q5B2/57jgQx8ocCs9Dz9gHvJ8wTpgXtUhTRXfj1NZ6dzhvOTJtjCy3QvP1Y3j7jXr/j5VAQ0N6Dc4P7HZH3jw+8PW7Pd/sDV8NsO8s49AxHN/gjw/IuCd3vRp050xGPX6t9+x2O96kR7UyCQtSVNkeawWjrhyfXjcLkdbl16rIdm3UkVJu50DVwijcKf6t1TGucbY5fLKN5+X2E5Ru0hLfVlFhDAHJito73+FdR61CDJkU1DpHpNtEffNVfTRzbUWbse3nNwrSih7btfg0W4RuyoV+6PHetymQfHYfNG1MI4ItaoRec6UmxR+dWacXbAIrkysuF7pSGSqMIsrTFUGKWsNVA1kEl8Hn2iL92ArBduPVK7IhSrqwmml3e6016ylrBUz1WvDtDwxv3pEPD+AEaibOJy6nhfP1ytPHDxuCL+373qKSod/t+W5Fq9elWuuGTseoFBqxgjVHnOvw3oOrTSSq/Dpa4ZlbsSdtQpZjIUyB9z898de//MiPP/zMzz+9Z7pcSHFh6Ac1tR96em/Vx7hmdQ9IiRA1da7vPft517iuimZbsYjYbQpRpWzADdRmE5c2792wRObroqP+KW6OBPMUWKbI23cOXpFyWg0mBus7fD/SjzvSORGuF8LLGZkig+/ZDyO1JlKNeJPZW9UX7K3ja2d5ZwyPtbCLBVvUX9f1PeO4YxlHct9jvKWzhkEsuxDpLmdMzuqr2VTv1jnMcYd7c8SNHhbLbKL6UdeEyZU+Jfq1eBTZ8tVLo8sZSXgp9EbIGGxV1DnHQk2qT3ilxoRNp+CcxbuO0e84jA8cj19xePgK0+0J2XC9zlzOEy/PV66nK/N1IYWse5y4jabUOc9+UO/l3jpla+iBoF9rvdPymjJCCZESE6SEyQVTVlny3XZbtfbbALuqaYqC2tNJe9Y0KGJdI3kLGTEiGGn2d6Xg7P+owjO3rnhRLgHKN/Gdw/se41T9FVNUE9fm6ZVqoWZBao9zR3o/YkxoC3hSzoo0UjuFIpUiN1sOU2nj6LKN88W3jpw226gFNeEq+nMJFAlgCsaLGtiKQK7YoovFwSs7jzXfvN1dsgikepP/322j1totISJnhayldW45w+U8YZbIOPSMTkniOUTS6UK5BoZU2RXDAxZjPaMY3nrLt67nH43jW2N46w2+E8RBEDgDoeqH99B1vDs+0u0fKN7w8fTC3/74R04x8vTxienDE+HjM/E6k5bAeZm4hpk3xfCVOHx0ZDF8WGae4oyzlmqEH5crz6bw6N6w2/WMvcNKYb6eWb4QhWetZRg7HQ1YjzFCLOpFOQ4d37w58sYJ7nRmlxJf7we+fbvnuz98TR13/FEW/i2c+fn0kVQyD1L52hrees+bkuiM4WiFA4ZJKpNUrqVyqYlrhakKU4W5QpRCjuCWRYuhriOLQZxDuo40KfcppBNpWkjXM86ajTh/nWZKLviVDO0UcZslcfULJ38lxYrvIs4Pnz4eTYxkWtawYbAeuz/gvtWDV22xBsauI+92/MN+31wBei1EUt74fsY2dF8as7kdXtZaur7n+PaR6ix/+vEHPswLgzXsjnv+8NVXvD0c6awDpOXhtu2jPSqXsPB0vfIyTVyuCyVnpCG0udZmlpxIRRvLzjn6ztE5tyWXGaMom6mw/yS3fug8j28fiamwhMTYLXgjUBO1Rk62YOZC2+Oab2eLJawronNnMbT9fm1TiNuovd5ZNb3mDFVoBesawRljs0AylmG35/HtwNgJ/eDpH97RHd5h92+gGxlzIpW8ob0lBJbdlXHocVa08KyFOUyIBGqsn/EaoXn82pZERL1D2YTVf1RfbhMLlcCaPqN/t6FOpeikZy34rNne4Tqew6wIr47v10CLUtTX0BqHMY6+VxVrToF5yvTFY60w9KOacIdArQXv1MVkFQttr8fdwhxsQ6VzKup/2Xm89581qHp+tEaigOSKbQWlegW6JpJokZBeRT4mJGzI+JDxKeNLxknjmrbFUks7L+5Gg9Kyvc2KfLeiflPoV5qaFxVTGFHwIWlsovUw+I5ut6c/PFCPD2CEnBdymikFliUxzQur0NCUuj2nIvrMuS+Yha+OMJpApfoEWiFdU6YbPbY34ATBUhJtrZTGfW16gpC4nq+cPp54//NHfvrxPaeXC/O0YMSyH/caNW0N+6HjuN+RS2GOkf5yZVoifd8zDj27cWB/GHnY79n3vSrcRVhCYlmC+sOWrGdva4iUl562Eex8DVwuV+IUSUEFmyllciwbZ/fVKSqik8l+oB92GsPtPNYYejF03tNVx8E4Di0cpooF55BO12BvnFoaAQMVL6qTqEawncENnjL2yNAj3rYCvvlQLkLO6uOLUS5/FtWIuJKwFeaiBedUInMpDGIZXLM5Qu2eikiTNlfVJ9SIFP0ypadkmKbMpSiPueSyyVXWq7MecXv23chuODCOR3bjW/r+Aeyea4AYZ15eLpyenzk9PTNdTqRlQkqgt7mpy5Vjvx/3PBweeDg8MPR7jOmwzEiqEAs1tCYTJfmlCjlGWAI+FQZocNjW2up+b1a/6qqG8+1cqW1dr9f9tlyyThCMWLXYEqdODeue/cn1WeFZSibHhXnW8WmtauMwDD1lyGoY6ywxFpYIywKz10hEa8EZB9Lhizr0lzJRSkfMjhAjy1xZgrAkIWQtzEtur35zz2+5sqaqAfg6ghRobHI94IBKAElglFtoxFCLYYvl4m7zap1Lab8vYiibUf7nl2+jCO1ClR6kh7ulFCEukT5mhp2iRYCibOcFmRP7ZHiLQ6x6gz0Y7dq+wfO7YnhTtDcsFqIRrijiN2dVMVrvqW8eqMOOS0y8fHjP3378gZ/PZ359euJ6PhOvk3pnlsJcMpHE1+L5nenoxJKr8Guc+RiXzd7lKSxEbzk66HunMaZp5nI6cz5fmtL87j44C43/qSMTLSSst+x3A4OpGGfoauE4z/x+3/P7hx3ff/NAHQ/48we6p56dM4SYODrD75zlwTl2ydCJMIgwGE1XSBhmMpdcmGtlqrQvYSowRaHMavVBSGTnsLliVo5oSiw5kJmYrieqiCYJNfHHyqBUPpVVhSCJyQY6t1Crocuw37+W4gnCset1IZDx1rDzPW4Uvj3s2ujD0VuLt3pgCxVnDN7ajS8lK7/RsiGMwqovaLY1fUf/eGCm8PHDez4ag9uN7Hd7/unbr/j24ZGhqaZLaRuImOZvWjkvMx+vZ07XK+frzLwElpgIrfGyKBKfi5LQh94zDpoS1nlL7zo665S2U+G97zSVbF0T1vIwjqSUWWxEM3sjc3SE5HRLq4W5wZKp3qImy1ZQrsXnjQZ0y9Zuv9cefBXmSVO1A9zERjSqQYyR6zTzcpl4vvScjwNTVW5ZvxvxD28Y33zFcPwKOxxIVdXkTaVEWRbCdGF0jhojl5cX4rJoUZczYsorHt+2ibYUnFUJfhO7NC6VtLSx7fea7EVU3b5maZdSsEULTr8KO9Y5UC0b1w+zNi6aLIcoklqL+jMaFNESIyo4LFnlcp3Hdx4RIbXkoc0uZxXvNZqTWifZrfmm1IbUqMDTrF7Pn123hLhODINo8VDE4Pqebhzp9x3d2G30Ka4L5hpwc8QuCVKgVuVE3kq6utm0KXquiIz+uygYUVaBYnP4gHYYKlpdFbMgtYIQ72EYsLs90g/gvQYc1ButKqZEiLoPrAYFqwR2XdBfoLDd7q3V8bo1to2uM1Jh6Hrc6MlOJxUx6KQxhMgyB6ZpYbouXK8z56cXnn995unDC89PZ0pGo5B3I/t9D1WnkJ3XZ7jWirOWlAqCZTcM7Hcj+71+7fqB3jlKhXmJvJyuPD+fOT2fSVGnPr5zLQVMR885VXKCeVqYrjMpJGorsDQNq635T2pwI4bDfkc/7Dgc9nTjgPGKNO86j80wOGFfhH1VwNkYwfXanOhEyDBiGUulI6sDiajnp3FGPXl7h/SO6rTBKBlKErIVckPLEaFYSFJbDGTEZphKZiqFuRaWWuhthx+akFlAscbaTP0roFREKUmR1GZDlpbEjOh4+QtPhrOdIrjDgcN4pBuO9P0R4w9k6ZkXuFwWnp6uPH+8cH65EC4TNc44AtUnel9wruA6HbPvup6xG3DOU6vFVIMpBslQY4ujrTexUU4RgiYQdiKEVlDfP8m3CU4TQeZ1525PorRNfeVOt2dA0HRLa71Ox9FkpC/tE58VnjklwjIzT5Ny5qqod5sI1nXYrlCrY1kspxeHzZYwFw4HYTdWpIvkNBMWsE4f8CU6TlfH+dlwPWWeJ+E8Wa5zZQq1IaUN2WzeZWsH/jp5dy0W2N44kihVrSVK1qJA7Q4q1JackVuMYQjK/6Gp8QRVRzcxzv0lsoqavKKujSeRMsRYybliESwVkyM1O6K0JIZc6bPhm+oYrPCd7xgL7AvsovJOxiEhU9Sc02I5F+EpCx8CTKHgCvhqWcaRi7dcX0788P6Zf/71iZ/PF07LwhKVr5WqdmJiUJ83k0kS1XUA4SyFs1Uz2pwzU0lY6Si2YqVQlivzy0dePjzxfLo0t4G7ReI8bhwhtyQRbzGu51D3QGYmk8IM3lKrx44d3a7Ddw7XWb7rHW7X8d2xpyTDsOs59I6jiI4oGhGhNpWZiObOO/ThUE6k0IswAkvOhGlRRFMMWQSPoasVt0QONTHVquP5ChEhAgFpfm9a6RkqUot2xCVjrWeIla5YetMj1n+2Jv7xqze4Fq9maqW3TseHosIgjwrDnKxxs2CNYJuNVpVbHjRya46UQ6OH62pJ4Zwqn789PiCxgHeM+5HfvXvDm3HE16KNmW3RIhhiLswhYsXh7cjjYFgOHe+fz/z08URKOr57s9/x7nAgp0oMhb537EbP4TCw33V01eCyIG10dEqV5e6A1UJzaXxQTWZKKWNF2HeemhX1slWQklhKI6qLgG2UHstWZAproSmfHOTSxppry3372ojrWb/fdZn55UljBF8uJ355+shffn3g3//hO/7pH0e6rwYedw/s375lODwqklEqJBUbpcuZGZBp4mI9g+txtqOKI1Wr6Gj5dLysjVnnfeOQ64tf0bd7aoFAKybX2MMbMpZSUmeGpCb1pSpR37XImPUeVIpSjaquI9vSb1b0WFOClNK02puICDVnUmj8UVPxzjeVslYK3im1Qsfs0r5WRXMzaW+8Us1U/zyrffWnlWZ46Hst+LPzUMD2PX4/0h0HuoNGRlI0uaaEpAVtqYpWFUNuSu8GWeov6/qs6Ki/JSlqASqljYrVmsiIqD+htTpyRyjWk12P3T/gH98yPjzS7UeyZMJ8JpTAEiaW+UxMi/pl1vY5NpqDlbv0OuGLkYA6WdMpnvWGcdD0qTAHxAq7ccTvOoIk5qSioJfTiaenZ56fTpxeNB51us4s00K8BuKSSKHQ+Z6hHznuDzwcdsxhZl6uWkSeJ+X+hsT5ciXGzOicnlNF7X/IiTjDlDIfzxd++uWJX3594vnDCymmFlftGYaucYYrJWuqFkXuJg/6uRhh8wNdRSW3s8Pyu2++ou8HxsdHpB9I1mDigD0eMS7iI+xiZhcjgzd0naKdpmsCNzG4ULEhY6S5szTaw714rIiGTYhRLmJuU9X1pa5UPmTNhdKGfanCtVqiVIyHoRs5SocfTrpXyeq6QKNZKEhgqnKQVb/TgjGkebdWy1leg31KXZEmwO4wrgPTUcQTiuW6BE5T5DRFrnNmXrQhIWZqjYQckFyQHkpylCWQpoVgJnKn8c1KTexAPKUYUqrqNFPWSZdyQAV1rbCie0sttcXc6vMjd5ZedaOWyM1vvVGBTG3piG6l7KyWSlapVSZ/uVn/9DdKzqQYNOlgngFDLR25y7rRiypQY3JcZ6c3H0PfC3WolLKQoiHFha43DCOUapiC5TxZLpfEZYY5QkjqGLAVniKYlhMqbaMBlPtV6/aGdaGrn6MquzRqrRI0MitnSlKYueRITkHzzlNsSQc0fqjf8oI/30QVDex6RZVijMzTzMvTCx9++ZXr8ws2ZT38WzRcbJ1PzZU+Q5cNR6OCnqEWhpwxMavB7ZIgZFIsLMlyzXBOwilWrkvBIxwqLM5yNZX384W/Pb3nTz/+zPvzlblxHpPoVxbonGGPRaQQJSEtGSIgBCDkRGjjxRGnBt85Ml/PnJ4+8vHDB55eLuT8lnuCinMWZwdKjJoo0nlM1zHUgZIjzFcWaxBvsTjcYLG9QZzaxzw4g+ssXw0eErheu0m7mYIrnJ+rqBJ/Hdfp6lPidHtFtqop+JKbeW4pxAreGHpj6ErlQGUWRUqXWlkQghiCCFGEiDQvNV1XZeVVuUxcErHP5F7teu4vA3xz3NOTKSlCzq35EHyLJjW1iR5oPDJZ3R208OS+4Fy/tmKqbWobWq8F95txwD8+Ync9u8OOtw8Hdt5ilqCIpHdq+SWGKURyKAwG/NhRRktOHTEGfv6ohvad7/jqzZHfv31LmFXl33nDftfz7t2BNw8jPlTslClzIodMlyP3cEYsmdMyE1NmDpnneeFlCcwpt8MYvBd8FroilKo87ipGDwMxjdNZG41GGnLZnnmh3a/2/N8JczaT81QoqUCq1FiVs3lJzMvM8+XE+5cXfnk5kU3H+PAVD9/B17bDDyO7wx6M0wa1+XvGnGG6sojFtnz4nIUQK3OsTFF/1qeXKsDNxtFbC8BGVNpQ3bVpXi1zRKQhnWuOuhYruRmfWmMQV1mz3dfNvgGqW1PjrNXDsaH9pfnfChZne1XtZ0UCReqWcFPEkHPURuhu5K8q/FUgKi0YoAV5tO9fS5Mzv9ozBd85JOve7LpCPwxUq+IEO/T4/Y7uONIde50+pcIyLVqMWIuxhWx1D1Nx6g2IMFXUx7fRsVhV14hWAqUgzTrMtOmWbdGE0prN0njqdhzxO/U6lZpJ1xNzWpjSwpIWUpxIcVZKyt2UwrRJxn3huXJgX90Lq1xZ0/a+fuz0c2piD+8dzjpCzixT5OOvLxqz/NPP/PrrR16eX7heJ5YlQK7buWjEYW23VVO1CDFmLtPCEgOn60W5pc1b1ohs0aXzPCv4UHU8+XJdeP984m8/f+DDhxeu5wkqDL3G2lKUhqEj9EpKlc53DH2vFAljG8XhhpB9WoRba3j79oGu7+kPe7L1zLUivccMPRWlO3lZ6Epm8JV+ADxUD70XOrFQk3rOkdkierktwYIKy9a9dc0ebzPKe7yuFYeWai1JDKkaliwUDL65f+ycju3LqghvDeJGE0JTxm5NsmpUbONeZkDS64JLt3gFWXIVTJHmUSrUpAE7U9D9dImFmDQgRXLFlEwsEVszzghxtsxyxRRHiRbbFcRlQigY4zHiqdVp/RP1M1/9zyk6YF+fb4ps7zE37+0tQ7BpZVbB5AYM6urXNd5oQWLNDQWFG1/5C96un5vSUW/jr/sPrPnOrYrHKoaifRTWCfsd7PpMyjPTHAkJdtWxO3S4LmGd0axVa8AlbC3YpBtcXiF6EapYxGgi0b21UylVuZwrL0oEUw0lQ1gCuUzYBRCn2dkpUZIWnTnO1KpWNjEnQir4boDdcd0lUAP7+51DRSf/X8b+bDmSJEnXBD9ZVdUWAL5EZFRl1jmHuqlniOZi5v2fY656pg91n6rKJTLC3QGYmS6y8VywqMGX6KE2IksP94QDbqoqIsw//0scdNNa5hu//+Of/Pt//z/4P/6//zv//Pd/x1yuRK+RUYIqiaVWXCmqVNwKzTSaqfiacbWnFjlHFVXlSbcuaJ0Ll3Mjl4Y4c1cXexHmmrnVwiKVZNqdX9GEe+emEQZCbqjfF+rZ1ZqlNfPGORY1Pd5S4TZvfH6+EJzVrvdyo44PHUHrl8I6rA14ZzUyLI7gI8YljLWEvsGGaDl5wzCCDT2VYecfNtFDO/fqYd8SjEWsRhzu40Z9+NWQvDVNJto/4/5AG3YSs8H3IYiXrha3Ok7JRvmyGbTg7EVnEkiiBWtuVhFRMbjSMMtMQrikxHGMPzwTzmoUG9YhVVWkpn31mbpxunxF7ZCe5MC9aDBdQbp3jlqYmjcuO6CxnNU0rDRGbzicRk5PinKMOwSf9yDJHb1r5C3RjBCOEWs91TmcdZRaiePATz+955ePH/j58czLp1fSPOMQvGlM0XE+jnhTIKkZfW678O/ttZXC5/nGlhtzKny6rny6rKSiRc8eqdqCKrVjtPim8JRmgNNTWXr9IPYeU2i+ul5i1B5n93VN/VDdejJLWTNtrb0wAmmVrbQ3T1kMH36/8NPHC+9fbry/rZxz5iCijYHVtWtbxTRN9Kml3NGjL68Ln18XXteVpSSq/zGXWznkcq+D7vxN1yNdO6WAttML3u65RVNFajN35L2WRrWF4hx+r6u6wtwaRfh2O7v9LajfsrdOC14jGNOQqlGxhr7Hye4hqHZkzgeMo683NVN/o3+I1nPdCaRkbfAtMIWo4+Ovl4c1uBhVXNEqxgd8RKHvJipQPOq41cegIquSlCJiLThBnKNZq6GezmC9UdFVcHpQS1Pf16K53rKjbAa1hxFNeGvs60z9Ondjc+MtJlisq1A3yvWZtF65LTO3dWYhk4xmmNeUtLHeG8O+57iu6N97ox9spYDpcMBEVZGHIWJ9R4/QvTDnTKZymW/89vkz//6ff+Nvf/snv/7zN15fL6zrSumiHt+T0ZoBWqVtC6kW5nUhBseSFuZt1qKilwjGWKZRUdGKZc2V2/MruWTGacI4x2VOvNxWXi43WjUauzrpWP5wmDhME2lLPH+5qC9oLXjvmaaR6DVxT8W6cm+4fngmjGGaAiFGQnQUaymlqVC089KbtepaIntEpK4naQaP7gmYXRC8c2z3CVlvTnd0sTeqO0pn97Fxr2SMwOg8cTrShgOLhUu1tE15n/iGj43oe0jJ7oSjW/K96CxYMpZs5D5u1oatU6UwOqP/ekpUK1kKmwlYAql6nIyEkDCo/2a9F7Z70Sxv1l1dJJ0TLHWhroX5konDRhhOhPGMcxHBYqxmwBvjgXoX0xgxb/Sd+xrpFES6FqY2XFV7OU1F1LpL9+uebGl2wSP3N+j9I0G16nyQtg0fB/juKP0jN+T76Ov+Ngqv7ofCbtjsPPhoiNEwRkMMQmuqtky5EYqnNgEaxjncEIiHSrFQTaZUKMWQq6Va5dtZ4/p4xCuqYfrBat66XHMvgoNy9EqjtoSt2ikrGlIoeaOVFdpG8EKMDjb1uqvGagSjD19xEr6+DsKWFjXBt55tXrj8/plP//FXfv3//G9c//kbfl0ZThErWvPVvkHbVrG14kvVTo2KMwVDuxN9dy8/adCbkHuHUJuqNmvT4mMD1lpYW2UTXbR94MBuvLwXZK1p4SkNmnP6OTtKVHsRVwVya9zWxOeXK3/79TPLmvj98xcut4Xzv/2Zr/dSnah0bz9rsEHHA6pOdQze46KaS5/FcZxG/BgheJq1NKMHcOuVb21NFbrTpPdzXRQeTAlKwdSKqRVblUOj47e3MZsCHjqOd1R243Ghi1L3hW71vhSU41OMckizGEVCBTZRNDQbq0KFbVNVbMq0908/LA+M9IWmG2bb/e86Wmd7C6wWFaK2XX2sY3d0xvSbZ1VpucsBv9J5s9sjCaoQDA6mQZX80xgZMLQ1a8Miu+hC7mgXwSqy46CIEINnnEbO757483/5M396PPMQPdtt7pY0gjVCDI5xDLgM4gq5F8hvGnJ95dZ42TbWUrmlwkvZuLasnB7tMQnB6UcTbXw0T3kXde2G3GrK7Y3D284h7KMa+rNTmrDVylIqt5y5rRvXeWW+zixWP5+UXT1PN+gXigjmtvLldebz85WXy8xtWUkp01rFioMm1Jwo60paV7Z1ZVk35mXjclt5vS5cbiuXdWOpGTd+W3gKbwed9Bu/i3V0g++n0j4N6fuT7NQBq3fcWh2f7yKiWnpikeEtzmBHiqUTzqtg6l4B2TtqrM253BuYfSc3O8osbw4Dmvr2xjGV1tS7mU4O2KcCrXs3VsGhqJD7YYRmaTbQjHK7bC9sLQ0r4IaIGyLWB4Q9ihgtOmPUEaj1WjgVMKHhgnozuqAotJjWQzIqGW3yrOsFiLX9zOgq3J5k56zp67HhaNqoSkHqiiyZ3IR1vpLWmepFfZ18oOUuQJC3c9De3/t+8ON4GeD0cCSaEzEG9UG1jlZ1/TTpQtfSuLxe+fzbF/7xt9/5x99/49OnL8zLQin5PrqVANZ6bSREk7LWbWOelcKTa1JOey20pi4jznkwVhXftSDryu+fn7nebsRhxDrPujXWrI3c4TDxp59+4v37R86nA8fDxDiOXC8zFoezNxafGIeB00EFTc6YnlJV7q4xP4jvDFiv+evW71NM7cbkK5umJnsAiXp8NzTZZ3QeTHjb+/cirK+te+7Evh77OtzjjHfJjNzLLXVbmLBKm0sVuxbMUlQs5ARxK62qAlzpM/tUDgqqYt+MZbGWtbUOHkhHf7lTEL5/1VJosmrCVDGYYHA5EN2Mk1E9zdnRx9avqa4dcFgX1f7Ko/XJVtjWBTc3wlAZJ+kCrkEbXeN6RaiahLfY3nY/acxO4+nF5P1nNxWRa9HduguFxs7u0wMjb0WnDu6aRpsXDRrIm3qLRw5w/PZa/BiZ+c177xa4E0110QkxKE/xfBCOUxf1iBaDIWr1bIxlWQxbNoB2SiE4wm3D4LpRqVp5KH3bAToC9y68IUf7G71A1lpcT0wSPLlY9QE0mnPrraOWRKPinGcIcD4GHk8Tl8uMEQ1L9NYR40QYBuL4rQVErY1f//Z3jtPENB6YXy7U24K7zsTnC+PLDV8y0RslfjZN2JG+iRepZKmY1tQYeYj4YChb7QR1RbjMfVPrz0fnR+01SjWQaayl6iZRhVy1o6/7u3OwCpYsrY9kNAkhDCNbSqS23m13Gspt/HJb+M/fvtCs5TiNfH5+ZdkS/89fKlP4+loIqTVs0C7K+Yi12iA45xiHgeNx4iEYzjSmhzOH03uG4xmhp4QYLRDoNg1uGHA/fcBiKKcDcrvRthVbutVDzticcTkpfzCr71jriForDVMaxqrf2tfcOn3pWNGyd83KwWxiqQJTs2Qc2Tiq1beYhrRC7cXclL8VFwlaxKaOclQR1t6JRlGxjuur0LLrBPvmS0/n2W/x3ZtSR1UY0w3Ee1XaLM5oNKXb9459kTun1BTrEFPJrZF601GaRnT64JV3iF7vaRr587/8zMd//YX/9j/9FyYj1Ou1Hwj9MO3jEmM1PUSCwQ4OJ2BS/lrpQRXYmqhoyFTiAI/WK8/VqrjKW4cRB2IoWYsWax3eOUIMxBi6SnrQDG0fGEJQvqHzilYZSwKWKrymjc/LwufrhU8vr3wOGklKabqu2j5y1cWzJ3PkpDSZtG7kLVGL+tgJmVoq2+XK+vLC/PLC5fmVl8uN19vCdVlZtkRKhZSVx5rz94Kzt/G3NiDS7d/MfRxuQA9kS58+9KZSVA3cvqIwWNGRstRG3nKf+Di8r3hXejGlog3nLD7rtbJWSR/WqGVRjF4LLqfPWJNvh453BHbff7wWmRrw4e62LYLcqQ3s4gHrcUZV81+/mkAqVic3teFEpwM+KJesBAsIKWWkFOW15qI502ePF4PJlXpxtHXB+YKPEMeIiw4rRpHgVMmlsYhOkN7oKzpy3WkOd+qGjgMwNRPFMNJ0hFt0wtZEV3YMwnT0MDjmLGy53WE0g+tWVv0M5O3nfp/JDfD49Mh5fHf3O625Kb/TWkwv8HPN3K4zry9XLi83ltvWA1XUxL01de9utZASHdm1dzRPeuwhBnwPBWjiVPFvOg87JW63G7MxfL688Hq54d2MsxFjAtZqeMbTwyN//uUXfvnlI+fTkWkccMHzergizTKNN7b1K79Y57BYck7AducGfq+0ElEuaXQN07QZLFnV8NKVjbvtWBZV/Js1I04dHqrpfp3FdO/t3ugZQ7WGanWUuzviyC7ca4JppgcKGJpRCy8xnpYb5XUmFyHlDNeZOG/UsuGo5FS5+hn7OkOhgwc9ohdIRpid4WLhZnXe5FrDlULNlpQt+Tu0EyDXTMkLKTW8LYhtmGgZ5MhYIuNh1KkiolqblMkp45vgQyAcJk4Hz+kQkFxYrjfylskFhIwmDipKmXPSZlL7/Q46NWrLtKY+1GL359qA970JtYp8StMJXD/rdl9163YIQrpvp+mRyHJvJGtplFRI68a6roz+/MP6+IPC09wZljvOYb/ipO1+mtYoQmKMp4pnyQeaGWh4KoCrFHFcVk8ukCUjruBsxuUF52eM0RGZ/gzAuF4mKEtuH1u5vpHv42ljOg/UuD5eaXoxa+7JEtoWqXDRc5wi54eBh/OIiPDyfGMr5k6ut87+sHm01vj1r//oisATdV7J1xmzbIp0rhu+FPwUVPjR+ua9Xyu0INQiQ4sE69UAuZWm3Lw+ensbC72NDe77JaKRkn1kXNEUqe7a2E2S+3Ei8tbpO880HRnPD1yul77ZdyWr0cLqum789nyhiF6nl8uNlCv/j+8sMdi7pN4ZGWexzhO8Vz/NOnI2wuM0crIGdzypZc1hUiqBVxut2hsIL0KLAfPuiRY8qzekcSBvG6YpgaPljKwrkjZIGVcLtmialskFU0QPqaJCH00/6ahMpzxIv7j6fNl+8Cqy2Wojio70mrWIfUONS2sUIxy+20QBxDjdgKSRamWuFSm1i4oUwQvGEI0hGHDSuZ52532aTkzvd7ijtepJKFjRcAPrVDjk+ji69UJ6f76M1eg/8fZOZWhN18VgAjZ4QlD3idYaYwz89C7y84cnPr57oG0L11tv5qxa+OzZ4krUb1Qr+kwP7o8aeHYsjl7sECBax+h68Wg94FRJ7HWEvAtiQrDE4IjBE6PGMk7jwNPhyGmaOAwTPkSMjyQscxN+v93wL1+oBuZtI+ym15av+H7cx0C7zVEITi2AvNMIyyZIKdQmlC2x3mZulxvXe8G5sdWG8YFhnDiKUl9s2hjjj1ntbreeqXuhsuMJ3PdP2/cysWokL6XpAZhV+Kj/bNPFO7WPS+n8Ru6en/dIxW7wrtZXAe88zgYdywbPWPS67mYKrTW1YbKi++7uIWpNt0DpPNLWaK2vkY7ilKIih9INozXR7XvyhRYZpRhKVesWPbeadkteIZIiBck7l7V1z1yPH3oR5SqyJaTk3pUrrKLNVk9KMYZFhNdS2bq9Er0gv4tOdvs+o6KTnYM4tjcaVqv6M5tAawU9fx02eNZaOjKkG6yOGXflv+UeJNALUb6rPQ+HkYfzWa9AE7ZloxYVfLXuzFJK5XqZubxcWW4LOWnSVQyh8wc1dMSiiUnOeazz7OP06DxDCIpE9YdtF6q11piGQTPu0RGtNahNlumWXdbjnCeEwBiiWku5qE2HWKQqan2YDhjx5Em5vdKRRBEoPVJ2t7hqPxSewpIL4iu+FzS1VFopdzRZ/bZ7nGNV5MxUwVchO6FasHWvRmovPBX9Z69RmmBrAylfPccqLk37WhSoDcq8UT59Jr1Gbjmzbom2JaQmSstcbzPWOOLrgstVY5ulKeggwmbUZ/pLt/7z0gi1EVNBnKVUT20/Rk3kWtlS1rpKDM14TIqM/kJzI8Pg8E4BB22iUP9N65HgcePEcD5wPh+QvCHtC61dqTVpgV0KKW0auFCLnrfGdB9bq4htB/Gtcwo62IKlIT0xUowinhpBrVxZ52xHWvt+28GWPnO9I56IUGomb5ltST1FbSUfN75//Vh4ml5oYt5+ZW/utPAUAqU65s1hGMgysspPjOMB5wVDobWE2AByolRLbpmSN2qeWdYLS3HMaea6bKrI9roQrPFIVYRkPzzs4DtHrVBrUUzICEihNshFqGKhZowNWuQZ9UeMQ2A6TPjg2QoaY+U8NRe29UqhIaaQcwQe79eh1cZvf/unojDjAVcq9fVGTRnXRD33SsV0JM42cDiwHusC1mnsGJ3/oigdmCy4CrYIUnonomoL3VjNmzff3mVhoFhDcw4TArZoEWj7GEwPOcGjm4r3gThOPD4+8fTuPd4Y0rJQc6ZQ2BWaW65clhW6sOD1OpN3n9OvXtZAQDBS7124t4ZxCPg2MRrUVNoqH0uGgXw4YkKgSqIYVd3vYh4xINHTHg7MzvLPC8xOKN4Q/cA4jLSSSEuklYTUyui6CXtR9ClXDSCouVBz0fF4VQ/akgo1ZfVUzaVviCpaQqAV0XtWd75dr047izRa5WVO3zUjBlX4Q+W2bdzWlXXTkZkT5Qu6ptZJ0alNlCKAarcVnCH20YaR3RXB3M9X23TDdR35tk16kdq+udd23ySCrs7QrW2kgS+NkEpvEAw195x2C9Y7BinU+UpJiZLz/V4774lRYwlpVZXqNfWNcN9ZvnomsATj1Yxe9FlOSRBrwEG2DePU41c6ClX3UW4Bky1m1YLC9cL36Xjiv/z8J+I48DgOnE6PDOORagM3gfTpE79dLrRc2W4L23UhzRtlKz2rvqPMfQ8LwXCYPB/eP/Avv3zgp/dPPB6PDNYiuZBbIa8b65JY1sy8ZpZUSM3ghpEPH39iOB1Z08JtvXGdb4TDH3TvzhG8pRkVjyjFoo/dOhojna6kAhXds5sIqRS2daN0wU7tnHYd36s6urSqTTJv43HjVDTjfcQ7NY4PXse6YwyMY+gRxoqY3zmlPYrRetsbR0e0AxaPN073W4xeTzpqthWWNTEviduysSaNv9zto+4vAVMVtfXWQ606srNakJeq/K/WkejWx5JitQGvrUGpajhfhSJqnVOSx9uGRTnw19R43Sqfl8xcGqU3P9ZqsxetJXiDDwa8Q3zANoepRoMBpLLVptMTo9ZLUvS+taSRxlsWcu3Ptm3aOHYBlHO7ywD3Rvz7lwrOXAdHhBaE4gs+esQK1jsNvrjeeH29kLYNK43Be+Xi9kbToGlQ3lqGOBKH4W7PNQ2R4zgQ+5RAedEaDlFLodOkFQGrmSE4ShWCjxg8OYs6tDSh5szn37+Q1qyZ6s6iAJjOjKzRhLe7wKy7G+SU2dJGLkWf4e8KzybCmjM2Dkxok7wL4IzInZzZMJQ+FhacosJiSMWSqsWgTWNzFXF1x6C1QG4QSkPte7poz0BS0je1aYobRier8vpK++tfyd5rzGwTliIauSyZhOGGYdwqMZX7lC4byAibqay18EphM5UolrEWxtRt1fB/SL8ozbB2IfXetFtTMdtMTFeoI86PPU1vIIwTTTq6PnpkOGKnM+PDGdLGtjVKAamzNlzGUEthK1mdbgTEqp0jVb3Pm6i9UnAWFwy2bRjJOo0xOgktrSC16vTF6n6jMejK39XmQ3ncrWtnrLOUUsg5sW4rSy86t1Vj0n/YM7//gx3xdF3A88Zr4V6wYCy1WUpxbC5g8xmTP1DcES8Vy0prM41ATSdK06imkhZK0tFXriuprMypARYvTk3ArescrQzs3CdD87pJ11b7xdB/b63Kl8lFO3HY498ifhwJYWKaTsRRvQVtaIQpYctMXTIlLWTbqPnh2z1UhHXNbJJoLzMmZ9y2scw3Sss0q9YOOsrcCftv3TEd3VDnEyHXiqTaie+GTDcRkp460wuLPRFDuRX6394YTiHybhjZxomT2F5M9XQAWh8p6MO2I5LO6VhTR0OKRjkXFGI3StYvubLmjGmVtWZNmvnumQjOMAXX0ZYGLSPN4KjqRek9iHqRrl6fD9OahgzkzFaVdlDu5PDOuQyOGeH3svGS1I/06A48ReX4lQbZKY1imEYOB1XRx5RZK9gq5DXhcukWRjqi2DuutCaN/OoIriqiFXFuuag33Z0wDkjFtIxm+QXNZf/+QHEOaZU1JeZtUwN24Y6uWhTRDaJ8WG8MQdQiJ+IY6AhobxS8UVN6a1Tl6Cy9eOs+MUZZP/uzAjpJbtZQ900uOoJVhavLGsvaercbnFUOrrGIs4ytwrIiTX1wtSCXPqJV8Ukt6nyQAeOtqr+t+e5KGKheR4gbzHPlthSGYGAwXR3tOocVxDakNlLVcXWW1CkiIEaFOWvNPD2c+dgKxvVs8HEiu8hWBbGerVSWZWW+zWzLSt0yrbxlRtP3Ke8Mw2A5HjxPTxMfP5x5epw4Ttog6YOg+5mLkXA4MIkg3uMOB6b0jg+lspVESjOX2yvPL88U/Pc1+P0H237w77zI/ev2LHZNUdOkqXXLOspfN7Y19cJTvSOl9fk3ajifS+mHfXmbjFh1MnA24n1kCDoyHcfAGj3Dpn6s3hm871zaHo3ofcPh9FlrirK2omlGzejobFfml6IozbpmrreVZUladP44DMA5z3R6QjrwUNYb5XaBTu+RVjrXfOe09wO46DNIFUwukDPUgmlVx6i1IUVHmrk7oaQKW4WlNFJTpM8aw+AsBKWPeKvopYSIQ3DVYdJKK1ULyqbis9pHRxaDL7r2WtX1BFqwe+8ZhoFxGNSTV6SPHCEM406qub9qK5SasVZgt7/qdBbbuc4Cim5XYXQeP40dwe7q/d5A+b42x2FkGCdwFrFwGkceDhNTjATn1eC8iRYYrZJLJuWkWdpN3RqNc8QwUiu8vCxcrgvzqvSTy+uNbS1vaVbeMk0T0/GkfO2eS94oPbO9qCDHgPOaK+/ct+KiJsJ8m7Eu8CCdl9/RN00XVOuju2AISxOlEnkxLNUQixaMvu9VIuocYjqgk1MhoTG0rTch2RlSVV9ObwRv+96JqGvP5ULxKmoqxlGM6+i8usSAwYwRiQOYLtS1lmJ1jOWk4i8K5rijQUZIUmi5EaKGzJjvbAnF2M5hjggjmAHrI9Y7gocYLNPgSYdJJ1VYwqA+ws5ZiosUExA34AL4MBDCQA1FG15rKK2qV3OfjILFGK9TDuMRCmI8GN8bJsG0RutIcpU97UgjOb1x7KSwfW/bi87ayjeuQKUWtpRYt40tbUqRq/kbKtH++kOOpzPqQxicQtl+93sy+yi4k+aNx7iI8QfwE81NiiA2qGXrHlJFEc87P08xdekimlSaFjRWD0cDmgXbfeKMgZS8jrL6qHcYAsb4PnoSaknqdZZVaBKCxx6OmFENk8fDifEw6XiDgUOCXA21vAL6sLSavr0O1hBOR7Zl4fPnZ7bLBbcs1NfPJFkwXkcxPug4oNBIrao6lga2Ia6njVQ9dLPoAmre4b1QvHJC94g0uhWIkdprzopvwoO3TMPE06Hwp1VY7Uat+rDR1K/yVhtfSuZzzio+ksq8zpgXw+12IafEwVim4aAiAwOLUWNZYy02Onx1mPZjBnMcAg/HcB9jt7qSy0KrBbIeJlsVcso4aXrIpYQ1DimFtG3kokRpI+onp4rWwlwTz5dXPr28kHLhqVbG0THKhi0Xaq6sYnk6eaaTwTRHSlXdNZI+R0LjcBw5TRGkkXLl9ZZYNiVrWqFzZ4xaVBSh5aKZvD3yq1b9M0mpR/wZ3PCtj+f+XLQmOtLIGedGrLfkqpm2uXNpcvfYtLJPEdTvcfCeYE0fyQvROoJT709nHV4geo8MEQaP8Si3k3ZHz3aWYbaKc7sQ1cak6bSB2tTvzRpsjIRmKElRhpAFvyWaU3Qau2eI62Cn5ULeDK0ZjI9ICLSeePX1q1bDullui/Byq3y5rFyXjfPpiPcH3DTgpwEX1fHANEWnW5vZtoWUFTXINJppeCdMOaqVTUn6bDV952Z4TZUvy8yn2+VujL9tSaMY276xc7dy8gGm0XI6Oh7PnscHz3GyhCBYowQsO0SGUf+dx3ePSoyv3YatF/lqo3bl05dP/PPXX3m+rfzj8u21yEWNxn1HE++iBmMQqZpCkxMpaXzpsmVuiwqkUtZm9Ptuz+42QFaNvKvV0fBunF5FBYOldnN7KtZVSrXYnoJTqiV4S2weoseFfbSqcYnBK9osrbGu2138thvmv/FaqwaGbEURfml365SvX2EYefjpowp32sby/ImbMdRtptVCkdaRaVRU2XbedKEWq3PAlDFpweaEM/WN19f5R0aUV6YooOtjyS7Y6gW7EeVaB+dwIcI4qHqgqdBTWu5o7j7iNbjWBbR4rHh1XcH2c9AzjhOH45nj8UQMsdOPtMFwIfwwal/WhYu9EPyANY6SCqWkzo3bEVrPGEYeD0fNBG+NIap7iOUrZ4EOBIWoWgTjHQTH03Hk3WFi9AGH4bKuzFvCDyM2WC63mXlVgZ/rvOoQAsFHtq0g+RPrkjAYanc5ESzWCZGI8x5jAs5FLZTlbXJRW1YrLgvDEO9AxzB+V3jWyvOXZ7zzUBsxBmSIiHck0f239OJTRbdKfzKdumQbtFwJommErSga5+lnf16ptpGqKuYF5TXZ4Dq/Xxvx4BQ4wVpqdBSvPHZcR8T9oBMpZ/o1CgzWE6zXNCTvaM5D8MQhgBFeX27M8wwuU8qV2/Nv5JKZDgE/jJjZfLOunfeEcUTMATEnrD8Q44nz4wOPTw88PJyYpgPGRVyYiNOZZd1IOVFLIpXMNRXmbSNKVm9S7/BBkWgFErR4rPcazfRmXHUfiqaLcl2NpkRJn662zusUpKOy/Ro3nTab0ulCTZHTWgs5Z41fLpVt27TozJnSKg2lyfywOPiDwvNedFrNuAX6KKyjnlZXf9eU6eFqjPILGwiaHJQL5FTYto1SnFoNNe1ibWs9AbNn0naDVjqyA0U3r67E0qpZP4B1apSt/CY1K7a295tNOSnBO8YxcjhMDEPEOKucolbJuapdgDGMMXS7jKI2HV+9RIRL2bhtN367vJBvV8aSiKEyvB/xR4MvwnA84B9HSvBUI9jRYh8GbKiYDS1mSqOJFqrVGFpw2IeR+hCRqIp9Iw0nlUijoMbuHo31OhoYpoGPj40/GSGvsR/MuvHdSuVzLvx1WymrsDhDDQKykbIgbIwRnlzknRtU0IPw3DJX33QkFcA3h2vcOar7K0blyNZcFK0qmVyyRtU5RWCaqWytQStELLFk7KZj8t1Cqo1RR6zedahfx4HT6YFj72xPx5HT6cBUpHMdgeYYB8cUDbZBNCBOxym2AKbxcLQ8ngLOqrAhTJ55UwqEN93Y2hhSLzxrUWVsKa0Xn6KNUc60LNQitHeHe5EHuofMeUOy8mgQ6Qbfil6U7ofWNVQ6Ku2/FwTfkZpgLd41/dXWPpp3fe0ZohEGg1IYjHbpO/otRgVnOEsNUUH2oM+4qaJjKjHYqmMmLzpybk3fDqu58MYq93GIjONACP4ukKmtYbpgxYao/Lof1KpGNy8ctRlyhbVUfCkMpSCl0KoliicaQ+y+hVKBpglLSdqd/tHQNJF2V1x2QWHVpm4tlbkUlpxZsz5/GgPa65/dK67vtdYavIPoIfiGc03NjGmI1evnh4ANA+aHrbGjU8ZSc2adbxyORx1rf3rh1+tvdw2FgCKCKTOEoGk/3XqEXnzqQKB7TNYGTvmjNgoxaMFT+tjSe0cIQYui0hg6905qptakKUdIV4/7zut1jNEzjppcM0R3dwxw/SAdh0iMyvsNvjsJ9IQtgFLKnRu7e/nl0jqNqR/m3uOjwZWi+dff7RMuDjz98mcsDSQxDyMBSJdX8jqztUzaedimq8+FTiNQKytqxtaM6clF5qu3FTrfUQtL71Th66tOYkzTGFvfUTUFJvbzaudGd3szdp7qfq5ogTmEgRCD2qvZirUe7x3j4cT56QOPT+8YhknHjbug5u5r+PZKJbGmBUFwJlDq2yh65+hGHzhNE+9PZ2qIOOlRvmZ3FaAjqz0cJESNnIwBNwQ+PB75+eHE2HO6h8uVZz8TxgDBsuSEbBBi5DAMjOPAMESCi9zcxhBeuiep+j3rT9ypGErjcF6LShU17RSQPSih9ZSjQAhRC+O4+4joq7XG+npljQPpesUflMeufay8cXCD13thAsb1Z8taqg9szlNFw0YIFaqoRZb3yDRQh4A4p5O+PvG0QQt4L3TViOluGp4WHCU4THD4GBCn7+gdQ7B3pxtFn7XYJHhq/5nn46hg3KcX/OsLta2st8gyX6lNcL2xu0Pi+/roKLxYDzbg/MQwHhkPRw6HE4fjgePhgLNvTjvOO26LYV4qaZtZUmbeLI1K7paDtSOyAnpdgo7zpU/i9mrt7oSz096a+q3IV/umuW+G+zmmzW3OWZ9da+4Wl6V2d4m8N6n6jL/FN9surP+RdvBD4Wl7pyGmj8rQv6iLeZ/5C6ZVjBRsS5iy0dJMxeGsV0PkzrXLq1CK07xPUQ4FUpW/1pQPpNatpR8Y4HzF8zZq3sVC7ErOACFa7dybJ6faY8R0AZwfHnh4fOTh6YlhnCgpsywL87JyfX3l9vKKM3AYBmo15Lz+gPLV1viPL/9gnmde5hd8K8TJczyfeffzSGya9+lCxEwjNYOsFfMwMJw8rgxIOWjRWRomq+E4BlqwhNNAfIjYk9ei01QClckIxgnOCpNpBMmMtvJ0cgQ/0g7Q8oC0eh/Nv6bMad1oMyy3xhXI3mB8wbrG8SAcYuQnP/HRDVgxis4WMGTqIFQPoXVo/jt0Kw4Dp4enuwp1R0Ja2pC00SgUyarSbdqF2RDU502geE+dJtrTo47RphHGkel8xo0Hqon8vGYEyzHAu9CIyye4NF5T49ICT5Nn9AZXtVmxWALqfWqs4SEKpygEr4fJ4D1rtndvz+BVsZcr3ZjXdaRT/QsbpnPPlHNbGtz8A799dR1E4PPlBnUjd4V2cDo2a6Djup2L2R9Zkb64RQ/ZUtQiLGfDZgrWCK4bkLseURikMTjDY4kcjFqNWDH3DaRagwkOMRMihuLcXThiXcD5AVP0/pim4z7vBBMMttNZWuegnk4H6rtCkIrrTYTGDHpsRzuU7PXtM2G7cjq2SCwRn5VHl0zlNd1Y55XYPGMOTNPA4+HEMU4M/shhHAgXi7kK5ZZoufWiQjrS57BdmKShAqajIqY7QihdwVk0/ciKptzYzjGkf68+PSg5sa4La0rkVvWgix4/DopMsB8QewNM52lq4TK0icPhxMP5kdvagN+/OVGWLTEvG63BIJoCZPsD45xlmA5EMxIPiTFXxtw4VngqSt3wznO5XPny5QvjOHI+n7i8Xnl9fuF0PPL+/ICVTC2bFp7G4KYjJozkpOrg4A3j4DgeBqZRhVT76N87T4wDxgglb/rvMtoABe9BpAv/Og80RKV+hAFfaz+J1Kh8WzINFUp8v0+4EDh9+BPBQTCNNY5MxrGMn1kuryzbzJK3e0qTpvsUFTzSumVew9rW/Um7sMrcGRs9lAG8heAsERCv69a0xtDH4rvXZpNKy0nJENJwTc3lNVZMJbQWLcDHEDkcj4QhkpjxqWDdgLWG8fTI+cNPfPzTv3A4HCml892b8lgvt9s3/MYqldwKTioYS5FCFW2wdueBKQTeHU+4R41rlaqpYrt/Na0POUXAapPrO3c0BM/5MPHu8YFjCMox7x6lEh2ZRpHGnDKhF4/eOkKfZAbbtRto4+N6wxOHgRgHhmFkjCMxKGJ7XyRGz2O7C96c04I46t9zfuXrwpMm1HkmvQRuv/8G56RR0K0oown17XaDJ4rFxP52at8X+2d2WHz3oLTGYoOHIWAOI3TrPtM/o++CqeAcwbou5oHgI8M40pylWMFH/bzVWHLTAJbBuy6EfXtGmlf/cakqYovnE4N3XBuYVpBsoK646YClqSDTKoXw65exgnPt3kH5oLzZEJQSOA4jxykSANsKNcG6KrWt5JWc1WN6TYBplLySamIrPRveGKwLhHjAVg0Q0BjdXqB2SqDGBGv91SiIUQ4zzr55cvZGXkRBms0oHciY3fatx6i27rHctRT30b4zPV1MhYzfv/5AXKTdmN+Jvh1SsPdKuN3HwFKVQ5cQtgzWzbgwYE1G5ErZCnlxpGKV9CsZy4JnxZHeiqf7w9xwbncxhH3NifRRYD/TjbE4FxiGqV8IzxArTXQccT4/cDydmI4HBMO2rszzzPV643a9st5unI8HzscDOVuuLfPdHkqTxuf5hXm+cV2vTNbw5A64Q2A6BAbUZsT6AGHA3zKmbbjREQfH4A84276y/qlKtgfwlngIhMnpgzgvDN4wOUMOlojgvOXsLYfBMp0jEyM+C2UZNTVHpI/ld8/SzHy7sdxGXnNl22sfIzTxWDG8swMngqKWSUfiQbTE3+OywPA9QdyHken0ridaJXxrDLVS14WyzKRyQwpKPrc9xcdqwEA1jTodqO8/YscRSV1sdDwSxgPx/EAlkIpgrGe0lYmEW3VERtIYwcEL4iu1rIiJWCxjQ61YSiKOg25GJiNSCQGwjkjDG1UdYyyx0RdLF1WKFplZVEGoyTqKyCGB374S+IsIn55fMVWdVIPz5CI4txvz9q/T44M7HNf4aiLQTW325343AW+iCvimSvhkDDEXgtV7Z4xDU3D6fbVgg/rTSS8M98hNI4JkkJbVCqE/K1bl/F0AowfYcRrhUSCtOOmxhd73RGRV/O62O9+8OtcHmm6oHlwwiKmUuqnnlBhc84SWdMxaCt54YhGmVu683yiazHJsMFTBlQa5UnOhuEwxb6r+YBUJPlkVbVVrKM6Sfc8iNpoe4rui3XaebDNmNxfFDgNuGHEx4oK/n6n71GUPKKAXuSE2TV4ZRuIfqNpvy8r1Nqv6u1RiDOq/KMI4RA7HkXEIYCYd7TYLLuLCiA8Ray2//fZbp/RaYox3X0/vLMcxYpuhOYFOnzg8fSAezqzLRt42rK1ED9MxMg1B6UZWI3yV8z5QS+FWMiINZz3eB0IYeuHX+fy96DfWQanUrJ6n9/F7V/5WKV/t0voK3vP+/XuitwQLOQ6c48Dy8I7l8sL1duE239i2hZxWUtruKtxSe+yxVY/fPblLJ14NUwqa1FO7W4ljUooaEXsvPKMxjN4xxEgYPC1YqgMr0m1plNIiRpsvoyR1Rh+YxpHpeCCMAwvgU8H4GVPBDwPT8cT58YnT+aF7MqogKefE5Xb75lrU0simYiRRjNpm1aKekFrQGJy3DIP+XNk9gdtXfqr7oEMxKnzQgkqt0jQK1FqDC9oAT23kZHWqdstJE43mlegCh2GkhYrBK/e8p83YHnNojKKB/qu38777h6r/624bpnHW3V7xLnLrX/+9IFOEUCp222jXm46rDyPGCsNhJPoJMz4R3cjgAjhD84qA7t+ve9x02kNHLZ2DIRCOB9w0YkLnmKJCrN2SzTl398X1ITJNBxqQaiYMgcM0kauw5Er0ljF4Sm2k0qjW0JzV/HdjqKno/juMGO9pMZK9Z0mGtQrFdO6uBbE/kqDVYF7AVKwtBFcYXGMMMAQYbCVIopYbNt0w2xWTZsg3TL1i5EJtjXVTLmtJmZQSW8qaVGYMw+CZ+hTDlgId3Ww7n15vCio0Epop0Glcu/+wsXRkW+78zYaCcdY4BXL7NVUaTu2NmD4jzqmFnjWW1tyPHun8kYH8/sPNbuMCsI8QW9+EBGqhtERqlbTObOWK2IEYJ2KEEDZKbqTVsCUl1CMZYzaiqwRbKf0AN90CyXaTUtf5Ca2aXqGLGg1LV0RKwLqJOByJMRJjRcTg/UjoB0SIyntbl4VtWZivV9bblTwv1JSID2cezmeW1bJu8w9wsAC3sjCXhbmsGGfJ4hGnaAnO0CoaExkCrgp+yfjREx4GjueB6RCUdJvV067vkyqcGNTqpGwzfBGmIXD0TtWPxuKd4XEInB8mxo9nbDyTNri8zORc7lQH09TcdbLCh2UhX6+cZlXpqqdZ6/fQEpuFJNxq4aVVtj7SKblqnGbWgO3viwwXBuL0hHEzxq7EfpiX+cZmHDJnmmvExwfc8YCt0FJmW2ayKZTTGY4n5ZNtK+n1C+14xMRAjAOHyTI0ozwhI3gpmPGInH4mbBvTtmEprBRaXih5uyMgdszYUqjOMJtCXZ+pZaX1DdN2n7vWeUPG7gKgfp/FgGjBIEbJ976rhkNDjVLvD4Xw5dMr1IIfgsbEtkz0uxNEL1zo+njbOTEdUd2FVYJWj8a9OUc4TOe87XYokLZCc0rqV/BKx+j3psOg8I+T+4zECJjdTN6im0rLSE16eFtPy4YWVa04jgO2WspiaHnDx4gLA6VAyqpwrGJ6EMTbqzbl9OScVAhoKq5fVGsaoQmxQJSCLxlZN5K7IDjl3ObMMWdcqxTUDeBdMRy3ilsybVkpYUGMpXi9Cd5WJiecO9zZrI4FkzOsIqymsVb93C70w8cHXNRC009HwuFEPJ6Ih4MWnda+IZ77Sb+jngI4uSuZd7rR96/rvPDyeiVNhS2rutxa9eI8nyaeHk+Mg47ArdMx23R84Pz0AR8jrTWOYyCvN14vF7blpmbmVUV/VlqnKFVCjEyHiQ8f3nF6/MD1emOZb7S2avHZG9/gVYlcRYsr5/RALU1RLusHfBhxccC2hnSzaRfUFQQMSTbyVlhXRYyX+aairnUlpaTIyVev4D0/v3/qGdAGmSba4wPb7cp6vXB9feF6eWW+vjJfLyy3K8t8Zdu0CC1m0+nDVjQ4RIpyw5O6LwRMj+OEYVAB4GAM2Sj/39RGMIbRdSRpCDTfw0lEsLXiCpiiM7ZmrDqFOM8UAocpMp4n/DgyADFl7LPTa291wjYOkcM40CQAGhmYUurr/G2NtAKlVuq6dfPzvj67BVi1QrOi54m3SFNUUTp9yoi6utBpbCJNUckhEqIneEdtldu2Yr1h9BEzegY7UWpjLYWyZebLTDCO0QcGB4fgFe0OXxeZ6grjbA9wsZbdfN/s+8qdJ2i7vaJ9+/3+9X9AWjHAhGFqotczbUg0+GCJw4nh4SPT0y+Mw4noB1KrrK10OkHsw3+5W0oNMeK9JzVBvOPw8EA8TOwLU2rTr+9FNcaSSlU7Kx/w00gthbkkxqbey5to+loVj3FCLo0tF1r3RQUQY9mSakhyEYI1ZFGP0tdlY76ttK0QW6MapfZ8HTut16JbVJqGM4lgVqJdGN3K5FZ8tTBDeX0mPb+QX6/UecHkhJMFby+AsKSN1Bx1g5QqORUFtwDnAhqUUPFUSk+n0UezB+8YB7YgpiDdmNHs/0LT3yJUUa9dERV2eQHjzd1VoTZFOksuWnTCW1iDNyCa+hj+QKT7I+JptZMxthObOzkVeuHXmvKKjMeFgeA1BWLNKy0nqklUa/BW1Zn72WhRwv8wdMNjKkNpDJv6RcXQjbJFdgMrEIMxXs1LQ8D5kTgeeXh44HQ6c5gmgg+MIxjriMOI91pwGqMFxdoa27qwzle2ZcYYOJ9PvP/wkZ9+/hOvr8/M64L3318K7QaKZLa64cWyFc9aDGuP4itVI+qCU75FkUqqcCsW10LnSwm5qfAgOPViC953iyhBTMGGCM6rHYtV3zJQ5bcdAjIErs7yfN3465cLy7zpYhdlbpymwMNpZMGSmmXdGtdrVksZZzVizsCSG3kr/LasfJlXmrNUY9hKYS2ZLVc0HePbIsMY5XfZ2pEQ19PTjUfE3pGhIUTCeMRUKGzkVTlOEiL4oIjntiA50XzoFjM6HqBfG9sfy8aIRAG74syMWmVUipsoLnXTjdYXUEakUPKN2yWTlgUfB0IIOFEkUWvsngHf0T/T+YQ5N5ZUqALWZbz3hOhZzbdm4dBH3rsxeVVxnEjpIyDuwgFNsnhD7L/mBOqvcj+QDHKPQd+/3uz2QNZhQgRbEad57DufubXaRyWK0Eo3db03JFqZ6mGu9Ebkq7VF5z2FCJI90rKSXhqk2liKsOaqvNjvLLZqbczzSpGKN3CM4e4ZGTAcjHCwcDAwWUPEEgS8qNhLrKNFS42xd+GGw3Tk7B1OCjnPLJvDmcIWAg3L0FaeosWfRt49nTEuYMfMliq33LjkwiVXMnqgH6bINI1MhwPT6cxwPBEPR/w4du5qV6Hv267RRmRPIdE/67NdQ9+kf0QytpRYtlUtSUTwvnTeux5A18sLgUSLjuA8xgZiEyQGnEx4ZzkH4eMpYpLjZWtM3iBDJHq1tzJITw5z9xGiNwZvwEpXMLeNJTf85pnGA3GYcE5NwgVPs2DDQfdyO1BMxEpQi5umn1PabudjKLWQqmXNMKfKddmY51nDOVrhHiXYX85ZHg5Tb6bADhFzOlIeHsjLyvl2Zb5emK8v3F5fuL68cLu8sM431mUhbytpmUnNsjWlQLWSKVtVw3GUA+2sw/vAEKOOQXvhSdWM6Wg0ttAFj3hVIiu/Vg8iMcrprn0xWNOIDoI3uGCxnYYRx5E4RFJLtFZZ14Xr9VWfE5RGEUIglx/tYtRTdbgLS2tVLqg3HhcsLnpKKaSauW4LeUnqb/nVXnHnpPaNYQSMV32Ew1CksValyVhr1OvRgKSCEU3lmecV6zzTOPDh8cA0DUyHEbFF90fnsK4hogXJHuW780vvnKG+Poz9tug0nZK3v7/n/VpjOAfP0TlGabhWyJKxbiBOI8PpwPhwZjo8MMSJtq7ItkCMmHFQGsgen2wtbozgvQpMjWMKERtHtSxropNYBLEoWuk8WYQFwSMEa6nGslVt0McGqQprqWAdoeq5nos2sGJ0OoQRJMvdDk6C1kNVdK9ci9pz0X1O36KW3q7HbrEFgpFEy68kKdzsiq8v+PXAZC3L5cJyuZLXFUkJIwVnN7xbEHrMbAtIcxRBGfKiCX8tr7TUBUBlU5eXotOK1mkA3ngqmSKFJoVGVeGAASrqMSrdl7WP8HVgZFVXYyzNVGoxXYRplL9vFamvRtfazpP33zkdwB9yPJWYraRfebtu0qvc2nDN4eLIOEROR4ORhJgXcs54n/FOP4EmHOnD15rleJp4fHfCOEspmeZfyX1T1b9Dz78GqboArHWE4UAcjxzOj5xOjxxPJ8Zh6rB+77qcJrVYa9XiobVuKl4paSVvKzVvHI9nPv78L/zrv/0XfvnzX3Ax8nK9EML47YUwWl8ZqyqxrRSW5LmtwqUbUZdmCEGIzbJs6meWCqS2sdbCtGzktJHTSoiBYYxMw8RhGCgNFRY0Q7OOTSyzGG5YtiYIhViFzRgWaczzwv/45xf+3//rv/PyMisqh2Y2//z+zF/+9MiSMv98vvDb7xeen2fGGDkdJmywYIWSM+ua+OfrledZ/03Oe7aa1bcxq+fe94XnnVDeqciaxW1IWyVtaqmwIzNeUDNq6+48t7v/oA/KY7K2A0wdmetjAIMWyEbsXXHXbENs7iMxwAxg1R6k9ISG3BK1LGwz/P5pZb5cmQ5CjGrFgoC1jSaWVLXwDFRc91es3ZKj1YqlaWzkEMjjCF/bNhrD4+lIK5kN0JQH3XhaaThrGILXAgzZ/ZH18+2K2w57S4fZdnqDNkrKoRb0YDHWa4E0DGqI3yNIEZDSSGtXHDehVCFXLQS8t4whcIgRDXhQixIt8Dw9y0kRCqvcUGwX/BS9FksWlixc1saSm04svnqVUpnnjRAtU4xMY0SsWn8NwBnDg4GTMRwMnSOu1Kd7frI1SEclmlX7knAccKGRZNGghW0hFzW0PtSFP42O9+/PNG8xjxt2KSxb5rJmviwbX9bEUisFOBwi5+OB0/nM8eGB8XQiTFNv9L5TZe8FqOn3pz/5KqIyXfzUfkD5AGrL5JrxRQUOVeo94W1ZC59/T+QXy2RRpa7xTMczt9/ecXw8czhPsG08RYNMHpMsvo4cvGfwgbZ/vz4+lwbrvCLyyjxfmecLt/XKkmaWumG85+npPQ9nx+F4INpuSG48fgqIaAKLVE8pHqlqDg+CrZ06YixbseTiyC2Qm2erhrWL1sw9Lebt5YxhimpEL40+znVwOFDPlVN6JK0ry+3KfH3l5fNnLl8+s95urPONbZ5ZrxdueG5ima9QV6FtRUeBiBpZj4E4RPzhgInqukAT3Vvam6eucWohVp1R4ZIxSn3CKOVk/3oEHz3OKP9OnBaGcRwYDxOpQS6Z19dnrDVcLi8dAQ0M43BvFr9+DePIMZ5oRT2Ft0WTZJxTbvQ4BUpOzHnl0+sry2WmpMKbEvntrZRUy3FUWoQ4gxscWYQkja1fe2PotJvuO1kK85YQt3A6TYQYeXh84Hg4InbFR69ovm0g7hvkcqcL7UWU6evDoOpoayqto53WOkVLbVeOf/WyxnAeR44hMDk1KC9SMDZiowfvKAaqs9TgSJtwyxnXQZO2G/435SEeaHgfmJcEONw4gvNvvNiq/14bDFbUilFjfTNBeoBAE1ITXBU6q+dOmSoNak88aqi40Rv95KZopamJg6bXRDpNq2IoVXB7KI35tikDdaqwffTf6kbaZtb6mfnF8hIjy/nMOQ7I1kW8TRFJ00fz1m8dyMpaJBEUiHCmP/cVSqHMC3ssa0qVLVeyKGrrgtIjalHv1tJjjvts8M2yT7rQU0RFfCEQh0CMEYPRoIjSKYre9ohzvVem1h6Zq02i+7/E8ezv/XCgI56aClO1AjfaOcg0EqcJ7ypbAbsumhAjVa1upAsworI0DqdHHt59xMeBKkD4RGWg5hVD1aJTLNF4rA2KWg0jcToRxwPTdFCyc3fPr90yxoUBH4Iio6bz4USgVcrpxLt37wk+kHPi3fuP/Pkv/5U///nf+Omnn2gCX56//CEcvHuZWe/UZsA4SjUsm/IGG5qkYVujUDWVowp1q6TWuN5WaAWRjFkTfk0chsI2Fo7HxmEKBKPpCluDpcEihrUjpccmpI4+3VLl0+XKf/z2iU+frjijKuhgNSJrHB1bKXx+nfn95crvX24cxpGtQRwD3quX6poLSymsTUf/mpWtaEj9Iy4f9FFP6TSLRjOuFzI9bUTQjqEUKFkPppK1WOpefKbtI3/eOCddFfqGAu6FgFqNWD9gWoOSlE9oe+quadSSqHUjV8tahLxVliXzckvcriubeIZiaEVpGNYITd463Wgb3qKKdDFQ9UCn7mTphFC+KTytMfzbf/kFZ2AToXQLl+tt4ffPz+QlMyTH5IMmhjhFAHb3hn3itr/3YcKbR64WOFkaiEW8xcZI2TbSLgBparHV1szvv7/w8jozb8rzSeWt8Pz4/pG//OlnolgynmKEZqxyLJ3ahFgfFMEQR9o2xBjtjDchNcfWDEsVbqn9MGoP3vF4PnI4RE6ngTgo98wbQwBO1nKyloMxjB0BU2S8CwT6KMx6LdZwGpBQgqN5tTAxPmB6NB8CwQeOxzMmDPiHJ4ZaiaVxnReerzd+v954uC5ct8RaKi44jmPoEX8BYxXN08O1b4b34ukNWdqfQz0gGnlLzMvK5XblNi+84dZ9Ew0eH11HPDXSdRfA1GLY1orPip4M1uGdJgylNTKMHpkcwcJpipQ8alRebqSkm38qBXGdflQKeVlJPONuC7WqnUlpUHE6LiTovspAlUCVACia5WJ88wu1DjEBcfq8GSM9QlW5fV4cvljlUFpHBayztLpByzj/rd2YMX3U1q+fczryN6bbtcTIME4M08gwTVgfcDGSl5W8KjiwXa9cjg9cTg+8fv7E7fKitIO8YVvFi9IyXDW40nULfTwtDUzTQ1gfNqFZpdDQGlK6rUTqoR+1dWpX99T1aoNjpwODa5wk8LEapoeV0AU3ONNRfgVn9jS271/nxzOPp/eUbWObV4QLOWUV9nhPDJEQ0r0Jb1g9T1AlcaPe3QWAbuNW1VZpDExoOtRaGiwJNUUyOqKvauuWWtOo41pIVUV1WEcVbaLUxcvcaTpfSZp5Qzq/Ru7e0E5jdmlS/30vQH9APK3lNE2MXdBUOldb/a0c1arRuxcFqtZWWVLCA2LtXT0tTQEL59Ukfk3K5U9FXWqA3ny0jsyiVCOr4hg1MbeUoslgKRWcdT2IpLLlgnX6+1r6+NrttCaLQ5CUaUWg1B7J2W0h78ruimtqx0b9sfBEdt6kajK2ZSFvm1oi+sDQNtx0wlXuSXxiGmIb2NpBC+m+3eoSJM0gVQNRyOrSkrICRJsIqTZSE6qxiPGd6iSkvLGlldrPVdM0yME084Yeo968PgRiUJW/NfSUqtJ9XJWT7YNy34srmNJTBulUsv9Lhaeo2kkPRHP37GytIjn1sWHFEcjTgA1n4ugYk8HYBZqQUiJtVwyqiPYuqGfZ8QPT+Rem06OKkOLvVA6syzM13bpwyDOMZ8bDI4fTA9PxTBwOeB9VQZg2rtdX1mWhNnAhMkwWH8JdITwE19NcdPw7xYktJVptvP/4E3/5t//Kh48/cTocWbeNp08fqPX7seoeuecJcSA0g/MjTQzbVqnd0V9EuVFYFJ0TQZphu23UWoneEL161bUlsYTMOpaumoPJK5q0VWGpwophQfkjc+/MchO2UrhtG8+3G59eL1jUoHzwjuPR8zKPpNq4risv68aXeWFtQvWWk4XJxo7kGLBaUIfBM0yBwUViVf5KLXI/ON7WS+vmz7oZirM65vQR7wPVWP3zXUkthpoTrXZhAuqC0L5OZ+nvHaoXox2mRtWLGjZPI5kK2av4AEUxnFExlBpzF2rO5LSxrRtpS2xbxngdG98RTyM0cZqh21TY06zBdCW596EbVhukb9T6xd9uov/z/+3fOE5BKQq5Mt82/uPvv/K3l888r1d8Fc5x5MPpzBg1OYbOkaz9WjRnaN7ercjULULpLc30oATRrzFDYJuVPhFqppSCq411zfz3f3zmP//+O8+vV+ZFvVIFVfb/T//1z0ynM6c4sdJRBeuYnOPslPtofcDi1MA9LIgxOpaRymYtSRxrtSw9+enr1zQN/PlfPvBwmnh6ODJNB4Zh6EeRMAbPIXoG16cDRT0c3Y6O7LzJYDXGL1iqCOtW2LpBeRP9bqUJTgrFqX3KcISjszwMjnNQBOr3z595fH7l8eXK823hsmxkaYSo9772A6fWhtQ+Su8os+yHZV8fauOkPplpS8y3G1+eX/j90xeeX16+rzsZx4FpGvrfb/cmw+IQu2vsO+/XWfwQ8WMkjLFz9iJ68DvG1BjHirlubLlgTKX5Rm2a7iS5ICSkj1CHIerkIo5M44SThvGR6fieMJwxZkQk4Ky7i3bENIxpGrsZlEfnfL1z7EMIyo0NGWzEl4mhJqbjkbw9kbcbJa3EOP1woKhoTouYPWrZ2D2UpFvUeBWIFFFbHOkjylYKZV25fvjM5dMnnv/5Ky+ffmd++cJ2vSDbimkFLxaTASqSuHdwmoQj3NPi0MS0QkckNacTimCqUqMthiCOYAfCcCJMZ+zpEckCQ8Wfn0ilR5yhgjXnHcH3a+Qc9fuIYeDh/QMfP3xknWduLxdyyQiidlnWEb1O6GKMjNOIqY4cdP2WWnr4ho7f9+LTW8OaPaUdEesoYmipsOQZroty3i2MIbC1Su5+wkFUY5FKY9k09e06rxpqQn/mQdeB2UvNt6Kzl5y9NlWeoHLxzL1evXMDvz06sNZwOBwItP5XVMthekhGBUrtkcitsuXMsm1EUYSwNo3Y1GhrpUgYqzGue5EuZude2/skaefOSy9GW9KUndZt9LaUsdZp0VkKa0pY50hVY2zXlGjWaOJV0+9d1o1WVcxr1AcMqVqkbmsmpYyn0FJFBQLfvnR83WkxaWVZb2zLogVsHEhpog0jdueG7jStneBjtXmU2qllbVMLwFKxqdJSwYpOLauBzRg2A8VYqnE0o9Z3VGHZbqRtUYpbUAcRc7+fe4MBfk+0CxpsoJaUmXVb1V9UqtJ+QlD6hQtYWyhGE59Mn3Z+//pDxHMn81qjalAFtDJlE1p25OQom9rlvHt6xzSd+PDTv939PHPObNsKNEIInXNpOZyfOL/7iTg94PxEc++Q8I51eSanq9pdOMcwHInjEee1YKUJZcus11eW60XJ9CIcHx45nx94eHhinCYd7Xuvdi1OFXGabPS2eI/nB969f8/xeCI4tVPwISqi9vVLRKMXc+mIFZTW2KrFNYhWE31iexOHKPqohV1F/06tQjFC6V1myTrWMsFhA7iDvafHqOWBClFkL/qN1XtgDRXIrbFVNan3ogttrZW1FOUcNiG3Rm6KTttFrSmMMwTTyZgGdlsM79UoPeA0Ti7XH9wPpC+Y2jQ9xXnBejWdt4OnBEfdO3fZ4wJbh+t105CSKduGbKtGNXZfO31rc6N9pR7eXjRvmR0tEVAd7ZsnWe0E5yJqSJ9rZUmV61IoNhOb8mCtsQSn97c2RTw16MCihB2Dj3pAOtFModZcH0t/tTYsfPzlicfzhBhLLo15SZjRca0bf/tb4PXzK0sq/Ha5MoaNIQ6KAhlNgnDoNKhUqOgGoffE4u6oghajzqm11VaFa6r4LdNiZkyF65L59fOF/+Mfn/n8/MqybsoNNRCD4/HdoyIHLnKrQmpKOQfLhK5rRVssxVTNSRbpylBDzo3LmrjMhctafkA8nbdMpwEXHUUar9eZ+rLoFMIID6eJx9OBwzQQrOV2W9nW3K1XupF18ETjGbzn4EdKbTyvmeeXhet1YV60iUgp9zxzjXp7Oo786elE/PjA+4cDY80M14v6U1qwtM75Vausl5cLv3/6wnB8Io5nrB+UmhO1cOjTdS1W+sGStsS2zLx++cLvv/6dv/31r/znf/4n1yUh7unbA6UJJSsnqrY3xFOCZzARTNAEKNMwIWLHARPjnV9tlg2DIeeinNra2EpjK4rKOP81Is69CfDWEsaJ0/nMcDgoOo4BF7pYY9Q87j7u2oVUu2LVGovzvoNc7W5dpLZePRzEDoSuOkfOiGRKWqk54dy3iOfbyFnu+8bdjHof1Rp6BF9QIeh0UB7YLvKqhdPTEw8fPvDw4QOXz5+5Pn9hvbyS5xstJ+VoG5T/vPul6k+8o5/7REULT+VOGHTtm3vKnEZX2hgJDyfC4yP2+AjDhLONwQvDSYssnc7s7ium+ywqep7/QFzkgyWOnlq9jrR7so+YN1QTdHIwTRODm7RBdoZG08zrktmy2ti0JkqdmiaOD2fCOJJyYr7ceL3OXJcFY4QxBn7++I4YPGvOlFK7EER4uc78/bfPSIN5TcxL1lGt1UHrm1qdrwrQP3h9Na355o+/QUy/Wh/WYJwnTBF38NQxIMHfKSya1a5rR4uyDdOvzX5+N1FQqcSMMUZ9JdFCiJ6ARA/CUIqXuZuht1TIy4ap0FJRe8V1xVijkbUpM68rxlrGcSDlxLJt6hzSHFRNEVpX3d803EapGlJrV5erj2WQQlozyVqQwzfXI5fC1hY1XN+2/ncypilFKdVCErn7jbpOCctkKlWBraoUF2N0BG9MwYgWoq3zOAW1l6uApnEbnVJi1c+5CLmom4Sz/r54tXG7r2a9d6JFfkp6Zre21wI6bY5DJIaROEWMcbr3OaXblKTJha3++BT9AeJ5t5m6k0MFoeVEyUmjo+hj5lJ5enjH0+MH/uVf/8LD0yPW6tfvD4SOsjoC4Cf8cAZ7oJmJ89AIpz+Ttis5X9XL0oLzWj0v86xq9Osr88sXnn/7ldvLC4hwfDjz80+/8MvHn3h4esd0mHDGEPviDP177B2aCqZ2CwjbbRa4FzbfvwTY1kTaEqVkjFhSKay4u+GuAGM1mKY2DgHb/bCcOn9jsFLVJqNvhrkWcmm4wROi5TCMfZH3br0/qs50mwtn+ijSgVclr3QCeDOGYtQMPjctbt86WKNJB7N0UrDBxt3uonvFdXJ9iAbjA1U8rf7o46lggfJ7W6t40whBoFn86EjBka3+e2rvkBt7lGjV65w0IaRtGzUlcimkknE5kxJAw7aunqThoiYjlFJJpWhs4F6QiyHXRq6KFpemMXy5CXNqvC6FZBJjsz3BRAUjinoqBcPtxrodrAiOu52NcQ7xDvzw/erg+O7Iw+NRiwCBhyIMpxF/HDg/nvnv/9v/4J//+MSX51ccltMwcRpHTuPA4D3eWB1vtKLFsgjNw26g5pwh4IjGaTqHCClXbmvGWQM+cRoK85L49DLz6+cLv395ZetjPO8dYwysW1XkpBaW3NiqGjUH0RHd3tzUKmy1sXWUd4wB7wJp3nh5XXmZC9et4l37lhLpDCZatpaZLxvPX2a+fL6xJbXw+PmnJ3756R1P5wPROz79/sLlcmMYJoZpYhw1NWiaBk7nI+8eVS36H/944a//+J2///qZ3z898/xyYVm2zh+3nKbIn39+x//ylz/hjOHpfFBedW6kLbOua4/UXJhzRWzmn799wo9/BzeBG2hGC/Dj6cAQY+fXSjdtr6QtsVyvvHz5zK9/+0/+/X//7/z1P/6Dv//jH1Qb+NN/+399ww/d1sIy56/8KZvGcg7C5FSQZ30A0yBGFdkFzYnOy8JtS4Dmo89r5rYk5YyXyhD3Z9HfAz0MBh8i4zRxfveed+8/cHp4Ih6O3QrMY4loXAA93ecrNOqOEPUKYvft63u1IpQW58EHIWSNUN0z6aVnx78+f2Jbl29WiHKZmx78xmCbGqt+PUXZBTTOaia1v4+eNeP6/C6Ttp9Y//SLipFeVQW/Xq+UtSemtXb/nqbvnVpLyn1MqYUnfU/aldnm3ntbw1s8bQy0IVJCIDtVsnsHwzDpGHHnqqMm2iqm0T1+W34UT+yepKajyHvR2fqIvHY6gA+ew2HET4qgxtHjug9kld2kW5sa55yipGHAO8/t08I/Pz3z73/9O3//5+8Yqw3f//1//m/89OE9y5p6wwatwZfnC+uysa2FlFV1bYzTkI5+3uzC3N3Oat/3zH4Q9Ar+jYL6h6Xp270GVqkEPxBOB8wx0kZLDqEj0W8F7s5LzFtS8VTw3bJHVdPVWvIQtPBMmxaedXdv6dQY2f9bkX1pQkuZvKyY2v87JZZlwVo9I7e8Ma8L1lumPLLljdu26iSoOkxoNGNZtkXPo7xRW9Z1UHrhuWWN7pTCsia8MR19fXullLjlWSeHWc+0VpWbmktja42EqFVWGPEITQqxGVpLbyCOaTTbcFY9v7H9Cso+qnZgqjpDdLBJRcO2g2F6ju+2cfa+hnTd7oi3CMpR7g2B7SLLDn7rtNk5tZobNTa2dlsnqZWyJXLK1PKjSPcP7JR2X823Wv1ON/6qm0CgronL5xc+Hz9zPj0S/IHpdNJO1gfsLhjaoWLjEBtpEqhVuQkawyi0roIqfZQvrTBfb1y+PHP98ju350/cnr+wzTeMc0yHA2OMPD088tPHj5xOJxDlFcUY8M5/VXj2xdSL4tYVv800hqBeXis6Tr5fBmAII3XQAicAIXarndalGWKh6YGhnqz3sLy+oC1Uc6cnNDGUrvTPVRHQe5JF/5l70Q+dhdY307dRxj4OEVXVtUruCQKK/vdNGB0VFqP/X60VES1kATWArUX5YdXioiMcHNaEvqG+vWoTUm76b66i3KhSsT1f2tSKSRv58yfK87N6eEqjpJWWNySrE0IyMy1n6rZS1sDt5YWcKssqgKIguygj366k6UpabyzXF+36jdpbiFhymsnbzDqvbPNKTjfKsqqiMwttqxTJmmjhoWBxVii5YqqOk1XAo+MArNrmKPioBtTNmG+Si3QaajFenyfbxUCPjyf+q/MMceAwTfyPx7/z7//+N16+XPm8LlxS4rAOPIwjD+PI4B0HG4hWG4bahJYbqeVeDPZs+aJou/J2KmZRN4NbGLneVi7zxuuceF0SW0p4a5iGAR8Gdu5trcJWKmtGx3NVujuFft9cYUsq0LmtitwE47opZqMmtWVxo8G4ry+Fw7tRuWiSqQWNVEwbGGFNiSUlwuZJ2fF8W3h+nYljY8iVmDxjihzKSDFCGAZqgdfrlc/Pr/z26Qv//P0LX16uLOtKbY0hOlIdOZ8GrmllrUlDC+jqfk2rRqWZ2lTlUvj8+TOpWi63ld8+febnv/2dn376iY8f33M8HvQg6HGwtSpBflsWbq+vfP79V3777VeeXz9zW67YcGBnvO2vnCvb1vOru5UVFopVE+dty3hrCFawvhFypbAh68Z9JxcQMaTcmDflramwUr0HfYhY5yhVm/gYB6bjsb9PHB8eGQ/nO/+anndtZd/L5Y7svhUWfXvZN567tYrp3GSrQjmbsSUTQ+ziAv2b8/XCxlvhKSJfIWyN2HxHOOVepO3egLWqsbr6UgZCjPrfziHSFc/TgenhgfO79yzzjdvllXWeteho7Y7kWvtVzG8vPN+iHetbmoq0bi0j99ShJo0qeuBnEbaUyZJVhW5UlBdKP4qlH85fY4ECOaW33/dXDJ7xEPBd+PH6fGVdVGk/jAPH84EYHY9PZ8pWKGsfS9KBgqAxjvp4qNDSWBUAWaMCFfPyQi6Vy3Xh9y8vOKcq43lLpFp7XHW53+NUKtIS87zRKgzjUYvd5miYHkFq+x7M/bnc7+2dd9gLoG8/849I5/58rQaig+wV9NnpezszYj/jRHTakNOGM5CDo5ZGSkU9JK1jTBFjYdsW5CtKl+n/Rm18jGpImtCaIafMOi+aglay+lFvW//+/fdpJSev/3/RKEixKt4t1uGMI9eswFHrYSm1KMc6ZfLWYyOlcd0KWEcb5JvLUlsh16Sj/55iJf0i6T1SYKk4A0Ynealm1rKx1ZUsidLpVq3Tn3YRUJPWXYS0PqjWaK68Vesq2ydZJaOpRsH3EBCdQFmvgFPrmCn7xKCLYr3v1CjvuquEjtdDGIhDZBiUalRKQXJhk0pOK/P1ynl8/OG5+MNR+30sso/+uhmoM6q21QfH4Zpw+/LCb8bjTSStwruff+b0+MR0iPg4KHpk3h4yaYayw9vzzO12JaVZBUam9ZQK5WZcnr/w+uUz18+/Mb98oaZtn+dgMAwxcj6d+PnDRx4eHrvnlD54O0/h7fF/Wya2W0KIgWkceXw4Y6Qyz9e362Asp+mEdQZxipCNITCIY8g6Yg9YVWAXHZ2Wqt6NVui+eIomSFVhjcYo9s5Dukm52QvV7ksJfSBqcHL/S71D3+9IX2Q0pS0VRQY1T7HtZ+59s1ALrI6m7ohnUy5LTglSI0SPHyJxiD8gnrUJW27kohndyn3MuFyUqJ8rZlkplwt52zSZIniy60lAW6blRhWQWmmSybPj8ul3jL+wzPpv996rya6BEEf8cKCklbTcegxXv24NSumbxZrIW6KWlbzcsKkQGtjcGV5WI74agthGyxXTKiKawuBcxdWCy7owvXV3m5BsLd/3arvBs/1KvTnGwPDxwPl85qePH3j3/h1+jPxv//0/+PLvv7LMC46F98cj9RE+TiPnYejFLdxa5lYyW1FhUSmK6KjSXn+eHugVayy3sHCdN25rZsmVNev9sYiKaFzA+dhHhEqeT1nJ9rlaWueclh6JuKbKbU1cF03wGrHQGlEMvlZN3RoCX++i1niCOSC2YkNmCIkhKkqAa/ioTU4DtqaRl0uuJKtjqCCVVSoZFQGd05FWYdkWlnVm3Ra2vJFrVo6wQ+kdwWAiEPTnqHikIKaCbTgnGk3nLa4KtMbr6wtfXm/8+tvvHP/Hv/Pu/Xt++vgTf/7zLzw+nkmbIqq1iwWE7tyQEst85XJ5ZisbYhvG/3jE7lnmul+rklYLLCGlwrxuGBrBWzR6csOm3M2Z94JGpxi1GVLV58x5xzCoHVSIqt5NWYuiePcrVqrQMEyM05EqTrmxYnsje5dKfbvPf114Qleoa+Gpu3+3YZO9cW4Er2jbrny29tvjQ83eFfEtuSCt80id/rqP4vdxnTFGDy+vZuiKuCnXzHtPCJHxMFEezkzrij8e8dcr6zLTmtK4YgidzvVGmeCr4lZHt4mcs97jkpTq0wuMUjK5NpaUWXIidaWzGupb1rWqKle6qXs306dzzOm2Mz+q2gOn04RMGs/8+fcXbteFOASmw8jTu0daLbw+v7ItG1+2C+u29XSjACYwOKvCtR54gPV6pjSouWgOvbGU2rS5Ccq1rzu/tY+vG/QiWrmetQpNFLX1PnT1soI2e4TmLr97QzoVrGi1v/fYzP//gKdODp1hMXCTiq+VUoxyDl2nfPTvY7p4suVM6c43tbZOx9JEq/2+lq43qSUhNasVmHRApqvM7+uwVHLKOKd0Mv0cGamqwDa1Qi2oDUntTclX9AwU2ZU95tW0ngZUqEWfq9JpDYnKrVSkFGT4/lrsRfsbkmyNu/ts4xzNOxIKQqSS2NLKmmZyWSmSlKcqTcHJpvt7vXuda9tdUOeDalTBHgevvsfGkm1D43wsrcI4Rs2et7tzR1EKQf+epVuFGaNia2v3tRkYesqVpl0F5eEaIVm9L+ty4/L6yuPx/Q/PxR8gnvuFfpsm7Wbytvu70RelQWhpZX7+wj+NsFxf+fLbrxwfHpgOR8IwYvoBuBOYMXTydNLDJa09icL3rjciri+wLkIIw8jheMJMo3ovWsv58YHjWfNNx2liGHRks3Nx7lerb4h64/cRsxauYiwPD2f+/Oc/Yy3fFZ4wxEA1niRWjcSNxbuRc5wYsfgmxGgYgqHUhLU67s5Vs6tL25MUIoaiEXydR6fjf9ftqwzROAbnKFYXYGvqSedaw7aGmuCA6tLe1rvrb9+bU/Vd1bGZ8uzfNvraGk5MR7zQhdkMeWtUm/FVC8v23SZaayNl5bvWWjG2YshIVgWbqQ1XG2wb9XZTawzrWJ1jE6i9gJLe3okRtsvCy99/Q7Csq5rUWm9xVhsD57V4qqVQU+qH1h5riRqbl6w8vqLc01y23pCM2J6k4ZwiKjEOuODgoA1URIjOEnxgCEr0H/oh5n3A+cDNBb4dJPKtX90+S+kj8nEMvHNn/pL/RC4Vg0Oa5Z+/feFymXnZZsqXxLxOzNOR8zAwxYizloMNBLoSVdQ1wkJHGdQ3N0bPNI7qmSZb92cTrPcMVkfsj2d1cTifHzQmEUdtinZkaaShex7uIoHua5ibZckNuS1sWyZvFt9gMI2DFbVW+6rk2u2xWjWY2hBsH59arNcIUGOMxrRVYU2FJRUGH5Xraq2mtVhDNaLJRiIa3+YNcfAcj6Nar9WCAWL0nI6R8+mgPO5OHdkRPGtML3SUchAaFNHPK6VS08IiDdsKkhbq+srxOPYReVW0UqSHVEjnbia2bWZdV9aUGFz9DvG8DwrvIpp9lG1MR3EUPMZ2qxZwPVXFvynM7zxy6eM8Hd9t28a2JaoSzli3RMqZbUuU2hin4/1+Oqep1CJvDepb4fndNr+DAXw1WlOD175tagHdmuhnkW5Qbd5sc+x3ZHD1Y45UW+/Fo+vJNrYXBm1Xafe9eU862b/2bapj1LBf9PAEw6EXHeu26RQnZeV5A/Yrn9m9uC21kraNdVlYFjXA37aVtG29qNFmropOtVJrvehU8aRzQZ1RpJLTRiv5jkp6XZzUkvuZ8+31DdEzThGpjbxljaM16i86TgOn84S18OHnd1yvM18+Xdhyojavljmlsm5ZkaaYcUPqGeIaC2lEVChVVeDSakG8Isz+7iag42vb07yss/351EfW7KBHn559M/dWaLxfz9b5z/pzai8+74jdN+vh25cYQ3IayyrLii0JceCmA94GBmO1gNkRuBA4Tup8cDwdFWxodE6h5Xw+EaO/gy/n48TYx+8No2JyYwhB47sNlofS+OnnjTgMnB/OxKRNx3GaeDwdO8ouTIcjj+czWxiZwgBOU6EOIRCNwQZHapXj+YiL7l6s7Wit9Gdx7QPs4bvrEkLg4EZVjlchr5m8JjbZEDRmNdVM6ahjSoktb6S0kMtGa+ruYl0H1foRtNM3si4wkjSC9ypcnALhEHWS1kS1FqbdAzHiEBmHqBoSUf9NMaZPcEWnpMb0aE/liyt2pc25Rru2u2tE2RLrvHC7XLm+Xrm8Xtjebz88Fz8Wnrxt5N+nFuwcGdjRN4GaSfOFz9uN10+/dsL4xDAeCMOI9RHNsjZgdzhXu4UmmhN6ejjz+PQOEx+wflK0BkMYRobDUTl6pyO+G06IgYd3Tzw+PXE4HvExYL1Xu5329hDsI+f9f6Qvovvmh+V8fmA6jKzrzN/++p9fXQUYhqAem81QkjoFYSOHwyNH5wm1EnzF+0qtiegNNTftQIsCg4PfI6PUskBJwVbtgrq1i0WzewfrKE43+YYhAk409SgYRzAQrSF2/ogIb5nLztKnQ32/2MdDumhLe+uKpBedpiO2ZVMfStaGj/IDGXhXstWSdaxhusVNLtiyq8btnT+acya1zCqG1OgbPG/djLPUeSMt6Z5+0GjQ+VC7EALjuul57/B60Xnv8mRHc7vCEcEYzzgdMc6pAKCP8YZxJIy9Owue4DTPfbijJr6PEnfriMDnNfGPz6/fXItdlU0/uOl+b7UVMIYYLB/enTH8BdssZAjO8x/yT15eL7y8XHmZZ56nlZ/PZ346nzgOUS2YjFFltzO46LBiVLRS1FfxMB44H48M0WPtqgWGcYzDgRADD6cj758e+OndE09PT4zDQMm6L6Rc2UojTZbWRvbYWdu0Ey9iWbOQ1o2AYIjY6hmNIN5wM9+GONF9EhH1Mq1NRXPSJxY7st6qxqptKbOlQjhYrIu4GNQ7MThwTsV40mhGG5BhCpxkYhijHjoIITgOY+R0nJjGgdgj9XQao1GP1nqNg3SVGNT42VkoXkdZ1gqUlfVS+LRdePWq6q+yCwAhdztAQY2UW9XmpuQC/ke+kuFNJW6t6eNQwYl0oYY2ueAUKXaBcRgI3iPSKE0LqloaoNxOqYWSN7YlsIQZlxtiPcuysm4bzhrStnE+P6iqutNxnNFDr2dlabN739HewAT2gnPndAnQjbL3xBppoFEZAq0qot4/n0a4fltumF5EtNbwteC6gGtv1PaC8N7890Zhf/+oft3FSFZdLuLA1lX4Oanie3OOOGScd9+Ab7un4LquzLcrl8uFy+sLy+3GsqjAo7XaqdWmW0upbZSxAR/Vb3WnBiy3hZJWPay9ww8Bi3T0U/mSX798cMTR03JT022t3nHeKup5Ghmi48PP73h5vvCf8Vd9Dprylc3asReLUoCCVy/oGBmjPvt1TUgpIBr84Ywq36N3aiFmTBdXqiemdzq9NN2OUCfp2mDJ/rb7aHKPjX2jJdSqApPdV3Mft5u9y/mD8lPQwjO3yrKsmFXFh2OF03DohWfUUBVgCIHT8cB0PHB6OOM6xaQ1vU/TNOK94zBNiAiP5xPT0Kc70IMQLCFoM+NdJISBENWB5fz4QCmFMQ69UT9wOnSrxiFymA7a+G0FnNG9yDm8gcPDkSSNh8cHvDNdMKZ2cDs3tmEozpNdYPjueoxDJLiTnp0VVr+xmKUn1TVyzWxlRaqhtkbKiZQTOW2UkqgtK0hn/D0O2OgWTDGQOipvQEMDpoHhMBCnSBPVCiRTe9Oh19N7S4hB920RmlFP2NaLWmct1mmB6vc1JqJ+ndKRcQHb9Nxfrjeuzxcuzxcur1du1xtpSz88F39QeL4BOV9vANIfosbbqNfuI2wRzfVtmZQ31nXG+4tmraoLO3STdx8CJhiMNwyHyPF44P37d7z/+V9w4xFxgyrBc8HHwPF84umXn3g4TozduB0D4+HAL//6rzw8PSmy6qySxc1XHUgnT+j4XZdBEwPN3Dc/bzVJwodvFZrWWj5+fM91tSSz8LJdebmuFOuwLfL+cOTdEBliYAhNYfpSuG2ZOVcshtUqB7CBGnwXFbR44+5RY9rpyF0ko/C78lGdc/0Q9XgcUxx4mA7cDkmLrqqjnhg83quJsnGGtzxJduDi/nmld7rW9uzvqgKTTKVuggtvHl77q1Xt+Os+njAZ0z3RlK9woL77QAsRTo9ILrSs3MC0jxT7z92bD32m+sjf7iRo5YJVu1fPfTzXdspAVx23dh8vNNM0em5/ZkNUxMn1Zy8GGAbMOOIOE/FwYBw1/EBjDAfNdY7hXnj6Pvq7fX6G7wrPfZfVQ7Q3e6JiKgUTDC0X6pbwGJ5OR35+/47WGsPg+XK5UlLhS17ZLpXnNOuzdDhyjANjCBzDSAiOPG98rp/5/ffP3NbM8TDowRI8h2ng3eMDf1obOM8wjjwcjzycDjweDzycjoxDZKnqq1pSZk2ZlFwfDer5sm6Z1+vCdU4sWXCiIxpHL6xN91r/fkcwYJyQKCxp4zovvF5v6lXZPMOUmA6l8610/TnvGIeR4/HEdBwZp8AQreaY49m2lett4fn1ypfnC7d5oxTpTgkQB0+twvmQlGawVlISRAI+nAgx4UPGB8EXGK16msagz43pKJr3lugc0ap3ZWp7cdlIpbIW5Qfu60Vkd+JpDMOPNinGNqzdeaVdANTXsHHaRIUQOA6DqpJD5BAjY+yOH704RWBZNy7zyvMUuFwVsY9e1Xna3BScU0ua0Yja1HSFLbWqSvsrpfdXGPX9z77Z12XH8Og7PHfEURXpgrdOR+FWwzpcX58/1InsgypLMKGjne5eVIrQR+7y1dd/D3T8wfdEUbxhGDgcjzxsjzjnyTljnVVnEu/vXH72/a41ckps6yO325XL5ZHL6wuvr6/MtyvLPJNLVloAFbEW4zzGA2X3ec1QKm2bqWlTjqI4mq0474jB0ZxjW9o3ha8a2JuelmQ67NHR3egIwTIcIk8fHvj4y3t++peP5NK4vM4sy0pOBYMipCF4fKi6n9qV1anA9fLyQsuZKXjen0+MU+Td6cjgVRw1eMdxHJmCJ3a+4r1bNoqAuuBx3RTdBd/vbUfSpNFaoZZO96k7PaTcwZu3e/THzwPG0MIJkUxpBdMSpiZMqYScGUoipU1BBuMUWa6FVvSsCX2MC7qexl4ABaPPUfROrbhEQ01qBzgMDe8sMTiiD9oAOc84jdRSCc4RvVPXjaHiB51yxTDQqlCHLopz6lZjDbiopv3TEAFhmiaOj2ce3s1saWUxC0YCp4dHhmnC5G8vyBAjZkTT77oZfd42QLTozBtrXsDauxC5VBWhVnmjfxjrcS7qhEOEGgwuVEy0mGa06TkODMdIGAPGWVpWusL+brWg7gAJp2NGLTbRCYd3Co7h3xqqN0qJ1lU1F0pKbFb3hHXZuL5ceP7ywvOnF5brQsn1h3oC/k9G7fuDd3+geCs636B13ZT30W7HP5V/0Ro5ZVWQG4OxrkfzDTjG7vUUOE0jH98/8fOffuHdL3+huMhahWVeKLXgo+c4nfm3f/sLf/mXXzgO2umpUlAfojgMBB/ZPYCM6XY+8A0Evn82HXVrRyGtL8B+SHz9stby8acPhJvhZX3mU7vxfL1xqaWnEzV8eMdgB07ecJwgGsvkVy7ris8NX4XS+XStqTG5sf5+PVxPckidA7eWRqk6CleSsO3eXV7zdofI+XDkdsyUWlXpXes9+qyZ9lZ0at3WFW07+tmVmcZ2yHznXfXxNVUR0R9G7ZXUNwQRFQXoGE65qzIeaT5SDw/ULdFSoq4r5XojL/rwNWl7m9XTeUynA3zVJGhPoCM884bEtN2LrdvV1PpGHWh909k3OS2qtfAUHyAG7DDQDhMcDpjjCXc84A8TYRp1YxtHYozEELs3X0dg8o9Fxtf0hVZl1+B0eoJgMWzLyu31Qtk2xuh5/3jGWDXyj9PA8+uNy23m07bwabnymhJzrfx0OPPBOI5DYLSe9bKyfLnwz39+ZquV908nqA84aziOAx+fHimiHo7jOGrnPqh5/Wkcid6zkWml9gN4Y9uUJ5hywafC9Trz+csLz5eZy1LwFqLrKRa71+ofEbmMYFyjSmEriXlbuS0rzTSyeMbDwGHLeh17M6WecJFxmJjGA9MYicESvEOaY9sql8vC5y+q1L/eNmrV59NiGMZAacLpMHKdE/NaWJMQJOLjiRA3fNhwvuB80wIIf29cvOsWaB3FiEadLa45Q0rqtVibNg5l53xBM57WtEH7we4XsLahiV99fzT23mCpQb4jxMj5/MDTNHKKnkPwjDHcPfJ80OJuS4nrMvN08Fwu4a58zS1rUpoXqjN4FxgPkWP0er+6164l4Kw+ift2/vbr2+/234t8+xU7HGIwd/TLexUReO+7Qvv/pMhA16rtBffOCfvaF/DbtSR92X79f3z179h/34vZaOKdFjBMo9oYWUuMA6E3jN8gp4beUFSWZWGebzw/P/P8+TOfv3zm+ctnbrcryzL3uEqN0bWtYmvCSNVzpVRs2fTPjIWmkxhrLdM0IRhe19udCwk7rauzZvt0RtDP4b3tdBLH+fHIxz+951//7UoqldQK87awlYQ0iE0jTZEeIFF76EarbOsK0ng4TiAfGKfI09OZQwzYJpyGkQ8PDzxMI6O3xD4ads7oRCgGfIyEPs4OPtyv2T4dVD6ouhiUkpUWsttk7c1JL/Z3Udo399hYJJ5orSAtQ1HfytLUMziljW1dOvXLsi0LKa3q/RsDxIjvugNjIVgIVgv4nR/aStbskk5VUUTXqVeyEc2276lf3geqtRipWsBGp24qFp2WeIc45Ugq7bqj/AaaOKW99cZsGCdO5wfOTwtbmnHtimmRh4d3DNOB65flm6IrhEAYLaZBs5XUkXCRSimJlFfW5LFeD/DazzYdRlgsSh/zXr1/gwtU05BqKanhUuljcU88ROIUMF5H6Lmb5uek+eu1FoxprJveQ+d18iS2u7tYbQTo9Jjaak9t6/VBr2dqqbpnlsp8nXl9vnC7zMzXhbzlLnb+cbP4ofBUTm7fXO4pFF9tNLqz7gDinSuyb1Y7x8t5HV/6GLUzOJ04nhRCbxaSFMZgGZzgaTgRcq0aep8T1MZhjDweD/z08QM//fSTjkR7B23vheYbKva2ub2hnnfI4r6n6elgba9y2Iue7y6OMXg/4pwaMNcGqRWkVOxqsFYX5FbO1MczT4cTp/MTcZ7xry/EZWFaN3LnXlxk3xD14DuOkeM4YExlKZXnNfP7bVO/RQGomGXislUORWi2oxE7GLiTnXfboqYcOfPVx2QvYMWwN7tNdvSzj0WjY4qB0QlZih6W7tsivPXCU9pOqKcbwXeBSlPLj9KgGEdzgeQriw9soVJMJ1R/dY1b35R1g+7KctEGZneHuCOLvdirfSTZar2P2HdkqtexevA03Vgs6iGHdzr6KwnWRVWspbBsGyEExnFgHCdFTbB37tPL88t3iwO2bWNdbVdCq2qyyT650gIrd9/JKu2+lryznMYJaxwfHp8orfF6ufLyeiEtib99eeY6J54PKx/PJ56OEz5Bqlok5tq4Xm68vLwSgsNieJwGUtIkKW8FXxO+GQbrsdJY55X5dmNZbqzrzLZsXC6N3z8JpazEMfKP3y/8x9/VC/R6u+nhaNWGylurB5aziPe73QIAVRpbSTQrxDHy8HQmbZl5WbqpfyVvhdwdAvo8ntvrhVaE6+vAOEYOU+B8HPEPR2hv3bGxHh+NZpsbHWUN0TFNSpvwIWCsJmcZp+ll1oU+clOkhr4fOK9K4OgdQ7ebGn1gdFGL2mWlmZlcFx1HUfo9890Jw5EbbLnbJH33cl6LCU1ldITewGhCi8f4yHA48/7jn3iaRnwrOKnakNWMS7WPzgy1k/sH5+AwsK6o6KSLBj2GGAeent7x7uPPvPv5X3n88JHhcCA43z1j37BO0x/c75HPPmf95mt12/u2EHW9aMZoss+d37y/v3vtI3XpHpr3cbHV7/l1YbKjoD8ssj989XXkPdN0wDnHtiWEvTDWMbR1PQq2/xjpe9U4KtJ+Op15/+49P18vffz+yvV64Xa7scyzCtpKZrea09FlIwQdO+r1CEzTyPnxiQ8fPyJYfv30vyqy3185F7Z1I2+FZdko6W3qs6vwjYUQHKfzkT/9i6boDVPg6d2Zy+vMfJ1Zbis5ZdJtRXEFnexZawjjwLvDwOP7R5r0qN8x8vRwYoiR//aXv/B4fmSK7p6kVsUwnqCawDCdsG5gKI3WFESqpbJtmzpqdHESVe4uKHvReX9Evtqr/2DSrmdyOGB64WmMwRsIzhHEEirE0rBSaBWYN+S2UhsU5yjed/9m/V6uTBCC3ntpWA64ccCKwXW3HTB4MZhSqdtGWTeWZcM5fXZyTtyuN2L01NOBnHXf8n5gHPqoPScwgv3/sfdfTZJsWZYm9h2qqmbmJPhlmZVV3T0zGOnGA/5g/zMIZASC9xFApAmqKruyklwWEU7MTMlheNjnqJq7R2ZlVfcAPZjUK3493N2Yqh6y9t5rr2WkQqK14jwupJS4vb3B9x3EIM1JMUIIQkdRYlqz8wMnpu1aIZXNViJLKbJUrdaYqmRRkq731ryXKmbTVuO0xVpN53zlxEqgFZeEKhMpiAxcKaXiRSndl6JEf3wW5ZI5SPe9rI8FnSImGZQV2UFtJWikZj9jLOLjrsXhSytdS+2JJQlfejqOTKeR8/HM6XiuNtoJlPTuGKtfjIsvZDxrqbZOEAEtW4mmLWcKGaimbra6diRq73CdF57nTqzRbl/d8ubdO25ur9gfBs5h4u74SD4/YJYJwkyeJ5ZiGBchjRtVuN7veffmNa9vb7m6upLGDlU3I8Q/N8VUO5bVWm5hTQfnylG5nChlBadaq1Ui4vmsKUX8W0MoxCBukAkhmp9CoZwzU1gIOYH12MM117ev6fyJUkTTc49oS85krI4YG8lJyjOHzrHrHFAYY+bzGPjxOEszThH5JXMauJ8C1yHhnJKFsGSEbVe/q7wtBiujoN2z2t1aVL0U0u248iJVQTtNf+iwgxEP3ZoxvDxSTizLQmlivbU0GbPYec5V8Do0Z5hK0p9Qou/pBMwZI+WRGJtwfOV8Zcmnq8YrUtTO8rptllIfX0Vy63s0n/dSRB5LK7Vmx0qpNmI6oqMhhCY8nJimCXc6Y6yM2a7r2A07tDZbo0ARrbjnhwBPtQHP5n9JkyFRq6RMQfg3LSgbnGfnpVw47Ac+Pzzy/U8f+cfffc/3P/7McQ58HidOMXFOicEJRytmyZ4cj2fuPt8zDB3WS+Ys9I4pJnJaKCWAztjekpeFx4fIw8OR8XRkmc4s88zxceYnPXM+H7HO8cPHB77/8Y6745nHcWKJElBYo+m95dV+x9XQ0e/z5qiBRMFLihhnONwcsNqw7zyfPt3x+HjEGwupUGLlbRZpABkfj4zHszRZ1M5fXl1x5RQqBUwpOG3ofSfd6X0vlB0L3moGp9ntOjrvMFWUW2sRQhcFDcnUlCKlSm3AmQ7nHIPz9N4z+I7e9/RukGy/OREwzEmxpEJIUEqi97byeTVLTNg50vkvWeuK4LPw3azoLDpPKgllLdr19Psb3rz/ltvdQJpOxPHMcj6RYiTEAkhQp7TI2RltGTpNStJQ1MCc0kIJefXmLd98+wtu3n7FcP0atKUoWzX8qgWIlH3WikcDm2sE8Rx0PtsHVOUIOtdhjK+l7AbsvgQ6N+ApKhq5Xp/291aG+eI7ylG+9Ce1Jg+MsXSdWhucpORbPaFtbX7Ql7xWmTvedwxDEU5sitK4MU0cj0ceHh64+/yZu/vPPDzcczw9CrWo2v+SQQ8eVZw0wPQ9h8M1b9695+tvf0Euiv/1//Wf2+kCEENimhaWcWE8T4RqRNLWqZYcUUrRd47Xb27QRrO/6nl8/4rj48innz/z048/8fnjA8e7mRQLGqmUWW3Y9R2H/cB+17PvvcwXLf0CWmn6bs9X7yIlzpQcyAqytgTVkVRHMY6CWSlDJSXmaZb1fuVyVtvjC05nW6Rbw1hp920FoU8HhbZ9tXc0NNlUawouK3wouCUBC3mR5sZymjbdTq1ZaiOTUgobA8U5xvFMJtO7jLIFUyyq6CpBqHFFo1MkjWemeeH+7kGa+a5vmJeFu7s7+t6j0g3TNPHw8EjXDcT9NcuyME5TldhTuE4kBk+nkRQz3oApB8o8wTzDVL+HgLKqOlO5F1Mk5kRMUlVJITKFhSVK9TKVTCziz66qtGQpUi22SipFu97Tdz297yWpZ4zwJ3MhzIHJGaG/Id3pS6A6QyVxhFtEOzTWzn5UwdTKoUPO1TfevWoW2glQQkk01XCiFNHnXCJxiZwej9x/umc8jSxTqJSaOh+tkWzqs+NlxrMBtUYAbwOpJqxU5Rm0zjlfO4a7vsP1PW7o6A87cdMYeqz33L55zVdffcX+sMM5xafHOxaVGeNInoVcG5aFpRhiLHTecdVf8fWHt3zz4R03tzdYa+uYFmCcS2GcZ5Z5XjlUxkoZe+Mh6GrhxgZGVUGIj3n9WVUpk8sjpcQ//OY3PJ4fuLurUhdJmqHQmaQicw7cz2fs/SeUNySjsalQsqffvWK/u4K4EMNEN8F+KcRs0Max06BTYiZyCpHHJXC3LMwSYKLIPM6B8yJRkbMaQ8aQsIgYujOaYhQ3nePgPVNKlYfVMtDiSFEqPy3lLCW5VrAq1fknRrGg00U0Kp9tCDkJdaIUkZvIOZN0Wrvji7TjUkJcU+8piD5ayUl4fcOOq+srSik8PDzwcDxyOp+FyyMvUskatZnNOJzzVbZIzkQVTVaZojcOVy6iPKhrl7CzHq1F5w5V0Fp08RSWkgQUxiWz6CjgVmsmtzB1izyvlFp+FJ7Q01GxybQ00eJ2revIBARg+87R904W8L1HqT3TuBCWiNHQOc0vvvnAt99+xfv3b/kv//g7fvzxE/d3j/z4cM/D+czV4Bi8eIw741gSHM+B+/szfZ8xKbA3BQuVdlDQcSKeC6dsSWfF8SR6p6QJU0R66uFBCOu+Wlze3Fyhuw43Ttwfz5ynGWcNfefoO0fXubpZXiwc1nLY7Th0A1f9IP7xYeH+7pG7uweWpcnWiLTO3hvMvmNZpIHCmkKnCj0ZlyLlfKaEgI+BKwWqsxRt8bsB47R0u5OxKtMRsTmgc0CVCMrQtIelwUI4nNY6+n5gGK4ZhgOd7ehchzMeazzGDoSiMOqE0zs6c2DoR8o8U8jSpKEVthRiEHF62x2ezY6tK1uAxBYwKTRae4zfMVy95vbDd7y9vRUrxHkiTKM0hzSOaW3eiFnMOuZlIkXP4gxzWlhyQrsO212TuxtKfwPdFcrv6volX0XJXJEkVGVwqpaWvwSbT4Enlz+t/9AVyz4d419OcAknEYR+0NbhVIGDVKq44HS+eIE/flzMMd3478ZSSmSVaIoJZRVGtUaj8uwl1EpxksYnj+969ocDNze3vDu/53iS7Of5LLJN0zQKCA2iFdn1HbvdnqvrG169esObt++ZqwHA0zeT5kipCkWSkA9Xbj8Z0eedA/NcrXCN5up6z+FqhzWGaZy4v7vnp+8/8Yff/8zPP97x6eMD0zgRxsC0dMQkMkqHQ0/Xe7wTSSSVBfB3LpOiJecgxi/KkeyBqDuSkgyoUFGSiIVXS8mplrxLiuu9bvan7d7l2vApskW1C/ol8qRU68slFWwGh6GEQAoTIR2ZgyFnzbIkluORPJ6lockaijHU1gdEJQOUtag4YXSmnA1ZJZRyaGVFX9sYXM6YnFEhYZZAFyI2g58XCIEhZbqYcbOos+xyxqdMHyO6lrBKFi61TRlNlaEr4GPELgtuXujmhWGJDCERkvAjidLh/fxSCEVLKnYxLZLxzJGkpKlHpJBy1U0XTGJUEVqGMwz9wH7Y0XcD3jmMVszKkpfM7GfOxlTVgUgMGWUzRauVBkYLQKuxj2ytomZR2CrDYqIiN13mqxWHok50fEsuzHUMlqRYpsh0npnHhRxzpQNYbKMR2ZfB+ksdz0aK10a4S9XdwCkpwWstUiDOO7q+Z7fbSRn9ak+/2+F2A7urA1c317hOuJevXr/i66+/pus9OQcWlekeH1iMJSlJBS8xVvF46Yy8vb3lw4cPfP3NB1z1AW3dy0UJl2gJgXGZq8OPCNMqoytwhlZfbqVnkVESIXyRf8niIrOGbReDJCf+8OMfOM8njuOJEMSyrzVbowtJJU7LmfyYCKpwShGve3xxvD/07PceHyfUdKIzmYOhynXIxFDTQiQKvSCJi82SJUtKSZxDYgxStlU4rAKvFL2WbmZlpJHgpus4eAdBIl6tZfFFizc2bHwRkK5CrdlS5rMI0SonJYrni4d0njfgKVzLbES2pRQpjftGWahZ1VLq4DKGQ9/z+uaat2/fUorIQeUYiPNECWW1+WoDXyz0JGo02qKUwWqH1bHeKr3SBXL92dgOYzvJzmgrEzxHcp7RYiQonMyqnbhuZEqxGPHa1fpCLgyNs4qh36BnodEUSo1/alUAtYJVkCaaofdVQy/X7F7P48OZ4/GMVpLhff/ulrfv3/Hh/RvevrnlP/7nX/N3v/5HPt89cnd/4mHy7IeOq+HAoTeMIWPHgH8YOQTREu1rliNmKZOpssCSWKImGJjnBZUDnY4oK8HWsqQ6JzT9/sDh1Ste5cJxnvn50x33D494rdl5x/XQsfOOqfoqt8NZx+H6Na8OO95dX3HdW3pTRBrm8yM///yJnz9+5v7+yCku7DpL76wAzyTBgHeOXedlPIeAXhYOWpF2Hde9RztHvxtQRhFzIKVAjpGdzvgSsSWiCdXqLaLJYkJjJWPqfc9ud8XVzVsOV6/p7IAzHqUcRTmi6mTz1GeUucL6kW6ZoflqayNyUjlQlolwPlGs/wLGkI56Y0SjF2pcq7RUaYzH9Qf2t++5ef8BpaA0mbCUUFW0vnk4z/PIeTyRzke02mHZYdyECRnre9zhGr1/Q/HXZLcjW9HWBFXpQ1XWCQlg26azBu5PAOcfyXhuG4JUEGrzU2uSaX97+lC1bjJaX5Zny5OGtqdUqWeVpmf/2P6sLv6gVhCZa+CckihvtNd8LvX07KRkY7QW5zr2+z03N7fEGJnmiXEcOR0fOR4feTw+cD6fCbOYK+z3Ow4HKdkfDldcXV2j1OnFeagquwaqSTFXipeUbXMphCBl+PNxYjxPxCjapIerHa9fX2ONZpkXfvzhE7/5hz/w67/7LfzdP/LTD4HTeCKNkgjZHwaKKhinJTsHUgyrpdFsIWdLUpqkOrK7xuieUA0GKJmSZDwqfWKeZ06nI9N0lsqb0VVnVcr1unJ2V21WGr3iZX+AXAxDRiydycjniGIwMi8FNQllaVkSyzSTwyJ7vDVEJFnQeP9xjhSrgYi2sgeHeUIbj9a1wUw7sD3FeIo26JTo5oA1GatGSIl9yFgi9jzVUrnYU3Z6waSMThWclYIpCa0LOopRjB8XVMyYhyP+8cRwnthNkXlJ5KIhJHJILyC4eLULxzLERQTpcyTVim1p05eW5CutzQPrjCgadD1Dv8NbJ3t9VkQfODuHs5plkTI+MaNiQTlT1yEwWhF1TbZVuobSMqdX84yU0bnUhiO1juOu3zHsBvqup6SMKgZrjqQEYUksk0gbUsAqUaFw3uFqZer58QJ4uq5nd3VN7gMlRpRo3DBYC66W0PsB34uw8dX1FVdXB3aHnfAejMF4j/ed6JmnVA3kpVySk5QuDFWr0fdg3QpqvZLS5zD09MNA3/cS2cIqEK+U8BC7oRM+qTEXGU/RF5WMbaN81EV4zYRKK1TJmjTNhGkhLU+7BpRSdIMnm0hQkSUHQhSOhzaAzmSiaL/NgfnzwufjPbpYnPY8vntD0K955TyH/oA2mt564rSQ5oA+Rsox4VTkcEp8New4vbnhYU4c54XTNCEp80wsov3ZO8ft0MM+1pKCpByvrKVDMQNOKXpr2PWOnJvunujOWVVwutBbTXG2ymtkwpSY50IxYJ17IafUOrhLLZ+pGlG3RcZZi7WO64MoGOTMqqEnQs+WoesRgJbxznG1P6C1ZlmWVZ5DAguRarHG4ayXDbVovJfMomgCmo3XigIMKI/SHpShFEhJMs0hSCYk5yABR7nIqlZSfCmFkti4oi0b80cqgW3rvdQcvFxlfGdA9VhvGHYdSxSuzOlm5ng8M8+zLOi6MHjDN1+95epqx+3NFR8+vOXX//Bbfvu777m7f+SHuwc+H0f23cDtbkdIV1jfoa1nN1jpPswJmzRYjVUKZ1t3aqE3Gm8UMXXVKUvmgzbiPHH9+oabt2/oD3uUc3y+e+Du7p44z5QYsEphleL39yMpbNCz6w68e/OG68FzffBcd5neJky1djyFiB1nyhiIc0I5CVh9kzxS0kzjjKZzGuc0fd/jO9FuVVoAvLOWQiHEyDhNnM8j3mqud5a9KzgixECcZyiLZAZ2O3A9yu5guEZdvcfcvMNV//KCIxTNlDSPIXHUB05mZukW6faskiRGa3xJ7POMnY5kd08ETs9pObnRearFcKHylhUlJsI0sYyT2O/mgnMe5R3G+DXo1TljcsIlyfr2y8whzNxMo2hPBsmaaetxvudwdc3+cIXterK2rFxupVZvdFXvtUL44A2KPgWgf+q4+Htpz/6n05Qi1cU6x5qBxWq+UDOWXwKgDb/9Ke5nA5bW2jUQvPx6+llUfb3L32/nIOVis34may1917HbDdzc3DBOE9MsPEuArutwVpo5nbXVuzs8+XyAqKw4h+06XO+rmUKp3eIQUiJNmfuHI/d3Z46PE6AY9h3DoUcb2X+63mGdYX8YePvull/+6mv+y69/xz/8+nccH06kmBh2PcN+j+tqB3MVeG9VEKUUygowQ3cU7UE5GeMFqhAdWUnw83h84PP9Hct8RsHaFOi9xzZKXb3HufH+Bb58aTAILaJRQJSh6CLSVQWWsBDjEbFzrN7rSpFCZHk8wjwTTHXAUsK7tkZjjTQLJqeYjAFkXRE5PocxPcb41cGQIu95qpXTkjPJGGZnJJjKiaQts3ZrMgXNJrcF2CTUruXnO6aSOd4dGe8eSPePqMdH9HhCDT3mDehsXsyUFCNLmas28MyyzFXWa2vW0uiVZqZVlRc0am3qa0mOUoT2YrTDGo81LUmjapOc3FWnKg2JIhU/HVf8pI1kNouS9TUDsRR8Lvgi5j+5VhtLraiU2izdHKWWKYizVBSZxqbkoa0VlYTKLX5+vACe/f7A9dt3qEr8kLKnQfsONwzsr64Z9gds19HvBq6vr7g6iDyKsZaYq5UTStwilkWirpxIkZqVAW8cXbeDDLYbwIqupVO2AhmRCBJhYUtrIEo5rQvaUIXjL0svUt5qntytk1oWm7oEUZrGXYacJpbzRKwLy+WCtdv3KF9IOolgebWYXPkHRUSKSyqMi/A/ShJHj6gmskuc97e86fbsdc/QGwwTOo9wHMnjgi0L+znxretRtzd8XoTn91HDwTmsEo6mKZreOG66Ab3L4noTJXrqjcUUEXJxlZu37524UygDJaGVCKZ7o0hOQ6kCuFlccZaa8jf2pVRGyxa30llbw9tibo1h1/fsd3t83wtvrrBmIlqpDSTr2BoErHMCOpvbSaoZI1U1TrUsRiWzNhB4L3y9VHlHkn625GLJ2YhVXAhMk2Q2QwiEeaSkBUoSmSototTGmHWiN67YpoP65WPtVWtYc6U1tEiybYqdaFA2mY8M0xQ5n2bu7+84nY5Yo7AGrq8PvHv7itevb/nw1VtubnZ0neH//evf8fj9R86nM8fzzBISWWmU8xTryMbSe1A513tv6Jyld5tdbXKGzplaBqtOmEX8q7Ux3Nxc8fVXb3jz4T1Xt9ccj2ce7u85PjxwPp7IUXi1P49/YLoAns4NXF19Q+/Fz1vZgLILrtf02dAfFvxhwc0Fi8iCueqw43xfr7sSTqcqeF0YrOKdh94pvFU4CbrlPsbM6TzycDyjithnvjr09B7CHElxgpyEbtEZojNEcyD2Nyzda5b+DWa4AjdQcMxZ87gk7omcCYymypZkkcUyFUS6Ehnimd7dgzLMceH0bEykJLanAvyE/9oaXHKU8TePZ+ZJAIy1HmWsjN3K/1UKNAVbMr7xqFeLx+o5XUApA9rIvNZaaCcX2csVwJVWym7jcst4qtJWwkvw+azOsSLAC4h6iUPLs1+8eKqq4FKJ2xm5Vhs2HU9jNumpy+9P3r586bVZAeulE1L7+Uvd8o17up7Uk89eLsrwYrnc9wOl5GpHHIWjWT9zqeuKuNbE2ujy7HNqjap6n9Z7ml1zQbJasZa3T+eZx+PI8XGSNamzYrqgRBrPGUvXO25uD3z46g2/+ptveff+FVdXO374/U883B+5eX3D/voKo4Es614is1QrZYWq401RlCGpSsdoAThamldrkLCEWcxdRkl+WOvEUrYUCWqNZMFsYaUdNZH5l6V2Nm6wNkClSmlD0bqu+wtgKBhKzbKVnIlTJM+zZFiLUOJM1azurMFpmJHqjfBHdQVqFq2FTuOs36TA5JG1CiFc4FCBpdaNMqCFR6urLJlWxOrs1MbTmALzMnN6PDKezsRphnlGzQGle0yxWO1fzI8UAksYRZ9znlmWiVD1ZKmP1rVa0RpVpaGtSkWWsjb0WlUoWrRmjbYY7SSwaIFvvQ+6NklSCtmwNrZpbTDO1EyyJIpilp6FUvcYq7Z1BVqDb95AZ6WJhAuDmEsZOW2kKvvcCRG+ADyv375hd3uLNxZvTQWeonPpu55+d8D6TrgWStF5J5PLVG9ypcTkB70uiNZu6F8r4Sq8vn1F33XCnVSWrD0qIh1fMbDMEzEEckpYIxtpSnpduJQSXmdb4BVqk+Fp3W21pLHCqDYn1LZohRAYH0+E6WUjibbCn/OdYpcdSh1E7LVIFi3FRFKJrArWG6z260J4nO/429+O/E7t2LsDX7+55evXN7y5ueXq9hXxp3tiuiPfLbjHwFcTHHCMvefYDdzvruhudvxyuOYVnm4pTKEwaEO0DqU1UVVZIm1IRUrUnTXsvGU/+Iq7NQohdfedobOa4oo4FlVv6abrGXMipxeXQS5ZBVgt0tq0/9RaRjLG0PuqL2bE+DMXEZsNITAvCyMjejY1jjJoo9CuObgUcpEu4sZXy1WKyhppyuo7KxZfyq7jSSlDzooQMsfzTBgfON9/5P7uI+P5jmU5Vf3RUrMa1RvadyInYsWlxGgrkaBu2oMWOv/kOrRMq2REZUNvYFW+ipQ2lMIgEX7KEKvItFIeo6847Duurvd4V6N3W7i56nHuLc7B69dXvP/wjr//hz/w+9//yKdPDxzDzPTxM3fTwvd3D9zsOw69Y3CWq95zsxvIvQQGxjYR8CKuN/VupZSZQiRT0E6WJ+vEvan3Fnvo6O0V1zvLMu/XEtp//u1HHk7Teh1igse5MC6R0zmy6zI7j6hAuJ7DreOD3jNcveE0jjWbXB27qkwHRUCzJdNpGLziZmc5dJqhU3ijMErGcFHiUx6CNNZZDb2BzsD9/SPnaSYqK5mIbDhnT7TXwDXj4nl4zPglYJ3IsUUs51QYsybgicZSjCwSMvJq02ReMCSxItWGqF9G77lmAFQtSWvdOMBSxvSLJcWFHBbR2izyHrVvelUbWecTtcyFlmajUi6AnmxPLSWf1aatvM7Vy7ykpOYvkJxan7s94M85nmcS/7xnqSqf1kBxy3q24LaBuT9Wev/Tr93k0/QTABqjVK+aE9LqXFerZV96nefnJ59Zgl9bK2q1ILI2UOYUWWKQDuhnR1as3D3JclZArKmZpspddw7rPLbLEpDvBrpa5VNKslFKyZbV9Raj9/zil1/hnOGbb95yf3dEKcl6xUWsG42yoCLnceHxLM01MYHpdtj+mu7gcZ346qwjSgk/dxh6Xr26JYaZRy2l/pQT07IQc5T10xi883S+VCrF5hf+BdwpI1pJA5iuVC+lDdpbOq1xtiPGwhLEArqghI6kWmikhLtS50BWdR5qAzW710xqNJlUlEg2EQmlYGJt/NxCL5EnMloUL1Z5sNoXoVr28Ok4l/SCkmpeiMw5EVQi2ULGoqzDXN3gD9d0+wPq89OxFpaFMZzEYGVZWCZp0ClJqoilckOlM71mlesXiNX4ohZUsRgMVktjGJUO2SSQhPqgJYtcpRLXqkxpc7LRg0xdtwBl0NUx0Fkv2uYqijxha9irPFUx1Gg2tGnl9xaa+1uTgvpSKPIF4Nnt9wy+Z9eLnZ+qMh9t8nX9DqUt4yT+txlxnrEaTKknrUz1/q2RJpJmbuxBZx2Hg5QMfRC/6XHJpDATlshI5mgV83gWPT1XVmecy5KMNXZddMq6gMjftaKWh2rXelu4L+wkUZKNW0YBuU+PAjqhTMI66IqAoRTs2pATQyAaRY5R9An7jpwjS5g5Ph75+fNH4uJwesdj/pY4eOz1nm6/J8+KNIE6L/Qm0hnDKyLRwqzg1IPZd9xmy+6UMPOEfpzoYiKUdnOpi3khBOmM02jJfFktWRi5GnXgqM21qOhVlJ3VAvKl9dt6sZHVrxXcZPOT65qzcLhax7kxBas1xonwb0pVZ7SIDVhLF5ZSxC7U2gpmkcmClNdL0wpNAvSMLlBlN2RRks8OSryTw0IcH5kePvHw8Xs+ffyJ6fxADKMsUEqakJzzdEOP7wd8vyM4X4GnWTOhsvB3wFPgmZLQH3TdFFAVqOi2MAm/bSXia1kE5RpqjLZ0/gBFnLG8N2iVUSSG3tAPe/Z7z9s3t7x59Yr3b9/wn65/zd/9w+/54cd7Ho4zx7t7Pj0eOXjLza7jzdWedH2FMyKSnIlSepcwuaoGyGdYqj87NTNgvauuFFpyDl5jjZeO6txL6RiF808NFkLOPE6RkhZUnukd7HrDYefF1nPouXVXDFeT0Clyo1NUJYIWQOaMQRqNdl5zs3dcDZrBazorTizGGLTrBLQK41BE08NMnEfOcyLbiWAyk7KM2nKmJ5trsr2G6FFjQceItovsV7oQ0ZL90RpqmUrghuRftEK4XsmwNe+8BC5tHtW8ADVpSilJ+NZWqjht8W4+2AU2zeGLZadOuraSydRrKcd1HZM5qdnGneCnsn5EVeduac9d05aXwPNPHC0x+CxB+Oxt/sTRMkyVk65at+6FssYFKPySg9GW+WyPe/oOrdrVXuvSB/6S5/ll8PkScD4/mmKLMbVhKRcUiWQNIWyA9/nRXO/XHGsFnk2uTmvh4Dvv8X2kCyKt1PcimG6srhd4qzAprfC95+3bG3Y7+f5wf+L+fuHhYa5algmjtOg3ophC4O54ZJwjtgv0e82tv8b4GiTXi9p0dnf7PW/evoVSMMpyPB6Z54mUYrXoTQSlhDIHLMvMEkI1ilFr9u5yBOg6lyTrWEd/zSaaTuQWlyUTp0XMXZRYEBtTg7+CrKGloKuCSMSSsFUJRaGQpipjMtoIWC9KArOEBLgUWQdzEa6mRmSK1moVuiYyEO4rFS4otTaRliKuPtEYgrdk5cherKeV6tE3rzFX15hh9yI6iyGyTHOtBEfiEtZmXKW1WJ+GCFlDri3ANcOeUyaUgMozKmssBmcMJTWXNeEFiNuabM05I653JGKQyqaYztQJrYTW1voUlJYEo/Ue6zzGGqE+lCQ9GQqx5JwXwjwTqvXoqu9Z/9+6NlIpmLLN8cvjBfA8nc6EhzMnL1mQtnnayqnp+gGlLdMiaFeVjLOGwyCd7dZ3YMTcMqUkqHg25LBUAWJJG6/dliWTYyTMC6fHI4+PJ45aEc5Hvn33hhgWsu9Enw6qTp1eJTO2ia9oDiAtgG0biUbTSPEFGZBtVK18h2fp4AKkHCgloExCKelGayU1ZwzeaHK25BSr5aJlCYkQhVOVdCEQSGni8+Mn/vCTQpWZ880rdmpgeP+OqzdvcdPE/PEj46dPhLvPlNOJPgTcNGPnQO4NwWTCOOHuTrglsrRJQSEGTVo0MzClQpgiaUnCI8qtAQdO9bqL4Lkia0vWhkQitUWy8EfWYlWvS7tzZX1czIlxmSmPcJ5noUdUuoRpWoiVTN/8kXNJiGWd3CFbtV+VtpJppE7yalc4zwvTNPLwUDum4yxZpJSqV7F00U/TyOkkEinj8UiMInxPpVcUrSA4SD05zsQwy/vWDndd9Qqt9yiu4fbqyaBIlYRdpDaKeHqKdE2pgLMUjdJVHirLgqWr45Cz1IBIVU9xXbFzpnlse6u5vRqwv/jA7dWBd29u+O67r/nPf/c7fvPbn/h090iYg4h0W8ew27PbH6qDl5XuyNjKmu27jHtjLG7Xs7/ac/3qhndfvef65lrcQYo8ntK2zTrIvjAocinMTY1iHjFKmnoOe81hb6uv7x7lBrwrGJUxqmB0rnpw4nymkT3I1PPee0VvwdsipXZdteNUdUCrXbiZRFSWuWhOZebEzGg8oQdKh1UD2R/A7aWigpHxfqFTkKXmJGNQVyMJNniplFy3pAqxXof4okxbMwirnnAmk1Z++d73vPvqGz588wuubl7T9YNkG9Br0NLWo8srvAKWGkCvxZpL0KSeQ6eLonsFFQVZD7ey+kXm8586LkHnF0ve/7zs5CWobNlPkVeLT0rdl9zPP+do4LNRei5f789/nT99Lu0OFbbGJucsOXd0XfdHn7eW/nNBZTGYWK1VjaLvRBItLhKktMZDVbbMu7zzRVLFanxn2e07Us6cxkyIE8dx4fQ44q1ZTQSM82jrIOTqjlcpSk2PucXEtITQgZI/4J1n6PY8Pj5yHk9M08g8jyzLTKhWjiWLJ7ixlhAjvuvxu0D/9ApUNQqZ3yQRUI85M8WANWCTI5ZMVhndiVSc9RbrJeunUAIcq7BlyYo5WmLSAvhQaESn93BwuF6hjTQC21qmL1UeKqVQ5fwkmRFNww1NkaLyUOt8BtbmqvXvxVR5Qo9OO1SKFTDvSftblmGHsu7FNtoAslIZrSRJpEuuboqFFKJI+CnJuMdgSVEyotlDcQqyRhXBQcaoWrmMIsnUMv5Bmlp1qA5ISxSd7TmyLHL+uQXcaJxqLlYiqO+cwVhRdYnLyDIvnNURowxGy1g9HU/VeEE0b0sF788BaKrKM8+PF8Dz+Hjk7uGMMyJ63YCns5v8hNKGJcTKHyk4azjtevqhp+t6lBV+oZQ9AkYremexztaGAdF2ijEyLYHTtHA8z5weT5xPI501LE4uutzhpvXIKkfReAMtc4KibtxlXX5bmr4tkq2xQoi8COI3wnV47lykFHjn0CWhciLFgNa5lgBM9exWKCwUhzWNbF0/l0JKdwZxmQhnHh41WiXOy8TV8IZX+zeY17fcWIe9usIfroiuA/MJfT5hwoI5LsRjYmZhDgtlXiDKzUwoklZEpUlaMaOYiyKGInIqlZBYipTjWobUWPEiz9qQVCHFc3WlyEK2/9ICui5+5QUOkY5VGdBqnKoYtlnJ+uIoIlJFYQmV11k7XjMEXVc/pdErN00+fk6RFAPTeOLh4ZGHxyOPj0fm6USYR1IIlBTWRbsU6RDOYcKqiLZqy4oW4SKpEiAq0izkeLSpi4xEz41W0rmXm1br/Fu7fC8X8PrZtc61wUNdZD5N9fNtAvW6lujb+bauX8mK9N7Sv77m9vqKV6+veffuDVeHA9dXB/7xdz9yf/eIQ3GzH3j96lY8i31tGCNLV38slTO7gd9+J1Jnt69vefX2Fa/evmLYDxgrPOzCZYlEFsUvFUsKIv8RMsxJslhTgmggGk1fHJ13eGtwVgwXrCl0puBMEcF7XWoJTHJ3IoWUQWWSlvfXRUjruUCpfN/mGhUWyzg57kPPYzkwmkzsNEV1KNWhbQ/GS9mpEuQLF1mzjR+xysRoquaoquBIQyBDdW8JOYsQ4cVhKm+48eBy5ZYb7zlc3/LVN7/kq29+wdXNrfBba4XhKajYkpkyxWQeZqR8/xT7texlC+DZ5uUz/NSyoW3ba+vkxUs8uaftI6y/UEoyRV8qgf/5uFMe/qRipVYO+JcyhsCfBI2XPM4GaLXW6+u175fv2R7/5ZP405nP9hBVQUFraFUK2fOeve4qGQWrPKHsX0oyc1oCz847Yp+IswhuW6PWYOwCaq7/ak0oxojHtu8T2kzEXDhPy7p3O1NVLrTF+Y6uKLKqNKiauWqc/azUWlno+wGtNc44nBHpqNN4YjyLEcXp9MjpdBSptJQYpxEeDEsIOD+zuzFcXQwMBThVqhKMEVm0KKM5pMAUCjZMQrHSCttZ+v0OO3TYzmN0zZAmAZ4lQ4gQzorT3NQWFLpodt5zdXOgu3Zol7G24LRG5UQOQVyS5hEVIiplYpKmYarKi6p7kGRJVdXTBmfFXU1XmpDCAhqjHBlJjKSiyfaaMtww7/ZQM8BPB8VK4qElVhqVKVMDpkXy5FqDSa4aGEiF0mCbQGJ1U5Ikx7LE1fggBuEjGxQ6aFJtlIwxExcBpSll0btNYC1CO7Aa4xr1QPjHMUXm8cz5fCLFLNdZWVLITOPMeDqJZGJtLpPL14D85defBTwf+eGHn0Qfr7KHrLEcrq7Y7faY2mkcYhSgUlPoj9UvXJvGMRAiak4JU4GrqR3ocnJyUeYQmZfAHCLaOLqu592b13z79de8ef2aztdyX8nrxJXMhFp5M6VO6lbebwBzXQC2VXqV+oEKYo3BOPei88powzfvvyHkM8fpDqsfIY1VVkkijRLBaHFTsrqAjiyh8iFapthpbBFP2KHvmJaJ449n8vIT3uz47sO3fPfuA+9f3XLz9g3Xv/oV5Xgi3n0m3H9muvvMfHxgPJ84ceaYNWcicyrMBWYgFohJEZQiKI22ht709KpOTG1QVtQC+n5gtz9gnedhPPH58Y4ffv6eMB1FS26zDXp5lBXLrtewAbacC0VJpJ6zQqlUQVZYCcwCJJOk6Kve2JIi01Q935XwUXKqZbhcU/wxMJ3PnM5nxtOZ8XxmmUfiMgOiG3Zz+5rrm1f0/YAxRojby1yjXPH+TSlWv2HJAqciXXwpLHWjEm6ec44SF8Jh/+IS5ErwLutkqpnUOspqdZtavRBwWZREtlkyUbIpSTa0AVPRlq1i31mybFpJIHC17zFfvaF3jq/evOK33/zIp493LFPAac2rw4Fd73FGY7SSeVt1G6W0ZzDOYp1nd9hxuL6qXukd/WDJBOGB6lpBqBmyUsui5QvlEq306h5ku65meS19N2C6gWIsEU1OsFSDAMnmJFk4FfWr1NJ2wpRcWwxSLXVtQadY3JZaqpfxEZIIIj+Mlod0YNKFxWhCUYSiyUuU7KMyFG1R2kpqVWlUNZeQUreq1YOLQEBJJjJSmHJiDgtpmckpyKbyZK0oGFVqb3BB6YLvem5fveObb/+K737xK95/+Jp+t0fb2ij5BLWpi/9f/qqtXXqdkeXpU9Y1/TIBKVNyW/MugaQsjVu1Ykt8Ptsky+Vz1cVDNij75x/q4vtlA55QpZ43IX6p8eifOlqW9JJD2rie1tp/Anxefkb4Y+tfowm0jKdSVKm0lxlPoTsZkSDLlYfYCs1aKmbOGXLnyCGLd7cqDL2n83bVY15pFFz8TzW5Q4vRHmMlq7mEyP3DA2GaoCR2fU/Xebqux/c7tOsxbkfnnLjQ5QYYNLlqn4pGt8N3YnShjcb3HVdXB2KcazXpnvPpxHQaCTHx8PDA6XzGWsft2xtgWzcV4I3CKbHsLElRlkSImqAglMgYZ+FQuw47dHT7Hd1uR9f1awNoiZkcMyXBOGfyWSh6McprahTKOZS/ojsMuL7gnWRZVU6kZWEazzBaTJKZejwdeXj4TCFhbU1mFUhKicxjqv0FgIO6Hue6Vck9ykVxSoqzdsRuh95fsQzXFK2fzfG6/yFd4THltWktxAiloJcijYOmJtGUpphESVEAaKHur5FlmWQdTDBPUYKD6cy8SCm/KI3Npi4QzfBkq34pJb0OvuvxvZMMp1HixrgIPSrMM48PDyLWLx3jlKyIS2IeZ07HEyEs5Bwp5JVGIqLxzcHyZTUZvgA8p3nm8fEelQPkQE4F53r6fodxopMowlIRm0vNNMkLhyQ3OOe0WRlW/ohp2VMlE1tK2aJfKR2Jitev3vDhzRt+8e23/PIXv+Dt6zd411WbJrXNuwaly8UCCusmQgOXSj0BoVvaYEsNaGPR3qOfaU1pbfjuq79ijkd+vjOyjyeYl0V4rXMh5IJRBm97nJMLH5LHLxFrA8ZEVFZYNN55nOs4zycez0ce72Zy1JynmdMyszhF+fAV19dvGD68oxvfkx7vMT9/Qt3fk49H8niiTCM2RJaQWXImlEwoEJEMVNFNskJKA2iN7TyuF4mQ3U70uDKF3/34e8LvZn5+UJUMXERG4tnxBGxul/wJ+JQFmY03BJQiJcdcM41CyheeiXSEShQalolYm7VCkEakEqMM6BTJKUgX4DwTlpkwL6Qggv7aaPrdnr5zvHr9itvbN2KLFucalcdKhBZOcghz9SoPzEsUC7FlIYQmeB5qlC2+zc+P1uwk3SECpARG6FXvUCRa1DpuyVK4VqqqRCgtwLNF81n+JhzapjvbFjiNdwbvduyHnje3V7x7dcWnj/ccH8/klBicrxF5DXpUnZdaFgFbGxhc17HbD2uGE10zxDlUCY8tIyjfywo8nx/GGob9jjVyr/BRG5EJUkXG4+rtXHQdB9tcXgEoBVsKpmzdq2oVcVbrNW/dsxt5XRFxLMkQXS+uIRlULpi6uOdcKodTmhGUNmAar1NJA6LaAtSWk1AKiR6MoTgD3pG8I4eXE8TIw+S9CljjuLq64utvvuOXv/hrvvr6O25u3+B9LxmVOolaQKx4uTBT/3KZ04RWwrrI09VS4pYRu3jqnzrakqg2ELwBVPVkyVw/h+Lp6/5ZoFA9+74Bv5apbOOsZSovFTR06y5m44d+8V0uMp+iG5rWrGNrMrp87z99gf7Y37bMb/OhL0XksZ4fzkj3tbBxcn3vLeNptVQUnbV0PlP6jNLQDx7vGx+4nfdTKHxZspVKil2lBHMpnMeRZRpZhoX9bkfXe7rB4/oe63ooipxi5WmWSjGCUr3DlZZkjO960Foakapj3m6/px96Hu8feXRHHh8lA7pMEzCyLD1PgKdSDFbmW7aGnES2SQVLckbKsSqjrcJ5i+09bujo+kEwh7YYlFRvYibHQiqJosTPXpwqJeM5JAtmwPUHul2h82JPrXMmulkakLSuiQPNeQmcl0gh0mlXpQcVWWuyksbWpDKqNvgoLftqLKKuQ7akYjkXx4wnmx5rHZMS5ejnIzXXcRnrPtf2oRhEqcdEhUkVvBldVX2M9EuoDWeVkok5kBdxC5ymwDSfmcPEEhepPFp5v2ags60LMk+879jtDuz2A93gKCRyCVVjNJJDZp4mxmkkhCCBoJZxE1MgLEJTyw00a0l4uc5hvRMppapq8aV14gXw1EaL7qIp+FKYx4h1lu++/oZf/Jv/id3VNc57kRGqkalSVaNqnhnPJ2kmSHEdeLoO7FxL78syC6KuHeK6anf+8rvv+NUv/4pvvv6a9+/eMfQ7rDZ1g64zt2VjyiVrqawcNvl3BZ9sJat1CVXUkmid1rVjXz3PeBrDL775a8b5gZyFVpBSwc4jcwyUFIkqIeKsFu80Xecrx04zh8w4RYIoxldtS5Fa6rqOfK2Y58Snx595PD/yw89/4O2b13z1/iu+fv+B796/59X7v+L2X/1KODHVPWhaJpY5EkIixEjIqUr2tDNGyopFE2qEs7vasb/eY704vEzLiU+NqbnOAAEAAElEQVR3P/Pp/DswZ9ABbUT2xhrLi4W3tI2/loz01mV7SdqX96ZmRkttOhKbMOmAE3AXgzizhHkSLbNlJiyLlAkWAYIlJ6ik5VXgOEm5U6UkLk5GXB06b9jtOq6uD7x++5rr65ung71IJ16snfVLWGTSL4FpXpjniWkcCbNMJgGgkd3u8PQyIDZiqRK/UVlgpwKd5bprLeVtXcvwrfljzW4qJZ3KUBeFspnKVCF9Rct01HxHpm6giv3O8+H9LYd9z+l4JsaE1bJACbVBrwBUt2xn5dpeWpiVWo6PUUSNVRFZKgUrCNhE+l8W25333L56JWenxKe8edevYLFkshbwKBnUVShkfR3Jrgq/q+nsrs5pNcvZoh5pJMg1yyfX0AA94Ov8b/ep0MZfqRJSqn5pyTpw8W/drn/9dC3rqQt933M9vMYMhtAblvOJh7uHp2umliRoLgrjDH2/4/379/zNX/9rfvVX/4pXN2/xfkdBIz0Z+mJFegY8S53HdUzIiKjGGfVJbV2rue01L3o5Tl/WzS/+1n69/m/bHKSZYvtcql7XBjplaf0TVZF/8lij/wsQZ16U3tvYM6aIKkqjqFxkHS/L7c8F5ZtiidaKnM0a8H3xovxzz0A1QCgA+UsZHaPAKVC1OTKvawaSGaq0DiowMNZgjKjEiCtNbS66COTXQKX9vgmBG3Bec3NzYHn/BqcK958zp+OZh7tH9lc7rq4P7A6Krpc1Cqzw40Fkb5TC5QasayBTG+OMtTWhsAFdZwf67kDnB5zznM8npnni+aEVdEZJsGcNWRdiMRTvyH2HVhnvhQ7gvMd4KxNq7dCWrKLSkpFTqqBDAiXi+bUwLUkmZdeGotK+qrqOMg7rB3qlK9c1k9Cc5oVCBKsZnMd2fe1RMVgr+7Z3TjzSqyzWcTxznAJzghnHbHuik6pPnCdSyZhS0M8C9pSk8XiqJhHzLM3UVJkoyXKaCgo7+q6j8x3OepzxUh5XqmqLSmIn50gugZTDqqla6iBZE35Ky0JrVW30clxf3/Dq7Vv2+wHnDXM4M84nYpT9OSyi6aq0od/t2Fc3rRQS4+PIPYplmtdgyjWr9P2A6zymqodI5fJl4uKll5HWGGfZOTgYxaIsfrjmm29+wV//6/+Rq1ev6Pp+1U1rHsUxBOZp4nw+sVR7SaCeuCzkqWaXpmlkGscKXjPOOnbDwC++/Za/+u473rx6zdXhQCmy0a/d7HWhWo2J2gKwLp7baawASD0DomvE3DrhdQXGT/lEWhvev/mWcbmuqF+0JgtUQfeMNhlTpQlEZFeRlSZkGKfIOEamFMihdWmLdIRxWqKCceLTz498frjj0/1P/PDxwMeHTzwuR+gVHBy317fsdwd2bhCJh1woqZBitd8qecvCVT5sSlX38HRmnM4MVz3764HMwrycSA/35IcTSZ3IakSZhLGqcnuelqXWa5k3WoOupebL7tQmgrtyVmpqP0YBnMuyZSxjjZYa4ExBQGeKAlBTEImOKixTI72tK1GhVgkjbdXa7Z7CTAwTMe2w1teoy1bLzE2zVIjYaY0+l2VhmibiPBHjwjJNzPOEcS9LaLk0vmHNejaAJAlEyXSWyoepHZCNzbeWc0tZNx3JbKqaBWxbywVJpijR9KsZSbHHG+g6x27nV31BrSS76Zw09rSGuTa+W0MeNGCpKkFe6DCx4rvWeV1Ku6cXHs2XC4cx7Hc144kSDlHI8j3WE82SmSltatWFVQSdYQUhKtfsa9noMzV72LjdLcBsV6a9pFZN+mgj3Ju63ki2vRCrEkFMIgMVctm+50KgVD5XK2uq+sIF7wy7zmG9IurMaA0P9w9PLsew23G4OhBjxljP9c0bvvv2r/jlL/6aD199x25/jdb+yabQAP4X851FAF6Dd5df8PxOPElBVtB68Yjy9DEtN7oF421dXVfRi79cpD2VWrOtTc3ieSnxy8fTd3x+PM9UQrlojNsyn8Y0R6Tt3j4Hn63crrWMxwZCW6ndGPUnP8s//1DPAO12SL9KEa3lRfiQuci8aFVCdZGKMkbjnMF5t1ED1Hb1tpBKPn+9JavAudaarnPs9zvScgVJdBbHcUafR5QSx7yYwOiIUlaywginXSvIWTzJRfhEEG1zZ5P3T/WcRTrQu0GEy63FOoc5PeKce34pcJU4nZu+tpKMcHYOrTPOGayrmt2tf0O1TL+cpFLSaJQTaBsrh1KayMp2IagOntKzUcGc8GItxis656TUHgJZa+aYKCR8znRK5K2U9SJXVCS07ayjr933RmtiDBzHmSnDSVmxIDWWMB3J53uhDeXI65y4HBkS6At1LMSw+qZrarNhDeJX6cqhp/edyEmyWYcaKwmkQkYnSQRp0+hdTeFChOO9F0WZaIQmkHRBa8d+Lzax+/2AtXA8S4NaKbl+Rhmvznv6oePm1TXOWsI0ozKMx1HcjZBrba2hGzqG3YDx0pQuFYz4xSrFS+CpNMVYnC3sveKqHzi8+pr333zL26++43B9LRm7NonWRb5uYDGuyHvN8NS1rWTJXMUKMBrHxGpT3Wz2HHY7rPfELK9ftEQwl2Bojdq1pNiLUk8X0naj64NLbdzIRa32jPJc6uL2dK2m3rj97jVdv2N8OxNiYpxnTueZHGZKEd0zZxTWyWcpRawdd93A9T4Tg+KkZpZRwLXVln7oMb4wxTPaFcapichmzuHE9x9/x5ROHM+f+e0f3vHm9jWvX73hze0Hbg6vOAwHOtfLYmGkUQFY/XZTjkzTQjhPjPPEx88fKQ8Rfoyc5ztO0x3H8x33D5/59PgziRmti9hapda992xM1CxMAwWpFMi5+vqKjl0IyzqpUpCv2Ercy7J9jws5hipMLjqtpUZFpQpmW5W3aJ4qjVWzM1t5sgYeqlDiwsOnn0gxcn/3iX4vji7Od3gnjhvOeVnQtUgliYesEwuw/V4akhpwX3VHA8fzU33XUv16NUg5mAqyKojURUmXYv1q1AWFrnw6iZoyqtrVXTKxK3BtzVZlhdk0LYHWIGKsou89xiqWJaz0FpMBXcG2qc8s7dqq7X7WrFGDG41za62p0Xeu0ijlj+vzlSobs2a2E005yii1uoZcBojPk2Ur1FMCa9aMcg1sSu2yUFysJVx+iVSLVUrKm9aIs0nLGLUSbhY1h5QgpiIWtSGzxMSUE0suwpUuVElqoDZASY5WRKGtdjwHL2/efkU/DMSc6LqBd+++45tv/oYPH37B1f4VWks2pOSWsXrWsPWMfP808Hv6t7WqXsra4NbA//aAl8++hLfl4h+qjrPtarJm4NvzVupFCyzRKPWFAfHiuITKXzqnBhrlc0hmUz3Lfqa1euKcNHVcyuZtIFReUTL9UoaWTTRWCbfWrFQu1rc/Bzj/OceXr0XJhXlaOJ9HlkpB01p6IlQ1BmlPFdktXSsX+osfrS0fG693a4YTmZvAPM2SKXv/js733N89cJ7PLGEhn45MS8KoEYohpYjRWno3NKTOrz0aqupcUqTsW6qahzQBGqHAIWDQeUc/9JzPe3a7L2weFQ/kkqoKSUAXcdXRquCKUGNMbplCJNGRCxgtVAJlpCpTG4F0tXLUNZgQj3YJFpUpaCfNnC2A1dpilbgeqRRZigLjhEqTpXKVtaI0Rx9lq8Sew1tL5zy73R5rlFARS2EpcNaG4gcCcPfTJ6a736GWI75Ebl+/eyHpdSntuGpjo6gMpEqvUpsUXz0ncaKStahVtlBV1q8UYojMvcONMwoBp10v1CrvPDEk5lGsoUsx+M4zDB1970U5ZFTSPR+SONQVMQvoh2G1idUoShAVlxybI6D0IfjOC01ksGgrblAlFkrKT9e6erwAnsZ70Te0MPSZ6+t3vPnmV7z78A3Xr97QDwPObh1bl5vBOjOoS6Fq4KAuLi0aL6mSZWUzNVVkWMoPsqjH0jJb7ebwZL2ShbDtQls82BbPlX9Yv9YNkowYLcr7pZrZeb5gKxSdP9DrHW9fC+9hmmdCKCwBjLbQRZz19G7AmUoIz6L5d9hBSQZTJiYV2HV7hn6g6wzaZ4oJxGzZX/ViobYI0fg8nghpIcaJx+NnPt5c8/r2DW9uP3J7eMvV7gbvBow2WOtx3gmoyaU6AC3MS2QcJ376+Ud+/Pl7AieiOjOFe8blgWk5M04Tx+PEOAknhLp4f6lsFFMkJAkock4rYAnLXDOZU+VqzoRWqg7VCjM+7WLPSUroJUun8IpEyjZmmiamUltGaxtkTzMxoluWOZ2PTEvg/vEB63uM70Uk3rqqxtDhfSeEat/h+56+6yuBXWzUGi9SaY3ve2kbegY8Yy3fZlUoGkwtdspZCLgUQKkoWWS8dPPHXcdkdbYpCiXkzwuw0bodG8+u/buglCz8bdwbq6pAfaREoCRSVsQYpCRFo488hx/N1nHjrEk5sN6PWopvgHWVy7g8CvVv7RbWkqFR4lqhdHX/qBZw7dwuuN/P14nWkJjWJqIGtFpGoy0yZSu3lyzd8KoqbzjRt3NGr2vOmknNVDH/QgyFxUbmkHApMeXMnAtLhqW0EraArZASOWly1oT8dH4opfj2m1+RciBV4Pn23Xe8ffMdtzfv6br9dj8byL68iBfXtV2jdprt/TONjlHWZ5SLp1+IKLVJ8eL449nJ9hz14rcroK26x4W6MV4+7194NMDY3k3m/Sa3tHE+t9K5jC+z0rvaZ1BqA7a6Zl9aRS6lxLKE+nuHMc9B8H/N8cfBd8u2juPE+XQmLAuq6NoRL+fbArYU0wacK+golzd4DSq211+rJxdnE5bIeJ5xVriNh8NeKj6PhtN4Bi12miGcWZbEPJ7RSrFc3QAF33VSwaxGLC3TqSt3tG3fCo3RoLyu11wSL845um4CLgT1C9LIpGq1KCVKjOiUsKmgc8YWhVYJoxImZukdSQWVMkaz9nKvPN0KNKXRWNNsstemTSVd30ZroWytY0OcdASkhkpDctL8ZXTFCQKkRFpIelp0kaxqUkKbSymQUmBOnrGC4DklHh7uOX7/e9T5E55Avn1d05D13urWXC3Z3WRTBZMV7GrWcd1kHo3V1XlIgiYBnR7rNJRIsSJn6WyVQTJ1fVRVOs95cXdUiZxUpVaJlJd81XUmZ1IFnSXK+3Rdz/XVFfvDnr7riCGSYyHUACcsgVIK1lt2h4H99Y7+0CMiBFlsuEu6vATr8QJ4DsPA9e0tXSp4n3n39Xd8+6/+R16/f4/vhRwfU+WmKbVOmC2IvIxioUWYKz5UoIp+Akjbgprr4qrqC6w8zIY020C+BJVK+GTUf7dP08Dmyk1KkEomVk5kdZyrumatpPP0MNrhO8ur6/cSRWhD3+3o+j3H8ydiPOOMZfB7KFqspOYZVSb2nUWXDpU8XgUOu2v2uwOpTIR0ouSIMXB9tafzO+YxMI0zp9MJavZ4Wk7cP06M8wM//fQjhh6SJ4bCPAfhi1b7wVIdn1JapGFKG47nR46nz2Qzgp8xPqGc6HvOU+Thbub+buJ0CoQ5YaXT48UxzxMPp8eqgVa9ZVOuNoAn6R4Pi2Q6a/d4SaIHSePi1pvfSkyqpenLRcaw3lV1MQY0LbhpO94q6kTjDRa00AvygooRNZ5BW5rnrVknvFwXYx3WOZzrcM7X66XXkpHvO7q+R2uHUk9LRzEmliAWpFlDNppsNJrc2msq0KByqco6VjeJFDlnSeqL9FK5qA607vdGEdl4bS3T1ICClJi9txijRL+tZMbxzDybleDd6C6tS5Z6uduYb1G5bNYSXa9VilZyf55Jq5lhqoZlkxxpmpZWS+bUVF5ne9Nc9AZUL65FbSitIJEqS1QdX9p8rnO/CdDnyrnRtKBh42eWdW1p40hoD6IZKiuOxZKVJiUtXaY5o0TNSWSbgLkk6aadC3EqxGW9pXWlUfybv/m3tQokyhzD7jVDd43zezSuKiBcpOVWSMnlC9EA2HNoqqkZYEqVRav5xxrgXLzAxffy9HcXXe6w3ft2W9ucav9uoQKKdRzS1uM2L/nScQmF/hTYvbgc68/yPlteQ6FUXCkxpYBzcl4NfF5mP0GyYdZKuV4yp4mUlmqFmZ+A2//6o121l68XY2KapfP39HgihYh3Ig+ktVopUtO0MM8LxjQtUgFel2WndU98DkAvOa5oYsyczkI30ipz2O0ZdgPaGfbxilykr+Du0yOn4yOfP/5MipGb60dSivS7ys/zHulLVTR6k/DsN3vMdV+v+73IS3mMeW7EIp+zze2SRXe5LBE1BQwRY8EmhS0W7xJ+kaqXUQWrxB5SV03dHAoqJnSWZsSMro5FVfuhSFOorlrBpbCKzDch9rxmDkUiMuWCsyKNlVLEqIzyFrvv8N2OeZwYp4nxOFFi4OH4wDxNLMWx6AVTgjTcTEfm4wMc78nEF9xG68SKFVXNUQrigV6aH7t+Ug2xxogxje8BQ5gLWgm/ViuhIZZcxeh0a+CGUtJ6r0SC6rIxs0ox5oWU5mpnW62ll0AKCVUU3nn2uz031zcMux2UQjgHxuPE8f7I8f7ENE4UMl0/cPP6hutXB/pDRyGzhIXzSaF0wbk/w6u9GwYORdFNE84Erm5f8/rt1wz7a7S10ihTpPNUNJBbye5iOqoWGVGBZp1HhbWxRzbhrR0m16aBtpioiwzHuuk9/SYbUs1OtIj8cuFrzLQWqZc1tX2xyWko1lQx1aeHSEt4dr2q0bbFORmMD6efmOd7rDH0fkcKhWkMTOPI5CZGO2P1TJo1JU70XU/fdYSUKMpilaEoIS3nwTJ1gaM5E5fAEmbR0Fqg6MIURnJ4IM6KeSycjjOPj2dyBqe9RENJ7MtyFhcl7zuKShS1YPqA2yW6ncFkzbJkxnPk8WHm+LCwjOJsQM5EnV7QDsbziZ9/+oOU0WOoXemRZRJZoxyl+7zU5p/WBW2URMHDsMd3HU3LU14jQo6VkiGIokX5rXFM7sFFMNHGTL3XWWAbiSZGnesi18BZ3RZKk3BR0CJkJST5BtKVbsLxHd0wiN7l4Ya3b796ci1WPcjqfV1V1sQJqjQr0fa9/VtsS19ghDWroZ7+6uLdVkxe659FXTam1E24kc6RjTbEKKXzkml6qrpqTWpt0Kvs2MXGVTfwVBfmJglGKSvAezI3qNlo3QwYpHwompYb6DS0EnvZ7s26V2/3uU2/BtqbM5dUKqjyV7VqkUVGRAoVSgC/1tj2mev6k9uHbnzk0rzqSy2pF/lSwkLYvkS/U6RPquRWMYRiyEU/XTQVvHvzDddXt+QSRaRf74TT2WSQvoBzWoPk5VVYQad6Ph4UW+ZzGxMvKftPAev6u8t7V148oP64rZ5trtVLdxEEbmNVbzfxv+K4hLv1N0peXQBk/Wxr9rP5scvvvyS5JPPcrOYVwsf+sk7of4tjy0w+PWKqnctTYJkD5FJNWITDmFJkWSLjODJNYc1WxdhJud1ujVAr6GyR1EVAhaKWxS2+G+j6A0uQpknULM1sCoxxOONQKmHMSE6ZeRwZz2dSiFjvefP+HVc313jb1/UCqKL3sRSylglSKndcrrtUEFFFwLN93mAk+pRFSSk7V2WTEhMqRChBmifRKO3RUZpHVUronFA5o5J0/MuCK/uULmCKItVJq5CqgNjRllqyr0F0rvztVvmolTatxJFRa3EWM1pJxKkK2imMNxinKVNhiYsoASwz87KIag8JlQMqTagU0DmIUw+SgHjO3nZWgGdBkVOViCsIpUC2JlDVUrSurbZmLVVxqASlGEqxVYopsyyJEEQQf6XClEQMC/N5wtSxllJmmaWPQjLPUlWtimOkJLJIUDBa0znHbujZ73biLDUvlFRYpoXpPDGOI3PNeBrnGHYDu8OO4dCRcoQJcbQM8YVUJXwBeHrfMyiHy49Vq2+H63YoI6LwTRdqS3XWhf4iGi71160s82TDrYh027Rb5kOvJdaWGt3yRU9v4NPcWFkzpWuao2VI2mvUiEvVhgtXNJlMKhmsQ+86VPeSFC2np9Ha0XcHjHZ0fuDqcMPj6R2n8SNaaTo/MI+B0/HMNE7M48zd/QMq33O2Ac0i/IksDke226GXSEgGq3coHLMN6KI5nU7i/xsjKmR0Z7E6kxDppCUnpjhyXB6Zx0iOihKKlFrrGevqR747eA7XHbvOMuw7tBPi+DLPnI6J8ykynRMxiIVYSEEWlmfI8/h4z+//8b9swDILV0XK6aHeIbXBrFomsM6zP1zz1Vdfc3Vzi9aGZZ55vP/MOJ5IYSbnsC4EKyi57NAvZb1/ubTu6EuAktcSrUzglhF9Bjwp5NQi7za21FbKpXKJKn/Wese7d1+9AJ7Weazr1oh6BV8107e6aqm2ODcnlpahKWxuQNs4lklywV+rYHPNQtWs6AZWeZKBMspUXlNGu7YwRfGIX6LwWq3DWhGXbtUI2vOrruKySMbamCp4v173p4eui5OtpaPW2CEAsEo7oSpwkQW9dWLL+rGFiFt1pF6PsjVxbcBTGoFiklJRzsKppgartX1rhTJp5VJVflRtuovrF4SYWVJhqWX2uRRCUUSUWGnKjo1SiuQ6gu3A+BeLZmd37PwVqbQGkmpY0AC+2ppB2u1rXfdtfWpL3PMKUqv5ZBkdQvGoIFQ0V7d7s46W9eUu4eQFUFyDAGogXgHlNtjW9/5SrPSUlfz0WHWVW6bhzzraZ7uAy6p15MrVjjHWMR3WDLxzbu2I3+SSWrld1EOMteScsBXFbg1Ll2PuXwKgnwbKz4+cCikKVYAsn8lZu/JYlyVwHidO55F5WsQ618AwV+BpfG14fRqctL22aOEFotVqdXjz6i0x9difez59/IGH45GPH++w1Yrz6uoWYyyd7+h9j7OeczlxPB4ZHh6Y5wnI9N7inCMl05rnWYyilESqTSO2VpB8svjFsixOBNDt6el1yIVxXiQgtAZWpQqp6qmSZA3NCV1a02eujj7CC00lUIrcv1y7NCgKnTU6K0gysVQEXZs6VZEyfkmREmrQrmtn/freUso3iGSdNWJC0vSFpUk0ylcWbmrOiaI1yjpcgV4FdDyjUmAwirzboQx0sDZztsM5x6AHoWGEuLoSxSg6mEXluhg28FlJBcWi8WgEaIe5iu/PM0sYiWFimVs1Uqpe0zxxd3/HtIz4TuS+pIWiYIyTjGecCFFAbi4LSieEaSGNan3nhLfZOfmsRaghIURxQwqpMqBE2Udrv1YIBSDXry/MrxfA0xpDpzTWd+i6+M/LDKdHbNusSpu0NTpvkTor7nuCS9fv5dlmQ0vjlzWDYtTlcvfl4yXw3KQq2ju0rV2+tsxqqQBHJIgSaV6Is6j+P3mPUri/v6/E9PoqJRMjaDxWDzi1q2Wnvm6yUfhmRmH1gtGjNCQYEd0X2QSHspqUAwqDtzs0Dp0DoS/shzMpATpXro7DGkUsuQ7+ROgzwxJQJRDmGunUa67rxdWmyTLs2O879ntL0YqYM4t1dNYyeAtDILnaRZpFuuR5h38pQhKmlAu5FYWqvNZWXhUgptZIzfqOw/UN16/ecHPzCqUN0zRKxtwY0QFLFXjSuH/UJozCBjrLBkRKhbcNVNTGpFa6UuqyLLV1yorG68ZJTPmyi1rGktYGlJRA1k3j2TEvSfRZ1+anyqdRTTdThJ+ppV/TgGfjpVVZkjZ665WU/6tKKL8AZk8O1cBVm2sXz6sTrZRCLLlqpFax/MwKPJ2zEuWvc7lsC0pM4sMbLoCnkvnz/FrkFAnjWRbyZnOoqgbehfi1vE3ZEJd6en5tLWh3rF2RVlK+zH6mnCvwzCu95jIjVJr25yUoANm8moTKc/CZBXiGXAhALFWOhWqbh2xiOUyUFKrE19MjhMA8z7IplrwGNlu6sDa0KHXx+WoJrI7t7X5v3N7LsdHWsQY4V8rBtorCev22o7So/5LDWbZgnIv3av9SbUzRFCVaAqE8uW+5Kpe0I8bI3d3dk/H454HPp4/dcJyca4xpbRKSZgYBls5tHeCXtK9SWAXppZtcnFrGcVwDJODJdf7nH1tg/PDw8OKv59OJh/sHkWmLC6VEUgmM45mHx3tSjpzPI/f3jyxzwHtLSgtKZZZlou+6mtF9CjwVoo3bBMjnJXI6zczzjFKZrjd0ncE62WOm5YwvBmMLuSy1CgX9YNgfPDH66rWeKMyUPFGKANCmUSz7+YJSM6gkcnCmoE3BqIQtrWG3mU88vUqhKdMUASnN0AHrSUWhTEFpJwFbER546wlIUUn2UmdQpgaLmUJEm4RJdW0p4vwU48IyT4xjJmpFmiM55ifAM5bMEkXXWeabhFKlbAYmaUkEs0hCZlpWib0cE6kg+tip0JWIDiMqRfZWo4dB9CwVPFc7sNrhVU+0meQKJI3GEU0kl4R1RZzeTIdRkuUkG3KsRIKkyRFSEVvuuECKihw1JRs0Dmc7er+jqIIuhpIUObKux0aJK5VuDUKLgEcyGGVxxoNRIt+kHCprSFCSVPWskh6JYdijEN3X3e5A53c422FrBdbpgreF5DTOvFSHUf/+3//7JyvDNudroVBbSZWuXJptwb/8Bl/88c88Lj/Cv3Qh+Oe9V3nyY5UFStumomqZ+HmH6WWUe8m9adm6S13Ly6/2mhevVJ+5PV9AUb4o32yL6fq8sr3PZfLrS8dGW+BJSmnr5N8yJJfH8/MWuaT0hceuRW2e3LfLoaEaSV12LMGBl+f4T2xNX8gmPB0jf8Zr/NHX/mMvvQE7Y57ru/5pjpj6s374Y5/2nwq5/sTxbJ8vz394AmZeHpfz/tnDAbFcu8zsqAam/4yP9E9+8D/2wAvw+M86yp8eD+XpRXqxUT75bE9etH09BeHG2H/iztVXbdF3+eJfv/iu22/+Bdfhj77qPzWn/rwjX9BqYMs0/rfjUJYvT/8vHC8k4P7EE//bfT5on7F1zrfDWCuB2Mqvk/dtMmdP9pHLYF5tn++PfU556nZ+rXGu/brUILwF3e21LoPTTbKsBuZKGlz0heza8zctl2P3+dRYP9n2ntvfy9P1pK39l/dI1dXvInO1vsWLe8vF/rVdS6FZUIN3nsKVl6ezXqfnb7Fed7VVUJ7ulRvdi/Uzt/u8vaF5Qd/bqnqXwfHzY1MC2hILL9eqZ8+/uD/li2v4xdqvno6H9RW3k3r2mHZ+rUmz+q9f4BqlN9nMcnGN1rH1HIS/OOnt7IFKgo7/23Fk/ns9SikvFpN/2fHyBtffvvhZLvkXWsD+f3xcZgn+aw85xz8NWP57Pr6UBf0/4lFyJv1vyJ3739ORnmX+/o965Jz/G62Z//s/Uow8z42XAjm+zJj/b3E8p69cAsL1b5tO3fqYQnoeV335+OdEQeoZVWdFP3/iJS9B6R8LIpQ8azvPWj34F1zip2/XfvjTJ6naYy4TS38yqHlWzfqnNsGGKb/4MdQllPzzX/MLr//kFb8Qa1+iUa0UGP2lHuTtddT68D96/PeHcv5y/OX4y/GX4y/HX46/HH85/nL8/+XxF+D5l+Mvx1+Ovxx/Of5y/OX4y/GX4/8rx4tS+7sPPbevO0mpXnBCNn5CTdm/4ACwEdlRF/yE5+8gr/GEA9leb6O2X+Rry/r79oiW/b0UlEU1FtRFd/TFe4oIdr7gtsjnbQ0mj3eBzx+3BiNFxqcf15JiSplUeW66fa6yNQ1Ys8nWKCUNCeu1Ws+hvXhtvFCbLEXjpzQOUCshaLUp5jXO4ZPS9wUno0na6LWrei0G0BoacmlaZrl2wLVrAblqYn4cO+KFULbRVuw6/0gZQVEtCxEJHRHD1VW4UknnpVKoZp+K2vou2Pg67b40UmITU1aKyjuqagVZ5EpSyrQeE5Ho2q7lZaPO9rHVOs5WKtH66zqGLvhW43Tk06cf1vPUCv7mbaBzoFWTMNL1uorkh61dkykmCqV2epsLrmi9D7msbkO6joP2ecof41OVQlG1CUo3UwXhJ7exIc0YAYq8d5trKLme7TnaGGx9fC6VH1WvWymFJQRCdZ9KOfP9/Z4pbgWWx09/4Pd//7+u8zwsmbhk9k5z3Rte7RQ3A3hfMK4QDUSlCOImKg14VuM6h/Ma78Gagi4JUiaHQpwLYS4sU2Y5Z8K5EMZCjnKNQlYEpbl6bXn9wbHbGZzTxCUSJhF0L2S0t+ANMStiaeLemXlMzFNmqdp1h75ncB3eOMhK7EgTaLR0KadM6q5Yvv23201Rim//zbf0h55NAm7jvF1yqS+7qS85fl+u6JX1Xq18tIs5TF03c87rWNoari45gxe8vgu9YuFkXVB+LvhwKwf8i/rGsn6knAmfZ/K00Qz2hz1//de/4vd/+D1/+/f/mY+fPnI8H+v4vBzI7bN96byf/30r/6mLa9JOUpZffXEO8hhdLWhX7Vq1zanSrk/j0rX3eFIiVE/oiqogXcEpoYuYFdze3PLNN1/TDzseTuOTkujf/PI1V3vHw8OReV7YDT3euWqbKJJnBVH+8L7Hdz2owrJMLPPEvEyEIGtcDEUkc7J0ebd1bZpGTscjnz7+zN3nzyI27gwxJJY5ME0zKSX6YWAYerrB4DuL75xYczpxdHOuNjKVwjzPnI7HahMtVp/N9z7EAEW83bvO0/fNT9zTuR5vPNpdo81+vQ5D3/F//p//B3HEW+2z647UrHhLrvdCvRgnW/n6ad1ZtXt48Rj1ZEzUsX85H0vVwK1j4mK21G8aTdUi1gZRJDEoqlqJ0qjqC79uIBevfblmz/PM/+1/+b9KY3Y9Pt8nHo/pgg8p4za3fbm6dG04ojU91fPSZhXMb29cqi5nW/9XyTxt1n1YKU3K4hrVpAytMbiqX+2sYTd49oPnsOvx3pGSaIU/nkbO48QcxJ606zxDZ9l1lsPec3UY6HuLc0KfK1kac2MoTNPEOE7cHT/z+fFnLo8XwPNw7Xn/9bCRjBsouABuSm0DRQBQc1uB1l4tN6oNjIs3WAFn3si9F/IdrDf5YvCtL6LYFOHZQMT6oLL+9+T96uDOZfMAFjmWjfydIk+AJyVj0gMlx9VKqoQoBFuowDJvoMVatHO1+aQ6KVQLxgY8K5wELkFiE90GbRRWV+3DCuxN9csthepa0ETBzQoS5PI8BaVPgKeqYvq5rB7lKeVqSZerHFUT4zV8nvw2GakdoiE/fc31+sv5G4RgbOvkkM9cxbKK/K3pZa4yO83TlCqbs27X1O54sURrWpEoLd3NqZBzIJZQO4PlsYXWXa9Xl4g2Rp8A0kZCvyRxXxDJ23h7vukqBa/3gUMnVsFGGfnkWRQStFH4zkizQRA3KNEj1NiqsLOC/Fyqi0TkCTn7Ygd8HkC1AE1bAeLbYqpo8jM5J8IiCgStKbYBU631Ciqsla9ShLfaPK51BfjTDNOcZcOLkY+nwgXGYB4f+Om3/6Eu4IrpnAhj4tVgMVeW21eK4RZ2u4LLMKnCWKdMUmCtwnuDKx6vDIOFrnbJKjKpiK3lvCTMuaAeM+W+kB8KZS6UCEuEU9H0wWN3HZ229NkwjwucFnQKoDJ6cJAsZF2nY0LHBI+RdEosU0AXg9of8P2ene1RRTFPgRwLKhsxKFgi7N/CN//2AgzBzfsbrt5crXO63ad1Q7oIstcnresSfxR8rmtZERmZUm3zmpPUNp+3ubyNVbmPrZGlaWHmXF3bLprkLrldpTaqSCNBlb5ZAZ/8T0TZE6dzZLkYFJ33fP3t19w9fuY4Hfnh0/d8/PyRlOOWoCjbfNsuxrYOrGsLXMzN7efLh65zuVq+qItzEIigV/D5BIDU191kz+qLP1HFr3OwGgooFCVm8hJRGTrrRHLn26/oveXhdAGOgNe3PW9ue3SZOOmF22vHru9JSSShphlQhn63Z3e45nB1g9KKeT4yno+cxlOVyCksc2ZeMiFFUgWeWimOj4W0HAnLI3ef/4DvLH3nOR1HHh5OPD4eWZaFq+trrm+uuLrp2F91pNKTisckT0wdqQyiEKA1MZ55PP7M4+MD4zhV1yjh7k7LLPuQ1gy7gcNhx243sOt7dn7P4Hb0e/8EeBpjeP/2tUhfWVNdzQpGrNTR1WlI1zXwYjOXPbO5bmwDECjVWGQbu1sCp40LvT13XXe3pqAG+p6mhQxaGbRq+s5W/q0Mav0ue5jSTZ+57ulrICmf8Hw+83//f/wvT4DneUx8ugvVQUmvCjQi6J6rSULGmIwxFm1aIkAJKNYGbQRUtovS9G1bY5+1FmucmKEUizLi1pRSrB3/Mzks1QbU4awV/VTTMwx7bm4O7PuOJRRO54lleWCcjqS8gFb0ZkfXd1wdPG9u97x9c+Dq0NP3FlX3kjAnpjHycP/IvX5gmp9ru36puahuUA14liJi8bmCSgGdesuIKirAuEQidRKvccVF6AjyGjT3o4vFmG3jfSJFsGZ+Lgah2gbhkzX7MoqvGSJZu0WSQNxkFBLg1UU5Z6x52SAQq71jzm2w1kFetjfLSSRUxNotVdDTtuOX596epy9Ap6p6bUpTLbLEt9dUXURThbnLCpplsD0FUnUilXIhtFw3uzoBc92oJEMi90D+rNbJs3nJbsfnzx/56acf18zcmnVoE72InJBXhs5acf2xhpCiROkKlNEY52RzLogXb9p8aze/6Oo2ZGwVUhYxZfEeNzXbWTjVSCymeg7GYrVk8WwF6JdfTfOvAVL5/hKkXx7TPD75uZTCOcxoo+i1ImtxcErN59w5bGdQRmGKXisFsYhV6KXGoQJSiYQcVkBitCx2pi16bIChrNd7W4AuN1tg1TF11gEiAt/GTHvPNbOqNls/WbiaB7BcJ995tDOkWD3gf3xKJ9da0Xkl8kShuoXogrYZ0yf6K8XhjebmYPAOPj9G5nNEZ5FciaUQI8THCaUV/U7hO1Wt7mR+5JQJJZEdlCuD0xplFeqUGU+Rc0p8XCLLqRA/J7qzxhRFmGTx0wqMKWgfwUbmVEil4DrQBnKoGZDqmS0e7omoE5aapa5gLTXJri+mJyOKWC1CW4z8vBq0dTBzec8a8OQyQN9AzJNsDi37uVWKNlkmNsTG5evUFaj+L5dLJ7H2kKefsWVgWhdr+1v73iTMfv/DxMK2sbaVLqlCUoVFZWaVCCIyvK7tm/3hBSiu605LSrT3bdUJfRlAggSwSglQ0IXV7rZeyNg+TLt+Lai68MBe/bArAF0rNEqt16sBT1MUhEQ8F8ocyXlhDBMhLLW57Om1X6aZ8ZQZTyfG00hn63yuLkwpRPHTth3XhxvevPuAHzpSmglhYlkmEVsvhpTFXSu3YKUmWcbTI/efP/L+3WvevL5hN3j6oeP3v/uB3/7j92hlGMeZ68M1r25uef3+huvbPb5zFOB0njifI+PpTN8P3F5fYymQHDlYSrQi+aPBWY9SfQ06MilYphHCPHFUC70NDHbi3TevuO0vrkMI/Kdf/6baU4pXunOG633P7fWOXefxrkn4XU6M+q26DG34YIMY6sJWWK2yYW0rqSCzgU8EIDZzkrLaL9TgjwIlEEsFrVE0ZJUyNQsqoFRpg9LNdMRuezjN2KPuYS/mosiPxbAIeMwGjMgKtoqhVtUyOIghi/M92rq61usnc3/b+xumYbWY1Vp0UMs616ljvEre1fGd86aoYLXgDmtAm4JKteJqtezBRgKDrnP0fcfQd/S9ZLu9d3jvZJGZI1MKTOPE8Xjk4f6eaRpfXIsXwDPGxDyH9cRaSeiyfZ71RNRa6tyi+RZt6BpA5jpYLm9EA5wXr7eZALehtQ7EBi1XS94N+T3JSm2g9SI0XlNzF6n4y1R7Xey0eYnKJTyvaWytUNasWoHkQqli6zmJrG1M+aI8XJ5++rpobHH+lr4HVbNSBesM1onvqjMGoxVOG6w12CJZwVTymtVroNNQN9Hqt902jlLKWuLIpW6gFYy0DM26uLeN8dnx+HjPb3/76y2KXAOBbQEwyOf0zjH0A9pqpmVhiaFqo2usszJxC5JFrh7x0CbuBsSNkcyudQbrGwC1lKIEeJ4nzufqzIGuQNXilKlWYw7n5Mt78au9zBY3DcD2cxN4py5OpRSW+DQYKcDHhyPjVNj1A95oSkqyoMSI854IWGvXAKD5TLex2kopRksUGqJobZZSsMZhrcc5yQg2GY0Q46pfaKzouBkjGXJTSyqUJqJfr+cTNyjWBVmpLdpvC5Vky2Rkar3pjjprMa5myXTzAaM+DjqnCBRyFD96Y8D4gukzZqewO+ivLIPXTDExBslsJG1QTkrfyykQlkRWhZAUxnuc7+h2vcxTF3DF4HRHOhYmFwjMhLlwKpm7mIkBzFIwS6HMmTArUgBnFM4ptEmgRK+zqMKwV3SdgFS0WJvqAoVUA7MMNehDQyKQSxK73S+oGuSq0agpcp3WrHtdQ9uYak4lzyoHbY1dszfr5GJNALQqgixhX8rGbyXl9rotsFzBbuHF87aE40Y7arZ66wq9jqOLzG2Bn/0PPD9SySQKUclX0IVFN5mZWv6miM0vmw5zM4IQDcemmNCeswHPRgfRSsao0Vk8rS/Ki1qptcqT6zaiDWJLaBXaapTVklFaAegFPQi9rZ8ZdC6iZ7goKVXGQl4ic1yIKbzQMwU4PTxSpsT9x8+czhN5Xhj7rgaqmZAyXbfD2Z7DYYFc8NZhBotWO0TJVqGUQ2mPMTVaUjXzUTLLPPL48Jm+swyDY7/r6DqHM57xvBCWjNEjtzev+PDuPV9/94E3715hveM8TvzmN7/j7viZcRzZ9YWDv0bh0aWD6AjTRIxF1vxaeqZEUoiEKtKeUyCnxM5D9Ibbt0/nxxIC/+Hv/0HKxMbirGHwlg9vb6G8wdxe0TuHaVm8lihST2kobY9aUUG52IS2h63gXCFqyaItX9aoruXEdKNwqYtgJ29Vg1JHKkipnXKZKJKMqDG+BuqNitZAqEG0qZ/OtZwTKS6UbMjGAgUD1Wtehl5W4kBYsqqva1C6BhuXizlcZHh13W8ySuW1spFzQlWTjZbMU3WeFLWZr2i2CpT3QldKOWOsBAnOGWyQhE3nJau+0iw6j6+Z05wzSUlJf54nxvHM+Xxkucj6tuMF8Px8d2ROx/WetpNdA3W1ReFcRImqAr62SBqjJXuhqBmM+vdCfQzVD3aT69kyoIXm1bEuw0oygko1e73LDNUluFRsPVPNT1ZdPH57nqrn17J+Tw4FXS83Taz5qItzfU7NGsaoUaFlrZ6mM1oluS3+LWIhF0pJUvqvYti5CLDo8HQakoZIwaFJFGwqWMRRwSCgUdfoTBeNrv7aLRpqAApAFwEUYhVYuWBFQIDRMlFlbMv9enYlKEoEe0FE8NdkyRaIklAUJPMXl4SKqoKqVMe9QoUNTCFrZ804U7PPurorbNGYcQrrGhdQvNOVMhQEvPSuE+HaOkl1AaO0TAbnqguIqRxRAYONN2qMxjmL9x1931cNQi2Z4ZQ4neF8EazlnPmPf/sjuswM3tM7S2+tnHkSdyA/POJqZndZFs7ns5yH2cayAGIvGauaSYNKpXDiH+yqHmLOwq8qJQuYtmJ5aYz46brqx76JYjdJ8UwpiVau0lqjqVlepat7h5TgrW2uXWK5GVNGGU1RSkq5WTzWL0eGBpyRaogqBpJiIWN7jeo1p1j4+TGjXaJYhb/VvLsdUH7ADtf0V29RZuDh8ZFxfCTlk8xtd2DYv+Jw8xbrOlJIGG2wuuPzHz7z2//wG8b7j9wvE8cIUTm6neX1G4fVC2mea8ZTSdCrSgXpMCjJmjtXMKagcqakgtEFlcGahNERrVbPM5pRQClCO0gxvZgfY55R2WCTxVDpHTUAbw9uXMxWgWhBcvNPbsvHmsGpS5a4gojwczMp0Eqv8+6yGtTKlTLHGm9MNlX17FM/+fkCrOYi/qQr5Fsz5Yq2nq7Z1WcXIudMWKrYds6gFaZzaC3BMnVO55bZhAvQcOEm1rKOsK6zJefNA5mtyrPuKxWM2jqf0Uqy083SNWuMM+hagF+NHcpFkKBLpbDUa9cWb6XIuu0lVYy7KHQpNbP1Mlr/w2/+ATXf83icGM8Lv69jLUVxE8uAH3a8fvuWtx++4qtvv+H121dcXQ0crgYOu0GC06Lx3Z5hf4PxnWTI6lS0RrHf7Xj77i3j+B3OCtw6HPYMw0DfeUqG92/f8ze/+hv+1f/0r/j6u6/pup6ffv7I548j//D3P/Hjj58ZujNX/Z7DfsfQ7Xk0Jx7vpFwvIMRgOyf3KSu63mGUraPEsh9uePfqPbvh8OQ6LCHx6x9/BDTKWLw1DN4wTpNUyazjZn+FNR6tTMORF9nv5xk+GXspRXLKF4FToy9FYhaf8pATU/u5FLQRPqN3Fu8szgkQpmRSFpvhkLYKVMMfbS9qk6VkAaXWdnjX0fcD3vdoZVHaYrUjxvnlqCgZ6v6rEKOPkjPa2hr4KCwaiiQuYkpkFkwuNfPpKk6RudiYNS0QvaTTtKpnA02rXqw2aOvRJdVCj6T0nTMMg2e/H+h7jzaRlJHkUXCkHNFa03eGzovTk3cGb2XfLbWCKZ8hkVOAEjG6rBnZy+MF8Hx4mHg4zTX1vHGMGuBsWcOaWFkjxbbYai32e8ZUGz7Tymd6jSHWhaL+rXk960aebZnAC96G1mCslMgF1G5/qx9pHRjraFxLVO1xek2rX2ZFn/683cy+90CUJCLSULJlxFp53ZCirvZ35WKy1EW0Ddq1jJXrYiqZ0pgTS82YaaNRvcXqytczmqgLRRcBfyojrj3iVavRqJKlySlv5XXdoneZj5ii0DXbmfKWXTCSFqibiZKfy2bT1g5jDK7za3Bx6WqhkAwO9SeJMFO9zlkW7PW2XABzJdkGsmQmxCkoEUOqG7x8VuOUNJ8kh4tiV+lsh+uGNZPpXb9mbklFsq9eIjUpwQEkMnkNcowtWJexNtN1MOzE2UehSLmQoibEp9Mj58Lf/fonwnyid4a9FzK20QKyC0pK/jWbOs8zx0cJ4pxz6zyxzuG8XM+Vx6eksczWKLNZ65EhxoACdkOHc5pcf+59h/NeMj7GYp2pc626hJfK/XG2ks61lLusJdds7BOaRqViCDiS+9qy5GF5DWy2slohTmZa7PuMVI5wvcHvDdklxlKYlCV2A4ebnuFqjxtu6ffvONz+AuMPPDx+5HT6yDh+Fjs3e8vu6gO3b36J9bvVqo1SWNKvWf7uI8fymccEU9ZgLPvrKz58c4V3I3E5Mp8jy5gJS5RslCqy1ljJoBujZI4pC0VJo0co2GjwWYtTSgOJ9SsnaRhLMT1ZNAuFqQTIMyYlTLmgbrQ1Zd0U2r3eguAGPNtGe0n7aK8hQKnyv9W29l0iz41yYzZeZ92AtpLb9pnWAPBivbsseasajLdszHYul9+eZX9LIQWhlVAKxgplo1hxTCvNLrHa26wVKlpQnleg3Iw0xF4wkGIix7xVcWiWuUWqDvW1ve8oGIyTrI7WNXv25D94/ptLwlZLELTmF3HRkuCeuoxpkKCrLWvPjoeffybe/8A4RsZzYB4XlkkypCkXitKYzvPphx/5+fvv+fTjH3j3/g3v3t3y9s0t6fUtRlvmkPD9nv3Na2zXg7NrNrcFkGGZq1h9IsaFUkq157R0Hl7f3vLt19/wq1/+Nd/+8jt812P1Dq//n0ynyMOnI0sv3t43V3turq84HY+kkDgfR2KMGGfposdYh9GOkqAk2Wus0fRdz264wln/5DrEmPj+xztKUaiW8XQGcqG3nqvdgbev3tB1FmclGG+Bf3NTE0vJy3EmzmwpxtocK4kgcXKSJqicMnOMjMtMSPI4a021guwYes/QewHnJRNTYIm1Qtc41HX6p2pDuQaLtfzvbEfnB3a7Xd2DNuA5L+EJ55o2vlMUXFNBZynSWaEvGpONMTUZVWTcV6qHU1Yw15NEGit3nzpu16ytIE3WKLYCT6M0qmgMGWuNgHFv6XtP10s2sxRDiIVhFoenmAJagTe1kmQV1ujqgqcoSfbsnFKdjxFjCn1vmLKBZ/K+L4BnCoq41G7YajGYW2qKCw6QwIoNGF4kQCWLWbu014iZbSG/yD6uJSekbCgcR/mujK6bqnx5b2XgeEfnq/1f5UJq0zobt8xjW9A2nlR+Aka13iKFl8ATul2HVrZGO3WDrs9vi3SbIGUtFTVagjzneUC8AtMsXtHH48zxOPJ4OhEpaO/x+x27zmGs2P3VEQO1y04I0DVrUhCB/7w1fGVTLSIV6wTSzUEjb4t3yomscuVKabI29V48PZwfOFy9XW0Wc5pJeaTkCCS0tijtyHiKMmxXuFTyuMIYVbN1FxSODCmLr3EIiWWOjOMCecEZIUv73uJ7g/MW5x2+6+h8h7FOSgYlkfKRZQnCNcRgjSMVjyvV0rNOVu88u36H6yzaTaBn0JAZSXkiTppliVAMWjtifOo7XErh+x8+MR4f2XvLYfAc9j2FwnEcWUImF9n8rTWkGJmnWToHG8fU1AgUVW1bN8tXZRTKNO93UEWyM1aBd5rd4DGqVNJ/wRiP0rZGsY2ioemM+LG7yts0ti0+VOBpVhClLhauFmULf7g1Ecq1O3z4v2C6myfXQxdFTrAEKR0WBd1guXntudknrndw/eaWq7fvefPhb7h5/Uvc8Brbvcb3byjKoXYfceMnhumekgvO3TLs33N9+0u0HQhh4nS64+HuBz4dFT88THyaFs4KkrM43fPqzbf84le/ot8tpHjPeD5yPp45n06M5zPzHIkxY3roBsN+6Nnvrrm++grvdkzTA8vxSLqfyA+BfEzkKUsne8jVlzgjU/F5vhNiLoScySpVDmgDd+tq0kbQCrBa1nCtJ6lnXMP1BaqSAxCrT3XKF41+Sla6xnHTpaDyFhznusGtdJq2hpXtM7XP2ALSls2U9WUDqOXZypDKS6Vu4avJmuydY6DH4khcWBtXPrdam4LaWt0Wywr6ldgXxhAE0Db3rErlMspSYiZNC/N5ZhonrLN0ux4/dOjqfy5LZ22oavzOer3R9Txz5a5L5ygqi9d3Ti1RoCipUJJcX5UlW6qKWte7y+PgHaXzlDGSc2FwPcbtAaF7RBRLFk/t8+ePHD0MJrDXE7OaWcpCyYXH45mkDabvUc5RjGaKkXMIJBQ5Kz59+sznT5+g9k48PJyJOYKSJM3Q9xyGHV5bCIU5zJzvz5wfJsI5oLKis47DruPNqwO7wx5K4Pe/vSbFIMoOVmM6I0G1cZL91blWXjRLmPh09zN61+OvtuaiUgppShKUWyO87QR3n878Rv3EYTjw5tVbOr9j1ztSToQwczyeeTyeeDydOJ7PhBCl+aYhjyQ/hxBW7/AlBJmrUbKKMSeWGCWxpLfmXO8tnffsdh373QCUCjzlK1WqSUppC5gA6yzOusqH13Te4V2Hdx6lzGpPrJB/P7fhzimS4iJ0M4SbLBVP6XQ31lZr5Wq9nNVmFd0aWItdkwW5Wbs3DFXB5yXglcynqtzUrXHbKIO3sB88V4eeYeixtlV4i5xf59kNvWSR41IDygQ5SmNdxXQ51X6R1Cq4kZIjnbd4d2AuC5zun1yLF8Cz7waM3a+TX6LQ2oG+/lykTFyyTFJqQks1oFHL4TUt/gSwNp5Tu5gxMc0LyxKwzgnq7hy+q+heVy5b5e0tSyR2mdhlvEt4Zyv5Va9cndag0jJtaza2lb9QKCWeyi2h+yXOVD90GNPsHVnlemrXxwo+t075DXzW7aDOPipgvbTWVCxLRqkTMRXGZSGWjHEe33UMuw5jIaRFvIbRWKWxOKySgpH42hYysfI7ChhVeX6FoqRstX22lnGoWZy6yOcKPIVLol9sMM717Pav67kkYjwRI+Q8AxFjOozpQQ8o5Wt2WOGsZPCsFukc76yUxI1saBLZysAdx4Xj4xnKkTBnrHPsd3uGfUc/eKwX8Nn3HV3XSZQaI9M0sYSRZZpZlojwbxwhGcxSy5S1M77rerRLoCaWKN2DzhT66EllD0WLT7n2ONeTy0vu1rwszPOEzRar5DVizjycTpynQAhiESbyJCK/IpxTj/MV9JVMSIkQ5XtM8hqpNa/UjI4uGqs1gzMMnWE3OLQqPB5HximSsiEXTamcFeM03ml6q+mdwRtbeYqtc7KsJPNcuWYtEGhztMluQEKrjDVyLv/u6n/m+gJ4qhqIlZyqnSY4b7i6vuLdh1tev9bc3Fiub95y++oXvP7w77h5/a8peiAVT4iaeV44ThPTHEnJi0qAvsXYD1j3DUVZpnDH3f0d3//hgd//cMfPD2celsCkFVErChr0HtN9zc2bjq4PjOM9D/ef+PjTD0z5Z+Z5ZEoLB63Qg6e/veXm9de8ff1v2A2vGKePTHcfmfwnpvyZ8+mBmGZSVBWgCwhd4+Znx3maWM6p8gz1mr1EbSXrFejQuFVyr1smcpVBa6X0i9LiWpgv7dpva9T6xQZCN5wrwWZbg9s9a3SorWKkajmuqYxcvAktWK4L2cX5xxcWN43o1KpdBq+cBLVKEp25PU6ZKrN2+Tla9nY7UVEciZL5TnXvqDw1qy1lySynCa11zcxJSdjvOtzgUAZoCZK1y3nLFLfsRJGlre5njYaRIadaCVAoQQDC+VzP9iKz/eRKyGcP88I8LezcjqHr6L3sV1EpjvNEuJ+I80iYTqSlR5cdKs7E4yPLvPBwd8ecE8VblLNgNJ9PJ35+eGDJkIrmfJ44n6uck1KAqdUtaWSaxpHj45Hjw5G+35ES3H+64/H+kfE0UmJClVTX8wXnBoad5fpmR5hnUsygwXiN9UITSjEQYqzqJZF5GclJcROepbZKIU6zZIxtoRhNMoocAss0su8Hbq9vakUUwrLw8PjIx093fPx8z939A/ePR6Z5qRJUUhpunMx5DixzYJ4XlhBJodlgyj7WJNVac5lWWvolrGUYOnZDj9KS1QwpEXIi1QAsJuF8o0Bphfce3/m1KtXVPoLGTw1B9uEWWJn0dFy0jLQ2BlUsxeSqxiKTo5SMKU6SKk02qbA5STUcslITZaStXPIXtAS1rgGCe7YqsjFSSRyGjt2ur5SDQgixJiKExmKNxVmLt5aINC1psuzppiKaUmoFLa2e9pRM5y1d1/M4n1/MjxfA87tvvuLrr95uF2vN4m2ZMhlPrSv6sl7TdC0rEm8Q5qLUlJo8RxHNsPN55Icff+Lnj5/Y7Xbc3t5wdX1gGDpCWghxWYFQQ/cpaKYEQSfGGnW1RXvNGqxAk5VTasylxuW2QKBgCc8JsIqu64QDWbZF6nIobaX1jdDbOkzbwt6i6E26o5bBEmgCY72pu34gUaShSGm8tTgn0hOFjFXSOOMwWISSUGp0EpXwPQtl7WAvNN5Ty4xKiavUMpdsjk0uJZOQbjiUfpHy1KbH+dua3Q0orTBWQbaUEtGmw7qBzl/j7FDLEJb9vqfvnKTkrWSsvWtczQY8RQ3g/u6Rn376yDxn7u+OaGUZdgfhK+06fOekHDCIztg4joTwSFwSyxTXpo9UImFZOI+BXCJKl5XL6bzn4fFjjRYzxkgm8XDV8/r1gcNeeFHORZxNhPAyGPnwfs98lei1pvOGvreknLBdxzBqplm4ya7xdpAye9919L2j6+zaiBZTZomJcZo5TzPncWGaAgXhovkLTtTQGfZ7L13TGoydGadMiCI9lEuSrFxWkKzMkda4hiLExLxEQkyEWChFVU3QNidqXk0JYNJktCo4a3DOEp411SitsM6il4wi0znD/tDz4cO3/NXf/Gs+fH3L7etruuEN3fCO/dVfof1r7h8/c//5Bz5/+pHPH3/k08efmcaJ3nUM/Z7D/pbXbyZy1Mwh8g//+Pf89jd/y+9/+3f8+IffcDo9VoCuGWPiPI/8lz888Ppv7/l3+3/Dv/7mO4blSNF/4PsfLT99PvHTDxPTVHj3lccfDmT7DtV/TXHfUtxbnH4F6RX54XfMDkIemWtXcU4FVZu1Kinn6eQo8NPHT6SR1ae81FJhzlKyWxsAtWTVYo5rdlGWqk1hYd1UKgBdlRcqzFlLizUj+ASkQm0guwCWtVrVPNVbKc9ZW7uMt0zIZaaxfW2BclvxtiPkL3kTqvX/Apa3LCa0/cFINh0NTVu5bJSc9TNUpK9UxlhFqUoORQtf0GAoWuGSxY5a1iRTKDrLlymgL849txL7U9De1suC2srmKVHyJr+nioKSKSViSBig1L4D/WxIAPz4+Mjx4yd++vTI6biw9wu3+8S72yuunMcYi1MFO3dSdXKWfr/j9Yf3XB325CUyhoXzMhGV0Ic653CdpRwXHo4fOS+BjMIYx7B3xKiIEVLN9s1h4vH+zN/+3d8Tl0zMME4L1lp+/vgznz//yMPjz0zzxPE084fv/5HMicPnA/Mc6DrFcHAc70eKKmhXcJ2m83W9XWA6z5zOmcPO4A+9NBRcHDlnmbMZlGnUJ4XRcG8VWicogfu7j/zw/g3n05mPnz7x8dNnPn6+5/F45jROVcO0VOy0ZdsE7GThQyZZ17Q2UvJXipQDKUmpmFID7wpQbG1IXTOG0kP0ZPyjiqiqVPqTcSJz1JIJwruvneftKXXuDrgn2fCcZf9MKaJ0xDovCExJuBYvqAPG+opdavNr/aybZKJZ5/PKd677WqPbGdOkGqWpSBmRHCw1669rUsFoRUqJaZor+ExoZauEXKDEjC4Kq0ztfq9NR7bqiedCjomwLCzzRE4Bo6HrPfv9ju7habYTvgA8X7+64a9++e2KpktF3O2CVCRJKwJtgXBDZUomZCsiPeEebHIeqML5PHL/8ECMMJ4Xrq6uefvmPa9f33J1tWdeZqZ5XMtFqQG7lX8li6pqckc0zSu5mbnRADKVrwZU8BlTFKHtujHE8GxjVeCtx5gLOZv1fNr7q/oZ9Cqm0Pqa2uArFIpuH0mtYDS1TEQRNTDvHKle3xRFL1QjjTIKGegOgysag0YabAAtjRLF1gW8bRYgBHil1o3j4pJdZJ1ZwWepoKM8Jy0VAZk5CfcRLEp3GAqlZjyt7vFuR+/20iTlHdeHA7tdhzVCRu68r8LFVspNMdbyRAEc85y4u3uUyWYtXT9wOFxzdX2Q0kPNnFIUKRbRC5sj8xwk6NGy0RYVWeKZJUyyaRmNz56QLOeia8NOqvIQltu4w7hEPxj2VwcG36OxxPB0Y1UK3n11IMwFWwrOKDqvKbmwP1jGMXIeA6Dpum7l7VhrcN7R9ZauM1Ler0FYSJnTeeR4tDweDefRynjSlt5ZOmfonKb3IvKrNNhe050d5zGwLImUhUOXs2Rora4gpYHbkJmWKNdqicxLQsj+VS2hcqe1qTxqLbqRKCimLsbPDmO0RP9zwugFaxX7wfHq9j0fvvo/8dV33/Lq7TuMu0aZa5x/RUwwzT/x6dOP/OE3/4nvf/df+PGHn5lOC7v+it3umt3ultdv7zkez5znkb/92//IH373Gz59/IHz4x3zFIgBlliYQuI0B3746TN/9/ff8/6rX/DddwMhwHjac3/n+PlHxc8/FeYpY51m2Dn6wWKdIswznT//fxj7syZJjm1LE/t0tMHdI3IADnDu1NXCpkhL8///Ar7whU9NijRZUqy6dc/BAZBDRPhgZjrzYat5RCbQIuWQkAQSGZER5maqW/de61sy/VgNebFswRKTImUZswvFYudz/tHR3oBff/mdVUe892itKbmIUWE3He6bnJPOSKn5jmfa19K3Ree+sbzl9u4H1n0t3Ne4e2Gqd6bgfrP2Tum98Ox/j9FYK/gTa60cHu50i752fLPx7lOb707dNNSf5rK/frIUa/2gu68tqFeXrnpdS1unn/SFq/9d/adpe+NB0fZOUJersG+696ZCP1C/+blrfYNq6n/f2+J+Z+K2juAR2OzeaOF1ItYLeEUVMkGXlN2B3m9esSlupfG0RZ6uN2ZX2RrYwaK8YzCOagxVGzKNLYsRJtLYaiGHjUvYWFIEL05w26c9xhrpOKaVqhTTwfNwOhCC4naTg2yqkRADl9vr4dwOA2sMzIeZT58+cb5+JeYrlUwuhZfLF7SLLGmWa+oqfgBMRpkm3c6x4saMipXYzTjLkhiGA9ruxt83d0lrpCSFI+WVyaxohNj4/VPDkAnrmaen92zLytPzCy/nC+frlS0kYi6v77URGgHI+xqDHKZbBaUMRsuzrXqBWmol5UyI252ZvO97e39+7ygpo9FO3fF9O5C/KYMyUJocpDS2F4TyLA3j0KVUrwd5gPK1vHkghX9qtZZOau46zCr6TnrXdD+QltrQWtzzMvXVfaK8Ex72SdWrXHEvPGutd7nL7rTXXXNS74bH/WmTfSPnSgiizc65opSjFmS9zWJSdaYbs6zFGVkvap9GbOtKjIGcArUWbN/vp3HAuT+UmX/C8dRy4V8FrK9u1rtzu7W9sdZf0sZ9BQhxX1DoD/vbN2Af9zg7Aobj8ZlpfuF4fOTx8QMfP/zAu8cHcs6kFPvX4j4Kuptz6qsMANp9kfxWKN5kHdtd8V3zt9xubNv57iYv6Vs9BiissneTxi52b90NvGNovu34cj9N0RRV7wXePqqSm63WRgyJdQlsWyB3bE9DEg+UqoxOo9re4VKoXO8Fq3Q2ZVAnwvfWnaD927ifBkSTJAXnfs14XUzv3c99c+g38bfIRkqMbJdzP1UWjMsYWzvL1dyLY/XGLa9Vd6jnvrVaizUDGkOKRXRG20prTVzVSjPOM+M848cB62SjPhwPfPzhB3LJLMuNy21l21a2dWVZ5TQcYpICqmscLdCaLA6t7Zutwtp+kMrislW1UZqlNEVtlml+4Kef/icmN5O2Ro4X4NXWrpTi409HcmrUJDqX0Vqs1lA1W8gst4DShnGaMM72MbeM0ZVrGA/amj7OEBi+D5ppdRy3kRCLLBTm1TlotMIZ6YLTwC+O45bJWTrGciCQIlNMWsLWTKmwrIFUE8pUjAWnBE2llOBlBm/uBbEfNH4wWKehSiGwj6W8//amMNYyHWZCrGxLwmiFxTDYd0zjvzJP/zPj9BPKTKA92iqoV2q6kpavLE+fuH76jfXLF263lav6HaUnjHlgPPzC6f/33wgh8Nuv/yBuC9YodB2osRDXynqNxCAdqevlmV/+9l/5r//5yHGAsK58+v0z//2//srXf9xYL5mc4PxbQSfR1P12DCj9G0qP0l2mcio3fDhTgzg6YyrUIsVFrdAXkG8fjtb4x3/5O8/hyjRNWGul6IyJEEKnKEjHXSYoPdlqD3KoIsTf15G9+7kjWlzX1MG+7pX79XfOYpzIN3YgfG0i28hZDDmtOyP3Tqe9I8bcnfZwnwLR1yrVD8t3XZi5S5TeFqV/uR048K2ZpLdw+2ll10G+ZRDSi7bXyZTIuDoCjF1v/2Y978y+ppR0pfpIvFLRudIyUKTQVX2m34qi5d7NrK8827Y3SboE545R6nuFuPrpX0e/6ZDK8t3u+lR1l3bpP2l5Pr7/AVUSvz1tbOVCroGCFE6hweM7TVNwS5UtB5aaKLaBr7w/HXFKU1Jma5nRDdh5xo0ncVL7B8bpkaINTTc+fHjPDz/8heutou1KyJ8JaWVLC2tcKKkCBv2f/798fXni3YdHtrCwhjPWV4xX+FmhbaXpRNORphVNZzAB4zPGasYDjHPF+UpphdJSZzVLJ9IOgqv6/nawDinkNXdEj1ZCBagt8nL5itaRLbwgxqGMsoXDg+fAyN0go3Q3aRpSTCzrxvnlSq0BZTTWeIZhxLlBjKIKarPEqFC6UEo/Wt0bMBqahEOUKiZd3cAqhXMGPziGUbrMbpBp1TB6DvPMcZ45HU6cDkfmwyjPtlH97yzkmPn/vPyN/GYqMAwDx8ORddvYQiDHQGoR6wT4rq1FtUbKGQjcmaHG4YdJCklrhWqi+0N4X4/kZ9N3+Qq94NRiit613f3tqa2SM8RQ2UzGKINR0v0VyWYlZ+l4lpz75M4Kv3PwaKXJKZFCZNtWrtcLrRaslenyMPg+2dxh99++/lB4xhhY1qsw0u58Q31vGe9ji3ZffxSv84nXSL7W2Rf3IvAte3Ovwg29IOhdIbe7qwbmeer6nvG1+9rNTq3jdt4Wnnc8x5vXXvTdYa69K4ZS1Ki4tiCucCx/sF1BL9oqNe9duQ547YkzOb+Oy+4nj7f6JF6L4F0fu4txty2wLBtrCISUyAhUu9ZMJTN4jVKFwUthI9GMShZoKk3pu4aTrid7czznXni2N98Mu4i/f87ewflmM/3jTVJLJsdNMCCtyvjatvtiIPKJQioJU6MUdFWRcsRmhVIOW0Q/GVPitty4rjeuyw2hB4xyGDEKP3qGSZibSoP1lnEe2cJGXSrLeuP5+ZkYAzFFtm0j5UjFgLZyatUNYxW2CY/v7ShZdS1rn1T0LrRFKY/3jzw+/IxVI5e40Nq394RScPxwoFYoKaFrYzAGry1OW1IsLEtAaY2fRoy1VKNIJRFypKoCtmG9jE1AivMxeeZYREBfRFO0oz/uGKbWO0gF7OhpWU4QtZMASiqU1AixsK1JEn+SoplGMw2XKrmIyFxri9USUTkMhnF0jLNjmjxDjz+T+0NJ4Wks4zR8cy2sdRweHtjWgjOLOH2bwqgBq0+0OpGShaJoqmBKE2E9FatAlwwpokqm5UDImVRu5HJDPT3jfv8HMSWuLxeMNpwOJ3JWpKBIQbrdulXGQdHKxvnpE7/8x78zOUNYAl8/P/Pp98/cXtbeuW6st0IrG8ulYN2FVCqlaYweeBg8//zgeGcyKlVyaRJO0B+RuodN/NnzsWZYBR3imqJFyKFQlyiLttJoV8geitqRVcJwlfV0fw6lm1FMNxBqzdb/3hzz3eGvtWIYR/zgO99WMFy6kxByFY5eiJES5XOMFnatH0S24pzrRjf6qI5Xva9WCFdNmgm1Qsl97av1rrs/Hf6Zg/u28NwbhrWAagarRpRpOEV3KFe0ek1X0UaTkjhnW2d37p2jfVlq+rVgrKKZQmkZ+xkDiowJhjIUlDHMw4lxmBnGSQqBrhNNOZNTJ4hojWlGrofzqP6c5ZKpufQGrXodvQJVR2K4QAy9zfKKc9o3/v11OD6gS2Q8/I72Xym1sbbM87rSrKX6EWMNa22E0ogxYy5X/O+a23JlsF4mRNMA3pO1IVZFixqYmKd3pAapBpwbGceZECONlZgjW7xRyWgLKWUutyvt91+5hSvvLg+gC7ltHB4czska4CeNthVMAqMwFMaDAjXgBsv84LFDQxkJBrFeCummqvgMCFS+1cUbY/jpx/eUlmmqYZxMf6iVmjJ0w0otkVq9RDIeBjl4WUHLWeu6HljWotY06yam3JfjmW2LmM5ANsaJcTelzj725NEyDJpaIkrtDZhGyUjxFTMxVrQWRNXgNNPoOZxmDocZ34vPYfBM88DD8cjj8YGH45Hj4cg0yjOldxRXyWxb4D+rv39zLeZx4t1DwzuHNYZtC3Lf9xE7TfanUnf3hUZp4YWq1jqJY59iVpR1fSixo/T61KL7bnQvPncT3+vQoglHuzVqlRt8Twm81zi9eZG7XtMZhXdW7hMvCMEYI2ETXue6rvLcGt+bFXJoLXWvnb59/aHwfLk88cvvjcEPHVUjC8SO33jtXqpeQfeidJ/I8Kbouf8qq9EOCJYUAE3KmTWupHKltI1cVlJeyHmhlAFoVFV4jdCU7iVaYdrd49NH7H20xKuBaP+mvkkR6BLGGASpUKpCuwHnvwXIt9YIW0Ircf/WXsztqAeBHPcT+l10sMsJBJNUWs8oFkHKXW6QS2ZbN5Y1sGyJLWVSbeQmEoWiNHZTNF2Ym2MwFovGYNDSihDpQP/QCuyeltAB92ofre3Hg11zqhRqly30Du5brVN9c93u12JvYCD/Uk2l6N241LmPFJrWoBsFR9MJlTLoRFMjTWdSjWzrxuevXzhfz6xbQBvNNE7MhwPTPGGcZj5IkVNJ5BruH6lsrOHKdXkhpUAugs7IJVObIheNy4LLaRRESC0dYtHcNfa4Me/MHQVitcWoCaNOaPWOlBsv5xeut++64EoxnGbo3DJdG7aCR+O1ZaqN4RDlfrcGjKYZha4WVSy5JaoqUgA433FYSjopBXKRFKHWR43WCow4JcipEaMcMPw8YHSl1URJkbgVUpBuQ26Vugl6SzvNwY0cH+duQDIMw8g0TTirxFzlDH4wTNPANHUtrbP9fhEtoDaO5y8zb30D1nvmx/fczhuaPYFm544GLpdPLOWFhgVlmcYJZ8CZkYeHj5we33F6fCDmStUGFVaImbJlcrmStptoVptot27LRk6FsAVyitAy06gZjk6OuCXx9OWJf1d/I4XE9Xrjdj6T0oq2DeMAEjEVSomAIoRMrWKeGx5P+A8To7dstzMlN1n4u/5KkCuyYH9Tgiv4l7/8RGofeff+HYMfWNeV2+3G9XolpnQfv2mliSlzXTZCDfLcOsM4ivHM9c7lThkouXK7LVwuV7bLQlh2QoLHFIMumoRE2Q3jwDCODJPHaiPFQCuUlMQk04tSbRW69E4Iu6FJ7kG3M2R7EVtL69/vwnK5SWZzjN3sqYn/+uNbwtZ93SylCXi8OQY/Yv2AdQPLFliXgPcj8zQzHya8d1wuFy7XCymKnn8cvMgWTI/DRA7upXUjpBcc2egGLAoVE+fhCV9HlDGc3r/jcDoxHWaMsSiUuMdvC+fLhVu6ys/bHA/+gYeHB8Z5wlonB9kQJWyzc1+VkXbnttx4Tr8RwjOmRFmLd7bzdy/vPcwTp4cDD++O93FwbI1LCKhlxXtPRqP9iHMKZQ2xVF6WBcqN9+/f8fOPHzHjwHXbWBcwOROSZhzfc10T1zWw3Aq3W+L55crXp688X76yhCtu1JzeHVjOmRwysWzctkr8ugj+zMHHHx84nmaBhpeIMpWmM9pp/KA5nAa06uk0s6MSiGkRU2GUeM7b0kg1cN2eSenbfXQYHP+3//V/Ee2nafeDUlg3ri8X4rpRUuLjh/f8/PMPPDycmGdB5XnnpAbpEpa9yZFTYd0S2xbZNnH/D8MEaNZl4+nphd9++50QIuM4oM1MKTONjNIyBchFDujLLbAsBVWrRB47xTw6TseJjx/f8/7De9wgk4XBC2roeDxynA9MwyjruNLUpOmzSErpZKDv9tF5mtDvR45zYJ03brcrt9tCCKHjoRJN753+LiXRVkxJrbL15zmFDT8d8NMB6zxKO3aDoVJ7HQS7Sa+pN//d65BWC42GsY5xHDkcB6bR0ooi511HLp9rtBak4WAZvHg2aj/cXi4XWY8VnaHbo1E1fSqcegf329cfCs/nlyeKemEaJ6Zpks3IO/b4TInMaq8RmnpneHYgtxcBsYJv8kfpWptaqmRU5wZKxtWX21e2cGELhmWdWFbPuAK9YLjXufe1XjYDGdO0+0lZ9crdGPsqrr9/Ri+omnRlcwndMa4xVf+BuSXvmLh7pVTdxfmtj1ZeDQcodR+d5SqFaq6Z3Eqvf3u0ZhEYdy6ZdQusWyTkQqyF2HoGvAKaZs1xp/2Ahao0VontpGnhZcqEqWGNYbROFmEx/aEqPQ9od7IZRA4BtSp0VZQqOI77yKv3qV9BzfKqrZJalt9W8r7QhCVXK/eUEVsCKjdyM+RqScUT80bIIy7ImHhZFr58+cJ1uZFyxhhDKhEM+NGiDThvRWaRI+t243p7IYTAul0JcSHlTd67mmkUlJJ7pDZNLpXWdoc+7AYGQU/ID7VrRSUNRn7eVhXbmnl6uhK2yK+fPnO9nL+5HZRSPHz4AeM7mL00VK7YBoM2qNZd4U0SU2pnXOZWiF3gXluWBdWLi1vg/+KAL53nWlruGC0pOEuMxDVxu2ZA8f7DxDhpaJGcZGyudaEkuQalKtwoEHjrLH4YMNbKIjNNTPMsmk5VOmZEdfPTgB92vZKctJ31aGNZLlky4PvLOcfRPzB9fsZaTS2qdyMqMSxczpFyzZSqAMPoD7KOtEApYN3AOB8YlsSQGhiLthGlCyElUo5i4jCKVqCUTUwYNuNH2cDGg2d+mEmpsS6V5Rr4R/jUE6MirUb8CNYrrFcoLFo5rPbSjTOZUht+mDgcD4zTAaMTpULOd1bJnQhQ6reSoX1l+fmHHzDe8OHDe5zzUkidz1zGkZyF1qGUouTK9bbQevJNqQmnNPMwcDhMzPPEMIj2slbJx/5EY7teaTmRQpBY1abJJqGQdaepBkXSgLy1aCe5yS03cszSLTWFGgs1VXLIPSHN4bwUmcZolNM46xiHkWHwpJhReeXanePr5Srg7148lJ//uKGIsdAzT0fsMDOdTozzEe8nliVwWzZGP3I4HDge5J44n184n89i8GyNaZoYxuFuBt0HNKmKtlJ7MQpOXgpPYuLT+Cstyi7w7v1HPnz8yLsPH/BuQA4ZG7fbwvPLM+fzmVYb1lkeHx54fPeOw/GA9wNh24gh3hsY2soUhVa5np/5JVmesyKdX17HiH9SeMawEcKKdYrT40RqoisPl8QtRMr1yuB9p24AupGyImSR5ZSYsKPnuC5c48ZtCbRosXnCWAtOsW2J63WF35/YQuV8vfH08kTKG35UeD8yTYpWFpYW0a6CyaSSaUpzPA6cjiOnhxljGusGhYi2Fe2QA+ngmceT3MNOESLkW6JRyQXQGjdYrFcYV1Dm24vhrOVf/ulnwcRZ7kir2+XGs7bc3I0cIqfjiYfjO07Hk3QZ98KzxzKCSDK2EGklybTGK5wRrN44jLLG18rNdr51LRglhl2MGICMkwlpyRlvhG9NTZIUZDXDaJknyzRYDtPA6TDdg0iccwzO4TGQKmtauZWF2CdVdedkd5rAHeLeX6MfGJUlDgOHcWQePIdh4Hq7sSwLWwqknCn7nFTpe5pg2dtbXctfAdW7inafIHeJ3zez1vvUVyQkovhrgj5CDnbOO8ZpZB4dMWSR88gIS3B+WorOcXQM3qI1pBS75G0BBdM0Snfa7RKHHUX252lvf5Jc9JWn841hHJnmidNpYppFa1hL4bZubFsk530zN91Fpphnz8PjkWHwKKWIIXNbNkqu95FHTnKKv14XOe17w8vLjdvthjGVaVKMY0PpTbAzPQVDAK4y/hOnthRUe7KLxPqJCWcYfM+73rVLonNQyqLQVOD5+YWv5ydaUxg3sH4XZC+aBhEElybdj71jrOAuWq80igJiI0cpLIrOVFW7NEB0eDFGYoiUJty/LUZCFphw1o0qMkGUgqIViULMhaAKunYEiq4oYe+SqGxkYssMbsCNGqssthl0AVW6TqkpESkLSRloMjasilr1/VTTEC5fpsF36aG5Fda83bU2tokO5G44Q1Kqcs2sqaAiHcVgcFZcf0YLwy3GwLouHbi+624LEsnYwb1KCrgSKi/nF5RuxBRZlishdMOQ3sfkUkzvkXog13A3wqmd69VHiqobs3Tv1LcqkN4QIl++fKYB27bx5ctnqI3Jz6/3hFL89PO/4ueOuSgNUpYxiFK9rO/SCnpsn5LrknKiZGGUeucY/SiFZ/+gKblHYiDlSM6BGCO3vBKuK8+/XXn6umKs4zQfcKcjSkWsdmgcTieyLTjbmA8KjO5jLdEnOeswzkvKk3VUJbKOXCSOE+toWj4wA8oOaDug7YjWHtQzb4Hh1lmO05HpMOAHTasGP3pQmW17YY2VkBeJ+ywVsGhlGQaLIhFSQdkRpR3GeCYz4H1lGBJbWtniVWQSpnc41oJJMM5Acyhc1wSfiJviZjKXy8aX52eaQjb8o+JwHLGuYKzCuyPjcOI4v8fZiRCkyPTTyHH0jIOm3F6IWQT2zksyS8pVih7+TIgCP354zzgPvHv3TgwHNHTJfaWBeZ5RShG2iFGK5bayADVlsoaWM05rjvPI6XRkPojMaN02Uty4vDxxs4btPmbrBkSEZnD3UxqF9RbXhH2ZYmRbV8IWJPpRqZ7kJfppPw5Mh4lhGhimEeMspTW0NZL+U2Cjw6FjoqZESxn6NIXvR2gKlFYcjkf++vM/46YDH//yM9PhhHUjMWbClnDWy0FnGPrIUUZ1pUdPjvfRpb4jqBqNXMU8qbob1xojrM2YOPoDt/NCzpkP7z7yL3/9N/7tf/pPDMNIq5Bzl/n0TV5YtSLzmeeZaZrwfrjjxO7qLCPdf1rj5ekzY9X8rVS+pnTX1d6Fc29enz9/Yjn/Ri4b88OAdpYQCp+2F263jTVWnJHxrbUS61qqY5g1DHLYeblc2P79vxFS4nxbIRmGOjLNR4bDyGU583x54fPXZ1B/k26ZaUwnzfH9I6pZwlpJQdbV6eAYJ3Fae2c5HicO84j3FlTFD45CRbmEcXJg85NhOkhxl5o0TmKAyzny5cuNGGCcHA/vRt7/IOi7ty+tNYd57JnfO+mlUWMlDBstN5JyWDOSk2a5FVLasDZjrWUcM86JZCXGyO22Suc9yaRL0Y2O1tFq43a98fJ8ZrleRCtKITnReHqvxPCphHrgLIyjphRDQ4x24zxKx1/L+lhSxFCptXcecyLfVl5K5XYLXG4bl5tMA2LOvS6qKK35+S8/C86uvwQnOOCdIXvLcR5Jjydutyvny4Wnl2fO1wtrjF0bbnuUuJGJYtPUIuZKbS05epGkWdf56Z3H/CYkZtcm07gTd2jdkK1fx+zedUxhkYmS0TLBNFrhrWYcPePo8d7SamYLG9u2kUvGey+HxcFjjJYo6FTYE5/KnzT1/lB4ruvCmr5gnWO4jWxhlsXbKnIpnM9XLtdV3LSFu/vSO8PhMHBdjvjBQ4MtJG7X9e6KknSByvW2cr3ecFYzjY5tiaxL7LnWohW83C5SCOVMqbI57vF1Ru8xZ6LhSzF2CKsSN1UfF1rbMQJoWjO0aikZUqo8P1/4+uWFhsJaD8Xzdm6kFL37IIXavQnYBbql34SxYzeaA6MMTVeIrSNVpDgtiKYr5kRqsoCGmkmqUA1U3Si6p/wocfzF2vp0QmOxTKN0J6xRJJUJLZNbJhDRVlOGAsaJSDgrVAbqDjh+E7PXT0Ct9aJzl4UCpSmJzgzfnuJrLeQa74VeLkrg4d10pY2M7e65uK31bowml0SIe5HXYbxK9EEoLUgGA7VmYtrIWcxktesXl2UBVUlJ9CQpy7zXdOzU/t2/RWTB7pTdUSftrjPZIwf3EZ48h5WcI7flQqMKX/J6xhr3TeEJimk6Ms5iWhKgdBG2H682vF1mu98zpmS0ilTlqMXjjcVq39+TN/n0WhK/akUkJq1Qc2O7Bc5PV54/33B2YPvpA+WB7nb2eGuwulBcllpA7eELCt0Nk9ZqrOtJYqY/N0VTCoLC6BOMXUNdrHAys9EY1ajlu06Gdzy8e2A+jDgvGJdGZVnOfP38C6lElvUqC3UppCj33DzPWGsI24XbJXC9ZNab8OxKU4TUiLlRiu6C+Iq24AYxh+mq7jet1oacNRrHPA7ErXJjo9YiIH9rGSYt2i1reXx8x/t3f+H9u7/g3czL85nbuookQjVu20q73QghynuqW591vHY8/yT9jRQTSjduNwkcOJ/PnM9nrv2/W48m3UJgud0IWyAEAZ6nrHussJiK5KAqkX9bCKy3lRj6wXq/wfuhV1X1zX1fciGFIF2G/BpVW3s3ndooueu5sqE06ZY2ozCjJ1OJrbAl6fiFNbAsCzFGWpOUk3EcpMOu9J/VWyilGPzAw8N7jo/v+fmv/8o4n9DWizY+V6wWw5rVBgVs28Q6iCu21so4ySYoRZnEKJZaCDESk9xPtIbp9K+961hzEW7mspJDRJVGS6KdBvDa4E8PvDue+vcqIRW79lXGlq+FpEjITJ8bKWbruX75zO3pM8vTp1dz0p9diBzROXDwmsGMYA03kzl7y1UpYohkleWQXBW1RpSKTAdFyRZFlcP2JprNJURssyiTMaVCSqS0kFIQfmUDOxjGnkBzPA2AwbnC9cGTS2KcLcNo0EhK0DCOWOsoRd436zzOKvRgJdXNaZSpVBK1FmIqLEvi/BJ5eQ6cXzas8zzMjmm2jJMRpNWbV62F6+1Zblu4S0iWRdiiYUvCya2KnFoHqO+oH32X+pUsmLzLbWHZNpFOtYbuExtnRP4UtsC6bCzXtSOCTG9qZKyDYZT9ht4QSkkoAOsaMM6QapSaxlrRyq4L8zgyeUk68h2CH0Lmclt5uSw8X66crwtbjMJG1hrnPT/98OM3Nn+jFa6bfYzeA2xGpsEzjYIJHIahM6E3KWKbXEPpbvUTZoGaIzltlOSoxonBd5cYal5zdPp6IdPMtv8net/72yuCyhqHVqlPjtXdKLSbXK2V7zuXbl4skra4xzZD16/n0pmmrU/J/wcKT+F/BUKKhLihyNSacc6Sa+X5ZeF8vrFt8oW1Flel95brLfBy3kTgngsxJraQKKl0LInowGKSaCuNCGZTkHzv2zVxuUS+Pi/MxxEZkRZa6xDYPua2VgoWYxWoSq2J1ooUpUZJektvDWtjaRhS0sQN0cNcIs9fr7w8XWlNYa3l/eNP/PDhn9+uoIzTiLNSQNzHzF0PGVMih0qukTWL9srPHpcN2SZaaMSa9x7e/XNrk4zWqunOwUZTlaIShda7XxpygdrQWTPaiWGcOBwmrG2sdWNLspG0Vqm+UlwFjwDai0YlaFVD7W7P9kb12vb78S0uBGwzuKbQ1+8X0gIt9s/WtCzPwR0zZTXV7nnhu2OVLklod4aaVhJbOLhds9PYOWOlSDcihMTbJKmUEstNCs8YA3uRaW1Pt9L7xvvKVNhDWfafQgrLct+8X1muXf9qFLVlcomk5ARxocVV/P2r5kpNdFfkmw5n7Q2gO+6Le2DCfgLMWWgIUYsRRcZHvQuL6h3ISMkrOW2kGFi3wG1ZRLN4vWJN5PZ0ZZkG7CAQYOe9FPLjbuaTcU+pkpQRY+xYJ493kitcm8DRcwjEEFBKk4whOUe0DqM9Wg3o5qE5cvTcWWGA857H949MxwHtGiWJoeH56Vf83zXbJqNN0fk0tjWRC0zzjHWDuCHXjeV2I0U51KRcuC6BXBPGN4zTaEunFUhR0LLEMqaQuV0SKV05jKK5Oh1nUIUlLKQSe7fMINnKntPxPT/99E/8+MNPGONIKXK+vnC7LaSwYsKGWS/YsDCqgsCdX/mWtQPEv3/98ttvlJoZx5HWRB98Pp+5XW/UUhjGUdbEUli3yPUWuN4WbssKVNZl5XK98vXpmWmSMfc+yTmfL5zPF1LIu85FdPJNij/rhC24u8RjiPf4XWctwzjSgBgkeUSj7/GpDUUqBU8DayhGsZVEvBaey4W4bKxdg4bRTMfD3c2au2nqz17aGAY/MA4z0zjj/YjSlmYAzxuJi2SXxxBZblculwshBqZJRvGPjyemWQxCMUbOL2fOlzPXqxxorN7Hi42//+0/+P3Xf8h9dzmLZq8JK/S2LN0gN/JwEk3nMAjmTalCK40cWyd2OIyzd0xVtxBhlWH0I6fjidPxiBs82giq7Z6a9+b1OHgeDzPZVpJubCVDhMPgWYZEiausM8h1yCmxLpGXp0KcxPBjncF5WetObmIaBo6TFIvQiKViN3DDiPUe6zVu1EyzwXlDa4qSFeNsyNnhBtHqaWVwSiYQOWlyThjTmE6eafb4Q0OZRC2io19uV2rVxNx4edr4/PvK09fAumRODwPDKAijPVXo7SulyKfP/yHG0hiJIROjJA2lVESupwzODnjr+5pZ7uv0noCokP3muq5sIckYussUdDfd7FOonKtITEqRpkmJpLwBWegePZBG1l+IUSD0bccWaY02RrSP88T7hxPvHk68fzhwnAZalxCGkCk5UMtCrQs5bdQmetNpdH8yHmn3D9U7lEYL33qeJ46nI+9uC1+fn3l6OfNyvrD2ruJdTigPPrVGStpIQfap3d+ijZWDJeqeFCY+UXVnn4o6UPY+MVlVMVG2Hj5TG0YJq9sa4VU7q/vn95qsyr1v3YDzDsFmxV5wyng9l70I/Z4Y9Kc4JRlv1Spi+mVdKbVijGAHLpeN2y0RYy88VcEYTYgWrQMgTqbSv4EdQH9v97adYdij3Ir82ZwrobMGr1tguAhD847YoHVwrMJYKTCtBWMb2hS0LmjTMLqRiiI3Q0WyZcGQsyImWNbM+Zy4XDautw2QB/swvfvDPRKj5KQ2pe4RoVJbNLYUuG0r13VliRuD9xw7CcB4UH2MHlPPmlUaO3jZ7LWiVYH/Ki+jI9WzgLWSbmVJlVgLVhWKaqjBYaYB4xs6FxmPV4XGoLwGpyimEVS+R48Kc6yP2Btyg5X2Ona+H6I6yBopVNGItPWbB6azH9Ub9yvSDRIyQAdTO3P/2gr1auxqqnc6RCsj3NlXg5MUlqnfuNL5hnZPxpHfq7LIdMSP6zBfYbPtFAX5defFmg72de5b/NWOndBaMwwj4zgyDILFSKpiY+uJFN++wi0JZmVfQ1STxbNpSawrdORXeU36KlU6i1VRm6EqSbrf3ZX7tXoNIpAOY6uC+6gZcsrEmChUri8XXgaD8aKvGg4Dw+ywo+mn+UqpIkJPKZBykAObsWQXSG4EFKVA2DZCiHdmZImaqLT83cWg24Bqjmp+BjXer4M2hmFyuMFjnMI4MLZS60bcXridbzw/n4mxkKKwRGtVrNOMsZ4QKnET5JDgxORZuS2BXAtuMJJ0ohp+0ExT33xyI8VC3BIl7WkfFm90BxdXhs5lNgYhMWRNyY31llmugetwE/MHlanHK5Y0U28XGoW23DClduC7wqjXzvn3er5G4+VyYw0rzjlag21bWdeNZQuSBLJFaucJppgJUbrqMcp9HmMixMS6hnu0au2dIdmsU4/FFZh6Mx0QbfshddeWpUZF8E1+FI6sH/z9sFy6W1uwShbtDNoZKba8FFzKWXLMxLCxbSshCE7MDBbvPEYb1lsjpvQn0kaRAlj9KrGxxmGNFT3k26lLLazrwvVy4evTF56fnrgtN2KMnWwy8vx8YBpHrLOUXLhczzw/PfP50ydutyutSLPBGsPXL5/5/dd/iOHheSCHjW25UUrler2ilXBn3797z4cP7xmn6W5aUdqIDMWPjIcD8/HI4XRgGmeMlgOPMkZMFlaSe0znKt6xUN+9/vrhI6f3A9lUthr5dH6hhMLUOYji56r3jpIxA36AaXAYI1IKbRrGDLg+7ToeZx4fDmhlyKkRUuZyC5Ja1qkwzonvIYRIrTLd0wbpdk5C00hBEbbEcinkUEkxYhw8bAOPzfNudAxOo5WTiMsoCUHrWjg/By7PiW0RprMgvmInHhh26s39+WiVbTsTQmRdA9smxWdOpcf+WrwdUE0OCqJh3Nfp2ptODdcPVyluvTPe1yH9+my2KoVnraqjWFvn6QZiWskl0lqRz9GvbFxxce8yr743Go33jtttIKdAqxGjE5q549UquWWaShhXGCYZXSulOBwc02TlUPT26VBS9NfaoJW+Z3aIvVa4YcINE8Y6bA8ZOF/O3HpkaMkyeag99ey+l3UpSGvg/NC7qbtJcS9A+/Sme1x06zHZXc+eYpG40SjSKNOlWt4bvDWiQ6bHg1fR3oO983NLyb2DnO761hAlUWoL34fz/Enhaa3GY6TFW5AFcUvyBhVh26XUqKW/uapQWkFVMR2FICcZca/TNUWSTSqi1h3GLifMlgspJsFclEIqlVAzPkWcl8zpeyGjusBWVdH5WfADDBN4XzFklKoUFKUaSVvphZjrYOwcK6urspnNsgEbq7H+20tRW+Pr84I1yAmDQm4dg1Iya4wsMbDGjS0FDvOM0obJOxlloki1scVEjInRDwzTDCVTcyRGScHQo5YCokonQzcZLaUtU6gUVSm6UWyjekUdNNXIiJSmsdpjvQNj2EohlAWLxSuL1Q6nwWBQTRFKEYeZUr043cHhrWO+5KH9PzupScdZ3lOtDbpkcuccyljE4kfXDVL7ey0bnVYaZ3oWbS+ySt7ZepW3KUZiSHvLXVU9b1wiIE0vXp21dx3YDo2uTU65rexZxeaeTlFr7XKO1k/Sonc7zEdOD+84zCcGP7OtiRgU6ruttbXGck6k7e2YsSfbVDF9qP25qPl++pfiWtO0Q2t719rUu06647Jq6d05jW6i3fS6oZV0G1uT4uV2ufCkK003jLcMx5HpYeTwfsJ7hWqZGgNxW0kxkkvqIylDNGvv5GpqVYQgKBvvPQyD5D+3StoSOVYsE1YNjO8+ot1r4SlZw4LzsV4xItrqebYMvnFViRRXrueVbc2gNMY4glIoldjWzLZlYn+/axV+3RYiuVS2YKiIM9LYyjhK2yPnIvy7FJi85Thrclo5XwKlZnJN+BGmUSIZQ2jErUKNaL4S1sqXz1/EwDAMvH//gfcff8Bbw/b0hesv/8FLiOTrs2SB0zC6YHR/Rr5vbjUIqbKEjMl9HK40ZpjwTYOJxBQJOQsMO0isn4yfVN8YKi1Kpve2yX3bege9lkYtcq+0u6ZNOkKmm15yEh1xroXcMkprxjIxTBN+HBmNaFX3YArrhEdonEVZwzCNAgcfBtzoCWzUrSFgtyoZ1TsbsSlyE436zhR9vSe6BKbrL03vSBolGK99YWlNZErPz1/59ddf+P3X3/j69IVSctfyc5+YWCdEBGsMOWdenp/5+9/+gy+fP3G9XqE1xtGTQuR8fqYkMSzeLmeePn8i5cz1diN3mP/xeOR0OgmOqsc/Oufx48x0PPL4ww98/Mtf+Pnnn/n44Qem8cjoZ4zSd92c/LOP5O9zpG9e/+mv/8Q/z4qsCi/bFfu3/87tHJhMwBmF6UB9a+iJZgOHo+fh3Ugugafnr0DreKERPzrePT7w/v0jWllSaCxrwz4HtphIJXXMnSHmSG6xGz/lGXJeksWMMXxdNp6fV14+b9zOGykmrIOHDyN/WQ8oe+T9x4lx8jQapSbCGjk/r1xfMtutUZPBakcthW27MQbHmNwf7wkFw9AnOgWoGqMMQTUg46xiGg3T6JmGUUbGrdFKFkd0ilQK4zRgvWNcFNeldRRR7od2+RlrLqQkh3wwXe4kzQgJXpDrkUujtXRnW+/d1aZ2Uw9yyEMaXFvcWKNji55QLd4YlFPUUqi64CbNYRiZ2oCxmnnc89u/vSe0MRjtRKtcKzsXWGmDNgarKmO/p4zdebtSl1yvV2JO5JxQKWBy7M0YaXzUPllqNAatMVae773RVxF8kvRJFKqqnrakevc2smrFtomednSDHAAHi7UKVQutCA2glYxzOz2mc8m7zGAvPkOILOvGsmxs8TvTCH9SeO6aiZqlWxBCls5fZ9q1zpPcn7vapGBqpZFyYdvSN4Wn0P2F26b6KHIXF5ZcyPG1PWu1QrdCbZnW+gnBaPYsK8kl7499b+SpDKaA3sdgSrSe8p9RslZR9ySCcTKcHkUw7p2mNhkND+N3PLoG163inLAkK4pYiui0tpWQIlvOhBKJNdHyhoqaqAcG64i2wmBQRYCvarDowWIK0k2xBtMsalBgG7poWm6QpKtTc6MVRdGwlcTT7UzUCZcNkcBSI8U0tDMUYAmBEqWtPVjP5EdG5xnwGMRRfosb65buYOrRGrzVGFu7DkZc7t8nF+2aG63kWklk2A6WpheG4rCjj5iFwdq1WFp0drvGp/Vxyj3bvr0WhbuWd0+40HcNlQVeUxisMa+sWaU7VUDE5Kp3sWUk/xqLtouthWCgXg1GjW58ytSyETZh/pk/6WSUIBile8xa/3lULRJtURu1JmoLcPcnyjPTVJdVFDH1lFwpddfLaWoOlBSgCe9Sa8OyBNZrIGy5G8Fgi4HrIo+SshobI1PciHVjOhhGr2glEXMQ3FQqMmrRFaUETkxHwezPHkr36YBoilJOXa9kqdr+obtlrWM+PDIfTxxOEzk2hvHIMHrpho4jh+OJFCHGpUsOEi0soAy5a31r1zzXIpuC1garNA19J2BIwlWkVAi59AKqClTeiCtb1qOG0ZIvb41mi7CGSs2ifd7WzNncSFH0le8/fuR4MqIntIasFRpkzOkdg7M0RC+Zkjhk/9DyBNY1cLttoqnt921rTdKklEI7h1OaZgzaZkqs5N7ZL32D3euX2kf6rS9nrXco9rnPPvbf9T+qSsfHakGYUJtIeFQ3HnVsWinCAb3rF7XBeo8bPM7L2pdzEpNkN/5pozqg3oqOvEiTYF3Xbgb6o+xANaFpGCUpLUZLAbp3XVuDXCsxbLw8feXXX/7GL7/8na9fv96nGDv2pfbumWjLxLp3u175/Pl3Pn/6xPnlmVYL0zSikLHufm/kHMlJOnEhBNHVxsjL81PXNtp7OIJ1Hj9OjIcjDx8/8OHTjzw9febnn/7Kjz/+Ex/f/4g6PHBnRtd2H1nK7fDHe2I8PXB6HEgtUW6O08OF02llPmeGccN5A6mhLBinGGfPOHucMzId8zK+1lZ8C9M0cjw98PjuR4xyhC3z+ctGa19ZlpvsS4thHDVVFYquPVjAdLSegNlTLNyuK5eXlct5YzkHYkhoW4XD7AvHd0pG51VRYuP2snG5BG7nxHLNhLWimmbwA1rHDhnXtOb+cCmUUgzOUnPCKHBW9S64oIu898xdXjI4izMWSze0ZUsIWopqA7lEYhJaQNi2nisu+88+Pcqtdp276bi/SlVCP6mqyvCvqT5DbTSkXtC2d+P7qad1zFjpWuvzTWMslBY7xB7WNRJSlihQazFWoo7/THIA9NjLoRtz6QhAeYh1v5cUgkubp/45PeBgnAbWbSPEQEypQ+rXvmxo0Qn3tUK+dsW1Jge+BneVZ5Vn8L7nVCRoZAnoKhpp0ZBbWpV1r+aGagXdihgmmwQItNpZoJ15XN7oO0OU/eNPQzf4s1F7/7X0CKVtEy1DLb2AsxajpeBAtP/UKm+QfIMyuq138W7GmIJ3Iio3e1u4VFJMpCDpB7U1jLLSxXSNYWhMI3ivqUXLuKy30QU2Dlo3diCsdM/kpjId/STdr65fUJIGMk7iLBtHz3J1lCxFqtPfArIbEJqmaYPxA6hCiVUo/VE0sKVVEpVs4UYUgLgOTHpAOYM6eslbTwmjNdX0IqVwd58WJQusar3g3DJ5qeTQMFVTTGMJG79+/YRbDXa2qKFRbcUZYXzGnIhr7DdmZBonTscjBzUyUTDNUFPjZV253QLeDUxMMA0oB8VkUMI0rOi7CPn+wGjRi6H2bGklGB66xvLNZptSubfda5HRnrWGKuHGfVPpIP0m798+Kt8jH43V94JxvyGN3vNp9ztUOoOmO/b3ONXaRErgrL9323e3OzT2xKA9lqzUgtoiihvrEmlNdw5hZXAe3iazyCFdOlJSA/SuVKEkQYTJ5hRoWjRF8rMKQUCiEkU7HcImJ9QqnVeFIoaVtK1QMqqB85Jk9PT1wu26yr1tLbkbQFrVtKQgisswpBundw71fuixl5nSGlHq/36Q71rX/k/tbm1bxVymlNwDWIvRYN2IN2OHC79ZONzAw+OPvHv3gXcf3pEjDP4dbphRZuD4MOL8I8Y+ocwTt+uVbVvJUToiuk8zUqOnxAgcWtBtQgUInRKRSiXVTMiNNeS7vqgZh/EDfvQ4069xaVgLVM22FK7XJuOicUBpS62SV92AaT4RNtEXRipPn35nff6KboVhEEOfOEmLAL5No/6Ju2hZVi6Xq8S69uJTOkWiEx3GkXGW7kNJIhNIIZFTPxjk2DFc9S5NKlWCL2oR9QtKUoZEPtN1knT5irMYp2kGUitkVdn1ATkncsxstxs5V2Eya42rsin5cUQb0ydOCTYpalWrkuPufR/lwbZu3C43rucLy3W9J659s25KtSydTq1xPYRkr6wVjZoTYbnx/PSZX//xC//45e88PT9xmGfmwyyfY7jro+Pd5asI28ZtuRDTSkwbre4Sqx1vV0g5opPCZ0GBee8ppUjnOUViTve9bk8ukiJ8ZPzyO8fffuG3337hn/7pX/m//i8bqmm8cZK009eY9s3HHy4DyXu2cRZCxVDxjx85ronjNTGfb/irFQOhqdJ48Ap0I6SN2jLD6OQ9VfI9Ou8Z5xOH0w8Y5bEm4twTJcP1uvH0/IJWTQyEg8GNjsNpZpoMIE7962UhxsLz143rJVJSQzXTTYyVdUlczisvTw5rFSlU0lY5P22sSyaGRlgKMWS8GzjMnqr6gbIqtHZ/0P0qlOzrSiQhViuc97TRUUoRrnDnrWqlcVrhlUU3Q80WZzW3TXELK5dl4enlhfPlSopZ3nvbY2ONAaUoqtG65la6cYVCluJTta4N7RG4rdEQw4ztI2OtAa3v8rrWKltK1Esh58D1KlKYhhSeKVfsIGa4cRqZp4GWK2WA2d3PebLmGYv1o/Qn6PKpVMhF+NKvsg3VD/YH6fLOM+u2sCwLl+uVl/Mzy7ISUyaFDYXELDc0pUEqlVwyQ8kY6+X5U/t9q6C95rjXJnKM222jJd2fe1k3Qiisa0S1glNI6IiSIra0zJ4iKYdk0einmHoNIK78afYk0h/yef5QeO4j9tyRInuWdusoD907XiLB6L/2VoyMf/qD2KQN3Kok9WQSTUviDvvvpSwdF9q9gDEGnIXBI2ilqX8/qRGDxDjtkWeqZ8JLd03G/6IlbFQr+hL6AmiNEi2aVoyjFFJGW7ZFEYO4sL95YJRmevggiS6HUeC750JUirUWQo6UVkiqkGpGaUU0hlybdG4QbqY06uTEX1Ul5kyokWLl9FFzTwhYC3UrtAA1NGoCVKPQSLrQdCWrgmnlrs8AYZUJNkVcdalkyBqT7B1LRFLk0LitkS0VijbQMqZoaiq0GGg104qmFfMHB7M418xrh7JWGZsg77lWYl7KSVzue7Qm/WSlu5FKunv9Zu0PNeyj9tI3grf51F1j2cQRXWsv8vohSCl9dxGmJCNlpWrXfXLvcooupd3NPvuIRX4CLVSB0kRX2hpKydjY22/p2K01fv/1HygluAxZwCT2MvWIylISSiesT2hTZKOt/XlKuY8hJCpVHlzQWjBfcdtIa+ipRAqUIaTCl8/PrFtkGOXAhIHM7qjtHeEGJVZKrNTUNzJlaapQmiKGruEpwmnz3jOOo3RWjENbTy6Oe0BCf48w0IykqL5VvDo38vDur/z4T/8X/u38mZo1zj1izIA2Mr5sDd7/+g/+8ff/4Ne//41Pv2fWNVBbYTLdeR/lea7SvsVZgzIy3ZA1AYxqsq7oSiqiLVcocq6sW0GrItMF6P6nXRvbyLFgVaW5TE1JijKxhbJcz9wmxzQZnIYQV2JJ3ZTS0KVrioeBEc/JVvLh9P2SKWDy87kfmHTPP5fi01iLjrIRWud7EEOSQ7s1OCP53aUnGdXeRVBFIlCbloOqhEeAqlJ4Wuc6h3PADxZle8oORQ7kRg5YOSTBvOXyillorx2i/RBW37CQVV/byY0SRV5US2W5LlzPV9ZbIAUZ23//fORuLChdZqOkjUsuqZtNN67nF75++Z1ff/2VT59+4/npK5fLCzEsLIvvGvK+/tUuxSpZlOZ7LnTqo/6+dhi9mzUUWUnBEWPAGNkDauv6/H592Sc1yJ5QFRSKdJJKYlluPL888fnzZ07HdzweTozey32xh6bci+k/voZ3PzD/9SM5Z2zY4PED9fCO59h4Whau60K9yKg21UiqFttkPbBOc5gOGCcyLNNZqyEmvn49Y5QlB5ErDIPlcBiIeSCGREmvDRhrGkaB9xJMkJN0K8NWSaHR8m5slImiBJDIA1+LJkdIAeIGcZN9smRZw71XHGaHsgpl5HsY/HjX1O+vUivnl6t0KUPEe8fYsTu1Vaxzcv9q6TharSShpxmagZiFWbmsgefzlfN1FaZpv191U5hWJUmqd8Vl45GOtDLyvJgm7vaSuwlnpxe0nvCja5dxaUwPUBDpX+7NLZE5icdBJFLLmki5MTbf5ShHxmHq+sfvkhXoZRL0GFxF9Z392bnocqhRPeLZYpDnexwnjvlIiIHj7co8T0LNuFwk1rcmStpe90s6JUOLxA7T+52tyfusuKeB5QJbqhglhwffGwzrWti2Ss0BRcEbjTPC9JRpc187er1TiuyhJff420470sZg7O0P1+KPhWdRkpSSO0KltZ5BKhut6VyzVqUoor1yFNFNbsQ+EpJlsOv5SqHlKsk4vXhJHY2hTM8g1bqPccE7mCaYj6KZS6libCGERu5dStV1ibuBA8TkUYxsTiAMS8FliNPPWi2LlGrULPF7Jdd9RnR/aa15/+NPjPPAcBi4Li98XS9EpQQ5UpNoX2oktIRuBm8cFI1qRnhbsWK17UWuCLduNbCVTRbDqkixkpZKuibqljHF0rKSa28aWVesB30w6NGAUzSnaE6TgRoTcZNCptRdZtCkI9YaKWbK1kirZLOWZiTrlcKSI3Ft5LBRY0Znj6ruD8ZdowWZkHOWFKeOe9kFzCCZwbmnCJVS+wO9jzAENtR2LFV7HVG3WilVHLuq31/WSHZ7zx2QU1puHekRSSkimdYdfN3FzYJ8UTglRXItPXqs60drHzvKKiD3tDXSNbXGYq0Xx6fz+GEUP3N57eq0Wvlv//0/k3NAGxkLOu+orRFCIqZILhHrK/MBvG9oLSOIGAopyK8hSNegdtyE0haFIa2ZvGVa2fXVhTVEbstK03B8ODEdJhrCcBSihHwf1oLRGVUNNWuqMcjZVFOa6Auv500i2lrl+OgYDgN+OjGOMzU3YqxdYI4I56mkWvA1MfjGW/OudSPHx7/y87/8byjjac1gzQmlPdp45mnCmMavf/svHI4zKUVeXs6sq4w/tVFYX9FG3uRcijzLquNzmoC0mwJnFOOscEWe9xgbJYuL8nxeKblQssO61PWPwkZVrWFaQ5VMjRtZV3Q1cjhphvXyzM3D4WBpgwMqTWsCilgaMRaGwTHMM8fDwFg9cXjHy3eVxnK7cXk5o63GeYkXlc6tpjbRr7uUmEYZSa1hE1e47mkfTvLdiaonijXIlZaLoJh0wyiRIEiedJPC0zv8KK7SqgTbtuvS3NCNIWuk5n5Y1XKvi95ZrnlMCaMsWHr31NBSj5hcM+G2iQM5JtZ1Y7ttpJAk2em7daK1Ruo68pRLLz7lIBNC5PnlmaevX3l6+sLnT7/zyy+/8OXzF67XM9u6sC4XGePtWs89VYkO8e/rjjzPYkjbO0qKV6257drXGAJaibwg9SCTHrXeN0Rx/ftRAhasdxxOJw6nI9M4oZTiervy9PSV5Ye/4Ew3V5p+4GPHuP2x9Jx/+Il3//afKDmTc+Ihbvh3P/DpcuH3py+8XM+EspFyIpTAVgy6NJQxDN4zn2aslzhK4y1VNZ5fXvj06YbBYJRiC1cOR8sP5sR4NFyfV24vgVQVJVnC0tAUnPFYbyRdpzRqkoNIq3Io0HJB8E4z+pHRz3g7SfOkFVRztKzIMaOqwnvFPGkOB8MwD/hRMZ8s0yjr6NtXyYVPnz7L/d1KD7RwOCdhE0prdNe77o0tZaQgbkjEbMyF2xa43FbWkCQbvql7Y2FPkVPUjsMC3f9dikzZJ0quJCXNhd2UpJQSbX0r0DFHg9e4wZGrIqV2l2hZYzG65483xW7KNXpgcEceTz9yOh1oNfWx/bf3Re2IxcFpBjf2mkCxBTFVy88mkbK6E1t2CZGM0AsPDw88Pjzw8vTEly+fOJ+v3NYgkaNZwmWwBoqD6milM6fv00AJ+MG0rquXr62oct20sHHDLVKzfF1DY3AG3xFXxmqRN6FezUlZOKMoI+Yo6++NGf0nJt0/KTyhZkHwGK1p1qL37gfqzXhB9Y/XDtKeRS5vhvRmjVHUonqx0sW8ILGXzsjJ3xiMMxgnO1upEAOE0LBDZfCGqYtZratsWyWlfvN0TaosOOKstVacqHRwvJxGXNcPOVpxtCIGi33U+03VCfebPgMqN5aUuYXANazc0saWA7VmYolsJaGLFt1a1bTSsUm1YnTGZFkoxOG3EVOUv69qSoCyNcoKLSqcFvdnIlJUpdpKG8DMFjtaMCKYTrl2c1YjbZG4dbCzkdFgjpGoC1YbSJqW5aZQRoGFogtrShAKNSZIDV2E4+n296i/BCJr0ApKh/aLQUxJF0XJUU5rJeP3jjjR2sipq/Mwap9Nt1LfaDx7nIIS2UbJfX7dO4W17OlVrRcoctrUpkGTDoXu3ZHdhFabQMdL6e9tU/dNUPVOqRSdDmc9x8MDHz585DAf8cN4N99s68rL86c390Tjy9cnYlqkOPUeO0gqTS774iVamJQr6Io1cujKRWDl+ymxlkoMqReC0qFrWVGzomV6Ny+yhkSIGWU1KUuqTymysDnXe1RayUhpC8SkyaV1rRjEXFlDZrlF1jWRU0Kpfn2q6LLZImHNrLdEifK9YTLKVnIV+cb7uXyzWijtsP6Rh/f/hrKThCOk2jXTBjd6FJlmtBSQTbS78j7VjndSzKOmJdEzpyTmxEImdA2kFFK6Dw00h8kyuN3cqGgtSXKRLqiQQCVGbyRhxBnePYq21ZiK9w3vpZvgvcE61UdQXWJiPM1PlCmi/QijZ3h44MOHH5iP7/D+gWt1/O8v7S5G2Q82e9dwz1mmy09kTRVZkVZBDlHsI14pYsRhrlFW3TtyrtHNmom4RZkStZ3u8RpOULWi7QgYtJgXq7hUS5YRKk1Gd61PKHZUE6umKnDV40dJdmlNgj/W843lsrDdJKq0liJa4abuHMLvC64GXd22TxPkn5wSt+uVL58/88uvf+frl098+fSJ3z/9ysv5mdvtSthucngsud8vwnTU1oqpqQdgtL4e7EYpgJoLBcSUInoheS+aYMJQO8pfdKtKG0lr8g4zWLS3NK2oulE7rmacZ04PDzIVsIJ+a2S5f/cF6097nfLKDUJuxC0TQyDGHTa+cNtWcisYbzCjwTmN8f3w3jJbhLaAjopKxSwb+rxQsyZHxeg88+hFaqAih6MRVmo15E2RF8GNxSAmD5GkjaLfL4ZWTY9GlDVYa80weR7fH/jw4cBhnnHW9IZO6xNHWa+Ubpxmz+nBMc8a46SJI5Mv05sMb++JTrCh9SlAJcTYddvlfqdYY2VK4hU4TW5SpKWaqbphB8t0GNHOkJLvGmnBLKL6GtETuNj1/HR6iVYdA1YwOqKVaEudNbge/1hr7l4GwzB6/Oh73riED+Tcp2zsXHCNdU5S4vzEOAwoNCXL2FntD8SbW6Qig4SmFXT9tFaGojSpKVqUsBxDxSqZ/GkjX0v3EqV6z2HoH9PAy+XM+XKT6O1YaCrTykYtEupBVa8FcONuENZG9MNVNUoTe4KsD/LHaxFuakkB1So1aUonJ0hcr+0dY933IPlZJBBEYpb3r/U/pPEUPVqPUrJSrZa6R2WKg30fR4qgVSp5cSL3yBxqB1f3gqMIHLbkSmmycFqtac5IyocG3cdUSmlyUmw0lG003XDvFNNscRa8qyiV0LovgloyZ72HcQRrZZEUTKSkFUk3S9iEJTni6gmbMMxa667u7x+Y1ritC6EmdAg83y48XS6clyuXIOBemozOY0ygFDlUWlTUAFjRm6DEOCB7riz4JWVxLxeNKoYmgTaorHGT4E9CjhRVqKaBAz32whOIKRNDIW6ZHCslJEqs/UETIaJS+V74eT3gtO1jBI2yjaq7diomVFaYotBkdAPLt4WnUuruUq1de7UXhLUXibo/tHbXzrSuBe0Ipldhc7uPy2ve2avd6d4dh4kshVjVpLRzwF5dxboLpneRZdNNFp7e/WwVUkmA6lnNuo8ZBIuitMF2dtw0TDw+vOef/vqvfPzwA8fjA6U01jXw9eunbwvPRtfRbgxNUZXC0O4mKOv3rNqMNgGlSn/QC8YWQWZhoChqaqSWOhMRWjUYNWCUpSrBZYhIfI8xlSSb0gq1yMhnHGvfYA21ZNZtwWjF7ZqxzoJWlFbJTQTfOdfX69YkmWPbVpYSWC6B5RJpRRBdflK4SfLjtx5t++3LoPTEePgL1p84nz9zeflMTnJSzmUl5Y3PXz7x+csXbsuNUrNcC7UbYjSHSWNQ1Fy55MayRrZYiTlgDEyjkAwogkeaR9tXcy2YpiiHkhBLNzlk5tFwOjhOJ8f0zlOrjPe9UwyD6+gs32kWDm0cTXuqGajDgda7g8PpyOnHn/nLv/4nPv74Tzw8/sCXy8r//n//f7K3zqUwFjoCBrSVokbvUOUGrckIPWwyDhPDgBUUmd5NcpIHvSPGdhf49Sos1BxFCy9U0R4J2KqMGduO/jJirEmZ3N2plNr1Y9JByk0OFqVlcquEkhjrhDKiH665si0bz1/PrNeVuEX21COtdc+mNoKv03/cUFov3PawCSk8I7flytenL/z2+z/48vl3vn75zPPzV5blwrpeCV3bLAcUmX60ri01RhoHqilSTCy3m3RcpdqUgrgCdpd2vV2bpMhHi7TDWClmtReclHKapmVfKqViU2AqhXGeeff+Iw/HR47HI85Lp/yNXoH7DfAnr+W68PTlK9fzhdvlwrYt/Pr7L/z977/w6fMXbusGRnM6zfjRytducti6rZHLehNNnqodDyRFj9GWh8NMazO5bMS0MR9nDuNMuDWuNnFrRYrOFFG3hrH7Gu6g2I6Dk8KzlYq3hnme+ctffuDjjweOsyQphSCpg6UDw2MKHA6Od+8HjkfPMCoJRokFlzS1+u/cAfL3CudRo40c2JZuTBMko6xJoxuZppkyKerUk/RqIbaMcor5NGIGkdfEmFhuK9u29Rzw1k1i/T5R6pVeYoT7ba2l5ESwDWcNh3lmGj1DZ1CWHnnZAOMMw2A5ng7M8yRxzetGjIWchA0LmoahNUPDoLUVB35vzGmlaY/fPxtQNWQaqQlKyxpp7jVbKTRyzdgqBBfhlRtownuVWFuL6lGe7x5PXJeFl+uVr08vfHl6YdkCuWy92adpRiEiqZ2tLfppY+VjRy3t0jHh1/YDXffotJKpWVGdoTWPbVKpKm065cbh/SAa3960aXAvPP9MjPJHc5GSahitaKW7v1rrD53qG5YsjrWII0rm+nLWFecs7FFn0HVa1vRFQIwBYsfvi3CnmxstehurpQgVvYgmZUWKgp7wXnHAMwxKTm5N0choLY5mGcUIDipF0fxsWkbXWmdKP4WW7CjVo3pBpup3bfFW+fL8tWunNJf1hZfbC7ewsOVIyvHu3M73Dl2mIe5b7USrVjqXzBlJ6qgJaoKSspixihbDSqv4wXJ8mEW8rAprCdTceYdLpBYpLmPMxC0Rt0KKhRwTOQorS8ZNe5qULLboRtVyIKg1dRGx6KWgSXSdEn5fyoXxO43n7kJXHdoro0y5idtepOrWcRTtrv+QJJw+FuubqUI6Dgbpqmut+qhYTkq1QIpNpB4NbB+7SKdMzAOtdQiwVaK37B00JWqG+3heBOR7ooN0zLQyWC3j/HGYOBwfmKeDjFHM3hnXaGVZbpc/LKIffvxALgfcILm0ups1UGCt3J9KBUrXFNQWabqjK3q3syHIJ1TBWDq7ccCqQUbuKRO2Rq6FmDW6CMImbHIiVqphnbl3LFMRbWkIAuqPsXVBucJ4h588h8OR+YcBVQUMPR480+SkGIkZaxLGxq6JFlH4cLC9i1X/YC6qrVDKRkoL2/bC9fw7Xz//ytPXr5JxrxQ5R/723/4rf//3/87L1zM5VXE5K9BYqLYzHxvWVbTph1cqzsjkwhrR3obQ0FbhvLzvRreOU5PNqKTO/0PwS9Y1htExzY7bTaIaUTBMltPjI4fjzLYJozj2uNzWqlACRo/zDn86MTy+wz28R89HsnUk9Uc0iOpFjbJKCs7BY3vGdGsNVkXcJHUHMtrucZD6m0VZ9Xvs9bmjdyl2qoS9C8UyjZYTLYihyGYxduSS7yL/RmOwDuP3sVg/9LU+uityaBXGa9d2Dl664a0Jl9BZ6b4Yi3cOqw2hhw58r+dT0siR93eHfxtBIo2D5+HhwMeP71Eto8iUvJHiIiDsbUG29B7xa6yM7ZTHmZHRjzjnyCndtamS/NPEnW7EfCi6z37N6qu/WBuNdjJON95JWlWXJbU3wRIy1VOgLMYNzMcHjg/vGKb5NQWt36OSO7hPA799ff78D3J85utnYZSmHHh6eeLzly9cl8BtiWijeHw0eGdpLQEGbTUxRpbbxrrtrFeNUU5kNVY03OsSqAgHtjZPK424ykFMqcYwGJQ1NOQgcrsFRi+Vj9xP4nmoGjAVbRtuVFgPTckkSfbxhtJZpC7jyOlh4MNHgermvNGU6ihCkY1V2/5QVTQU1jnGyXeGsxFsTxHzck6ZRWXcNXKYA/NxFrnK4BhGjxstY3akPIpONSQhT9y0SMxKuRedwyBmuNylGNYpnBf5Qi6JbRV/x+EwM41D1+32A34ReY8Uq4b5MDGNI8PomQ5zX2dKl5E0lLLUqti23A/2WzcLVik8v3OdFRSxdloHjdAKWitybsQMWRmqcWSlSQ1sQ/bIHvogdKBuhqsF4wasnxnmE9P8wOH0yPP5zPlylbjtsFBrw3nEZGQcqJ2R2tm6tXeMteAJrVEICronM8YohafpR15tUEbkg84POO9xfsC6AaUMtb02I3fUlTb/A6N2uSE1lH18dP8/UiDu+eO59NOHaNVEH9BHaXqPg+rJLEq6iqoLfq3V4jT1wqpqSDGr1R4rJacUMwoIvRTYtnJ3uc9ugDZQiqdkiGmTTTBvXRwv+jZRmUsxspmK4lXMq9SAVjPKjFg3yJ9909RptfL1+YWqG7k1lnTjsl7ZUiCVTCpFNIR1163200NKlNZwxWOslXZ1LuhR9F8qa1qEEmT81rIUboMzjPPI44dDT3DItGtjjZFwjVgt+a4gpq8YCjFWcirEEIkpAFKAee8Yx6Ev+hqlG5UkCIRUSbW32lXXmB3kZJWvkbzljrx6cy26RvcteFcMRx3J0PmZ4toufbz1qmlJSQpPY0UnY40VgbIuoh/1TtyNozzcy5JkRJUK1tLdfoKDiDGIxlLrDqvfuw+v404pcm1HufRIyrumU4pc5xzjOHM6PjCOEzlXti0wjhFrXT8lf+fQ1Iqf//lnGgntdEf5yAhTXHwVayXXN0VBUeQk4QFYheq4r9rEyYwqDKNhng5M4wmtDK3AtgUWJ0aaEBW6aFQW81Kl4Yeu0+mGrZRLHwdVWi2ErfSRrmZ+ODEeZ95/+IG//vQRWiCuZ5StGIe4fU3qG5KGqjBGcXz0zMeRqgTkb+23i0eriZTO3K6feH7+hS+//8bv//iNv/37v/PrL790VEjjt3/8ztdPn9FVcCrGOHFLY2jFgNZ9FN4wLmOtxDhKtKccLHIR/ampumvzGspqBivrRYoQVtk8fYXRgxtkrG6sI0a43AqFwnhQDIcjx8eTINHWVZJZeofE6IbxGj863DygR0ezliUnri9feXr5o1AerXrhqe+Fp5tG/Dh2DXOFlAnrRi0NV2rn9Fno0OzWeHW1gxQUvVDUKIyT0ZVMG+T/xVrIsaJzwll311LVImuzNhrjhw62b3fWIXXvqMvXyiGx6d7HabL2GWdxTWG8xxmBx4/e44xhud36uO57BzPY3a6iZDqhjMYpy3yY+fjxA8o05kkOPUpVStqIYRHYe2uoJhHGxvQuGR6rPN5OTPNEKZkQsxz2Y0AphR+cdDKVouQk8qhaJMK2VqELWIMZHLYfGAuN0jpRpHazVj/8qt49VsYxHk7MD+8YpgOqRIlP7Z1ZWZHqnxaeXz7/wvk588vff+HLl8/UVli2wPP5hS1kbkvq7uFXk4YxqqdWKXLaWK6Z2yUAjtE7vIfqGtu69nVWUr1qTuQtcjlHtpDQBo4PjtpMj52WtU1gP/ZuDtLasMcaYjNNR0rTHTq/d8Iq2hWOg2E+HDidBg4nz+22sD5vWDeK4VEbwlbI/nuAvKxP1g2M44FhHGTPqCs3lcglsm6Sz17rlXmaeAiRDz+8Z5yFX2qdohT5szFmti2+oalAihljTY+c9BLAUGWPcV4xDMKtLSWzDdL1nqaZwXu8s+yJe7v5VHVsoLEy+7N+YJxEAtdqY11XmXJi7ri3lFI32Si2LSGehu8KzyaFZ2qgSoUoBxiJTIWsPM1qskamcwWqajitRYethdIg6rGKwTFOjWGGw/E9j+83jk9f+PX33/j69MzlciXnRmmKUUsntzYB95esqD0oyCh5Zk1PPBIcmRSdUngW6BOc0htIzo9M84FpmnHeyz7YBMFZigRa7Bps8yfJXn/C8fRYO1FrRCCrslCpvihoJNe4dtajVgZMwxhJEZIkIToVXzKcpXh9RfGYniF9jxbtp01nGs42nBX9mh1E+6JUQev+oDcpfumPexN7KChHyQla7uPNJprEKrqxHVoujuSKc5JN671BzTPx5tmu3y6jxlgZ7yrFoDKxjOQ2gco4b8Ug1W+6PeZx7zaCxKDlJFqrYgpVN0kOqr3b0OULxij0aPEPnvHdyOBG5hhYc+R23aix0srYiycFdS84E3GTB7LWLIU9+4NjaEgKzC4s3oX5EjtqROStDVVXii4opzDVQlLfFJ6KVz3XnV+nWoezS3xbaVWK3yInMlAUVYCe/lTpGiDpYmsRAnf9nn2DXOldICVyD2OlI2CsdM5vN1jXfEdiqC6+llF67S56jR9GGQua126PUrpjloRoMI4H5vnA4Cck9ztzu95AKUquXC7fdjwBKkaMN6lgmmawEsuqWqHWjW3dpMtZ211no5FCsZpEUeHeFTZWmG3v3j3y7vEjWllKqlwvV0BxuUhwgxj6FMoqrDeMk5HCyAwijWm5J6x23VPpQm9tMHbicPzI4fiRYXqAsgqTzUjhmUtF64zRB6a54dzAMEwM84AdDKVmaivY9C2jT7A1F55ffuHvf/s/ePr0hadPLzz9/itff/2N6xJZ1szLy5Vt3ZiHbj7QBe1BO1C2UvuzPBwUj84zHUXb2EqT9K7UTYNDB9VPCj+A9SK96DcoWhumJqdyVUXzuiyBGBrXa2RdErDh3Jlf//Erl/Mz5/NZtNCLBED4QRy23husgZoj23Llcv7KutxIKXO+Rfiu0Ni7aqZ31FXTUDQ10/WUlZCyZDmnQtQZazPeOVLOhBDv3E35edR9BG+d5eSlWJeEEDHvxJi6rrhTJ/wgyLM+nXDZQe80KWM6gspgx6ELrxqpJImhVftTJ3im5oUjmL2sF9YIX9Fo3fXXr7Kxt6/Wdaml1o7AaqRa2WLk5Xbl68uZr0/PvFyuXNeNNURCkcAPTHftdzPIbi4sRVKeGpBypDbZFEU6ptlDJqAb0gCs7maqftirXec/eJQxVN0PoX0SYYzB+wE/TAzjgcPDB47vfuDw+CPD8T16OJKUo+RAyJVYKrlVzN45/uOlYD7MTEPl6WnAvGhyjHIwb4IELAlyLJxfbpK5XSLeG07HmVJ3wwoU70ixEdae8OdNn4RkrDWMg+ZcM3FZBH2jG4fTwHS0glMrWRiLpUIVlqsbCsYZ0SVqJeY3r9E2E+KNrUubdvPOMBqm2fP4ODEfBsbRoSQPRpKV3MS6ZdYQOeVvJTk5F3797SvT5Im5MM8Tzjq2LbAFyZlPRX6elLN4PzbLtAW2kO+HAMGamd6dFrPrfBiwFnIpdymINnIAaVgx2TnTD6fSdKJ3Kdc1sW6538vyuda8IapoLQSOskqn2bt7Jnlr4jcRg50c8OTwM1Kr8K1F5/mdBrppSu20m/tUEKRIhaYNTTsyjaqgFk1sCqch1kai4fpBVA6nqq8V0ql3VnGY3/HxXUM1h1aO2LXyOQUUrTcoEnE9959Fxv0qHiBMJC972fVyZl0XWhEusvO+HzxOTPPMOEyyxw5jR7SZOxaS2o9kPQWjfO9W5v+k8DRt7p2sdjcPqSqLE0r1WCkZd0psY8M6sK7hnCQKaWXIfYRcdq2fkVH6/n7saTXWqD5yhGFoeAfONfwoHbvaY6JQu3g/0ZqhVkNrDqVEI5OrLFbGFHFuW3u/2DKCbRgrYzxjC36EwXsGd+KCZru+PjRKKebphLIajGFNHnSRkYQXRiKqEcLGsizU1u43r9aGHKUwrD3ySyJId+jq60ehClZmNrgHj3/wDHZgWEbc6mnX1k/Dupuj1J0XmWIkhEBtGW3q3aWndAWVyDXLWL/J6b513JTRhlYdfnAiB6A/gFZj0ajl2wdmL6gFwVK7tlb1BcB1J/2e6pH6qUyhVUGRoel74af204aS8YHpDtHdAFRyvY/SpPiXAnkYHMZKnnlKQQ4EaPY8eN2H/vv3dJiPjOMkI7smZh2lVE9gEWbcNB2YpgPDICzDUqrkdnfk0bJ8V3g22AJ940lYr1DWYPGUkoihst1u0Fask4ewVYsyGqtNfw7SvZDXWrBNp9OJjx8/opUjR3Flb1tGqSu1tjvw3zgjWcwHcYZq7alFA5lSlSBmWu6HM+TzhgPH4weG4YFaHK0kWnP3Ys1pGV1Ps8O6kcPxkflwEpOaqqQsec3p60B7w2KT9+HGy/Nv/PLLf+Hl0zO3p43r8xPhcuPr5zNfnldS6huFdgyDkcNXZxc22yNCATdr/OyxxlJzY7tFbldJ6jBaXNp+VIxTxQ0N56RblVLrWe59TKRgvTW2a6akDapEUZaciXHjeqmktGKMJsWMRpFOgXQKPDwcsHrGOHF2pnVlVc/iBNdWRqARWvNvb4lXxZ84fmgZCXNogq+SfOokxrCU0VRMkgLSxD5yV3IYkWmRAOy91pLoMk09pUu0azEl1hBk2oRoTKdpwnvX12vhLtdewAsOT3i6wyQRlEorYgosi5grJHnM453HWiEmlCJrvxTUSpJhSr6vad+/pOMBKUuOeCiFNRfOy8bvT8/8+vsnPv3+K8tyZV2unJeNNWVyU2CcYIoEXClFZ2tCB6mFLawy9u1Fc217I6NPZKoglCq1t25NN1yBblWSmbzvhV8vwr2TgsJ7vJeiczo88vj+Jx5/+JnTx59wh/cUN7EVRYyVJVdCqeRasZp7oMn3r48fP/LucWDdAlsMgovKwnUVNJwixczz043btVFyZByFK+29x9qBefIYqsQ7rwspVnKSwIVYG4MXKcI1VRZWlM64QXN6HHj3YaI0oWygZG29nhfWW+i6S8+HDyeGwROCpOBoLRD5mLZ7528YPIfDxMPjyMO7gXEcesSjxHy2KvvwskonMv1J4fmPf3xmGB1riByPM9M0iuY5RHJPeKvIXphquad8LasYL33e5V7iAchV9tphdAyD5W36Xe1FjugVpZDMubAuC6WKYU3QSJEQc/cPiDl5mkbmacI7J9GwWyRsfbrmHePoGceBYfBYbSXiOVYUhnHw+PFAwwAbb7Ia3jwg3UQKfa/sa8ZuVNNiBqmI5jiXKsxv1XCmsZWM0z2jvk8VdH8epOLTDHbm3aPB6AFnR86XM9f1BkWudQjCkK6lyylQYiTbjpRlZvEOoyBsK7VWvHP4YeBwPPHw+Mi7d++YJtlXxUS0S81kuizrWKG0fTIjEqjvX3+i8bRoPQC5d1MQIr7qF+fOr9gjAfcxJ+yFgrP6HsdIE/zRPnJHG7noVZxUKOk+ei/6LevozkPBXzoDFdVLC3o3U0aWrTZBQjTTW7vS3bJW4SxY14HFlVdtoZYEgmGYGIcjh+kD8/gTadmA5/t10Frz44efZMRlDbdwFb3IAtfQaDpjBy3aunS8X+RdI7Qt4f51BPXUSDn0wrPQdAMn+Cc9GtzssQdHdZB0ppgKTuFmMUHMD6J7qVWiO100uGw7N08h+s3uEg8y8rZWoiZV/9DaYJTFW98jPEWjYZwgEqyWQurPuxn74vq6yIqOS7qSrTUZ2b7BD+0GA61fiQf7Iq070H93x+7dktrvI+Sdu5s42M0Ng2Oaxy6U3nl/3J3FWkv3YpqOzPN876SWjtsyfWw4+IHD4cDxcBLh+b5Rt/Lqov/DhVBo84A1M85U/DgwTI+iq9zOrNfI5emMqivjaDqztDA4hx29jJaLEYV57e7iWLuBqkDTpFC6xlXSw1rdjXcGO1j8YAQS7QT71KpFa9lwQzREZGRrrWecJoZhRCnLcgvcLleoK7QN6wSqfjg9cjy95/TwgdPDB46n90zTkUIl10TKgVQSv13/TngTfZZT4nI+s9w24iqMx5eXr6zLmVxWagm0ukkxoR2lFrYg6V82NeajxjXVzQuNUgTibCcvBprapDvYC31TkpjjjGYYNMMIpWq0LZTUesCFo1YrOqxUcK7gh8ZpgCNSvFvrhCYhdBcKYtYLMbKtAxpx9nsvnSGtHHHcaEqzhsCaFG9DBRQywtJOphwpZZbbKuM/16UxpaCsZTzMUsg1Q+tTj4a4ge96Ni98TtO7K7of1MO2kXO650qnUuSway128IzHiXEagK6TrY0UEuttI29yGCm1kqtMf0Qv6Dj6490MMQ4j4zjeI0zlCZRJQq1i9mhNIjSVmu66/bfPR8NQmiKUxi1kXpbA83Xj63njy8vC1/Mqz9FwYH6s5KaIWTrCLcWOVYFG18+XgirqvvXsyCSlOnCnSdG2H+RFYdJH/R25JlxZMW9RJIlFOqe5j8sVxk0YP/D44S/85a//xuPHn3HzO7IeuCVJmIlbYYmVUGR82fq+dO+kvHk9vvvIX//6QSKFjeWXX//OFita37oGTsayOUljISe6gW/lMMM4HXpoRhFMmjaCZYsi7VJa9mmjB2oW+P8wwuAt4+gYZ+FINiVFE0pxPAzcLhu3W4QGfmgMI/jBAyJ9aGqgtek+PnbOcjyOzAePH6SpIcgvMTuFkFnWhettk6CZP+lugaFWCCHivEQ1a61lf+7Rzco2TFZ4v3M9xfy0bUnipSt978wC3tfdENO1h4InE0C9tRbfXeY5VVJIXC+RlDPaONF1d4Z4yq/xszEqwiYdfq20jNFT6Yf0hHEbzllZz60kMSql8YNHa0tOcjDbtiDry3fnEauFUV7ajpmUP3O/e5ToYUEwWq1PcGpDpCWq0pTCobrRVt91lCBfazcAPhxPeOc5zDPX5UIIG1tYKbESpd0OtfQ5h6EEQzLgGDHOiQzBex4eHnh4eOTh8YHD4cg4jmKkRPXvdf85OvfI6Ht0tELISOo+mnpzLb7/DaUMCsfuTBKxaP9L1JuYxNLYIwFbLR1volHKdrSREtBq6YibAjuIQpzzUkSqKhxPNxi87yL3/mfk+xH3a1NWIOdKTAW6c6haBapB34HFYjhwbteIyTuijej7dnSSdzPeHxnHdxwOP3Dxz3xbeBo+Pv6IGzxYy7RNoBJNJSqRZhPDwaCMDFtyST1+UAoJlDD5rJOCpqRMSUlcn91F76yV0/jksJNDeUNSWUZVKoGH8TjgR8f8MOEHcc65avDZkqqTpIKe/9xqprZEjIWUG84bPArvDW6Qk6ozntGPTH4Urulg0E6kD9qCLtLRfvvaRQ2v90i/rnT2pjb9UPDtOP77B+9t4amU6pBb6VW2LkhuVQq+/X2rbYdRV7iPWKYubRA8UoO7g9XorhedZYx+73iW0mHtmmEYOR2OHA+iUZHxpERc7sWp0BXC9w8Hzn/AGTGp+Mnj/ShpKuVGWBLLy4JqKyoPaCXFhRotXmlqM7RsOqhfZCCtZdYlcr2u1BKJW+V2jYRVTHuqiWTE2q57tj21y0iUnlJy4szVYVeDjiJvkZ9zkIzrmHhZVm7XM4qEteAGzzgbhvnAfPoX/vLzv/HjT//M4fCIH+ZuUomkGsk58fRfnwi8Fp4hbHz+/BuXlythqSy3jcv5mS0sVALGZYahO3KRVKp1k9O8CVKgDKOW5I4owRDeCOhZAykYQtSsmzAYbWkMk9AVnNPSlUMA66hKi4VWPa04chbtnB/Azw0/aCnW9QDNCwx7hdZZdEZOu5SqCVslrhveZw5HcD4Rt41mDCFGUvmjUN53/ErZU7tyIcbYE4UElTRMI8Msm6FphrgltkWup3WOaT7w8HBknCf84IXOQCNsG8ty43a5si03eaa0pmkt7mwn5h0/DYzHCaUrnZZLXCXPetdYF/qm013qzjsGK5o7hcZbx2A9bOE+SdgnNDIxqqKbG6QI+UPhqehufU0qjSVkXm6B8xK5bJVbhK0axnFiPoz44wPD4UQqgthJy5USN5GKJElHyTX3DR5B0iEJLap3fmSSlEW/3otO1aQDo1rFaOGdmj5CbYDuutucEqpkbGlYP4O2nN595Ief/oXD448YfyRUQwyNqMTIuaRKLHLouXeq+OPGejy954e//DNNiQ485MyXp7NIH95wjVsx7LGDsTRaiVAtrjclahG9ttGG2kHm2hiM8wx+xPuJWDdKSr2YkzGwVkJYsF5zOE4459gOM9d5w3w+s22duqEzgx8k5c0KvN45Q0qJ6/WG1op5GhlHadjs+r8UNSk2bsvG+XxjDeWNrO71pbVmmg9oXe+UG+HXiomM7o1wyRBTEi3oINxRlJiXa5VUxNqnnUpntG0YR4e1d60sFecMzjsOh4lWNZe8EmLldpMAAymcxZSZq3RJBcnYhF27VXYagwDZ+8S1FlB7DLgR3bOVEI6jEv11CoEQItdruBNcvlknnGIaNKmKb6Tue+Sb/bL2GqayN/vqa2EJoFonUGhp8O3/r4e6SJqfYnCO0+nAYzqwbSfO52eeX55oaaMGRaGHdNCwumFbQbeKM7p3dQdOpyMfP/7I+/fvORyPOOdeQffdvyHm6doJHaoXnkY0101quT8eUP+k8KT/cK1v+CIU7Y+X1mK86PbhWrK42lvu7DQjp7gMpaq+AEvE3T4G3p3OtVW06m3xLkAV7aeSTblATAKYtq6fco2Tk47Z0xZ6VyYmwbjUgHVZNlYnHT7JF+euCQR1vylqzeIMVHJTvX0JfF1+X9NoYv9DY1GIaSi3gPVgPSitRPcZZdGUIqt2E45Cjw6Yemucu5A5lUzrOtJt27haI+53XfAHi5mOAr9VhVCk02sGxdi8MMG65LLWJG+6cWLgsDCMnnEamU4T43HCeQGOWyXFogDgTS9gZNGr3xzB+u0Ad32uHMvUq76qPxBvH7K9wHyVSHQ9Xp8m7FGn0ilvXabQR2daSdyjUVQrX12KIGG9ilnB8crtlO+p9m6p0Y5hnDkcHjgej11AX1iWhdQyO/dSG0NDkVISdJgTUsJu0JBUpe9HBAo/PmKcYz45hkmICFor1nHo0YgTVOkm0jt6mIHCSE6wbSvbBluo9z1rWVf0yxM5KcJaWa8by2WhlYx3GusVxjYqoodSSaQurRW0sl0HmjgcDODlJKsaOQWu5+e7znjbNpyVhWVqA34YsO6Rw/FHTu9+5vH9zwzDJHSBbsqovQNsjf/mSry8/Mb/6//9f/D0+zOff/nM9fmZ9bZSa0KPlUMD4zUxQoyFLTRS6iECxbDowrZW1jUKEqmCt4UcxOhWiiIXS6ka60YeHmd++Hjg44eJVFaev36l6YL13ZA4aaEClAMlRsImmr/QO0S2QitFjBhBQbFM08zxdODjD+84HmcJn0iZbbl2p28hlxuXS8SME348ohi4Xb+9Kx7ePxB0YduC8Ew7wmgYB4ZpxI8ebbRcz1ypUUbg0Uhay44TK0W6M62PBJVWhDWyXlfW68q2BDHMOYv2pjtd5fm1VuO8EaG/ARDETE4NZS05CZQdA2awmMGhne2jX+ms51pRJRNzIuREKqmHO8i9b10HhPdz6Pc4JaWkGFVauJmxNLbUaHpkOv3ARyzTw3vGyTHPA7Um1ttZjD9W8/zpV24vX0mbjALvEYL7xqz2kWvPTM9CXNg7nfvIb5f0qKZppZGj/Ay71n3HNXX8MKUb4VJpNCUFvTh0Nbn2g61S5AK5SjSrJP28ch2/f2njcf7A6eEDD8uKH2a0cczzgYeHB5ZbphV1Xwe12mHbQLOkKJ3c620ldAe4sYrRDvhpZJhmpmnGu5HrS6XmTQqWojmfAzFHhllxOEr0onOetCkUGaWcpH11A8xOqdlZ3Sgxgo6jyKis5Hn09VrSf263wOUcyLl2ZrDtReu3JYWxhp9++og2DT9qptkzzUOHp0u11RpsMRCCGDa900yTY54GapEQlEgmR2EYl5SoW+1TsN1wG6SIHsXJb6yBptlikMOL6WQRJXVDg3vAidZ7vKtQNvaJLH2CvLOfX/WUhtIMITfyGkm1YqzuWMnMusqe8r0E4zBZPrwfJZyi0FMOGzVLEScFnew69yjWDqrXGlw3ZU+jYXCWwUmghMRTd4O6sj35ax/Be2qdOR08h9kzD47LPAl7lSb83BSZx5HT6ciPP/7Iu3fve/Nm5uHhkWk+dBO4IsYs+7iR65xKEUNR17oaK4beYRi63E7j/bdx5PBnhadCdAZNNh7RznRNGh1LoRUlG7LZH5wi3cwGrZmeLLQztwpaVUYvjMXdaCTYlNaZUlrivawIXQUeK3FbuXTQru0RhffRrIywWwmENRNTRKsVY0rXdmhZFHQf+fcCZdd6lprJdSOXjdw5f9+8WmNZNnxtOMSEsVcKrWpiqIRlwY0wHeRkqYzuYvpMzDLu9tYweMcwDAx+6OPhDpgvEr0pjrhMDJHVaLyTKLLBe4yxlFoJYaPlIj+XVQyTk5NbKsRUULG32QfDMAiHbJompsPMfDownmbcIGONmjMty2hXKYM1DoWkjrSW/jg4ui/m++n+VThdZWbEHiwgj0l3avboQaUUSuJi7wcB1QkItVMSWjdOaYUgrJp0BWTEJ/dB7ouvcfau79LdtZ6zPLRWO7wfmY8nTg8PgBIOW4jyM2vVc3ilC1rza3zk0LvCu3t42751MCtgGA7YcWA+iOZQ6UItklYzn4608gFqZhgnaJqchLGojaMmQ8obMd6IsWGcxirFljbqVcbKYa2EWyKtCaUK06gl/tJCaJmUW9e1JXJe73IHrSVJRKuBkqT7kFPgcn7icr70wxaM44zRA+PkUXrG+QemwwcOxw/Mx/diIAEMAjGnL4Lfo3POl098+fr/4Pol8fIpUkJD1YYZGsbDeFC4wbAuYr3ZQiUnZJpSNFt3bV9ugRBlofa2UiKdsWmJRZErTKPn4eE979694/HhIGzQT59QJvPwaJkPBj9pBuvRdWS9gbFJINVLw0QhapSYKalQk2KwjePxxOPjI3/56SdOD0dSCKzLjaYjWhfG04C2jZCuGGU4PR7IHPh6fbOlKDg8nAi2YW83ti2Qc0Zby+FwYJonxmns3ctA3JJ08qzFWiNFphIzVNgCOWWU7pG+xrDdpOgMSyRvBZwczIySjdLZDiDvshrnJbd9jxWaH2aUtcI4rSLxMc7gBkkWaV0XV3v3p9VGzMIMzV0zeTdfeMfgB+E596nOt8uE6nn1GrQ8Y6kqjJ85vTswHt9RWmQYDH4wtJrY1ovsIa1AK5QsY+BaGrbKJr+bIndFZW2th1B0R7nSvYCwHR8nLFrVRJdaO0jfeiupOFrSjZrS3aBhaMp0kLZEAO7gdAkXkHqltL4ute5ZYP/1j4UnGLQeGKcTh8Mj1g0YK1izx3eJ2zVJF69EaA1n9oAU6bTFIB6B5bYKS7E1Ruc4HB2nxyPHx0ecHVBNk+PCtihokCLEFLjeMsdHhza6G15cN5ns35sUbLU0ssp9axPupS7yXlq3r/m7krV3aasihMTlesN7x+E4M1RLygbnvo2KtNbw13/6C2gxM/pBZCW0Rs35Lk90TuDkIOSTabLMBydEGF1Ez10TpURijsRQKZnOjYRSV7TJ0olW9b4vxCjR1sYZKhJmo/ozR5dtGGME4ajFdFp7wMe+98lWZzoezNzNbyVL0tsWQy8OZe/Lscg4+ruO52H2/PB+JpRGzP0jvUqtcu/qdhKf6MVbk869UQyDZhoth9kzDhZv5dmIMVJy97dYIyZDZP+1/VB3mB3j4PDOMk8Tg7dYDZfnL6zLlXke+PDuHf/yL//Ejz/+2FFJA24Y0UauSUxFinFeGzcodffqyHvXD8ZmN2dbvPsfKDxllO6QiBwFdT8BVFLNNG4oLeYCrQvDYHBu6E5pSSMReDs9tlJ0OdY1iams4uCqpeFdY54V86SYJoPvsZmGgjWVYWyCCxhFt1n6yaD104TwP8UAIVy5jB/oGB1LKVpOxbUD7XW7a50agVwsKa2EIJvF21drjfX/z9t/NjmSZGm64KPcCJizYJnZWV3dPXN3RHY/3P//O67I3iHb06RIkghnAMxM2X44anAPklU1PSuLEq/I8IDDATMlR9/zkvlENRXdOYxTdENHiAGepY2eUkYl4erESbKWn58nnp6l9UEtOK8xwdBve8ZxkEW1tXpMzrAotNOkLBB513d479t4l0UuTTPT+Uypma4T2xSp9yTBo7R4Q2VE9Rz6wDh24lU2jtjgROlXxAYrLrO0ZnAYZQUtQJDqmlZ16ctjRbrX765RjykmqLO0Bavw20o7+eiWFlF1a69XGsqt2v3R7XQvDgnavKDUIOhxSqnRBrLQD2JGaVHYiqCg0SvU+p7aYmItwzCw2e5ISfhtvvm1rarFZZkpKYla1xhWBWdKUZKGUmKev2y1gwsJ7QtFPbM0D9u4ZKzv2F29YdgMItTwPdZ4FLZd98T9rz+xVINeCiwJ7RW2syhbyczQwhDCoBp/UzchhyJV6QLkRqTPa0+mdRE0Fus8Xe/ZZiV5zLGSYiGnpfm09Qz9lv32hmHc0XUDwXcyfxtvh9bNUKwL7oppf1FkUFAswIKqYjyfk6QmsQj7p2Y4nxXTWTbEWpoPLJWS04snaYPDjQHnNUoXpuXE6SztMeOctMtOGW0WPn5cuP81YUxFF0ONhrpokgOtItOUSDGL7U7KoFtqUlGymOdCNpnHx0ecV2hbeHoO5BrBVPwmcHV1w/sP3xGC4zwd6YYdV7ff8zwp/vkP//rZpiKIUcV6x+AE8fPBN6TJtUOMqHjTkiT+0llCFwSJLIV5miXdaO1CWLEDm84Ty9Q8f1ckT60emYIwOScFRi2ZeS6w0EIapGBw3qCtauiVbUWaJsbIdJ4uBuzS3pff77xvc/4l91m8CdcUm+Vlc77sHdK5Wtu1ugUqKNvjqpXwgxrFvNpUSpbgg2E8sDvc8fTwxOk0UZVHuZmhClCQUyQuE/P5SFrOEvfY+KfqVQfDWiv0AyMFfWnxvrlkiktUvPjveovvB1w3gLKC1vkO322otRUrOeNrkfJSydpcm8+00ev69i1r7PViGLF0MwG3Cpf6gXGzsJsi07Wkcj0/PlByIbhB3r8WDUBcUvPwFDqBxIiCtp791cD77+44n2c+/XpPzmcqkZwtcVFyDaxuApMerUQElKLY4nlnhQZXJ5aYsFWoC05Jx8xauc8x5sY7rfhqUCo0KpNnM4qtX9d7xs3AHDXTJPZOrx/GGK7vbsQKKc3kmpnm5ugSE1YLetf3GzbbLaVKa91YRUozgrQrXJY9MkY5gAiqv3rhVgxWwI2239S2Mag2n5TWrYubLol22mi8a11AYzBqTSXiYjUkvOZWxxhRtxtpcRJjQqV0GR8hmIsIT2vLi5e5PIKzbIZAyDDHyhwLk85MJBQCvpX1YNWEiqpIO8JbzTg6tpvAftcRvEUriDExnY1QEnLBWtsspZollNGts9eUoVUONiJYNXT9gDVw2I3c3l5zd3vFzc0B60MTCUvBnouIoJWWZEkJEMnk6oVul/JlPbJWX9aYS1riF4+vC09t0ErSKWjk1pWHUUsiFyHxGlPbKduxKrOMQdS8usUdVnHPd7YQgqBdOYuKMikxhO+8oguazhvx92uk8VILfQ/9AD5I8XrOtRUYCFeyccdSy+8Wj9HGe8OKe38p4gtYFaodxmRoNj/FvLB8q/Ckcp6PYCs2OxEs+ZZljFiWSPEoBfGcFp5Pzzw+HXl+FiQqeEuukkSjncaGdppKtRXEVS6xVrIZWVnwXfCyOZdKjmLLdD5N1JoxStqutSqx11ijx1RtyRwaHyyh93RjRzcEMdOPkmJSa2KZJ3JMOJ2x2qNqaWIXUVt0X/B0jHF0YYAmAooxXjbMuCzSAkMKS3Vp4xswa8ugtdNLubQWtX4pQlRReGfEYNg2I+yUWyLUcolcjEn82qxV5CwKxzWwYI1iFa5pEy4Zc7mvgmQqUeEDcV4oZHSQEz1U8YprpPolLkzT+asJE4YCdiGXB6b5zHwqlOyxZkMY9oxuJ3GabsD7HmeDtF9OJ5aieTrNmOMJNZ3RvmCCRumZSkJZJFHJiSVPReZKjAUVCyWCyjL2VfNs1XpFghRaV7y3MDq0SpSykKKI8CQDumMzbNnvDoRxJIReTPD1Sj2R+FFFbR23xtn96io0XmK3o87PxKdEjYV55Xm1Na5UxTTBsjSkoUo4hDHqYqPknYz9UivOKbpOTq1TnMl5afzQLJY8jyfO08LHX488PyW81XTWoIulRsXiC1rPzLMcHpY5N8GDRPPJ5iKE82oyp9MR9yj+oVN0VJMY9yNXV1e8/fEHfvz9f2EcR6bphPM9u/1bfvl4Av719UIh0ZS5NOsvj+86obgMctA8Ph+lyJtmaioYK8WiXAKx4MotUnjNUzdGCr24RNIitkmSwCMc7HrhyrUiT0sBnKIU26UlTVnbPC7RksjShYaCNSpFac8tQo/SWiazNU5Ebca2gkg38+6licHqVxw2kFaxNtJyX9EX5RwFj62FgkUSMwThVDi8Hxk212wOT5zniHEjcVlwxqFQLNOZ8/GRQiWV2ISKrV3e3CE+K9ido8REXBIlin1MrYJ2uuBx3rPZ7Rn312jbIf5eFh8GrAuCrpaKWelFDVRZ0/WM1RdRpIC+35ohonfQpuB8xzju2B+upLWaK7WIViItZ5Y50fc91jpKTSzLTIxC2TAtFS2mLIcCU9lsPbdv9tx/fOD+UwSdBFQphRRLQ0891gSMChcxnRxECiFYrEPEJi10QWlB4F1ziJADa2lWgRnwOBtEiGocXd+xq4XQO/ohoM7SwdNfFFvGGHb7LafpxPwUmeZFzNaXREmFzjn0aOnHwHbbUUpiXmZSysQ0X9Zx5w25WJZF9AhOa2ptNYqSJEVJS2ypQWvhhmmUO33ZJ9a4Z8lwN22MS9GpGppdLcSUyKmIM0SjoK2CJrEPku9ZYwheMwwe7ww1l8tB7fXDO8PYBWIGZ6uIxtrv1Fo0NSudpFaFKutXpvOG3S6w3/Xs9z3eiTp/mSNOG5Y5klLGWUvog+g6nATpLFF8Z6dpZppEza/b3FFK9oVhGNhuRsbNwLgZcD4IX7sI1TKX2uLIdaMIKIiyFhkrfqYr+KhNW0dUi9P8hlr5q8LTGINTa0t97VDLjZKbqIV3acUCaa3qSxLtuTHSClIO2Ui8iFuGQdq0adaUZJiyIc+V+ayIAXInpHitdFM2S6tV0ZC6UqnZCKqSxKop5Zl5WljmLCKG4qDY9jxFjLLhocUORHtBw7wPXAzkccLXjF8jnlN6pswz5ThjkqLoxGl+ZI4nYprJORKTxiwtxnKNAGuLUSmFaZ4ufNnj6XRBPMWKQVR10soURV8tEGaxaiq5kJbC8fnI+XRGa+i7IOKX1jotDVVWjR+rNBQyqUSWtKAXLaa7s2ziEoieUbWCUWQgLRNpKZSYqVnxppbPBkbfDbjgLsXb6XTkeDy+FL0XRVtorQgZODmlF2FQleJo/fxWt9ORkZZI3wufxDkPKJ6fjyzLA6gqhWYVesayCNJSmuhhbQOKfYbwz2KMfPz4kfP5TIzxYp+yttRXtZ1B0XdiLxOTRAwK+i3q4WVZPhsTSsHVzUjmxP39E8/PP/P0aSbHQOeu8H4QVbIJWJPQekJjyTmxxDPnp5PwcIxDWw86Cu+u8mK43aLzFGsyk8ImhZmBU0HFJoByntB5tBZ/w1qbZVStSJZ2E85oQdyDFzQ0dO5ygDLGUPK6IE2C8HonMW0rlvOqAH392G6u+f7D/8nP47/j9D/zq3kklxmVRIhYUOSqCRfaWCEr6Ds5GGkjcZ6nc2SeEylJ8pOxFRfAdo5+A6dTlvVHnXg+zqT7zPk0Y62i60QBq5WIC6B54mrhk4llbmGZayPet9g5U+mCZrcfePP2wNsPV+wOPdUUht2eD9//Ix9++E+8+/CfGYY9KUeM8fgwMC0/s9IOL+MC8TdGSRG9bjolFYmdmxN5kUOdQUQJaGlrx8VcDnQr11LGROMW5sKq9qtIpF7NmZoqOilK7YV+tK6TUdJVKg2pVIJAxRSJcWFZZjm8GQNZEtVQVbxB08SU64XDHUIntBYk2KAkhSqaPgz0YWhz9fM1M+XYBFZC54kpo8jN5ktUyWtbveRKigpFR+j2HG6+w7ieZTqzzBNpWZjOJzIV5hPKWbQT32CMuZB+1smZc0YlWQekgHj5n1B+5AAa+oHd1Q03b74jDHuc3zTPW8d+e2C/u5J2pHNgrCA5trJUx9RZvFvdBtoNq99ScgsYo7WlCwNv37wjpZn9fs9++yvjcI9WcHy6p5ZnWe9LvkQ3Qjssa9uob4vweW0rOJaZrg+8//AOg6Gmwum4kOKCq6KyjjFzPE74J02uHmNhswltDQYXOgpSTAdv6QcRZlrbUUuk5ImSjdQCONm3UyKlJ1KKpBxRs8RoH4+Fp+eE3y+MrzqrMiYW5mXieDrx/HxkmpYWZAClCy2RsGKtGKrnIm4mUvPLvuYwUD0pB1BQqm4pd7mZ6cse6ry7cJtLSSI6KgKeeK9R5Ja2KAlXYhkWBdTQkmq3umcIR7jRskohzxNzjBgrdkviC04LKRGkuOu8HHCN+wrxNNo0WzRx7NFKY3TCWU2fiwjjWgFKlTRFVcUiLjjDOFqGwdN5Jz6iWTWDDVHyx5ixRgJkZJ23TPPCfFx4fHjml18+8vHTA6fTROcdwVtUjXhTcc7S9Sf2p5nNkjAu4Ntebhrw6GolOUcqhSXJglobxUAaoiKEFY1QS/dCf3N+fKPwdCgr6S7aaIxpJsVVTFl1Ix5bp0RZamXFjG3lFEQOrK3twmtCUHS9hqJZjLQBjTLkVFjOMIfKHDLZSZte3qfYKwkNRAjYKRrS4phmxdzQjPVkKNW7A2Wh+aSVLLCwaou68FY8zvVovUGzg7yD5FBf2QBXYj5SoiKdjrBUiko8Pt9znp+YlxNLWihVOCUxSxwnbcFXyMYynxfm08z5NOO9ROXVCssshedq8+NdS1eIRdpTDfFMsTCfJ5Yp4rxpKv52jXJTcyvhyWqrBGVUVRIrcmSJmvM0czpNbTLXFmunQUcoheWciHOmxAJZUYf6mVCz6zpc2F1SIe4f7gHNskxS2LUTpHGuRd0p4d9WJWKTZnArnJXS2iAa6zyhRagNw8hms2lEZCVtDAEbhGvU0hBKyaL+XMnXSvg6Ejsp7ZWUEvf3YhCec8E5y263a16HsjB4Z7Fa0weJNVwWWRznZeaSF60+RzKUUhwOI0vJPDwuzNM9T4+PxLNhdhPejjjXUIYaqNUIV6wkclmI+cwSz9SSpR1YoywWFhE0GKEn5CwJRdpJ8WmrwXqht8jINFjn6bteDhuTaq0W5B63xDDxVRP0aVWCK50oLCg1yCZWC9M0cTweCd0TdRxQXRBLEbMWRV8jOuPmit/9/gf6vgP1jPh6RuIiC30CchXLFOfEIyNp6HtN14kQIVeJ4lWqSDKRBWMLodNsOkMqitMpsSwSz3c+Z07PM6VA1xv6wdD14oEp7UgpypWqeNfWgNJsusqLE4Azms3ouL7Z8vb9LT/+/XfcvDmA1QzbK96++0du3vyeq+sfxS7rcmpXhG7hhX4gD63k8LTmhJeYiUTynMVD8PkkkbfN07TmJpYp7VVkebt0BmoTd0rbjVZYNmsVlYmlQgITDSlL52Fte5dUmnuDQSsJL8glE2dB8WvN4ufZdSJOUhLPG0shzgvztABNRGq8FMBVNbsyQUi893jrLq34lxWzNppKJsaEbu1ilSXVZU04U20BE4N4g9IdXX/gynjGzZ5lOXE+PXP/8VeWGNshRk5nYlvlUEUSV1S7gLnRl8S/tMVmtjb5KrZ4SVzzjOOW65s3bA/vGDZX0unThuADve/pwyDrsLZoq/CuYrIUnSud7LIQf6vwrLKHaWUIoefu7h3WGQmL2O0Y+p/JKfLTn/+d8+kI5CY4XYGIdpi2Gq0KtXqCtxjjpKB8PrPb7njzZkteKqfns6BzdcZYmVNxyRxPkXAC5wrOGkyQkAptxGlBW98Kci1eycajsQJ6JHHi8EajtScnzTwvnM8TSgsgMNdEWWaOx8rpmInDlwCO+OYuy8QyT8zTJGOsVhl7NVNKZFngdI4XDYTRpvlErp7RcoAKWdbrnIXykVK6iCmFEibd2rlxQFfAzDmxt9OqoIjMZQ0jqEBqoJmlOgWmCcZWMZES7maMSQ4AJmK1ubiNVCspW6uPrLZOLMe+GBK6JeeZtfBstJSQSvMYXT19W7Z6EeDNao2z0hmWdVzWuIrCKtMsqazEDitZ43zw+OAutlHH04n7h0fu7x85HiecFYqD04XgxANXacW42RH64cLnXcfhGtXplCJKXF5TCgvHUw7Ktd3Pl8MTSjVaxOePrwpPZwN4J+hNCGiz4BtfaPUBXQuCVVgERdBRZEKuymUxlZfC0wcjBuZAP2imUbPMkGLldASUmM8rrS4oXsyFVBQhSMG2TIbzWfF8TJzPEyVPgBRk1htZFJzBeFGSV6RwKyWhGmdVE7BmR+ff07kPaPao0hNPf+IXXstVK8otFC1JFdM88Tw983R65On5ifM0MS9yCvVR4inXSMZiCzUVaqqkRfgsyzkzmeVV2yqL2jjKApxMJrpEPKbWOmsiqiY8kHxx21p7hZyqcExpJrLNYsFYg/O2eQJK4o9tLUDhVypBTLLwiEoTGXkfcMFiceiiP+seaS08Xu9FfBP8hPehiZlkka+qkfRRrW2YZKK1XGo5Xb4k6xgt1k5Gy+aVUuV0nElRknpqkeg8j9iq5CZ+oLYkiyLIaYyLnLwN2CrXbfUVXdHW1UWhtElhQ2C33dJ5h9WaeZa8X+893suGGoLj/v6eT59++Wx+eN+ja6YPGzofMCox5yPnGJkJKBwlO3K05CQoZM4LuYp9iVaFVBZUWsglkoh0ncW5jhAGrPGcpzPTPBGnhHWwHTs6r6jxCHlmSRqqQ6sgakwnatWUIEdYFiG954t5b/NJVAs8LRRmbHAcwh3WSDb8/ad75iVyddhxOOzZjhuslUPENzol+DBw8+ZH0GcK94C0iI9PJxHYlCrG4EWTF3CmMh8rztB4bHJvrKt0lwVOYWzCWIXvFUGD7yzLDNMZnFEEJ3QVpTVdV/G9HIxzkvUpJqAaUR5j0SY3OobwxkJn2YyOq0PP4WbL9e0N777/R97/8CPdZks/7hk21/T9Fcb3stitoQeXr1cPxcX4fJ5mUk4XlbocHBPTNEkrLEpr7exOspkVaU+mUpuoZUV61oOPLPraWUEulfhwFgmFJOfCMolXZ8nCMV3pJFpLdyIlieZdzollkbliraamKkbZTTggYh3ZMCTPoVBIpJowDQG13kIRvrgcNr84kDThSU4iekQn7DmiTCK3k2xt65VuohyjLSFYXOgZyoYlnnj49DPHp0dOz488fPqV49O9qG9LapZJK7WnuR6qprBvtyamtDbpxMNYCecRrUilipF/rmjl2Ax7rq7etfQV8TIWoYmXzVYhYSTtS9cWk1waotGQ1G89VPt/Zxy77Z7gLVf7PdeHa4Zhy3Q+81//a/NeJaGwjb5mEf7iypuVREDvLc4ElrnycH+i8zs248jQbxjHDcZAzNKuL4iaW2eDtYNY8S2VOAlv2lrF9c1I6BXzMsmBfi7UGskNPZ3OuVE5ehHqzLJGH09HhsEzjgNLSizTQsnSgv/S6QAqaTmjykJwCrXt2W46vLV03mN1cznRhZwlatIY2w7LrrWr1+S5tZlYLxzYFXQyVjo4tSjZr08JMPRDh22Cp3lJ5DwjtkimAVK1HUwQLn3O1GURFFVrjLPYBn3RtCXBebwxzQezoEphmSYe0szz0eBDEFrTu/efiTJfWw9qo7BAaIemywGzHYAUWoADVl4xmKZTET/P1uXUGgzNYks+i7EK6y3GGYxvvNTmYJFLZV5kLYrzgiZhdOF0emY6n1BKsSwL+8OB7XbDMPTid73dEBqabGpFOYNJFhekI6Nb4NBK36lNrK2VuKh8+fiq8Ax+gx+3TNOJJZ5I8YmcJtIihZL4cdIQwnJRLsOqfK4YU8TOJyhCp0RgYyS5RaeCdRofRIm8zJIGU5WkkRibXwpcW2XBQE4WS6zMi7TaTtOEIuK8qBVDZ0ShZpsPpa7tBFAaV6ZldiuPNVt6/5ZN/3ucPqBVx8PHCPzzq+kChUl8MePC8/mZ++d7jucT07IwLzPLHNFJIsxcu9Gr4rHWSk2FEit5EQQj6UK2tU2QSs2gsoYm+ilLJs+p2aO0ItqZiyjAatMOAPGSAy5Ea9W8vYRj4YKj60NLOjJYW3CuYrFYZShEUomkslBKwRlPsB2d9Tjl0c9fFJ7KYFuRaIzF+47NuGmb7ouP5pJEYR+XBarEB8q9M8KrTLHxQ5eWiywbZKlCVD+dZ1KqOOfJuWKtBw0Z3VrrFYVDKaEkpOYcEHOUdrXWdH3P0G8aPUOyyyVqUFIbFMLJ2YyDLAp1bXEllIYQRN0egv8mxzPFRFG1iXUc1hZQJ2KayMlQkiHOiuWsmhG8nOhLXXBONdRCDmgpLcScsMZB7fHuir7bkNIT5/MD5+UZNSU65/HBYnTGNEFWzoYUJQmjZCsK3CTJJrH5YtaGEJcSyaWS84lSzpQys9kdqFVEVKfTifO84E5HFIUueIauazQbeFnxXx7O9+yvvkPpCfSJkhQlVT7+/DPqIbLkxqsumupAZYNBcokpEg9Za8GaAv61NU9pvYdG/ldG+IdLRXWCloo9QhU+l86k2BD+pMmxXmxu1jFojKC91mq8t2y2PbvDhnHT0W8Gtoc7rt/8nqvbd3TjXhAHZQHbWuor5/XbbL51/MdFqBqqSt6xIMCywMs4ELrJSZ8vUY1qdepowQ1CW1FtoxPnA2kfCvVpiYtERyLehvMUMfpMau4MLnjhMbfXinNkmRaWqXVYSoKsSTq27G7Nmie/oq3aKIwTv9hCfiVoEtQjp0zM+ZtReLUKwhxjoZJwc0LZTCE3BKkKJ0+/FNayDlRQETtrTk8PUCvLNHE+PjGdn1mWsxSe7V68dNhXPpnCYC7iUYW6KNiNtWhrxD6qoVkKg1GOznVs+y0ueGmvUlC1iCq+3XThFCqKkrZnc7hmLTq/xWF7/dDa0HcjfReoVYpFpTS//PRnxrHDupawpBt6roUusvJHa9WSLGYszgZyVDw+TGw3kcNeFOvee3zoUdYwL5PYCOUsaYCdxXvPdJo5PifO55ngDVdXWzn4l0SOlaolWvJ0XJpAr0rogvHkVBsdR9LElA6E0FGYoSa87yWL3XdfjIciCWI14iyClDvP2HeMQ0etmRhnYpxJaWn1RGkobKNttUNWKaXx0QXEELU/DRUV4V3OlbhU6aBoI+u0E+Q+ZQ3NfN44LQVU04pQZU1a50Eu+eLDK/dDYZUc5vqup7OWEhdKlveclpa0pKpku4ee372tvAb7VsS9rof5Nq/WI5xaOaRNkb82YXXrvq3vtbS1QSl5LV01WIVFXlda3wZtZe0IfQuLCRIkEFMmVYngrHlB1cjsIKeFoe8wWnF8fmaz3bI77Li+uZawlKGXekQpqtEoW3Cl8WWVeeW5LWDH2nEI4XNKDnyj8Nxtb7l+8wM+SCbr09MfOD7/wswZShGLjSJcstog1tK8+Wg2Oc4p+l4zDJVuaPZLRbMshWmqTAukupqkvnCb0AXjFU6JWXDwVZSruqB1Fv4blaoWlJaWke81vlOt8tbNs1Gi25wtWA9eebRuJsLWY+2Aczu8u8aZK7TqMebfPp8wFE7zE0uZOC8T5zSzlEzRCjRoq7BoqJVUFvIcYVlFGhIxSgGN+HI2JmbbdKsQkjuDs8JpnOczMS7otqH6TuIUbbCgIJXYOKNzM6lPQlJHtRaimO9rDc5YgvMN+WsDt0X5laKwtsP5AHomlYI3HVZ5QY1SxAob89XCqbHGCZoRYex3bMc9fdfhvBfxzDTz8PjE0/ORRU0EV8Q31EmLUAq/M8s8syxrQbCe7uSRcyEqQXNKbWIp49C0+FYU1nRYEy4ip5gKMRWs7xg2O+7u3nG4uianKvZU52fm+cQ0nTmdnjFac//xIx9//RXfIlVLEbuOLoTGd5t5eEw8PT5+sYhW/vBv/0wxE9P5iVwSxhdsKOQqufRgyEvhnMTjjiI+k51tVle+tYar8N9qaUkqi8HqDUN/Q4ye80nx6TiLqGyeOXUiHIiLIkZNLpAW4e3mIuK4nKqgJtqjEIFRKpGUFpQqVCsHRq0Ujw+f+OWXnzjNBT+eCP3IuN1Srg+Ylvwi3Mr6VdEJYHRH171vNk2W8wM8fTzz/Hik8NBSxWiHr5UyoUhLJTcj8pVWo6ucjEuR4KvpJJ6KSlVKrGIRMxWsr/QbRTeAC4q4wPEYeX7OHJ8LOWooFmeFvL9uYCE4vJMNyFiPsQFlLKlEpvmZ0+mJeTpTMRjTtbmqX4zIlcxddWm5f7ZQEHNiaWicaWr02kSQJVWSagXN+vMGlFVoL+jO2gVBIetDsw8rpQgvOXSE4HHWMk0T5+nMsghKH6fEqZzR58bdbCp358UuKed6EcxVkM6GEzRpzViuVQ5whYpxln7oGDYD2kqRn2qSzaR5BaZlIS+JuDt8NT+kqyGCHkzbK0qhqhfu++uUwNWmj5qJ88wynVGlEqxj6Hv6vuN8Uo332igKVIxW+GaDIy1KQaZTERFibZQTEMsy4xwuBDbbK64Ot+w3ewYfsFRIE84bgllNr5smoFGEjG5m3dbTGYc3kv+9Rnh+q+78Vim67gFKW4LvxFppt2N/2FCzld+rG6WiJOEC2hWEsBgcVMtpmjmdZ+7vH/Eu8Pz4wBInhrEw7jzGdlQkQhdd2e12ONtRUmY6wfEpczaZfjizLFnQXyMJWDlH7j+dyKnQDwFnPCUrabGfzlQq2+3IOAqtCDyqjgzjDePmlhr35Ph6TCAZ9TlRS0IpI5GxGpxb7XYMSzQsiyYmEcdZGynFiUDTeXLLY5+XpR0kLd6JxzNUas4kKrVR7LQCoyu1RNJcSUUxR8g4TOjxg1gLeatJ85nz6alRxxZQ4pqQUhaKVMrkUrEm4F1H8APeObIypAgpxwZeNNMpXSn26yPqesC8/P2VSwXNIUE1T28l3oOXjubF0xZxB3o5fMm4X0MJ2ks1Vbt4eW92I5vtyDD0WGcRwabUISVlNJk+OHrvGTtPMIbpdJLDQI5oa9jsd4Q8NqGqEt0Mrb1exG7yovVohwA5D/6NyUXjsOfm+jvxhHNgTabWWSxIklgElZIFEFiL8qxZ45NU8wKztmAdBNd2mLTafWSWBcTBQ33WwTKm4nzFWY1rxZSEHchERElR5nylKlG6hQ5CJyr7HAspKc5nga71UHGu2WxoezlhCMrgMKbDmAGjB7T+mij/9PzAXCbOcSbVSrVKzI6bdYMrpqnvUvPgWqt/vR6ILyo4UI3zuKKUEv84jANGa46nyjwLR8I5Qzc4Qu+xTk4SdRHvPFGtvvDZRNGpXtl7CCGZKpQFiYIUMllNCpJGt3QpYypFp+aFJgbXNefPhBPrBBEytbTSxs2G3XbDOI54H5jmhefnIyUbUmx8j1oYxw7nrXB44izq+dX/qIoyUBv5kgOM8F3TpZUlJylUUyVicK7Du761ETNzWziD7widFE+7/YEcK+fzdCl4z02wIDwbx+kobYW65lQHRxoHGdNFYuDm8/TFmCj86af/SVUTlTPLfAadMR5MS29AKZSNKDeLir+K36J3htBiYSsVWmFFEUR8mSrLuTKHSm7cqjTDdMw8sZCmSi25hTrIZ89NyFHq1FocFWc6+q5ZX9VVcJJBNc+81pY8HR+5//QzUyyEZeFKK/aHHd47usbllXv17cJTaY9zV9CL5c12+5HN5g90/S9Y94mc54sIrLY2mWmJoQrpYKDEMxAgR9UWMEFOVWycx6UQF4hLoR+h30gHZdjA+Vh4fiosc+J0yuRo5EDctfakqZcNTkjLq79d8ymuiVzPxPjIsjySLwEKspCvvM7XH/9bBYVkS2hs57FFON618b1rM5WutQoyoRXKSwvMeof3UhCvxWfJWVwVFnFYsM5igxUk00rWeGyinZoKKYlThdwT+d3WNTsk51C6XXCtMFrsjZy3IuxztolFJVh65Zj5PtBveqpSpLahlpzJ7ZAWSyTV+LX3cUMCV3qLagvJBTlvbVVj5DBmDLQ9TKg4lJaeosT72Du8F56fogq6004spiFi1rQNWWuUaSpn09xMmi2YalShfhi5vrrh3bvvePfmLbfXV2yHQGeht9Bbzbqd6sa3lsJTrP5M9PTO4a3FGt1QydfypS/mSF3pu+3/WwKgwuB9zzBs2GxHxnEgLTLSRDyUWRrH3XtFPwRJYcOToyGVR56nE6fTkU/3ivPxkWU5MmzFu3ncbvCh4zzNxCTJRFSDIqBqJC5ncpl5uD+Tc2o2ZhaFYjpVnh4WjLFcX20Zeo82mVql/eyDYbfv2YwbujDSh8B+N3B98x03Nx/48x9P/PLTi/+xzHuDW8cE4mphjOwpxmqqMc3XOqFysz5r6J2IQiWNrJSMs8LPp12rZZ4FnWxjN1cZAs5Ji5qSSLUQkyJlQ8GibcB3A2MfGDvHdHyi5EjJqaGurwjYVeoPxRoH7sXxwViqtahioWZUEZqdUEl024O/GBBNVSTjolWIyD64Fpvy1eaSWu3C1mJOvRRxF1CgdZppqZLt31RDzJ2ybfx0dH0QIEjV5owi49wpy9h37DYj22Ggc4aH5zPnuYDRdJuRaYksuVBzRrdVsNaGPjekUz5iK6IvAS/6ixVUHl8VnloZvO3YjVcoFcnpTEqT8ITiSSL7VEFbEFFNIabcJmHj0eTK6SzWOVaB90Jil7ACUaDGWJufloiVnBOk1DlFcKYZKIMksLQEHDQhWLQR4YY2CWMixrQM9LRK/1u0m1M4oyhKkMmqIinNxHgk5RO5TFgdX9EFXm0mpfDx00eyipS1FYbFWdtEQgCiCD4dT0QlG79WguLlJEXi+qq1NisH09rTFjGDDqL6LzZgoww4azXd0OGsWDflWC8nfskil0hH6qqGLVJkalGeTucEnFhtn2rVqGJwjVdVktiSTGVmLhGrwCknyNO3ttbKBTm11jEOI9vdvvHDuBTc1jqcCw2VzYL4KeF8pJiJSTKflZBSBGGygb4fLhYvKSaWKCbbZY3PNAatpDVvTEBr3/LYNTkrjF7TWjTnaeLx6ZGSYJpmno9Hno9HaZvXyjAMdGHAWUfJmWk+SVBC0pzP54tac54n6hc+hXIY+SNLOZLimZLPgCRGWSd7a1YKhcXagRKl2Bf+YSVVQX9EuYkQ0quEEeR4ZJr+HffTr1SVSGVGmTPjthJ8QanIvCzMU2wxiEWEd6WASlRk/GULWgnXrzSLntLuYS4VU8QrLuaJeXlARYurge2u4/2Hd9zd3bLdbl8UyxVUrV+NCsGFxLpMa4/zPd2wZbe/YZrOPD1+4nx6JqlMqjIWCgrnPV4bnJcNZokVzjDPsjnEXEELn1MWJNmwYqzoWTFPhm4RtbdScggNQcyV5yKm1GIzxIWML6EWmmVOLDFxOifCtHDt9vSDwbozqHtS+kSKW6zdSutuPRh/s9y8XAj6sSc2sfXahc0xtoN5ESqIbgc4byUiN0gmuw9e1ONNxDVPM6kmdFFi/aQKKS1MtbKohXlemFrrXtpz+nL4XBERiejN0uLtO4x3stEo1cSh0nY2VtDWAoSc0DEKmtjadNoarLKt0JWiIKeKdg5fhAb02aVQLQPeyRe2+fUaKQqVURhTsRa8VTgj6nrTbNVyEKGp4cz5WaFqJKcZRZHXQagJGivBmaqJmXKUwrn5eJoWRVxKlvmB0LuGoefdu7f8p3/6R3744e95++57QuhxLuBMwGrblPK10XrbKFcabywqeqG9XHwf66vr/tWwuCz8MoQE0Rbhl6fvNwzD9sKVrzWKeMNbcoY55otln1IdXeewOojAJzmmZEHNnM6R8/mRZX4mxYFae6wNdH4kRU1cJs4n4eF1YeBwcJxOM8fTwjRNKL3gnGFeDE+PM8fnheNz4nDYcnX1lu3Ok+sRqlCDfKfZ7QbGYcvQX7HdvGW//8CbNz9wc/uevPzf/PLT/7hcB6MNh6urtq4vTYelL97BqxvHNCVOp4gxRlrZXWhiVn3hDCpVJcddDdQqtLPT8ZmYIiHIdYyN3y5paEX45LRcd2HooNTSYsCrdFldwoW2xrTUQWVEW+KCEw52VhgTWqBLoi5CYaotSdFbT296UOJ/KoDJl4NCUbXs2+tJTH3GIV+PKa94w0pdnr5qPtZ/U40GdTn8rEXrBQ0VSou1zVvXS9GvFFijLrGfY7C8udrw5nrLduxxVqqA2gSbuZna51qpMaNaNOca9VpaJ2L1FlZqtVBEONHfICh9w0Beo7WjC1uUKszzM/P8xHl6IKZHlBLLEuNkei0RlghpKRe+RanCM1sM5KSotpF/tUxUyXLXlw3NuSrRd041LqZtb00hJ2hBCaXdYenpUDgqsxRXOZJrptFBXinhZGMXwE/8PHOZW2LRmVyEw6lr5iuYr1bO04lqMr4pQI3WGOuEuNsusEL87VCJWtaUGkkKKVUEDyIQog0oLX5jTouvqC3gClZplJMoSKMVygoCUJqZ+WqrYtpGY4xjTQwQS6MCxVCybvY0L+R356WtYFE4vSrLI7UmahUD+swK+38Ni5fWvpLPtnJgKjHOLI3XNs0TMUkCRkWK/3mJ0jKsTem6FFIW9wFjHNYFfBjohlHagilR60SNSegbqKYYFl4nONZYVoXFGkffj+QikWk5F04nKbhrNizzwvF4ZJom4cA5I4hAv8FoMZGfl3NrO5RmDyU8uBgjqoL5jKVTifmROT5xOp4oORG8ICLWSrNDVYVW0u4sSZC8OGeWOcmY1ErU1lXsMHJq6Sp5Jj/NFFUlhaeH0An6bZvgblnEjibnpXF9xSHh0slofNUYZ4RnnFrrpyH8VjWem0XiN5/p1AYfYH8YefPmhsNhT9/1gGq2Zr9Vdq2bssOagWG85fr2d1QswW+4v/8TT4+/MJ2OnI8TWku7X2vf1LpS5GCgVPARQSsiKCPevUohoRGlopZCLprpXAhnJalRStF1kLZifD454Xf1HfRDpfM0z1cpIFPKTcwTSbmg9AZtMqk+MS+/siyfSOkaq4cXGO6Lz/yt67DdbVElNFV7Ji2JeVLYnDEpYqITRNRabHC4IWC9KF+FTxzk0JLETkfPQk+qLRM3JfHoq0W1Q4cclpXWOOcubhkg3DQQhaz1TrLfh3DhkpUmprBNvOG8w3iHsoYlLpSS6JoPqQ0OZbQceOa5+Rq+IDlfZjArpbCtmLTGULVpyObnhaezNDs+3ZBDmTtGO2r1gsQaLcV6s8gJfQeN4qXEVZ6Sxeg9LlFoDhWcFgWzJOlJz1VrTdeyp/e7LYfdlsNuw2E7iJet9WiE0rNGGqsV6a9ikeWMITtJi3kpli87/F9+SEJHa4cKHcp72IxbdrsD47hhme+pZFEsa9BGCk+UWIxdzMlrxriMCxVIVFXQdsH50uzXDFZ7jOlJaeH0nIg5orVhO3Rs947dcUDpCefEGLjWFmt7Kq1ItQzDluvrOzZby3lWlLKQ60LfW/aHDbvtLfvNO26uf8fd3e+5vXnP4eqW//Hffvrso2ut2Qw74WQusdlFgbMNwW+CulqNgEna4VzXugAO0xKdZD0SuyLvwJhAKeC9IaXlUnjOU2KZI/MSm2WSrB+6KHQ26KKbsPHcKCiWVGZQM6iIQjqrEgJi6YYO0EiUgATrrNx5YzQoi0d45M57SqmcjtPFmefzCSLPbyOseYuuiLm6oJjq8ieXboW0qtTle5d2/No0XgFUJQen9VcLsKclWGQ7yNfYQ6k4axg7z3YIXB0GNtvhosewVuO0rA92FSeZ1cO8dVALTWQoLjlCgWiH33KB+/l6Hf1G4fliU+OxdsPQX7Hb3TEtv1DUvaiVdcZ5MW2N0QgHaxEkM5fVGDg3Q3TJExaujaHzjrqRFoKgNhVnBbkwVoOS09eUDD6ICtU5g/fgvcUa36wLWgpRhtRaMGumuw0G60ShqDWtuKoNYhbz4kpqoouEpln8fDZIFM4alNPi9RictIWtae0rJZY32ogIpgmKRJ1r2iBoyG6qwvn68vRhlRgix9joS83bLxXy+UzNpY1F1QoaSRxQiCVLScIFA/VKUSiirZREHe+Dw3eOLoinokuiyky1ojAEFDpZVDbUrFvf8PPHkhL1fEJri42JVCuPz8+Na5qJSdqCKUf575ZKk6a5XcqmwF0E5bMu4NzAuNleLI5KSSylkArtoCAReMZ4jPGUIu3WWheUypSsCEGSg1YLorTMaCOqVoohx8w0T6T8YiHTdV2LbFPiOVlfjLCNsYTghH8ZrRQC8+f2IN1gKLPmfBRqR6wWrHiSKiMpTE12IKdTo3CdlSQIpTCqssySO5xiZZ6kfQG6WcbIuLFes9k5xlGQnrQUFBmlM7OX+MlavPSVkII05dTsmzKqEbzXrFwXHL7zzQBaoa2isND1hpubHVdXO7bbEe8cNP/cNW346xGxHqqVcD3DNbe3/5nNeMebNz/z/PgTjw9/5OHhj3z89c98+vgL9x8feX44ieI+SiGVqyRWdRuF7QybpIk5gSqS4lFlXTFOkO+4FKapYB7boWOjGTeK0Be2u+YJPCvpSjhxsSipWfFQ8KHiVSV0BesWUj5zOj9x//Az3WbD9uo7xu1bqrtmRR7gy2b719fh6uqKXmfO5zPn0yQEe10pulKtRnUOiwhAnHdoK21ua1/ELit/UdEM9ZudyUpVWDlkMWdyFZGF85Z+09MPXePSZZL0bOn7nmEzstlv8F3HCpOsXQQZF5KepKhs91tikizs4B390Mt7NZrn05HH5yfmZbnQBijqKwWz7JGCEJomfDBatw1WWthSCAClkiLMjY+nqNQUWebIORUiGuV7wmbPBkXoelQplBhZphNxksNsSi/m+muk79pdykkiA7vQs9ttOez3lJz56c9/QiHm/He3b7m6upFoweYEsLYrqwIa8mwaWqxUbeIi2j2rX2EW7R/b2vfC7Vzvr1aAgXGz5YcffuT+069M08R0PqJtRQOhE7DCGPBB4YNmmWeOp0fO0zOlHOkGyzh6KFtqHhj6TtBz01GL4elh4s9//EQqCz44gvNsNyNv32843ChQJ0qdSbFynoQP7Z2jv+q4vbvm9vYK31XKwyNLcmzUwDj2XF1f8fbuR97d/QNXhx/Zb7+j67c426G/9M5RksImxbprtmciWvIuiB6igUyidxB6hFjnVay1dF0gl4hLkbgUckZ47Ep486tFGBXmLpKWRFrpIc3ea0mFXAxFWc5z5Hg6Epcjj03XkJaFmBcKqWkaXgIQXOhkj1/5hWuXsYoNk7VSeFYgLomUhdv9dZdIBG3SQqd1INSlcJTqEZkQl++1bzcqHQ3xVJc2O5di8+W/1eV3oMGg2O83fPfhDcenI3mOxGlGV9iMgc3g6Zwil8R5adSIrqMLgc1+z+FwYLMZ6DpPqaKfycLcknmhX4TNxsoBWJbc2kIx/oZWe5tLKNWyZsOO7eaGOd6AeWzogcGaBLUwz+tEFEsElWSR16rggvAwldbEWaIltdJ4ZxrPJ7OoIjYBhgtKWauWXFxlGxfSinWKaze4tnzQBBEkFcVorNfi2N/sl8orhRWqNHWaxmiPUV6Q1aovn/nLh2wSYmPhnRSeaC3Je3VdSHSzTJACRjffK/HBstS6tnvk4ksbSiNONYLUpVwvXAhpPSTmaaHkjFUiTpJoRy0Rl3W1VBL/PqU1ygqEX4qEyUFpiEQ7GZncCoUGi7dC1laxGElLJC6KmvRXRXhF7F4kfk44Zk/6KIrdmC6Fpmo2D6WdamX2aEENW3FYK1jn0brHuxFrO0FjqhSbpSqZuM0zUIpP6WOuPy+t19gmZ2njhkvbRi8yKwRBahQFIwVXbWlXwn+VolKUtY3Eb620YeQ4x2csNqXw3pOreMGW6NA0s+paG0dIbI2a0q75DsrGa6ooZuPSFsSW03uhyq0WWnUdS+K/6aymuCo8YsAFQ8kOw4ZarUQKZqGRLLNY51yQLSf8wGE7Mu42aKOoZLQphM6xP2y5ub1mv9/S952YVq+lllq5a18voutDa4tWI27TMY437HbvmK/vOR1/4enpz3z8+Ad++eXf+eWnP/LrTz/x6eM9D/ePzGfplFgrCWjaarzTmGrapRDqQFXgMvjY8sZioRQtNIOqMXZdOyTvOncWp8XgeT5npjnLwa8ID9w6CB04Xy+OFSlnckmkdCLGJ6J7RmkvkXGY3/jk65iAm+srooVP9/eiZk+LWI30AeUsw34ji7lz4u27xNbGEvPqHAuUtbshHCoxQW9AQKksUSggWoO2wnvr+o7NdiT0gZgkspckY73b9HSbHt8HXLNZqlU29LoCIk09GzpP1/mWxlMbz7eTdrmGj/efQMHpdBK1dMoXmtTn6wTUtb3dxp/RL8rkS4pZkeQ2lKxVWikRTJRKwWBdRz9s2ewOLHFi7HvSMklhejrxWAtpni8FJryIK1YkZm3pet+z31/x5s07vv/ue/pug7OOHCPT6UReZnQtGC20LIVa/fqlYFwLAzlKXnxDFWvxsBa83x4bElEo62lVqqFRGoMgnj/88CNPT/c8PN7z6WPBOSkaBiWpM1prrBMBYUwzMT2j9JnQZfrBMoy6UQQ0zgaCD0jyW2s5x0hMM5DI+YQylmFUdENAmULOmmmq1JqYTUR7yzgO7LYe6zJKS3qctYpxHDlcXXN3+4H3737Ph7f/yHbzji5co/R6YP3iMKIU3vkGykjMtFZip6ebCbvQx8T2qJbUkN4mXqa5EpTGF1TNEF6L/3OPR7LZpTPno21rvuw3K19arJQUBQM1cj5FljQTWxIWtVmuGaG6OWfF99RKkpPMIcPqsSkfbl1jBWiaZxEiiabjBXV8WSt1A45euJxrTbaKiV5/cwWvlHpVpL4uUC/Ip75c69d/Xl7Dana7De8/vGWZIroo7n/9xOn5GWeglsQSCyA56z4Exs3AsNlI4XlzxTj2hOAEPY4Qa5HQKNXEzaudo5HxK4dT+TJ/S2TmhdCHFFXOdgzdjsP+LT5Ect5Q6gMlP7MsJ+I8y2DJrbq1oqhyTrz4tNOkCKdz5nQqzFO5FBWySNSWeiWT0uiC6cTDrOs1fW8JVhTqojbLslEhGaI1CaFYKUEAfFgHdIN7VcHY1m5UFmc2BHeNtzc4c8Donm9hOko1wrWRRCZNlZguJQaqtRm41gtfg9Z6l9wWo6Aa1fwtoRrdbIkEiVUI0pXygkQV2s88y2pSqComulaJj59WBqO0nAaTeIVKr1VESbnQeC2C/FILKUemZZYCSgeU6nBt0mugxsLx8cjxMbY8bcPVrvC6i+acoxvHhjAIypqXheks+dMxCnKsFNJO0wbnPF0/EHyPMY5lSSISSZmKo1RLyhodpaCqgDYelBTipVSseRGtiQJeRDMvCFRrK+pKCE5surycTmvWxBqbGn8BEjHOHI8PzNNJ1I9N9OKcJBpZ23imKUkWdfpcPKEAowLObtmMPcEgwrqSKOXMMp05Pgl67Zy58PheuLYVVTK5LixNMSipVplSm3DNGJYF1BGsKWgc263H2YoPYssUOodRPcFeUbLjdDqxLBMpG07qTJwjqoghct/1DLsth9sbrm5v0EZQdmMqXbC8efOBm5s7xnGLaXGlta6iCfnM5a+2E1tpqhzG7ghDj/VXDJsP7K5+4ObNH9hf/b/pRsOcjvz6ceZ0yhyf5Ge1qdhAs0KT4ttoKUpya5VVXXEdDKMmhIrvxfNvPhtiFI9BVS1WeXQXsNpxjhPTUczRCxWra2vjG3yw0Kgv+/0d19dvMRqW5QFjfqKqitc3WPWNJfKLUXF7fU3xmpIl7jClhNKKbhgIIbDb7fHeUys8PDzyxz/8iafHp5Z3nqgtSlbazSK6cN5huq4lUMHxdESdz5fWcz/09EMvbXqjyOfUNnexgDGdQzvdrMrEyqgWGpIkdBm9zCzzzLXds91cc7Xfs92MdD7gWoBIqZned1DgkxIR4ClPLDlSXu3BIGvPPE0s8yI53F6sy7Q25LXwzK0qbBxK1GpQLeEeJlh2vWXTG8hnOgc1R9IyM59OPH76SJwm5tPpYtwvwIIc7gpKWvJKY13Hdnfg7dsP/P7v/4l/+sf/xDhuhM9pHN4HNsMGbyxOaWxDcAU6Wfl2XLZEcXFp+0FDjY0RatVXM2K9Lq+uz4pySUfRMIwbvv/+70l55nR+5N/+XXE6fiKXhTC4RjmDWhYenn6RLG6f8EO7x4amcfA44/BNpJbyTIqRrjfc3m45nxWoBHohpmfxf1aFPqjGcXWQI6enB6pWjKNCmxMPj/+K0pHT9Aja0vV7rq8+8OH9/8Gbux/Z7T7g/aYJd1/Bc69nh9IE3zUqU6aWhVjEzaPWJGK6JAp+EQLLAWiJLUEuC21PkAWLMwKymJYoJR6g7Y6VjPemAWeanIvQwCaD1osIm2OW5L5UUEVhlBOKpaWlCGWskf3LeYfRa2zxgjYWrVtcqzKEEJpnrhIe9jRxOh2JOaG/cWA1WuFtKxqRbuzLZauvCkr1gnS+TBNWBwW11hSsRear77+MQCn+VMWg2WwGoTdox9iP/Pf/+7/xP49P3D/ck5aJrncc9jsON9fcvn3D4fqKzX7HsBnpxw1D3wuyW8FqcQ2RcdyKT8FZXmhfiB2bqkK/+fLxjRkD6yvKBhAIfs+Wdy0f9IqUH4jxI2d1T5wfiMuRJS6omuVnTFPEW1Ekl3bSLhdFc0tDuUROqaZWq3RBuJ6SjS4xeqoKl1GTL3ZDSlWWpSV9IFC0MY3I3tpkwvX0eC/ordE9vf9A574n2DuM3qJY25VfThiJ5FNGYPw1n1eydmWh00baSBoZGVW9HFraYaVtKFI4WeNahjGoNoBraVYlK2qshMfpbWs/GIOzrrUP5USbUsGYuaEgmaqktQcSWeWcIQSJ/tKG5p0nJ+6qlCQzrP6IOTJPkdPpfOFOfsnJ6LqOw9WB82nmfBYz7NhapWI4rTDKilcfjdJkpMXbdb0sTCyCGKdysYOa5wit5WeseIya6cxFVGhWJLTxXtVLOyw3lArVNu1mR6NeelsXS5SVWyl578ILo+im8vX0Xccw9CgtFk1i3aGpq8fby6hg6K4waSKeThSd2pFEk+NCLRqqbIaygMo9LFWKdauEglJXw2idMbaNpyQZw5KVLYvt6RgxuhCCKLl9L2lGtRg0Fq/FyzOmlltfJRHDKOE5B6/pe89mM3A4HLi5eyuJNdZIjG3vubn7jru779hsDljjLqfntfjkq5nxjUdDdkChTMBoyflVWlHUkVg83WjxvcLYjNKN74qROMsKJhWsVxgvaudKU2YasEERlKhU+05dTOhzVJyeq6Cnk/x78GJzpr2mJC12T1mBBqsd3jZrHG1a5F4iR7HyOR3vQVm0GbFuR/2mavvrj36132HGQMkZozV937MsEW0M42bD3e0d3geWZeFPf/qJ87MkkS2zcE1LSuLeYUSwE4IUfs75S+GJFfTcOosPrlFGPGgl/HZnBOm1gnCHEDBOfPtKLk01XJrI6yWOUPje0LnA9e7Am7tbet9JWAUS0amKbCB96PkUHnk+nzjPM+HsJaKqPUopzPPCsizEFMXVQb3w7cXVcLXSWse7bmucBIA4K3vO3BnqfKS3kn6WloXz6UQwlvl8ZprOzMtZnAlyRpm26yk5+ovfsGcYtozbHcOwoesHDvtrtuMWoy1GW/rQ43QzKm8bab1UmvUFhymrfWBb01cagV4tkL5+rKPlMn8u6Jb8xfuOq6sbpvk7vvvhO+Z4z5/+9MiytLjStv6Ja8NMqRlthe7TD5acI3FZyC3mVKItVcunh65XWDcyTUgxG0TEtCwzqEo/ih2eMwO5j3h7JKuEdZmUn7l/OIqiXRWG8Zrd9prr6++4u/0d+/17uu6A1u4L8OXr+XExay/poklYE7FKMxzXjR8YvG0IorgSlFIk6UipBoQ1aynthB9sBFwqJVGbhoR2KMhJitG6xsAimgahf5hGJWpdUGvQTmqMS36781jvXn0o4TaKK4zs51pZYoycp4XjeWZaJDjFWMuXK6dW4rSxflv2pfUi0T7jazTzpTDVnxWfLxi8XPPP/1yz6GWwio2Z9x7vwiXS9+nhnvtPH4npRKmRbhjYXV1x8+YNbz98YH91YLPd4LpwoQcpLYp8LSXEZb7wus3/Ku1PrZStv7nVXhD5FwqtAtZoOqdxZkMpZ1J+IpqPGH6i1j+g1C9U/cj5nFlipSRFdZZSLCnLFXNdpUMu3rIUyehtH8B7zdAbho2mHxQ+iHhJrEgiyyyLS+iaIlMLsigt03RZBCRZoFBVElsQH3B2Q3A7nDlgzRWd+47B/4gzb9D0qGYS/TXFU7HZepQpGOOkuEhV0pRSkda+tSJYUrb5ewq7r9B4WSlfeJrOSIyVtHOF34nK2EWzpHnt60jc5qqSqkBVOOvo+4FxHBnHDbUgfLLzmdP5zJyWRiCXAr7vA33vW7RbRVlQBkx12GrR2qHQlFmseTLCRZQYSffV4jEMA2/v3vDw+IzWz2g9gTLC17QOH6Sgjq3lm5NMXmONqM2rnG6VLlTE/H6lQBizY7ttvEsK0+QFsS7lckAppQiKbHSD9WVTlPm1GgpnEWHEdPEIlSes+d2CEGgtPotKa7wLDO26bsZB4iPP50ZtcMzzxCk+fzYmrvcfOE5PfPzpnzmeji2nN1OJGKcYx4AxjtAFUs6cpknauSnhbaVziCVYqISW5KWrUEac1YKQqioxhjFxPmfmWdOPjm6QG5mibW36R+YEczoxx5k4J1JMWCPK5K4z9L2h7x193zEOW27u3nN984bdbsNmM9IPW7p+S+hGrPGtQKivUOW/8fE6XrQW5vjA6fTvPD7+V+4//Td+/vO/cP/x34npGR8qhytLcJrH+8o0CQIC4ILGBVkbVhFeRYQFzmn6TgrzNBeefq083GeWkyLNCmsK0SfKEolB2rAhGIjS9en8QB8CVokDRqyF54cTf/zX/0mKJ/Y319zcFfrhQ0Ob9NfFwzceu2FkvN7Rh8DN9RUPT08sMeJcYDOOHA5XYpl2PGGrZj7OCO3FMM0nSklYI4rmNbzAGLGAu6xN3tJtB1GNN7eLUiWqt5SMdSLA8V2H9441MIMsKltpNy7MSQrirgsYJzZBzhhMVXjt2PqRIYiYsoIUtdeKsRu5vXri4fTMaZqYYiT995+pH08vt71RYJa4sMSIadGvzuiWLCPcOasLVktHwxqNaypxa7TMUVWIHnS8ZXSGaTpL6tI20fnAtEzMcWJOJzIRsux62jZxpBahxzCO+K6jVPj48ID9l3+Fohn7Lbtxw9APopRHU4t0ki7/U2Udym0Lr6/2iSbwbNQt/eWC+RcfLyNqjXDuBxkj+/2Wjx9FIOrcIMESKLRaUMqyxCMpT23PdCxLZS6RaZrI6YlxHBiGUQ6/WLq+w7m+dZhEoDrPcwsSyMRNoO8M1nZ4p5t130LOM+dpZklin9QPHX235fbmA7c337HfvaMLB8C3onOdIS8F6MuYoGk5EtM0syzSIVspRZcoUy1gjNK5BaZofLUSObvMrbjWdB30ncQdY8cOQAAAPW5JREFUaxy1+d2Kd2sW4/RWsK9Rslopeh+w2qO1JDQ5t5DyQioAVrpDwdB51QRvK6oqB79ShUNdK4Isu64dnDMPT888HZ+ZZunC+L6n67qvKBiqRXZeiky9tte5FJ2f8TrXg4p++bt+9e9r4SkI7Ovfc8EOP1/HFfjg2O42vH3/hnmZ2O1HlmXi9uaaN2/veP/+Pde314Suw/qma5FosMtrXHCGy91WrELmy58XAPfrMSFX/BsTo66vIcuj8EeMCAlqjVLE6T1abVGqQ6se9M9o9Yg6LeIvuCSmJgiRLGVQRtpl2hiyVcKzKpUuaPreELyog62tWCeiHOHwrHYKLRJRwC3hdPlAZVVUGUl20QVrPN7vCe6KYG9x5gZnbvD2Dm/fYPUIyGmtrh/4s0EC46YDnalolliIc2JJmZQquiqMlpxY005YGC1WC6k2O6XcTl00NZ+Yo0uakEUZQ0ZOaitS7J3EUq0TM6WMs57NVmLRhn6g1orrNeaoUK5iF03MYvUUOk8fJPLRmmYdZnXzytSoLAttSQUWUY9ro/GdI/iAt0EiM189xnHg7Zs7vO8w2vNontHqhHOeUkuLJTOcm7n1NE1NECGRlrUUUlzQWnLJcxJfuJQ0OXsqo4iH4sI8T+TGu6OuGS6VopLkOtNy5l/xDqsCaotcazPOmibwqpE1x1e+xLvQIEhy8GLMvRb6Wgva0IUeow2n5+fProU1AeqR0+nM8fjMMPQSWWlAZF+COlojKuocF5ZJWl84ha7CM7VeE4qcgp0W9bsyFmU0uYr10Hr+yCUTk0I7acUqq1uAwwwmo92EcQspJowrrRWi6HvFsDEMG8u46djudtzeveP9+9+x2+8Zh0Ha61qcJMQH7lUb5+vF4TceKxdU/ks26URKZ+b5nmn6mXm+J6czxhT6QeOtFNq1aLQuzElSy7oBwogUEKpJDZRqGduN75oqJYpqOSexwqK0YiwWZrVILKurwtFWgDL0nacPHVpnKJFcItNx4dOvH8WazUe2+z05r15+XyOc33p03rMbpEW9HTfst7uWGiMUjrEfZR75DtUypnXz7nt8emCJIoqzzXNYWYOy0qKuSIvcaTBF5rjWWhKMYiI1sVAXOkIXLt6c69vXSmhLVV2shVFa4ZxlGAa2fc9hf2A7bhhDT7AObxxGryp4jRk2dL5jHDYc5ok5RWJO/NsfTzy+KjzhFSKjaMWbWNpYi3jZWo0zBW+kIHWNW22Mkex1Jffe64DaHeick8ScuLCkBVTl549burHDdU4cA7KsBqq13pW29OPA1c0NN7e3XF9fE0IgxsTz8cjj4yPBdfRhdS/Q0mGptVGoXv5HVaiqybp50q4dtsvnvGyW3wLE4dW31Zd7DMKzD6Hn+uqGT9c3/PzzCBQ6vyNnxTTNkoBW5Pcaqy7jJKfUDt5ZhGXZkIqBIp6OQWuJQbYSMxyXTC2SzpZyQitLTiIqWZaI0qW5liRKkZ0/hA1XV7e8ffMD797+yPXhHX23w5oOLu3k314tKnIATCm1olOSfmR+i6DYOoe1ot6viH1YqWJptUYflyxrTGnClpxgUc1FIkWWGKk144N4+ILswXHJbV1vRVqz/pOiUoRc6/pnraHrLN7JPHtdzZUKOQsNSWuFbt2zeUpM55l5SuRqJPCh39L3w1eFp0zKfIEx62WhXTn17b8vP/YSE/q6xf75y67Pv+yGrINxXcvX59cqwF0/BO7e3qKN4ubumpwiV4cD19cHdoc9wziI6PFS+V7eTXufL3vvF2/l8rzPgIhvPL7dar8Un/VykRQOowxVebTuMHqDNXus2ePsDdb+G878glHPHI+PnKdHYpopdZHIMafwTuGdpvMeoz0gQg69dkmAtChQ4tu5htM7r9EWnJeWjBSfmn4Y8MGhVNcQChHaWOdwdkfnbwn2Fm9vseaA03uMHjG6E6SzrIT3r1XtSimGcSQziy3QlOSkvRRqVqiSKGVpzy7NskaRkmoIgwhvcmpeilVsXHLphAZgVUMVNNpYnBf13jgOLWKqWeMsEescu92WLnRI/GPBKQhVk5XFJRHvdKFjGLqm5q8Y1Xgl3uO8pxZZYHOS9sVpmlHtFGStYTOMUnB9FKRkfYzDwNs3bwhhwLuu5a+Lsb3SitD5l+SQLF6cMS8s88Qy1ZZaUTBaDhnZNjTdZEqZmKdnzqfM09MTT09PnI5S7BUrqLnNEqtZC+Q+v7SBV+J1adO4VnIji9ey3se1BdGi8lRTyzd+llKibp3nWQpdLZv4MI4oBb/8/PncOB6feHp64OHhnufjswgzbMAoS06FmBc5fDSz/5IiOUaWaaYkhcQ4Vpy3aJVwtqB6D9WK12QqLEla8l1v6QY5Gc9LJJXaEH+D1mD9SztaiqxCjQWDwjsIAYaNYrN17PY9h6s9h6sb9ld39P0oRc5FDfxyMq0vH/ezP7/9WH/uNTaosSYQ/IbOC8+3C5JCM44dOS2SE6wSNQvy93xOqFAYtop+q9BGuJvno9BQrBEEfJmgLIo8azRF0s1KpTqhmWglgsJpKXgl/p6hN3inGAZF52loSLOzWgrTaWGazlR1QtszFYkVrX9L+a3AKi0pOsZckobKyrc0BtOMnd1oMMpivdjF5FowTvP49CDuFgrmFKlxEQs0H1hjNcUKTiwfdBGfxznKuuOcIwwjIQRSikxLJKeEUpqu6yVXuTqcBp1F5NQPPVf7HW9ubnl3c8f721t22y1WCTe8Vn25m1YLBcBZy9j14t9H5WP47zy+uhRaa0LXEbq5rSkakLFsVDsQGQhOEZqPp9P60nK8KHMBo620x7ueUgtznHg6PnKaHnFOo604M1hvxPK9NOQHESPudjs+fHjPhw8fePvmLVZLgZpT5g9/+AN5KZAVm2FLF3pWM+yVslRoHLmKwJ4tnUVieNcCVKr72lqw/+sPmSvedVxf3fJ4944//3SDVhardzzcn/n153vO0xNKn+kHGHeSnmN0kDVeZ0IwOJcJwSF57ZGSI0vU2FihtYa1tnRdz9WVbyi5IsXC0+M9p+PU9uoilk12YLc78P79B3744UfevfsH7t78nt14h9GB1+vF50XPl59QwANpm0dE2NgAEQNd7xmGAaUKucSWHjRfrg2qRWc6h1bu0tqfFwkPiXG5RG5WCm6qjaLQirya5ZV0YZoTz88T07RQFRKwYFYIr14OFs6ZFm9aSM3LWcalaEfmWYrNaSlMcyGXjHEeqx2hHxi3Vwx9/43a60V0U1X7fBeKslo/8eX3vaDJ9QViXK/1V8vS1/XL5UD0gkuitOz31zdXjJuR1KzZvPeSjuYkXvbyil+ipl/c2299t13OV/vK14+vW+3IKWNFLi6fUgn6KeprK0IVAsqLQlnrAWtuMOojRouXVz0/MkdJPNBFYFjrKn3IeFcaH8MLJF4kZzq31lGtYm9jW6RcKaWZnypqkWQXa0ac2+HsFVoP7aRnMVYEIMFdN3R22wrOHq2aUrWu7ZPfXjFqgVQK5/PM+TwzxygKdClhPtuYSxGUYVV4t44MVVUKuSV/JJRBzPeXiimapWW9KqMR8EK304agqtrQTOsVSmdykXgupRLWVbpq22kt0IWOvguoWoSCgCCxTntcdeQqmeh5ycRZvlJci0DbYHXz5ZEK7xy77abx/1pqTkpis1TFu7Sq+sKNMZasxBOztC+FLCDeujagdeNCQskz8zy32LIzkBCbKkHurJUM4SUncrRk69rYATGrlXaKsxqVWoBAw/pl6Os22aX1UsgUveb9LmQltjVaa7z3LaFC2i+fz43Kp/tfuH/6yLJEnO047O/YbntyeuZ8umeZTk0sVFprRqLiJHUI4qKbxZgUwLgiG7uyLBHcUrFRUaphGB1dr9E2o1RuivmCsbJpOKdxRsyOjdVYb6FUrJLr7J2kmOwOe65ur7m+uWG729F1PdZJW/3LU/n/epP9Nda5HuA11nR04cAwvGGePvIcnjH2kySieVgzZZslHEVDtQrv5ZCqraw/WhdKgrJAjpX5LAc/XcRirO8U1UEtq92NHPxSSsIV94a+lxads7Et6PVC/5D3K8hLCGJH45wTVfnLNvAXr4BRSmJxldjuWOsuAgeFuiCnVlvUqEEb5mXm6fgk87lmjtORJUURglLxWu6ns6JYVlUsWnLKLFXm3qW4dQ7jhIela0WXQlbCr1RaSXIPTvLKFfRdYL/dcnd1zbu7O+6urjnsdwztYCsDoa1uql0FrVrni8tmZr8S1Ujr2VpD8JbgDb3XBKvwBnwrPL1ReKNwpgl61nnaXndFdpyxLbUFTrPmND1Sq/C6nTOMmxFtkLmWxNy+Vo0xnnEYuTpc8e7NO374/ge89eSYeX4UX1nx/1woXWZVBguzSdYJXdd27Zd3v172jQtg8Tci499+KKzxjOOe3faG3fZGDlfJk/PMMlfOp0SpMyhD11uWGXHcKBajB6pZKI03LSr6VUkvxdy8RKiaWhw1vyT4LUvkdJr59OnIPM84X5qPqKLrRu5uv+PDh7/n++/+gZubH9hu3+Ddpu2fa+v1S6Tty48ndIKgCoWRUtJlXGplCV2H94FaMzWKxd/l0KNonbN2wNY0vUIhNQ9XQf5lT5R3kamRlrKYPzP5F11CwTjDRg9UZUFJhGQtieCqpMs5sWOstXEwLx9FtYSeTMriYb3EAqpRZPot4/bA/nBN5zvU40de7F3aNaqrKHmtP9RaX1/mnm5I6Cu5QruvvFzjz3vdf+NQe0lC6vpA6MKl/lkRfPmd9bM7+tt0oy9g/qo++5e/9Oa+gXiuxVh94Qpc3sg6ycQ4XU5SW7wKGHPAuQe8/YkQenyXeTopTucjOYv3ovdZvPRCJISKNRatDCkrYqxQI5WlnYZEANF1AwrxNFtV1ctSAYfzI8Hc0vsfCO4Oo0aUDijlMNpjTY/WHlVXG4Q1M72sH/Xy55drR61wPE6clxMPj09MS6JUfbmW2okfpxTMksoTcyFXeXVtNU5ZUGuuupyWY55FyV0jSmkRB1GJSZwBVCvshAsqQguoxGUigjy/CtStlZCx3Zof6z3OGEpKwlcqGrKhJM1cqyB708I0z5zOZ45HaRGULJvvpCIlKmwpn2nyjNYEZ8ldIG8S07lnnnueno+cJ1EfllqoKWO1cLaKcygqqZTWAqO11ezFIFraYgpUhprQuiAOLpJ8ErqA9wFrLOfT3AruClXec2kKU3RpCk8nopP8Uj5dfDpbW5aSqdlQjRVkpxR5T1ZI7StSU4ocFj4fE5Wffv4Tx+kZYzyH/Q1/9/1/ZrPpeHj8IyUnHvJHYlqwBiQRS3xvtSmX+STG4MJ7s0Y4v9YoXIGQNF3UzSzZ4r1BaSHPz/NEbFnYtVYxWLZiA+O8o9+G5jloJFfYDmx3N1zdvOPu3Tuu7+4YN5smtHrlU3nZPP7XSs6Xx+ufa60sOxCUYjP+HSnOfPz4kcK/y9qkM9YX0PUiOixatcJNXxwHqIImxgTLCc7PleNTQaMJrUAdhhcT5jXyUfLsaUpZQX37DnKcSOlMLW0d0FnEPGNg3A6MmzvG8T19f413o/B3/4ar8jpvWauVHPLlFZKjvNWKzln248Db25sWwjCTihyslNaSUz4ObDcNla4wqYmaCqfzzLwsFIWoe1v0Zm2/13mh6ngr3RjnnIj/mjAhOMtus+X2+prbq2tur644bLYMXYdb6SkvI6M1wNYNc/28rZX3VcElXRoNdM2cej82cYKSceoNrcWuXzw+5UVfbX7NOkbrS7Ghl8o8n5jOz1ATXfDcXt+wLBuWKEKteV7XUEPnOwbfc7U98OHNe8ZhRKG4//TIw6dHOi8HDMlBb+329ZOr5k1S5ZBDlaLbrJnw1FasrAXo3zRJvjVy5LW1w7mBvtszDjc8uonHk4ReOOfRynI6V5ROOBdZZnF9CCHgw0hVlpLPLb1OYpQlllLQwfP5LBGsi6KW1Z5OMc8zp9PE/cORWjJb59BG6BqbzZ737/+O797/A3e3v2Pc3ODsiPA6XwpDOWH9hU+oNN0wEujoNyOrkHa9bqpFIosrjmliZs3q9hGLiGi1KmRbCCagjQBUsS7EkiiqYL0II0utpCUxzTMlJ6yWgk63E4z3gdBbrBWepnWBuvrf1gWtlkuSltCFm7MAlZySiJgoAmIQKRSMMYTes78+sD+8Ybu/wVvPw9M99bU4da03mk2cyBik+FRrDbICKqzdOqClLq0CzhWJfP2avwW5X27NaunV1ueq1rLypctVX179f+Hx6uZ/9cbUb46N30A8L6/y8gLfbMBJC1MQzw6lvKjFrLQBh2HHaToyL4/E9Ig1J7yfcW3TMGr1oGpkNlXRqbnmO4/3GxnsisblWJqSr50UqM32x2HMBm9vpfhECs0Xm4dXnnOVllP6xUX78jqUyuPDiTlNzLO0nqx7UYqvAqFciqivY6LE2ry2hCunaiVGy7K0JKOScU5+bgUWbSPyGSMRWzlnck5CktbCWVUV5ileFjoUjdDewHkjqIsqWfg5qQgPLiloiucaM9NpEVHSPDEtM3NTP+bWYkhxYlKRjamfFZ5KyeRdldD73UjOCe8sx/N8USqmklmWhZNznM2R81mhq3hhvliQqIsISpR/wmE0BoKzYkNVC7oVqcLnLWgtPq7eibdlzpmSmrK9lGZFBFWL1ZZeeWa1XvimQBMaie+Ybr6F1mqGoWO72bDb7wlexB05x6/Ghfc9znfcHnZcX73j+w+/BxU5nT6xZtSvhWGtIpLzKFC6qSsljYda0MZKC7NTEn6QCjoWlJFFyVpxcKAtguISIYWaUlmQC2NZo9ysCYQwMHYburAh+C2bzVsOV99zffMju90toRtbe/11wfm/83i9UL1wlRQWpXu8v2UYTozjHxk3PzFNJ3I+Udco3CxK146WMFQqeQGKGEULHKrIsyJNkCZp0VXbxlHQF1sSbcVay3oENS6tpedE2EcwDflpJuNEXGfYHrZsD7fsd79jM/6Ozt9hzdAOq+tn/AtrBU14oj6/GmvRtpYqqmGo3mh2w8C72xtxlYiL5B2XDEbR9x37vSTseOfQCpZz5HyceXw68nQ8MedIVgXfBbpeXBn6rhMak9IkSWvAeY/Womw3WhO8Y7fZcnN1xWG7YzuODCEIsqrUy+dZ1/z6Ajus93ittL4qO6v4pWpV8VYzdo7DRiIpazVySGpdDNcU2M0TpHUvpNjUbV/QrfBEy3t3xjKOG969/cA4jCzLzPl85ng68fx85PnpmWUWO7MhCLd2O2zYjVs246Z1fxyD79FKcrd98Bcl9CrIkPso3M6q5BsGARrW9UPec6P6fFvU/jc+mp+y7ej7A1f793z6+Myf//SJaRZDeecddg6kGHl+jCiVUSQ2W8N222Fsh3cWpSOqqbIlWU81+ypNLZVpOhNjpet6jLbCpSwR6wR99MHS9Z7gR3a7K64O79jv3zIM13i3BeVlBL9Ctv7aqcwYy/bwjkohl6XZKInLQq1IzHVKlDKzBqAobZoeIgr3WueXVn01bXwmIGFthaZ2R2nhPavSOOaRWFqch1I4F+j6/qKjcL75jCtJTaJYanXQkgyVfvHILGvWfG4UQNfieKF5ECucLmiVWZODvsAD10lCrZLuWJQS3nUbP6ZRO+qrDoBSXIpOVVsHYwU7Ffw1LuXlea+WsEvx+dn9U6/+5a++4vpC337U9Zd+9gs+e/wFxPPllwjK9PVrr9X8ejrW2uPdHm0UXeiJ+UhKZ47nP/N0+hdK+QVjHsU0WhuoouBTSuOsw1hHVQVrAs70WDuilSeVmZjPkuUcFcsiqIhY9Bzp/DO5nAE5oYjpc1PnttVkpauuhPH10r8k13z+AUstPNw/U1RGacln953DtVQkKQjkea5kXEy4RvZWWmO1iLJSSsRZUMZlWS7omvD0zIVjd4kSdbq1/RzBO1RVpJiYm0+fNi06jWbEXBOqLDjtyFpaBhQF2UrG+6KoM5S5cnqaOR7PzGlmqZFMpVRFTJWUo7RBULzbF760IROPVUFYdy1aa7fdCZe1eXvGlJjmiYeHBx6t5B6faxGT/5KbpUYW14OGeCitIFW8c6h+FZNJoZhLJsWlBQFA8Jau8wTvmwei+IeWIr5pSgl/8pIPvW6ktaX5IFnSprXRjRFriWHo2e923N7d8ubNW7pOOEyy+L26Bkrz/s3fM2433N38nRRyvuPT/Z8ouTa1JtQqKmJjjOT9OodrdIE4V1IUPzltDd0oxaftIC4ixBLYXNpCEhEh8afOKVxw5FUwZYr4OroR5zZ4v2O3u+Pu5j277Q1jf6AfrhmGW4bhmn44YIyHC2VGfXGP/3/zaKAZwvXc0IV37PY/cnN+lOxttVBQzEvjA8dCLUaid1umvfCtaFWAomaNqlK4GEuL2AXVIgaVluuhbXNxsJq4VEpWVOXQbmS73dN3A2vqSK4zxit2Vwf2hw/s9//EdvwnvL0T6s6atvNXrkyplUzb4HkR8azL+Lo/lFbOWaXY9GLQXquYw6+53NZbtvst11cHrg87uiBdDBLEJfP4+Mynx0c+PT3wPJ3Q3tD1HYfDgcNux3YYccYSpwlqKzKMxPxp5MA3dD277Yah6/DWyjx8/Xng8u4/u69f7CXf2ndqFa6tt4qxsxw2Hc73lGrQqjYbJTkQ6HZvLy+pBJmSw6m+HJBEGe/Yjjvev/2O2+tbpunM8/GZx8cHPn36xK8ff8VgOZojJWWGvmc7jozdQLAe24RH22HDph8v6NEKeqx75cum39AlBQqNVeJNvabUqGbR9oKm/cYF+SuPlTtoVGDoD9ze/B1//tOvHI//F8fjg6whnSXnDdP8zNPTUQ6uJZEWh6o9+4Nw0kuZyGXCNXpaygu5VpztAMXT05ElnglB3EGMq3TKXaybQiec4KE/sN9ds91e03d7jBmQyOJWGCrFy6H1L39obRyHmx8pNTPNx7bPlAu9YZlm5vOJWk8oTBMKLpef915st1Kjlgh1qaLIIp51LVZTW9k7CmQtfOJYs6RtxUwFhh5C10Gt0opHumcSHWslDQnXKGL5gsLLuC7SiTES8V1KRfXgXUVrjzaQ5iOnJ4s2HueHr2h8a49JHCkk+7ysRvmiBGx/vBIVaSX58u1LtywapeR5n4GKrwvSr+7NbyGTXyCd9beP2V93cf7jj9/keL68ev38hPPqmZ+BtwoUBq07MeM1PaEu5BqxZofRgSUNlPonlDojGezCjRTvPOEGGuvx9oA3eypO4OjyiZxFreh8FXFQFZTHmx1GDyjlLwXn65Xxq9P6Z3/nm0Xn+pQYC9VUvBGbIWuccOeC+HoKMblQEVuTmCIyLtqJHdUsoQLT2TEviyirm2BAMr7XqEtZ7q0VX0vvBcmJjch8Pk7ULK00hWpeoi3ZQhWSiyglaJuuRgxsi0ZV08zpQVVDTdBAQhn01ItHXc1fbzYv40CESjjDoKRN1feFGNfYzEQqmWlqrYtlIS6zKC8rpLhAFc+2msSHVSslYhml8M7hjL3YIi1RDNxXzq8x9mIPBRlUZnU7KCU16wzzykf1JZYMpZpvn9iseO/Fast5nHNsN1uur6+5ub3h5uaG4D0Av/7yy2eXQGvNP/zuv7C/uub66j3eD8yziKN22ytOh1tKOQkn7XgUP9tOKAfWaZSK5LSQ58S8JIwDNyu0tyhnKJTGAVaXa7Oq87UWQZrSDY3SFW2kK9B3t4zjW7bbD1wf3nN784HNeEUXNngvRal1Hc4GXtsl/SU2539sUfkK70Npj3M7drvvKSXinGG7G5njnzmdfsaZT1h75GQi+pyYkyBm1a4+f4pqJQ439ArjFMYVfFcwrlzEVTKv5DoVSlPoCmVndzjw9t0PvH37A/v9rRSdZSGXCWUU/bjn6vrv2O//nq67w5gBOXn9DZVEhVgrsdYL+lAu6456GYe8lDloMFoU3vvdlnfxDqUUXQgYZ9lsNxwOOw67LcE7ie6tmpIrz8cT109P/Ppwz9PpWQ4vfcdhv2e/2zF0PU4bcoxQxb9vDdRQVWgz3lm6EFpHQWDa2pChFx+Jr0fBa/7vb10Z3dYJZ4Se03mL95ZcVp/dFrKhKuoziPhVq12/IDuqdXec9ex3B/qhRylYlpnn4zOfPn0i+AFrPEY54jJjjOG79x94//Y9+91OuKLIwcU0is9Kr1qjl9fdVrFud+qywa9ehGtyzIu9zfqE/50tuL0mluBHDvs3XF+/Zbc/cJoeiVEEuuh8eS/GSEu8FMXpOOEcGOsodSKX+XJoj3Emlyj+napIalfVhF7jvSCLSUOt0l3qB89ue8X14QN3d9+x393RdTus7pCc8nZNGqJ3GQlr2/YbdYLWlmH3XlrSy5ncaFkCEmim8xHUA4p7YhFuds4LVFHmeycHr9SKwdWrexXeSESnIqd00R6synNjLEa3jiQ0321ZQ41WWFNxFqwRN2ZxGdCgJZGOBgrVUkSMZQAne7vEK4sozdiA0oGqAiZsGYYNznU8fDkulKY2LrGE+ijyWl61RoLsi1z2LlXanGnPkf9+iW+9DL91PPKChK7F65cFqeLrhvqXd+5yxrygCOrz573+gVfl1cv8Wb/17ZXiG4XnC/dLxtdrkdHXj/rqT1mWxJZF04mheq0QNmi1ZY4bpmTJ+VdqeZaLXwxKO2r1aL3B2z29/0Cwb0gJlnoWCLyAtVkWYnXAqA2gMaan8zc4s0Pskb58Z+sFVJ8V1OsBdUU8vxYZKVhb5i01SKMxyuB0wHuH9RZtkeixKpF2OdcWhScr22ouPHVSeLYqoi1munEYNTlFKkX4ftbirCCd5/OJ0/PE9LxAUSQnCssYM8Yauj6QraBoUCmpma1ryYXV3mONB6NYpoXJzcRa0DVT6pr8o3DKULVG1a+RsPV6oYWDp7Ug1N5VYiwtls1SqTinOZ9OnEJg9j3Jp7YTS3JFKUV4lo1D6ZvZtW95vpIHHaXojEneo2qFqoZaBSHLRdI3lJI41FJlAzHNcusyBqqcGq0xWOfogrRbxnFD3w90Xc9+v+f25pbdbsswCK9OK9WQz5eHVpp/+of/F4erG5zriTHzWO4Zhy3v3n6PNREfEHEJPwOF0PtWeCZKqczzQlGJmGfOc0afMhLbIxY2gmiLgM87UT/bRu+ACCqijGvc2I7gr9hvf+D6+ve8ffOfuNp/z3ZzjXdDM9tvX+u9Xb3kvlF4fj4//qOb6auDnBK+nbUD2+0HQujY7fecTu95fv4XHh//jaH7E134mY/6V5R5wuYohgrWkJNiKQo8MIANssoYV7FeRGI5V9bkG9VoGRQx6dfa0AXH3du3/O6f/h/8+OP/k9vbH8SQPE+kPFNROLen624Yh7dYOzYf3TXm9q8jnqlWFiHv8qX35wumJm32/AotrAq6oeONuqXvOm6uDrImBM9mFH9Z50zzipXX3W1nDvsd+92W03TGOksXOjabkaHr5fCulMw5xUUseFFo81LMqdZGvvAa245RL9vF15/79fL6LUTUrN6cxmC1IIXCmWvXpc3ly8+8+jUvFkXrzivvSykltmf+IO9OVWKKbMYtwXWXdTn4DmM0u+2Gt3dv+e7dB/a7g4i61i0ti3hoLTwve9tnm+Urq5vX73Q90Nb1vbZC4n+n8Fx36grOBjabK+7uPvDD3/09MZ/505/+hZjPYuSvM6FzeDcS3JZliZzPJ6o6syQNekHpKHuTNQ1djORiW1SsoR96xrHDGo9WiRmxBzRGMwwbrq/f8N373/Hh/Y/s93f0nYBG6hKoAS/t3S9Bm2/sG9rgh1ux8MoipHvt32menyg1iOXefCKXE3GRCExrm4uNaZ2y8hK0UpsBfa2QYmY6S3CBdLdEJ+CtgU66CkqrFlQiNCvnpKvYBUkUE5Szucxo24R4MndyTRQiRktb3RpLCIC2aBNwfsS4HqV7TNjQjVcobXj61/8Pr2UCVWmqsZRcpSlZK6l9DtZDDS9zQn1mW1Qv82ItPPWXheerw9rFIaIdVtY/vxqqaq3c2rheZ/7rIvayDr5MzfVQ9s3h/Pqlf2Pt/Kad0mUDalX4b//4+hvkiZeTYn3lqo/C6g04ibfSRpPzLaUcxXuvOFBy+rK2x7st3rzB6iuUrcBZvOT0DqUr1jhRqquxIa0WZwaMGuRUVtf2yBcf6zcY4KvI4qt/VYCWk2JKkpFsjaJ6UCuSiEFC2oT/oatYFZVYGo+wpSwY4ValFt0nBbcsfiKwQtCdXFsrWtqNORcqCWMqobOobDBYUq6QJfkoG0i2sKjcTvIWZb0UM9q2BaPZf6hXKKm1UnBqgzaeSmGZIzm9DLov77EMJLE/EQSgNo8+RcqZVAqVTN8HxmEg59JO6OLVF5OhlKWJdmoTLTk2w4B17tICUZesZy6FumlGtqpNSKvEFN46Ra0eo4WDG5wjOElw0Uq1Q4CgOXq1u+k6uq5nHEY22y1X+wO73Y5hGETRrFu2ujZfXALFbnPDdnNNrQpNZOw3UO9wTmI7XQh0/Z7N9pZKwnnFspx5Pj6SygM+LnTVoZxiGEa2uy3b3YZhM3ChfhSN0YHt5ortZi9m3xZiOhLziVzOzRfW03c33F7/A7fXv+fu5ndsNm8IfsRo92ogf76wwevW6kuR/nXr/VUB/xcev+0M0QoJbfF+K6KXIFy2YbhjM37Pbvsntpt/w7v/QffwJ+blyJwWUi7M50q2FaUzVUsQgA8K60X1Lpnt9VIwOefx1lOzpBFRFF03sLvasL85sL9+y+Hm7y58sVwkQUXrAWMGrB3Qxr3aWL8+1n/rsyYE8dRt2V31FmvRWaq6pKS8XBr5m7cWNwx01nEYRhS0ZKmVf/giXAJwSuO1JVjHEhessXjn8MFLzOWXd02tfpzfeP9VWDkr9ej1na5/acX/jdtdK436Uto1aLGSSonDx2UsrptXOxi+RmTWjXP9epXW4i7Xonn5lkreJHJMGG3oQo/3jqurAzdX11xfXdH57lJAfIW/qJcxfmGTKdm75O8vxeeqXlesRbukMIkI6bcv1efX5/W2/PpAo0DJ+hRC4Obmjn/8h/+CxEFmfvr5Dzw+fiJH0MhhKniHOklgxxIX8jFhXZGDby2gvFBPDFhHS+/rsE4zDD1aCZfR6EopinHc8e7dd7x//zu+e/d7bm8+MAw7QfOUudwzmWr1iy/4ipv1+iKbTlK5TMa0MFLVPnMoWtrWNaFqotDmiy44I/uLUrmFwiSombq6YRThx0o4QcS6ZmuoWiBAFv0CSnjh4hGum5jT4JzBWS2i5ZLkw2nhfBpjqJjWElfk9Xc5LbxkYzFhg+92dMMB3+1QpkfbAdeNEoP7RaJVroo5K1KGVCqpvEI8eTUPWAu8rwuZly7AF/NkLVTVS/H5Ms/W166X+aP44ne2onOdJevvf0E8Xz3/8vqvtDNtrrxmYGjV1r1vzI/fDCKuwGvF2reh2TZt1+dVxZpy+/lDY82I1u8wZqTWM7UmNA5N135GxBJaOYweUfRYXTF+xNmBXOb2YSzGjM0HdL24uuEJzeuj/iWM9uXzXJaB33iyMiIeylEGvDUav3iKqxRbyDoL4VnNlCJQ/zRl5inTBY8fLJZmzeMkBSDVQspJ4i5jEou4JpRJSSJWlKYZ2IoZbj84bO9QyVIXw0xBJZkUZIhTRZWC0QatPdChdMfaVo1pIcXIkmeyymij8NajndSn1ovf3tPTmfmc/kLn6GWhVKxCHUN1mlyMLIBZ03eezVbEGdY4rDPMs6PUQM5La7uLOnkYRw77A0or5mlmmSe0UlitUc42FbQggeJp2Hhgem156AtX0znH0HUMfU/f9RijW4Tf3E7DBd1iMoMTk/jNIMb8XdfhrJWzXxsU3yoytHKIB6wgauO4I4TAuBnp+g0+bNjt3/Hu3SO5LlQW7h9+Qf3077LYELG9xLTudzdcXb1ht7tm6HfNZDmSMzjb8ebue25v3rPdbrFOcZ7uOZ4+cjx/YprOpMUw9je8e/tPXF/9wHZ4Q1izky+ju36+6Pz/9fG64PUoZdGmx7lr+u579tsnlvlnDrt/xoUNw8cN5+kjx+MjT08nappZjCRelVrQDsJG47wcOsRcuhJjJSdN12/Yjgd0LZAXai44H9jue7qNw4SAMiNWr55Aa2kom81qF/ZXjtlfPXIV9OKyDF5euSlWX602r2eQnG0lBWewDtUPbaNQDdFu6OMqOgAcGmM9wUiHYQ1GUGuR3xb6C5+srJ6UL99jfTdqLbBaUdr+7W+qo76BeNZaiDE2/+LSuHhtU7w8WbVP366JerUZqlfjdd1E289rQNUXJb0qFYMk0qjDVevABHwIXF1dsd9uGIcRrTTlM3MK9dkf7Y23t9LufUPSqC/Ai3D8VlRoxa8Vtb60ff/jjxeUyVjD1dWtCH3WyGYP6DPLdEZVRXDgXSHXwhIz83Imzmc6rQjaNxGNiG2UtoQgX1qLVZCk6shBP3ixn7q+fsvvfvxPfHj/99xef8843GLtgFL2VWX0hTXQZyPgN4AdFKmJs9a1QLOqqis29AxKXBes1SjtmlWjiIpKnihpArUAmqoSFeFDVyVWVM5CRyEUJ4WhMuJcUcXfVevaUuuqpCNdijfRBFCzaCPWFram2RtKWmFCkWkR2ba14t1At7ml394x7t4QhgPKDCjjMcaRlolVmLQ+lgynqITHXl7a7fVSDL6Mg7WAhJda6+Xf1ve/fo9LMfm6EP3NgvOzuSWvsa58mpc5+9WecSlu1/dZWS2a1nsr0aTyMK2o/tY++tutdoETfxPNUOviodbi8+WnL3/97Ac0SnXid1c3qFqFe4iTn7sMaiVvq9p2AQ1KW4xaVw+N1g6lLF+f09cP+TceQS+f7zeKDFNbEpLwLWtJLMuEUpVYPD5blMlUtYg4IFeWuZCWStKQoyavCshSwYnXpWSWy+IWl0ScM9NZMsK9t2IebSXr2uqIrpqgB3QO1NmwGPAmkXImk0W5WzVOdXg74G2HM16QnZxE2VgMVnuCV5SapbjtjKiCbSXmhemcSWa9B188fqs41+vJTGOrIXjHdjNKIoefBf0cAzHOKCWq+5yiRCRW6Lue3W6H1poYI8/PWzabLdM0EVO8oBCCREgChnB9Xlrn3ge01g1B9XQhMAwDwXtBe3IW/m0RBHbl2fZ9xzCIDZU1gg7/teJs7agKpU+KX2ulJb8dFSjHdndHSjMpnVniiaH7heAO7HZvOJ4/Nc9Qz353x9X+LZvhmuC3zRZmoeQqm8HVO64Od/R9j7WaJT4xLU+cp0eWeSJFRfBbrg7v2Qw3eDegW9Sj+mImfvap6m/+5W+76Z9dj9/2wlVt0VmFGoISaZRyGNVh9YDVA9CRq2Oz+cAcHzgeP/Lp4898+vgL9+5XnLvHhoz1lXGrcL4J85Ru/OUBq3fsNndsxyvi/Mx8vqcWoXIcrq/ohy1WdnBQLZubV44a/4vF5uvH2sX4DL27XIQVTXgpc/VaSKGa/dWq8H7ZHNqq1BCgVyWrUlQDqzXcJSVIbgaFz4vPIt8WOOD1gXztUr2+l+uIubTfP/skf3U4VARhSikxTxPT+cx0PlJKJVdFXT/1Oh54hZB8Vnium6t6cSxARK7rtlYu9mgVZwx9CORhuCQglZwlFILWSfpCMHv5tLWN0ctFfGnhrl8irKycTkfO5zPzHMmpCBcb3cbSX3q8goG+umLq1SWWu+y8Z6OvePP2e6b4jDIRpc88PnySIIoMKZ8odUIbsWqTRCLPZrPhcDiw3WybP2Rt3OfWpWpRkNZ0dPsRZzcMw8j19Vs+vP89N9cfGIdrnBuAJihS6ov3/m0Y6rceuQDl1f1W6uXgoizGdYR+L7oEFTB+B0RUjcTlmWU+kvNEyQuliuF5CNIKt8aJT7KyxHhCm2b4XhthRDdni6bQqTW3w4QWSzKlQQdxvVAiDNa2AxOwpsP2Ht/We7HeMijtMW7AD1eE8Qo/XmHDFrRHlI3NTeCL6zKnynHK5FpbPOuqLC+s1giKdU99mdvq1VhRrTUurfZXw2ctXF8Vnp/NrUut9vqg91KsXgrP9XvrvXpdfL7+XWvReXlOe8qr9a8oiW35Vkfgm4jnt4bY10OttR2++If6+ZPa99ajowYCGi+Fa/18Ebo8v776sza/R+VevzLiB/blgK+XG/O3PP7SpglIa1+JL6JGUWtinjNLnHDR46MXjqcujVuiyAlKNpRkyFGzVOGgaF3QRtMPIszRKaMWTT4W5mPkdIrUWnF7h+8HuuAlhSLNGAyd2eBqD86TnKYPooad40KtCUWlcwNdt8W5gNGCQC6poovYknTeY0nkmlCm0o8BFwypLjCd0XqSdsZvXL71Wr0UE59/32hpFSllCT7Q9wvztBDjRtIwDChK88iUFrj3klxhrSBY0zTx/PzM6XRmmidZ+LUkIsUYOR5PnKez8Gw6ycLuh/6ycWjAWokDHPq+FW2W1exZBAUSMafXVCfn/mY0cC0669qeLCvS5Qh+h3UDIn4qzMuJ0+mJob9jv/3Aab7nvDyBUlgb2I637LZ3BLfDmp64JNIiBbLGMPQ7um6UolhDH27Y1oVcZrFsyqC0w7sBqztQq7hunYevDmT8B8ortX7Wv/Eg99eu3WViQ8VADWhl6EPHm9srrq6eKfXM6fwLHw//k1+2/4Ofuv/OMBqezhVMJAwa6zzG+IZ2dGzG9+w3P7DbvGMIOx4e/sCnT/+G+v+2d2Y9kttIHv+RlCjlVZlVfWFdbu88DLAf01/PwD7NwwK78D7YXtvtdndPHXnpJOchSEqZdXSPjZ0nBVCoTKVESlQw+I9gHKqjKEouX7xmPr/EmJAw2Xl8VAhHlrc/Cj5Dk4AUfRiEsIpxwNGuikFSn8Xvsh0VAleSVSMATxWsIpzaSglqRTznRMVIrkMxglYWAP+sIeGUW6Rs5FNgKZLivKm4WPZ9T11XHPZbdttbbNOIZSecJXMtWGnT2PthURv7qinS2MiiGIF2TGElrWqkBKfH0xwPuK6lrmp5gliDfcR/8UO0U4hxIMwQrwLY90HWgVGew+6O7W7H8ViJH6GSghm5Ge8wfI4GteKx9xAzxRhjWa9e8M3bv6JNg+fAxw+/cndzy/Z+y77e4/omWPM0Slvm8yWbzRWvXr3mcnOFUuLS1fdtqjMe2b3I56yXX7Fev2G9vmSzecl6/YbZbB0qE8Uo9vGcUEMDjOfL05LFg/g5ngXIkMZWdjmzfInRJTpbUs6PeN/iXU113FJV9zTtMSjzkiassDPy3GKAtjnS9lLspXcVuDZYpz0qVJ3yDjxOdiYQS7DSkt0kz0uKvECpkC1GZaAK7HyNnV1ILnCdh0woErWuswJtFxg7R+cl3lhctBd6aB9BW03r2NXDOuSjDzMaQsEHlESuR/A5AM8w5krAZ3SpSbhJ+ZPzB6vnyPAw+u0EoBL8RQOA1CdAUvo9AZbjdhPA9aNzQ7SPEtnVjw3lgR4BnsHHRZ3meRpPq9jvs6JJPf4l+g0MrDrA6FPB+5SJLX4Yfn8IGh4C0qdoCDp6eI1zPjCEDtZDAUzOO3RtyBtLbiXZuaRxkkmUW6l7nmdW8vTVbXi5GlcpjOno2pb62LDfHtntjxyPtfim+pAOSkE5yzA6I1OWTOXosH2gldS6FibyeGdQHsp8xtzOybMCrQ25zimNJdMWjeG4rzgcDnSuRhkvJTLnBU3fAPdos8P56lEZcj7G4+8qWCOVlsAYU4hTuLU53bzE9eKXo0Ni3hTQ5VwoFGBTENZisWC5lKTQbduGxU18SJumYb/bsz/s8d5jsozFfJ7ApdE6zE2JkpcyYIUAfaOT4h6jPoFhqz7Uph2cqh8XpGkbBE1YmmTLQxukrCwMwVAlWpWST3PxiraraPsalMbonLJcBH/MAkVGX3S4LtQWVposKzHGpomMsqCCa0oYQykDKuVAk0/aSXLgCIQecSx/jkbzXuunLTqfA+znfCJjFo5pUSgzLSXxLBd4Oqy9wmaXzGev2Vxcc3v3M7e7X3Gqxs5MKNsqZXK1slwsvmJz8Q2FXUjWA9PjTYXWmtKu2Gz+wmr5NaXdSMoUHasSRQk8euA/QiqYVUJBBIFVEkFukCT4GQPwjEBUE8GpGt6xDBRRAqYE5cHqGbe1IsXa4Sl2KLSjx+cE81K08A19pA4ZoO0YTDxN/rwJwGQZ6/UG7zVVJdW6tve3ZNlhtNUfLopA1MfbiZaYwdQh60RcnFX6KaW4iU0huYDbrpMeguVKUvYNIDUB7BHwjM+qQhJvFYFnaF/WBoEU1XHP4bAjyw2v37xivVry5s0bisKifvjp2fE6pQgiIGYzEcA7gASlFNYWXCw3vH75lq6vubx4xX57x6dPH/j44Xdubm65u7vjeGypm46+s9hszYvLt1xfv01ptNq2oWlrmpBL2hjDbLbiav2Wi9VrFosVs/mSorgIoDPDe9kBOr1nzQCaz/nnCX7x4ooSBnMEVAZuU0qjjMboDKsydFYQK4sZuyCfrWm7SvJ4O8mSYu2M3GT4vqM+3nGsa1Tb4FsnOY+NRnuH69tk5XQYHAqlLWQlmV1iiwtmsxVluZD8od7jvMapHDtbCfA0IjNikJ8KQZuYXP50hgvRHlH5c4+4X8g5huD8krTL6PqrAhAV9hj8LAnATmS4SAGvkjQIIDLuQCfx8cAKOf6sEugducPE4zC0NbyqUV8+HUggdtR+5IZOgVHQntZhAR4DnuO7OGMmdXbK6dFHWE89ZinlVGnCj36QhmMlkqEqhD+9Pp6XgOqXCUsYhM650HzsSgnucXglkdmu6yQvZ9eK32FjJO/ZfEGeSTqo3JYUxYxZabG54bDvaY6t1GNFU9OjnLTdNi3bu4Pk1mx7vFZSgcKFPpmxmJdkJkd5I2mQ2g7fezSGTIPPNDiN9ooys8zygiwrxM8vL1DKMyuW5LrkxtziO0XTa1TmWMxXLJZz6q4V52n9iS5UVRgPyLiiyLm1cxi/gfu8gTwzoS72sJA8RWOw571nuVyGFCc+bXd1fUfbtOz3e/b7HU3bSuLxsmA2m1GWJdbaxFPeyX3GZMq5zTFGj3jgVHF59JmeOCZ5+3zwZhZmHirWRNDgyLRGFzllsQIVUlg5ILShzTCmzjkyoyGXvHUCJkcWzJjvUGUJpMTHSEIsLWbxZmMQUQCd/xTyjG0A3qGemVuftxbH3wcteZCMAsEMBigBH3J/XnGxuqZ5+Vfut7/w6fYnel9RlBnWzrH5IlQzg9X837hYXeNpqNsb5v0tvb7E6JLCvmR18e+s5m8xZoVWBXFMn77PZ57kMZ7QBhX8j5MwV6F8pJKgmEwpTuCuH5by5KsV5pAfMEiw0I8scwlsjayekQfSPeoUfCDn+hRc9MBMOXp2EfmRt9QAVp8ejJOveZZzdXUFaI7HFoVnt71DK80QxOkDv4c8xC5acQig3YfdiZgNFdJ76SP/hIdTKuR2dMNYjG9o5Bv79COEsQ9CT4ddOEkxqvCIoQHv6Jqaqt5TlJarzTWvXl5x/fV1UnY/T+N58JhcHK+FPuQBnrNZv8EYQ/PimrY58vv7X/h5/gNG/x/HY0fX7tlvHc2lwaglm/VXfP3Vf2BtAV7RNDVVfWS/39P1DWVRsFis2ay+YTG/IgslYr3K8T4qsUE9UqN7OwFTT30+JQ/JDYWgPAxWM5FwDlJSfq00mRb3O5QnKxcUrgsZY1rhY6XJjQTSdU2FVzn57h5z3OH7RtZCm6O9C5ZSuc4HNxuVzTB2iZ1fMV+9ZLG4ZDZfo1UWUhwpnDJkxYysmItRSRtRTohzT/hDQotVALYJHg4K1niUtEGZLC0ESSEKYzL4iIexVj4OGxF0+ohNfShlq1KnZ/PRP6IdqqfxT9p1OJstZ69ZhbYHi+op7ydgi+wSGAXdlwDPu5tf08M9x1BfBPXU6fRK15xhzeGmx/BZ3oRPV5/1/cCS8nkay9z0eKGPm5tfzvowbNQ3eHridpDXDpf19LoXvlCa3OXYpsD0uVgnO4tuclyV0WqFrw2mtpIDXEI7xaLlPVnXM1dLMtvSGQdKaj7bNsNsc1yb0+xynM6pfQa9xnfgnQpWWEXvtWhHXuOOiu7QhEhAnRjDZp5MV+z3e46Hns4BWnHvGqqdWBOPlSdvVqyC39yY3r17x3ffffdFY/z/Rc5JOqamkbQZklDYCdjP81D+LgMiWB0WKaOlPOU/G1zz/v37B/fw3//1N8pyfqIUDZkax/wulpLhPuJiPvB4BGDOD5H38Z7HFrlTrBCsPwlU8OQ8Se2NVdI/QB7PYb89Ofbx48c/wRNngOLR351st/UVVX3H/tDi8GSZw2Q1mQk5GHuw9jfKQrbn2m5H1dxTNQ6tOjKzY1b+TGkPKCXJ8/8M3d7enmxXe+DD//7I7sOnpBAoFSyeSnw4dfzPADrHTy9veZDYIiICB/kBNHo/KEiJzxK4OpORATw5GcnBIvo8lOT8nTx39v7m7uR7VVX8+MOP7A9Htvc7vIfdbjsoSQkoxx2PMIdUXDeDnI3a5lnv3g3PFj4MbT1wlfBn8+aZp5XJORgyogKQ7iC4UvW9ZN1QsjX599u7BB5iZbRI33//Pff398/0/PD54FwvEADedhVNc6TvG7zr2G5rdjuL95cs5vDyxZrFomK1XNN1G37/rUP5D5jgAtD3HW3b0jQ1vevI85rCtpRFj83fpwo9Ip8Cl6pTnjy97wcjmOjdu3cn37vmyK//858pwntsI0pzRQ2+z96H95yaFYDmXI93LgExraScbd+1tPWe/fYj1fGI68TL2dUilbvOCM7zwadSGcnjWbe4ekt39FTFgTz/hFImzDkBjjrL0SZPRV6iXj8oe+FvxCsemd+ua3Fnle/+/uGn8I5FWXpqKMfjrk4/hDEcGd3GP5+8Ln/axufwnBpd8zlSZ/2eHB+OiB+q4rdffnzYxLfffvuFvU000UQTTTTRRBNNNNEfpz9VZXaiiSaaaKKJJppooom+lCbgOdFEE0000UQTTTTRv4Qm4DnRRBNNNNFEE0000b+E/gGo1Yzaj8COXAAAAABJRU5ErkJggg==\" id=\"imagefe314e66ed\" transform=\"scale(1 -1)translate(0 -271)\" x=\"7.2\" y=\"-21.818787\" width=\"670\" height=\"271\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pa1b71a1aa5\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"270.500662\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x576 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["def visualize_exmp(indices, orig_dataset):\n", "    images = [orig_dataset[idx][0] for idx in indices.reshape(-1)]\n", "    images = torch.stack(images, dim=0)\n", "    images = images * TORCH_DATA_STD + TORCH_DATA_MEANS\n", "\n", "    img_grid = torchvision.utils.make_grid(images, nrow=SET_SIZE, normalize=True, pad_value=0.5, padding=16)\n", "    img_grid = img_grid.permute(1, 2, 0)\n", "\n", "    plt.figure(figsize=(12, 8))\n", "    plt.title(\"Anomaly examples on CIFAR100\")\n", "    plt.imshow(img_grid)\n", "    plt.axis(\"off\")\n", "    plt.show()\n", "    plt.close()\n", "\n", "\n", "_, indices, _ = next(iter(test_anom_loader))\n", "visualize_exmp(indices[:4], test_set)"]}, {"cell_type": "markdown", "id": "11b238fe", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.027718, "end_time": "2022-04-09T14:38:26.790695", "exception": false, "start_time": "2022-04-09T14:38:26.762977", "status": "completed"}, "tags": []}, "source": ["We can already see that for some sets the task might be easier than for others.\n", "Difficulties can especially arise if the anomaly is in a different, but yet visually similar class\n", "(e.g. train vs bus, flour vs worm, etc.\n", ").\n", "\n", "After having prepared the data, we can look closer at the model.\n", "Here, we have a classification of the whole set.\n", "For the prediction to be permutation-equivariant, we will output one logit for each image.\n", "Over these logits, we apply a softmax and train the anomaly image to have the highest score/probability.\n", "This is a bit different than a standard classification layer as the softmax is applied over images,\n", "not over output classes in the classical sense.\n", "However, if we swap two images in their position, we effectively swap their position in the output softmax.\n", "Hence, the prediction is equivariant with respect to the input.\n", "We implement this idea below in the subclass of the Transformer Lightning module."]}, {"cell_type": "code", "execution_count": 34, "id": "cae76a7d", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:26.846204Z", "iopub.status.busy": "2022-04-09T14:38:26.845694Z", "iopub.status.idle": "2022-04-09T14:38:26.852625Z", "shell.execute_reply": "2022-04-09T14:38:26.852037Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.036334, "end_time": "2022-04-09T14:38:26.853995", "exception": false, "start_time": "2022-04-09T14:38:26.817661", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class AnomalyPredictor(TransformerPredictor):\n", "    def _calculate_loss(self, batch, mode=\"train\"):\n", "        img_sets, _, labels = batch\n", "        # No positional encodings as it is a set, not a sequence!\n", "        preds = self.forward(img_sets, add_positional_encoding=False)\n", "        preds = preds.squeeze(dim=-1)  # Shape: [Batch_size, set_size]\n", "        loss = F.cross_entropy(preds, labels)  # Softmax/CE over set dimension\n", "        acc = (preds.argmax(dim=-1) == labels).float().mean()\n", "        self.log(\"%s_loss\" % mode, loss)\n", "        self.log(\"%s_acc\" % mode, acc, on_step=False, on_epoch=True)\n", "        return loss, acc\n", "\n", "    def training_step(self, batch, batch_idx):\n", "        loss, _ = self._calculate_loss(batch, mode=\"train\")\n", "        return loss\n", "\n", "    def validation_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"val\")\n", "\n", "    def test_step(self, batch, batch_idx):\n", "        _ = self._calculate_loss(batch, mode=\"test\")"]}, {"cell_type": "markdown", "id": "06d0e531", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.02682, "end_time": "2022-04-09T14:38:26.907606", "exception": false, "start_time": "2022-04-09T14:38:26.880786", "status": "completed"}, "tags": []}, "source": ["Finally, we write our train function below.\n", "It has the exact same structure as the reverse task one, hence not much of an explanation is needed here."]}, {"cell_type": "code", "execution_count": 35, "id": "08617179", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:26.962298Z", "iopub.status.busy": "2022-04-09T14:38:26.961898Z", "iopub.status.idle": "2022-04-09T14:38:26.969388Z", "shell.execute_reply": "2022-04-09T14:38:26.968864Z"}, "papermill": {"duration": 0.036406, "end_time": "2022-04-09T14:38:26.970728", "exception": false, "start_time": "2022-04-09T14:38:26.934322", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_anomaly(**kwargs):\n", "    # Create a PyTorch Lightning trainer with the generation callback\n", "    root_dir = os.path.join(CHECKPOINT_PATH, \"SetAnomalyTask\")\n", "    os.makedirs(root_dir, exist_ok=True)\n", "    trainer = pl.Trainer(\n", "        default_root_dir=root_dir,\n", "        callbacks=[ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\")],\n", "        gpus=1 if str(device).startswith(\"cuda\") else 0,\n", "        max_epochs=100,\n", "        gradient_clip_val=2,\n", "        progress_bar_refresh_rate=1,\n", "    )\n", "    trainer.logger._default_hp_metric = None  # Optional logging argument that we don't need\n", "\n", "    # Check whether pretrained model exists. If yes, load it and skip training\n", "    pretrained_filename = os.path.join(CHECKPOINT_PATH, \"SetAnomalyTask.ckpt\")\n", "    if os.path.isfile(pretrained_filename):\n", "        print(\"Found pretrained model, loading...\")\n", "        model = AnomalyPredictor.load_from_checkpoint(pretrained_filename)\n", "    else:\n", "        model = AnomalyPredictor(max_iters=trainer.max_epochs * len(train_anom_loader), **kwargs)\n", "        trainer.fit(model, train_anom_loader, val_anom_loader)\n", "        model = AnomalyPredictor.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)\n", "\n", "    # Test best model on validation and test set\n", "    train_result = trainer.test(model, dataloaders=train_anom_loader, verbose=False)\n", "    val_result = trainer.test(model, dataloaders=val_anom_loader, verbose=False)\n", "    test_result = trainer.test(model, dataloaders=test_anom_loader, verbose=False)\n", "    result = {\n", "        \"test_acc\": test_result[0][\"test_acc\"],\n", "        \"val_acc\": val_result[0][\"test_acc\"],\n", "        \"train_acc\": train_result[0][\"test_acc\"],\n", "    }\n", "\n", "    model = model.to(device)\n", "    return model, result"]}, {"cell_type": "markdown", "id": "b7b92115", "metadata": {"papermill": {"duration": 0.026792, "end_time": "2022-04-09T14:38:27.025641", "exception": false, "start_time": "2022-04-09T14:38:26.998849", "status": "completed"}, "tags": []}, "source": ["Let's finally train our model.\n", "We will use 4 layers with 4 attention heads each.\n", "The hidden dimensionality of the model is 256, and we use a dropout of 0.1 throughout the model for good regularization.\n", "Note that we also apply the dropout on the input features, as this makes the model more robust against\n", "image noise and generalizes better.\n", "Again, we use warmup to slowly start our model training."]}, {"cell_type": "code", "execution_count": 36, "id": "d9255dd3", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:27.083687Z", "iopub.status.busy": "2022-04-09T14:38:27.083219Z", "iopub.status.idle": "2022-04-09T14:38:33.749385Z", "shell.execute_reply": "2022-04-09T14:38:33.748699Z"}, "papermill": {"duration": 6.698063, "end_time": "2022-04-09T14:38:33.751298", "exception": false, "start_time": "2022-04-09T14:38:27.053235", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:96: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=1)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.\n", "  rank_zero_deprecation(\n", "GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Missing logger folder: saved_models/Transformers/SetAnomalyTask/lightning_logs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model, loading...\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:486: PossibleUserWarning: Your `test_dataloader`'s sampler has shuffling enabled, it is strongly recommended that you turn shuffling off for val/test/predict dataloaders.\n", "  rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "0625431459604399988364799dca2df9", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "b04bc845211544c89614209753f99350", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "19a4c24b35d141beaee60fd6943a314f", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["anomaly_model, anomaly_result = train_anomaly(\n", "    input_dim=train_anom_dataset.img_feats.shape[-1],\n", "    model_dim=256,\n", "    num_heads=4,\n", "    num_classes=1,\n", "    num_layers=4,\n", "    dropout=0.1,\n", "    input_dropout=0.1,\n", "    lr=5e-4,\n", "    warmup=100,\n", ")"]}, {"cell_type": "markdown", "id": "864122d1", "metadata": {"papermill": {"duration": 0.02784, "end_time": "2022-04-09T14:38:33.809205", "exception": false, "start_time": "2022-04-09T14:38:33.781365", "status": "completed"}, "tags": []}, "source": ["We can print the achieved accuracy below."]}, {"cell_type": "code", "execution_count": 37, "id": "b175ebcf", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:33.867087Z", "iopub.status.busy": "2022-04-09T14:38:33.866747Z", "iopub.status.idle": "2022-04-09T14:38:33.871557Z", "shell.execute_reply": "2022-04-09T14:38:33.870965Z"}, "papermill": {"duration": 0.035892, "end_time": "2022-04-09T14:38:33.873002", "exception": false, "start_time": "2022-04-09T14:38:33.837110", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Train accuracy: 96.33%\n", "Val accuracy:   95.92%\n", "Test accuracy:  94.41%\n"]}], "source": ["print(\"Train accuracy: %4.2f%%\" % (100.0 * anomaly_result[\"train_acc\"]))\n", "print(\"Val accuracy:   %4.2f%%\" % (100.0 * anomaly_result[\"val_acc\"]))\n", "print(\"Test accuracy:  %4.2f%%\" % (100.0 * anomaly_result[\"test_acc\"]))"]}, {"cell_type": "markdown", "id": "4597613b", "metadata": {"papermill": {"duration": 0.028746, "end_time": "2022-04-09T14:38:33.929965", "exception": false, "start_time": "2022-04-09T14:38:33.901219", "status": "completed"}, "tags": []}, "source": ["With ~94% validation and test accuracy, the model generalizes quite well.\n", "It should be noted that you might see slightly different scores depending on what computer/device you are running this notebook.\n", "This is because despite setting the seed before generating the test dataset, it is not the same across platforms and numpy versions.\n", "Nevertheless, we can conclude that the model performs quite well and can solve the task for most sets.\n", "Before trying to interpret the model, let's verify that our model is permutation-equivariant,\n", "and assigns the same predictions for different permutations of the input set.\n", "For this, we sample a batch from the test set and run it through the model to obtain the probabilities."]}, {"cell_type": "code", "execution_count": 38, "id": "e21d7c19", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:33.989528Z", "iopub.status.busy": "2022-04-09T14:38:33.988920Z", "iopub.status.idle": "2022-04-09T14:38:34.158814Z", "shell.execute_reply": "2022-04-09T14:38:34.158130Z"}, "papermill": {"duration": 0.202213, "end_time": "2022-04-09T14:38:34.160312", "exception": false, "start_time": "2022-04-09T14:38:33.958099", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Preds\n", " [2.7690839e-05 1.8979506e-05 1.7386024e-05 2.7842490e-05 1.6142623e-05\n", " 1.7020535e-05 5.7293695e-05 9.9977750e-01 2.1364667e-05 1.8681461e-05]\n", "Permuted preds\n", " [2.7690839e-05 1.8979506e-05 1.7386024e-05 2.7842490e-05 1.6142623e-05\n", " 1.7020551e-05 5.7293695e-05 9.9977750e-01 2.1364667e-05 1.8681461e-05]\n"]}], "source": ["inp_data, indices, labels = next(iter(test_anom_loader))\n", "inp_data = inp_data.to(device)\n", "\n", "anomaly_model.eval()\n", "\n", "with torch.no_grad():\n", "    preds = anomaly_model.forward(inp_data, add_positional_encoding=False)\n", "    preds = F.softmax(preds.squeeze(dim=-1), dim=-1)\n", "\n", "    # Permut input data\n", "    permut = np.random.permutation(inp_data.shape[1])\n", "    perm_inp_data = inp_data[:, permut]\n", "    perm_preds = anomaly_model.forward(perm_inp_data, add_positional_encoding=False)\n", "    perm_preds = F.softmax(perm_preds.squeeze(dim=-1), dim=-1)\n", "\n", "assert (preds[:, permut] - perm_preds).abs().max() < 1e-5, \"Predictions are not permutation equivariant\"\n", "\n", "print(\"Preds\\n\", preds[0, permut].cpu().numpy())\n", "print(\"Permuted preds\\n\", perm_preds[0].cpu().numpy())"]}, {"cell_type": "markdown", "id": "cfa3f105", "metadata": {"papermill": {"duration": 0.027842, "end_time": "2022-04-09T14:38:34.218704", "exception": false, "start_time": "2022-04-09T14:38:34.190862", "status": "completed"}, "tags": []}, "source": ["You can see that the predictions are almost exactly the same, and only differ because of slight numerical\n", "differences inside the network operation.\n", "\n", "To interpret the model a little more, we can plot the attention maps inside the model.\n", "This will give us an idea of what information the model is sharing/communicating between images,\n", "and what each head might represent.\n", "First, we need to extract the attention maps for the test batch above, and determine the discrete predictions for simplicity."]}, {"cell_type": "code", "execution_count": 39, "id": "f18c4b3b", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:34.275795Z", "iopub.status.busy": "2022-04-09T14:38:34.275468Z", "iopub.status.idle": "2022-04-09T14:38:34.284821Z", "shell.execute_reply": "2022-04-09T14:38:34.284236Z"}, "papermill": {"duration": 0.039607, "end_time": "2022-04-09T14:38:34.286253", "exception": false, "start_time": "2022-04-09T14:38:34.246646", "status": "completed"}, "tags": []}, "outputs": [], "source": ["attention_maps = anomaly_model.get_attention_maps(inp_data, add_positional_encoding=False)\n", "predictions = preds.argmax(dim=-1)"]}, {"cell_type": "markdown", "id": "89501efb", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.031596, "end_time": "2022-04-09T14:38:34.345543", "exception": false, "start_time": "2022-04-09T14:38:34.313947", "status": "completed"}, "tags": []}, "source": ["Below we write a plot function which plots the images in the input set, the prediction of the model,\n", "and the attention maps of the different heads on layers of the transformer.\n", "Feel free to explore the attention maps for different input examples as well."]}, {"cell_type": "code", "execution_count": 40, "id": "0ac60ff9", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:34.403398Z", "iopub.status.busy": "2022-04-09T14:38:34.402959Z", "iopub.status.idle": "2022-04-09T14:38:37.403708Z", "shell.execute_reply": "2022-04-09T14:38:37.403114Z"}, "papermill": {"duration": 3.032796, "end_time": "2022-04-09T14:38:37.406875", "exception": false, "start_time": "2022-04-09T14:38:34.374079", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNjg0IDEwMC40NzU5OTMzNzc1IF0KL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nF1QTU/DMAy9+1e843ogidO0aY7dxqpx26jEAXGYShlM/aBMYvDvcYtgsEiW9Ww/v+foZf3+UtXbYo7FLekzqo7EOJDOGfsjDA4SJzAK/B8yUm8pzZzkZspsjHI+CSGWgrmE49QzUUcDvLJTpGlQKbxRITEyFnuf4K3GHTro3I7y4kTiJORCeKkf1xh4/l1RtdBrxrLHhjYYfngG+7/cEdMgdxlciTFY50QzZpsgc4rP6lVL8xJ6xWCL8mmyXT7SPWZ517e75hN1BE5VsN5k8fgw+9i1r019RN9hsV5FCKzYJd9daedb+YgIDyhv6LoksUlfoPdVYgplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI0OAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkxID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc2ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNyA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg5ID4+CnN0cmVhbQp4nDVNuRGAMAzrPYVHwI9IvA/HUYT9W+yENJZOnxHKB2vkAYLhjS8h+KIvGYS1Cw8q+0h02EQNZxUkE8OvLPCqnBVtcyUT2VlMo7NBy/St7W+DHro/3Y4cCgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQxID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSA2NSAvQSA2NyAvQyA3MCAvRiA3MyAvSSA4MiAvUiA5NyAvYSAxMDEgL2UgMTA4Ci9sIC9tIC9uIC9vIC9wIDExNSAvcyAxMjAgL3ggL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9BIDE4IDAgUiAvQyAxOSAwIFIgL0YgMjAgMCBSIC9JIDIxIDAgUiAvUiAyMiAwIFIgL2EgMjMgMCBSIC9lIDI0IDAgUgovbCAyNSAwIFIgL20gMjYgMCBSIC9uIDI3IDAgUiAvbyAyOCAwIFIgL29uZSAyOSAwIFIgL3AgMzAgMCBSIC9zIDMxIDAgUgovc3BhY2UgMzIgMCBSIC94IDMzIDAgUiAveSAzNCAwIFIgL3plcm8gMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgNjcwIC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCA3MSAvTGVuZ3RoIDM2IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDY3MCA+PgpzdHJlYW0KeJzs/VmPJEmWHgqeRURU1czcPZZcKqvYXVwuybl3gCEHmAsC98/xz83LkC+cGTS7m91VlZVbRHj4ZosuInKWeRA1XyKXrh4MMACRkhGR5ua2qKiInOU73zkH//N//s/w6/h1/Dp+Hb+OX8ev43+WQf//voBfx6/j1/Hr+HX8On4d/78cv6r2X8ev49fx6/h1/Dr+pxq/qvZfx6/j1/Hr+HX8Ov6nGuH5D28//9dXr38LgIA/8VJc//2p3wEAgH/yYvent+DjWxEBHPz86vObEM9f8fgNP/4if/E1+PT03d23H6//0H4ykDv/g4MhILi7qpqZqQMgY4wppY45MoUQUggxxsCEJS8lZ3dAR3AEB3dX0bwsJVcxd8TYcRrCsA39kLoUA0f24EIuAIaA5O7qDu7oFGPXxZ4oIBECIEIMfaA4jtM0jWIFyDfbIXWdqk55ur2/OY3jJX/J50X5V//qX/37f//vAcDdEX/2tv9/PdzBzFS1lFJKriJmFkJIMcYYmcP6KnMAQERiYmaif9ocfP/+/X/7b/+tPWbm/+v//n8Mw9bM3R9XHQHwvJzu4OAG7TY5uCMgIiCgA7i7mxu4IzgiASI4nrcYACACPr8/7r7+Zv38x40FAOtO+wtv0N/+P//r8fDQfvrqq6/+w3/4D3/hO589xh/9ytyK2bIs+3G+M5cQOXBk7txAzbt40fdXZrXqack3udwjpsi7of+8614Tpk+O7T857u/v/8t/+S/rzUf83f/l3w+XO8R2i4EQGLH9IWj3F9otXtfpfDYdALBNwA3c3OHxiAM+3nN3h/OXAbYlBQMwWI+9+ye3aL1RbWW8fcdP3dDv/uYfDh9v2zPb7fZf/5t/PU3Tfn9yh8ABngkIdzcHd/cmhXD9dHcD9/PnIQC4+VksASC2twA+fek6o58Zq3DzNtH1CQf09T65qapURBi67mK7ffXqyt3/3//9b82sfcJ//I//8csvv/ypz263sM0JHy8EEd3NQWtdSpnNqmk9Hh/u72/v7u7u7u4P+8M859dvLr/8zRd/9S/++svffBU4AoCIiNScs5mEGLs0DP2rGDdEhIjutK7202l6vk7+Y4H893//919//XV7HPvt7/63/4OI19tyfi0iUPvTzvmT2HcHc1Nr8gWQiNHBtJRlHI83y7w3mQgkckBwlaKm7m6AjgE5Mvex26Zul7pNTAMCOaA7GBCFwCECEiK1W9iW/JM/bVgt7/7m/661tB+//Bf/7vXnf33ew0/rjs+ECL4QKOseeFRyiM8EDvr5NT++f88k0foy/+lfnpcA8el5fPZbRCSEDz/8+c9//PvHd72QEVevf/vVX/0H/Mmr+JFqx5e/fn6znoSCn6e0Smo8HzB/frzxExPg8edPx3lf+Iu5u7u7Pap2B33wbx0qI4G7mYhIlQqERNzTsEnbGLrAnaeBuoG6FBPXcdTTCQzWrehgYlLqPB9Pdc5VnXCIaRe7dNHT5ZA2fRf66D2UYBlcGQDUrJqAATkOXdpuUggdUQBwRB+6XaT+/h4cl6KAwS/fpO1uyFL9ONXxeDzd7Pwt47ooX3311X/6T/8JflG1r2JslaWfCiB/vPePz3iTyO0tICq11HEcx/FUSlXTvu+HfuiHPsUEZzGNiMwcQogpMtN5CR6XDz+5vP/+3//7o2onov/T//k/XL16Y+q2Ljx6U9pNH6C5qZk4GCCYgRkAIiERIRK6u5m5K7gTEiIjcAOcVrl9voJ2UU//Pe4Z9FVyI/zlqt3d/vyPf/eo2t++fduW4+fHo0B8/Gp8+aS7i1mWeir57nCk24eDunY9pdSluDUDEbjYfHl58TuHmsv9/lSO4wNT6NLu1eXvLnf/kvmCsP8pvO1n5/Xtt9/81//6X9uRQ4DP/83vr377OVGTfM6IkSgiRqKAGAAJng4vARCeDXMEx1Wvi7uareYWrobaWZk+O96IiGAICqDgtppdP6EpH/VrU+0/foUD3P/w4VG1933/+3/513d3D+YfEagftoR03tfu7mZgZm7ergEJcd3+9ly1g66X2ZSa+dkqeH6c3H/ykuDR7nEEQHJEbK4BOlj7Lil5nkYwHbru9aur3//VvwCHv/m7v39U7f/23/7b//V//d9+arq2StJ2qU+GMbqLWh6nh8PpY81jLfP1h7nWcn9/P03f3dxeHw6nkL76XUhf/OZf/7t/93lKHTiWkpc8j+MoWvqu226vXl389XbzJsTIHBwjACMQABHSeTedj9QL1b4+OBwOj6o9pOG3/+5/pxBhlTnr3mcEQggEDGDmpu3ct4MgolW1mjsgRk4EKGWZTrd8jfhQJC/kMCQk91JVpJq7ARkihcQp9pvd5uKz7fb1sLkiDOaojoYcuiF0G6KAxOhNMqADOKIBGqKvhiYgQF2mD3/3/3hU7a8//+vf/7v/m5u52ZOJio9y5umn58pq3WKPP9KjnofVLsNPlfJzPYvt6n5Sta8a19sOfTRSHz8BARiBCRHgZ1X7akudrdCntT0/wpevfVrol7vez2f0aSaOZ4fMf3xGXmjsT5/+6e98/nL/kahgJkBiDOhuhMwcU6TAsU8xhRiZCBBEdPFFwTv3BGhpiAhASCklZpZa88wYFQcMc3aE3dVw8Wqzu+z6ITiqWA0UOQS0oMCqIAZVzM3QAblQzdGBSESrSj2NI0GYx3kus1hG83E6KuSidZoPZiXQCxX5Qkq+1O5+do3MXFRrVRExVQenVYQ1X9eZOaXUXG0RyTmXUmqVtmNFtZRyOp2maXJ3DmFbpYpOy8JE4I5IqQEdXYdIXmo7KGampu1WM3OMEZ9t/E8WpF2KPU3HrUkLbELRxXLOU61LkaXKUrUAIlPsu13XbZk6hKAipgoOhBRCz5wQsTlIDs2HbC5a0/20On+r02Ort+OI+On2+3ScdfFP7lX4Oc2EL46BP3q4buBmUNyro5RynMaPh8MP+4dv9vvvH44/GOXUc0pdCANiIIyX29+N0193aUvk0/HhuH8gPPTdRBCReEhfpfiGKCCsKvhsPv/svD5dDlNXdSCnFRUxAAEA86ZPGIAACYCaTbrKtEeD2gG8eXlN6qO3uboD2KP6Wc1OM19ddjub9KuR8cLG8kcX9aWYefYKeCEiqtS7u7v7+8PxeNztXu0urkJIftZCAACOj/Ynoq8YRbv4ZqU0Q8+fWRVnZ11Nq0rbLkTUnNHnFssz73N9J/pq+ziCrXN0Qlum8Ubf7+9vHm5vTod9QOy69AswwCcu0svH7aaiquYyPew//PD+Hw/7j+PxcHvz8ebm+v7+odQxRN1eUOpV/fSw//67H5iZ3bzWUmoupZopMw/Dxelyurr8YrvdDZuLrrsIoQcICOGFj4k/dnQRzrDO8+sjBF7vxaNicgQgQGgWk4hIBVd3qXUqZa6yiBRVAYCU+sjRtZb5UPODyuiWzcuSK7mZVndFAAQFFxdVkAICOnt+kGmHROagTo4xDRdpuCBOSJGJEQmb1coROBIHR1pFg/snGJGbuoqvVugZd4JnanWFNZ6c3PNzZ0O+WYnPkZzzbTm/Ac5uxvoWfOZ0PNnRz388G72IcJZgT9/YILfAL7bRJ8heQ6KbFHyxy16u6ssnn+y5xyea6Xz2GB0B3T89m8/cp+cW4TNJ9Jf4V+cXP18eJEJAIkQCCkQQEYlil1LfUXAka46gSpZSEZXZOFCXAhES07DpYow5E80AyXAAGsHBd5fd7rIbtokZqmR3DxgRAyCbWxHPpRYp7orgQAQcoisTl1pKWUDdFaRILWouyA6TZA3iZV5m00o/0jqPqv3Z5FZTxszUrBQtuc5zybmUmt20AZNm6mpullLabDYhBHef53kcx2malhZ6QBKzWus4TvM8h8Bd35dSlpLPOxNiCJths9kM7i4i7tac/obkE2OMqe87ImJm+JlxVumrQjdvARJRVwcFtFKmaTqM0+E0PUx5v5QDIAbuL3ZvL3dfdOmSaZAqUoqpE/JmuOz7LXMgAkAxL2pZVUyBKKa4YeoQm/KDZ4IJn2TxL22pdpPh0a/6J1bkbM08IlLtdQAIZm6iuhTZi53Ml3G6ub/7883HP15/+MP9w/fH6QZD7TYUYmROgbsQ+ovNdw8XP1zuvhy6q/3D9cPDDYJ0fe/IFCLuBuYdAgCF9Wg7rdr1LxxuYAYEYNT0kLaZuhsAAzIAIxIAAxKiA9JZMTbB4Oh4Bp1Xyfjkpbc78mQbNTfZzqjF+eY8v95HFey/oNoB8PmNV5H9/uF4HOd5ubjki8vXqRusqfMVoXyUmeuFIQBQE45A2F50FrB4NpcRAKBImZfFAULgGFKIEQHa1ocXgOPZTPHV73JHO78I0Rl9Ou2n0+n2+sP1h4/Hh/vL3Wa32/2ian+6J+DwEp5ZDaNS8uF0/+Hjt3/+9r9/vH53eLg/Hk7jaSy51Fo5aM/AoRTZ395/pzYhgZuJVjN1WxeoS5vpNJ7Gu6urN1evPnt19eVAV0zd2Zvk82U8ghzPlQB9ut8QGGH1kc+qyL1ZUQaqqlLyUsvsVtzLMh+X5VDqLJJFCrh1aYihIwQpsywPLiN4cavVHN3RjRCQgFYzQUGqWPZ6snxfYweIDm4YALu6XNZ8RZQQI4fAHIgTcUdpy2lD0FNI0Kz/htA+GwRGoCts87g5zqqbVvjnheZtu+wcyWo68slTf8IwnilvPO/NtkEJV2VJq8X5iBOc39U+8/mHPLMMAgIDxF9U7YDP/oWXq4dP1/Ni/z1b8GZRCHg1EAQnDA4RWlil3UgICAERAM1dWiAXgQgjYsAXewh/2Rd5nP+PX+OG6i4mgahbfc4u9in1AVkdi5mpWslWi1JQjpY6ColDCBwZGRXFVD0Zb6kL0aOoCcZadIJciEC1krMTkBbPoSw+zyJqCkoEzNSg+WR9jMnBIKi5aNWl5GWp5ooExTlWomBVq1n1JnDx0zl+4rK3Z9R0yWU8LeO4TFOep2VeplozoLqLSjE1BBj64fLykohqrafjaX/YL8tSa20IYtNhoqKqgXnO07KM6ZiIiIm7mPquAzDRcjjuTbVKNVVAIkLmMAz9brdjpq7rfmmZCIjOIQNsR7DmcjxOD7mMoovIUur0sL+5uXt/OH48zXdmzhSvLj9/ffWb7eZNl3a1SCnF1JjTm9dfvb76fNgMIWCppyUf5nwoOUuFLl2+fvXVbvM2xR1TAiBctYU/7ud/UqyeXb2/WFl+sl7NvnZ1LObHOX+4u//Dcfw+1/3pdPdw//H+7ub+9u5weDhNpxB9exliUqKKOCOEG5wCX1/uPr/YvpF8yvODm6SuA9r1m8+3Q0ZEoAY/4I+O7F9yhS32+TQ/d7dVa2PTHwZOAALIgIxEDgQA+CyGfP53/YDzbTuryad78ejikYM9vfb5FT+z8f2Zq/JTVw5PLwV3Z+auGzbbi93FVeq2tpocZy/oWfhw1b1neUoEeL4J7TXWvEpTNTXBqsbMqd9shqHvOgAwfa7VmxvlT0inAwCt8QBo1BEP5ExwsdsNQ08E5iqqVeWf2oNPX/H8PiCQg6mW/eH2m+/+8etv/v7P3/zxsL8rSzGFGHoRtCyqplan6fTw4AC2zGMLXjEDERIhEYUYoNabO90f7obb3ds3X/72t/PbN1/tNm8pEqwBr+fH5RPt/iPrFoAZmBGfhYQdAFzBROpU59N4fJjGPUBFl1pOJY+qi2kxr+6mMxEG5gCmkveuC7MBMWgjPzkRMAOghdXaIERHFJfTUo5tUSl0yEOZpCwnMzCHGCiEgJw4DnHzptu+7revI14wJcDQjtLziaRIu57UXM3bXjrzTwBh1esvI5DPNfSqbmEFFOEc54HzyThr9CfPv5kFcFbwiOfo0NkceAQA8Jl2f6b+GyAPwC9jdC9U+2pkPB6LHy3e0+E6mxTPnYXzqV/EDu6LeyVIBB2AOyggEUamLeLg4O6iNqllcEAMAbZM6RFoaJf6T8rW9Sr806s1RTVwNQqEXUip32y2aYihY+TqiGYiooDqYCECR+PoIQFHIEZxFZXiVVEwQWSGEEUc3AQyigKCiIBiMUUNnjkvNs/FHChiiCGFAG4qYlSdBmbCAGgOpGIll1lVHZ0EuEDsyEFrzaoK9KmP/mmww8DB1UxES6nH07jfn8ZTHsdpHI85z+ZZtUgt7sZAm+12nmckyks+Hg4P+33OWVUcAQiJiTgQnQPbSCMTEQfmGOOm7zfDUGpmppJLzrnWYmbMIaXU98PFxQURpZREhLmFZX9GIiPgEyyXcz0ex483d98dTrfTfDTLjvXh4eb64/f3D9eHw22tFZwvL9++ef355cXbzeZSqpRaVCFwP803uXy12+1ipDnfj9P9ON0vyyyVNsNn5sXBLzaUEjEGfxKR6OejB0+m+ll+vbjPP2sD/GiC/vL5FqkV92q6qBxL/viw//rd+/92e//Hebk/jYfjYRqP+XSQ8VSmUUNCN49JidTdVb3WvcqH3ebmYntFbqDV1WLq+u1nr94e5aoAGHg1f3TZzxy4v0zBE2BjNr3YXM+oRgZgvoKK6kCuKzkCzlKNwB8hd1gDQ+bm4ERERGdZ9+guIzkYOjk+4rhPwumJufHMHfpkKX60GgjARCGErod+GPphm/qt2soFg8cIAvhZlD6pdmrTICAAPF+RmHhBKVaLzjmfpiml1G+3xNR1iZBMP70mPy95+x5AdMdztB8QIJCZlmEYui5yIEA3MPOfQIN+YoaPX3TeYu5eSzmNDx+uv/vT1//j62/+8MO7H/IykVMXNyluCMF0MSVzyLmcjgCOOWdAR/KuC10XiDAGBurNZB5PUimEdDzeA1ojA283FAIjEjg9Wwr8Bb3eBhMwOZzjHY4A7mqidcnzw3y8Pdx/PB3uEIRJTReTxa24Vwd1UBFzx8AdApQ8mQkCEbI7uZ1RXwRqTIAz9EJopdSSCyAyh+DAQCJVBKpUFQkBYiCgSHHT56PJTC5oFXlA7pgjank+oy7gtmNRE3NzsFW7P6nUR73+ZISu9uJqJDwCQWe9fkbm8eV/jw792YwieHrmSc482gerk+6PhsGjOubziX4+foJqe9brP2M5P34gApznct55WXSq+iHLd6r3ZqMbgSVAQqIQNiledOHzyG/UvMq81Osq90geOEV+FXDjgIgh8oZ5Q7hBiL/gOp2Pl/uPXuHqhMQxppRijJyYIlIkjkwBkVFNUAVYORkRGpmAuriWLGYGbg6qBgCBAzFR4ICRCJiImVUtL1rmKrmgMkOU6lkrEaeQYo9dT4juniGgEzomwtiQvcK6eKkq1YpV9aw4uYOVXE3Aw49vup/RETR1URNVVRXTUm2ey+k4HY6n8ThO85jzLLKYFjVFcCZWc3cIIQK4mJm7mNUqBgaEIXBwcGLDxjwyU3WwVWimmGIMIRCiqpo5ghNzSkmtR8aYw2kKMYbUpQbOr0LzE0vLq4MAoYlO0+k03Y/T9d3D99c3f769fXf/cGteY0elTOPpOB0P02GaxiVnOT1Mx4eHi8v3m92ADeAzYkrL/PHu9rIf+hCgylhlFJvNzCxO872D1Sr6Fi520KUtU1z3iz+arU8e/C9trX/GOMegvJjPIvtS7+f5eho/nI7v7++/e//ujw8P75c6FikiVqqLupsTEgjmE2pyCmpm0iK8AMt8slpMxaqAUd9vXx/m5VQ1Z9exipqJmoIj0YZ5E8KGOZ7x7BcO3yfLwQiM2DwMf6YJH+nuZ2zcAUDMTK2WWksBgBA4pZS61CzB9g2iVqTOy1xqDSHEGLsuxRDpmZuNhATo7o1D9XSf1+/1Rz/hZ/3ZlzofiWKMUZyr4UoaeAwI+6PaXY/OM4AD4bz8DoZAZ8Hpjgo+53y/v7/fP+wP+y4lsWL6htD72DOFMzb6iJa/WH94uoVnuIIICdeEGzAAw5XF9c8a695X0fv7m6+/+bs//Olv/vDHv/1488Nhv6gYgVsHlijPVDITDTHFyOYOtQLOaq4AqqJShchCJHUjjPOkJbsa5lwMfFnyMpfP3+rVFafEhBHalJ78uccb+2PHzwM6gZkruNl5cSVP82k/7a+n/YfT/mYaHwg1BiAyRAUXcEFXAGMAc3QporpMc5VCRAhkjqaoZoDOjBwwBIqBAlOMMcWGKwVwdGc3cDUE5JWLaahm7g7VpMwmWmaZ97G/JB4obGK/dWsho3Ukhm30SiAGYqDujg6PunS1BR/h+OYs+BoBQn900x+NgGcRikcD4elINuztDG4hNQf95ZF9ggXwMWD/TLE70PrtLxblpWo/Yw2PVsGPx3MnxWHNFWuxJbFTrh9z/Wapf1C7dTuZggk3pRrTzuAV4oKYRbzIvJTvl/oRSZlixFeMOwBiHvrubUdvECNg+MSEf4GDPLumFy9yADMkCCHGGCkyMjiZo9q639AADcADEYKbV1OtDhWWJS+lILaIChJRShCYVNvqEoUQQgAwRFGTnCuoxthCDY7sHCF0lDYM4CZKVIAIgNwZPSAgOoGDNeK+VwFREHM1M3T6NAjX2HJgjTcu4rVaqbWKOviS67zkcZpOx9PpdMzLXMoiks0EwInIA+ZaYZpiTIFZzJ0IEM1B3cENEYnadkERkyqlZNHKjCHQTBwYHynSK14Wo6o4eEvqa2FaDgzgmw16CIgrw+5xBofTLUZPcVOrjvPpYf/x5u7rjzd/+vjx6483P9ze3gDasE0IriJ5Wuoky7FOc65ZREqR01xio4CCMUKYTjd3MYVAxO4giBVZkRCwm+dRxEXMnKrUi93bFAemiMiIsXGiEB0f/dLzjn502wnQ4cfm4k9uQj+/s0WVtcixlNt5+WGavj+evjkcvtvff7i/u777eHs8nopWA4fAKqiCboDGqjAX5GghuYGpOhMFhmpFyiJVtKorl4L7u+P+5v5h+z5SUisii2pxwJiu+v7NdvObrrtAoifo71GbvRwBMOJZ95+FEzoQPhMdAO7o6EVknpfj6XQ8npCw67vddrP1TYyhEZTcIec8zfPD8TAtcwyh67uL3W7oh8jMSI1ZR8yA6LaC14hIiND0PXrT9vgUOvnRZf9I5yMAUyASRHBwc1N3s+dCCVZs4ewGNVvEG25p0MD7ak3jQpU65fkwHm/ub29vbx72D8x4OD3kZQKzV1evdsOu8emaWH102f1RArnDY9bg+p3UXmnu7toujH5hbz19MDTF8WhEmGrOy+3t9T/+49/+8U9/9/7D96fTMWc3AXDVWmustYBb7Lq02RFiAaqEEZxN3cwkAICqZSI3w8A6z5IXrQIlVzNREVMEDzFumRIyIZG3O/hk0/ycXeKgizmqFnNrMUREzNNhPNxOh9v5cLNM93U5EpkrhADM4Ca2ygpv2RbmpqKqIlXc3QxUXcSKaJNeKcW+T12KMbI5ATI4IgWA1Q4AVVrJtO7kbqpVzc0AYJmXcT8f7zhugPqQLvrdayT2Z6waRk/sBN6oA+KrIYjnwDY+us6PtukThABPupwevfbnvjh8amk/HlR/xJ8f1fbT309deVgt3TPU9YQlPI6fAOSfhwF+cgl9/WIHEPdisJhX8zrnj6fpmyLfm79HnBmNEIAIsCIGs1zkCHBQfeeQzB3oHmkvUnJ1k3uAFDh23QWgEIdAO8ThGSrwuPU/1e7PjaB1k7k6mLuaqwGpa7VspaIigDlaFSlSG1xISAToaqK6zEsuhYiIGYmYOAchIgdDAA6Ukm8GZgrDsEUPBIsbxBgR0NSgQUgRQ2REUzYCR1fTqhWlmmXIeak1q1ZzbVwLU6+qpgJnkPPZTMDN1ayKlqq1Wi1WRauImC7LMk3LkvNS5lyWUoqIgAMRI2GMoes75gAIRWouRVUBgAJzDKCgpu5oBiGEGJJbqa7uBN5CcowAZkDU7jq6Q5XVBlbzWnWalhiP4zgtS/5syW8/8y4lAFiW/DgFc/sff/h/Xb1+/fb1b1Pa5LqM0/H9h+/evf/T3e23h8PdPI3MRGToXkXrIiZAGCLD0PXbzbDZhL5nFdEqWg1UtEplRnQkYEZkcxAgJ841ugqWkk/j/vWr7z9/+9Vu+7rvdintYtyGOETuHAha7vxPlWzyZ37KPzXOL3NwV5HpePjhYf/Hu7t/OB6/zuX9NN/s7+4P+3E61HmWIq7oHsQdrWItVCaqGUWAI6aeOAKRG4PoGhlFZwRUg3muNx+umf52Oo7vr/7BTNSK2EKMw+7Vqzd/9buv/iPz70PYIsdfvuiAmBBbBNFW1bFKbmyo4HkPqsMyLde3N+8/3ny8u+UYLi62r64ur64u+xQjMwKZ+mmc9ofj7f7+OI0cueu7169eXV5cbPtNZJZSECCmjolbEjkTphj7rgsYVktqJSr/pF4/OycvV8UdVE3UqqqYiTuZqxkgoFsDQtHxnMSGj27RU1EE8FLLOJ+qZCCoJZ9Op/uH+4831zc3H29ubkopzHT31e9qqe7ed31kRljNfnAwh7Vaw/nizrfz/KWrO99sDXc3bODyXz7OsYoq+Xh6+Hj97ttv/3R7+xGcIm+Uara55LxMJ8Ladd0wbK6u+ouraL6oLynGELnWola6jgHl4WEqNZuGlKBklQrurGrTPN7dfQSLhP1m8yaEbjMQYVp19HPt/lOcTTct042B5Ty1fDZEJKR5mubjvi57t8zkKdGalC9aioqImTIT8erVEDEG7DcpJK5VSqlVa5G6LKWKAsAw9DFEYXdXs6oKoRHlCAnRTFVEqckrB1C12pKfq4iquROHDqkz7EK321xOIfbPCbPohirkQA7cbF90QKc1lPOoR1cPGFb0Comazfropp8R9DV3Ah7/Pe+M9Qsff/Okyx83/bNnnvTxs3c+wl8/9sQ/Ue2PF40vdehqhD6TeuggZrPYQfSh6qnKMs0fjuM35jfMhxicAyMyEQEaeBXRqiZyX3kIYUPUIWXmuZZcay354BZS12MwtTfuxUEB7GwUPd6QJ3Pm8X+fnhSEGMnQ3UUMSQHFLCMJALi5i2oRKbUCIRIHYgKSKqWUvCwNVAwciJmIkTIiNeZ8jOyKgbVLHELoB0AENyduLuWa4BU6CikSWbCW0ovq5qgOoO5OSqFZmOiAtqbBPpp3n5yYsxKdl3HOeam5NB1norLk5XA6jvO0LEsuWaSYKSMQEYcQU4ypQ0IRqbXWUsxaYBQosCOAkjuIeAgIzuCN38BETsTE1Op7rBUK1lw7FUA1r6LLUpmZmZcll1JV1QH6rgeE0+n0OAMz++PXf7O52X3+2d3Vxedd10/L8XC8f3i43e/v5umoauBcl2rmtaUPKDKGrgt93/dd1wUOBA4qCiZu4u7qZuAG6EwIBGoVyUMyVVC1nKfj6W48vc/LV5cXn22Gq83wdrP9bLN5A/iKOTUOOD0zpF5CbH/JeDxZCOBupdb94fDd9fXfX3/42/3+TwoPpRyP99N4lDpzqSSGStDK77igCkjFPENenAOYUNdD7MwNjBwNIaAbuYGpm8phf4+u8/Fh6DfmbibmCye6fPMq5/1uc9X3Qz98GXn3EwTm56cDm9eODmh4Rt6faXcEBwMxzbXuD4f31x+/ff/u/cePIYWLq4vjMp7yNHQpMru4ZN0fTw+Hw93xMC4TRe43/X6arq4uLzbbSFxzRveu75mDqxFi4rAZ+suLi6HruxjoXAWp3Xt8AtBfLMiP52PtdKjlKnMRBTFru9cJgQjIH3O01jQ2NzBwIoRGWJCyPz4cT/sieVmmcRz3h/3D/f3t7e3t7c04TqaqVXfbi6vLq7effR5iBCRRc5PVQz9T8ZtJCL6SEBpoYAar6rcztun+I4H1y6OlZGjO435/fXf/4bB/yHNmZsKVtQ/galXdhyFttv1m2/dDMHM1jzGEEJjRnJm9iolAXiwFc7VSVQXcXMUAxM1rga67+OLz3+22F6nrIyNAcCd4lE4IPwlpmcl0eKeuOY+Nio9ICFRyzvMkeTLNCELsZmamVUqtVUTcPaUYAMzV3YgCM1MIkdgcsIqZq4qamKk7WHMuDLXF1wQAERkRWgUcMVWw1Yd1N9Faasml5FxyKSJGlIh7DEMaAMImJnuxIqv51TI/aeViIDA94t6PkX5EQqQzZR6f0ejO+/WsrZ4lBD4prac6NT9y45/0HfzoV8+fRv+pZwHgR4A8PlPtAIDP2EZt/9JjJRDVkuthzj+M8zfTcjsvYy7HWvccpr4rCMDEjJE4qJqoVikiNQSKMfXDRUvbjWwa3GLLkeGu6/q0jWHHNLTtguCIjYSG4Gd+IJzhiCfm+NPECOnq1S7LPDWV4zFXYoIQiQOqWalSihRRBwTi5qbUWlrqiJmGGFOMxIxIZu6IIXDqAsKgwXIWNw+MRNANtGZiNIAREIBTl2KXQiACNzGtHpg9MnTkPVDqeLBYcC64lGzikTFAZEpMn9Z6c0A1z0X2h/H+4XA8TdOUVVVaFblapmmapnGZ51KKiSA4BUJiCoxEagYGalZqneelSm2k4hBCiIkSLUvNubgXU1JTc0QKzMSBiUCkmik1mNFbcroBAKtSlcCBOQQOzfVXtXlaUtcx8e3N3dMU3N59+Nqu/euvv3796je///2/QazEGGN0B0ROqXOHnK2WWoq4OjhyI0gEBBOtioAujkpgAECMITABmLmWWlXF3DkgMbl6hdEsq5xc78vy7jbtunRxcfHl1at/8ebt79++/X3XXzFvmII/A8h+OoT4T42zLjLR47J82B++vr39w8PDD8fjPcAkUsoCkqlkUAOMGCNBQFUQcUBANkeoAuYYCgWGwE2QkjmBkYrUag07QRer0/4u743cyd0NJPasVvuhf9j/j80ucSQOhLQBDD83F0JkoNWefIYnt78tIi7up3m5O+x/+HD9w4cPH29vHw4PwHRapnmZTuOpi4EQ81TncTkcx9M4ZasKnoauLzVnORxPfUyEqKU4eIyJiNyMCLuYLi92b1+/eXVxcbndbbquS4kRYc30eiECV7vDf2J1ENEcivi4yMNxjonBmQPGADFgq15BjQ+EgGsCLqKBgyMhoFetp/Hw7vq7jx8/HI77UvK8zNM0nY7j6TSWXN1hXObjdBqXuUhJngh8HKfTaWKkGLq+H1LqGqbV3Lt1GIKbA9XqIqpqrVaUtUP0Fyt3d3BX9TwtDze334zT3Xa7KeVqnnNe8jSdkOruMiEwYtjtut0FA+VpHpEqkoJWAyZGBq+y5LwQhhS3iJ0pa9VlKdNYkfziMomYVNrv747H2/n12+1uF0IAJARzX7G7nzsipvXh9s8Oqla9UdAc3EEbOahmrdmsmFczVa2l5JKLOxIxYkBiVxA1qxVAYnBAqgpiJAaA3KWuS45IMabmL3OIMXUxdYhQRatV9wquTSsgEbSsB62itdaaS5nmXKoRY+r7i+1uc/F6s72KsTu8iII8Auptwui0Qru8EjCbDwxEsO6wpwITLzTmy63qq5h5QnfgXMwGznDIT9zcF8/8c2zCl177U/D/vIT46Jo4ruaomFW1Jdf9NF0fxu8Opz8dx5tpHtUKovSdETojEYKzE5qo1Sol1ypVgptVYiQ0QHIDAGU2TA7gMQExABTRo5sR9oiBuQswEEX00NzKJzf+J+8i4eXVZi6uXpciIgIKCBAqxURqVqu1+i7WKmqZuWqtpdZiagAIzowruVfUvKVzeGRmDqFFyhUdA3ddBABRXcNsjuDoBOrOyMQMIO7ihGjAHYITD13MGBfiBf2ktlRSQoS+SzEkmhDO4FDDvUvRaS6H43R3fziexnnJTcm2zbosc865lqIirooI5NhCESBa1RtbWRVylZyLioYY+g5SYgykBqUqgCIZAgIyBwI0IFA3MVfRs/37lM/t4NzSPtGdUMTmOZt6zqXvupS6cZyer0iReZxPh4fvL7bXHHy366vMAI5IzCFwErFSS8mesyFACBgYYyRE02rV0QqZgghWcTMghLVQXYPnVQGZnMHZ1UWL+JzhNB/pRByoS3FzcXk7jZMZxrC5hDgMfSM3/TxN82f31+OjM3VLzKZSbqf5u2l8N56u5+mQ59m9SLUyY1lomd3RU0ecEANBdQEHcu48VAgVCRDJzbxma5fEhEhYK9TqRBgjaNWSi1YQATdyB3ONHYeEu4ubw+HPl6+2/eZ1iLuAHeJPEDLPE/h00isa5ismZwBF7TBN729u3338eH17+3A4TMts4HOeay1LXlr5z3nM03Ge5ryUYggYqDNVNRFdlkwIbqa1AkBMCQhNFRFTCJeniznnJS8iahcXSNRx4DPGCY2Y9MyzeSQxPV0zIhKZYxE7LeXhtKQuEsYYqUtgTuDORIxPggzNbN01K4lQzarKOI7vr999vLle8lRKqbWWXHOuqoDAc17GeTpOp8N4UDd0fLjf7x8OXewvtheEHELCNSPfARsmY6YNyQWppupn7xr/2U47uLmILPP8cL//Ycn7YRiWuY7HUksVzUMHu4supcQUuy6kTkVyqTMHZ0JXV6OOIgUCdSTsh6FLgTkCoBmW4iLFTUsnhMV0PB7v7+4/XF5dbTY9EsbQ1NzZPfwZUEtVjg/v3VWtOmgTGGZAxIzsVs2KalUr7qZqpmpm50KIAWGlVYnURuZFdDNwJ8QQAgSClsgDSG5WajVDc1ZjcxMp6BmhBsbADAigTZF6u/tmJmK1Wi6GbM7eG5o/JSu+PA+IjWGEgCs0A9zyBs96Hdcn/bEy8ydQ8o8+8tkvz04zPkHOLcr+CzvjR7btY5jpZ+innzDkn6PxzQ7xsyXi4OAmqqci91O+Hqeb4/HucLw+HD+O8yHXgqQxAiEERoIElio5oJqpmYsEU0ZSNShZTGdRdzNmZMaUmLA6jKIf5yK5XoMTYuDQx3DRxTeRrwJdMm0ZB4RzNRI8V0V4jlEgbHd9UqcApzGPc5XqAGiC0qI5wCmkGKFUyaVUMaki1VwRgYk5cdfFPnUdBypa3K3r02bTX1xs+6FredlqAoAxDcy8FooWKaWWIrksJXvf69B34OauhIrBOGAIHDVEoZgpzmQsSo17jN0Q+9TTQo+qvQEM05IPp/lwnI6nuYoxBw7s6DKaLFZFaq1q2iwUdKgKulJjEZBS6vq+BwxmVAVKFqomArFYCKEUEfUYEDGsGxfdwaTmKkWlNqb9ar5iq0xDHEIgDi3xve8RqUW4Sq6BY983m+ZpS33x2VcPx9v72z/fPrz79vt0sRtUT7mcmBFCQoqoutbgUSWG8xlyrabFlJgRS4VcrFQ191LiMBAFRRIDZUYOIcRwvhKvudasoB6QY8hdKnUJUjrGqxTfMl/23WsMzwEq+Fmh9XPH7PxYZSrl9jR+czz+qZY7AkUHsCC11gXLhHn0aRQPzjuMDX1GEDcPkDrknuKOQBANpfg0mSmCEaEhQBUXgZig74Hcra6dCAzc1MyqCuTRxuN4Ol2P45vt7i6lL5Cu8Jn/++nV+1rN31Z61xNp1sEBSMyXWven8cPNzfXt7eF4yHkBADcrWeZm54ZAQHmpRYSYu74vUlVVigjVvksIUEuptdZaEXFAROIq1UwnxNxM6VqbaAvE1A/EYRWo553zSOrxs75/LqyI2AAWUV/qYcq99zEFI0cFIltLkVDjiQCAoyMiatNpCMBgjl236YcdYlhyub27nefJ3FRMxMGJKc1lmfJ0f7z/4fp95KhVT4dpmZY3r972aRBRrXa+yFaXqVXEAnR0cFUza+AOraVo/xnGpAO6mdQ6zct+nG5LPaXUMXOtxVz6Hrc73l3EYZNS7NS01pN6BarExIQiauYcIMQ0DP0wDK7RLbiTG6iVLmWwlHMmNFMQkNNp/+79n1PiEOEzt4sLSpHO2ZWPOupTReJuy3SqNc/LSU2RgJCIuO+HoR+IDEm15lzms1VGMXWMKXAiCKDMEACjU6lapSiAMXPkgF0HHhmNCBGxik5LLnURRUAGDO7mrin60OF20zEHN28V7gCa1AoIgk4EkcBFcZ6L3j3kArnI0PX4PB2xWYKEAEiEjghn15xaxP0cu0K0Vln4fH5+BMe/WMen58+8jEYEaT7kWd0+cit+YUs8fdIZ0f+pxNefiLU3n/jxsDsYuDqoWxUdc7mZ8vvj9P3pdHPYH8fpuCwH00zoRMCE4CiVFqO6kEN1KESt+ikhMhESmppLriVXNet7HnpGQkLNddRSMp4AA4IjIceUwoXY5134LPHbwK8jXzJtmQZc+fOfljVtM+FAw9CpoUgDbtuZaoU3jIiQ0QyERADAYKVkMYcYU+y70Hep40hYQb0yIyKssWYAVa21aoSUrO8iUXRUd5AqyyIqFTD3SylDHxgJndudITVXQAIGShiMY8dhwVrcVNuf5yZ9LvVwPD3sT3d3+4f98XSa1I0IO0pIqKqiIirmRkSE0ZDMVM2rVFUHWHPWmbuuD0N1USxZW6HyFTkE4pA4diEmQAQwRDdTcxdxNfDV7T8bjbQW3mzRCmIOITGTrdRkV9VaRUSeLQW+fvUWyFP3w/F4fNjfVOkYi0pBYOZAFI0E0ZAUyZghRiLyFubUamiO5lW5ChRxA1VzVewHT72HAByIiKlheoJl8WWyZRQXY5AUrOtBymiyT+lu2NwN/Wfb7VtEiiEAnSuSPc7yn1DwZ2Y0AAC6m+i85Idpuh6nDzkfVIpWq9lLpjLzfLTx5NMMmLwrwNXJXKqbedsG3GEcyCro4rX6vLgs6Oqtk4E7OQRCFKLZUCtsNrHvewAFlJXq72jiJeclL7U20oO9kAIvh7qLqQKoe6li7syBiZkYAVTlNM23+8P7jzfvrz/e3t6dTqNYbYcHEd1Mirg6Aom0UEiISABeqoGq1qI1GVHzzs5hZ3dTKbVZADlnUVlxAnNGQse42TI9KQ9rHqurmKmbA4jKs3m4mYloLuJF52KtCDoxkLbqH+6OkVsmdJPArULeY+zWcs2qDhjMqVYdT9NpPPpKh0CEwOzTNN7tH4YPH8whcnQFcoqcOHBMiZgb/u4OrfSurVX4nthyj5FZfKRN/zOGi5bTuD8cbg/H23k5RLpkttThxgNQN2yAo6cOhgGWRZY8i7biExEwwEqWIaaYUmBmkyAVcxZzSykys1uaxqWUk0kl9GUeb25+CNEpqKqY88WOhj6u9QmfNtXL3eUuVXLO8zSJCiIQceCIjoyI5ObioE9FUglprQQAbghEIYTILYxLtWYHi5GZ0Z3BFVwRgAgxYy6iUsapVAE1bIHwzUCMMcUQ2NxN1NZbvyoIDtyllMxViuRccj3UKuBS++HypW/4pGlprSaDBIRnPuEZBcJPTU34i3wDRwdw9ZxzzqVWcbOuSymlmAIHPl/1T7j/L4vMP2GoP0kQ+onkt0fX3d3dq3lxr2ZzlX0uN9Py/Wl6fxivT6fjNGXVmnodInIICNRqhYtCXlTrIlLNStfTZgh9D6n3mDAkUgUpVouJKBGEgCG4g01TztkckJlTRyFANRPpxK5reNPFt5HfRn6bwhcpfB54R9RhK0H4nPLnPp5GYHWgwKFPPbmW4sQhpSQquebVqCaPkd0CmBOQG6Su67s+phhjCI2DDWYqZRGttS6ZAxOSuatoDEkzbre+2WzcsSyQJ1tGWUoRlRBOfZf6PvVdZAYmoEzEjEZgREAqbqruUHItS9FicyhfmD0uyTRN76+vHx6Od3f7w2Ecx6lIdbdh6EPkOS+1ZlEBxC51IQQ3K7mO0ykvpupImBITdV2/CzFsNhcp9WYoKi1IziG0ylRd13exVxWR6i2qAOiIRBEAAzMiqJ5xtpZ6YIDAqupuMXZd15lZKYtIPRz38zQ+31Tb7YV4fXX12s2ZWEXVxdXdYstNNStrTUCAlHDoqJacs9bFava6FK1I3CGnprXmqZp518UuxX4ACqiKUkEKlhnnEeYRy0xaAA1igH4AUwOUYTs/3O83m9t+uHCrrQRvqy+NyGdz/Bm69lNH8/ynnWQTzbmcljIueVryMs95HJfxVLTAMvPhoKejFkEyCkcSBSIBXFPvRClETANY8OJm4LlgmdEFmSAGSolb8w5wz4vl7IAOa3jPnZ0T9pvU9QP6xmWDMBB1uAJ0PzUJB3ErqkVkLuU0TSISYzf0/XazBYB5mq9vbr/5/v03333/ww/vj6dDqQsxhshdiOu2odCgZ3RkoshERO6MwKKiNecJQSWk0KcIMToAOYiI5lpLKVIlBka6h30tVXIBtQC4HYaIa5k9dxfTIjKVZcrNZpEpL4/zMLO8LHnJJVfqDYAdSB3FiNUzmLurgRqEgI8FsBBdTcbpNE/j3N6sdR4XqdYYmlpUtToAYkAEMzwcDu9++KHkcjgct8N2022++vK3v/3qqy/efvn66k2gAEArSw7BW400B3BCwIAUGoOGVkp1I1X/FID6c5vNSl3u7j9e37y/v78bT8cuCQX67POhVBAN5lMtuVRPHZpltSXnXKsCDBwCQowhpLhJcRMYAcBMlyXfP5xU5Or1Zhi2b9686lL+eF2qKCVWLYf9jcOSy3Ga5yL41ZeU0pYoPrmJP9pa5yKARBRR3VotN4BlKSIWIjA3ls/GzFWtZBFRUwWofTeEjrvEMQZVEsFSwUFTiiuBVqXkAu5EgTg6BpFxHIvUWhU4NA+BEbFWdV9WgKERLVXdnSj1w8ARiCXLUZdZPJvlyOoyXGzfPL5ldaEfCfHn8kuPfwDgWf76o75/cqLPkmF94qmKA64BJjeoRW5v7m9vbk/Ho0p99frVmzevr15dbbYbYl7D4OjPPmq9yfj4EODsYDxuvRfjU0AeVvHmDmZQRQ9qJ7VJ9VTq7bJcH8d3x/HmOB7meS5ViTwl6PvYdeTKefFcrS5WikqFUqqqiDA4IjqFVmUYzMhaXQEEcDDzlnLeupWoKgckbp6AmE2qk8Sj6H3km8Cv+3hwqIBfpDX9/eX8HcbTgsGYIwBFDh7ITJEZQ2g0djuXtUZGDhyig6tJSxvj5tKKCKjWUmot4A5IhcpTzS+HENQqSHbJ7u7zvMzzPM9LrqVaJcIlLMOQytAxI7FjAGJgD8FjpIhA4ErorlaWKtkX1s829piQNU7Th+vrw2HcPxznOS85L8siItMUQ6CqUqWqKhMjUYwJHM3IbBat7hywC2Fg7gFCQ79SN3OMgA2dCCFEpsAcQkhIrebYedsQMUdEImTmAG5q0CraIJqtHEYnoVxyiCF1qSHqLVSZn4lgABDNgDoMfSk7ZkZXU5Dqkp25EY2ZY0oAFDgFjxGk1Jotz5Znz7NK8Zg4dKG1JWnFY5k5hoAgYOZiLgG1AwWr6EJuVUXqUgu5igMaRRlPy/FwuOneq9nxsNvtNsPmcthcdP0upg1jWA3xf8L49me4GSLGEDZd92az+XLsc4ij2n6eLY84j3Y82LK4I7FwnsjUEI3YKJAjqFmKAMPa3xLRQ2SNqA5IyJG6PvV9VJVaa6lgrhwLBkydhWjM3m+715+9/eyLz3YXb1J61brm/PL1L6UcxvEwng6n0+F4LCIhpN1u++rVa0Yex/Hdhw9ff/vN9z+8v729m5fJTThQSqHrEqUOW7dkQDevtYpUiyEERvBIiI5qVpZFtXbaxZQ4MAE1Eia2VnKAYF6rTNMspXYhXO12Y16yFGJmJwBXt3GeDuNpPx7342nKeSlFx/H5RM6Ec2j9ysxQBFoX50C2kEemQBaCx+CBiQmIrJZ8t384HO7nZS6liMr9/d1pf1zGuc5VcxURQKTQhLtM49QmTIDxs/Dq4tVut728vOz61KJXK3T72EelCVBDbDV6V1jozFZZawj+xLo8xWHhySEz05yn+/vb+7vb8TQu8wQAzCH1hIyQsVRQdanWVCW4EzEzB+4C9YABIYClmjEv6i5mWmopeVFT98TsIYaSzY1MiSgwIaDkPD48aIh97C677mK3e40DMQ3PnCj85OKJMISQUgcApdSWN6biIiUapo46jiEEqSJmiMhMbabEwAE4QIgYIkeLQdSBQmBqVyPgLirnFlCIAK4qqrV1X3IHEVsWqrUyEgcmDr7SldQdYowxUoihwzDUIlbnvJjIMgN68c3rp9m0UM350ZoTdl4QP4NKj3UYziy0R63rL3tQNUHRKjesJpFWnafl5vr2m6//fHd3W/Py9u2bL3/zxW+++s2bt2+7oY8pEjG2JJ5zhYYXev7JdPfnCv/5+BGNbq2q7GpZ9LjU97l+VDuo7mu9m+eH42l/Ok3TXKoaoFEwJCOCwKEK1oaFzmqrPQGqUIohqYFUA16IQ0iJQwgpBUxGXBHcrAVgArFVETADZ4SAnsy8lCp1r+lEdMO0qd2DY0ayEHqCLWB4Pjc3H08FWEOwGGLkGJk0uCGIS3GpLmbiZkSwZi8EQm1FERVyESVWxJaNVRbRisjnHpioagAYmS24V6tznQ+zqs1zrrWKipM7gaJLEamal8oBKSBF5egD9QP2HJyQCY3ZCdzViwoC+PA0kWmarq+v57nM85JzLaUsy5KXxVpZT7CmpLvUS6cagIkRgxshxBi7rh+2212IXc4iKoCWS7FWCBsfW1oRAJpaNVE1W9ulARNjwhASU3QjFQEoqm4m7k2zOrS8LPNWYAIRqtRSlpKzPgPk3f324YciMwfcbrZgZFqritY6jhmg9oNyDDEliixaAyi6mKIUzIsvs9cCKuCkSgXZCb2LNAzcpURIeV6kVreOsE90iSFIOFmaiYrrPI9SqzkoRg19neZlHA9i9ePNDynRZkhvP//dF7/56zdvf3v1KhAT4l/WCn3tEYYA3MWrsAtd7Db9K/RNXuz63bHkh4d7OR6kZjWH0DEA1wwmTmtXNROBXCQwDh2F0Op08uUV587LAozUpbAdUpfi6aAla1V18qWeKE+UKAWOXdxdbb76q7/+3V/9vt/sNrvPQgzuAo+52z81DuM4gry7/nBze3s4nXKtxGG33X322eepSyXXDx+uv3/37vrjzfF4LDmbChEE5i6lvksxphgicwCAcRrneQqRU5f6vk9djByIcMnLkudlWWKKXd/FmBgZEVOKxBxFW8EYrVrNq6qiZ6vHPAlYIAYEUbm++/ju+v3tw/3D8XCapjnnr5bhEuJZWGGKMcWUYgzE1Go1mgIoQEUywrXqbWCOgVPkGJBJSz69v725v/9oWmvJyzTd3d58vH6/v7tfxkmWqqpIBE7IhoYCZQaomy0hvH519fu//qs3r18TwTSPeclDPwzdEEIkCg3xX/vEw9ru9uzqmZkqmNnKqPvF8aQlRMo8TQ/39/v9oWQVtVonM3SHnOs8FXMliqpciqsiUdwM20Bd1w0xdaYkFZbZj4dlWUb1stkEDhRTSMghIqCILKVUqepGTP0wxH4DxOao83K8uf1hu3l1efGakLYbRozPyn8+y59CiJGYA2KPK6sQmYOZmplZS+NkN5JqpQgHHjYBABEphhhCq05RiZ0DYAitUO2TpGKqVXPOOcs813mZal3cBBEBVFWmyZZpLaMZYhdShDUMTkgkpRSBrhtCClevd7Gn/d7mZZY6LS7PQ7ruaEDNRiMAIECDtTORN3Nldd8f2ZhGKyFuLYbbijw+b4DpKwzfdHEp9bgfP7y7/vMfv7n5+GGZT9eXu5vrz6fjMf/VfPX61fbiInVdaFuWzly/J6zwqUr/6mWujsaLffUpIN/SFx1cdVnK/jh+GJfv1O7N9manWqZcShUxMzdwclWrVWMgcGOkpgBX4bemgoCai2ipDoSQEdH7AYYBUsQUEIkBwPRcmbGZheaqZmpE3Bjp5tVBiRDxCIghDjFcdvEtUgsCPVsb8GWpSOZdi/67IxKTIbQCzgauzWt3asl8Dc5QcFUVg+DEjsTmINq6JjeCGYCZFRFwBwvN01LRWkTVc64qqm4YiCMDoLnVqmYeIwenwMCA2ABvVScHUGbo+rTZQK3oys8F8rIsDw8PIiZibkbYWJqkoqaG5A27dLOaMwIFCqW0KKoTY4yh62KKjOiqaiaqdbXe1jrPaObuKmArWIPQuniomZkyr6fY3E3dzIkckWJIgZM7mlopxd3MNQRuQRw790N8XJA532dZqkgrYusmSIpsSGqmIgjkgSMhBmJyQHcCJmh0GHVvxVUIDThgTLjZxt1FTCmCeZlxmcFMCUSCuFEtoIKmoAbqYOpQDOdMcQz39xQIGVWF2Po+TMsEHFK/3e5eR0rP6eM/K4DPB8lNVKrqXOu4zNN0WqaxLpNrJbdgXgEt9kZEsSMKBKQN6gNAUZfiZfKsnsn7nvqBU6LNDlIHpXdwC+ixVw5EwYibqHO1WsSTkFoijjEFDsQxbjZX2+3bLl0y94jPm0DhJ9d+fzjoQtc3Nx9vbg+n05KzuafU3dzdp5Tc4bA/PBz2uSyAHgIDI7ojgolmK5KlELdC8eM0zsuMjCHFzaYMw5D6DgmttnyjWktt/i5HImZG5MAhhKbhWj1zRFhKvjvcVyt96lKIRKSu728+/HD9w/1hfzidpmXJub7lz2EtGwxElLrUypIRkburmqGZq4MhGRKAGSAEhaAWRBjNPU/jww8fr+9u35tWLTlP0+H+/rjfL9MkuWiVteyoGZAjuankRabxOB4P4+k4TSdEOB1PkWNK3etXr0MM5EyPfJSGmrQTtqZCgwNYu0KzH3cU/HSFVqfQc1ke7m/evfvuu2+/v/5wmxdVNdWyFiY1Yk6opiLL6LVWZmBKHLrAHVMkSBwSAo2nw8PDOC8nRGG+2MXYJQYyaFTH4vNSSxU3lEpM21dXF8h1mg8icjze3d59d7HbNfmT0gVT33hbL7LBoTURMKS10TMiBg6q6ALgIOLgtVZpdJCUYtelJjEQ3L2lGSG19ER0N1NVc0AkUytVcqlzLiVrVVMzAzVQaMUDKpiIiTJzijH1ntypkX2JmtXgpmwVHUKgzZBq7dykVlF50a3HHFVXCMa96fVHbbpWsFxxMQRDaHVbzlA3nEno8AiBr+mla6ngkud6+/Hh3ffXH97f7B+OJRdTy/NyfHi4vf4YmJd5vng1DdvtsNtudtuQkjuoPnYnapw+XJPu2v5xA0CzX1DtcA4guFXN87J/OHzYH79Vuwc4haAtqQrJiQEdVUDFtTi7b5MxwWbD7qimVVxNARXJERunBNVQSnuXuYoPjr2nyAiswmZg4ujGCO5eiyB47FoAB93JxJwMqVYdc73t4l3VPcIQKL04Gg61CAWPHRpgNQNE53ViuMJm4GuTKFI3Ua/usvbxtIghEgVukG8HaO2AuoOINOqUArReEOaozo5AgQwctBEmud19B3M3wNYsnrueegjJQqPkGSoG2F5uurSVgqbE9pTXXmu1cWriIQZOMQYOXepExMyAHM7825yXkgsTq5rIAg4IgbAGthiBmUR1qQVcA6O14BA4gIuIVDUHcEopxhgBzAxLrqVmNUtJwBudppoZEcXY7bZXXerNIC/L6XQspSACQOq6FGJ0MMFapDxKKrVc5XiaxjwJYwyMMVrqdLNDFXBQd5esT11LnIlSjBYYEJ2JmbmhSSnhZkuXV+niMgRmFS05zqOXoq4TIYEFUREtIqXk6oYOoKrLsqibqMzLiAEdhNlTFzj228u3r9/8RrS622PMzJ8wsB8PRDD3KvVYlvtxvDkdP9zefn9z88PN9bvbj9fToQbqtpsSY+WAHNYgj64xWDSjXECro1lZfC4mAxPElLAbLA2WqmtRlWJgYpWidhuAgmJIiK5espYo2x26237/cXO/21180aWrofsixteE4Wdj7eA3d3clwP54mpdlWZZpmpcli+j38AMzx5jcvZSSUui6yK0dR+OeldpI71nmxqqptRap5g64zNMy9PPuctf3vSmgYNVqYsrRQqKEITAiuiOdq2OEGPoucQjH8TjOJwRPKfVdF2MAwvv9/c3D3ThPuWZ3ZcbnJVqRqOv7mDKH0Lx8YmvhyFZKEVvvF0BDFHCpVWWZp/3+4eO7D+9vb97XPGlZvEqexnmZWpKMu7kbOrobgzORmUqtx+P9hw/AjKXkYdh2sb+8ev32zWchpc3ugkILN5y5zytZGrFRsZAc0NzRTde6k88m8hi/Pv9/zTNFm8bTt99+/Q9//3f/8D/+8f7+eugZEHKpDkLEu+3F1cXrZSkP9w9LndXrdtvtLvo2W1fyFDabi8Bpme9vb45Vlq5nsJTCzsjNi9Q55yXP02nUIuIaxtHfvNm+uvxrihXgh3mZlul0f/dDlwBBAuPF7jdDF7DF3V84u17y0jIC1Fr3S44xkBIgNm5lttyq7YaAxBgTuamo1OpuwByJGMAArXGWa60q5g1WXLvNiyo6cgvd+2PDTNNaVIqGEK2RrGIMxDEmpHDurAZSi2kNkRGh7zo3H0+z6YtjrupFHMHOcfTm8PpjITpYM99buL3Vq/EzSae95bEGwBNKjwgGdjpNdzcPX//x+2/+9N3D7b07vrp63SVi8hioLPPNhw+n02nzcL+7vHr12dvPiYaGeIu3u4SExBgYORDzCp+CuZuL6vOJ/EReu4Oa5SUfjqe7h4fbh8Od+5FoickRoFYoFUpBETdDcDLwGqAWpWQhALGbW6maS63FVTxGJ3YzalEIJkIQUyxZwd00MoM7u1GzxMzd1GT2WjxUD4GYkQkQqMUsWscK9eKubR98EmyopaI7lWqAGIwCEzKshmZLVFN3Y2cnaACRSMtvbyERcSBAIqIYE4fHOhROjMTo5mhrbE3BwAWBKCAjWeNKuAEQrdhrE0nuhqDsFlTZzNQko1Y3Mm6bEJQxP8XhCJCRmDiEuNls+75XadluUqWqSall7dC6pjI5gjI3666ozaUEZiVKCIpghB4YpGWcWlWlFjHC1pUvxq5LIqXKmhAVAsUU0IMAFGZVbPmoDkTUaNsCK9SoIkok7ioirbPO46EvpeScS13EKnL1lgPEHoK3t5u2VC50a81LwM2ZKUSKkZ0DeFBvDZQIkVS9ZBMAqT6dYDx5XlSkpf0RgJqrSm31dVq4SmoVrVXLkk8ciAPGLqgOh/3x5ub+s88Pyzz3YZOCr8kD+COECwAAzER1zsvDPN2Ox4+nw/Vh/26/f3d3e31/d7O/Oxz3U63uaikCByBak5uruKgCGgdww1qgzF5mlALgTEQhAqKJqIrl7HmxmjWypihoSIwcUIVUvB3hLiHRmVbLIcZNjBchbJn7c8Dgp4bD7d3djLrMy7JkKapF6lLmaVmWBRxSl0KMHEOILV8kpJBaHV03y9kb3dLWXm+O0PIyGjBkCGTVHFxNtVZFWJzIiYlXlBKgecVE7IxutszzeDqIVNHadWkYhthFYjpNp+PpmFuCprk7+DNUCwGQGNaeCGuBCuRV4DIhhcbDJkIgcBN1ca15mU6nw35/fzuNh5pnNPdaSl7clQiIUM1bK5eWNoMAoFbKst8/hBgR6e3bLz57+0VMadhuQ9e1cOMaBFnrkgI4NFb+WmUW1uZ5/immtS7KyrbCc0ze3UzH8fjtt1//6es/3lzfLssSaAOI86Rmygx9IqYucohBlwwlGyEgGlhx080gFxc0DBYjxRRSFylClwLzRqWbpimXDLgYZKm+LKZqtbjIdHWVS6GOI3iSOs7LBGDMRkCu+PpVvbq0YbhIaXB4OubuXmoxV5W2FRwAmLmllOeSS14AnAhCYqTobipVrRXKVFNgNkCUWhoECOAl11aPStVMpYpVMXEyiEt2g8gBI3UmRWqBpjXcCLVZ91SqNZUK3OSvmQBaCMxEgOjmpmbywoa3NbH53ED9DOIhrS1ez6q9xa/bFsGzsvdV5Z+xv/WV4I1Yczicfnh3/fWfv/vz19+WpRD4btOlxDFQF4kBNZdDKeM4Tks2xM1uRzGpoSqoghmAAilaQHYPTrDipAYG+tJG+US1I6K7FZHTNN/tDx/3+4fDYSKszMYBAC1XrQVqIfeWWoUEqAK1GJNyMHVdSj2eyjSJiSOAdY7gHDBG6joMhMyIaFKlFstRAhtgAFj5a2amYqWQmWKsXU+bgboupBCplRlptWsgEgWm8EhUedxlVdRNnXIx4xTZQ0BgJEA/1zgUN2cyYq+llqWaQbMt3NxVXBCdmeLQxxSDiKgKkDOF7WZAQNOWRFFNzU2ImDm2DEo1VatIxBhDoNY6RaRiBlByBRVyAHEcTRerASgANaL28+WIMWyHgTik2L15++bV1WtVq7UuOS9LnubxNI5axVRjDMzUxC8AiBpClqqnUzXbAOyIickCARMomJo0DhJRjCkSxcBxMwwpxdMothgzh9jvdrvNZmNKJVfVYprP4f6FMQQKfm4CAQCqsiyiKlUKOjA8YcLLrKU6QLMVnEnMXRVaW9LmWJmiZC1ZmDAENjMgCxG7nkzIldHA0MFJChz3sow1cjSB00HHUXOWxiQCdyJrMRzm2MWOEM1EVaWUUpeyYOxC1yXmC4K0zHZ3e7i/Ox6P46a/3PTWQDgA+KRmmK94+LLku9uP/3D9/u9vP353d/tu//D+eLhZpmmZltOx5NkIEzFzMAIU8WX200GnGWs1IO82gAgqPo8wnpyZtruwu4TtpQLoeLLx6Kejz5PX4kOvu23oOo6BARmAcjFVBCDZpED9Zrh4ffX5m6svh/4Nh22rVPMLLDoHuLu7H626u4q6GDqSIYrZUk3Us1gX46YDj63qiwfDlftl6qpght4oxIGJGaEK1OpmNcsEsxZplVxVFcC8qlYB9zrUVhrOzIiQQ9AateQqdZ7nWoua9EO33W1CisiYa11yFhERbY6wdU8kUwdQN3Nral/N1hKhgIxAhJEwBIp8rgIdvECogVoUJ58O4/5+mUcwR7dWaYaZPbAVOStgRwRiZCdzm5f5cDh03fD5F199/uVvfvdXf/3ll7/tugE5iIOpEazZuICt6Q3qWncF17xmfJZW/EzuwmOQ51zPzlxV6+l0/O7bb77/7rt5XgBQFc0gL24GMULJVrIRdrtNFA25Qs5Say3zKHV+8/YipaC6pC5dXvXqr0WFkFPc5pmu358Ox7vY1ZiMOZg2L1mO0zIMm9ub+91lyEvNSz0dR5FMZFr9dMhv30xffJ7fvv3q1evPzJ7BD+5ViorUWhqqqFGbMM9NV42n1MXNZmAKRKgq0yRqIiK1WFPt7jiOJ5HS9x0R5aXmLCVXVQUzdaiK1ShbMSeA1Hfb7RC1LvN4sjIJzG4urSd3FREzz4ARnNseAZCW38tMKUZzKMviL8+5g6rXVrFsLUSwRqn9ufJuqXHoBPTUl31F7M8LvUbgm7OGoOL7/fH7Hz58+/37b99dg3oKYV5yzt1nV9tNtxlSRwQPp9NpmqpaSP2rz+bQb5qf2Uo1mrspmFFYi1O4mTbL8ZcA+Wb3LPl4Gm/2hw/H4/U8ncpcwQ3RKQCgFwURlLJ2ZQ7JY/SUgAMiuTY8phG91ES8IRmBXSpoMiY5H86GjaOI1yJVZrPKQYg1sDeCvhmggpk5OGEjuJIjMXeBhsA9U08YEfllXiJuho1AdUS1ZihINW0o9JJzKUWqmjmhEVkLXbshmJOhOTZP0hg9AAg5kWQttSJYCMy4plp4AFp7a4rKI0gP7nbOULKuT33fAZiagpOpS3UQZybkiF4JnSkwMhp8Ys4TUmj5aYgESAQxpC6lEJgQS8ltSzJRl2KIbFaJVI2gimpVNQAvGZiciFuvuea7UxOMvn4jETEHB6lV5/k0Tgdm6Id+u9leXl6q4jJn0+JWzHJzs8AghmSqvraPoxBCjEFVMIOpwrPm1jFcAYVAveoMPqlUEZMKJlyL1qxa3QVN3NQxcKvxTejMzsEDM2Of+m3segMRy/N0mGQZUmAkMyIMgQHMGi0Dz0EvamAIogqoipkBiIIzmQUiCDHswLuS4eFhvL6+7eLQhRRTwtas70dq0cHUq+g8Tbf3t9+8f/fH6w/fnY4P83SSLFI0L1YzIiCSx+hAzTuHsoAsINqgGAAAE9QCLsQR+wH6AVNnJUOeYTz5YW95ARMAByY0Aw1u7qroyughUIw8uLEqM16m+DalNyHsoEGaL6D4T+bhp+NpX+Y1MGUuRWQpulRbqlRRqlprVQkphhS0iBYhInCvtcWKG+uCAocQIiHzUhCx1mKqUiu4rca2AxGYmhRZxqW1K8TWQilwCAFUTHjJ+XQ81ZZ4acZMVKshiGgVWb1ANVdT1keJ5e6qKg2BI1VzVwPQ1rJijYU6oKETIpjUkpdci5gaGDR6/7JkaBWCANZmX8wxRUCkEIjQTNecdXMHy7kcj+N+f7h/2O8uDqm/7DsLsYucIkcEoEa+WpF4M/ZFpMhaapbwORvqR2PtTGsAZlZzmcfxuD88jOPo5kSs1dXAtJWCDCqUF2V2E9ZKJSNz5EimVWpp2lq0qC4cdLMNzX3SrKfDfNiP45R3RCkFohACpUREdVnGeT7d3l0XTebTOE7H41QKEZkUXyaZpno4jPvjw2fjb46nh8drN7PpeBCppVQzRyR349CgaUNUJDOrpQKxETtRBGBTF7GcS8kKUFRsnE4itesSEdeipWgpAuZMZEBVsShmNeQQUxdCH2MCZfAKXh2qu7TK3IazKqgBc7/W8MZGLRJVAbAlMACIKFF4sSJu4OKOjSxFSL5Wjl97nLbo+WqgkYM5rKisPyXO+urWtzqmTcWL2DLX03E6nebTuKBDYSk5l2Vm10jexxAjywrNVqm1BbZb1fBW9RwVzMHdVBs40BDG1aB4vpteqHZzrbIcx7vb+x/uHt4dDh/LMraKYOaODEBoENRQhZnQgweGzUCbLXQDAYGImhuSB8YQ0Q20uirUiqFCrQ6urh4ChAgpRSLOGZasx3Gq1WOCrofNYByQAjX2TUoeo3NwYiNiwBC4i3ETecPUI8anhLSmEYnevH6TdZlqFnAHqCJViqm4qYjUqqqNy6IEhA5k4Aauq8HdovMoANV1Ma86TyUvk4OFwF69G7oQGb0VPsRmPKgYABJzQ5KZgYL3fbi82hCBmuVZyqwO5qAUYuyiWcfOkXv2oLl6fcmvwaeg7jidiHC73aaua9WRq5RSs3vTbBQjm5kDRyFVEFFwQyaVPE3SYv4tRsCItqbqiLm5CKIzQc61ijw83B2Ph2HT90Ps++7i4lKrBwpNtavlUpYlLyLSxQ4RWxJaYN4Mw+5ip6rzPOZ5mU5rrVlEvNz+xiiDT7ncj6c6lVyrSkGrNI9yOsxSjIxCCF2MbeUdDBwQjcgi02az+fyL3169enua5vv7++lYx2OmLQ1dTBGYWAVEQNXVxDybiprH0Hd9Bw7ZFWmNgHGrWAkYue/iqy5dMW5Ox+WHHz70aRi64eLiohv6Nb/rhYZ0A3GvZqWWaZ4Ox/3t/f3HvBSpbpVMsHWVKBlVrQRAQlGU6ugUA1BARwdyNwQjREjRug663mMCIjTHWjFnz8VVCYHdotTg5gXtTAOIKabNsO37TirNk0odwF+H8DrEXQNkCail5Pz4wIPDPM7jdDJRcGdkV8/zUuYiZe2kCbliLpxCSCHHnFJqfYBU1FvytzhFCiENXR9jYprB3U2rqvvagBgJuOVORiamUqrXombMmFJMKVBzuJXKvCzTpKpIqCmZmKo3hd7QNxOvpUqpulXon1T7OTglyKqtHYopGJCaKkjFSsZkRACueZmWaZzHnKs7Rg6dA7VWJaDipoGgCyEwhdADETKre+O1uFuLq0rVaZrfvf/gmE5TfTgsl68+u9i92m13fdc3+4B4rY7FxBJsKmWptWl3Il19rRcLsp4TX8l2Bi1/cD5N07GUbGaIDI6leqsnQcRMwR2XpRKgCo9jnUfZXWy3wwVZIMcQIiKI5iVj1Qwkw9AB0M1hfHg4LcsMAH3fb7eJCFIK/dD3w7IsxXy+f/hQNXGwcRxPx6lkIjJVELHDaXr34d313fu3H397czs/zkJNHx7ua62lCiHFmJjJNHGgEKDvA2AspSxLcRcAY6YYk5mDS8lyOs2txVsu2VSm0CpLgiqoACN1XXAkt5bfG4gS4YDQuUatpWaUio2LjWA5l1yLqJtBStB33FI7pHot4mpViswVwDnELn1yQBzPvYGb5kRq5d4eKe7nFfNzlUN7aqHVPmEtI9vOYON8mKmYVKul1TgHVzepWes8GkgGK30XLy62DtCKgbWGIoyYYiBmBzAD5dVndndTaz0SqEUqf0G1j9P+5va7m/tvbu/+fDx+mKZjKUUFRMnOCQFA0BjlCK1xgYl4qc7FkMmMkKxLIAlqAQVXXznoqlgzaoFC3veOTA6IFMDJ1KSUnEVF3YCJkjMAxYD9BroOAllL82dGbuWfTM2K6kwwuZnZUxdRRLrYXnXWh7osNS+Sq6gWqbVIFQAApMABArYwBbaCx2aquiYJoCOCqeVcTWcEzMtSRZDcAyxYTTGmAOSqRo4xRkauIGruBoau6hzcVyjOkJmJiBEIMDiyG4u5t7pR5sINjeeATzmUDUTRVktrnI7zchrGPsYkIkvOp/G45DGXbK4GhTMjuFrNOedSSiktY98AVKXhR4ExEIk7iJupYxM0rRNidYdaZZ6PpUzMlud0Oh4CBxUvpZQ8A/jQD32XCLlP3Xa7SzFiYz6YdX3abnaEeLHbHfaHZ6qdvvzyXzoty3y93+dRWQtYIStkQi7RxV1MW3CzZQ5B49Fgs0c5Yeox9Rg74KyIEjsYdnxxlbZ91GK1WKmoRhwCgIsGVVFx8MCEIi1oihwZEUOAGFPq+u326vXrz4fLz9Lmsus3plBKzaUMqp0/VeB7OvJWSrlf5vfH458Ox+9Ox9tlOUnNZuYrdQu8NCADXEHdHV0NVMHBkSCyU4TQAyBaJclQMnB0AKjFphFKQSTuOtxs1CqBNbc4uKm4qIobxIgxRERofJpAQ0qXXXfBHOlJPayMroYPfooGGYCa5KKihATmJRepVUVV1MwAEUxVzKppMAm1xRzXYFmzixUZKgOZaM1ZpLgJoodIMQYKzIHj2n4wNZJzFTFTFS2u4AE8Ahh7cFV0dzUVyFNmYg4MRODEgAzo5K3EMb9k/q8E9LWK97nagEEjLJuDNDOHABEMyYmreS61IXfW6Btr3V1TBXFxY2ZEA1AX86ridk5tXnOT8f7+1pEpDrG/pHSRBmQB4xYOcJZ2VU7kyWwuZa61FWhpxeF+XEX+bII1nLflQGsu8zidTqfT6TSBtpaMKyEcCQDcLOdFCCNYLCUz83a7e/36bSAyKWA6z5rL0eFYagFy4qsu9Q4FsMQEfQivXg8Xl51IIYaYrB/w8ipKtSWfOKTNNiICM1eR/WF0AEIq9bRkO47jzd2dyxXA5iysQFUbjkIIxN74F6uKkKLaUg9W0ELVSqkqWovWqrXKPOec5Vwg1pBXJVurO1NHIXAAQqtQVb0uxRXqXAPVMue8iMqaebYGvxHBGrOqSEkamMCkurbMalMVB0dm/6ShixnoGdpu2US2SqTzB8OaBddoI4gO2iyBtdgpUCtO21B5ZkSCWmWelmlclrlIVTzXmDF3EZnm5XDi4zTHvgupSyFcXFzstts+xcQUmZBRzR0dwQkhBGpY0rm2Q7P6fx6QPxw/zrbc3Hxz+/Ct1pPKIkVF3ZwcydGIDEiZHN0J0c2l2jyrmotCTM1lxaF3ybAgcIM21sx70opV1zsWu2Z/sXtsZoebS6kIGjmhIwfkjjcDpgQmpkWKFg7edRykiMylHku4czXEXuWplgUCbrqLjvrehtNy0qMWy2hgAlKMOLSEGY6sJlWq1dbWXdXU3ZGwdXRV07rIrNl1XdoQyKjVai2lKhECWozcdwkS1Kpljb6DA1DwaFBFcikRWtqmOzp2gOhVFik15yLixgbB+pBiiM8tLzMTrV1IHOF4PJ5Ox0babMK71tbBvVaph5MCQgwBAGotUqvUGmOMMbUMN2KOTDGEGKOZuZpaUZC1MG0piIsbiGgts1mp1aeRbq55PJ18jWcqE/bD0Pf90PcXu4s3r173fUL3ZZ4Ph4O7p5j6rktdYuB3339/FsD4u9/9S8P5w4fldPyglSSTFwJhEGanIW6rm1ZTK0suambW6tiye0ByCkhJxE7TDNN8LLrvtnW4CJ+96TZdnPZlPLqjRaTNNoXIIkFE6lrt1by1ByCMKRE5M6W+6zcXl1ev337+xe7VF932CjnGlChEtTOd6Uf1nVSXvLw7HP9wc/s3d3d/OByuS55ozddEREKAxU2quyHh2j18DS25AUKI1m1guMQQ0AzLAvNIIqZip6PDqZXritudp2hSUGsADwhs5lUg51qLDgOmGLRmlxho06fdMOxSN4Cr6owYABsVkB5RwxfzQEgcEoXq2UQMwNVbtRNvUB+4O5Dims4koijWNspadQMB0SK4uCwF0VsnRQenQKkLw3ZIXRe7lFKMKTJHAKhF8rLg7KXmWou7IHqrAIsITCygWuvii6n1/dD1QwiBMGBgBDRSDxaetaJHRG69B0NwbkR+MuB18VYNQu0hIseucxA/4iJ1WpZ5XsyckLSxngDNrKhS1cbdaTR1XdFO9BZjlKomjmBEF28+m0oWQAh9RTZtFVOdAAkcEIi0gC5SZm1AoZ+7tr/U6y9+akaEm0nO8zie9vvjfn8k6BhDs/IJAQhKVnN110AhxoQc+iFdXV28ffsWTafTQep8eChLWZayiJbYcYz06jVSkH4DgJw6evPZsN3FaapVqrly8KtX3bJIrbmqE4eui5vNMI6n4/HEjMOQllKOp3l/HOnj7evL/+Vys3m+HGqOigBoQGJQq7hrrUuVXKUiYgih1QAQUamLmtUiomtLoVrVHYkRmUNgcPJW3dQQOcYuBUfH5r1MedQR7HxQzdycrPVYDTFwCMiCImpe65IZwIrXYloBjciZ0RFau8gXy2HuomsJ2XOKX6sLg05MjEhuLb3R10rP6O66BmMQwduuwxZ7ipE5UF7K6TCdjuM0zlIVgYicAIADgpvbUuq4lK3abrfbXewury5fX11t+j4xB0ID0NWHcgQMxIb2iJE5IOKnSZUvVPtSxgzlNN6Nx71KMWuFltvKwVqA/RwucjdzV3UUAHRzS+pdAjdUASlWFlN1Zu973O4wRCRiVQeHzQDDQF0HzO4KJrQZOkRQEUCv1QE0JtSE6AyKUkiEzKhxedyz6HEp792I4RJ8My23z1U7eh8whTgQ9UR9CofDeESfGSJH7vqEhIYtUdAAHQOS4VoVnTkEJqJa1asamBME5hBD38cYw5k0iWqqIkgw8CplzDDnVgoeVFzEaqnLkt0hBBDRWquiCqKbumsDLVVlkVmxBixXZo+OibmKFlZE8vL/4etPmiRJlixdjCcRUVUzd48h71jV6PdeP2yABQh/AL8fOyxABALhVVfXHTMzMsInM1NVEeEBC1GPjLjVVUZJufEIDzdXMREW5nO+0/bbejmUyePLxAFo5mrDKuptdB7NhsEGEcwa4dCvpXkpORVmUW2qrWmz0KF4BzAEDR+rx8alw933fY8AOjysPhZpKdM0zSllc9Ouwjxm7b33bd21a25927+j0bFwDJVx76oEsaS0FCmIKZZkXUxR1c2axY5oiG5Wu1aUyAKSHHBv7dH92vtOtM9zlwQi1b2r7eYVkIhJkrOAhYIrcUjCCDIjJKRgIpEkJaXldL67fzfNdwAkLMu8TKfzcjq/e3c/zzOzHJtvfFcH9769PP3t8+d/+/Fv//L3v/zl57//crusdfceYYFh4B1uF2urC7MwEkmAa9fWrXdHQkmEgOBoBr17bdAV9t3rrh5BSNOE88LgQGAiJMgR5B7eBxnIVUO7t6rXyyoM85zX6+316dOXn//ldv15Pj8s5w/z8qFM70QKfHXuwD++iDBlIUFiRsBw713rVlttvRu9RWe6h6n2rqEeZm8MFkRE6K7WjALQ1buHUSJmzlNaTnOeS0oJ3sxDiJiyAGYPDTK0ECGZEidGIrRhk0cMDAvrHhkImYIREMw9gJFoCJu/PQUJmDElgiylCAh7DIWEv9k7zdzC1KN79NZuXRsS5mmeT3fuGmFttzB98x4PS5d7gIeP/QAD4NAQaQQiwTDmDL3V1rbX9ZWbjF1fmBMV4QSDtuHRYzA0xp3Ovwpc/v3L3Fq77fVW99vr69Pf//7Tp0+/rLfdeoyWKYAHDF8WIIFqq23LWc6n5Xx/d/cwL6dEZOa9tbpta7c9wAYOHwlq1VabCJzuJOdgQcSuZoDK4kwsiXPKt7W9vmqAqjUkKpOoJbUUEUPVCOi97a3raapvl3ZARE4TKDTV3rpHu17315yEkSiIfJgVAMgdVO2grvoBB0UEZkkJVW1o2SOQmXImVYYAs15bAKCpQmh4HyfUcBoSjg2ABnR2pPuNO4nZyE8OYxm6CkmUci5SJEkuJeeJvnFVjgbOaKmP+7v5CP8c0W+MSHCgBpEZeFjBaYiXPAA83A3cRwgBYSQM7rXvW6177a1BRBJmRCEiYKE8T/xwf/rhtz/87ve/f3j37u7uPC/z6bRkSeAxBl1NtampegQS0ujpupu7jWlRq+0/PNpVd4e9tbW32pqZHqG7RMhy2DgYGCDcDymyDyBtg97DzCEgnNqO2+rrzQCjTLAscP+AKREhuQNALGdaTiiCAI7u6IEoKWOr2juoaXOFAM1gDcGpVjBnRBBAwHCoai/rbhu+oj2Antf1u3cVmplQspQJTucP8/QM8DPTtefGifIk3fpWNzVVNYQgQSESwAHpH00Grr01HBP0nGWayrLMOQsghLl237e9Nh2DFhZiQkk2rtRhYR0sWW9auREyAata6x0iEIMRmCjlBMJt09ba3ncwvFv8axFpZr1XxHDn2vbWah1C8ONfzCQCx31iEOHCj2wXRwwz7NaIgIhFcFlKzgUAb2uotlabjVSacVWDA+IICCKJKSGSu5saZyYid8C31U3EXfvT4yZE01TGXKa1XuuYC+K+fxfqWvvW/bbVa+3VQoinKX0o6ZxSYSwQJYLdwL2bt25b6+vl+tiujwwuAsIGcatt6w3NXdglswiarrXZutW9WaAQokcNx9633jUcAVPO2Yy50oDZFpnm6Xx/9/7dw4ckp1qbmqUk79+/+/DxN6dlnqciInEUr99twW2/ffn0p59//NNf/+1Pf/u3nz/97aU3jyAbRAT1XmF7Na0wT0AzMRNCdLVti96dmUpJplQ3N/d109ZQlbY1blcLDyawE3Iw4tCpMYtEhKl3UDd1jwg0i1rVtZlqyXI+ffn57l96+wWYlrv3v/vD//7xt//tw8csnMb1G7+d8QBAgIcHRpkzCuUpS0qErF3X27re9rrtgrJMCwS0Wtd1C7PDLD5yNZHGHddVBzbEcUSmIDHlKU2nqUyFmFttXTuZs3BOCTlpCKScgkW4lImJwJHUkEfAjyGMnCkRTEeoSDc3Q8mS0ne6AQzE4bthKjLNCVgs2P0NqhiHhra1rba11bXWtbWNEE/nu95+gAg3tbZbwLCzfkXCjguSCKWxt2oHM1cFpHARxJISM5r32/biT4TExDylaS7zXDAS46hWAmx8YxrEWYDvSS9vzwQAXK29XJ6fn355fvny+OXzTz/+8ve//bRtFYARBIBNVU3NOhEwU211W2/TkspEebp/937OGWq7rtvler29PF/3fZ9PZT5nkSSMqtCaJuHllLywh+5tbWZDrJMLMifCwkKt7eba+5Yk5ZwBpkGtbLUDQS65q9uu310TESUtUL319XLd9+FOI1rm6e40nU5pWtI4QVUtvLPIwJHFG8It5YTIEWM2pEQuiRPzHKAGqrVpjQDVEXhvMdhEh4Jt5IRySjkl6WqtNx1aDB9jx1Cy0cpm4lTy3d28LFMpU0qZfgXIQ4yg0gBz6ObdrKtZxIi9HEp1dCQgQUyJSqacSRIiwjBsmIeqazci8kRjFm5dtXXr6u5MNJWUWEpiIS8J7+/nH35491//6//pj//0x4eHh2VZiImJEFHVQr27711b19YGORcHgMFD3W0Mp/atfruovjvazbQfcnIfEgaPgIFxeMO8mL2x1AAsADTMwT1UPSfQ7hjUG7XuDp5SlBnLjKWwCBOSuQOEpBBBSQiApmYWhZhzTLPUmq9XV9WIDhCARITjajFq1YjovXU1wka4C6Hg9OZXOlZZ5lNOeV4WzuikEXS9rqoGiCljmQQ1miE0MDdCZKZcSsnpfD7PywwB7taa9qZ9OOCZck6n05JLAgi30GYs1G0nQmQ4ZP8EROP3484IBhjEyIlTTiWAiSTAhnkSIxIlgsScczZTA0P0XzevWrfr9ioiiLiut9tttdE4HUALVWTmg+Vno2Ho7j6g1ggAob2H+bg6MXNOFYDqXkd5qd0tAgCFmQcgzJ0OriONLUdE3r17tyzLYEgxs6q21hCg7ZUQe+/DWl3KBIBDC/ztFhwRL09Xwz0iT9P7u4eTL7mk9zktOYtIYZ6ZMqGYaWvb5fL08vwJbuhmIpCEmWzcmywQgggYOpqGdu/N9h16h0ALaLgHEqj2CGBOCOg6/Cpj2SihpwRhjJAi0NSJqEzT6XQ6n88lZxFCpAj4d41SuN6e/vVf/4/PP/3tx798fvq0rq9uhv7mwmoV2gZ1DevDYdFR0D3W3fbqqpETmFLd4XrTveq6GWIu05wz0Z1vt327bQSW2VMePApmHiJhr3vUHUwHliG0m3UD96fHa0ocYF+e5mA/3T9c17ZXjYBluVdT5pTLad+fv307Q2+GjMxIwqmknLKZO4a5d20Qb3xNOJTm8EbneDujSHuY+5ieshARZck5FWEhQmIiRhIaJGKMcCAkSCVJYRYewDJTq1vTcBhh45IP3lMiGGglAqQItb2ttYIuZyiHjg4BhUWEUxbKkrOgJIvk4R4IYBDg5tAs9r1uL89Pn19fH9u+tlq1Ne8NIwbN3rt612HFeTOw4UDUElO8oWOP2jfCzXuvt+vr45efb9su+TMSs+SHu3cP9x/8jhwELNAoefSqtdnwgwWNge13vYcjMSS81v2XX37629/+9Pj4+fHL4y+fnn/+6ZfbdVcNyUwkwYFDXaiOCLXWvXYSMFURPp2Wru3x8fHLly/X661VdWM3Cqec+HRKp+VUSh7Kw+El6dsW0EUoF4mwXCIxIqmIh6paEENKMkvK4y9ak8ySEpEDWkq/Hh8IlPKUs5Wyd3VAsm7oo9mSc5mWpQC4mYWHuaMFQph5b73ubd9bOPqbezHC3F21iUjKiQO1h6v2bkM2r2rmR1FCxIQ4ogsZ6eDIeYxuRU5DBCrEHB6IgcyIPHZtU0PvkX7dsDxcVS2gG9SmtVtt2i2QB5AUIQ4dMgOURKdTOi1pwcRMbqH6dnB0Y6HsaeB33D0lOZ2W9w/3EVBKLjlNWdBb4vjw/vybj+8+vH94uD8vy5xygvEO/NCmdvOm3rq1pofX52j/j8MAAOAfIIf/cLSbRh9/c7g6Bx3PXQMcIMwxYsQuIjOghUd4h9aiVRcJVSAkV2ndgI0z5JlSARZiJsQhk/IYAp/h62Ij0SyUgBA47bn17q5IHciRhYXEgTwAnYg8wnpX3YmaiPH0PuXM6dezBBEnuZvKfHd64Ewdtr3WnJYkm4aKYC4SZEVlr0NIjEQ0TeX+fH7/4d357i7MVbUPj3bvXTXCRPh0mkvJcKANnQhb39yNmAYcFQmIEQBiZB85EJBQSpJzLpLKNM+AHqCtVutdKAvmaWZwDHNw4C8Eb2bRbd9ero/DwzOSUt/6m+AArj0AWZhoABnGLzUGE5SIB9exR48I7da7iiREOngygaoBiMScci4ljU4+Eg6Xxfi8ppQ+fvzw/v2Hfd+3bbter621cZ3ttRFgWNCJpjLnPOVURj63af/maIenxxVEEe5Od0nYwzLTiSVxipxyzktOc5Kiqtu6amyvLxCmrg3ICY9uWTiEEbpAkFZ3967ROrTOagPt38x1/DKYRYTCUcPMDSDMXZuFN8a2L701IzHONh79NE2lFGEeY7WD6fr99ep6efrv6//r9fPt8afL9uK6ix7MDvXwtsW2QW/oChHemgeGubfuauP6DNrRLC5Xva1t3XyeSynL+bzkJI/0dHld697bpJJEBFNmIqnVW/W6Q280JDujywzuu/vry4oIarY8pxBd7l/2aqpKFKflvO+3VJb7h9/dLus/MEGHYcICzNUjIZMwpZI4EzCYatcONvThBhGIR/A5MY4ksxHuPWTEjJxYipQsmZDCh2wQOVEQj7rTwhBJRDhxmco4Mtd1764ajkxFRCh5xKi2zRUImIk8gnxf91Zre/+bbz/mYwrGLCwswpiYQCJ+3eJMLSAC9ro/P3/526ef/75eLr21JIkCrW7Qe/TuXa31GKRTRCLiJMJ5MBBjGFqP6+WBpNzX7eXpUT1IPgNlIMllqb/7IwCJzMhzUACRmOve96ptTNLif3a0j9Xtutf1508//du//Y/Hxy+Pj8+Pn69ffnm8XjftEQkJCZjNCABGAd3a+KiRmhFRyvn6+Pzjjz8//fK83rZwEUmA5BGS+HSa7u7O05yevjzfbpWAPHSv1byJ4DSJh87unsPMiZ3cIyyAiHNOE9O0bXVdI+c8L9PA6+Wcv3sclHPWZVmIeZ6mUYBOOU/TNE3zPE1DLa1hR8Pdojfba9+3um27O0EwAANyhJt5tAbg85wRBdHUR1xXq1XNAgCJhXkg6BlH7GqEj8jnCAIQ4lxyLkVSQeJxP0EMD1T1urXdnZDfLfEVw2FuzboqNo2t6lZ1a9q6D924A4ADOKEDhk+ZqxaPmRhzZndvrW/r3ppqN0kCERBu2gOw5Pxwf/fDDx+I+TZt85SnLL3eCPrd3Xx/t5yXUrIQxjD42BGjGt1MLcyxq/U6EjgOYxQzEjEc5vrv1tX3vnY39xagQAPZGASBLCIJKXzgBXo3d0JMCQOICC1QNbpGRLQdkIb+CzxQLfYauXpKlhISkXZ3OxyCZiApIoDkcPuHExGI5JSD2REjQgOQBj6IcYhdx+GFwIRJJJepDK7ZscgAp7JMeRaaIrQ31W5jFsPExMCMs2ROdyQ5pdl6BzcGxkBr1rcOcDTowBF8gLUs3Ju0Ix0AEYBSkmmZ3TXlETAOLCJJmF3Dw8C6t6pVKpNgkJQsWSghYmIm64lgbEgJA8yad/+242jWa91GSTZ0AcxJJCFhBNTe1NQNRiH2JpeMGHcRAAweYiJ3aGCIncgBwMy1W+vmFpw4jbEPOksQ4TBQmnn4EFd776rax/dW1Vqrqsp4DQQsEMAQyEjORVV7/641tK/MJZU5pclL8l617W1fn7VdmbCUmSkjSjiY6vr0qV0+2/YS9eYBxokSEIkraEVr7mpuGuGOaIHdwgKIMYDcj/sWArth73q7trofZE8ijLDattvtNeXUw0K49+5+uBaR6N+Jl399de3bdrne2r6FGiFT4kAeGIQ4xIYKZmiBYQSE5tg0tDsAEkbdnYWIJmEmbMwylfRwv9ydJ8T6ehFhn+9sOcO8UM5EkE1ju/VcnGT4gwPGzcYgiSzL+eHh4ePHD6e7ybwBxfq0/Qx/pe65yL6vZbl7/8N/ue3f9rGBhYmpa2+97Xvd19pOPaUE4SmlaS5WDSx673XfVXX0D+h4cRIh5p3BQ1szVwcfVyUIB+3euyYrVLgkKRhDsmPqpjYiJ1SNhZFwhESQIFjQqBhUVXuE1wBmprdUChZko29nogDgDm5hatGtd8VoBuGuDsoCzAFoAb216+3yeHn55fL483Z9bVtFQDBQ7dpq31boelgz/AAWoQ8cBlg4OAQhZRFBTsIpAYD2dru81NYAJVAkT6f7dx8/fCRGIHKAkVLmECMDQtXNIgTemHPfvY8Ideu9bev19eXl6fn55enx5fMvz49fXure3HzfNpWG5BGeEnlQ783dCRlR3PB6qb/8/LxvDTxBpHAmopRoMF7VwoyBlCWxEALVpqbdA4kYkSPINHo3Qg0HFkLMAJ6LSAJAVevbtr++rKWZGbZOvYenXz8sZnZ5ee3WMLxkmsrkatZViFOC3uvLax1dRUkppTKK8d6tVVUNN+jqYfAGRzKingrICBOkCDB38/Bh4R0nuLupHZp1Qh7B3KN5CR44UJAB4e6qgDEwCN7NOlhXJrRuTPzPv/9V4dS6rXtrCk1jb7Y3q81aN/fww0wB4DTk+62Tgaprs14yE6J23ffau7m5mGkE10YExAO+gmUqpeTee04sgm3XWvfblV6ncn+95WmRpMzpq5Sqq7U+0uepq9d94BmdmTyJCJEQUQBy/KfIGovog7AIZOhDLs55mohw36v7Wuuu2ojQnYgzMw+PF8Boy9OwYquDBbYOsAFLsFgJEObewhQt0B3NI5fgodpCjEA1hOCUJghEMiIdN0lEHP1DRIzhKiBiKsJzkrnkSeRXLhIizmXJeWKU2vu+7nWvg6slwkNOKznNPJeiU2m3y62uKzpatQ122514vAtQs9Zb0+auxMiEYYaD4ysJEKdpAvAxWRhAJWYhNAQKC222Yw2z0T1e7k9zIgZhFswRJBA08jIQAhoA2LeSJ3dX7aOMAABEliQlF2IOGKFrowkyXsdsOCIIKQKQEWPk0YAb9G4A7n7c4D0O4UlKQhQeighv4M4DnBEQqrqtt0sSBOzteJkqTvNyXkrKBG92xICUEiKklNa1fLOqQCsDZpruckIsvsXr7fVyefx0ff4RXKdpiiDrwSTCsq+Xdvns2zO01YOUXLBwntzD1OvW+9ZNW4RTTiCiAT5WByERDDUAAHaNbWuXy007MmfmJMweqN7W/UoXdAqZSmt7b82GJQbfPCTHL/J7uggyYBkOGOIgAs4u2cHBFA6mukLX8YFAZgaKqGYeiDCkc0Qy5YyQWo+UqCRcZnr3Lqvn51dB7qcHWxafZy4CFGlfTRKjBBKyOGFoB2sYXXLK9/d3Hz58/N3v/nB3f+q1bevtenl+XD/p9cIStddyfri8rgqnb9/HmPn21vd9VzVm3k/7clrKXJhoyqV5N9WxSUFESinllFMeweOSEjMjhVlX66bHjjcoVb2rNHV3JColcSIIb7Wvl71XbU3NDcg5SS6ZmJgFwR0DgZDQ3Xpvqt3NAJCJpzLlXIQJS6JvZHQRcBiFu5Fo6y2UulW1Zt5y4TKxe29tvV2fL8+/3J4/b6+f99u1rVvbuzZ1H9ewQAgCCBjw6FGlDUWvgyqNsackguHnEyQ01fV6hdvNA4F4Ot2nnBA958zCQeSOHoEeb9evUf79z2g1MaKbamvbvq/beltv6+X19vjl+eXp1b1DhOuVmEQgJc4lB3jdgYgQE6GY0vPjqvpLzhPTibkC7MyQcgQpoJpHN/JoSFkSsXC/1dZ6KZSksDDz8NqG6iBQDVYFpoQs6Kqt2u12e3ld895bcwvpyqdk8JZUaWZffvkC5JyxFM45QUJP44Zo27bWuo8LwN3dw1SKqWm33rw3d0cADjMzHwB2cyX2ITulETR58KgdAcahYzZmf+HmypRImMQ9XP2wMI9natZbGDkAmbmbBZhC9NojoncTlm8Pxdr7Zd2bQtVoFr2PgPJhCz2eYPig13gzaN53bWurc5Es5MPUZx4Owl513LtckrDQ3vubPVXNoAdu27avF7MWAaWcAiTnKeWcyswsFtG77bW5A7Fo97b31ruaMVOEuzMdU4/4zxTyw4BOSMzs5EDH4NfMzUHVzEazkhEAkQ9kEyELEHLEYdoflSkij7G0G5qh6WiqAhEKkzCPUWigIQIKIUiAIKcyIUtyN6TdPNScyCgwIhCHjx8RkViEp8STUCH8VZKNiMsypalwStbrkDoieZ4oyywZUgYgiAghKkm6SCd2g1q17YqwHpahCHPvZkAxnXIpZZlnIalrq7WbNxIqc2bGCGtd697r2tum1j0MzLzaYGBh3du+7Xvbpn1OOYmwIMvYKTlCnAgGSOu7T/6wNrzBjYgIYpDjOI5M4IA3CyeOq+NQjGAgDO4XElAMy1xAeBzRzt2JiYmTsBBFqHY94uDQAHE4dYK8Ed1uF0RgIlUL0zdsYhCACCdORKjazay1OiqS/RuFfADU/aqeiJO5sHCrvW51vV4vT0/g1eYJAE09p0zzzLHl1Er2njEwMGLK5e7uXgvVbBvXG66XF9v2LiE8Up0FU8KUOaVMxOHYe9u29Xar+96I8pTLsjxM852p7fsuTCkDUQ9fW3tZ18f1+rCe5lzmN82B2vj/N0ke93e/+e1v/h9Pn55+WT5fnp6266t78x77HvtmrWHvBECSKIKYcV6YBKVEbRIOWeTuNGcRM3cLodBeX16eUm4sF8Dth99wYHAGJG8trFW0bd+bqUr2MkUuwILg4sq6I7io9ufnZxa4XhcKsq771ph8Zy5zyeWeYLq8rhoecPf1eVxfri+vL/u2t9rNnIi9el9bmgsRHkrwHm+yCeAIIs5TziWLCI/QHjSL7qCARkTAYOHdFLuImmmYemudDSG87e32etuue+/m4SggRTBiVAlDOi3EwhJmnQXdbcAZPbR10HjbneKbD0eYupuDByMkgr2t19fb6+V5XS/TnJdTcWvbevn7n/71xz//6fnzL/vtprVa79pb7/2QrQ8FASIKB/DIODyCosCRaJwTMhr/SVjYDwrG+BmRJGGYIPBXIBIBI2CAEATG6N4G+OCBfoteH/trDMDi9cV0N+u36/X5+fn1ctn2LQkgRrdADweUVFKemLPbsu+jcxfrdaDBfZpPJZV9U9NIGSTDfCrTaS4LzosQeURnChEA0HAdPW0RGUwUJmIWd9euiEiUhmhniJymKd/fnbvautaurRs9nH6du6naj3//hdjzRPOS56Uw4VEne9TW9laZJGcUUYRmCr2FNgpLDJATJXEAIBYAUAVAm2aal2mZlwg0xX1T66bdEHhU0g5hFkTOTM7OZKN1NCSfo5U2CG5ESsSEnLPkMovQiOXc94bwHcz0tvbPj1vz6BbqYBZ2JFzAwBjGm0UMINihR2hEt9irZSEcve/DpWZEHQ7lU7XQy+X15eX56fHx8vqKGARe9817W+fSeljwy2UrpczL6f7+YTmdJGU45q+jd+wAQYQMREyAoKZujtCIqPf/WCEPABCISEzsrIcVBFy1W0Q/Yj94IJrHGSNCIigOCKLd3A4j/ThWxjHgTmaoOszCo41OKREeakQDCA5GpghCyjkLs7S+B6hqR3AWG1dJJhAZOtaBchQE+UcLMkLKLImQA9QjzEMDVBLmU6FR8A3DmB6UCQw0NfUYbL+hwnB38zDwNElZUpnK6XRi4H61dtvXdUtTWqYps/TevPb92rZrrbemzcLCBxGrGZL3Vlvb976lNYukxHnO05RLKiKZOSMxkAcFfa9lPrawoZRAePvdwq8tveNYJwyHtx97GHsxCL9+/U35G+YxFisxJhl6Juzde+sA/vU7DzE2sxLEek3gzsxD83hQrt3dDCJSYgiotZpZxPiCb9u3Cvlo9SUULbi2nMvc9q3ute513zf0TUgJwc2BJwag1Ny9TdA7mwczLtP8/v69u7Tdb+lGSNfr2noYRiIcOSaSIOdcygkx9eb7drvdLrdba91KRpZyunv48PH3ZrpeXyF6SpFyMFfrL+v10+vzVDKdTg+5zOM60Qdh1X7dvB4efvt//b/83z+9+/OS/+VT/tMX7Nslts3XF3i9uAUDMGLKiR1cEi53nCeaz9ibm0ZiebibCWC97m1XIW+9v75WpCtKPt3Rw3t04Nat96jN0RrYum9q2kuBkjDnkARCBJF6xrpBrWut67q9nJZpmc6ZM4ZzllAWXk5374Nora1aha9HO8Dr8+vzl6fjXAwi9l2j74rXDRkBgwApRPsICEYzjQMfJmkqo8uZPU8xe9jXLMug4/qp3VWtV9UeiA4Rbavry2297maOhJyZAI10RLuMjZiJMktwUknkoUHH9t2tug4Z37f3kogYYzICSIxTprqv2/Xz46cfnx4/T1NeTkW1rdeXv//53z79/a9tu3rbQw2+vT4fmrkhDiQkdHA4gob84HKNLDJGGUpzYjU1i9GrQCKmSIwynA3aI5TQhRAAEwYyCAWRA3oceJPvjnaz2ur1+vr48vy57atbX9fb5XLZtrW1KiwDIAIRFAgkOSNADh+dwq037b1t1XnTZbapzL3WEc9CjHf3p4ePE4txCgBrrZpbhLqrhwLIeO+IQyJE4azd970PYVoIj18PCy2LME+X1/Xl9bZXax0OAth4F2qffv5MHNMip1M5nYokoSMyIFrvTTUJRCTGHtogyB3dZJxSiZhTkIAccA4co4cylWkq4dRbJKojGXdgUBBhKPIo8NgVIQ7j/3EgHMafgWVkoiw4Tfnu7pSnrGq19et1d8dvaSLXVQ32YZf0Q14BI7rUA+0Q4RxKNHLUAAtQx94jMTECwkjFfvPwISJC6/u+r6+vz88vT8/PT5eXZ7MObgggREuz1mFv/vR0zaWc784/fKzv378/nc8558PIFxo2jADETEAw8K+ttyEvafU/VshHWEAfrlAakaVxNKjCAd5E9kAw3H3jwwWIptFbjBzzN7ReEB0t33Ds9YhAFUaUAIBwMHAPAzRECGUwdMdhHRtdlHHRVImUCADDx0xFiYMZvKyIV+EnhLm2X6+J7v75+RMnQZFbuzy+fn7dntf96tyrkVmvY32PBmzgtta6N+0W5gTIKKP54y1U1cAwQrfuzdJgbUWCDvt1b7Ut0+Rzdve+WbtpvbW6NTcbQgvE4MSSRBKyIIRpq9a0YzfpPdd5mUokAWYmcETFFL+usoNONdbogbCKGLyZcTl/u7PjN5k/xy3+be87ijUak2aA0Xt6kzqP3NnedFs3fGNkAoCHRwAjg3sSBnA+qmkfLnl3G7s4hIukCH/bp2wo6b5dVb09Kmhtnva8nN5BALGVJZ3uTxA0TYQYYZYz8mSmhm4ojhwiWArPSzmdZ4zUi0P0fWdOFIjuYBrYnQTFaNgWIrBVq3vXbm6BgG5e96pqKctdWd49zOEb+C6Z8iTC63r56ydY1+vPd3fvp+Xs4Gq9WVXtrf1ao5Qyffzht+vtS55hPk13d++jc72FaauNzYcYU0pJnFSKLydL2TW7lXBHIZhmAwttlotPE7ARJWJBNevNkcDCe3NTCGPCQO6STGTQWHFbPUBTgiQeTqbYTQGgGEI4c0wzlZxzTqnkVHIuJYgtIDrdvino297a3ghJWFLOkpKIBELX1vbaWw0PCoGhNUfU7usaZi3dEqckwixCTCJyvjvP82Tm6keKNkRo73WtOMhwYeGuTbXq6HczUOaUKFGw7rrbDgGEqGWC2bWre8RhtARGtOEk6n2gzr5dV+FK4JnxlOXdUsDadeZbwV08+m19vt5ur6/Pjy+ff94uL9EbuKEDBjJK8CA+HFcEZAIc8HmWTAQ+rl2HbQ0J3LU1iIAUbja8JCLCIinnlARMX58///LTiUiSpDKdcsqFuClviQoD0+jAOXx/tF9fnz5/wj//5U9/+cufP3/+eVuvqm38MaRANuKg0JTodC7Lkkk8DIkBcey/ToQO3nutzEzoruMN9D7IFWFu0bR3B8T1st8u++3WEHCep3DZN4NQIAMYIAPtveeczDAgMycWHhW8uy+nCYjpsvutfksZGAV9SlQmguGl0ug+hO7eem9dcwZwTjxNGVISHiGh4UehRYYURAEQzOiB7t5au10RkSE8F1pOKWciERvlQreuiojMOGWZShYRQh70GwTGw0PBJeUkAo5IlDKKQC4llwIgZoHf3Nq7Ruxu8NZdia/7MA7llcOYQAcdezRiYGhYONpbLPTQn5ub2cjnvK2X63qth7il10E39kDEjJSRHVktttq2Wrdtq3u9XF7v7x9O5/M8TSwJ3uLix8r1oz0wCJIGPnb7//BoV/cKoARBhyDwbeD4ljNzHB/jT5sHGBmbQq0xjP5EQW9QhaG9CcdWAyPouLWDGXQD93Bw5iBCN44Q91Gqd7feux/MAQnXQKTx1Qhj9lQcYCO8gj/1xtv+6ypz918ef0YhEN767eX2+Vafar8YdMTY676u6yi3x621N227alfXmEtJuQSYetcw0AgPB+u3ZrdODyAibAQt+tajxm1Z3ZwQ+269mlWzph5GbEOvV4qUaYS8gL1JP9w9unlXoiAJpAQh3jE6yDdH+3G+Q8DbGT/8baEH7zOO6NE3j+O4a78hdTzcDACCmRCZGd88XQND+vX499batu5EIMJE8BW+aUAeJkIRPnT4qg5AOefWZMdVeyPCeV6YmZgQKMDV9HtKSri/qu4arWthcpHM4vM5E91FSBIH0DAVRmRHNOgG6EBBhJIoJUpCQyqfMrAcjAgPV7XAAHIWQUTXZt7bbqOLgACE6G77vtW6eeh8Ot+dTmG5V5QEqbDHbb2s6+3T4y/ldPewnO6QydG7VrWudYI37WySdHd/t5zmssjp7hRKuuPtZWQauXq4EzNPhcscaYpcnDiE3QU8CMECqkcAdhbPBdgJU2JBN6/NB1pKNcAZgYADqbN4ykDB1vi69r1amfo84zRlZkQGQswpTSVPU5pP6XSaUs7IkpeS53lkAmONp7ejPQC8m6tRYkkyL3OZJxExs9tqddd93awrATNJSgmJALy3vbUNaeyMOZcyz/M8z6UUmmdVrb1DrdG6m/Xad9q8DwHCoe4Nh4PygSQkDBwKrfVtuw2nry1KAebRu5qNypKQhs7LVbVu+3dHOwCCMUZmXEq6XzLGtN/N/bZ4XdbbZV1v2+vj6+On7fVZtxu6YwAC46hgCfBw6R+r1cHdDRElMSO4mcPBKhnL2nofABiPAI8jHienlBIjWK8vXz6B41Sm8zyfMp9SmoWa8i1TEeQDXva9gAPg5fkLxvXP//bf//znP1+uL9t6dVdEIAJmSBlTAhEoE797P+eU7WvMqesIok2J1b25uldzlKE+BG/N6t63jc2bWkdENb9e1u1WrWPOeZ4Bj5abIod7b333cEQsxcOJCHOSiZCFEC3ChmHVHZsaf89xQ3AWnkqeypRTcfeuPuxqtfXWNYyEFJYQ4WmWnBJEuKu6d/ODLmRfkTVh7qrWmzKxJMmZznfZPZDY3btS69o6jen7PJdlnnPKRLzvte6ViFOWaSrTlEsuzNxr713VPEJFCgv37vr9dqUeAyf6dpnCYwOmcSCOQIFR9YEQZUYhZISR7xWHDDAAwt1bb6+X1+eX59fr63W9ASEiKdAYvKE7IIAIlyXNS8qJIPZhRtr3y+VyvV4fHh7evXs3zzNzIhYWOajPI8nYPDwOz8F/Mmt3r2a3iI6kI/BmiDw9wkav1WIQpCPQRjOEkCjcUS3cY7QiyJwZB/yRmQDBPFofpRyZYvcQ9QPcR8hEQAIhbmyBHhbRmRwQEBkizIAZk/CvZW+4KbcK2toal7YWgPxWoMRtuwWFE239dtlf1vq6t6tZG2Okrjpm1UpGzITEJI4RaMQszBZxsFmQGIIMfbX+2tq5oVC9bH1vwzPnNuZS4H74TzxQtbu38AjEcIZITCklOUBFHhHBiCMWKcwFRCDtvfVq8f000d1GsxACiTDCe+/D7jiwzB5vone1rhoezIIkAAThFgZIRAIoIhxfI7kgTK3WZqaAsW1D9E4B6IOGMBpZYd7sBtF6JeK34BzqPTGLsBDBtk1EVEpOaZ7nBQHN/PmZX55/+fqJnzKmxIGFU8rJiDqCEVLJZ3dy38zUujqERrfog8kcMX7I+vr6OiI6rfv1et32W4QRYVNtqqTUjTwklyRiENSaqu4QShhvXCpt9Xa9fDmf8P7uAUMRe4SpoZn1PpyykR5LKVNZihTxUHOb9L/SG3ALSZKc3z387p/+6X+f05en9Fz3uFz3D5ynh4eX5+u+7kmCUNEdNYIQnRgZLOqme9PWd1MAd9XwCPWwramiGWaFlIZzEq2HdgPoCIEuSfIyzcLZwc0tl+l8f/f73/9wOs2vLy+9tfvTeVnmUjIlMQAmLNO83L97eP9bTqV3Tbf24+tzHH7Gw6Y+iicU4EypCBuqibbUUzIkQZE0XsKJBzfs6PcQIWLba6tdmIjITLtq66qqQxQSrTeRsYJVFRFKLkQUAaa2XldEDBw8tYYUKYl0GdrfbW+qHhFCkkXGAHhsnt8dJAjCkASL0MQ0C9My24d3HDonen2dnp9J9+v2IjccijvDAOKRpUAsnEvJU0klRfi63mrdLQwiEIgIGUnNdMBqaJTkBubggcPv7t5rM9UuvffeW++tY8DL3f3dsixJqMhclpxpTpSZEhFDEOA/vJEvX76sV//0889Pj4+tV+3d3RCdOMrE796fl4XNWs58Pi9u8fq63da23nrvkQoJc8qkDmIuYin30zyXXPZ12+v2+rJ3NYeRkOdDLOVa6mb7zfb1QgS9a8n87uNS5jkl+drr3reOgAikHcrst9v++rIyl5xmRJinLPIr0l8S//GPP0xz/vjx3bzMSdK218vrDQwMgoAYOREXkamkZU7zklLmcDMDUoyGvfu+t9aaqhKOnC1GRABj8gBnxtOpmJuqIdKJ56EEIPw6Heaxn88Lh89yLGE5YuPNoBAg9bW32ruCO91uLfx7WwwG4mh2+jEIDRr946GMJ4LEJESJMAtOSRLz0Ox5DA8aeria1e329PL0+PT09PLc1Bwwcck5o2TJyiLCHBHM9OHu9O48n7Jg2PXyum2rmw0JKEKEa11OZZpKmXKZWNLw8kQ4Agz720hZ+E+O9q62RTgOqTZhOAa6f0WVwSgVwjuQhXmMo30kecSBDbQAT0KYKXj8AIO9h9ZRGbqAqMsEOUEeRGQcGZqIEAgW3iEaix1JNAAAyISlCDMBDnxgQBTtYt20b6D09WgHAA91D3XoWlvba933feu9jVuzHyIIDA4WGNeXoQ9gIRL0QCAgJhEmIALwGu21bctu4reXte2NmDgzMgVFBACBZB4+8dawNR+dcAgOF4TCVOjI/vMRfjDk6OGIQybYw5t+JxQaVeCYlCMOD4q5R4TH0AYYuAWMGG03UwgYaXQA6DFwtkQE7uJh42Eckvpwcx1j896rmRFBHFrFUf0dgxjftfWdWAhpTI56TyKSJAnTuk0inJIMIINIhgDV76Y+FAZgLEwM6C28hzuhy5TcU2t7hDvZuISHeQxwd5Ca2laf4aXuzihhsO/7bd1MDRHMtHdDJgsKUDMtxQnJzCA6kSMDEA+KuNt+u3253fDuDOC1bVcSJwcz601v121bazgKy/lhmc9ToAe4zH/I/Ha0gyQ5Pzz8EQBK+sT80169WbwPVIuff/z5y6df0JSGl75HIEcQE5l6XfvrpV1WUw0RHK4QtWjN1QiQR9UrCYigt6ibaddwnzKfF5nnPM9T7VVN52W6v7v77e9+9+7d3TyXbV3vTnelTBEe4N2MDGbOZT6d799P8507UL7Bn16+XhYPY3WEhwUaoBMHAopQTjLn7ALCSZKIpFxSLuntaB8eSzCHfav7doOjLzKYlxGDXEnUze0NptR7J0YGTDkf4EJVd/fDVeCSWBKMUMjW27ZuvatbiCRNacpFmN/uUN8d7eP+IERCmIgopfvlZL2GtbDa9uuUJDENTqlrxwBH4nEWMOaSl2WZT7Oatlb3HeItF5iQiYjABnsZAdzNDiVVpJIZk4HbIHoT9d60dVNlotvL59vzfT0tfprklJJgYcpEjEQY+Ea3+vratl2b1r2HI1MSNiYiChFglvuH5e4ue7SxAW5rM29N19oqYirTnDOnPIpyBAwRv3+Q82l++mzbtt8ubd3aQEirOSCdpplAeqvbrarubhoRD+/m+4f7Kc+SndgjYlvr5XXtrWqHXv10Z7d1vbxeRXSeAYinfzjamX/3uw/TlN+9uy9TQSQm6rVbV+0GkhLJMs3neV6mMhVJiYTD0Cxs5N31pttab7e19y7CKeWpFGJ2N6LwwFzSNCW06L0y8TTyKpIMYfXY1wCBCEeE5GjKAqJ77Fs3bYA8vNmtdgcww33vCPytcWFsx4iO6HhspO4Gqh3cmECQJs5ZMBEWwblg4jEU9T6IbABmvel+XZ8fn395fHl6vdxISi5nSZPkiVJAxLQspUxuToQP5+nhPJ0Lk+sonfdtC9fe6oYAYap90cXdYlgbWTwgzMPHWHZMr/5jX7tbWI83JxUe1OLhD0FgOQg+ZAPmOD6bo1QJBPQ4+kTu7gqu1mvQCGjHECQmZCZhyuGT8DLLNDMTqEJrrfcezhEAYCSaJIjCzRCDmcsEpxOkzEysSn1n7ck0qYu2wIivq4wI3737iEJBeNkmgGq2a9/ADY5KXMcKyCnlkikJCGJO4cxMY0/H0Q+UgoZgAN32VV+/3Jj318ttt0YLl3OZH8rg0/VmsDUQA0HkYAGMoEHPRDIL7SaUDlaXIGcaGKkwbzc3UOgkVo4czmOREY/YoLcbvLtGHAGCg1JwVIo4nIEyNC8IMCjBbkaEY36277sb9u6mIyrRzW3glSAsAMy9dx/m6bEPDZt3hJk7YACyH5OnGE9/21kuXHJ69+5dKaWUEoGtdv2mcRoeP/71R7U9lSw5k8iIPxbBXACxuW0QnWDojjUMwYkwi7DqXlttdb2yChYE6V1rtbqb9nDzQMiZJfOYIYAHJ5BJVKNWRaEsiUgAkTO5bY+Pn/bbM4S61umcl7s5ALX7bY31EmBIFOZ9bxGgjnb/O8/8dV1JSg+nc5K0EN4Rnab5/e//+X9DRNX2l//xr3/907++fP50e3nqXb2bZEEOAHYPUzQVU2rN9mYiMBUmwlKCGZkRgMKwDsKOhnVsDa0DTJAJ2mwptZz87kxlYqHYb9cLmKuWkufzOeep7nur1c0xesvV9oaqs6R5PgP8mqpyfKbNA8O7Wm2dGd3AQ/cG5lkSALHIOASBEHmgAnAM5RCJA1tTh7GAbSwiJmLmnHLKB31BdXDPDCK0NzA7tuCvw6RRQJdcTnNZppRza2qqfavarWPtLC3tQtxqbbW5fSOjA9CvpEyHMO+t327rl89f/v7j3758+fT45ZdPP/38+Pnxdtve2DsQ2iwMUJhDvdZOfuva+7beWt1MOyKA9WBmJh+GxdEi/nqzGUOyCCD6OjMIj26drYcbgIP3ur7eLlNdUkIgQGZBJAQn+MfwzR9++OP7h9P9+Tcvz8+t18fnx9r+f5fL5bQkGmsDYRwwdd9VuyQ43UkqEEE0WhcJpzJPk0Soh94/pNOSe8vrNV23um+9aQvw5VSWueSSwyii9RatqqsJE6igZ4KSUwCp9h5G3mXd+svj9XrfPnxckCDL7IH7Vss8lTmJ/HqWDF46hO3bVbUScasNogvDPAkvJUtelnk5L9NU3Gxb1cO6tq5du9XWL5fb7bqNUZqJu+Oguw4bIguk3Pc9meq+bSJsHWxyywneBosejkyS+LTMWbjVOmKiVA+MJ6KYD0F3OsotHP//9YkIRiYX9sQgiYlEFVrVW++9d0lcJE0MmZHAKTQMDIgQR3rQ3tte6+v1+vTy+nK5vF6u3ayUSdKSy4kohRESkTDzTFwCHBBGVLoHEiKL5JzDzA0TkzAyAbj1VgFCe5NcJBVEDiA/mmmACP/5rP1A4Lq/2ahGDN9oUSEPUCLpcb0CxOPsDwh8S3xUNw3HkXOiEYGMJJiYk7BwRApxIESRSIJu0Krf1r7vAywDLJCHVBwDyYhCMuYpyhRlAhEyzY1z3aQ6hw/qbXyd+yDSx3cfJAslma+59WtvN+srQ0B47wDhiMAi85yneQpGHyoABBofX4IgoCTghMrRouneql0uKwKu227iE6c0SZlzngQAMJlRgBAJiYA3GEa1oU0f93UMJOcBRExJKKFCs6ZWI8wIOIV8i7MYBlM/VOfhFmoWHsg4mHeAYwhyYEBFxhqlGL4tt3HTiLCOHQIgKIAgRuiI9d4BhtoRiMINFILwyCceliACOP6JId2AiMAxa4RwrIAQ8zypNtVe624G21a/M79FPH15qm0t05RL4TRMfyhp6FmUqIqo8CAwuxu5EQARIcQIYu/hzhiEyY/pXYy5EBGUksqUTJUGAEg4ZXFHJmWi0zJLSkBgEd1tu728PmmYEsa93UNKzClczLN7hFEY7zsaaKAG+tcsnrdKq4xf9ulO3eHu/qOHM5Pqtkwpcf+z73V9qdUtdIIhYfXeQRXcGJEBWbUFhAgW5oHNBgw3MAXt0FpgECKFgRuEkSvWTQkdwnOixBCm1+eXtm2SaF6WnEsqpdUWZro1rL0htbK08xdLhTjJ9yPqcA9zAPCOVrsiwTiBe8eAkjIQAfKQ6sTBQhrWs+NsDxyhluHmrkYAjMSEhdNcSpkKiwRC7QDkSGmAHXrvCBiAPtj2o4uapcylLFOep5RE9iaEDSLUbPTd9oqI2oeN+ZuScWjNB95hfDrUWu3X6/r09PL4+PL0+PLycrle19Y0jkFEDMIOckBA9wrNa0Xtre6r9hpmiKGGwIxC4QGmYOY+4JkIFg7Wo7sHJmYU4oOY93Z/Go6ifb2+XnOu93ecEwDSgFEPL8H3R/vHH37/X/74h4/vf3+7Xvd9/enT356evzw/f3ZrBmZurSHSyAnWCJtnKTMHxsCyjp/17rw83M2qtek2n6QUzIVSYlixVavdkCMlOZ0nZul1jFfDOoRhALli273XKAsNKkYEhnPd2uWyt93A8XQ3TVMJN1Urc6RMxy709QMSoV1v1gZ90z2EASeZipQ8LfOyzHOZCgCoW61tr3Xbt701Veut39Zt36uqDiOPOwyBm6kGODGycJI2VBdJWFvU0kuWoRceskdJnEsaXqFa67bV1lT7yMHlCIpgACHKSSaRFBH0NqQcL4LI5JmhJJyKMEtrvhrUMPMugQlBEBgHCsdVzQwBoWvb635dby+X6+Pz65enl602tUhlnpZTzieR2QPdgZAREoBEyOilmVNX6BZIgMSSUpiGoTDmxEmYKdy1tVDt3Idf+xi8xtuS+rbw/cejHRGIQ82bvo3UIZBQRsM80AEIIQhFJIIi1EcY6lA92GEzHRRfMx0SQRTiJFhQGCXhvOD5jKcTEkat2qrvu++7qwZREMFoyvYOwj4ER4IWoWrMikiOHGUGADBFxMEoMPj1aMfTNOc5pykj63W9a/vZ2loh3JUAgIISpZLm0zQtkweYOTEJCyGA+16ptopAEWQVFJU6BHi3NrCTFExG0MB2VRhCq8gTp0QxSd+hrRYQb0FynEgEORShewRaRxEklikxilnt0J1NMBLar4vMI/pbBrIfgsbDxH70XsPc/TC7k8gI8kIEYuLjSX29byDhGFsCUDhY5mwI4QFxwB+Gi44QEcfzFCFkSjkNuVEE4EhOAA9XA28QAPD8+kR/p6eXp5wLkyBwrdu3i2qZJ2FPuaScUk6AaGbWVLulZNMcQRhE7mwa2qM3by26jc9qkkQRHB2PcelRdyABINE8TafzZNYBBrY25SRI+TRLLnR3P0mWQGjdt9pvVwx3HXsrEpFM85KlTFm3qVtzswBWZJOcWQ5E/68PxNdt/XJ5/dRrQwcmEZJpSgDzxw8/vH74+GX5O5O4k9lAHvm6+u0a64YePM8pz9i6vOVYR2K0iDomfwrgjMAlpZJlKh0Rp5yK8F7tdutELoLWw1rru6Ys81JEklsjJ7Kd6g2vr269bc+X7fXT9cv1r/+a0v010tDzwtEtNFNFQFd0NVe18FEnMkkpxQNrazZSVhzdzNW79rdhUJhH3bt1xYBEQgAEkJDGfwIIbhGO4SKUy+Rm+23te3dzQMJBkM9JplzmKc0pjX6W0LyU+PCQU9rTrqqmrl17773rkSX/3VmCbwBGDwhJaTmdP7z/odaWJGVJ1rWuO3gQolsfVluHGP4osz7sJq4G5CxoAAgowklYhIcwGHDMMAmIB51nBNySD5I0IyUhJJaSSmLet/X58UtoTGnuzSJNMIxKY9X9O2bN6XR6//H96bS0ure2l5k//fKX55fP2tvr9XJ9ueyJpznlRIm55FKWQoIBPjYXU9KGU8pzSb0nAOot9rre1rX1Chh5ymmWXOjh3el0zmbeVYEcMURGXenrbf3082fDDfMynwQZWZiZJaWcXTWen3YzggeRJDmnlGQY/r+ptKL3PsT5OaVlnpnZbVh3UMZ3SrmkBICu4d23vt8u+/PrpQ6at6oPCiYd8kvSPvReCICG1LUSWddWGwHV3UV2YQo3Nx08ljLlPJXLtSI9jTAdACIgQA7H2twMc5mXEy3nPC+LW0f47o1gAHkIUELiCDIHVejKgEIj0mZExY5KDrqDu7Veb9fL88vT6+vl5Xrbtr53BxKSQrwQz4j5OCcC3AEdTINwNMEwHNzdDXx4BYgkJRQqQmkc7SIkjEhDCtXqDsjEQpyYE/yq3fsPjnZiII7AodRVc/9q+BzbPWLgcLUh+qD5B5iFHijWAAgCZMJhn3I17YpG7pCYIJgIUoKcMQmZQu22775XV8UIIg6GcAwP7xoiPmGk4Y0P066IAcgicLDHgCPeyGlfnw0AujNEJpiETzmfy9RSYVc1IkRMyIXynOdTmZYyxhBCnFiIEMKZgjkCyQMaWji6oSOEmisiIAWRIjbwm6oHJsSEKRElIsDOQaHmNhz2peQiORHbHn2L3sEswECcy8RJQGXzpqQJPdmGX60x7t71SHs6/ECjwByEmjiKKgggC2Bk4pFPg3i0DOCg/hkEIAELJEFAHPaNCBqdxt68dURCpkEQwWHpD0AilCH3GF0vAhoV35DQO3SF63oxN3l5ohF7Xib6vvfw8cNHtdOI1k45eUCtvfWm1hJbFsgpiIPgMN07K4mxaUZOZSISBO5b111DwDVGwTT8lEk4J4kECINnN2J5iQWXM9+/LymzRezVeB3JyNYbRIQkYoLEVLIklinn3lT7SE2EUqZcMn+jTHHv2l5eH//009//DwgWvkfKxBlsYgLv/YCtBkJgBLmjGmy7r1vUTog4FUHmpFxr23dTczNqFtfNWgvvkIXnnHIqyyQiSBJZmAC2Z7u8ako0FcEjU6CbeS4Z4bAwknVqO+9X7BUa1Xp5unx+wqyW2/Qu/vn/Bm9RL0d8C41MSQQPx0AEYk4p52ky9do6uAOFqyt1NR2xfgOj1Q+JdggyIqEHQqAHeaAHjpEcGIATo2QOw7YTYJgpjOwYwiRSprKcFio8qCGIkbKc7xchFCbtOmyZan04ib4VmSIAw1d5e4yj/XQ6ffz4AzGf5mUpk9a23dbB4RqCYHMNdySE4bIaWiQmGQWJG0J8JdMbBCiQEFNCYgDqpt67W4Qp+RF6w8CUGAkwwM23dRVKUz65BQQh8HBFw7/Txo8Xg2dyzpQoCdky5dM8zaUwsDXr2iVRGlW5cEn5NM+cCMhLydM8hyfrwsAEeL1e911vt9t13a4v695aIKYieSrzIss550KtK7IiG3KIsDlo123f7alhrqcPIdOchMdZIInKlOreL5cO2CX5NGOi8YTfIhSOx4HMPOQTCFhSTlkiHGnAVYiQEokwMbAD7CQUaM33ta7bXluD0Q8iIIZjVZq93TUQh2rdQ7trMwjbdzsopmHhxsIpSdPIPdS0a/fw4R9JkhDZDa5rU4X55JyygzEFDc/CN2c7AdCQ0KmrK4S2Zto7BozPi0e0rnj0j8LCa9tvt+vL0+Pjl8+vr9d1aw5MaUplYp5JJqQJKAPyqB2GWtkNnEAEv2pEBwyHWaCUAWKehJPw0JTwqMMCuh7gc3fnCBzgUUSI//jWThwpQVckRlA0gwhD8hQH229gAwEO4b2O13E9d0SUkdVHfNzrBgEN3m70LmbQOuwbBIQbaqfeQJUCEAjCIygIkRiQVCRYkBiHFKL1fqTUqGDAfsNtDTPk7ytId3/65efpJvNp7rZTrymiIAemxCQiQhkTiPDEaUZBEUQKC7AgH7aYwowNrLulPNSaYhliB9+DxjTBiSo4GFrwzBiIAFKo5CQR0L222kwJsaS85GmSDAksx/Xa9s1SYAZeUp4nipnCdXSDX3/8NcDHPFrXOOgTg9YOiDjurZKFg3RcZYauHXwg7Yb8OBAhEIkZyI5XRwxmeWulBY6PXJ6KZTi6+kKER8QLGo4/wQcmSOSY+R921EFSdjXvoQGBrfdtrzml01Tejnb6X/7X/zOhDzr9iD5szbWbWkfqkjsNaJmHKmjX3luttdY6RrJEjEBt2/tWR4gOUqrNfvr0y+vl1ltbr1EKClO4qrlplwyFIChIEnKAGoIT+lxIaFJL7pYzou1tNavXnEpKSdgtj5sGlsw5pW8Dwq3vl+e///SX/8+//H//n6aU0wNxIc4pZff45aeffvz7X3/59KntFSCYyI16Q3cCBBEGEAzEAEFSJAzQHreI2uG2k5kT0Cmnh/v5tOQpM0AEKGEgWqAZeuLMeZKSUxZAlZyW8/vz/cf59C5xABCaTwCJaSpM6Lrdtnq5bq6nxv/0691kPp3vWmUhFpI0ws3iUIznIpKUfbYY/N1Qrb2p66j1w0N93H7DHfRwvAYHUHYF6AgQRoJAEGAWYTCeIpKwt+Zu4UohSDgEmMTkx6TSIAAYZJIJp9Fm58LIGBge/q1OCBEHM0KEx/pk5jJN74mXZXm4O9+dlrqv1+uLWnePMuUyMN8IASPasakpAKjqtm7beuu1ffX4uoeaq7lISmUSEQCEWlUNfURzj/xO071RSqlkNzd1CLo73d+d795/+LAsJ+EUAe4W4YMU8m2BAgC3zz89pa6qe91erq9///mnH//y16fPz68v17p2SVw4z1IyJ4GwprfXKyeSRIxEE9w/PJzPPwgkbfqnP//1b3///Pnz5fHlRWt3DUoiGcos08JIptYDjURJjMRdESgcDp1Y7bjXtSmwFEAL7MjG2aNFa7Ftnm+27hW4vfMCMpekXw8QFv7tb36odVu3lRCH0D3CJaU8TUg4xFmD1B8WHFGYT3Op5yXc3LoP1Boij9gwouE9Q+BD8WOuqqbhhgjkgV83MSYcDJxWXW2M1w0xmMbkBwjHbG3Yi7i2y+sru11zoiwC8evpPoJGu1qrffSuh3pyNE09NHSEAI97a6+tXm/X55eny8vr9Xpt3QOFJVOaUQpwAkpD8AksCMExsqIOJnYSnBIuheYECVGI0ikjuWmlsMzHuB0RAoesJJg5Cai5qbu1bjpC79z/41k7IRCDCCZhVSdyPyDlB+/tkE8f87Jhlz802zicsCLCzEjgEUOg746mFhEGZtAVagPcYgzr3cCUPGDUvOOfISIWJw5OwYJEiEAQ6AZOYRraolffbrpewQwjMNG3njHfL0/eOHoJNOwtR0wkKNnCGUzISDCLTJxnyhjsgF27NhuGvYgUEWbRXYkglSH7DccwcLdgRwZKwQUkIQsNYpQLDKxSoQUZiXubUlnSdMrzkgpligSkK2vLnCaShdKcxsY05Ld4/fnXeNpB5D64NEQ0LBwRoyktwkjCYm7majAaTwgHnQYpRuo3BiIDgB/4CI0IkXij1AESC5EM7BSQSBq9AUXweNNODUkgHTAKUHB0JBjZAWMMxiQAZBqjAP/maMff/O73KREegG43A1NwBTcLaIE7gMa4PAaZq3mrba+1Hv05YgTsdev7HqYIkFKpzboPEpdWtyJ5+O9jeEuJuIgUYSHEgHAME3QuOE0pXNwNEBHMe/cOQouUBRmc3dTAo2Bk+I4O2Pv++vzTLz/+65//+/9bG5T8Lk+LpGIG+6ZfPj89fnlabzfVPhJN3Y55OQLSoYF3MB+O13AwQ3XsSqbsjsQgTNPEJZEwmIE7ADsQUHIpQIlwMOFKIpJpLvP5brl7t5wfGL2UZ0+ZkBJAIXK3uu/brV2uPWL6lUUHcDovzTsLHXnEEepGxCklIjp4lh5w7F6tj1b2sM7GmxDHITzUHNzRwxEEQQ8CpZNTMPRQwwgd7nqRnKj3UBsLj44L2QgNo6EDORw1ghR86C1HjzB8+Eu/PdoP3cpIfIBgQiGWlOZ5nkpOws/PX56eHlvriLQsy7IsA4wd4WbaWhtRh3Xfn+hJuxJtx3pDHnt6BBBJHsENHogdxwb1BoYa8DMZdkFOJU9357v37z/+8MNvPn74YZlPeBwJh1zh38e19+fHjfau7bbefv7y6W8//vTLjz8+f3m9vm5t18wpYRZMCUUo3Pp6WVlwOpWSs6vlxO8fzky53pqwtKrr2ra1MUIqxAXTFNOCeQIEczBJMAFPM9VCVT2aD9weEAxCDounghBUZvAAINgrOGBrcbv1wD14y4st9/it9IGJ7h9O6wqjL7LvzSPcPBd3kMO+yEHo5h7mpooRy1Q8zu4Gw9brY6ZOIwfMA/yNDRP+VgBYhBNA0NsshhlxSLV7qGl084gAl0TMnHOaS2LmACCCbi6ZRFzt1romyYDl28cxZCSt96HCc/eRioQ0MIyj4NPa67Zv27at23q5Xl5eX7dta12JciqJ85zyImWSPEkukjJJokHqH6qMGM0ISAxTptMkc2IME8ZpLjmT+4RggiGIQuM0GDPyGAN77dZQtataU0c0/jZv8x+P9rHmWKhMACB8PAeIoIiv9hdADGbyiOgw8pXl12RFQQC0CAQUkhCAoI5qhoGq0BoCYyCYBYKPzXMIEobImQKQQCRYQng0/8fJOlKhMYL2NV6f6/W1rzf0IGS8m0te3p4NwIQu4dg8wNn6hBg5J8RqHTRCbc75Pp+WVDLJvrfbde/r3lrHUqQUdAgN7dq900Qg4+0gT4wQoYoKTHAq0w8f3p/vlzRxhf3SrwaGFkVkORcrs3bNnKc8TZILZQEGRF54jsYsSVIJSR05BA//Bv5D+0HVht5opA4N7QIRSjCmMRGkcHYz8Bi6yySDFAjubjaySoYGSCLcdFRkMbCaABbRxtodfQFzjaAxm6dAd+itq2opZSTHv3XjHQCZkZCmKZ/Pp6ksIqXuer1s32KqAAE4QIbcDwCAnSQxOIJFODtghAGOQoECI3AIDIZWAwgZEV2racXoEEbE61qfX19er5eXp4upJZznlB0CmWTO8305v5/mE+cEYd3BBT1ktKMBkY7GW5B2VbVEY1UCgpuqdet9BwJO/lWe2Xt9ffnl+fnx+fFFe0wlHt6FMFxfb49fXp8fr5fX1SMIWXIGpK7eunuPsOPS0ZoN8qSq9xaAlFKiFARk2sM7WrdWW6hSmHePDkhZYJoRCF3VvIYLU5rmcjrP85zLlJbTuSTGul/qfnl+2quOaeXevGu449dB+3gty9xDB89h4Fh676bWW1/71ntvTa259WGGVncFCKDDhRCD5BIYHmMURxDDy+sQ3c26e3cD62FAkKaSyyQlMScPVFUAGJlV4Vb3PWPJp5KmzEl6a9ttVW2tVeGUU5rmSUiGz4flO+fu2wEQ6q6m5G8pYAAkaZpPD+9/+P0f/skDyrSIsKTRrHJ3zwh398LEAHG9Xtvet+uW0wThU54AoreGQEmm0dFx89qado2AkvM0TSJpwOgkpTwt0/n88PHDx9/85g9//OPvf//H3/zw+w/vPpZp1roPRMbxgm81WwAA0uq0I3uvbe0vj9cvv9xeXrfb3rauPcIIDL0FZCypNI26XSTTvJRwb7Vt6+V6/YUh1117X1ng7m5OhabCZSZHMzRmIDaMYObTXYFAa6xt1bYHWqCxwLyku4fp3fvl3YfT+bxY86nI6+v++lpbi20lN1i3KllLxhEEGvGtYSG6q4UDojr0vfeurWnOVitOZSq5BJGhDcF6a7Vpy0ne5XtiKiXv2957H8CtCDDz3h0cACUCA5gDLUZIzGBejMAWNyIXOqw7oxoUTImnnO/P8/t3p4e7OeeECNveatfD1sycsyxTzil/F8ql2rH2tmtvSJTTcV2NsSGbqfbbdrtcLo9PT5frZatbra1r90DkJHnK05KnOZc5z0uZljxNuRREesPeOjqOS1GEI1ISPi3TaUpaW4SLpFyypIUxyBXDacSPDluwh7mbBiExcWPCgyG5t/YfM+SHKBECmHCapOQ0RumtWWuuHhCj3B5HLQGQiIUb4kg7YQIGfwOeQAAwIRACKZGMUBgZqQNfDduj7gVAJGDBJJD4KMBHoCOhMOVR9wGgdti2uLzq67Pfrh6ILJTxHr4e7QjniUUCCHxE9lKZs+ytra2mRnvDU5oe8mmWLIiuujaLEeMH7EHjYLFmA5GNMa68wQQkSIIcIAATp3fL/bvTWQquKqZ1MzcwIp6nzHlCBQFOo+IGYWBE5ITTnBCIiBiQFejoOQ/G9K+rbCiQgQiOVL2hxtQjmM49gAkRmBDGmTj+Fhx5SQgBg9+HAJiERgi9e5g5ERCTm5krEYtwEnlbbfgNgNDVDB2+Tp0jYrTajmH+oI4TpCQlFwjat/Y90x9kQskI49qONIiFGIQG4TgWLIxRZCBgDETEWHtug69H4T28QlSIHgHAPp1SKYIIEFjKdD6dgkKKlPM0303LuzlnxFDrFRQwkKiPtq0IEwnA6OC11no6om0hnCIBhQtkgvStmNm0bevLdruu161V60WmaS7T1Gpdb7dWa4QjMEnKeQZKsan2zmiJzQ9+gJkFMCFBysRJppIQUdV6A+2WOFzVCQgZAsNJDdBcEp0SDf//vMjDu/P9/fl0XiQlM123VTv3rureulprJBIQVb0bWPyjJHuessVER4MqVC1ULdx719pqrb2ptmOxudvQJwsJEjGg0xE7aB4++ml4KBuBAAgDwUbfPhzHYsThpARipnEXHinWFdQVGPKpMLOk7OYI6B7WDR0dKXGSMrV51tb5eyjHuBzYWx6HuRMdWiIkSqW8e//hD7USp9PpTk09HGGgOCglmaeJmbv2l+fn3o1ITqc7AJ9KqbW+vjxZV2Y+393d3z+o6vV2WxYFiPP5fH9/X0pJOaeUUsp5WqbT+d0PP3z47W9+97vfffzwwzydS56zZO/t68H+RpX87nGsl9cXfVW01/36+vp4vbys61arane3CAXrsd0aYaSEaqbdAMPUe9Od9uvra2IklF5jrxdEnec0n9K8pGkmwzb0/O5gzY9QLeLTydsDRCcm1iqS8e5D+fib07v35/P9PE0SeWRQhEPUiuvq60332pcEKedR5X/7PiKiDbizQ9doTVvrrVprqJ11Ii3M6Bjhpm69a/OwicZMpeRkboiUxnc1cwwPGl10csAAdwACJYiAY1uGtyPSzQ89gwMSEQsTzTnfnU7v7+8/PJxTFkTYa9ubdnf1o78Xb7Gl3xyCar2adndNlIQxCRGTuZt56/W2ri+vL0/PT5+/PF5v10OcM9B3ecrTqcynMp1ymfM0l2lOJbOkMeJB8IC3KsQjwokgJZqX6bzkDUG7EjESJxERRDcKYxjT747uQYAehMHExj7AdGbWO/yDkuO7o1271wOIhvM0T1NhZrN4eb0F7KOnRMTMJEmI6O5M7q7aTcf8FcAP/t74RfBAfSISWco5z2U6TWVOTDCKGDycdSCMLCCCxEGsRE4gFMGATCKSmRIAq2Krse/ae29t37YdAJm5z78GFRDi+/dzEhjRy0Oy7wF7r7d9u27r1vac83kqDOiqBC6Mc0mJ0M3ruu1mzdTdEBA2t+Y9uoEzCCmiBwUTEDuyAjWnADbjDmCu2BkQUi6SplLEiYzICW1IBmAKLnLIZTEAFcDGjZbG7+ObF47F6w69G+LwAzsAKGFvGhB4VEeIow4IUzYRyUmIkJmDAoLG96FmEW1YPAeLYGDskMaNCwJG4x0OEy8cEBIAGDlgb8aJYYcb3nceCCZTm6bWu3WtTPR1aSHicp/zPDzyEMP/FAQHqQLc04isG2Fa5vrWLUeiN+nJGO0cTLBuqs02jwbgiCSJz3d37394x5nyJGUpeUkyETGAm4kIS++pa0VEkZRTSWmCIDPfa021EdGozYloXghcyDNGMspfH0iEuzVT1RZ1M+ttPVtZMCDlspwfSpm9dXfHPC8smdlEeht51AC9KxKaWyqMAkCes8xzojECrdB21I7hlNJyf7d063tdq+312pYTTjMJY+L0h3/6+Mc//vMPH39IOf3yy+fHp8dPX37R3uJ2iZcnvL5m6zkggMxBHd2B/Ls1VRJ5pJQkArZts7a1dVVVJpyEBFIjamR7hSHOIMKcpZQsSYTZAwbKsFUPI5AEgCMoWVKSnFgoAQQcPuM8ZWLp3Xrv+7a7GgIMeiIlpsTINJ3mJmzu1pUCBciAQb1bA4khDi45fyt9OKT+bzPBoV0PNxg3BUCW9O7dB5G0LOf37z9cb7fWa85pnqa7u9M8zyxsZq+vr3f3z9N8+sM//XOYjT7/4+fPf/rT/6j7Pk3Tb3/z2z/84Z/M7Hq7IVIp5cP79+8/vJ/nOed86IwlpzxNp9N8Op3Op2maiZJgYpLRsf8qXv33Yro//fi3z3419s3758vLq7ZNjwAED1SDbWu3W7uusNYkaZxgWGsPgNY1IsKMiLXH7faqWkVIck6JSTCXckrFA3q1y8ve9r5edxYmpnfvzvenB63eW+WE9+/Lw8f08F5SCtXm6kBRZrnDuTVeb1tttrdGPE/TKRdJiegb/0gE7NVrjb1Brd6q9QN5cHSs6j40dmMH8wgHjK3vSHjb9r02DwRIY6oIBCSRCcLAfch5FGGgOQGOi9EgBKAdM6QAPJj/OUnJeSrTUuY5zZkzObo7qqBG3/VW614bIJxPyzzH8ttfWbNuZj6CWwJGs9TVwVVtr/Xl5fXp5eXx6fn18npbN7NgTumITiqpzGU6TfM5l1POs+RCLOGgqkMYH3iw28OBjqZHpMRlStM8DfeaebSmEZETZcEhjtcOve9qOvaonMXMofcMMtZfytkuem2X//nRHoHghAgisizz3XmRJPYWQs9MZkEkwpyL5JymqYzo4lq11mZq4cPhDrVpbY0AhFCr9m7TNJ3vlvP9aTlPARGuHj7e4shzEyaWUYO0gMOwmRPlwtOUiTlCOiEFxqJoHfwKfo1AEZnK9O3mlRMlGegZCKDBcREmQmCCnAQRGdDVtPUwZ8QkTABVm7ZmA0EVQTF4bj7A646BB5pTMgkHeu3KFQQsOnZHCwcLcujBiIWZjVAhDOAg9iG93aIO8cJhGsYhOP8+OQIBeNhmIoaCkmJwIIHMA7qNibkwI8BBQgoHH0zNoxlCRCNoulLXkeYFRsQiFBDmh8wRsAfYWy9lzAXHj4nj6PaIYUAaV5BxFQFQBEqSRTKTqLrajt8zUsoiZfkKaxzN3K+8YIxgD4pwVQB10AC1MSEAwIjR9xkfYFIlVfRwJGfBlCWXnDifHu7uPz6kgpIoFSbGgBHBSERJMqIQWyKmxDnlOacpAtQcZafUCJFZJKUkiSkzFooMkV5e09ekGzfdN217tx7WR77OMs3vAWeU2S3UfN9UDeZlSSm32vdtW6+33ioidbM0sbpyckpOApIwSSB4KFhhnVJr1HsqU0l5sh3UqFZQhzKhMCJjzjjNNM1pXibmHAH7Vte69bpx3blWVuU48hftILh9d7tCwHf357uYpmmOiJeXl1cCDnf3ARFT1W1vl1slWsM1kEuWZZlO52Wep1Kyh/emr6+vLy+Xvnft/kYFZRh6VkImQk7MRELEpOa91X2rA6pDiEbEquxJMLmqtR4igJSJy7Rkp82xbrXVFs06kqnSPzSyIQ65fu9de7eO1pEOwc5gw5dpFkkiqczz6XKprc1zOZ1PD/d38zwDQuttWs7z+Xz37r1qH/IDCP/bX/+61bpv2/l8/uf/8l/+1//lvwHgum3MMk3T3d3d/d055yIpvelMM0viJCTCTEQcQBgUIxi699abmTEfapBv38aPT49x+2wSnXx3u5itXWs3DwggD+jqvXeFyA1QJEtiJjff9xa19aZ9U5EEQNtaVfug6QJ6EMkkuUgEgpvbvm9qHikHQcpZymlmZO2dJeazlDMQuZmadwJMObEQZ+iN1k331vYaI/6WKA1Fwq/rCnmZ3+XUSx73de1Nex8des5SUirjaMevEG9ChDB3gwzUD44HAdPgk0Koq7q2AeG0YlktB3TiYEYmAsRwaE1ra4CAcowWp2k+LfO7+7v3d+f7u9NpLuGu3YwUgUy17bBvA7impuq/+XVkNQz/Rx8xwk2rqZmttV5ut8fnl+eXl9fLddurmiESS+KUWbKUKU9znk9lPuW8iEzEjIMqYzaU7MM9c+ThBDoOjgulxCmLJO5K5lGHz9SJUBIzCaGpeWg3M885lywje0XZ2J2FU063foPXX9fVd0e7MJdcJKUyTQ/3y+k8CaO6eSgLtm5ugMjMXBIvp/LwcM4lQ2Ct/XrdVG30GVTjelsvl1tKtExpW9u+tvP59P79u48/vLt/uHO3rmqmHuNwOoJkECkiWmvuhoxJuJSU0ohXYQSKYAgxhd7j+fny9PgcgSLZLXn79eFsW+18WOI8jjA0cwMzCZ44q1prtTcd2a5DmOaDyxJBCIJk5qhjbEDMMuQ8ElyIZ04zZyZo+3qzJoKKdlAAgEiIG4GDgoYi6mhPDLwbxUGz8sONGwgADmBh5uHxTY0CDJiHwYfGOMKPGosOSB2MSACHYCLhhIMIarb1OtC5klLJNJW0LGeA/Xbbxs6SclqWqWtipt672WCCjKELEMKwlYz1PYSqgEdu3LioxEDsDtEminCWVCyqudH3yEMUosTjaA+18RsmBmQ8HBcBDoyGqG7dwiiJlJSRhsSVMbD11ju1Dr1hZexVl2U5nc91Q5F8fn9e3i/MBqDutVczsxgWZkYWYi6pTCIpSWbJzNndw1QQQ5Iwp5RyLikXkUm4CE2M+bZf+1tyZWv95el1u+3ekTFP5fT+w+/+8M//rVvbtusQtPQeEbQsiySu2+V2eX76gtsqRGzu971U3bqtQSrJzb1VDQNyAoxUoCyZ0wk09b2/XtfHp5uBceJwBqBhxrxcnn76OdW9l7Ss15253N/PjDFZ85enW2uwXc1HWwgRB9T2u8fxh9/9rszpfHeHAI+Pj8/Pz9fbFQFOp/9/e2/aHMmxbAf6FhGZVQWg0RvJy8e7v0UmjY3Z2Pw//cnRaCS90bu6l1uzFyxVlZmxuc8HzyygqWU+S9bBtiaJRgPIqohw9+PHzzkg4bLku/vjLx/umAlRWejqav/i9vrly5ur66v9fmemy5J/+unnH3/46e7TY2sLICCSIaj1XDt25BAixSFFiaHWWqtrPS9OUTREYAYwAQnEAgitk9rAchh3YxzyvJzi8c7uy5znZWqtIeI6wPb56tpzXWSZ5uUMSCSxN21NhdnngZE4xLTf70MIajoMKaWUYmBhQIhE1y9oPBx8so4J0UxrM4MPHz6UXF68vP3d7/7whz/9fQix1uYTKn50G1hvKiKBosQUQvRjowqqHdFRQ53z/Hh6PB6PJVeO6MDU80d4WMp8nitpEwORSeFc6pyzGhCRAjIBRxn3cvPyMAwCpoiGbEst05KnY525j7t9GsdaqFXINXddJPGwDyADBwSjWmw+99NjHXZgnRCbCQUJMWAIDKRdyzTVpVWJGoTGYdwPVwCUW++KvWurLeeCaDm3VgXhM1X/EMJvv/uT3xLe8pum+fR4ykvpTce02++viHlT1+AQg4j01krOp/M0LYubAhEBMwZmU8tLns/L+TT13kWY2ACaBEijNwPN2xPTnJcls3Ack2vJX19fXV9f79IwxDimEEW0a85VT/PSJ2Jno8bWe63keMrz62qDS93Xu+cln6fzp4eH+4eHx/N5ztnH2omFWUhcykGIAocxxFHiyCERBXNLldUblgDQ0BT9Ul3vVSJvPAOgIgEgdlN1JzHjIKTBTQ0YkXvXlptj6t4Lqq3WUpgphBBOnxVUn4X23bjfHWAYhnEcD1fjbheJsGsf0+Hm2oWfHa8iEdyN8epmn1JEpJLbNC29d0RwWajzeT6d5hAoRn64Pz3cn2+ur9+8efXV29cvb19067W2bt10Fal1ziwgqZumqxKhCMcYhQWdTOtcWkczAW4Oj/vhyoA4pOP9/On9cYvskHNrK/PM1eK9VjTHnRHIau9Ze+29regyGQlAZ4nB2KD5kBVY69bAWMl/RCGOIonDECUwqTafn1QCQgogChhb4MJQrWmzjti3bI3YkC/v64ow26r01q23zwdjiDhs8mfMyAJbfxMQkRGFXYEfhTmIV5xsqjmXaTq3WlxILAgiSoyplA6wahnudrsXL65LLSJyPp/mufbujj/bqNJG+9mUhtf5EEQEZX9JfcYakUTiYX/96vWbZV7QyPT5WbFpemxOc+1mtZGaq276K6GwWmK13msrvRfrVSEAJVYnyzICtuamz7lrMevEMB7Sze1egZnDcBCOhth6L7UtNddWemvWOgKRRJYoMQYJWIUkcJBuqN6ZcDQ+xhhTjDF6nRckEK2G075arY/3x/mUa3E0kcbx+vblN8Ca21z9eIAQhRQZrDze/cR0LlncXgFVA1lHa24Y3q03qBl6NegKpgg2jBJSL6rnpZVWVq42YW+Qp85Be9f7+/t57qf7OciYc+0KcRwPYxxTpN3YYqiZfI8QEBMQ2a/KXRaWEIZhYOal5Nqan5JhNyIiEs+5xhTjEFMbYpTD9f5wddgfDvv9brcffS58GJJE8W494oYOEXfraiYILBJTkhh0ZW8gob+i7oXKIhzHNO7GGJMgCVBETiGMQ2KDXto5nAmp9b7kIsIS5FfkcjPLebl/uDvn3FGH/ZWEoeSWlxpDHFIaUhLmeZ6XZXL63jCmGAMxEa6CN31jhLJQQCY1zy6BkANLiihUrRMaCLXWaymn83k6T713RBzGYbfb7cZdjLFvfowASCRAiGYPdx/fvf/57v5TXubE6b+u2ikOGMdpOZ3njKHlrKU0BEgpBg4pBRFE4v0h7ve7lLDXGoIMuyG3Gs4zVo46jnGX0tA6zLFIMEBSNDBd5mbY0STPdj6W6djAyDohaA8mREKWUkDSXIvWDK3GjjREC97PlRBoHNvVTTif4zwNOWOe23yu846uksLGLifi3e6KmUjcyApOxxMCMU8118PV/uXti2EYPaKHICmlGELvrZR6Pk/TvORaW+9e5sUQVO18Oj/cPxDdtVqHcQiCSD0kGAZGtK4t57rMBUDMOEQZxiHEEGN6+fLl7cvbKEGYo4gwA+CuW9zn8WrZX0/TvBRXn1V1d8FnyaIW1d566631Xks5n8/H4/Hu8f54Os21tK5I7CPEPl1EFIgDSZSYOCTiAMi2Mo7X0QhcM210b21HVTZvEOvaW6/duq0zwObVXxSMQj0IIAUJhaWU0mprrXn/EIDBhNXMQP4H9jC3L15ev3gzDONuHIcxpRhcDKj1tclrTldHIjRmEiFiRIC+s5srPyPm+k69+Xyw9V5/4ve9fjwcXtxcvXlx8/b2xS2A9d4v/Q0PGf6U4KNBZog+Crt62K0upJ5SIRoAW9JC3YhjassngC20A9QKHV3ayGwbOFj9AxxaV8VOrMEUTVGtoY8/RkmsalpbD8Czca4NmmtYueoLBeEUOEWOQgIrvITo5IgQ0IIKL+y7RBVQjQDJSMnfbtfU0a7qslb+cAYbl+zy3pAMPHhnm8mYzFC7go+ESUhDSMIcg8QQh5gGn741mKbpI3w8nk+1NVM2JVNayaOGTBxivLm+efPmTc45hNBan6a5OzeqW9e+aofzqmAD6PvTCVDrY6h6Y54lcEzp1avXf/+nf8xL+XH86Xh8OJ8eL/fvu5//xqF7RopNg0EiQVg7ZN1V84iq9tJr16LaQgxDSIxMQGgEhn7QujUFBYNuFg9889UhHAYA4OQedbmVnOel5dYrLHM/n0ttriwtcYgsgViGcbfb7ViAsBMBMxkBKKEidHAMtVsBErMnDket7VxP07TkRU0txgLG43gt+7Cn3hUAZEj7FCPaMp8/LKd32rL10nteal5ymZdeai2talcfx9MeWu01l1pqr2XYt91Nq8WWWUPYvXrzovdea26lPJQi0SQSwhFhDvwASl4/xDS+vrnaffvymloUtMDOnAyM2vEz1iwAALz/dMcnmluLIR6Pp+NpOp6m2lo4TYjYu57O01xKN3CQGVma6mmaS2+Pp3NXLbncPZzmpZamfZ3BAA4hxtC0A0IahmEcYkos3HuLKY7DEDgwc5CQUgoxSBCOIkGY144RI2rr2SlkYCDMMXKM1BWEIDA8y7QcLjqfTz///EPu/Yd33w+7Q0jjNOXpvKQ07Hf7w2GfYnh4fHh8fCwlg5mbkzD7mQU1qKqGSFFCTGNKYoClvn/37sPHdwaoAsr2uJxCiAi4LPk8ne7vHx4fH81MRG5ubm5ubg6HQ0xxWZaSCxoSEYogE5ieHx9+/Nt/fvjwc5unwxDWDtyz9fr1mzzy6W9/Oz8+VLNW1WrfpTQO+5QiEjKDBNgdOEVhUkC8vrr6zXffIvN5XiyLtJFFTCDe/wKkVy+ub17cPBxPH+/vjvPd8fgIJi3j8W5ZThUNtRoAlFDNNQZwxww11w6NwTphQyvYJ60hIgoyYYxwdZ1apk8f8uNDfnxQxHY9VDisT6Gq5/OMDCRATEQ05WXO8zxPNZfdLonobk/7fXLJyJSGmAICmlnOdcllybWU5t48QxrV7PHhGCQtc1uWZbfbSSDAStyBnCdOtcKy9Gnu89Ry0dZg3KHIgOST5cGVWiXGIY0xxLdIqlCrI/y6TeH1v/2Xn/oGpZTareZaa855mqbz+Xw6nad5KjXX3gFJhADJpVcMGEmIg4QU4hDCQBy9jeKGwLDadRkAw2rKAAAOf3Zvfar2UvLCLhPXV6fWrqa6LCCESVgYUhrcbElV53kBsGGIiCCBTU37Sqf+b4f2Fze3v/nNbYoxphRDYBYf1NjSTE88NlvQNYxumk4AThLZAjMRcm11mufjQ08xD/FqHF/shhe74dbnT2CbDQUzWNVpwZ7IJmspj17XPz8OCIbAFJkCGDIyfm6n5AJIis3Qe9S6zuN2WxMoQEZGJkJiUzEBRKStuFdtvQsxIxMU1E66evgm5F1Iu5jGGKKIALERAxmQIAZE53Nzd8119adRAACF7nwwVEBdV1fP3bYC+HNdJAzI3UzNxJTRwGs4IwROPAxhjBJSDEMaRocaQxSWZVwYZUi7KS9EPI7jbtwJBe1QSwODwHFIu/3uWngppQ1pimEGow5Ve0FDB2dEmAXMms9iAxqtpEhweVpUDsKGgKRpoJsXo9axl8Joz0P746ePQBnUSI0VIlChYKq5FANAYc9cqrbca7Nm2EOQJUZyaqGidWu99d4NzRVgEEkBwmB7ctGNZZkUtPVa8pJbUa2Q5zafc6mOnyEgGRAQpzR4ESCkIXKMPI5pGJN3f1Z2ggQmqfnVxVGw1XqcHpZpcUSnayOkGPeH6xeyiwqCKMMwCtt8erdMv9SyLOdTns/LfJ7LPOeeM/WOhoN2LXMj4CCDQS9day7LrLnmpTnozDcvh7dv3pZcz8fT6fFxmlrv1qoiAqE1NjTMpXWFrjAHztPQktNWsFUFM0JmQqbnUxdgYD99+FCt3p3PMaZ5nqdpOh1PpRVCnxGnWttUc7HWyYr1c16KtuM8OakeDHrT8zQ3QwoxDEZEEkSShBQZDQlTSmGIKKjobArkJCgkHGKMaUgxRQmB2QcbXUZGayuWNfes3ao2CBQPw8hAY/RxZw6/Gta11uq8nB+m4/35E6fEEuelzHOOIY273X43hhhOx+PxdKq1gGka1qrdrx41aKaGhFFCiEOMYoilPX66++XTz8hcqJza6cPxPYsg4LIs0zQdj8fz+ezdrof5+mq6GseRg+Qll1zIMS/xRETzdL7/+Es+30srZoeNwvK0QkgWUi39+DDX1sFAjMcUr6/2McZSs2IPDIExCqUgKOF6HPcppXG8ubphG6QNSy3H5ZgS76+GN69v3nz91fBpp4alLafjcT4v+dyXc+sVrBFqCEmYIU9Fa+u1h0BdC4kRkyLlbm3OZ7QQQ9yJYWm1gnVCMNVaei9ijZ8PVdba3n/6CGjAxsIilJd8fjzledHaQuTdLirUUmc3EEoxxRSIGADVoNW+5DrPZVmyqcU4ItI85SW3DmhEzay32no2qIRdTXvry1Knc5vmPmejpt2aUaNQj9Mix3NIQYLEHgZTCA4SpRgje2vUKz7tOZcfv//lEtrnnJfznHOe5/l8Pp/PU8659WYI4ErkgG7jghTZI3oaQxriuJM4MAfvlaqtYjBu7g64Fu3gZTt5ZxNUtZayzEjWTDe+lIKqNdVMFhhzZEohhGDD6LLLrbWSkRlFmAiQGdw//b8X2m+ubr95+x0xMa3t3C20K4DhBioAOHEZt0isa3S3NeIjrLzRnIv1Y+R7xlF4DLIT2TGPqorWPJqZXdxG3F/GNtlzTyA6bF/dmxSuAAII05yXnLsat1Lrk4soIsYhEip1H/1aQ3V3RWFPU1wXzV/47fcNJjcD096DiJCQMVlNBs1MrcdAV8N4GIcUOJCrMRK5VSORAapPZfp3Ie8EbMnRKv/jbqm29bDX//RU0P3c1gdxin8HMMVurG7cgihCHMewS7ILEpLEMQ5DSJHDENJuHK/217vxcJ7Op/kMiEMaiLC13qtOp0UkXB0kUBJKnUB8Ln3XiuRSCsJcoMQgIXKMhKS5TOo9ZESfnAHA1rWUDmiG0rR2m7oee78PMtxcyzI/6/qYlePU9dxrJbWB2Ug6SS19mjISpXEkEWOoveVWlLqJC0MoGppCq72WXmurvSMiMYqwMMFmVIIGZeraOphZ11atVevNejUCRCNtbZrzecqlausukcLMIGQpyTDKOIZxjGmQENkTTCfMv3z1f8a4hvZayvJwtyyTXgAQQgnxcPX6cPsKKBgxs7b2+Hi/PD5+PD7eHx+Px4eH8+lcWmvK0JPwGFIqtdblyES7fXJ6Yq0Nljrnfmo1JtlfhdtXt7/7w7fLlD99uEfAWnqtRWuPQ4hDHMYokWtz6CSlFEtvS65EJoy96ooKIwijPT/zBj/88u5hPh4+fYoxlFrzkqd5aq0RUggSU/J5vGa9WdWip3K2bVaV2VViCYAwxuGawzj4GIWkwEOILnERhJk7adOerTbsEBCZgMGCqZiyGquyXxZICEW15QoVjVcpJRhpjPvUd2pumwFp/JW6CDKjBARsS517OyqCi80vylMP97MQUW21teqX2JKRNkLeCpYiKBIwuXYTdcDcpofjw/0dMk92HvIu7gZEMPWR7Npa79iJUFEeS10eH/FMBuhXDBnCWrABImipZT5CL2CmqCsL9tkqJU/TfHo8H+9PqhBZdqNcxXi7G1n4vs5LWaqqDUOS8WY/DhJjDPl4EqSrFy928RBweP/xw/v7u27TMMJ44P1eWjvk3HOZp2k+fvr4eH+GKsIp8rAfr17cXgPqu3ffPz48PjychiHsd7I7JOyigHXueZ7m6TFE3t2kkAy5Tcd2PrVlLlp7oLQfb6M8EYNyKf/u//nnrs3IJHCIAdS0NtDOAGqttpzeBwm+P5yxGnxoUjgY0Dzn82m+f3hc5swcRKJwMMBWu5rmfqotL8u5a9nmZaA3aA1qsdIIDRqpLrXRXOHutCxhCCGFIYVxTOfl6uZwdX24OuwP4zhECd5r691YP9Mpn+bp7m6apvk8TUvOrTZcU1cB8kldL8WZOErcDfv9MO7jMEpIyIIom3DBesWjt9lxUxs2sjU9AGTrvS9zPpNab8LB/7p/spm2YoVqjo5whTQMgDDP0zxNrbVaCN2IOnCQ6NPL/+3QHiSOww6fsPFNct4Iwfuh7uWNtk1nIoAZPdGenwp5VIXW1S/lVlspNec8z8spnlurtRaPf5uHrOkqi6vrZP/T3OQFNHCAYwXBcz0bFiA1JIDPhHjckpoAlbzPDUKGDNgvCIT/9Oj3n/cd9EIaQzBVZiYgbaANiyqZAcmY5DDud4MPaSD7sJ4S4cUsCxxqBzDzgRc0H8hxUAP6+grhlhqtqYCDBs+rdpaQRpdvIXZvdUNQcol0FqHAJEwiHINE108XN6RxVnPemRlzyDk/Lo9lzsucU0LrUEqbznPvjQD3u70QzfM8zWe/kXxgwZl0vVmtCqDGxLwS6ryR4W+/WTcruTw8PPw0xF3rZvbc+Q0eP517O2mtAtaDLMhmmJd6PhckHsbCQYDQTbwoAEc0sUbqo+15KfNS5rnk4sK3HKNE8WEwikFAcZlyXlpv2rppt950FWJUa1Vr6/Nc53NZcs9VW7PeDQmZMEVOSWLiOFCMLIGctS8iIrLbly2yQ2t1Oh6XZWm9M7GidltafwQ4Ce9R0Jv2BsmIOxBIpJgwJI59TLLnkeVm3L+4vn255Pzupx+X+cxoJTdJFgYMVcpsueiwH1+8fPvtb3//9//0T3me3//yngOWvpwetVXdHeTFq/Hm9mp/dYV8IBoQKFnb93OYH3ojKCi8EVhWNc7PB14PSWLFUVQYm3G0mIx7RyRvghKTn8TW2yoqCwYGSK7+JkwSQhQWAAM1d6lmEQni6lVuU+QCYmPbueS1qxasF3sMIQSWFRlH1wwEd3o1dFNhR+MujTiy8TjAUw4PK6HA2zWWq7bmRFO0jty0YEPwkWjX+PXNa+vsu7cYAckIVQmMuBM2tdzmfJrKmZihUA+9cgF0dpP6IbTgkqRaobeWXd7eFT1QN4sFv2Bq157FXJBXLzn95SlOp8fHuw/zdLbaBGUXw8tx9+pwuB4HQ1gYQTGl+Or66tuvvrq92gfAVttSMuRCvQXqSbrZNM/3OZ+MoeR5Op9KMVMNHMewJ3iEjoHD1f7qN19/8/arty9e3szL+eMvH8/HTwBaxh5oPwwEGgBIa8tTO94VDtS6pR2FiBsvxOsYZosIz1rUXT98vG+9GwILSVjVUccYrsYhhCHKoL2f5tlzr9UzABCRfZCu1DbPy+PjaZkL+uUXhxDWMQRTnzg59V7RvSAMQNmAtFtXIATosFTtS212nmsJKcQkMUka4nGaH47nq/3psN/vdmMaIjtn0rSWps9aJPOy3D8+LnlZclFVICQRkrDOqAAYEBIjCXMIcZS0kzhKGFiCPekR2bYUfVZPzcgl2lZyCjMxg7t+uz4DMvoALqOhQW9Nu5bS56WEwGOKMcYYJIgwkfZGiNq1qgoxR6T/ASBvar2uLXBbZac20od5ZN2qzy0uOsF5C4meTXmDGxBtmuaHx4fj6XGajiz48JCYLZdzrsuSZx9GVXXm1spz85jnwRscNdv4XBcVVX/6rk2G6t0MDs/lc61ZAzDFle8NZkSIRuzqhOAS6OusmCteggGZbagJgjETI1Beel5aKQoAKcbdbtztxhSlajH/usBszECIbABdrfe19IdtlBUvl5etMD2tDcp1JsJ/2WddB+AY09UV19ZaAVwMPAfqYJ09oUJwQ0snASKZQauaESRECSmlkXvX3i0vLok41VwYpdV+Pp4QTAIT42E/Xh92p9OR2UAbQPMru5beel2WVmtHUtbVU8OJnoyMhIIoCIS6zI/vfvnrGEcCmZbn5pv26d255pOABsISm5ktuc5zm+cKSDFOzIwrl03SENLAgK7hbbXpeVpO5+l4XKa5mhGTpOC/cIyy2wVEPJ2X05SnuZbae8eu7kYPQoSAptCaWXdrA62l59LdMG/OKHNlrsTAAsRAYITmR+gf/unpQXpr8/m8LDnXHgI109zup+Wv89zS/MDhhvhG4BaMWQ5x/3J8+fYwTbMKjWUcrva76/3uxcs3X3/9d7+flvmf//nf//jDf/n4/idtmUKOY98pFzXSvr968Zu/+8Mf/v5f/f2//jetTq/f/9h5OZWPneY8w/VX9PV36etvX7168+1h9/sh3SIUmx/r+x+mn+AxP84zpMiqqxwQ+IjpUzzE3/z521suMURk1Kattdqqw9LMIsIA0HRt+flBp8+WZ5DCwn7+L44CPhG4NbJRwdZeE+I60OuKg0QiEmIMQcSlX3EDuPDJI81xq6coiAD/IUN+Yj9sObEadMNuqIi6ViC0ET/R1TR1K0YuI51bjw8NXNiUkJCwQG8AbD48BmTIhmKrTKJduFFGZEhmrqfiorO2ytODG2d5DkGKqxPNCgHrZyRTeLj7cPf+p75Mg/AupNv9/psXN69urmNKuddJKEm6vt1/9+03//TnP93sxnqajw8P961Ba32aKhGnWsvjvDzMy6IEnz5Jq5oXPE9dm6YwDGEcYx7j/u2rV//0D//wuz/8ftyN79+//+f/+JeWf2pNCcwakwXUhECoAt16rb0bBwAj6KyVBFFYhSsotGza7Plb0Sq63JIZqQKCEthhSDfXL79+++br1y+nabq7u79/eJyO57mUUl3QwzVafBDOanGrAm1da9UgNcaBCLuWUpeSa9eGK9fHwVZa4RFCQ+pmULuald5Da1KZF5ZpYTmH8DDEIQ1pSCmEQGs/FhHQns0s5LKcplPvagASE0twlVkDBGJhYQ7EwT1VWSJJNGRXo3HE9oIJeX68afugKazqW+CCJMSBYgxDkhgpBoohiAQi0Q6MVDKUUkprtFiKrIdBQoohDMMwpFTKUksuZamlCFMa4q84HJ+F9g+f7uQvK3bnEdpWZ9e1i76C1lvzAHDLvdZn2UK7b17TXMo0zR8/fZzms6Ei61KO45iq1tqqD3EjrteBrPfCJWW/SDhtbG0vlLdzyEIxJf9BQniq2s2gtuJYAKxD2dsN4VtCN1LdOlGOpKv+2crEV4BV9hkMoJvlWrpZGiMJA2IHa2v7HgwNDBTXaK1qLqQBsCpzORajsJUfuNbnHtYJVzt312fB/mwSAxWwIneCrr2qLqqLWe2gDSmXoGqImCt3W+YSZJ0pkBhCiIJITtSrVR8fj48Pd8s8uQFizvPphF2z6xPYOMQYiC1GToN0Dc40MUDCkOI+hgHJRNDrrRQSEZt1IoiBDlfDi+uD0DCdWgslMtby2Zn/5edjnh8HpiHwMISu/TQt01Jz7gAUpHoKF0JIQxpSSEkUtPVeu9am85LnJU9LWXIDI0Ty8bUx0pgk7wMRPJ7m81SWrKWZmkNLykxDACESJAkYA8SgKbbatDqRDWgTAfXmhwEYQmcwMZTPoVPtWpbSalfD3Oy0lE93737+6f9W+2E6Xafx5bB7e7j+fYivhsQvX33FRIerV7dvP+Z5ThLHYb/fvbh99c1X3/4x15YOVzevXv/4/T+/++Ev73/+vtUaBIZAZvKbt7d//uNXb9+GGB8RTik93twsb94oGC4z3b7Smxf1+irfXLWXL2g3ht6WInk65h5qEOuCHal3q9WLhs9OPCJ89c0b3aGIIKGTXt0r4nISXe3ApeLX4U//g21C9fJ/TlvxiOXf5bmiqq2n2yFG20otcI9BF8BxCY5V0AUMtkGMrYTY/gEAgMd4l+FZaN8gwm1eyU8XrKTb9X8RwRAIL0H9ApeukqUKfe3Sweon6hxXt8Je3YPRDT0uPxtsM7WX73WBF7oZ2lpWqCOgRLBqOfi18fzWHRl75DymoeM+7l/sD7fDsGcGs9o79S6kiTgicbdgmGKEOBSJFQxqbzkvpr2rAy4KVDPe13NrWBuaQaA4xOHqcP3Nm6//8Ls//NM//sPf/fa3zEIgN1evhng99zlKenHz+u3rl4ebqyXnX37+WBaDzmbWMlVktNB706ZB4n4ngYM20M8yRgxhZAN0jiIhE0Shr99+9ec//Pb3f/fNb96+mqbp06e7D5/uPt3dP56m87Q01W5ey62ASm291d6ad2aBkEUIERAIQxBCA7sEBGEJrn69ui1esGYAMmZiInEXP0IC16LXVpuu0Cn4fh7tSXfSZRaBiJElRJbgeaIfDgmRHTYncpWR1efXm8przUsAa1x3Pjis/Wxb3bFxNR6EdTqLg0hKYRhiCAFRegcz6L1byb332qw091QGYmFmRGAmQmyttbbkXEWW+j/QkP/hx3c//fKLRzTdzCDW8G6+29c5qKf+AZkPzW4FvdfDz8J8t1xqqbVNpfT58RRiYm8su1FdjCHFEENKMaQoMTimvAXw7fT4iV29wz4n9IF9HtrBlrwwmb+sl+W0gFWDWNe2uq4xd+U6+BleEQjFWrS0mludlrmbjftBTXOrDbD2aqYVWgPu2AUYkdBWS6DeGiDQ6rHqTDrzG8JobeuD8wi3kp6YARnmp9CuLddyDwZoav2k/aSat3G83rQBnA2AEB/O6C4zIi56zEyrREzvoF3nuZxP87JMiKbapulkUFoPkiVEHsqQUjIzQ5XIsYeuHTowBpZw2AsLMYMrdKaUrq6uhyEyKZMGsZTibrcHw1Ja6xHD0FqDDTk1s1/eT/PxvI+yH8J+D9304ZTnXGs1ABJRMNOmLBxDDlFEqJvWprX32rV1bapb7aloWptmpNq4de2miHY8LcvS1NiMzXlwgUKgMVASdut1JHLHQmeCuE8XItAqZ7DOLAB0QhVCFo7PutSm1mtTNQOq1foxv3v3w/V/Ph3v8eZarm9e3778zr6+u3n59/u0H9++efPqm1zq+fRxXh56mxkopRf7w9ub298Yht3Nq9dfffPNb97+h3+XpuPD8jg3aKPQGMbffn39j3+6vt7dP376ZZ7uHx/vBH55fTtH0iXj/qokOWJjXQTrHvhc54/L8WOd7rTeB64asTUytzI09eLp+TF/++qlvAgeU+1CBLmgY87adQB9hd88PK+RfY2cl77dFiu3qPrZgb3sAdv0ZQnwkk/5N9tgQj+Mz0p2s1+F9pken+HxsCUAsEHtTr3wj+Iae4G277JCietttdolqU+ZmwstIGrRurSW3WcBUQmVUPHy2B7kt+meLRHBy7czAFBcN8w6MotG4KgrugL/8/X6cHjVX+67nELZhd0ujokYW2ut17K0nJVNa8vn6dO7X6S8uN0fxhh3aczaFaRX6NqJ0s3161GxGU7n+XyeDRSREJhJUkh8I3/+0x//t3/9b/7w5z+9fvO2q01Tub19c331yuzhsNt/89V3v/vdN9e3N+/evf/+Lx+mczElROiNaiFQ7l1rg8BxvJLACZTX5wQAACLa768MiFxkhTEF3o/xz3/4/f/+b/7xj7/99pu3L2spj8fjp7v7j58e7h4eH46nJZfa3BxWDbr2nnPNueZcSm29en3mcl7R6WueWrow9jim3W5EhK6tai/d81FtXbt2A0PCmFKMQYRDoBRDDIGZzbBVH6R3i8ynhcTMgXgdbPN6nZC8BSohELEZqrnYFyIyUWdWANCtz2C2GnHhlta6nhNoR0QgJjXo6K3D3o2E05B2uyHGYMa19tb6UlDRmnVWqF1L9etHPW4GCAa65KUrLLmo6bJ8djg+C+25zr0WW1tFa9XqJ8uPul70ot0mDoAM2Hz8a0Xo2ZANtk48AuIBEsA6ScVyIeIQM7L4eEsYYkgxOMfC7dcQGdcKFy9Rd701/Piuod0umdF23i3PmVBXjJAuZEBXc3Exk9V0XNfGGz7vf7kkhaPbp3Ne5qXXagC91rIss3UW9LEoRkRSQjBUv/a8ub4a8NLKDFjH+2idplXX3kD/6+vNycj22XAP1DpPp49+X/SevWQHUOzYSA2agWyceqNVEweF1wsYwLW+QbvV2kvuSy5dey9L620pEhcOUUKUmIYYE/tYPAiFXbTEoggkFFKKIQqtxRWGEJPsksQYKAQMgimlcdybUeAGxkjCdAZ4uByWcRiwl12U3RD3uwEQmKW0rkZELCKt1pwzIYUQmJmYnCGnqxemGQCywzngCgdkyAhRaDdGJpjnpTdliUQBiEk4BA6BImNgFERhWs0RERxN7r336kOPq4mU7w1AWxkliMP+iSjkijtEGISaWmv9+Hj+8K6WU5t2UF8dYT5Rnfv5JxlehuFlHF4PFLp8UvqU9UHVGj7WnEsGkjFQvj5U/Gr3+P76p+td/RhMS1dV7Fof8/T93fvS68M8nafzNJ/PfZpF20jKHXRqsykuTY8lyLjkYz2f+kO2U7OuxMSAbMBdiRU/Z8gDwJhSGpOfw+2gbv3stSBdT8Ul7vvn0CVq43q6nU+7aU48C9ZbYwtx9TF1ByPw5vmWH6yvKwC4c6KpA5obXRcvzBj/l+DzyV3zMrirttZzc1O5dbc4LedS3sEKAfhzOcWnt9J6bdq6eSVIzMjWrOeS59xKQ+S6VERstSKvQgHoHmC81fPeTMC1DFl5SFsaQUjY1UiRNiFG+PXwmwIYIMcgyZrqKU+nbAbWEKtpQ0pDiruDDAfgAeIuHG5kZ9dxpyQ8jhgCMN309rZURVKFT5/uPn365LSf+4fTpw+PLosSUxp24+6w29/sAfjm5ePVzdWwHx/PJwU0kK6cs51O5eHhfH9/0g4kKEkkdObuvkoiCMApjvvxJsZnrEZEGaIBksTAFAO9OOy+enX9u++++u7bt29fv7g+7LqmYYj73Xh7c3OcpvM0b+igGvgseat1/VVKq+uYmnVX/jb1gtBF51MMu92w2w0A1nvNrZbWXFahry5pCmaySp4hs4f2FEIkEh/nRqDe9f/9T//S2tp688YgMiNt3oiup+29ccAN9AXzqhYBADZ0ew3tquq2eGv0WQs4J44YaFeEblAMJtLIdrUTAHCP49pMTWtrpbZcm6mFSAa0+sOs55AZjLsSCyAteZkXl11/Wp9z6iLIZstuT+FzRbTVz6XXbrgGKibyHE1Wy5j19PvhJUb2kRrvwK1Vt4c78oqf3MqWyQWiPVojIm32XOvOWY8rGNCWyhvi1qR/dlrMYDlnBJdWQ8fTPFvpvffW3Kpv/Zu6Zf1bJrMV86ZqvWkurZaGXVnIcilMVktwJxxaRRFVGhIDmGc4xIji0jRruPVv4QaUvYN1Q1Q0d2EnAvLBd7DPQ3uZT8ePWzajALr1PpphB6vgwoyAq3v2CkBu280QAVWhq2mH3qHVXnt3wX9eUBLFFGOKIotIimmMaUxpDGGXRiZA6EaAKcUQ3HXP72vqhSogQwoUgQLByLQXiWNCt7EpzwB5Qvjm69ua4xh4F+NhNzJhbdUAWYIbbuclH09HAAzOXEUKMYQQYWM9IQAJsVAIEsTdYqy1igDjmKKQ9koAKQ2eHLgiCrOnWAraiWlFM1wuXkR7b615EWBrodrV3F0HXA/qX97vpmepsKIhYwjUupamZW4Pd9rP2qPGep/aYudfTu//rzC+GA6vDy9+y/FwPH48nT4uy31XFbndXX1Vy3ch7nurYDAKvNzrV9cpD7HaOddebLn7+MPf/vIQw9Lyqcwtz9pq09aBjBh7lWXm9phP9PARfgTF2ro1CJ2jxsEGoYBAbBii1W5YOvyKw0HoVcnmTfqUGK8g4hZdt3PhhlXPK/SVBsMI7HMi2+7YBlAAkXh1hXEkj4x0SwqeinWwtQLwgnaFAS5SFtuB8BPPn6scuvlcV821zsuSe23OdFOnAK3I7BbLLw1GNQDt2lrt1TsPtjY/Xd+0r6geEZd5abUCATKSIAemQCyEQhyIA9PKQ2Bk7yp4t58ACRVIkXrv3IDMSJ0hfwEhfJ1ra7UuiIUx56UspXXvF5GktL++2r18eXj91eH1q93rF8OrF/H2BbNI7XE47G9eyjCAiK1dB1TTdz///Mu7nxFba+U//cd/efh0BoOuOi3LcTrnXkEwxjjejOP1EHdibLm381w+3p3uHqaffvrw6e54/3CstUvguPOkX4YhjWNs3Qz09np4+eLlOIyXp0BEGVjBDXwpBr59ufvtd2/+7jev3tzuh4itFwAIga+udrtdetmuW+8bXOQ4eW29XfDU1nsppdbWVUurU8m1dzUV4ZTikOKQ4jjEIUV3ayutlFY3ZzIwc1kRBxZQ1RAwSEpx3O12KY6IgijCIZf613/5/im0M4tEw7UxTLRKoDtJbZ1XVlznmZiYGREvBYgfHi8SvEglInKNmyDu6augoFa1aTPsha1dH2LtO0Agwt5bzmVelmlellIRYUAGkq7o+mbkw8ceelmQpJR+nk7T/N+v2q+vx/31+AyTXk/eBoETbE4HF3Lbuq8JmYAvJ9IQydk3a4AnInIUfhNFdwoegl0+cw3fGzposI2kPX10HR/YMLsNTTTTz0K7LXMF6xsE6GS2jbHXmhuX2XZHwdZKuBBktn8BKkQkCUGZiTESiZqoMYIgimEwEqRVjGDTRfY+5GfXFnjfaBtvs1Vr37fP+jrBhhVuq3etpT2/fJ9hnEAITBhFkKgqNNvKH1pxQcch0MDrKhYKBCms3CMWlEghhRACkgCIdsxTbRWDGLMIsSsyOA1NmFlEhMkVE5W0Y2tOElCA6prGrjGZ81N/BIn+/Me3ZGUXwxAkCqNB742E0zgGCURUSpnnyQw8UwGAEEII4fld7Gcjxrh219RKraYWUwhChMZEcbNgxDVNXHlNoH3rfHjbmJlYbR21/Kxxs5reOxFPf7inS2hXg6bQ1Gq31rU3q0uvZxO2vcAOe6h5ej89/HKH8RMPvwyHX4CH4/E4LyfVCQg4HIbdz4f3P4jE3hojC6fjTw+ynA7YZ4GFdK79fDy++2kWqj3nuljLiOZJsBGDYUPqIYKwoZk2a9XQeKQEEkRwA4EREF3SEZ95oSLggHFHSbxJsWLtfsJhTW8uZ/4yZrQdr8tGdFbKNiO78pFgK689Kj812c0U3YLwWe76GQ76RCne9jE+OwuX4/0stBPKKlOL2nvNuba6nnldWUAGCLa+xXrhNelKYVdVUCO4QBErfQCDeJiXIDEKEKptNldAvHJ5PSO/qGkhbdcSufm51yWIno7r9rsC/ApEuXnzhm7S8TgPc3FkurlMmkEcdy9fv3n91Vdff/vt7evbq6thvx/2u4GJ1SjE/bi/4RBB2F8t05bzTPS+1BIDCYsZ1FprbUsun+4+ff/j9+kqTfWchuHDh0+5nYa9vHh1NaQ07EcDeDwdp3kKUQ7Xh67KwpLEx51QEBkNtPU25/l4egiHfYS9P4UI/+brlwZEzEF4F+Xbr15++82rly/2MaBBq03XFwiN2AKRbMfO72DtrM+696ZWW3N1v6o9t9a0u6J2CBzE3YhYmAGs99Z6bb1tkAhufu7+tdCRc+YYwzAMYwwJSYiEKcxzfq7EjEjoOmkuOcdCzEhkZk6jMgVaPy7kDnhgF/YcbEnkJT66vQKLkIiZOQqhvaEpInSE1qzktsxlmTOaLUv3gaB5qfNSmak2qM1qt9q09R6MmJFgJaYRSVfMudf6nEv+azW6/dff7jZWy9NatyytlLmn/tz6w6/76tKvNvNP1Ccy6oqrP3Xonq4B+Oy8P53n9SbQS+jVNcpfYt0awH6t3WiQcwdtZrjK1KihV+h9BeThgkj44PP209gFl/crj10MB13rXgIJs5MBfF8IixBvXYQVAPTg4dy49RVUVUfnbOUMKIEHe5c/AEQz6J/n84iEKPRcI2gL8AwYkJOEIY4kvFAurTn52E35wMC6aevry+95FzASrfNxgSWyCJOIGbZmp/N8npZclgzFuSf+pNp7bz3GEAzYeaVE3nDqXQGaquVcL0mHmZU6XZ6CCP/pT2/HaPtxCMTmatSthRQPVwcWWU/MqtC5zg159HWErquaGXMIEkNIwsFhXkdfiPyUiU9S+YsP/qfriJ4hwgUiwzVzVUJAptZa7w0RRVgkShBPtHwSk/Bp5lUBiqK7sJeirVpbwBbY3eLrA92OPAB+uO+fHmuB3OkB5eemcJpaaz0OECJyuAvpXRz/goC9VjIOGPUM/b4NvdwEOAd4rK1M/f4jM5gVrBl7hcAcAhIboJauSjruaBiQjaxBzR2VJEknNiOn5Jp5AUESBAM/556NFA80OMWdtjb6uscMlBVsw7OfNbw3Niqsf+BGrc8Szy3thu1F3npF/q7SU3z+7LSuV4ZPn/ovXeEzALhQeLer6GlfrdCOMBGo9VK11XUeBdZE28DZL+AdKwVbXxcARGRhz7aJyBkAm6QHrfUWExGpbcJifpGunje4QpTmrSO/GQERQdfvSrpy5j2Z9u6/s+qe33fffPfbfbL3Hz5N03J1OOyGZF1719o1pvHVm6/ffvObr//uu8PNFbGiKyYCIQpiJEpbXQBgvbR8Op3fv3///fff73cppXg8naZ5XnKe5+WXD++RYenTj7/8LUSZ5nycPo1X8pXc7sb9i5dXYDrfTU3L1c1+PKQ1zUWotZVSWZgjaDdtfZofP7Q+3Fwf4KU/RQzy5+++9po9CI9J3r66+earV1eHAaC3Xi4X+5a+4bZP1giAaE53uLAYJIiBeCzp6EREfNZr2dgN5sqvGIzdwNprGTBCIPJOHjJxYA4igXn1tvGhqyq/ij8EyF4QO18diQyga3WLOQR0DXySAMgbDm+OvusWjJ7Pk/hUKDGvmaV2bZUAkMldkWvty5zPZ+mtL1k9ri9LXXIj5qH0XLWUXmortYZIEsRJJOQGPug1/WfP8Vlod3d6jyX2dJzW243Wkn3dqWuoQdrKBNsYLSsAZoYGazntYdqb2k+1+GWtUcvg13F+O81P/3o64f4u+ku5MtKfrgsPqytf3UM7mOGTYbOj44SEtP48um6o9UtcGBu8bj8ydmyGiRkZV7TFq9kLQQC2/oq/r5fH8K/pSK8T11fV2/XqRHW5m2fr+urF7377J793L2gFbqE9upp9Siyymu4hAhMHISI0BDXrl3rLqVSerngFTizeXiRVbF2naZnmpXUzA59NdgKzeLkuIiJrL3x78I0xjb/OzqhMW98HAW6v9ocEKSVBtq69t96bBBnHEQl7ayqEEDzNdWjct1pttQlvR0WY1jcNAc1AiM0IEHCN7rTiPtoBDAlRQVURjLYcC7cc2112mNk/fnkcBGytNb14hYbLlaQKpVhfR5fdUxz7Qu1M5YQTaAs2L1AaZoMGSk2BIAjFGMYdxuTIVsXWtZktTQvMhfuZ2hH0rNL6HuxW6DrxmzEMiRiwzlpzJzRi48gmWLo1M4nADD1bNVVF8mHbVS4Oe+9dDYEYQQiA6PnxIAyEEYFByRAV197NGkIVPX9eT+ZTRF1v1Wejr4pb8DV4dmFss59PNTwA4KbYsd19uHWPLsux/5Xm8+ycGzjFUUv5TDbXqbZiGAyDEiptxAH0WSj/+opmQGu2g5fRXESEDbXAS5lyaR3SisCuKKuzh9EA1bArNkSyS4PxEmoA0SdlQA08tFflrNxRKCZJwoE+1/reX1+9uJKixmm+vbnej6O3ikrtLDHtEgm13qbp3HqudSll6V1NqSv1jmqgoL6t5+l0f/fxP/6Hf/8v//mfd7s0DPGnH99/+Pjx8fgwz5kEkK3hcn/6EFMAhNbL7hD2h2FIIyctOStmkCaDuVmWp+GGnURDhDSKUGKiQcZRhjQ8hY8Uwh//+B2zOCU9CF3t083VLkZx/BmQPrsk0NYoc6nzcH33VuXttRG8wiJho4zY+qY8xzcRjYGAAQDZsSoEt1/w38WTMiRxDie4HeiqK0TPvxYRs8SVRsdMxAbowyJmSBycUuejxv5z4/bTbGWcoju60NOCjfBh2wwGE3uoVYDWrVStVYW0uyxH67X12pQUcq7zUgbBcaBcQnAbVDU1Y6JhSLvdPueSLZ/bf9fU1bTrCpzb1ndeuxerg9pG0dqCjb81Lnn/hKGZG6I6krPGdLicD11vjUuKZtvva1GPTy/UJQlYsXX1HspaCButUsCfh3ZhNjQDdY2a9SoBAzBiZCQRiSGsp9h89tcQ9OlH8oddOTOEBK7qx4zg4/XIjlZ473Ybz8XLtfXUaNk4BN4f2MRA+sX+XJ2779Y/z3b/7YtXL1+8wQ3VvOxmWqt2CswigYSN0PyicrKYbyWf54IV8HAZfLOV6O79Qc9evB+fSy2luVrQSnT8fHfir9dKZNzKtktShHRsdw+XY4e7kMYAgoGQUFApdO7ERMDWtTfX5yfPILY33lSV0VYglHDt8RiANq/DEPASL8yw97W+81lSETHT1iqYOY1jrQM3Ypc/lIhsuBkhkpnVUpacq6vf9WvYDGq7Wq4GgEBkbm/VqGXORzwx2KIyWEbQIKpggBwgRo4pplGGHaRgbA1dnm3RBWWpuhx7e2j5UXsG6rYzhCCvd/HbF+n6JgyJ8lSXc9beDDuNAikUw9pBrdfaJ+29uHkeCGNgFmI07yYYgTBhR/v8TgUANhA/Pnahk/sk5+Ww4NrqelYsr++xbS/khpf5DNkajvsGjD2Bq75TCM2vkrUDula98AwO8Dpio7rYEw5v1lrvvef8FNr9rmFDNgxGyVg2osnGG8RLMXGBD11kZYsZT5+0wbiIho57bCKb4DyYLXBvEC9cxnc2niyuefd60zg7zhCaSuloOIQ4hBRCZA4Ay6W8CSmNuzTuZwUcxjGNQ28VKylUQ8i1HE+PiogEy3Ke5+N5OpdcW7VSNOdeeu/W/F4+HY93nz789S9/+eGHv7lExHRejo/T8XiqpTq7ssF0WtK4SzElCWncpZTGIBGodliAC4WGvUJt3ay0kvNi5u0wSiPsx7Qbx33cD2GXdk80uhjlH37/2xCERZxiQeg6nS6PcmFNbJf8Ri7ekFKj7ZVDMK8jYWv/bq8wrFtyfXtpe1MveZojKoFJiGQN6rhSH9cQ/vQWbrvr8/ySWCS4Hzw7LcyrW+dkO7iOLAbYuwHqJrq0RixndKxZ4vpnF9h1bQP5SUNcJ0WdFlC7tQ597dlAb9pb165qkEtdlryI5UylxFpWaqyqEtMwDPvDoXed+/nuCS39PLQ/3uUL3r3B0xdszLb8yeM6PkPpnsC3S171LIPfDs12Hp8Ql6cD4S81fB4itlv76Qd0dM22e8TzcDOz0+Oz0I7U+NZIlcxIUfplVhY3lyojblv999SXvmy97S138PxygHlN9Az7ZQZvhdep0a+dTGn9ZwUnV0zDf2xSJVW5aH2YoSGqUX82T4KMTLy+ts/rH0D/QCNTaLi62fmFQti3Nwqe6FO2zuCDga2fsEVl3+tq4Pfxir0oGaDq+rmfBW+8/APPfl/hHP+0ZTk/vWcG7x4lru593vpgNURCZjCD1hm8AmPkrWNpBmbYlTd3+O37P1WD6/newKP1zG7VOZCL2TUCWOeR/Uog58MDMAGzx6/tTUIzs9qwVukdVbW0p/d03N/+5o//hz9wq9qLjoGvEtGI8wAtGIl1hobYFAyhElqgHqQxFQPuRqagqmCdrQ5WQStbHa3fmHUAg2RIgPJC8pUcEy+B2q41bqrdQDEwBOmG3aCr9qBGnQdNrsibUpaoHMCgjY5U8drsiIfLpjawTz9+PN+f1wfetv1nRfJlx5l9fgCf3tRtM6/599N/6NNE77PD8HT3+dm97L1f4T1+5TzLJ9aPuoxJX56O+bLkv/7lr6fH8/Xu5tu3391evVzlQZ59V/j1vf3f+viWVcDzrf0EWnhMcdYQwHYQ7Zkaz/pF8Olr+1Ffz7w6IRoCy/X1dTeac3kOW/7y8Xye8ulUS9Gl5hjcQK63pgbIp2N4KDGeAKHWXMpSSvYedGvaqnbz+U9ExLL0rnF39earbyILivDVdX/5quVSeu8pDcMQ4yAxuTt4EAkSYpDgPawQ0s1NHFKurfauZquwLgAQcYwhDTHFGEOMEgNHlicaXa3tr9//xMzbgLJtswCe41yu/adM7hLwYOVsb5kZXKLEU8TBS2hf3yxEeD76gT6zRUi4VsPegqSn5Avx6UW3bXsDlFKfT4Qf9rxlHmtI1vXGFjPjtYezbmZAJWxIirj2uZ0chIjMStQIi7PInR6vooq9UzXtTE24MpEw9zZN5yNqOgZRhVxqLotZFu6AaH3OizwotxZPU0pRJDA6vNmtNc1LWZZ8Xk6f7fJ/+2//7X+997+sL+vL+rK+rC/ry/qfdNH//6d8WV/Wl/VlfVlf1pf1P8/6Etq/rC/ry/qyvqwv63+p9SW0f1lf1pf1ZX1ZX9b/Uuv/A1OBKAMKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago2NDEwNgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzcgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDQwOTE2MzgzNCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjUuMSkgPj4KZW5kb2JqCnhyZWYKMCAzOAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDA3MTQ5OSAwMDAwMCBuIAowMDAwMDA2OTM4IDAwMDAwIG4gCjAwMDAwMDY5NzAgMDAwMDAgbiAKMDAwMDAwNzA2OSAwMDAwMCBuIAowMDAwMDA3MDkwIDAwMDAwIG4gCjAwMDAwMDcxMTEgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQxIDAwMDAwIG4gCjAwMDAwMDA2ODQgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAwNjY0IDAwMDAwIG4gCjAwMDAwMDcxNDMgMDAwMDAgbiAKMDAwMDAwNTY3NCAwMDAwMCBuIAowMDAwMDA1NDY3IDAwMDAwIG4gCjAwMDAwMDUwNTcgMDAwMDAgbiAKMDAwMDAwNjcyNyAwMDAwMCBuIAowMDAwMDAwNzA0IDAwMDAwIG4gCjAwMDAwMDA4NjcgMDAwMDAgbiAKMDAwMDAwMTE3NSAwMDAwMCBuIAowMDAwMDAxMzIzIDAwMDAwIG4gCjAwMDAwMDE0NDYgMDAwMDAgbiAKMDAwMDAwMTc1MSAwMDAwMCBuIAowMDAwMDAyMTMxIDAwMDAwIG4gCjAwMDAwMDI0NTMgMDAwMDAgbiAKMDAwMDAwMjU3MiAwMDAwMCBuIAowMDAwMDAyOTAzIDAwMDAwIG4gCjAwMDAwMDMxMzkgMDAwMDAgbiAKMDAwMDAwMzQzMCAwMDAwMCBuIAowMDAwMDAzNTg1IDAwMDAwIG4gCjAwMDAwMDM4OTcgMDAwMDAgbiAKMDAwMDAwNDMwNCAwMDAwMCBuIAowMDAwMDA0Mzk0IDAwMDAwIG4gCjAwMDAwMDQ1NTUgMDAwMDAgbiAKMDAwMDAwNDc2OSAwMDAwMCBuIAowMDAwMDcxNDc3IDAwMDAwIG4gCjAwMDAwNzE1NTkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzNyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzggPj4Kc3RhcnR4cmVmCjcxNzE2CiUlRU9GCg==\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"100.469118pt\" viewBox=\"0 0 684 100.469118\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:38:34.511860</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 100.469118 \n", "L 684 100.469118 \n", "L 684 0 \n", "L 0 0 \n", "L 0 100.469118 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p4ade11667e)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAp4AAABHCAYAAACu2EddAAEAAElEQVR4nOz9WZMkS5KliX2yqqqZ+RLLXTKzMqu6app6gAEIT/h9/etAIBoCzQsI1DM91dVVudwtFne3RRdZ8cCiauYRtwnzgsEDriZ5elyPcHc1NRGWw4cPH1b/8T/+x8pv12/Xb9dv12/Xb9dv12/Xb9dv1/+XL/3/6xv47frt+u367frt+u367frt+u36/4/rN+D52/Xb9dv12/Xb9dv12/Xb9dv1v8v1G/D87frt+u367frt+u367frt+u363+WyX37h3fuO+0ePUgqlFBWgVioVqNQqn+XvQSkFKCoKKlRAoUCp9ll+rnwSOWmt9dXH+g/U9i9V+7nr97SvrT9Mbmn7N9tXVb2539urQi1UKrWW9ntV+5B7OB8TL09x+w5FweVP1FoopZJzIecM9fpaVK3Iy1cYbTDGoLVqd1rlJm/u5Pb+1+ejlL4+S60wpr12VVEodHu+8i0KbTRaa7T6OmdQWqGVRmn5GermqVeuz7sUeU2lFmop8vdVUZWiVM3T7Mn1eq9aG4y21/dzfUnbe6vQgEHJvWmN0hqUAt2+54v7UvJ23byflVJqW0O1PRvVvqe910pRK5QKOWdybvcOKKXR6/e8+nh1o9trUNt/v/66rCv54jxfeH75eH0OCv70NuJte87re1Ch1NLeP02thZRz+x6NNhqjNevDW9+HXAqllOu9sv0T2W9fqK/req/abHtTfpb8DK2N/NwU2+9W27OV91HLvweM1hhjtnu5fWa1VmKKxJjIOVNK4ZfTwJLMdi/n51/45c//aXuAKRZyKAzOcNdpHgbFXQ/OVbStZANJKVKBqsBqhXUa6yzOaZwHYyq6FsiFEis5VmKoxLkQp0qcK3Gq1CzvU6qKiOLwaHl8b+kHg3OaFBNpSZSSqRSUM+AsuSpyhVwKORWWOROWQkwFVRX7rqO3HmccVEgxU0tFVUMtVdacPxC//w+v1tT3/+57ul1/XaM3b5w83+ufX22hWn8lVt2+4fWrvfvVn8u6n8s1lq6XusbRWuXf1haz1nt9FZNu7lnCV/36Z7Z1W0shvgTKkre/2u12/PFPf8fPv/zMv/75v/L0/MQ4XbY1/sXNrbf437h+5e/Vzf1xu5fVzT+sW4xWrDFh+5v2uV6/V13fx+1RrBuxBRe1fnOBkgsKcMZyf3/Pd999R9/3nMaZ20f1pz88sh8s5/NICIG+6/HOUkom50xKhYrCWIfzHd53oCDGhRBmQlhIKZNzJaUi+6vKx7pPwzwzjheenp44vrxgrMJaQ4qZGBJLCOSc6bqevvf43uI7g/MW6xzWOqzzOOvQxkCthBAYxwvLvBBTlBhbCyll0hpXtMF7R9d7Ou/xzuOtxxmPsQeU2W3Poe88/4d//48YYySWazkb63Y+lvaQ1as18go7rGt4e2/rzdpY4+Y11t/ikvX4bEu6rZ12Qr9aewrQsmaURmnTYryRMxrd9oze1turnVFv9jQQQuT//j/+3wghbP/k5ZS5XOScoJ37IOeZ4AzZw8bI2aLamSG3vJ7tN+cOUEuhtPgt+EO3M8e8OodLKZScySlSS8ZogzUGozXWGvrOsesd+6HDOUspsITIZZyZ5oWQMihF5x29twzesN959vuOzlusMxLXSqW0NbvMgXleOF6eebk83T6tr4Hn/ZuO3//drt20uglAhcoa3MoGIvT2cNoDqu0N13rb8K+CxwY4ywbqVgSi1jf/5k3ZoOy2gtbPbEHnii3q9r9Xv68Bz1Jze3MLpShq1RsIg/kV8KQWbH6ilkTKhRIzNSY5iABV5WeuwUtZ2cxaN/C5/n2tKMrNa2D7s1YGpdeFLsDNaoNpYE1r0Mps4FNrjbUWa628Pw0kyDO+WXjtY/16aU9kPaBSzg24yfMQvKcoaDKGY3DkfAPysxy6V2CyvQyQd2wDihaF1VZAkBYwi1Yoo9G2vV4UqoIq1/eoVAnqazzS+gpitWkBS2tKgVwqS4iEmihVjhHdAoXWAvJun8PXYPQK9Ncg9Qqgtud20uYV8FQKvrtP7DuwxjVMLZs6l4w2Gt9paoUQJUnRumKtwtoVAMhHKbUdLLntI0lCUGqNYO05r4lXW9VKoa3ce2X9We3ZW00pmRhk3Zm2BtaDX+srELJW45zakiqt9TXpQTEvlXlJxBhJMfM8da+A53R54od/+Z9YT+x5zMQp8zhYyp3l7lExPMJ+V7F9ZVEwAUuBjMI58N7gi6fTll5BZyqmJlQtZCoxF+a5MJ8L87HAS6UcC3mRNbkkxYim/4On6zrutKNHs4yR+bJQcqKqjB4cdI5QFTGDqZkYM+GUyZfEMkd0NRz2B7p+z872qKpY5khOFV0sJRdCSKj9e+J3/+FV0vX29++4e3e/vYdr/KnqurZvQZxSK7j7IvlewdYaydZ1QJV13oDHNXm+JsTrXr5drApZV5KsVTmkSpGvm2uMvT3kBaC2A6QWalmh73Wvruu2LMdXwLPvO/70D3/iMp85ji/87Ze/8OnpE7nkKyioayKqtld7A9O5vTYCYztHVuLiukfVeiCr9TXIc9ModNXom/1eb37LlgS3OLDe0xWAqg1sUpH7ToUcEqpC7zw1f8/vv/+GofOcxuXV/X/7bs/7x45fPkQul8TDXcdu6MktoVuWSFWabjiwP9yxv3tAaZjnC9N04jJeCEskxUoIhWXJhJzJNbUzA846ssyB8fSBn3/8C95but4xXmZOx5HT6UwMkbv7O+4f7jg8dOzuOoZdh+86rOtwuaPrBlz1GK2IceTl5QOn04lpnkhRYmwIgWURcG2MYbcb2N/t2A8Du2Fg7/f0bke3M7gb4Omc5U9/9zucsxhrhRzRoFVF64qiolS9YombOKxQ1/fm9o2norkBngrBG9zGc33zvq5xt96cXXpbC3U9vxCgqbVFa4fRFq2tfE2tn00Dc41IuD0Pb37+OI78P/6n//EV8DxfMh8+pXammRbvNaUlcyklai0Y00isFo9LFaBqtG2A0rBGiZwLpeRX2MAah2l/VsagjCanTIyBuCyUFPDW0jmHs45OOfa2Z7ff8/bxwK7viLFyGWdSOjIvZ1JeQGt6M9D1PQ8Hz7s3O96/u+Pu0NF1DoWc4XHJLFPi5Xjm+HIk5/T/GXhurFrbzFWtqYJuiUkFNFqrbaOu2QTrmlGqFfEb87d9rL9j283oG9qr8WDbwtmu2x++YbfbcHUTsNYMeF0ILeK0pUo7i+X+kYNXsoz05aMQ1qpkCcTt2aBuf7Wi5EKpRTLTWDANsOvtNZftNWywRl0ZM93YKwClK8ZqrNEYI0DAKLMBKWNMe1l1A1TyWq5/lsMob39efx8KcsuqZLGW7d9s7GjLvL6kYJ6eP/Hp00e53zXT24C/PG+DwmsjC7rrMNYScpKDUikwGuMaYK4KSqXm29+l2591A9EWYwzWaoxtG9VoSlGkXBjHmXGaSbm2YGivWZyRz9tGtBbn3Ctgfv3zmoUrvrzmZXr137VWxrigNXQaLIaaCzknck5YZ7GdRhmFqRJQoJJroiRZ86WWLczlmkgl3TCS8hq0kYCnURtDvbFlLQs3xrwCP/KzZX9a61BUdMt0r+8xcHMQlxbsUpJgWIo8M2MMznuUNfgkzLL58DpUGK3onCIXWfeqFrSuGFuwXaa70xzeKh4OGu8UT5fEMiZ0hUIlV5gSnM4LSiuGncJ3CqPBtP1fUiXWRHFQ7wxWa7AQLoV5zIw58ykk4ljJz4V+WjAo4iTBT6uKNhXjE9VmQq6kWrEejIEcBdBRZe2nXIk5k3TGIvsOXYWlKrLPy6/ykxlFaknnTSKj5DBbmZYNxN1m4v9N4HnduitIW8HoyhbdVo3KFoS/yAq3g/HKeMqX1ReMgFyl3WepK9i9ub+WxJcWP9IvM5Hl+lLaR1aVrCpRFRaVSXVN6G8O+HZos4Litlfqze9f71Ny1zU5u54RWsk5ZfQVuKwvKaNIle3fbmybVijzxX83FKO2M01tCaJkxGCqglhIY4WQqDkwx4UYAzlHvgyacVmYxsx0GRkvE521GKDkLHsuZoz1dM5zd7jn7ftv8b0n5YUYZ0KYhW0smlw0Oat2K0VeY61M45nnp0+8f/eGN2/u2O06+t7z4w8f+NvffkIrwzQt3B3ueXx45O0399w97vGdAwXjFJjGzDxO9B083B0w9JA9JVpqdFA0Rim8dSi6rdKUomGZIC8Ll2PkZCODXXj/uzc89NfnEELiP//rnzHGoq3EZWc1d/uOh7sdQ+fwdiVXvj7za6mvCRtucoTKdT0UtW0c4aYaCNRXZrOuYEVW+s27Va/vN5Aby6mVlZNtBZwrANUC/pS2G3EEQhqojRj7Ok6UnEhxEfBYbTuDTNsRUlGTakymZqkCaeuwRgDqFkduKlSSWF4JhpILRRd0S07X81ltRI6itPVdbiogRmucUVgDRleSlvPGWI2xZqu0dt7R9x1939F1Hd57nPd0naWWSqqZJUfmeeZyPnM8vjBN01fP4ivgmXMmhNSyD/VVgNtYrrZJV9ZlKxkphVK1lZwln22FeHmLN/BatgxVvq0xdK+X180qXEHUzaqELWBx832yGFtBpTFi1+zohj1t91NLxZj5q4ezFrpobzDGUFVFrQAtyyEqTGIikSXD1vIM1Hbvr+8TVMvETVtyilKFFbBOqG/nGnjSAkStsdhGq5tSNnZFKSXA1BgqrQy2vl9FDsoVmOZatvLuyiquJWoU6NuM8OY6np75tz//lyuzwArEXwNPpw2dc/T9gLaGOSyElGTjaymrai0As+ZKSbk9kvYTlJbPWl+BpzNYb7DWoK2lVkVKlfNl4jLO5AIgz8cYi2ug0zuHcw7vHc4JI+acu8kMHdaabfPfgvf1/QoxvnoOFXg6XZiXyn5IOG2oOVNSJKWE6zxFK4y119JsztvBvTJV2hiMNqScSDFu75kxDmc9zims0RszlpKwWVprjJXDpyBr0miNamWympO8r0o3JoGb9X5Nnta9lr9gvmlrRRuNsRajHNmX9rvLq32nNXiviLFSUm0MBhhXMX3B7iv+oNk9WHqnmXNiCpKtWK1R1pAKTKMA31TABYVxHtc5/NChrKKYiN4ZOuUpF1hcIqlACgsXCk+pEJeKmipmqtRQiQvkCM4Iq6tNAlUIuVB0Zdhp+l4JmFDCSqsicolcWlVkTfRKIRPJNZOK7J8vr1IjpQY0FvR6aL2u+qyBXg7GyspIvsKLt0nzxuSsAEu9fi9fgUyuyePN7/vyQL3GoZtrC7FqA7DysUpw6nZ/r8BhrXzyH37lWUjMSaoSVSXqQtBrpWyFnRWtdDsZrmzuJgNqwPYWfOsVaLaKybZO2941xsjPbQdkw4vyrDVoo+TDarSVzxsANet7pWRhK70dyjVXdAFVNYREzpGSKzlElrSQcqTk/NVzuBxPsFRePj8xjjPExNJ3LVEtxFzw3UDn95SHgjWW3W6PNgNKFRQZScItSnm07tq9rQArsywjp5cn9oPnsO/Y7zq6ztP5f2GZIylUrJ55fHjDt++/4Xd/9x1v3j/ivGWcFv76tx95fnpmmSZ2Q+Xg7zG1Q9cOkiXNipRlDaIdRjlKTZQUiRgUlSkvlJTZ+Upwirs3rwmcJUb+03/5NwFrxuKsYegs3757oNb3mIcDvXWYjcVry5G1UqnaEXytbAquvJ6lKxF0Xa91wyZZtTXQUKlqe0VvsXGNy6WVrTN1BY+NAaWuJXjTZE4GbRzGiFzBGNcIJNOSKg31dbwEJIFNgVoNtRYUIulZ44QwvyKVqqiN+VSqkQw3jC9cY/laySqlklVBtzO+lIJeEzhWFljOu9r2aq1CyVmj8E7jnMY6TSpFSDBrcFaSBW0MXecYes/Qd/RdR+ednLXWyu+MEiPneWEcL1wuJ0JY+PL6Cng+PV8I5dIC4y0QaYFjw4S66ffUlpFfUfha8rwyGHota1TJMLc9rlpA0KDRiLbxNUjbFpuu2/d9DUrX+7hmTqrRjOYmY7pd3LSDHbVmTrz6u64zkpGXFVyrLQCvZaucEikpWbjXrSALrd1evflgC7JQSxatZdNpaaPo8HQKspA7WAoWjUNYBJMrhoKqejuQNBqNAOHbA2xlSLQSXU6udWM9KxVdDUbX9ucG/9SrJyRPuBZqTWxc3e2jl0dCQvShKSViSKikpUyb85aQ6NgOznrdl02NQC2KiqaW6/OuFdEteY3rBEgq3Z5KVShr6JzH2Q5jLFYbdAWjdAOcThjQVuKptZBLRReFUhZjBIR2nafresnK9bX8fBkr400+Ukrlf/4vv6BrYOcdvbN4a1AVck5oa+iGs2imtCaEwDSN8h6YVeMJroHiK5spa0eAtpUs0lqpOBQBwLVUfOckACgpo3vvWmmllX9owWtl2luJUzUQZNphrZUWgJBFAmKM3ZKxlDK5rItGSQZeCqVe75+2w7yuaKtQxVCzQqmC7TWq14y58vFc0D7z6BTdo+H9g0H5AdMf6A/vwfStpHemlBE0GHeg3z1yeHiPtZ6cEkYZrOl4+fGFv/4vf2U+fuIlLlwiJCx+53h8Z7E6kpeFOFfSolA1SVwxFW0UfXsOzoM1FVULxbSSX1U4nTA6o1TZKhZyGMgeSDGR49cgYyoBXWZstpgmFVoT0PWZrc97Bf9rUFvXwO0Zdas71DfJpblh+TZAexNzBKTKHltLixvj/eWu/hW28xXBsOb5N4BWtaR/BaJf/ohSCzE0bXApoBXGO7QWJocqZfyy/q72c9qTblVtkedU1eJXEYa1NtCutvtate5XQK6V3vYPWhhCjABLYw3GSaS8MqXmypzqRi5oeYVCKNSNhCt1TeRWtk3dBPWvk5Ef//JndDhyOk1MU+DHApRKSqntJ/DDjrfvv+H9d9/x/R/+zJv3b7i769nve/a7HqMNpWqc3zPsHzCycLcz2FvD4bDnm2++YZrOeKdRFO4OB3bDQN911KL49v03/Lt/+Hf803/4J77/w/d0fc/Hj595eVr4y+kjHz480Xcjh27PYT8wdDtO+szp5RfO5wu5FIw12E4S/1Kg6z0G01aeZTfc8/7hG3bD4dVzCDHx5x8/UBHg4qxh5y3jNAuTaiz3uwPW+JYQXw+XtTR+y/CtAKzk9FpaghBIMaUt2Y8ls6REKpmCxEznDM5avLMbuQNCEqQcSTmtkFfupertPuSXKKhCGhnj8a6n7we861CtNG+0I6XlC9hJO+wyJa97rKJNkWpeW8sYDdVQixADNUR0rmjr0E3etYLo9eWvkrtVUiVVzbz+JUap7TUobdDWoWppcKaAqjhn6IeO/X5g6D3aZnKFZQmE6EglYoym94bOaZFJOYt3DqtFA19zSx5zouQANWH066r2en0FPI/HieOlPbQ1e6gtQ18zcgUF2aSqCVhFLysPTxoXNNYobGNlzE1jyZptaKMwWm1CWKNXfWcT0K6iXl3bAaIwBilD32gYWdmddbGsi3fNkjaw1Ni2GxC9spr6iyiqlKIfHAotB3FV143RWIGcMzkZUjJbgJdgeYXDUt5qz3JlElawmQohZ2JMpJwkC/dWntVWAqpUValKSn0W0XzoFhNVVa3J6VpeX4H/eg+mKkxjO1MrGVKvMoQVpuuqacK0V8/CGI3z9noIUYCC2haU2r4tq8pSE2RFIVObkFNtcfqW0ZHvy7W2hiFp6Igxk1NpAU9hO40PHt95rPVY2+G7Ad85uq7HuV60sCjIFY0SkNYYVtmsEnw0GqUL2lSsrThX6TrNbu+w1qNQTX9ZSNl9ETcK//wvvxCXC4Mz7LznsBtEG7VmqdZJyd1alnnhdD4BqoFRBUrjGgvLxsxLJq6brMA5i7OyB2qppBRRwDB0eKspOaKhvXaREBhrGoO7Jg8CPHUD16YxQdaK1mot+emWKK5rtZQsZc6mj8oNrIf4AFyfh1ZgNcKUGUUycji73uD2mmQKl1QYq2HvOvb3Hf1hhxse6Q/vOTz+CeMPnE6fOJ8/Mc/P5FKw9g27u+94ePdHnN9Lo1RbZoV/Jf3bM+f6zDHBVDRow/7uwHe/O+DdTFrOhCmxTAIUS8ob42WdledkJHk1GCiKmDI1gcsGXxS21sb+XzPGTZOb8qugWanMNaCKweSErmY7JG9Dyqolr20vrIyMxIdyBXs3SfC16UxhN/C5xskrwFz3l1r/TigQAbtJEpstFt58bi/gmqi271EN4K06OcWVaV1f8/qOvLraWi05tUPV4LqOYjWqZGlkLA081pWp0lu8WWPobTJWciGlSI5ZAGhdY3FBr0xXA6a1VrzvKHvRk7MSG19IabZn1mLeyq7dVGubLr5sr1Jirvy3rq002j7/yrnKy4cPpJefmabENAaWMRDmQMqRXCpFaWzX8eH+J35+/zc+/PQ3vvn2Hd9888j7d4+8f/OIMZYQM74/sH94i+17sHbFPiKlqaLx886jlFQPlFqTW0st8PbNW/7u93/HP/7DP/F3f/9HvO/p/Q909j8xXxLPn0703cL83cTdfuD+cMf5eCaGJJ9jxjqD33UYK9rHmhobrIWZG7qBu8ODNEndXCllfvjps1RojCTOgxOJUm8dd7sD37x5R99ZnHVtHcjZKjEqX8mLtmxrKaTYQOLKTJdKypkQwpb4hBQZw0LMWc5Oa+g6T98+hl4+g6yxkAIhRcrWyyJrZWsCbaumFEnknO3o/MBut6PzQ2OnRWO5hEj9EhjXIlUppaUSW4Wd1HWVV7VmYmPIqmGEmlCltoqi5YplrtfWNLpijE1GB0oliRONIVLaYJSGkoTAMBprFb6z9IOnH6SMXojSIDR4Qgzk4mRdWXBW4YzCWY01IpOouVUqcmmEmoDOrjO4bOB18fBr4JmC6GPWTOOq8WktKvVaTikr4Gtl9UaSSFBvGeRKim47uq609wpir0BEqGXRFBgj7IxqTQ/GGkHZ3tF7R+cdzprrv9VKGDl1ZUDXX3nt4GwBuEX/rSRf66vAui7wft+h1dp8tGqIVHtTa9N2tnJqK1/XWm70VmvD1fXnrhqqWiHFwvmycD5PxPFCAlTn8buBoXMYq6g1XW9Ii+5kLTmptpiKtOrKAaLVVZulVgDcDr3WjbppvUqm5rIxNEaZm2zvejk/cLh71w7BSs4LpczUGpFGM4vSloqnYjeGGuEwNzbBmpv7ho3dLLlKs8eSmecAJeCMMHG+t/heOjGdt/iux/s1AJr22s4sQcCqQmO1o1RPKraV3mQNOOfZDTtcbzBuAROEGWEil4W0aGJIUEW/k9L46jmUCj/+9MR8ObL3ln3vOex7UHCZJkLKlCq6XWstKUaWZUErfdWYGqH765qZtiSmAsrcsP9rklYFSHqr2Q0eo2GaZnIqGOvR2oE26CbPcE7jjQQGq9ozt2ZjCwR4WVm3MW0VimuziqxnVEVtSYOi/+b/gvEPrwNeVdQMMRZilkTGD5aHN577feJ+B/fvHjl88w3vvv0HHt7+Edu/xfVv8f17qnLo/Sfc+JllfqGUinOP7Pbfcf/mj2g7EOPCOL5wevmFz5c/8/Nx4fMcGBVkZ7Cq5827P/DHf/h7+l0gxxem8cJ4GZkuF6ZxYglJdKo99L1hN/TshnvuD9/i7MC8nIiXM/lloZ4S9VwoS5GSairEkEghN5b+a6YwF2FXirqq1F6Bu5tcrnJlFGuLI9s/XQ+eNYtW18YbSSslBudbJ4QVpNa2N2tBlatbR6lZFq5qTYAtIKvtdayA9wo8N6Kh/VxQTZ+6fYfcU/2a6VNVbeRD5xyD6rHVkrmu860BVelXr2HTrnINmqVkUkjklkQI7pRmQqMMNVXyElimhWVcMM7ihx4/eIw3KIMU54yU1rW+KbE3YZ1CQVFryJa41eLlyraWogXg5ooqClX0lqh/xSYDe2epzlHHSM6V3vVoO6wrgKQUsRbmeWL8/JGzqww6sFcTMwuhBGqpnC4jRVvMMKCcA6OZcmIKkaKk2fLz5yc+f/7MSgg8v5zJJct+15pd33O329MZB6kSUmB6mZiOM2FMqKzojGU/eN69ObA77Kk18sPf7sgxUDJoq7CdNNBKaRmpcLQSbYwzn58/o3cD/rC/rpVaSXMWJtsadIKQ4enzyJ/VBw7DgbeP7/B+x9B7csnEuHC5jJzPI6dx5DJOjZzJKxdNyYmcEjFeP0JozZCtapNzJuT0ynHEWkvX8MNu17Pb9QjjGVlSJKRErrkRS2u1R/aEOAFYWd9GtzJzh3MerS0519ZvrEVOkV6jLQHSQRp+GglS2h5VObXzQaQ61mjK1hgoCVjOuTU7NVKirgnnFZPIntmoUMEmKJEI6CYD0IjW1sB+cNwdenZ9hzNrhbdijID0oe/l2bdueFUzlJXJpCXlBeoKPLM0dZaE9wbnDoS68Pn1Ufo18OzcgLY7Vj1PaQ/+tgu9rlrBtTjS9Iyi0Zb/1i3Yqi3YtAy83CJzab1fQiSEiHVr2dPhu5axtgUjwFMWTOw7os/tjb+CT6UL3ASza4lINY3QioAVayfdGkl/zYqkGzopRd9Q/RvTQJWHXVqn6U3mVWrrYkfdHFSrnqRlUkURQ0HpCylXphjItWKcw/c9w85jrCLmIJkRCovBKotd9ZC1sVRVbDc25mIN441RrLmIoLisJStZzWseqVSR7NlUUOZr4OkGdod3K4VLSmdSlm5qakIbjzE9ygyApyLAyVqFM8J2W6vxzgorp3Urr1ekf6swTYHLeULVM3HJWOvZ7fcMO08/OKy3OG/o+56u6ySg5cSyzMzLTJhn6TpWEhhjsZioMebaId91HcZlVPKiYYkFZysxewp7qIoQEkZ5nOvJ5cuGs8o0z0zjhEoWVRJKZXItvJwvTEskxgqINoYqrLaxBu+82JhYTa5i4RNzJuZCyo2JlpAq70kV6YlVmt4Zdp1lN1iUqpzOE/OcKNXIR7PZsE2jMzhNZw3e2LYvrp2TqrHhJYulkGrMiYCgtq9zBjJaFalYWMP/6f/6H7i7AZ5SuRDwHJMkXdYZ7u73vP/ugbdvFQ/3lvuH97x5+0fefv9/5uHtvwezp9CRs2UJkTlVlmLI+iDWHv4R132L7/6eqhzj8szxPPLzzyM//nLk43HkGCKLhqQ1KIN293S7v+PNNw7fBabxmePxic8ffyF8/ERKE3OMaAN65xkeH3l88z3fvPv3DP0j8/SJ6eUTy89PTPWZaTqR8kJOitzY95LrVu798pqWhTiVrWFtq3BsoeQWJNYtcb9t9Nn01vrauLnKWlZoo+pWy7l+/Vdi3bZaq4CnNftdtZFK38ZINoC8AU+4/qLGhK6kw21amuqXsoNV6KQ3m5ZOOwya3IopZf3hN9Yw1/tYn8dGSW7sVkm5SUOgKjmgrbKUUIiXGaPPwkY7g+sd3b7HDa5Vja5A/aYdGjmgaK9LkqhV6qVakk7Om2WVIICCXp1N1nfmSwqKlccVLWhaIjvn2HUDnTcYq0kozmHm48tn4jwSxo40e8g9hJF41sQlcHx+YSmZ4izKWTCa5/HCp9OJUBSpKsbLxOUySeVEaSpG4knJ5JIJy8I8ToznkcvLhVwqL59fOL2cmC8TNWdEcStSk65THA6eh4c9MSzkWFEGtG/VGuvJORLT0s7UzBImStbch/evH0StpDkIzLJQjaZExVNMhHlmP+x48/CIMw6jNTEEjqcTn5+e+fT5haeXIy+nM/MSiCk1FrpQEUZ0WWL7CISYyHGtLMi6FQBeNxmK1qtu0TIMHbvdgFKQSyIWcQ4oVTBPyqL5rsj3+65r8iZJ8Fd9o9jSKZHi5CJVvarQX2yPUhIphcZwFqgWpQu1qFbdspgGcKUJV7TKW79v2xZrRbOUa6VjLbe/ItHqNQZs1VptGnBWeK/ZDR37XY/zAgVTymidqFVcYlZZQucsKUnTkqI0GWUT9JVKzZmcEnmreBT6zuH9wGm5fLU/vgKef/j9d3z/3bubh1WvVhy1bgG1biK9a6mw7cb2MNYAddVprFpGeYiFJQTGceLDh098+vTEsBt4eLzn7m7PMHTEElvWcGVetNLkqFlyJS6yUYxpgdvcZNDqqndSjUEyeg28r+lqBcR4tT2gBZW+6zG6XDss1+C+rYG6gfFSys0zYmsKWF/7a8sPRckVrRLeBjrr2PUDuVacEUazsw7rRM9Xa8Fqg1MGXy1GaTRG8GOpZNK13LN18a26J7Um8ZLVl5UGfa3nKtCA+3pQXS9tO5x/bGxYlCCkFBRHrRFjOpzd4f0dzg4opbDGsN/19L0Tz0Zr8F40IVK211uHfYyF4/HExw+fCEvh5eWC1pbd7sD+sGv2H1bY7qHHe8c8T1wuZ1LIhEUE/wC5RlIMXOZIrRm12Rk5nHeczp9FXF2zNMg4zeGu582bg9xv57Eu4UwmptfPQSnFt9/sWA6J3ggg7HtHLhnjOsZZsyzSFOCs2w5U5xxd39F3jq6zFMTSKmYBbdO8MM0L4xyYlwJVDmRvLN4YBq8ZOst+vzINFWPk34aURatYIIRCzhqyIWqDbcGmADEVQkwN8JZNU7uy0Wrzt6rt8M0YVZuw3BLya3ZLaSUuBSGiKHhn2N91fPfdH/j7f/wnvv3+gTdv7+mGt/S7bznc/wPGv+N4fuHl5QMvTx94+vyBz58+sUwTnfUM/Z797pE37xZKdiwx8Ze//gt//cu/8MNf/5mf//avXC4nUi1kNFMqTGHizz8def9fjvwP+3/iH3/3e4bDGcxP/PLxf+bj08iHXxbmqfL++w6/v6Pa9+j+91T3B/DvcfottbylnP7G4hQxX7uKpaymUaqVY3+F3frl02fKpMS+REvZaWvi49pxbbRujOV6uNXt4Nj0t3q1AHttDabanl4Pkm2769fgc63wbF+XDG9jLJUWz2Hr7OYAcW0kbcDyBuGuB96vAc9Yvta7XqtZ7aO29bSeE6qBzq0ytUqU1n/bkvObCpnWFdUagkBRjWk+i2JdR7bY2WCsAlOpurSPKv9dyxYDBSvXreK1nhXrKbbF0ZxbyfDq+ywIIFHJGGiAhibleX19PJ85f/7Mh88nLufA3gce94n39o4766URUoOdO4rOaGfp9jvefvctd4c9JSamEBiXiagqxkHnLNYbynnh5fiRMUYKGq0tw86QkiamVcueWOLC6WXkn//Lv5BTJZXKNAeMsXz69IGnpw8cT5+Y54nzGPjx579Q1IXD8x3zsuB7xW7vOR8nqqoYC84XfCed7Swwz4FxmtkPBnfo2fQP7SqlcLmchHRvPte69X4crcaagiLx8vyZn799xziOfP78xMfPT3x+kqTzMs7S2FcbydV6PaiVmDIpii9qzmtPg8E6L4AyR3KJ5KbdvGXZrbFXLb1CJG2rzLQdk+jaiC+NnSeMs1KBNQbvvfQSWGkuWlHBun8H3Cs2vJbc7iehUsI6j7FOzkKEhFub+oxpCWuTLSpjG8G2urGY1utCA5UrGL26mBizduPrrQu/KkXVGoxqTaRSUS4ps8wLikqMCaUsOUMMiZoquiqskmZnZzTetYYjpYXESpm4RMK8iC5fQ9d59vuB/vRafgG/Ajzfv33DP/7DH2+y4FYS3Urubd+y9iSyVWtYGcUtqNwwfCvw3LL8yjhOvBxfKFkzjYG7u3u+efctb98+cjjsWeLMvEw33pvllTC3FmHuSq1UrdClMQWtTFXan7VC3KAae6qNIue0aeeUVsQvmgaUAmc91tzY2Wyvp94EI4VuGXVRagtCK7O0ZSErO6FlRaemGVFI81PnPHkFgUkcssXXU0rTVlscBldNa2AQZjIreQa1WAmeLcJKIG8s75r5rNlThdU8X1jy1tHcxF31S9FS1VAdNSuxBVIOrfu2FCzGeKzp6fyO3u2b7YLn/m7PbtdjjcY1fY33FuukHJ9yaj6EFWM6Qig8P5+3DsiuGzgc7jnc7bFOfM2ck1JHyTMhZJY5MS9iZyKHbyGXyBIuxDijdMEYLfrQZBmrvloAaUXXOR7DDmUSXf/I7rBj8B6NIaav18S3398RF2n6clrReTFh3x2M6LmmCEqLHKCJxq21m8de10uHYmnayZgKl3HmfBk5nQzjFKlVPNs6t34oBm/Z7QTM2s7gh4VxioSYyXltAmrOCFrgZiqFlOR3LCExLYklJJaQG+hctaGindYGjDRmo1mlNCvoen1po/G9x4aCVgFnFYfe8/bNd3z/u/8jv/vj73l8/w3GPaDNA7Z7Q86KefnM508/88Nf/jM///Vf+fDzR+YxMPR37Hf37HePvP3mReyy5ol//uf/xA9/+zc+ffiRy+mZZQqkBDHBHAvnOfLDL0/c/8vPfPP9n/i7P96TomVZRl5eej580Hz4pbJMBeM0w84x7Dtcb8m50HcRhaZOHXHuWKIjJkVIwlaXVl4XJunr0nKt8POPH5hMEJ2dkT2SUhLdb6mtaiNsPyDNDg18ruvq1nd2PVjEFkwOnBVU3g59WC1SVgs3Wf2vzdHVqueurSrV1qPzHuduPYF1w3oN9L3qJVt9SW5WgQLCF8Kt7S9uTu71Y40tgGpWLdvX6g04XBHili2zJcJK6WZufDXGVrrZ/22SGrbq3BqnSy03MVA+bgddKMW1mamBXRrD2Y6a65mzMm6NPRU7thsboHZNuXIMmU/TwvN5ZOcyc6mYzqE7j7eOYgzFGBKVpWRCLWSjxA0gBE5hZkwBnME4g+2kk9gYTUwLyzJTNNzfP3B/t2eZFZcxCztYAnOYOZ2PpJBZ5oj1nikEht3Ahw8feDl9Yg5Hck2ElHh++YiyM+dFYrhxGd8ruLQEvlO4PuN7kdeknIkpcBkj3u/QFr58FLVWYpxIrdls82WmMlP56ZeCqoFpfOHp81vGceTp6ZnnlyPH04UpBEJcG1T15k6gqBI/QxKNdqEBLAGCVYlmMpdCiJGwzAL4lNreXnW70JXa3A60VRvYNE76G6o21NySGmVQpiVYeh2C4VrPynUv1ufXTYO6sYQ5l02mImtRzomKojQHiGJKazwSGZs4QVwrt19ai9H29trN/iXwXEvtRYnM65apr0VIlmXJ1CpEkNaZkiEsgZySYJDWHOatxRnpnZBGosw8TYQwE8NCKQlrNV0nRNGq3b29vvbx1ArjzM2NXYNIbQ9qM33dMkRFbaj7ygReAdoWP27eANHc9YDh7vDCbnfkcHjg4eEN795+w8PDPSlFYSJvtAtrqb7k68SONWtmYxTbPayvqYVNpddgrRjHC/N8otSCNpocvwyiCqssBlk8K5NZm5Yht86x2xL9tWwlGqo1aJXWebNm8rUUwhKZLgvLIhMq1msJAa0Kgxewt+oTVeuEz6XKs25BfC081Ju0W23ZgAjAN8a5aVBWuVbdRKDt88oAXH3CAcghsJxOzXg+YWzCuIJBoZRorRRqI8zWrtFaFCXRFrrF6U4AXciEKNn8aiOE0gzDjmG3w3Ue26Yh7O8OvPvmPTknpmnkfJlY5olpmhinkcu0MC+y0K2T0oBFALHS8kJ0E1CbFixKquSaoShMtaQKpWr64Z7vvv0Tvd+RlkoKZ+DH63NVirff7cmpUmLEUumdFa1ZMxy/XAJKG/phwDjbNKRSutEOjJcmIqWtvJ+54mdNP1v2U88SVkP5xhBbadKTLNNCUfjRsp97ciqkXDctYmrl89KAdUyZcQqkSwRd0BYcpmmnJQh2XtN1MtHE99KtaJ3YgahaNx9U718vCmMtw35PCJV5DCKnUJrOPrLr/8Qw/APD8B3KDqA92hpyuZDTmXD5zPT5F84ffmL89JnLZeSkLNoMGPvA8Jcfuf+v/8a8LPz84w/M0wWjKjp3lJgJU2G8ROIina2X0zM//PW/8l//1wN3vWKZJj788oG//MtPfP5xZDpmUoTjzwWdFqbnT/xyF1DmA1r3KDRdTezzBTe9kJdELhDCeqAZAaCt4fHVVSs//PPfeAlnhmHAWNu0Z6LvlQEB0jDWdR3aXA+HlGW6UmnlPKmUrB6+FqMtznmskRVNqc3OqYpB9Cpdsas2TG2WUGnt7m2ldoVqSYZrzW1Ovm/thNcSy9fktep61YWttm9rmUgBuvLNec+OLw6VxiCKBY1BVbPJrTbgt7Kxreu/Iq4Jq5uJsJB1jajXM0QpqobSOnoMBZUKNdF8c7T4ORZFzYqaVIu3TWa0Jt8IG7FpPrXe/KpLC5CqyM/b2FglwbaW62G/MlL6VyjPhzfvUTnw8/PC/OlEzAsZ0VuHCvcPwrJdUmGOC3NNFAvKw5u7PQ4p3c4l09kOs9vhhgPW9jh/z9A/kJWhGnj79g3v3n3DZazop4nw+ZOQNnFiChMpVsDwP//n/8znl2ce3z4wzRem5YjtCraDblAomykqUvVC1ZqqE5gZ4yLGafoddLuC81JlS1UafFKuohvsBLx9uRysq5Cli9rYKk1+zfItl4WX42eMDizzC7VmQohgMrs7x075xkjLWbOWoUNMTNPM8XiWqoTWGOvofI9zHdZJkl6LwUaFUpmc29Is0sxKMVS0xM9GYqlaMEo63iUuOrF36yy+s3S9ZzcMHHZ77vYHDvs9u90gXf6mJelVdOH//P/8gXRTFeh8z2F3YF5m5kUs4VII0q9gnWjxm4QsEtr+s2Kz5wcBtdY2V5P1mawYTTbmVung6oChtdmsuNYqXK2FHAshFGYTxS9cWSHsqqLWTE6VsMQGPMFby9B7us6jVZsQF4J4dl7OlJyk+qzAd160r8pc48bN9RXwjCkwzeONR5rZ6Gm51jk47b91yxq2WsYK+VYfqxUAtqyVVcskjQ/OG8m8nZRSu65jGHoO+70E6JS2373aEInuoW6l2lpXAKhuftM10G1ATME6zSBHzbkusti0AV6X2ttLld+X14ag2g4MMXlNOW+geC3tr78nyYvdnsCq/6xUyRDmwHiZmeaZOUVyhVTF27LUSDdpUD2dMzityegWCNvz1iIaLpLiw2b0X7f3gdXiaQWWt7T/RkrX1wnGetM3a6XkRFwmATk1S6nXVtbRX6VUksqknDAlogrkokk5EJNCKbE1kvJy4jKNXMYL50lsu/qulwPQGvzQ0Q9dm7oA3lt2+4FlWbhMFy7jhZeXZ0JYCCEwLxMhBmrzUBRQVTFW4ZqJu26NBKv8Q+naWJeVITco5en8Aw8Pv8PpnnOaUOq1xlMpuH+3JxfIMaJLpTcGry1WW2LI7McFpTXdMIjvqIGYE0sKFJ2ptoo3qXOSnBToo2cXxN0grpOMjMgTbLNhUmsTQwY3ePaNFa9ZurdTLC1QZOY5soRMiImqK0UVTFfosrxWYdPA6krXWfrBMgyOYfB0vWhp2wm9Gcr3vX/1LKx17O/uWKaENaO4LFSNUT3W3AMHUu6hWqk0lEROC6pkSeZSoISFGhdymAkpEcuJnM8o8xn3098IMXJ6PmG15nC4IydNWpSMzpxFR9R5RUkTz59/4W9//lcGp5nHhc8fn/nw80fOTyMxSpf1eE6UNDEeM9afiKm0ZrCOu87zhzvLg4no2AZCtETN6LVC0EDLF1c6L6RppmaH9k3rNQfCNDXnAE11Fjp5b9dO3ZRiYz3X8hhXpqJN4lqdOHKSZrDa1rPvOnzfSfnNSuncGNHFp5KZ55kQgnxPaxZwzm06NWFo9BYTN6eRViKqpgHI1sCS81oKrBv+Puz+wM594fwgYUcYpWqwqkNpj1VIWbR18a7TVbTWxBSleaGxlKsme5OqrYBRQVEr4yllP60R26xOkXxCGcPOH+j9Dt/1DWhcRz6uzgRaK3QV5tdbhzLCOOWctr+n/c6VgykqEuYTqNDIl6udE18wwofDPToHht0HlLOkAmOOfJ5GijFkL+/dnCtzroQloI4n3M+a82Wgt1LGtZ0c9MVYYjEQDUrtGIZHIopUF3w3sNsfiCmi9ELMgSleKEQwlRgjx8uJ+lPlNJ94PN6DKqQ6sb8TSVffO3yv0LaAjlKKdZluB3d4nDfsHjpcV1FGEjPjFJjVvC2TVaDyukpkjOb9u0dykVhkncF5J5XKmKBkSolimp+k8edwP0ji1QZ/WCfEhDTdOCqaaVq4nCee90fmaWmemr79vSJFqSho7eiTbcMu5H2rTZqUE1I9abFSabAG+vY89vsd+8OA6wV89p1jGDru7+54ONxxf7jjsD8wDD2+a64lVHJOLPPCv6gfXz2Loe95vL9nHB1GjczLQoqJmmQ6lKqWqpOQSxXpftdi20SpOKNIeh2CU1FGrAVXGc7a/Ftb9UK3vb1OxKur7A6xKMusexrxHzbC+qdtSIBUbqgFZxTeGwGe3qK4TrOappFpHDFG0fdezi3bJiY1B58vr6+A58vpiR9/QWawdl0Tz9ob8HflEWkg8tqVuIUeVoZPsE37701/IGasMUWmMBHymVwnUu6JaSSlkZx7CchKyhrX7s2KqYpqRE5iABFmCFpqWF+o7jVxvr2UBJMYZi5dR67NtNq9NjmttRLmgGZlJq6s6zr55+rLJ+By7VBeG45yza0cxFbqWUdWTtPMNC2MS2AOmdA0LChREJ1mTVWFXBzeWiwaUzXNJlm6otti0koM3MWXvzSlQ21PYl2U8kyKUbDqz2qmVr0deKhmk/VFhiIMyPofmmoKuTVASGd/FOZBGaqpFBzogAoJdKLqDmImlcC8zHz6/Inj6cS4zGhtGAaxpBiGHuM0u0Mv7AOJWBZSWUhlJpWZOZw5jy+EsJBzFKuHnClVkYomJoOxUGuWYLV2AqdEUYV13Jj3YszrjHTBG7XD6DuMeSRFeDmeOF++YMGVwt/tpBZdpPPVFPBoOu2opdDtg6wJGQFBNRpdEmRDqjLC0TWvQY2GjaGpTXqQm8E4snmVJkWIsZKCsFF+V9G6QEnkGFjmjAoKE6W0VOZKVQVtFfv7nv3DjiqeQjK3eehxVmF1wXlxixga4O+aDdWqMbTNPuX4tOO2KOC8Z/fwhvG4oHlq61u6n1MMnE8fmfORgliM9P2ANRVne+7v33F3/8jd/R0xZoo26DBRl0xehEUJ04WcxD82Z8t4WUgxM08LKYpH3NApuoOTAniKPH164t/03whL5HI6cz4eiWlG24KxgGrShBJRZyXd7gWc6/H3B/zjW/rOsFxOAjq5aitLbUA0F14plhT84dvv+La+5fHxEe87YePHkfPpTEhBPCPb/OUYE5dpZi4LRiFMUr+WvdcJIaqBzcJlHDmfLszniXlc0FrjnUNnjcmaqEKTjHT4oRPmRRmqytJ0GKNMCDNtQkrTdsno2tbhXUSS5Fryb51MmSlZSpnnaWI6j4zTLBUZozBWs/zhPbi7r+KmTHGrUC296zBdh7GeaQ5M04J3HcNux3434LzjfDpxOp9bdau0iShuG+upELIh1SKHqhcmuPceWxUqJI7dE670KGO4f/OG3d2BYbcTD18U8zwzjiOn04lLvKAK2Oq49/fc3d8JW+3EAi0sQaySlAw6EHKlsIwXnuMvLOEZm8PW1V6/PlfFVmg3cLjfc/d4ENlOhVArpxBQ44T3noRG+x7nQFnLkjIvl5FjufD4+MB3799i+o7zvDBNCpsSS9T0/Rsuc+Q8LkznzOUgIwo/P33m+fTENJ+wneb+cc94TKSQCHnmMlVCGcWW0MK79/cc7gac0+QS0LZSTUI7jes1+8MOrTzOO/zOUlUgxIlaEzEUxotmHGdiWbhMT4T0ehBL5z3/w3//38lBbGpj3TXLvHA5nlmmmRIT794+8P1333B3f2C3G1ozpqPzXQN1pu1Dsdyb5sg0ySzwWireDyilmcaFl+cjP//ygRAW+n6H0jtS3lGJaCWANCdJ0MdLYBxnmbxmFN4Zdr3jsB94+/4Nb9484jrZE75z9H3P3eHAYbdn6Aa89xilqUmTm1SjFEWOr32PAXbDDv2m57BbmKaJy+XC5TK2qmck5bjhk62KrIxYitXK3PZzWGb8sMMPe6yldbrfMPG0Ku/2c9rX1I3kpIh8wRjX/Ds7dr2jFgHj12Sv+eN63ewLrXTct6a10/lIjLGdVxbnpZKitFRnc2sK+/L6Cng+vzxR1JG+lxms/SDu9GLAvaLh2jqt1NaZePWEWjUc8otTyle9zVqibkJgyQ4i5/EzSzgzB8s0DYyzZ5jX7CG/AkJq/f8bivkKaNtDMnYDxI0n4pbRk5J1ENFxbYatv6LfKiWDavdfr8ytXtOJ9fe3rDqXlik009pUE2v5f/W4KlVKoPO8MC2BJSaWUghVTIWFNG2jGY1IGmqpFDRWSQdzVZqsICGm8s5YOmuxa7m79QiJ11xjCJShSvFLNkZRlAxFr6WtNkUE4MtuPCqxig/m7TgyaZS4Kf/lGRUrqRhStcSyEPNMn3oma6HKDNtPnz5xupyJKYlXXZqpquA6gzbgvBWNXA7My8hlPLIsC9N8Zl5GQpyIOVCKCP2rkk0k8+WNgOlNR6ah2UmtjKew7U2k3ZKTWjTLXHh5nljmwM8fPnE6HV89B6UUd2/fYVyWTZ4rKhVchU5bFCK/KNRW+RMhdyyZLkdykXt23smBrIwc/u0Ay0kmo+SapLu9Qk6Vc4zEOTJe5I15fBzodxrqQgrCWhmdyEYkA6mATcLiWGfxvYjYtbH0w47dbidaTiUNVsZoaX7qZfKJcx7TSjy2/XkaU+vYb4HDOe4eHnj59Iw1kggZbSm1EMKF4zFQzrlNlrL03Z7Oe1SdqVXjfE+/P9CNkT5VsBZlAkpn0WSlGW0K3U7KpjnPZDLKJFwnGr1+79k97IihMk+F8TTzw/ILOYslSy0B52VEpvWt9IvFmQ6KRilhF3w3MOx2dLsdVifGAildGfHSJC75V7raFYrfvX+P8Zo3b9/ined0OnE6njj1PTGlrYEh58L5MlJTpQRpXvHKsO96MW5uzImzVrRpS+Djx8p8PlNiIM6zzGsuimQSuiop5SnE5kfJaENjNbrK+syLjGcsplBjgfa7rYuYprc2q+WW0zjr6bteQFGIjGmGeCGcZ6bzmWma0VZjnSF/+/WBopBGvqHfo13PcDjQ7w64bmAcF8bLTNf17Hd7Doc9nXe8HF84Ho8y4aRWhl1P14uWcTXLLxViERJCe4vzHUPXYSuoEPnQ/wxByo+Pb97y5t07Ht+8xTnfgOfCZTzz/Cy/qzYZycPDAw8PDxwOB3znhSlegujjW2lTGZGeXI4v/JAsL0mRygtKtWk7vwI8Y1wIccF5w93DQKwif1nOgfMSyKcLXReb/hfQEHMlpEKuiRwiuvMcloUxSbJSF4tNIueoFpYlcznNfDAvhAQvpzNPL08sccJ6uHM9w6AoeWSqAWULVUdCjFg0+73n7q7n/m6HMTAtioz8O+2h84ah7xi6Qxuhq1iiplwSqOb5qqVqaTwom+Xgubmcs/zpD7+ThlTL1kB3Pl14to7xdCEugfu7Bx7u33D/cMd+v8M73yqgsicUgj+WJTIrmf6jlWXoxcO57wZKrRzNiWUaMYgzgVWyHjsH2liMra2MnBitblI68fPVVtP3lqG37HrH3a7n4W6/yVLEVcfTa4fOEKaF+bJsVk+rFFCkLvlq4t6uoevotSX2PUvfs+s6dl3H+XxhnEZCXIg5XcfyKg2rJAuItPG9rVFqtV5aP6Sf48q8bw2BVSQEK8SpzTRbpt9pnPf0w8AwuCZfyhuA0FUq0523dJ24CmkNMUbmJnmDSt/3rbzu2n5tfp4ZaUT74vqVyUWfeTpd6PueYRg43A3sdr4JdTPj2PQJqVBK0/hp0dDtBs/dw56ukykEYUmM49x0TlKyTilzuUycz5N4DnrDy/OZ8+WCMYWXQdEPFa0XcpXyY65iacGqK125vLXM28YO6q17WnRR2ySPpg/RyoLM+OH5+cjn42cqGuM6pvn1PFEFiG2aplQ5fLZq/spebn6mEKLYZuQayTpTVPMcq0JrLyEQQiup58IcgnxPkbmopZFfSkHWikhmiRmrMjqbpk0tKANFFyKFhcRSM73z2H4nmtSiMVmhMm26hmplu3XO+1o2VJQidg0COpGxgLVeVRLtSiUx55kV8Jeimva+zQdv3dGpJOZYUFGCmIiRRexttKGWwrIExvFCTIHVpkLpsnXUi8asdf7OMy/HF5SuhBi4XM4sy4RSBbNqX5XCVHN9r5WwN6suTEC1abfe2HDVRmSyMnSSvX369BHU/8I8zXz69JFaxH9vWxNK8d33f8QPQv/WXKkxoUvFqrWx7Nr9vNpZrSL8nAM1x+Yj12FWT1bhqwkhiAFyWkgpEEPkcp4I55mXn888Pc0Y47gb9vi7vUgYtMcoRzSRFDLWVfr9AbSWUaN+ZbFaKcp1OOsbm562cZnKONCOqj2YDmU7tO0wtkdrh1Iv3LoAO2fZ9wd2u56u19Ri6AYPKjNNRwiFJU3ElJr5skVrR+cN1ECIBW07lPEY07HTHd4Vuj4yh4k5Xig1YLRMI5mnjImVbgdUh0JAdL+/I8yKyzFxPi18enluHbiKw0Fx2HeiR7YK7/Z03R2H4RFnB5Ylkgv4YeAweIZOk8cjIcmaEIsRRUyVuJq/fxVC4Zu3b+h3HY+Pj9IQpCq6ZEwzLNvtdiilWJaAUYppnJnGkZwiWVdqTiIn2A3c3e3Z7QdqKUzzTI4Lp+Mzo9XMaym8itQjtKrKmgwqLc13tjpijIQlMM0zy7RAXS3O7DZswA8dw27A951Yx1mZbqatoeu6dvYskDI5BHIIlBjRtel9vyyhtdLefn/g++//gOt3vPv2O/r9Hdb1hCWxzBHvPH1rlLHGME0T8zxKWQ/ohyvjqdseqrVVlABlxJLIGYMulRIih/7AeJrIKfHm8T1/97s/8sc//QNd12/m/zEGzhfxeM1N0tIPPbvdjt2ww3v/hXZfobXotFWtvDx9oi+av+XKU4obI/trGraPHz8wHn8hlZn9fY9yhmUpfFxeuFxm5pBxxtF1DmsVSmdy9fTDnq5T5Fo5nk6Ef/1XlhQ5XiZUNPiyJkk9p/HI0+mFT8/PchaqCqbQ7RWHxwdUtSxTJQaJq8PB0fUC4ryz3N0N7HcdzjuUzjicADEXMU40m34w7HYObQyxZvJSCQFOx4VPny4sQdEPnvuHjjfvO/rhtfRCa81+P7TkRjSItUIJmaUbqKlKxcl0pKQZL4UYF6zNOBfpuox3jpwTIUQul8a8t6l4CjmjvXOUUrmcL7w8v4j7RYwoVXDt+boOkQ8qaRJyTnx9czbUKj7R/SDWQlpXaknkFDBUdDHN2itxvkzkXLmMC5dx5tTuKaS8jTdWWvHtu2/FMaJd3hmM6cjW0HvLftfzeH/gcrlwOp14Oj5zOp+ZYiDlImV25PxSZGpJlKxIUaGDwUYvjL51zT+9yYGapeMq31nP81quzeCqVKzWbY0bvO/oO0/NCyk2eZEWLakzIj3oe4f3llrExnCaJ1KKeO8Zhp6+JYs5t2S3SQby/5ZS+zhdmOMnrHN0fc/DsmN/6LFGsuvj8czpPBGioFkZHWXonGG373iYJHOkKpYlcj5PpCQLRKaw1NbBe8E5za53TGNgHqV7SqwgIufpTCm5jcBKrLPM14W2dmLWKlqDUjLKqNY97VrpqnVzoanVQLXkJGXL5+cTT5+fqVVhradk9+pxKEWjla84rNQr2MlFRmyFLF5pChnVWLSh6kLJ8g2lFBKifwwxSOZbKktJRDLFQFGVbAplaySCUNaJQwIehr5rzQSKpDJLTcSaCAS0VWSfwTosFpMUKiFIdh2tuRXdaVrZFUxL0Cy0SRylosLrLL6UTMzLVVaRBbyvbgOmBeBcoeYMVYZrpqyJrdS4gjyh+DPGyXO0Tskmr4kQpOQATbKQM+M4AoWYAvM8Ca2PjJcUG14BlatG7Uv3gZUYX+1khOVsNhDtqrWQUuB8OVJqYQkLx9MRZ9wr4AmK3e6efm+2DV7F0JSmxtuUXqvctiDd+zYFchTg6aylM1669xsQVlVRrKVWYaZrgaRkHU3nhZenC88fLljrmb97S76XTmmNmMsblclOmmGq0m1MoJYOdSuAw9mrJUcpipjbpKJS2sSTtSKgyFmTkyZrg1HqK52OdY77xzuGQ4fzSsozqjBNR54+/yg6s+m86epirNSq2e12WGdYphOXU+RyTsyTdHbmAjEqGUGbG1NvCkaBK+ILq4tuMhLQxlGKwWrHvu8JU+VchBlFyxSpbmdaQmp5uH/k4fFb3jx8Q+d2vLycGOcF1caQTjFQxoklRJGsNGuYwmqPVL+W7iD6yxQj8zyjgPF84XI+c7lc5D6RRpp5XpgnYdTCHFimmRSbz60xeGe2RpVaZd7xPC+kkBpjv4ke5XATu2ABZxVySoRl2UqJmxdz+2+KdEsbY9BWk4qYa1cNpnckCqFmlhjRamGZZ6ZpIkTRolpj6Du/xcBfwVsopei6nseHN+zv3/L9H/7IMNyhrZcGuFSaebXovhUwzwI8QwiUWhrzLpU2Y2V/5yLJe0xJvBVrxSiF0pViwCiRv+SYSUugpoJTBlPFKsbSWHbXUe/fsFo7WStl+64TI/DrxJP19ZjGlMPe9Vw+f2J8/sT4/FEqe1t38eurhJkaJnZW4fsOrGW0iaO3VGQUYWwa8pKh1IDSkd1ekbOFKt3Y4zIyx8A4L9jqGMwCNlJMYA4XQphZojD3tjP0e+kkvrvvoGqcK5yPnpQi/c7Q9yIx8tbT9T3Wula91PL6rUJ7g/WSrClTqCo3B47MNEVOL5Hjc+DlZcZZz3DXM+wdw070oq+eQ8mM43GLw+s44nGcOB/PLHMQP+F6oWaNNqfW+KhFl9zGAq9r+3wZGedZGMZaW8VG4YyMbVzmhekyczlLcjHPI9pUIGEddIPogmnV2xQz49SafLMhk9CLwRgrllRhZtf19N4zdCJ7K7mwLJHjeeLlPPJ8PHO6jELI5byxiO/fvHsFPI3WeK3JSibMDcpTd2Levhs6aWLynuPlwrQspNx6WkpGZbVVT8mKkqQ5KVtHsV7Gv64JofoiQa4rGdLOxiIyxbX5mdos1ozDqIQitZjZGoWcNLo6ZzBakZo5fs5J5FjNHWOt6sTUCMMirjnpC+YXfm1yUc4sYWGJC0uYgSTt8U7sR56fR47HC/OSyLmitfjB+c5yuiy8HBeUlrLhsiSWJUgQLHXTw4ilS5Dh9FqRlkSMmfMpcj4Hnl4u7A69cEctOK5Py2ikg9lo2RiqCpOEmGGbNknBd9IQoY1kMzEqwqKYLonLKfL8dObl6dyAp+Xx/lvevfn9bQRlaFq4UhuGa19XWjWGs4huMYvOyg8CDlPQsEBcWnl6K1G3cYxVQGZ1iqol+8oksirCTNYi4x1KRWXNYHt8v2O/67EW5jozxwhZDMeLK2RfwCP2K0mjEtS107PSRmuuC1LcB8yq46jiYeeqIReFvnwZSDPUwAqtSmplvNZwhVWoZjiLaY08gDYCw1KOjXERwNj1Xfs7Ni1hSpFxPLMscZNNAML6VWEM11KcUmrTCm361BXuNdZx3X2qgdi8ZqLboXljR6EVuSZSDqS4UHPBaIPRX7T3AzUVSmQDnitCb97SzdqqaX1qbaA2E1MbA5oKQSdmI/dYaxsLi5Iyew6kNJGSWFPM08I4jlzOZ87nC854zk9n7gaP65R08ncdtlMynlSt+pzcGE1h2rXROONxfsC7XoBKLqTWhJKUIhpLcCtD7TGqQ1cP1ZGC4zqXB7x3PLx5YNj3aFfJMTAvF54+/4z/q5FOx/EiVY5cmKdEyohrgfOEJTJPE+P5QgyS1MScOY8zqYhrgnZiOm2dMOdKK5lUEzMxpDYer7LrDxyGPfeHHajMuIykEprNjbgrKDx3d2/4/rvf88377zDGE3PkdDkyjhNxmTDLjBlPmHmkJ7fJWM0KvMp61+XrstGPP/9Mrom+H6i18vIi5dzL+Uwpha7vRKubEtMcOF3kAL1cxB9xmmbO5wtPTy8MQy/NJK0z9ng88vJyIs5xFX9Rq+i4xa9QrHZWU/i4BDkQjG7+sT21KgGkuWwm2qY108SSSVSwhqIVc07Ey4nn44kwzkyXkWVewCiGww6lNDmtoxm/thECYZU61zP0O4Z+L00+2uKs2phXLQtVHADCwuVy4Xw6sYTAMHTsD3semvYSBSEGji9HTucjl/OFlKI0F0n3ED/87a/88vNPzNPE+fQCJaMbazlOE8ZY0efd3XF/d8D7DmsdSlVUCaQgcinjLHobMSvvv64icxq6gfvDPXd3d/jOYUy9TiP74nroPfd5INtK1IW5ZFSAvXeMXcclTtRSJBIXyDExXSIvnzPLzoqu32usE1B1f9jRd57DMGCtAypLLlgHtuuwzmO96DJ3O2kQrFXhcmXYG3J2uM7gvEZjcdqhlSUnzRIjxlaGg6fbebp9QWmRBuUcuYwnStGECC+fZz78MvL0eWG6JOx9JwSNUyJ7+kJ3EGPkz3/5q4ykDMJahiWJDVK8ukZ42+Fcxzq2d3Wf2XyGEUnXZZrEPk+JzM9oYedWIqG25CaFtfydJa7nRTSepooPZ+vyrgVCwyMoJAnVMle+7wf2u4HH+zve3B14vN9zGLrGfGaWJZHjQskXch6JUZK+rhsYevcr5ZGNkkAptn3onWO3G9jf3fH45g2fn194fnnheDozzUsbDVqwK5GiNaVEcpyIQSzXNEq8btv0I41qrKfacItuwF/wq5x9W4N2AapunyWp03Z1U2kSStUcKEqm1izSSifVCRACMKXUJketDX15I4tur6/tlFSF5iUVk2QmpchUjpwrp9PEZQzy0HNF64QxmiVatF6AsTEocZu33Ro3NxYttxcr9doi00GieDJOS+Q0LXRHJ+VUXZGWFwEVWoM1CmMRRG4q2iTxvNIFoyshKXyxZLxY9WBISRFC5TwmXl4iLy8zx5OUj40x9N39V2skxLJ1sspLKFQl5eU5LlzmifM0MoUZ7z2HoXWY4lApkutqcJuoSmG9l4woK2qJMuLTIcb3DTNphK3MZEJR2JrIqqI7h911WAcmZ6rS1KzEp8trcIpsKovKWCPjuLRR28g7Gd29GkmvoK/9qQE0tTa7aL7Qedb2hSp3uAK39lRUc90VY2qzCZy1Us3AWr5VNMCmzVC/Ge1ZhdEMMRJD07BU+X1l1csk2XzrJCtnnXh7ts7W27GuK9MDq5mvIturGbS89jWoCRAWhqXD+Q5Uxob6Kltdr2VM1KpZu77XBjZVtTyiwua4sI5PLVmsPHJR5GLISpFowLTI6xQNU9msdkqu1KypRZOTNHmEJZDJXF5OHDuD8RrfW7pdh985bN+y+VIoOZLCQowzMS0CSqzDh4Xkeqgy1m1eWjNF83dMxhB086wpFl08qjqy/h7Uta1G9KIe3zuMUxhX0aZQysg8PXE+XXh5PhFCJoZCiCLNGYcdxnrCLN6CwnInKhBj4jwu5JJxnUGUMQXvNcPQhkekTFwyYY6kKDY5pjg6Yyg1Yk2h68BWMKY2uymR+cxTYZ4i0zjjvFRQ+qHDdpYUO+rlRM0BZS0m582yZG3whq81npXK8/HMFGacO1MrTNPENI3SdJESepxauTcRYiaEzLxEliDrPIQgwzSmeTN2L1WY1GUJhKU1CLVEpxZhiG0xTZ8m0pSaIkstqOaxqo1t61kO2dIqT+JRaNFORq1qazHeobwFK1Y1cV6Yp4llngHxn3TWYbVlGkfCrxwmIFIA2zronXU4Ix+qza7cHmMR77/z+cTT5888Pz9xvlwIccF7x9D3HO/2zaLKkHMWEP78zMcPHxjHC7WVy43RfP74kV9++oFlnjm99OSwEMaJnDPnywWlZHLZ2zdvePP2DcMgjSGr37K2vumO9wz7PfvDnr4fmsxEia2NFjDvnRePXpX/m4zn7968Zf/gyaYwlcjH0wtlzuycpXOGScl5ohU4qzHa4TqE5VVKPKaNwffSXGO95XAYeLjbo7UhxcqSpLmIxjp5b3BeAH1YouhiY0Yb6AdLt5OKR1oUYUnMl5G0FGJYME5x/6bjAYcbbGPfHaWNjA1LZZwzx+fA6SkyXwo5tSpWTe0ozy1u3+yPmhmnZ5YlMI0LyxwEeCax6zFGJiHVkmWOeQOedXN7KKCqNFpqxTyJ1G8twOgbA3+pqEFtU/VWy7IQF0KcyDlQanM0MHoDXzlftfnt4JImPn/mPHTEMFHzglYRxbBNbEslU4kYK96mpcm6DnvLMNjmcnOzO1pTdSkV6upeYnFWEkffD3T9gLVNZ28c5nTkMoo7Rm7OD6XmJvBbG4gFMFZfsb7bBuXopg8tBcEt7dwTDk/iqXT3F2JL5lPMlCQWk9bJGGbvxNIPCiWJdtNoRXWrob1q9m2FGGNz/CmEEFlCYJm/dgz6Cnhap+mab10psMTAvMTGkNR2kFRKlheQa8sqijQdLUtumUwLCrbZMiEBsuSyAYOSMzVlUpByXCqFUAqhJFx0OKdwtvFBjTGUBpHSLHPAeeiHilMFqxNKFTKKXKz4YyrxqFpp47hURpfbYdZLU4TV28io9Sq18vQ0YW3dvBhTTeKxlTNzCIxhYQwzc1jY7wdQhsF7OTjQMgpzicQQ6XxHt/MyESMFQpCOXTVojNe4UjGlYqqBgIh8VaGoQtaVbKF4TekUORlyBozGGo/tHBgjJsRpxGJwyuG0xWowSCk3zJmQUtNkCmMsxuFSshB28Euevp0UtFGoGpwTu5eU1MauiDWWdP6tWseSpUFGbLmk6ctsEommpSqrvUVtGuDUGtJW2xa9eRvSrIDWkWfi6bYG/vXnZEpNpDYOcvWhlCAoP7/WwmogbYxMSLq/f2S/u6fzO+Y5Epcz6guUUWtlPAbi3GxoNuCp0Q18qnVflNUeZi27a8R4324dg6VZ1Gyzd0sbn1YNpjq0cnhT0MoDugH0zPl0wrXJLLazdIee4a5n9zjgvUJVycTDNJHiQsqR1aYn2kl0a2hKUVL2DaLToeukKao0/7ZQsAwYOvrHt2h3BZ5KaRmVai3WK7oqAwJ2O0PnKxciYRk5H2fmOQIGbZ0sLR2ZpyTPOebGTFRCTMxLIOfKtOSmDyoYV+g7SSBSysSwkOJM5yyHQRPjyMtxkWbBEnE9DL0cVCEUwiyJnuYTYSp8/vCZ/WGHdY63b97y8PYd3hqWp0+cf/wrLzGSz88YJUMZjBbrKf0rNp5UWGJhnCM6yqFWlcb4AV8VNQTx9EwSR2Xue2nevU1rncvWYa/miEJto/JKqeTUksaUWlVHpCJmbfiMYqGUiujhldF0uafrB3zfS7kaRYpC1dvVU9RZlNN0Q4/1ToYsdB1BzSzzTEJkQpvhvHGoqsm1soTQmgpvDlaaBMYYmYrUGElhWVsjDgJGUoo8P3/m559+5Oeff+bp8ydxD6lCMqyWSs5JA4kx4oLy8vzM3/76Vz5//MjlfAYKfdexLAvHlydylJnX4+nI548fSClxvlxIMQGVw+HA/f29lNa9NEM45/H9jn5/4PH9e95++w3fffcd796+Z+gP4JuMqm71KyprNqL4lYDJ3//uD/xhgKQyL/OZf/nbX5iOC4NdZIxwM8+3BobB433P/uC4f+xJeeH55QmodJ1j2Pd0vefh4Y43bx7Qyso5NleenhfmkEglojQYq5lyINYoMbVIZcN6w+7QY7TheZx5fh55+ThzOS2kJWC94u5tx7fjHuyBx3cDfe+pVPISWaaZ08vM6SUyXSo5GozyzRrwwrA4YnTSmHK7JhSyd1HU1GKlMuggDbXOQd8Zdr2n7wbx96y1GZNHYhKw2O96rLP0k+ZygXleiG0/KOQ1liTm53IL0puxznbfLJSK9FgQ2ijw1tErWuLG1yo2uz1tFPMyMy6eKTqGbGTynoFaErVk3E5z6Ht2VSp5u77Du+4rKYo2BqMdqYjDz2oRpbRtI2ANPZqHB5EJOSeaSvjM+XImJnkeKi4YFza3HenXELLDU+m0xliJzRWJIeu+Kk2eo4qwuiDDc5Y5MmvFMovFU+86vLf0ncj7VEsMJFYnKbuvVlqlEkJs8+RlQl4IiwwBmRam8NrpAH4FeK6aidKC/jJLhi4d2XKArrrAVi0RdidfNSACPFvp2woVbE0zcc9XRirHBjqbUNgCWE3OClNk8azjoGrVAlzXba+bZkGDyaBLFbGMElZM7h9UzpLVGilLDoPh7t6i0DinxLjYKLovfAprhfOcpZThjTQQ5cy8LEyzzH5ecmROgVAiJSpUMESd8NYSbKF6g0pi/qw6i+4cpihMymLeXAy602CrNBClDBFKqpRUqVmRLMw58jweSTbhsmFhZqyRbCraGYqCaRHPvhQT3nh639M7T4fHYqAqLnFmmmRkmrOOzlq8VRjbmnuQxqEvJxdJZtYOkTatw1oBgqr99zrKS7EyeW3md2lTQloQqkhJa7OjquvGKddGFHU9eNYRpzT94+1Ul/VDK93KyqCUMLDWgGravlV/soqtS9t9cr/SUV6KMG61LixLajNrv9ovpLmiSpsOAxLUCs24ukKujc1eJPtXq45WTKqrkm7H69Qm2nQJRUmLeF3WCDWjtWEcI/MlsixJSFZVWZaZ80X4XTVq7LwwhJmlzAx7Q+eg5khMMzFGYsqSGet8w87InkpRXqskiVbevyKNGDll8XfT+qsSmrGeYffAsD+wOwz4rkrnei8Tm3zXsdvvCYsko6IzDCwVUKJfKoiFWGysZC6wjp6rqmmJQpGu0SgVhBCzZP6loA8KbSVor1NwlC6SBBnNHGBeCiVJE9c0Jl70mWVZGKeRt2/fcbh7YDfs6JyhnF+wWoz6i/fytVrIthCNjBD9ivIEpjlwHmdhGppVUUUsUFAa7RwWRac1yiSMKdgo2nU5PAQUbXtjBZ1Ng33VCyt0bVKO0gTETftplBL7rlqb9We9TjmqUFoT2Rq4tbEyqKHzYv0D0oUbw7Vrtg0TMca2AQCFtIQ2vGH+qmsX5G3QKEwbA7p+rFWSWmVqW1wWnp8+8+MPf+WHH/7G58+fxf/PGVbVeSnX5NG0dXE+n/n4y098/PCBl5dnqIWh7wHRr+bGmsW4EMJMaaz+PIvvr/diiWOta36D0njn+x394cDDu7e8+/ANT0+/5/vvf88377/n7eM3qJ3EqKsR/bWS82trYnd3z8NjTyyROnbcny4c7iZ2x0TXTVgne0pZ8cMc9p5hL53cpNS8fvVGivRDz+H+noc37zF4ljnx6fNCrU/SnBUWptHQDZqiMlnlJgMQU3Jjirhm1MzlMnN8GTm+zIxHqXgYWwlpwbjE4RGsA4oih8LluHA8LpyPgemcWKaKqoq+82gViSGILrvarx6FUtLIVFIkaMTGzTicVTib8N6zG2RUceetkCVKUVIiJ0sIWizJDI1QWAhRRtrGGFnHX69Jamr7B2WRUTcFacXNUrHkuqdKm96n2/m2aiPrqvNt2uIpBE6XC9ZBqRHvpXN7msWVBt2qBsZIDFWtcvzFpbXFuA7TvC0LSsz3VRGLSCSh965jv1OtwisYqO87pmUSbXCKQvaFmbXRerVxKq12Waj49vPkNQthR2sslkZc3c69wjTO6NL00bVQim0TjaT6pksSyymEUi41t3O+Nqei2iqTbVJUiMS0qkq/Tsy+LrW3zzkVlrkwzaLVXIOWTNRogKOu1fLmH5hqKxk3Xd1qLWSSlGmMwSgpU9YsOoywCHLPtYq9hwXvK72v9D14L40GJSvJ/FebCw1aX+2GUqotw1k758TsvJRCLOCUsFv9zmJMR997xrMlZ3kjnH49T7QCc9V4ZTCt/JpDYZ4nTiGwxIVc25K2MBJIoTCahUF7lDOoO4/zChUcxmiKFqZLFYXNFleKfI2CSg1wzok8FdJSMUWTNVyWmfT5A24y2J1F+UqxBdtbOmNZUiLMI/M0s8QgWiYO7NXATmV01dQIL+PI5RLwrhMBugLlDNkklMqSESp1tXPYNoyUyFULJNKJrjCtm30dW1ebtCDnLAddm8hkjUzYoLRGopXlrG0ClpIyc60itpf5sWYDjOsGvGoumzYTGS2ptW6SDjHiRcl89NX8/FoyX9lF2Yg5VzIFNQeUujCNomPNSV5H5zwMNwlJRSakJPn9okGWbDunQklywFcCVYk+WoCpaDlzSeQSWMLcptrI32ktXe1xmYjzTM0yKcK5jiVknj6fuJxnahVwGGtmiqEFUAUhMYWZOVy4f3Q8PnZoXcmIS0HzTxcQXEqzy5CQVZrVhS3gqgTxgoZ22Dvb423/lY7NuY77h294fHzL49sHUoDOP+L7HeiOw32HdfcY+4QyT4yXC/M8k8Ik76fTeAOprqBdAI73oo2qwBLlwIi5EEskpMrUYpE1mmocpvn8Odssl0rFWaBq5ilzOle8s+z6DqUtucA0LVRgGALLHBkvZxZVePrwC9PzZ3TN9J1l6IXBqTmxxLZ2v7CLAaRR4nSRZi6tUAaolVTyJuXoh4EKMlFqksM6xkCKgZgj6wjNdaxwKZLglCLqFxBhvypi5yYNgwrX5q5rp2VYQZPmVK1AV2nuCql10ec2gk/jSsFrQ9f3AipjEi12a7xQtcier53o5yrM08x4GjmdztIZnr4GnuukJK1k3K81K2iUw1zVSkmRebrw8vSRn378Gz/+8Feen5+ku3y3Ez2ZVq0qIlrenKWsvcwzl+nMEmdCnJv8RhqWlC7UXIhpQUeFjx26zdROWZKppbmJbGMGlRbbMe9xXU//6Wfufv6Bn37+gd///o/8d//038OfNF47ufcGGrYpTEhM//JKvmPuB2IypJRxD285jIH9OTIcR/zFUVVBmQKmor28X0ucKTXRDR5jmxe1lpG/w+6Ow+EbjPY4E3DumZzgdJp4enmRJjynMZ3B9Zb9YUc/SEd0KZnTcSTGwvPnicsxkmNtk6UMOSWmMXJ6mXl+kk77uFTiXDg+TUxjZlkK85QJS8I7aYipSiwRJY7Zr3S/CoXTltjOfaslNpdOmnR81zHsd5LcKI03Cq8MqhhqdkyzQk1wCQvnaeTz8wun05kYW/LZmijXEariDqNa7BVJR1aJosTAXtIiSYZWmZcxYhmk2yAFtKauUjDEgaaeMykvnM8OY2Rc9TQFYi5Y75s/cnsmuZB8ZXCrREcubUX6siaUIr1JpCz+0uv4VhALqP3ugHWOfjdsk/pO5xMvx+PW9JcWhaL5cVUjfsNJmrJTSs1GryXztVU0q25SEQGsMWUu40yJEVWzNJKnKMNIpogiY5U4t1gNINaRq3StNOImxUwIQn5Jk5VhGDyR+NV8nq+A50ocprSCiHVMJVfBr2mmuYUbvVuztjHXbHAd05hrQdUkY7Oa+XZpotMYE5lmq2PAGHAWOg+7QdEN4jeZIsRQpHsW0SHK2M5m2J6q2DtVRVaVYoWNQl3nw5o2NrHv22hF7ZgnRViuDNa2YZSmv3tDv7MM+4GYZ8ZTIijFXBJzKwFElQk1oxIsxshUo1JRCKtabQWjBdCpSkiRUCPZyolSkvi75TmT50ydocyVEkHM5AuxWTPFqjElbfqMSkE3dmoaJ5awEHKiGoWJtmVsGRLkpXKeA3PMJC36PVM0NWZqDFI2yJqazVcdzNKoYK/Z/spmwtXCCDbP1tVSgrLOlzUSEArb94vHWGnWYs04va4g10og2oBm3YTPmz4YydhyEWZGtCURVBZt68aw1Dbdqjav1dJ0RKvWkzZyMsthXcV6q/Me/+VUllr58PNPaFU2/1ql1lKDCM5TjigdsT6iTW7rs5ISpJjk8FuWBjyF7dXNeSFMM3Famp4PlHYsIfPp4zPzFPC9p+scGCWAjfUeRMObl0xaFDk5lFOgtNg5VUVc8o3fXN6mhFnXy7M2HamICb4wsaswt+kcW3hbL+d67h+/55vf/SN/+qdfyEnj3QPadGgjGqVSKh9++okff/grP/3wN9IvH5nmhVKzlMKNQgca+1CBNpe8TbyQagViZ2IF9IXcqFG0NC3N0gSkml2YnHsaiqHESloylkJ1mRIjSVUky8tMw4lx8AyDwZnKsozEGNBNIrEUacYxfc+gRK+X9q8N0wEu55Hjy1ESpuZxuSZixhZ0bFNXrKMaRdRJdGTW4IzHVksqclCs6zO1umDNFVWkhC2kbsVUcRWwzkm5uHNoK+MkFYasKlj5/XlJpBApMYnWXq9Vqto01i1Ol1UzRntD1Ob5mUqi5Crd+scL02Umzlcy4nZ/5Fy2j9rYT0ollUQMUdj60wufP37gp59+4sOHn3l6+sTpeGRZRsbRC8BuyUcpooFNWZLSlBLTOEkjRxEHjVKydOavk4wUlCLlPpHZtMQWqXasyekqPzEoUjujUo4sYeZ0PvH09ImPHz9wd3jgfn/H4DxQN4s+yZC+PDna/nh8y/DdO1xK6GWi3L8h7x54CpWnceQ8X8TkXxdiDeJ7LBsBYxW7YYdxMgbYeGGcQ8w8vZyxuNY8k/CdZbfzzNGTlkhcCrmIjMZoSVK8l7KoDGDIzFMhLIWamr3cTUWxFkXNhpw0camEubBMsEwQAkhuUvFesd87mVluDLtdR+dEEnF75VI4vlxYGlvnnZWmXy3SIWGbJRlSSLOx1TIspeRKSNIfMc6LdI+fRy7T3BLmii4KU2UvSaWBdjY08lUXtJFBDSiRCCoaecK110H6Q9p8divPOxZpiJQG5kQItPdfpIjjFIip0g/SjGbNHu/EyJ76FbTa+kWcc1gNOdum6ZeQtoK4dWqdaRKXvh84HCJLWDhc7hh2A6eXI+fzWfpQSiSHiah0qwdfG5dUW1Nr70OVHSlNzRVihjkUjEqUnOha0+88FZalkNOCrhnfxjZb055t63Wpm5yD68jmqlDab4y7if8bZrWXrIhRgGfJFWrFGFi9D00zZy/txazpnoxaKyjb3tCGXTJyczknalYU0mYzFFcvLqNR65i4ZqjrHfQD7A7NWiYW5rkwL6XR+mKlsc5GLblAFuBpTWn3LlmYd04mtHTSCS1dcFLKjkHmXLca0XZprXnzzXf0+45+13GajpT5TFSKpWaWKpMGQonMREzVeONRuWUeWTJKqw3OSDMNtTDWhTnPVCUemjEU4liIl0SZEyYZalJy/6aStMzS1XuDHgw4Jd3wTkuDSojEeWFaZrF1UpKpLVFO9Bgjea7EqSKN8GIdE8ioGIgVUpgoIaGTRxXHFzIdjJZyiQichc2s5aqTVBgqTZ+ZxVOVduhoIwAcmawsush22NEOvFxkqodoOR22zW5vvv1Sqq61dfouwlhoaWYybe64MEYZazVO66YZXUsrDXy2sqMoPQS4SqZrMdphrUMrI5qvrm+H5tUku9bCv/7X/5WUZ4yx26SGUmFZZIpSygHnM8NOmHttZH2FJROWTFwSyyKsgQDPNnkCQ5wiaU4ijk+VJRamJXIeR6qq7O+lrF1ZS6HtHpzF2orRGVUMJWlJ8DBURPM6LZHzaSYGcQ04PFj8rsfv7sR8Obe1uGasJVFVIZaMr5HOi3fqtiZcz93j7/n+jxMYB9VgzT1Ke7TxDLseo+Gnv/4XDvcHcoqcjiemWbSB2iisF29aWpauVKU2z9VUZfpXVWCdYhgULstBEkKlxEwMkZfjJE2MO4u1EW0l09ZtRripFXIih5mkM7pYlMroEhnPmnMHu72RTJdCNZoZWHIhLIhp8jCw33m6e0/oHzl+gTSmy5nT8Yg26pUXoDKa0sbOpZDohx05FaZ5ajIGMTH33mBygmVBr8AoZ2oSBo9csUqqRbpUNPJ91ntc3+O9Ey04a/OQwnaOmguXKVJSlmRVtwqB0q1KJMmI1gYM2NYcWKMwjWlOzOdZEqYggG8aZ+IcyUnY/tcHayXm1NiWvElpcpYmqZeXF56en3j+/ImPH37mhx9+4NPHT1zOJ+b5wjSdoIq/7NpIiNY3ezi1uN5G+bF26LaeEC3MVWmG73GZSVHYoJhF2732WupWFvV9R9f1aGew3rO/O7A/HFo3vRIA+vkz3737FndQDaQ0427qluB+ee3ff8+bv/97abRIkYdlpnv8hk/nMx9ePnE8nwh5IabIkhemZNC5SkOR9+zvBXiiC9ZbioKnlxc+frxgkK7leT5zOFiKvqM/WM7PI5djIBVFjpZlkiERznqs95QYKKlQkqGkTG3yIE3zcrSazvX03Q5vB+nLqBpViwxxCAlVFN4rhkGz3xv6weP6A7s7w663WPMaUuSU+eXDx60xxt7v8d7jvKU2A3otAvkm5VIyTasBpKwUS85cpoXjeZSeibwSXe18KDJFTiGuJWh53dsAmeb7mmIhBRk1rHXdSJNapSdFeggUvpMpPSkrYoJSy9UDV7dGuSaxkHXX0/k77u+/4f5woNaINEO/XhdiJVXpnBbttW6VhNZsOC+SeGolwFe0prRJaULg3d3fc39/z8vhM58/feR4PDNOgZIDJWqqlmoVJUL2VJVZYVou7Tkb1TBYJaaWhLVuYq01qhTCpflOp4BWhd4anJUERpoTm+1fhdi0tbUqUAZjHdZ4eR83fffr61eAp4DPdXKDtRa9gkzUtcTQtAJbY8hN+UEE8PLUjJGusVXvJ2xg2/zWYBUoqzHOYqzoLER3ACFUXCp03sh0BCus5TyLZYLoDVeNocba1vFuSnvPdbMcsW0+sczkrtlRizRYCGvabug2iAJVazKKUGBOmUsInJeZS1xY0kIpiSVFlhzQWTffrWawXqUEK403tk1dE73REsKWZeYF8lzJU6UuEvy1UkQiWRWKrVQPem+xvQUj2r6YCzVkaqrEORCm1LSvhpIzKQaCLlglQJaoqcq0DBWSzpSYmIOMKSQWMZ6v4Nb3qF1aa5w1aNVK8WXVjKyiTWG4xS6plQvqtTwuM90bq1Wh5sZStM7vWmWTqiLzcxsybGVsAY00Yf/KxmnTtGzN3xW1HkIrw5gouWzlBNEot4NiK7dYnO047O54++Ydu73YrJgGBJdl4uX546uD9dPnT4Qw4rwYLzsv9RQZ2ylTlMgZk2Tcq63NMial9loEVAoYjc1qQnxmaxSrqpogpSJj4ZbAEiLKamKSmcI5i9epd6ox+mKdUZaFmAR0W2+pSpwZpiVyuQSmUWZiKxrLXiDmggqJZRI7lxwa22kyymRSmZhj4HHIr6KF1g7rH7h/+/coO4iNT5PCKG3pewcktHM3865re59KazZTDL0WPXMSo/ZlSeLoEKOUV0Gs0wx0WsFgiK7lAwUqkRBBzRmlIkpFem/orMNZw8O9gFtrM95bvJM5887bJo5vzgMoinEU35P7gzRS9Z7u7p43b9+xOzzi3D3n6vh/na5tZ7UdKCW30b6lKcladQgUJWdiFT/bsk4WaToymQLkhLExTTJSm1SpVOn8X6KwFrVStRx3VSuKls91HYFZNRRhIlNocpcsui5jbGtmUO3ASdR5oSqFKw7Xi2dmrYoYEuNxZDqNAjxTEg/OmGEbGsJXgKsCbWzGlXlCmpoulwufPn3kx59+4NOnD3z6+Au/fPiJl5enBjxHyio5KNJhrJt2zlphxKRjWUCxuFzIb8kpXz10W0NjyYXCAm1UbFkJEqPEP9cajHPYzqE7GTbSBoihjWbY7Tjc3V2t31Shkrc4c4W7v35lNKHoZh8kmrdxDlymmWlZyGSMN5hOGHLjDUVXUk0sEZgUOsr6vEwL5jSRkyYFRe/EUzLGhaoC+4Ol399hqibPFy5TlvnjIRKWlWjpyFlTs6VmI/0D6UogdL3n/s2Ot2/3HIYdzthG6NBMywvLHFG6cnfnuLtz7Ha6+TCvbPNKMtyuidpio5zXFSFFUmkERlsn1oifanUK5bSIlFIllkRRFeM1/a5DWY2PvsV3+blK16b3l4aZdcqigutgEa3JMRFMQKNlqIY1ItkpmZJTk4wZut7j+66V8NkIF2h+2MpQi8JYT84K3w10vkNj2kTAG/LtZokUoKhK1RplxYlAqoGJVKCGRGoWW1aprXIiEjf52HeeQ99x6Dz7oeN4PPFyvjBNkTkWUImaJyEfSjMhV76d061fQyH+zg1LJMltqY0pVgpyTsRlIceAqplqNck18Gktej1baSSgMrKvjEUbhzZu+1lfd2T+CvCUQ1rYIG8ha9NGX7ZmiCoZg2oPv7SyjZRZ15FZpb2wBiSzIkU5bHM7/KXEUanVSsnNSrYqs6kV0yiMH6binGLoLM6CswWtI/O8NkzIzFnfQd+DMZK9aN30K0qyMJk57cjJEybPMllSFFCirUyPef0cKpd5YikRHRaezyeeTyeO45lzkPFWVGFtl5hQAeJSBDwsUI3oTeTQXdCN8k5RvK7ICopGJUMNUBZQSeMGGfG2xEhWMuoOD6ZvwBPEkmUWDUZaMjlESmgsoxb2Vkxgk2xo5XFagL1xGuUqRTftVEjoBDorMc+tiF/YzbPQSrzkjNZUY68d6K0rfS0/aWewjQ3fjp122Elnod7K9LlpQNcuXZolRMrSTEI11KJFNxIFaK1dxVpLxikaywpaxrWu7CdV/D9BDlyFbqBXCbuuLUaZNkFl4PH+DX/4/R95+/Y9h8MdOYsO8Onzhy+AJ21e9UxX2xizWrf52tbbZnic0HpujHxB64yxqXW/myaxKMT6/6bsv5okSbYtTexTbsTdg2VmkXMumTu3ZwaP+P/PEMETHiAyEAy6Gz23+x5WlSyIu5kpxcNW84jKrNPSsJIokpUZxN1Mdevea32rG+sytGqEm6ksTfVErF6AVIAqSTYVQUtpDWWQbnGulloT63rBaM35JWGdA42Yd2rpX6ePblWXOdTMulxY6sr5ObI8b7Qsz4KbFG6Q/PimKuXhWz2fRumJcbJYf+T56SPPj58oKVFLpFRNzgufPn/k4+dPnC9nSs0y0lJSd1mjOUwaC7TceH5pXJbIGisxR4xpjIOQEChymJ0GB32xy0koG601tr1TmzLzYDjOjsPBMd45ao1dXqAkZaPHu1mncd6hjadqTzUDNWTaQd5PfzxwfP8jH/74Tzy8/5nTzTs+P6/87/+3/8d10iMdRlmMMXQ8UTcbWHOVHIlRU9A3umvkaz8oitvVYrx9TRzpDMnzy4VSX8gxkUqW2YGSLpRuFdtkozLayoaYJF0lr2K0IYt+zGh5qnOTIrnERKqVmDNDHZiM6Ie1qpJ3/fmRy8tCXMQJrxB5j0RQGooqb7TTb9ZN1Q+R3bwghWfkcn7h85eP/PVvf+bjx1/48ulXvnz9xPnyzGU5E9cLrXQxctc1NnFJdeSOA6vIOnZ9aaMVQLVeEMPO0K25Fzt1/14yaNFyamMxzqKcwXhx9Tct+xKlYtNGKoVhnLi9f+DmcMPhOOO84JP6F+I60vs7tef5fObLpy+8dJ7rul746y9/4t//9Gd+/fiJ87KC0RyOEyFYlC7QBCV3XiLPy7lHFIuETFi0BqMsx8NEO45itMkL4zxxCBPxpfHiMufLIgEFKaLMPrHsh49ioequMSy0UnHWMM0TH354x8P7mXnWaCvA9tI1+zkJ+mw+OG7vRuajZxiU4IpiwSVFqP56INsvpWS03JAY40bjskjyT4pJDrkNgh+YxolphDrIi5prIbaMcor5OGCC7lSLxPmySLhCzrQmpIaddKKUcMQbuwZUCqacM9aAs0YiakMgeHvtyte6T1gMPjgOx4lpHCWuedm6frH2QkqimVszgEVrS0qRdpYDor6O/d8+G1C1ItNIrV4NgVgLrlIQSYqtGpTt9BbhessBXKGUhTFwnAZub468XM48Pr/w+esTn748smyRXFZqUdSiaUa+111+IFNlpInn1HVyfcWKmd6BRmQpOSVaydSsJOEpeGx/VlSn1Rjr8SF0/bg09K5FbK8Dvr1+h+Op+glPPhqqd4oEpLyPR6VAFU6Y6EAFW6B17X9U9RaunCS12TVYtXMY+wlFaxlxq4btiBBj9hGopjZN7t0Qq8EHBcqL6aiavv4XtM7SLm6VVrvINmqiVmxGunRGS0JNWgs5OUp1UoQY3XmXb26SVvn09TPKitD4eXnk8eWRl+3CkjZSilJIFmFWAZSaoUVxKjsLVnXNlojfrdLSFYoCDK4ZSSQQPQI+WI7HSZJldGEtAn1Oa2Zb4rXIS7EQFyk8UyzkLZFTRPUbXrqs4ooUQ3ujalk0W820lNCN68PpQsBgBMydK2Np37wWHeqr9FUArftN3PpGIVKFfhObdh1n7yOyXZO5F6Omj1S0Vp1dKLpOkXpUSpZTmNYK5zpGS1oa1wXFWlDq1QW/M8p28baMUdRV8C6nPSudTmMJYeIwH5mmg8RJWskGbk31fPLn756Nu4c7chnFEew92tre0ZWkBx9AqdhHglCJtG6+oiqaacBu8CmdR+swxmNVQGFl/LlJ0RezRhcpGLYtiV6ahnWGXBqqY8hyTmxbQgFxq2htQSmMt7jRM84TD/ceWqbmjeHgmQbBbeSUMTqidYQOzh4GT5g7jkMV9kSdt89HKRspXdi2R87Pn/jy6a98/fKZl5dnBH0U+W//5f/Lv//bf+Px8xM5SXfFKIvGQrUiRXFNxuSm8/tawZqCtQprBIa/RQE/W9+12lqcty4oOdAmGdHqWlCmom0jjJZxcpzPWeQZBoKxHG5vmOeRbVsprUowQdcBKmOwo2B2/OmEv73F3z5gDjdUH8j2e36l6kUNVqGdxQSH7bGP1EZbBOy+JTGvGWslUW1Hge3L7XWRftMx2bsUpmfNXyVMja0k2qZIrQoMvfP0pDMuBePOu6Wv47UUSttxXoW6dTau7dlmxYt+sAoySFmhRlgjkiWrDbGzX7/V8ymFHCr6FGr3A1jbN/LDxN3dDbVu0CIpXojrmZxW0rpP1RA5gDGgLEY5nA4EP+KcFbpB6QAJlVD9AGM7yL2W0mtCMYPtBzdt+sHYO4x3vzWQ1MrO9ZUBjgJtsW5gOpw4nG4J4/iKiWu9AFUiE/mW+ADw6eNfqemZzx8/8vj1KzFtfP76mV8/feL5vHK+RCmKbiQVpvYOnbaKGGE5C68yRuEGa+V6V7BQUmNdNlrL1JapzUNtxE14jKiGD2KYaMhB/vyyMoSBVvT1ZzVOOnD78+IHjQsKpWQStbuzlS6EUWHDwPHkuX8YURpKkY65pBUpUqxU176rKpoSs8wwuI7AM2xrFD3tKiD5i86cXyLTtDEdJoYh4ILFDx4bDGGypJwE3B6TxAG/mK6VL1KkeY/3oh8tWfLkBbkoOeMlZ9ZBjLKHeWYcJB1r3+NKEcSS6gzLeRol0GEITHMmpVcoumDwLKUqtq10Osgq32M/7O3M6P2qKGLVcvCjEZEGQs4QM2RlqNqRlSY1YRHrJpxOc/U+CF3GOdHn2zAxTCfG+cR0OPH4/MzT8wupFOJ2ptaGD0gXUjtQe5e5Swa6y8JomRA5I1r+VvfDRpJJhJH6TzrKUuQLjsxjfcC6IM1IusxtP5f1CcK31/c4JSOVMEXTsghHZcuRsTQ9f1y0K6IJK0WKgl2rsZuQ9nG8dLVEV9EQYK73pmdIC4KhtiJCfqWwRnA9tmsyc4Z1KYwDeC+0/NYCtThKhi2u1LqScu2JGOLiylld4fXGFFCiESqloVRAqxGlB6wP4lR+09SptfHp6yeqamRgSS88XZ5Z0yo6pj7GarVS6RrE0mgkcmu40sSBnBIlZcah676SpkUoWxXRf5ZsFO8MwzRwepjx1lNahnNjiZHtZcNoQw4Zmph4djC3jFQiMXbQs1aSczwE2aidkQUYKVpIErWnjWwQ1lr8rHHGcn5J5NZHWG+emZ25qfWub5KNUCJJXwkCuYPfldolE/JaSwcTYT4a+VBG0Yx0TcToMjAMIyU1Lj2gIMWKtbKJ0bW8KW3kvHWYs7zPqjuN25tDkVam80NF06Z6IWqN6/GRjnGYOBxvCGEk53I1/UgRKrzQt5fSip/++BOViOnwbWWkA1dqRamKdQJRj7GIpihlmtJgHKpW0IXaZOSNyoRgGMeJcTgKN7LQU38KORu2lNFFo5IcMmqTTUX0b0rG5TGLe7lUWimsa5aiH8N0PHB3GLm/f8ePPzxA3YjLE9pWtBeETorSgdfI82KN4nDjGA8DTcmB0trfLh61ZlJ65PzykcfHP/Ppl1/45a9/5d//7b/y1z//WToqpfG3v/yNT7/8iioZo6SoEEKCoRXTO4AVYxvGZoEx07BWyeFEV3IR85axuuu1mrAqndwbKcK2VLRpNJmQ4wcxVVjriWnh+aWSW2GYFMN84Hh7JH36yHK5sLy8SKez1Z5Go/GDw48BM3iatSw5cX78wufH83eLKLp30q3uhadoL8MYaKX1IIlMXFZqBVtqj5nrhWmRjuiVE9mgUShVikONOGK1c1dNdOmH3tRWTI6iT+5aKpHa9MOZ8zjvX40/OUPdO+qijc9bZNOgmxiZWq1ibBjB+CYHMucYfM9WfzlLIffNhqIAi6zhuuvTlNG44JjniYd3D2gD0+SZJo9WlVIiKS5sl7NMwxpYK/Ds1jQah9WB4EbGeexAcInjS/0Q7IKwkwVkLak2uscYqyopKtoajBd8lPWOwutrrirSMev6cqW7S1g7wnRiPt4RxgOqRCrdr9Dfq/pGWPD2+vjxzzx+yfzlz3/m06dP1Fa4rCtfnx5Zt8z5kpBc63aVK2mtJbWqanJaOT9nzs8bSsnr7z1U31gvixS/HaxecyKvUXBHa8IYOBwdFS1dq1JZ1q0Pii1KNaGtaEstXTZlM01HKoaYKtrU3kSoaJc5BMM0TRyPA/PRc75cePy6YO3AMI6gtRRgoe6ixL4myxTLOs8wHq4pXq0tnC/iCVjWTE4rtb4wTSOnLXL/cMvdFPCDw1rhIqcsHNx1i1c9qD6Lj0GCSZwgnoyhVslbd17hgxS9pRSWQQ4p4yTjce9s79z3g1kveKSTZ2lKifN+mqDLVPbYW5Qh50YpEuUsJhvFuiZZ374pPLO0PEkN1lJRUQ4wtXUDtXLi3dDIdK7IwcBpjVYWZfbgAjkkGyyjHcULc7zj5n7l0+dP/O2XX/j89QtPz2dSaZSmGMYZ4wy1FUqOlKJ6SIkcPDWq67+bSCJzvgZbtCoTSG1M93UanA+M08wwTjgfpGnU5YW57mbFfhj95oAKv8vxdFgzUmuikWR8XiuqCbtLo+WUpMQiKaYjyXXVpmFdZWcw1qrEpFQ7e0nJ2NYYhTZ9YVJKxqdorGk424Tx5cB2/YskRPQHvbU+zpcTubTwnYjSc6a03Dtg4ugrVXRjsixKFaq0gGutc3hvUG0kXhzry7f7iZVxqdbkFvB+ILeBpjLOm96KFv3eHvNo+uhMRkBiKii5UGxHJ5XGniKU+xjDGMUQLP7kGW8Hgh2Y48paIueXlRr7DVKFEUaFHGXcvm1SxNSauzlDVnylM42tj2K5olr2jGNjRUDtfM+WNxXlFLpaKcLfPDPSpVR9IZGFUul25eA1ekc0K3JRfeGGoiogmKZWxQ0o5ynRsdLH44JEMmhlKKqyA9WFKSv6XuGGNi4XWBbJiN1d5QpNZce4SFdWUog8O6qoVlBKkkdML36HYWIaZ0IY0VpLZ+B8QbFQSuXl5ZsbAqjKUJoh53od12ttUaVQy8q2btS6w5tFZ6PoWueapJuAOLSNkVHv7e0NtzcPEmGX+tdVipcXYXeKPs9Kse81wySgfms9NC18u9KotdMBaqFV0bZpMzDPD8zzA8N4A2VBU9GmoJ1oU40uaD0xTg3nxGwRJkn0qU2ysW32vz2MkEn5hcfHP/PnP/0ffP7lE19+/crnv/2Fz3/5Ky+XyGXNPH59Yb2sjMEwDgZrFNqVntglAQnQCJPiZD3DQYDp1CpkjdQJBsFgnSIMCj+Ac41ds66Qg0afr6CqotYsuJMI55eNZYk0pXH+mV/+9jfOL088PT4K1miJTNNICGJ68F44sLVEtuXMy9MXluVCSpnnc4RvCg0pzekFV89MbrqPu0SPHlNmicJGtUqkEM7JgWGLsl7U7rxG7cg4OfwcTsfrBKh0805MuRtsOmjde3Fw9w6ezaKxsj2dp7WG0YaxZ603BTnLxqJ0u/ZZ93t6nMBlaTJYLRGORovzee/QfnuJJ6pj9KpsQKlWtpR4upz5+vTMl8cnns8XLuvGmjKpSOAHxvQQhi6lURJ1Wkrrm7wiFTGo5B0cfsXqydSs7pQMo19z1KuBWq4EANWjQYUyIM/U7h72fiQMM/PxjvnmHfPtO8LhDj0cyMpR8iamsyrGN9Ok5PwesAXjODCGyufBoXSjpEQuYqyTfVEmDU+PF3LaKCXiveFwmKgFjPZ4C9k7UmxsqyT85SSYrlQy1hqC1zy1zHZZWC/yXk5Hzzg7wf8XwfVIgVuoOeN86V3ogNbCLw7eoG1mjWdENC1a1lYbYRAszulmYp4DYXQoI14MYwLejSxbZl0jefqtJCeXwt/+9plh9ORSGacRZx3LuklHt5M2tiy84aZBO8OwjoxbRhnTNZX9CyL7g/OWcQoYK11+YXGaa2EGFqOVeEOM6pr2ilKW2hTrmlk3CXF4jZGV500bg1aNZd1ode0GTodztqOUTNd3QquyF/ng0GaQWgcjbOdvfSNNU2uP4VW1T2sVNJH8NS17caZJRHfRpKZwWiRdmYYzu1QKauvs0e7Q91ZzmArptkGzKBwxF2pN5LSilbCyS85s64tgDpsctHWcUXEke4tqhZfnJ5blQi0Fq/W10DweD0zTTBgGQhjwYcBYJ89ia/T4nm4MFkJH+daFyO8WngFjZlReO6hY/vAOBkYpjGpUJYWmqb3gtGBdw/oqaTjadKOIoFtR+jp62Rct6YjVbggSJ3sIDecq3il8UFgvp7baRxs7r1FiuuzVSaWUI1fRCRpT0Kp1B75godpedJmKC1U6K4GOzTnyrDTry+sLpJRiGg8oq8EafHKgJZrTOUUhoVSTVIPLpeuyOrfOGIkZW7MYTvqIK3c3eG2vHwVp7evJ4E4ef/J4GwjLiLtcaC+t88p2MfJezFdSjFLotCKFhO43oZbEplKLmNuaaJjExSjFsa8OHxzKaHJnnimncWjU8tsHZnemXbEr3S2yF3LiKq/XEC/dGWFaSUoSTdrve0HZn5YrZFrwE6oX4rtRTR5KYyURR7KRFa1lUtrkZ0XT/RvoJlxNpcSsMc+HHnkn1UnOclDy3guLVmnGYWYcJ0IQDEgplfPLWZym28bl8k3h2WCNjZgLuUWsh6OR4rtkRdwq2+WF1hac7V3YIiYW2xl3mXwt5LWRGL/T6cS7hwe0cn0cbdjWglIyKjFaFj7jNG4wjLMVc4wOlKqAQqmKmJKM3urryNKHmcPxgTDc0Kqj1URrDqXctUtkjGKYLNYE5uMN03wUR7YSJmIuifw50N5MmVuVwvPr49/405/+E4+/fuXly8L56xfW5xc+f3zm09cLMUkUqzWW0CxNZ5qtKNdopl7vGzdr/Oww2oqj/5w4nxPPOWG1wgWHHxTDWHGhYZ3cizm3a7SbNQ6tYT1X1nPm+XlBtcjlsnX5wsrLU+Xf44IxYvzQShEPGzcnWVSNGjF+QNdGXhcuT1/lYKGNGES2Rmv+7S3RPxq0LqfIUGIl9YPAtmW2mES3nTKJgkkF54poqkzv6NOxcr2Q9EHS1cZxFHOflrz3LSWJOo2pj5Et4yjudpEaFcGD9Qzm2iU6xhhCT4BBK2LcMMuZWus1DjJ4j7Vi7NmRSEbJeK9mKXgksu/7Lp90txCTWK6spbLkwvNl4ZfPX/nr337h11//xuX8zOXywuN54ZKydILMPpkA0c/JulWLRBMu29IbFX3v4FXS1ajX7nCliqSt688aoFoVhE3w166WMTJ2d74nFwUpOofpxOnuB27e/cjp/gf84ZbqRpYiKVhLqsRSSVX2uT3Q5Nvr4eGB25vAsq6s28bzyyNbzn0dlUNJioWvX144vzRKjoRBJnjeBXkWp4BRlZfnlZenC4lKTrYn/DUpFnG8pMqFC0pnbNCcbgZu7gdKjdfUslwqL88XlvNGQLTO9w9Hgvd9XJ1RRiZKMa3SCVaKEDzzNHK8Gbi5DQxjEC2wNlgTaM1Qq+GyZpY19kSu1yunwp///JEwSrF5OM4MQ6DWyrYlUk1U9jCJQqqFLWfWLXFZEg2NT3SJH+QqMbhaa4bREwb3Rv732mnbja3WWUouXJaL7EFaGkYS0SwHuF2nPY6BaRx7M8GwrhvbuqG1pBUNg/C/g5eQjLQlUqooJXtUGGYaBqVWcv6dw1lTYiJFGjit/5rAWrt+TbX+WsikRxcwSiaoa8lYLdpQTTcJKZGhdYgSwc3c3cje4OzA08sTL5czrUTimolxb47knp4E3lraciBfJi7eYWis60otWcbp3jPNB043N9ze3kqMrXGil+7GP5SSBqVqMq1p9RpasaMX316/o/G0aB2ALE7PxpWGv+s+5fd1W2lffvf/Lzm9EsdYjGhCd/yR1BtSwLQqk22lpNPmg8J5JVnkRrqgxoAzUI3q1X3rAtk+Nu905dZ2BJCIpp0T/Z9zSr63Kl0TrUQHZAyEMBKGA/N4xzT8QF5WvvB4fR201ry//yBCdGs5x2esVbhFcV6hmoT1mlISWzxIVrK01aAplssGbMLz68yxVITRKO7nBh09pYPBzR4zO6qDrDPFVPAKNzq008zHiWH0stm2gtsMJhlMsaITRYw7pVVxBteCdR2ua7uwXhu0sgTrCd4ThgHnXU8n2XWX5ne7Ga9dntdFdu9sGyuaWpNT5+3t94i+dp939/q+SGulr07EPdFkLzp3tVvrXUz5XKL99V5QPYp25XUC3ZSBdGx8YBylqDQd7yGFp2iNnHMEFzjMM4fDEWtddwDL91n6QWX/2m+eDrQ+Yf2EMxUXPGG8hQZxfWJ5ibx8eYa2MA7ys7dSCF5y1Fs2UM21QKmtA8VTJeWKaj2pJ0LJMn5plS5rMFhvBQnm5MTvrKc1i9Hi7tyiISL0AGsMwzBKN1dZlnNkeTnT6gJ1xXqNHwLT4YbD8ZbD8Z7D8Y7j8Y5hOlCpggsrGzknfjn/hS29Rp+ljke6nBe2S+b8fObp6xculydyXih5pZZN7m8tY65106RasLkxNY3zqrPfxEBhtWEagyQENXErx02c97ok0SEaTfAaP0BpoisrucezKkOrstGkWHC24H3j4GBmzw+3svZ0c0qhEVNi3SLOJYyy1NTwPuOCR+GJYaFpI0VE0oB/c0dwzTwHmXIIZzJjre2dxYKylmEapfPf7BVnsqdaOe96x9WJ23p3j3aD5rZtMtHphVjqlAZtLS44hnlkGIOsyU3Wohwzy8tK2SSgg1bJVQ4+1lq8cWh/gCYbmECwR5GHtIZSubviJehgz9C21qKmsUdxfrtKGEpTxNK4bImnS+Try8qn54VPTxc+P13EP+RnxlPhVMUsuaVMS7FjVWTcX7p+WUljqq/96rpm6O45KEkKzt0cQgeBq77GaOM699R2U6N0l3PukHEUxo8YF7h5+MCHH/+Rm4cfcfMdWQ+ck9yncSucY2XLMr68Bjj8jnni5vaBn366J5WGMo6//PVPrKmi9Vn0tZ19KPHTEntackGxME2KYRgFF6cLRmeUkrz6GAtVqes+bfRA6Ri7XV4SBsc4epoSuY3zovc+zJ7z88r5HKVDFiAM4IeAoFMK4KltEK1wkpSeeR6YZocPgjCUIk+czNuWuSwL5/Mq+075vrvVeijHukWsN13mpRHQgpF13DaB/nuHD3IwyrmwLpm0ddNYq9SWaQiK7BqlTKeYtIrVvVnhRXOYU2WJiZfnSE4FbS2lyjMfU+mxmwpjZK3Zloa1Ea1Mx40VFBllItZuOG8IzuOsFcKDlmfXGXvVf65rvKLy3l5WK6yRuqc2JdVT++3dIzYiLaERfb+sTQpuSudxaoXryXw7Q7v/dum+Os/peMI7OTS8XF7Y4sq6rdRYiSVCjuyx5jRL2TTJQGoB5Zy8D27i1PFNp9ONYMYG6XDC673f2mshrYzQNVR39ps+gfz2+p3C06Bw7EVc7R8gGcRKGWn1lsYVnlFLz27XKLXDVBVavcaeCarxVbxdK6jWKEoiLV0wvWBU/UXsxYsGqwQFVPs7ZSxiYKl7F89QdGX3YocgGe/G7qyvdhXnSqGi8G4i+APjcMdhfseL/wrfFJ7vbj9gg0cZw7hNgBS8jUizCT8b0ZUhbsTUncO5jwdraVgrRUzu3Q5Uo2lJqrBWHNd2sNjRob0hKUnfSSqBg+Ew4AbHdDPigzjnXDP4bAnNdxZooaRKrWIoKFFMQq6IqN93Rp21Dmc8ox8YvIi3rTcYL9IHXZuAqL9ZR9u1r7PfJPv5Q115mpqeQER/An4rE5XP86bwvJINtL7q2mp3pdIfJlpfbDp2iX3Ewnh9RPendt/EjbEMYWAcZSRgeh6tUBfoOqrAcT4yzzPTOEKDrW7sIt99XJPzN+BbpXD+HmsUYTT4QTolcV04lzPbJXF+OqPqgkoBrURSoQaLx8hpNxla1sLFq2KcWS4b55eFWhNxrZxfIusq76kYxsSFuEfoKUPnYAq1QWlNLg67GnSUjrg2mjAErJXu+7qsXF6eoCWcawImngx+nJiOf+TDT//I+w9/YJ5v8EG0dKkkUhE26dd/e2TjtfDctpVPH3/h5fFMXMQM8fz8RbA4RIzNBF8oElklo++1UdeKXWVD9EWTUrkWj86AbgYNxJiJm2ZdIeaKKZUwSJfWeY1zDUN35OiOFiuCSstJXgMfwI9imrDOY7VssGlVbAtQpHDSHTVUihJw8mXF+8x8AOsicdtoWkvqTfm+2PKDxw9ekEMlky8VbSLWdQe1FW6fH4N0KpolbYn1sgBirpummdPpKAzQIXSjS2NbVy7LmcvzC8v5Iou7Uh3JYtFOYZ0jTIFxHq8kBVojLtLpjUkkG4VKLAlqJ1UERzChw7s13jqC9cCGjhFFu47L5PmqoJHuswrfF56q6wbRxNI4x8zXy8bjOfK8FF62xpI1wzAwzQF/OBLmA6lUtpiIyws1rrQsU6LSZFRM61oxJdIqkVfJBK02kTsVumlCK1STDoxqVfi83st7oaXbpHuQRE4JVaS4tX4CYzndvuP9j3/kcPse4w/EZoixsalC2gpLqmwFSt0BTrp//PY6nO549+EPoCzGelLOfP76jLVfrn9mh7XX7g/YSqPWSKsWb2dAzFKyrhlqkaJPGYN1nuAHnBtIVeIjdde9W7MHphiM00zzgHOObZ55mVY+fXxi2zaUyldZkhx0EG+FM6SOwNJKMU2BYTSC661FJDBRkVLjcl55fDqzbIUuH/7NpbVmHCe0adcCRCmB5Dttr2u3SxqXDc4GhuC7fl9kAFstVz1iI4HOGNfQFqyV/bz0KG7npDkxHyZa1TznhbhVLuduvtRirktJ3vda+/pqGjVl4lql845MUqUOqtcuv9LC5rbW4a3Erx6PVrBL68YWEy8vq5AIvqk8nRV8nEhQOoAdqYPoxVttQtTUvO7DO7xNJFoNZaWhZI3G9CWwltr9OJ3I4R3Hw8xNmlnXC09PX/n6+IWWVsqKyFuq7LNWVWwr6J5aNAZxqR+OB949vOfu7o75cMB7T+0TFEmm7Drp2iVCei88TY8Elx/gf0jjKT9p7/zUcmUPKvZTisMq5MReMjkVMcJUqNVQiuo34H5KFCG27gvm7nQWKKsUNPLGa6ztqUg9nCTlik5VnKxatBpKIR08tLSjayTFRM6RWjeszdLt9HuHbwfN79GJgqaQk0SmIcXgd4fWXtChRcRL63pWZRHncSS/bFgPzsvpw3lHQ05RDck8N1Y6iUOwfcTaP31HrKTST29Ksa0bZ3vGakvVBT9bzHhAW01RhVgqTRV0UAzN7wQRmkrUmno8pGBRjJUxyTAGxuPIcBg76sdglRFeqNYdpCx6ylYiLX3/Wuz/+QpLVld3u7oeJt68dPtJ7VowNtFi7dOEDv6HV/arvAa9INW9yy3HPlIu2FIw1VzNCgJvlq4GSvWxoMJohw8j0+HI4XDEaEFwLMsi74uS7110uIqUSnfOO2F4dsOEfO/fjggUPtxgvGM6OsIoyByjYRmCRCMOI1SNDwMgjmu0pzBSEpLgscK2ld6daVzWhS9PX8hRs62F5WXj/Cx4Ge92J3cTXWUpqPTqPNV6Z8pF5tkAHrret+SN8/OjuL5zYV1XrNEMg2ecg9AM3A3T4QOn25+4vfsJH0aM3RM1cl9YskD931yPj7/wv/+//iNffvnCr3/+yPOXLyy9eNahMt2A9poYhXyxbo2UdB8zai5aElSWJbJF0QR5W8ibxluJsk3Fkqswfk+niYeHmYe7kVwXHr98oamC8RJw4EaNwaPKRI6RbZVR7ZYqTStyRUw1OZFXBbVTDY4TD+9umQ8Tugnrb13OSBhGIZcLL88JE0bcMKNa4PyNv+h0e2LTpZsOkvB7tWEY5Z5woxSSpUq3rSU5YO2kjx35VTpKrDWkqFOKuEbWl4XlZWG9rGjdO6FeDm07vcJa0w+SoiemVSkgshQqKXXmoQUdBCWknbjHezOUUiuxZGJJbFkCMiRRTKYQ1llsLxboh7jfPB39MKm0pgKpNNZYaXpgPLzjvlmGwy3D6JnmQC2R5fLctXmarx//xvnxM3lbRTPe+b/7ubeptwbCipD9XoMGlOkFp9JXiU8rjRyleG22vbJ8+zSmNUWpilRkhNuURlvXtYCa3CcTTStSQf67yudWTRBH37Ir5T0N+HDgcErcXBb8MKGNY5pmjscj55dEK/sBvmvTO0SdKsVuLZHzeWVdxbltrDA8/TAQxolhnAku8PLUqGnrBYjm+WkllUiYFNPBMc0yBcpbQqncDZfSRn5ryGw0xB8gxIhhEDSRcbqjGPeJUONySTw/RVmbnWFQtict/bakMNbw4Yd3aFPxg2acvGgzdX9jm+hItxhZ4ybyIK8ZJ8c0ekoW82SKcl+WkoTGsvWR+nWitYIqDKPo/a0VGd4WN1LN3QDY36v+84rZVF+76NaIIZX+POzSjs4bYGd+t87r3FKj1EgqDWu1BJwk6XjuoSpvr8NkubsdiLXJ/XblVLdr4SihdXJftuvG2jp1SRO8YQiGwVu8lRCDWjpvtUrGnL4W+ACe0iYOs2eePFNwPI+D3GtUtnWhpsg4Bk7HI+/eveP29o4QRNN5Ot0wzTPWeUARY+6vhpEpQ6f6lC4HlP3QEELo0y7N49Nv48jh9wpPBbvQvRRxT9baNWnQEUiKYg05iyZBOp97y9VcR+upu6+1qgy+w4vZb+AiD1znfRojnUxrtJwGegSTKUWSGqyYUPb2smxglVY2trWQ4obSK0Zn0XaY3p3tSUjSjVNd9NqL5rKSykquG7Xl37wMrTUulxXfJMM6l13bqGlVi56vLLihMc5Guk9Gk2tlS5mYM7UWnNWEHk/onRcsipKCMZdCTJGYI7Vmtm1DG4V3DmUVwTmMdcIA3FbIVYC9VhFGJ87OfRwQe5u9JzSFYBmnkXGamE4z43EUXaBV1JJouV6LaWukkEulUEnfD452s4PaT/j0E6EUaJTSu5atF6J7QdmdkYquz6QLuaX4hO4KbQ3d6QeqH+Fak85GbRL7mXLB1J6r6+xV9bGniOQsov298JznI8fTDQrFtm2sMdG6/kgyLmQEWnPFOzm5ei8YHdV/rm27fPdohOGAHTzT7PGDuK5rcYQxMB0O1HwHNTMMA61pSmodD2OJSRPTwha14IGcxirFGjfq81fS1qTjdk6kJaGUREtqr8DC1jI1d9F/U+S8sKdHaa2YZoNSQXK3kyLFjaf0hefHJ2qTe38YJoz2YhDQE97fME33TId7psPtm9Npgxauz8IuWdivp+df+fz5/87zp8TTLxtlk03E+Ir1jdEofDAsl8r53BPHEjJNqYrlLA795/NG3GTc5W2lbBCCFyJEUeSqGIfAzc0dd3e33N4c+Pj5Vz7++hFlMscbyzRp/GgINqDbyHpRvFiJFCxLY0sNrfrUIWZaUnjXmOcjt7e3/PDjTxxPM2mLLJczaOmMDAePsZUtPRGC4vb0nszM5/Obbr6Cw82BaCv24iSPPheMMUzzzDRPhFFex23diGuikMlWtOBiiJMxdlwjOYlZwTrJhF7OC8vzynqOpE0QU0aJ7tIZi7tCnbth0IsWWHZOxXxqcu9Fkd+gK8ZZXJC1qHUH6h4CUvsYMpUskG+BZUqR6+VwVrsp8ltNjuqmRS3EckqDVEG7icPtzHC8pdQo69NgqDWxLc99Q68oJKJv7ZupLVz14YIn2UePrYdQ1GuxpG3no/YDpVYG3VRP6hECiXVC01C6RyOqPs3ThqYMuQn3tuxdnWshIM9+aV3y1fYQitcwiu8vg9KBcToxHV4wdsAYx3w4cHubuLykTo3p2CvTMXgWFIYUK9sWOZ8v/TDSGAbHdPAcTwcOpxu8H6BpclpYLwoa5AhPeeP5nDnc7Pp7jVKOUjM5A3RuKH3Mr3LvLIl8SRcpzq3TvUiXV2CHhbcK6xp5en7Be8c0T5RmSdl8FzNsreGnn9/LfecVIcgUjtaouXezmyCP3CaNIWsN42iZZk/Jhc30yOiSKCXKmHwr0hBTsi6VuqBNoVSJkpZ1TKYUpRWMM9ge7iJTJNWNzvqagOe0oPZqbdTccT6qH34w3aMioHz6QXGNmSVuIv3qhJeUiiQ4fdPxnCfHu/uRmGHLjVjEPCkEFCng6ptOaKuK/VRojcgoxtEyT54xSOFZSyXGRCk7kcR2UpDsv7YH88yTZxwcwVnmaSQ4i9WKp8dPrJdnpjFwd3vLH//4M+/ev8f7ocfxjhhjr11iudVVN1lJE2r36gDdoGXRVlIjjZEkwG+v3x+1Kxm1C/F012RWUiu09dJ1HhmtCyEYrAudLSUYJK1lEq86D1JrhbXS9RIYrmACvGtMo2KeFNNgcB1toBFwuh8aw9gYBoV1ipIlzUPGLb1rpioprWxxw5iE9x3obKwkNWR6Z0iKndo7jY0NVSwpL2xx7Q7R16u1xrJdaKahg8U4xTANhBzgRfA5OUtGeymKvGZiTrycN15eVkpK4qb0ARMM43Fgmmb53H3Uk3LvXiWBs2qjulvMcXWSN01ZNxH71vyac1sFhVOuYv+K6uPXYQrMc5CNb5qwwfds99bxOZGSMhrh5DWtUE00RzWZHUBwvSTByrH/au1jjZwytK0jlWQsUnsShtJavqbmTSEq8Wz7iF1rZAFScgBxzlzNQMWLkF50OIJESSmjlMV1Pl3tOpqua+6nVJEwjL2zkJNIF3xHytgO9o5xE4ensd3gJIWvEAJE/7Vt2zcPB9hQMH6jqjMxSSZ1ihnnA8f7D4yHCaMVIYwY7VFq1xRmHj//QqwGHRvEjPZgB4eyjcIqedNWEUbpwNbSk8GUbOKl0BmMtcef9YWxKTSi+WT01AzbWnv0rYD6tXY4OzANB07He6b5JNF4fYExxgpfS6ra68HiteX0rf6iQBMeIy2Kgzvrjj6SJalWWBbFusiG2GqPxOsHv1JFPW66Q8wYcE6jdGWNC8siHDnrPFtqXJaK+Rr58jny5VPGmoYuBqKhRU32oElsW+68P3HM7qxXOoibInKYp6dnfNAY13i5iBkD3XAHz+3dAz/9/DM+WNb1QpiO3L37B86r4t/+8u+/2VQEwozA6J3c+97L8+eco7XKum6scaOkIlxMJ2aFnOWZ2daNFFM/RBiclW7kuqzENQk3kJ3koK6boHNiNJM1QYoVolAmapbCzAWLtlIMWi9jMKUVOYkEI/foEqUtjf713e6Sp09ShOdJo0+y0tXI8bp30LPqZeSrncU7j7IDDketmUrG2D7aLIZWCvPhluPte56enjlfVtAebTfGk4Iiz2SOG9vyQo5rT7zZZTsi99Hd5CeIM0lsqbn0rn1PyWm183ctfpywYQRlacpi/YAfZlrTEqyRC74Knm/nDjctiC+txWyld0nQ713K9I034P3IMEyM08w0R46nyP2DBFycnx+ppRLcJJgxLd3cuOXO8JRDsKzzCmMrt/cTP/78nnWJfPn8lVIWIFOKIUWFslbGsDrgzIhWnlZF71hykfdGOWpbSTlTkS61U0r0sFb2l1SlYE9UarUo7dHK4kNgnkWfHsbAfJiISbNsrTNjXy9jDA/vH0glkkqkUFijHAZKylht8M4yjgcOx4OYb6tQcnIRvq51Clc0uWiJeKSgDBIc2gtDjeCTVN9vxEjUp1t6z3GvV1A8veh0O3jeCFVF9yCT2o2Ppe7ucznAOe8wxoEyV4e4UEvAe3HSl1ReE/veXME5jtNAzBByk6hMVdBootLY+hoa0hpIAk1D1Yp3mnl2HA+B03EQY5nqz/C6yUSjSKfXB9/vU66TvRwjT9fOrZVQBqfFuKjh5jTx7t0979/f8fDuDusEaYaWAlOmOOK9kRpT1unSnGiqS72+ntbuB0Hdn4P/EY2nNmjlUUjCwd4Or63RchL3m+68Oys3Kv3sZwxYJxFWuspGU4sYffwgY9aaNa2ITsQaGIJiCJohGGzX1mkazVaGCaZJUom0VixFUin2v1QHceccSTGCq7SeVqQQGLl05FrXyMkNJKFuO09RnOHfFZ401u0CtuGqw1gtoyxn2PFBpRZMUZSi2VLkfHnh8fnMy8uC1orgLR4rI3dvcKPkJ+c9daO2qy7CdHSKDx4fPCAn7pqk4FovC7WWDtiXaLuSJamllCzaDyNjER8sYQyM88AwDdJdzRlKpdETKVLC6oBVDYVE4bV+vA/fiDONcYQwIq1IKTD3DTPFKJ1P6E5IGWPvBeQ1k70fXhT7RqZ64SkjDe+MAIatQyk5TcaYYI0ySmvyOsiJSl+xLaoHFtTaXksktT8ArmeAq6u+1/UTedoilSLdxO7Hz1nwNinJx7ou3z0ww1TAbpT6yBpXtkulFY/RM8N0i7m5wTuP9xPejTgrxcVyuZCa5vkSMZcFtS5oXzFBo/RGI6MsWCVmANVTMWoVvW5MlZqE7dZ6h0iKlIYMZ4Qu4ZWFg0XrQj2Ly7TW7mj2I/N84uZ0xzDNhGHEOdcXhnZlRqq90Px9lxmAcFDDkbaeiWOixcq2NZHZ9N8j2BLYoqL0GF6jZJFuXWrhrSTitCZmwDBIwskaV3KJffIiLtfHpwvLEvn86cLLU5ZsaWNQ1VKTIvqK1pF1lRFx3MRRvnfGrDGSFtILkctF8fhY0TaxbI5mM9Np5ubuD/zwT3/kn/7l/8I8HVjXMy5MnG5+4NPnC/DvbxcKSu+oGSsoIj8EhnFkHCeA3rVKAv3OlcHI684ArCvrsl5H2loJEiZpKSbTFkldiqC0FI/XCFJNL/KsxN/VDrIu5QpS34sxbTXGmR4BKbq1S629QC1dKqWoWhoO1rorON50lFJOmW2L0gDI9UpPeHvJZrfrC6WZoJzH4GlNED+QgQJN/ATeH5iP9xxvnoVD6SbSHHHWoZsibgvLyxNVVeEMt54LrfciXF8LdmtlSlSzjGdrZ9xK9ntnfjrPfLxhvrlD2wG0B23xYcK4IOEPVeRhruuDrO3xpv3DGHU9rH6vZod9g9em4vzIdDhxc3PXw1Zax6wpclpIW2YYBTNUWyZGCSgpHUSutcTltpbRpnE4Bt7/cMuXz1/58jWBkg59rRK+4YyRQAoTMCZAtRLIkQX8FbylOli3hVILuglmyFiJlRZQf6XkKmk8Xd9orcc7izWOcRxorRBGGZ1fliZxj98UW8YYjrcnlvVCfM7iZI8Cgi+pMHiPmgSNdDwOlCo/vxh7NiGQGKFWlGqJUfwITgltBgRFplQ3LZnW15Ndw/h6aJLDcO17herOfNOTDWUMr5ocZJoSYL2YEAu751Vp3UNDDBU5/Ftj8F66it4aodCoflB7c3lnmAaPz4qYG0ZldKecaKVFSsKeVAdUjaqgWmXwhtMpcHsauTmN+I5zjFvCad1TlUo/0Hq8t1gnCUIxZaCxrRtbDyUw/fCklCUMA/Nh5nQ8cDzMHA7C5lQ9tbJ0NOD+TOfShKZiRFetjSX3wnR/NnQH+bZ+MPz2+q7wNEby03fdn+qjdyku93az4JOM7Z+09VxyJF3EaMD1jSRovINpFtF3ippaDOvFUGIjLooUJP5PUa+bEH2EoVDCgqpNhNhZk3L/4XOUF3LbWZEOqmTRlqzISfQ7krjTeV3W4fyAVh6tJhTu2gF8e7XWWPMzddto54hJiqozl+2JmC6kLAiKnBVxg5gzW+yuvh4vUqt0OvYO5/mySBFfC7HrVmRBqd2xLWPIFOVGqaWRY+HycuFylmJ2HHuW+N457l1l1YHOEsVXyTWRcsREgZBvW6SxpxcVVBN3XKGRoxiSSi5QFO9r/c2NMQ4j1n+4Fm+Xy5nz+SIu29o3TEAZMWKZvWtZyjUNgtbNX/0Eb3dEUAfST+PM8SROPNC8vJyJ8RGBJKve6ZNube2n4lrrNYd357BJYZz49OkzyyKie2GlGrz3DMOAAmJHxIxDwDpLzpFcpMsp8bAig3h7KQV39xNFXfj6+Mz5+SNPXyM1eYK7w7sJ7y3JBlZTMHoTNmfJxLiwvKzSoTUWbT3oJMV679qKpqhC66doK5ubSQoToV0KKpaeFiIoEckSTrQmzn1F6+lMsI9IddAE7xlGzxCEXWu9FDj7Pbquq3R4vcfZrpWTT7H/7TfX4XjHH376v/Jx/hNW/xuf9DOlbqiirhSM0jS+78m6VYqCYRCdkrIyormsiXXLchDtSDYXwATLcIBxKX2yceHlvIpL9byKwWtweG+7EUw6IcYotGr4oGVM2ioxigZKDj0aZRqD15xuJt5/uOGHn+443o00U5lPN/z0x3/lD3/8X/jx5/+VaTqRS8YYhw8za/p1bwq/3hf7yFUJB9P00ALJFa+kLVGiYDwMEl6gNLTSSFo6ErvOsqnOKtZCvtgTsEA2pdKyHBAzqKypTVJkrutk72q1JvnZRsmzGLOsBylFGS8aA6WIwUM1UslsaWMtq2wWSqYvxlk0htYzu1XVDGFk9GN/Vn+7ZpaSrx+tu3wV4gPYXclSdJa+vikUA2G45fYho91IXC/EbROt7rJQnoBtQTkniXA0qOYN4o+u8y6ookUz2xRv/6JLfmynC9zc3XP/4Q+E6QbrZ5QWNuPN8Zab0y3TODF4B9qKrtw1UnUsweKdZg+1oK9tv3/JuHEIEz98+JGcNk6nI6fjZ+bxK0bB+eUrz/UF9UbetneShR9pUapSW8Q6KZT2A/84Dvz00w8YDDU3lnMk54hr0pnMqXA+ryJraB5jYZ5DX4MV1gcaUkj7YJkmhw8BZwZaTdSyUqv8rAon+3ZvPkmCVJJnqxXOl8rzS8GryPwbgLzoIGPcuFwuvJwvollNRXi7Y+6JhNK0onclaZ1go8T34bwBHDkHKdCqjM1TlAaQUlJ7iI/BkpN4OHJqHbHo8F4D5eo+3+uW1hI5504RkAJc0gylI1+R+M6ybcScMWYTbXSVqavR0kG2VhNGCTOwXRb49jLa4I3DCGKZndTirO70Aznsyz4pz5pUXRB6x3OeHEMQA3cpqgM2FNZKAtQut9nXxnWLbOfI49MzHz9+5vPXJy6XleAdg7eoGnGmSdd5uHBz2ZhjxrgBZ6SLbLrxydaGa5ZUKjGL0bAh8gzXjd+yh+1SSkEY/t7z8TuFp+CDrHWdMVcwDYmUbH18YEV8bCwYKx2ttMk/jeoOXNt6G1zjg2IcuzZyUcSlohH927bAFhrbICc2rXZnnOCVpBEp3ZGcDDk6tk2xboW4ZTH5lB06buVHagKvL4VeeIKt9I6Xx7kRrQ4odUSVE2T7Oy9OI5YzJV1IlxdUhKIyz+evXLZntrSQUqQ2TVOVVDIlt+sNphADwbZsbMvKumwydurdpbgl0V11zI/vnLASK95baS72keA+bnNeNgD2pKud0bcfFIzqEZmdiVYSOmmWZeNyWfvD3N8jrUElqJW4ZNJWqKlCUbSp/caoGcLIcbjBe0n0+fr4FaV0L9LSm+9BIiRF91FpiHZVywoin7trOmWE4gidmTbNMhr3PgCqYy7kj1mnUUXGy1LMvjElKemGOyuaOJR0d79+/crT05MUudZyOp0Yx7FzPMXAYrVmGAK0JikNmxRfQmLY+6dvthGluLk7kGrl8SmyrqKfTItlcAvBHXAuYFSA1hl3BWpNXYS+EJO8D2Lq6NDknh+sjEYjMo5KQTvR7tlgsBFq7SYJJaPQcRhRRrGtgu+RIkWCHpocn6/dXu+6fswUWmfQGqv7mHflfD4ThhfaNKKGIDqda1H0fUfnMN/xL//yD0IFUGfpzKZEitKNKg1y0zImc6Bp5A3GQTOOokOUAktu5KSFi2hsJQyaOVhK1VyWTIyQ88JyKZxfJDo2jIZpNgyTiP5lHCl6RKUb3utO5KCf2DsJwEks3Dx77u4P/PjTO/7pX/7A/YcbMJrpeMcPP/0rDx/+Z+4f/okw3sB1RKUYviZe5QdyXbsbVQrFmsu12Mwps54XtiVSU+2/77Vwba/LWzddinyoNXq6UOuuc5nyFGSjJTd00uQi3NZaOkkji+lGvieDxohGepPCszaBh4cwiG5TG5oSPFPaItsa+6HHYY2HoLuuTwgiSglOxjvX5TdvV0yJeZU87Yw2Mi6mJEo/cNZWUOyIJijFoPRAGG+4047pcEOMC+vlmccvn+X5UEq6S1pdC09VJQhD9Rew9MN9zSLT2uUiuyFSdVG4yBMC8+HE/cMPnO5+YJzvOtbHMLiBMYyMYRKtvRG9mnONWCyhh1kIR/i/U3j2trRWmhAG3r//EWdND4u4YRp/peTEL7/8WXTFPWij9s73HidtjO7j9yj6XSvYnvP5wvFw4ocPP1Ji4/K8SBe6rWgjk6CYCpwTYQTrCs4awmBF99o0wY5o46+dqhAkuldG842cNbXK2mGUoyRh3y7LCqpKQ2DLLFvkfBYt92n8dnJYSXElxoVtW1mXpTdjwGndDcmRuDUuJkmR27X7oo2X5pbtB6hQfJeMyahfJnlSeIokzKOVIW6VXPb3QTqm8nukS9hq7EitBmSR/FiLs0rCDLqzaI9DFu1mpMYmHVJtZG+ymmYlZWsvtoz1khn/zS2he2iBaRLRLuzcQvBGUruuplehHqgqgT1WKZzrGDkvJmzhZSpsl0kYa7GpdH24vrKvY8rXYJQvj098+fLE5bJIZLQzWF0JrscFa818vGGYZlCGCXleTJfO7R1UWysq5a6X7glIqD6JqJ0l3fdMZAry7fVd4WntgPIO76XdqnW86oVqt8fvBYHuyTTQ+oPYu0+d3WgdWKfwQbocrcpCMU6aaTbEWMlJ0miUfk092mPEUqnkqglBTgbbpllXSXRZ1o2SV1DxCpB2fscDaZyVmyV3nY+SigxNwJobBv8jwf6M4QRtIl7+CvwWGK5spGqp7rdt42V94fn8xNP5mWVZiDHJ+Cr7bnqS0VS1lZYrLTdylA5E0pXVSLSXpOSUPm6QTaaYQnKFdE5yytX7GEfcsFZ3R2mTkYmw3yQWbi/sjJN2uPOWMEgKi7Y9K9nJ6MwoJck2pUixkgs0YX85b7HKoctv7xQZdQS8DzhnCX7F+4CkU4XXLfiNHqS13MeG8n3BXjQWau8gOeMxWqQaOTcul42c5PDTqpLRTu/ylFq7gNmgsFcXbk6RnBNag23myhXdIwJ3fugV2l8LQwhMxyPBCZ4nbiulZLx314QK7z2Pj1/4+uXjb16L4EYMhTEcCC5gVGYrZ5ac2C5fUcrRiqMkK133LLGApa0oJXrDUjZUjpSaKDHBYHBuJvgRaz3LsrLGlbQmrIPjNBCcpqUzlI2YNTSHVgGjNdUpQA4+JSlibNIJ6AYMqGy5wBpRz5GmNt4Fy014jzWGlDJfvnxli5nb2xN3NycO8wE7CP/v9ybufph5+PBPNL1Q+QqIXOT8fGFbI6l11mHR1ARON+JFRPJa98KjVZxtjKO6xq8ak686V2XAj1YoAItEeXon+BmtNMPQ8FPpGlpxheZMlyhowPZgBYkzNUYRguUwW25vJ+4eTty9f+CHP/4rP/3DPzLMR8bDDdPhnnG6x/ipt6E7XuX68XaRgD2SdV0lKWx5WXsHUuQh2yLZ5qnrOy9uEaNlj6bLtXVTSy+YruldfYxsBQWEkknGbvippRLXxHpeqbXJ+F7JIUybvRNc5UCwZLYoQHFrJQ7ZO3c1U4hZR7ptQqCoVDK5JUxzfeOxNCvd3Nrdtr+5+oGn5N2IkHFLApvlgL6/ZEo2VEG/WEKwOD9Q5yMxnnn6+pHL+YnzyzOPXz5yfvnKup4pNV85nbvJSO/7kWxAgDBm1S5L7ik0uk/ncmsC8i8Nox3zeMPd3Y9XZqpENhuc9tjOUNWqYVWjdCfwrkNsPXXr7ylS5Jc11kgnNXjH7c0N97d3TOORdV34T//x/42YczvI3CoZ5aKvUxCJk5WGhDMDcW18/bIQ/InDdGAajxwOM8Y0UrEiI0MmOLporJVJTE7S8EhbwljF/cOEHzQxCkUgbg1IlFQ5XwTpZq3GuRGlNDE2zueV8/mFafZM8yQpWmuk9k7zd3q+1sjpAjXineJ0GDjMA95aBu8Eu6ilICwlyjrSR99i9NxJNO3V59OauNyj7CeqszuNkRojlcqyyL42TgOmN0NizFzKBkqg76L2adc1TmJ+Cy1JwpTqhBjb1cQUmUwE7/DGQpVDlKqFtK18LRsvZ9HAej9w+PGn68QBZEwv+ECRCxhn8M11z0kPWNGSWKaU7lIBiaA1BozuaW1vwia07t1RA8b1rr4RI6CMxq38e/fPlFpZt0RSgqvTZKwuLMsL63JBKUWMkZvbW47HA+M0Ms8Th8OB4B3KWkxrKGcw2eKCNBpkUi0kpNo/5OCnO1/4t9d3hefgZ9x8ZF3ObOlMSS+UvJK780p4nMiplY7L2UXeSvfEIMnY9l4xjMLdM0bG38bWDq8Wnd62wboCNKxvGFM6DB6BytoGWKxVxAjbVrksG5dlRZFwvkoxNAgWyFjdDzmSoiQ3tLjc5GEOWHNk8D9yHP8Fp29RauDpUwL+7fV5odHUSmmJlCIv6wtfnh85L+eOfojELaKzJdfck2WkuFVIRF3LlZoaJTZyyyhd5MTT2/StgCrixMqpULZCWZOMVKyRnHVn+olUBNC1NGpJUrhmgfhro0TfaWUDd94xDEG0gspgbU/uUBarDCUnck3kKg+YN55gBwbrccqjX/SrUA/pnljjsUbiJr0fmKcjSr2yO2t3vcVUSKTr64BHYLsg3emUyEnMSsZI3GStjZwry2Uju4ZznlJEU4RuFHTX1Da0ktSdVsU4c6nS2a2tp1kMA+N0ELdukQx5Ocxktm1FK/l+zDyLy7V3TndTlA+eIQR88MTte41nyYJBMnrv+lRQF1JcKdlQsyFtmrh2uHmqlBqpLYr0xNuugZEReSpJRNxtwPt7huFAzs9c1kfW+ILeMqMPEpFpiozQmxgzctKAoRXLNYY1NVKUmEZxLO8LwUrJmtJWSts4HG8B4U5elotAls9noDJ4xzgMXWYDryv+6+XcyM3dH8CsoM9ihMqNzx8/8vSYMT0jWFUtiUfFYJWiFdU1vzuMvPaudacl6J0Jt4PCu1EkNdSgGQfRTKMaxjS0kRjBmuVnLol+7wmoXw4/GmsbtuufD8eJm9sD83FgOsyc7j7w8MO/cvvwI+PhJJMTZdkTdOharu974K9XrX0z7Ia0VhopZVJMpCjwapkCdELEHu+nRR6jrO6bnxgLWke8aSebiLPS2U1ZKBjS9WnENXExCzlXXChyePLu2kFNMbOtkbgmUteDUzRZJUzTaKevUqDahBOozStCp7bS13WFskY68rnIa/0ttBF6F1Pcuk1lti1LnCy1a+Rk4rIf1I3WKOPQegCVcFazvDzRaiOuC8v5meXyQtwWKTzZTXX9C+66O6XQPXqwtCqbnpHXmmbRTqOdk/upaRQGoxyjHzlNJ1yQSQitiFxFrCv93hStZ+1kFymhX4tO9fcqz34ZbSQlbQi004nD4YBSho8ff2GaB4zrxJj+HKgOwKd3VWsTvJDIkzw5KZ4eF46HxO3JCMnDB3yoKGNZ49o10tL8CUEMJ+uycX7OrEvEB83d/RFrHLHJobUpQZ9dXiLrKmNq1zvfJQtTdlslM12pwBBCHwtnnBsIYe4Tqzf3Q2uUtEJLeKsIVjS20zhw6DrRlFZS3kg59XpCzMB7k4amrrzI3cgq3GwxX2mzU1c0tUCMAvs3Wos/wXs5EFUNqsg9aDX6KgqS97O2/hwkaZJYvyfzyLjfKNflWQPBWlqKQohpIqeJl0RTDecDIUz884fWJU/9VlVigmv9frFdoyxHuF4Aa93lZ2Jy2htLO/mh7WPsrqFU/b7Hqi6R6WZuJ7puF9wr1s17UEIbyq2RAEpEkViXRk4b4yD86fPLC4fjgdPNifuHe/wQCHrEuJ4VbzTKVuyul1WmS0Vq1wTvxjzVPSu/vb4rPE/H99y9/yPei4bs+fkvXM4f2VigSmpGrQK2bl1xW6uiFiMPim5YJ6P1cZJuhjKaWrVEjq2NLSLoClRns/XxuqoYp3Cebs7pm4uuaF16e1lGuEpn0aYMGj8qnJe3r5TCZRHnlTMV48EhDi1jBOZr7Yh3R7y7x5l7tBow9t9/8zo0GpftmVg3LmllTcIDq1pJnqwF2zSyeUdKzRBfGaWqSxw04uC+rpbduWaNwQ8GZz2KPi7NkrWrdcMHAZQ7b0HLCKu1yhJXapZOijj8+0NhVT89SmEVvL92/rQSY0eLcqpzZuji4Y1cq/y38tRc2XLC0ni7lGqtscbRqqIkmIYjh+nEOA6yEObMum08Pj3z/HJmUxveFXH5WZEdlJpk4YobMRrRwhnTF1rZQfLeskLJiNFojPb9pm7YprA29Kg2MTmlLKk/zg1M84l3H37k9vaekmV8vi5ntu3Cui4sywuPyvDVf+bzp08ySmuvnZ4weA76QM6R8px5enz6bhH905/+T5peWZcnMZe5ig0ibZDuv6HEypKiBAlUGasMdkdd7afrznvtbMcaLVYfmMZ7cvIsF8XjWQ5YdduYhyoxjFGRkugXU5Lc8FykY1tyg2bFTY9DqywHjBxRqnZUS0EreHr8wqdff+GyVfx0IUwzh8OJmm8lwUpaC/wu4xYwZiAMP3Hq5IvlSfH8aeHl+ULlsY9mkcNXlk3VOuk4ldy7al3+o5t0DWuFnKBeBLCMatQkI/q4VYxrjAfFMIELchC9nBPnl8rLS6EmYfRZ23BWNhOlIASHdxKNaKzDuICyllwTa3xhWaSwQRmMGXtxKRqv147vq1rwm4VC2Je9G6d7RxDTQxFyJaOlM9IXYgwoq9Cuj8isuXY490PQrvVzzktUXwhYY9i2jWVdiHHrBqpMqwvrEmXaYcV567zvG7HkM6euA3ZOjAfOub6pGlrrWm0axlmGcWA6TMIS1a0bekT/3WojxyQHyNPNd8/Hru/MOYPpe0UV/nBvV13NUfuhRn5ZkHhxWVG1MVjHNAyM48ByUV0nLpOwhpAQvN7Tz6SIRSmBc5csHbIukTBKdYTUwPF4y+3tO07zDZMPWBrkVRJpjEE1kTWYNyN6rTXeaoz1jMaJeUerziP+/YnA75WiXY3fu7wj83zg5ubIzc0RiuGVNS3UGNWLr/1DKwfVcdk21mXj8fGZ4D/x/PxESivjXJlPnlsz0EA06rpxujnirGCw1gu8PBeMzUzT0g+p4ti2wVNy4vHrhZwq4xRwxlOLYtsil8tCo3E8zszzhLMDrXk4TEzTA/PhHS3fUN9G6/Z7opZMq5LApKlYTafYWJw3pGSvdJlSCjmnzlYepRGRC1rJ92F6kptz8rlBDECZ1g3NUpcZ3WglkbZGroqYoOAwfsBPDm8FSZTiwnp5IcZV1lQlz0JOhVKihMLUijVBCmw/EZynqEXCKkqSxkhPFtK6Ue33hzKl5fB2/W/1SqmgF41yG0uhua89uo/8lZJ0tIbd1T9cZUD0yYwoA9jTH8PgOZwmDseZaR67ObpjmxC6iG6ZwTkG75gHTzCa9XIWk1vJKGuYb06EeZbnSk5IXAVAVYxlrdM9rgdB1ZuR/yOu9nm64d3DH7tbUktHom20UihZNIFVlx3q3/Nj9nOD6p0IhbVVste97DApa1otbLGwRUil/9k3i5AxDRcazmqcESeh6ae+VoU1po1wAoMyslgMEELB2EpJipwVy6XjFKae42zlBt9PCEobtPYYM2LMhNETEhP69oGpPJ8f2crKJW1yUxuFtgaDRRlw3vRosdK1Vn1hEdWt7Nldp0OPV6t171KKpmaaRgEoXxrbKq5Daw3D7ESo7OQk0aJodnISDdWuDdVv8rYF76G6HlfgyaXW7tKElhUtK8FDWU02jaqzQHibJjcZwX8r6ZPOhOlaL8XhcOB4kOQfH4LIEF7OgvNIyNdulXkecN5SayKmTRIa2DeE/j4YwcbQOjmhF6A78kJ0hrsrUcY+3g0opUk5s22lp9QIVPlwPHFze0dJjWVZRcO4LX2zXtFoLsZyfjnLRl8Lpr8Xc5kEF1EKy3JmW9bv7om//e3/pOoN2oUtXsAIxFxXMdehFMomlF1RtaKr7hpLQ/AK53esR8eBNemIx1U+0iC6t9YsaYPlpWBbJAc56ZbSKLn1EX6i1ExtW8cTNZwdGAfHngEshpOC2OH3yFnN+fzIly+/suTCsEVuteJ0cxJhuheBfJ9F/e4uqrTH+7s+Ulacjl84HP/MMHzEukApsUORK63sLFcoQti4GhNVn26UJGa5XKVzSkY6tj1CNMfKMMN4kNdwmgFVOT9LROzlUilJo1pjGGQtMUa6a87ZvkrLyK01MR2Vlsl1IcYntu2Z0jvn9Htt3xDg9SX4ve5W1YDR2OBlaqMMrfRDeRFagrBqxZWuvADcrbe9EPS9gDK9mygYqZyz4F6CwwePcxIakbIgxlpPSWs1wyaFitGSPON815lpI10SZGzoveuFpxUdr9Eo04MVjMZqRZgC03GkKSWmiiL3a0WK4tQzwMt3AQu9MdBlFKovJNeXUSNjVdO7MloOZTvdojQZWzqtOvtYimRtlOwBfTNrSnegtsXusbm9iyztsK4x3zufyuC8ALHv7h748cef+fHDB97d3XKYAsE0RiuHQ/nrNY5XdQmJtxadPKNzhI4rEgnHW/vSN89I2+W7/e99D1B0wsR04HA4cDhM5ChHG2M7ySKJxt17xTgFpnFG4ynZkB+fOC8XzucXvljFcn5ii2fGo2McHfPxgPcDy7aRcib4gEiUPDRPihfWNfP1y0IpBa0FBaSVZl0aT48Jow13dwfG0aN1pTU56HhvuDkNzIcDwzAxDAM3p4H7hz/w8PAzv/x14eMvr/xjee7FEGWrSGRMn2aYHl5imjRIctkjN3edBFfTbdaK2srVdQ8KazJblLXP2N7xbNC0GJuNAmomt0rKilQMFYt2A36YmMfAFBzb5ZnWi+OcomjaW+1TA3n/RLVh8NZjjTSyms2omhHnne6s43aV3nx3abnh5b7oFWJP4doDDZTapRtSQEi9Qv89+wGr31x7cXrFrO2JS60fisApyzgNTPPA0OuJpmSyoXpTyhrLNA6cDjPHaWRwlseXF+K6gNEM88QaE7EI2FbzmkC5TzslkppuulPXaej1e/rm+q7w1Mrg7MBxvkeRqeVCyQspJWJa+htc0RZQlVgKOcsX2scEuQhzTyGdDu/FXamVnEhyaeTU+ubbM9ld60YE0XF5axEEVZPFtVUamhAs2nhqtRib0SZhzdY7Rzv9v6MznMIZRVXCw2oqk8tGShdSuVDqitV7e/+3y0atlc9fPpNJNCPfpDLC/PLe9dZ3Y902zudLH6UJDkXrvoGkfP2srcobhJGnsVnAKcygxTRkPWYUCYO1hmEasD3/uaR2PfFLFqtF+a59aVIQ1dIoGmpWrGsGLoBoLiQb3OCEoknNjdwSS9nYasJpRNtZu0v026s/gFoJZmWeDpxubjBatJa1c72c9XgnhaicWiuo0jEvggWSelKKyYbB2MA4jmjd3ZpZDGOl9dx2pVBGEqOM8RgT0Fr0puMguC5tHMI9N6zrxvPzU48/3Hh5eeF8PrOuK7TKNE0MYcRZTy2FdTtTaiEXzWVZBKHRx/K1/HZjba3xdP4rqZ7JaRF+XkvCwHOyHlSlEGnIREmNlpV0NEsjN+n+iBkCWuuTgFIp6cK2/Zm//fJZtHV1Q5mF+dgIvqJUYlujjLpS7sJ6uhEqU5Fo1mJBI4kjtcivieFQyBCmn3RTWdnSV1Q0uClwOA78/PMPvH//wOl4lLFMv3lVa9/dFbLcWZRyaO1xfmKcThxvHrhbF16ev7JcXsgUcpN7oaJwweO1wTlpdabYWBeR0MjmIMY2Z/pX1KLRjamhNsW2aoaoOtGg4VwjBEXwiq0KlHpPXglBOlW1GUrRwkZMhcuSGdaRe3dinAzWLaC+kPMXcjpg7VHWsv1g/Lv9q+sLwTiPRPdap1N7Wo6WAjeX1EfCCuMtZvRY77DeEnwghNBHik10oktGV9UjQSs5RxYk3WVbReaTi6BMpKNgrqYMmoz5SypobSRbOTj2IAfd9XDaSpyntYYCDHtXlIbpYzptDUbZzisWI2SxDeUcbhC0ym9eCqWk49rZiG3n9RotWksjRBRnJT7QGfPaPaSSQ2PzlUcWlrNCtUTJG1d0GMJG1DgpDpVMuOT1FW2ktjIe1X2S0brG2TrDNI389OMP/If/8K/8wz/8T/zw4x8ZwoR10tlzxvX6WNy59KJSKyOavuQZnHTKBM3Vp0n/vY7n/uz0gqFV0NozjAem6XjVyre+jnhnKVXy60VeVFFqYBgcxgRq0mzZsWYLauO8JJbliRhfyHmitQFrAkOYyVmT4spykSbFEGZub51E9F4S67peo123qHl+Xnl5TpxfErc3B+5uf+B446ntAjRSToQgNIh5OjENtxwOP3Bz+pn3H/6Bd+9/5P+Z/iMff/kv19fBaMPt7d31MFWraBmdC2hjrzSOdc1cLpK+NwyDdPmH0IvWIh131UQqwwQYSq6cLy/knAhBTKopSmhNjBmqTEsr8uzpptAto1SUQA0aylSMy7jQSKmhUw9CMQofHC7YblKWKY/RhlIzWyzUmmhaJnPeeEY7AnSE3/cxkSiJun3b8lddQ8716NKuz+r1z/TfLlG5r/eb2icG++FH0Tul+w3Yuk61s3V7qplWoIzCGYs3nikYfrg/8uH+yHGecEaqgNb5sWJ2FYb0ljKqyHtYr3I2+dZ3trC42uXXdQ+R+fb6HYC8JASN4YhWlS0+s24vXJYnYn5EK0GWGCs/tE2QYiMZMcloK2PSFCvRQMmKZrv4V/fEgP4N2v5QOv9qRDLXZADbXz0xqgiFX6rzUY2AAzYpuqq4aPeOrjJdK4OmNhlLNmTcU8pGrouMJ+tKbQkt2Wu/fSFa47JcaLrgx0FOabt7zAtuQU4kup9OZbxjehcvRQEsV4W4MhVdIN3TD5xGOcBWlKtYZVBOdi+jNcpyjaQqOYtrtQmuRSLmnMDwsxSXrVaoUshsa+4nELkjnO+LJQqnurO8JlrL1J6H/PbU9O0l7j/pjOq2dz5k1JtSYt021nUjl3xdcUuV/OVcZNEQp2slF4VSrgvIAz5MDOMBbbREoa0rMQksuUq/AdV1neDYY1kVMi4cx4M4HMtGKZXz5Sx9l6KJm+QNL+vau0eGYRyZxwNWW2Lc2OJCrcJ6lDGPfKQcUQ0MbxeQRsqPrOmZy7lHWvqe6mLlXFeaEsiytdSsKFmROoFBALxiKqlN2JYlK2outLLy9LxKsMKoCSP4oTBbcWHX3Dq6JJOLkBxy0f0w0vot23q3JPY0nNxHPxqUE+OCkxSlSiblFwZ1wAe4vZ358OGB29tbxlGYrTum8ffLrt4NUg5rRqbpgbuHf6RWjfczj1//yvPTR9bLhfWyorSM+7VyPaY19YVf1HI+ifymJaDjVZRCDFOloWKlVM26QFgaYZTvKowwZ0kyW5wUsuMA49gIQQqcUmTMlrLwLXONpFJResaYQmlPxPSJGD+T8x1WT69tuG9+5t97HQ7HA6oGGSvmQomZzWzkWjA5obOgVoyV7qWbghSezhJC6PFyoh+WQ48gbJoWHVLOSbTFVXWXarq6UK1zBO+u/ERx9stExXrLMA/4sUOUoWuZe/ezG+m0cz1WUyRDwxgYxgHrnVAT+jMunFt1bYJ/m9W+R2ZaI6Ph1otKQVgZ0aGbKkVn16ML6HzvLHpUC1y87elHUjA4J5p1akO1ihKOHLXEHoiRRHfdwGkxmorLVmauSonL93icubk5cXd7w93tibubAyGMWOMEQP5G17lLTFTbC09Dtfa16NS9z/mmK/53ryafU3VKrtYQPMzzkZvTLfM8E7dHGgXjFKqCNlJ4onbSgwDDYxN5jw+NRqap2ovH0hE9unfkBkqOXM6S4KWV4TANnE4z5/MMesO6RCNfJS7rUqVIrYZxPPBw/4HDybKsn6g1UmpkGC03t0dOhwdOhx95uP9nPrz/Fx4efuL27h3/5T//+psfXWvNYTpRekMh9+aDd9I5vMafNkOrosP1TlBdtpNKtJYOoW3yPjoLxohuU6aOkWGQAn5bJUBComsL1Cq1QVHoKppzaeIsfVrpKHUFtYFKqB6hbbQmeMswjqCkjkA5aN2f0aQOAovrOnLvHLXB5bx20ME394WIua8zFL1PYPeeudq7nPs/+6foXUT5J9cidC8ye/15/f3qzZRKKXHeD6PjcJw4HEYO8wCl4a1lGhynOXB3M3M89hCD/mdcRx5aJ+YkZbqpsPZu8N5MQ6RSMunepSLXdv/vrKO/U3iKuF2B8lgrmrOb0xPr9pGmvtBaQeuC85ILOiRDTBCjOJNrLV2gXbrDWvfOnXQ9B+9oBxkhpChjQ+dkxG6sVP/bZliL6OFCkFg475vgJExHF/R4t1IVOUtKzl642uCvIFOj6QWWvJlNCUeukZBUiyxOxe/ny4K4cbobdbyI6625YmYqDUkZ8YihqLKnfCglZ5ecW4fQCjfTWIPbTx9WkWui9Ui0q16iZM5L1ynV/X6UBdBocTy2nu+ac4+0M+Jap2lybtdCyweHD074iRVcH3/aKtDd0BS6WFQxYvwo3xeeKWVelgWjDZtNlNZ4fjkLYDjnrrWUsW9MUdBStZLXrb+U4sDdonT5rAtYN3KYj4I4Cl5clbVKfm2F1h2vos0NUuhGwYpoVahFEULpkGVNiYUcI9ogKKZmyVG0p7nIvSin6IEQPDSFSoorlgm6ccp1/aWlJCki3l7DaKhacTnLeEE1C9bgnEIZGWFU5LDRtBgc7GAxPvSoQ4hb7jq5Lq+oFVqhNOn2oRrWa44nyzxJmkZODVQGbTp3FCge8fVKtGHJSZAstXfa+yjF+4ANwnYTA57ErlYiw6i5fzhxd3/keJx75J3uZaWcVX+HhrGf1zF6YAj3vHv/vzLP7/jw4Vdenn7h6fEvPD7+hc+ffuHL5488fn7i+fFCSo2UkshFmoxdh4Mgo+asBIGiqmTTV1lXjGugxay1rhHzJLi3cdbMh8IwVA6nxrZC2iRK0jsjnMAiDFioBC9rQBgq1kVyXbksz3x5/JVwPHC8+wOH/CPNdd0Y7bpJ/L1LAff3d4xKstqXZWGplRYbVTea1ejBoZuMy/dFXAyEIjNR6Kt+UfV1siIYo9q1U6VryFIplCbFo/OW6TAKzBv5PTlJd3WcRqbDzHxzwA+Bq4mhS8+0FvrFEAKoxrEkSQgq0j0axxEXBKn3cnnh+eVZXPG59I331RD29rUwSnd6hqapzpG9jgHlZ6xVNLw5wdb1eJpGzYm4ZZZcSWiUHwmHE7MCPw6o2mgpEteFtF76VOW187tLI1r/GiX36dEwcjqduL25pZbCr3/7qzxTMfHu3Qfubh/E9Nm73EpxNXdRe7SikoJxn3T1zVImad/vq7wqOnuDi9eCXUvsDofDkT/+wz/y5etH1mVjXc/s0dFhUNQq00AfND5o4rbxcnlmWZ+p9czQYyU5HWh1ZBpHSUwzA61anh5X/vaXL+SaJMzEOQ7zzIcfD9zcK1AXKhs5SVSvWpEi/27g/fsHHt7dEcZK5YmYHQdm5sPA3d09P7z/R354/z9zd/tP3Jz+wDge8W7sTaO3N4XC2V1K4rp2ucl0zAcJAem6PWcdfQjdEWgS1TuOnlLlwGW7+dgYOZl6b66IMGiEIMbbksXoUsurDyA3TcWxbpHzspDihadcqTmSkyQrVXpkrZWEL+ss3geM66E67MEoVWRzSu4x06HnMWZyQaKNv1srxNBGz3xXuw5y///XwrIfVK5FJlcO+a773Mfw1///pkv6WoDSDy6Km5sjf/j5B85PF+qWiGtE0zhMgcPkGbym1MwSO8VmGBi8Z7694fbuhsM8Mg6esmMqu8lcIrC7LLKHK4ishN4Mg29DBeB3C086YcCgdWAIJ46He7b0gDKPQqxHY610suIquAnJKu2pPFSMqjgvOkylNSkKgFgrjXcGYyDqQozC79t1P0ppWtOUqmjIydcHK+gU15EJTXUnNIKiLF2f5MXA4YLr+r03IFMlehytNUY7jPLsDsf9Z/72ct6hbRN8gnfX+KmqesbvvlGYLvptume5Ss54axbYxz3y4jtnu3ZWFjEBl9erFkJGDwJ8r7lglcFqI9GORmOUjCdKrh2rVFFm71TK69I6cUA6EiKCx5TecQDTGqYXsrYp8tINA1FdOXJvr0qjNIFwi3i/8PTyIgXnmxQjev76NZ2D1420oXs6CxLHpUe8P2BdkPechGSzS/FRm+r34H7YaNDkz5cqxYs8ZPU6Zmxda6Kj8C7LninduXjGiMlDOpyIIQzZQE3v0jhnO/qlQhXk/ttF1HtPIeBdpiUrY+2mxKRUhDRQshTOKBlX7vpUg3RrUhLdXE7y70LH2cXkr8WwMQYftNAMcumoINV5rhatDlCtsBOLwKPjlohL7rIPYaW64KUIOR1QVtHIGCNjq9PNkXfv7ri5OTGMo4QE0BdDtWvXvl9E90tr+T7cYWSe33E6/Ux8+ML5/JGX57/x6dOf+Pjxz3z85S98+vUXvn565PHxibhATDsqRow2wWtsv/W0kg2qafAVfJJCMMdKrZqc+iHGCk9Ym4a3hjLYa+bythTWWOTgV6WYtU66pM43ao3EFLu2LIsEJz2T3RmlvWifZeD99y8FD/f3RAtfv34Vh2tOghqpclgdTzN7ZnFrYnprtXVsXKYkkdGIjl5MFAJB53rATimREWyYNrLGjcPAfBKdXSq9E2pBG81wGBkOI2Hsh2bVUUd7JwIE26I1YfAMw0meIyRedgiCTkMrvjx+QaE4Lxe2niqzy6R+s3cATcC110OP0bu54PW+LrVRs9zzjdqNCE2MlyiMCwyT5JFvcWGaRkpcaSmzXc48t0betn7IalwJGnQt/RWtqfF+4Obmlg/vf+APP/+RcZyx2pBiZDmfyccN3apoRs3eeXr9efZn4OpiaG/+nbcF7+/fG3I86xOJa5EhDZF5PvIP//DPvDx/5fHxK1++FJyXzteI6dMKg3WVUjeJnczPoBf8UBgny3zQWD2g0TgrEiSltGC0onT+Ul6hGUq5YKz8mbEF0DJF2BY5+K6XhPaWeZ44nQLeV5ROCLJQMduJ29t73r//mR9//Bd+/vFfOR5+ZAwPKL0fWL85jCiFd529aWr3J5SOXpK9XOsm+ncrsar7WL31sbyxDl1ljxO5ngDhtTYwhr63SzGYQuoJTdLsSElG/BLuoiQelCRxvHkl1S61qwVU7eE4Evm6m7quZr3e9Hk9iLarg1wp2LZIykW69W+6jte1sk+TFfWNBnKvNdtrZ/M3hecrOUH/5tf3f1fXKeV+H769HUVGqjmdDvz80wfiktAVvn76wnI+47vhNOUMSLqZD555npmOM4fTDbcP98zzRPCOUiFn2a3bXhAbMTab3uyTikFwUK22/mu/vb4rPK+CPqRocCYwDjfcnn7A+USpB2p9pNYXUryQt0irAq9utaGtOKqcExafdpqS4HIpXC6VbW3XooK+sDZNT5poGN0wg7zYw6gZR4t34KzoBRuS49q3cVrWkguvpAPgw35Ddy5e754IbsHizExwD3h7jzM3GD3yez0dpRAcke5pMDScllN8KvUq2G9XvcbraVhRMQqaUdL5UoDRHUskoyVNFSdeiZIk1NNOoANZk0I1yZy3yl6B0EbpvnALK1RaD914UuWUoft4i64vW2OkKEB5lBpwWl4jDbRUOT9dOD9FUlK0Yrg7CW9xv5xzDPMk7r4sGfOlxJ54s3VdZOmOfDEEiRt3woexj7UzqY87G47aHLlodJLs5wZo40EJBqTWhjV6X97lVGn2vPh9Ad8Zsk1wQ042GmM9FE1qCasdTUcgk9LGy/mRdV3k8FJkwXLOE0LAWtNH7onYC//f3BMg+cf2yGEaCbpBNXL/14W4LVxepOvonOk6PtHX1Z7wpGqh1khKK7mjOIR91o1rxhAjqDNYU1E4jkePsw0fErUmwmjRTAR7R6uey+XCFldKsVzUQtqSALaNZRgG5tOR24cH7t4/oIygpbSpDIPlhx9+5v7+A/MsaBU5+PVFsf/M9b9fenEtTZXDuhNKjVh/x3T4mePtP/Dw4c/c3P8fDLMlpgufvmycL4XzC9f3zwWR6chotBciVHJr5NpouuEGYQAPQ8OPCTBsiyInLQzCZrDKo4eA1Y4lrWyXQuzGGKtltO+DwYcOIleam5v33N19wGjY4iPa/CKSB32PVb+zRH5zV7y7v6d4TSuCU0o5g1IM04j3gdNJwhdag6fHJ/7yl7/x/PRMjP0e60YcpaRjaLQwDE0YrlrT8+WMWhfpoHsxJY7jKN1MrSirTE1s126aQXLjRfgvsbG1CeqodnSSTpIoc29vOM733N6eOB5mBh/wVqJUSyuMYYAuI3pqilJWMWKZ69Ind0EPI0gxUnLGerDGih5sP1CVXhV2DSXd9WqNpHEZbzmOjsNgUWVlsFBLosSN7XLh6csX8ib/rpV5lQb1rmpFQRWRjnWB4/GOH374A//yP/0H/sO//i/M8wFnAs4Igug4zXhjcUpj9StrtF71dly3xFZlvijpYKqPF00/oHzzRFzbWL9dP+QAACjDNB/4h3/4Z3JZOS9P/PufFMvlK6VE/OgQrBdQI4/PHyWL22dOoxWtsAGjE8b2n8f11J4iwR7DaHh4d2RZFUpl0JGYX8SYqitjgMEMeOugJi5PTzStmGeFNme+Pv1XlElclifQlmG84e7+Z3768X/jw/t/5ub0M94fu3H3TXvu7dOhFD4MtFZ7tzySds1mEwd7ylloLN6I7EGrHgyTqEVke0opaLZjxXZmqOrygtoL1dI7oHIgqEX42+tiUFoSDmOSdp0qkpxklKSIYcHoTLU95c5Js8lo/SpfMvVaLCtlCCH0yGFFzpF1k3Sm3KVr317GKLyVex7gNRmS33Qw3xaee9dS9Nl7oSn/o7EXm6/kDfofb93Ii2potMRgGofVjnmc+M//n//Mf/0vL3x9/EpOK+Pgubk5cnt/z7sffuDm7pbj7Q3jPDMeZsZpxLoOvzfg7GunXwgl6koqke/jlVZjzfd61995YuiFp+qanYHB3wA/4L2m1FtKeSSlzyzqK2l7JMULMUVUK1xjoJygIFCa0k/a9dpJ25NVZOM3eoecN4YAxgkeyHuwFnST7oCmdFekmHti7Bng0OHT0nHcUz7kxvR4313semL0PzO4P+DtB4w+Ik6/t6eY/TtUDIMDU3rbXQrGsqeEqN7dVLrrgnRvPb/eMPu0xrBrn15HnUpXceCVTG4FarvefEZJsg50Ab6VmD3vPN4NEk+qN+mClEzT7co21IouTbDXkarWUqBJEazEKNXFdaWIaeVyWa7ayW81GcMwcHt7y7JElmVl2xI1lz4O6Z1kI13Cuj83WuNCYBhGjLagonSMO/w+JcntRen+vYrT3qyOq6nQqKur0HScxM44K6VIx1J1E5veURLq6ibd49Z03TuJlZRj1/7I6dN7zzgMTNOIUlzNRZKd+y0SQzGGO4xZSHahmgxKU9GUFGlFIxnMkqAhLkdBweRasIgEpVKoCNfVmH4/9Q6R1uLMTbFxOSeMroQgTm4/ysGuVTFbeW3JSZOydKIbPRFDCdsueM04Bg6HmZu7Ox7e/UAYhaLgvWYaPQ/v/8CH9z9zmG+wdgc2cy0+X5ez/86lYFfAKx0wPqCKaIKaulDawDQ7hklhXEXpnmbVNGkTEXrKFeOVfBhxP6teKFqv8EhHagy9y6mFYnF5MWwrxFWem+AlzUN7idetRUlHWSvhHVqJqDNaUqVSTw8rKXG5PIJ2aDNh3bFPS75dHL//0e9OJ8wcBE2iFOM4sKWENpbDfODdu/edC5v4219/YTlLElncRHJQi2y8tmdSh+5glzSuvkQ7jfbC9vVBol99cNCLQ+0MTgsiyXlHGAKmA+VrkbUmd2lO5TWOsFWZIgw+cH+644d37xjDgNU9BaxkdBPd4eBHxvDEy+XCsm341Uvser8kOzp2WH5C97XB9ImM6ZFrAqiXZoAUnQZnDd4ZnFUYHYiDhnhmtEq4xXFjvVzw1rGuF9b1whYXCZcoBcmxl528ta5hDZ5pPjIfT8yHI9N04O72geN8lGhEZRmHEad3mVLftK+VZnvtw9SOD7yOy1+7ub+Hi3l7t1yfn7ejUBTBD9zdvWPd/sjHT38i5q/89S/PxCRpR6avf9uWWC6SOqUtDJNhnCylCCO2SINQ9j80NWdygmFUPNiZdYXSIiEoaktscUOpxjgNOO9xZiZvCe8ulJJ7h/XM18cz2og3YprvOR7vebj/I+/f/TO3Nz8zDHdo7b5pvnz7fOyMR+mGCyGh9M60unKGtRGdfPBOGJRro23C1dy2KJ9JaZw1nYXthCxgGiiZYrXe+KAfCkquPSxFuuKaTKtJ3jdMlxL1KajVaFfR1K7ZtyIJ8/IMNRBtcUOMrtpgtUMrS86JyxK5XDbWmLoJ1/Ltyqk7e3ivJnVv0r8Wn2867m+an6g3dUU/mHPtub/tdL6mzF3/vXeDjRfjr+lBNC9Pjzx++URKF2qNhHHgeHvLw4f3/PDzT9zc3TIfj/gQrgB6pXU3GUMzb2/wN3pU9TodU7tk63941F7pY1OFVgFrNINTOHOk1AulvBDNJwy/0OpfQH2k6SeWpRBTo2ZFc4ZapauF0rihMSDVsSQWyTdqDH0TNMyzZpwVLiis23U6e7RkIQwiaNdaOou15utiLxoLKX6ayt0hGCQRxp1w5hZr7hjcHxj9P+HNBzQTCvu7o3alFfPBo2ztnTYtiRxFun7KyM3ZVKUoS9UKif+T8qvtXckiWdzWyIYi7XspPlGF1Rli2rq+oQOV1ZtCuIG1nmkcmaYD83ygNUEFLcvCsixsKZKqxI05axhHL5nu3UWqrEgZTLOY5tDaodDUrfbxg2gRfX+gv108pmniw4cPPD2d0eoZrTaUkpOfta7n42oZ9/Xup9GmdynpI/Lc4eBJHJt7vJg5cTz2TZTKti5yqqxiptq5hop6PVjYjq2Q81EHCnd9W057YtIeg9rzu7XtBY0sGnJ/eKZxYp5n5nmm1cK6Ll3a4Nm2lUt6TbNSSnF/+zPn9YnPv/4b58tZOh5dM2ycYp4DkusdyLWwrKuMc3PG28bgZCxsfSMM6rqRZSQ20zrfcReCVFmWwhY1Y3OE0TLMhpxsH9M/sWXYsnAd4yY/vzXiTB4GwzQaxtExjQPzfOLh/Y/c3X/gdBKMyzidGKcjYThgje+yhx159f/HpfbjL1ArW3rkcvkzT0//kcev/4lff/mvfP3yZ1J+wYfG7Z0leM3TV0lIaT01wgWN66xTbUBbmTKMVeOdZhyVuMa3yvPnxtNjYTsrSlQYXck+02IkD9I198FAknPd4CbGELCqCgu3VV4eL/zlv/1XSrpwur/n4X1hHH+SbtN1SPrfL75P88x8f2IInoe7O56en4k5Y63ncJi5vb3DKMP5fMY1xXpZoSmMNizrhVZzz1i2hOAJPogzW3WTTG3gLeEwdQySrPrimBcGp7EOPw7ShekMX41AqHMqEgkbIzFnQbkNAdNRc84YTFME7TiGiTGMnT0sEht9r5jCxLv7Zx7PL8KRjJHynz/Svryic4Q+kIgpElPCVClynZF1yRjdc6wrRjeckS6jtVbufaM7XqmSHKiHd8zOdBRaJJ8yIQxs20pMK1taKCTIvdjo3TC06PzHecYNgdrgy9dH/u2//jdomnk8cpxn5mGWrikS5yxc5P5XP3TuEO+269YagJAEjJaiRf+9UfvvXq93lMTZesZp4vbujpvPJz5/ltQt5yaRW6DRKqLVQkxncln7numIsbHVxLat5AzzNDFNMzSLwjKMgeNpoDYnPodaZBwc5Z6ZDwEGi7WDRDE6Q22RUleWZWNLGR8M4zQwDkfePfzMu4c/cHvzI8NwA/hedO5PyGsB+npPQOrRluu6ChsypWth9MpKRaaLWpKIrNP4JkSF5bKJLAXNEGAcJO5YGSdZ6p2G0pAmkTa7zlekaFop4eBqj9aFGBvOdU1nBZBp2hg0g9dd0iYJeNrYay+u9EOaxG4PKAwxFh6fXng+v7Bskrzkx5FhGL6TYKiefHUtMveuv369H942jq+aTf363/rN/99LPOnA7l+j362t/75vWu7eO443Mz/89IFtWzjezqRt5eHhnh9+/MCPP/3I/cMDYRxEaqhNj8bU189x7TNc323FK3qv/7PtDbjv7wn4e6P2/kLvDDSNvo6lW0tUs2D1CaOOKDWg9YjSv6DVM+qyCV8wFtZ+0yno4FEZl2ljKD3/ttZGGKTwDMF0x2PDOulyyilzxyl0ZmVHWVlj8F7SE0SjJwsXWmCv3p8I9p7gHnBGPrz9gLfvsfoAyGnt2pb+zU0Ch8MAptDQxFRJWxbqf27opjA6Q901SsLoKjXTcrvilOTURUd7FOh8QGstyhgKclKTRqS0+E3XBdbuknXWczgcmecD0zTRWsONBntWaNcwUZOLbEhD8AyDZwiuj2Jk89bGoKqGKqfikhtEcY8ro/GDI/iAtwFdf3uCn6eJHz58IPhnjHZSgOqLFEmtMo4D1hmWbWVZF9Z17QDxSkqRVis5JbQuWEPXem7krCjFA3N3VkaJr+ydXNou5G9UlSnFXseRr+e9/hBU4VruT5w1oruhSS65vnYnxPxlMDgrP7OzDhF6yP8PfhCRvjZcXn4bo2pNgGZYlh4dN43dWAS7AshohbNIElWKxHUT04dX/ZxdcUE6LFo3eU2SkphDo0VPy74w0cdRCuOkk6ys7gEOG5iCdivKRlTKkgw2iZt7GBXzQTPNlvkwcDydePfuR378+Z+5ubllmia5D7VFKUm52k/c7XeXi793vXIM1T5vaImcL2zbZy6Xv7GuX8jpgtGFcdR4A87Jhq9UJeaGtoUwQZi6cUXJmH/vqFsnxWfdD7dtj53VtNLlNamyqUgtBeMaxja8ApRhGj1jGGQCUBOlJtZz5MvHT2id0C5xvLmllJ3l9z/20w/ec5pnhhA4Ho7cnG66uS+IDnOaATiEAdU1UjImVjy/OGJarzny1lrRBVuD1rYXnoKXMtV2JrEWE18q5I4cE9NcwPoeW9iEFqCVRmnphovyW7pCzlmmaeQwTtyebjjOB+YwEKwnGIfRO6OvYqYDgx84zAfuto01JVLJ/OmvC09vCk/oG991FLin0DRJsnOGYDXOVLyRwtOZ/YBqOrQdlNJ4HeDmltE5lk2CJ1KRZ/nj5yPD1xE3Okx2YPexYwfxa8s0T9w/3PPw8I67+3t8CMQYeXk58/T0xOBGpnDoh3wp0FtrXULV/9kaknIERXUm7ZuOkvys+4bL371f3sz5vntqtDaEMHF398Dd/QO//DojRrgjtWi2dSOmRi7yZ42RosxaS+mSDoGXF3Ix5GqgiqwsaIUL+0FFUEOtgg8DJWeUstJ46KQEpSva1G66lUScEGZub9/x4f0f+fHDP3J/+yPjcIM1I1yJH39/tWjQ/Ri5F51RNJVKqDBiSHFYJ+zdhuDDahOk1R59vKcZ1gIly0fecVo5EVOiUfBedOO0nm4Udwzhqw8ARENtTOuoJYNSwrUdBoN3r6EO+yUyFZEhaa3QfXq2rZll2VjXTGmiBx3GE+M4fld4yt5U2Av0tldxvBacqNciEl5jQvdp3l50/uYu6p/jt+9Fu67l++9vTWI6x2ng3YcHlIaH9/eUnLi9u+X+/o6b2xumeZJ64VrNXr+b/u2+7Wr+5lu5/r5rI+LvXL87ar+aS1q79nolCcWA8mg9YPQBa27lwz5g7C3OfMTwzPnyzLo+kV42SkvCbnMK7xTeaQbvMcrTML3V3W8MEJ2h6vDfDl93XqMtYhyyghoxSjNNEyE4lAoIpqBzq5zH2+P/r733apLlyLL1PpehMjKz5FEAuqe7bcauUfzF+X1jfOIDaTSOzeV03+mGRp2qShXC3fmwPSIzSwBoDDlP5YZCnUoZwsXytfdei9LfUNhrvLnCmgucWWJ0g9GVMJ1xSnh/XtWulKJeNAQ6kQU6jBz6A10fSUGh0kiMfb7eMVvfiYD9MISc0zhmGRSxCBzDQBlLoERblX1bNdpYqTAtC0niLRyQAccgDg7LZUtZFIj9Y8QrCEkTlMWNktJQFiV1VYqDkRK7LqOlIMY6SSkQq8lId+jZHzqUQvIjrWFRN5S+wtxpTqtq6rrm/e0tZVHjXYm1d2ht5uraohSveh61hPOGkSH0dN1BcnqDhFOMTpTZKhVUlgzp6A4bdrvA4+OGx8dHdttHAKK1xGixwUpKRUIm22raTuWBGfMwTuKQlJKA/fNd4GSZanJBjORniRzWQNd1sn5o5DrWzfOpNMF2+8jj4z2f7+/YbDdSmGELjLJS5Z9drNIwMg4jcRwIg1QRineAlpxGb9AKrI3UlUdFwxAMwxjpRwnJF5WlqqU4rOsHxpgy4y8SI9Yfw9E6+zmnUdLnvYWihHqhWSwt7apifbFifXHF+uKGqlrgrJ2FiU/ZinQ83bPfL7fpfafcoMaagsIvKH1DWdSURUlVFTSNyLz0XY/WQQwNtGG7H1E+0rSKqhVjhGHQ7LeSJmJNRCVFv4c4KEInlneFF23SFCTNRKtITIFDH/FKURSaojR4r6grRenJbEiWs+ojh11Pd9iT1A5ldyT2xNiRfmZBPT19qzQ+C8B7L+A2JsmxNTqnhwCukTxt50usc0Qi332vedg8iLqFgm4cOIx9dm0RHUOlNUnlnPUQ0RG6bE8rGrKWom4oioJxHDj0Ir+klKIsK5STSIczoIMU0FV1ycVqxe3VNe+vrnl/fcOyXWKV5IanpOe7abWZ2dGmrAlJMiDvin/j4eRSaK0pypKi7PKcIooLkvOesFpyxwurKGYdTz3nh51W5hptaeqFCJTHSDd0bHb3bA8PWKclhcgqjBcJJAGOkipkjGO5XPLh40c+ffjI7e07nHGkIIWbf/vb14QhkgIsmpbSV5mAgJQLJOOkdpHiTO+MIVsqRnluCskn4q/epDwfOxrvSi4vbni8fs93312ilcXpJfef9/zw/WcOBykoqhpo2gLvSnF00wmjA0WhcS5SZLJB3MoG+kFhhwTKZrUVS1nWXF54Qow4pxiHyOP9Z3bbAzFJHmNMAWNqlqs17z984Msvf8+H93/g5uaPtIsbjPaczhfnoOfpGQp5IFXgAg6lkFiinWXpJc1Jy9wt7kHdfG1QkrKnnBPLyhza77Je5zD2GdB2sqF3KacoCGElCjvCoh+6kc32wKHrSQoxWDAThTfl4UthUVXmvNQQ51NUyOa260ZRIegThy5kBzuP0Y6yqmnaNXVZvRA1yn0qpmybecIi6vOsUAHJJ9f1adLwS4vT2fvznHwCShWyvnlvubq+YNE2YjsaYzZrEKdEnQs80nzeL8+BTzdS06OnJMRr8+fzUDs5vyszF/NZKoVCAI7Cgi5QFCjv0bpC6warLzHqJ4z5DoCwf8iMV0DnHEbrEmURKVzMrIbPeR6TqLyEBGICr43shqyVqtTsJpGiJiqDNQ3OtTh7gVa17E6VxdgSZ1sKJwVEVh8Bp1ZWziNN4ZOfmTEShBDZ77scehgYQ/YmTcfLLo5EomM6ZimhHJHJ8jqiHximQWch9QkTNX2QHaA2JuN8AaIqO0AZSxat1zkvdMz+yaNcyySap86KVFBVFrJwhFHqPJXBa49VTqpjQyT2gbELDJ34XAsIFGmXqXL/tBXesWwndkBlPb9RwhtJig6SSjmP1WKNJahxtkqLYZQFzJosmUEGjuKhHUInVoC7B/p+D7OkBVnvT9H3uWJ8sIw26xYqmGxUJa9GocZsIJAHq2wSdR7swlpExK1DqtB7QtDEENBazy4yk7PLeXdI3H3+kc+PP9F3A9YWrFfXtIuKEDbsd/f0WeYl5qKhlMQqLsWREGAYJkcw0eVzLsrCriz9AF2fsIMiJkPVOKpKo63c7zF7ZBsbstmCxhkROxZfXgshYdXE5pbUbcNyveLy+pKLq0va1YqyrLFOwupPd+V/f5D9fJoR5kljTUVZrKnrW7rDj2yKDcZ+xjgJpaMjSgVyRgVJQ8p53c4JqJA8bbHcjD2ELD/FqFBRoZISEwFHlr2Ro5CoxIhxCusNVaUpS3B2OLIeKesDI31IW4UvCsqilMKeSeZoPsfXm1Eq30NRvLDWzWNZoeY8HqstqtEoLdaXm+2jOE8R2O539GEgJtHG81p0OJ21TE5ocYyEMdCnkX4cCSlhjZVFzzkRUE8RHSNByc5LaYXSBovLoWhFVRSs2paby0ve39xwc3HJxXJJXZbHfKy5ciBfBa1y5Gu6HCqnvJz3hUmKpvCWwhsqryksOJNwWuENeCtFFs5MqUUTkyL3b2J2nJEIBwb23ZZ99wBpRKuIc4ZmUaNNdqEaRVGFJHqgdd1wuVrz/t07vvziK5xxhCGweRBd2TAGhr4nloGpMjhBZjyzO0uSAv3Tuy9wM54TFj+3hvxiU1jjWTQrlssrlu0V/QHiWBBCR98ldjtxJ0MZytLSd0h+frQShTSWqAcmX3NhweQ4Q5SKblCk4EhRHPy00vR9z37XcXe3pes6nI8yh2pFWTVcX3/k04c/8MWnP3J99SVte4N3C1n/0wSanjJtT09PlDUKIjHVhBhyjm+OLpVlLj4KpCFlcDedA5m0yRSVRhRaVLapDiEz/2JZKUcRYIBxHCCJuo7OeZHDKIL8xhqapgZlQNl8HwPeJbxXUhjqRM7sVNZaKZWdlQJj6Oj7kX5IkAuNfNXSLNas1pdURYl6+GlyVzleozQVJU/4Q034mqQnbQY1h6rnnjWH09X8Nyd//rquJrO7MoqyKinK8hmDP+c4n9zR19ONntD8J25NKt/719qLofYp9KzmOXM6kGmQJZmUlcWYBV4VGLPGu3cU7jt8UePLQLFV7PZbQuxRasR7Eb4tip6iiFgjeUxjUAzDCGkgMeSdnMEXFWUhAq7C1MnC2/cJcDjfUJgbKv8F3t1gVINWpYBPU2BNJfmMScKIYPKZ5PydE2L36dyREmw2B/b9jvuHRw79mEVk5XltRb4pxEgcpNJ7yEn8MT/vlAUlvuox75b7oFCDOAcppbMDSWIYJ7swxRhCFmFW2ZEnMfR7BmDM8kBk6r3wFutKSl/LjsUY4ph93KOGYAijJqSU5TV69ocDu8Oe7aajPwggUirRqYE4KGyMZ7LpJjtq1GVBWIwc9jVdd+Bxs2V/kArKmCJpDFitcdYSnZuopRwCI4fVctWtyXJDWiF2jiNaR5wFjcU60Rj0vsBay24n7lTiijASgyw4IqIrklzGeAYtuqkToJp1OpPIeIiRryHlHNAYoySSZ8/siamJMbzoXPTdD1+z3W8wxrNeXvLlp39isSh5ePyaOAbuw08MY481SEiJEa0D2kwpJ5CiIC3jzMl9VrgAxSj2sjFqysrivZENRxQ3JdFInSqYRRTeGYXzDlqPRmO1weoC72ra5TUXVx+4fv+eq+sbmsUCpdWRsQGO4PPvg5zHdr40g8LYmkLBovmKcTjw0093RP4qc5MesV4qUUNM4lKlpPDNKJ2LDiRcZpUUT/U72G8S28eIRlNkgFrXR8bWaLGfGwbFMAir4hzUC0VVQhgOjOOBFHP1shZ916IpaNqGxeKWpnlPVV3iXTMzlb90VWYAr7KlI8+5H5W38lYrSudYLRreXV8zDL1IFMVIv8vuNdZR1TVt2wj4ImGUhjGy23d0fU9UoKyAU+udFA6CWGVmoXMQRQqm9CTl8dayzKDz+uKC6/Ul67alqkrclJ5y7BnyO00L5nS+OZT3DHAJa6SB0hoRp64LfOFkk2UEeEqIXUCnpM0gIPnkR/yp9Qw2uj7RdTsO+w0pjZJPe3lF37cimdMNdN0gcxmGypfURc1Fe8HH2/c09QKVFJ/v7rn//EDhyjlf1jiRAUrTmSvJexdHOAVJUmRMZmeZwOfEfP5m3CmfrbXFuZqqXNHUVzy4jofdgRACznm0suz2CaVHnBvoO4XRScBOsSCpjhj22b0uF8sYjTXCDu73B8mRHRQp2FkdpO87ttsDn++3pBhonUObAussi8WKD+9/x8ePf+T2+nc0i2ucXSB5nZN8D/Na9OoZKk1ZNxSpolo0AgwzxohR9GRRJqviGIwuKLxc+xAiQ+wY+oFRRYKNFKZAGyGohjQwxIGoopgdZDedYRD95hhGbK641tkhyPuCorJY47OedJENUnpU6lAMWVYr5SptyzQiwjhmjeQoJAYDkYgxJUXlWV2uWa1vaZeXOFfw8PiZ7Bs3DQ/5FUWKSDbdAj5n17OJUMnXV4hRnZUKZTaamMjTz3yNcp9vjTrBcCgpRn4S5UrHT/872snNf3Zg6tW+8aqO53mgTT35+/Rx8UHXukRlbUxtE85HqnrJ/rCl6x8ZhnuM3eF9j/OyIBg1aVDlZDaV0GNWzXce7xc414CaxNL7XMmXZhpaXNs81rR4e41RDQozh1SZJskz1vqXhaFTTDzc7+jGA10XpZDGWXTOI7VOCoRCjGBGEYweExphPzRyr4fB0nd23pVN78sa9NhJaDl7Y4fsVGStkQlES6fsDoNMcpOH+Rwe1eJ9rRQqBeI4inXomMSbPUhOWRoCh13Hfr/n0B/Y9x1dPzJkhjCRGIcDRg8sdDoDnkpNIXvJk1u2NSGIj/Rul+0xY5x3oDvn2JktB6Xo89A7SpConANpMHlxDDFgDBTOik5byuzpZJuK6Ox5Z7KdqhYJouz0gopZiijvGjObSGa3Uq6+B3KhkeiOyU5YdNuqqqBtW1bLJb4oxBptHJ71C28r7LLket1ysX7PF5/+iFID+/1nOcskNmPTODIOvAie5epKcqpBRBsrIcxSYZ0ijhE9RNGmjVnRweSNns5OMUoYAKWCRB+MbLKMsRLeLirqckHpFxS+pW3fsVp/weXVVyxXNxRlncPrp4DzP9NOJ6pT5sqidI33V9TVF9TN1zSLbzkcdoxBLPjExUQ2XKIxqUQ7tSfn7OaPjYrQKcYDjAcJ0SUr988VepYl0VakmeyIsMYxh/RyJTiF5L+lJLlakRFXGtp1S7u+Zrn8HYvmHyj9DdY0HG3vfj7kPheeqPOrMYG2CapMapPeaJZ1zfvrK8IoVcbCkI/ijVyVrFctq2Wbx4Si2w3slwceHrdstju6OBBI+OwyVFciJF86j1aK0PckkgAXrWeZtcJ5lu2CqwsBnMtmQV0U4kU+bdaYlFvT9N/JfT4yuM9gZ56ftEp4q1mUnvWixHnJizZWndhl6qz6qI99JoNNndeFyekLLZXGzliapuH97QfqqqbvO/aHPbvdjs3jls1mS98NpARVUdJUNW29YNksWTQLtNI47aiKGqOy7mXhZ0ZsuocT85pSLhzKwNM6Pc8fcszpCA5+cxOnM2tLqmrNxeojdz9u+XZ/x/6wzWupw3YF4zCweRwQHciRxcLQtiXGlmKjrAcUgckHXSmV5aukQO2wPzAMcVYaGYaeGIfMcorEWFF6yqKhbS+4vHjHevWOur7CuxaUGKWcMlu/tCszxtKu35MIkgYVRyEp8vwYRpnHY+yyOoBsHoXBHNBGNu5zqD6Z3D9HYMDahIjPSzRWdKUlmjGOA0O2KBabTk9ZVbPslPPyIwSbgWhJaYDsZDj1RyAfc0KFmFl9iVwlRDfXO4XTCZ2ryKfczGcwLgl2iXmzHRHyeJojTEL0Xk/A5wQ6VVJzpG/GdL+QSwkzBDqSpacQ84hMT575xU+cPujlljgZFC9/2gs5nk/Dz7I4P/0SWQ7jyfcrtPYUbim5G0XNMmwYxgO7/bc8bv9CTD9gzAPWCqNJMsQglYjOOox1JCWFQc5UWFujVcEYO4awFy/nQdH3wopAhzZbCr8hxD0gOxSFOCGkeVeu5nTVCVNPl/7oXHN+gjFF7j9viEo0Nr13+NLhCoN1AhxBQIALATeOuGEQHUJtMvjUjMMoFaWHA/0wCLM2hbW1yfIImtlG1MlutSgshfeopBiHke4gTkbaCKgS20ph/1TqcdpJ3lIcISoIVjzeewU9hENit+nYbfYcQkefF66YFMOYRDMtjigU71eRM+SZr5XRwrCulg3WCXPS9dkOc5QK20N34P7+M/dWxFNUioxIcZUIYgcpDJnCbFrBmPDOoapEjIVc1xhzpXpPDDJRFd5Slp7CedFADOKWFOOIWGvqnNuaZbVOWM8YAwop6jJWBMZNzsur64rlcsXNzTW3t7eURZnX1yc6nkrz4d3vqRcLbq6/YtXeUBQld5+/zhJRUyg30PfiO1wUDucczimGPjB0KVcZB7Q1lFrApy1h6KUQi5AgikMNQQlNqhLeKSgcIQ6imWqieO66BucWOL9k1V5zc/2BZXtNXa2oqyvq5pq6vqSq1xjjIV+rp0H1/y9g6Pw5QiliTUtZvmO1/D37q0fC2KNUR0BldYuRYYikKA5oY/a0j7Mtmyz8KWhUEuBiLFgvoF5ZNbNi2kS0FRUHZTVDn4gBkrJoV9O2K6qylkk/jsR0wHjN8nLNav2R9eofaZs/4ewNWtcC7H/FVBxTIhAhyUJ0NKuV9ypkfYgZzlmlWFQlzhpSivTjQEgSEbHe0q5aLi9WXKxXVIVEMdKYGLvA/eOGzw8P/PT4wPawQztDWZesV2tWqyVt3eC0Yeg6VEoUZYkxlpSre72x1FXJsm2pilKArdZn+WXTrP6MtX2ylry07qQkubbeKprSsm4rvK+I0eRc/pyLq0EndQZihOnUM9up8wZJKuMdi2bJh9svuLq84XDYsd1uuX+45/PdHT/++CNG/cBW74gh0JQVbb2gKSu89WJJrDRts2BRNXIn8oZQTXd5WumZNmUqu11qrBJtapur81UGxTozjC+jjF9u8nUGowrqcs311Vd8+82PbLf/J9vtvcwhpSWEBYduw+ZhK65lyTJ2DpUqVuuSummIUWygnbFZz7MnpISzJaB4fNzSD3uKQqONOIKVylEUhaw5paYsK+pqzWp1SdteUZUrjKkRy+IMDJXiuGn9+ZPWxrG++h0hBbpum9eZkOcfcWPq9jtS2qGQ6BxRAbLp915A45jTuiR1KaGQQlXtJltNK4XIEYKOWA1DCke3rQR1JeOBlDKpkCCNMj97K5atuJwiFmYWXvp1lEiMYS6KBvAuorVDGxi7DbtHizYO5+tnaXxTjCkhEnIS6ZkKqMXUJalsyDOBV6XQiclNU4Rz8nP6xDJTOtNpn3p6b15jJp8wnTM2et6eR3F+e3s1x/P46elscnh6GNPFFIRu0LrCKYM1FT4NxDTkop6CfqyJ6RuU2iMe7BCjhOx1zg001uPtCm9WJLyAq3gnGpPaSvKwKhGW0+FNi9G1sK0ZcJ7OjM92608u30ugc3rLMESSSXhjsdrJ91mHL0TXU00q/UrkHPpxyPdUzfqeKUTGUHDYO7q+l0k+FwyYnMMqTkdZjzLLqoj2KAw5kXmf/V+dkwps0RKVhH6rIqMdUErYNo1Bp1zdmAwKESJW0Ui+3CiVhjFXcE4adSk8X2yO/UBYT5yhVlIcMVSRoc9pBuPIGAOHQyHC+P3AmIWkpZK3hyTSF2mcKs2lulArxDfa2JMqRRHXjpNcjLFYK4VoqCA/iNrB5LUeg8HMu82jLRlKCdDUGuclidr7IstiOBaLlsvLS66vrri6vqbwHoAff/jx7BJorfnD7/8n0cS8+Ij3dS6g2rBsL9iur4hhh1Kw222lMK50qJQknKcGwtiLl3c3Yhy4UqELK/eGqVAoM8PW5Or8zHgahTIZvmQ9W+9aquqaprmlbT9ysf7IzdUHFs0FZbGYowbWVThbIElLOdfnZ6aO3zapPOP7UNrj3Irl8gti6rFW0y4buv4bdvsfcPoOa7fszIDaj6hRGLNkRY8xRkWyYodbVEo0fl3ElzFrguZrpnUuWhA5M6nQFcZlubrg9sMXvHv3FevVVa7aFctMbRTVYs368ktWq3+gLG+xpubZzutnTnlIiSGlmX2I8xyujv2QE5sKDUZLhfdqueT90IMSyRfjLG3bsF4txU3KOwmBo4khsdlK6s/q/o7H3RbjDEVZcLFes2xbmrLGGcPY9yjAeWHvZbHOkQvnRF7GWhnTieyulvPPjnfvyakee8xr84TO84QzmsJZKm/x3hKizovkxAgl1BlFfBJq11M0YlpgxXZx1a6pqwo0DH3HZrPh7vMdpRe/daMt/arHGM0XHz7x4f17VssVPssSqZQ1RW3OmU15HpwUDCaW6kjb57kkA8yJiZrlbWZ08Ov6yottYrcsRdGwWt1yefGO5WrN7vDAMHTENIAOc46f0RatCmJU7LYHiR5aR0wdIXXzpn0YxF+9KAxi7QhFqSkqnWsGDKMWts9aS1V7lu0Fl+uP3N58Yrm8oSyXWF2icHL/89x67BpTv1cv4gStLfXyA5GI7XZiPJDZRK00+90O1D2KO4Youdkx9KQkhaDeycZL3PHCLKk3RTy1lqTjMI7ZFUkA6rS2GB1F6hCy7rYUa4pTVcJZ+a2niITSouWLnc0sJGImQBcnRJExlqIoSUljbIHSBVEV2GJBXS+wrmR42i+UJuVcYsnlVoQTll3IscRMak79bdLJ1PnfZPkpThj3uT9O7z0BpSe/c4/7RRA57zFnFkGdv+70DSfw6jh+podenileAJ7H3C/pX6dFRs9bOvkt05LkU2rKHDYFigVaLeiGBYfBEuKPpLjJA9+gtCMlh9YLvF1T+Y8U9pZxTPRpD9GRosLaQOEdTq0xagFojKko/RXOLBF5pKdHNl1AdQaoJwg6MZ7Pi4wUZHkZlV2DNGL/6HSB906kSywoI2LmY5DK4xjivIuZxIUPpePQ97lzyK5RillEJ3UcByBijcY6i7PCdO73O3bbA4dND0ExOvE/HUZxWCirgmCFRQMJ95vMuhrl0N5jjQetGA49B9cxpIhOUgADWV5FiQe5Ss+ZsOl6kdUEtBaGenSJwUX6YWAYLRLak8lkty3ofMXox7wSZ/FqSc4U5jMEfCGuQd55rDF5h5oF6oeRkO3TBKhCSuK9G2JAqYi4VogTS0wiU2NmwVrpfxJaN9i84JZVRV031FVNWdWsViuur65YLpfUdSMSQ0pRlsXZNdBK849//F9ZXVziXc0wBB7iZ5q65f27LzBmEAFzZ0n8ACpSVB5FeMx1VgAAHK1JREFUwo5iY9l1PTGNDKFj3wX0LoAtQIuEjc4OVwqLdyXOeawVoeTEiFIDyojWHaqg8Jcs2y+5uvwD727+kYv1J9rFFd5VGO2Q/Fon4fWk8yQW82h9AizOxsdvXUxPNnJKigWsrWmXHynKguVqxW73gcfNX3h4+A/q8lvK8jt+0j+izAYbBmHcrCGMij4q8EANtpBZxriE9VIkFoKMMWumSTqLRhPQ2lAWjut3t/zDn/4bX/3uf+Hm5isBneNBZJNQOL+iLC9p6vdY2+Tw2tHm9pdg+JgS/VQBneHlNFVPgHO+nidsYVJQ1iW36pqqLLler1FaUZQFi6amaUS3czJNSAmWi471cslq1bI77HHWUpQF7WIhYuhG3M0m9DsVC6bZwnZa9DObk/L8rtS8mB/dyJ+f9+n0+hIjKrmFWSZJC1NotCQZTJtypc7n4SNTMxUWTatnYmKdCu9xfg0ZuA7jwKJpKXyJ2PJaCl9hjKJtW97f3PLx3UfWq7UUdU1LWkhZNeUJyXK2WObtwtkJTot6ts3M6QApp0r95nayUjtb0C7W3Nx+4Msv/4Fh3PPNt39hCDvGKIYTRenwrsG7lqEfRAf2fk8fNEr1oAdZm6yZo1ghmmwVa6iaiqYpscaj1UhHYBjFUriuGi4vb/j04fd8/PAV69U1VSmkkZzrcVzPneA1Vm16RBt8fQ1a4ar+GLLO99X4BxJeJPe6PSHu6Psoqh32qAUt7nBh/l5RIZBI5jgEDvterGin3FEs3mooLT7J2uG95MRbo7JRg6MoPCQyyykqM0rbLGkoYyekkcgwSxNaYykKhDCzHucbjKtBl1jfUi4uUNqw+R//D6dlAklpKQQLSYKSKTHm8+A0vM4EJk9li9I8LmT8njOjKHL0dNoLpePnoJ78Pr1BE3I72sGijvPV9D7yBnrajE2H82J3Pv3oV+bOn5dTyij89bdP3yAvnHeK6URVHyWamU5ysbTRhHBNjFspfolegJjWWFvjXYs3N1h9ibIJ2BOTEZchnbDGixi8qvMOzOJMjVE1CiffrZ4f72vV61ORxbNnFaDFvWYchzkvMHlQmUkU94PI7JQEqFGKjY5gRwppCu9oYpQQeSIXEpELrBB2JyRh8EYJN0ru25gTyS0qGAxWNN1Gof6DhbGL9CrkxcmgrM9gxuYJQ3I4kzphSXNOlzMGZTyJSN8NxJGTMMr5PZaOlNMCtMruI2Jh6kNgjGKHWZUFTV0TQkQh+avGGsbREEMvoBEJiRfOsahrrHWAhEDU7PWc+5Y+JvZPg0rYT2FBE352myj80TpOKyUV5lGWUp3lbsqypKpqmmbBom25WK1ZLldZk9PNIv5GmyeXQLFcXLFcXJKSQjPQVAtSusG5RFGIcHxZLVm0PwrbX2j6fsd288gY7+mGnjI5lFfUdU27bGmXLfWikkGbpCjMaE+7uGTRLCmrEmthGLcM45Yx7oXhjY6qvObq8o/cXP6B66vf0y5uKXyD0e6kI59PbEx5dfPzcM5nTc8cn/u59royRAYS2uJdK0UvvqSqLqjrW9rmS1aLb2gX/4F3/53y8zcchi392GfJr0SwCaUDSYsRgC8U1kvVe4xa8penhdt5vPWipDCMEDVlWbO6bFldX7C+es/66quZJQ8Sh0frGmNqSe0x0g/PENEvXIMRYTx1nnaneosJdMakZpeU46WRv7y12LqmtI511vu0Vvqp5B8eC5cAnNZ4YymsnVN3nJMF1FmHfnrXVGYws5bn2b1KOap5ptAx/f6ZGf+VS5Egp77EfA2yraRSovAx98Xp8qazBezI3Jz86CMgdfO1YAbXoRkJF6MwyEVJ4T0XF2uuLi65urigdGUuYJEPfw6WFSeHkq+Xyn8fwedUva4gg3ZxYUqomeH+pSb99JyqyUcBeX4qipKrq1v+9Kf/hjIRdOD7H/7Gw/0dYQSNbKYK79jtBoYg0aGwGXEu4gqwKYLyknpiEtaRI2gl1mmqukIrB0kk7kJULJol795/4uP73/Px/R+4ufpEXa+EzVNmvmcy1NKTH3g9QqDAlLIBMgUmm5FOw6uIkout0igShZkJ1CpIoWlWvxBTmBGS2GbHXKSpVXYVNAM2K+UoNDEpYsg1GLNCjJLcTJs3R7leYBwDYxzl5LTBKEnBSpgcEpf8c62kEE2Tc+uLBb5cUtZrXLlEmwpta1zZkGI8iq7nFpKiD4ohiNPcGE8YT07GARPGPAKZeTTmcaGfjpMJbKoj+JxB4vzZx+fnj5uez6BT5qwj+Dwynievnz//pHYmj5XTDAyt8rz3wvh41Yg4AacVay9Ts3mSm14nSt4vzEsaaxq0fo8xNSkdSGlA49FITl9CiiW0chjdoKiwOmF8g7M1IX7IJ2axpslaYtPFUEiYPWt9pJ/jaI/nM08Dr7xYGem4YZAOb43C957oEtFGgg6S8Kw6YhSq/3AIdIdIWTh8bbGI/p1xkk4wZreRPrvspCiyPnEMWQJCbqazEh43NlHVDls6VLCkztARUaMMCkYYDgkVI0aLNSiUKF0yudAMY884DPShI6iANgpvPdqB8eIWkxCpke4QzjrmS3d9uu+SaG9wThOikQkwaKrKs2hrlBKbUOsMXeeIqSCEnjGLCBs0ddOwXq1QOoslHw4ijaQ1ytlcBZ2ZwMmfdyo8UBMgNdlu0FGXUmhRlhXGaPqup+u6nEgfMUZsMgtXUhYVi+wGVRblUUg+d4qXAJVWDtGAFUataZYUhdhSltUCXzQsV+94t38ULUg18PnzD3z3/V/FdzwNuMpBMiyXV1xe3LBsr6jrpeQDD2KBZ03J7c2X3Fx/YLFYCJPc3bHdyc/hsGccNHV1zYd3f+Ly4iva+hbvF2JROvfudDbp/Ne2U8DrUcmiTYXzV1TlF6zaR/qL71mt/h3nG+plw/5wx2b7wOPDjhQ6ejNmGbGIdopioXFeNh0iLp0YhkQYNWW1oG1W6BQhDKQQcb6gXVaUC4cpCpRpxA5yAkFJgzJM4uNHyPhye6lPhCTsxTwNwjyBi7bkcbY5HUGyt5X+q6xDVbU8NzF/GaxNYvYJcGiM9RSNRBgmYwQ1gfw80c/5ZFF86k8fYzqaeTM55Z7lc/w1t/YFxlMMI4asXxzn8L5SHEmyfH3na3LiUa3USX+dFtH8finWPFbSq5QwiDSUWl2IfJgr8N5zcXnJql3Q1I0YcZylaj9dyZnXLzXHPPMckI7Ey1TFrtJ076SvSKHaf3Zc5XNSkl5zcXGN8/8zRSng0RWA3tMddiLq7iS3MKRIPwS6fs/Q7UErvPI4V1BWWfpQW6kXKGTudNZQVKXMYynhndj7Xl7c8vvf/yMfP/yB68svaOprrK1Ryp4goyfSQGc94BViB8WYi7OmuUCTPzIlbFFTK43RSYTutQNToBgxOhDDgTgeQIltpoSqRRYpKZGichZKEj460XhVhhTNrNM9aYaKDe+x+EfnmgBSkNqIzCQqDcoIeA0jjCgCGmU02uZQvKspF1dU7S3N8paiXqNMhTLiXDf2B04F6AH6ANtBSR57zOH2Ce4p5jEhx3cEiOr0/yfAcioGnMEg50D0DCA+2fAdx5Z8xjTzaY5j9tmaMYPbNH/O8bPz8abjxtdkUP3SnPl6qD3Jt7/GZqhp8lAT+Dy+e/7z7A0apcQDWApiElpZNMIwCCs3QRoLyeYLaHLYuMnPa5FIyoLxPPm2V3M2XzyJo2vRiyDDpOyEJGxtiiN9f0CpxBA9PliUCSQloCaESN9Fxj4xagiDJmSWjgg4qdYWz3KZ3IZ+ZOgCh/1AiAHvxGtZHErAao1OhkLX6OBJztLbhDejCBpnTUqTNE6VeFvjbYkz4ioUwyiVjdFgtafwSnRANbjSSFWwjQzjQOekmOfFhfc1cK6nnZnGJiOWXAuxoit8J+xnU4gosBJdyzBKwZACqrJiuVyitQi5b9qWRbvgcDgwDEPOf9HTfkJ0Uie5qRw6995nBQBD4TxlUVDXIi8FAuyHccgJ43rO/6mqcn6dhNef61o+uwwnC5Is9hprJSTfNoBytO0tYxDpnn7YUZc/4P2a5fKWzf4nYkwY7Vgtb7hYvaepLyn8QuSuerk2xnguLz5wsbqhqivRMh02HLoH9t0DfdcxDlD4JRfrDyzqK7yrMcoijOb5SDw7q/TqH7/upp9dj5fHDpADIdPkNbFEGqUcRpVYXWN1DZTE6Fi0H+mGezabn/h89z13P/3AnfsJ5z5ji4B1iWapRHxfTwVSFq1qrGlZLm5om0vGbkO3/0yKI74oWF1dUNUt1nokUSp7c3OiqPEzYPOX2hTFOGPv5oswsQnTxC5sxRR+NyqnryDOxjOzlD83IQvUDFmVEp/kLA03gbaJKMiiXTPQjPKw0AGnG/IpSnV6L/P/0xx+PzuTX+wOwniKPWJ36Djs9xz2W2IUFivlRfbYH55cpxl4HhffWbHgyetFu1PSeJw1VEVBqOvZASmGyeObHEk6PQE1nWnGTxkEJwBJaZhD8dmcwurEbrcVi+JuIIxRcrHRuS/9XDuhgZ5dsdOLIHfZeU+rL3h3+wVd/4jSPUrvebj/SYwoAoxhR0wd2ohUW4pQFJ5F27Ber2kXbc76SBl0HQuhbFbAKFcLnG2o6gVXl+/4+OEPXF1+oKkvca4GckHRFFs9O+6Xzu/lFiIQj5uIs76nLMaVFNVa8iopsL4FBlQaGfoNfbclhAMx9MQkBiFFodHKijVyDCRlGYYd2gg4VinldPYMPDWQjWlkvtIiSaY0aFE3QOWiNluAKbCmxFYen0Giszo7DnqMq3D1JUVzgW8usEUL2iOVjVlN4Ml16cbEtgsiIReP+dTzBIH0NaWPoFCd9A0ZM0fQONtnMv1OM9g8CZKcPJffn8fSKVidgef0GNNnzPz0+XdNoHMGqPklJ/NfVGLb8lJE4EXG86Uu9ryrZVr2yRPp/EX5sWnrqIECjZeTTyeT0Onr08nvpBGZpiffk8LxDSfffnahfqH93KIJSGhfKYzK7hhppOsC/XDADR4/FFJFq2POLZEdUgyGOBrCoOmT5KBoHdFGU9UiUK3HgOo1YRvpdgO77UAi4ZYOX9VUhccYGMYOjaEyC1yqwHlGp6kKcbPpx46UJHRdupqybHFOCgr6oRcrwih6eKV3GAIxjSiTqBqPKyxj6iHt0fog4YxXLt90rY5g4vxxo424KylL4QuqsqdrevpBfNBFbzo7RIRIihHv/WzdKB70e7bbLbvdjkPX5YRrzZjZlO12x36/F5HqsmTRNFR1donI49dZS13V1HVFVVX5s2MuIsgV80GY36nA6NeygWJ/ypxfxMx0OQq/xLqsVacifb9jt3ugLm9Yth/Ydfcc+gdQCmtK2sUVy8UthV9idMU4jIx9TwySq1pXS8qykQIsDVUx0jY9IXY5Jwm0dgI4dSHsxEmO4dmGjN8ArzLY/1mThb+jHR3RIGEgFWhlqIqSm+s1F5f/REwHtrsfuPvpz/zQ/nfq8t+oG8PjLqHsQFFrrHMY47GmwNqStv7Aqv2S5eIdVbHi/vPf+Pz5P1CMFGXJxdUtdb3GmILZOWSSxDlh3n4r+MwfCYiV7nESPgpCa2QSNoj02fS3hKNyzuXMamTgqSbQeM6VwpTckxmF07s9pw4dWczpc14nEs57i4iovwaWpqZ4+lHTYhlCoOv27LaPbB7v8X2fgae86qiocGRpp/NWMGOdY0hxuj7TJjdTHOlIxmnEgjOR6A870jjSHQ6yAMaJTEkTP3Jy7/J3z1qKuagtHb9DqYRRid3mnsfNhv3+IHmEKkdazGmE4Zfa9LqX78OkFGOMZ7W84quv/oQyA0nt+P67iofPdzw+bNh2W2LoRfPaaJR21PWC9fqSm5tb1qtLsZyMca4kT/F4CIWrWS0+slrdslpdslpfs169o6pWGF0wg86zMTEd++nv+c6/eLYJJM9xAiknGwxZRyTKad0Co0u0XVA2V6TYk1LPYS8uiP2wZxy7XKQaKbwUS2oFY7/P4etIiAeIQ2anEypJTUSKkIgSmch5nEoLcHWupHCFjA8SUVlQBb5a4usVWnvZLFt5vTYebQq0bzC+RruSZDxx4gsTDC+grX6IbA6T+YCMs5m4m6IcSirX1SQZPu9L8jXP4PE4gqbLf56DeQT5x7E1v1SdvE5NgDNvC1VmPU/msGfAcvq+M7A5RS6mwlWwSuaucEqU5/YC8DzuStN0pMfTPh78EaS/PNzUy39MaPvYVY8w+nzifY1im/5xfP45aHgOSF9rx6Kj5++JMYGKSO5klJB4yGG/zuB6sZhyzmYZJxlEzk8e4J4QRNhYbq4mHhTGjIzDQLfv2T7u2Wz37Ped5KbGLAeloKxE9scqcR7SUVwdtNJ4mzuMFu08lRD/YV/LgNQGpx2l8dhcpbff7tnt9oyxQ5kkFpm1pw8D8IA2G2I6vDiHPL3Gp3+rPGCVFo95UxicFfZzHAtiqJGwYC5VS0l2njHNNoNTEVbTNLRtS9/3YueV7+cYQvZa3rDb7UgpYaylqesZXBqpPkIpjXdOQupFIUDf6HnjPlV9ArPm3aR7N+d8vQJE58pbCRjJeSkF2qBwmHlQJplIVUnhlywW1wzjgSFIBbPRjrJYUBSNgEbEezmGAEn6irUlxvh5h4vyoEqYnVMSkw2oOpn0jiBqWtw5+f0r28m41/p1RueXAPvTfiLXbEILwn5abdDOkdKKpEa8v6RwF9TVLavlR+7v/8rnx78RdYcvTTYVqFDKopVj2XxivfyKwjcSTjMj2ANaacqiZbX+Pe3iS0q/FsmUPFbna3S66/0tTZSm8+/MRiDGCwbR6rUcgecERDUTOFXHeywXiglqTlaxZNZzCmtNLaUpdzPPcjMbcvKazOydk37PAcVxgfvl65GefgRgrGW1WhOj5nAYSDHw+CCqBTODOH+AOjueiclBTQ/mwolpQUMd15z8xRPoFKY1MIRx3hRPKQzzNTr5siNgzixS/rApjD7VCUQmYCr6jIfdlt1ug3WG23c3rNoF7969pyg86t//8rPX67xNIAIm8SpB02l+VimF9wXLxQXvbr4khI6L5Q3bxwd+/OF7fvjhO+7uPnN/f89+L+5EYRRFmKuLL/j06SvJU4yJYejph46+H3JluKGqWi6WX7Ja3tI0C6q6pShajC4BS0oSATo/Zs3xLj7tP6/0lySpKDnmesLEHXubUhLGNtrilRXGMUl0zPgGV60YxkPW8R4B8L7MNqgD3f6BfXdADT1piCgN1mh0isQwkFLIGzhDRKG0B1ti/QJftFRVS1kuRD80iRV1Ug5ftfiqRRuP0m4u8lPayibfuPxjiXO1h3Sw+EL6hbzGkKZYxrTRmTFlOiLB6VpxOiaOjGU6AXgyJUwR6BOQ+eT3+WMT6D1Jh5keh+NnHW/VyXel+YEzZvX0c4BRgVEwnKsSAi8Bz9OjeNKZ1JOXnD/6QtdTLzGlnG+aSCdPyAervPt/OmGcfccZQ/DrJks4TjpPJ82X3hlClE6iJKQTZ6tI0evUvRHds7rBZX1O50uKoqIqPN4bdttAvx8ggkLTIXqWYYwM/cDmfsdmu6cbAkkrcaCI+TupaOoSaxwqZSmkYRRfagxWQ7Ja/L+TorSeyhVYW4h4vitQKlEVC5wuuTOfSeNPUgFpI03d0ixqunEgRND6R8bsqsBZZ1Lzz1O283j91PyeZMBZk32xX9vdn7BwTz5vsVjM7OQU9hrDyNAPbLdbttsNfS+pCWITWlFWJd75fI9THri5sMlonHfiljT3gfONy4vn9Mpj4oKRcjaznMXRsWYCV1HSJApHWbSghCmNEVAnearZRShGUTQgJbSawOQkD8acR6aUnUHKdBrzJDYvZtPBTkVEU2jlN4ArBaSI+pmx9cts8fT86e47T7IZgonqawkkrFlQFpcs20/cXv+Rh8e/8ePnPxNSR1FavK/xriFGGEdo6/cs208kBrr+jjp8JugHjK4ovAjDt/WXGNOiVcGJsNErx/kzZ/JSn9AGZSZNXjWDJZ2rul3+fQZ303Epn3O18hhKRwwiC2Y8gs/p64WfOAWdp/1Zz8UH8tosGTR94CvnPoG6GYYmXhm58xed/ems4/LyEhDgqUhsHu/RSnMs4kxMlccxZvUPlcmIeWMqIdFzqoOMYPI9yD9x2sRO1+L0gE5yY18/hXzt86SncxROJEaVzP/5eMa+49BtKUrP5foTN9eXfPriU74vv2ZsnY6DdPJvzv+dx4foANesV+/QRjNcf2Lo93z37V/5j+bfMfp/sN+NjMOW7WOkvzAYtWC9+sQXH/8J7wtI4lB06CSSNIaesihomhXr9iua+jJHECxJOVKaNrF5e6ROju0MTL327/OWYE5DmTcP0/qiZIaLMIvya6WxeirwS9iyociKMZMUE0rhjEejGPsDSXnc5gGz35JCL2uhd+gUM1Mq70s5zUbZCuMX+PqSur2maS6o6hVa2SxxpMSSu6iwRS2kkjbCijONPekfkcnl6qjfe4RzT+6+Nihj54VgYtSncX3MEc/XWk3pCPnaqYmBl/6qp+cSHP84vV88GaPqdfwzpbk8HS1PbrPKnz0DTnXe90+ZVaMkVXH8NcDz/u5vT7/lxXaEer8C7L303nSeaH+E08dPPS6oTz5lnqifHudrx5LOfj17aYK7u78+OUbDWn2JZE3lTqADwUaiDvmeKlz0+L7ABNGRs6NH9454sAxakTqN6bx0mEkwOYFOCTsGKtVg3MBoEkkpnDb4wWIeLXH09BtHNI4+WdKoSSMSO1OS1B5SZvmSsKnjrpdKQK3nDcLGJqw+SJh6FxgjoBUPqeewkdDYvgPXt7RKcmdO29dff82//Mu/yKV6BXj+/9lk8c3OSH1P33cM4zjbXXrnsr/2dNxJFjQyUMys5s8xdy+1b7755uzvGCP/1//xv1NVTQYDxw41VexmTkWOgUROEsszSwaQ06bpJOQUU8xjQhhbef1xB5CmiZvnIHnOUz45Gjn5s1+/DXjmL99tH88e+vHHH+c+8Xd+2JO/XzqmBERS7InxwOFwz3Y/ElPCuog1XZZYgRAThfuWsjwQ48AQJA+26xNKjTizoSr/SlHs0MrzM/WUv6rd3d09ue/w/b/9mc33PzLnJpL1LJWaf6YczqmXzNibE/AzXR01Ldgp54+eLvpqfuUMXaZN2vS8mrsbkWlBzD3zyabrvB1Z8edyQsc2Pby9ezh7/HA48Od//wu73Y7Hhw0pwXbzePKe6RgkJ/bI2nO2gKU8Fp4Cz6lY6ZTKmdOl5uM+Oc5fkSIyrz1pGl3TwRzB/RRhiCGI6oaS0OTd5/sM/I/OaFP713/9Vx4eHp5938nR5QOY1qYjKE0ZyAqgDgzDgb7fE+NADAOPjx2bjSelC+oarq+WNHVHu1gyjmu++2ZE8T3WiLLFOIqLT9dJEax1PYUfqcqAc9/OygkpzaUlT+aZ07s3/evlueTrr78++3vs9/zt//7fZvYZzqchuZbHvOeJaDh+j2ziUxT5v6mPa23ElCH09Ict28cfOOz34v4GxE7OJIyGEPM9QpGUQZmE6QZiv2Hcw6HY4fxPTFEjAZEabS3GOqQ+Rc+3K/H6z9TiIAYnp+3ue2HFj+P1vH/OWEq9/Pf8mOKkpx7zNeeXviJXdt6eILcziazTx8/ffPxrSp1QLzx3nNe0gm//9ufn3/7P//zPvzw639pbe2tv7a29tbf21t7aW/tPtr+PAnprb+2tvbW39tbe2lt7a2/tN7Y34PnW3tpbe2tv7a29tbf21v5L2hvwfGtv7a29tbf21t7aW3tr/yXt/wUvfWD393yAfwAAAABJRU5ErkJggg==\" id=\"imagefe85cbf9fe\" transform=\"scale(1 -1)translate(0 -71)\" x=\"7.2\" y=\"-22.269118\" width=\"670\" height=\"71\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p4ade11667e\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"70.950993\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x576 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Prediction: 9\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovTWVkaWFCb3ggWyAwIDAgNjcwLjM5Nzc5Mzk3MjMgNjk4LjUxNjg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJy9nU2P5EgRhu/1K+oIEnjy2/aR5WMBcVkYiQPigJZhAW2DFiQQ/55wVXflG1HOSDujdzSC1cS2Kx9X2ZnxtPPd+vCzT//529effvvlF9ef/u7yof7t639f/PXvlw8/8ddv/n1117/T//579dcvr/yHHNVfLmV2U1zneU3012/xr2VdpuzLMmeqO/nX7Yf/ern8g8b6hv7yJQ3wzeUS3JTzGulncp6nvCwhrjSIj+vkS3TeY/1brJe5TH7195evL8PKNN5fLt9ddwZZSizp6v0yFRfL/Y/8678+XX9//cf1w0/C9r5sb5Gn98U9vS/f0YHrdTvD7Z/Nwb5+uX74lb/+7J/Xry5fXb97e11Hb4ff3vNpeX11qlxCmdKy0ivw9wXLaXJvb8vliw3t8h39v7v+mDiuIU7RrUtZo1/CNacwrWtKyxvJ5YuP1w+/8Ffvrh//cvtwPv758ofrD9wPr3+8fvz15ecfL19dbkSXuEwxrWvgIFBVOWKe/OxCDGtO+TiHf+bIbgrehSVxECyrJGmeXHR5LXl163GS8ExSwuRmV9LCSbCskuRlWoihuBDmeJwkPpPMcaIPWNwlL6ysktC9O2cf71focZL0TLLkaV79032MZZVkCVPx98niMEZ+xljnqWQ/0yAMA8sqxpqmNAeXvd+GPkxSnkm8W2n22y5NMbNhXWXxrkwxhuTTPIf5OMy8AxP8FOeQShEwWNdhaGr0a5jnJbnVH4dZdmBinGhCWKKc8mtZR4lucjn6FFzKJy6X9RkF5uoS6WNZUthIaKaQ1d27Z9o+w3Wag6fJbftzbmaF0edMn8NCby4fvpab48+e3kJP08n259yMCuMv9Fpx9TR3sfFruTn+EqeUaCLb/sRz8yiMv66TW1e67fj4tdwcf6W3yIW3JfvU7AlNg3fTmtdt9sHxodwav7h5a0jOTZYwcAjTEtzrHVAHruXmwJ7emxDv531yloTxY5rK4mgp4uPXcnN8uguXJc73T/7c3AjjpzJlmlFoAmLj13JzfLrt55Tu170/Nx3C+LQWJ0dTDx/+UW2OTlNUcel+12u3/c78h70qNS/FU5PGh6/l5viFGkFqNfztz9FJL1x/fW/vb60mb2IbjXijsb78rtGivzRbdDrkZLPPjoDXUsdwt3O8t9T3dv0b1o+GyWcXci7b+1ao7Xg9GN7CwN/C3/zpf5/+dfU/uv7y05/+fGXz6Ksy3Y3mrk0Ps/E0M4U43xor1jn7OC3J013Dzxbq7JzgdZ7dZvOIxw9kavfLqOJc7opzPaI4+og3zwlHPcd5+iTn7cMQ1x3U9XaAmrt1WagroDfmRJu0tyDTR0AqQbeUgMG6rl3U3S1pSWtcqHEz+U4IiSbY5aZNDAbrOgx1dzP9+zyn4k40SntLdSw02y43c2IwWO8IKbVSZSUmmtYXk/WEtF3Dq7iDXnhdh0l5SqSkS5qpwzaJTyiOZuL16TZndR2GDgsLjb/E291k0B86dVIGAfJW0yHKuk2M0QdHq5DJfMjFaZba5hgBgnUdZvGTI/2ZM63yJwx5b6lfCy2r7iZQDAbrOsxKvdjsXaQLazkxv+ys/JGaxdV7eRNhWf9likvTTOLjwupt4oOLE5rPSjOGLO9OuvQJkZfQRf66AoxbEKIwDQIW3YMkjEGJEIY5EcDoUiRhDH6EMEyQAEY3JAljkCVsQ5gtVZiOLgmYIXNCCqZOQKG7k6QwaBTCMI8CGF2kJIzBqRCGSRXA6FYlYQyChTBoWMCiKpZEMdgWa59Rt4BF9y0J8+7q1TKFVudPlrMvES9Nidh87aSP8EOYfimjdPQruEI355J9ydmnEf8KR/2LmilaVfOyipWf1kta2NbM+6Rvsc5OCl5n378eP1DmuPrP4V/6iDf/igf9i9SaPkqai2VPgnW9KaH+ku4JAnH5zOOM3UdN87Q9QUlPD5ugrsNQj5kDNY7UescTzdpOKxBpac1lm7wFDNZ1GOoxCZ0+8njifdlpBJL3pCszzVDiUsa6/vDLLVNIZGqeZv8TDzZ2GgHqyElX5iw9g9V1mOAm76iby7QunlDBnX4gbc8X0/x8k2Ndh4l+IiElcQ/xzIONnX4gbY8YHS0UggXKOkqKt8lx3t7GE/39TjeQtmeMZSlBPC1ldR0mZ+pcljWWvE05FgdL22NGMtxF/I6H1XWYQoelNTpHbfcJX9/pB+h4Ilhj9nJZgHrnQfI63booUpJ0wtd3NAzXKNCwuLUYsrz/dJ06ulxy8K8LwbiGIQpqGLLoGiZhDBqGMKhhCKNrmIQxaBjCoIYhjK5hEsagYdiNoIYBTEfDBMyQhiEFahhS6BomKQwahjCoYQija5iEMWgYwqCGIYyuYRLGoGEIAxqGLKqGSRSDhrEuGjQMWXQNkzDvrmEtYWgJANnOvku8NF1iM7eTWsIPYRqmjNJ7CkZKm12Z55l6sXVEw+JRDcuJOvJ1+4jFbila2Px93yA7X6izk4LX2dewxw/MJOrz59AwfcSbhqWDGpazI29JUW5cYnV9Uxl1mTEl6tbWUE70azutQC6BvIW6M3FVs7oOQ41IcNl5umHPPF/Z2/Y3JzKX7WIVMFjXYagRcSXHefXrmecrO61AXujKcznJNwbKnZ1/NHYg9LCc2W+30wfk7alnyeL2eeF1nWVN07xQs1DSfOYhy047ULannjR1P93jWFdhiisTrYt0bXl35iHLTjtQgqe1flsn5PZMqOswNDnQhUXWPqd8Qgl32oGyPfVM5FHiIS6r6zDUjMQy05RIk/YJc99pB8r21NPNIYlJhtV1GBqdmuhMV42fT5j7TkNQtqeeNJN78bseVtdhbv96XgNNeunEJLPjYbhIgYflRDOHLO/eS9GTjKT7L4lnk4chCnoYsugeJmEMHoYw6GEIo3uYhDF4GMKghyGM7mESxuBh2I6ghwFMx8MEzJCHIQV6GFLoHiYpDB6GMOhhCKN7mIQxeBjCoIchjO5hEsbgYQgDHoYsqodJFIOHsTYaPAxZdA+TMO/uYS1jaBkA6c6+TLw0ZYIOOesl/BDmYcooHQ+j9njyS3ZxCavLIx6WjnpY3UlJjTDdhOF1l0XdSQl1FrRK6zKFpdyWvvoqWH042N4gt1XnVNDqcky/moPdzCufDlqx9wXL22cUWqstD1rFkqknWV1MncVWC1oxEKiqHDxodZhDDVoxECyrJDxodZhEDVoxEiyrJDxodZhEDVoxEiyrJDxodZhEDVoxEiyrJBC0OoyhBq0YBpZVDB60OkyiB634zIZ1lUUErQ7D6EErDoN1HYYHrQ7DqEErMeXXso7Cg1aHUdSgVaQrleROJj6g3Mo8bL+0XHzpd2Bq1CrSJbrt+uWRi1ptjr7GiVb3ftOlBq3oraNLLcrEB5Rb4yeXpxxLv89Sg1aJrkO/0mvNfPxabo5PP03v0n34MBq0SnTtuZxEzK5Wm6OHdQrkvV2jVtNWiRq4ddsWwGN2UG6OT+2x93NfotW0VaJ2b6Z1QMTsoNwcP4dppZa7681q2ioVartiljE7KDfHL2labotXR5XVtFVa3JTWLGN2UG6OTzNVWU/Of9ishinmImN2UG4OvD1joZ/uCvFA0Io3nLudNc9ZtTp3ccTJVp8dUV9KG+FUyCq7dD/WyXt312yCIWjFO+e6S5GdL9TxtOBldt1GhJ4GBccQs9qznHI+ZiWuOqjrzQCPWVlEB+JUHAbrunTxmJXFdiBOxWGwrsPwmJVFeCBOxWGw3tFRFrOyOA/EqTgM1nUYHrOyaA/EqYSnQ12H4TEri/y8Rqo4yFtNh+AxK4v3QJyKg2Bdh+ExK4v3QJyKw2Bdh+ExK4v31DwVXw+grP8qhcWsLNqDSxPznho+6IiPCB9YHAhhUIKARbUgiWIQIlxrmRFVlo4SCRiLHSEM0yOA0f1IwhhUCWHQlYBFlSWJYvAmRGHiBCy6OUkYg0QhDLMogNE1SsIYjAphmFIBjO5UEsagVwjD/ApgdMGSMCOuxbpnlC2g0G1LUry7eLU8odH485RVyyykrJ10EX4Iyld7jHMRq0H7GolZsTOGzYnsjKGO5wUvs2tfIvL0GexLH/FmX/P5kBW/KrCutyQ8ZGV7zPQIU4kHTVDXYXjIymJfEKbiMFjXYTBkZXEvCFPxCxnr+oMvHrKyuBeEqTgM1nUYHrKyuBeEqTgM1nUYHrKyuFdNU3EWKOsoPGRlMTAIU3EWrOswPGRlMTAIU3EYrOswPGRlMTAIU4lFAeqdh8gsZGWRMFyhUMIgetCRMBE9sEgYwoCEIYsqYRLFIGG45KKEAUtHwgSMRcIQBiUMYXQJkzAGCUMYkDBkUSVMohgkDFFQwpBFlzAJY5AwhEEJQxhdwiSMQcIQBiUMYXQJkzAGCUMYlDCE0SVMwoxIGGuiQcKQQpcwSfHuEtbShUb/zzNWLcGQ2nZSSfghKGHtMc4FrAYlbCRkxXdK1Z2J7IyhjucFL7MrYSLw9BkkTB/xJmHL+YgV39eGdX07GY9YWSQMolQcBus6DI9YmTb81SgVh8G6DsMjVhYNq1kqzgLlzp4/jFhZHAyiVBwF6zoLj1hZHAyiVPwOx7oKIyJWFgeDKJXYmAl1HYZHrCwWBlEqDoN1HYZHrCwWBlEqDoN1HYZHrCwWBlEqDoN1HYZHrCwWhksUWhgEDzoWJoIHFgtDGLAwZFEtTKIYLAzXXLQwYOlYmICxWBjCoIUhjG5hEsZgYQgDFoYsqoVJFIOFIQpaGLLoFiZhDBaGMGhhCKNbmIQxWBjCoIUhjG5hEsZgYQiDFoYwuoVJmBELY100WBhS6BYmKd7dwlq+0BAAnrBqGYY44qyT8EPQwtpjnItXDVrYQMRq21ZH7nffX1F3UdYyC1hFOjAur0FE2LyJ5Z2I1dur3RI/+XuOWInBbua1no5Y4ftSq377UF/fll7Ayi8zfaSRuu/OUqsFrBDjUdQpeLzqMIUar0KMWtU5eLjqMIcarkKOWtU5eLTqMIcarUKOWtU5eLDqMIcarEKOWtU5IFZ1GEKNVSFEreoQPFR1mEMPVbG5rJZ1EhGpOoyiR6oYSi13UHig6jCKGqjiE/xbtQPC41SHQdQ4VXDbU/tZRjqg3Eo2BEe3GH1O3UZLjVMFvz2on2WkA8rN8T3dWrMmbmqSKsTtsfwiIx1Qbg4c6HaKvt9OqUmqkLYn8Yv85iQoN8enlT+tvv+fNVCTVCFvD98XmaODcnP8THdODn1xVrNUoWwP3FeRo6vV5ujUzAUf+q6sJqmoZ5y2bWIiRwfl5vhzphUu9PVYTVJRPznN0ckcHZSb4y+FVrbYN2I1SRVdoE7ZiRxdrTZHpxlqXmNfgtU4Fc1hU8pO5uig3ExRekdLWex770CcijWX+100j1M1unR5xKm2nsev6iupI5yKU8VQ7gdnefvuWkw0xKlYn1z3I+L54sZGPCvcCLnrMSLcNCgzhjjVntHQVXg6T8Uvu0e50wvwNJXFaiA1xVBqueNXPEtlURvITDGUWu6g8CSVxW4gMcVQarlnnSxHZREcyEsxlFruoPAUlcVxIC3FVfxR7qDwDJXFdF7zUgzjXuog8ASVRXIgKcUwarmDwvNTFsmBnBRDqeUOCk9PWSSnxqTY9P+odn5PwrJTFsdh6xBKTk0UdCxHJAoswoMwzHgARlceCTNiP0jB9AcodP+RFAYVQhjmQgCjy5CEMXgRwjAxAhjdjCSMQZIQBi0JWFRNkigGY0IUpkzAojuThDHoE8IwfwIYXaAkjMGlsEFFmYI0pGpTEsUgVojCzApYdLWS0cx3t6yGFLS6fJ6damjEk5mdEg8RtkLTUsY4l50aVK2R7BSeMew6xDPG7Yt4WrjdcVe1RJLpM6iWPuJdtfz58BS7LGq505Hw6JTtAdIjIsUfIT3KHRQenLKoFgSkGEotd1AwNmURLYhHsWu4ljsPtHhoyiJaEI5iKLXcQeGRKYtoQTSKodRyB4UHpiyiVZNRjORR7YDwuJRFtyAWxUhquYPCw1IW3YJQFEOp5Q4Kj0pZdAsiUXwNeJR7D4RZUMpiXGw5AuOC+EDHuER8wGJcCIPGhTC6cUmYEeNCCjQupNCNS1IYjAth0LgQRjcuCWMwLoRB40IY3bgkjMG4EAaMC1lU45IoBuNCFDQuZNGNS8IYjAth0LgQRjcuCWMwLuxTwbgw+qgal0QxGBeioHEhi25cMof57sbVcINWs8+DUg2beHK0U/4hklVoXMoY54JSg8Y1EpRiu57qDkM8Y9yqiKeFWxt3jUvElj6Dcekj3o0rnE9KsS1qtdzZG8ZzUhbjgjwUQ6nlDgpPSZn27dU0FEOp5Q4Kz0hZnKuGoRjJo9rbuocJKYtwQRKKgdRyh4TnoyzCBTkodmPXso4i0lEW4YIUFN9Z+Sh3UHg2yqJckIFiKLXcQeHJKItyQQKKodRyB4XnoizKBfknhlLLHRSeirIoF1uPQLkgK9BRLpEVsCgXwqByIYyuXBJmRLmQApULKXTlkhQG5UIYVC6E0ZVLwhiUC2FQuRBGVy4JY1AuhAHlQhZVuSSKQbkQBZULWXTlkjAG5UIYVC6E0ZVLwhiUCxtVUC7MOarKJVEMyoUoqFzIoiuXDF2+u3I15KDV7fNUVEMn5BHnBETEqFC5lDHOpaIGlWskFRW3PSqvGydg++SjzFJRnhb8NL/GBuuLsPJeKurxaqcCUdtbdTkViHqMc5ereD4MBW8HRqSm+PZu9MJQ5Dbz4sNwDAoAIBuljc9jUAfG1wNQAICxKI2AB6AOEOjRJyDAQJRGwKNPBwj00BMQYBRKI+ChpwMEetwJCDAEpRFA3OnA8HrQCYbH+JM2PA86HSDoRJxwYsLkk8YgIk4HIDrhJoTAzJMKwcNNByD0WBOboWvYSUXgsaYDCHqgiYTdhedgxVu1nSuhZjP3uyQ1zUS9SClBfjvRW7EZapipt8z9rkjNM2VS8hBkpKJWW4On7auGc78LUsNMJVMLEOX3EtVqa/CyfbVw6f+HA9Qk00yvlKJMsNVqa/B5+yrh0jddNca0UL9BnZCIr9Vqa/Bl++pgzd/U+JJ3blq3TcM8vAbl1rjr9i3Bc99l1fSS99t3AieZXYNya/htdnRh7uurml4iz5vKkmR2DcrN8elFlmXpG6uaX6JVY6JbVWTXarU5ety+A3jpS+pIegm7wf1uV6SX9rtpecSp9pv9PLySOsKp9BLNJq8Hy7t21zaSJb2E7S1sIoTzhTI7K3iVfd+QWaIx6Tj4X2FoDnY3jzSQWWIXG0SZ1IWeZ5bG5APTSgiBISZVgHhaacxAMKeEEBhfUiF4TmlMQjChhBAYXNJVkCWUxjwEs0kIgZElFYJnk8ZUBFNJzIkhrKRC8FTSmJC85ZEQ4C2ipA7O80hjLoJJJATAgJIKwZNIYy6CGSSEwGiSCsEzSGMuAukjnL4hk6T+eoKlj8ZUhKUUwEUwpKDJyFN6Y9hL8JtBQEzgG1U0M5GZgHFJAQ5mKRVE1xT5zS7jxgIkTFkqie4sgsSgL0DC/KWS6AIjSAwuAyRMZiqJbjOCZERssF1iZlMZOmojIAyWgyxMc4BF9xzBYlEehGHOAzC69EgYg/8gDAoQsKgGJFHeXYYavXurGRcho/1u/0mgTvkBP4AJkTLGuZDRoBENhYzgjHGTH5wxlNlpwavsG5GM/HyvRtQc7G5EeSBahBcDJo7UdoNHi0Yfx9RQEXsgA1kjFYKHisaMCONECIEpIxUC40RjPoRBIrxOMV+kPhjiQaIxH8IIEUJgskiF4BGiMR/C8BBCYKZIheDhoTEfgtgQMkCYSEXgsaExK8LAEDJgjkiF4IGhMSvCqBBCYIJIheBRoTErwpAQm8MhO6Q/NGUhoTExYmGCKkYsS6CJ0VPIYliM8Ns6qhjht5xoYiS37o+LEXCgGAGILkby21bGxQhIUIyARBcjQWIQIyBBMQISXYwEiUGMgATFCEh0MRIkI2KEXROKETB0xEhAGMQIWVCMkEUXI8FiESOEQTFCGF2MJIxBjBAGxAhZVDGSKO8uRo0WvtWTiyzQftP/pFKnNIEfwMRIGeNcFmhQjIayQLgNCLbiwRlDmZ0WvMq+GMlkzvcqRs3B7mJUBhJAuEcLg0HqFimeABoTI8z+IARGglQInv0Z3KwGqR+EwDCQCsFTP2NqBHkfZIAUkL5fDfM+Y16ESR9EwACQysCTPmNehBkfvGEx+qNBiIzPmBdhuodtHoTQjwrB0z1jZoS5HoTAuI8KwXM9Y2aEiR6EwKCPCsETPWNmhFkehMCIjwrBszxjZsT2/FczYlv+NTN6ykIMmxF+g0Y1I/zmEc2M5A77cTMCDjQjANHNSH4DyrgZAQmaEZDoZiRIDGYEJGhGQKKbkSAxmBGQoBkBiW5GgmTEjLBtQjMCho4ZCQiDGSELmhGy6GYkWCxmhDBoRgijm5GEMZgRwoAZIYtqRhLl3c2o0cO3mnIR2dnv+uUR5zyBH8DMSBnjXGRn0IzYTPDV5f+KRZbWCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKNjM2OQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcGVxpAHGiEmcKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzk1ID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk0ID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjIgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQwID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDEgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0NoYXJQcm9jcyAzMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NCAvY29tbWEgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbgovZWlnaHQgL25pbmUgNzIgL0ggNzYgL0wgOTcgL2EgMTAwIC9kIC9lIDExNCAvciAxMjEgL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDMwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyOSAwIFIgPj4KZW5kb2JqCjMwIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjI5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjMyIDAgb2JqCjw8IC9IIDMzIDAgUiAvTCAzNCAwIFIgL2EgMzUgMCBSIC9jb21tYSAzNiAwIFIgL2QgMzcgMCBSIC9lIDM4IDAgUgovZWlnaHQgMzkgMCBSIC9maXZlIDQwIDAgUiAvZm91ciA0MSAwIFIgL25pbmUgNDIgMCBSIC9vbmUgNDMgMCBSIC9yIDQ0IDAgUgovc2V2ZW4gNDUgMCBSIC9zaXggNDYgMCBSIC9zcGFjZSA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAveSA1MCAwIFIKL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAzMSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTEwIDIyIDAgUiAvSTExIDIzIDAgUiAvSTEyIDI0IDAgUiAvSTEzIDI1IDAgUiAvSTE0IDI2IDAgUgovSTE1IDI3IDAgUiAvSTE2IDI4IDAgUiAvSTIgMTQgMCBSIC9JMyAxNSAwIFIgL0k0IDE2IDAgUiAvSTUgMTcgMCBSCi9JNiAxOCAwIFIgL0k3IDE5IDAgUiAvSTggMjAgMCBSIC9JOSAyMSAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMjEgKP3nJPjmIeTjGLLdLK3cMJ3ZOlfGZSGNjFwoe45FNoFGMH1HJ3dHJXVIInNHEmVHEWNGC15FCFtFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTIgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3auQ6DMBAAUec+CLn5/19NO83CroKQosx0tmw/V8gFbUBrNEx3R5x/oWhv09XV1dXNu1/UUGq9rq6uru4ibsqqXk5XV1f3n90nKr7bH6h8B11dXV3dcfeIokVXhOkDuiFdXV1d3RlcDjYos7lYh3R1dXV/xuX7+YIS52xR9Q66urq6uhMuByeU2NujN4rW75Gurq6ubsGNCn6YW6HMMUxXV1dXt+CeEeeDj/4O6erq6urO634A3m/vUwplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjE4OAplbmRvYmoKMTQgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyMCAo/eck+uYi9uYf4eMYcs9VZ8xcXEvCbEC9cj1KiT5IiD9Fh0U0f0gZa0cSZUcPYkYOYUUGWkUFWEQDV0QCVUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA1MyAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7djJDoJAEEVRnGcR9P+/1e1zURgMmGjO3XYVp5cdmsf3ajIul8vlcrlcLvcX3WuUQ6tojjtwuVwud9i9R220jYrdW1R9fx9xuVwud4RbLcz8tudyuVzuG3cdjdw9Rlwul/u37jnKg0PURTGST+9c3UVcLpfL/dCtDhZRNVNU3YfL5XK5E7in6BLFSB/lav6X3kRcLpfLncBdRtVMUfHMf4nL5XK5w+4TJWTCCgplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjE3NAplbmRvYmoKMTUgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAzMyAo/eckp9szldc/TcJrXCmvfx6ZiiKKjSSFjSxyjjNgjTRfjTdZjDtQij9Fh0M6g0Q5gkQ3gUcldUgic0ghckggcUgabEcWaUcUZkcSZUcRY0YMX0YJXFxFCFtFBlpFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTQgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ZuQ7CMBAA0XDf930l+P9/ktJTsAlBNEgzZbzOS4UlU6Tf9ETR84Lp6urq6ta7F8QNM3RCGDkjbl2gMeKMrq6urm6Du0RcOKLgRz9yeyg6L3R1dXV1G9w+KtEO8Vy45baIWw/ogXR1dXV1W7hTxAU+vyKMTBC38khJQbq6urq6De4AcaEMWuWCz0lzpKurq/v37hDxMoKXF7xQrnJrxHfuEcYrXV1dXd0WLoe40EE8FzByR9zKcV1dXV3dL90R4hDvN3hGYGSD+E7eb4T3z7q6urq69W4XcYFWeh//H+Tz6LzQ1dXV1f3cfQHXuXfbCmVuZHN0cmVhbQplbmRvYmoKNTQgMCBvYmoKMjQxCmVuZG9iagoxNiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDE5ICj95yTa4hjU4Rqt3DAfk4shjI1cKXmOP0eIRyp5SCFyRxhqRxZpRxRmRxJlRgteRglcXEUFWEQDV0QCVUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA1NSAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7drJCoMwGIVRO8/a4f3ftcteF6kVEpByvuWP5OxMCOlebeui0ZzL5XK5391r1EeHKOeXT6doFz2jRzREXC6Xy51w82d9jCrtC5totC9wuVwu93e3cV3pEM/lcrlcLpfL5XK5XC73/9xVVMnqC3G5XC53hnuOKrnrKOdcLpfLnXDv0T7Kj7ZRYf1blPN8v8HlcrncGW5hnRYt7j6Hy+VyF+y+Ac5gfUUKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iagoxNjkKZW5kb2JqCjE3IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTEgKP3nJLLdLJDWQ1HEaDW3eCGmhSClhR6ciR6aiSCQjCOJjSt0jitzjjBnjTVdjDdYjDpSizxOij1MiUJAhUU2gUU0f0YxfkYtfEcqeUdcKHhHJ3dHJnZII3RIInNIIXJIIHFIHnBIHW9IHG5IGWtHGGpHFmlHFWdHFGZHEmVHEWNHD2JGDmFGDF9GC15GCVxcRQhbRQZaRQVYRANXRAFUKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDU2IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2slSAjEYhdFWHABnRRQcwAkEnH3/d3OZs+nO2qr7Lbs6nKySrr9oTuiCXuiezkunLc1oTb/UxI0bN27cbndMX/RO3zQp3dI+af3QkOLGjRs3bsW9pFfa0AdNS1fUpzdy6SHFjRs3btyK+0iftCLviGXJT3u2M/W5SxuLGzdu3Ljd7h21uT6fl9jC8oB4Ze4dsUNx48aNG7fi3pC/73DEj2/O/Cc6o2fyXtimuHHjxv03LvPkia4LnD9znD/QHjkacemA4saNGzduxR3RpiX3wzavaZccY7v0iOLGjRs3bsV1/uwh3nYvLErOmY/JT37/ErJFcePGjRu34jos9iXvBZ/zOltYOH92Lu32exQ3bty4cbvdP+YwC/sKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iagoyODQKZW5kb2JqCjE4IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTcgKP3nJDu6dTK1eid9jh6fiB+WiyGOjCZ/jlwoeo4rdI4rc44scI4vao0xZo0yYo00Xo02Wow3WIw4V4w5VIs6Uos7UYo+SIhAQ4dBQoZCQIVCPYRDO4NDOoNEOYJEN4FFNYBFNH9FMn9GMX5GL3xGLXxHLHtHKnlHJ3dHJXVII3RIInNIIXJIIHFIHnBIHW9IHG5IGmxIGWtHFWdHFGZHD2JFBlpFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTcgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ax1LDMBiFUdN7ryGQQELvJQnw/i/GUmdja83M/ZYaJ0crW/OPmhV6pgu6prXSEfXonj7ol5q4cePGjdvtbtI33dEnjUo3dEXnNKF5ihs3bty4FXedpnRL7qFf8nOxQ0N6oC2KGzdu3LgVd4NmdEYte2AL/SfyPO/6KsWNGzdu3IrrQ57bx+RwhOUXOqQDeqQlihs3bty4FXePfmjcAryV/M9jcg/OwBcpbty4cf+Nu0u+n51pOH8elHS36YTc8jLFjRs3btyK60vc+bODiXe6LDlbPiWvfrzSHMWNGzdu3IrrQ57bvWvnJQyWHXvwuRhwxWP0RY3FjRs3btxut+3c7o99ubPszGSfHGl7/F+guHHjxo3b7f4BfbsVlQplbmRzdHJlYW0KZW5kb2JqCjU3IDAgb2JqCjI4NwplbmRvYmoKMTkgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAxNSAo/eck8+Ue7OQa4eMYN1iMQUGGRDeBRyx7SCFySBpsRw9iRQZaRQVYRANXRAJVRAFUKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDU4IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2rsOwjAQRUEnQAiv5P//ljK3WYQVBVHMKa1dTWnJcpuiW/SMrtF5a47u0SV6RGvUuFwul/vZXYuWqJopekV5PkZcLpfL7XB3WN80RFwul8vtcA+uZVwul8vlcrlcLpfL5XK5XC6Xy/29m382lqIYr56rq9VTxOVyudwO9+D+7j7icrlcLpfL5XI73TfuScxWCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKMTQ3CmVuZG9iagoyMCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQ4ICj95yTn5Bm/3ySd2TqB00wemokgkYwiio0tbo4xZI00X401XFyMPE6KQUGGQzyEQzuDQzqDRDmCRTaBRTWARjF+Ri98Ryx7R1woeEcnd0gjdEgic0ghckggcUgecEgdb0gcbkgabEgZa0cYakcWaUcVZ0cUZkcSZUcRY0cPYkYOYUYMX0YLXkYJXFxFCFtFBlpFBVhEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTkgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3aNXJDMQAAUYeZmZnx/qdL+V9j/zozu6Uj66mSNHImJ3RLN7RNm0PX9EYrdE+/NMnNzc3Nne365UtyoifaHXonl7ZHH7RMubm5ubkjrn9wE/+iT3od+qFjcj1OM0e5ubm5uSPuKV2RZ8EFHQ090jmtkmPWKTc3Nzd3xHUTvyM3dM8Ohngu7NMZOf0i5ebm5uaOuN7Jn8lJHcM8DvFceCCXP7Hc3Nzc/+K6gU573zDuw7qH5NXbr85Tbm5ubu6I653Zzd3fB32k4DnEa/XOlDxqlig3Nzc3d8T1McL/r3shPz8YcmlbtEEueY1yc3Nzc0dc7+0+iPiW4gHAkG/y3u7PjE6/QLm5ubm5s90/aeKrPQplbmRzdHJlYW0KZW5kb2JqCjU5IDAgb2JqCjI3NQplbmRvYmoKMjEgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA0NiAo/eck6eQZ1OEax+Afwt8ir9wuoto3d9BSV8ZlMWSNO1CKPUyJPUuJPkiIQESHQzyEQzuDRTWARTR/RTJ/RjF+Ri98Ryx7Ryp5Ryd3RyZ2RyV1SCJzSCFySCBxSB5wSB1vSBxuSBpsSBlrRxhqRxZpRxVnRxRmRxJlRxFjRg5hRgxfRgteRglcXEUIW0UFWCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2MCAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7drJTuNAFEDRNDTzPM8QCDN0///nscxZxPEa6d5lZOvU6lWpnMk2XdA5HS3ukJ7olPx9iya5ubm5ucvdPfqmT/qg6bxr+kfv9J8mlpubm5u73HWIv5ADfUaP8+7pld4GWqHc3Nzc3BF3l2YDuQasY3L+s3VMv2iDcnNzc3NH3BNyuD/TgPtALtPtxX3hL+Xm5ubmjrhn5EC/IwHO7T7iXcpsoHXKzc3N/TXuAXnP7GB1bt8uznHu415jr1Jubm5u7oi7T15GuAaHPudnvw/6qkv2u+Efys3Nzc0dcXfIlx3oXlhczbskl+bjumuUm5ubmzvi+v8NZv79wPncbmg6kFcym5Sbm5ubu9z9ATdXU+AKZW5kc3RyZWFtCmVuZG9iago2MCAwIG9iagoyNzQKZW5kb2JqCjIyIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTQgKP3nJMfgH7/fJLreJ63cMKrbMprYPI3WRIjVR4PTS37STnLPVW3OWGvNWWLKX2DJYE/DaU3Ca0nBbUfAbkW/b0K+cTm5dji5dja4dzW3eDO2eTK1ejC0ei+zey6yfCyxfSuxfSqwflwpr39cKK5/J62AJqyBJauBJKqCI6mCIqeEIaeEIKWFIKSFH6OGH6KGH6GHHqCHHp+IHp6IHp2IHpmKHpeKH5aLKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDYxIDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2clSFFEQQNEWkFGQSUFlkLGBVmTS//80l3UW0LUm4t5lR0edt3pZkTW5ozWa0QHdD13QN/pHO7RKk9zc3Nzc+e41HdEhPdHD0C/6RD/Isy1Sbm5ubu6I+51u6Iz+EMf8TRvkkX3kEuXm5ubmjrhe4pfkeZwdzAV/PqV9ctR8pNzc3NzcEddL/JmOiV3K/fmQq5dN2ibPtkK5ubm5uSOuO+1H+knuxmevt0e75F7lA+Xm5ua+G9f72YWFL8Tun6dDb31a/Er8fbpMubm5ubkjrjsNd84uJnx/Zr/hMT+To8bxskC5ubm5uSOuH/DcObuXdu/xd8jjbNEVndDEcnNzc3Pnu1/ohbzQfUFndNySc8H9s2NnnXJzc3Nz57v/ATJMlsIKZW5kc3RyZWFtCmVuZG9iago2MSAwIG9iagoyOTMKZW5kb2JqCjIzIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTcgKP3nJPrmIvjmIfHlHOfkGdriGM/hHM3gHcfgH8XfIb/fJL3eJrreJ7fdXCmy3Syv3C6t3DCq2zKl2jWi2jef2TiX2D6V1z+L1UaG1EmD00uB00x+0k580k950VF00FRyz1VwzlZtzlhrzVlpzFtnzFxcZMtdYMlgXslhW8hiWcdkVcZmUcRoT8NpTcJrScFtR8BuRb9vRL5wQr5xQL1yPrxzO7p1Obl2MLR6L7N7LrJ8KV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDYyIDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2sdSAkEYhdExixkREyqSDGDOvP+LuZyzGbpcWnW/JTXTp2cDXT9TXdEl9WmDenXn9EEndEYTquLGjRs37mL3jtrUpTlx74DW6Ybc2yHFjRs3btyC+0o75EU/9FR3S0s0I5fxUeLGjRs3bsH1om5Dj8Q2PYdfk78XR7RMcePGjRu34D7TKXmD53Yu98i/Sp7bO7RGcePGjRu34L6QQ+pjeqfPunvapRHt0QrFjRs37r9xH6jT0DdN68ZUkZ873xhS3Lhx48b9g9v0/6Au4xDX3yS2NnUZXwOJGzdu3LgF18P3Be3TFzGKds68TS7jo/jeXdy4cePGLbhv5MtwB6TLiMUt+53vXGWLWhQ3bty4cRe7v7HBa5QKZW5kc3RyZWFtCmVuZG9iago2MiAwIG9iagoyODEKZW5kb2JqCjI0IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDIgKP3nJOTjGNThGsrgHqfbM5XXP5DWQ43WRIvVRojVR4bUSYPTS4HTTH7STnzST3nRUXTQVHLPVXDOVm3OWGvNWWnMW2fMXFxgyWBeyWFbyGJZx2RXxmVVxmZTxWdRxGhPw2lNwmtLwmxJwW1HwG5EvnBCvnE+vHM9u3Q7unU2uHcztnkpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNjMgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ZR1LDMABA0dB7CYReQgvt/gdkmccCG5bM/L/0WH5aSRp5ckvHdEEHNFvmKzye3dEhvdEkNzc3N3fYfSZfuiTnxliHap3SlNYoNzc3N3fE/aAtco94oM9lrvMb5DQ3yXdyc3Nzc0fcF/J87mD3CNxHeif3Aj+5Qrm5ubm5I66L+x55UXJPvO6Ud8lzu8+dQ25ubm7uH9xtcnF3j2BfWJDnc6fsWf2McnNzc/+N6yWy67M//+bEmuxQ194j+uksnZubm5s74nox4f/Bc/rF/fM1uY18syw3Nzc3d9j1mzvkh56I34kOvSKn7Fl9lXJzc3NzR9xX2icP3zfE657b1+mEvFdxC8rNzc3NHXa/AC80DFYKZW5kc3RyZWFtCmVuZG9iago2MyAwIG9iagoyNzYKZW5kb2JqCjI1IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNTEgKP3nJL/fJL3eJovVRnnRUXfQUmTLXWDJYCaBjiaAjiZ/jiGnhCGOjCGNjCGMjSKLjSKKjSOJjSSGjSWDjR+ihh+hhx6ghx6fiB6diB6ciR6aiR+Uix+SjCCPjCd+jid9jlwoe45cKHqOK3SOK3OOLHKOLHGOLHCOLW+OLW6OLm2OLmuONF6NNV2MNVxcjDZbjDZajDdYjDhXjDtQikQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2NCAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7drJUsJAFEDRgIgKAgqCzLPMg8D//xvLvgs6VcmOqns/ICervK6XTvroiqZo+LgGqqIB+kQ3lOjq6urqprv/iA/9RhW0DY1REf2hH6Srq6urm8E9oh6qoXe0CvF1XtECtZGurq6ubgb3hH4RD9wfaBPiXCghuh2kq6urq5vBPaAuqqPIXKAbmwu6urq6ujndPeIhm3OBLnYmdMtojnR1dXWf3uX5mfsNfp+5yFiH6L6gJdLV1dXVzemeEWdBE3G/AZevU0D8P6irq6urm9O9oC/UQhwAu9AMJQhXPLbR+xu6urq6uuku9yr8iI9QZK8yQW+Ie5Xo/Q1dXV1d3VT3Dl7q4M0KZW5kc3RyZWFtCmVuZG9iago2NCAwIG9iagoyNjIKZW5kb2JqCjI2IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNzQgKP3nJPjmIfPlHtziGNLhG8LfIrreJ7LdLJ3ZOpLXQYPTS37STnTQVHDOVm3OWGTLXVvIYlnHZFfGZVHEaE/DaUvCbEnBbUW/bza4dzW3eDO2eTK1ei+zeyyxfSuxfSetgCasgSSqgiOpgiKnhCCkhR6ghx6fiB6biR6Zih6Yih+Uix+Tix+SjCCQjCGNjCGMjSKLjSOJjSOIjSOHjSSGjSSFjSSEjSaBjlwoeo4scI4ubI4wZ40xZo0xZY00X405VIs6U4s7UYo9S4k9SolAQ4dHLHtHJXVHEmVFCFtEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNjUgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3aNXIEMRRF0TEzMzMzM7P3vyCHOg6mXRO66p0F6CrSV6m79oJPzKAZ68UChlHDIr5RSzfddNNNt7r7iAfYGsNZ4Zqb6EYv0k033XTTbaB7ix20YxYnxQp2MYEBfCHddNNNN90/uve4RAsmcVosYQ+D6MevuZBuuummm2519waH6MAUjgrnwjbG4VxIN9100023ge41ltEJH7i5t69iH25zCB9IN9100/033Tucow3TOC7cpufzCOqez+mmm2666VZ3n/CMJrgQW3NcbKELdb8PpptuuummW919xTvs+kPGRWF3A63oQ7rppptuug10rzCHHnhB511lDQeYxyjekG666aabbnX3B0KFEWAKZW5kc3RyZWFtCmVuZG9iago2NSAwIG9iagoyNzAKZW5kb2JqCjI3IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDMgKP3nJDhXjDlVizpTizpSiztRijtQijxOijxNij1MiT1LiT1KiT5JiT9HiD9Fh0FChkI+hUI9hEM8hEM7g0M6g0Uyf0YxfkYwfUYvfEYtfEdcKHhHJ3dHJnZHJXVII3RIInNIIHFIHW9IHG5IGmxHFGZHEWNHD2JGDmFFCFtFBlpEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNjYgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3aNw6EMBQAUTbnnHPO97/flp7GCEtbbDFTAw8a/GXIzuiNXuiEVqELyhAveUUflOnq6urq5rsd9EA7NETVUA9NURfxMrq6urq6CW4L3dAa0a2F6C4RH2WLdHV1dXUT3Aa6I55AtxKiO0N090hXV1dXN8FtIrobVMCdI7rRuV1XV1dXN9/lusC5PdFdILqF1iNdXV3df3ZT38+R/WfOz4X2n3V1dXV18902in0fHCG4fTRBurq6uro/cHnQE/HnuTEqhQaoGrmfI9LV1dXVTXDrKLYucG4vh2JzO/dVDkhXV1dXt7j7BeXl2/AKZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iagoyMzcKZW5kb2JqCjI4IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDYgKP3nJDK1eiSFjSOJjSOHjR6Yih+WiyWCjip3jitzjixxjixwji1vji1uji5tji5sji5rji9qjTNgjTRfjTVdjDVcXIw2W4w2Wow3WYw3WIw4V4w4Vos6U4s6Uos7UYo7UIo8Too9Sok+SYk+SIhAQ4dCPYREOYJGMH1GC15GCVxcRQhbRQZaRQVYRAJVRAFUKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDY3IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2sluwjAYAOFAC5Syl33fKdDC+z8eR08OcYLEBWnmGAl/OeW3bJJflKAO2qFTiI+76ICG6I4SXV1dXd24yx9XUB0N0DI0RW00Q3z9G9LV1dXVzXFXqIya6AfBGiGuP0acF1ekq6urq/uE+4laqI/gck/O9fk+PfSHdHV1dXVz3A36QA1Edx6aIM6FrOepuaCrq6urG3dxTrKsIc4F7tuxJr//RebCGenq6uq+jfvs9xlny1yf3+Gs841/pKurq6ub425RFX0j3g8uQtwnZ90P0k3dD+rq6urqxt0jKqEvxIX2oTXiGOGo4fY/9f86XV1dXd24+6JzlSL79gvS1dXV1Y27DySRyHkKZW5kc3RyZWFtCmVuZG9iago2NyAwIG9iagoyNjYKZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjY4IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA0MDkxNjM4MzYrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My41LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My41LjEpID4+CmVuZG9iagp4cmVmCjAgNjkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjQ0NjkgMDAwMDAgbiAKMDAwMDAxMzgwOCAwMDAwMCBuIAowMDAwMDEzODQwIDAwMDAwIG4gCjAwMDAwMTM5MzkgMDAwMDAgbiAKMDAwMDAxMzk2MCAwMDAwMCBuIAowMDAwMDEzOTgxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0OCAwMDAwMCBuIAowMDAwMDA2ODEzIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNjc5MiAwMDAwMCBuIAowMDAwMDE0MTg1IDAwMDAwIG4gCjAwMDAwMTQ3MDYgMDAwMDAgbiAKMDAwMDAxNTIxMCAwMDAwMCBuIAowMDAwMDE1ODIxIDAwMDAwIG4gCjAwMDAwMTYzMTggMDAwMDAgbiAKMDAwMDAxNzAyNiAwMDAwMCBuIAowMDAwMDE3NzU0IDAwMDAwIG4gCjAwMDAwMTgyMTUgMDAwMDAgbiAKMDAwMDAxODkwNiAwMDAwMCBuIAowMDAwMDE5NTg4IDAwMDAwIG4gCjAwMDAwMjAzMTQgMDAwMDAgbiAKMDAwMDAyMTAzNyAwMDAwMCBuIAowMDAwMDIxNzA5IDAwMDAwIG4gCjAwMDAwMjIzOTYgMDAwMDAgbiAKMDAwMDAyMzE1OCAwMDAwMCBuIAowMDAwMDIzNzk0IDAwMDAwIG4gCjAwMDAwMTI1MDUgMDAwMDAgbiAKMDAwMDAxMjI5OCAwMDAwMCBuIAowMDAwMDExODY2IDAwMDAwIG4gCjAwMDAwMTM1NTggMDAwMDAgbiAKMDAwMDAwNjgzMyAwMDAwMCBuIAowMDAwMDA2OTg0IDAwMDAwIG4gCjAwMDAwMDcxMTcgMDAwMDAgbiAKMDAwMDAwNzQ5NyAwMDAwMCBuIAowMDAwMDA3NjM3IDAwMDAwIG4gCjAwMDAwMDc5NDEgMDAwMDAgbiAKMDAwMDAwODI2MyAwMDAwMCBuIAowMDAwMDA4NzMxIDAwMDAwIG4gCjAwMDAwMDkwNTMgMDAwMDAgbiAKMDAwMDAwOTIxOSAwMDAwMCBuIAowMDAwMDA5NjE0IDAwMDAwIG4gCjAwMDAwMDk3NjkgMDAwMDAgbiAKMDAwMDAxMDAwMiAwMDAwMCBuIAowMDAwMDEwMTQ0IDAwMDAwIG4gCjAwMDAwMTA1MzcgMDAwMDAgbiAKMDAwMDAxMDYyNyAwMDAwMCBuIAowMDAwMDExMDQwIDAwMDAwIG4gCjAwMDAwMTEzNjQgMDAwMDAgbiAKMDAwMDAxMTU3OCAwMDAwMCBuIAowMDAwMDE0Njg2IDAwMDAwIG4gCjAwMDAwMTUxOTAgMDAwMDAgbiAKMDAwMDAxNTgwMSAwMDAwMCBuIAowMDAwMDE2Mjk4IDAwMDAwIG4gCjAwMDAwMTcwMDYgMDAwMDAgbiAKMDAwMDAxNzczNCAwMDAwMCBuIAowMDAwMDE4MTk1IDAwMDAwIG4gCjAwMDAwMTg4ODYgMDAwMDAgbiAKMDAwMDAxOTU2OCAwMDAwMCBuIAowMDAwMDIwMjk0IDAwMDAwIG4gCjAwMDAwMjEwMTcgMDAwMDAgbiAKMDAwMDAyMTY4OSAwMDAwMCBuIAowMDAwMDIyMzc2IDAwMDAwIG4gCjAwMDAwMjMxMzggMDAwMDAgbiAKMDAwMDAyMzc3NCAwMDAwMCBuIAowMDAwMDI0NDQ5IDAwMDAwIG4gCjAwMDAwMjQ1MjkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA2OCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNjkgPj4Kc3RhcnR4cmVmCjI0Njg2CiUlRU9GCg==\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"670.400919pt\" height=\"698.51625pt\" viewBox=\"0 0 670.400919 698.51625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:38:35.900026</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 698.51625 \n", "L 670.400919 698.51625 \n", "L 670.400919 -0 \n", "L 0 -0 \n", "L 0 698.51625 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 139.166136 140.921761 \n", "L 139.166136 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p8aa4e4f5f0)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACb0lEQVR4nO3dsUocURxG8b2zGwTBQuws0sSIFkEbIRhLQ9oQUiSkSWPrA1intLKx1M5nUAikMFWaBItIiCkkaCWbgI3F7OQJhP0WJi7H86v/M3Ph7G0uw2xZL6+bTqBaWkzGO4Nv36P5TinZfDP88t+eXkS3PliYzdYyZqq7XoDaY1ww44IZF8y4YMYFMy6YccGMC2ZcMOOC9dIL4rPiVAl/b0099Oi7qcvo1gcdz5Y1powLZlww44IZF8y4YMYFMy6YccGMC2ZcsPhsuaw8ieabLyfZAwbDnxWnXq69yi4o59l88A71KGY+T0fz7lww44IZF8y4YMYFMy6YccGMC2ZcMOOCGResV3rZ8XLVv47m2zspzm0cfYzmdx/PtbSS0Vw960fz7lww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRespN9b3vx5Gj1gZ24hmtftuvOPonl3LphxwYwLZlww44IZF8y4YMYFMy6YccF6v7dWowt2Wn7bszudfRqg7g//uufZ9tPo3vMfss8P13/+RvOp+sdZNO/OBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwcrzB2+iV1v3fn2KHvD+4Vo036YyMRHNNzc3La3k/3DnghkXzLhgxgUzLphxwYwLZlww44IZF8y4YPFnE3R3Di++RvPuXDDjghkXzLhgxgUzLphxwYwLZlww44IZFyz7r7d7Jj3LfTG73Mo6Rr2/OxfMuGDGBTMumHHBjAtmXDDjghkXzLhgxgWLz5b3z4+j+XH6JkY1ORnNx2fFVTebH9TZfMidC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjgv0Dd5lKYkvCAaMAAAAASUVORK5CYII=\" id=\"image43363a3710\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"m9309cc76bc\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"26.492682\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"38.353045\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"50.213409\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"62.073773\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"73.934136\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"85.7945\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"97.654864\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"109.515227\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"121.375591\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"133.235955\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"m22f4110ef6\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 139.166136 140.921761 \n", "L 139.166136 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 139.166136 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 139.166136 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_21\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(32.182131 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 313.844397 140.921761 \n", "L 313.844397 22.318125 \n", "L 195.240761 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pc31dc099dd)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACTElEQVR4nO3csWpTYRyG8fMlp9ahHZwUQwfxBqSSzTFQdYhL3cWCF+DFeCEOBtE7CGpxlS6FljoVOqlNjENvoG/xX+Hx+c1vwkcevuUQTpu03VVX6O3RPNpPR+Oik9RrfR/tV4tF0UkuDEq/Xf+UccGMC2ZcMOOCGRfMuGDGBTMumHHBjAuWPQy9gmfTF9F+eOs42i9PTy8/Hgyj7+5+L7N9y+7K/fnNaH8w/hHtvblgxgUzLphxwYwLZlww44IZF8y4YMYFMy5Yq/7f8rujz9H+6Wi76CTXoLVsvyr96b25ZMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWN/fuR19YHHyPdpPXr6K9uv9frSP3itR/Ox38WEr2veTw2if8uaCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhg7fWX59ED1K/btf+1rXQ+eRjt1z5+KjrJ9fDmghkXzLhgxgUzLphxwYwLZlww44IZF6z8tQnvj/ej/c7dByXn+B95c8GMC2ZcMOOCGRfMuGDGBTMumHHBjAtmXLA+fZXAYGMj2k+/PY72XXcS7i+vrd2I9qvzX0UnufDzyTjar8/m0d6bC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjgvXDzc3oA8uzs2j/5t4s2u91j6J9ovpZcSp9Vpzy5oIZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDl78TQ35O+X8SbC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwYwLZlww44IZF8y4YMYFMy7YH2KXSAfUpXc9AAAAAElFTkSuQmCC\" id=\"imagef5ebfc76cd\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"201.170943\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"213.031306\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"224.89167\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"236.752034\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"248.612397\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"260.472761\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"272.333125\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"284.193488\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"296.053852\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"307.914215\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_33\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_34\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_35\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_36\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_17\">\n", "     <g id=\"line2d_37\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_18\">\n", "     <g id=\"line2d_38\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_39\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_19\">\n", "     <g id=\"line2d_39\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_20\">\n", "     <g id=\"line2d_40\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 195.240761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 313.844397 140.921761 \n", "L 313.844397 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 313.844397 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 195.240761 22.318125 \n", "L 313.844397 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_42\">\n", "    <!-- Layer 1, Head 2 -->\n", "    <g transform=\"translate(206.860392 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 488.522658 140.921761 \n", "L 488.522658 22.318125 \n", "L 369.919022 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pb7822058fa)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADA0lEQVR4nO3dv2sTYQDG8fdN3rQKUhO1YkVpjQgSF8Ef4KSgQxfFwcnFwX9AN3c3RTq5Ci7iog5OIoh0iKWLPzpUBKml1C1N2lC09i7n1vmeIQiP38/85ELz7S3HcRcfL14sguBVa1yZh2qjIe3zblfaK9KxSWmfLS1L+zg6Ku2LrS1pr6oM9ej4p4hrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMbSzMtr0gemKvPSvnP1pLTf//qrtM/XN0pvi+pw/5crY2PSftBbl/bF9h9pz5lrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMaIayxOT92V7lvOllekL7j9bUnaP2mdkPZFlpXeDvu+4piSdvyB9NOHMMilOWeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrHYfPBIusDZvDcnfUG1Xpf2v880pX3t3afy47Mt6dhhfkGap8mj0j5b+SntubaMHcQ1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGMp26tdrwyFdq/toN+X9iPvP0v74vyp0tvKwnfp2ANpHUL/9IS03y3eA67izDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY+lguzrUL+jePCft9734Iu2LufL7zq0L0rEbTz9I+z1t7RER4oVfGWeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrG0eb3869JCCKHxTHvs7IHZVWlf7NIem1vJy1+hHZ/VHlOQi4/YjUm7Th9rI9Ke171hB3GNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11g6/FB8RZnwerUQQig2f0n7fK0r7ZXHOMSedh1d/Vtrz7VHSmSXtqW9ijPXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11hKiz+kD6jPcehdPi7t62+1b8g7a9J+mDbuH5H2nTvab3Nopi3tOXONEdcYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjcUr8YZ2s+3/JEZtL74KTz3+m9WP0p4z1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEdfYX2H5jaz0HdRpAAAAAElFTkSuQmCC\" id=\"imagef83aaa817b\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_41\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"375.849204\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_43\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_42\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"387.709567\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_44\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_43\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"399.569931\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_44\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"411.430294\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_45\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"423.290658\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_46\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"435.151022\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_47\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"447.011385\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_48\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"458.871749\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_49\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"470.732113\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_50\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"482.592476\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_21\">\n", "     <g id=\"line2d_51\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_22\">\n", "     <g id=\"line2d_52\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_23\">\n", "     <g id=\"line2d_53\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_24\">\n", "     <g id=\"line2d_54\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_25\">\n", "     <g id=\"line2d_55\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_26\">\n", "     <g id=\"line2d_56\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_27\">\n", "     <g id=\"line2d_57\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_28\">\n", "     <g id=\"line2d_58\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_29\">\n", "     <g id=\"line2d_59\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_61\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_30\">\n", "     <g id=\"line2d_60\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 369.919022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 488.522658 140.921761 \n", "L 488.522658 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 488.522658 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 369.919022 22.318125 \n", "L 488.522658 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_63\">\n", "    <!-- Layer 1, Head 3 -->\n", "    <g transform=\"translate(381.538652 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 663.200919 140.921761 \n", "L 663.200919 22.318125 \n", "L 544.597283 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pe66e57e082)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACEUlEQVR4nO3dsUpCcQBG8a5akU5BFOhQEA41ORWEY+AL9AxBBdEQPUNjNPQu7RK1NRVhQ0EEtThWg9Tm/g1iHs9v/rx/4XCXy0WL3WLvd0YT4fr9PtqXRvM19B8YF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGCVolKJPvB2uhXtG+c30b53uR3tm8d30T5RXlyM9oN+PzugVI7mnXoru3y01kQxLphxwYwLZlww44IZF8y4YMYFMy6YccGK9L3l8spydMDg4zPaT5OLl+y5+8naTrT3zgUzLphxwYwLZlww44IZF8y4YMYFMy6YccHiZ8tXr93ogMPVdrSfJqVqdbTXH+nVNVbGBTMumHHBjAtmXDDjghkXzLhgxgUzLlj8bFnj4+8ta8i4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwYwLZlww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGCV9APljWa0Hzz20iOmxkHvOdp36q1o750LZlww44IZF8y4YMYFMy6YccGMC2ZcMOOCFZ2l/egneX+/vqMDftqb0X6++xDti1ot2C5E1346akT79bPbaD9TZPdWaW4220drTRTjghkXzLhgxgUzLphxwYwLZlww44IZF8y/exuj9O/bfG9ZQ8YFMy6YccGMC2ZcMOOCGRfMuGDGBTMu2B+mJDPKQZP42gAAAABJRU5ErkJggg==\" id=\"image08be7ed1a9\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_61\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"550.527464\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_62\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"562.387828\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_65\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_63\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"574.248192\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_66\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_64\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"586.108555\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_65\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"597.968919\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_66\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"609.829283\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_67\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"621.689646\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_68\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"633.55001\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_69\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"645.410374\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_70\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"657.270737\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_31\">\n", "     <g id=\"line2d_71\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_32\">\n", "     <g id=\"line2d_72\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_33\">\n", "     <g id=\"line2d_73\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_34\">\n", "     <g id=\"line2d_74\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_35\">\n", "     <g id=\"line2d_75\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_36\">\n", "     <g id=\"line2d_76\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_37\">\n", "     <g id=\"line2d_77\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_38\">\n", "     <g id=\"line2d_78\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_39\">\n", "     <g id=\"line2d_79\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_40\">\n", "     <g id=\"line2d_80\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_83\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 544.597283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 663.200919 140.921761 \n", "L 663.200919 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 663.200919 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 544.597283 22.318125 \n", "L 663.200919 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_84\">\n", "    <!-- Layer 1, Head 4 -->\n", "    <g transform=\"translate(556.216913 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_5\">\n", "   <g id=\"patch_22\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 139.166136 318.827216 \n", "L 139.166136 200.22358 \n", "L 20.5625 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pc87b530a2d)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC9klEQVR4nO3dv2oUURxH8bmzk6hJFDQQowRL/yCIjfgGom9gJ2kFIfgAPoDkIWwsBDsRsbewEitJK4SQiBBdk911s7NjkwfYbxEhh/Opf3uZ3bPTXIY75eG1ja4KtLs/kvGqnD0TzXejv9F8b3Vl9rWHw2jt7Sc3ovm1V1vRfDccRfOLHxei+Tqa1qliXDDjghkXzLhgxgUzLphxwYwLZlww44I11XSafaIL59v2RNeP9otL9l9e2Au/69EkGu/C+fUrn6J571ww44IZF8y4YMYFMy6YccGMC2ZcMOOCGResaa8uRx8o/T8ndCnHer1sfvni7LN1iZb++Sh7hvrS+/Daw+t58XI9Wz6a1qliXDDjghkXzLhgxgUzLphxwYwLZlww44I1dT87J2I6HkfzJd0rDp9zLuOj2YfT54q7pWx+kq2fftdft6LjS7xzyYwLZlww44IZF8y4YMYFMy6YccGMC2ZcsPxMjFBpmuwD4fV0B4PZr6WX/ZfX3sxF82XhXDSf7i1vPPgQzXvnghkXzLhgxgUzLphxwYwLZlww44IZF6wpk/DI3FR4NEDXhY9vBq+T6wazb1VWVVXtX8+2Tpe+zkfzXcl+m9ff70Xz3rlgxgUzLphxwYwLZlww44IZF8y4YMYFMy5YUyXHDvwH6TEL0X5xna299m4vu5ZRdoRvFe6jf777Npr3zgUzLphxwYwLZlww44IZF8y4YMYFMy6YccGadjV4XVpVVfUgO8I3PqY2PcYheN1bN58dg7D17Hw0f/P5bjSfftc7m0+jee9cMOOCGRfMuGDGBTMumHHBjAtmXDDjghkXrClt9uzs9OAwmi9z2bkS6V50Cc6VqAejaO2qzvaW02eu22F2PaMVX/emY8YFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWLn/eDPasFzczc59mPu2nV3QYvbKtMPbl2eebedP9r984ctONN/t/47m234/mvfOBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwf4BUpqTtQLQo7gAAAAASUVORK5CYII=\" id=\"image80915286d5\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_9\">\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_81\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"26.492682\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_82\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"38.353045\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_83\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"50.213409\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_87\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_84\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"62.073773\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_88\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_85\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"73.934136\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_89\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_86\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"85.7945\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_90\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_87\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"97.654864\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_91\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_88\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"109.515227\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_92\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_89\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"121.375591\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_93\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_90\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"133.235955\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_94\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_10\">\n", "    <g id=\"ytick_41\">\n", "     <g id=\"line2d_91\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_95\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_42\">\n", "     <g id=\"line2d_92\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_96\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_43\">\n", "     <g id=\"line2d_93\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_97\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_44\">\n", "     <g id=\"line2d_94\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_98\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_45\">\n", "     <g id=\"line2d_95\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_99\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_46\">\n", "     <g id=\"line2d_96\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_100\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_47\">\n", "     <g id=\"line2d_97\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_101\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_48\">\n", "     <g id=\"line2d_98\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_102\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_49\">\n", "     <g id=\"line2d_99\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_103\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_50\">\n", "     <g id=\"line2d_100\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_104\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_23\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 20.5625 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_24\">\n", "    <path d=\"M 139.166136 318.827216 \n", "L 139.166136 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_25\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 139.166136 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_26\">\n", "    <path d=\"M 20.5625 200.22358 \n", "L 139.166136 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_105\">\n", "    <!-- Layer 2, Head 1 -->\n", "    <g transform=\"translate(32.182131 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_6\">\n", "   <g id=\"patch_27\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 313.844397 318.827216 \n", "L 313.844397 200.22358 \n", "L 195.240761 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p45cb4e2af4)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADFklEQVR4nO3dvW7TYBiGYX/2l+ZXblPCvyrY2CrEwFYWViTEwsAhcCycCANHwsBAVSQkRJFIWZKm+aFpEjtm6QH4GRj66L7mt26au15eWZ/D83cfqkSQf/ysjCfp4RNtfjSV5reD3dqzYbGUrj19dleaz9Zbab53MpbmT99qnyeVpnGjENcYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjcX856X2E5W2P00nc+3yM20+zYT/z9Vaunbv9K/2WdalNJ+MJ9L4yftP0jx3rjHiGiOuMeIaI64x4hojrjHiGiOuMeIaI66xeHm/Lf1ANza03xCCNt7tSPPlIK89m020XXHZFf/WVPtbY1v77l98fSPNc+caI64x4hojrjHiGiOuMeIaI64x4hojrjHiGotFS9uHVqX2bG61I+5nF9r+t1KeW66k4z+S6eOmNJ//EnfL4t797JgzMXCNuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLAbtiAv5TIyqpe2WU/FZ3jgUziwW99y9s400v96N0nyzqX2esl9I89y5xohrjLjGiGuMuMaIa4y4xohrjLjGiGssxpW4fwz/+f9ho638tnf6tWfTyUK6dtHJpPlK/GpCqX33Yal9Hu5cY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGNx+kh7HLMjHjtb5C1pvrGpf8RukiRJuKq/i94c3JKunX/5I83Pn96T5tVjHNq/2S3jGnGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11istHWl/NxyY6wdsZuIz/IWg17t2Wy2kq49Onoozfe/zaX5JNW+y/ZI20Vz5xojrjHiGiOuMeIaI64x4hojrjHiGiOuMeIai3Gp7SvV172pu+Lk/EIazzr1X8kWxOeE+8czaX7b0p4BT0fn0nx4vaNdX5rGjUJcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDUWl7e1My7iwQNpvtjvSvOp+Eq24cu92rN7P7TXpTUn2tnPjeGFNB862qvt9l99l+a5c40R1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGN/QN7iYIahPAYywAAAABJRU5ErkJggg==\" id=\"imageca7ef3d472\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_11\">\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_101\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"201.170943\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_106\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_102\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"213.031306\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_107\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_103\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"224.89167\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_108\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_104\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"236.752034\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_109\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_105\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"248.612397\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_110\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_106\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"260.472761\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_111\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_107\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"272.333125\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_112\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_108\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"284.193488\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_113\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_109\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"296.053852\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_114\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_110\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"307.914215\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_115\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_12\">\n", "    <g id=\"ytick_51\">\n", "     <g id=\"line2d_111\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_116\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_52\">\n", "     <g id=\"line2d_112\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_117\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_53\">\n", "     <g id=\"line2d_113\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_118\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_54\">\n", "     <g id=\"line2d_114\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_119\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_55\">\n", "     <g id=\"line2d_115\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_120\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_56\">\n", "     <g id=\"line2d_116\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_121\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_57\">\n", "     <g id=\"line2d_117\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_122\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_58\">\n", "     <g id=\"line2d_118\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_123\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_59\">\n", "     <g id=\"line2d_119\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_124\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_60\">\n", "     <g id=\"line2d_120\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_125\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_28\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 195.240761 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_29\">\n", "    <path d=\"M 313.844397 318.827216 \n", "L 313.844397 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_30\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 313.844397 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_31\">\n", "    <path d=\"M 195.240761 200.22358 \n", "L 313.844397 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_126\">\n", "    <!-- Layer 2, Head 2 -->\n", "    <g transform=\"translate(206.860392 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_7\">\n", "   <g id=\"patch_32\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 488.522658 318.827216 \n", "L 488.522658 200.22358 \n", "L 369.919022 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pd5929c2379)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAB20lEQVR4nO3dMWoVURSAYedlSpv06SLYWNm4gSzBDWVZLiCFnYU7UNJEJIUIie9lbNIKHuFJ/P2++sydgZ/bXIaZ5WJ5uz3jn/Du+sNofnecx+ApEDdM3DBxw8QNEzdM3DBxw8QNEzdM3DBxw8QNEzdM3DBxw8QNEzdM3DBxw8QNEzdM3LB1esGyzi7ZDofpLWa2wWvXy3K8tf9k/aHP+2+jeTs3TNwwccPEDRM3TNwwccPEDRM3TNwwccPGZ8vbfn+M5/g7pmfFT2z9s/X5aN7ODRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3TNwwccPEDRM3bPxJ3qP/Mo1f+v5wP5q3c8PEDRM3TNwwccPEDRM3TNwwccPEDRM3bH62PD0r/p/Ooncns/mHw2j8bpv9as/ODRM3TNwwccPEDRM3TNwwccPEDRM3TNyw5eLN5egwd/10M7rB4ebLaH738nw0f/vq9LdnT99fj9bevt6O5u9fvxjNr1cfR/PbD+8t80jcMHHDxA0TN0zcMHHDxA0TN0zcMHHDfgKMNDZplw5pkQAAAABJRU5ErkJggg==\" id=\"imagedaf7bff766\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_13\">\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_121\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"375.849204\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_127\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_122\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"387.709567\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_128\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_123\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"399.569931\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_129\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_124\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"411.430294\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_130\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_65\">\n", "     <g id=\"line2d_125\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"423.290658\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_131\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_66\">\n", "     <g id=\"line2d_126\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"435.151022\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_132\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_67\">\n", "     <g id=\"line2d_127\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"447.011385\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_133\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_68\">\n", "     <g id=\"line2d_128\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"458.871749\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_134\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_69\">\n", "     <g id=\"line2d_129\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"470.732113\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_135\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_70\">\n", "     <g id=\"line2d_130\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"482.592476\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_136\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_14\">\n", "    <g id=\"ytick_61\">\n", "     <g id=\"line2d_131\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_137\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_62\">\n", "     <g id=\"line2d_132\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_138\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_63\">\n", "     <g id=\"line2d_133\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_139\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_64\">\n", "     <g id=\"line2d_134\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_140\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_65\">\n", "     <g id=\"line2d_135\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_141\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_66\">\n", "     <g id=\"line2d_136\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_142\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_67\">\n", "     <g id=\"line2d_137\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_143\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_68\">\n", "     <g id=\"line2d_138\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_144\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_69\">\n", "     <g id=\"line2d_139\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_145\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_70\">\n", "     <g id=\"line2d_140\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_146\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_33\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 369.919022 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_34\">\n", "    <path d=\"M 488.522658 318.827216 \n", "L 488.522658 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_35\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 488.522658 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_36\">\n", "    <path d=\"M 369.919022 200.22358 \n", "L 488.522658 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_147\">\n", "    <!-- Layer 2, Head 3 -->\n", "    <g transform=\"translate(381.538652 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_8\">\n", "   <g id=\"patch_37\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 663.200919 318.827216 \n", "L 663.200919 200.22358 \n", "L 544.597283 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p7f4c1d7523)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADGElEQVR4nO3dK28UUQCG4XPODm330k27KZewISGhXJKCJcGQIKjCIXDwF0iwSBxIHAoMCoXCoDE1tSwpCZAgWuhe2O1eZgbRPzCfqOiX99HfTjd9O+ZkMo3brSdlEMRGQ5mHcjiU9iElaR6bzcrb4rCvXXtrU9qng4G0L/78lfaPdr5Ke+03iVOFuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLEvnz2qfmBxp+5VlaR7rdWmfdzeqX/tI++7ztRVpP9pqS/vOp4m0f/3yobTnzjVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1loWxdr4Z6tp5azn6p11/PpfmaVD9+5d5rl17pu3be+LvMi+k+cHthbTnzjVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1lhXDkfSBWEqv0AjlbHaie+WvU712baydc8cfv6V9MR5L+7f330h77lxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY1kQn+UNM+28Vb1+zDJpX6rv6BCkvvbMdZlqJ/RNjt3VHhnnznVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY1moaUdmcXlJ+wlj8UhO/HdvabVVeZtPp9K18w3tFbu1GKV9FB9tfbF/Q9pz5xojrjHiGiOuMeIaI64x4hojrjHiGiOuMeIay2L3gvaJiXY+m1pNaR+Fs+IQQijajerfZaG90jbuD6T9rwddaX/x/VDaf3x1T9pz5xojrjHiGiOuMeIaI64x4hojrjHiGiOuMeIai9vNx9I7duWz38O+9oXUZ3+Xqj9Hrb4CN12/Iu3L7z+1vXjW/a73Wdpz5xojrjHiGiOuMeIaI64x4hojrjHiGiOuMeIay1JnXftETft7UM5+j/dnpP3i2qXK29puT7v2Wl3ax1vaWXQSv8+dD8+060trnCrENUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjWdkUz08HI2mf2qvSfn75nLSfdqqfXbfW16Rrh91v0rz3/Ka0v7qnPQO++fSLtOfONUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDX2H9Iqh2MzKbxIAAAAAElFTkSuQmCC\" id=\"image70ff7f9411\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_15\">\n", "    <g id=\"xtick_71\">\n", "     <g id=\"line2d_141\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"550.527464\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_148\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_72\">\n", "     <g id=\"line2d_142\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"562.387828\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_149\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_73\">\n", "     <g id=\"line2d_143\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"574.248192\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_150\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_74\">\n", "     <g id=\"line2d_144\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"586.108555\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_151\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_75\">\n", "     <g id=\"line2d_145\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"597.968919\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_152\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_76\">\n", "     <g id=\"line2d_146\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"609.829283\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_153\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_77\">\n", "     <g id=\"line2d_147\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"621.689646\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_154\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_78\">\n", "     <g id=\"line2d_148\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"633.55001\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_155\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_79\">\n", "     <g id=\"line2d_149\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"645.410374\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_156\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_80\">\n", "     <g id=\"line2d_150\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"657.270737\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_157\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_16\">\n", "    <g id=\"ytick_71\">\n", "     <g id=\"line2d_151\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_158\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_72\">\n", "     <g id=\"line2d_152\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_159\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_73\">\n", "     <g id=\"line2d_153\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_160\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_74\">\n", "     <g id=\"line2d_154\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_161\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_75\">\n", "     <g id=\"line2d_155\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_162\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_76\">\n", "     <g id=\"line2d_156\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_163\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_77\">\n", "     <g id=\"line2d_157\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_164\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_78\">\n", "     <g id=\"line2d_158\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_165\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_79\">\n", "     <g id=\"line2d_159\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_166\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_80\">\n", "     <g id=\"line2d_160\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_167\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_38\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 544.597283 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_39\">\n", "    <path d=\"M 663.200919 318.827216 \n", "L 663.200919 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_40\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 663.200919 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_41\">\n", "    <path d=\"M 544.597283 200.22358 \n", "L 663.200919 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_168\">\n", "    <!-- Layer 2, Head 4 -->\n", "    <g transform=\"translate(556.216913 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_9\">\n", "   <g id=\"patch_42\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 139.166136 496.73267 \n", "L 139.166136 378.129034 \n", "L 20.5625 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pf6e4a989d3)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC2klEQVR4nO3dS2oUURxG8VuPfiWaGIR0RAQdOlNw5AJcgxMX4CJ0Py7AmZsQJz5AHAWJBI1pO2XSXeVE5/nAhnA4v/G/qit9cieXS3X15OHLoQTq45/JeClNnc1vUlVl8+cXm3mOf8Ln2X21jOav0Dev/824YMYFMy6YccGMC2ZcMOOCGRfMuGDGBWvPbm9HF8w+fsk+Idw/rWbT7P57uxt7lvL9RzbfttF4f7qI5p/uv4vmXblgxgUzLphxwYwLZlww44IZF8y4YMYFMy5Y23T9Zj+hDv9/VqtovOrOLz07TEbRvYfw3HJVbXatPJ5+i+ZduWDGBTMumHHBjAtmXDDjghkXzLhgxgUzLljbdOvsiqaJxqvwLG+pw7PFwTs3qlX4t25nZ7pLn90//W4+r8bRvCsXzLhgxgUzLphxwYwLZlww44IZF8y4YMYFa5vTLrqg3rmefkI2vw7PUf++/LnlMs7OLZeL4N6llDKZROPVtWxv+dP5QTTvygUzLphxwYwLZlww44IZF8y4YMYFMy5YO4RHVYcu264sdXgUNv15uFGwpZhubYbbiWUdHp0Nn+fuyNcm6C/jghkXzLhgxgUzLphxwYwLZlww44IZF6ztbm1FF2wdhq9BuELW8xvZBW8/ROPNfD+a78Ofk3t98iCad+WCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhg7ezwV3ZFeDY3fe3sMAzZ/YOfh2uOTrJn2d3J5pdn0XwVnot+tvcmmnflghkXzLhgxgUzLphxwYwLZlww44IZF8y4YG03z84tT99ne9HpOzdKnf2/VcErgodJ9kre/ij7W+vZNLv/Irv//XHWypULZlww44IZF8y4YMYFMy6YccGMC2ZcMOOCtetpuJd77072CeFecT/L9n+TU9T9ONvnHi2W0Xx/cDOab74eR/OPXjyP5l25YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMu2B8oyGkwrwUZLAAAAABJRU5ErkJggg==\" id=\"image385a5f562a\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_17\">\n", "    <g id=\"xtick_81\">\n", "     <g id=\"line2d_161\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"26.492682\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_169\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_82\">\n", "     <g id=\"line2d_162\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"38.353045\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_170\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_83\">\n", "     <g id=\"line2d_163\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"50.213409\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_171\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_84\">\n", "     <g id=\"line2d_164\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"62.073773\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_172\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_85\">\n", "     <g id=\"line2d_165\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"73.934136\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_173\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_86\">\n", "     <g id=\"line2d_166\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"85.7945\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_174\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_87\">\n", "     <g id=\"line2d_167\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"97.654864\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_175\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_88\">\n", "     <g id=\"line2d_168\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"109.515227\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_176\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_89\">\n", "     <g id=\"line2d_169\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"121.375591\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_177\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_90\">\n", "     <g id=\"line2d_170\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"133.235955\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_178\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_18\">\n", "    <g id=\"ytick_81\">\n", "     <g id=\"line2d_171\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_179\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_82\">\n", "     <g id=\"line2d_172\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_180\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_83\">\n", "     <g id=\"line2d_173\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_181\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_84\">\n", "     <g id=\"line2d_174\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_182\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_85\">\n", "     <g id=\"line2d_175\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_183\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_86\">\n", "     <g id=\"line2d_176\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_184\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_87\">\n", "     <g id=\"line2d_177\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_185\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_88\">\n", "     <g id=\"line2d_178\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_186\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_89\">\n", "     <g id=\"line2d_179\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_187\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_90\">\n", "     <g id=\"line2d_180\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_188\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_43\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 20.5625 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_44\">\n", "    <path d=\"M 139.166136 496.73267 \n", "L 139.166136 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_45\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 139.166136 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_46\">\n", "    <path d=\"M 20.5625 378.129034 \n", "L 139.166136 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_189\">\n", "    <!-- Layer 3, Head 1 -->\n", "    <g transform=\"translate(32.182131 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_10\">\n", "   <g id=\"patch_47\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 313.844397 496.73267 \n", "L 313.844397 378.129034 \n", "L 195.240761 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p098c211506)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADLElEQVR4nO3dzU4TUQCG4TPtaem0DhQTFDREAmWnXoALF+5dufA6vAKvxFsx0RDjikRj/AksJJKY2kCR0unftOMtzLf0y/usv1biy2xOJofk2dtXZRCcnuwo85Btj6R9nq9J+zSdV95OJ03pu5/un0r74TyV9t//3JX2Lw+PpX1NWuO/QlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENRbPBpvSB7Z2h9K+LBNpP8qjtL+5qn5enHQK6btriXTsHr71t6V9q7mQ9q+3vkp7nlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcYzHGlfSBybwh7ZtRO89NGtrPU9aF81/tmDusxHPx29lY2o+m2jva76fSnCfXGXGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11jc6EykD/QHG9K+tq59f1lov2/NW9XvxFgute8+aA+k/Y+rO9J+NtPO6U9m2nvRPLnGiGuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xqJ674N69qt9ewj1VHvPuVjUxX+huqOLA2nfbWnn6MOxdj/zo9Yvac+Ta4y4xohrjLjGiGuMuMaIa4y4xohrjLjGono1QNBuNQixpn1gtdB+39rZrPJ2kmt/7q2Xaa+2nuddaa++avshP5T2PLnGiGuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xmKx1F4NTbvavbCxrp0tN1PtT6CN/7Yqb9c61a9YCCGEd+c9ab+zfi3tO2n1c/EQQthtXEp7nlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcYzERr00oxGsT1D8PNxffLVbOi+dT7Wd53vsi7Y/6+9J+NK5+Lh5CCPVEO6fnyTVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1Fq/F882so7233IxLaX9z2Zb2s3H1s+ha1M5mF6X2Trf6Dnijof3fZDXtyl+eXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjsSi089AXDz5J+zefn0j7e/e1ex9+97uVt622difGx/6etL8425T2jx/+lPbHkz1pz5NrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMaIa+wfdWyW6dJ0P2IAAAAASUVORK5CYII=\" id=\"imagee101dc5efd\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_19\">\n", "    <g id=\"xtick_91\">\n", "     <g id=\"line2d_181\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"201.170943\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_190\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_92\">\n", "     <g id=\"line2d_182\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"213.031306\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_191\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_93\">\n", "     <g id=\"line2d_183\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"224.89167\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_192\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_94\">\n", "     <g id=\"line2d_184\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"236.752034\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_193\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_95\">\n", "     <g id=\"line2d_185\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"248.612397\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_194\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_96\">\n", "     <g id=\"line2d_186\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"260.472761\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_195\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_97\">\n", "     <g id=\"line2d_187\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"272.333125\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_196\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_98\">\n", "     <g id=\"line2d_188\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"284.193488\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_197\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_99\">\n", "     <g id=\"line2d_189\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"296.053852\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_198\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_100\">\n", "     <g id=\"line2d_190\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"307.914215\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_199\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_20\">\n", "    <g id=\"ytick_91\">\n", "     <g id=\"line2d_191\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_200\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_92\">\n", "     <g id=\"line2d_192\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_201\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_93\">\n", "     <g id=\"line2d_193\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_202\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_94\">\n", "     <g id=\"line2d_194\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_203\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_95\">\n", "     <g id=\"line2d_195\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_204\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_96\">\n", "     <g id=\"line2d_196\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_205\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_97\">\n", "     <g id=\"line2d_197\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_206\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_98\">\n", "     <g id=\"line2d_198\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_207\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_99\">\n", "     <g id=\"line2d_199\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_208\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_100\">\n", "     <g id=\"line2d_200\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_209\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_48\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 195.240761 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_49\">\n", "    <path d=\"M 313.844397 496.73267 \n", "L 313.844397 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_50\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 313.844397 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_51\">\n", "    <path d=\"M 195.240761 378.129034 \n", "L 313.844397 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_210\">\n", "    <!-- Layer 3, Head 2 -->\n", "    <g transform=\"translate(206.860392 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_11\">\n", "   <g id=\"patch_52\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 488.522658 496.73267 \n", "L 488.522658 378.129034 \n", "L 369.919022 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p529ca0ef3a)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADNklEQVR4nO3du4pTUQCF4Z2TncQkJpPJjMQY1ELBRkQbsfACU0xnJ1r4FMI8g6D4CKK1paWCNiJoJ4iIeIGoiHFGjZlM7hdf4azCwsX/1Sthhp/TbDYnmY2nN5ZBcOnAe2UeTha/Svs7HzelfSHOUm+bpZ703VvNR9L+7s5FaX917aW0z4e5tE+kNf4rxDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY7FR3JU+MF1mpX0SFtJeVcmNU2/XC33pu7uLorRfy2vfvz2rSvv2ZF3a8+QaI64x4hojrjHiGiOuMeIaI64x4hojrjHiGouDWU76wKniF2n/fVaT9sNplPaxnP4u72ShfXcpSX9uHUII7/oNad/K/5b2G+W30p4n1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEdeYdtgaQhgttbPosng+q4rJv7sXfbag/a/1/EDaV5OhtL/387y058k1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENRYHs7z0gfZYey9DPWrviagVR9L+W38l9TZWtHPoxwPtbDkJ0qurQyWrnS3fPPhM2vPkGiOuMeIaI64x4hojrjHiGiOuMeIaI66xmGS0I7NsRjvCU1898GuvJO2b1fQ/4ZaIf/vpQlfaP5hrx5XdeVnad+Y70p4n1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddYLMWJ9IHVuCftR0vt6uzRmvaa2qHwSuFidip9960fF6R9Jaddy50vM9L+SNR+fo4n1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddY3J3skz5wLN+R9tuzqrT//Kcm7Q8J95bVn3u73Xou7a992pT25/an/6m6EEK43zss7XlyjRHXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY3FRin92WwI+nscegvtru1SvMvbKnVTb9V7y2+m2p3uFfHe8odxQ9ofL2jn+jy5xohrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMYyW6+uSC9czmW0u7Zj8a7w9dUX0v5h70zqrfqu6CedE9L+cvO1tB8ttPczt0d1ac+Ta4y4xohrjLjGiGuMuMaIa4y4xohrjLjGiGvsLzn0jTEjoGl0AAAAAElFTkSuQmCC\" id=\"imagee82acc5470\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_21\">\n", "    <g id=\"xtick_101\">\n", "     <g id=\"line2d_201\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"375.849204\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_211\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_102\">\n", "     <g id=\"line2d_202\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"387.709567\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_212\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_103\">\n", "     <g id=\"line2d_203\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"399.569931\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_213\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_104\">\n", "     <g id=\"line2d_204\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"411.430294\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_214\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_105\">\n", "     <g id=\"line2d_205\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"423.290658\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_215\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_106\">\n", "     <g id=\"line2d_206\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"435.151022\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_216\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_107\">\n", "     <g id=\"line2d_207\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"447.011385\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_217\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_108\">\n", "     <g id=\"line2d_208\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"458.871749\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_218\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_109\">\n", "     <g id=\"line2d_209\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"470.732113\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_219\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_110\">\n", "     <g id=\"line2d_210\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"482.592476\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_220\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_22\">\n", "    <g id=\"ytick_101\">\n", "     <g id=\"line2d_211\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_221\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_102\">\n", "     <g id=\"line2d_212\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_222\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_103\">\n", "     <g id=\"line2d_213\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_223\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_104\">\n", "     <g id=\"line2d_214\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_224\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_105\">\n", "     <g id=\"line2d_215\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_225\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_106\">\n", "     <g id=\"line2d_216\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_226\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_107\">\n", "     <g id=\"line2d_217\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_227\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_108\">\n", "     <g id=\"line2d_218\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_228\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_109\">\n", "     <g id=\"line2d_219\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_229\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_110\">\n", "     <g id=\"line2d_220\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_230\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_53\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 369.919022 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_54\">\n", "    <path d=\"M 488.522658 496.73267 \n", "L 488.522658 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_55\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 488.522658 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_56\">\n", "    <path d=\"M 369.919022 378.129034 \n", "L 488.522658 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_231\">\n", "    <!-- Layer 3, Head 3 -->\n", "    <g transform=\"translate(381.538652 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_12\">\n", "   <g id=\"patch_57\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 663.200919 496.73267 \n", "L 663.200919 378.129034 \n", "L 544.597283 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p3cc5cbcdb6)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADLUlEQVR4nO3dO24TUQCF4Wv7evy2sUUSxEMUKAqOkOigQKJhDwhRUbGBrIBlsADokaBDiIYi1BREEQgFZEIQDvF7/ApbmFNy9H/18ZDkZ5rR6Dp3/+3eeRA82DpQ5mG2Lkr7r+OL0v7npJl5W4kL6dpPrnyQ9vvDG9J+u/JL2r/8fkfa56U1/ivENUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjsZXMpA+U8trz2c+jS9J+sChL+9kyZt6qv+vrP7elfT3Opf2n8VVp/3znhbTnzjVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1FvuzqvSB0Up79tssas9zR4uStF+ts////JtWpGvXi6m078+1v2W3fqztE+363LnGiGuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xmI90Z6flnJLaZ+usr9XHEII+dxa2rfL08zbQl679nbtRNovzgvSfrTSnqM/+70r7blzjRHXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY3FySKRPlAWz8ToJGNpP15pP8+PYfZ3kVtl7R3qTtR+9sPpprTfrfakvXqGBneuMeIaI64x4hojrjHiGiOuMeIaI64x4hrT3jsN+te3pWvtn1gKxyCEEEK1mP1xaD5I32wXJmvtUWg+p13/bKUdg7CRDKU9d64x4hojrjHiGiOuMeIaI64x4hojrjHiGiOusVgqaMcgqEcDnKQNad8Qj8E9GrQzb5sl7dXWN71b0v7uxjdprz6nf9r+KO25c40R1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNxcFcOxa2FSfS/nq1L+0PBlvSXjFIta+qe3xNe5b7/nRH2t+78EXavxpp1+fONUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDUWla9LCyGE02VN2qvvLZejduSvciZGtTiXrv2uf1PaX66cSfujtCPtH7X3pT13rjHiGiOuMeIaI64x4hojrjHiGiOuMeIaI66x2Ey0cyLUcxzUM4679WNpv1nKfgbxeKm9o12L2vkcvWlL2ncb2u+6d/hQ2nPnGiOuMeIaI64x4hojrjHiGiOuMeIaI64x4hr7B4ltk1aqfFBSAAAAAElFTkSuQmCC\" id=\"imagef015a27adb\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_23\">\n", "    <g id=\"xtick_111\">\n", "     <g id=\"line2d_221\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"550.527464\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_232\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_112\">\n", "     <g id=\"line2d_222\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"562.387828\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_233\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_113\">\n", "     <g id=\"line2d_223\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"574.248192\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_234\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_114\">\n", "     <g id=\"line2d_224\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"586.108555\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_235\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_115\">\n", "     <g id=\"line2d_225\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"597.968919\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_236\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_116\">\n", "     <g id=\"line2d_226\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"609.829283\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_237\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_117\">\n", "     <g id=\"line2d_227\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"621.689646\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_238\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_118\">\n", "     <g id=\"line2d_228\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"633.55001\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_239\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_119\">\n", "     <g id=\"line2d_229\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"645.410374\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_240\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_120\">\n", "     <g id=\"line2d_230\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"657.270737\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_241\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_24\">\n", "    <g id=\"ytick_111\">\n", "     <g id=\"line2d_231\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_242\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_112\">\n", "     <g id=\"line2d_232\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_243\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_113\">\n", "     <g id=\"line2d_233\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_244\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_114\">\n", "     <g id=\"line2d_234\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_245\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_115\">\n", "     <g id=\"line2d_235\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_246\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_116\">\n", "     <g id=\"line2d_236\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_247\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_117\">\n", "     <g id=\"line2d_237\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_248\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_118\">\n", "     <g id=\"line2d_238\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_249\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_119\">\n", "     <g id=\"line2d_239\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_250\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_120\">\n", "     <g id=\"line2d_240\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_251\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_58\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 544.597283 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_59\">\n", "    <path d=\"M 663.200919 496.73267 \n", "L 663.200919 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_60\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 663.200919 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_61\">\n", "    <path d=\"M 544.597283 378.129034 \n", "L 663.200919 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_252\">\n", "    <!-- Layer 3, Head 4 -->\n", "    <g transform=\"translate(556.216913 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_13\">\n", "   <g id=\"patch_62\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 139.166136 674.638125 \n", "L 139.166136 556.034489 \n", "L 20.5625 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pe476cd5370)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACo0lEQVR4nO3dMWoUURzH8Tdv3m4laVKk0kJJJQqCjWCVwsozBAuv4xE8gbU5gNhIYiM2nkAIiiK6yWh2xivsT3ygX76f+j+7k/nuax6PyXD/+NlSAudHP5PxUr+sovn1t5rNf9199te16KPLg8fvovnTF3ej+e93pmj+8MnbaD57kvqvGBfMuGDGBTMumHHBjAtmXDDjghkXzLhgrU3R1nJp5+tofsy2T8uwzeZrsNWdfvbzG6+j+XtTtrdchuzZp1y5YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWJvH7IKlZfuhy9WQzYf7v0vbfXbOjlCXV5fZ/BzcSymlLHP2bFKuXDDjghkXzLhgxgUzLphxwYwLZlww44IZF6yVcHtzuxdu/oYbrjU855xIjwmfbW6GX5CN9+bKBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwdo8Zhuiw2rOvqGGG7o1POfc8ef5YXMQzfe8lz/xj92O/ibjghkXzLhgxgUzLphxwYwLZlww44K1Yen7GoTS+dUApeNbbfdXP7IL+r5hN+bKBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwdoQnlSNfw7p0dYlPGqb3n+gdv53bL25csGMC2ZcMOOCGRfMuGDGBTMumHHBjAtmXLAWbuWWsg0vSLdn048Pfp7p3zrHDyczdD7S7coFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBWr3KLhg2YzRf43doZOM1+O9z6THkR3vvo/mX88PsCzqfi3blghkXzLhgxgUzLphxwYwLZlww44IZF8y4YO3jUbA5W0q5fpLtFX++3aL5i4Nsc3na3312nLJ7f/rmOJqfb2XPsn5aR/MpVy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBjAv2G+SAYMXUNG65AAAAAElFTkSuQmCC\" id=\"imagefa7232ef81\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_25\">\n", "    <g id=\"xtick_121\">\n", "     <g id=\"line2d_241\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"26.492682\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_253\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_122\">\n", "     <g id=\"line2d_242\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"38.353045\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_254\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_123\">\n", "     <g id=\"line2d_243\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"50.213409\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_255\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_124\">\n", "     <g id=\"line2d_244\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"62.073773\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_256\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_125\">\n", "     <g id=\"line2d_245\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"73.934136\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_257\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_126\">\n", "     <g id=\"line2d_246\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"85.7945\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_258\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_127\">\n", "     <g id=\"line2d_247\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"97.654864\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_259\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_128\">\n", "     <g id=\"line2d_248\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"109.515227\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_260\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_129\">\n", "     <g id=\"line2d_249\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"121.375591\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_261\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_130\">\n", "     <g id=\"line2d_250\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"133.235955\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_262\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_26\">\n", "    <g id=\"ytick_121\">\n", "     <g id=\"line2d_251\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_263\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_122\">\n", "     <g id=\"line2d_252\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_264\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_123\">\n", "     <g id=\"line2d_253\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_265\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_124\">\n", "     <g id=\"line2d_254\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_266\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_125\">\n", "     <g id=\"line2d_255\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_267\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_126\">\n", "     <g id=\"line2d_256\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_268\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_127\">\n", "     <g id=\"line2d_257\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_269\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_128\">\n", "     <g id=\"line2d_258\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_270\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_129\">\n", "     <g id=\"line2d_259\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_271\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_130\">\n", "     <g id=\"line2d_260\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"20.5625\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_272\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_63\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 20.5625 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_64\">\n", "    <path d=\"M 139.166136 674.638125 \n", "L 139.166136 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_65\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 139.166136 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_66\">\n", "    <path d=\"M 20.5625 556.034489 \n", "L 139.166136 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_273\">\n", "    <!-- Layer 4, Head 1 -->\n", "    <g transform=\"translate(32.182131 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_14\">\n", "   <g id=\"patch_67\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 313.844397 674.638125 \n", "L 313.844397 556.034489 \n", "L 195.240761 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p4503fa86ee)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADNUlEQVR4nO3dvU4UYRyF8f/uvLAsBJB1TcT4ERPBiJpQ0BATjfEOqLWw1Mqai/ASaNR4BbYqhY2FiaJRglIQKwGRD1lgdnYs9ALmmFh48vzqg4DPTvNm8lK78uBhGYqbW9J87vxbaf/k44y0j9WhytN8/Ej6p7ONfmk/OPFD2l9obUj7g3staV+X1vivENcYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjaX20qH0BY1nB9J+fnFJ2vdNFdL+0adblbdpWPtdO7n22X86vSDtFzavSfv3H9alPU+uMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrGUj2TSFxST7X/0o/z2ZvuMtO9l1V+71n7TiChq0vzl/qS0T/WetFfx5BojrjHiGiOuMeIaI64x4hojrjHiGiOuMeIaS/tt7cR195z2DV4fauezaztj0r5M1bfdrvZZrnW1n/3F5kVpf7zxU9pHdKQ1T64x4hojrjHiGiOuMeIaI64x4hojrjHiGiOusVQ0tPPTcmJP2q8cnZT2e52GtA/htugi187R6+K5+NfdY9J+IOtK+2xsQNrz5BojrjHiGiOuMeIaI64x4hojrjHiGiOusVTPtb/2Vq5V//NqEREnZnak/cigduXv9/pw5W1duGIhIqJoaPv2oPaq6lDSrghe3+LVVvxBXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1lpJ2lBv9W9rrnlN9G9K+VtPOc2vCX4erZdoVuD3x2oSWeA1CM8ulvYon1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddYKsRbCjrjwmFuRKx2R6X9YS7csRsRpXD8WxbaZ7kUP/rfOtXfoY74i7Nl5SA9eHKtEdcYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjaXmpvYu76lF7RvMzmn3OJwe3Zb2y71W5W3Wp53Ndhva/8319mdpv100pb1y/XAET6414hojrjHiGiOuMeIaI64x4hojrjHiGiOusZR1tPPTgefvpP2Nu7el/eL0Y2l/+cv9ytumeN/G7NUVaT/fXpb2l17dkfZnY0na8+QaI64x4hojrjHiGiOuMeIaI64x4hojrjHiGvsFQXmKA0650kYAAAAASUVORK5CYII=\" id=\"image1cf96ff749\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_27\">\n", "    <g id=\"xtick_131\">\n", "     <g id=\"line2d_261\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"201.170943\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_274\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_132\">\n", "     <g id=\"line2d_262\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"213.031306\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_275\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_133\">\n", "     <g id=\"line2d_263\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"224.89167\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_276\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_134\">\n", "     <g id=\"line2d_264\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"236.752034\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_277\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_135\">\n", "     <g id=\"line2d_265\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"248.612397\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_278\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_136\">\n", "     <g id=\"line2d_266\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"260.472761\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_279\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_137\">\n", "     <g id=\"line2d_267\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"272.333125\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_280\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_138\">\n", "     <g id=\"line2d_268\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"284.193488\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_281\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_139\">\n", "     <g id=\"line2d_269\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"296.053852\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_282\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_140\">\n", "     <g id=\"line2d_270\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"307.914215\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_283\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_28\">\n", "    <g id=\"ytick_131\">\n", "     <g id=\"line2d_271\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_284\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_132\">\n", "     <g id=\"line2d_272\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_285\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_133\">\n", "     <g id=\"line2d_273\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_286\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_134\">\n", "     <g id=\"line2d_274\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_287\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_135\">\n", "     <g id=\"line2d_275\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_288\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_136\">\n", "     <g id=\"line2d_276\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_289\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_137\">\n", "     <g id=\"line2d_277\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_290\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_138\">\n", "     <g id=\"line2d_278\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_291\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_139\">\n", "     <g id=\"line2d_279\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_292\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_140\">\n", "     <g id=\"line2d_280\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"195.240761\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_293\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_68\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 195.240761 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_69\">\n", "    <path d=\"M 313.844397 674.638125 \n", "L 313.844397 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_70\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 313.844397 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_71\">\n", "    <path d=\"M 195.240761 556.034489 \n", "L 313.844397 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_294\">\n", "    <!-- Layer 4, Head 2 -->\n", "    <g transform=\"translate(206.860392 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_15\">\n", "   <g id=\"patch_72\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 488.522658 674.638125 \n", "L 488.522658 556.034489 \n", "L 369.919022 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p5f054f7447)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACg0lEQVR4nO3cP24TURRG8fvGE6Ng/hVIgY5NULEDaFgX+0GiYgc0aaBDFBSAEAgSeWLHHrYwX6QnkaPzq69Hto9ec/U07cXrN3MFNu8/JuPVzh5H8/unj6L57dl68ez6zyF69vrHNpqfntyN5jefvkfz15+/RPNDNK1bxbhgxgUzLphxwYwLZlww44IZF8y4YMYFG1dX0Wq55t0umh8us/1sOz6M5uehLf8u+2P07Mtn96L5k7/X0Xwds++T8uSCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhg4xzmbevl94SrqubNaTa/fFVcVVXDfvlu/LjKHn76bYrm9w/C/+ZkjOZTnlww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRdsTO79VlW1li5/0+V1+PxE+FuHbXgPOdwt9+bJBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwcZKV7nhfra7jl+nhe+sSO9ct2P2PpKUJxfMuGDGBTMumHHBjAtmXDDjghkXzLhgY6UbsM4rs/9Kz2u2lb1O+CY8uWDGBTMumHHBjAtmXDDjghkXzLhgxgUzLlh+tTU1395d9Nx5t+zVVt2YccGMC2ZcMOOCGRfMuGDGBTMumHHBjAs2xvvN9K5t+kreUM/9bDscuj27qmpe9f1vPLlgxgUzLphxwYwLZlww44IZF8y4YMYFMy7YWNlbZ2s+ZB/ovp/teLf4sLkTzbd0zd35TrcnF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBRs351+jD1xfXETzbbqK5tfTLpoff91fPDv8/B09++2Hd9H8q+cvo/l5mqL5lCcXzLhgxgUzLphxwYwLZlww44IZF8y4YMYF+wcxMF8q1AiLWgAAAABJRU5ErkJggg==\" id=\"imagee9a741fb21\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_29\">\n", "    <g id=\"xtick_141\">\n", "     <g id=\"line2d_281\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"375.849204\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_295\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_142\">\n", "     <g id=\"line2d_282\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"387.709567\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_296\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_143\">\n", "     <g id=\"line2d_283\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"399.569931\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_297\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_144\">\n", "     <g id=\"line2d_284\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"411.430294\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_298\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_145\">\n", "     <g id=\"line2d_285\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"423.290658\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_299\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_146\">\n", "     <g id=\"line2d_286\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"435.151022\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_300\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_147\">\n", "     <g id=\"line2d_287\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"447.011385\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_301\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_148\">\n", "     <g id=\"line2d_288\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"458.871749\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_302\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_149\">\n", "     <g id=\"line2d_289\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"470.732113\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_303\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_150\">\n", "     <g id=\"line2d_290\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"482.592476\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_304\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_30\">\n", "    <g id=\"ytick_141\">\n", "     <g id=\"line2d_291\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_305\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_142\">\n", "     <g id=\"line2d_292\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_306\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_143\">\n", "     <g id=\"line2d_293\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_307\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_144\">\n", "     <g id=\"line2d_294\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_308\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_145\">\n", "     <g id=\"line2d_295\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_309\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_146\">\n", "     <g id=\"line2d_296\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_310\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_147\">\n", "     <g id=\"line2d_297\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_311\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_148\">\n", "     <g id=\"line2d_298\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_312\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_149\">\n", "     <g id=\"line2d_299\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_313\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_150\">\n", "     <g id=\"line2d_300\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"369.919022\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_314\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_73\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 369.919022 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_74\">\n", "    <path d=\"M 488.522658 674.638125 \n", "L 488.522658 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_75\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 488.522658 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_76\">\n", "    <path d=\"M 369.919022 556.034489 \n", "L 488.522658 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_315\">\n", "    <!-- Layer 4, Head 3 -->\n", "    <g transform=\"translate(381.538652 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_16\">\n", "   <g id=\"patch_77\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 663.200919 674.638125 \n", "L 663.200919 556.034489 \n", "L 544.597283 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p7df97ea18e)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACwUlEQVR4nO3dT27TQBxH8Rln4rhCkahaJI4BYsclkDgG92DFHdhyDw7AFRArhBoq/lRt4sY2Cy6Q76KLPr3P+md32hdvRu6kvn77YSmBqxerZLwMu2i89H+i5ZR2OH1+6bK17M+zC4br+UHv//zjl2g+/HX1mBgXzLhgxgUzLphxwYwLZlww44IZF8y4YG24OkQXbF/dRvP7z5fR/PpHtrfc/z6ePDsN2Wf59lk2399ke8t3l9n95/0+mvfJBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwdr9dh1d8PPbeTS/HaPxMvXZ/PHJ6e9RT32N7t1N4VrOsmelhvcvNVx/eHs9IsYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWFtatl/Z/oafh+w15LJ02Xrmltw7W0u69jk7LiRWV9kP8MkFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHB2hzuLXeHbL5mx0SUJbt9vl8c3TycD9del+wH1D57qdsnF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGCtO2ZbYPMmm09fVa3hll+dkgvS/cFwPN1qDf82y5Sds+CTC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjgrUl/Vf/cP803W9NJfuz8bEG8ZEP2Xyd03MZsnmfXDDjghkXzLhgxgUzLphxwYwLZlww44IZFyw40Pa/eK84PQYhnE+k70Sna4/3osOvbyvhe84+uWDGBTMumHHBjAtmXDDjghkXzLhgxgUzLlhb7bMN0fEiO5dhc51tX3fRGRelrMbT56f+Yc/E6LI/Tb7vPo7RvE8umHHBjAtmXDDjghkXzLhgxgUzLphxwYwL1obvN9EFX998iuZfvn8XzZ/tsg3a/tfh5Nnx6Sa6991F9tkfdvfR/LReR/Ml/Ho4n1ww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRfsHxcsdVTvA8/TAAAAAElFTkSuQmCC\" id=\"image8251b86c58\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_31\">\n", "    <g id=\"xtick_151\">\n", "     <g id=\"line2d_301\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"550.527464\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_316\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_152\">\n", "     <g id=\"line2d_302\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"562.387828\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_317\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_153\">\n", "     <g id=\"line2d_303\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"574.248192\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_318\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_154\">\n", "     <g id=\"line2d_304\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"586.108555\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_319\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_155\">\n", "     <g id=\"line2d_305\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"597.968919\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_320\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_156\">\n", "     <g id=\"line2d_306\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"609.829283\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_321\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_157\">\n", "     <g id=\"line2d_307\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"621.689646\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_322\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_158\">\n", "     <g id=\"line2d_308\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"633.55001\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_323\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_159\">\n", "     <g id=\"line2d_309\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"645.410374\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_324\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_160\">\n", "     <g id=\"line2d_310\">\n", "      <g>\n", "       <use xlink:href=\"#m9309cc76bc\" x=\"657.270737\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_325\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_32\">\n", "    <g id=\"ytick_151\">\n", "     <g id=\"line2d_311\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_326\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_152\">\n", "     <g id=\"line2d_312\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_327\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_153\">\n", "     <g id=\"line2d_313\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_328\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_154\">\n", "     <g id=\"line2d_314\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_329\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_155\">\n", "     <g id=\"line2d_315\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_330\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_156\">\n", "     <g id=\"line2d_316\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_331\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_157\">\n", "     <g id=\"line2d_317\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_332\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_158\">\n", "     <g id=\"line2d_318\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_333\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_159\">\n", "     <g id=\"line2d_319\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_334\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_160\">\n", "     <g id=\"line2d_320\">\n", "      <g>\n", "       <use xlink:href=\"#m22f4110ef6\" x=\"544.597283\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_335\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_78\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 544.597283 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_79\">\n", "    <path d=\"M 663.200919 674.638125 \n", "L 663.200919 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_80\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 663.200919 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_81\">\n", "    <path d=\"M 544.597283 556.034489 \n", "L 663.200919 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_336\">\n", "    <!-- Layer 4, Head 4 -->\n", "    <g transform=\"translate(556.216913 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p8aa4e4f5f0\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pc31dc099dd\">\n", "   <rect x=\"195.240761\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pb7822058fa\">\n", "   <rect x=\"369.919022\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe66e57e082\">\n", "   <rect x=\"544.597283\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pc87b530a2d\">\n", "   <rect x=\"20.5625\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p45cb4e2af4\">\n", "   <rect x=\"195.240761\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pd5929c2379\">\n", "   <rect x=\"369.919022\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p7f4c1d7523\">\n", "   <rect x=\"544.597283\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pf6e4a989d3\">\n", "   <rect x=\"20.5625\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p098c211506\">\n", "   <rect x=\"195.240761\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p529ca0ef3a\">\n", "   <rect x=\"369.919022\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p3cc5cbcdb6\">\n", "   <rect x=\"544.597283\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe476cd5370\">\n", "   <rect x=\"20.5625\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p4503fa86ee\">\n", "   <rect x=\"195.240761\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p5f054f7447\">\n", "   <rect x=\"369.919022\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p7df97ea18e\">\n", "   <rect x=\"544.597283\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x864 with 16 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["def visualize_prediction(idx):\n", "    visualize_exmp(indices[idx : idx + 1], test_set)\n", "    print(\"Prediction:\", predictions[idx].item())\n", "    plot_attention_maps(input_data=None, attn_maps=attention_maps, idx=idx)\n", "\n", "\n", "visualize_prediction(0)"]}, {"cell_type": "markdown", "id": "f091ab42", "metadata": {"papermill": {"duration": 0.036027, "end_time": "2022-04-09T14:38:37.481386", "exception": false, "start_time": "2022-04-09T14:38:37.445359", "status": "completed"}, "tags": []}, "source": ["Depending on the random seed, you might see a slightly different input set.\n", "For the version on the website, we compare 9 tree images with a volcano.\n", "We see that multiple heads, for instance, Layer 2 Head 1, Layer 2 Head 3, and Layer 3 Head 1 focus on the last image.\n", "Additionally, the heads in Layer 4 all seem to ignore the last image and assign a very low attention probability to it.\n", "This shows that the model has indeed recognized that the image doesn't fit the setting, and hence predicted it to be the anomaly.\n", "Layer 3 Head 2-4 seems to take a slightly weighted average of all images.\n", "That might indicate that the model extracts the \"average\" information of all images, to compare it to the image features itself.\n", "\n", "Let's try to find where the model actually makes a mistake.\n", "We can do this by identifying the sets where the model predicts something else than 9, as in the dataset,\n", "we ensured that the anomaly is always at the last position in the set."]}, {"cell_type": "code", "execution_count": 41, "id": "dc531905", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:37.555197Z", "iopub.status.busy": "2022-04-09T14:38:37.554672Z", "iopub.status.idle": "2022-04-09T14:38:37.559467Z", "shell.execute_reply": "2022-04-09T14:38:37.558879Z"}, "papermill": {"duration": 0.043753, "end_time": "2022-04-09T14:38:37.560941", "exception": false, "start_time": "2022-04-09T14:38:37.517188", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Indices with mistake: [49]\n"]}], "source": ["mistakes = torch.where(predictions != 9)[0].cpu().numpy()\n", "print(\"Indices with mistake:\", mistakes)"]}, {"cell_type": "markdown", "id": "a0e65068", "metadata": {"papermill": {"duration": 0.035421, "end_time": "2022-04-09T14:38:37.632810", "exception": false, "start_time": "2022-04-09T14:38:37.597389", "status": "completed"}, "tags": []}, "source": ["As our model achieves ~94% accuracy, we only have very little number of mistakes in a batch of 64 sets.\n", "Still, let's visualize one of them, for example the last one:"]}, {"cell_type": "code", "execution_count": 42, "id": "dcc6dcbe", "metadata": {"execution": {"iopub.execute_input": "2022-04-09T14:38:37.710200Z", "iopub.status.busy": "2022-04-09T14:38:37.709572Z", "iopub.status.idle": "2022-04-09T14:38:40.661953Z", "shell.execute_reply": "2022-04-09T14:38:40.661355Z"}, "papermill": {"duration": 2.996681, "end_time": "2022-04-09T14:38:40.665341", "exception": false, "start_time": "2022-04-09T14:38:37.668660", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNjg0IDEwMC40NzU5OTMzNzc1IF0KL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nF1QTU/DMAy9+1e843ogidO0aY7dxqpx26jEAXGYShlM/aBMYvDvcYtgsEiW9Ww/v+foZf3+UtXbYo7FLekzqo7EOJDOGfsjDA4SJzAK/B8yUm8pzZzkZspsjHI+CSGWgrmE49QzUUcDvLJTpGlQKbxRITEyFnuf4K3GHTro3I7y4kTiJORCeKkf1xh4/l1RtdBrxrLHhjYYfngG+7/cEdMgdxlciTFY50QzZpsgc4rP6lVL8xJ6xWCL8mmyXT7SPWZ517e75hN1BE5VsN5k8fgw+9i1r019RN9hsV5FCKzYJd9daedb+YgIDyhv6LoksUlfoPdVYgplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjI0OAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkxID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc2ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicPZBLcgQhDEP3nEJHAH/hPJ1KzaLn/tvI7plskKrA8hNxHBNn84gIpBz8rGFmUBO8h4VD1WA7oOvAZ0BO4BoudClwo9qEc3ydw5sKmriHx2y1SKyd5Uwh6jAmSWzoScg2zmhy45zcqlTeTGu9xuKbcne7ymvalsK9h8r6OONUOasqa5E2EZlFaxvBRh7ssM+jq2jLWSrcN4xNXROVw5vF7lndyeKK769c49Uswcz3w7e/HB9X3egqx9jKhNlSk+bSOfWvltH6cLSLhXrhR3smSHB1qyBVpdbO2lN6/VPcJPr9A/TBVx0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNyA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg5ID4+CnN0cmVhbQp4nDVNuRGAMAzrPYVHwI9IvA/HUYT9W+yENJZOnxHKB2vkAYLhjS8h+KIvGYS1Cw8q+0h02EQNZxUkE8OvLPCqnBVtcyUT2VlMo7NBy/St7W+DHro/3Y4cCgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQxID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSA2NSAvQSA2NyAvQyA3MCAvRiA3MyAvSSA4MiAvUiA5NyAvYSAxMDEgL2UgMTA4Ci9sIC9tIC9uIC9vIC9wIDExNSAvcyAxMjAgL3ggL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE0IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9BIDE4IDAgUiAvQyAxOSAwIFIgL0YgMjAgMCBSIC9JIDIxIDAgUiAvUiAyMiAwIFIgL2EgMjMgMCBSIC9lIDI0IDAgUgovbCAyNSAwIFIgL20gMjYgMCBSIC9uIDI3IDAgUiAvbyAyOCAwIFIgL29uZSAyOSAwIFIgL3AgMzAgMCBSIC9zIDMxIDAgUgovc3BhY2UgMzIgMCBSIC94IDMzIDAgUiAveSAzNCAwIFIgL3plcm8gMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgNjcwIC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCA3MSAvTGVuZ3RoIDM2IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDY3MCA+PgpzdHJlYW0KeJzs/WlvZku2JoatISL28A4kM/PkGarqXnVLLcmGYRvyD9RPlAEDVreqb/W9t07VGTKT5DvsISLW4A+xXyYzq7ot2QYMCCeKqMNkMsk9RKzhWc96Fv6P/+P/CL+t39Zv67f12/pt/bb+97Lo/98X8Nv6bf22flu/rd/Wb+v/l+s31/7b+m39tn5bv63f1v+u1m+u/bf12/pt/bZ+W7+t/12t8PoP/+6/+f0ffveeCBARkREYkQAQwNzVTV3FVV3VVczU3ICQQ+AYOUakAESu6rVKKVKrmboZIiIAERIiALibqoqqmrk7ETExERKSAwCCgQMhceAYQkxEjO2f+u1CkQAZiAHZAcHxn//5x//wH/60/SVS2h0B0MxNwdSIOIbQdanvUoqBGUsp07wsy7qsxcwAPQaKkZmREErJpWSpoqrgyBzGfgwhmmrO63W61Fo4UIwcYyQidydiJjZ3UXNwRCdmYgIHcwMAcBdVUwVEIkop9X2/2x/G3Zi6johNTUR++vOPtdZ2I/fv/uHtt/+1mam6u4MDIiIBIiBCYGQmJmTGsP0/III72PbtgAiEwIxEQAhE0N6AuS3TdD6ff/n118enp+PdN2/efMdhAAyiVsVUXM3d3N3dzQEQABAQEABev4mXL7z+X12fptM/t+8g5v/T/+V/6IcB3KXWdVnyuuS81pprLSqiqiXnnFdTNXdTqyLn0/Pp6bHmVaWgAwCYGRHe3R3G3VhKcYf9/vDmzbsffve73W5/uV6macp5lVodPMY0jPt+GLt+3O0Pd3d3qes5BER8ufS/tz7/pTu4+//9f/qfTqdT+4rQYY3fuwMYAhAAmYGZq7m2Jw4O4AiOiIjYNnw7Te1vCYEJY6AYMHD7BmdmZkZiACxV1lzXLGsxUVBHM1ADdzd3AEB0QiTGGCkGJAZEBzcCYCKi24tmDIFi4BS5Cyz5+unH/xm83R3ad/9n6O8QCQmh7Qjw7R0CQHtC3l54+7KBq7m6ibu4m5tIvki+SJ2szu4VwELoOPTEiTghsTtoLWaGSMQxxD6kgePIoSfuiCNRiAyJoY8wRBgiDhEZEQHMwRzEoRoU9WLblv7wx//H/OmX9jqu1+sf//gfQwh93z88PHzzzfsffvjhu+++TykRwe11bHt0eyPYTBGYuTm4u5rWWj99+vRPf/rT09OTubd7nuf5fDqVksEhxpBirLWs6yIiZgZIzNz3fdf3hGjma16lSkxxN+6+eff+3btvHh7e7nZ7vz3ztqMAwN1F6i+//NmbWQDY3X2729+9e3t/f9zHQETQrh7cARDb1dN28e0O1KyKztNyuUzrkmupAICE7iZST6fT09Pz5XzJeT0ejw/398fjYRwHQnS3nKuZcqBhHB4e7lNM85LXtVSRcei/ef92GPr2lD6fCfz682Ze/sN/+Pf/8s/bMV+F/8Ong/nLP0X8/H+IgITY9aHrgrmLaq0mcnvcbfdt7wsJMJInhsjggGvFqqDbvnx1YfDVUd72sIOjAzn0UVJQBDSnpVARBHBAB3cAv70aD2T/3btLoO2nnddxrj0hMCIzMxMhxUD9EMc+jUMixnUtpYoYmLeDjrTtLiKE5u2cMZAGlMjIHBxYndtpciAAaq8WwBGB6fZTbg8Mbw+yfdL+/PJxO6AA6AiA4Ajw8Ze//vXP/+nlcXzh2n//wzf/t//rv2NGYiKKBBExAJC7uFWXbFK8VqtFa1WtaoKEoUuxH0LXQ4hObKXoupZ5XudJRdyNiQJzYGImcDfTUkuptdSqZinEGGJkJiJAtObamUJKse/j0IfYETE1r9XuiRgotg8HciBz++zaCcfjEYBNoBarRQk5pTSOw2E/jmPXJZ7mGflU9WzrJFYdnAMjh5iYyNUUchaRUio4pog0hBR6cVm1zNdlXafUhb5PhA7MbVsiMRiYiIEBQUAnDo4vZtlFq4gQUaQQEo/74eHtw93Dw7DbhRBKrjWXX3/6+cW1H+7e/+7f/A8iWquZObjTtgOcGVLkFDkFipFSwMjOZIQOQAb04toDQ3MkzMAMRGAmteZPHz/89Ne/nq9n+aTD7u773/+7rr8H6tcia5ZSrFZTMTMzV3e/7TVEhNupuO04BwA3cwdvR2a5/Pmza0f6r//b//54d4/uNefL+XS9nufpsizTuswlL3ldT1oupynnYuaqVmv58PNf//rjn+fLc11ndEcAM2XmH3737Zs39/O8OAC+//7tYbwb4/39zuqUp1pkBcnoHiPuh3C42+8P9+/ef/vDD7/bH4+p65F4u/jXJuLFNri//tzM/uMf//jKtY9z+IMbGiICg7M6KHh10y0AcnBDcCJkJEYKjC1YdHcEJ/IUKHaBE8VIgZHIYwgxJaRgjr7k5bpmL9daM0A1qgqioOZmLThwYoyAQwpdoBCB0MCMECJTYGKGwAiRMHHsw26I+z6V64fHH//nm6NDf/vv4PgDEgPxzYBscQm8RD4OCIhbICOuGXR1XVWzaTXN65UyrEVVYDGdASSGfWIOKXIg4uAOBUXFiDDE0A2jD/c4vKHunrp9iLuY+iHxPvlxwPsB73u66ykyooM6VINVYRGfxOcKaq7u519+fHHty7L88Y9/7Pv+eLwLHL/77of333z3f/jv/4/jbmQiB3U38FuYhUREhMhEACjq6mbutco8z3/605/+4z/96Xy9OoC5m9vT4+Nf//rXZZrcfei7cRzyspzPp5zXKhWQQkjHu7vj8RhCcLPz+TwvyzgMbx7exNi/efvt8fjw7t37LfJFAgAzb/Hius6//vrjy17bH9+9+/b3//Yff/jd9+/6xIGxBdTgDs2sEzE1m0yEAIBV6rTmx0+nD798PJ+uy7yCGxKaSSnrMpdaHs+n6TpduzjEd91xf//wcEeEKjJdp1JLTHx3d/z9H34/DuPzeZquSyn1zZuH/+a//bcPD8dXrv3LUP6VazeA0+n04tqr0T89HcVfjMT2v+3xAwSivff70KlpqbIsuq5qQADY4miEFutgIBzYhwBjQgc8LbhULIAGhK8uyT9HA+3CvH3RwEghOByGvO8LAYvyaeZrJkcHMHCD9oTBAL1j/W/eXF9c+1z6x/nIhJExxRBDCMwewhCHbj8c73Yx0vk6w1JAwJyQiIkDIRMTESMyIQSyQInLQGuXOMWk0IkndwUzRwJgREZEREfyECiEFpq/BAm3JA6BWp5A+Dk9azYRm2t3Amg5y3/WtbupSSUkpIBuAOam4GZeTYtJsVpAFMTAAB2p/Xj1upZSVRyqei25LMs6T8s0uRkh7nbjYb9HRgR0dzWvarmUaZ5FZD+OgQgI0bF5MERAAFQDURczVAzkuIW+7g6GTgpEQOToDi2x3BYRvv9mT5RceF1svrZcTpZ5RQAz0SFWqYhAhERurqIVAM1IhWNkdw8xBlEzcAVwEnFhByTmwByZYwgxhC5wCjEQbsYcwKKDgjgqkgMYtAweAQBS4hQpdd04DMfj3eF43O33XYyuXmpZliWv2cxeeRew5lvN3Px20rfN3SJFQHT3KlJLlnJGtK47hNgTRrjF/2ZoN5Pt7vN8fXr68Ne//Ouf/+Wff/zxz0+fnr959w+BsE+BQgJENTcDM9h+6ZbNNf/efuB2qG45xS1A95f/fLFExUwDc+q6w939MA5S7mpZS16m6+X0/PT8+OnHH388P5/VPKUUY1rmVdVEvBR1UwIgwhi3t+VmzGG32/VdfPz46+OnDx8/fbxeJ0QKIaTUEQVEMvNSSilFVNyhmff/9a69GahXpwNEmssHREMEA3eyQBDbXkICA3BveXMMGAIFppZEEjoTpkh9xylyCEQICIZESC4mRXypZam1iKi5GqipGbq1mNYBt/QPANRMBByBEMwAHSo5kzFhCBDFTdUNAkAX0Exf3+Yth22O4sVathjNYXuPzXo4ekFf1S4oZ68XLZPUXMuSp6f1+rEuzzWfVWb3EpZhjY8cOg6JOQCASXUz4iCht7yvy13u36T+TTc+9Ls3kR5CGlIIfeAuYGRkAgRwBDEoBqvCLHAtMFUXBXMQ/eIumCmlOI7DMA7DMKQuNQiECc1dbzbhlvc2u9l8pQNwJEKEy1VEKzIOQ5/6rlY5nU9qhojEDO7MHJih7w9ugFAndXMzczV0GPo+xdh2TozR3ed5Pp+e52VWlb7vAwd3MG+u3d1d5QurezyOb98cd7suBmImZmwRMtxSS2xxs7uiIqI7TPPy+Hx6+vR0Op2my7Qui0o1FwQ301oWcOu6iDQej/vDfuxSQDetmvM6z9d5nszlen6qZRrGXalqRiEkM3U1U7/Be1+eZb9ZJQRoWeeXhwgp0Ja1I3xOBBCRCACZiAJzdERUR3QkICdvSJo7oiM4eMMXndlDJLMW0iB/zlfbGbgFo+3T9i9xS9mRkNwZmZERmTxQO/voAARuDo5b9uxItx/8dwwCmLuaiWqpdc1hWYso16pq7o4viMYtKN7yagAiIDAzy+0+AdkgutPtdOF2nG/5+GurhFtshC+HtT3QltYjAaAjgiMgtOcGhP7V+/jStau5iDODE2xG3dzctJpWLcWkghiqgTt5+yUA5qK1aF5KnXNelmWe53We12V2s8D8IPcUoyM6opmJ6FLKvKzXaZIqKcSxu+V7qu6O1Pw8oIGrO5mjeXNUBu7WPgFCZDIExy+MMiG+e7NLcXBL62yntJ5P0/k8SZVlWdxFLbqruSE5EiA2iAgEkSggOhOllEzdnRQUgVRdxJhb3M8cYoxdSl2MXUqRKQCgOwBYCx8dARmY29vz9p46RA68G3f7w+HueLfbHzgkACql5LVO12ld1i9du2+efYPGgZp//2yeAQDdTEFLns6nX0zL8fDNuLvvuyMjA7qZb/EJtPjYrtfzr7/++Oc//8f/9J/++Muvn5bFVHJk6lPkGNW9Vq1F3KpqVdGX3QcbbuIvWCLctuOrhB5egUnbfeR1yXngcUwppa4nMAQ1ySWvz0+PpqKiv/7y68cPH8FhGHe73X6ZF6kqYqWqqyB41yVENvNaxcxiwC5GRnj89GFel8vlau77/bHvh93+uD/e7fd33TByisS3KJiImNy/QGu/sE0bcv7589e+/XMm0g4YOLESaIyUIkcOgcmVwQzRmTFGjoFjJCYEcCQITDFQl7hF6OCmZmYg5mAmptVEXa351w0gv5lSBATfjjS4KlR0A0QiU3R3dEf0wBgZYwRVdPMuoKl++b5g8+uIiPT53raM7ParzcAFrIAvaFeUJ6ifbH3SfK55zuuS53OZTmW91PVqMqsVJEaKRIE4BGYiRDdEIArEXY0jxz3HhzS+1fIte/FIPHiiITEmpkDQIo0GxWeDRWESmCpcC4iBGcqrl0ZEu914OBweHh7evHm4u7sbxzHE7VdD877NOeJ21w3TdgAkZMIYgzW7bZJS2O3H3W43zcvz6dnNQohd5wjQ913XDV1nKQYRmedFoYXKjoi7cTwcDn6LBZl5Xdfz5TxPk0gJvOv7bgvOb67dNLw+H8fD7s2b427s40vA51sE57d/Yebu6tDiGzudr7/88vH0fJov13VZ8jKXskhdmZGQalkRvOti14fDcdzthhjJW0K/TMt8ma7XkpcLwbqc+nEkDKnfHY8PbmKmqub+ggYDEuELZL4dB7s58C+2FXHwlsW8WCgAQGonhoiYI3EkAERrhhcIEejm2q0FNUTODBwwBDJjJmIifbE1n83OZoxuX225/5YbsjszMwXcPiUmMtxsYMtQGk5A/LVfv8UwuD17BNVWLCvLwqKhVFU1NQL0DauEl2sgbFAEIKiYzgZkbMbRsXdvtbzXVgW3Yucrv377/BUM/+LdN4Det5Qd8SVr/y+69pZmOvqtwuNIgAAtA0U0BzcDU2p13IY2EoGqiC55PZ0vz6fT+XSSWt3NRN0011JqfXi4Px724F5LOZ0u58u51hKIHQk5OLIZVHHz7WUyBaZA2HIbd1NvhWtzR29BO6AB0ee3cXseY+r6vifqdj2Ofb/fpXHkeV5zLbmuRZatzCbKgbo+pY5joJRCDByYCNDNEAJCLiCugIhuVlVqLWbGRF2Kfd8NQ99cu5mXKmgK7oRIIaYuphQbfN2KZimloe/HcTfuxmEYY0y16rrm67RO0zxdp5yz6efEZEu4Dc3AvIFgDSkBhC0vQXQgQMQi8nT6uMynaZof7ss33wwhdG5uCOLuANRCDtd5np6eP3x6+unx9FMuJcZ938W+iykyMUYmIsvr6fn5cZlnNdjv3/T9Hm82pznvLZ3YdttmBfy2UV9vMnP/9ZefVCV++12f0vaKHN1BRfK6TpdLyWsg2o1DCBEc13leprnkIqINP0AAROYQVK2U4mamOl0uTzE5Aaf0wx/+cHf/5s2bb+7u3+4Od+O4H8aBQwDCvh92h2PqUvPxt8PzhWt/7dE/X7l94RFT5Hd3nTto8xhmAMSEQx/HPnUpBuYWCiM6ETT2xpagM3Lb0IGYqWVXIjXnUqpVMSJAQoRACExKKEiG6KiACGr4uQbiDuamJuDmjGhmLcF2RFd1Y3AzRoLEzYGp8OsbuWXtzWh//rJvNUhzLSaL6ww6oU1kV6tnLWcrZ1svmi+6TpZnkBktI0iD90Sq2QpITBxjChxwAw8ZscC6EM0cli6voBIJxj7a4KiADujogGIICOpQWoldoahXBTUwB0P0Vzax67o//OH3b968/d3vfv+HP/zDH/7wD+/eve37jgMDONjLOwIza+fXbvf/ghS3wDgEevNwjwjqZiZSCyLudnvaQQxh6Lth6FXqPE/zvDAzAsYYmUMI4bA/vP/mPTMz8cYcYqq1rOu8rgvc3cUYvCWVt7qVWX39Ovqx3x/GfkghEm3R1mfH6YgOyOQOZA61lGleHp9Ov/76aZ4mVxNRNZVac15j4MDB1QGAI3NAjgSkIlmrz8s0z5PUFUGZHNzyMkstSGEQHfrBTcxcVaU2OpQEDl2XOPB2dlqS3MDaLx0JIhLH5tpfjMLNISEBMhOFSCEiAJIhNT7Gy491dAFQQCByJGskFSInRjKkLUdXaIDlrcT8CsvyW6HAEYEdmIzZW92biTkwbq7dwW1LEcGRP7tV+BxOff6kuVAzELE1i6hVVTG37SiZGzqYARK09MvRAc2t5rqeWJBgtBgtjI58e7PNo25BQCu/3D4aBICvUhC8ZWY3cA3wxonZEItmUV+vL1w7bKEKgAHQBqU4ADjBjaJjjQbnhugIDUShqlqkrnm9Ttfn0+np8dHdAgettTbgdV2riJoxYS3l0/PpdHpGxKEf1lLnXBikFYEBIKUOOXTIzKHVaTZo2NvBMAcCQka9gZVfJ2HkFJC7FLAPuzGNI/c9ni58PsO8rGsuKtZqwynGvk/M2KXQdYGpJRumVREDOIEVAUVAMxUttWZ3JYaYuO9i36cYIyKKKKkjATNx4JRiP3Rd34G7mpk5Eo7DsNvt+r7vuo4pmHpe6jTN1/N8vU7zPJdSkPzLd4GNUmT+EsXDy24wc0NHREZWg3mZT8+P83VV5ePxu67fw7Z53QE3nM9kydP1+ul6/TjNjw6xHx6GMQ19TJEcgEBd8/Xy4dOHP0/LTBRTl8ZxT4QAZLcw5SVZf+0Lb9nRF1909w+//GQmh3HsUiQKLQ2otc7X6Xq+XC9XVd3txi6loR+neX5+ehaptRZVbQWxLdVCMncVZUIEyOuyLvNwONzfP/z+H/+r7373+3fffH93/3bcHbt+CIERN5oDEDeSwi31/hJovFUa8G+s1es0Yez5+H7X3oWqmiqCMfk4pN3QpRQjc7MJCE4EgTEGjolb+h4Ch9gKviBS87rMi1pdFaqaRWSKMRB1sUtBmZlZiIyrF3FVuDH1DNygscAMzRyJ3bfke8O1AJkwBeoS913o+1g1fHVfL7SsrzFXBzBVWSU/a3m2+ox6ZptAFtNF6mJlsny1cnHJYAVdCN0RCalKLbW6OyJLlBgiNXACqHFdEQtzdfVA3KdUxr4OLCNpBUkkipXQEdSg6Obdq4K6AwAhtmzos+UK4eHh4e3bN+/evX337u3bt2+Ox0PXdUTYfPnNZbiD2+bevb3lja2Hm+mIMd7d34np8+m51qqqzHw89F3qxqEfh6Hvu3WZOfDpdIohQMC+6/uuSzEeDoe3b982LnBjBqsaIaqKSiXClCIiNgC7ldhUM3wRo6RhN8QuErf89YWB5jf3ibfAAFTtfJ2fT+fT+VJzjcy2IQ8qIgiAQK2qSUQUEMjEMpRiItM0revi6oQeCMxcSq61ADBhUKneinBqoppzXpalsQVTijHFjVIGcONxfWV0b1n7zZ1/hpWREICYiBNxJAMkJSIi28Blc3ABMHdBNHcFsFY+R0BiYHMGAxf3CoiEEYFhY49R+/CGJuLNtQMwa3PtBryVOrChXraFfmDu/lXW3sq7DTd57SzNUdRzUVVrOJijI1krzSECbebazZ3MEMHKosuJ1AkLwGB0t+HcW91ie7ngr3aqN0ChUV0aTLfFLO2jRRA3C4b+Ui79Gxjyq1p7w+TRSAgDoDkSEDR0mTAQqlvNIssy15JFxQGQyBDVfFmWWrKrgLuJ1hZM1lpKvl6vJZdlXmIM7vbp8fF8OccYl1xyLr9++EQOBADmMcW7u7t79G43xq0GYXiLoRpeBMgI4E4A/Lem2s3PT7NVxCN2vcWI+wOlbtwfw939eLks5/M8TeuyFkQIkYexG4c+JQ6MjaxXi+Q1u6EW0+jgrdwlKkUtA0gr0nOAlIjYVaSRCgNj3/X9MIzjGEJAxFqr14rkhIjOWj17rVndXdVyrjlXFWXiFDtCKjK/2lD+xWpMHDJvAMyLF0UCROauSwfCp/P5xPTr9O1lGA/MtO0eQFRyU7NS61JkElsBPaYwjv04dv0QUmIRlzJdTz9/+Pk//vXHPznRbv8WoHJABHLHxt54Cdg/58D/+eVujx9/UclDDFLX3f449EMfQ16Wx0+fnp+eSs5D13//7XeBeb8/nE6nn1IUKZfz82aiANC9QZEIlFIKhEPfjX3/cDz+8I//+O0f/uGb7757ePft8e7NMB5iNzCHVsBqeam/lKfg85H6O+tzC8Ct1v7qew+79N/92wcHdEBTbxwIcGvtCQ3fbiaY0AmRGUPAlqkHbq6dicDdFs3X/HR9/vj4+HFZsiiEuOuH+7E77ofd2KdhtMukl0mmWZZFi4iomlU3aQC7e6vpR4JA3EqJGBm7yPsh3B/7u3087MJxH4/7NH9Z3EUCumXtWwKwmTF3U9NSy3WZPpX5l7p8QDmxTQRCAO7qVt0MHdAd3QgtIHBghlhLNfEqYlYLC4cQAocQKASmgBiYEAHBVOtalst8/jQFHgIGMAQ334kjEivgqpAVWr5OAIkarwZOr3y7SP306WMppVYhov1+fzweQyBmVlX3AOACoKrbQbpl7Q5OzlumiBhi7Lpu6IfAIedSSuEQxl0YuuGwP9wdj/vdbhi65+cnEemHoeuGlOLhcOi6frfb7ff7u+MdEcUYRaSF/13X7fe7cRyGoR+GrhGhmmsXlVLS6yPTqDtO2PA6eqmyft57fkvsbM3l+XSa5pU5YiImylKrqJg5kOqWeLW8T12XMp8nYHMXqaWoaHMZ7tpydAAEQrNbewQAIjG5ik3XuZQCgCGGru92u3G/G7vUxRj+zhlCII7g/BkYuwEjDUImQuYQKBgZExMBMboTuLtX09V0dl0QFEjFvAJr7JGdGBkwQgVda13Bo/Meibf6e/N+0KJqAjQAa649hBACOKAhYwhk5FsFaov3mlfhL1kDL2W3VyFMK+O7KojcEHgEJyd3cyPHV2a67TNHMKuL5mc2ExaK954UwWArrHmLVtEBG5x6Y42ZEZEBoAPhCz8QwDecwOm2Nbz9YnDamIFfvJAvs/aNNqBe3UmcglMD5zfCgaOLy1LXy3xZ5qXWaq34i+iAa87LPJecTVVETE1VVSXnXGutRZY1911HhKfL+TpNKcYU8wWvkSgyR+bAPAx9SGnY78TUwNBgw3U2YHuLpxAMQAEUWyPBK9du5qfHSasjunvfDRxS6Lo07tL+4Lv90A/96fl6Pk8AEFM4HvfH4y5G5kY7U825LoGtquQqVUzETd3FrLhVQmMiQiM0Ikcw1WImiJZStxt3u91hGHfuKCJmyArmhgAqvnoFKO39q6qIqwEhx5AIWTXJddVbZbTRPeElX2/03ZfOtq1metuXTohJFS/XC2K4Xk/7/X3fj8zs7iJuJoCl3Vyts2oF8BDCMHT9kFIfmKFKrfl5vvw0Xf66zB+64S4ECIEDszuZwedDgC+G4Osz/vVyf/r4yzqd0SSvy7fffg/3DzQMyzw9fvp0Pp/dfL/ff//d9ynGYRhi4Gm6fkzB3QCMGBGpgdC1CgCGEPoYxr4b+24/Dm/fPHzz5s1+HCMRuJqKqSIhAQASbdjgaywXW5X0dnVfpOxf4Q2v72Mcwh++38NGXUQ3MDVTNdNGiGgUebj1efLrVjQiDhQjAYKpzVqW69PTp7/8/Nc/z9OkhsN4f7z79nAnuwNj1yEzNqxK1UTBC3o2KOoZvIqoAwFEhB6pY4QQYko0dLwb+OHQffNmvD/Esae+4y6Szl/IV7yg8S383yorDmaOaADmWkXWkqe8nL08Ub0wKm8m0E0rWGMiC5iCKyECMQGBg4lVUSGlWkMMIcQQLQYIzIDNQZlL1TKX+bR03Tz0MQYO0SkoRmR0oGJYFdQBASJBxxAZIsGHV/dRSvnp55+en5/P53NK6d27b96/fw/gDScACJtD33Izb622cKtHmJGquUMIIaXEIQJiraJqMSamsBv3d3f3bx4ejsf9OAyIeDmfh34c+mEch4f7hxjj0A+7cdzvdjGGvutqrbVKqSWl7v7uuN/vxrHv++baEQDNnBRD+KI+Qswc2dF1I9IgwUth27c3Bu7uIrIs6+l0WXOJMRm5mxqA3ChK7qBq5hsdBMhyXadZ0IzUYKvdBUCkBoQhuOONqrmlj4SAHBrhdFnzumRAiind3wkCElIIAVpq+4q8jIDEEZw+O3R4nb03185MHIgZAzMQuxuCmbu6Zq2T64ReELWqVw8lCEcD9MCIlN0X8dmtI+wIQ4NzHQyBARIgb9w+pIbLcPQY0AAViUJA4+1atkxp48nTV9out2t/yRhbm5k5qLloq242Ppy1wKKl+e5uW/+MAQC6aJ1kPbGpJgOdEQQgIjAjMLee5Ga6N06NGxg4EZgREdwS9fYJmjsZAIJ9Nl8NQwW7oRav7+PLcB4AN9YagIpzdXADMhOVKmVZ5sv5+el6Pi/zIiKEbA5SpVTJuczzfL1O85pzKbWqqJqZu7UDc56WIpZSFwLnkmvRWmSl3MdEQ3/c7fe7XZdi33XjODKzm2mtbkTMW2SFRMyRW6WdsDGPN5bYF+yz5+drzjWXvD8O+0O/2w/DiCHE3cAx8NCFXc/7kWtVADjsu8OuSykERlM1kT5SR+ClaM6yropmoOCVvJJrJAgI5O6iUgogaq0I0HdhHMfj3SGlgTiIqJojc0xJVUR0LaX187tb68RprAqOMXBKHbr7ZX56dStwe7Vb2Njq69x25hYPE6CL1GWdL5fL+Xy+Xi+I9Hz6uN/fx5iIgpmrFdXZfTWd12UppUoVFaOOUpdSSiEwuNY6resvtf502Nnvf3jX73/Y3/3hcHgIMamigyEg2s3mvOCFrxzihhu+ppqbf/z1J0I4n54u5xO4IZiW/fn59Pz0XHLejcPQpeNuV2sppeS8LstUyuourY3b8NZYcVMa6FIa+yEGNqnnTx/BlH/q0jDujveH+4eHt+/3x7t+HEPqoAF38FK+xL9TJ3x9BF7H71/iEUSYum0bNv64O5mRKbfqzq01aCs1bngBNMZvQwS5xSgly+n58stPv/zrP//pfD6Zeur3+/3Pb775w7v3U+zvnUddHaqSrGxL8Nl9UV/BspSsRRwS0Uh0jAEiQh95t+uPh/7hrns4dm/u4n6kLgAzosNXxovQifwzSeJ2+AkQgNlD7MdB78lLAC1gIll1Ns0IiqCw9ZSUWrJINVWmrYxERBz4JYgy1dqiUXWIiMCMwa2CVTBpH26qaqUqFTUSZHQCcxJHQugCJIKOoGNIDP/6yifmnP/y449d15/Plzdv357Pp2macs6NC90iWlMTFHUz1VtTETbTS+6qVlWZAlMU0VoVAJljihBC6ru+qVYQcQih7/rdbr/b7fthGHe7/eEQmPuu77oudV1Mseu6Ukqt1cz7vnv37u3D/d1uHLsU/XMd1KhRx15vOdqqjtYKyAjWWNvwUmgFwNa3tlwu8zwXEe9iUpA1r1oruDFjCMHUVIyiRwQmciYAzUXJLQD0KcWQwNgVEJ0CO6AqlgrqLIpqYO5AGJh2+8HsgUM80XVay3URijkNJXZd15uJVREReX1ymEODUV8QxZtrh1aQoEaIa4of5MQbLR7FERS8mmaQBaBQtVWJIMd+wbQPzIEUaVVdXSH4SiqAZpDNsmFEHJxHp4EoETEBE2EMkCIJQEXCwGiMt66hl0o6bsS/LyzALTyBBho3ireZq7qAOW+JJAF6o4H5LX23ZiIZwBCq1KWsz+xmA5NldEE0Ruoidx2HwMRkCqKurWpLCBsqa2at/oSN3eTgsP1w2KK/hg1sie4Lz/Hz+hvXjojg5NaIPmou5rmseV3W+TJfTufT83ydmkhCjMkdcq4553Vd52VZ5rXUWsWqaK2iG9/S3EFzzUVCKCGEVjJEd2CPQ9gNu+PheDwcYmgFHZJap+lapVIgZuYQmAMHJo4cIxPfDsSGgXzhSxxKUbdcpaxrXpehlQ7GHfQ995Ej9QweGPJaRKzvQpdC45GpVBFIgQJCWbq1i0vAjA7QChVCoIEgUPM2KqUiobuHGIZhOBzG/X7HHEXBnEIKAQIC1FpyLmJSi0qtZhZCCIGgNWQ1xn0Km9d4uRHYut7AW68CgLfEHW7dZzfMyE1VS6nrmtd1IeLn54/H45thdyRKDlCl5nxWmVTmeTrndSm5ihgip9SlGJlpXZdp/rjmD26nu7v+cPe22/1DN/6u6++YY3uJCAC3ttvXz3zbgbfn/3qPufvzp19ryY+fPuV13e92kake1tPT6fT85GZjn1JKkekiMl2vz89Pp+fnZZ7dlMBbAdIUTLVWF1F3TzEOfc+IZV0eP/xyOZ+AiFM37PZ3b95ev39++/7b+zfvdoe71A0UIhC/gjfx7/3n88GGz2j8V3+1Bdo3pKR5d3Sn7YHAS3nxcy2lmYGbUwFVK7XM8/T89Pjxw68ffvn5+flRRJj7bni8Tmstur/7JvXHIl7XqusMZSZd2FbQbHXVda6LAvYcDokrR0247wPvezjswnHfHfZpHLhPGIKju+rX4fxmbQnwtct3QG6RYkowIrxhgkDIoKsssopKdltBC4Chm9ZsTcCqAZCIhBg4AKCxtScgTRhBxBwViYmdA7ogKKEFAmZsQbsDqnkRAzcgAnQkSAyMsGMcA/QMib175dpF5PHpMaWuinz49deff/75/fv3Dw8Pb968GceRXhaSupiZ34jdiATmKATUcg9CJDdAoK7rh0GIcghpGIaUEmLLnpxD6PthaBD7MOzGMXDoUupSl2KMMTp4yaXWioj90D/c3x0O+66LzJu0UeNH3LC4z+smpOMOt6pr63iArXW55XSl1PNlulzmUsQdQwhgrXEfYmSESOylFHUht8COjMCkoioG4MDIkWMMWlDdKcZIfep6B55nYe4cSHTrGCSmrkt4PDigKGSb57Ku1ZciVcwbB7lU/ZJnSiGAM2wu/dVpaIg5IQcOzKZKRMiMZkgAihDABYxar5OaFoGKZgir2tzhGigRoLmwFRMnCQhuvpqvCqtzB7yH+ICJEQNRJGRi5IAc0BwQNtdOgNSKe37D1d1pS1Ze24Dbcd1ORit/u5krmDeCAKLhayDeGoUPGqRvCl4kT3U9JwLQHiw3DgER9insd11KzEy1Wimai4iq42ZdzQGwMaS2Gl/D8VvnHPnnVqWGUPmLd3+1virC0dYj0ByGWRGZ1vz09Hh6fryen9f5alKkioo2dqMDthY/AOhSIuRY65Ir5uIOklVEWqazdXJpqbUSYgg4dOnusP/+/bfv377bjX0kbjmbmAA4PYcQmFq9LoaYUtf142437g9d14etcvfCKHgFDRHuDzs3W/O8ruvlcrlcdsuc7+6Ph6PFwK1uEUOwBECGSKoGiBSCg7M7goUEsU+pixyZCHTT4xMwbSp92DSt1Bg5MA/9cDwed/tD33cO6GghpT2HBiaXUtZ1bfhkKVVFmQMxgyMixRBCpK6Lt77bm7H1liKBAVhTW3DQ7aOJoBkpMiOHkLqu64fQdQ6Yy3K6fHw+PYy7e8QYY6+mpUzr+piX5/P54/V6WtdFqxBxSl2IEVyv04ePj/+85OeQKA0PHN9z9y3HO8QE0LQ+wBDh1ox3Y3PekuLbfvvKIzr45fm0LlNIFyb88e6IAN+8ez9dpufnR1NFl77vmfDx8fHHH//yl7/89MsvH66XK6gFpshcxWprJUZUVXdPKfV9ZyLXy3merhRCSB2GAES//PLzzz//9M233/3u9394//3v3nzz3bA7cOxetB4AbmDbyzmEv+Pg/653f3VTjRgGr8v3Lxl7O3XmdmN5bg/L3LIsl+vT09Mvj48/Xy+fap21LnnNqst0yWDMGPM67/Y70bKWKedrkZnZIrmXokvO52mZhbhP6Wg8UZojvOsIAyTUWDOvC0SKphQYCMHNc/nKtbcA5ZVr9+0uHBGJG3YaAsfAjEqWFxSdspRZygJW0Q3cGJs1h7YzmWNMyO4AGAKDe8m51mpmCO4qrgUsIkhgiJFTn4ahG4Zh6PuuSxzC7R05k0eCjrFj2AccGRJ5JAxfwg/NI4rIx08f/5c//i8hBHf4N//m3/z+979v5Fa42emNrbFREbUh07C1vYoDhhDHcffWPYTudDoz8W6377uOmVQ156KigUOKqeu6oeuHvo8hppS6lFKM4zhyCLWUKkKEXdftxjHFgAAtu2lFG1Vt+dkXdwHO4HCrGL0AdTcidAuSbFnz8/N5mhZCRgYwJ/AUA+HQ9whQDaqhrFUgCKNxRApcsgt4IG61ESAsJiIWOOx2h+9/+F3f706ndV0rAFUxVTNTcG480K5LwziMAkUppoif28u39urX74L5JrIGL46xNYs6ojNhCMSRyIiYiGwz3gQITBAZ+woiVs0qWDWpZVnAkOlK3kHsXQhcXarW2WpRmQyrBfC4h44o7JgcGYm5uXakm2BREwu9dcg07tktPXFEhq8P+gtT4FZtb+cZrBH0gZB8y3Hgs2tvcDwboluFukqZtVw9MnlFVzADRiTq+u7uMIxDjIFKkZzrvNJaagP8a9swAEaG3DLY5tndABHBNnqBuRsB+GtWxqv1NXW2McQbsb4VqKrIsizTNM3zJDmHQDFGQhLR22r5HDYPv9XesQHOIKI37YfGPHIACJFDiCl1w7gb9/tuGNxhzWVdllyymjg6NrceU4ghxBBFVBWJQkzMIYT4GVX9OinB492u1lo1L0te1sYz0ZzrupQYAyLoBseZqJVYiwgg3OIPV7VGXFJXNRGtokWkiBSVSkROaKqqopUQMVAMHLvUp5iYuRFRYtd13YBIZlBySSmFEAOndc2lyHaowQkxBEqRuy5u8cpne/tq72wbDOBW8lEzUzRqEnUcU787PBwOb54efy55en7+te/Hvr8j7o6H5G6i67I8X86/XC4flvlSawaAGGLfDYiwrNPj08+/fvhn0yVwGMa3/fADxDuHoRaTuopWMwdgaCoQgFuQ2pw7wt8LHLfbmK/TMl+6vpsv5+fHT8MwgOkyr5fzM5gFdC1DjPF8On348OHjh0+n53PNhR0SUSQCNN36tjc+VLODZlpKFjFkHnceUqfuOZd1WcuyWM6aCxr4Ox+P95z45n7hpZN0uz74/KcXxOFWMnx9H595qnjzhjc79sqv42ae3dDbY9qKeqaq8zI/nx4fn359ev5wvT7XsqpWlVILqEmIfeoG07msnfpc6kl1BsjcRQ5sa8mXZbnMy1RjHGi4SFqtKyhIltBG175knokQsFQOmwwtzOuXkjU3VtoXrn37LwEAORq3tKRY2Ws/lrUDIFOTWl0zujYYjZARuemxIDV1FgDE1gfISESktZopuroW9+hWzFbTRXURWWqdpfZc4xZJUUTigBSZB6JdoF2AgTESBvTXXOb2gtxdpD4+fvqnf/onpsAch2F8eGiJO97ErAGg0QMaN8JtYxeAtxZHh77rj4e7vhti6NyRkY7HYwhsIuZWSzFTZgohxBhT6vqub369SymE0PV913WSkog0IZ3WhufgomI3xFW1fXzxOhiAbzuwkZpeqFs3Zw9mTZxV1IwomErNGd1SCDF0DmSQxXEV8mAuCqgYkAKyEQCmEFKIyGwGYiLuMfTD/vD+ux+Oh4dxd3l6Op9PF5GXKqq3KlKMYRj6LFCVuImtNcSHmvDa6/cBFMILr/lGQ0MgB7TGOOFIIZJoS2EMQcAVoSJkogpkzhvF3sFNiskCJoECec86qkQtUIvCWr0W0wKBkTrEiNxR6CgkDpE5IDK1fprGTWzFgMAtHnmR4MIta/+bxnaAL5zl5rmxVegdWiPe1gp4C963TYWAiOZevc5WJ5cZLbJX9uavAYlD4JTCOMSh41opJ0qRcqEilovO2daiagbuHGKzJTcmJbzcwoYMboSDl53yef1tVwxBExZ1R8IYY9/74XBAsON+RNcuRQTPa17XvC7LPC/TNC9LbmtdS1U3R22tWeoq5q5Kt3bNTdKEOaTQ9RTSZV5L+VBz1lrRnZhSn7q+G8ahH7q+71KKHBi3gIFaRHFzdp8rJy93QYjH405NiTxGnKa5ijw+Pl+u06ePz8SNie9qZgBOEFPsh35ajsfjIcVACOuyzNfpcj6fLqfzfJ7Wi5QsZSnrrCJEJJYa6QQA2iFQNRETUVbt+i71Xer61CVwUvUYQwiJKRJGpACQSxFVATBkZIauo3EIIQT8qvLTMr7tvW1vs9VlVMECmUPDQ0MY3rz9oeTl+fmXjx+mp8ef3SzyGOIwjkdEc5BSr5fpw3X6tOaru8TIfT903a6U+vHTLz//8i8//fIvXRyOh/cHvuuHt0h9FV/rZb6el/Vi7ikeQzpwGJFCu7Qbgr2x/eC2uz/fAHgpRUUDcQqMYMs8/SKa17wsU0CqJUvgQFDzOl+nvKwqygApcMcciByxgjshBWIEV83rsswhEDKHqoIU+nG/Px5jjI5YSq05//znP9dl1aoqFmLXc6TwOc/4wiYB4C1Neh2e4Fds+u1Rf64lto23fRd+jgt8S2Qb5RXN3d1EPOd6vs6fnp4/PT2dzufrNK15FRVEJAZHUM3z9AwwrSsYXNQugSUlgDA4pHWark/TdJrXLN4PgXOZ6xqsHzope5N7qeJgBurgsRqgg6u7rdf6+tDzK9f+Oq55CVnAfLO8IOAVvIBXcPFNhtXcDTkwt10dANAAU9NgaGKFrmoSowGAEKoUU3UQ07UWWiZ3F5G1lqmUaZrfjvs33XifhgOHnkMMKQEkppggROQmlk9/w5Borr3W8vz0vC45xW6/P37//e/+8PsZnDhwc6eqbjdzVMVUxF4YSu3nOO13hxi7UkqMCQGJ8HA4muk8TRs/xowIuWndhNB1Xd/3fd/HrmsSlSlGZo6qxBRjCDE0UfdGE9lC8dalpvLaCDNivNV08bYVN2p040+7OzpH7nfjUFRkntdlni9dCPvdCAhiisQAzJEogJuKFVMIRMihC6mPKXFsBXJFx4Bx6Mf94XC8v7t7UOOc5Xy6SK3aKELu7XkH5r5LO0UDBrfI2xwQppASMX8ukCAgh4DAN78OW7VwY0YBBqDIFIkrECpY9jq7ZbAFZfI6W8leM0FFEhUxE9eMVioB2kqSq/CyeF3NxMgDxy70d2n3hoa3OLyh/ojdPlBkCtgkaUla3y8gIhMZ3YJw3w6rwwbIf72z/CWI35zLjdD28oI+/93m8psjQkMkNLBs9YIyBSyBgEmIFGlTvtMWIhszMidKIQw9V+lK1XmteDExWVc18Nho/JuG7oZQb6Q5eJFLwK+zWwD4O33trYXcjNgRkZBSjLtxJATXAcFiYDeLYWEK4FirEWV3q7UuyzpNS1UzZyACwFpVtLE4lW71RqJGeMYqPi8l54rmNWc3TTH2XRoAgWNQj7d+bkTiwIgUONxmzLSQBR2+PKYASLjb9wDQJI0Q4XK9TtNynaYXE7b1DzFSoNilvu+WZblep6HvAtMyT9P1Ml2v1+v5cn2el4vVIiWXvJoIIkUVaHyB1iFAodFwVNwdmOPQD7FLHII3zQxlZmPeGoJay7IbEWOXaDemw74/HIYQw5cqIvBibHGj2myZ4kasMzD1JgUMEMbx4f7Nd2/efDtfP338+MlU++5hd3j77u33IYm7iq7relrzVSQjeIpdCMHdn09Pl+n5x7/8668fPnzz9vdvHg5Dfxj6fs11nc+nx78+P39Y8pU43N39PsYu8ICErTTwcnk3DYW/s1rm1DQDTKSsSyml5JrzasR5mRnMa1yna1kmrZlMI/OYuO9iDMEdahUC503DCN3c1DEERiR1B6hVaqkxxkAEIaiIljJfLk+fPu7vHu6/+S4NuyaX4Te7+eU1/p2w9+uj0UqlL+cbX76/AWRNYgJfHXUwx9Zxoual2LLKeZLrYksh8U6hE42qvBU4Cc3rmq8GsJYKMAFcu4TogcwQ8vV0vZyu61xE3QKZBKuL5LksU1mmOq7ciYIoqrogoZk2HUKZv9BICQwxABLATQdkAygB3JscfnVZTWYtk9WryQy6oldypdbDu9mGJuIQWiLnENxbBg+tqxs349PEgaurt+qcu6lKLUutSynzMp92h9N4eDPuH1K3S3EI/dBpr9AbdgbRITqRE331fl6A0AasXa/TPK/rkvNaYiwsjW/aslBTNRWtVaSK3tjdzR4hQt/1KaaaKrVKPOK4G0tea85g6uCOza8TIcYY+r4fW3Nb14VwU4gl2iTQmpr/zQm0QgcQYZPapC/QoI3Nv23Cz9iXeaNCexM9B6LYJWIWqesyr/PEQx94B0RafSsEgwK6uVYtCm7IXeSYQpdSoJgtW5PQDnHc78f9rh/71Ke+TykFAFPbUvZ2IhCRmbtEBkTMTcghMDdiRUCm1/xMxC1rfwWMAbTuLkMCCkiBWpjG5ASCtlq5mlw8n6xetRYzIUd0Ra9gYiKipYCCZqpSFctiVRAghphCv+fhgYd3PLyh/o7SiLFj4oAEQM2n+0ZYQGIiDxupAQBuAqbuTvAFiPJ3zIDDS7nk8zttHxuBHbb0eSvGqetq5YR2jVwDM6EyqqM6mqNXkWXF/RCsj8wYAseAfYIqFphaj3URq3ar7n1xQZ/tDsJNbPbvGa4vXHszQ66GYNG9cYuZMKUI1klxqWVds5Sac8m5lCZDY26G5u0DarVcqzkiorQZYropRjA30hjUarAUkfPlMjXmakCMHMzJoBaDpci0rN0ldon7Po3juN/v9vtDiLHr+hgiAHrr/XsJsV7detfHwBwjhYCIZl5zXnJe1zW3GN7cDZwCc+SwxnWO8/XyFFPfpcBUyprXeZmvy3Jd5mteFxDRKiVnFSWkKtKa4UTMEUPsVF2qqgFhDCGFmAiDKUiVWmXNNa91zTmXrCqIHgIFjn3PuzHd3+2Pd/v9bmz61692FPpGSvlMhkf0QBiYGMkdRVxNmxIDcRyGu2/e/26ZPz0//WWZL4+ffrl/+PU6n3ZIW1+jrarVDIhjiJ27T9P5Ol+Wdf7rTz9eLtO3b4c39+/v73ddV5+f/vrLz//6449/enr61dz2+4fj/r6L7/oEgLCam7VWG+QmB+GbKMdXVWqiQMgAZGYlr6nrUjcCoKppFTQtyxwIL89PWhayGsmHLh734ziOMUYDXEth8xCoD9zFkFKXuqGJgSTDJa+//vLTxw+/Hg77w+FwPOz3u13fDWnYuWPOdeM3JP86Ov/fuNzRHEG3Kru/TP6BW+3ENvjdbnJDbZJeFllLXbPOS6hwH/rvh8PanRSDiEEpFwALAd1MZDUwlgqYqRU9xBZfpdrz0zRdFlFEjoiRoEcfQFNZfZlLHDOmHKmXKkt1URdRRI+MWL5IE/uAXUQgcGrKeo3kZerqKiZV62p1kvVZl0+6PHp+BpnIMqMGAmOCNsfipozXlOwJAZgYGIDcO1VplWaAYua1tnkt6I6urqK1Zqm5rPM6X5bpvJ9PdT4Pw6Hv9zTseNiFMnIZYRywH7qQINxG+2zvohH4HBFCiF3q9vvD/d19348OKNtko8/TC0VURapU2YqZbWgXcYDG3WUkdNz1hnfuCDEGMI3MHhicCFxlm90RmLuua03twzi2un4jZxARB6Jwa++m9jVwB3Ywcw6a1u6L04FA2MzzbVAGgLpXUXMITI6gtzuXWi/n8/V6cck+pDZgT7UWWYrMtWRwMasiBcwNKYWOmUIMkTivCMTj0I/D/u54N+4HJFct7tXhBsm80EEJt8EehMicYmxjPFPizyn5l6eJAyOEBoLdmvM3M4bkHKBJGG3IBwGjqa6ynOvySdZn0wyukSIjoxm5VlUzJRdX4GxVQVdH6rgfY7dP40Po7zD0gIhQEQsTBUZuLDcnQLKtFE3EIWD0l+gJbm7DHYFBvriRFyLddvmfh+7BjXx3Syk3jt3GqCWn1vxmskh5Cj6l6DE6kSBV5OqkjRE5TbbrY991MRIzMgEhxsBDjwcDg+Ae1qK4tZy+2K0tMnFHBNpgHgfc1Eq/WF8JzaJtej1IjmCuXqWqlFpzyWvO67Isc8PeSy7rmpdluV6meVnXdS1FVEHVWrLuW89Aa/1VJDRz5hbgqJnXIq2/NhClEDSaqubS2k2462JMHCP1fRrHec1FDYhi342bkk2rdvrXWbsDqFaiTe+TAxA7ojpUsyxaW3SqZqTMGlSC1phnRMTIITACqGpZ1+u6XNd1KnkFMRWVIqZOxA5AlZAIgFLqtgCwNX1yJAxuVNsJyznnUoq0xi0i6PqUUnQHIhiHuN91x8N42I/D0Dea8VebrL062lrYAdEZDd3c2R0ACAwdjBgBOHXjmzffz9PHX3/+pyf5MC+Pp9Mvp9MHop1Dq8pDUxQl4hCiSDmdP03Lcjqfp+tC1I3Dw/H4YFaenv7yl7/88V//5U+fHn9a87IbD13iGAxhreVUBaZpXXNRtZjSbr/vuiGm3h1FLPAXfKeNvlDquqzLNCFyFTd1M49EKSU0XeZ5Xa5Wc8cY9+PxuH+4O/bDAEhrLpfr1cUjUxe4j91hf7x/eBtTBHeOk7nP01TyVerqUvtId8f9w/1dGg9KHXKoVWuVaA70krJ/UWL/X7dwS3BhC/nts8i/yZYU1lqkVhHR1jFcDarYWnWtWqqWWkuGLIPTPcV3GC8QxNDAs4GLiVVFFcTKJMyGSk4mtea1zlOpxR0DUzJNVSJL5EI+V+ArxEeB0Jtj3FWLVbFWJ8IUKYoOL/cAMAYboxmBgYu5mCmoNEWmvNRlrvmq+VrzSdanOn2U9WR1BqvkxohNILTNhIStHVsBgJkIOXDk0IXQmXkgAnAVqVjdsqlJS3vMzMXM3Rp6DwQQEBNSBDN0RaugiwlZJTACwM7Bk31pvnyr7ENK6Xg8vHv79v37bw/7AwJtYpO3zGyzRTc5yzYmmZAcP1dMEYAbM5yaEDlKrV3fMSMClEIitSUnMcZxHI93d3fHu3E39n0fwjaA5CWBuf1eR2wSws1LOiKF+Dd9Sa8+3+yw2rIWUY0xEJODl1rnZblO13maRGoXAwc0ryKl5GUtc66TSmEHdDc102pONdRGjQOCwAE67ro+pQ4JRfLl+lTydL2sy3KpNXdd8o3Y02wPAiAzEFEI4EatKgF0S+u/MFRIHKAJqeKNd9IMNDqRcfBN6YGJQwipj/3OrJqJ6oqS3QRMTAoCkDuYUOsKcjBxRzUlMGLuYhhjHJk6cFDJjuowsfdgA8WBwoDUAwUAhe35E2NgCgDwiq+4oejsAopf5L1f3hjcYpXbtoO/+xVwAicwcxCrs+ZTsCVFiLFhFQ4kQOboqr5mn1ftV4lCIWAXKUYk4hi571IVmBcR2TD3L8qb8FpzuhEzfENHvvTtXzPkgdvoAnUiNc2lrPNyvVyn67TMbU3LMi/rknMppS7LOl2XnIuIuAEgqIEb2iZufBuJ4I7bHDNQdTNn43hrAHMEVctaFlNwI8IYuev71IWYeF74cpku13maVqmtMz4yR4IbCNyEXT4feDufTxzIVJdlnudLKYtBYbbUIwmJGIh6VWh9oJgMDAzMvIIxYteFwEBewbLJonUxMRMXMfBtYFYLWvwmGs/EzIFDDCGBU16liqx5XZZlXVd3B8CU4jj2rdkMEYlx6Hjo49CHPsUQgn6V7+JL/OhErWPUEQw0m6t5MEghDER8q3N7CPFw9/7d+of33/1OLU/TdLn+/Pj41xi/2e0wxq3RrYFthCHnJcvPz6fL+TL13d3bN+/fvnk/jvuff/nrf/qXf/rjH//9L7/81HV0d3f3+9/94d273w39IOU6TR/P1+l0uixLFpXj8f677383pO/2/c4xlGLra+PlUEXWnImgEWVrqRgvIXQxdsfj3Xfv3pZl+vWnxaSCym7s9vvDu3fv3r5944DLmk/nSwzBwTpudan+zdt33/3uDzElUzmfnphJVa7ns9a6zNdl6k3ejOO4f3hjceh2ezUrVToz8v/vEne8lei2GYZNB0GkSi55zcs0Xafrdbpe13lVdTM0IDEqikVRDMzJHPOSp5Ur7Kh/G0YNjlrOapPVQlIBK6BEBghUGQy85JLXKoKEnWPn0JcaDUgBxCXaXPRxrTIs077McXwwPop3VTYxT1cYXt3EPtohiiFW9+KWXYoWq6uvc51O8+Vjnk+SJy1XyVctJytnraupuDn4ppZGGAgCGHmr7bo6e3Qi6vqYdrs7DvESIyGBghRdMauBK2uTFiEmCu7BjdwQ1EGNTNk9ETK4q5SyoCvjhhAA4Nfc8q3uS+Mwvn377vsffvjDH35/f3/f5Fb8NtG19bj7TegLiZAMDDbdHmxnebsrZk63uQ9dl3bjaNYhwjJzLYWJCSmlbr/fv3l4eHjzJqUUQmgtuxsNmVrHXIOvmrg/3MpV+MVUni+Wv2RmCKBq1+u85tr1GwF3XdbHj5+eHx9LXkPgw3FMHa9lyes0z+dlnUqd2wgiBgIFUfVaEqWVuwgceuxS6lIAp1rq5GeRpZRL4JBnuZzXdZ2HoW+gpt8w680INQ2dVhTEm3Pxr3HgRufe0vVtntrmGBk1krYZxxyYUs8eurDn4U06zGl6V6YP+fprnT/BctayuFd0YTQkZArNwTlH5iHEY5fuCXuvqnJxOENQZKOQOPba3XXDHXV3oRsBBVGJbjMcIH5OteF2A+78BTvzi4Blu+OtQL8FYS8E21s27bc8vilZuVuxPEu5dJgDc4wpxY4COZmTOxMYiPpa7DpXIowMuzGMGGJAQOT2EFsfPSIS+E3KsFXVEWHrztna2j9f2uvX8WWtvYVngACM6GZSSp7m6XQ6nU/n6TpP0zTP13mZ13VpcHwpsi65lKqqAEjMqrBNUxLV1sr5AmVstbGtNKuoCODs7tZgDFVxUyKUGtzdvQNMAOguMK9uzyl1h/0hhhg4NMGx5mJfn3kz+/j4kYnM2hDDaVkXtUoBe47mLMolY8Ys2oSQqkHrNjBVETeChIlABV3RFFRc3dRd3cFNyVBMCEggKJi6qWk1LVJLLmu7moZ01FpVhQOnFIahG8amSJ1aja+LmCJ2kWIgIkDx1zFKEys1eKn0OKKjm2kxXV1JNXmykDoiBEJwR+KUdvvDN9+8/8daF4A/oy/z9Mt0pZQOCBRjiimFEF2JCKoseS3XaVpWOe6/u797yxwv18u//vmf//2//3/+5S//Os/X9+/f9v3QdyMTz9NlXtbn0/P5dL5crrUKM/edob9JwXZDAEgryTV+obdlBmqt2UDWZQY3it3xPr17+/DNu3dv7o7Pn1RNAaDvu+Px+P7bb7/97rs3b98t6/r4+DTuHvu+q4u2ylJDPWPq7h4eUkqH42F/2HfD8Pjp4/n5CcFEVdUoxGG3j/sHHvbE4ZZhWxMd3CCfv5O746tY/Msw+CbG4UCNrlHFail5Xddlnufpej2fTo+n58fT89N8vYiImQMGg2AQ1KNBAEoUejMsJTsixp67A2t1F8kFLYNX9wIuGAiNgEgBStZaXTU4JMceoXcYDHuDaMBmLjX7dDIwJEii2LvhrmpCDgCA/rqa6FguuD5uhEwRq1VrrmUpy2W9Pq2nX/Ny1jKrrFZXlVVlMS1ujsBM1JppCRmdAdxNtapqxUiMgtEJKHIMse/S0He70pXcldxV8BUb/AwMHlqiTpgQGJxaveimY1NVEUEBLNWYShdD5BC+ytqbZSWiYRhaR/v9/UPX9+bmYtDCcGrCH599PAIo4q0bH26NnI6IDNy+bSNFdp3b7ecgrcvciGNb4r7bHY/HVop69Yu2ndOq34gG3oaaviCL+NW22ngZn//oYr7mcj7PS85H2BEhMarUZVlqLRyYGRRsWtdal7xe1+VSy6KaU4pdl9rUtGIgWkvIJayWBkbuuh4gTPOyrpO5MMM89zFEEyyL1VpVq5maf73xN3eC/sI43TLZL84NcMvKb8PFoHWJASIAIwSGNsONOFBEhi4EJPMoNXa71B9jd8hpX/AX8Y9az6CKoIROxMTcdGkIdxx2FDoAVCkGZqCggmTIbHUFVXAN4ECmbM6OFIi8Td3+TD6Dz1l7cP7ybgFfxOhuN/n5/SC++pbPhuGFMmhaZL3W5SL5orxKMqlWinQiAQTJjUEB1WAtiosQWAxIBCFsTDQ1E5GSS8mF2ClG3p7izWq9EOr8Vvffdt0X68usnYlioxcagGqVInVaptPl/PT8fL1O83Wa52tjqogoANpNu3bjVYqqQxVXsZeUfZPX3ohvG5WwRbXijtoA523gSbtGvXUwM4WUuhgjIqxrPp9On8ZdjLEJ1pKRujX+6stdmNmvv/6KCOBWpea8ioq7h8ApdU3Cbl1WYs5t8JaLiTJufFtTKUVc0UzIgRwJqHUot6VW0ZwcnQKZgomVXPOyLiEEAnIkFnVRU9MQOKU4jMNuNw5DPwxtqMSmcB7IIjvzJqbwoijQFhFGJvHbL4cWrEFjF6sKEoqsne1S1wdKmz4acOqO7775t26VIKsUyY/zFLuB3C3G1Pd91yWtgKhScs6LqgRK+/3xcHiY5/mf/+Wf/pc//oc//ek/zsucQkhpSHFY1lLqp+k6X66Xy+V5nqaSc4zp7vgwdrQbwm6IYxccAyKk+JWyKTGFEFNgNqlaMHC43+/+6//qH+/v71H19OlTrUIc7h7efPvtt3/4x3/47rvv7968fXp6KmJNjvtaVqnF3NT0Os/TvLz/4ffvv31v9u08XR+++fWXn/761x//vFzPSFEcxJxjd/fwhvtdMSDmNliTbjOl/3bh3xyPr7+hDTtxatX0WmWel+lyupyfz6en8/Onp8cPT08fnp8+XC9PUrOZEAXiSNwjdQ4dhTF2R4qDMyNUCkApsgwqA9YZlFtx3UxNTQ2dkBBM0T2YR/WE3iENnMauH1PfxzZzjshNLM/r9dmcgrFHV+/Ru+L+VS1xPX9AzFWkSm2DnXLNa5nX9brOz+vlY82Ta3ET09ZyVd2cgJrOl0Ob3dAI+OK6eQQDc3ITtapSBUnAG5W6H4a9VgvUi6o7wFZyDYyJuWNKbfCPaK0117oQOaABJCQUlaq1Wo0WX/scRCRiAEDi1PWHw2G326fUAUAptVXsmizdNqvbnRBjjIGDxSaBvTXvvuQb7tYEsl6S7yagxkzgPl0vxLQRdQBCCH3fN4/eAPkNGmiQv+k2dg638TgvOLfZF7yt1lD1Mp3B3Eut07KeLtdS6m43NBQA3ckthhD2och6upzm5TzPZ5HZdXUrBOKwYyYCTtyvsKhaLbl2KxH2Xd/1vSrksj6fP+W6EvphN479GKk3QVVxq+baascALzzyrbTQqtSN8H6Lc79wb60bjrCNC/VbNb4BlMCEW285IzKRtxIzYLQYYteNXX9ch4cpjguH9SwqS3BBB6IYwoBh77wzGg2jOqhVs9sIupYLO7qBSqn5ahQcUSJoRI6RSCkA0UtTk9+SXQcANn598jfBtxu/6XaPn93X9lVsr2xjU+BGw3Cpebk8yfTkZSqcF6pIq+B01y/dXWVSD5gdxSBXUygEHhlSpJS4FZFzlmXN8zwvc0n90AQRAT8XSgBg63S/cYL9pf3t1fo7I6EQ0A1Kztfr5dOnTx9+/fD0+Hw+nedpXuZlXeeSc8tIGnMKXxQEN94KfPUzXx4MvDALtzG4iIzwMtkOW3gLAG5mORdoHfEAZg4AKjWGcDo9H/a7+nAfNSBvZSXzr1z7L+AO6NY0JglDDCmFvk9d14UQSinjPF+v0/U65ZxrqYAN8VZEU1ETB1OVamKu8DIy3bVNBQHkQE21w82k1LwsjO5WpDgGdSAOMcZ+6Pb73X6/3+3HlEIIgRm/kMVt5xkQ3W/aP9sixBiwCW+2Hg5mZIoIPaHWWlSl1lWkrAuHmFK3T90QYuIw7I/fqa6m03z9ILIu82O8hBBWImYORChQRaVKrlIAOMYupZ6ZH58/nM6ffvnlz5frEyJwCKoyz4vKM1KstdZaEHkcd4f9cb87vnn7/v37H948vN+N+xCDO8ZI4csG5HHcEXjfx8CIoAQeCRjUapa8trfbDUPXD8fD4dvvvv3+h9+9e//t8e6eU7fm/Pj48fHjfp2utZbYD+P+QBzEFIm6YezH4e7tN+Pdfb87cOxOjx9dauxGdXLkbtjFcc+6yWS0Zma/nfCX/fn5yLx6LX+7bl1tIGoll+v1ej49nZ4+Pj9+OD1+eH76eDl9Op8fr5fnZT7VsqoWd0Bi5oSUEBLHXeqPsd+FYXAncolUIRKlJNI7LIishtJ4bQpNBUMtOiTinnCgOMTUx75LHTM7gZiYATmAmCuyQEzQUUfABlup5gvXnuczsWzaKW6oFcuCeYL14uuz55Pn2azaJt1gonrrH2r9KQxArm6qGzon6q4ITmQAorYuyznX3Bq4U+z3O4rc51xyKarmAMQcQkxd6vvWGc5mvqwLIjp4X0vX9Sn15voyWd7dRb+4EbyNyyaiEBJzQEAzN5M2gOAln97Q8g0xx60W3p5wyw3cAVrznjkCAxMQADJzjCGGkLoU4+a/G/wDAC1u8G2W6wY/tqaYW+Mx3KwfvFSxVb8wkS1p/7zz3HOt85LnZTU1BGiTpru+Ox6PalCK1Euel/l0Oc3z2T0HFiZt8VALLJosqqmokmppTdcqmkudpvPp/JzLguBaSh3qkCo612IixbT6DePxF5jhxgD6u0fl5c8xgLckDVpkBpvk4c21ExMSESMxMDBRAEByQGaIieOAsRfwCsq+OmQqymCBYwwjdnceDsIDAJkJmtHGbmKi0NrZQ2DiQCFSt+PQEQk1aYmtDz/AZy57S3nRAfhL7Z2tMNM8+9/c4wujGW+fN5k3oJfZR2teT16vkWtMmPoECGWdl+k5XT4lemC+NwuiYABshmCJcc4hpQDIRL4WWdYyzcu8ZCfGJrp/8+MA4OBmTu6EzkzNib4MsHhZf6shD+4utZ7P548ffv3Ljz9++PVDq62v61pyrqWoKd4kUbG5xLY7m0IEOAEQbYL1G+HIbKO9tdKxm6ojEkNrj20jc/2GsKuZ5Cy11lLrvHR913MgQgjMl8tlmqdai/WRgRux87V2o6l9+PVXM8Wmk8Ch69NIPSF0KR32+/1+Z24556en5xD49PwsZTVVB2BEJjTRJgmrtZZStG7zP9qZJkcwI4BAGAkJwU1qXtS11MzLDByQwrjbD0O/24339/e7/W4YetjEe8WqtTjPAwISGhmiq5f6BeJIhJEIuVGAAABj4BARuwC+K3nNeVmm87o8lzwR0eH+2/3x7TgeOITYPRyOAl5PITw9/uuaT37yccQuASKZaa251VNMjbELoSeiUtdPj3/9+dd/PV8+EkuXUupwXedPnz6FMHfdbtzt9sf7e4p9vzsc7u7v3jzcvz8c7odxn2KPGBycCF638CHi3f1DlyKBMmp0iExdwLpOf/3zP1+P97vdHsAfHt4e7+5/+N3v7h/eHO+Odw9vxv0BmEvJT58+fPz58Pj4yTLv7u7effvtuD9wCKJSVe/GQz/uhuN9vzumfvf44Zf5cgohOAYxRw5d10fceg1omzfvf2ua/t+uxiQ3NzVfc53n5fn0/OnDL48f//r08afnT79enj+uy7XkSWtGV2iTr7daVSuixRC6lHbdOPZ1hyGxcwIOTF1ihd54sLIUKAjFXN3NgADYgZG6xPsQd7HvUhdDRGI1Uy1rUVQj4EjRGTjBrHCJxrEj3oq/nz2iA0hZJbdxDJQgRHRSBHJ1KVaDVdHqUlSrmImqmtPWsvpSlWjz2UVrNSlmQuQUPEQgFrXpOq/ugTgxpRhT1437PYnIsixVxByIQoyp61I/JEQ3F5F8maZcy1rz0I/DMAzDrqq08RVqVaRUKV+9kRu9393B1EVMqji0Lj592YEvwvJ8y+JvQfVLnu0ArgYtP2Fm2kYMATgQIW9KnXTjWNwSmRs2+eWFbZ3IW9rntxHMDdmUv+m2elUZMvNSJZcsVQCAmWIMMYX9bvfNt+8ppOfn0+nytK7ruqylZA7KAVOKKQAHdnTRWvIqtbiKGZqJWa215LVO83I+P12uJykFAaCarqJ9DRRVUOqiWsybOoKZGSC2uem3ovlLqfpvvB5CDI1bZhv5CRuBGYCQmzxcaEQHIHYC2qjs4OQBmSBE4xBdE4jZGrDS5ElzDENII/VHDUej3hERbJtZSIEoxjSktIupa5r/iASckEJvU4BMFA1DG0C2BXyf+9bAoQnqvL4R/CwK+mX2jgAbm2IbaeJEFJiQ2QkRDMHcspQLw9oPeNz3D8cgVdZ1Xa8fIfy4o2MXHqr1RRjNUInBPeC61jmwAzPRWmwtMi/rvKxNhIdiCITutwYKM5EKVtGl6xJxT97Yk/95197KXbWsyzydHp+eHx/n67XmbKJgZqKm2lCZhtg01dvbsfmMWXzW4IQN5oZbZEqEtxh6e3xEFELADVkwcG/D/kgV2hjEqhkyKwfGZVlOJ3p83N3fH8F1txva6XwdsJjb6flJVYgxxth1icmhT20YV9haL2JgqiWva78uYZ68VnFTZA7ErZVUq5RcaqkispGi3Vr8wYgxcGwGoMX9Io6gbijCqY89UaAQmZkAwd1ExN02U2mGhERkSqooagCQS83r+lqWmRB4m3sIToCIHIipUSowJnInFa1lreVTKVPO8zQ97o9vh/EupR65H/fva53m5dM8P8/zI3hg5IZDVmmymO5OHEJMsdbl+fzL0+nny/WjQ+n72DInpg4gujNx2u0e7u/fjsNxv787HO53u8M4HGLqAwcgMgd7kXB5tdpz2iiHjNw0u6VKXlRGRNofjuPh/ptvv/vDP/zj/nBI/TDu9qnvze16OXd9304Vh3j35u23v/t96rp+GJBI1TCEbtxz12NIxHF/PM6Xs1QhDo5cRdWMY4LtbPx/TqMzsyWLKBbxeV6m6+Xx6fnp6ePp+eP18jEvj1KfXWfwjK4A5o6mVAVqdTcDUARhqiVkqZPJNfaJYkrYESePZmDiUAEJmCn6lk4QQDQfAHYxjjGN3ZBiQrUiWrRoqV4qijNwItOICBQwJA4RQkIL5EyvsnYEiCF2XZ9iim3usBRGdcs1xxRiFzuVurHm1UzV1QxRSYEEMTRY3lRVNlDfrBJ57xFIgauTazU1Yu+BFaBvhjAwp66LqSOOKfX9sGsis2Z1zfM0n+q1liJmq4hXsa2qJebmtElbvopRmlN3R7RaJa85rznnzCFgg8BMmt9FvCGLzDGG0KZRIJjphoYhEvnN9bqDq+omQE+kqqqkthHMPidzt/mdt/Hwn1lV7Um3f76Bktt8EW26cq/zKzNXb1NmX84LpZTGcQCANt+BEIk5xhhCcDepteZsKoGpS9T3FIJTGzUsudRc6momrdbtpus6Xy7Ptfo8L9N0KcuiVdBgKe6r2aIxJMTYwtCm9igiy7yqiLkTbZ36TMQcmPgr+Y3bvqINSHkhP2EAbh7CiZEYkaF9EAK1bwFkd3JAYOeuxwdg6algT2nquVzBycPehyOmo9FIxI2FyRyJW6dxH9MYYschbu8ACcG7glG8DX4ITMp0e8SOr1w7K32RtG9pq98S95f6w63CDQAIty4+4kYPRmTCiB6DBq5jwm/u9+/u/eHAeV0v5xVYGa4uFymX6lC1a6VbBgenXG0tBijElLOuReZ1nZeZYwopRk3G5O4IxIiisi5zXs51vR6O+zdv3wXqARn+C1m7m1mp67RczqfT0/PldHLRPiYGQvNCuQIwEyJsUsgNVH9VbmjDkRuTgnDjXWye3dzBiLiJthChuyIBNUwFEd1UDBBiSO23OIDdSCZmqoDruppKSrHvomkFeJO6Dpm/4qFM14uqhEDaJQLzPjFCIEB3lZpbVZwwMPZdSJGYoFituVCMHOJWVDLTKs21N6IkgQMhO0bmLoYUAiGAm5uCkzs1dYtIXd+nvosxsrvmvLhrzuF2de5NjJeocqQAhC6q12ma51nkaw4wE2Jo4e0NR9zUMznEYRwZzZfrp+vll+fnn+hjON59d7x/f7h7NwxD5LEfHobdfS7X5foJnWLYlVpFtYrkIm6ISMwcAs7r85yfrtOj2hITdV0Xwy7FfRfvWlC8P9y9efP9u7ff39292+/uumFgDm6uBuZG5NSGL3x16MGllJqzW0V2CsSIrkpuQ9ftx93hcBgOd93u8O333//u9//QjzvmEFLHzFLKuD8gUslZ1ULs7t+++/4PfwghEHFMUU3dETkEDiOFGNPx/r7mdZmmy2XCEHLOMa9DCAThi9rg//Yl6tdVSrF5sWmaLufL6el0Op+W5az1yrQOnQQURl3d2hQxg+SO1saTNMgHlMlUqsk61DCMMaShiwMEVNdigu6ElGJqcBZScAiqnVsf4pBS3w+B2KdlyutcsqzZi7ICOwm7OAFFipJcO7SePJIHxC8ka4bxcDg8DH0XQ3CAkhcAFS0lL7WOqtI0KkQdQcHAdXOBrZ00cHBiU1Ntqg1VpCJ6J3HwFAAJHVkbdtjCSIToHhAZkGLs+mG3P9wdj292+33f9yLlOp2JuVQpZS3VzKoqqoIKgBFTYM4O9JVEa+s8BMBS6jwv0zwvy8IhMnNTnWhmqn1zy9hVY4waLRBhm0uJiMx0g2m3aEA32h0FZiEkglqq1GqqL8nM7QJMVV+iB4BWPYObVWxxrJtvzRSbEtmXd6GqgMjUQGLsu/64t/Ig7t6liE2GZjuzJa+5rLnmwu5D1/Uj9QObl1JX06Lqa1mLrA4WmJkY3Jf5qkVq9XUteZ1NqouZQMnFyIRrjF3qxlp0Y9G5S5Xz+Txdp5xzCNz3fUoppjQO4zAM+DfxOyLEiACOauriroCAZECADMRIBMi+pewByIAbbgKtTUIJCAJZ2MdIoaPuOO7yHcxP0zStHmt/wHT0sIPQM8cYu5iG2HqoQiQKwMExNp+DAOQ1LSXm7MTKzgwhNjRlA2xeXDvhV8SgBri/5Osb0X8TcERHbIUeD21gGRMSOWFg7BgtwdD5/a774Yfw7sGPO1iXOAxRrFMCp6zlKharByBERkNA8CwWixoIIRXRXGRZ12mZQ4qp73ob2YOZIxkBitR5vj5//Pn89PM377/Z70eOjIjwX8jaTURK0VraoMDAPAxDCLGsBR1rrWZapJjprZS13fytrxuIMARCR2ZXg6bHoGYqqi7g2KSJQ+AQSBUANjlM4oBAZuAO2HofubUAaBuE3faR1FpLfvyEMWCMtNv1HDjF+IUukntZVzMBjzEwgcfAQ59SDAhey1prZkYiyiWbFiZPkQpBdZFqLgLuVlVK1TasXRXhVrADJN/mcLubVmloHwRugR4FijGkFEJkJFeVNa8i0ri1vpFQNqtkgA5kDlV0nudlXeSV8WocU9x06DbKQlMLBPcmB4ax64bD4e69WnHwZZ2enn6apufT6Zf94e6wPyCULu37frdMH6XmeYJ1XZvUjNlWEVQtuUxLvqqL1LX1CIUQx+GwG9+O/cMwHIdxPBzv37z97u74bhzvu24XYgRA9U3BAB24jQr9yiU65HUpeQ0MIYYu9X0fuxjGcX883t+/effwzfvDw9vxeP/2m28Ob96k1CEycUCAOPS3AAIIKEXe7fbHhzcxRtiKYnSDyThxCIG7fjCVfrdwf3YHQxRRVWtjTGHbrP85F/9fYtFVscu1rNnmRZY5L2upIogag+NAXeis29fal6KpQMoQVw+rpay16s2uF9cKoIGdGBGcVFkXJiMMkYjIAZEDIcbdftwf9yFEB75eZZ6N2WOCcddzCNUcC1kRY0NiclR3M681U+YQUggpho5CwhANvnDtHAIzi2ldSyl5WeZpOs3zlIsghmG849Axp8CJMWScK6BKdVMHVzMEwK02Ja37r4o42DQvFLCTEhNv+9fEbTVjU1KlRi3vhz0SjbsdB+r74XA4ultMHSCaw7ouIrXJa6pgXqVLZoZNOfI1J9vdVZtj5hBaOus55xAWZnbYLu+WPkLLOs3ULJpK04bCTW2JblUqbDMx2r/yDUQkVtoUcG5sIdggTjWzFyyh2Ygt838hWft2qSJN8EBKKa93WoP3kQmdGnl7U6Hvkpq26zSzkst0nU7Pz4+fPk3XKyH2XdcPxMFUpGlstUjFTENA0E3tuzEGBUopVWqNAXe73qpZcc1u4lnEjDm4O5rBC26IgKo6zzMi5pyZQ4zB7q1J9NwqNLdvRgxhw2nBQdEcHdGx5evkgYEZiIEYQgAxsI1xj+zAAI5OzhCCB+qi9T2MK1oM4qyKNI487GN3h2EkjjH0IfUhphAiEgGRIzlshV0EJ4UoIRo7AQWwYE0HxF9EM30rL/yNlAgQQcun2owEB0fyQK3Ff5uJHBiHPvZdSiEhszmAr2S1+IJ6JZ0JMAbqBuz6oR93RVKp/WK++OpWt4GeaAioYLXqSkXUGp80F1nyuixTawI/2NFv9A0DUJW8LqfnT7/89V8I6rffvU99SiF8dR9fuHYVkVJMBRGa3JKaSZWFF3AXrWoqU7XbNm9CnwB4u1DkwNyiNQdVIAqInHNddd30KQEJgQPGQExk7ugNhG6wPm3cHjBuDeS8DSpHQAIUtZLz+WxEftgP79+/Gfc7Ykb63MDg4M0SQWBGTCEMXdqPY98lQq8l55LBDRDMVVUIrEtcIhUCqaWKubqJ1VxrrSYGDkhOCE3lFKyFHKpSVMXBOXLwSOChydZ2G2sZwNUEigvWW49AS72xlJJzzUWzqGgTnii1lq/qcBs7c+vXcAfbGgxa4Yfw/0XZf25JdiRZmqgQJYeYOYkAyayqXj3T/f4PNOvOTHd1JQEQ4czMDlFVIfeHHg94IKtq9VjGApABOODmpkdFVWTvbztQzNPD53/Jw5yH0/PTX3778m/Pz38lwnm++/z5T3d3p3lKw3DKKZVSluW6b1tHZx5WBTfR1cqu5ub+bsslQp6n+0+PP8/Tp/P5/u7u/nR3P8/3Kc+ErKbWEJAc3n2dAO7el/7HZ94B6r5JLcM8DMMwT6fTNAwp3N09fvr84+ef/vTpz/98/vTpdPdwOt+lcQwcEQiRHTzEnIYxxEwYAjOFmIdhnE95yAiorYUQ+uj3aJ4yQUwIEPLIeaz1MPN0WsmRsw7/4cs//PEfy7yIXW9t223bWmsiYkw45JhwgHRyjSbnJlSFqnJpuGy+FavNtIcbt1rrJm1XLeSa2BIVwgVdQPbAiTERohMZMEf84dP5pz/9MORsDr/8+vLFLg4tJhjGMaTzokOQM6ogWURysyabWlWRVkqlLVAOPCBnDFmDAn3chl2s1X3f1tvlellut1JWkeZgKYVxOg3DKcUhxRwobMQ7UIO9tX6md9f3YI0OlLcjhPC27E0l5ZBzSIk5kCuZooi36q2YGRLFcb5T05Tz+e4ewHJOzCGmRMRMoZS9tdZ769Jaa66KDpFDTnki+n2/cgcz6ylT0zRN88wcaq1EGxF5T0ns+xL0w58wsaqpioTQ86NDYMQQY2AO4M7MrbWu9etSOXfjQGbs70SE440fdPpeNqX/JnPgfryFLg72jtPv9VWOZ7zV+p1iwEzFjBD7/Bj8cL12rm7vXppZ6f6gr0+//frbtt1SjCmHNECTdV3W6+12W29EmFPIKeQcvfTLiQqSJyN0cAXUcUpM7AJt1+1W91WkGHahEZAbuoE7cgjDMKzrCgDHcjdDBOZwOp84MP5DHFQ3WkInASkAej+tEAIzRMbuaz/+iIfQDsF7kx4QCRAtYOAc5yFIxL3JTnEJAcM45PMJ5keME0IgihRSj6zpV+lvJ/eebkYAHDAoIoMFt+ge1IAOxCe8swu+qUfeX9Qnod2/EYgJ3QTAY8RuuGYCZs+JznM6z/M0jMTcVOsu+614ver+Wumy36jdRcA8ne7vPj3UFtct8sKyNDqwjABuDuSGrQmAcZPe2apNyr6v640IhmEQ1QRgx9HPzUxaXS4vX3/5y5Bwvf2fp/MdTxN/PyX5h4a8amCep5EZxiFt27Yuayv1HYUG7wMkROwCUQZAEUUAZgoh9juBOqg4IIOTqW1dt3nkjzsBMhMzu/WwEzUVwk6wOYq0daN8AEQGgEAhhggOZkoIHFgdmqgaEIfvb+2A7oAeGFPkIadpGKZxPE1TiMFNm2SRKtqaAILlHMFHF3HVbVn32lo5fmnrBh4ipMAUmLFX9dZWu20bAWAeRgOgwGnM4zjMd/fj+TycTnkYY8rEgfAAONXSaqsqJiJ7KdtWlnVft/eBvoqbDh/ilPo8oge0HzqGD55RAHZAQwCmgDxiBIrIgzrB0/96ff3Luj7drl8eP336+eefGCWlLG3dl7Vuu+3Nq7qYARqoqIh6L6jAnYB7Os2P5/PjNM6Itu9Xh1LaddtfU5oD5xCGkAYOmXgEDABETAiAQPB9+USAu/MMc/7TTz99/vR4d55TCGB6//jp8Yc/Pfzw8/2nH04Pj9PpNIwDh4DYZa0IADGlaT7Np9M8zUMeHDGGGGMap5mIWy1MjIhm3hOUCbkPUyISEIXUuvMe3+3G/xsd+f+w9Iv6tlkTc0BmpiExjoHOmAF1NnNVLBJIAyuzEhVL1Q+sqYpKbW2XVlQLmkQU0hu2F9Yb+U6IiTgkjzzEcRrOw49/evzp50cirKW+vSEzYBjT+MjDT5geWVr0OiQj6VXERDaVTWUlUGJ2R9V2uNLfA8X6q7W6l21drrfluizLvm994+7GbPh27zlUpcRMxmzWZ9gda+69Ie+ugB5TCMAOVqo01VJrz6Lu4hlVV3Ft/UsDkscUrrdhvEzTPN3d3eU8IVIIMeWROTpArbWUvdaiqnmYQ8whDjEN9OEEj4QhpvP5/OOPP/7pT3/+8cefhmlsIrbv4HAkIYMDwIf0CgyBQwsxcgwxp4gYY2CE4w4fnd20YX/KmwOYUmBWjvDeb+tDc3P9JqxV0R4QydSIGQ8x/pEgCg7mLtLdBofl7uO6Otr7iN+UdITAiMzdNnRMeLXJvqxl26GHGo8MWGpd1m29Leu6llY1Rj7myGYq2qoKiomNMXuIAIboSEbcny92T4C4oxyddFc1NVcADxyGcbi/vydCEXGHUkqthZj8kDh8b2xHgKMREjAomhNGDqFz45kxMMSAMZCZB3UxZD8cdAx0yN2B0BENIiI0K63Uspq3wDEMgacBTjPECZwQGTn0w4Dj7xsOApC/H4/IDycee2C3AO+arG8NFfwG9/3940AIDDlgjjSkEAOZESIM4xBjcLBefaYx3Z+H05znISGRCL1VuSwv++1J9ovyIpWlZTPkgOM8DjDmOUEYm9HqTtUYiQNlDin0uFBXcwclAjVrrZZ9I/B9PvVSCN8MkoSB2c329bYt1329gcs4pJy+q+bfl3Z3AI8xDEOc56G2+eX5WWplwn5YcLeuRukNqz7yBCB3bCghhHmeUs4hBj2o0agC27apqap211u/dB6XcsfaqqqqACGM4xg4iMpxZkYIGDgQIeWUp3Eack45ibTWasxZHQ0QKMDHZ/7oqFAKYcipu8nHIc/TOAwDMwJ4qWXb121bt7IxYeSABuhgTctapLWy7WUv1jSEwCkSxkAcmMHdXFqtm6y9QTfOJ4ycp4EDz9P0+OlhOp/TOMU8xJQPuJBjb7vpKtu6rdu+bfu67pfLcr2t277XWrsA7c8//xBDeC8yh+euW6HcjbnzoKj/zM17948AkOJpvptiuo/pxCHcll+fvv7ty5d/vV4/I9b7uyGFFChKabIV26pVMVFFUoQmoqKBcwgxYIhhOJ8+PTz8fDrdc+B1vZR9ES0c6HQ6TfN5HOZxPI3jOeeHkB4pzhSGiAEYEfwfg5x//PxpyPG//bf/9vPPP4/j5KbL7XY63z/8+Of7Tz+e7j9Np/MwDSGE9687/hRTmub5dDqfz+dxGJoaEzFzHsaYUt1Dv475kYt+fK0DIFFKmTnE2Bmo/L4v/2ct9//8ZQalvVueYiKExmdhZz8TmBiLRZWoGtwIFLFBkEN86iauTbWpNtOG1tir11dZfvP9Ccor+x5IQ0JmOj2e7n+6//Tj+f5xbLVc32oIwBw53afxT5j/bOkzuefgfsLcjSboZtVk1Xq1coO2MCiAgVXQAvydJaDUYpvd1uu6LU0EkDkgw8GYFikmtdWttV21ugmCE1GMwewd8GCu3ethRgQpRuRwxEoUKcX2gt/yid9l1V3UpWZc62Vd8ttrnuf5/v6xb8imBo4hpBBjzuM4zk2aisYUYxpjGmMcPzbniGgYx8dPn/7Lf/mv//xf/suPP/88TlNTraJq3/CU/n4bwd4wZKHAHCTkpIgemDwpgqErdpkX9e/c+/N6qP9iOooZ9EaFmmtvocF707u3LXvC8rt67lstAT8CG49Y14/LkJljYHcwd34f8x4OGju0ef0/3GoD83EckYY88rrJ7W253q7btrYm7h2nym7eVFpttTQ31SB1GIYcEZ16fweVMHAKAyeKwXE1ASdRr2rNTB2cQxhHSjGdz6euLrzdbtfrdcjDEYdC/3BO7ok4FhCMAQlDCIE4EBOzM1MIGCOpUVBnI+7aYAQC7nM1RyJHVEMX0W25vdTbM7QlxnnMFMYE4+BxcIfuJ/eeW9H9L/0Y505+ONyYHNEI0dEDufO35vJx5IJ+2v9+isgECXBINA1hGuKQ2MyZaT7NOece2BEj5xxPYxqHMGYixCa4QFkvX9bLVy2L5d0kqpJqBISQQszjCJNBKi1cm4cmIfCQeRrSEKODiepWrKn3xSfSyr65tnW5UxHo7SdEB2QKOeXA3Dvz27ag62nMQ44fP43vSjsRMiMjMDgSUQhTyiXnJfDBHgcgphACACBijJk5IBJiba0Nw/Dw8BBzdPDWGhGqOoDjcSTtqgli5hhCSilFIrRtg70UN0P3acjTPANAa3VZVnONIYbIRJSHPEzDw/39w+MjItZWp3EcpjOHATDCx1sJ4JhjYLw7T3en+TyNQ4qMHZEjBExEATlSFE6CikTInJLmrCntHFYOgQOFQGpG4OjGiIzkZipSyt5qNTVEiinFyN2dElPsoLcYjxRnomOLELHWZF9u63K9Xm6327Jt+7ptt9u6rnvr0fDg9L0UAgEI3UAR7dhHAAGw079qkyY937X/k8QU3CTG8Xz+6Ycf/w9zeXn+q2h7e/mCOp4marVI2a0UaA1FUR0IAIGcACFSzHEY8t043Y/jA1J+u1xr+Xq9vK7rzazFGB4e7h4e7u/u71RubX8L8cpxydOP890PIXzvtvj2LhD64DDnnIZxmE7uoBimh8fzpx/Pj5+n010aMnPoZtHvvhTf99r3RlG/nKecx2kOMbl5TLlHR//hK/vu/60M/Lvf2/+nlznU4x7o5EDI6pMS9/2iAVen1akYqqEaGKKRWzRgA1fo7WlTcEUT8mL7DDAojoCZ4RJ5nbPOI5we59PjKQ+sXkWruFLIaYyY7jHdQZwxjYnClCk6q5MTOfZhnJAXkBXbDXQFqyFwHKaB9Nu9xgFKq8auZhzSKZ8Rg4O5NtVdZK31VstS9qXsa62bWHVQYqdAPfxGqoh0GYoei6/bsg1cwd6TTJAxHIYO6CUwcJiGcRinYZqnKaUEAE3avu1sBsuyXK9XRIj9yk+cYuBhSCkPwzhNcx5G/lDaA4e7+8fHxx8+//jz3d1jiNkca59n+e8QWeyOajpEzkeZ528wjR6rJl0422VAOQXz2PGI/dBovSC/G8a9E3eJQoyApuaA3Q6nqga9GW1g5v1fQseRHE1VzPR79AcCdPVCt9kRHUZNOJh2vfHA4zB+evwk4sNtEt0d67JaZ3KY+ntiD4GDNGlS97XUvTIBEvU5v4H1iEJCHFLOaWQapFkMXLbqZg7NvblL/66ICMNhcnaH1loppWu64fd+wu9vgwIAERkbRaQO7UUiRzJmSKED6SAwBIZ4hNciInBfRAjeDSxotu/7/nZ5+00vX2eWOITolUGAAQI5vEPiup/7ne+H4OjWMWpIAijgzd0cApISGx6xAr+HuiIAkn7s1Q0p5JCnIZymeHfK45DcnYjnac5DBvSj98MYGAJjDGhqoEX2Zb+9te1GoIGAGb7BFPptEwhCsBgkRR2jD1M4n8e7eRpTqqpraepFdz080rVuy201jTHfrtdxPlNXFTgicYiRQjD3Uvbb9a2WLTD8Zw15IgxM4Oqq5BjMxhjqOFxS5MBAiIQcGN59ojkPIcR+ziylDOPw+PjIkfa6YQ9urYrSbwOHfJQ5xBi7pfU05cBA6G5aa2PCeRo/PT7EGEstX+BLKSXHFCITU0ox5Xi6P//85z8Nw2AG0GOW8oQU4YPKERGmIaUYHu7OD3fn0zwNKaK71lpUhTkwmzkooBIZd7c/Uwoxc9cfpWai5KCILkrgjIAAIlpK2bdNpDFRznmch/k8jacxjzmkCF1E0/Uhbiatt99Lqdu2X6+3y9vlcrler7dt63T50loDQD5so9+NrxAMvYE319pdPABkCqJ7reuy3LZt6/sNACBy4Bg4MoWY5h9/+u8cmBn39WW9vZGtaEPbVynFW0MRUkP1jhxiJwaOFFMY5ulunj/HeBahp+ffXl6+Xt8uZd8IaRpHdIhMQw6RvO0r4AZczsp5fnh/wvD3fte3dYUA7rVpaZodiSMPkOa7+eFxunvI0xwCH3aK71+HasmPcc43d2WMeZhOITY3i3nkY+L+4QvfT0j0zhn9h3/3/+eXgTeHI08WHYEARofJHFWpCJTmW9Nd9F2LRNA99OhIBu5ADm4Ehi5oBS2gRvbgSAwcA8wn+3Qfx1OKQ3Rv61pa02bI6W48JaVPEE8YM6Yw5BQgqbM6HdkWxIEpRYoo5KvVa9vfwC2EFG2H27el5a01CAhIacjz/Cml0Vykrfv2drvupazL8lr2tdWiUs3EXbudxB1NUZuqNFPxA72Cffjs7kftACTgQJxiDLG3/NzMhpQeH+/Op/MwnlKeQwqRTWQzs9r0drtdLhd3D4FzHoZhnKZTTnGapnE6TeM85JE+xA6FEB8ff3h4/OHh4VMeZjXwpoDORIGZmWPvjfdw+nfiNnd7TuAQmMNxSex5dOhMiCGQQ+whiQCkYoio5qLaf70zLvo5ICG6KgKqo2jzJs3cTV1ERUykOXgIIcTAMQB4FRP1j4+5matob1IyoQMfc3zp1sLWv+VhHH/88SfiPLy9XpeXdXtxU1VxA8ZwUDN7zGWTUkrZStsKD4kzuZrUCtTHZcjIYxpP890wnFQ9MF6v132tSOJd3P4BtfNuHoSOBXg/qf0RkIII/ZbHTs7sXXKFjqRIRwkMTIwWyGNwtb5bOCKwO4LZuyDWXItu+3a5Xb745es8c9CBZCOviIbcNUZ4OBH82w0cEHvOtLoZoKA3hwpG4Iwo3FXajgfwwI/IYcD2cbuahpin6TSF85we7sd5yuCAyDmPOecQKTBTIAAzqWYK7lVE6163W1muWveAHgPFwCH0SPsOElLEhmBEnoJOA55P6eFhfjxNY05LEVzLWm2vDmAm0uq+Ltd1WRD58vJ8vnsYT2eCCD2ELCZmdoC97JfXl229gckfCMZ/oNEBIoAZmoE5vGvLhyEPQx6GQVXN3cRaayHEu7u7GLOaIdJeyjRO9w/3yAA36xm97rVWQYQQyJ0RIMWQUhpynsbx/u40ZI6BA/O6LjGmu7vz58+fxnHseJzL9UJETCHlTpHjHlA4TFMIGYkBKITEIfV5/Pu7wJRSl86d5/nudJrGKXIws1abAyBiN+WWWve9iqqY1lb3UtUM3/2vDGBEUsqRVKqiTbqzPzDllObz/PD4cLq/H6YBCfey4/XiiE2k1MIhAIA0qbVt+74u2/V2u15vt+uyLOu+76WU1npL852W1dMf31+1LNe3vy3L27K8iag5MEUiVN9qvV0uT8ty7ZuNO4DTNyJKjClEiGF4fPhziUPdLmilrZvsO/SUEnWt2kSrSfNKSIHYPClLLZXD1pzNg6ghpWl+nOfPQ55Pp/OnTw+Pj/cPD6eck4uZR8WJw+jAHUTo6O8ZDB/XFarauq7X643iGDOouQKqoyP1rOvvMn4+qA0Oo/H7X5qbOSBxiIk4uBlzZGIg+kMFf++g/juv//D3Ab7FLB0iw++eFuzNIXrPdgRA75u6Q1djwzE1BGT45oQ9tkFXUAGrpjtoNWtoGjlAGtGn5AMRA4IprLeqS8WIlEJID8N4Oj8MxmPxB6F7GgfKgQIgNreiDgruQEiJOYWQAycEdA1tSu5OEKBe4fb7u1AnAjZ0osgpUQxSyl7323p9u769Xd629dbqbtrcBEGPU1dvEIMhKrGFgEihzz44BGRCjETHHbY/pzlHDtRxbyqtKTRxUVczc3EvTW7b+sxhdOdAPo+5L2YT3bfNVEUqc5jnU49e+uhTiin9/PM/Pdw/MmcR37fW09KdGSMwIhB+439Sb9YRcSTuJb9TLg+QjJlprzRqKGrqgNjBkQ5Iat5ES6mltiZSattL20rbSzPHpi7qzaCZN3dTUPUm3pq2KupGrFSFA7t7Eyl7+biqLpfb09MLETHTjuCupbTbsr68vrUml7dpyENKURX20jp2s1+FQ6RxGMhdxFSaqhwDPHMXt2bazIODuFZrbIbu4EQIkSQoDDTEkTKrVDdFxxj5oIT8TtA5noeurErpUK7hH+/sgACJBZHYFVwNBd3QAYwQKFCIECJyJHZWVXU8coYQgEHRTfvJEABAYoDAfT66CbGOG0oLrsRO8QDa24Hyeo88QwAANVEtYI4qBBJAAd1BENXJrLupDzKrH/BU3z/uV/OUHx5PpznendJ5TuOQsHdFkYg9MsSEIRAiCbsKqXqz2ra9rmvbd2uN2ANjCBgCMwd3qs2AlayZGxPmBMphzDHHEJjAXVU64NXdTaXWfVtu19eXt7cXcH/6+uv94+c8Tu+mfQqRQ0ohxVrL09Nvr09flutbLfvHT+SPTdTu5cdOoESIzDnncRymaZxLAQQ3EJGyl2EYPv/wQ0q5lOLm67aN03g+n4Gs6YbkMQRT2LbKvYfvgICpE01zmqfx4f7udMo5dxIDEfHd3fnx0+Pd+bzv++127cdWZh6HIQ0phN7fAQ5hnCYOCSFAV6x833ENzCGEFNMwjOM0DXkgotbatu4ioqattlpbqbXU1gNepTetmsBBPA+I5EhFVQ8plIuKq3ZN7TwPD/fnz58fp9MZU1KAdVmqaBXZ9n1Zlu52a01rreu6Lct6u91ut2Vb923fW62tiak5eHfcAiAxfRwG13p7e/3r6/PfX57/3lpzQw6JQ3Dcm1zfLr/dri/Sl4R2wiURDSmf5/nh4eHHaRrvT59byCuy7M9tfdGyoxgZkTOoyC570yoemTFG8YhUkG8CFKoiD4A0z/fxbhiG0/n8+e7u8Xx3fzqfpmkKTCaqBs045hNAOLbJg+T6x9Ju5tu+35Y1jNuAhMRiVqUH3+PRmHv/x/1YiMcZwT+yI465DhHHHujVt+73ivztX9IpyP/JZP3fre6/f/m//3eNe7LVcZ85WoI9td0RPRBgIOstP/yureraTFfTm5eLSwX3iCGHyEiEgZWDoZvvu5ZS172maZruH86PP07zn43uIc2L5OIRk3PUHCXSu3sJ0JEBM5ISOXJEIodBPbijGevq5UM/CCkCZQAGDk6krltZr7eO33m6vF1KWUwquBAYkwdycjDAflMishCBmI8kbCIKBEghUOfFuvd6zzFFZBRRU2viqhLXirSpo5plV0B085xOMc0pDkM6qXitWmqteynbtm5rzsPDw2P/zD/qtlLKf/r5n3IeCFmamTRm9wAYnMCNwNnBDqULesdnHMynnu37PjUndQJTcDdHVWjqIq6ODqEvotYbZXvZay21bXtb1nJb9uuyO1DrMjrTJipqpq7irVmrWqqKSl8cSOhuTVTq/nF9Pb+85eFLHxua1LLvt2W5XJfLdWmiQ8o552HIISQHrrXVuotU9xoCTOPAQFJlcxCpHW/f9UdgCArewBpYAyGvJmpKiJZw4KaDBUwppTGPNVdp1tNm/QMA7OMhmLlncFAIXZf+h2fDI+wETK49Mx5MEbSL1gOl4Dl66nJLRXOEgwwJENDQ7Tgiu7q3yJDCwfmsW2vb7lLJWoBG2AgVkBwPwbQjAnTKulVv0nbvpd1aQHEnc0EQh9Y/8fduhKOaqHjdPj7v05AeH6Zzr+uZc+wXD2xVzBq6kwMjEhNCICBwd4W6lbpuUnaXRmxMdJT2EM2pFDOUEMnMEClGGAKHQIjQF8+2l20vIoeXsu77ertd315en7+A+9OXX3746U+Pn38gOKy7/eGKKa239enrl6evv769fN235eMn8v2t3R2tmwcOeQMGDhiHcTydzg6Y81BKLfuOgPM8f/r0Ked8u91aa/u+zfOYhwho4zCkGB2QKEmDskndW6HqpjnxmHka4jzmu9P08HCexmEYB2BU1WGexnk63d8N0/TjbXHA6+0KiGkYhjGnnIZh7D3nEDpbhgDIvysM4O7LspnoMq/jtI3j1Am2tZR1XbZt38teSq2llNpqax3T8A0uDHZE2B38PAAVbbL29UuEOYZhyHen0/359HB3HuaTMa9F1n1rImYuIrUURDIzET1CRJb1er3dbrd9L602tXfUs79PrbxHmHyP4H9/ETEShRA4BqIxBnSzQLm12vWJpq5iqu4gprd9I8Y5TmNEmQg2k21drRU2TGnAOCKspVgzVdGAGNHZBaTUykIYgSJQ4BxSimHIOaeDHYDmrJ6YhpiJgciIODqQqise8TZ9RvBtWaU8EGLOY8o55zwOQ0hxzMlNRaqqBKZvSfXfvvIYxXXqfQwpJ7aQhyHm1BUe7wX04/3hf18l94//JP7nX67qe9WusrJjaNdDdsGP2KuD1+OAfvT6HEFAm9ZV5Nbqte1X2W8EntMwD+GcMZpBqSgNxAnAwPeqt5sE0QbmZAogGIFnDCNiRDZkBazuFZGZ5UPJq4iCQIRoCGqmQIoR8He3FQLMp/t8Pqm0/ia2sl6Xt9fL8+vb8/X6um5bLft7adfI4J3340f+R0eXqLlqb6BSiIGI9r0iQGuqetyOVNzVW9O9tG0vpl6rXK/LkNM45nHKwzhP4+tpfjydP59Pn4dpghRjctx2Ayx119pKaaW20iSIfuQwxxAeHx8DhxiPmWBvGHc/lKnWaiJCdBwMOYTAfdtgDhgiIYASNfEOHzXvt22rzVRBDTvCtk+ErrfbbVnWbd9LW9b95fX69ektD8+O1OTo1VdtomLiqi6tN+TlvYffuVsmpmAtf3gjX59ezMPD3SknXt5er5e3Zd3XrWxVVD0w55xP8zwMY4y5Sr3eXvf61uxS694PmCrWaqt7SZmHlELMZGhJoQFjAGWXYMQqWpsDqFccY20n6XTN1rS9W/O7XelbbT/mhOAAEDjg0J9Iou7M++55Uiwv0PtOKigNXMAVCJAINLsOaklaOIahGBkCEFHnzyIqHiQTsN2suBZppdRaAWrbZb+25cneBtjfOpgyxEQUuvbRkQDAVH1ddLmZKqmE+mZtpRACo+43M2u1aiuu2kWSrbZ936yWrPKt69tt94S99eEAEENkCgjQRNyliSIZO5uTqJfS1m1f19u+37StAJWDxogxYUwxhGzOZXcBS2BN3KyJ1CLVqIjHlQUBbntZ9iqCHTVYSyn7Wva1lm1bLy9Pv72+fP3T/i/jPCNxh8EgI4cgItfL6/PXL19+/fvtev34gXx/a3cAO4A9iAiEHaY8jOPZLOY8jtv1eluIiPh0Oj0+PuScibDV1mqdT1NO0VGHISNRjJkpS8O6a9kaukvznGga4jzF05TvTtPj3Vn8lKdxl7rte56GOA7DPAPgD6U4AgZS1WEcxmkap2maz12711vYXSGJ3w933f16WWoqOQ8x5hhzzs3NSinrut5ut2VZ9r2UUlprTZqaGTgxcQwphhi4B0g4orwPeksrZpZiCDmmlOdpOJ+mu/Pp7jTnaVIk0UVbT5Gz1lpJFQC0m11Et62sy3q9XK7XW63dvH4Itt9nyMf07mNpJwoxjmk4jdMjODKHPrQjQgeb5x9r3WqPF0Nws74itn1XVdPSGqh4MknQmjTbdleJIYx5GFJ2o3VpdRcFSYSJEckdVFVUKoYaWDlAZA7k4LXWa58ZiZkojTONw8ScGBmQzEDVlAi1hxd8eO4RUh6YaBincZxyzsMwDEPKKbg2qbu0FkOgLrY8lNwOH0p7jxLJORvAMAw5D70jgtDlY/D71wDAf3ZT/32FfPz23v/k78/AcTT+A3JLzdeqTPCNqXyII9wdHJn6caN3C/tvIyiigOytXatevF603LDuHHgK+W6wx7lG3yAtVouJNbHSoJptxchUsRluVW+UZ89nHwhTBkQHV61glVC6PohRoUfBYkF0RjB3MHVnt4j+3XH+fHqYHx6l1Sqltq2UfVmvt+vr9fpyu11r2Vut2nYwIVALiJkRGIEiMkfmGCgE6Y5JByLKOXIIptaqiJubIqKDioG61aZlb93LdrOVCGPkPIRxjPM8zfP54WFThxiGaX5IKYUcjVjcm1qTWsX22lJr1OQ7DDPRNMbOre4/dSInVEIAJ1Frv4+0HQCRuUNXUgp5CNn5yG+gjt9xVWuitWmtKuJq8C7wMAC7Xq/XZdn2vTbppf3L1xcKoyOKaFNpPXOil3bp5QN6oZRv8E4zdWO0P0+/A4/fLhcxBtAp8dfffnl5elq2shdtCuZISEPOda/TXHIaSttf374WuSjeVJqqubqqS5VWag5jCokcErAn8+IA6MqgjBq8qRURVYhQhyZVwRAcW9NaRdXNuknvmxLy24AKuwYihKMC4j+AZsHEbr8h9CmHugm4gAsRIjOEbDJISxjYHM0QKCDGzqI4+imUCMikad283KQsrW5NqjCr1rZf8PKLWbGQ3THmYZxOMY0cM3FECqauTeR2a8tVpZE3kluwjXJGdDeU9Vq3tZXNmpi0Vuq+7cvtaq39/KcI74lW2POY1KSqULCATJRScHAHLaWKKLhwiI6hiq97WddlXa/7flPdAGuIljLkzCnFmIZqsVQwcmBvYiJQa9nqtmnmGggZHIrUpuIQ3LyX9rrvtewmpe7Ly/OvL0+/bevtdHfPKSKYg3Wwm5rs+/b8/OWXv/2lfAc5/Afz23ujEfre1tWZeRwwhFl9n/euba+1nU6n8/kcYzQ1FQWEYcjDmNUk5xRiGsc5hjHQoM3XZZNWwTSnNM/j+TSfz/NpHudpMkIMdHc5v7fBu20inu/uzDykUFtjDsM4TKfT+XyeplOMucNSDp3k94qObsGUVp+fXs2gVunZi7XWdV3Xdd23rS/kri/vphTHQMfZ+mBUuTmwhhA0BAB3sBg4xZhCiIFzjNOQz6cpT3MzX7bdVMpeS201tZwbAHUxjoqWvZR9b7VKa1Jbv9x3/KTbtx83cAgfK1OM8/n8Zw7nafoTUi/tHAK/UwtakyNiGaD/lrS2b/ta6i6tIkgO6vubSnNpbOA9LgeZkYYQz8MgRUycMDqNlE5xOOEwYhqZIrm3stZ9/ebwAWSklPLpdH483z3ePTxO031Kpzyc03AmHCSk3vL5rrw6tD5AdVNTabWVjVFqgDVQHvJ8utMYCQIeyWzvBbM7jd4/EuYQmGJMoetu3zWu7+aq/63XP6jtvp0iPqYidsBip/X9/m/uacVExvbNkdSNYOYOQAad9QMavASvhBWhudVW97JuddtVkWmchhSDJtpJ3mRdGN6CvTCuxuWIQJGqrgjRvO3Lcy07hDcanuPn/xrjPwFPANGMDBlQG6q4BhB0JpRAxtQFx82tuIhbBVk/PiF38+nh/kFUSt2WjVq9Mrhpa6XUfaulSiumrd/a0ZHQejITIAGwqnf+cmsCAN3+GhXK3vatlNJMLQTmQBSQEJ2wweFPUXUAaLW1SrVwKa2UpooG0SEbDec7GucHSjkOHg28RuDYHPYmUMrH0t6kvrw+9Wlc/+h6gkvMOaXBid/hJMdHCsREGqNlMTFzC+CEzmZGCKKqYiLaRPotVkRbayIN0AlhWW/bvrUm2sPUr7evz8+OwQCaiPSvtp7k7B3Xacd0CrQvpffVkhh8Ct+WW8xpnIfTeTpPiaGlQF+eX/Xt1nbxLv0hZCKpdV1u1+Xy8vq16g25xhByHGMcGKK1qm0f83AaZzStjhusJgoO5kiGAUNmh9Dr6qEpTDHnPKaYmULVJk1bra01O7YnOB7G9x/h70/Itz+8v0xl+/pvXYhNx3sVd2EijoFkAB6NQyNWAzF3JEeGnv/qCMh5OhFH3fZ6uywvT7cvf9X9FlBTjoHN6mV52m6//mtRUMc4TPPpfpzvhukc00gcpVrZ67atZV/cG0EzaI465IHjUuClGDap2qpJk72sy7Jel+V2dVP76b934A4cgjNT8yaWjfuskIhjBFFpSyllqy2EmJBzE9jrvpXbur21dgUqMegw4TjHccrTNA7j5HXAEt2DKUmrpbRS9r3sphW09YtpjycgBDOrtez7WsomrfbgsZfnL1+//P315ev5/m6Od8SuKA7a5akq9fL68te//FuI40en2B9Ku5kpmnkHNHT9DGEexzQiIddSCTnnLCLTNM3TFEJwMwAPMcQYp2lqrYq2lPN8uhsHyGlebtvX3542vhlRzuk0T+fz6e58mqZxGDMQOcH5NANCPIY9xkzTPBFTHnNt1RxSzvPpNE3zMIzM4V0aif6P1HL3WsVN3aA12dZ9GIaYojRZt7WUKq11ny4RIgVXd7B3nwJAl0wgOhFwOCIlAhN5YIqRc4w5xSHncRjmaUrjUMQCk6mUfRODEGsbWidnqbo02Ust295K79iJ1O53+9aoQ0Rk/uNJOMZpmn9Oww96p8jIgWJgDnh4Y49XV9Oam8MRBLbuZdm3WysXk9e235qoqUUK4MQYEMDNGGmIaYi5sClHozHmx3T6lIaJYzJVba20vbVipiJSamm1tqZEYZrO5/uHx88/3N19Pp0+n+5+Ot//CfyR6EyY+B+MZk3MGdTd1KTWSgha0AXRx2ms+0OKEQHocLce2b4O0Cv7Mapk4i76f+d7uAMccUTfbTnvf/nvTNP92/X8u77/+1Ud8cP/s++bD2AORaDz4ugIAevA3iM2xBHQJfie7QJ+S1wApInuRfdVpSJ5CjEntkhrhFevX+r+G9KFQmEyQjCrpe6iDkSd2Ciy7evV4I3z2/005sdPyKNTFGSx4KCKiqiOQhAjGQY8gIBSURaElXwjlw9vGE/j+HA6q+leI0BdboER4EDCV6lFpLo1dAVUdWxogdkTuJM7atPaWqmtVAEHZgYHiWFb923dWxV3B4uEMQRCRjBrBOTvwXkG7q6irUlrKqLqrBAVsmI2HsN0jzHHKQzAFArF3My3VmXDj6GurZZff/03RPwGeWKkGHiczsN8Bk6Gsd9PevQn9AXUNLcgwibRFFSA2QFIpIkcgDlRqbXWsu9lL3XrKuB935flVmt181Lr9XqL6bmJmUOTzi44HsLjPfZjYe/heE85JwBwdAgEMH9brDnHac7TnM/nMQcj9qXsl+XmLmbeJ9tMYNJul2Nu0nSjoPM0D+E8pIEyuolpOU3zeZpdhMXeALQ1cCBABE8c6H1pADojMXFKeRimcZhTvG2wtyal1Fpr/2D6mfr438djMfaJ7XfdL9O2fP0LB045hUCEaK5mjZmTJAqNqSkFBRLRpnrgRxDMvVZ1ILh/TGm0dZXL6/70pbz8RrLFSNOQckSUdb9tz88vy17FMY2n+fx4uv90uvuUh5lDrrvs617qLlIQJbAyOTNRKxy2IlbMDc3drLW2btvz6+31bb0tCAD2f36oHl1UqQrolrpU1hE5Mgu2ti3La4wx5iEkUCPR2tpWykXkSlRi1BgDxyNQh4jdSQQdgchr7e2rtdVNvGeodqkQEGJkN5OyL+tyLfsmUsFMWnl7ffr65e9fv/z9/vE+DwETquwqxU3c1VSvl8vf/vJv54cfp7vP397I96BZs3Z0Y5yh60iZOxiQmIC7Gm6aRhXtoYxENE4TMw/jyEw556YpJAoxDcOkiogx59wHokiYcz6dz/f393f3d3nIRICMOfDdPBFAjl1QKx3yPIxjzKmXPwohpRxT4hAQuWMKupzzffD53UtV931XtX0vKcUYo5nVWs0MEYchxxhDZGDkFmqrRHgkOX67ipmaKSAcmc2Ru6UhxXA6zee783yaU07MDNq5VFpr2UtDKnspTJGQRLVWKaWUve77XkptrXVETBdNvJtLSLmzFn5/Iw5o0BPf6B2BDt5tskfmkII3ESmltFb796AmrWktteyblJuUosxhHAYSkNpnaavUdW9rUVHAfpMPIY2n4fxDjJmQVIRJQ74DJKLggNJK2ddluZR9VZHLy/O2Ll/TLymN5/sfHn/4lx9+/JcffvyXh7vHOJ/+OLTmgIE5xpBC6OTGUhuYxdDWZb9eCCCmkUJAxvfwTO6OWgIiYgzBAF1NRLtTqJNy+9P6B/HbQZzE9ynrh1dfLt2+1A+vR/DyQb05iInuTvRHJK05iGFPrUQ0xCNI473T5WAN5dX1JdET8g0cDWPTsflgISFxAA2wk61oV7IL2s11UdqaFWV3xr1u+7aa52G8O9//cL7/c9llWzdVoJCnIZ2GSFPEGLvfDLHPiRXRCI0JYiA+uuGtlVllM9kLv1zxb986EJ0UAF3XpWKt+XsDGvSI+vauJkZ3cDfsdR8BXc3cVEyqyt760wSqIfC+dUq5mro1N7VAORIzUugxKX2WYO4O6n4o8xCRVsQr0ivSPJ5+uDcYxhyHEPNQS0H2ppuuFQu3Vr59HLWVX3/7S+dakgOCM1EMYZzvhvXOMCoEICZijolDIo7MkZgC48pwizSOY86ZOTtip2SBg7uatr0s6+26bre99NIeWq3Lsi63W++XXm9XQNrL7o52rCcDtHfZpJv2QW3vfdKh9u23hxzA528nT9F9L9fXi9YayrK8PD3/7de//PLlqRYjCDbMDJbYmSlFOk2j+f1eo3pNcYpxGoYhh8Bgkfw8D3fzyWphkUjoKuYWCAgsBUiUcgqBzcBSDIEphjDk4e7+fq/7um5uvm/7cluW243wSG/Bf6ju+J5z+jGIz0xv15cQgsrQg+3VTKUFDpYMElFkBHXzjjYiptCtz2CyVzdoXsMwJoMzNGeAIdI0oYTzMA0xOhk5gBmB5xhS4EgY0BmUvbFjJPWg6KYMMYYhxQEhAxAQgKUIDEQxOUArBUUWBAIL9MHI0gtHk7ZXIPdEfS8QURblgOCi7SLlmSFjvM/pATCD6hqddPF2Qy3qbVns9YV/HUmBtwq3bXi5xGGcTqdcttt+21QS2Qx87o4iBKOOMSYTKZfL08vLr+t6ldbA0Q3Ktr4+/fZv/+P/imwuyzil1pbl7avsN5cG5stt/fXX35zyf1jazV270rpHknQod2AKkZipm0KJJxlVrU+vEIByTjFO70GlapJyJOYQswq6cYjxmxoyxjRN0+l8Op1PKQVAIPDIdBpHRkQOAY8ZNYWQYuwQWT9EfT3ul9+vZOg9Z+m7vumxg5tqFW21bdvadVgIYGrEFGMEzCFyGjIF4sDE2CVyHczTD23dU4LgIfAwpDykFDimMOR8Pp/O93fjPFMI76QFDIERvNaiVqgUpkDETbTWWkote22th659u3Pbe2knRCRj+D5z19zFumDVzR3UFa0Pv9yhZ4Hv+7auy225llKOxrRrK9tyeynbs9RnkJUZ8zicsmOlupet6N5kL22v0sy/hfxwSCFPzAmBAJUDcMgcxhAH5uCutW7L7WW5viyX131f1tt+tRuAXi6v+76B65DSlKKPwx8clkBMIaY8dAcjurZ9JxPJqS3Lenl1tTi27gOl0AcPXe8E6N4/dHVQkXocjdpR4VWhGzXfJ4KHnJ6JqKdPEn5oH3aKiIqqHFzFnvnjh2nI1FREzL17Nr67tzuqHVvbuxnv934+qoCsUJ9Af6H4RHl3HxXvmp8bzZBnBgi+sNygXEBe0W6oq2sRqu4V3d1or63UhjDmYZ7Pn+eHf+K1Gt60VeKYY8yROTMNjNATr5Hg3U5OHefJhOiGpqJtUimgdekH1o8PCLxfT0RMFRwYKXKMHBtWhH7UMUDDPvxQk9pA3Zj6fQ3EvHX8ubsoB6zNTNTkoLu42pA4BiIHPoCRJH4wkwHcDFSsoiAVwAX5QmF+WBZRZQ55mGJOMcdSbrWtVtXdRH4v7SLt+fk3QuyUaQIIzCmGWvdt38S5GQEF5pSGIaYxpIE4diRM8BYJhjzElDkOQNzp+EyEoKZ13y7Xy/O63rb9KO0ium91XW4iAqWu683Mtn0l6NQ5c1eiI1QB/Igu6E2lXtoB+bC56uDw07d6spcFblrKE4Hty/Ly/PKvf/3b0/MFIeYwuCi7RYJxHIYhcSQOYd3zVrcUc+Sc4jAOMZDnAEMOQ8rmbj0n2wXcET2wx0gcWJ0dkqoSoplKa26eYh7yGDiqwr6X5bZcrzcAgj7sIPxY1Y8/9tLePmTsmi23S4jRtMWUmEJ/lEKIJoAaUBkcVLRPDOPhjWREh1Zc1RZxnYZhGjOFOYc20T5bDUPMMbC5dfx8DBi7FTvFxBjQCIQcAzoEA3BVGxKPOQyICbDHVzEzxMgpA+BGJHsJjEzYM0g/dvhUTIpSUCPqDdHWBKhFR5G97m9tf4o0MwxDCsyD1z2ieLtZvaEWlbat/vqyM3trcF3abU3Pl3Q+nx4fTi5LK6tCQJogfgYQBwbvC9jNtNTl9fW356df1vUqIt2NI61dX5/++q//P4IGts6n0bW8ff2lrleT6ubbttcq0/nTx033j+a3flLz9w+wtxn7pBSP7SMgEvNx3QQEYu7ltP98yBAZengXmH+Y0Xiv7j2NeBgyobuZAzDilHNktu6hAUAwIuBAxIGOxCc8lPDvU3b/pp7D7wZB3gPiWu3qTgRURlV+h00GAAQQBwGMxBwxMB9OJZUmtUip2iqqk3e3eC80xCkM83h/f393fz+dzzzk6gaGwDyd559+/lHdq8iy7GXfeme5m9/2UkopnR73bRkdpEY7VIB/NIMDqHptB/6TneCIlFZpey3rcntdb5d1u27bsu27msWYiMC1lv26XJ9avSLWxJKCDwFmCCEOlvi6FgMr4ZCDNTFEgyb7eoPLyzCcYhoRAyKrkVTZyxUJY8wxDI+f/svj47/UUkrZS91b21rbYgqn+S6HEd3Rlb6DOgMAiGnCNM3TfJpRre1l3zZtnGLikBy51jaWQjERE4XYaYUxphiolV1qE9UerLGuy3K7jbebEzcVac1EQK13O+1gd2FMaRjnnHOMiRAPZzliz9Zsqk2FnCMButMBXfHejG2t9XgwYv6D4O5dMIwfBUYAgK4IC8FLoKeElyFBirPwvcCDhk/gU0RkXXF/gvKbl2fQG3oxbV2xyKGCo2kQS+CR6IH5QWxeSlyqXoXAIJCF2nDZyEdq3A/fgYgJkZzIQ+ipwwAITMBIkaInBI9av5POVvOq7v3gCMycpul8d/9ZpXVB2ubWTNwVzZkhMhOANW2iRhRCCIEyEYbQHNTUm2pzBEyIRCQGTVXcW5HQXVIK3XhWjyYbIEEPXHMDaVZL27eyruu2LnVfZJ6zByLnYLaXUi6qzV1Uf5f6u7tKM0BnDP14ysgIbq2V215tb4YUOaRWx5hGDrl7RwkBdAcTDoFjjmlEjm6OiIEDgrjs+35dry+lrE1bD18UsVqkluKqxqLaat3MhLFTuMU6ZxCN2fH9cXZHd1Trb5oAkIhQ5o/P+nV5el1lX277spStLLft5e22F4k8aYYAnIhTjCmneRiCeRNrqubAyKYGZkyEKYKPbrquxevWajFVAowx9blnTEGtg3S0SRNVfPr6l3/718vtqqDX9VZrc6fa2rptl8vFrHcrY4yHLOCwn3anGYCDf39r97KVWqrUFmMMIfajY4xCDmgutZpqa7W1qirgOfCQ0xBjjGiqyOQUbDqlnMY0BAe9Xl9b26upa98kmTlFtET9zoeo0rbFpAaO3Ta2l620fbv5EvgU8znlFGKIKcZAOVGMYmYqUqubInjXMXxXEZlTINDa9tqG3IYKyKJeULfl9fL8dbs9ZTaGxxwcULVc9+vz8vZ1v71I2ZjNLUrF5Wpu2+3Wnt/wyzPO8/zpcZqyDlGdWUMG+oHCZyBCzB1tXPf1+vb85be/f/36y7Ytbtp7a4FQW315+uIut+vzOA2Bfb08r9dr25tUQzq2r+/eyHfFpI853X4vNr0j5woGSEhASMhA/o2I+jtKDwHcOtLXOs2QVQ3wG1Dg9+rbtaroAqYIQEhjzikmceuZ9u9ISCImQnKkDwIBRESHdwEzvs+DPjz0TZo0gfcwFXQ01x5IA+jYOzuu7grATND3BHBTbVJK3TeplQEDUYgxBKIAFDEOYTyNd5/u7+7uU85OVFSQnDiM0/jp8+Ney9vlUkrZi6gaONbWSq1dkK+qbv4NMd3FDP2J+XYQ/q4iKuzViID5uFCa7NLWdXlZbk+X1y/X63OtW2tHGmDOmdBN1lKWbbu4S0qh9/EG8hEsBoBI5rbXmiIwubm1pgjkpfntKhhU2jhZTDNxMAORtpebmeQ0zaf7h4efp+meOJuDSKttreWGaEMId6fTmKcYAn/TNX1YV8QYYgwhqFVVayJmtu07hcWBzMxEOCZkohApxhBjiCmnoK2WsvUdoda6l31d12VZjKi2Wmu1Kj0dzBEPjQhRHscjOjjYh4Qq9x5rcsA+O4fMDA6fep9nmJqqIr1H9f3hhe9rzrErBhEEUYjWwJcEa0aJacJ4UngUuDc8k3PElfWi9TfffoN2dSsKilZVBUnMFZwNyDAzZ8I793mvYV3sutttU/IWtcJys3RlyVQYmbm/QyYiCwGimTqZWQe7MDohIoWeo/L9utLWAx2AiGPO8+n8aKb9iRepJtW1WhMEDESJj/uWuTsqORDGBEQcgmEzrK2pGjNCn3sjirmpt10YEIi0w4nwgBWg99BM6lgxNzB99/yUbd+Wut9yImRwbypLLVeR3ayq/p5O6+6qigDg3UZB/TIArq1uZav73pBjiNm1mlSkSBxjysyobdNWFBwppmHmkAGxY+zQRdtay7WsF9Hmbr2oiUBrptrcFQ4iDBjYQfmSptLcBFE9IHG3PoI7mYN0wTwgOCBSxO+24Lfr03V7ffn6fHl+q0Vb6yDxOOUQKLcotbVSSm3SW1IAxBgiA4F3AQu4EhJzrLWt24Zt0303UQJKIeY0xJiIsDTpUe+1le6wJ45vlwswFWm3ZeWQ9lKWdbtcriJOdGBIiACOuSEAkmMPzEKRD2HB7q02c6+lBg7fLPI5J3BTaUysPcuvE1MM3Rk9MbozWLdJGjs7JWIJGEnBijYWNHQi7inhXY7bu6rNvdVCITCzm4lKT+cwVUbU6cTzGccpUCAH6r1ckVb2Vnc3ZUJn7Onhv1dExhioibRaRCYVAWitqrTt9vb8+vylbV/PE6NuDNUM6va63Z6223Pbb+iNiWMfsSuVzcpenr62X37VnJblNf/wyI8PTIweA4ZnSm8QE3JGBDfb1uX15evT11+en77Ucrjtu/7TtC23t1LW56cvOcchB7RmZdcmJgeL9Q+b1fegWWYKEUzcVcDMFQ2hKyYAwN5vKX5c0b9VYMCelonYxY7OfQmiCvZ4257cC2zqKtpzhZkDOnMnRpmTG5kZQh+zHr+OBfUxceT9Nv5uefpHJ7iZixn0EFkEAurdBQqBYwwpUQh9wGoq/SKsItpqLXvbi6mAWU8VA+j8dg0Bz3fjw+PpdB5iJrOqCuZOHBIPxJ4SDUOYprSXbOY9y01N6D3KCZAMHRxc3dEA0K0Lu/rmRMzfBauI+rYbExCq2aLt9fb298vr3y5vf79dv+xlMbNhOOc0p5iIQOWt6a5tB6DT+TGmUx7OmXyEddTX2F7QVfoUFfuz1M0N5tbEnYDItdZ1K9d5/mGYPsV4IqbehwezIU/benn49M93j/88zo9jGgDArEbGKYXzlO9OwzAMMWX8EL4JiNM0xhTXfQtXCgiOwCkTgjo01ait1Z0QqAUkAg7AoSsAxpzAdF1utWwi7XAzmNayA3OT2mqzptZEmzhASJFj4BDQncAJuh7490XvquBGBIlj78f35Xxoi7gTUsEsdM/B94MFf7+++HEic0Awxsa4Ry4hWvCZfRQ+VzgXmJtnckRfqH7B/Rfcn6xcsaNNvKJXQmVHdibIRHNKJ5vmVsKymbS1LZel1qVsoJeIRXUwHbKEeIoeB+TE4szeUyZD80B9tXyrnUgMRL6v3zXjVataDUQphtN0IrDAFJkZ0aRty1X2FdquLmiQmCOF/gPsBAgxLQKRQ6IQY4gU2blYz3p2NwAFAjKHVtTUELGXN1dDc3IERCaMgZHQHIkDU2BiRjJp+3pdb5FQOJBBa+Wq7VrKrdadZKD3LcvdW1MAJ0RjAg/qCMSqVmqttYi0gE7ABIK9U9OYvGEMrkW1bHsxwCw1DVNKCZxMXKVIXaRuIru74nF36YARak26zILRIkPqeUZmigaogAZoHdVmrm6AeFjsHJ2cOjmDvmfIPz9//fr2y3pZ96WokRuqdXVTiCnGHCmSmC7rYk+IiK1Wd4+MhBjQXbWWHcBF2r7Xbd1RqzcRA0DuSCURK9XWrd6WfS17kwZgYhAvl3Xbt1pLbVVlnE4cxmlerpfrtmx72dG9a+Kwdxl755bCfDrNp1P5Pp0WnUxalQZgeJyzfRiyasnjkFIEdyfvGSIxMVCXl+/7tpZaECilvFfNaShbuby8vjw/t3XlaUJNSFS2fVu2rRQkiCkP4xhTpMBdLtPpvLXW0qqpMeDksdIQvLoilOqBnLCK3q7Xum8EniIHAKbvbiKExtjEm7lQTzcFaLW8vTw/ffn7y5ffrH19OMW6Psr+LBa325d9ezHdA3sa0jDF+ZTnOU1j4EBq8HrbENdSyvVSxhSnnJjRawjxS4ifEE/EZ0QXa7fr68vTl7eXl225mco7F9gRDAHdoFVrrdVC5QiBBvRuc38vzP9RaUdiDgHk8HK6G7qha++AO9hxWTEAt/frJsDRoUGHnpDXqd0E0Ct2t1qQA7vTAUxW6/85QuhHA0dDf78QER77Mti3Pv/vVf33PeowQeO7Te/47W+/ujKVAMyRvJ9/wvE6gMiMqO85O7XsUqpKRQBGpN+1L33f93GMp3kYxxQCldpM1dyQ3A9isgaGlGgcoquVihVFGr6n/zICduRVJ7r4u20P6bDp0PfmLFXbi6A3162W39b1by9f/t+Xr/96fft1294o8jidpvl+HOeYsltdt6tZIaKU7+a7P+fxkcMp6B7rb2w7Arm7GhggEAOSgau7mrqrgQIjslZd97aomhnOd4l5QCJV3Ze39fZapTY1CAPnKc93wzAz8ZjDaYjzwNPATGDu+BHpDzCOA6Jfrxdp9TQMkUPMGRENSDp9qeyuwoGRgxMbsgECkkw5IEgtcGwxsSt0+vX7yAkXaaWUvQDizMyJIodATABuIrX/qL23tlTNTDssjd4zk/v092igMHVchar6H7HM7zQ8PNrwBEZgASVyjewBI0J0S9Xvmp/E2c2Cr0HfuD1hfXHZTEQ6JMk0MMQYAyETBJ4o3hOdnU5V27rs+14q3laxXZrVjf0G9hV9nHHKPIEyxIgMRM7kRN3V7djLhjsdeazIBLJ8hxCqda37jVJm5pwiwkwdDWayb7fLNNd1BNkEFRQScyAyA+t2WjUVh6acOWYmJiZ3RVOsKqZyhIIagXkr2spxCXBAMGCkLmlh5sSETAZIIcWYUkwxMriU/bos6F4ogIPs+2XfL+t22fdlkh/Sx9KuBm70HjUr5v2wuNdaahERZgZQREOQjrdVUoLoR2zm2sQAjNAiT+5Ua211q/tNtUMCuoY1IGNH4XQBBoESSKSY+gkQ3ut65xCiu7uqqDuTdwnIcR1xBHBE+7gLX6+Xl5fntqs2BwgAXb/WO5XoiGq6lW2v5fVyDcw5pSHnGDMToHVlQOt6kdpk3xuBovUafDAnqjgUXXdZ9rqW1lojNDXg2wqwvl2ve6lOdP/g57u9ltpa3db16evXsm1mgr0DhND3UI75p59//vnnn9t3pR0RqNuyO4fK3AC8tcFdDRV5YGaKFALFGJBRTUuptdR1XUopRBxjKqUFDm0v23XZbzcQ9ShOjOQuaqLaWg8hAkZHi/3+7941J+QW4YDVkSMYmJq2Ztq0p3GI1G0DqSlgoujx4OZ+extmReWmuoMrEYTAYKayX16fnn775e3lC/trWXNd78vyWxO+XX7dlmfTnQPkMU5TGuc4jjxmAuKqhNQcsInuu5Rda3VCAGSIXyl9iulnHhxca91fX56evvx6u7zWsqMZHUW0HwgdDMxdHKSBMHkMnNLB7LR3aO5/WNoRkRjZsDcp+6I8qvO71qD/GM0NrEtokb0XaMd3L9IxkulzentP2EFENAPVbhVRJwQkp3fAhxmYI75DD6Q5EnA47BuA8G2j9W81EL+V8Y+1pBMQAHrSj/X86UPQgsBEKYYx53HIMQaVWAPvCOzWAIwJEZig+wNiCCF1RIqBK6JGhpSIObaGVQTQu3S7lk3ajq6BIedgZlIbHvxRxohKrmitqbt2NW7/oXQtgwkItu9kdKatbW172pdfrpf/eX371+X6dVvezGCaf7r/9OPDpz89Pv55HE5S132/qGlM99P8wzh/HobPDryXrW4Xub2iXjIKIBj1HJkBgxjuBujoSM7BMQoGVoe2+1v5+7ZsgPHu8Z/uHv+UhruXr3/bltd1XfTLv4laKZtqe3j4aZ7viQKSGUAVYyJA1D+q6LC1dn25xhDl4eH+fDePEzObqjk0aeAqFUKMMWfDIEh90aRAHMOQ88PDXSubO9zd3c3zdD6d0ji2JmXfV71Vc2nCIQzDcL67SymFFAmgblurtWsVQwgxRQdQ7bOlrqJj/KCT74uqq+TBjP7Yje88106q8YOm7hJYAwNRBozVQoMkOJlH1Ma6c3tifQlWCAPFO6203V6lGXPAMA9pigOmgdJwjsNjlZNvadkvCtbUq1V1cmczMvFlWRGePD94vguYkbM79oNhX2ZHX+HdF3jYvghx++5MfLs+hwRtnHLKiORuRBBjyDlP4zjPs+xT8NIYrDEdDE8gYELsBgNxEMYQHBgOpHVCLGDNVKyJmYFaF5dZv/cSMWPIifzQ4SCHbrthTjnmcZiHHvUguiyrlHZxV7Va21rrsu1LKVvy+/TtbTjYe94HIJBZVdlbq7VutZbWRBRZoxm4EwKBuZtJERdiBDM3dROXYo28kYKXdd23dS+rmSB5h9AHthA8RoqBsM+Nvbl06nDX0AmAeHcYoouauNTW1OxwBvgRg0Ld6fT9ujIBqeBOx/7m5k5u2qRsZSHQgmRNpEqpMk/zzz/9OOY45ohgda+lVDfp3mMzVwfiRMwUF4qMTA7YxA20NC/qpVlrimjmyNwAfFlLbZVD6IEUTDSNw6K369vLly+/XS9v7haZzF3NMaQ8zu5wOp0+ztoBvE+vA5E5dLGrmB1TnxR9TBxjSrHH97XWVKzspZQqTcwcwV207ZsBem2sdU6BY5hyzil1/l071TxEJecc4zDEnFKMhIAGkTgjg4P1eZ/anMd5HHOMgRkAxGTdxaW5a2RIOTIn8G5k/f352JbXN2rokNIQGFNkk+a6Ltcvby9/37fXHC6tprpN6+Vu2/Hl618ur19FCiAgMyCotnUtZVF13iW8vMqyKzl4YHOUJh024PyM8bd8uiVqReq6vj19+ftvf//bvi7o1tMcqVN0wdzRD5wZmqOCNdACDQE77gzd/rNZ+/s2R0jsZN+uxIRExAiETt9um3062XkOiEAfPQTHGP6YXvY+3jE46IbhPvHsMQNuDnCwY+CdkoDoPXcDFfFIbvqdfvht0n9YoODjgQURz9NQD4e8qSkiMGOMnBgjYWLMgYcUxhRzShZDCxTcya0SSsO+RSI40WHccei0lVL3vdUSAkMHR2rrcippoh30AUpgCA4mPSALvYOvmByIzaV/UH7QzLAf603NP7yx/qyo6l72l/X61+Xy1+X2m0iLaRqGh9P5hx9+/pfHz3+a53tm2pZX4gg8IuXz/Z/z+Alx2PebLNe6X2h9iXCzrNhNEA7q0Ayaojg4OBJQwJCYhiAaWsOyL7XKdPo0zA/z/Z/H0w9I6fLy23J7Lvv+8vx3NUVCBEuBYehDUxAFdSfij3nUDtBaXdfb08srESFASvnu/mEcBlNDcEYA7N+XuwMyHo6FA1COwzg83D+4qgPc3Z2GIeecUkzg3hDeJ+QWEIdhmKc5poiEblb3/Xp5q7Waec55mkZA1HdcaS/t/fU+VEID7LiAoy59/7Q40lFBERG8j1o6HQEgmJN4rJAUArhHXaheqV3IN+KI4Qyamut1e5ZqecwBB8xDGFMcY57OafyEbaiEfGUPxVozVwBkZMNozqUU8De+PtN4N8QpxNGQHHsgz6FoOXA/dkgHsefvVJ/994/jcvlquM/zPAxjCJmARFW1AhgzDTm2aSQrwiCVXTpOozcGzMndDQwAg2PwrogBY0AUBZQeb+cH5giP+6oBMhBTjplCQGYKSAEpEIUQcopDylMaJkKuVd7qigYurTWpqk2tlFpaK/dJ/kDiOFIL0MWwigQ57BNNVESjqpr1wz2hO5qpuWsABtduJHCpLgwSzKxst21dSi3uRkyIiETKZgpEIYR4NAhNTRqoYP+ACIyAGN175quKac9HOCQ1jseYkZgpdMbUhzfB6BHBAY+JE7gpYpPKNQQAAdTWyla2tYKD6iMz5RTctVXQJq3uBhERRKSJEIUQI4bwPuWg2lRbXbay7m0rrTVBMGHzTuBuoubhuJg7E43jUPetlP3l+fm3X38x0xRZzZoax2E+P/z0888iB4f1fbMCNenVHcHB3ERVtbG0qtLU1QmA8VsaitbStm2vpQE4I4dAiSm4MxiipUA4DYyUQu8cdanGPLpqQIgBU+DefAVkxymkOaaAjAAiImophCEdESWuKrWxCgu1wA6QEsfARIDE+uHku61vF7sOaUqR+3sxK6Vertcvl8tvLrchFNdr3b7e3sbrDZ6//PXy+ryXyuSqIAasatK81dJoqfFyta1oCuhIZt6aqqioGr5gfprrG7Trcrs+ffnbb7/85fnLL2VfEZwQ6JuoB/3wW7x3yE29fYPGdlEc/DEs+B/jYfrcvKvlEHq0S0hMAf2IZ+xT9/6fO6ws5o72LlNHdERCR7AuRmhFWzOTHjrey5qakUhX3tPR1tL+PRKQIyJZ/03oIbXvhjd493gdXmKD/ix8ewvM9E8//2BSenUUkeN7RkDEGGkImMkTekRIhEAhEbIZga1gew9TNCUEADJDVVKVHe16ufbg+nHbAbGJ7tuOFIZx6jJgdCRHbbKv23pb12XraxqcugPm4MFR70z4kYPq3jMOnOh7h5K5N4BKZPN8l8cY43kY7uf503x6nM93OSezolrzMId4usMMNFAYxbDs+3K73C6/6u23VF8tFKQA5trqtu5v1/1629at1CZ6XKNSylOaZ4NBhDlstcpye6KY0/zp/vGnnO/vH/757eVvt8vXbbtcL0+q4lKmnM5zYhqYY/fofZs4fHvon1+ertfL8+trVztN0/Tzn/48n++HYSBw0wYm2OeazHGY0jQTBeiSTqnDMJ7v7noRmaYJ3LTV4nC7XZfrbVm2UisQhB6jGHoKnINbq2W5XpZlEZFhHLTdI8AB8VPFzrcMzMzQ0z3dxb3jhLpmvpTf3VaHQh6/tSaPw6w7mkbof4EJgckMdeX2yu2FrCGPnu/FfN2+vu5vT1cx8bswDvjo+RPNpzgPYTxRPmMNoE4Z4rAFvbRaIxBDQE1Nk2rb6xpuL5xPlM+cZ4zBMcAB8MHfI6jRAJzQEZzAGb77ON7evmzyel16NMBwsJVEatmarMQWM6MPElwLaxNpis0AHMmZDzt6TEf6iyMiKYJQEtZIfZilYOSkqHacDFQMwTmHlMeQU0iBOgI8ICcKQ4gDpkGcb5vcmlhtspdai/Rw9H56U7bfd6yuXwFXMwBUdNUgEtyt92C8z74Oi6khAgGombvaYZM8wpf9cKOK1KqtuapjlwQDqIEpulg0iHBoNc39XfcROGCMXcjXWj1W/kEE6CO7wyRJfd7JcZD68d4eeIzhVFs1La2JiSI4MBoLRiPmFCKmmFNOWe9O52meU04cAjjEHMSCGImp7vuyreu2AaQQ+vcKITLHsOzltrXrui176cubwAPBvldmpgBpyOM0DGPuA5OUYkyJObhDa2LWiELXrmEwRIgxDsMQQvi4rlqtJs1NwCwwWQgO78d0AxOTqugNjhxNax2+2BoCMMMQwv005hAiAIqgGRqAgWpv/GoMeD5PE4EGbGDNTFVaKwaIyA6OjCFi5AiJASGFmFM+T/OQUtvLvm4D455iqXuT4i4IFkNEDgv8PtCt9bZqYzC3WaXWsi/L69vbby8vv15vz+fRxjEQtlYvl9dfnl/06ctvz8+vrZYYHJkwUMwcOBJCVWxCRa1aD1iiJrYXrU2riNCCy+u2/CY4//Vvv/4///N//P2v/+vy+iy19NLO7xPvQ95jAA6HGxpAzYpY1zMyAhF9TDb/h9LegR1q4GbiZmBiXpVZueMOgfCY7XfMuvu7Nt394It252rv32streytFGm1C9a+VffDCwfHXL+Tqvq24QZu2JuiaAr23pB/H67D72ZvN/1jaSekP31+AGtE6G6izezgz6gJM6cUxyGOkXOgyESI7oR26HSlVdXmpgrugKQAwGANTBZmBHLDPGxIKGJ7qTElM2AOTVSlW+I7r7FIK6ruRm5uTv2e4HY0UI/Gx9ECsfea8X0TGIlDHoa7cZpD4nH6PM0/zPN5HEbmXnoEgEI4E00c7tRTqa2st3VdltvzevtK5S1DY3I+CoC2VntYfG09fA4CEHJMw2k6fUaeVGOI67qutZXl+rRvl7sHP93/dL7/cx7PeTy/PP91XV5vl+fXlJYffpJPD4EeA4euewf4rrQ7+OXt7XJ9W9YlptRUHDGkPJ/vHh4emElbMWl9Rieqw3Q63T/EmJBYatnWW8rDME59y44xILiZWqt132stiJjHAZGm05zHIcR4uDwc3a2Vsi23fd9bGcgcOuW0iUo3lhzW9n42bubNTDohzcHdWmvffRrvk6n3R64Pfdg89jO1QwQE9o1sZbmQ3ICC8Qni59rkJq+34mslhEH5wdPPnn+2fLZhlDQaD41Jg3paKZ24bEF3QHCMaNk1mTbRvaxvW5qG00Mez8yZOZozAFo3hYIjOCExeiBn8kB96PL7ePdyfcLiKYaUU4pDCBGRuse9lsWgckDMgTArk1YlFiA1VBAjAgRk4hBjiAH68UGFCYNp6DoLUhcwdWUmbT07xVQNDRA5cBpSGnMYIkUAVorOCTgpJlPXVtu2t21v21bLrscPHgkBdPr9MX+X0bqrmvdvw7qQm4jQ0bpS1I6RIHU5jKupOR3dQeol3NT7/qPm5v2+xN1I07fUTpczOP7aQY/OozMDIXFAQFRTVyUnQmZkPUAh1htFiNS/l/ZdHxuYhkBTNVepUk2b9M/ckyJg5DjkgRndPA0wT3MexphSz6+iQIZWpbYmKna7reu6I+bAyawxU4wxxFiv29v1cln3ba/9xMLoitighRTHkEMMeUgxcs8rJqaetOMAomqmwbrgCrqusE+zPjph3E1qkVa92wr6BfMYcbk0KWvxppUPeof3At/EVMmdkBLiyGEMIb0XFwIys1L6WRswEOXgkY2xqOyl7KW01hAQyZHZVJ3VmZmYmGNOwzie7+9O47TdVkZixIiYGWtDkeJgKUbkuH7Q1LS6IizTMCComZSyXy4vT0+/vrx+WdbLaUQO6N727SarvzzJ5e11XXZ3QArq0TFhiByMjG3TrdreoBqwQzOv6qXa3nRvqrhCeOHnv/hN/u1//vV//b//6/nLL/t2w56Di0AEhNCF5J1r0jP93EENDNzNCK2PjqkLaP+j0m6m2pqpuramUrSttRQRAGLkGFPOKff49jyE1BlT30bwcEjERE20P3x12+q2tbJLKyINDgVtV1lSp79RH+kr9Gr+rdXv7twrYbfl4DvY0I+C0Su7a+/J//60EOGn+4lBmRn7sP84vouKEGEIIcYUU2aOiOwA5haZLcVWY4tRpWpzNVVzQYBOhVaqLBsW0wvz0klyZjBME1EkDq3ptpVam5kTIwcOgc3U3ERBVVXg+KXHpO9o4PmB+7f36OH33YuRxzz9PA53KXHOKecp5TElZGrSLiIrAqY8cTgjTapRq+77eru9Ltev6+1r3V4GrzmPOSujGXo4Qps6ks3fvw0nojzcne7+CcNsnoZJx2V5ef1rbfvl9deUH/P46XT+4TEN4+l+PD28Pv31+emvtdXr9WnffyL+Zw7cmpqCm5t+16nb9q3Wysyn0/nzDz9++uGH6XSazqf7T59ySqZNam21rOu6bhunHFPOw8ghSozuFlIGoibNVc30uDWDE9Ew5DzMMQ+Hi2ueY0pAiG6uEENgpn5975MRRHwHBQEiolEXjTqgA0g3RJqZG8JBYvtYS7iPqBCPSTaAAxqg9wtkX9mu7CvblXQBV+U7Dw9Ow263ddtKlZBOMc3j/b+E858tfSo8o0eSAMZNqIIpjcQDM0VSYkSKZAk0maxmovVWl+e2POp0F9LIMRm6AnctZm8QBYIUIEcaIgwRLfDT76vKl9uLUunig5RyCPG9jW+uzWQ3ECfAyEQAHCBEpUZQDdTRiTiEGGOKMfXSjtKAyAwckJklqguYuEhrDRHa4URxVWsKAmycMZ0CRzdUYENWJxf31qTUtm9t29q+trKL9QYJERGp2sd15eombmJE6MQIxMjdEgOO1lzZXaD34zsWqpm4ghseRl4gPx6B7vYJTJF60zIwAKgaEccQGRmsnwP6Sdzf2VN9KSIRIzIhHeQMM+g/R1dwVXMANAdQkz+mO0b3JG2tu0pRE0Fwc4bBGSiFPOQxRHRHTpSHkVPuOgU1Ebe1rE+vz9u+S9Oyt1YFIRIEkxYZc04ck5os+7LtpVRF6DY/okPe6EdEIQNQzzt/x2QCqkOTI7W4MyKZqdsO5TjHv38c4K2WWnZtBdwQUR3VAQmlhX0Bb52X3gP6OISAhKaKZgzIZtQEasMu0DZDQA7ISBBCIOrHHB4ipYDMTWRFSuZ7U3DvgFJT36sWKUjMMRrnTInHu3y+F09cAfZmvjPzgNljAITA7MRovxdF1dp8AW/dg91ae35++vvf//78+rpse5MswmUXrW0r7e1V694AiEPKwzie5vEUh4kjVi9ble26tmW3akgCe7PaTKJXxV1dtr3q81r/7wa//OV/fvn1b0/bsqEbvs+4uxU9MIXA7lCbqoEDmwGaqamDGwKQG4MROf3Ht/Z1WZ+enr1VbWWvZS37ZVu3vYL3jm3KQ57mcT7Nd/d38zwPOYeeOvsep9FpXtqkC93Lttf9YKebKRwn3SPSGZkRGXp3Hk0BtAsGzMgxgCMAuaMbHrLfXvfhvZPWw3h6Zfw4a4d5SIzGzPCOEHXvIWzSB6XMRH2kAGZ90m+dKYdMFIiUuTd1DzqDgqiXTVyLihORvme/hiC1CpBve1nWfa+tqToidTgWEJAbmFhPdO6QfkQgYu7CZkQndETkFL43YjBQYo6R7sYchxxTiiEQ4wbQwAuBcJwpnimczJOIln27Xp6vr7+uty9tewOTEELOKVARWcpeL0t5u5XrWrbSRLWnVrojAHEY8/AQhs/IcyvC4bLtV1FpZdvXi6hRyEMeUxpDGANnMwikIUQkYKaOwDeDLpH8uK5MjZBOp/nHH37853/65z/9/Oe7890wDDnnIQ8Ag+ZWa0VOFFLKOaUcQiBmP0Zp0FTWbZNaltt13xbqYmXQFMPpPE/zmULkEDgcCHV0RPSU0ziN0zaJCHjvWQG/U5eQCHvb9l3TyL1/ckyt0d275Od9XX0Dcx1//2jIH3f347kiaAw72c1lUzFI2XEQ0VK2fd/ccTx9Gk+fx/s/x/lHT/cNsxuBoAGak4EbjxjHGBPIoTVzCyIphG4ObdY22W66XXG+Dz73/AM7xCxHXR8SjonGjGOCavT8QZO9bbfqCwcKIaSYQgiHjtABwRCO+6mjG6EzuDNEA6GDXUXoDMAITETc1e8OaOYAyBSCqItrs+PHq9ovAJ2QYS6G6qwYDaIDqGMz6Pdmq1XK3soubW+tiFQ1c0Bg7oilD0XRwRV6lnFPCQcnAj5agYaq/TYObghG2J2lTm52pAEDgaOaSTMV60JedwJ3QoocAYGpP8oBHTvE8D3p1UStibpXZu2Bx6r9SozYZ5lofcLvTg723kf949PhxqqsCqZm6q4OnWanDg6MGJhjYgd2IubogGLeg+b2UtZ9u223bd87VEdbS4EyMzsFjjlFThkQpFVpVcUIiaAfgbjfJH6HPhzUBzniExARCZD6ZhVDIGJAdrOyl9v1Vj8q5B1UmkqVWhAhhENziO6u2soRaOrm3YMcYgyBEYGIOMYcYuY4cBxDTIRdpkFECBz5SPTrpT2mGGIUkSmkFcPmwc2YKMYcQjZEcVcHEajNS/NmZJQgjpCKUTRA69KHeIQAGyC036/tagLaOvxK1Opefvv68rdfvrxdF63ampfqCwi6LGu5XGwvYhBzHqf54e7+4e4+zTOALFuxUst1kWXzraKJRddTBBvQgQy8qfq+Onwp8np7fVmuN9NvfRFAAKJurcIYuKOeUMGBtN9ssFPQAQgcQbt66z8q7V++fsH22t2R276tZVv2UpsQBqLAzBxDzvF0d/rxxx8+f/788HA/jWM4rEboZiqioibaWzb7tu/bLq0dWUjgqtqaiJp1+RbSgQnpr76cDdkI3s3yPTL5GK7D76vx0J8dZ+jvDsJI7OBqfmSndGfA8X/UVJGIqCJFpNAtmKYi0kFJRsg5pBQCgjOzA1QVEd02UUGmmBIFwh4knmIi4iq6bPtt25a9VlFxcGbOmSJGQyriW2tWVJoaOGHgEGM6TXkeUk4cA2H3lcTfPxFHdOSDMuxoBq4GaOobwh4pcEgh32E4iYdSrNa6XN9evvzl+vaLtTeALY/jGFOO7k1uS3l6uf7ty/XXl9vTZdubiaKaA6ERKpIjIcU8/RDzj9t6beJpeMgikRMC9iZGxwuNExOmmM+R2+eH8e7uEzMfDrLOYf/DIuPEY/j0w4//9V/+63/7P/77P/35n6ZpjhyltooUmBFDThxCmue5w/zNrdVNW1WtpezLent7ey3r8vXrr3f3d+1hH8fJAboFiAOFFJnDty5tP/OmPNw/fg4hzed7NyNiALcuz3sP9/5ukz20D++Pl8P/+Mtfr8uRiIoAhN3Y+X55755F7zrAfpp1MkPfTdfaqgklIxTVcpHlydoWYp7PP013P493P8XxzsMgEMQOdC0AAwKEgYdzamOwSARAVvn/396bNMmRJOeCutniHpELgKpqdpMcPnmHGZE5zT/kf5zbHJ6Q7GZXdxUKSy4R7m5mqjoHdU9k1mznocCAWpAJZCLC3U3VPv2WqDWSkdFZGL1vY7lAXxkaUSZCdUdwJq8J5spTxpqxJMgC8MqxxgFaWze9MrMKj77FSCJcSAIJ3HN5o+cxNwMFNQJjcIcRekkiJxLwMMRLLJ4KAgmqkhrbwBFhhPiygimGat6Gc1dAAvPmoGEqH0khbdURhNTogMEAQAhF8I02FMCdTFG7g4MLuaFbxNCAKpiiGpqRGZojGrrtRC7A8JQhcxzD3XRbhztsm/VuALtndjz74IhAL/EMkQhkDr0P5tb2IRoiAoXBZAz41cOOixCZHSDi5sKh/81mNYK1bXH5wAkD2XRzU1Xt5ooYHpqupltvy4aI2vvydHle1lVNkVGYu3XVPsy6ImIC4ZRTrnVP1NzlxLCLCoIhHfXb0YdrVxvD1NwAAQN5zCkBUi45S2JiNQKz6/Plt48f11eW/g7HXMNNWGqtQawE4t0nUmFPSXcDcGZi4ZSklpLqdJ7P9zd378+3N1Mtwjb6aK31gUC5TpyzC4EQJMo5T6Xa0K0uS7ku5eJqEUmZc1H3pvq8bdfWrY3L8/Xx6ZLybOouySUNpK0P1zFxIUrOCZCg91cdDpqhGnb1y9pXtb/99vWvv35drj0hbR2ui2oboO2y2OPFrpsTl1LP57t37979eHdfp+rL8+cnW64bPF3707NfGjcYkPt9EbwVEcoAZCrkp6JZoKYhpD26wCD0kBP6PgUncMf97OTo4OhAHigVkqAj9KG/Q4PelPbHp6extLZct+tl3datbVvrfRjggTUxp8zz1/n56enr5y/37+5O85RSWAFzXNxIP06SJKXLdf369fH6fB29gykA9N4vl+vDw/Pnzw9Jrgg0euu9B5HeQWNKI0nqPJdSE6eYhe4PW+hRdnPwQEaDR/dKM+b+9ekK2gFAVfsYwWY50tOHjg5ISMKciBNx2Pypjt7bNkZDBA4EkICIzBxc91sTLTAMQCckphAfwlDbWruu7Rrzn72JcNxJRbQneBAaOzhgIqlSz9P5PJ2mXJIgQCiR4c1CBzRwdQxXaoyzCYYHZEY5G1brNsb2/Pz54evfnr7+vFw+CrVSc50/JOy9fV4ero+fvvzy25e//nb58rQ+Lc0BiMgcHWg4deeuYObMc55+UM9pa3m6a21FYOutb0vfNizMnFh4Pkud5qnY+1u5vz8nEXfAw4vgNYsOEW9v7pnpxw8//vjhpw/vfri7uZckCLgu62hDkuymgwiEaGNsy/Xp+enp+alv67Jc/vrXv3z8+PHrw9e+LZ9++zjP87Jc5tNJWOp8plylTJzynuwT3goOiCgpTacTEecyRa8Vt0cgvDv/Hr8V69BI7mUIwc3fEIXglZ32XmUOBMn3NpTQGQ8aBRIgEQwYl3H52J8+gfacT+f7H+a7H6XeYpqAxDCmjyGFJEJAqVzP2E7eC5E4oQyRVCxE5hD2+iAwyBp7Q1YXiHSBxD5lPFeoBbNgBHC8LYgQj0FIZdWUiPaMKo6rgACBhcVGvU9OkZkBEQ/tugcLJsBDIkAmd3JkCncWcKTe8LC+QNq3EEAwtzH61hwUDMYhjnA37220pqObqe+CBCIkkP3U+PqV4PEzUBNw8yBJDI3petDZXd2CrR7Eun30QL7DdIQO0MfeW8SFMAMzJwaMBJ59sq4RAuFuSDh0tE7RAUUvm9Jui+ZmgVc7BLdoxxvD1Sf4KK8eEGEu03TKSb03G0OHEnGSQkgBdex3EwQwpq13AG3ter0uvXdAZCFAoAHQ961iALAPQ0PGXGSe09ARxmKEgAweXRDaDm5EZkik8VKAqpRSyqUgaslTTsLIfbg5t609PDw6vb4YmFNyHaBcUjpPEyBuh6EUmB7jjG+iKnYU5MypcC6SBZOQ5FRqSkrCwO4bEZ9OpzxNmASEjCiJFEnOWlwqpBMXNyDCMLAcZtsYTIlw28xg2LYsl6cnYfaY5bE4shOgFMqTSHYkWB9eLkgpcy6WpJjacn1+XPTTp6+fvjzpuk7SLxeowlAQndtwNXIiybXOp/l0U6dzrbVWtD5yfZL8SLupEBCqc6CjxI6MLoxV4DyhAs4T5gQa8kKkICnsPu8YOngQRkDAoF+jMyERAwMQqvkwtf+X0r71zdp1Wy7bspiOSEcOLYH7QBKOxnM8L5fLx19+qTVHqFrAp4QMh5FNKbWUqfVxuVwfvjy0dXNVItrW7euXh5//+vdtaQgU+WyttUADHfZzQsrpfHMzT1NOORIvUkql5NA91ZJLySLCuFuEvn4Vqvbnv/xivSPuIdH7j1g6VBUAaeerJmFmwn1W4ErgteZaUoh02NEdurraznFNkoVFbXwzJrVghGhr/bq252Vd1tbVzJxICFnNdWh3A8H94JeRClJGykRZOCcA/x3FEXesBQKNCa4QMdU8lVRyEuLUjVsHU9vWy9dP//n5t39bLn+3cZEp1Xo63f4TXh++fvnrp//89ee//vzp69OXZSzd2jAmkN1XIKFxs9S6b1szJ0pzrljnrdR36/VptGVbn7fL13Z6ZMnIGdwS82k639+mn96V85wkSe8eyXnBNHpd2v/whz8l5tu7u9N0FpI4EPjQZbvGDG8PyCEggm1bnp8e//b3n3/++a+Xy/OyXB++fn56/KptFYQvXz+z0NeHz7VWZjmd75ohcGKRvQzjoU0DjMvF2QRAWKapAuCxS9tx28Tc/SjtAMFciUPdNz3nIQN9IdLFn/1G7cRdPE3g4AlxSnkga8K1t+ft4W/t+ZGAc53LfJumM6UCLI6Cu49yZCQQIXIqls+Qz55mJkTmZJjdkItpFihF8jznqXKiTr4mOVMNAzpPhDVBLZCTM++3bn8rtgqUFSDUYMcLAXdw9n0j0Z2CFvQxZyRJggzO1rD3PvbpN+3cDQDYNyLY+bUsFDKZoOkfyi9BYnPsXcfVwsIqZr3BpBlde9edcYsQY56Q3eeU6e00ESlIQEREAD5MW28AMFSBXBJRAiAb1tYOgbaHTNc1FKhGCVMkRKOaOQkxshsA+dDuYPjiSj1sjNF669qDIDZs4NgHOpFtrq5MtBNZbOfO7dRk3U/yDmD+BpHPqZ7m25wr8b21rr311s2MkFPOiBjbS0y9QpFnpm0PYB1mKJINuoESOwtEZpuarr0tbeWy1ZnfvT+hgFxRNTgnh9kJjGGoLsiQq8w3tc6ZGIidE6WccqmEXsoUFtJAbk7qfl3XlAWPCGcmujmdEsJqY67l9jQ7EG/t8bJs62YjrLKAkGotU6215lpKLrnmUlMFxW3dnlEKJ3YMIm6SJFlqLWWuUgqKBK6GajqQjQrXPO+sOwAAcwR1xlNlTmXto5ti29rTF0hCAOKjJIZpcoc6nUqdJBVHxIcngP0hub17dz/dF5nJx/b0+fHr5enhy/PTpS9PG7cqpfB0KlMuNWnL6jPINN2cbs6lVEA0J0Sp03z/7u7d4+Pdl/x41etlVIbTlOqUUubRDcCYvGa8vRHgfHtOU+Vupj3Ih4T0kuuIO0eBdoM/iucWEZmcYAT7PeIw/59Ku5qj2zA3dySSoJlAgOxOYAAYcjLVBmiSKEkQIgh3wuku9C2l1jKb+bq2p8en3jqAI8Fo4/J8/fTx87Y0N1S11ruZshAx+aHRlZzGgHVpaY8rxpxSqWWudZ4mnaqZlZRiN7eXAelR2v/z50+jNz467h2F3yUuO0kKCXm3pSMmiq2MCJIw7FFjxGaM7u59uKoRQMiiYiR/fAUREVaLgF5EVsW1+dZV1RCNIg0qDgXohgBoCqNZu7YrXm3YWFoKQP7dW++dQ7a40+gBgPZwHRQWBx7NdfTl8vT05devn/9yefobwlZKyvWUp/sy/dDWcXnevnx5/vT58vV5WQZsBmoADHIUNAAGLOoUGxAAcprK/P50+4fe1+evf+vb8vTwC6eZU0kpi+BU0t0pvbvN9zellhBFOjMEOedNRQSodWJmlqTq1+s151xKcbVlWXSMXSwBTkTM2Np6eX767dffPv768Xq9tLb13lhSzbkWmeYTSQIIDEODVG+BgKoe5HWCFykFRN1AYk65ENGRc/9tTON+9IfB5MCYxUZle3M5aD/S79vZ/smo7OCIe54Q8ETpLgHZuGq/rJeH5eljX1s+fSh1TmWSXEEyUAIkh4gkBd9PwAAskKuVk/ezkBGTohsC82R9TSiZuWbKCRkUfTBaYg8fUEEQcgQFDyAaukLXb60WAjBJ4hRS/ri/wOJoH8o1RiKA0KcHlRkEKSGjuasRbOgtpZQliSQmDiVYTIh1aBwJ9IXAEnHJRJLzNM95rlQEBAxVDaIEOhgAOPqLWAz3PC5EREYSycwJ4fU50ZGdc+w3SOKOfUTYEoFkACYRAB7qa9MeHN2IC949+xBQkBzDD8QJKDnsjjI+TNUVkfyozaPr2OFxREA1BQXwV7cPuDnCzprQ8OOOzyA4kYGDG7J8iyEGgKnW21ueZ8zZrI/RWm+t9zZ6J8Ics2VJzNlYDjtqj940BinuMHQM39yHCOQsJSN6IspSkIvfvque79KJyqNsm7VuOjRgNhbKierMp9t89+70wx/u7j+cyoSt0+mm3L47v1vuEXCe5/DT7F2HgqSsZuz+iooCiUmJBhIDJeTh6Aaj6bJs2pUchTmnxCQl11pqzYWJwNAHGLvlY0YQOCqRkYowMmAoE8wAAoRRGwpmREAoyLvZuTuAeTIHM1Sj3npv7jrWKw0WQgYrSYJwypR2vOfN1YBa6/nMvvZ++bJctuvnx/H8G4yrazPUUL2aoRk6MAuWWuo8zae5zlXSHkNInEqt01SmmmpaC/mU+TylnBOQqPc+NCVARhGizHNNpymtbYzhr84N8W9HDKSWwB0NDDwiKfHQtAXP+3fqqrce8sQCyVLCSBMC6H3A1nRA2HPGQcbdhzmCE4OGiGGM3kdgaLGV5lRKuZp672Ndm40w6CZXa2t7hOdtHaGPYCYWSZT3gRAhMYqIUALD0caeRz3UhvoYNsauo6sll0IRA/0akDf/5eND2zaRPaY1NoJjOz60e45u6APULHTACC5A7DgMu7q50ojRramqDXUdCN57M08pOEgl53kqdTLiadqmpmuDpQGvDh1Vh7kjKBwK6H0TcPeuQ9u2XR+IcwSniKSc/1H1m99WXGR/tXsgEpEkTAkBSBUih/Hrp18+/fLvj5//3LeHm5u7Ot+mfM7zDynfNfjc2hito3lCKgwOsLkLc04c8+VEkjgTigEG2494KtP97bt/AvCxXZ++/PLlt7+MMep8Pp/nUz3dnvLdOd3OXLNnCQ2vJ0JG3DOIj+UAbQw0pY0fL0/8m1zXdaoVAXprox9giiozpSTgPkZXg1pPItldEZEZa5Gp5vl0mucpSYo5aJ1ON3f3ZZqC+r7PNhGIKIhde5Rba0TBQQPYq2/siX6QK8Pe6K1s7y0ghIhCuw5z77YOPl2UdkAjcCTmfMMklFJf7OHp4+PDL9fLVzM5SS5lllRIErKE3e8eYBgB9OAIRoxUsvcZ7LZQE3YUc0bhyXgT90QosrtMgAbt1ISECBEM3XSYmyOjOg719kZsBTkV4LELT93iNTByzFZTSsSCfCS9OIADAzIQqFsf5EzOKaVSirAQkqqBdjfofbTWxxjBzeh9mBsSSk7MXKfpfH9XThMVNvTuwZnzYV0d950pzvcY7y7vUA4SU2KUNwbGBJRNzDlRtHNIQ8ECSMgJBJjQEZti329IBEC0SKRBiOFeWFoHO4MZUWKq6Goe4pV9KBGJC24HvgimY/cG2gftsfc4siFbnLr2N9ghSmAofnJ9cznmU6U8nU5SMtlQ7aP1bV2X5XpB16lO8zTVqbIktTD/c7dhaiJpmudhm17Hsl7X/kzsJdN0SqcpJ6lJ5tNNnU5c7+fzwPmLzF/L0+P2/NzWpZt7KalUyYlubqf7n04//PH2H//5w08/3tYbGkb3H87L9h6J3KmWiUnQcWt93RoJEfMblNHdx/AxfKgHnU5hubbrdbteN1NjoJIxpTgWJcYETuvSzRRmKJxF0jSfSp1KrQTuNsZogK7a181xNCDepSxqR+4nhaUpEnMqlAoAgaGNwWPkLthYt6v1rr0DYWJOWRLxMFezvrXoQ18Lk4iQyLb1Yfn06fLwuH5+oOXTTI0z1pJvz9Nci/axDBiK7syJy5SmucxzmeaaMkdWqjkCkABlwppgLjzXLJy70dZt6z0RDMNukBxLTjdTvV62jsNgPzQ44p77ubtGQxDwDHwM1MCGdocFh9/zzd6W9lrqKaeW0khrEIp6H0lKSlNXAyDfz8E6RovElGiwzMycEGMKEHEKmYhVdQw//L8IMe4GVPOuhjHdO4Q0OUsIxnLOUeuIACLdlVCYRCQlKTkllj1Fytx3l+Y3ryqMU1R3bj2+WRB8p2/5ay+xHzsHK3ohVzMDRwySqjhipE1HgBsz11Km05znOU3VRU6tL92W1dKl7R4AQMHCj8bipa5DcHtBuwMhNu7x0vIe3vJS2V9VmD2vNGjahOGvora1fnl++O3jf3z69d/b+pQl3d79NN38BDynfCepMlNiSkI1cWvUwiHMd0q3mik4IqVUWBIimnUdC3GVVOvpvblu16fe2tPjp8evf3v6+uPd7anc1ZtJzpWnTFk8ERiCMAo7f3uPv63rusBOfUQDWJal5MxIwdeKNEZVJaJ9PEJYyvzuPWPoJAlZsGQpJc/zPE2TMCPRGCq51OmU9r+5IQIYEXnom2HHbHSMkcKF5qVKv7zJiMEBRMSdGe6HMQMAfPuNEJyu/ZoA+E63+/bFEKLohyg6IQPqaigGDFRFplzvcr3hlJkJ4+dhe4PRcoYthSOk5FCdpuTG2IzYCTPNykN8CDGlRIklZZYSjIFo7SkMxnaXRrc9Q/VtLalzBnSId767WeiYgx+Tc5ZI3hNmlkga381Dmva1sxMaMnMi4TBSNRyoOmzb+rquvfcggbXWhhoAinAu+XSeb29vppuZMytYG9t1IwDduqON/VAGoYbZ0REKK1pkZiHkN5N2hFR2iB0O/yBEYwaSGDrsffELRxGPDyMa7AkRtJsKOrmhBZssDHKCsh5oezyA6ocpkO87i2rcADtVBADQBZ2SkwAx+ksIRiQPOJhCKW+ej1KYEk9zKTntqU2u27Y+56StlZJSKjkXlmTOMbcKgSmxEzlgf3z+bK6mIxeZT2U+5fkUzr2nOk1lypRYQcopTzfzp9+eSS6A1zFsPpd5LqXy+TzVOaXKkhGob/1Joc9n+fDjXS4VIGWZEBkMl3W9LktQFsz7i7MeAvBO+2IHbM2WPq7XbV177+ZmQKBmQy1GCSLCLMwxzZ/LNKVSOSVkOXoiGBbVG93BVQPS2RUpENpFB0MAczOmHT92RvAwuzYMY9BwJDAARKfwr3RVDwGrv5WDu5upjrZsy+Py9Nvy9BV1mzKWUuqU5qky0bpuOtQpoaSUU61lPtU6F0nha+nDcGl+WfRyHUNdmEWEWIbSdYXL1a5XTQhtQOuO5FnSeaqP2a6Lj+OxpR0y27Nb9r2I9hn8qzMfxtTsd8/5m9J+Op9/uM3bct2Wq41xsMtDvBvHIBimQ8fQZjYA9YW7Xm0nqjOxkCRJTHK9rubPXQ2GORHQ/smUcy5FUpaUhTmlPSCixNs0z7WUkHkhGschXoLsg0y4yydCPYZk+MbfHxFvb+aWwuPOzY4O/VXFCQZccIJ3YQ7sbpQERuFA6ergiTn0YwiwEdGLlR5zLmWe53o6US0g/Tx02fTpeRUOVR8JstMxjYsdwgwOX729aIdhKaAZHBaor/avaMU89NaxP4TQCNW8D12Xy9PDx1///j8+/fYfOeWbmx/vP/y3+faP3TKiCGJJeDqlm3NeHtOyrb6ZWZR2NIXWRzOoDpKy5ISMZtsYF8lnpEnKqYLf/9Td/bI8LcvXh9/+/O58kj/8OCeaEmVBISOKEgxMxGxM+Ltu/vlyecGNhun1ehVEYcmShPngskXfr4gsKd1Mc0rCQkTkoOBGTCml8/k0TROLgPvWGiKnXJAZ9kMo+EsU68t1PdZe2fGVL1AIbILs7j4ogMq9h/pW4F+Vk+O67OS0byQ8oCBFALgBDROh4emG67s8t2mckady82Oeb1lSwMLEIaaGYLYL7pFIiIggKtmoUL/iGI4JOA2cXTz5IMJBFXJN0zlNJ5J8AOthYhW8ZzJEAuRwkXz1Ik6nGUjCzSmyhplIRHJOOeecUym51FKixWZhJFcYTbelLbKCmY3I13xJcEB07MPWtV+ua2st8hJV1cFYmJhzztNcb25P59uTZFHXtTGTuTV0ayNi4ay708HUCDoR48HyexvjgQx5AogwqR3EdIgoSsbg6+1qmr1Xi0N7/AxX95A37HIbVbTuqrq1MVrQc/2Is9tJhcG0oG9g2oF5CAUTnBgEkQVTIU7fQFU8frsppPLmrpLkBJ4SSuIgD3BiHT0l2q5XAmAJ7mpi5KAThjNyzpwyGWwfv/xNVk4mtebzeZpPaZrT+WY63ZxLrakkZHVM0/l0Og+mbEqtadv6VMvpPE1zmqZCwkP7dXlOQm1b3TkVfPfh5u7+PWMRmtxZ1a/X5XK59NHVxuXytCyXl2dDmJKIlgrAW9dl7delta5xIAFAMx99XK9XMyeiWur5fD6fTqdpOk1TrsWJuhv24TpCssRMDIyU/HCUhmMutvdu4UbmSgasxpKIRcew3nRbta0+RiSVIcJQtT56H32YAxJLzgn4TW03HX30YUNNl227rosD1Jqk1rnmnMW0X5633jolKKdaOZWpTqc51wz76IWb4sNVPz20374sl1Wds1PqxpfVsdnTc1+XXljaDMti4JZZbuZa8xAK4/2IMgICMMBhvmNF+zHvMIQNkAsQ3dzgd5OFN6X9/u7+H//xQ1+XCCwfo5uGsEMccaj3YVtvy7o8Pz8u21WHBVkUiZj2npSIiAWIDVDBh0cQFDExMCtiN8ehxj0jOWHM4HMWES61TFOttdRSJHZ92nWQzHiccWIQ6ruIg+F3Z0QifHd3bjUSfDW8jnfayHECRlAEQ3uJ59wfeHRHBddu3QGMGUrKtWQWcbNOAOa9996aDgWH3f0mZUeaSs9yIQACZ8DMzEDR93cbphoN2HFQ28fnhrCPBTQuz++KO+x6LQc178Nat60BArr5trbHh0+fPv389cuv67bc3//h/Yd/vrv/Uzn90JTcnazjqdr72/5wc/1aHi8LYk8EmZEZ0GGoLd2m3vfTm7uNpv3q1qM8pDyfb38y7Zfnz49ff27b8/PD39fls9t9lnNOjGHOYWgWTKowUfpdIxw74272HpukxUAMMfwrRKIkBYgTs7iSEjNTaG0BgJiIM3FiFiRCzsScc2GW2Kb91fDCPEhLO+834PcgJ+/v/FHsX/AcQg/pkb852L/sXXvCYbQR6O4+PFpA96MGETKBR4pxgXSW6UO5IZdOXOvthzSfJWeW4JMhETA5oyeGJBgC86CEd8zdil3JzVAwYdaMPrL4QMROJ5ObdDrJNFHJnJiFmEAO62mIkS8AIfQ35DMoOVFCB9PBRDCGEmKE24sQMzKDkAu7MCQBQVRwpxdTa3x5AGOaHIA5IquDKnQNBlAM4I0MD6dnZwYRSpnFwSGNkbaWVIerAww3xwEwvpHqCTEcN3e2+9vLEV47we7A44P7lk++f9D3H1H7wyI4oIE3xxwH96D+jG3tvZkZ7o4YoRTY+3A8ugY4PuKAwErECAAsyJlFaQ+lir9VfINv/36z5lNBziyZSAjCQSRhYcK7PtXAJZj3WTIRpbxjW1Haa52n6WbdroCeRAiTG3V19Xi+zMDRETDllPmGXGfhu5LurtdtqqnUlCuXmmuda7mt6SbLnLgKJ5wSY2GamCpBccOhvm1bADOq+p9//fNLaUcASdkdAdIYPhR6t9GVHKeU49jH+/VwAis53Z7P7+7vb85nZmYiBb9s69ZaWASguwiXUljBBoSqVocjoiRmZI+NBpHcMXiOfQNqiKBjHDr+/mKpFiatMT3jnMO1rNQKhPjl66v6EfQ0aSBfV/31abs4DyJUGzrWVTftl2sfwzJC8l0DTbvcJgx5xDBtKpcNH696uY44CRj6PKeSGbHmFK0GLWvUoFQrp7QcMh+I2CdzG2rQx1DDFwOZSIUiRCB3pDgtuv7u5npb2t+9/5d/+W/aNu1buMOq7kYU5rD1sW79ui5fvn65LM+ttW1dHEx2EJXdInYP+1DE7o7XZVl6625OCMLO3M1765uqtJZzKzmJ8FRKzoIEIixJ8Eg7djy4Aobq8GJVFwdEFwFIhAyC8GojJsR396fR2FT76K31OIpFB35QqMKhLt4ndKI9Nz5Ilt3IBxEyy1TSPJWh2sYIt9resG3SWhtjuEEojtWxsAggqKJZQgBhF1K10Yd3HeagjkHeRgpTiGg59rruLqJuv3v4X0qVm3nrel2RgF0JAbZl+/z5l48f//P58gSQb9/904c//Peb25+knGWomZJTuTnnHz6Mh3ePH/9eHp6JqKDXzObY1If62m1Zt+tyuds2UPWxjbaADSZQd2aS6ZYArC8l56evP18un56fP27tvciUUwGPng92c6o4Nr0qiwiQUzK3OHBEJKXQXsmFJVh1tdaIaQkXyxjRpMQsRKo0KMLyhlrr6sApUS4555JLyHZ3SuD+XqmCYVjXxWdFJJKR8ACa4ij/elQTVMUX3vzvxCQAexUBQDADHzoWbdfRV7XBUjhPqc6EFdDR3ClhOsn8Q8VZTsaSpvM5T5OklCJ3di/tlshzgpooCR18BW+W117axgMgCUMt5pP7nvbdaTa54XqWWiglFiYKcdkehewvwgqGLvuhPhYnlEyAZAmBfIw99Twsfcx1KLThgGo+VIVJrHtvum59a1tvfXQFdw92DxMLQ2LmRCQYpmzkgGi7Btw0chlG09HUujgCOjOwUEqSugwyHQZqPtAHOAAyYswXKGaOiG8TqRFhF4oeVX9H5WLaBP6yfbz00gHX7Kf4+FKOIfUGQ+3Qm/dN13W0TV9nuES/ffwhO9q7AAMcEHAEhRM4EYuzCCLsZvYAL9BmuHGGNd3Lur05pzqNAargFmm8LsI53SDcIqKpRaL6GAMR91gPZiI0c5Z6Pr0bfRAKs9nAbVP0wXmjkhQ4GSMyMU+51DRPP07vb/HD7fPz01WtuxuQ5ZLPN7fvbu/e3b6/OZ9qTilllpS4ikyEGT2Zg+rRn6uq6vPzw68ffzkuB0kuQIkItm3062bmqFaYUxI1DYcDYaqJT7W+v7v96cf37+7up1K3tm29LZupjr4164Mcas53t3eYEJo17QjoZqbGzCiMlDAmRiyBiy7Lsl0vY3TTsZuF7/J8duI+VE0ZMQnP0zzPp9PpXOvEwsMU8eeXy8EsKTPm2ql+3vBvT6ODY4Km2hs1AXJrqyIwuzgIIJlD1zHMSs4smSWBlIFlM7lu9LSoqV5av7T0gW4+lLlOlatyat3HZaNhKElSBkzke7YYIBMSuHsf2ofFBJn3I7QHOQZAglFHoN+kOv+3pT2EjIxuBEygiXa+K9IwV1df+3p9fnp8eHp8fH567n0DBBkRy0PmHsTLA+LC3rWPbm4RSXekzpmqKnYbw7qUkhlh29ZlYXBb1yuC55xuzud5nqZaANnBEHDP3vOdVyOSOAmyAPMbCBghJyRHYxKW3RcZXh8ezdxUfaip7illFDuCxbR2Py4cYC0Ec57mCdyJkEncfHRtW9PWoVgCrCSTyMwyMV+IHM3MVdXGsOhj33T9qOCHUNUPkv/vC/tBDwB3UPPWNFhqNojIrtfr4+Pn6/Uhl3me795/+Me7u59KqSjhEoHoOFKmNGHKsR/UxOYmBGu3penatQ/d2rau1967K4Qx7n7GQkQnIqL55t0P/1QSnaZUC5QqhEoMRKiDVK2Hg2jkD/yOqol4mk9EeD6d5nme5zmlRLvOmQIDLqXknKPWETMLJxHZNZUhR3YPqbpICl/sYGikLCnt0pdAXfc9GOJIzkyY8wsWErX824jksBx/2bhfDuv7mf4NjS5IzmZuPtaxPV++frw8fOzb1Vzr6d1088FvP5T5jigjMQIBFy53maYMQMyl5pT3ETbtuLkFLQ8R4bC3w11nQogcbsvMKZUJZAJK4O6OTMV5wjRzShSiJALEPb/YwTCcdBHInd+edx2GxdEYnQQkqMWBBIGi41DzrsO69MbEjKLd+6bbtS+Xdr0sy2UDACZOKUEmFubEnDLnQrkzRE65AYKN0JZH8lbf+lb6CuJIMHSo7QQId1A1bWpdvRsgukVpQBBCdjRHxjfnkjB429Whez8WzD/cw6H9LV/CD6TsqNHxTyTDqo8ObfNQ1esIecQrCcRxh+z8rf1E7jvat19EQIUxrDdDBDffn96X7+4QmPzrdT6dTufb1rUPIwBmrplzEklJWBBZVbdtjaBaJqolM1NwPRzs/f0HBHp3/+66PLo1xCGsJfv5brq5nXOZU5qIk3CaylTzXPINQr78sC3XrbXWR+ujscj55nxzc3N/e55qybtwKBxpMzi7Efoxg3IJWCzlV15IiCiZ0AEQx2a+EVDNearlfJ7H6K1tMdmspZ5Pp58+3L2/PZ/nwkzr2tflsvXRe29bQ/Mpl1ImThmYr+umOlw1eqVcsjFWYWYyhDa6jaGjr8u6LOu2Ltu29r6pdmLmxM7ixN3MAU5TnefT6fbufDqnVAxgXbettdeD0DiEl+lcb1qa7yE/jD60u2m3DiqYCN2ZKA3FZRv0tJB8AcTHx6eSa61TqfOydQTOMpUySxodBiAbJ8wTn07ijto7aDPtgzfkBLYObaYB9xyzdgBAd+yqACDsiRFlHzXtAa2GqBEbwW/0I78r7WOMbdtcm4+mkVQwxlB1hD5sWZbHp4dff/3ll19//fLp03W5Ojgi9d59N5p1M9NhqhYgPULMXcOqSBWAd3dPU1fQASaJ0TW1dXnScXl6dLfWtlrrH//4B8T3QddViFBFOVL4iFhYhBJ72Bn+XvBqxBGUTiWLhB3HC9UmtBTmbYyt9aE64i+tQ8dw1/DeI3REMrVolnNOpZyZSFWRkJC123ZtW95qrsRciW9SuavTJV8vstpozUbUf9eOrmG8s3cNiKB4ZNXvih+DN4gdvsz1MLIAbGtmimCgiRjb9XK5XB6G9fsPf/jw4Z/e//iP880dIjkoU9BP2DBtSk1JHZipZu4D3G3t43HpSxtDvfe2rdfeVY33FM7IsAuNMyJTyvc/3J7rjz/cZu7397c5CxMCoDmowVBvoWBQUH3ToSDi/e1tzvnu7u40zykJApoqEeWUSqnTNIU4Ko7skiTH3iK8Q27BpOPDEpGYJXQVQkT+6lC2BxTBgWkBCEuwk18m7rgLhXeMNYD6l0f7+KXHH3nTogAQmvtA28b2tT1+/PLz//j413/r2wUBbn/4092P/xOCChGXE2EhFOckBSlNhOEFTSIUEkF8QbXNCWEo7INDdiFgtK7eFbvhUGZInGaqd5BPbmCOiGK0Y/r7pGqncnu4uMFBC8XdlOXbUmumDQ+E+oiVObz4ANQAW3QYiEDkrM37qtvS10tfn9f1uoX9qjkgpVwjsr1wqaJDGYQAQYnBOrgPRFe13vvWtmUTJUOCYWMbEXEZuWva+9CuEHatSKbqA5wRBEEYGN/4zDroeDnHux9V9pgYIL4ogo9u7cC/wAH3NCvf3zYbPpqP5mP3GAWAb1Tll3+OX+LRlr8clPbJDgCY+eiGCKaRkB2shJ3jEVPL14/5eT69u79rbahqSpKT1JJKTrmUJBmJ3SwwQh2KAMz0wjxVs/Pp9OH9j62t27a0toy+iljJdDrX+VxzriJFuIjkknLJpeQTc1H10bWPvm3bsq6AMM1zLaWUJPtsARzADWxA7I0G5pGf+TLCegsBOws4gJDjiMSs8zy/u7v54f3dGH3bllrr+XwOe+l393e3c8kJTYe2Zbk8Lq1vXXVo5nQ+netpLqeZkK/Pl8vlefQVwUqS6TS7OBcqnIfatizburRl1a5j6OV6fb5cWltVRy4l1WI8FEkBU043uUw3t7fv3s91Xrf2/Hz58vXr9Xp5jc+5I1Iq083tPd69//H287U/PfXl2oaiGYetmGRAaQPHZVu7Xpfl8fGh1ppymefzzc1dyhWQ5lLvzrfabdlWzqnOc725Seezt62vfVFvw8LchHpb1/U6moIZQah7bLe4R+0evlGMeECHuwA7cF9EZ/z9GPRtPMwYo602NuvNtGlvAQT1oa2PZW3L88X6JghTSWBl6HD3FzJNOLqp6hiGgMwmLEzIDMgkjCmm5kTgDGDCXHI6neZSirtrWyOTRXUw6HZ9fs48+iqJCbHmcp5PJSVhlpQ4GZBHPLjHpOFYTPTHP/6Da3cNNRQn5hBlHqZf+wF+7X1t29ba1tq2rNu6jt5MNazo4vFtXQG6CDGVnHKtJQpA/DVMdV3WJCnnjIhzKR/u78YwN7yu29a1td567117JCjtWhoYMRcAMPcQZ7sDv+EJvdqd98fMHAGcmBzcyMfWPeXz/f0/3L/76f2HP51v7lNKGtl9BmYwzNcGl42fFnhetPVInvC1+7X7MqyZG/gYvfVNnSjd5On9NL+XVOk48iACESWpiVLGqSY9zXKaZ0QyVVNQtaE2hvfhfXjrNsbrwy7+6U9/mmudTycmar2P3h2AkETSNE03NzcppZeLwsKpJJG4dyB8ZyWYRCTHQOswS0Haj30v79IrWOqAPCBK+Mux/jUCfyigXs3XPcSUzsBvr4cDmNtm41nXT+355+3xL9vDf4y2MnEv0CuPypYB6Vb4hFSAhJkBZfcbwWB47YdLh33257p77/fdTNMErTVrw7vCcGIXskRe3ecdZgeObZaC43qMpwHC1ij4/BhSVH47awdXhA4Hn9NpJyBG4Qkw6aiJSE5gCgPBQYhrBjqFzQsgkiSRTJSQEkrlPEuBjAKMTqDKrhJ24Arg5mPrCy3ebQNCdY1UT9Ue5V8YMCieHtRnQjcyQw3awCv+Y1wMxX3/8eNjgXwQHPXH9+u8Y/G+I2Ph6PmttH8TDhFjyoy79/uB98HxO/fvcwzR4+nYOV2Iewh22PiEQTQahgXcPtp/m3cBADDXcndzNlUHF+GU0hRxu5L4wCMPEu4L4097jzNJxEC4qobKc4wmAjlRKSkXYRLixCQcRnMsIhlRjN3EVFMMyAAhpSwS3OL9QQqziqBeH5klYYn3jZzyeqsK2kG8bt/DdjgnqTnJlPE8n+bpdDqllFJK01QzAY7mYwjanAUBEjM4ppROp5oSj9HcQW0AeqTNkiAQmNvoY1u33trl+Wm5XrZlcQcEatoUPaStwAn2tFLMTImJwbVtl6en9bpcruvz5fr0fNna5vztvvr69bEvmihZ99P5/A9//EM5n6/LQtYFNJGhW+86ho2haGbouAEztNYcKMnzl/pQ65xLWa/XktLN+VRq4lzyPAHz47L05dKuz4suDVQYE3WydbR16QOYUiZwJPDEVEsGAJHmpowgQknEzbzv+YREnBI6MIIxv6nmb37hOqxt2jfrq442+rYty7Iuy7qurfVho1sVfndzrsLXulzXZYxuDnHztt4xbF8Rgt7CBIlRQn+VUpGIghRCIKRI+JrnysTX5XlZmusgN2YogqBteX54flRAIKTzPI/b26lOaU+gK8mSpATMAGz6qrQL//O//Avt4jWngFiY0SN0IRwlzdzW3ta2Lut6vS5PT0zojUCHBm05UOC2mfaWsyRORFRKdLZCzG7eR9+2FQCmaZqmqdby4d09IgvJsrWhNkZI4q0PXaNRaq31EeV8mHfVdYOtu5vTW67mbnwae8Jx3FDyrvuhcjifbn66uX33/sNPd3c/1OmEhGg7vNkHNPVl9eeFnq7w9NzXZbjZUL92vw5vBurgAGqj92GYOd9Pp5/ON3/I+RTYW5zaRCgnmnK+qTenSnOBqSBi2L+A2j5z6B16pBu9cskmxH/5538+zTMxt2378uVrt83MiAwJU07zaa61IuLQ0ftAhtBAiggxMuFuCkRCJMeWsrPAd0LUXtdxT9yElzoXt/V+Cidmf8Wb81fbsx/8Ggj81pGDz/aqtEfz6ta8P+n6aVx/seVXbJ9EB4NgK3ZJOrHWAfkdpVuiilxZTkQTQon85f09Rfc9gpnATB0jyJrRGT2RC9no1oZ2AwXcjKwziDgkd4hBAiAwwW40HfgYQuSZIRxzdzIEe1va/QgNgP3v4DE72k/9EcceDsoRjIbqBJwkITNW2hXeMaojIpFUEcTzhFNLTjk1JHRytQw20JRUu7qyuFlr3dQZCA1iXGUAJuyYKVHSoTZ2HgocOs8gGxK9nSU6qL4gLi+4fuQtYVgGRLk9urt9nwoi10tp34nFgU6Ix1sniXxn6u53yTEqf3U3xP2HLyLaHUChvYnbMcJ9pr9jSWEj//plwFTz3c18NAcoIvM0lZzpuP1wpylTjPUdQE1H7yPyqs2PzmyfXAlhePK+3L2vcQxwUBsWfCM3Qq8lAeDe++rQg7rwQjiNodUONwIA7MoR+l3jiwMQHMhDW8jIhMRACOdpOtc6z9NUqzBjgP2uYzTtvQrxzXwaNhSImCXlUphh265qDmilpngkU+IkmZBG1+tl2bb16enpen3e1oWIUkpGKCVJzuHoysREwAQp3NW0b8+P2/NlqF3XtrY+1M2B5vRyb/3226e/r19vpvNUTjXnP/3DT7d3be099PLW1225PDw8tLEO15hoBYPOTdd1e+oXM8w511rHAEY4TXXGIrVyLZe+fPn8sFyetuulwRjoCJ2A2Vby7p5IsqREwOiamU/zTMRT6W4DweLe7l3dYnZMQowkhE5kb12xfzdrJ0rMZGTOgpIIgneQRHLrarYbEgxt27Zs23W5Dh1H3fFlXZ8vER04AJCZc84151rLVEvJqeZcSi45x5w1SU6SRNjNr0tZ19Us8pswJalTRaI9aYWIhYO5BACOoG7dBvcW8XFhMHkszDmTq5keial7gKrt2F+EMWobbR3b1ra2h0yN2LLQDQEJGZ1U1cAQvCVuralqmG+UXPro/aFtW3MHZg4Hj3nCMVR7n1u2/alGVeuq4fawbdu6tXXdlm3bel9bJ1Ahd3M66GBHSYIdYd3hvv3ksYdhOQKWOv+QE87TXUonADZ1U1D1oWEdAa3rtm29bXFzhJsMISaizOwOwyzifuOhqvU8z/cUFHRC2qOHorRzzVIzlwxJYNfpGliI9If3Zq1pH/aaJ4SIt7c3p9PJHZhoXVezcUy4PS53HFbMs+oAPAJ/Y28j2Pc1PLzgXnbro+C+7L5wQMsvM9JXW/GuXIrP7CrGYHjvbcFR9SE0s0hvxW8IhrZBv9r66Nsj9qeC67mo6iDyTBf2L7D5eHzcfMZtljqX6a6cf0rpA+CtwayaDPggZ7+M8jF+HYRwJmAG3iWdALvS2dw9JukYfnMMRCDkQsCHiwLuvYMTOR2sckSQN7kEWJJIyUiBHHgkH5p72MId0SAhIiO0MNFhwUQouwu8QySaemzzggauJFKmrbGqoltEjoAN8ICrlATTxJxDDL87Re4v7sihsaFjz4b0YB1ANC3IiDRRef10mO4e6L5TVV7Eb+4AFIjMi7jNj8jkb1T713cphAbH2c0wqt5xzt/JLkcTsX/7/Wu9uil3sAMiTdIBAMn3NnSXv8Uw6PXlgGmuN7fnuKNNDRH30/M+ZNw9S4jwkJ4EKRoQCTRCZ3y/3WN8hsh0zKVeFhzj/pduBSG619f6z/2zfiDyAG4GL3MNfJGWAAD8/pX4cHNwErKpChWuzDc383yqp9N8nqeplJLzN/KBGboLo3CqkPqIOzBy5hAZLCZg6u7IKEm4pszMDuRjdFUbKiJ1miUJcqQckBuOrr2pu6tHlgcgMTO4kQGMvrWuYyiohQvLa7CvN70+r+tlMF9STsTibuHEFVAjpzzNMxCnoUQ8Tfl8qrengu7L0h+flsen5bldr8s6jPpAQGDGAQA6Hpfrw+VpW5a+NYVIemvoxNCFfZpyKZNwJkAbHR3MQpvizFQSkaATj27CyRUQ2IEU2EHVfh8V8bbOM5eUFMzQMQm62TSp6tpai9JuPoYN1d771traVlUFJHcbqs+Xy9eHh+fn67puDiiSasnTNN3cnG5uzlMttZR5nmopMVllEgJSG7330zaP3o5hOByIpQdRNbJcmNkRhpuNPtxJBzEiC5L03l+/ENuzXCzMzmzot7oeXF0Lsktv2lrr27Zt69Z7672PNtyQkLIEXW63q2utb+sWOYYppfk0b9v28PDQewf3nDO4B4lxKrnPtWYBQGIhZjUbqq2NqO7ruj4/X54ufFkWdEPnhO4ALOlNAMbRju/A6Q7rgbpFTi9TLXmqRViyuwQ+qQZR3dXcDIaO3hYbG9FgNEUQxExY2TVxHNKYRSRxKGpSncoZ0B2UGJkpCWWhIliE5Mgjot3LOoi/4AY6rHXtXYe+Ke2AWGqptYYb7DRXc4XDQDBUC4iQksSpGo/j8o6lH/jwa/7nt+3pNUgbddKPdJpXk8BjZ3N46QsC+t1dA/YpKu5nsf3uhBeIPr6XK9kG/WLrE2wX0XUShZnGQAfNeUv06H3pz79CQ7uk6XTOtz/mukyTGeFwXg3dMGo0vFC0AQiACIUgMyamTChoyKIEAxS8oysFzImADMwoyUUgM0i0AjHTxXCu8DBpOKBTkNdeLwgl51yRGDHg092i6QhHMdzdXIAYKfIpOJAvYsKdFBFnWA0gDFzNU5Xz7TQ0u3moCJmA9yArAAQk4Bwjib2FiuZ1h399R5uGjl1ZBxg0oh29Anz8WLbrt6utipHjElbDu3PXHsSLEFYD9OJn5VENjxtpbwV2dCr+l+EAlMMe0I/avneE+132bWYP+G1oBmEe8qKGh93ajCJXx3fJJdjbUNep1pubk7uraW8txDKvqmbcmOrujh5YgL/U8uOkDjupImQ+vt/Xr3yUX172CxJwgOp7G/3tSdl/7BKAl9fqB/l0Vxh5iBtfPWM2wB0NEwNVySxzyXfn083NaZ6mWncS6YGZmrsxoWDQYLEwBLqpYRBImCQNcNtMFZg4S5pyRcSoQWqOBNM01dMUQui4493h+nzterURzuqRa56AgEUI3FRdu8Sj5K4Ab9waHW3A4/V5a32aap0KEoOjmYEZoSHSNM+5lt4Vmeap3J6n97cTAS5LJ3y8Xse6LW3dtu5tABOmRLCuivS8rs/LMlrkBwaOpAjm6JQ5nctpmhMnBOgNRu+tbWCQEEumKYkU8ZT6IBG37mCgBj38316mRMd6U9r/+usXADDtboqw7z+RpzQCxzaP7j6G6kPdLHZXNKOtl4E3mEv0KEzsSTqm6yi20LW7rCNf15Q0fGIC3zGziGMzU9znf7v43vekpoPOg69uy91QdGem/fr5+vIq3OFhZAzsC1TDzzmyMNiMzZLZHhuvZJpUUTX1UeN1HtYwwomQwjSeCVJmnuo4TZd0Mp+uLQ+la37XcXQipTJ6FmcAbFY3QaM9PhSJ3V3FVNSKUR1pHvN5o63V1m6CqhhJPMQpfzuXtOXj86//u708ay8D4YOoSggb01XoSZgD7nUwdwtXXHN1WB4/Arbp3bv3+D/3dVH1ZtAVmnpT29S6eS5lPp9++OGm0NO4/PvjxydAd7cw+Yws9jgdJsYkmBLKUdpVvQ9vw1q31q0Na2rt+unlVZjZv/35LznnmF9EGlDv3d2J6Ol6/fr0VGrNOYXZ/n5rvKYn7dvqt/PR8aH9Lnl96d8e2t88svtGfLB/jr4pvsu3XuHY8QgAno9EVwCw7Wn89n9Yu+DyKLoiJzy/LymrDQdnyZISMhIjg+MgXdIG48m+rA/g9FV9HpbU2QDffkcIbgwj7I5MCIwwtqe2PozlYbSl26e1KabPIBUJiJwZiOOPwHEuhL1Cgn3byhERYLk8vXobYHmuvaV4Jx1eCuu+re8ZOS++bbBfjwAyXjVd7O7m9NIWqNF+gvR9OmuI42CQRVnFJXTn+5j/+MbfrpAHwPaNPgF79wEIDqbfKNmn+fy//i//m+82CX64x0DA40S/u1uObxOv2neMHnaM/qXEHx/4v8A/r/57nN799Qdf5ma7183+xfcBSbzVe6msdXqdc/Pv//Hny/XiDu5xZglRCu/dDzgc2avBlNoBAAswRF8O5a/wgwAojm/4rVYfN8T+QuEYKNCrt8m/3Zovb8JLOwN++KkAuH/69PnlVRDL+/t/MPMw03UDIcoitWQqRVNekbsBj+Opi/Yv7q0ITnQwoIEQQnxUQ1AD7w4WtEd1bR0RI+rCLJIBd3e6uI2jhVJHlIRoxA7hTiDckVeD7q6AShKHAntBRI+V63m+c6q9j5FzSkmQIrLcwT1a3dho1QwRU5JckqXsgAQ6vzv9wDfnrQ21bq4KhMCMQGQAWx+tjz0n6AX4AUA0EZ7nqdTCxAigo+vQoQoOgpgYa2ESBmY11A6ue6eo7kGG+/DjB3i18F//9V/h+/q+vq/v6/v6vr6v/yqL/r9/y/f1fX1f39f39X19X///Wd9L+/f1fX1f39f39X39l1rfS/v39X19X9/X9/V9/Zda/yceIxO6CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKNjUxMDkKZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM3IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA0MDkxNjM4MzcrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My41LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My41LjEpID4+CmVuZG9iagp4cmVmCjAgMzgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwNzI1MDIgMDAwMDAgbiAKMDAwMDAwNjkzOCAwMDAwMCBuIAowMDAwMDA2OTcwIDAwMDAwIG4gCjAwMDAwMDcwNjkgMDAwMDAgbiAKMDAwMDAwNzA5MCAwMDAwMCBuIAowMDAwMDA3MTExIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAwNjg0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMDY2NCAwMDAwMCBuIAowMDAwMDA3MTQzIDAwMDAwIG4gCjAwMDAwMDU2NzQgMDAwMDAgbiAKMDAwMDAwNTQ2NyAwMDAwMCBuIAowMDAwMDA1MDU3IDAwMDAwIG4gCjAwMDAwMDY3MjcgMDAwMDAgbiAKMDAwMDAwMDcwNCAwMDAwMCBuIAowMDAwMDAwODY3IDAwMDAwIG4gCjAwMDAwMDExNzUgMDAwMDAgbiAKMDAwMDAwMTMyMyAwMDAwMCBuIAowMDAwMDAxNDQ2IDAwMDAwIG4gCjAwMDAwMDE3NTEgMDAwMDAgbiAKMDAwMDAwMjEzMSAwMDAwMCBuIAowMDAwMDAyNDUzIDAwMDAwIG4gCjAwMDAwMDI1NzIgMDAwMDAgbiAKMDAwMDAwMjkwMyAwMDAwMCBuIAowMDAwMDAzMTM5IDAwMDAwIG4gCjAwMDAwMDM0MzAgMDAwMDAgbiAKMDAwMDAwMzU4NSAwMDAwMCBuIAowMDAwMDAzODk3IDAwMDAwIG4gCjAwMDAwMDQzMDQgMDAwMDAgbiAKMDAwMDAwNDM5NCAwMDAwMCBuIAowMDAwMDA0NTU1IDAwMDAwIG4gCjAwMDAwMDQ3NjkgMDAwMDAgbiAKMDAwMDA3MjQ4MCAwMDAwMCBuIAowMDAwMDcyNTYyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzcgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM4ID4+CnN0YXJ0eHJlZgo3MjcxOQolJUVPRgo=\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"100.469118pt\" viewBox=\"0 0 684 100.469118\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:38:37.805099</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 100.469118 \n", "L 684 100.469118 \n", "L 684 0 \n", "L 0 0 \n", "L 0 100.469118 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g clip-path=\"url(#p74ab09bbce)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAp4AAABHCAYAAACu2EddAAEAAElEQVR4nOz965Mc2bLlh/18vyIiM+sFNLrP886d4QxHImmUmaT/j3+iKJlszMihOHPvnHPu6QeAemRmROynPviOqALQZuIXUR/UcW8dNIBCVmbE3r6XL1++XP6H/+F/aPx2/Xb9dv12/Xb9dv12/Xb9dv12/X/5Mv+/fgO/Xb9dv12/Xb9dv12/Xb9dv13//3H9Bjx/u367frt+u367frt+u367frv+d7l+A56/Xb9dv12/Xb9dv12/Xb9dv13/u1zu6z/4r/78A3/8/oFaEq0WhIoAjUarjVwKuRRaa9TaqK1RaqP2P88lUWsDkf49lTVG5nlmXSMxZQCssTjv8N4zjgPjOOCdw3lH8B7vPUYEQRAxCFBrpeRMLplaC4Kg/99oou+/tUZtFaD/e6O/CoAgIogxiAgY9LXF8NOnK3/58Xm/D4bGvY9Iq7TaqLVQSqX1z95qpdZKLf3XWiitUlqh1ELp96OkTM6FkvXf00AQnPUYMZT+etaAD5ZpGjkcJ07HI9M0MQwjOWeen59IKWOMYRgHjocDzjlAiDGyLiu1VkAwxiDG0lrT91QKuVRyyqSUWePKskbWqM8j50ypes/EWP78f/jv8cO434vh5g9Mt/9IbboOePMrovdU727DCHhr8M7gncVafUY0qK1RSyUXXTOlwfz8M+ef/xOXj/+F6+PfSMtMKY1YIRWIpRFLZS2VVBthGDicjnz3wz/y3Q//yMPDHzie3oM0WqsYA8YI1hqsEZwBawRvBe8E7wVn9D3XCqU0Um7EXImpf+VKLJV4/cj8+D+/rglj+G///X9NCIFWGyknlmUhxkhKidYaxhjGYeB4PDKMIyHoc9ZbJf1+ve63twJr2dbnV9+z/6Z9KcfW3zba/ufCt1fTn43+7O0HttZ0T3/xXd++D2M0N/2//Y//d56enl7vxfSAu/8HcryQ52fq8khZnkjrM3k9U2qm0bAu4LxHrGCsYG3DOYMPI8N04nD6Dj8+0MwNpR3I1VOa7VHn6/elX0bAij5Xa0T/WyCvL8TliTw/keMFN9xgh3vEn8CNiAFjGtaCsdtr9DhhZP+JemPrfl+lPwMB5ssLf/mP/+HNPYebdzMulP25NbYvffet9b3Sg5SIYJAv/08E02ORMV+uAY1pX36VWvf4S399kYYVQUy/V1vMM7x+yRYz33zUN8uqNWi1Utq2rtrrumrS15x+yMvzQFrt/m9fzk/8h//5/0GrldYqteme7LdPP5eRN5/v7Tp/80a2+9jv1/4ctr9mizf6vw2+Wte8+fu3/9Xe7Jmv/07YQpreA6j1dW+JoT+f7RnrzWutMY4T//1/93/FmNd78d/8t/9HPnx4r6/VNPZu8cEYq6/D6+402/3AoI9I9jO31Eqp/dzpn+/1/ul3ytvY3Pf2Fqe3+7Sth+3j6hoxel68CTiv//bNo9nubV8T28+otZ+F/cb981/+wo8//bS/Vi6JT5//1r9PaFXvrTOG4BzjEJiGgSEEgnNYY7HG9J+l39xa03uyf15dh7U2cqlUGmIsYg1iHZVGyplaK1YM3lqC84gIpdR974gRxBql3/Z92xDR14/LyrpGaukYoFVoDect3jkG77EilJT1bBddO7XfsuI8b6/18sRyfWFZEylnQvB47xCjb6BVXVNGGiKtrw99vyKC945p8BzGgCDkVHg5Lzw+n1nWSO5nZCk9RloBY6jAmjIxKW7afs4W3XQdVJyzHA4TwzhgjUWAkhMlK5ahgRM9S8fBYpwFaylVKAla6bGqQmmNlAsxZd5/eM8f//iHL+7FN8Dzj98/8H/6r/9MSSs1rwo8W6V2ALPESIyJUiu5NnKu5FJIKbHGyBK3h6DAM5fKua2k6wtLvFKWVbeC83gC3k0cHNxMnmkUxsFxOIyMw4A1BiMGaxwGQ6lZf866kFPUjdTPU+mRttEotQAaKJy1OGuxW1C3BmNd/1UQ6xDjEPnlC+ApAncuYlpVUF0zuW0PrlJzoZaiQDhlcs1ITdSaqCWSYmJdV9Z5ZV0icU3kmGlVD5jgAtY4cl8M3sPhMBAebnH1nmN4z92hcQqGta3k+JllWfDOcQo3vPOOEDRYXPLCc34h56xBzDqMtfqMSiHGTI2JukbSsnA9X3i5XLnMM5d5YYkrKWUaYJ3nd//m338BPMP0gdP3/z21Nkp7DbjbwjVGwT1UrFRG15/jGAjBYYyuhVIbORXWVEilEQsg/wvnn/7K/Pkzn/75f2Z+fiTmypzgkuASC5dUuMTCUiqH05F3Hz6Q7XtuPtzgjv/I7Yd/rcCT0sGNAt/gDIMTBm8Yg2EaLIdRCF4DfS0QY2NZK9e1cFky56VwXQpzLJw//7++AZ7/+h/+zOl4otbCPC88Pz9xuVyY54XWGs45bm9v+e6799zc3DBNE8ZqEiDmNenZAr0eDNLX8OshsIP5vq412L6BYdt/9+ROv/dL4PkWHG2vsYGNigb2L0BSe3MYdQBkrALP//gf/5cvgedwg/vu31Mvv9DkX8hpIZVfuJ4/Mb/8RM6RRiMcjoTpgBs8Pli8Fazz2Mky3DpuPjww3fyZar4nt3uWPJKrpyLUDe/0/xXAbEmagWAFbw3BCE4q6+Vn5ue/sjwK8VoJx/eE2z8i0wdkuEMsCnx9wzkIFk1MepJiBF1HtZ+OVD3UeU0Ynn75kb/8x//w5r7CdFoIh6TxRKCJPpu3QFHBjAJOI4LBaExqgjSjB67Vg3e/90Z2AFda1WQN3UcxZmI/EFptSD+wrAFr2ivwFAVNNijw38CnsAGsDW313zcopZJLptUNOusLtSYKnpv+3lwM8Aq2Ltcz/+F/+h+ptWgiXgu1VD1EBYw1WKf709i3n/F1FYK+Xz0/pIPdr4BnewWfb8FzbRvIfwVn+0Ni+74eu7a8eU9ntu+RHXTWDlB072ucs1Y6MNH9U2vl9vae/+6/+T9/ATz/8V/9A//23/2bHvcKKSqA8T7grNsTuu1dWGN7HN1iqT57fRZ6vpaqa0HvUV9HxuzAcwOEtdY3IPENtP4qPmwkjLX2zft5TZQUgG4xo71+bT+nf/5Syg7SL/P1C+BZS+bT498ppVGzUDOUVAnWcRgCd6cjw+0NVhqjFQZj8a7f36rrs7W6A8/tfdYCmUpqhULTpMAajLNkGpRMoeH76x6DAs8Nr+TalHhyhmZ6/JNGewNsy9poOdHyRjAVGg0vXsGX8XgjpNRIVc/P0nR9FgSseyUNgLicuT79zPm6sMbENI2M04AYC000jteKkYpQoJNYKRXEGg7TgD1NnOyEQYhz4vr5mV/+/onzdSaWzJoaMXeyxRsFhmI4LwvneSbHRC1ZYxJo/EEwUgjBcv9wz83NCW89AqS4kFMipwIVvAhTMJwODjc4mvekbIhLoyZF3aVCqo3rmpiXSIP/z8Azl8KaEiVFao60om80xkiMK/OysGzAMzdy6ch2XZnXlet81aDF62Kdl4Xz5cK8rKxRwZG1lhAC43Xhcrny9PjMEDxjCAxDYAgBI4I1Bu8C3nmcs7TauM5nlmWh1gI0jNFsYJxGxJj+8xvWGMbQ2UEfcMbgnMd5jwse6yxiLSIW7/3XtwJjLKZvaI/HWYeEnhG9BZ+ls5ytEHNkySvLsjK7BWkXatFzTDBvHrSB1hCj2Z/3hhA8wzgQQgAgpcT1ciXlhADee0II+l5FNBMuhXmN+2KuW3aKZnepFNaYlOFclelcFn1Wa0osSUFWTHrQGNf2YPsmQu1MCfUNW9B0X9l+UNIy1IV1mWlFGNwdMpwwVplZcqNasFWoDUwDZx0+TBg3UKujNENtldwasTaWUrmmQiylB7lM7llYKZWYFub1jLGaOUoTzM4SGEozNAHnLLUJpR8qegD3r84GWWcIXpnWVBrWfMUgtsa6rDjrNCNeI/N1Yb7OxJgwxuCc21mN1iAlBf2lZBDBuNdAbzo7ZXqW/6sHwyt1xTeMZutMv3n9+685zw3Yvv7ula3Zj14BmnTuqH93q9QqXxw4X7yuWKoZwB8x4w0sR7IdmbPl5VoppWGMpboBGW7x/h5/umW6OTAeDrjxgEx3RPc9rb6HdkNloDXXqxAKaZq8AiLN/0FqI/fPX2ulWnBSSSWTK1QsiNf3+OYgoUCujVgFk8CZ1hlxBWtG2JkGQXT/C69/LhrvvrrBrDFSzPoKmPr7rB0olLoBT31d24G9FYNUgWqwYnHiMeL0EO1JQukATglTQZyjYni5Zi7XRX92KUirGBrSMtQMTcFfbQXjBD9ZbLAdfOqTrrXSysZa0Ss7UN8AWn3uysSB6c/GImKYzIiX1wRVRIG97inBNEOzW6Do4M0KxoLZGVi9r52y4y3D/RYQvl2y+6/7e+7gvr5hmHkDrvvafY1bb9ieL5hD2RM0/SwG27GkfMWM68/RmGjs17sO5mXh5eXSt27rAPy1ivAWeIq8AZ6d8QR5jcOKonvl7/X+1J44WBGM6XtYNsbuW+C5/X4Dpv031Pr63r7Y6+313gOakG2M+cZg9726/RP7BsBui0KM03PDGFLJLEtmaYk4R6gNJwZTBdt0b0sLb0Ke6UxlpraM1iIh5W1fKatnEaQ2UkyaoBXdc6UVouizs9bSUJbOOiHnzDLPxBTJOSJWvwcxtKqMIkUwaFKIrRiBwVsG5/RnIhhrkQopa2WxNKHJt2sCaRgHD3cnrPX44DHWkXoVUDOeQuvE1Xy9Mi8rMReMscR1JadIjgvSGvOceH6ZySXhvWUYPVM1pKzPyFrBhADeYecrBGGdZ9JaKVQKIFhNfKkYW0hl5TIbnA0YhJoT0iCEQSt3pZJpzKlhWqbFRk6Vdcm0oq/XMBSsPp8vVuzr9Q3wLFXBSikKrJTRW1nmmXmZO/CMpK00uWaWVUvp13nmuszk3AGQaACIKbGsKzFlUip6ABuLdyvBeZw1Wp71nsE5vHd453rQNww+MAwjh8OINZbrfGaeZwWYPRuappH7+zvCEJTx7P/WG4dBFOB4TwgDYRjwgwJQjSyW4MNXd6IRY8Q0BTy0piyFtVhrkdaoxu6l99pZYZMcRF24JTdWl7AmYk0Bq+DTdFq9UZUBMAYfHCEEQghYa5VdnmdijMpKiCggH0ZCCJgOsOd55fl85fPzhbnT7bmDslwqKStLvcakyUPKpJz3rC+VwrJm1g14Zr4BGdtBIm1jP96yY/r+nRWojVxWlusvREkEn/FBsO6EsZ7WwDbBVWUzKo3gLcMw4MOAGEfD0LbDuzVSrcRSSKX0TLvs2WfJiWU5c70+EsYT1g9QNVDlDjJK/yzOCNbUvqYEE1xnDLTsaixYJ/hmCRVSrt8Az9Yaz88vlFwwVgPBPC+sayTnvEsftkPj9TmoxEEsWGdxzilAtVoqds4h4pAmtPYauGUL3P13bw/l7R619vo9X5Qgt4x2Z3La/mut9fWVZD+i335Q/V1tVNqXB9W+OwzNDOAPmPEWGW5p/oa1jZxXSysNax0yHQnyAMMfcbc/MNw/MBxvMX6kuZHVHEllQhgQfAc4b9jHN0BuP92kf47O/hkaYgq11f4tHRztkhoFNq1pNt5UkdJZzoY1DdsBphF9PWNUkmGtfo8YZT9z+SpM0FhTJklETH8urbOdVVnKvSS+Ac+N2cJAFaQYTLNYKtIy0gy1KFgpuagMxhiMc/jRghOenjKfnzTmppj0fbdC7ZWqWiKlJEorWC9MtyN+clhnwejeK6VQssaJmislt/5roebOrtXWD3+9p5okOYx1/PnD77g7fhknjAUxDdPesKR9dZnOtir4fVs+fd1f+0rc1uvrit5/1xrU0vr7bb182hn89rpM2KoEtfLF8n27ZzZpg9lAYWcSbWc3jezvc/uMbGXQ1vq/+XpNwHxdeHk+vzLMIn3fF2xnRt8mmtu9bk0lZA1NOnJK5FxInX19yzi2XoZ2RnDO9ATp9TVl43N7hi1NdsZU79MrgwrC1yyssqiv8X77vLIBcCP7v9t+rvm1myFOk7JqyLUyL5mWEtGAFWFyAYdBysYsNpzV0rm1CtJbLeTcSCWRSiHmSi49aXeeYBwWtDLb95yey5laNAnzLuDCgHMDzmlJPs+ZZb6yLjPGKAapTah1Y/Z7NcJsax+cNZgeX4y1BBswvlKXSI5Jk7kG5isawAfL8TRyM52YhiO5VJaUyXOktKRxjEqrmZIi8/XK5bIQc1VCLSVKTuS4AI1lyaRUsc4yhcA4juQM81LItdKk4cYROw4QDBJgDrBeK5FMloYQFFjXhmmJUiPXGYxkDBZphWAtQxgwxpJKopRCKhVjdD2kVIhrhCoY60EcBUfOr0n319c3wFOsw4RBaWgjSGcFm7FICPjDiTFl5iXyfL7wfHnk88uZ55dn5nnpYLBBz6pba/sbTbWR245HlZItqhtdqbjYWGztmzP1CFJx1jIEz/F4YBgG3XTiaFY645gxuYENTKc7xnHAeYsRYQwDp8ORwXstu3uP3RlPRzP6uI21X9yHkgv/9Nd/opVEK6o4M8bie+le6ECsf5ZNh7WkxBJX1qgaynVeWBfNVGopnR3UzNWI4IMneI9zBuuMamLXlXVdlUHr7zl4zzCM3NzcKCMqwnKd+fj5kR9/+cyPPz9yXVbWVIgxEVMipULqB1epW9lPWe1SirIyrXUgqkHMUvl6nWjWol/bw9uIONs1H8Epw7HkwseXn7heP7GuL6zrzIcP/8DheLfFe6xVEZrYRh6F01S5OcDNyZOjI18LzjYOXohZWAwU0TKGNZqYmBYp8ZH58hPOG45GmPzwpmTYS3St0HIkzwuzLxwPjvubA8HfYV2gVrAFnGu4DmZ8MQRvcPbLIFpb45/+y3/hMI4cjkesMeRaNAAZPZxbz7qvlysppi/WhnUW34N8A0yBYrruqBSsrQqOeyC31mBaZ0fE7KX27Uje9V5v/myHnns5VfXX2zOtneHor6DMuzGdbXrLjuj/bHrlb5IRUEBiAuJvsON73GHGTE+08EKOC81YWniHOf4Oe/oj9vAHCLdUe6TJANWRogVRKY01YKUpeGltfy9Cw1AV0EjDCbt21/WyuxNDzAZxVmMXjcFUBl8wPtNCUkKhQRXbmZhNW9dZzT0/3+5PB6pGkF5DK/WbiEltBpqFKv15vzJtm+5ZAOyrrGL7aXpQG2pWBqbERF4Lcc2kJelPEKMxYBiBEeOFODfmS+J6jcQY9b5RKHFRmVSNtKYVoUECxgSCH/GDByOUVkg508hQErkkYiykNVFypeX6Wo7uVQEtNWuCZoVv4oSyLD1J2Vmw/hSlf3azLc8N0G1grrPSXf5RG0ir7Au+s3vbva1VgWdKlZwqOddvgGfjzb/b3uPG4rG9h7pXHrb3ZK3BB0PTo7czmlv1gZ3FFNFH/qvAc4k8vVz73ms4p1W1dU0Mg1bwrFXmeNuXrSpru9210kvsW1/Fru8tmnSnztQ5B8EbhsETBtcTA481Kt1QuZnDdXmXiEW2EnnWaiaCygCc3Zl+6fe90hOQut17fa/7/XjDHNf29aoQaK6T3gZpSV+nbL0h+tLneeZyvXJcJo7HI773eUzTxDgOGD9ixfHy8sLz+cocM6lUaIL3ntubW07HG6bpQGtwvlxYl5WSV4xpDN5RJzDe47xlOkx4bxEq3hpW5zuZYrQXZY2UrFjG+YAPHoyhdSbft8bdOHE8nbg53mCt43JdOF+uvJwvrHElyZf8/Xffvec43OONp6bGX/7lZ/724y98frlwnWdMTTgK3qi8MaWCAZxsmuC2V1GstYwHz40bGMeJcTwQhoFPn86c/+UXLvNCzBG7RMJhYjgGPrx7IE2BeB2Yy0yk4OyENx5TF3JceDlnrrNK4WiCoVGs2eP/skZaLVhBtfrOqSa8ZIxYoJJr0R6JVHV/5vzN/vgGeBrncGGkWUOzlpIt1jmMC7hSaKJskLvOJCzmeSY3mNfEdV21tNd1Kl0eQhUV/dpmgNqZJotgenahWWkuhmwrNoNIpbVCa0X1CjERa+NQGtM0EsKI7xqoGFf8ODIcTpxu7ri9vWEYgm4m6xh90CwF2TWeujktTUwHVF8Bz1r5+7/8nZJWWq2qKxKD2zQxG/jqAUlLa42YM2vcgkXPtkrui7houd9aZVGcJfiRcfQ9K23EFCkla/nMCEMIHA5HxnFknEYOpwPGWtY1cl1XPj4+8dPHz/z06YnLoozmsiaWZe3gM9Po2kKj5ejSm6K257Nlzq01mvn1DOVN/NfPbUxvJFLN5OgNVhwtCymeeXz8O8tyJsXINN7iw0GDrAgYPei9gTHAcSjcTHCaLBfvaESMCFMHnrMzlFJZCzjnCX7ASqWmF+L8iTkEhsN9b7R4zcxrrZo55jNl/YVgE+8ebvH2PQ93NxhrMbWp7q82XD/0vBMFnu5bxvOvf/sbIQTu7u44Hg4qDt/gSqvknJjnGWAvqUv/ct7p95WKLVbZ1g0AGcFahzFOWXVjsU5/3cr3bT+le0lyYy92VpRvyuJboNruyRdardb0WWwHBK9lyu3vN9bta+Cp328QM2Ac2DETTpXhdma4y5j1ggD+5g/4mz/iTn/AHH5H80eyDJjmtCpQMrU2jGScrThncBgsvZQHeznWSMPbpo1iVvp/q1TFCphkaE6oVuOHl8xgEkYWEEsTunbUUY3ThgRjXlmtHalApyf1edXXz/wt8ERfG89bDS21l+wbmySys7hbpeBN82OzFGm7lnyJieWysFxXjTnWMYyCkUoNugvzUojXzHqNrHHBGRAKOa7UtNJaRqRp8iKOwU8cpiNhGhADuWqcoq2UrCXa1gq5QMmNVnoZUwxitaSKUW0m29fX0hDA2K+Z8bes5o4yX1nEL1i6tieMW7PMBiZpdA0e1LalWo1aGikWcq6dmeeL+LU/0jcsKG3LBDZ5Bb3cvzUmCmIsxlqsMzvDZ3TJ78+vNSXTfw14XpeVp5czMWos994RvGMcPEPwWnVzQZtAayVGrZqUXBAU/Naqh7ZKubRyElMmxoV1nYlxJqcF5ypDMBxPI4eTno3ODTg74FzQimEYGMIRawdKUa19ytqHMC8LCEyHA+MwMAx+31PbetVbJ9pAUukawa69ZNOkyw6c3z6A1veF6pl1T9TaSFUlXktM5JxY15nxMnKaF4ZhYBxGHhBMUPmZiCO3C9eYmWNiTdq0G6zHmsAQDtzcBIxY5nmFt3pdUeBsROPwMA5477G9ohrDREmFnAstQ2zK7NWSdeM2o1WCZii5kY3hhGDDwPHmhsN44HCMTNMF5xzX64VPy+WLuHl/f8v37wJ5KTx/PnM5n/n7v/zIx5cX5vmKqZHBVA6DZfAOawJGHMFZjNP3PQ6hg/ERHwYOhxM3N3f4MNLEcF0qa0q8nC/M64INC2NKfBgfuJ2OYA3ZGeZiiW1l8AeCC5gWWJZAXl+4nhdSLNSqzUTNQi2J2irLmmit4oxh8J4WKoaOIbbqVC2k1IipkJKC0q+vb4Cnc45hGFQI3A+0gkCziKkgBmMbtXlui6V8b8B4Kgbz9EhKKwg473YWqLbWD68tEugiVYo2oUG+6UbvWkstrqkOyjvdtMZ5xFrCOHFzOjKNYz/4GyF4bk4npmnCWb+DXxp9Q+vP3homnPO47BDrwOrm//pq1VCL0u61FHJOrxGsdU3R1t3eVNeWO3u1fZt53WlApVmjAmLTNRhWdYGlKlM5Lws0LfWNw4D3FusNwyEwHAbs4CmtsdTCS1p5WmbOcWXOmdSgGYc4sAGkQstvy3zahLA1CWmQaLvGkdpBiHx1H/ayTk95u05p8EYD3uiYfGf92pHj8Y7PnzyPH38kzgu3p/cM4chwuEVc6CL5irSCaYnBVoKtWNHGhiVq2dRbYfSO20koDUoseB8YxoPeF1P0wKAznHUr0WsTSi2J+fwL16e/8fL5nxkHMPJvebi7o/TPvjVkOCuEZnRTqQzoVTr55j48Pj9jjLCsC4fDgcPhoA4MKHu2GENYVuZ5Zhg0YBrbyzLRsqzr7t7gnJbzNkZUb62W5Lz3eKdZvw9e2YjO0u/rr78vlRbqXlVGJGti0RfhDoDf6Nm28vnbPwMtYX5dWleG/qt7Acr0EWjGYQdLuB14+MNAOH4grVdqK4zHB6ab9wy377HjDc0EZRwbtJLI60xJEYBkLcMYaM3RagfeVrN91XvrfnIWgu/NRZ35NBiqFbJtFNMQWxASJV1VbrFe9J41IZuBZifEH7B+0GrH28Yv5SL7etcN0diY66/vBFgTsNbswH7rqN21hhuTJr0L32kJ0fUSnhVHSY00FFafCDbiRP9cX1/ZMucMtErNiRJXyrqQ56Wzy8rU5rRSc0Sk4ZxgQ5cwhYFpmAhDB54lQxWyzSTbJUTO4r3+zNzXFEYwrj8LZ3Fd92itxo23l4iyodt/9z/VGLOVe3nVv23f8/q9hg43eW0A2hIBlF5sQnOGbCGKrvUY5Yt/v4Pc/advJfyOpF7TtDe/9u/sz8wYwXllPp1/fYav3/+q2zWWb2Lm+XqhGauHb9bD2VrLGCzBO+0zsMo+llJY14XYmzytMYyDrqm9okbl5fzM58fPnM9PXOdnWo2IZJwtDKFxupu4uT0QhgPeTxjrcdYzDRNjODCEG4TA5bwyX1d148j6ZZ3jdHPi5uaG+9sT0zhol7lVAK4JscayVk1nX3v/dtskDdud/mpdlKy0ZhaN+QZKUX1lqYUlRXJOxLh2/PGZcRg5HY/E2hA/chKnzXdhYjoWTMiElIhrRGqjpMRyubIOI8M0cphGhuBoRZGyESEMgXE44s0AxeDE4ibH5CfKlFjmhfkyY5oQrCWlgVJSxyWWZh3NWFKXKtW4Mr888yxCPUa8HzgdRoJ7YI1HHv/5n6jlVZsj0mg1sc4Xnh8/8fTpZ54ffyanjKERnDC43oBJpeUVMZUwWsbjwPH2xP3DHd99eMfpdGQII+M4MYwH5jXx8fGF67rwdH7m+XImpYxLidYKy4sjDYbQGqFq0nuwhmArwVW8CyzG8uRWHomY3v1uvNGCWCtQC9YoTnJWHUI6H06j0lontdomA1OXn29Z8F/TeJaqHXQxUtJK6oLWUrplglhdQ7kh4hkPJ25uE+frhVIz62JpVJzvi9bYbsNU2ZpqRAytCdfL3DOoRK21l3LsHhCMVXYwhMAQtLkohIFhGJmmAzenE4fD1O2XHN7a/QCgM5Sg7CWdwTEVbO2NPbTePKSI/YurQUyNnJT1STlrN3/+0k6p9FJ/7WWSTVuydRzaruOTnh0aaVSjm3XX7HRcmnJhXmZqLYzBaynACM5bwhCwwYM1pJxZambOmWvJzKUQqzbkNNFONuMaxhWkFCibxkmD+lZM36S/KnYXmlGrm29DxyuTpuVZ/UwhWA6T4zhapqH/u3rg9vYdh8Mdn375G+t84dPHv3I43XNnAw5HzKq5MS1RU6SmmZYiNav11JJKB0UKmKYgzKmwVhjCwDgq2BOra0SMA3RNlUbvtizE+YXPv/yFzz//J14e/8bt6cAf//CP1Ga1xFMbIhVrG75tnfeykznyDdpqXK4XaqvEFFniSsyJcRhwxqnIX4TVroQQiDEyjqOCp856GmPxwWu5zSujUro7wmZpFYagulcf8FkTpBAykxxedYv9/WxvdANnWvaopN504rbDo4PH9hX4/KK5QkQ7N9+wpjso/epmtCbU+urTI87jzcSNOzHd/kBOC6VmrBuwYcKPB4wf9Tl1LVsrK2V9Is5Xcq5Y56GeoE00H1Aupb/vrft5s/TZglu/DWUrAbaCSEGMJh7rOlOXVfdk3+PJHKjuBjuCGw3GC9ZpI6HqLzWg0sz++r3SSPkV4CmqUOv3pVCzxsedUetMoRHReNbZL+89vldfamqkUFhMwsmKVIO227be5a6xDQolFUqKlLhS40pZVwWeUlXSU3OXsxisVXu6wQ8EPzL4sJe9o0l7wrKVmG2wlB4XNNwbjDdYr7FsbxDqJfOvbkTvyOZNSfo1KeqlEl5/s/1ne/sSb3769oT1eQv9nlTV2tG03B6jdlXLV/rbV45gA69vgOdeGWl9/2xJWD93nIJOPxic3yyOYDubtnL/Djy/us6XC2up5AyKfTRuDsH2BOKVKaxFq3ba5JJxVp1dQpeHWaea2E+PH/nLX/6Zx8efuVyfsK4yDMLgC2OorOVArCeG8YgPk8ZPa5nCgcEdECbiKnz+eOb8cqVUZa8wlTAETre3PMx35PKOm9Oxn0EB6zzejjg3YSQgzVObYoXa483WZJti+uYhtBxVOxyhlYwRqFSWGFlS4rwsqmfNuh6dtYzDwM1pwYaJMJ1o4piGETGecToSBmXS0hqpKXcZt+4LgucwDlg7aaJT9f1Zq70cTgyUirEW5zxiHc2HrrlueG85HMaOe/o9EnbJocrXCrYU0vXCpTVaShyPJ8Zx4jgODL2H4O21ueCs85nl5TPp+gjxjEMTvjF4Jm8YHZhWiYs29jg7Mg2O25uJ77574A9/+B23t7cMIah8wnk+Pj7zy+MjMc+s65WcVloBLJiSaHGmXBxZBNsK3he8a4yuMLiiEsRiCMZiq2D6ltkrAk0JtOC0QmRNdwIx21nRE5FStKG3I43aSicRv7y+AZ6Pnz/xT/8kpGUmLjM5ajZSSw9E4mgivZu9sqbIvMy0UrUxpqPjTaxNz3AF05tQNNAKBlOhxkJLhVgL5ILYgvPKSIYQ8EMg+EFZH6v6PmcdrULOhZwy3vku9t00Mw0tA/ZguQXXng0b09mGzcPr6/oMyhx9frwQ17nLAAo5513bsjEgmvXaHlM1MG9lte2hNdH3YwSsd5210q6yeU00Vqzrtk7GYhF8CITOmDmn4uzaKqkktU0oWW0jrNVuwQZrVhBcOijONJrZSiC1R86KWP28pjNeziubYYzoRvya6kOD9qsuSz9n8JbD6DgcDGOQ7jk38O7dD1zOTzx+/AsvL7/w/PkvfBwnjAsMx0ospicBifhy5vzLRz59+sz5MrNGZYvUv7P1REKbl0ZvmMaBw3TEDgNYi7gBFyYwTvV4qGYyLy88f/4rf//r/8Tz498YfOB4fM/p9IEh3JOzshHeVazVz1QRTNEdpw0hX8VQICYtOXjvSTmzxohqYwVnHME5mtN/WGslpcjmFeu8x4dAa9rkRLPUYnrnspYjNNkyBG9xTjVocV3IOXUbGtuBZNeJbqDTWqyRvRM5Z/VrHRk5HA57QrdpD+G1xPmFfVMvg25E01sLk6+vulcwFBCCAzdpiWh4TR62fbkBRhpqPZYu5OsvLM+fWeaEsSOU75D2AJMAtmfRmnVbI6r1LQrsnKj1iDFgqKRrJC3rrmlNuZAuKyUnWo64lhERkjlSXcYfPS57zCBY35SJNPTXfYVGFelSGu2m/Tp/L2lL59RneFlXci4KNJ0+RwW0Fmc9walrR/BB2W+xFNOwFMiWmmANGee1sXCrHCHs9iqlJGrNtKpyJO2AfmWxNel1WtlxAesC1niN361QCpRcSSmTSlbrI6mqQ3Vt1+EjTbGeaHOKaYbWv75Gnq3ps9ni3yYBabx2usuGSPdqd9srYSKbedXGkNbXnyGwd9YbFTppKdoyZoc1Rl0Y6muS/JrYb9raTSDFmz/XErvt9nqgrG0YLX7owDO8fk7pNgsbw1eL/tuvI+bzyxm5RqwLmN7gilHPwxoL8/VKWlclQGTTvWtS1Yw2TGXpzbPG4p2h5IXz5TMvl4/MywvTwTG5gWEwSgBMA4dxZBgDPljENDAFIytLSjw9/synjxd+/vGR63VlGj3D6AmjZWiBIhcwF5yfyfXI4EetHhqPlQFrJqwZMQza9V2aOqUsi5JVpfD4xnJN73Mlx5UUE3HRBiFBK4/NGmJSAmXz7LTGqIdvKphl4dPTM2GYSKlyczp1GZJjGIw2Vd0YrdKVgjTV0gbTmDrTv/tK5n6fpWAqSC7UKqT8lq2tDIeBwYyI0BurowLQnPa1Mzkl19gkIXHlmjNpnvFhYBhH7XH5ClOUkkkx0+KCrwvvhsZy47g0SzaBcRyYRscxCFISZ86akEtGyJ25VfmgM0aBLFFp97zi2spgMoeh0iaLoJ6fp4PnMFpMW1mWSEmR0xEOg+E4WMahadNxrLRUkaoSktqgFW1SMqKklGqAzete3uRYrXWQCXkjgKh9D/9vYDwfnx5x7co661fNuWczldoP9rr1X1XIVbWMuWimvWWOsLGCbTeNFWO1mcN1TRuCE1E9V1UrAUrR7mKjtHNwXrsBrd9F0jQh58K6rD1b1wzS905hZbG2LsKtK62XuazZO/I2gPVtO40Cj89PZ+KiHWSbr5sGVbPrk7aouNmjmDfgc0P90ku6zQpiPcZr8K801lSoRIYeYmunwX0HKdZZEJULpBQpVlhiYl4XYs5sboOFRiyFmAqbZrNS1SV7S/JlK4T0gNs6QHYdfFqLD+GN5urrS8XGRrpPmNMmnCEo8My1MrTA7d173r//Az8/fE+KF66Xz3z6+F8Ix1sOtZGq6nWcCPNl4fOnZx4fXzhf1fmgNUhVu9IDMHjtJJzEMHrfwbGhimBcwPoDYvxe/knxyuX5J55++Wc+f/or6/zCzQ//yOnud4zTO8RMxCy4VHG27ib3Rnsxdgb610oEm/m36R2NGyjYOmG3P1Pwl0gp7UDAl9IDbKHkiHW9Y5NeDurODjU4alHdH7mxxohI7/4fhr0hZUsCdpsWsYgpff327mRf95//6pdI7xStewIFWyn59cDerm/1nT1P01bz1z9DQDxi/SvL1f+mUaFo9JBakLpCOpPnj6wvP3J5XhA7qcm/8xgbEBOUYd/BlL5mNA0Xezc7m9lyplwj9bpiUkWqYc6NuUTycqGlC75ljBGyyRAMvh3xbcQ2g2uCrSqxKFRt1hGNLdWY3Yor/4rGc40JctRDtqhurpSCNYZSXCemDcaouXOugi2v3dBVGk0LE7zaanaA+yZWCZsBtpbPrOj79VZ1Mqql68MKNrC6VQIK5Fwhqu3bGhNLTKwpEXMmtUyhqsbbbQ+4RwvRdSG8+hSaX2F+W4OcNqZXvmA9EXYHCdk0ljsl2XWd8soC7iT7fp50xlPbfdDmOyF4qKNKTr/232z1dT1vr7uzUF0+tO1p68zuWWssOPfqe7pZPW2r/Q0M/XYx9Ot6WalkxqkRAhjMbg1WcuL56Yn1esUA3lumw6gyM7GasHa/RWOgVkuphmW5Ms8vzPOZNV5wIVCbQYzXap+oXtg07WcQqTRUF3o5Z3766ZG//8sjP/30SFwTt7dHTrcTU/WUNtAkMoyNJTmGrGxWzJEcGzkZalEA6sxEa5ZSGtfrzOVyIeVEqZnL5fzlmgByisRlZZkjYLEu4L3BecuSE3OM0NQWCjG4vnAqhjUmns9natN9dpwmjtPE6AaOw8hxHAnW0kqmdqs9a2Gw4LSniVqF0p+7Qa3HpJr9sW5Nt2Y/c9XmKOdMjpG4dDlLzlCLnn9iFXTVpslb1I52bSRO4Oy3cbM2bVSumUDmfrTkm4GPK1yqYhNnHePo8BhaVsBuHBiptLpVV18bRDe9h0rWMsehcXuwmOpoxXMzBe5OgRBATCEuCzHNtKaYahob06j3Vrvku8F8TwB7Jocxba/WOGVq9uQt1Y50qqKduoHWLqH8tW3yDfC8nM8Qi7Kd68LmwqQ3N7Nu3WS77Q3UWsg5AqVvWD0Ua61qXl4qrfWMWQTvAsEF1XgukZoTtNo97YqWQTOkqFl1ShlrI957ig+0oXZ7hcTavUW97xY1BqDuDInrGkrvnfqEDjolaQiBIGHXKX1jF9Mazy9X4rL0z/OWHXrVxm3hR4zasmzAczNN3kCesxo4qxh1COgPtop2mddl1c8UV4JTXZvtWU1cV65XSwZ8LVxj4nw+c7leib2RqbRGoZK7/VPr1LiiekF62W471kAPgFftUtvv2a+F042JQKRr1egLcyvXK8b1zjJOR27uPvD97/4raqk8P/+dl5efGT/+Z9Z4BXvAhzvG4YE1NS6XxMs5cpkTKbdeku7snHTLCulHjtC9zNS2wpgB546IeGWm45Xl/AuPP/2vfP75P1NTZJruufvuHzi++xPZDFxTVdDpDaH25jDR4KPeqN0G4iuQISKcjuofczgcOB4OHE8nZRlCwPYEaJNhbI0B0pkvY1Sk/fJ8JaZVQdPWWOSEITiGIZDjlXWa1D3BGHIuuDCQ4kk1S34rD74BnnsQojMKZv/6ojT/5QfqViM9UamV8kWTxreegF/ukbfr41Ufpy+9/eXGF3aT89ZwNWPKFUkvlOUz8foL8/kZYybWaWAYD7jpBlMrtbyCBkp/7dZ1rfpJoWUomXaNtOuKbw0rjjkJ15hIy5WyvuBaxhmL8R7TFjBnmhm7SD5sO3mfUNKk6xibBlOVcXy9OxqXy5XMrKWlqg1mrWoiYUtWL91cCLkwp4JbM84t2kxGn2KkGSQlFtKSuPbBDirT8HujB1Xfl3eGcfTASPC2g0Mt2eYuaK+lEGPs1j4Xcmu9lF6JeeW6LlxjZM2ZXAuVqvtAGtW8Pl/tbt4OoT6hiW8ZnVYgzn3d9Oasjhl3Vs+41/K2/qPtgHtl3M0udVHq1HT9Lc305612dTT1XRyCw5mq58Y+Se7V21OrdX1vbHsG6P52e6zdKz2ica1kTZhMZu+o76Gyf37lSoL9lgXPSUhVsK5hRA80tdlRPef55ZESI+PgMTJQir6X2pTpjGaFpuecsXrwf/74mbh0e6WUWRY4nw2+FUJrUGbyahinyjANGF8oJF7OK09PCx9/OfP4eGGZV3KuzIt6z+YcabUyhAFnPYfpxO3NA4fpxHJNfHp55vHzCy/PK+AJTsv4VGFeFq7zvOs9a/u21J43qdq6qEbfT1Q8hxSIOTGvPQnoxI3zjsPhwM3xxDSNCIpL5uuF5XCk3J4Ico8MAS+G0Ts1gi+G1BMFS9kJcyOCdBsGjRtb0tqpeWNoYrDDiOvl/IqhSaY2g21CE0NhpkQFrg1lHsXrgBvr1OO3iaiPZ/l2TRjr8E7I3W1gGgYO48SndWVZEnXV/Tr5I8NkOJ4GSnY04xEnlJJY54X5cmXwoTdcgdRCsI27g+X9XeC7h4mWK5fnhFSDN5bj2K3YxGNsZhxVJz9NhmEwxE+Rl6taZeba47VIP9dbrzW0bksoHXhKd1vreLAny7XXfzR+tjdnwev1DfBc1oW6zsT1Sl5X3ZAo8FzXyDyvxFTA2F5G087ynCNCxQeL86rV3EZc1t6aT0fCpkE1VgGZE3I2aMe9arToXYs66lAzeKqK6hO6CRsFSb28vfSGjOC7RrHtfo3OWYL3jGPQ13SW0EI/nTf92pvM/M21lYe0XP+mtLT5TGylS5qCZqpqLJt505iy8Rfy+jNNNwzeSNOmHYs1514Sd/3AEfXzXFcdA9YqQ2tcY+RyvnC9XrTMkRO16cHRUGp869JE6P6QrweJ6ZZOrksOgvNa8nNOGc+vSqv7stkkC1uHJ1vTkTZtGLRMPITA8XTHdx/+FSkllnhhnp94fvqJmBZ8ODEeE85M3eS+knJlSWrDUNEy3d7FijI4VrThI6VePm0NYzzWTYCQ08Jy+cT58W+8PP6V5fIZ7ydu7n/Pzf2fCIfvWKvlZc4YK2pDEuzOTueiPo3buMBvQwccxgkxwmGauDmdeHh44OZ0wzRqgEwx6iSrnHfgaa3Rpo3Ogp7PVx4fPytA6Qe5tTrtaRoDh+ORw2HaLVcaME5HjqcbDqcbfBt2zabZ1/CrUe+mlVav0Lfj+XgtE7752uyS9gP7jcZgB53fJGa9X27DD/1/9maQHmykl1tsa4pMSqTlmZafaPGMaRlDgbqQcyYuT8TlhSFFTOmgtR9K2yvqAmmoU552YNeUaOcFrjODyTgrzLFwWRJxuVLjGdca3gRCS3hTwEUkr2+AtjYSbnWBHQAZDbKm/VrrBFyXK7FedB29ZdKqYPuEN1cruVZMyoiNryxeDyUWwWKgNGrKLMvCGteuZVaHECM6wai1inVqnyOCri1R6yuhQdwGLeSePBjEe9aSMYOlSiO1SMxags016+vuNZo3CsvWXuMHjSabVv3bAlprkNZN+1hf42dv6GzWYLLZDyfTk9ididyWzhYYTe04c7P8Mp0d1UZCvX8NK1UbXqUpY7tbxynorKbrEGvZmXN1k3g1a98ZVg2Y0Co1aeKjHrA9Ed0/dGMbARlc++ZmrGthSTq1qeaontgpE9PKsszM1wvSCtImbWaMulZK1U4lYxqtKotXa6KUxMv5TC0VI7Yzco3rZWWgEmolzY35pXK8EaajUE1kzTOfP5/5/Hjl5XnlfI4sc+oM9krJhXU2tALTcCQthRwbVM/gb0hcuZ4/8fHnJ37+6ZHWDOMwqVyuyT6cRLuuba+cva11qC66VF2fgUYIBmxgLdpYdF2NShZ2OZ4heE3CQ/fzTlntAYMV1tmSppGSJtWMNkfPD9kUIHvFos/H3XgYSt1JOJGebFiDWDWJN72HpfVMs3Uvzw2q7kxVB6zbaxiUsVWixP2KqrFXPazBhYlhumW6gSl52vkjc3xmzdozcHewHIbN7caTipD72bEsK9fLwhhWjNg9IXWmMQXhOFmOB8dnK7s8sJaMs4bDaMjF0LAMoRIcBC84L8ScOM8Lc0w9CTX7Pt/Itp72qbH8BoGqxs3Nr3fHCN3+bpfsfHV9AzxrLeSmJcIU170kW3IhbnPSmxoEa9lRaddN0KgIWXDGIM4xhgFky+u1JDkMI+NwoNbGskSenp5IJfWgVxFrCGPg9u7E6XTqtitV9XW1UKuKsHU0nd4BFzxHd8QZNYfdxK/B6zSgwzhymCYO08h0mNTXs3cI17aVc14vY4QfPtyRU9QFBbuQevM23CUIre6sjBqCb2P4DK3piE2zeRAatYPZOpptZ5TiGnX0l7NMkzaWGDF9jnqXM9CoxjCvkXm+6mSD+cK6XillBTLWVp0EIQpYdv1K17og4J1nCIHTpKWKw6hCdhFUcP2Vp2knNvtmfdMF3cFKTo1k1aTfiMVaGMeB+/c/EEvm5fpC/uW/MF9n0royHa4YsYRwC0RCcLjgaUZITW2TYi87qoWIAg+sQWomlUhtuRt9q2ddrYl1fuH58194/PjPLPMT1nlu3/2Z++/+NdPpA00mLkujtthBa2AIroM2ndeequpVkG8zNYG903MaRm6PN/zw3Qfu7+/VX7ZU5nlW6yw2Fr3tTWYxLlzOL7y8fGZZNHHQTtaVUhLeKPi8u73l5vZWXQ2CroPD6ZbpeMvxdMd0OPZJR9vz2Lqxux2MU+/X2prKT3pj0/a8ylcs59vAaLepMhtVRdubkL5YEq2R9+Yks9+hDaS+3rneINS0xJ7jC3l9RNILNS+M4w23d5V1LayLdtiu65UprdicAB0npyNRe/Dv69H0n11Lo6yRulxp12eKUbbxujauSyTGmZqueHEU6zFOsE33HlZoRisRqSor66Spub/T0atijCbMBso3ERNiWlnLrPd4ryBoeVUXgkDp6WfJO27eQX1VH1IvFunluHVVL+DcMo2Kcx7bGzVLrYhRwKka7d6JXlKXdxgdZ5wSqUUdZCAQ0ooZHDioVkvuueYuKemgWvPn3pCx5Ru99CZ96pJR8uDrhsxWoUajzh659hK2DmuwNkBXU20DLLzzmK5ht8ayuQjYts2r38qJCuK3A0464FMfyM3qq4NYi7JfvQxaTCVToKbOyilba6zu47eJmD7j7oZSNeFprQ+u4FULqGxqtymrwvDt0Duul4XnayJGIYRKTVq2TTGq/2ZKuldNRUyhSsZand5mjDY0mX6+5ZxY5is5Jax1TOMBP1hiWkhxZSbiU0JaxJhIK4FWBi7zlafLE58fX3h+nllX9VbcHGbSkpkvCvLqaghc8O0ZqR+RfGSy75jPlcePZ376+yf+5W8/IgiHw2H3sk5JLbim48ThdAAnvB2jigjiXP+yiLe4oHK5qRUOaWBJkZIKpmmFUtDmw1oTpVllNSePNQNTGHDOqG3d9cLBO7y07vmqyYWCX/W9tsM2mARlIVOh5kLLfchMM0gz2swXK3WddbRz32eKO/SZqTZfpQKuk0JrH4rTEJzXeO18oCOCL9aEJvUWN94xvT/QxpWLf6Y+Gq516aPII8/nmcMoHB4mhmBoS6akSkmFdU7M15XroFZrhgE/9mEovSkyU3XqXwK7Fq5L5LY0vHEMvpA83Yau4btTyBoTL/PS3XE0WbWi8X+rVElT5lArO0rQlKoSnm1Kkdr+adO2KZXS6jfuF/ArwNMawTWjxtayGbSrv1XpAifbSx/WbsyKwTq1/hnHQAi+238o46LGorL/3zCMDMOk2pPLldoq11knHjXABcfxdOD9h3e8f/cOQTt/l2XpZrets1Sd42sVHzynmxsO06Sda9buWslhCOpPFgLjoCM5ndMu5NqaZkFfNdRYa/jTH95TU9plAzkrACy57IxW7p6bmqWq56nduhGNdglrcCwYGmNwDN0j8hWcNlrRcvg22msrce4d+QJmY9F69/f2utY2xiCdZTYKxkRHVpXcmxFyt0JqBosjmMAhHLg9HDhOI2PwPcJvs4LfHChsZVd2dvjVfqcSY0JaVcsr62los9J0vOHm4Xvun/7MumZePv+Vdb1gzQXvH1mHX5B64XgaeHg4MV+PYCptzpAqMVftXu0/t6vMoK1Yqfv9g0ZJM+v1E5fnH7m+/EQtET+cuLn7gduHPxDGG5o4Ui7QEtSMSMbbwql4nHfKdvZu942p/vo+LMuMt7bbnWgQ3kz9W62EoEbExpodEG6EzbrOTNNAKso2XS4T83zl6fGTlt/jwnqB4CzHwwRD6Lpkq4x014/a3f2hPw9eEwH226USiFoKKa5A9zWtmiy9lkl7CVFewaYWAbo9ENtz/3ZN1Na6v2198/dbJUD677Zd3wNXmanpibK8IKUQwpHxODDdJKo8U2phXa6kdcYOC6aZjj2V1Wsb89n0tQ2baH+hrhfacqYaQWxgXirzspDiTC0zmZHqCsZWJKg9uBMd09qKehSKaDDWz257Mq1dnoZGthscf/20pWZSSdi98aWPkN3LTBo3t31emjKXmw6x1Ya2Dxi1QOt7KnXjZdXnQrOtg24FWsaq36nso011IpJ28naj8aTPG2fIUnHNY8fO9JitiaozOa1XZmqjyubJtwGz/rn7WjZG4++Xi0L080U1dld7NUG8x5kBgFQKOWbiWpERBuuwfiTYQJPesCF0ezKUyW2123z1z90Bek25d4xr38CmU5e+RmptFKkYsgLVPghE0IqTt1vzSe2glN68YpT3rZXarYM2c/TWEwPdS8qUlyxfRQodmfn8fGFZIsauOjY36SjEWhXADEMgBIPPFpu18aiUussrTD8jsvRzpLPIzqlEI+VMziuxZdaCjk01hrw2ShCePy/89PMTj88XLteFUjpwf1OlMKZBMCymcHmOBHdB5InTeOF37xtxqVxeVp4/n/n88REjjbzOKh0SQ86N2gw+WKw5fXN20OjDYyq56ajG1AoNgxhwQYmW6utmnYuIqENOXHoZt6irixsQpz0JpsshNjlCraUzxKorbAV2js4oUy62J4OYnrRUSstIedNAWbeBN4W1VJaSWVIm1aLPazyoVSSQrhfWlFnXldbgYA0Op1HvV1i+ZVk4S2NwB/zxxDR6DvaC++sTuI+ITRgT9wqcMfolFJ2CuDSMzFwvV6ZhYgieWj1Q1cFjWZjnlXlJLKmxVsHEynlOxKifzUrFu16xKE11361wXRKXORGzjvzUCW76IbaPovIS6a04tU8G1MatWl/LxntVAVEt+K/cjG+A5+AHDk4IIgTUr3BtKxntWLJOvceMKD3tg+VwPPDwcMfD/T33D3ccD5Oaszotx9NLHpv2zfd56ZfrwufHJ5Z15fPTE2VW7cQwDtw/3PGHP/6OP/3pD3ino/RyiqSUFAzXgqoaNSI67xgPB4ZhxFuvXaRI19D11v9Oddue1YpoZq9l8i8vaw3/+s8/QFHNSik66aOW0j07awfkmZKTsrrGYa3HWL/rXFsf7ZjiqnKErQxg2BdWrcqCqrVUt4nIEVeU6XltZOnzfI3FO0sI2rVmrXCYwj46TtD7HtfCskTmvDLnQittz/CrNOrQqLFSbdamAUDst+mJHp2dQpdNxqCgo5bKssykdcF7g/cBcScwI8YahvHI/fs/kRLkWJgvP5NLZFku8PwXDpK4f5g4me95OEZ+/OUzf/3lwueXhZc59uBoujeYwZtCMIngdYSokUpNV+LyzHL9xLp8JqcrxjiG8cRwvCdMt11P1w+Qknk5L+RUqcnxcH/i/u4OFczrVI6tpPDFfWiNH3/8mx4GLXFzdyLXTKPpaELnmMJJp4R415+X7O4GtWQe3r3j/v17/vSv/pG0Lszzhb/883/mv/zTf+LTzz+S1pmH+3f84Q9/5u7+nsPxqILzw4n7D7/n9u6eMIyI6V3qutPZOnS39VZiJC8riYW4zD2mtp44bNZOX5YaNeLp194kKOx+r1/eC3on6BuPRumrRbaSu9CasoVbR7FIorWZFC+0bBD/HsLAcFdJEri+PBKXK+v1GesPuGYRr+4TTawmJmwcnDKKJa3UeKbGMy1dwXhasaQ1EeeFmHSEZELINlCJNFew1eNlJGZLWzSBFQFvlcmy/Z6Epr51alr/zfZg68jV+7gdGPKmobEnH1tdvbMHr8VtBZtaFtvGV/ZJNq1rFkW/FMK3LkPZRP2aSGz/ZrMOljfMpcp4CkYc3lv8wYFVfmRn9TqwSkb3eULL+iW33RdWZ0BkVTz8qvexesGWVPV08aJyHh86y5uhruRU9V4OBmcCo5/UDqy1LqPRiXWYRo2RmhSIC6bvey1hl6R2Ldb0BtTOAm+S1CoVZ2x/X/p5RNSBwrtX4LklYr7bALaqwDNvnqyojahyW12Q21lPI/abamJMC5frM0/PT5T8vNvFlT53exqPGLmhtcMe08WI3rc+pcwYR/CqYU7Rqb1fjuqHIlCLUHJPyF3DGsvgA1MYCXZguRY+f7rw/DKzrEl3jBi1cesZvTEOZwJWvGp0l8z1ZWG5xq6Z1feUYiKuCyJqw9Oqw4ol5UZtFivCYRxpBsobJrzUysvlwrrMpJRoItjLFURY0+t5/3pLFSfkmrnMZ9ZkuS6OMAQO04Sx95wOI8M4cDpNjFMgeKem7pHe5FRxftXBNSmD0wZB7xxDf+YlV2JciMuillhGmxq98+RaiSVzWRZelpW1qmdWuLkh3DzgrKXmRJ51UuA8z7q3TIWWdYCDmG8Ss+enzyxPZ97d/577+xuGm3fcujtu7v6Z082R4iuTS9zfB04nixBJq/bWxKVxvRhKthwPN9pr0E7adNSUEX/8/MTnj2eePkeucyPjWErmMieWGVLcSuIKvJcIzy+K7J7PSUdtZuhTGmjSY5AAWytnl9yodEIbt2rVON/QpAzYh04Yq/f26+sb4Hl7c8P3d560LMT5yrzMXNeZy6Idx0beTFfxjmHwnG5PfPjwHe/fv+f+/o7DNHW2s0t5u9ZTZwCXHUi9nM80aRx+Pujc9FW727zX8Zh3dyfevbtTylx0LnrpQK+UTOkBExGsd/ixex863zN/ZcO2kqeeu28O0KYMX3fg/uI+GBHubw4IGbXuKN+UKEsHwLVsYxPVekKM29mirdNunq8sy1UDR9ayTysNsB086KhArI7O3DVb3VBLs2t9qJuO8jAqCHfO7HoO7UpTj9CCautM1a/WS2eNSiazmBmbC+mqdh1bqf3dG9PbNzcL6TmkFdXfbvYnpao5VKkLKS24AcRBRe1cTqd3xHu1EEEMNT2Ry8x8/ah+YgFO9wdu/QPTIAqoP5/5+DyzpEouQup0vpOKl4LvC7qUK3H+hTi/kJZH4vxEimfCcIPxAT9M2gluBciUHFnnZ87nX/A2keYJ4XuOx2MvZdKbVzYd69vl0nh+edTnYIXD6cCHz98zjDpd6ng8MU4jYRi6XEFZSF0jGeMch2FgPB55+O5Dn8d7ppXCcj1T48p69bz/7gO/+/0fub1/0BFwgPcDh+OpC8rVC7NnAgrCOkDMKTFfLlxeXrher13moSB108rulkxfSypAA5MuyA5S9fffjj1re9e/9L2k+LPvr43x7Oxc7aDWdspc+kSaikPcEXcC3wSuF2JcOD/+Qq2W6VbwE5gw9qk4HQwDSoVCywtlOVPWCzWtO9uYUyanVT1Nc0aapbqMC5BxVBMoEmjF7s1DAmQje2NZqY0S1FkhuJ1U/jJWWIvF9erPq/H9xk4bMbu9WqPvxVaVVRR9LqVo+bkknZNOA9udMiyaRNPL28q2ZdVmbuNvSyWnN4MDNoy72Sz1dnkjalU3hAHxqOwETeI3VwMtUGm8LLV1OZECAhpkUyBvlYEv18Tr11bWRr2Irersau0pbO0AHNmHhFij63rtzZKbBnNrZFJrKW1gfJVa6DPTRL5rmZsmPUYMxqmtVCmVnBK1M36u+5uyVwqkK8a6z2jT6W6C2vZtYyPrmwqD6dUW8yumpq1lSlmZ5wvL/KxgJCdabX00paO2Y38t+wqW+8o2RnsTDmPAW6hlZY06BKGUDoQTUCzSLQOdeKw4tbwqjbhmrlftVo6pIqiUxm1SGtGRvNsEL3h1w9AmQzpzrt7ecV1BCt5Dqyr9KFXPzzAE7u5uWdLKpU9u0xXRdIJel1esKXGeZxAhF6BPaFM5jvTO7e7+QVMgK43cCrEk1hJZcyQ31SbHtCItKxCMcU9OuBiWlGjOsM3VDSGQh5GaC+syM1+uzJcLrVSsGEIYCGGgNHWIOa8r15hoRkmeYZo43txola/jgFYy0nrzWF6pUeVhrTeavr3W9UrKT9yc3mGsYTqckMHy/v097x9umF8SXoTjceB0gMEmKIXkmkoyaiHHheV64Xp5YZlHhiEjNNb1mbicdXJZ7qXyYLE0xPb1UioFtTramuXMrLaF17kRkwLJzSOZiia3jV3m0rctuXTguWmum7wOhkF66V/2Kt3X1zfA88N3H/h3/+p7WlID+SVq9+PzfGVeoh4eppu6jwOH48TxdOT27pbj8ahm2s7tdhp7KaN08JnyHoxSyYzTiPP+1YOzaalB/To1YEtnE1TPq2XGwvbB694Z7NhVYF/4iG4s316j68FpC491H93zVRitBdPHzqknXi9HtY3tBLW1CVpitwGN2qb7/lVKNsQEuVhSNsRUdOMU9eXaJjzVVjBWdJxa8OodZ3TuKbVgasF4y1ALzlmO06hZeSmYpbL2DVvWtY+Qa6RYuzdXwVZtEqi1Qc2kVHlaFl56OdB0hssGxz/8XzLhzX2Q1lQI38ulRrzqAPvoPCsTUEhxZk0rtlSMLxh3Qox23x1v7nj48Ces91zPI+vlR9b5mTktrGIYTeF0HPDmhtE7jpPjMFk+PUeermrQX3LVEZdNZ9m2mlivvxDXWTPD5YW4PLKuz4gblI2zpnv0QU0z8/UzT5/+yk9//19xppB/+J7D5Pjd7/6gzgOyeb2+uha8vXKJrOtC+qWAhfEwUWrhdz/8njAOuKD+s6DMjXYVz8zzlTAMHI8nfAjaxIXB2sgwjBwPJ+7u7snTxHff/cD773/P4XiDcU4tOrqdT8mVRqK61r1f5fXwbI24Ljx9/sjnjx95fn6GBsMwbNtAQd82KrIzTLUDioaCr03vBuzfsy7rl3sD3mjm+vf29aG/781PvCZ9tRmMjBh7YPBn9Y00leYsdnjA1YbxPxGvn3j85W+sy0qtcKQxGnQEoFKHr7YduZHyQlleiMtMWhPWKduu7HXSpo5YMKKTrsQPuOkIfqQQdr1S7T2vuVZK1RLhmmBKhmkQpgBf+2MLEMIIrWCdOmiEDixUatHZx627v7Oj+7CJovc60qg1Ywq00qcVWUewHm+9Jg8i5Kq+mzHp5JmcNKFvWVnGnaF7o13cOsGlWYwEnAx4O2lDDkKTpAyNaHOiWKVLS2vkWrp3ad1t53JttLy99lf3ozf6WC/qj2t6k4HpMbz0qWB2cwF51b9r06iWVlvN9I4qhNp9BAXvLMPoaK0RY4/bTeP/VjLXwRBqTeOsx1hLylmrUBWMFR1hGVSSZd8cjimlPckS0YNVp6CpGbZWlXS/iOj0OfsrVSLntGlDzGty3urmG9rdLKxqEY1YXpsZzStzOUycpoEUDLTEspx5NladTHKlJcFWHW/prdooUYyW81l6c9krZbD5Ce9G/H2vt55tixOst5hOGil20mqOau0TtET0Qis9oRWPHwcOpyPfffjAx8dPXwBP4W280ck2y7Jol3gTNacPtpuRC63qiFZr1TPSeR0cI/3sTyVzvp55NKr3XxdPMAK16tlkDIJlTZFmhGIE8RY76gS4s/fknJmvV66XC/NZk3NrDN4PODdQRZt5SoNmLNM4cDwduL05cnucmC9XUk5ITrhWMd7pvZOG1IRs1mZ8uS62aojtfR7H0TOZkd9/d8/z9/f8S3mhrDODh8NkOQWHNPBOKxdxUUehdTlzfnJ8Hhq1BuIRyBecWTkMcHPwLLXRojBY4W4wDKM+y5wrMWmcLmJpq2XNniU5crV7wq1NQdpQV42uX9O/VAKo1nBacenVhU6yqArCKBnorcbsr/fH139wOB54//4dUgqtJFLJrCVxjStrzroxxKotwhAYRjU+HYcRF9w3HpeK9boYOzuqL3vEHnImjCN+CNhemqTrb+z2Ok3BVZOthKRC1+3auhONbO1LGjGamNe21I2Z2cgYtoabTgsb4OtO7gaXJWIpXTekB21rWoIpVbWWarru8GIQuzGBpoPfnkH0rsjSO1tzn71LZxC1+w6cEYbJMU0DwzgowK61e9Gp9jUE12fN9w7vqL5hsTXtnIyJHFUTUrN+Zm30MhSg0EXOJWtW27rvJyoCdtH/CpNRoEZKudLqrCbXOVDygTBMhCBY40EGZT5TRMoL1oGYAyKeYZy4uX23k2m1LqT4kVwy65rJgwJqMwYt36fIZY3Ma+OyqiWJ2Rm1Sskz6/JIzInaAmktzJcLy/JMrRk/TIyHW5w11LwSl5nl+pmnz//C48e/8vj5rxzGgZwfdv1XqRvboAHzbXfmvt6sobbK+fyCsZbT6YZhGDgcjtzc3rJ2U+haegYeV67XK9d5ZipH7VI2BovsbBVNrTkO00QLgePpRqdzjBOIZV7Uw/X8cmGNWqrzw8DxeCQMQ7fLqrSSiasC3ev1yjzPPYnzXTfVdYWtT6yR14pAPxK7bqd9kb0q8/UlC76xY6/As+02R6Cpl2o7dY8VMdRmKIxgThj3gmOhstLagne3DMPEOE6sz43r+ZNai3mvth++4MOR0XiMc2B6Ipcrscy0NJNSJOYuhC+VmDI5R3Ku5GK0EuIn3HTCTjc0dyCLpzarFij0rybanFP1fqRSiRnWKNT5W9ffaToRjN+dNUIY1GtWqbOeICZqXqg50YqWt6XbRbVcIRX6D0RKB/CCdvGYzjgKvXkoEuPKuq7kmPb50jVrI8pb8EnbGDqr1apmkWJpSZ89Yt9MAGtqIE9PnqvpHclC3axTkF2m8U2y3uOYqfLaIKQiVC0PI9CnSum44G6d1D9jFw6AKFjdWv43P0BrdYyldaYz+Qp0W2ffU1+iZQNFqDRMx3326Wwie+e0ypWCynDMloQVStn2RKWhTVilFu32rZtZfy8l9sbBry8xBWtLB9lqTl9bbwC0Cq4QTXhy0W7K1jIpq9uIoNY13jqMeHK33jlNJ6w4ciqsJJJkpsEzjq7rSNWj1bYVGjgfcF7B4/bsGmZPQvtj629aP5P6Xm8jr9nJFvr5V0shddrGekMwRkvfNyderuevbgRY57FlK7epHnxbT2p11Ke5Bbcz3LYnBK4n11u1sbTGmhNrSSwlYXIliyC1qi+4c9Bqr5BViqDAM3tMcEhPQq7LzHy9sswztIYzlqFkvM8Y6xQoG9tdcYTBC95UTI2QZogzpqYu3+pkVCqUjLL7xkIb395dlYPIVo3VyqUbBr7/7oGX333gev7EuV3wXhiCcDw4XJ90V1rhfL5SrpW0zlwv4J8Sgodm8RIxrAyhcnN0XEshSWN0huNkGELBmMLmwu6sI4QD4/EDjhOn+4Hj+SPzRYcG7Uwn2mdXaEhpINqYlnPpA1v63/ezRf+kV8sa2PbrBM43wNMYnZdujCBO8MYzmokbo3YY1rpuBdQLQLJVqrUUVGvRJlRNUXbm0XTdoXWv2rGQC2Ga8MOI8wPOLdRc+oGoAvmaa9dz1u0jQe1apv5zldbddJs9IBqdrbqZ2b/yMlsZqgvZDUgFHbv4etXa+PR0hZp6UFJz6FpfxcylZh3DFTzTODFNRTWmYdj1SqloIFiTfuVS9Ug2Vi19eiMSNeGcEEbHdBx0JNY4IkbIubKsER8Ch+OEtdokk2vmevWYWVRXlbUJbLNQcVa6bZJQnZBi1UM4K/tS6Y0IbFmv6KH+9TpphVZm4vVH8vVHxBQVhR/eczh+x/F4wzROWHuLmIF1fSGtVyQWjIlYd4s1gXE8dMueos0e8TMsV9b4wkqh2NAPfS3zSG/WMJtY2epaqrWyLs+cn/+G2AOleK6XK9er+mP64cTt/Q/cv/s9zlrW62eeH//O0+e/8fnTX7leHqk5Em5uuLl5zzjedb1U4VXyIPskkzdxmWmcSCmyXC6czy98/OVn7m9u+d2H33F9OfNkHdYa1R3mRMtaZiqlUJzTRp/WEGPJcdVu1bhC1z4bHzDG7mAQ9PMuy8r5vOx6ycPpyPc//KAA0pieoG0/S3ViPgyM48jt7R0AKSZSZ8i2Q2hnewSaCKk2bQTopd/Wy7vyFcjY2FHZEsI3W0uHDDQFn/1zVPFUEYocaOYGZ5+xJWHLFckGUwPGQJwmluB4imdKvDCPluOQMYfIUG44yoR3E8aNrBjOa2GuM7UsWhKsvVNZEjFF1hTVXw+HDSfC8R3++A473SvwRIFnfeUklUFrWwYPKVfmtWmJcvlahiIcTw9IaDoKcwgEPyrwFAVINWfiemG5PqomrmZqKtSUKFGbbUosOsUtV83zaDp2szT1bjVqqZRKJuZIXBfWWQ2mc+rAs7TePKajfZX502YcazwWB8VQ1kaUjPHoSD1vsKE3NjpBfOla3ESTBBIRW/bPuyXWXzN9ImjZt1urqfE9NHRmc2uQezZsvGC9IK4DT9kS7KpNWeifb8x6Q8Gk6VWJSqW2TKmq6aOD3dZjt+3yEhc8GPb3QtN9be3WHKsJ5gY6WyudNe3McknEkvp0sdeGIunyCWvNrzI6kBCJON8IowWxlOSUe/QGrOx+qssq2KznXYxgaqUcRloZterW1PXgMBx4f/+u7+HK+Xzlelm4OQ4cj4FrfWJdzqxrxDX1lzyOx27RFPchAJu8w7TX1j9tDAOqAiTbyQ2d+te6R7MmIyLszVUYTWp3+7av7oUg+DBo5cQ7NueCVCoUHZPrvGc8TpyOI6FrbNnkFV2e0WLSimlrFGOo3kHwNK+uJHR3g4L68K69tF9aQ4rBtELLlmqFteh0sSVFUs0YhNAMThqDFcagxNomRxoc2Bop8zMrmXRRX2Bqwsg2uGUl55WGjh8V62l2Gwujl7UBzxHEaxd4A+8979695/r73/Pplx9p6Rnv1BlnGHWM5nA8klvml0+Jy3Wm5IV1ScznhWADwXlwFVMTwVVuDpZzbFxjZnA68S/4hjOVYJXEGseR0+077r//t7TwOy78lbn+Mz/+7W88p09A1y9vFbCqcodNdpOLvk6lN9hV2EbxmiaYqtUNYyvyK1rwb81Bese6YJDaME47BvEW452OXzNOLQgaOlKpbqa9dW9gwNodGO6ZlRHtcuxB1IYBP4z4YcD5gLGuA0oFntKkB7ot4G2qTTpc0mkQ2xzs7UsVrbrZdxHQmwWwG59vSLbSmzVer9oqf//4SM1aYmytj8xsqoKWDq69d4yjCnmbKzRbweqNrlU9OK/rqsas3cZCuoenTipQ71GAIViOpwN39zc8vHtgOhxAhJQLy7wgxjFOB33Pa+rTNmSfOOR9xnktVRUaiMHUjcnZqlJtq/29NoX0eymiDMHXele9AZWSV5blmRQfyXXG+xvG8Y7j8R3H0wPHm1uGIXTWoFLSC6WcQZ602chNWCccDkdqfkeO31HambY8a1DfmOnOqE9TZVohXCveaQcrKMCKyxnOjcpIzpbrZSbGzHC443jznnG6RUQ4P/3Ecj3z9PlvnJ9/YZ6fESO66d79nuPNB1w4kmvDlAxsTIp8I4oWhNu7O83Am5Z+vHVIa+S4cnl5pqSIQRlPau4SBc3qF9EijDFOnw3aIBHXhWXW0o8xhpQyak1hMS4QxlEHOKSZdV41EauV9fZOZ8E7PdBaLzH6YWA6nvDDyDiNnG7uEHoZMZVuaq/Mhut6RIzp5seN3NoOljdt3T//5W/fLomuSdvAp06z0fUnkjGic5lbE4pUwFLEUs0BcbdIzdh6xZQzNllCbZxcJg7COahvry2PSBRkTZj1hHEjTk44uaEWh80NiU/UeKbkRC5d5kIiJW3oa+i84+Fwx3TzHn94wAwnmtHJL8rdbBWQtgPo2r0tSy+RGgEbG+NXlOftzXvC0TOOI8OgM9FNT2RLzsR15oIlXq+UfCGvmbyulDVSUianQk6VkhqlaCMmFTJCLYlWNy/PzpKnTF4jeY1adk2FVt5UMmp5bfyyfSJP08Q0LlG7qtOq3cFOsMHgRoevFoPT0aEBrKkEnxlCJI65V0baPnRgd1bY1kP/orNYyngaleSI7OdEk9b/TtjG7yHsk8c0AdZYvpWga9vcVHrZtqntnhh93a2yxnbe9IbmXUW1/b6igKqDTiX06u5UUvvoRQW2ynZWqo7/7F7CNNWC2l7K9+7bY7TUhVyvYBLWNVxTtxGhYa3Xud80UkksK0hnzJZFR0evpwMpTtSiMo6aK6YZQh++olSOwzb1/h0Gz3K57npMRDWidze3GOvxft33tBqBq87V9nM6p6x2ZmNhg6O1N9DWUjpDZ6miZenSxX4babH1PLSvqmUiBhfUd7hV1x1ZkjoDdLkbRi3BhoMOd/HedxKr7mNd1QlCgXM1htgac8lUgQhIzkitr4MYuoSl0aip94YYKE5IdNs8hOq1MtFEiSpj+4hfTLfNUmC6NOEFQ5oX0rKyXGeWee5+uwspr7SmkxuLEbVF+0r668OB0XqsnWhYbYAdRm5vH3j//gce7j+wXB4RrkoOiGecTtjhPYXC7cfMujZSXHAmq31Ya7Rc1Ie3JgzCFAyjh2DAC3gjBCsMwSj5ZwzT4cDN6YG7d3/Cn/4153rLykhKlbhGdQKpUYmOSvfT3mRTGhNrkw48X8VVSkqaDkB5Hcf21fUrrnQ9gOhO1uBb9QVkm7tpKwYVJm/zkXRmcEdyneWUDmK3Bgh6KWsDg8Y5fBhwfugsq9tLMttUHWsMxmkHnTUKPGsttKIfWtAsW6zpDKsCT5E3wPN1G+y/7UToHqe+Bp6lVP724y/EqCMzW7ei2XQ9m0ZomgzNNVwVQhNcA1M1e04pMs8L1+usB0StYF5LKdrNqAyZMcI4Bm5uFXS+e/+O6XDQElIuLIeVhuBcIKbMmpNmrtKw3jEejtRmqFjmeaWuOtmnydaDWXvJKKsFVS8nv3Yk919/Ze6wWut4IFCr4XJ55uXlbzoarBnG8Z7TzXd898OfeHj/O47HO6w1rMuF6+WJ63JFzMDN3e8ZpncMYaSdbin5B2K7YuoLhida1UYu6wPTwXJnAnM2nGdljVOMSCvUshJXQ75UcplJSViXBGbg3ek9D+/+hHcD8+Uzjx//zvPnn7icP1FLIowHbm6/5/vf/xs+fP8PHG8+YN3YPduSThg129Sfr+6ECO8e3jMOgzoXGMOH999xe7qBWrm8PPHy+FnLZAJGKqaVPqN9JKbMy+W6rVpOh4nBW5Zl5uX5mc+fPtKA3//5H0EM1gfCMIFRU2LQpoHrde7avkzNOppRdQjKch5vbvHDSK2tywAmEOk2SvpRjLF7Ocv2CUnbZqi8lQFoGfP/+R/+wzdBQnPMDnD2/yo0EiILxsZeejeYmmgtUI0DO2D8vZaTU8LUM7LO+FY4mpU6VtKNI8fM4Gd8a8h6pV4CqXpsucGUd7Q0wirU9WfS8kSOiVr0YCktkXKklogVyxAOmhzdfUeYbhE/UcXuH0R6UN2T5b7ngc4yo/Kdr3eHCHd3HzjdnVTjPk44N2DQhr91XbhenojzSi2GtBaWy0Je5j6GTw/rXBo5dU+83LtDK9TioGXsBsSKarZrzJSY9NfObirjuSXH7EyU2G5Ps87EHDGrdNCpsdUNAR8DQ7bQ1B1kHEamoIlSTnovS0mUurJ279lvtI1t08rKzk6q9l3H3KaqxuW0jYlVALiNnW2t7g1wWxNcq2VPnOlOKqaP7HMhYHMi9zKw7OeO0fHKzmHc1jyqUgWzD/AwXVvfaCnt2s49+YDOMuu+sq575TZR0CfaiW6Nw7vwTa6ey0zKZ1prGFvxGGqfnmOtwzhHkz6ZrlRKSqzzynyNUCoPdzfE00k9gVshrZmcMi3XXpYednnFEJxOk0FlMTkVjGSmMBDCgRAGhmVRa7GkGkRvDdM4An0AwqKe3eNwUL1ebWrpFSOlZES0479WbRiRrgc2omX7lBLLsnzbhCiCD4FihFpU47lNMsql6GhHVKNjnMEFSxi8fpaqJV2M0SpYxySIZcmZdp3xYrSBJmfIBSlNG4Xc0CUUWlq/LFfWVihOwDskOGzHH7azdOICzXhyNSqtyJlcKsElxlBY5oR3jlYKOSZeLmeu81U9PimEoG4zOevUpDZ8CbhCOHEYDT4cEBOwLqhDidyz3H3Pw8MPnJ8+0pLaItV2wIdbTve/Qxy8/6wSuuv5M9YkTpOOqjaidkolRVpVSdFgIRgdSW5oeCeMg8Vby1Ac43RkOt4zHb9nfPgzf/T3NH/ger5yPZ95evqFdd72K/3E0gpXh3zqR8xGXmlCN/Spi3tc3QSgX13fAM9XM13tokIazfQX6kC0Vs2A9tI3G4jRDOcLBlJkG0S0fePOQO4dtsbuzUjbq0q3mDDWanCSjYlVW5ImrXddobMarVGDWucURG6MJ/IrZ8Ub9Fl7Vvx1KbE1Xq4LcbnSVaG0VtUmxRkGBGzDVe0KW3PBx4yYpMLknIlx3bOiFNVOQ/Stdr8zoeZK3QKh1Y0Qxl6ut059yWgY63sADDgM1mf9M2xXbTQwrs+ZLTTpWWIte2dqbkUbCPoz2NmJTSdrzK8yniIWa0eG8YF280dKS9SWubz8wnx5Yl2uXC4fWeInzpefeHj4PdN40vGVyzPn8ycF0OsT0/E94/ieRj8YxltMfsCXgpEXoGjJT/oITqP2Nk50jVGbNpTEgpismtXmCOORMN5zPL0nhAPL9YllvvL5l78xXx4BGKYj9+9+z7sP/8B33/8jd/ff44eT2u9UZfmd1WeBdIPxt/cB8D5wOJwQY/HO8+7+nmkYKDEyd3bAGUGC20etbnujVtVaaSbemyGqYZkXHp8e+eWXX2gNnp/PLMvKsEaasaRc+miyL2fBL8vC5Xoh5IALyrz4ceTGmF3jt+kOG+wl+G1vbX6x+0CA7Vc6e7ZVMUr51Q542Q5p6YlqU7ZRGjpFRjKYiJGKE0drgcyBKp5mAzXcUGXpDNozJl8gL3iZuZkM2WnzlWsrbX0kGyE1g9Qban4i5hNpDpT1GclXDNo8Q5Ne2k2IFIbhwOl4x+nmHdPxATcc+zz5DWxvgFPjzzY0Y9eGb9NJesWGN/FMgNvb77h/945pOmi3uOj9j1FHE4I2Oi1r4nrVbtq09A58NGDX+uU93zrIaSjYqRb6NJ0SM603J24CAQ2pvUGnM38b29eksqaVlqI227lu7G4NWItNAz71qTky9Ikxd9os5x2tFUqNxHQlxgvzcmFdZ3z7Nd5Cus5fP5dORlMbG6mNYi3V2Z1BsxvoZNP9mZ2FN7Z34EofM+wC4gK4AUNjmKpWaqyl1oyYpj/b9MaiPvlL+qNsijwxzoN1as/VNn2aShW288GKjiEN3bjf7M2v/XnQmZ0OQL+9DUWbtvpaEqPd+60arPE6NjoMKs0SQ7WeYALBZ46H496Jv8aMoOSPNQ4TRpzXz+ZcVjcAabScaT0RrSgLPIxqdq5qVe1ac6YhUgnOqVcwjVwiMW32Xbp2Sq3M80LKKh97ePcO59Tk31vTZSgNcYFhOnJ7c7vrMb88O/R9V9N7NToxZZwSST64Pu1QE6SK2jHpGEq7g3sjBme1ma72XgkpFfFWK59NR9WmecU2OE7CELQqNa+Rx5cLc04U07CDx/fekuC95uwVssmsotrY2sFxLZXjMHGcsg6d6XEw18w1ZeZSibnQaiFUsFaBljGW0/HLo3Q63HF7c+yVVs+mKTdmYAi33Nx84Pb2ey5Pz2iT3w1h+o7T3Z+wg/Dug4Lfmi5Q8+5Q4KzVUZbeMjRLyI5ryjxdVkwru7+r9+oHXdvIcHxgOLxHwh34G443A+8/FL7/3Z/4/OkTy3plmS+amLVXOaX0h7rBuE0OZozg+yx37QuoNNP2df/19evAsxZa0Te8uUtsDKYClq0Dr78Jed1YYrTTWTYWhi1It/31txYE6SUL2VBQB73GsOsrpI+O3CbJyMaYdisLLSF3ltP5HXiK0QXJVmbuQXEDvXzxe74BW8oSF3K3MRJ6EOe1dN3trihVGxnmdaW0iktOO5rXlbiq6X1eIyVHzQxEH5JzTfWl9PIrBsTSmiUVaLEq05dVd2SdxYrFOEsYGs6PNLHkAuua9fu299dEO1JT7p6jXTAvTYXtvNp37AxD7yL8doqTxfuJ4H7gcLjldHvP3bvv+fzz/8rnX/6Jl6cfuV5+YokfeX7+Cy9Pf+b29B0+DLQaWddHUrwwv/wLYbjlePt7hukB69QeyJ/uGdeIjTOtxW79lClpoeW1j1Vs3W5DKGIg9WkY3uOHiePpe06nHzjevIMGz5//ztPnn1guTwhwuvuOh+/+zIff/zsevvszN3cfGMcjiO1deQaDJTiLNVr2+5WeAWpRYfb7h/dM48hpHPHWkdeFIn2yyxj6dCgFg9ZZxDqa0edXURbFBZ0Wtawrj4/PfPr0mVoaz8/PXC5XTDjjS+lTxJKWyHtZCpHeHQo+BC2d3N4wTBPT8dTXcC+aGemGv4UmBrGObY57Y0s032S2De1E3kHotxkrqNOB/qdAM7RmaM2qBogutWHFyJUAeAKpJRInsrUUGRH7HimCxBVJT5T0TCsXpqFRnaHVFdsWSpxJkrXiUQ7E+EzKNyzribomLBFvDzQXVMPcIsZUrBeOxwP3D+853jwwHG/BDxoveqVBiyWyd1fLlqE31Y/b3kBiDWQDT1/didPNO27vf2AMvSEwZ2JcqHXto4ZXrvPM5XLh5awWLnm9QokEa3Xqlagl2Tb61hgdwedcb8QReoOmerS2mvXzOQUKKW8Pz7zGtV5pyiWzRu3UFwPWW8Kg01pqEkzO+FypWMSOnG4Mzh45Hm45HA4YB43MsjxzvT4SQmBZAm728LbLX/Sgp1W1UjEGbwzBOkbvdZ5N0aaqLNL3moJ/ZVBU7mHcgPOeRtFu5e5xKW7A+AnxI8YYBlFNtFscpURoeZdAbTpF0y3SdLa7Vm7EDWACtZt9t60PQLVj0CreWZyoHVZpDWscIN2PGo3Vb8YEfn0ZBy5AWnovAVt8l560DkzDkdPhyOS9qu1FS6HOWoYQaBjmNaFKBau2glbPWz0nu9dsjdS6UtNKTX2Pd5YrDJaYhRiF4k1PzoQQHIdJRy6lPGBXneClVmDKTF7nhVLh5u6BEEbq77WUvHtgI2qH5Ae+/+EHjsfjPg3w7aLQs7hr9wWM93hn8TTGw8jhMOIHbbosVc+84ITgtTFy8CoxGHzker2wrmtfDxY/TjjrSHal5MYlXpT5NDq20hjDeZl5PF+5LjOFiguB8ZAYhkD0HpHN9aZLXLaBOaVimvDudEdJTSfJeUc12myTREjOaxNjKcwpQVWdtjGGw4fG26LAdLzn7uED63yFVsil6fjxahB74HjzgbuHR0r8BdvAh3eE6QcOt3/CHywP32XOz2fOn38ir1fVfjd1RjhMjsOghFsshmu68ukxK0HTyRznHUYGkBPh9A5/+p5qT8TqEWs4HO54/+H3fP/7X/j06UceHz9Se6OjPkd603fHXK1P+xL6WGjLELzKeorocnd8I8mBXwOeVfUQphZM6yX1ntkhdmcJZBPN9D2ogobtRfrXLjhF3yTd5kMEMN28fdNbVoSCyMYq2u4Dqu+p9oYZ1Qop81q2hbzN7UXYJq5887m+/oP+Pdt622eN7tvlLb28sbn9gNJdp955OZOz7Qu1UKpq/ppoGcujQTIaQ1qkz9599UjTL1GWpgjznDhfFp3nOlpovYO0NUSclrxrpVUFnDFW5iVxndXDrGQd96WAWDsmdU7xtng2alxQPNGTCdkeWdvLsdtlrWEcXM88A7U6bm8PnKYjd7fveX76F84vP7Osl906a54vxJTQt+4wZqCkhWV+JpeMv3xmGG8YTGPiSmiLZnnSgYDeYD3EUPbRGqv3NThMOGDGE348EA43HI/fMR4ecDZ0rZFq0I6ne8bhwP3733P/7o+qx3MDNUWuKVJr5GqFOTiWw0A6jYyjenF+MxIQmOeFYfDc3NxyezziBGpKrMuKEfDjiDPdVmcYGYYR41xPyBzYnhhZyzQEqAUXBhDpjV+Z1LP67ZASWxQkOaeYyaj3q1ijZs0l42vpZUqHC2FnRffL9BGvbbM1VnazIb160NPJ2vpklq17d+t4/3pPbamnsoA9reyJj4HmdHRfFSoJ12Zsqwx2xsuVVY4kM6gjgdwpUCyJus7gVpw0pBSk2a4fTbS6aim5JGiZuK6s1xnJjkPwBDeQ3AkXI3YtMEx4Mdzff8ftux8Y7t7hpyOtzz+3lh1QWqt2PW6rPsiWGOufqRFyY8Hw/FU8CeFAGE9auu0H5/V64Xx+4uX5E09Pn3h5eeRyvTAvM/OyUmJEaoYAdvMGboUmpbtjaNe1saJOEaWQt/F9JWmZ0yoIqNLom1mtaVxvwmuQciM3ncWeOotqTVH/xybdLgiqWEyKhFRAHMN4w/H4wOnmhHWGSsIY29elwbkRk4YvgKeI4Ddj8v7ffmNjBNU1htB1gKY3dFpNWHCI7ZOD/IDxjlpWjKn4cMAGYZiOuOGA2ID0TmrnAt45cpzJeVa3gA3E0ceplkLOfQoRloojVYP64BvVBDZLaaXrKpp245pu/dQU+LUmNOm2Ul0brAn8txKMm5tb1vqO6/OV5bJSqtGkuQ9o0FYBPdStsYx+YOpJo4iQYtybU0vVSZTeBsZJwXLOSY3TR4+UTEutW8wpGDEGQi+v5uKoJSBSSQ6gMoTAzemgWvrjgTUmYslMhxPTNBKGoH83HtT6rTWc25qNtiqhuseIcRxPJ46nE/7HwJeX8q2aMHtlNqX7REpjHAeOxwPDqINfaI2W+jjemtWLMliGKXAYJ8bgWeOKoL6bd/cPDGFknVeex0dtoLxeEa8jOjFaCTVOm6adQZsuw4j3HuO2aqvsOtVaGwmVpFnR6g1G3Qis91iv0xqDEXwuNGPJ9Uy8qp1bTWWfSPj2MmbAuhPWVkqJ1C4lMOKxbuT2/j0pvVDi36lJGA7vCIfvGI7fY6vndHthOv6EsSMlwzqnDgJdbxMWrKNrvHNPPizjaBlG3x0cDjR7izt+h5k+UN2BV4vMkfuH97z/8AOn23vCx59Iy0zNWfd0d/7YGseNCEGM3gtnCT2WtkJPcnuV6H8L41lLoeaE6VM8XLdPav3Q7xJSLWVvtgzbAdU6o1k779YBDmyecqoxpGd2rU+Jke7BtYFP1Qb10We9bE0tIEZ1MVWtb3JT0bcVoz6V/Qujfp5NtMz15eOXV7Z2Yy6/uS3bQtGsHdnMsV/1QULTSRRGyEZFynu3o9UgqpYqDVplna8sbiYualcAr1MEFMRbcm68PM+IeJybMDIQhkFLcY0uenbUkoixsiyZ6zXq7NZ51VJqExVW98eyjefTDLkzB720JVoT7czIZopfv7kjzgrTaDoTLVhzi5EjD/fvyX/4N1wvn7mcP/L8+DMvL5+IsVvbJG1iGYY7vL+luivreuH88pnWftasezDkIFiTGch4YZ/0Qj/47dYIY4uO3xtH7OkOd/OgOpXDHT4cMXbsWrdKCBPu3ndt3x339z9wONxhrCcvZ5b/N2v/2SXJcp3pgo9JFyFSVdUBCHDIEXfN/P+/M7d7NZsggFMqK0O4MDkftnlklkCT0+s6mKxTKivCwsS2/arLs0CH6wWlCr21HPd77u/veXx84uHhSbwEv9tDhV+pFYz9wPFwIIfAEiI5rKA1ZujlsDXC6+yGPcb5Vjg6tHNtA5ac+ByDGMN3A9Y6St64vwbf9QzjiIkWbQLFJKprPmm3zVtoElW9gq5Va6rW39FbFDIhSs4S72gKFXeD2TdkWS5TmRSlw7olMP1Ud/ImiuGNWfyN71kdufak0mGzxucrnTrTd2eM26N4AHXHwoHKDtu11xFXofjEM9YUPApVIjkbma8qUxB/zxASYZrR6shueECPI6U/0i0LfiroWnG2cnz8A/uHP2B29+huQBnpalurmvND84h0Cu803ooThKaljCnav104xx8HQmGMx2hPRQrDy3Th9PLM6fSZ08tnvj1/5Nu3L1ynM/O6sMQotJuaUVlhSxLIl0zV8u9ZL92DmiEkESDFmAgpijWOEWW0ak1nEcCA6xx970BrQTmWRMiFqhW3+MsCKgnyUVHoLJ6IuYhIQVtHPx4Y9/fsDkeUgVwiISbMGuiUw/lAPEcKr5czEVtKp9u0vdMZjZGIM+GAdZ1EQxaJhSxYCpaqHUZL6pvxEvhQEZ3msPMo7fD9DmPlkmYaj1P5gew8wVrWqZJybBfGxndMhRgLKdXWkdfkqgVRQlLFFc3qq4qbhGroiq6tnaFpxTGNDiAXLNp+X35xsD4+vsMNlmf7lRMvhDUT48aKExFYDJFoI8V02M6wG3c8PT1RgNPpLBStJGgPDf3zXS8UCwW19zKHYiazYjXQ/Ja1Ulir6bymVCkGjYEQBQbtup6745H94QhGs6bI5TphrOdw2LEbdxyOB8Zxj9YK7xyd921frrdmjJzJ5iYS6/yPhadQPbTV9L6/pbpt+0XXeYYWc220kZS/EqVZEqPEO1uacM+TdgMpRajQdT3v3v/GOOyZp4Uv/UCYFy4tYMW1vStRGcKA7byImPqerpd9ACVOLltaVcqJeZnRy0TJGaMU3djhB0c3yGu1Q4/uPNVaQpJ6JsXMMi2EKPxPY8xPdYXMMUdVDqWEs5pzBitz/u7xEWNW4vpX4gzD4RE/PmL7R3T1DPsT/fCANj0pK0lyTJmUDSEWlsVgHaAqyxLb+HYcjh27naEbDNocqO4eNb6H4T3VDsLJrmC0Y3+45+HpPXcPDwwf9+QoTihAazBoNuGraBdE2NZ3FlWkcZDKWyRsa999//xM0qkbqb4NW1t82zdQqkU3Noi85FdOUq2vVklsMZSbyh1a2kaU72G4pWmo7R/64aPKWQ5AowQ0r0r4H8sqCr2CTBpvndzaWxF7cztVWw9v47DpG4dlu4zcOp4/ThMlEVrVpRs6r9isOJpiU9Fur1JAatVETQhkULKIkRSAcdhONkRjLCqL32Cp0umyCUqsRJWYzczJvECGw+HAMAyyoJUh5co8zXz98szz1xemaSElgeq324XSDqWkm6CUESFK2UIv33Z5uYnI2vXgp1saSFxg7zWbubpAjxrlLTAwjDsOx0cOx/dMlxPTfGaer8zLQi4F52TDqjngljNKfyGGM0oJcT3EwqIyM5mYIiVKbuwSCyFCLq9Rb8oZTOfo9gf6u/f0/R7nB+kGI/ZY2jucu0dphXMdzjpiuPKyXqRLtjYlYpyJccZ5y353pJbf6AZPTHdNtffTUEjnPovgIqUkXmVGklecNQx9z7jbsTseGfZHhnEvFkmt8DROOpKSsKWJ60zXDfJz56FC3/WM48hut2PcH4g5SepKSk3kJwedqK4BLQR+33W3C5tCczOuVXLJMNpQdKUUjYBuMl90K2KrqmRdqUZsU+Szb0rPX6AI27KtbJ3Rtz9XqGopZaTkIyVdKHXGqAnNijEJS0SXQqwjURkKR5T/IGpIbVH5gqkrKgc0FqUtRmXpTlAIdSLnK+iCUp7eJ/xO4F1XDWQxnz7u9hzuDuhxh+77Zr8m/ram2exI8alxTuFsi9itClFabIbmmZriT0NgjZD2a5WYyZLj7YL1/PyJ5y+/8+35M9frRbw3U5K9stYWz5flddhm0dMElcUoYs6ELNY+uWTJazeK3EY8NReC2roLrrf4wYESNKSu9dVpZEM12r974823bo51Dt914qc67PD9HutGETFWg7E7fBcwtqfWRDHPFJY3W2YTMyEWRaZdakqR4APrnfg/01FtQWknAot+wPkBYzuMlTAOrQDvhctmLcZ1ss6Na+4NCmssikRNO5alZ9JW0mFyvHU9tSlAIgRQqoCyKO3QxstFUOlGLbHCH62CuhlTG5zcZndt/N7WAd1oXFprunH305y4OzyxP97xsH9ieX9lnVeul5nnlwvLmnBGoh6dlQQlcUOwrRkg51auiZjXW5iAarqFUpIIIa1mvx+ooRCIaGtkXaTY9rdAKQPWGPrOU2vzFdWaw/HIn/70Z44Pj2Sy+G9+/kytmr7r2I0Dx+OB/f548wJ2zt5KiK0RQ0MvafPRWvf9QCiF8w6lldCqnAjNtuAK58SKsHMdzni5GMdAjHI2GO1Ryt0M5wUEa5Gn2qOyooTGe44Fg6Yzjt42twFFg7vFpks8VEUL4nyHcV46ocYJdzQllO0wXY9RFW8Ne9cxejlHMFpKGyXFl7FKnHm8xBjnJhTcbKPePilXYpI56LwSDnLj4Bvr0ErcB67n98yXgu2PVDOQ8aAH/HDPsH9i2D8yXT4T5pVcCjFnuma83w0W31ui6ilGsdvteHwYGbtM7zLV3JPtO0r/SHZ3oDs5+9slahh33D+84+ndH/j6+SOhqfi3hl0uBet7dvsD9zcRdI81len0lW+f/sZ0XVqwj77pCH7aM391lmzQ+NtupcDh3DwVFYqaq0RX3rwDt42HV2FC2ZKFNLmIB502BosYE39f8m38FRFChBBYlpXBW4wT5W3KmWldmZcFZSy+7xtTRwj6JDHirbpZYDRPDRFUSPG4dWU2DtSt3fPDGFjnGnTxpttpjOQBI90hKQIsYFFYqALvxJhYwwobPA9o43F9yy1OiRKTZBDHjLViVK9rYqkzxCLctVzwSjN2vaj7YmA6X/n4+ye+fP7KPIvaveuHZvorYhQXAtZ1OBvaQt64nuUGRW9k8q0gvZGHf3iMkU5Q3bxPlfwoGi6Dczv6Ycfu8EAMkWWZBWq8nsVQ/VaUZOI647on1vkrKXyFdCHnmSUnbEmosBCWlXnNzEGMu3Nu3RSrqU6jnWSX744CrQukJh58cnh1WNdjjAgjQpg5vTxzPT9zPX1jWa6i0i0JyOz2d/D+TxzujtJJVOYWBfbTgtEGVSvTdaJzjsFLSk0/DHTeMuxG9ocDx8cnht0RN+zkIDUC91grAjBjnSS7KPEatEbsT4zSEr/ZoKvd4XC7xIgCYrupNZ+7rRNvmkNCE+qpbRa3tyD2L1VguCrr0ahNINE63rq+eqYq6exs3nw/bR5vLy1q22Nfi0/5b41iJyr5spJzxKovKHVFU7A6Y1IllkRkR8bj7RM04IioqeWMUTNaebSOomBVlao1q55BTSJ0yB6r37HrIiZn9FrE8kpp9t5x2A2YfY/uO7Z7u1GqyfJknNRmDtDeQy6yxnOM5LRCDizTwo+Pb3YlpSjJOSeTc2CazpxevvD16ydO374yzVcpBhpnXGspIGMWTppzplncyHinWllLYUnp5kZhnRx2ORbprpQidAujsc7gOovrrRSbudyMz6ts3tJYUIKEUJs4wWl85+iHjnEcGcYdvt9hbQ/KS6GTNFp1dN3xFjqxmivxx8LTuhu/cyNjVTS5gtMO1+1R3mCLFjGk8U1MOWB9f3OL0Kpia8RpuYhJkdCDNsKzrLUhT5mSA8s84Ixlmi7MyyxonbWklDEmEJNiXlNzEXF4P+A7cR8ARAxRs5wRujVBaml+i7XtBQpz82gyN570MPT8yPM87J7odz3dP4GmsFyvPH995t/+/a98+XpC4ehszzCMArH3PUZr1mUR/9DmHLDGmc53aCPuFrlIbvq6zPSdZRw6iinUuKKNaS4EK2pSLPPKMCTxyrT2lgDU9z1PT+/48z//C/dP77gsJ9QXxen0Qs5IVOcwcDweORyOUmQ1gZ1sPb/4sX39yPHUWtENwtkd+h7nxY5xU41b6/C+Z+h29H6QdZcy8zKxhgXnZL9MRZNDIiwSE73rHCVppktgJjJdrpy/nclrxFSF16aJoApUWY8xF7AaVTymCFffDTuZW6ahTTGC7XA50HeGobP0SuG3eqfW1gFUmDYntJFmwsZlzUXoBT8+KWdCKnhrcJ3Ddd0tiEf+W+F85PjyDmUSppM9cU3NUL870B8e2d2943r5RCkT1AWlK9ZXdgfNw+PA/n7H/tGzf/IcDnse7vfUdCWuE5EHkn7P2j1QzA5wUsvU5gbQjxzuHnn/4Y88f/7Iy5evTOczNNQ0Fxid5+HpPf/8L//Kv/4//pXdfqDmlb//x/8gLBdizlQSIkrefFl/OEd//IUbmb6qJugAGm+vqqauzQWNRGBOl4l1XchJbGN2e+E6hRCkuxQCxgjEIp5lE9Z5+r42TmNotjzcis4YA9M0cTlf6L3FHHY4K6KMmAuXeeZynejGAd310IRItVRCCuQyN1hJLJu875rPpWsdSfXawVRKrIV+UXEpJbFm1oivpPce7x3OuaZaFU+8W551zMAKRhGiGFhvfFVrTItvtE3UoVAFcrPFWZZAzploNW41xGWl5iyKUO8lS9yZBmNW8QRF4X2H0jKJjZYbfMqZEETUsPogXmNrEJFKSuiUUeo1d35LsdFG31JufpwTVkMpAuVqxc2EWW9CpQJgJNAaK3YRRszWa3NCyCWy2g6FwllFWiFNhXydiPPCeb1CkjEtKJxz9B3EIN6FscrCF/pFIK0TymW00mItlDPregYlRVhFkeLaVPcn1mWSzHStGPd9y+YdONy94+Hdn3n3/s/s7z7g+z2q/f2fnpIpCTHwXnucFgsN1wsvyvY9brdjPN4zHo44PwjH02wWM7pRHjSq+QPWFkpgFFhnb3NMVLkWrSulFbxvX9ENSW83cBoK8asbplx+pGiput4Oi43fRN3sMWTt29bB01ouZ/rH76kk+k1ta2mD7Bvd5tZR1w7MiDJPkDVFdxR9Ec4uDqcSuVyJMZKLQXwKLFYdwTbOqV5R+orVEW8r2lSqUaw+0XnHGgrLcuV6/oLWnnVJrNNMzqDt2MIbMnrNqLJ5kxa2FKwbt1wVjBajbPHIQ6C/dSanmZIW1svzL6k5twO4dSvF8kcQmpgjMcdX30LVutENSCqCTbeOoFxCREiU5aB0Qt8xSizXrDUwB1JdpTuslKjHO4v1FkwLlKCQRLLU/Hu5fV5aV4zVeG/ph479fsfxeOTu7l5EIsaQc2KZJ2Lby5WpeDfeRJ9X+/G7MbDW8fj4QchYRjeoeuOrWobdkX48UpQjI+lTElgi1jLaOImQNOIu0RvonRbEp+swphMv0yQNDbn8ZEqOLGNP3w1M84VlfS08YwhcrxMpw3Va8J24UhwOd4y7HbW+Rm1uqUnbrao2dEOQj61R0RoZty9F11l+vLL33Y7j/p6Hu5Gxt6zXK/e7r1A8nf9CWAsaMXgfxx3DuMcYzbKsXOcrp+uZJUzkGlBqJOaOEBWqJqbrievlmcOux+hKiYElJVIFlIXmrZiyIsbSeKKFZQkUihTcDSpVWhHiyrLOpBwx2gnvcr/jcNhzOBzanFWva/1No2Lbf26Fp/u+pFBas9sf2+W8b/C3FNA5RayxdL6j8x7vOhSaWqp4hgeJvrXWiLUVpWXTg94dUf3AUiAuC6fryukycbpeUSngnRK3Ei2d41wFTUtLJWOopkP3FVfFD1UpJ3nwKROiEk6uqlTEKzQDuiV6hZzJoaBDpgJxXcUuMdebrkKVn1FUYzW2Mw3RaI4+RuOcpfNOLpSpx/d3uDWiXUemYwkJ1MIcMrFalNuj/Z5qOqzODKPh/qHnw28j7z7cc/f0wGXu2Z0c/TCy33ess2U6e0p6JJZHUCPSLJM5XNrnabWl8zvu7z/w+PQH/jb+Oy/2MyVKE806x+H+iT/9y//Bv/6//g/++V/+hWH0xHhlXhf8X/4n+jKhdGboew6HA/v9z4jAT4Wn0UIIN6VIdwFEeJCbSWkreLQyhDXw/PzM9XolpcQ4ju3AtMzTxOVy4XK94pzjcDxI7N90xm88nwjXy8K6rmzxbrVU1nXlcj7z0lm81fTONs8xsS06XSfO1ytH5xiU3Di0sYRViixJsBHzU9917PZ7xrqTotrAlhur1Gsh9Y+gRGMMfd+z2+3Y7/f0fY/zjhQT0zyxrq1wRokXXJYwsZgjKQtMtPnH1fYha2Xk8NeyeQr5Xcxh7aYOcw6odF54Jce7gBd5KZuFh/ddU4B2dP3AzbQ6V1JMLGtg8UvL9J7lwAiRpDPavBaetGLF/IPCU155i9fMopxXjUOooHk+lpv3Y24wnsBHHoqQqZdQKc6QO49ioNg9MZ9ZTpkwLyzXK9SCsRbvDaO1UpyHyLrQ3BY0NSXCfEHbz5R+xDiBaHKMrHEhxpXSbtRrWIkhEGNGa8s4Hjjc3fPw9I7j8Yn9/on98QOHuz+w2z8wjgf6dnv9FTeFnKhIFyyFRPLl5tPpxh7dD7hxR384Mh7umi3WzRpCxo0GeZYiRtUlUxuXSxJATLMSaZ0/Gmypf3hFP9aCv+xXb7+phNNn3nA/txeCCP40CB3l7W/Xjff7/SNQtXQ7dUM0RNDU0l1ac1Y6yB2qPmHrDlWO1HoBs6JJuJrJaSWniRQUqcoho01P1YWiM7WuKDNhdG4weAEFvVf0gybGyjQt1PqZGJLw+kKi0GM6g18CeomoEqlacq5TyVQyqIxVGaOSvB5d8FYuWkbJBSesV1KcJG1ruf6EjuRSb1+lKnENcM1ho/kLb04fwitrnPaW2b3ldlsnsJu1hlwyRVVsNWTEUNsYIwpgZylMpNwiTW2VaNFOhA8bJSm1UIbSaBRq4003SzgpOr3kUN8duH+45/Hxgd04YjXksLLEiWWaCWFl3O/puyPdOOJ8x1fXfTcO3nX89uHPspe8QU+MEqHUMB7odwcwnqLEq/F2YWowsm7+m50Tle6ud4xD3wpPB+gWCyoogIiuEiGM7McDy7qwhq3w1CzLwsvpheu08PztBd91HPYHHh+fON7dNwHWxm/NtwK0ltcM6tqKe0EZNoFFW8eq0tkfF6YEFvTdgfvjA/eHgTBc8LpjXUCrnvNZKFK97+mHnfgw50y4zlymmZfTCzHPaJuxFmLsWSgEpTifvnF6+UJKO7mEpSR80FJRxmIqKOMpaEKCVAIhRpZ1AVXpuv7mpbmsC6eXF06nF2JcsYOnH3p2+w112bXp/uuik9tvqVux/90+oQ37wwPGGrmYN4FSqZlShAvpncfZDqvdzd1F+w4rUBcNqhRurclUNO7uAe0HqTOWzCnDtyXybZowacV7RdUdxhm52GkJ8U0xU23GlkqqiowhKwfKE0tiTZk1alKCJSTmJTPoymg0vZOwjpAKaymUsEhTJUbWEJHcB00qr6jJ28c4i+s9RmXxHm9IkrWy58tl1GLcEdsVtHNU3bOGTC4L1yWwREUxO5STwtO4yG5nuX/o+e3Dgfd/fODu3Xsuc4/fWYxz+M5gnKLUjnV+oIR70H1zUmhzWW2XU421HcfjEw8PvzGOB6xzhLQIh3cYuX/6wD//3//f/N/+n/8f3v/2G84rwnrm06eP2H6Psl9BL+z2I7/99oHD8fjT+fFT4bkVNQpE7NNgaGkOVNYwE2IiZ/ER/Pb8wvV6IYTIfr9n3Eke9eVy5du3F769vND3wj3LJbEsc4viU8xT5NvXC8/PzyzrcruZrWvgcp3oO7Gk2Y8DfddTtOI6T5wvVy7T9WYbo5T45E3XiZdvL7ycngkxYozcsmIM5BSppdD3A67r2vKpt07FT48SywmjHXfHO+4f7nl4eKDv+1tHd5okpnGZ23tqMWJbvJqo71vXpk3C0rhdtRShKWQRDaQkSlVnDT7LQeNCZGm0gus0kdDEUkm5oI2l6wc6Y0XE0vVA81fLksShGsE55oSJEVPEQERbe3MGkIST2/4hkZk/PDFOTNffpZswXxvlwN4WzCZMEqPpSM6R0gjGW2RgjMsNPkkxoEh0VqwenDUko4lFzJJdBYcowXOV3PYlrqxN5WqLpqzPBBWJaUD5oXV7LdYJjN3IhqLMVgalPb7bsz88cDg+cLx/YBzv8H5P1x/w/YG+6wXu1v+4hHNWAgCMEh9E64Wj1veOYTcy7o/0uyO+H7G+a952W4dL3eaa1HubzycyJ3Ihk25UCOpbf0n1y2n6X33U2x/bT9qd482vqzd/dnudWvzYfvh+WkFnWxGjW6Zzg5eqFohLfBPlPW+sUlsttu5BBSDiXACzoJgJarml+cwhk2wGP+D9b3i3x/OCLs9QJ0pZ0VrQgNkEKGKuHFPB2gHXj2Af0P071PCBtfaQFeRITQmKeHxqnbE6Y1VC1YgqSeaslkKtlkita+t8GIqybWy2VVO5zDP2cm62RTPXeWGNiVwRuxkrYrIiFG9KBqpqnUER5FjbbEqU0Hes02jbNYszIfdrbRiGXlTcLYtam0jJRWBUo0hUahZv4VigtINb1NPyETun8Z2hH0RRfHd3z8PTE09P73l6es9ht8cpRYwrcVpYpishBPrO4bRicJ5+GLHm+73C+Y7ffvvnW4TxrfDUIg50XYf3vQhV+cEpQalbB9Q5ye0eesvYW/q+o/ceazdEx5CTiOBiSsRopWvUdfRxFPFJE4Vd3YWUM977m/jlcNjz9PTI09MHCtzMzFNJpCayKi1BSszUX8V3uTZHEmDzu/bm7QqTZ10j03Vluq6YWrk8f+P5y7Pw3xIo1ZCMqtqZIZnm++Md1YjTRMgXlAliWq4SS5goMXO5nLlOE8aA7y2qZEKMFMC01B9tBbEJOTXO50poaVW5yhkVwopeNPNyJUQJSpFxFHRP9lLb0KxX2s6GTn63v7S97Se0zDh2j7+JUNfoJvWtQoerSeaGsxjTo8xws8DSBbHVa+Kl7dbtqwJl6Ma90DLcgjUDPZ4uFsrzV+I8My2hpd+N9Pd3PO5/Y5chV4XrRXAqHfiDoFLGkUKhWwLzPLEuV2qNaCIdEa8yvusxrqdioSiha8UANuLUyEBPdQfUcBaKntY/jZFuvPItEIJtJTQUM6eKcwO7nRj2W+dRpiMmsCbj3EDXHbH2QCld0ylUcpT1IJ7IguBYWzEOrFN47+h6gy8jjgHjPDjRgCgk/nij3Wlt6fod4+5A1w8SWqM11nnu7p949/6PvHv/R453T1g/ok3F2IixnXCl2wXycDzyT3/+Z6wbWH9IGv5F4fnK17gRtjZaWSms88L5emVZA/M0cz5fuF6vLMtKCIG7+3u6ruN8OfPt2wtfvnxht9+x3x+oKrOugRATMWZevl359PGZr1+/Mk1z6xhm1hC4Xmc6LwfLZb+n6zpSrZymK6fzmXlZeEhJ4LxSiSFyPp348vkTn798JudMP/YMYZTuZ8nyoRstZGdM67JuPaUfxwG6rqPzlsene96/f8+79+/Fc68U8eabBi6XjuvVsywr67oSY6QmITlv3NbtZkPbrHLO1JaFLXZMiTU2iLk0QrTRxJRZY2RaVs6XidA8LGPOUngOBtv1eC/kZuDWeUxJ/NxyqawhYJ1k9cpieH0tN6XrTfn+M+8gxivn8994efnI6dtnqFvhaZvqWWCQEGb5iiultLjEUohBBD3zstziGvu+47gb8UU4SMo6soaaJe0nV+mwLylyXhYuYWHJK50tuFKpIRPqQs4DpAHf39H7Ozo/4p14uxnrca7Ddzv64Y5hd8+4e2TYHRj6EWM8tcqmJpQKjVViXK+bkOr7SYGodLVYjBltsM7jukHMiIc94+GeYdxjfde4nboh2W827q3Aa1xKuR0LX7pkoZpsFxmZm3IQvS0Ob5fpX4jBfvX8SjS2vacf/qN993orTH81J4ySKN1NaLYFT2yQnKiA6w1ZEANiA8q17y2iD6Ui3k0o9YJGsaQTa5hZ16V1fo8M9g47anR9pqwdJXyl5Bcg4R14u2DUikII+v3ukfHwB3T3G7X7QOjviKqHUtEEbA2YGtAkbM04VUS0RPOCLInXTa+idBZ7luIg8X3dCZyuF7J3pBgIaSXEmSUkMkriCrsO3w+t4w05VihSjDur8N40/p3wCiFjjG0esIKAyNLVdJ0krnTRkbJkYMeUheag5QDJtRJLJYPYnliL0kKbcM7Q9ZZhcOx2I7vdgfv7Jx6f3vPu8R2PDxLAUEsVtGC5EucrKQXIB5yC3lnG5rbx9nHW8/T4B0kkavuMNJtaOMUWfsBNsvNmvilxGzC2pcJZut7SdYbOG7yTyD+jDaVIoyEmTYiaEDIuOeHkNhTnbbTxsszCFdSKvvMcD3vePT7y228fqEpJAdsEXEKLSJRUyalFmLbve7One6NfyLVgVEHxvQNGXAPzdeFynijryuffP/P85QvXeSWGLOdOS/2RbnmhG3p2+yPjfk/Xe9Z0IiuJgs2hENfAMgemZWaNK/OqucwW3SghmYq2TadvREiYamLNgTUFUk14TIOQJV9crRCi2JRpo4Qn3GhpW6JUI+q+2R1+ttyT7e3nPUYby/Dun2UelLdCPfnSrduvbAe2R1uPs0aofkWRtaUo8fjURj5/YyxoT0ZjXMT7I7rbE3PB/PUvrKcXwlpIo0b7I/3De4b9A8V21CpioGEUUapxkkKntG2i0cR0uTBdz+QU0TXSpwtjmXFdh+5GtN1hlGWdJ+I6U2LC7iJmH3DHBXs5U6LYj719hH4khaezIlDeNDSSdBjJKUv31wjlylhHVRYTKylohm7PONzh3AFKR4yGZUrM1yjuNtNMN0/Eom6CId34313n6XJPr3pwHuMduoUorCkTs4hVtRarqr4f6bpBil9tcd3Aw+N73r3/I/cP7+iHAygrTaZqUSJXFVGR9RzvH/jTn/+ZNVZ+//T83Vj83N5SCJ+ibjactfny5Mb5mTmfzpwvF67TzLoG1mVhWVaUUjw/f6PrOi6XC6fzmZeXExXFGiKowrKsUnhx5fRy5eXlhfPlLLB1kK7kGgrTEummSN8Ld0Nbw7IuvJzPfPv6jZwz67QQG0SbYuLz7x/59PEj58u5dZdkmeQcsVaz3+/kcC9FCOS1HbC3ze/NMCjF4bhj6Dz390fu7o8cj/vWWYSwrrI5dgJVrevGaY2EGOXW3Oxl6tZ3L5kSY+MnvcbzyYHS38a/oAghcZ0EJre+ww87+qooxhBSEV6UNnTDjm4Y6LqeLTElJemiWifwelWyqS/LKkbkb9JRZHKq22G6JeO8fUqRnPCwXJinZ3IuKDTWeoyzaN2ggOkb03RuikTR3ZZcyakZ2GNwrmccjzi3w9iBklYijmQdeugpUTq60zozLwun68QUF9aaiIAqFZ2bqTamxc95ERlpQ64i1kA5jPJ4f2Ac79jt7xn3RxFOeI9VhVICuegmaBC+jdFNkdt8yr7fOYTbqZVimSf8PNCv+0Z+z9iuRxmH9T22bdy34uXWanxzzWmd75IzKUXWdW1crEV407l1jWktFrVVPG86sj+8xn9YYL6Z1/+L30XWwwanbYfM2yJBHqMVnTfoJlAqt8O+ZYo3c4maS+PlbkOobp6xKCOHVe4FGjaK5DWlSIhCpjIlhVo0tXpcGWDdodIV0tZDBa81Q6exvWE4OI73A7u7PUkNrNXKhrqsKFNQJmNUwJqAqgFVpdivt8/HoHCoqsU6R0HWpcXRuptn+NvnfPlGUElQFapYtnQ9u/FAONwTwwK1MCmFVpVikEOXjDOti96snZRunMMQqSG21DH5MLSuVCI6ZkGdWkdIPONV45CLfZHSmYohZ4VzQtkR2xPPMHQMY0c/7BiHA/vdA/vDE32/Q1VFXAMprSzzQlhmSg5oVYX25B29cwzO/lR4llKY5lVEG06SoVQ7jlAGVfVNeCSWafIlnTJkrzMW68xNRGWdxtntSwSGCtWOJOlwh1jIWdwvSvNG3i43isy6TAx9j3eW3djzcH/g/bsH/vjbO6rSzZJGvkKjSJVWdKaYb/66t6KzcXUlQSdL9zx8/W6N3B2PPD4+cn/cyzqplaEfuE4L07wyB0ENbQsQ2Le4Vec6QhrQVrEEiYhd5gtTnkhG9ibrLS57qoGQglzu18AUZpa04IzFGQUmU40SHjwVj1C4/OCwfjMorThn8N5SS5bOpH1NNWuLtu0trz8R3+r02sVrxvM/Pdqi9x+kk1ayUJVSbIVnFh9+rSWNyvUS32qt0FYyZOWoWPkzSuZLUQKRp6pI1lG9RqWE7XY4P+CsxxowxuP6I93xD5h3f4JuD0rdEAithWeslGmm+2ByxpoeZ3sRKeaED8+YeAJrqX5ADQ9YP1LHgImixajNA7QLkW6ZKWFFrf9D3iPb+EnAhoiRBDHUxkgATUiENZFSbTxn0ZMYYyhVfLzHHsK4EzpYv8eYgZw8KRbCCuuaW8zpIolSvsd5JXzXpEnW4X3HoAfcMIioz4hQ+rJorktgjWLHuDlc+L7Hdz3advh+x8Pjbzw8fZDmivPSTKgV4eaKGNNoi9/teXx8zx/+6c88fzv/54VnVYqqRSyilLSAVYHavP2WeeZyOfP1+RvXaWp5qol1WQH4+vUr3neNp3nldL5grG9Z2oV5EU5nionzeeZyvXCdJqZ5IUXJ6l5DZl4z3RLpZyk8C5nzWbqoLy/f0NqwXCfm64TThmVZ+PTxd758/kJMUXh3zgCFlAL90JNyFEunFIWng0U8On82e1VKsdsNDM3gdhwHut4z9F27EYj6dBgGcsnEEAkhsoYgfI8Gu6f2763rwrrMlBjEZukN/G6soXO+qfblAFtjFLWqRrwf+5GxgPKejJGM+65n2O0Zxh39MNzUYzFmQggysbpORAudZ55aXm8QlXvJhdp4hfJ31S07+X/1lNJU8UhEYlULMZ05XT5zOT+3Lm4RuKooSQXSPb470PV7+uGJbhhQRhFjZiqQtMWMI6yFOE+sy0pcIpd5ZSmRqCFbQ9KaWBUoK4vBj7jugHViLB1zJsaFZKBWi3OFvsiGqZUUHapIylMuEIvBdfu2yFUrPv9BVjuVsC6oCr6fmzXTijIWFSLduENpIwW52eLjyq2U+wnAv1EuMikmwhqIOYmydRU7ETk8t+Jvs0m6zdLvXtt//fnPis///Hsao+i93HCpGxdOeh6bGVupNC5ZeeVA0oq822VHPD9r2VGVpXhPoUMrT02BpVTyDGGtmKzRwWOywxbF6GBw8jrK3uJHw3inOdxpxgNc18g6XyVOsDrwleoyOIm2rWUllUTNqsF5HUp7tO5b8SlCvlyTiFCqIdfvVe0VuF5eWEuglIR1loO/Z+hG8u6OmgI1BUl5KhmjCyXpVngWjK5YXYVTapRwrWoVQU9IDeZV0pXXGh3FN1DWeG6IxWaLJbC+8Mea73EWZf/xuOewH0W1PvR0Q0/fH+i7Ozq/x/kdxnSEEIXXGgR5SjEI99g7ukZ96pzFb8bbb56YEs/PZ7pmB2aMQOOmgG0BIwKlm1uX1xh980beCh7rxDifjR5rpFB1Vtw1jBaUolRFzhBzJSUp0MVuZ2slFGqNzNOFcejpO3crPN893fHh/SMVKTy3ZK+YWuGZpeMZo+ztawiknKRPq+SCUGuRojUsXD4+f3eGvHt64I9//APj0OOd4fH+yLosXK5XTmf5iinT+04oAs0Mv2IIIaKNxq9aePE5Mau5FeeC2OXaoXUllkyOQTqgYWaNC1p34vtpE9opjKl4p9DK0ntPP3pcJ11wVLlFKa6s7TOSLtnb/WoTDW5PynLmb1GMqsHHP28nhto9SIHytvAsQrOi1Rs4j/IdpvNYb6ipQBSv4Yzl5rGjCqoWclWkCklZsgb0gjJN7+A93oJ3PbY/4HZP2Ls/oXdHtBJxmFxNmhhSKWj2c7UWVLUYHLpUdE6YuaB1EgTR9Kh+jx7ucWPBlMwmRKu10uVCnxM1zOj/8y+QXgvPkiEl8fNUqtljYYipSKJbSJQiF1dnJRZVG4ExrCl0nWccesZxL4WnG8mrFwFkVMQgyG9KK95lhl7heqHt1KhZtcNaT2e80Gz2Pb1rLhRXoUXlaybE8mqt1o90/YjvBobxyMPTB+4f3tH1sr5lDOXmXrN4rltr2e92PL57z/vf/kjMP583v7RT2oLfaeKGSpUDcV2Z54VpmrleJ65XyfIsqQhMnjJaf8a5jlwKl8uFZV6Yu5nz+YwysMyBZV2kSFuD5Fe3BKCYJAM+RFnoy+q4TjPfXgzLYjidTpxOJ6bpinOe0+nMMDyzzIvwTb+9MM3TDd6el4VCpVdeYMsKOSXmaULpFVrXzvuueZd+/2xQeIiBZZmZJ49Sir7rMFYzjH1rRKlb8bCGwLKExhnK8nfXhVIS61xvaUclJkp46wVpMM5CVJLKFAM5iGgJfQbtWFOh3+3xo3Bph92B/fGOsXFrTeNnppgIITIvC9N15ny5MJ4vXM5XrtepddTWW0LOBoVtt9cfu2Le77m7/xPW7Rn2H4RLUsVwVmtFrjMhXOjHL+wPZ3LbyKVRJjF11nZ4v8M5j3WQ0pWXyyfW6zNhPmFVYBh7lE6EuFB0oagMBmxv6b0T+GWDuDuP7zuGYc+wu8P4PaVa4kU4xyl8RaHpu7+x3x94fLzn4eGO+/s9XeepqVCqI6uRcf+ecbdH6+7WhRFP1J8XzGbjMvQ9+93Ibhhw3ou/mdZ4615h01Ywqs1Pc+sltp9u8QqqbepvISz5c+IJuXWnjXENZmowpqo/vbb/2vMLnOwf/t7/4nvozGb5Kx3MrRurbl6ZsMW3VkIqLaceNrHG67dTUB0wSrpT16NsEEFQyqwpQSioNeFrpm85wH1vGHYDBzWgnEL7FaU/Mc8z53PPy3lgrfckfYduxs8haZTy1GIFmqZZP2mPMR5rO2xRKCI1r8R4FRoKFsKFH4adWiIUDSVBFi9hYxxDN1L396iaMKpgiMwTxGAoObZ0kdxERqCtls+8iOAsRblE5sbDFghLBEshJNawXR7lwiS56qJWr7WgabGJzrIfPYfdwDCOdM03cxju2e/eYexArUaKzfVyW7tKaXzf4b2nHwbG8XCDDzcO8tsnhJW///5XHu4f6IeOznVyeGp7u9waJx0fJVFQUsQp1eKHC1vyhVGvsJ1uugOtDEZJ/rtqxWc2CpMLQWVCSVQEadLNYL73nrFxRDvvGHrHbuzY73oOu55SBV0SuF1jVSEqScTLSgS2pv0v13YxNyL+q7USU2JdNJdP3y+dx4c7/vjH9zd6l1VQa2Zdxaj9+dsLMSZ24yjccu/IGaY5cr5ciSkSs0dFT0owzQvrPAu3N0fpJuuK0pWqGyqiKzQ2i25ftpOCsyLQbuc6+p3DdJpUAyVk5nVmWedbQ0iWp/p+eW5UmrZ0c24cUWNQymPsz76VsksoIj0K3Tx4LUVb4TIDm9Wh0hatLFHJWEcysWZCdQRso/Ag4Qm1NCGPXBirqpLil2QtaOvwg8ENPcp6inYkHLoKxQ6a8HH7HvKu2vtVZOVQrm/WdUn+frVtvlrpwOIoCoqYut5QoaIqmILaxHNvnmkJPH+bpFaKkbTzpN43moZusLgTOz9lyVW3YjXJmVoqyoAfOvw4YLueuDgKmlwgpY0nGtGq0HUa3zXhtTbUaokRlpyxnaxxZ8WDOOTCmmFaV+G9W7GqHPd7DncPFODx6QNP7//A8e4RbR0b9bdWscCKIRJDwDvP07v3PL37jbuHd3x9Pv80L36R1d72E6VlImsFJRPXzLyIr6Z8LczzIjY5TcyitUCs1grMMk9LyykW0Y9xmiWsrGts9j6tUq40OENuByYmXAgsq8XNCq0KVwPn84nLRYRMXVc4nc5YKxYka1h5OZ1Y15Wu71Alsa5iIm+dkeI2JpZpEv+rtpkN4w6jW9X+3ThUQghQC5dpEp8uI4pbYyVL1w7SCrfGUEol5cSyrPhOEidizqyrqFini751t2JMpBabV1PGiquvWKYAugiRLOVCXQOVKwVNLHBUFtfv6LteYhvv79kfjoz7Vng2uxFRyQfmeWE8X+iHE11/xvcX5nlmnoUeEZsi/9UaQ/0E3/pux+Hun+h37znG0LztWpEKpLwQwsThTr53uUV0Cq/PGjHoNdqS8sR1+p2vX7/w/O1vLNMzpmb2o8ONA+gEi6EGSWYxXvzYlDZYZW+8XO0Nxlt85+m7AdeNZAzTfKaWwHQ9sS4zWmnGYSAu9+RwT80P7MahdQ5HMA90/Z4tz1YuxNLR+JWap9aKMZpxHDkc9uxH8R5cY5BDqmV9l5xbKNRbmJ0NKd+2Om5xrFtPtAkzhB+bSVFcE2opuA6Bm5Ai5Fd15tvi8x8Vzm+fH//M1iuqP/2Zn7u/W2+zbArt7derqJpRmqwh6wq5Kfjrlu4o8JHwGjdvWKBaWZvWo0xCl5VSrsS8UMNMXSdgwdsWp2oMw97jRk81kVRXYvzCPH/i/E3x7Zsn6z9C908YnlD1SFaehGsxiZq8Qf9aeL7eVZyK6DpRwpm4vEAtEs9YFsYfxkGKyizwYVHkEDBIodT7HsYD5BWVZ5wprIsmhpWcpEtaa77NN3EYFS/ikjUpiTWabPIK64UOs6yRdRFKTwWsNfgs38s6g27janRtcL5A+UIhsSjV4eyeYXxE644QM/Ny4TqLw4i1RqD5fmAc94zjjq7rBeJOcskuP0TKxhD4/fe/olTl6d0D1u7oh6ZUVrrxgcVWbutY3uy3ihSeqmQMBltqizPUYPUtuvlWhGrTBDoAmZwytabmKy2KYKMl1KHrpOh0Vmxr+s4xdPJjzuLYojb+R/sciqkYJETA0PYe6o3Xbpy4R4eQmFsR9XbNHI97np4eWsQodO71nJiWhX4YiDFxPOwZ+gFjNNO0Uj5943qdAW5oUYqCFG57K1UuKqbtU5JbrtBOY5JGWQVWYbzGdc2cVsue4Z3FdgZMYYkzOVfOlwuX68QyB+I+tw762zX/9hItn5kUngFrpTu3XZx/2m+AkEVgaZo3cq3b5VT2dblEyK/ZqjFFETOEAmsxBMwrHaPKq7qx35WlkIkJUlagHaYbsIPB9APVOpIyqKxQUfb3imp0CaFsyLqTT1DYTLZFWolAsmBJCFUELLmaFr+6vZ/2Xtt/1G3P/2FvvU4riQvLallXT0wDu7j5hBu6bqDrhKtdQpWIWwolNbFurVRdcUOPH0dc37NOjlKkVrgVnjmhVJEUNmdQRricuVjWAFNImC7SxUTKRbjkxmKt1HDix2vFX3W353D/gHGed+//wNO739gf74TCt82HUoSSEgIpRHa7nqenD9w/vWd3uJO0rR+enyMzm2raaLEpqlo6AnNMotYMQoClcWly2lTZwvcoBYxJKKXFaigllnnh+fkZ1znpnsZEDEVgkarbhyfKaICck3hOxsC6ampJaFWY55k1phsh+zrNVPVNNr0ogqRSc0v2MBIFpzVujVxezvyu/45SihAD4zBwd3eHM4o6SAzZdwumyg0lxIh2Z1FcNsP6vVIY35R/zfYmpUhaE9U0CxidoSRyCaQoh0xK4eaJF9aVHBJGiRdmrvJhGGsk2aOU1hmRCTVfF7SecH5kGFZSiHBLH2m3NrV5CNISGXpcN6K0EJSV9hjb0/ULvp8xl4lpkiJZeLdi+f1jkVHRVOXkdmocmtIKMOkMGuOwZsTae8Zdbr54NLqwxmhLLYkYLszPn/j08b/x8eP/yfPX/8BZw7vHdxyPA7tRs+jMdO2Ia6DaTKliX1S1CGxyLu2Asui0cJ1OFBQ7Df1w5P3TO+72B85335imC6VEnLPc3R/ZHQ74fsT3Ozo3YN0dxj3SjY+i0G1eh9tG+6sr/LZReWfkMFGVmgN5uRKunuu3Z/rOCz9y6HBug4l+LgJvjM/WadZvhH0ViHFlmS6EEKilMrQulHL6p+/2Vry2raONMvG/5nX+7z0ahZMPWOyPdEGrTE4LOa1SUBolvDIlTgDeSGiEeOGr5pHYPGuKBADU0r6qrJ9aV2p4oS5fyPMnWD6RORHNxDVnCLBPO/Za0e8t42AJy0oKEzmcmS8F5TusPlLjnqoTS4IlJ2IrPKsWzz4oAoHXFdKEihfIE5SAtUYufDozfl+WS6qLteS0EpaJHDNKWZm3OZLzQsmFrhtRVJxxrGYirDMxrTfHjVhpNj6VWgU217mizGtwgARZNFRCv3aiCpJGRMzkvLkMSDemtCjdeU70Y2IcYdz39KPG2gHf7fAdrUtjUQox+jZS4KG08O+ZpOvSumHlB5utlCLPz5/pO8e3bw+NpjQIFKua0GITV7bYR6WkgNo0j0pJdn0xBVNlP8rGUqxChIAWpeytcE35FQoPjUJUi9j6GC1+tNvXJgqUc0ooWCkVudw1eyZVi+TNK8ApanGCyhWJgtTG3C4JJWewhWh+3jM3/2ZVBDNUjUO4iayMtVRo9oNyiVzmmU+fPvLx0xfOlyspL80GyzTqjiB2tYjLjLEGp01LPOokRKOhxpmCaq4bcuFrZ2vNzGGmANc5kGLh9HJinQO1aGqR8RUh4HZDbpfj5nFaKzcrK93oXb+kErF1wypo2ZdKzuSUpHvd5pfS9pYS54wiG00qhZgUsUB88xpKVcInbMWiKgqywZiBfjiyP74nk8EkkhlwdkApTytkqLnePqqNDnTjnLf3oKpCFSNoXa0ScUkziFeeWq34fLbaBbb9WNaboFj5p+NjWiLXNLEEyxIia0wMvVz0tDbsxkTXB1D1xrW1RmGNxFY7q0FZjO/xw55ud2C+9ORZCVyfcuuIi75CkDtpgVcspThCMkxLpVwCRV1JsTL4SMiZaY3EprNRWlIhne8ZdweGYeTdh984PjzSjyNKawoFgyC0qek6FBL4cLx/YBj38A/8sH9ZeOZcb1BYLZmQElNYmdaVmDZ4TabZBh1L50wmmtbSOpa0nNxg8G/4rsM6IQ7HKDernF75YY30hXgHilVGCIGUKlSBrXMukoOqFNOySnpHEwyVUiRNJ0UK+RbraZThW5a0mZSkoH16eqBzmnzYQY1sVjBvlgzzGqVzoCe0dbiuZzzEZpOib8bgEl2XiSUScyDWQCqx+cvNrOtECIskPKXUOpLCgVRWtTgwyVS3Rox9uwY3pZRvn0lsec0xpFtbe3s/KliK0rhGllZG47RC20LMlZhBKYv1Pd284KcFba4oMzEvi5jh11/f1GSBKiqGWnUbq+YNAy2dQOOcprAJTTYWDVALYbkI7H/+yOdP/4PnL//BslwZ7p+4e3jP8djjtRh1265HdwFCfr1Jt+khSlIZa+Iic6kktBWS/t3xHd59YLp/YF2upLy2aLm9LKB+J/D8cKDr7rH+Ae120mH7aXn8MCMqwr9SsK4rYZkxStbIcrlgqZy/Sga9dHUOwhdUlmp+XH6NF5SLfN3UuNvvFULztw3LAkjEmuv6NiY/AOTttl3KtvHI85/xdf93H60ksUee18Iz5gnKCVOjcBgxWOWEbqEtCU2q0tGIpaCaBUgtCXKk5GbHlcV309RADd9I14/U5Qus38h1IerMZYnMl8SSElHBoz3QDwPWVKxaKWklzBOmHDH2BP5AVT1hqUxrZcmKVFXruFRKCZQkBWtZLxCvGDLOG+E5JQVeUbvXsVdA5zzOO2KYWdPMPE3kVHhVVlesAe9HrLYNRhY/1VoqhdLU09ulrUXrWocpBV2yzJG2DqQ7ixhptz1TGBiVWkUko2jIVVWkWAlrxs+FYdXkMmI9gMO6nqHfAVsnVEQl1r1GCIYYyfOK89JIMK2Iy+V7lCjlxOnlmb5zfPl0ZDf2HI8Hyc22pjUMWvFSZF1Lh6l1wVRDG5RAljpXqqHdAbfEICtvHC1NkpRZQyKs8XbeiJMCooJ+40IhkcZNnNTs31KUH3Mb31dPWvOq6m5jeSPMVFGhR2h53j+vsQ05uKXB1eYLurVGb5cImUmlZOZl5uvzVz59+sR1uqJ0pRvkNXddR4iOlCOxcexdsxayzmIs4o2pqlzcWuFgnRNqV6mNzlBZwkoImZpnwlq4niZKUnR+RCFrVSKX295fBNFMKd5cUNZVXGxMC0rYxuWnu3oVBgpK6CMlyeekVUtFM0Jf2NIRvRVRYsryFQvECrQuYpGpL99a1I+orMU3tb/jePeBQIJ4JeoOqzwVK0VnKjc0d6N31Kq+KzxBoatucbkVVSqmWlBb+IyjFkPJuol+ZI7UDXOW2S2F6w87/hIEEQ0xEWJiWRO9XyhFULTdPtF1HbkI/cY5QR32g2foHUPnBQEwHbbf0e/vcKc982xIJbYL/atDTW3okuhwNDFZQjTMURGnRKwzS6j0LlApLXhGxHMGsbWy3jPs9nhneXh8x/5wwDeHIdmPakPmJNJZ/Lt79oc7fDeQsjQJf3x+aacEihiTQOvrLPzGeb4pKcXrSQZ8O+i2w06phJY4Dfm1KhyF63ViWWWi5u0WpORWkVMRmwxT2k243ejbRpWbBUMu9eaLp41t6UCvnBTTBCGlFiEn0wrjmDhVWdxagXOG435sGfBtZZQfoXb50DKFkMSMfZ6FXjAvK8Za1hipGyE9BdkUUiSlSAgr67JwPp85n8+sYRWoxjm6QUj2Oaa2CYnvYSqZxrcGpXC+Yxhc8/uSWMzdeMA5R06Z6zTB128sMdPvM12fcD6KoX7L665ITrKxlmGUeLCu7+n6Fd8PjIfQlPhJyPMlY833C2bj7FUFVotquVb9Bl4FOWCVWItU5NAtmRQX5umZl29/5+Pv/50vX/4nKUYOh3d8eP+vPDw+8uHDB4yama8vpBKxncMOHTpJp1vfuINy4Mi/Kx6f1IRKC+fLV7k5KsfdwTP0Rw77R7q+8dN2e7zfYU2HtT3W9xjbouhUMy1u4/y6iXy/YGqtfPryFYoU/p8/fuR42OGtFTrKMrEbe6y3aNcMgSn0Q4/X/ZtuqoxaDIHpeuVykTkyL0tThMuaWpdZhGBB8prr4U4Owu8uBvV2kMYUG1IgxUHXdbcOqkBkv8Dm/zcfraFz+vWmHQO1zuT1TF6/ovIZled2aVKkZMnZkrIhZM2yFtYgquGcCzUncgoiDIsrOa+oknAqofMFFZ8x+YKpC1kpkjZNgSxWW9+mC9PyQAgPaK0IqxD5c46U8IKa/45xGl0XyjWyXgPXRSJZpbgopCQXn5ympjg3TRm6B+3BdPALT9POd/TDwGbwWMuVHGdyg8jEP95JBKUxt3CDGAJKB4H8Smmc68yWGCUpchKjWatw4JclUpGDQiuwncU2SyZjtmJWFN85VXLc4h4tWg94f2TcPXJ3/4Hj8YndeKDrBvEEDSuoKpfZJB3EdV0IQZxI9rsdVkMMHTGKCvrtU0phmWeev369dRg716H/YBgfRvHXrVDbxXWDZjc+tWqqZen02CZ6ceKta5v6GPF1rND8KGvjwKrWPRN43jVF8Ou8V99xRRthBVQLQGiJckbrW1fzbTrRVvGXWptriBSrRhuMNj+xcqRxkiU6tBWXdSv+Wld7u6BvO43SkmuOVszzTC6RmAwoGXutJWt9msQPOddELrqNl8PlhC/SbXdWaEjGWGLMlCJxllaLB2WOEObAMkXWKaOw9NZilG/cfeHYSqreyvVy5Xw+kZqFoRSeK0orjkis5i/iybfBABCP3BjJIbYC2aKtwVS5lKhaSEliZ1NrzuQtElZtWFxGDkmx5SpVup4mW6wZOOwfCHlhukAqjnktmDmAXSBthaIRQWjzBpXC87ueJ1tqqs6gi8JUKTSFr66IeQsTgDdXkvZ/FZUr4w+9vlwg5IoKpdFCYFk3302YQsG5+ba2jTWMgyelkVQUpQhlIaVKomM8vme+fCJcf0dbZCw3HUCFFJJchmPm5dvI5WJYoiJVS06KtGZiCsw23+KbS930DULNsNbR9RLpetORKCE7yGhVcpGglpTFBq7rB4ZhR1VGxMFr/GlK/Fx4toUX1pXrNHM6v3C9nkWhHdOtA7dxQWURvVbYOefG75MbaWXrii5toevNnQndzEbFh64lnxRe4RAatFokUUKShxo5Xel2kyu3tBexAlI33lQtlUQmIGTesK50neP+/oBRQqw1GkrrmH4/ELQ4Q0XKlRAzyxqYloVpnqFtkDm3TPYqXJ5S5SAVErlEe16nuXFgDb7TjfMoHcsck0BlVSgOQFOLStdhHPZ470FpfNfT70as9eRSmeeFVGHNlV1RxFTxfZGoRW1uG2eliilzJ5ttHwLDENntM2vKpFxv3eUYA5evXyg5vR2KW+Epnm4bsLBBL8Kl3eAWXcWTMsWJ+frMt+f/4OuXv/Dl878zzS/0/YHd7sjT0x84HvfsRsU0/S4HXMn4viPmxBJFXKJKlnxxBJqxVreUGOkApRKZlzOlFLzb4+zIbnyk7w8cj3fsj3fsdnf4bodWPUo7lLHc1I3tABAQ5xU2+bHAqMDpfGWdrszTxNcvn3g8Cs+z95aaA7vdgO082tlbKhG1ClTWCvqmz2yF54Xr5cJ1urKsC9q6VkAG5ukqm3+MIoBrBcmtg1JfbblijHI5DFLsOC+ikNsH+P/X831h+6vHGsUwaFjEWiXlxvFZZtJypoTPEL5R80pJWTwXkyZkwxoV17kyr80Kp3U9cwyEMJPiQs4ruma8KXi94tSVziSxGzKeUD0xROawUOaIOZ+IOZFype86SoV5EaVzzTPwLJ3oMpOniXiaWS6JJchFt5ZCTDO5BCAJ1DwcUS0xx9geYwe0yT+NhXPCM97ihgWug3UVtfW2TrZZVZGIutw6Z6+pX63wpN4OR91idlOWilLs0LYurMV3lq6TpC9jNTVrSlakVEXlqgqlKLR29MORcXzgsH/i7viO/e4e7yUQI2Vx3wireKjG2Jw41lU4xlW4omnoSXEhBncLibjNlFJJMXA+nSg533jod8cH3Ht7C98QYkB+7XoCtKLTaEkuElN94WjeXDfUloUt819skDZ7IxFmKMVNaGVaotCrKEY3+y/TzhiNRIc2NX3juhmjm9KZN8WnFPWlVLSWzp/RmfIPsqg3BG7jLm6NzlLb597iFW9NQiXJNv1upGvZ7yEESi74ruJ7j9IjSknhVYjNiqpRMJqlkWsXEO8d1rfiikZn23iJCeKSWa6BZUqktUjQRW0Crlacg1AZlnnh5UU8uV8pdUKVKLm0Il3dupbfTwqk4gJqSeIwEaOkCeGoCP2uMS6JSWF1bYVnSwRjQ8+2lSPnTQFSqa8We6VddLqR5XomZEVaErgF1BXlKgqL1g5t66t1oGrNFPVKGFDSzGvfV7UCF1lbWZHUq3vHrWh9K8DKP++b4vJB635LgIzRStAeKkvIcsFq/F1jNSFKWGcphhSlNos5E4rF7x7o90/Y/ojpwHrdbPw8OVXmqzQLp9lxuiqu80hIqqGSqnFCEyEWOi+IpdGq0SzkEuacp+sHSS0bxkataJ/H1uneYkK1ph/3DLsD/bgHZZmXwBrST2Pxc2SmlcB7ncLtZnNtPpkxJsISbsr2dVlvCkKtXz0klaoYrRocL7YTmyorV9U4MwBROlcNXrope6mNxF6JbJF9FectW6RWaZ5RtVZp16OhtFitskHDDbxvlkm+6zge97x//477h0f6fhQPwpx/ur2rBnWVokALFB5SYl4Dl2lCW8toJDrOdX3jO2rWsDLNV67TwhrEmqAUmueleF6VmNFqaRNVDp2qhOicimzEuiosm4JSUjusF++xqiTqM6ZCXgO4gA0R2xU8Skj13ouJetsURaUqM6XvO7kw0MIwK8SUmaaJeZn5H6dvhPz9ZHm9D77SMKRrUBrJWm7ztdTmKzfx8vwXvj3/hZeXvzMvV/phz/HuPeP+jv3hjsP+gGImLH9nWS6sIaC0YdeP4opw3fxY2+atNM6MGDtKQlNNpLi0pBKJ9LxOL4AVo+Vp4nR+4XC+5/EpcneEcXR0tm+ZwrKxysavWtd8E/v8xDhAAb4fyCmRiiR3XS1QVqIT/8Hhyx7tPAVYl4XpMpHfR5y14AuS6iDeaSkKXJ/iSqniE0j7e/P1QgrrbS5qbW6dmyKO1qJ4T4nS/HVPpxO1QteEIG8PzKpufZWfNoEf3+P3f0q96Qa8PtZqDnuHcwVrJYVsLpq1VJY1Eq4LablQ4pUSZ9k7QmYJsKwwLZV5Kaxrlo5MzpSUSDlQcwQyzlSyU9SuYrpKtQZsR1KWVDShVtZGvVCl8vnrmSVVrHVUDJdLYlok/7sq4dCZGAnXE2m+UJdEXQupGrHmqRVlFMY30/dhwA8jvh9xnSR4GB3fjNK2OBRWO/zOsxt2HA/3zPPE9frCNJ2ZlwsprczzCyEs8mvzhWm6sK4TMSzC86y5QbCIJdIGx26CM60aH1KLKvs40vUO583ts6JYgQKLofSaLF4zrfCU5K7d7g7vB0B4+LUuXKcLz98+8+XrR0mXS1FsiWptsYYOY0SjnNNKWA2lfL9HKCXUjloLIayS7Ha9knPCt+hfYwyVQinpRi3YXrrRW3a1a7zZV2/IrbARPUF5NdxujQ61NSUar9O0DuYmhtm+x41Pbb73qrTW4r2/nWX5VkS8dmIl17pQihSpW+BGaOv07aO1uXU7N7hdYOu3pvTcLs/aaLq+43h3x9M7QTq+fIbT6QspR0rVGKcYdyPaVlynGzooXNN1lbFQWmGaD6pqPFhBFgvzFKRxFAslVPJaKUmSpQTlylRKU8tLBywlocptVDrnXLOeE6P/w+GAa4lSvxYhghwl0gUsSYRkVas34jKa3aWo03NGcs9zJZUq1LZ2QVENiZJY2MraitkcrpTwwricKOuFEldSVmSzkLiQg0HZVQIdGuJlnZyrSuumWNdstk3bV81Sh6T2unNVRK0QKenbwnO7QcjPdP7ZZL8ZNjTUuK2txudXWlFjxVRxmSlGUsd0KJyvgZjgco0oY4QPWxOaDuUPmP4ePxj6vRIxWVVM58C6fiYkT4g75rInVkdR+kZb2GgnSktK0tBJKIxqvsyLs3R9zxj37PdH8e405lafqE0k1lKNdscH3v3hzzy++yPj/g7jWjT6fwVq163wNNFL/JbSpJxF2LOIBc/SDOPXENptXr3hwkgX5tVoWd1uipKR3G57eTvOto2h3gpPUb62CKhSENUnN05LKdKW3/RAm3GpeEu2xdwKJN3Mla1zeGd5fHriD3/4I09P7xiGEWPs6+307aMUvu/JOUmcnTGt2BN1fz8kBpTEVfYSjai1Ql0vLCGSi5JuTgFalKO3TpTtOt3y2XXJ0rRuxribB52p28YkE8Q4yV1tYfNsHmRiZZUIIdHFTC2SKiQWHf5Ndu7mNcatjW6Ma8pRQ8qZy/XKNE385b/9d8KboZCuILfOrHxqm/mzFk/SrfgsYgW1zmfOLx85vfzOPF/QxnK8+wPH+w8c7t4xDAPOVKbrXzmfLizLlVwVve8YdzuJd9PmxrmqpRWGxtP5HdZ5UJXL9SvTJAVXSpFpPpNSZZkj/nrF+Y7z9UzKYkhcWrcE1eLZ2oCodrBrJV2EX6LSCrp+IMdILZFUCmtYMCRqsUzThdPpG9Z3oDTLstKdztSc6KyjH3eiHvQdxhhis0jJOaG0lPApFq7XC6fnr21OGfq+ZxjG2wdRsoj54jIRlom4LszXK+fzFd/+7OaRiJLCUd3e0H9WfP7n3U4Q0/PD3tN5UUVanaB4wmSZqiEmxTIX4rKS1gsxTIQ1sKyFea0sS2FeMusiNI9t/ZYiNkBGK5TXOC32JcU4shnkqyqJ/CuKUGVfqSUR8oXTdUG1v5NzRy29RMYVqGpBm0pYT9R4ReeEzpWUDQUDWroFknY14rsdrtth/Yi1PUZ3sp/8sFXkJs7zrhN6TD8ydD3OCve1lIUYr8zziWm+MM0XiY9dZ0mpShG+g9d1E5MYdCnIuVibSlucAHbjwHG/o+s9xkoXJGfQdIBH4VE4at2EIhrnOrpuh9aWnArLMgOVlAKX64nnb594fv5ICAullJae4vG2p+stzkmHULGlz3w/P2R96lZc5ZapLh2yrutuXsO1JkoxrWh8HcytsymFp8DFuhnq11re8NfSmw5xvaFl279/ExO1jtaGErwtizb0bCs8/Zu0HuA2F7ezaVsat3/DiqpdPJ39T2tqU/C/tRWjCoIXQmRZg3BFN5RLa3zn2e133N3fy1pZJr69fCasKwVFrzT9YBhMj3Fy5uVcxeh/jeRam/epamNpxRu0OkoJTMtJIjtjoSYwVSgNvhWRxgi/ttVhb3YBuXyMo+wrfS9ni/OecRjbPtXif3/YWmqVom0rPEWUL8WRdGHF/3GbSZsX6+Z5mYsUmHLi1EbjElV7rIUlJdI6sc5fWOffSevvMD2zTldidUQGYnKEuYJdMMbhXCdG877DOi/UPW3BWBES3dA70DWiY0LFTNWGDASjiVq96g/edDy32WJ+0fGknelKVVJtdYsSWziFdDtqboJ6LRSClCvzEomxiGhbG6pW4utpHFkNVLOnmNzU/ZV1lkv2+WUhlZGsDbVTlK6hfWpzQxD3FLnsGfpOTOu10oSUJLa268kpNe/QkS1OXW+UBLjB63f3T6gaefrwnmG8w9iu0RN+HopfQ+3e0TNQVWEJMyGtLOvKEgNhlWSe1Io8gcJfF89mlSDt+Hr7uq3cNwXMdwXnDe6kcaC2dr4Uj7ZB96XFOt3iuaoo2kNoogolEVwC18jBbYySiMbDjvfv3/NPf/oTjw/37HYSY1e2auztOCjFbn8gZ4kSc05M2JUR779UBIo3jQOhG9k+5cqyplvRqbTDdc1GRBvJfqZK4ecsrpabKn3biGozO4w5s8aEdQlbpZgRIYTcZtECx5WiWJaA6yJ9zGzWDOM44L1vm3a6bfRblKckpkiCAlh2g2ZdRGX505qpDfZIm8dfwVgh72sj6r+8ZbJPJ67Xr8QUJB/9+BvD/o798YlhvMP7HmoghS8s8zPz9Rs5Jbr+yDBY+l46LNaIsXH1rwbRcqBVjod7dvsDCsO6CMyc0kTXberJQkwrZu3IJWGtoZTA5fLMfn/H4XDPbndgHA4432NN85NDOMLlH1Se1ntc11GLxpCEWlGrXEyUZl5XLtMV489My0r59Jl1nqkpCzG7b3zTvud6eWG6nKm14LsOYzTLOvPty2f+9u//jm+H9bv3vzXqRG1Rq4npeuHly2fO374wnU+kmNDG8vDuNznku16I6LwRem0H4P8FjzWKfW9JTtF3ld5Xelcw9Q7SmRqvxOXKMi3M60RchWuWEoIu1IwmoNSKVgmliwhmEBcEax390DHsBlzvwXmS6ii1ebAm4YKKcXIhxtC6NSD/z1HqAGScUzivWZLHeUUuDuNGfMmgKzoqUjVgPNp3OL/D2R3ajigzUPVAUT1F+XbR/v6ZpzPawbpI6orEWAam6cKyCh9vDRPLcmZZLsS4UEq7tGtQrQDaMs2tannVCB/UmIizBlUNVhu0rnTWY5RDYanVUrOhFg26x5oeY3qM8SjlJP4yRjFKn67t8rwynIeGfkSWdeI6vRDWC1DxzjU7pb6ZzksxLXZEHeObwIq3jxQg4njhvWMcB3bjyDAMdJ1vHUhFKaoVofW7TqQUnrZF3hq0ovkCS5a6eIxuReFr93LrVG4X1c1mz3kn8KMxreP4/Xm1fck+aG+dVd24l4LEtdW/cc1b8Sm8WeHt/7iqbur1rVOnJCN9WRdOlwtfn18AOB5GdvStEWCa5ZOn6zt83+E6z5onrutKAjJaMri1wmqPshqVNSXCEhMxB2yRC+cw7jnuHoixCkIZE8saqTWhNXjr6V3P4HuclbnivLnF/ColnNPj8chuHF/9URutbbsg/aOiE6QWi7HRAaqWuapk7Gp5DcOoVTwqa5ZitGQl0ouyIfWbUFVLRChKEMjlwnL9RP72b6jzX/DXv2HCBaqm2j01e1JURJ2o+gJasZrWdDFiqG5dj/Mj1nUSwLAJwpSWOiNMqBTAGYoWV44Ut95mYaMBvC08Vf55n7g5UFTZi2uzdtpq18bMQOsWOdzWSUql8bSlySfKlAqlsgSYV4VKK39VZ8JUmQ9G9CWnBYzBDIinrt9ja4/LYt+otMZQcUbRWU3vDX3X6D1rZfaWoe+ppTD0OzrftXNIarKtY2qtYxz3mPd/4HjYczju8c1Nh580CfL8bCCvFcoYXN+jjOIuPxBz5DoJVzHlAlFLpyybmw3PNu66QeybrctW7NziI9m6Z68fxPahsDE9ivj6bfDw1k3dVJbqNvw0vkSWwqqZoRtrWjapGL1rBUOzT3p8fOTx8YnDYYezRgrolPnRCkIrzd39w434q03LJ298y9IKsdTI7TFL5OHlOnO9LqyrpI5oY4WrpTY4WtSZxlk8QiRRehOUVHF0afB1bjymmHNLfVFYLVYc2nmM9xjXieE2mpLKTaxB65RuN/NSNMZuhvHSrZQIOrFpMEax6zWh1z9H4dUmVsiFmHPrNCscyOsnQ5WorhBmwnol59C6wSOH+9/YH58YxwPGWnKOrNOJ6fKR6fyRdb6ilGEcjoyjwrr1xrty1rV7VWrqykQk4tzA/fE3csqsa2CZf2dZTtIZRYuYA1Fnlhy4Xp9JecXqT/T9jsPhjvu7Rx7uP3Bo+ereiScniL3Vrxp+OW98Y+TSUiq5VoEwrMN2A8ZKsX85nzidLkyXC3GZuX945Hh35O7hkXF/4PT8ldO3Z9ZluXUzc4q8fP3C7//xF8b9gbuHR56e3gvvLCXW6SKdkPZnvn76nen8grWWh8cPqKd3jbushS9Y5Ca9dV1+dTj87zxaa4bOUqqiLwpvFd4CeaamhZoDJUVSKJKbnCykK1WtgNgtaVNwduM0NzeGN2ED3TjS73co60nVELKhJE2JCzkEShC/u7CKpU6pSZJNlAYVpDsGmKCxQbGkjO8c1mm0GTAevK5oq8hFg3Fo12G6Ad+NOL9Dux2Ygao7ivIU9TMFJbZkspiiHMIoUo4izAyBkCIhRda4EjdPPqqYkSMXls12zGiL2SyD0OiSMNZANWg0pejmIGChGMiiQhZenkUbj9H+xp+vVYIwwroSU6JU4dY7d6LrPP3gEVFBIqUVKHjvGIZeOreDCAX6fqT3PX03sBt37Mb9GzRFntdDU+aHc5au7+Sr6/DOtWmu2kG6/T11KwBvRvN6E/s1j89NuNWoVLAFPTRVt2m8zbZ1vX4fMZ3fCsr65sW+Dc0Qfqd5bYDcXt7WOFHN4nNLYJI5qzXiw/zDutJavGxvndb2DaXjGZgm8eoMTaSkjVC+JIhF7AitE8qHXi1hnalBkD/vZa1567CmIztFdIWQF7GSraC0oe9HDod7SlY4N3OdZ+YQSCaggKEbGLuBXT9itSMn9SrK0lIUWmvZjWMbr+bv2d6rotVa/xgYaevjlesqNgVSeFIlWYsWHFCqRCzXrKhyN31FqWjNplagpSIG9sv5mevL31i+/E/yy7+hr7/j80rvR2xf0HTkCFkHslJUSqMdIab12uH8IOEmvvs+o95IRjnliiagtZcaJBeyeuNacYPaXwvPTWj43Vg0RHBT0ddKczlQt05u433dBk/mXkNvS2n+zVVsoVDEZEjZcV0rn9KFsiTSZMWzfMm40dAPe5Q9YP0BV3rxNdXmVnh6q+icpveaobeNp17ovWXse6gw9APedXLJa7qRG03FWPphpO8cqt7RdVLMa3W7dv00L342kJdxYLPUOB6PN5VT13U8f/3G6eWEtZa5qfnCWm+WDRunpjarixTjLd92m0TlBmO0CdAW/1vV7eZtZcxrZnbK+aZMf+V7tCJUa4l06zt2+x3D0OM7EVfkFBnHgcPhwG6U9BzdNnbZFCq3Has92mjef/jQYFkRcpScbwrIUmENAS6Xmx3RNE1cLlculyvrGqm0m6FCVLutMHad+Dvmpnyu1LZhyMSSCF3hlm4E6lgqrspicd2AH0f6YaQbR6qSLqw2lpQy1+uE0bpFV0a8l9u8NRbtNu4YLaqv4nSRzdmCrvqn4qQUMbPd4g+FliSQdCmFHC/keG0Z7QljFPvDPeb+Ces8vtvjuwHrPLUE4vrM+fQXPn/8/zJdPlEK9INYYVi7UPInai1IvF6HNVBZSbkdnnFpQqKeDx/+RNf3rEvm5WViWSSG8OF+5PHhic7vUdoRY+Ry+sa6rtSSMdqw3x15fPrAhw//xB/+8M88PHxgv3+Eato8/X7nqLXy8u2ZZbow9I7OKtAZkzVrqrh+xz/9879yPN5BKSy/f+T5+QvPX7/w/Pkjv/3hN/74T38irgvHu3s+f/7Ex7//nc+fv3A6nckhonPm+vLC599/57HA/nAUha8xrNOZ+fLCy8szn/7+N/7yb/+Dl6+fqSlyd//A48OjuA7kJGrk3MbQe7Aaq3+9CfzvPFuRoZCbcw9oBmq6l1xoK+bpY7/n23jk/PKF0+krl/M3caJQjYfX2+ZT6FFaIGLjdvj+iOt32GEgVy2WOTkS80oMmTSJobxKgRwk41gpjbavfqi5ZkpZBZJPGZ0GXOhxfX9T/Bpv6TcBBqCsxw49bhzxuwO6O4AZKKZHaU/5joQio2l9j+36djFrdl85sebKUhRBWaJ2JO2oNwGMaQrLIgbmCKlfabELqpuDg9FYZLMvWqyRao2UpEhRYC7ndwzdHm27pqaOLXLzwrqsrGtgDaFZBtEQISfhC32H901B7iyH3Y5xGNnt9vT9QNf1eN/TebFd2g0H9vsDY7/DWf/LeQFtbrRzQxuFtbrxqhvUivmu4LwVgWqDAL/3dn6NBZW0nq3wlCaDu8HqtTUiUI1P2VxRNvTsBoG/KTq3ruvP72XrVgJs9k+bq4t6ww/9ufP7dn7c4H0tKVKdF1tBgcqFKgWFy/XKp98/8vztRGiCjL7vWWNPqYFaV3JKktCkK6Z3uE5hjcN3PTZ7VG3ima2och7b91jXc5km1phYw4yichh37IYdgx9R1RCWgnUDxsj5KMoJ/da/qNEY/1Gl+fMY1goxVWrjKcu5sbX72kFeKqiCLoXqqnw11Krk0iy4RGm+2a7FuBLnF+LL3wjPf2H99lfS+SM2nADxISd4lDpRbaWYIKKa1qASKyBBEIO2LNY1aoJw8LV16G6P8SPKJJytmNI1mohYvm3Fptre6JvCUzdE+PuxkEuMavS/11q1UeDqhnyKIFDCR9rFS8n5q5WE7mglrTelO6w/UFPPMldOeUHFZlVlR/r9O+4e/4w/fMB0e3KyZGgcZykwvVH0vWMcHENvbh3X3lvGoQeEKuOck9Sw7RLR6kRlDF5rdPVoVVvNZm6XlF+trV8kF9XGM5QB7TrhNZWcGrYv/7NGfPmMlsW8rktLHhIT+dQ6nbkVmBuJlV8c5hvUcvs5r7dEgVI2gvYbRkW7PQAYLWTurvNyUx96+kEGSiko2bDf77i7u2e33wsZ2jTVt5Z0Cv1j4ak1Tx9+k02nlltXI+V0m0DLIpYjtQrP5jrNzWYiQussmPa6N+sM4wzOiPJe6YqOKyohRsPbZmakuyEG/tIRyRXpjFiP6waGcS+JRYcjShtSFlV8LpIqcrlcxYkgp9uYdJ1ni7zb+vvbotHIwb2Ja94+pVZiku+fmhmdVrTUj0gKCylsXEWFczu6fiebofNtE5SNfg0zl9Pf+fr53/j08d/IKbDbPTGMj+wPj9T6jev5DX8LUZpKZ7ayrokYV/FFzZnHx/c8PDzy8nLh27cz0zyRkxzIctm4x5iO62XiXM8sy8Q0XQnryunU4jVTxHfC6+u7I1VpYiyiJP5+sjJNV5brBUWPGZx0FhGj44xBuw7b9ajmpbjOM5fTia8ff2e+nMkxkFYRDz0/P/Pl02e+fX3mfL6QYkQDcZmZLmfuH5+w2lBLYZ0n5uuJ6Xrhy+eP/P63v/LXv/w78+UksYBD16ysMut8JVVJ/nC+w1iLqaJSlfnML+GP13nxX3u25ocClNGozlP3e7RSzYqoYxh2jLsDz+Me148Y12GcF0FVSTI3jEObHqU7Kh3ajrjuiHYD1RhKiJQ4EcuFNc7i7RsWiAGdc/PCVFitb6EGWgGpeXNm8chVWT7T1HLXfS/uBmI2LlCs8R1+3OF3B+zuSHUHUu1RpkMZj8LCDyLNbjzS7Y+SVpZE5FFTpCoJbgCDKqBiQmHROaBKQmU5RGsT8ogQs+0V5NsYS262dDRrNbeYzFKkc2R0zzAccV3PPEvcYogLl+uZy+nEsojVSa1AK7yss8TkSbljyD1KDXSdY+gH9rsDh8ORruvbxc/jnGfs9+zGA7thz9iPErrw0+ypt0mxmbTnnHj1yHyNk9VvisBb46F1JWt5i5htDQqNMdyQMMlwfyMk0kqSi7I4SZScCWu4RQO/LXSBZmQv3/u1wN14pFubrW4Npxv8vNEF2h+4CaC+Wxvts3u7nJRSdM4xDh3j0BNCbB3BjNKVdVk5nU68vJxEgFMq4zACCWcUKU3UvFBLEAvAuiU5ITSh5vgiljqeTVhorKFTht3uKHHUsUerymE3MvYjTveUJOpqa31zBzDfve7WbIQ3TgRb3bjtJb/cOSrEJH9WJAGNGaianRUttUxl4UNnqT9uRWfKEjRDoz3ERfaC+cRy/cL6/O+k57+Sz58p84VSI1lDylFCIBCkqOiVotytPtx8Tbc6OGp1QzWN67B+wKBw2kg0ZlWt49oibUmvb/hWfG7w+6tf7Y9jIXPrbUb8z+P1iga3P8tWtGZqViiaE4fSGNPT9XekuKcERwyVoAN2Z/H9yLC7pzs8YfoD1XToorCmSoKVMxKra2DsLENnGLpmk5ktQ+/ZjQNgbnqRLY78bdNwu4hp9fq1Xda02uRa3z8/F565UKKwSUA8FFWVtv5u2BEPEVWgs57eefrOMc0dyyJWLlvEW24+mrIohXeZM6CalUbdPEG3Bb+JlG4r/Hawbbm72ry+QdXsCGrJb8jUUmXnkghBPPy89wx9L2rBp0eOx2NL5WhqtlpufIe3j9Za/CUbZLmuC9N0ZV7E1zTnzDLN4r+ZE2ENrMsqMZcVgcyMEVi6WU8YIx+g95qwToS0UJQA63WzxWjvXSxcHNo5lLUUbUBb4aB1A/2wZ9zdcTzeY62oqCXjfr15OZZrUxOvkRAyw5Bbqo6MY+cUOPUaR7dZYP2wXkqpxFxuv7d1lLjRISzW9nivMdaLX6aX3HPU5ocHWmXCeuLzp//O3/723/j86SN9d+Du8ZFx945x2LEuJ2IMLU8+ULPBmw6rB7rOMC9XljVyuZw4n5/585//xPsPH5jniRgD//Ef/5NpugjkH2eG3nN398TD3TumeeHbi3Tsz+eLmPFnw7QWrnPiOkeGUcIPliA83Z/WRy3kkiTtxGuGocP4jqIN3y5X/tv/+Dfev7vydHekImrBkhOX04mamwJ9mnh8eWFeFi6nFy6XK9M0k3MRDp8Srt9+HNmNA+t85fe//gfT5YWXb1/5/OkjX7985vTtGUWhu7/DKvFYzXHl5fkrZggY17dD+R9nz/9i3/svP3JB3fzcQKuKc1LwG61k7Y07docj4/GO/f0jx4cPTJfzDSFBWQrylaujYEF7tO0pRUmHOlwoaaKESA4zNc7UEoTioQGn0dWgrcY4SUmSRooUdxvNoCotHoYB1sbPksOkwzqFcR7djfT7e/z+EdXfU9SOmoXb7Z3DVQs/iJj743v2j+9JVdbJmhI2Rkxc0WFGzWdK90zWI2o+kcNETgvEBZMWUDMlB3EoKIVcA1siirkFQgj8a6ooP7STaERtDdptJuIWFG3/W5jnC5fphWVZbp1psWuxN26y2Ppoau3QSrpnznU4N4j61/jmyela593htDQdfjxQbt1GoBZFWMXH+Hq9NOX3Ae/d66H0Q7czJelGpVvQxqv4aFOtwysv9K1PZ24eyCGuLPN8+/6Xy4VlkajJzUIJxFt6WZbb90gp3QrSbZlsFDKtee3iaOmOv8Hs31zmXx+lXuktW7dEo/DOsRt67g575nUVMVZtDiNKUZQmpsQyrRgDd4c77vYDMR5ZlwvLfCaGmZxXsUyyliXNhLxQyCIU8R3O9tIcWZfWPbd0vuf++ESpCWNgN/Y46yhJEeYiHTDtXrtVrbhutfdrkdkqaiXQ163Yelt43eYEAp8XDVkJpHyLZ74BsVkKTyOpWyUbas7U5nSRs1Caaoqk5YU4fWW9fGQ9/054+Z18/YyNExY5i3RD4lKaxSpRrRS1YuwO53cY7cgosbsjg5KIyQ1xMNbjuj22P+D6A9aU5ujgycUI97QhlXLP2t5/vRWJ/CK56EY2vCHztY2rjMJbnqwUnq1AbRqQUiu6FDl3NVQ0xnWMhwdieSDEHd5MDENlv+8Z73b4YSArJy4XSWgqmkrnNMPg0RScVQydFUslKw2wrliGvmMcRwpbc8C8Nsdu83zrfjYuZ/NGlVqmvI7ND8/PV9ZSKCm1uIGMatCV9x27sVBzxRohnY5jzzT1zLPY8KxrIITIPC9YY2+Rma2mJCQR3FhToRpU2ar/V17N93wfgc4kYuz116zWYuRTLFThLDpn6Poe320ecBpnLePYc393z+PDPce7I8M4YKwYsSqtUVUYhD8mvGiteff4DmOFezPP041vGEMirpLoIXC2dDpSbMWzadGSRg6CoqpklSuF6yzGACmIEbI2wtGsBd2gJVUbYd5YtLVgLRLJ1AySjUMbj3Wezvd0fY+2RjasVTJ9l2Wh1koMmZmVnCthTcxOyNPaKLnh9I7cW3rvmj/mz3BsaQdUvans27axxYUZ6aQ6a5tFxSDdWtLWnqDWRIgTl/MnPn38Nz5/+hvX60rXf2Dc/cZu/4RzsCwiFNlSmSiKopCDsNuTkqOUKyHOfHv5Qs6Rw/7A/+2f/5VcZOP9/fe/obVmWWaWdWJfMuPugXH3yDA8sttfGV/OzPNKygnf3VPVQEia65yoCkIozUONH+ZF81hrytZ+GBnGHcp5SlV8/vIsiVS5EJYF0w6lZVmJ6StrWx/n04mKYl5WpuuVZVmpWV5/pTa4JRODFJKlpcK8PH/h8+dPXE4nco6MQ98UvJqSIvP1wjVkun3i8PBObqBvujyg3ny8/7jr+Z8WoPUtOiHz3igkV1v55iXo6YaBYb9jPBw43j/xeLmwTEuzlBFPuVQ0ISvx3StQqtjArPNCffnGfD1T4yLm9MuJEic0UdAK5dpGpyVazmqs0ZjWTRGeZ6am9XYQKGi+sBaNR2uFdR3d7shwfGR3/xtufKCYI6l2kGT8Om/x+cciQ1H9gdo/yiZcKzoVdEqYGHBhIbuJbI5kvUN1L6T1Sg4X0npBhxdMUKQAsTQ/05LaoaRQylG17DvKgMGgrHT0tbNiS0Mh5kiJsIaZZb22rwvLeiHEIGIdbaUIUc3Avcp6rnTya43f39yoUVo6Z9Y6OufpXE/nO7x1+MZb/2lavOkgzvPM8/MzX79+5du3Z3bjnnEYxV+T70VF2xmwuX3EmG7xkG87o9vhLAiauv2d7RDf7P82bv48TaxruAWciFF/ZLpeOXXdrZPzI/wuqt/tPGrCJ1FUoLaSaYNKf7GM1NbyfHOLV0phjaLvPMfjiF8dXb/FLkswyjAMOOe5pgmqwqDp+x12N7IuPVfnmJcrIU4oDVVXMplUE2ga7N7h+16aPTWzrAvSGTfsxgPWCS3tsJeu9TolzmohrpOIbrRp7h6/WPeq4Y71zXtTGwr5CxS+bgLkDXaFV8/nwq02VxlFFhV7UVIwxkheEylkUpQY3HD9RLh+Yr18JE5fYD5BnDG1oLRpzRGh5JWaqURyjWQi1RWMlnVjrIRraCrYjDIFbSVm2nd3dMMdurvDuhGjE0onqjKyZ9VK3gIQviO51tu+2PyhfrE+eJOU9FrRf7eUbpPq1fnndThfHUqqQtbnsEeFA2U+YNQZawLWafEttpaEbe4BQKkYVem94TBIU8IZGHqLdwbbnFBM4z37zuMzLXL7rVDozfx4e57cYLA38/4X4/Bzx7MUyImaA9SM0mKrJJC7cB+EUzeyLjPzvGNdV4GY18CyrMzzzOV8ZZqXW+dqWQK5BIGXjcJpi70JkFpO7rbAzRtD31ZwSiY0rXOo8U54b8bom6Co60SV55ym7z3jOHA8Hnl4eODh/pFxHLDWNHrFNmG2Sur74VFKczzeCRczZazxkjSwRDRy4wxLJSbJnM9FJqXeOCKNJ6JQWKVwxt680nIOFOVAd2ibME4Sf7LKUBOlEYdrex1bIgeqTfoiUHRuiUmdaipILL639L1jXXtCSLcYuWlauFwW8dlst/hxcOx3HcfDyGE/MjTj4p8SbuQax9sYLlEgqwZ/9fLxNLVjhdb5KM00XZFS5PLykc+f/p2Pf/8PTi8nnDty2P+Bx8d/Yr/fUXkmRklSig0uq1Xy2rtuYLd/pOvu6PsT18vM87ePfPn6kT9Nf+bduw/s9xKJ+W/H/86Xr3/jOs385T/+nWlO/OlPPff3DzwMv7G/h7uHhWUV3pvznnG/p6iByyI50imVWyrW2xXkrKV2HbvdjuPdkeP9PeP+iB92lFyZpoXT6USJQayyKmjrwFiu08L5IpSM08uLpN0ozTxNxJSo4i7c1JoLX798lqQt724w/+n0wul0IqyrqL7HPcNuj7aWaZpIfCXrjjtluX/6gHeNLP4j7vd/xVNfocetGyI8PEnqcc7gOjlM97sD8T41H0aJyy2lZTGnwhIzS8yEmCWRbF04f6uUNTNxpSxfSNNn0vQV6irKXis3caUTSkWMThgjWdtOa+GqaUW5roS4UilCpneGfij0A/S9xQ0jw+GR/eMfGe8+0B8eUW5HLI6YxdBa+Hktn/6H5xI1JVpKo12kWkmqkE1HcQNK7XB6z2gfcOOFvF6I6wtpeSZePxKum5+vRIXS7IOkMJTjWcRCDQrECpRqHUXBEgPp8kIplWl64XJ94Tq/sMaJXIOMj1EYqxoVIbdLvkZpK5xJo8BoijZkpQil4lDS6fUD4zBI4dgPDJ0Un7+KY932jlwK0zzx5ctn/vbXv/Lv//4XduOBu7t7rHrtVIrdTroVkDf+fyltr2rQ683m59UeqbS/E2JzClGKdQ1cp4kURUATwipRyy2EJISVy+XC1+dnci6Mu5FxHG/eoTdbJrtRyt5YMr3t9rQCozRI9B8/6gZNb6eOMZr9fqQfsjivtMtmP/Q8vntiXiLTZWFdJs6nC/owsn84CO2mVpTVmKiJaSGklUwBIyInbR3dMNAPA37oMdaxTIGUVrpuYOh3jOOOu+OR9+/e0TnP5bTg7TPr/KnB9Ftna1vk3Gok0QGp2+ejG0S9tbl+BavWXF5h5VtR0rLWqVRVqVpM4VPWLXUrU8JCnq6s05l1+kaYnlmvvxOnL6RwhrxiKxhn0FU6peIKk6gqYZp/t8pFLPByAaNw1uDcDut2YDq0k6Q543uMH3BuwNoB1eKOYWYTtSWEw51rfP1Et7f8Q8fzpxr8x2O1tuSl+lqA3qqSdtZya8xt+2zjftL4xlpJ46cbsf4AuSPlLE4/cUWnAkWQnkoRZMwoeq/Zj64524i4SOzfWsBPLZTW7lfNwpGbV+tr/XnzblXI56g2CkN7fTf/6O+fn+2UaFYSVd6c2czgcVRlsGWLeBLj6G5wpBCFwL5IpKT37tYV0lrgyRjDzS/KWNXgjaZSVzI2G29n62w6b3BePN2sNTf+wFbIdd6JcKaZ2na9p+sdnTet8BzZ73fs9wdRb+rW7r7dMOrbEfxhHJDbnzKkKibwOUlyQa0GhUNr8bqrqmKq5HFoa5qBr2tmux7vPH3nsUYTgmwo2tgmJLAo5SElckwoVkk5UgJbO9fhWwqNcfY7mEJgflHzqvZarPM4K8kVyxpZlyjdtriyLqHRIcRrde4Ny+wlkaoJh4wxv7YS2hZHRe56pbIZ0XKDy14j5tRmt6AACmGd+Pr1b3z+9FfO5xdKhvH4yN3db9zdvWcYNPPyrdlvyYJTCuGspoi1nrvjE8c7xf39xF//9hfO5xem+ZnT6ZkPv/0LDw+P/OlPikqPNj3Pzx8ptbAGSc6p9Dh/h+s82kb6G9yr2vtWLGtuxXW5JUm9fXSb1947+qFn2O3YHcQ+Ym1ZvLmIcrVrMaX9tKDdC+tl5nqdWFuK1nbgTdNEiEIbKQrWlFniyvlywhpF56VLPS8La1hlvnc9h8Oew+GA70dirjx/e8GvCTccOOZ0E4xsedCvbJv/HHL/z58tcWZD35qQpEJpBUnF4DfOUjPM3jbbWltgQpt3a0osIbKsq/ihflsIlxlVvlHiZ2r8Aukbul6BgsZgtRerHFswJoJa0CrgndiDUC39IMkoMUu6EiqgTcDZiLMR7wv96Ngf9hzvHhnvnnDDHZieQuNOt1AMZxQqmB9GAaakybGZUGvhY9dtnegCtsMw4MwB3d1R4hWz7Im+//+192bNkWRXtt53Jp9iQGDIoVhFNq+1dbes/2T/Qz1f6ZqkFslLFouVmQAiwqcz6WEf9wgMbLVpuE/pZpFAIpFA+PEz7L322msBiRR7QphhHklqEpWE4niVS/c0KkslZVlfSmRpfEr4eSJPEzEGxkE0cecwkvKM0sVa04FxCme0cH6do65bmnZHtz3Q7e5odrfU21tsu5PGimaDaze0bce27ei6VrpbrXivv4d4Xic48zzz/Hzk1y9f+OWXv/Ljjz+RSSWQk8Bx0S1eEFB9hTBmI3SOtQdgjW8WpDMxTTP90JOV0FrmWShPs58g55Kch1X2z3tP3/dYawu6HC/B5pW80+IIRCnFrz0IaZHEWcTghVP/dnW8wMFe/Is2irapSBms0WQlPRGVc3Rty3azpdts5L37kRjECtg5RVW3ZJPQDtKYiHGSxh2j0brCViLAv7ryACEGpikAYi7SNh3W1uy2t3TNBp2P9OeAc8+Fg/uynLqi0UkRkjgKpeIXX1WGWrn1/HwbbInucCl6Fl6ouuI3yjmSixVtLPu/8DsDYR7x45kwHgnjE2k+kcOAyot0opzRIhAqJfXlWNdWnLCyBmIi5glCD75FV1us2ohtsttg6hZdt5i6QZuqBJymvGFTkF4B5mIKxGSWWPGiWZ5LMT0vSi/vnaNvBqh8Ob/8tzW/yVe/4PJ1IY0jVQpl0a7D1DcwtswevE/EIAoBYiqxJFSKpjZ0jaEr2rzGKOmTUaIj7kMqLo0Tk/eEFFFGAIWXAP8lCF0ZGMv7ukY93zlu3grIK1WEZEWbUV9NqJiylNKniRw9SmWapiaXQFNlmSyTWfTUhFwqL+QmrSvqtJKdDmMsvJsLD23RiXKFh7Dbbdm0whtTKeNLZ3LlDE3taLuWdtOx2XZ0m4a2qQX9XD1+IXjPpEeUFpmKpYySUdJB/moTzcA0eiY85/OZ5+cjz08nzueJEMDaht22WedOLNkvRqGtxpWO0d1ux267pW1qrNEM/Znz6cj5dOJ0eub56ZHeHEl+JswTWllSkdNwrqJpO6qmdJbWdZEZUlhX7D5z8Yn3ck/GWlyBxVWxhyMrEeT1Ir4cQpElCvPqwzx72Zyss6uo8WV6XXTKlkxMmh+WwFPKJtZYnJIOVmMuQWeMM8PwxN9++e98+fWvhBhpux1395+4vfvItrvBOs84yns2uiklH0jRM3tZNJvNnv3hDmMVroY//xxIDHx9/IWqfmB3c0vT/YZPn7cYc+Dm5m8M06lIWm2ZvCGX5C0mRcaUDtlFsuNyf8vnr6+URLuTcoBWdYOr6rI3ZBbnFekObmicYw4J87evJH3GS2SJymfmecZZy/k8EEKUDlxE9mfyQdCaaUAR0Eox+xltDB8//cB2t6PbdBhjCCFy6ieOx57tzvOh21LXxWHEmheHyP+XlyprW571pfRilk8WYnmWMHWl1cBa5k1ZEaMSw4UZhjHwmAPD4yNh/AvD8Q9M/Z/I4VesPqGqWDyhRQvX2oaqButKlymeulK0jaZ2DQoLWhOy4tzPpcnGkxjJyoGZqRpF21W0bV0qO0bkzqoapVUJAmW+h95yfgUej8UTXV3R/zJIl2rWZLQ0DOpKJFpsJU2DKIwfUNMzjD1Jn4l5ELpBTFDUF3JZZ/qKR5UQJCktSXGpgHi/2H5eKEgg0kbOVat4dlW3dNsD2/09u/09m9093e6ObntLVW+onASZXdOwaRu2TU1XORrnpIlL6zfzailTy74gTnbTPHE6HXl8emQcexS57A+LdNFFGF5rRVw64VFEcwlMJZmVn710qfvgOY8Dj09PKCWuPrOXaomg6otjXlFVyWLtdynHJ5xzdF1H0zQrCpvSos0IuUhGib1nZNGljkmal0JI7zoXydy+pqzkgn3Ks3T20uwnifwFK7TOsdvvyTEynjMKsUFFixd3ZVp0pZjTDOOA1q40BeXVsShGsbiWaCFDivSnE/M4kZOma3bFbET0OxXSxa6uUC0WtLlI/YWYGebIMAWpUJLY5oaq6Ji+qDpfXTGIScoF9Lwu12ZQqVADFSmYdXxjytK0mTWYBtvuMTqTqproZ2lOzAqVIjGPJBUk4LYGV0FVabRrUFExG7HjDNHDdEIpB7msSdeRceRcEZOjHGjyzLJwKjXynMipGHjotdKTy61cS0MuzYFvruX8zKxl6Wsd85yvqCTl41qRLb9v7XZXkLU0GSnbYqtbmDbMXuF98XZPjhwd2QjgV1WOzUY62JtamvUWpYacJegcRs/xdObxOPB8HvFJUdcap/QqcMD6PPU6jyXoLO+rIKBLC9nr6y3Hs0yMhRu2LsacmL3oeZ6OT4R5ROUoaAzSkTeOE+M44P1UUFE5hNtW7Pt8zMWajrKAI94r8jUHrTzJFUFRGWcVXVux7Tpqa/HTRPReAmOjqRonULERntkityQbj6Q/SmtsrsqAXTLola/zOvBMmfNpJKbI89Mzp9OR87knxkzbNLjKiUh36WiUEniSA0FLebRpGw43e/b7HZWzaAXj0NF3HceCHOSoUFETzETQAyZrohGiu60qmqYtgWeFqyvhsFlzhRxLE9UwDsScqeoMuZQrUlx9oEMQ4fGLrmoihQQ5cTYzi4SLtfaNjJA8lqsttGT8IAlFXhYEcvhKd6AkEiHM9P03Hr/+zNevf6UfzrTtjsPhIx8//sjt7Uequi2LyWBNQ9Pc0NSPWPtEJhZ3F3FAOdzccnM44MOJEM/UThPCkWE8YusRpRua7o6bO4OtbsTDPWcqtyerihCltHGJKdWyH7BwdpbA871rkRZbDjNtLVXTUlUNk50Ic8AqTd12tF1HU1c0mxNVu8G4I0kb5jjDFIgpYo0Rce8kHddaibtXylJG0UaRUyRkOei0LUFE5QAIKTEH6Rquqoput+P2/oH94Va4v4tl6vLs3i2G/f37/XtXiX8ur3UJyQJeS/Dr15ZxluM35UuQn5IEpZXVOGNJ3nJuNW2VsGrCMGGNJxjRYwsJ0bNUjqbe0m0cTQOJIzHVWBNwlbhMGVOxnTWTN0R6ximgbS0v12LrjqrdULUbXNXgrJWgszZ0rSACKCuls5wYcZxfjUUQhgxagMl1JNfaRAYQvrfSpSkoBkw1od0WbTswDVk5khJLvFXXOCdyEmRuGceENFAK36zIfmXhhno/ynqJQeTZinKHtRVV1VI3G5puT7c5sLt54HD3WTR2t3fU3YGq3RVfeqnW2KrC1A5dSTlSmSux8Hcm0qK7LBq8sn9ttxu6TpRG6qairsVtSYweYkEjS7WtzEWtCv90OaTXsRbO4jSLosjz8ciXb1/RWuGL170PQdxu8rIv53W9Ls57IFWNzXYrjW5x4deW92RE7Nw5C9ld5nGWc4WFCpAuhh/XV0LEDxY863q4NJRGpzJeSXSbSQk/zaQYi4FCh8oRa60obJSeCJGbkkYrURgxOFNhnHCcSQo/BaY0k41keFopJj8T5oAzJ/qTmDs0bi7qLNJUafSF60p57wsNYpoj595z7GfICWcUTe3ke5JUL944AOYsTXOlJH0ddMqQlsqZljFLwRJDLvQ1RcKSdYOqlPRm2IrsN8R5IvqJFDzZj2QVpfnWWqypqFqoaoeuW1QwVDqjRjnzdEzk8UTEEPVChchopAk4aycc52U+mjVGlPuJqYBDC9/3JWqZcyap+H509d7mq9aptQz5VWXqEnSuwecawC9JmUGZBqobot7ioxM3tiz6vzkbVJZ+FmelW13sx4udeVH78CEz+0g/ek79xDDOzCGSFsH68tSun+DVO7x685nrJ/3e9XfklFK5R7nRfLVgj8cj375+5Xx8JEyj2ElmyWpCcZiIZTMxRq+uFSFm0RCbPGMpzWsjXBrZqBYNtrRmuTlHYhD5mRQadt0d94dbDJBCYBx6pnkSMn6YGM4ePxkGV2GdxTrxLK/rWrzOX/jzXj/Itx2/KWeen89473l6emYYekIINE3Ffr9lf7Njv99JKVNROkRFxy/EhHXSwb7fbdhuOuEqxkDrDF1d4bRBRfCDJ08Jry1eaXRWxCJE7UpJ1ZVyvWhxmtLYoostoiBe8/GMmwP13Ba0gZVz2/cD/VlsThd9OGMEqlRKnBimKaFNwNrr8tfL1bHo2r2c9GoVe140V7Wi8LEyIQx8/fJnfvnrH3h++gIZbu8+8/nz7/n8w+85HB6wpiLEEYWlclt2mw+MmxPH+omTmvFeEpppOlNVjof7TwzjkWnqSXHAGk+MT4zDF3A3ZFqM29BtG6r2tgTSpgTX4nG8bhYLkVux6qjJZnvJYK9GgKqqiGESAeMQyWjabsPD/QeGfmQehaO32LEp43B1Q7fdULdNsTeUcnrWCqcUPmciipCkMSVmUMZQNy1t1xHniXmeJPtOgbEXCahYyLqubjjc3vL5h9/wm59+x29+9184PHyialuUWUR8l3t4XS7JV3/y5vPLGL366vqMlwy8fPnlHslyXl/FpBJIJKGmqKXUhiSYWjnStmO+PXB6vOXX/Z7z04apbwizHJyLHrAxNd3mwOGwY7Otibln9k/E2AMTGIeyhmZTsY0NnhZ1FvMBW+2ounuazSeq5gFb7dBW9BXrRtO2hk2nqCppWlqkaU7R8fOr0YgCilzucx23t2OaVxTUIsGoA1WVjxfUCS0Vp0wu6h2ZoMIaaPpyWOQy6NaIH7f3k+yJXoTqFQqrLdo0uGpLu7llt39gf/uJ27vP3N79wHZ3R93diGahbUA7aWK0Gpwhas2MxmWFXRGZ9xvQFv9y5yoOhwMPDx/5/e9/z+9+91s+fnxgu+voukbQzSDAg8ITMlI2FNiDpF1pPVnluQXlHDyn85Hn44l5nnl6fuZvX75glGb2xaEsiKybNeL89AJBC0GUEkoi56dJkMvCFQ2lYdQYTYqOyjmq6kJzWLpDlJakHaNFVurVKRtzxi/0pLICCyC+Jn/idV0O8KyIPjKe+8L5jhjn2O5uUDnhgzTKZCQwDjkSfSIFUMngVIU1CqPFyWvyM/hEthFnDE5r5qwIIeOHkf505Pj8iMqKp8cjfd8DgrYaay9VjLJgJeCfhad+lG78rnUrLUuUFMLaxHWZ9+Jol5a7XoPPErZoQTx1krWRvHjJx4gETrpGOY3KLYoN+A2Ynqx6EmdSOJFSICuL1hZ0jXUG11rhuFYdOjgiYFWE0ZP9TPITOX9hTifwR5Q/osMHTPwAboMyjQR0JQNanhU5S6UhpjJTKTj2dbKYxWjC5DfzQs7Rt6/rjTMvYBhXXy8B54KyrjJGWaOyln4RtyPYDSFXhOSISUwmUlLoksUZs1R8DTFLSX6aAsPomWbPHISa1k+BECiNZmbVYF382a9dvJZGNKWWs+VC6fp7wee7gae421yyuCW4cNbSti3zZkOOnpFMCnPpQBRunAQhBq3TpWwZY9E1XDgQxX9dUZp9JEvOS4ZuVOlYlYk/zxNDf6Y/ndjWDZuuoamrIt9iCElyS71wQa1Ii1wCz4a2banqurhtKNlArk/Ld8bh+eksnI4Qy71XbHcb7u5uuDns2e23OCtcD+/lwU1zwIdE5RxNU7PpGupasriYhYuTlwBSGbEHNI5sItlGog3lgVI62E3RFltI6MLrnOYRWzmMc2QUPiRmnxmHUMZSOFbjONL3A8MwMs+eGKJ0xJpSglcaHRJKR/Tk8T6+4XiqZbGUoVqF+9XSk6DKpqdXySulJHHw88j5+I3j8SvzNGKt43D4yIeHH7m7+8h2s8cYTUwaaxra9oAGxuHEY/c3nDsD4vgyTgM5Q9tsuLv9zDAMHJ//zDg8MfRfmL3B1BHj7lCqwTjRhowprSWy1W++vHJZ6sVC4u8sk3Ug6LYbtAFbVXS7PYe7ex4+fObDw0fOxzPPTydSjOxvbmiaBqMV+5sbPnz4wDiNjNPA81NkGgJzaaLwGZIS3lNexlrrNQtW2lBVDU2jJaOvapS1WK2p2o797R0fPn3mx59+y8cffuT2w2fazQ7jhHuVX0zvzHt3+vf62Fd3sbdxJ6/2y3WTuVAVlu8tVQfUy59ZnofKC19UY6wmtx2HmzuOtx+5PXwQh6enbxgzYGwCZah1x/7mjrv7T9zc3rPZbghxZpzPTNOJOfRgElFndDNT54k2nMkmoE2DrfbY5gO6fiDbe5LeCbJiKqq6pusc242lqSXw1EqqIKl/K52z8FdfB57XYyZ7XiYlL3af8xk/npjHE37sicU1SJeDQWidEtzEmKVrOQdKzM7sA3MIZa0qETHPWRyKvBd1DIrkkKlQSgT6tW7EtclIA4VzHdZ1IhxuG7CNdLUr4av6rBiS2BdmBGGtdMZpeCtzu6iTiI3e3d09//iP/8i//Ms/88///E98/vyJzaYr+soyuWOM6/arFcIXX+ldFyhdyuQBRsR28vjE6Xzi6fnI8/PzauXX1DXWGmojXuILCCKd8l7cbqZxBUimWaop0zjK98wzPgSRm6trnJPzo3IKayxRie6kmKVIr8N71qGxvFjCiHJPegm6rsZOblsCZVeaAVMSwS9X16QwMw3SIBTTCHgSnjgnVNCoZKS0GaQcHH0izBEVEsombF3LOaMtqEQOgeF05Jef/8zz4xNPTyPj6AEBM5aGKqGi5cKNDQyDnCXnfhQ71VovJ3ppCrvool6vgRQCcR2Dy1kCChIoLU0pOit57z4Rw0LBkCRNqWINSxIB96QJUQnlIWc0SrrSjaaqFa5rsE2Ndg3Ja0yIkAQUSXYmhjNJeZKGnD05ThAmMaRQFTpLhTIZaaRan1dBuVOIaFXEIK+4nUsAmlQk12+mxZt9QYZBceFuSzi7ltivIcWr8dMsLwk8lXLgOrTboGwnvvLKIfzUUkdIcZW77AeF9/L5NHn6UQDBmIRS4WMmUyg1+irwvI4FXiCe5VRR7wWdb+Ord7vaY4oCri73rbXA1q6iqh2Hw56xP9Ifn4SjeDrjZ+nycq4iZ5gmsZAcRymL9OdBmipCwhcJIgk8LYtgr1JFs9O6EiCmksUHnp6eUSkz9gMPd7fsdzucFVSos5qqrui2HVVdX0kwifi4sSJBZJxIRSylPpWTIGDv1I1yypyOZ/kdtSuC7S37mw37my3dpi28IApUHURAep4JIYltodGXUkMIIooeEmGe8aP43kcfC79QszqXaHkGqkxk6RyUQCTEyDAOV0GJCAbHCD7M+DCsj9r7ufBoBxGRLgeS+BILl0W6ZTVKWSblV2rFq3WBQUnHGpBVWexKqA3yUquZgGTLmeAD8zQxjQNhmlBk6qrlZvfA4eaDWFXWDRkw2lBVG4yGpmoYhie22xua5gnjelKxSAvegzJsNx94uMuEqef09I1p/pXEQL3J1J2hbmQOxKKakFMiXpV3r+GovAzYe2Tw63FAsTvc0HQNru748PlHfvrdf+Gn3/4D+90NlXvi29dHckrc399SVRWkhcMsupJCQ5HEIZSynvRSLSW0iz6hJA4TbV3TbhraTYerGxEBr2razZabu3s+/PAb7j9+4nD3wGZ3Q1W3aOvIa/D6svh7/dlL5Hd53urF197jur4dG/lzQYrz9VhzydCXcV6DlPL7F21YrTTYDbut5va25+7uM19+/RXn/opxI7VyIprcHvjw6Uc+/vBbtjcfqJo9c8iY0aPHHjX1hDjg00iqJgwjdezJLoJqMHaHbu5J9oBny5S2NLRkU+Pqmqat6DpDVyusleA4RsVQvZ+kSpPaO1vsgoKUcnn0PX46Mg9fRRbm+WfG4y+E8RnSLJUM1QK1IF3ThI/iWJOK8xlKEaPHz3416ljGNRTjBa3E5EMZizIVaEfGEiJy4IwzwyAKJNqNYBoq5TCluxilCEkREeWBIYgDzWShMVCZTHinmXupIFhrebh/4J//6Z/513/9V/7lX/4n7u7uCodWvxJslzGShGtJcAvqq0TRJKUEsyQxIXj6/syXr7/y/Hximibx3DaGnJNINhkxFFloB7OfmaaJobIM44g3YQ08Z+/JfU8mF8F52QebVnj1bbehacXtReKBjE65rOuL/ueLcUDGbqkSGXV1UC8H61pIUFijaZuaw2FPP848Hk9ioVwL8jv7wDAMzPMJRUCbTJgTKlkIxbY3RjBRgraQCQR0jAQtDa+VthgrwM94PvLf//DvZAx9HzCm5vbuvtgnC3iEUqTC7ZymmaEf6PuecRjRqiHnak3gBRl9K5q+NIGlfEE7F9rCSndLpbFIS8OxILnFuShJGV8ALIhzJIweP4lpicikhaKq4qiajqqpse0GXVdiPpMDqBllHcbusG0m5ZGYRwIj2dRgOqk8JEWOueh7qtLBf9mvpPFpObMl+FuSyoWulXOW0v/L0tI6M5bjJy8HTwkqV1WfoqKgC8K5VGUv1VlZF0vQqdFo7aBqsFVHrLYoB0m5K+1ZCZinceLpCMMkzd7eJ+Y5Ms1B+O9LlRsjPSNKqBwGqcYu/uyq9O1c9m4kWV2RWd7MhevrfcvMEvAkpTFKrx3YmqJdWFVsmoquqaic5VRVDP0gIrxKuqLFzmwRLC5NBaMiqxmxSxOelnS8i9uHc46mli5ua42Ioc8ziozRIqx7Hs5URymh1JV8f7fpsM6x2WxpN610+Bkjjh/X8HXhqiiVUQY0ds02XqOeSkFVGdq2Zrtv2O5btruGzbal7RqsdWQFk48Mw8TzU8/z8wlftB+VcbhKEAq/cIiKPt3YT5yHiWHyzAUJTRiysmRtSURCipJdKYUyBlsJepXmmRAi/TCAsigt3C1tKlJMhFm4g8KdEukaEjhjpCyQ0xV3l2JNFgl4Kekth+j1WFA6TbMiKsn+tFpe0gh27ca4gMkL16uqBP1tmpbNZsvh8MB+d0dT1VLSSkncpNSenCtSrOk2e+qmFW9tq8k5FmkU8TZ2tmXTPdDUH1D6K09PP3M8P9FsYXuTub3TdJ0VHlyRaElpyUxZkrOrO3wbbL/eM5RSHO4/ohXsbm754Tc/8fk3v+X+wye23RaF4eZwyzyNKG1EyH+eSFm4ZIfDLTeHRx6fHlHfDDFl2eRKsKa0xlmzVgFm7xnGUZQRmpa7D5/Y396Ku07bsdkf2B1uub3/yHZ/Q9N1RbhfstwS8rCU2l/wdJeP/zfB5d//OkWLUywMl7h9qZikuNjicrUBXzalBdNSlHm0JCxGPq9cRddtONze8fDhI6fTV+q2JcVM1WzZbh+4+/BbHj7+DtccyKZDj5lgIjMj5IHke2IYiIxkN2GaCacDmQqtO7LbE/WWOdfo4DAj6HPA2gmjwRmHVpo6CTVFcQnKX49FXs7d98ZqadAIM/PUM56/Mp1/YT79lfn8K2F+hjwXdLJBOQc5ieFAElQwFVRYa11Qz1wCKv+yvFn2M21Fzs3YSrp0tbgoZQwpa0Ki8MAvCYDRwrNVRos+aFaELNJKOUOImTFAbRSVUUyv+iestdzd3lHXDTc3Bz58/Mjnz5/5+PETDw8PtG27anauazKLj7fWC03nqgRZ9nCtDT5GkcTKqaiTJKZpZBh65tljrZgvWCsa05RDO4bAOA4Mw8AwDhirOfc91pgSeE4vjDfmeS6IcS52ojV13VLXLdZWLKLepSR1+fjqWjjMlyrR8vGCFi1BiCrPraoc+92G47mn+moZx3ntyKfs195HcvKCusYEUZOCJgRF0plsUgEBDLp4oEcf8TlAMpAgBU9II+PQE6Ni9tB2OxS3a7kepMFtmmaOzyeen0+cTyfCPGNVonGKtrI4W7qltSjQmHeC8BXxXILONQl9uR/EJPSLEKMk5SkVIXlpvsopE4M4zcaiKY0yGFthtaWqNG3X4poW5bbClyYS1EjUkG1DMrsCtiQ0EyZNZOVQqiWbjkxFzktiFKUnJcS1QSoHTQ6ZHDJpYSRfI55lM0gq8m5daQlQV7TjEowvig7iyKVWbsaLNXEdeF6/NCgqbL0hNXuMSxJM6xpxoRJzmHEO5HPGTrK2UpR1LclBmdL6UnFedW3X380aEF9XvNYkYn3ldY6/3TH/rle7Imlp+sGIkDDarpGtVhmrkZdSVNZyNE8M/YD30l1aVZaqdtJpvm2pu5bqeOJ0Et5kKk0vMQYmlfE+s9u03Nzc0NTievN0fOaEyExUzmGUZAPDOBD8jDWGtm3ICtpNJ84czhUHhsXP9LLJhZQRlM9glAJbSvzlwVxfSikOhy3bXcfhbsNm21C3BlvZFUmbhsjxNPL42PP0eOL5WdoOXGXFnktb3BwwEvGRY2SaPEM/8HyeOI+eKWZC1nIgKEdSgaQCvmR5SSmUNdhKHIdWgvwUSLknZ8NmA22nIcumEXzEz7M0FwBNVaFNu078xYouhCwqFCnh07SWnxYr0hfj8QJWF3RHF5RzdTJa0a4EWZDrtunY7Xac93vm+cxue8Ph5oHt9gZjrGROGrSuqCsHqiFGIzp0lSuOLFqa2yZpKAghlrLUhqb5hHPPHM+/8Kc//0rdeg59wLodldtJeabYz60o3NVkX3hM78ZXr5MRrXj4+ANt2/L5h9/w6fOPfPr0AzeHWzZtS0qJw+2Bx8dvDONI3584H49UTrQshfKxoaqaUjqKq6RMzkhzjZP5hcpSKTCKrtugrWN//8APv/0HtocD3faGdrujbra4uhMqhuJqHpcjLS+fv19k/88Eni/GrFwpZeYps3Sl5qyk5Fw0eVPpPM6pBNYLslnmi9GXhEUbsbtMi+e1AlSiqi03hx2ffvhEyjP9+UxMirY7sL/5xO7mE5vdB4KqGYJhVhFCINmaqBuC6ghqIqmZqCdU5TFap/8CKAAAILhJREFUeLngSKbBq5qcHclrwlkqMsM4MfQ1fu6Ydo6u0TS1oXaad5aGoDmpHKr5xehLqbF0QMcQ8GPP0D8ynn5lOv+NPD+i8yySJqYuyHAWJyM1YVLEpVgOCWloSEV1IhUakFguqlItEh926xzOVlhTiQOacWUfd6tAvIjEm6KLbGgqQ1vbwgvWzElBgDHDXD5qBc6A07wJPOu65seffqJtWm5uDnz6+In9/obNZiOKHMZc7T2SIOdSOdHWroGnLD3xYRfalAFPkbHxa3MlZGL0zF72LmsMTdOsZd9QDDXO5xPn84lxGNAK6qrCOVcCq0mqMvNE3/er69vsZ6qqxjkJPNtuI5xtLmBGKnP7Pfk5aTyS9aEpzbrFrES9+nZZohljDZtty27X0XUVIXi8F8tX41yhzkjjaIpBfk5WJK/wEwSVwCba1lFXFpWkkSb4LLrCypZAdCYGX4JjDViMiliTV1kdUiakxPk08PXrN56PJ8ZhQinNtq3YdzW7rqJxVqT/3DL3XoUUWTjK0uh2hdy9CDzL2VKQ7VieXyzSjakEnktzlZggOLQR1QmrapzNNLWl224wrmPKbUHsJ+ak8CaTVU22QjXRpRNQjFsMUJGRea/KnpxyFK3h4Jl9IKFI8RJ4Zoos1LpHpvXzpP27e2nKWTznkf9X8nEWowJjiiqMVqCzSEGV/OY6MdNKr01mErAalHJY10JzwFYRbTcoXYOyZDQxKyafCDlhTCxIvWLRl1RXBg16SWC1KsHtJfBc5BL1EmQWhaCVxMwF8VTvor7v9V2VkFYZg3JGSjVaGjMksFCl/UwIt1ZZWtdAl2hsJV7mgNKapISDcepFImSaPXoYsTmjnCryH9KJp/WG+9s77u/ucE7K78YId9AVAftN00oQlcv9pYyrHJu2pS4G9hrhJCzaheSLiKlaoDg0UOzXymR7HZdrrbi524gO6G5D3Ti0FXJ2388M48zpPHM8Djw/95zPI8M4oxTY2RBSZJwmqspgTdlQc8bPgWmcRCNr9vgQi3WodM9qXaF0IOVJuvqylleScrsxFTEqcgjMUyTFc+F3eqwVnc8YPTH5dVM31lLXbvVavWjgeabJi2j3PBenKS8oxKspoURP4gXqs2RoFymdJbAtHq1rUDJjTGa33XG4uS8l9K7YqRYrQLOUmDPJ1NRO+GfGOEAs7YZhYhxm5jGgalA4XH2g2/3AZvc32m4ka00IEErmrNBcu2Ndl3+vUbj/1KUUtw+fuDkc+N3vfs+Hj5/YbPeibehEs/Pu/p6UIt++fuF0OvHzz3/BGsN2u+Pp6Ynn44lpDqVMJ8GEuFUJR9k5C4io9ljcV/px4tQPfPn6DbvZQVXhuh2tWswKTLG5k6RgybqzerELsAag+T8IPl/Fpn8vIO2HwB//cmIhwqe4NAYKPcaWTXTZwBYCvkirLRuslBjFbQhsUsKDLj0cylS021tu7yNZ1cVpCqzb0LQHbL3H0zBMiuMYOZ4jpyHST5nJG+ZYEZImJStIuooou3hwazCCAsZsyUH2KqGHBPwUmefE6eTYbSz7rWO/rZjm92xU80Xk/OXwFXRDlQNeHM1EAmqDSnuUy5hUoQmlIiGIVvDiMy87vDi0UQ7DmCKpLEZtNU4XYXlr18NfW3EqWtZmLotYWYepOqruhnZzQ7fZs+lErm7T1DSVlOYiChUEVfKlauiTIE06SlPZa0fZqqr44fMP7HZ7Pnz4yG9/+1vu7+9pmpYlUIsxFROBxZkosfDGliZFeT5yhiwIkApicznPEjSRc0nStFCK0lz87oGcmKeRtq15fPzG6XRiGMVdL6YACuq6IaYkKi3nM8eTcEVDseqcvZczZ7Pj5uZM34/U9cS15JCgwKWq9OpKMRJ9xDoJIkxGXHJ4uRaXzwVEFYpC2zbc3OyYJ8/TcCSFKGODiMRHJbxDrbQgwqoEusiY1a5h03WYlMmF/rX0YFCCnwvbKKN1LsHDkkgWOah08bhvm5q2aUrzXc1m07HZtIWvuwQj6nLuXt1Zip6UL7JuL8rGXHEGtRLwI0nFL+aiwhJLgJwzWRmUqTFsyFqjiBgdcS7jauHCK9MwzTUhKkI0hFTAJeNIuvAecVfPQixFV+Sy0AYWScroPd6Ess+JZWYO6bK/rntuWpFPk98Gngswc7EuKuNRpoIYb5R+CVOa6hTkgmpe0M5L8LkGhlqJWYvbQHODdQnjdmjTIY2MMvtihhwlWdImX6qZy3PQy5muX8hbvgg6l8B0CYgXswENWV8qa5orNPTV9VZAXiMdfFbKNYtqvSqIRi6uAtEH4hxIPmOzZddsUe1mbQxCa+YYOU8TMSvOw4QyUtrW1mCvLNeapma33fLxwwfu7+9KZ96MuIWYMvFbPj3cc9jfYNAiq+Ll4VZVTdO2WG3WLJCVu1mkEvSixKWla1NJV2nGkrO5moTLOCj2t+JqUdU1aIv3mb6feHrqeToKwtkPI+M0rWToRIYp0w89j0ZRV5a6FsK4LhtG9BKUzkHKOoLgWbR2GJuFCM1YMndFDGLh6JxkNcbIZibam2MR3T4XuZK6bC7l/WhFpSzGKRHXr2uMsWSgP0+czj3xuSeOI7OfmOd51ba8Go2XE7B8dZmgKycQLkHP2hgxMc1HUp7Z72+4vfvIptvhXAWrFmhBPY1o+elU4VxLZTdY3UBW+DnQ9yN9P5UGqkjGYKsN25vPfPjcE3LNeeiF74IT4WWd1kW30kiubk+p99DO94NRpTR3D5+4//CBH378B+7u79FaZCkUmbptubu/JwTP+XximEb+8tefCT7QNh3nvufx2yPn88DClVmoDqKZWwSlEQH6WDbxfhz59vzM+O//zrfTiVPfM0wigXJziHSbRN0srlz5gsBos2axK/gJvL7h68BT7uS9f3/5teN55n/5378VxKeUg4u2n9GZrq3YtDVV5XCLZuO6FsU9w1lTnMYMrjjD2phLaQdCrnH1LdtDjbIHxskzz4mQDTE7eq+Zes+pjzyfA+c+0I/SZDeHXEpympwdcrgklg58tSTX2pDSBckMKjPPiWlK9H3gubPst5aHW9Hs9dM7YuFJNnK1rP8SvF/oDAqUQZsKV21Rm3tqZ0hdh4rPmHSGMJDiQPADYT4XYXAJGLOS5DPkRT1EkkNtFZWxKGVEn9M6tJUDgyWZzrCoBqCNWAK2O7r9PZvDB7Y3d6I1vNnQ1RW1M2SliIWulzJ4AyYKwjmXZm4Ubzie1jru7x94eHjgp59+y48//sThcEtV1YRlf0yXRp9UrC7XfaUEnpevsWS65JxFi3mapOIVA3VdFZUJSUrncWYcRs6nI13b0jQ149BzOh8Zh4FpGpimET97us0GpRSn04mn56fV2lPk5iRAbtuO29vz2pzZNFPZ6y6BZypmEa/3kOjljFTGYQxXSOdCfXm1xsrfpUGq4nBzQ3/q+frlK372OGNQZJwVlYGIqMY4q5mMYumDNsrQVh37zQ0WRQqB8/nMOA4rd1F6CcDoxVGozJkFqwFyFuTRWM1m27E3O5qmkfVcibuR0XpF7FYuwZvFIVrMMccXgeaKdrLwBkGhhR6WjPChS9UkxcI7Rgk4YxqZJ7ZGqSRorUs4JzrWZEeKjugVHkPMFqXqgrQK6puIrHCihGQsjc8iUZHXwFNssaX5KsZSZg+mrE1VAs6CdiJ8z0h4m+CXTaGE/csTL3/KnDeGkpAX2UkovEl1FXy+LLtrLQmIMgZci6oP2Cpj6w3YlnTVYLQkoQkFWZeeF82lTH4ddF5+X3lYrJ+WitWCfso0WswXWKujS/D5+npfx3N1pCkzJwsxVZDORcNMMnCNAm3QyKEn9yiBZ0ZR2URTN2w3W0KIaETMPedEChU5Nez3O+5ub7m9PbDfbQsyOJNjwBmF9zNWG5rKiRSRsagsneQpJ0yxo8xZSvfaln6v1Tknr/ZZWSLrguJeCxC+HZ2kEiFH0hwIPjL0geOx5/Hxmb4fmfxMypSSluhmSmf7TBg8OcfiImSFu2e0kJFTYhylcWT2gRwpXsEWp2qSSyhlSDHh58g4eRYfWqNt2cAlEYhRNoiQPCF75jAh4Ooli47JE+KMDxti7mjbTro1W0dWXRGg1WirpSFsOL7geS6CtQuvEwoitRwOV5umLhmTVrKYjYau7VD5jt3mntvDR2kwWM7Ekj0ZIyiKMQqlLW29Ybu9Z7t9YNN943ScGQfP0M8Mo8e4hDaQkAx4u/vAfTB0fU9MULktaREal3DgUhLJC/Kg1kPuap9kiRreNlkpPnz6gfuHD2x2e6q6RfpUMzoLR7nbbtgOO7a7LcYYzuee4/GItc+Q5Xiw1uFcJdItlBBBlYw5p4JSG9EIRPQom7Yjpcjj4zd8DHz9+pW7u79wc7hns7uh67a0XSsbr1bCp93tadoWV9WCqOer+3t1/Ucl9/e62vsxcvzlTM4li172iBJ4tk2ka4SHvUj9iAuNBJ7OiotZ5YxUPIwgWwsCaoyMqwQqBp8aIhVJZ3yAyWf6MXIeAuc+cu4Dw5SY5oyPoq0Z06KhWQ5XpVgse+UlSW1avi+XoLRs0jGxyouMU2AcPXF+J/DMEqElJa5vr8dqHVNtMLZBccDaCuIGlQ7odCL5Z+L8DOZZLDKzdPmq2ENQZJVI2Rch9IS2hqrsYUYbnKuwxl4OAWVQypQqSouxO+rujmb7QL39QLX5gGtvsdUO41qskefkSv0sKnmuIWUqo3AmY4IETPIeSkfv1RVC4Nu3byilaZqOtt2s1JKmEXRsQYeWIVnRG31dzlPraZVXIEFe3nueHp84Ph8BqYaZwtfs+xHNkWdrBaFrG2JpRBrHsXDtJQDW1jJ7z/F45MuXL3z5+oUvX76yyEFZWxUdWIuxTqgls1+D+QUtTCkzjvObNTVNM8N5oFJQLcgRJQlZgo58FYKUxCxlsdTcbzv6mz3PT0f685kcEyEVD21jiAXdNmYJGkVfUgUFSWN1TW0dymWkp8IwDaO4BRZnuKquRRtTW+q2xVhX1DSE52sVKCXyRNbYVX9Vm9J1nVnf94to4+Xsl6pO1pdq2RXyuQSiGoUqtpcpalLy5BRWOay8UByWeYMu4JHoP0MsCZ8hZ+EuxqiIaBJFFD5L34rKl0MsszRExauA8CrwzBCtNAZLhSpfXuV+V7SzNFfJT3i7TygKKlzijdcBmVa5ONXJnuhjFE1nrsreeolrNIuUkS5JG1qhqxadbqgqhWs7kutA29UpavndV2Hh5a+vkc1X7/Xq29aXXvebMhbqitdc7vm96x3LzCVKLaXplbsgD4rCG9RLWU7rgjJKxJ9CFE6ClgdtlZHO5b2ico5t1zH2PePQk1PCGsPt7YGHh3u6pqFylpQiTisUOyqrOZ2OBB+kCz2Glc/krJSixfhIrKxUMuRsMWShDGg5wHJCyNYU2F0LRyJfj+j1csmZfp6Ef5kSY594ehx5fjrz/Hwm54SrhFPUtI6cpTyT0om+T2JP6UuTglXCeV18s8mMw8RUutoVhpwrEbk3cv9aa7ESnP0qUh9jxGiRg1pKeKji3x4CIXsmf4H/Fx6N7hVHa9h0G7bTjpt9YLPdYWxFu2kxdUXTtTRtwziM/PyX/oUQsEywXF6wTIc1YCpLd+HuGa0whd5QWcvtzQM32z373Qe6zQHnHJkkQYDK4oRiQBtKedbQdRtuDx+4v/2B568n/PSFYUiMk2ecPFUTMYieYUqaurnhcGjpOpGMkjFSpUHrclBcAqsl0FLrPV6+5wq9fbExKD5++oHD7R2ubkT0WsG1I4mxlrpp2Ox2VHUjPKl+gDzQdhs2my2ZjPcTfh7xmtWdT3RrQ7HklI5cbQyb3Y7bu1smP9OPA3/+4x/50x/+wHa7Z7vds9nu2e5v2O0P1G2HqSru7h/48cefhM9snAjRr8H02+Dy9dz/j/4OMPvIt0eRfElXPsKy+UbckKhcwBkrKG6UhFWpjDGqoJxG3My0HMZKC+LrrF43Xy11xML7gpA0s8/0c+LUB07nmX6IjGNm8hKUhgQhqrWkKMYGSzItlBVrtRgwaF1KebmANoXeYxTOiY8xSsrw3gfZ394br6Xcfj22V0mZ/F1LmVA5sJ2U2vOATiei7cA4YulWNcphaNHpWQLPkMgI6qK0iLMr7QRxN7ZI4CjUqg5i0abGuA7jthh3S9Xd0+0+0ew+Y9sP6GpPNi1ZVVLCRGGX8lmGqCEYRZWgMkjwGQvimS6KBMs1TRN//OOfeHx85nTqxT42Zpyr2e9v1pKgrLdyauUF4b4gniLjszToLOMrPLYQEl+/PfLt8ZHNZoPWYhOcc+Z8PpVmVGibmq5tAbEUHcdhlVaiNFKGEDiejqDgy9evJWhW1FXNfn8rznFNV6gCWp5/kWVbpNlylo7v19fYj5yOPbUx1NaibEGVypBdqi+CskmiL7PHaM2ma7m7vWEcR54eLf3xxJgC0YsdMzRlrxT5QSgoaxA5JZLB2lqQUi2BZwwwToGYZCzrtqPpOrSyVI0YKKhSwTHGoJ1dj0VBuXTZp5Y9ofzrsoG9c4leql8Dz+WPtXK2VH6UIHApGEETowSeOUVSvCCzak0QE4ubXgJyqVrkLInkGhyCBG4l1LnM2BJkvtjbSqG9gAAqKVGzSBJ4KmWk2S9lqXCugecF7aSkY/nKPmBd/m/Qygtwo3KpBFlNU1sReJ89KkSC+ImzmEEsFBRVksS1oqUVxtU4fYOrNK5piKYlK7MmPJcAU1+eH5cKw+VVkoLr9/0iubh65orLxF6/vvBXLxrP19fbwNNolLVr5rOGs2pp2Mnll6TyTxFUKByvxW5MFa6CNEq4DG3M+HliHgbG/sxwPheeihK+SF1TWYPV4hdgrIGqQiXZ6UIIVJUrg10Go5QflkHPC8fAKLmPxWUDhZRUC69zJdeLPtWaTV1dKWd+/XpGa08OhnFI9KeJaQzEnITT1zZ0XUXbOmYvTS+5IJE5S0a2kIWXbuUUL3py3ntBO69IxbIYhFS9cGCNkVcmFqKvbCax+NlGAlnFVSNu4ZksdxRlRYqXeCnRjrNns93TtJ24k1iHMgpXO37569tGK/FXzqtY7IKmrqP2gj9ZXHeUoW02OP0JpRJ1vcO6RiRzykQVqagrxFNL5+52u+fjx58IPkGyKPNHfv31EWNrfEyMs0cn0U2dg3QfKu0Kb7SQ0vNll1frhndh4V0vtuUbr5G/twGXom6kSUghdJB5ngl+Ek/heWSeBs6nI8fjEWMNHz99pKkbYhJnIecqFIn+/Iy10tSRSylOKwk+xerQFlJ+ZvKemOHu/gN3SvHrl185nc6AYhyHtZlCaUGhGqQBZeUeljW53s/fOSSW+37996VM/vLrZZvOJRApA5mieN6HAOOY0TqUZgXxLpZmIo2zWTqRjS7xR7Hf1IrKSTPPioYqUKTC3ZbymNUap6XMpln0VtTlYLuel0qJo1CWfxFXHY1xMuZJS9C5Jk1a+KcSAIu3cV2Jpu6F1/VqzFISTdylDr1MvPXjVcShykGopSEwK+Ehky2aDqMPODuBG0B/I/MrSrdo0xBDT84z1rYY12JsjbEVxshWnoKXfdVYjG2o6i22vsE2d1TNHXV3i9vcoaobomqZk2WOmjlKwJ6ykBI0YBXUGqKBZLnQEQpH7PnVPEopcT73CBJZsdvtub9/ou97gg+EKmKyIl0ZOLyoNuRFk1GeocxdyEl4lFoLb3WeA+eTiKx7H9agNQTPNI0SmJAwWlDYcRB+Z1oQqTJHcs6cS0PR4+Mjp9MJ5xzWWJqmYb/b0202WFuJgPo4UcDtF4HnPIc3pfbn45mvX5+lStfUKIReQn61x1ASI0VBqKVh11lI+y0xRSpr+KYF2TbaUNcNKQekIhA5j4HMqfD1J47PPefdQOVqeVUtOSu8F+Sw3XS0Tc3HTw+03YbZR1ISlFcCzwuSuuyb19eb7aMoaPAmFZEJL4jn1c9ag87lbF6euCZGI3tICgjfOSDuXZpcFFUk8CyJTwlHosrEkAmBS3BYHKHSuh+o8o6W9Vhe69KUH7YkA2vgGcUVTClpxl3VINTy/8t8Xud1kWN657oE8nmdt7oY6FTO0tRi3eucSIPFvNTsrqgJVz9NrQhtoUgZizYd2mm0raVjf/kfBXhb3ofEh68rNGqdm4tI/ArGqCv8kcziQkc589c/s4zjQnJ7D7h4h+Np0FYCvFxK06pk2aDFaEALLJwUZOWF6J6Fr5MWdxujcE2FrRuwTryJ51m4hH3P2J+FXJ6TlA+0Wtt8JM5VJKPJpZs7pkRl3VoiX3QPlZI8MRvhOWBNKRubC1QsdWGB2IsgKuUlv1G/IUWnlPnlbydAyMR+lrK3Voa6qmi7hu22o+tq6mrxHWYtg2slh1tTG5rGysGlM+MQizuGvMhyEForh13wQheI0ROjJ5TFFKIiIyx/U7L8GDM+zDL+GlnAZgle02prOc9Lh2dp0CmBZ8zSbNBWFa6WU3hpQHoxJxRr4KkKeVjl/CJgk/mWygEqpQBnHc5YzKYtpXct9lv5KnAtwIdk2ZQAVLHZbKWr3TicbQnJEvOfqJqWUGQhCDPjHPBePJPjovv2Yi1dNrzld10y9WV+cFlcZeG8s1ZkwRjZmHPK+Gni+PzE6fRMfz4yDGfGoWeeBqZxRGnNTz/9xPRhvmqsEEkdcZ9S5KrYmcHaCa60KjJkmpiTcLQmz+8fPnK4vWN7c8vXr1/pz2e8nyCnslELR7aqhPtmjbhq5bIB/z8NPFNKb0BSpYWTmZMS5QU05GLPWZx1RKpn4T8JQqG1wuiMMRlrEsYU29W88D8zldW0daapEpXT0pynxdnIVSKEra0iuYx3CW8zk/YYTWnGk+BAlblweZiy3Rq9OH+BVkIhkm5taXYyRoIE46Ts1TaWpnW4so+9N2Y5Z3QZ53VdFHR5OdCu41BF2Y+oUEqTtSHbBqX2GFM68JsJ9C+garQRQ4QUeiDg6i1VvcdWHca2aOPIGeZpJIaA1gbrGup2T9UeqNo7bH3A1Vus24BtCBjmIBJJTch4mwUNK9afVpYyyVzOJ13Q35jBmrfjEGNinr3wInuRMZqneVXMIGsWPtyyLy+JcioBvCr7T0oQs1hgeh8uZhsxi5j5MK4C+maRaSq80VjciKbiticBabqgqkaTFUV9Qugw/TDQIftS13Xsbw5FE9QSfCT4yMKVW/eZLG5Ir6/n556qfeZmt+WwTxi9VASWRpR8CcC0oP4iHaULnamoPlgJTFLMKAzGVOU+FCkF5nnEHQdQmmnynM49z5sTx5uertvSbTTGGWql6ULGugpXGW5u9vz0u5/o2o7H5zPn08A8e+mONkJ9eQnGvEqmCoC2Tvay5t7bN3MqgSeswWYuQVSBUkuQoklJzr6UIjlFFstY8UlX69hdiB6qjIVwuoOX4C8u/REoUoFkru/hEnxe3VbJTiWUEzellGUOxhzReWEaCu0tFwBuqfbK3in1edHx/DuHyPLO1VIlFPpE5RxN7cTS0mnppg+RleK63vECKl3fhdh1ozVa1yhnwFSARecldlgap1ZfpBU1Jhf6BEuwWc6CFyh9YekrqSbmlIUmm2DxaEch5faSQCb1nww8//TnvxWEawkMDApzBc2mkolEcgxFZysWzbkoWaWWTupFAkJE0bV8n/difeeXyZVW5GyRWpGbTuvmEZOgN1ovXrKqIJXylhK5lNDE4ce6qsgLFI7n9X0Xjid6sVBUkBV/+D///GIccsr0z89Akc2IIhWjtUFli6InxSNDL6jmPM+c+4Ewj2hmbBFi1iRyTPhZBGFjkK7KpQN9CTxTDsxhFOTKJLpti6sNpnDhjHUr8V4CZkAjDWAs3DlJDtRysCkgZ3FeKZoMCk2YI/1pQPGNaZxEdF8Lp3TpNr2+jk+/8N//j/+5SKEsG2eZH1c0WVt4eiuCu35kLWWv5bN14ZXyepFnWDkjCJdtOJ95fn5m6EesNgznJ/7yp/+GsS0oS4gJH5KUmIqEyZKxrkto2eTK8rlewtdffkH+zuDHby/GIeXE//a//leatoUszQ7jMDCNpWnBT3g/CwodIz5kqmaDdY3w4qKYJ6QMVd3gp5EY5nVhi0C44uZmR7fp2Jamhc12R3YdT70nqDPnKRFwZNtAFkMEj+M0BAIn+ilxHj2PT0equhEel3oPjXjveh14ygZ0Op1efN2mni78UfbWpFi0NFIu7ilKXuvWqC4OLooiLROVJLJqCYolCDVRQdTEWeGNIpZKSzCGuZQOQQnaNXnqWYLuBhGhTkBUFwQNBGHQStB1lzUuLL9bkArN4rr2UuYpW40/G87OEKwhTKeXI5Qz6st/g/MvS0ZOXmfbVaQJVzv4S0VVKdVFyBGVAiYHdE7kFFDTETd5QjIkWrIRYw1LjYkOPSt0TCgtqFvli++5yugUsKnH+oweJpT9RjI1wTiStiQjjUODg2cHf3OK1ilM2Y+XAD5k6WCfY2ZOlzU8Pb9cH23b8k//9E+i9dw07PZbYgz88ref0f9VEqIF3X6VGq7lvFWaDVa5opyFP++958uXLygF++1Wnm1Zv7W1dHXNPE+QwTlL5Rzez4yjaEyL0L5oCzdNQ900aCX7+ziNBB9EJaXbcLjZo1Xi+fkbMfqrw3M5n5bHL4L2rw/X0/Ov5OTJ8ze+/HWLs4Lsky/8ziUZXruJX5VgYxKrzP48cDyeGYdpNWoRbexECJ7ZD7hKs7/ZUDeGunX4MPF8eiSkSZpas6iYpBQxXkvvgspUrqIfJsZRHJuej984D0+0bfOmCngVk7z5+7Kn//zzX178F6cT/3j7fIV4Lk+cNWhd9wSlqBtLbSxJZ4KKeJUIVV5DrQu6dnkeGoXTudBBIKPYGoWPEFcU9nW2/d5uWACUJcTKQjlpXKCyYj+bsmZvNXPhO6+llBfIXsZq4bpfX101wnLmKTn3xWZa49Bk75hOFc9RhO/HcWb2oVQiBBlOShHXdaJXSSO0JhvFpCODkt4YaSI2xCzSYxTDnKU5bgmOlKLI2y28zvKM1hI7V8/pAhhdv4CLQ97C8yxP7de/voytANS//du//efOo+/X9+v79f36fn2/vl/fr+/X9+v/xfWWsPT9+n59v75f36/v1/fr+/X9+n79/3B9Dzy/X9+v79f36/v1/fp+fb++X/9Dru+B5/fr+/X9+n59v75f36/v1/frf8j1fwGMn+3S6a2gpAAAAABJRU5ErkJggg==\" id=\"image429fcb41ee\" transform=\"scale(1 -1)translate(0 -71)\" x=\"7.2\" y=\"-22.269118\" width=\"670\" height=\"71\"/>\n", "   </g>\n", "   <g id=\"text_1\">\n", "    <!-- Anomaly examples on CIFAR100 -->\n", "    <g transform=\"translate(244.94625 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-41\" d=\"M 2188 4044 \n", "L 1331 1722 \n", "L 3047 1722 \n", "L 2188 4044 \n", "z\n", "M 1831 4666 \n", "L 2547 4666 \n", "L 4325 0 \n", "L 3669 0 \n", "L 3244 1197 \n", "L 1141 1197 \n", "L 716 0 \n", "L 50 0 \n", "L 1831 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n", "L 3513 0 \n", "L 2938 0 \n", "L 2938 2094 \n", "Q 2938 2591 2744 2837 \n", "Q 2550 3084 2163 3084 \n", "Q 1697 3084 1428 2787 \n", "Q 1159 2491 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1366 3272 1645 3428 \n", "Q 1925 3584 2291 3584 \n", "Q 2894 3584 3203 3211 \n", "Q 3513 2838 3513 2113 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n", "Q 1497 3097 1228 2736 \n", "Q 959 2375 959 1747 \n", "Q 959 1119 1226 758 \n", "Q 1494 397 1959 397 \n", "Q 2419 397 2687 759 \n", "Q 2956 1122 2956 1747 \n", "Q 2956 2369 2687 2733 \n", "Q 2419 3097 1959 3097 \n", "z\n", "M 1959 3584 \n", "Q 2709 3584 3137 3096 \n", "Q 3566 2609 3566 1747 \n", "Q 3566 888 3137 398 \n", "Q 2709 -91 1959 -91 \n", "Q 1206 -91 779 398 \n", "Q 353 888 353 1747 \n", "Q 353 2609 779 3096 \n", "Q 1206 3584 1959 3584 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n", "Q 3544 3216 3844 3400 \n", "Q 4144 3584 4550 3584 \n", "Q 5097 3584 5394 3201 \n", "Q 5691 2819 5691 2113 \n", "L 5691 0 \n", "L 5113 0 \n", "L 5113 2094 \n", "Q 5113 2597 4934 2840 \n", "Q 4756 3084 4391 3084 \n", "Q 3944 3084 3684 2787 \n", "Q 3425 2491 3425 1978 \n", "L 3425 0 \n", "L 2847 0 \n", "L 2847 2094 \n", "Q 2847 2600 2669 2842 \n", "Q 2491 3084 2119 3084 \n", "Q 1678 3084 1418 2786 \n", "Q 1159 2488 1159 1978 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1356 3278 1631 3431 \n", "Q 1906 3584 2284 3584 \n", "Q 2666 3584 2933 3390 \n", "Q 3200 3197 3328 2828 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n", "L 1178 4863 \n", "L 1178 0 \n", "L 603 0 \n", "L 603 4863 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-78\" d=\"M 3513 3500 \n", "L 2247 1797 \n", "L 3578 0 \n", "L 2900 0 \n", "L 1881 1375 \n", "L 863 0 \n", "L 184 0 \n", "L 1544 1831 \n", "L 300 3500 \n", "L 978 3500 \n", "L 1906 2253 \n", "L 2834 3500 \n", "L 3513 3500 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-70\" d=\"M 1159 525 \n", "L 1159 -1331 \n", "L 581 -1331 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2969 \n", "Q 1341 3281 1617 3432 \n", "Q 1894 3584 2278 3584 \n", "Q 2916 3584 3314 3078 \n", "Q 3713 2572 3713 1747 \n", "Q 3713 922 3314 415 \n", "Q 2916 -91 2278 -91 \n", "Q 1894 -91 1617 61 \n", "Q 1341 213 1159 525 \n", "z\n", "M 3116 1747 \n", "Q 3116 2381 2855 2742 \n", "Q 2594 3103 2138 3103 \n", "Q 1681 3103 1420 2742 \n", "Q 1159 2381 1159 1747 \n", "Q 1159 1113 1420 752 \n", "Q 1681 391 2138 391 \n", "Q 2594 391 2855 752 \n", "Q 3116 1113 3116 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n", "L 2834 2853 \n", "Q 2591 2978 2328 3040 \n", "Q 2066 3103 1784 3103 \n", "Q 1356 3103 1142 2972 \n", "Q 928 2841 928 2578 \n", "Q 928 2378 1081 2264 \n", "Q 1234 2150 1697 2047 \n", "L 1894 2003 \n", "Q 2506 1872 2764 1633 \n", "Q 3022 1394 3022 966 \n", "Q 3022 478 2636 193 \n", "Q 2250 -91 1575 -91 \n", "Q 1294 -91 989 -36 \n", "Q 684 19 347 128 \n", "L 347 722 \n", "Q 666 556 975 473 \n", "Q 1284 391 1588 391 \n", "Q 1994 391 2212 530 \n", "Q 2431 669 2431 922 \n", "Q 2431 1156 2273 1281 \n", "Q 2116 1406 1581 1522 \n", "L 1381 1569 \n", "Q 847 1681 609 1914 \n", "Q 372 2147 372 2553 \n", "Q 372 3047 722 3315 \n", "Q 1072 3584 1716 3584 \n", "Q 2034 3584 2315 3537 \n", "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-43\" d=\"M 4122 4306 \n", "L 4122 3641 \n", "Q 3803 3938 3442 4084 \n", "Q 3081 4231 2675 4231 \n", "Q 1875 4231 1450 3742 \n", "Q 1025 3253 1025 2328 \n", "Q 1025 1406 1450 917 \n", "Q 1875 428 2675 428 \n", "Q 3081 428 3442 575 \n", "Q 3803 722 4122 1019 \n", "L 4122 359 \n", "Q 3791 134 3420 21 \n", "Q 3050 -91 2638 -91 \n", "Q 1578 -91 968 557 \n", "Q 359 1206 359 2328 \n", "Q 359 3453 968 4101 \n", "Q 1578 4750 2638 4750 \n", "Q 3056 4750 3426 4639 \n", "Q 3797 4528 4122 4306 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-49\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-46\" d=\"M 628 4666 \n", "L 3309 4666 \n", "L 3309 4134 \n", "L 1259 4134 \n", "L 1259 2759 \n", "L 3109 2759 \n", "L 3109 2228 \n", "L 1259 2228 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n", "Q 3044 2119 3236 1894 \n", "Q 3428 1669 3622 1275 \n", "L 4263 0 \n", "L 3584 0 \n", "L 2988 1197 \n", "Q 2756 1666 2539 1819 \n", "Q 2322 1972 1947 1972 \n", "L 1259 1972 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "L 2053 4666 \n", "Q 2853 4666 3247 4331 \n", "Q 3641 3997 3641 3322 \n", "Q 3641 2881 3436 2590 \n", "Q 3231 2300 2841 2188 \n", "z\n", "M 1259 4147 \n", "L 1259 2491 \n", "L 2053 2491 \n", "Q 2509 2491 2742 2702 \n", "Q 2975 2913 2975 3322 \n", "Q 2975 3731 2742 3939 \n", "Q 2509 4147 2053 4147 \n", "L 1259 4147 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-41\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"68.408203\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"131.787109\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"192.96875\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"290.380859\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"351.660156\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"379.443359\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"438.623047\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"470.410156\"/>\n", "     <use xlink:href=\"#DejaVuSans-78\" x=\"530.183594\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"589.363281\"/>\n", "     <use xlink:href=\"#DejaVuSans-6d\" x=\"650.642578\"/>\n", "     <use xlink:href=\"#DejaVuSans-70\" x=\"748.054688\"/>\n", "     <use xlink:href=\"#DejaVuSans-6c\" x=\"811.53125\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"839.314453\"/>\n", "     <use xlink:href=\"#DejaVuSans-73\" x=\"900.837891\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"952.9375\"/>\n", "     <use xlink:href=\"#DejaVuSans-6f\" x=\"984.724609\"/>\n", "     <use xlink:href=\"#DejaVuSans-6e\" x=\"1045.90625\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"1109.285156\"/>\n", "     <use xlink:href=\"#DejaVuSans-43\" x=\"1141.072266\"/>\n", "     <use xlink:href=\"#DejaVuSans-49\" x=\"1210.896484\"/>\n", "     <use xlink:href=\"#DejaVuSans-46\" x=\"1240.388672\"/>\n", "     <use xlink:href=\"#DejaVuSans-41\" x=\"1288.783203\"/>\n", "     <use xlink:href=\"#DejaVuSans-52\" x=\"1357.191406\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"1426.673828\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1490.296875\"/>\n", "     <use xlink:href=\"#DejaVuSans-30\" x=\"1553.919922\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"p74ab09bbce\">\n", "   <rect x=\"7.2\" y=\"22.318125\" width=\"669.6\" height=\"70.950993\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x576 with 1 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Prediction: 7\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovTWVkaWFCb3ggWyAwIDAgNjcwLjM5Nzc5Mzk3MjMgNjk4LjUxNjg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJy9nU2P5EgRhu/1K+oIEnjy2/aR5WMBcVkYiQPigJZhAW2DFiQQ/55wVXflG1HOSDujdzSC1cS2Kx9X2ZnxtPPd+vCzT//529effvvlF9ef/u7yof7t639f/PXvlw8/8ddv/n1117/T//579dcvr/yHHNVfLmV2U1zneU3012/xr2VdpuzLMmeqO/nX7Yf/ern8g8b6hv7yJQ3wzeUS3JTzGulncp6nvCwhrjSIj+vkS3TeY/1brJe5TH7195evL8PKNN5fLt9ddwZZSizp6v0yFRfL/Y/8678+XX9//cf1w0/C9r5sb5Gn98U9vS/f0YHrdTvD7Z/Nwb5+uX74lb/+7J/Xry5fXb97e11Hb4ff3vNpeX11qlxCmdKy0ivw9wXLaXJvb8vliw3t8h39v7v+mDiuIU7RrUtZo1/CNacwrWtKyxvJ5YuP1w+/8Ffvrh//cvtwPv758ofrD9wPr3+8fvz15ecfL19dbkSXuEwxrWvgIFBVOWKe/OxCDGtO+TiHf+bIbgrehSVxECyrJGmeXHR5LXl163GS8ExSwuRmV9LCSbCskuRlWoihuBDmeJwkPpPMcaIPWNwlL6ysktC9O2cf71focZL0TLLkaV79032MZZVkCVPx98niMEZ+xljnqWQ/0yAMA8sqxpqmNAeXvd+GPkxSnkm8W2n22y5NMbNhXWXxrkwxhuTTPIf5OMy8AxP8FOeQShEwWNdhaGr0a5jnJbnVH4dZdmBinGhCWKKc8mtZR4lucjn6FFzKJy6X9RkF5uoS6WNZUthIaKaQ1d27Z9o+w3Wag6fJbftzbmaF0edMn8NCby4fvpab48+e3kJP08n259yMCuMv9Fpx9TR3sfFruTn+EqeUaCLb/sRz8yiMv66TW1e67fj4tdwcf6W3yIW3JfvU7AlNg3fTmtdt9sHxodwav7h5a0jOTZYwcAjTEtzrHVAHruXmwJ7emxDv531yloTxY5rK4mgp4uPXcnN8uguXJc73T/7c3AjjpzJlmlFoAmLj13JzfLrt55Tu170/Nx3C+LQWJ0dTDx/+UW2OTlNUcel+12u3/c78h70qNS/FU5PGh6/l5viFGkFqNfztz9FJL1x/fW/vb60mb2IbjXijsb78rtGivzRbdDrkZLPPjoDXUsdwt3O8t9T3dv0b1o+GyWcXci7b+1ao7Xg9GN7CwN/C3/zpf5/+dfU/uv7y05/+fGXz6Ksy3Y3mrk0Ps/E0M4U43xor1jn7OC3J013Dzxbq7JzgdZ7dZvOIxw9kavfLqOJc7opzPaI4+og3zwlHPcd5+iTn7cMQ1x3U9XaAmrt1WagroDfmRJu0tyDTR0AqQbeUgMG6rl3U3S1pSWtcqHEz+U4IiSbY5aZNDAbrOgx1dzP9+zyn4k40SntLdSw02y43c2IwWO8IKbVSZSUmmtYXk/WEtF3Dq7iDXnhdh0l5SqSkS5qpwzaJTyiOZuL16TZndR2GDgsLjb/E291k0B86dVIGAfJW0yHKuk2M0QdHq5DJfMjFaZba5hgBgnUdZvGTI/2ZM63yJwx5b6lfCy2r7iZQDAbrOsxKvdjsXaQLazkxv+ys/JGaxdV7eRNhWf9likvTTOLjwupt4oOLE5rPSjOGLO9OuvQJkZfQRf66AoxbEKIwDQIW3YMkjEGJEIY5EcDoUiRhDH6EMEyQAEY3JAljkCVsQ5gtVZiOLgmYIXNCCqZOQKG7k6QwaBTCMI8CGF2kJIzBqRCGSRXA6FYlYQyChTBoWMCiKpZEMdgWa59Rt4BF9y0J8+7q1TKFVudPlrMvES9Nidh87aSP8EOYfimjdPQruEI355J9ydmnEf8KR/2LmilaVfOyipWf1kta2NbM+6Rvsc5OCl5n378eP1DmuPrP4V/6iDf/igf9i9SaPkqai2VPgnW9KaH+ku4JAnH5zOOM3UdN87Q9QUlPD5ugrsNQj5kDNY7UescTzdpOKxBpac1lm7wFDNZ1GOoxCZ0+8njifdlpBJL3pCszzVDiUsa6/vDLLVNIZGqeZv8TDzZ2GgHqyElX5iw9g9V1mOAm76iby7QunlDBnX4gbc8X0/x8k2Ndh4l+IiElcQ/xzIONnX4gbY8YHS0UggXKOkqKt8lx3t7GE/39TjeQtmeMZSlBPC1ldR0mZ+pcljWWvE05FgdL22NGMtxF/I6H1XWYQoelNTpHbfcJX9/pB+h4Ilhj9nJZgHrnQfI63booUpJ0wtd3NAzXKNCwuLUYsrz/dJ06ulxy8K8LwbiGIQpqGLLoGiZhDBqGMKhhCKNrmIQxaBjCoIYhjK5hEsagYdiNoIYBTEfDBMyQhiEFahhS6BomKQwahjCoYQija5iEMWgYwqCGIYyuYRLGoGEIAxqGLKqGSRSDhrEuGjQMWXQNkzDvrmEtYWgJANnOvku8NF1iM7eTWsIPYRqmjNJ7CkZKm12Z55l6sXVEw+JRDcuJOvJ1+4jFbila2Px93yA7X6izk4LX2dewxw/MJOrz59AwfcSbhqWDGpazI29JUW5cYnV9Uxl1mTEl6tbWUE70azutQC6BvIW6M3FVs7oOQ41IcNl5umHPPF/Z2/Y3JzKX7WIVMFjXYagRcSXHefXrmecrO61AXujKcznJNwbKnZ1/NHYg9LCc2W+30wfk7alnyeL2eeF1nWVN07xQs1DSfOYhy047ULannjR1P93jWFdhiisTrYt0bXl35iHLTjtQgqe1flsn5PZMqOswNDnQhUXWPqd8Qgl32oGyPfVM5FHiIS6r6zDUjMQy05RIk/YJc99pB8r21NPNIYlJhtV1GBqdmuhMV42fT5j7TkNQtqeeNJN78bseVtdhbv96XgNNeunEJLPjYbhIgYflRDOHLO/eS9GTjKT7L4lnk4chCnoYsugeJmEMHoYw6GEIo3uYhDF4GMKghyGM7mESxuBh2I6ghwFMx8MEzJCHIQV6GFLoHiYpDB6GMOhhCKN7mIQxeBjCoIchjO5hEsbgYQgDHoYsqodJFIOHsTYaPAxZdA+TMO/uYS1jaBkA6c6+TLw0ZYIOOesl/BDmYcooHQ+j9njyS3ZxCavLIx6WjnpY3UlJjTDdhOF1l0XdSQl1FrRK6zKFpdyWvvoqWH042N4gt1XnVNDqcky/moPdzCufDlqx9wXL22cUWqstD1rFkqknWV1MncVWC1oxEKiqHDxodZhDDVoxECyrJDxodZhEDVoxEiyrJDxodZhEDVoxEiyrJDxodZhEDVoxEiyrJBC0OoyhBq0YBpZVDB60OkyiB634zIZ1lUUErQ7D6EErDoN1HYYHrQ7DqEErMeXXso7Cg1aHUdSgVaQrleROJj6g3Mo8bL+0XHzpd2Bq1CrSJbrt+uWRi1ptjr7GiVb3ftOlBq3oraNLLcrEB5Rb4yeXpxxLv89Sg1aJrkO/0mvNfPxabo5PP03v0n34MBq0SnTtuZxEzK5Wm6OHdQrkvV2jVtNWiRq4ddsWwGN2UG6OT+2x93NfotW0VaJ2b6Z1QMTsoNwcP4dppZa7681q2ioVartiljE7KDfHL2labotXR5XVtFVa3JTWLGN2UG6OTzNVWU/Of9ishinmImN2UG4OvD1joZ/uCvFA0Io3nLudNc9ZtTp3ccTJVp8dUV9KG+FUyCq7dD/WyXt312yCIWjFO+e6S5GdL9TxtOBldt1GhJ4GBccQs9qznHI+ZiWuOqjrzQCPWVlEB+JUHAbrunTxmJXFdiBOxWGwrsPwmJVFeCBOxWGw3tFRFrOyOA/EqTgM1nUYHrOyaA/EqYSnQ12H4TEri/y8Rqo4yFtNh+AxK4v3QJyKg2Bdh+ExK4v3QJyKw2Bdh+ExK4v31DwVXw+grP8qhcWsLNqDSxPznho+6IiPCB9YHAhhUIKARbUgiWIQIlxrmRFVlo4SCRiLHSEM0yOA0f1IwhhUCWHQlYBFlSWJYvAmRGHiBCy6OUkYg0QhDLMogNE1SsIYjAphmFIBjO5UEsagVwjD/ApgdMGSMCOuxbpnlC2g0G1LUry7eLU8odH485RVyyykrJ10EX4Iyld7jHMRq0H7GolZsTOGzYnsjKGO5wUvs2tfIvL0GexLH/FmX/P5kBW/KrCutyQ8ZGV7zPQIU4kHTVDXYXjIymJfEKbiMFjXYTBkZXEvCFPxCxnr+oMvHrKyuBeEqTgM1nUYHrKyuBeEqTgM1nUYHrKyuFdNU3EWKOsoPGRlMTAIU3EWrOswPGRlMTAIU3EYrOswPGRlMTAIU4lFAeqdh8gsZGWRMFyhUMIgetCRMBE9sEgYwoCEIYsqYRLFIGG45KKEAUtHwgSMRcIQBiUMYXQJkzAGCUMYkDBkUSVMohgkDFFQwpBFlzAJY5AwhEEJQxhdwiSMQcIQBiUMYXQJkzAGCUMYlDCE0SVMwoxIGGuiQcKQQpcwSfHuEtbShUb/zzNWLcGQ2nZSSfghKGHtMc4FrAYlbCRkxXdK1Z2J7IyhjucFL7MrYSLw9BkkTB/xJmHL+YgV39eGdX07GY9YWSQMolQcBus6DI9YmTb81SgVh8G6DsMjVhYNq1kqzgLlzp4/jFhZHAyiVBwF6zoLj1hZHAyiVPwOx7oKIyJWFgeDKJXYmAl1HYZHrCwWBlEqDoN1HYZHrCwWBlEqDoN1HYZHrCwWBlEqDoN1HYZHrCwWhksUWhgEDzoWJoIHFgtDGLAwZFEtTKIYLAzXXLQwYOlYmICxWBjCoIUhjG5hEsZgYQgDFoYsqoVJFIOFIQpaGLLoFiZhDBaGMGhhCKNbmIQxWBjCoIUhjG5hEsZgYQiDFoYwuoVJmBELY100WBhS6BYmKd7dwlq+0BAAnrBqGYY44qyT8EPQwtpjnItXDVrYQMRq21ZH7nffX1F3UdYyC1hFOjAur0FE2LyJ5Z2I1dur3RI/+XuOWInBbua1no5Y4ftSq377UF/fll7Ayi8zfaSRuu/OUqsFrBDjUdQpeLzqMIUar0KMWtU5eLjqMIcarkKOWtU5eLTqMIcarUKOWtU5eLDqMIcarEKOWtU5IFZ1GEKNVSFEreoQPFR1mEMPVbG5rJZ1EhGpOoyiR6oYSi13UHig6jCKGqjiE/xbtQPC41SHQdQ4VXDbU/tZRjqg3Eo2BEe3GH1O3UZLjVMFvz2on2WkA8rN8T3dWrMmbmqSKsTtsfwiIx1Qbg4c6HaKvt9OqUmqkLYn8Yv85iQoN8enlT+tvv+fNVCTVCFvD98XmaODcnP8THdODn1xVrNUoWwP3FeRo6vV5ujUzAUf+q6sJqmoZ5y2bWIiRwfl5vhzphUu9PVYTVJRPznN0ckcHZSb4y+FVrbYN2I1SRVdoE7ZiRxdrTZHpxlqXmNfgtU4Fc1hU8pO5uig3ExRekdLWex770CcijWX+100j1M1unR5xKm2nsev6iupI5yKU8VQ7gdnefvuWkw0xKlYn1z3I+L54sZGPCvcCLnrMSLcNCgzhjjVntHQVXg6T8Uvu0e50wvwNJXFaiA1xVBqueNXPEtlURvITDGUWu6g8CSVxW4gMcVQarlnnSxHZREcyEsxlFruoPAUlcVxIC3FVfxR7qDwDJXFdF7zUgzjXuog8ASVRXIgKcUwarmDwvNTFsmBnBRDqeUOCk9PWSSnxqTY9P+odn5PwrJTFsdh6xBKTk0UdCxHJAoswoMwzHgARlceCTNiP0jB9AcodP+RFAYVQhjmQgCjy5CEMXgRwjAxAhjdjCSMQZIQBi0JWFRNkigGY0IUpkzAojuThDHoE8IwfwIYXaAkjMGlsEFFmYI0pGpTEsUgVojCzApYdLWS0cx3t6yGFLS6fJ6damjEk5mdEg8RtkLTUsY4l50aVK2R7BSeMew6xDPG7Yt4WrjdcVe1RJLpM6iWPuJdtfz58BS7LGq505Hw6JTtAdIjIsUfIT3KHRQenLKoFgSkGEotd1AwNmURLYhHsWu4ljsPtHhoyiJaEI5iKLXcQeGRKYtoQTSKodRyB4UHpiyiVZNRjORR7YDwuJRFtyAWxUhquYPCw1IW3YJQFEOp5Q4Kj0pZdAsiUXwNeJR7D4RZUMpiXGw5AuOC+EDHuER8wGJcCIPGhTC6cUmYEeNCCjQupNCNS1IYjAth0LgQRjcuCWMwLoRB40IY3bgkjMG4EAaMC1lU45IoBuNCFDQuZNGNS8IYjAth0LgQRjcuCWMwLuxTwbgw+qgal0QxGBeioHEhi25cMof57sbVcINWs8+DUg2beHK0U/4hklVoXMoY54JSg8Y1EpRiu57qDkM8Y9yqiKeFWxt3jUvElj6Dcekj3o0rnE9KsS1qtdzZG8ZzUhbjgjwUQ6nlDgpPSZn27dU0FEOp5Q4Kz0hZnKuGoRjJo9rbuocJKYtwQRKKgdRyh4TnoyzCBTkodmPXso4i0lEW4YIUFN9Z+Sh3UHg2yqJckIFiKLXcQeHJKItyQQKKodRyB4XnoizKBfknhlLLHRSeirIoF1uPQLkgK9BRLpEVsCgXwqByIYyuXBJmRLmQApULKXTlkhQG5UIYVC6E0ZVLwhiUC2FQuRBGVy4JY1AuhAHlQhZVuSSKQbkQBZULWXTlkjAG5UIYVC6E0ZVLwhiUCxtVUC7MOarKJVEMyoUoqFzIoiuXDF2+u3I15KDV7fNUVEMn5BHnBETEqFC5lDHOpaIGlWskFRW3PSqvGydg++SjzFJRnhb8NL/GBuuLsPJeKurxaqcCUdtbdTkViHqMc5ereD4MBW8HRqSm+PZu9MJQ5Dbz4sNwDAoAIBuljc9jUAfG1wNQAICxKI2AB6AOEOjRJyDAQJRGwKNPBwj00BMQYBRKI+ChpwMEetwJCDAEpRFA3OnA8HrQCYbH+JM2PA86HSDoRJxwYsLkk8YgIk4HIDrhJoTAzJMKwcNNByD0WBOboWvYSUXgsaYDCHqgiYTdhedgxVu1nSuhZjP3uyQ1zUS9SClBfjvRW7EZapipt8z9rkjNM2VS8hBkpKJWW4On7auGc78LUsNMJVMLEOX3EtVqa/CyfbVw6f+HA9Qk00yvlKJMsNVqa/B5+yrh0jddNca0UL9BnZCIr9Vqa/Bl++pgzd/U+JJ3blq3TcM8vAbl1rjr9i3Bc99l1fSS99t3AieZXYNya/htdnRh7uurml4iz5vKkmR2DcrN8elFlmXpG6uaX6JVY6JbVWTXarU5ety+A3jpS+pIegm7wf1uV6SX9rtpecSp9pv9PLySOsKp9BLNJq8Hy7t21zaSJb2E7S1sIoTzhTI7K3iVfd+QWaIx6Tj4X2FoDnY3jzSQWWIXG0SZ1IWeZ5bG5APTSgiBISZVgHhaacxAMKeEEBhfUiF4TmlMQjChhBAYXNJVkCWUxjwEs0kIgZElFYJnk8ZUBFNJzIkhrKRC8FTSmJC85ZEQ4C2ipA7O80hjLoJJJATAgJIKwZNIYy6CGSSEwGiSCsEzSGMuAukjnL4hk6T+eoKlj8ZUhKUUwEUwpKDJyFN6Y9hL8JtBQEzgG1U0M5GZgHFJAQ5mKRVE1xT5zS7jxgIkTFkqie4sgsSgL0DC/KWS6AIjSAwuAyRMZiqJbjOCZERssF1iZlMZOmojIAyWgyxMc4BF9xzBYlEehGHOAzC69EgYg/8gDAoQsKgGJFHeXYYavXurGRcho/1u/0mgTvkBP4AJkTLGuZDRoBENhYzgjHGTH5wxlNlpwavsG5GM/HyvRtQc7G5EeSBahBcDJo7UdoNHi0Yfx9RQEXsgA1kjFYKHisaMCONECIEpIxUC40RjPoRBIrxOMV+kPhjiQaIxH8IIEUJgskiF4BGiMR/C8BBCYKZIheDhoTEfgtgQMkCYSEXgsaExK8LAEDJgjkiF4IGhMSvCqBBCYIJIheBRoTErwpAQm8MhO6Q/NGUhoTExYmGCKkYsS6CJ0VPIYliM8Ns6qhjht5xoYiS37o+LEXCgGAGILkby21bGxQhIUIyARBcjQWIQIyBBMQISXYwEiUGMgATFCEh0MRIkI2KEXROKETB0xEhAGMQIWVCMkEUXI8FiESOEQTFCGF2MJIxBjBAGxAhZVDGSKO8uRo0WvtWTiyzQftP/pFKnNIEfwMRIGeNcFmhQjIayQLgNCLbiwRlDmZ0WvMq+GMlkzvcqRs3B7mJUBhJAuEcLg0HqFimeABoTI8z+IARGglQInv0Z3KwGqR+EwDCQCsFTP2NqBHkfZIAUkL5fDfM+Y16ESR9EwACQysCTPmNehBkfvGEx+qNBiIzPmBdhuodtHoTQjwrB0z1jZoS5HoTAuI8KwXM9Y2aEiR6EwKCPCsETPWNmhFkehMCIjwrBszxjZsT2/FczYlv+NTN6ykIMmxF+g0Y1I/zmEc2M5A77cTMCDjQjANHNSH4DyrgZAQmaEZDoZiRIDGYEJGhGQKKbkSAxmBGQoBkBiW5GgmTEjLBtQjMCho4ZCQiDGSELmhGy6GYkWCxmhDBoRgijm5GEMZgRwoAZIYtqRhLl3c2o0cO3mnIR2dnv+uUR5zyBH8DMSBnjXGRn0IzYTPDV5f+KRZbWCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKNjM2OQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcGVxpAHGiEmcKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzk1ID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk0ID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjIgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQwID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDEgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0NoYXJQcm9jcyAzMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NCAvY29tbWEgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbgovZWlnaHQgL25pbmUgNzIgL0ggNzYgL0wgOTcgL2EgMTAwIC9kIC9lIDExNCAvciAxMjEgL3kgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDMwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyOSAwIFIgPj4KZW5kb2JqCjMwIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjI5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjMyIDAgb2JqCjw8IC9IIDMzIDAgUiAvTCAzNCAwIFIgL2EgMzUgMCBSIC9jb21tYSAzNiAwIFIgL2QgMzcgMCBSIC9lIDM4IDAgUgovZWlnaHQgMzkgMCBSIC9maXZlIDQwIDAgUiAvZm91ciA0MSAwIFIgL25pbmUgNDIgMCBSIC9vbmUgNDMgMCBSIC9yIDQ0IDAgUgovc2V2ZW4gNDUgMCBSIC9zaXggNDYgMCBSIC9zcGFjZSA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAveSA1MCAwIFIKL3plcm8gNTEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAzMSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTEwIDIyIDAgUiAvSTExIDIzIDAgUiAvSTEyIDI0IDAgUiAvSTEzIDI1IDAgUiAvSTE0IDI2IDAgUgovSTE1IDI3IDAgUiAvSTE2IDI4IDAgUiAvSTIgMTQgMCBSIC9JMyAxNSAwIFIgL0k0IDE2IDAgUiAvSTUgMTcgMCBSCi9JNiAxOCAwIFIgL0k3IDE5IDAgUiAvSTggMjAgMCBSIC9JOSAyMSAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMjIgKP3nJPPlHvHlHOHjGNThGmvNWS6yfB+jhiOJjSOHjSd8jkFChkU0f0YvfEcWaUcRY0YOYUYLXkUIW0UGWkUFWEQCVUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA1MiAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7djBTgJBFABBQEQFEUHl/z+Va18wu4sLMak+vsxMHSd5i/P0Fmn0XS6Xy+XO5ravtExcLpfLndH9SRm/pc/0mk6Jy+VyuX/sjmyV+l9wuVwu97HukH0Ll8vlcu/vvqRt4nK53H/vvqcb3E3apa5JuFwulzvCHdlTunbmkDrncrlc7nzutdbpI3G5XC53ovucBrx/TJ33L/hO+8Tlcrnc390LnyIhlwplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjE2OAplbmRvYmoKMTQgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyMiAo/eck8+Ue7uUb7OQandk6gdNMdNBUZ8xcXCyxfR6diCaBji9qjUM8hEYvfEcse0cRY0YMX0YJXFxFBlpFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTMgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ZuQ6DMBAAUSchB+QgF/z/p6adxvEupIk002EZP9GAZcqMJjTneqHanA0qurq6urrf3Tu6oqS7R2/ER+G4rq6urm7D5c0nlHTZGdHiHF1dXV3dhFvQCjeSrq6urm7D5YHIFv1ofe7bdXV1dXUTLi96tMIaUG2Orq6u7l+6TxRYv0Mcjxxj6+rq6uom3BEF3BviPvmA+PtRV1dXV3ehu0MBt/bv74Fq9+rq6urqNly+0I8o4DJ+Ui5IV1dXV3eZ+wEDZSBfCmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKMTk5CmVuZG9iagoxNSAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDMxICj95yTU4Rqy3Sxky11iyl9gyWBAvXI+vHMhjYwii404V4w6UotDPIRGL3xHJ3dIHnBIHW9IHG5HGGpHFmlHFWdHFGZHEmVHEWNGDmFGDF9GC15FCFtFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTQgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ayRKCMBAAUdx3cd9A8v9/6dG+DCHerOo+xoSHF5mirBLq0ID1O+L2MXqiI6p0dXV1dfvdFvFwG4SzL3RGNZoiXl5XV1dXN+OmoDcKtqwQ15foivh40dXV1dXNuGvEw9zEe8Ayt89Q9FWYrq6urm7Gjeb2BnEdtzBC3HJD0WV0dXV1dTPuFvGDDeJ6MKvvUBqQrq6u7t+4c8SZ+YD2CO+WOVafUBfM2Lq6urq6BW70fmOCosMoGsN1dXV1dX90OXBfEP88xx/6xTdup/tAfHbo6urq6ha4LJXVBPE2o7O6urq6uv3uB37MTV0KZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iagoyMzcKZW5kb2JqCjE2IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMTYgKP3nJM3gHafbM3DOVlvIYiClhR6aiSSFjVwpeY5AQ4dDO4NGLXxIHG5HEmVGDmFEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTUgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3aORKDMBBFQXnfDfc/rUO+A2FU2ASmX8ZUaVoRJJQ+2kU576Ln0DXqGytcLpfLne6WqHURl8vlcn/nHqPagdMQl8vlchdy1/Y94nK5XC6Xy+Vy57hfahPl/B5xuVzumt1aZcH3P5fL5f6Ve4lm7N9Hj+jtDlwul8sddw9R4/787S7n56h2lsvlcrkf3HzYRo13mNIt4nK5XO64+wLuxw6WCmVuZHN0cmVhbQplbmRvYmoKNTUgMCBvYmoKMTYzCmVuZG9iagoxNyAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDY3ICj95yTk4xheyWEnfo4floskhI0lg40nfI5cKXiOKneOLW+OLm2OLmuOL2mNMGiNMWWNMmKNNluMNlqMOFeMOVWLOlKLPE6KPE2KPUyJPUuJPUqJPkiIP0eIP0WHQESHQUKGQkCFQj6FQzuDQzqDRDmCRTaBRTWARTR/RjF+RjB9Ri98Ri18Ryx7Ryd3RyZ2RyV1SCN0SCJzSCBxSB5wSBxuSBpsSBlrRxZpRxVnRxJlRxFjRg5hRgxfRgteRglcXEUIW0UGWkUFWEQCVUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA1NiAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7dq3UsNAAEVRGTA555xzMjkHA///T5R7Grw1M+/01lVl7TypmcQVljGPwWINu3jEBzpo0k033XTT7d2dwSG2sYeBwu4R3vCJDaSbbrrpplvpLuAUXnQHreIVd/jBF26RbrrppptupXsArz+LMwwXJ/DI/4AXtJFuuummm26lew7P55u4QFM84wnf6GId6aabbrrpVroO1l7fZ4F/+mwjI/AZMQ7P9tNIN9100/03XYfjfSzBF3ucnxdx+Yd3DCHddNNNN91K15Y/cCw+xlQxgTn4HtDvN5xM0k033XTTrXS3cI0VuFGPFqtwJrmB+3M/0k033XTTrXT9WNlxxC3lHmOFc7WPFG/TXaUP6aabbrrp9u7+AmAlz0cKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iagoyODMKZW5kb2JqCjE4IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNjUgKP3nJPPlHqXaNY3WRIbUSWvNWVvIYkK+cUC9cjO2eVwpr39cKK5/JauBH5aLII+MI4eNJIWNJ36OJ32OKnWOLHCOLW+OLm2OMWSNMmKNM2GNNF+NN1mMOVWLOlOLPkiIP0eIQEOHQUKGQUGGQzuDRDmCRDeBRTaBRTWARTR/RTJ/RjF+RjB9Ri98Ri18Ryx7Ryp5R1woeEcnd0cmdkcldUgjdEgic0ggcUgecEgdb0gabEcYakcVZ0cUZkcRY0cPYkYOYUYMX0QBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA1NyAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7dq3UsNAFIZRkXMwOZtkcgabnN7/pSj3UOCtmflPbetTtfeOpGYFc9jFNpaKIXzgBq/4RpNuuummm27/rtffwxkuMVuM4BQt3OEF6aabbrrpVrqL2MECOqC1iSs84hrOi3TTTTfddCvdI7ifOyMOsVoM4g0zuMUX0k033XTTrXTb2McGPPSHi2W42m/BkXKPdNNNN910K90LuGQ/4BhrxQD86xRs/ZoL6aabbrr/pev1PUxP8Iz5YgI+uxiFR3sX6aabbrrpVrq2DuBC7Mu/8WISPrpeh68Zn5Buuummm26l697uLHDhPgff1zXwO42/nj+/I91000033Uq3B+/BA93fjBXTcG93XnjLn0g33XTTTbd/9wf3SqFGCmVuZHN0cmVhbQplbmRvYmoKNTcgMCBvYmoKMjg0CmVuZG9iagoxOSAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDI5ICj95yT65iLh4xjK4B7H4B+a2Dx+0k5nzFxcPbt0LmuOMWSNNVxcjEBDh0U2gUcqeUcmdkgjdEgdb0gZa0cUZkcPYkYOYUYMX0YLXkYJXFxFBlpFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNTggMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3ZuQ7CMBAAUXPfhPsK/P9vUmaaTVhCgzRTrpy80NiSKTU6IM6v6N60Rzc0Q2f0QEVXV1dXt919fR8/7YnGiPMK6erq6up2uHz4GHRBuybu81y+RDxqFkhXV1dXt8PtcS5wz+d8gLjmhHR1dXV1Ey43ep4XXIMx38lH54j3LSukq6urq5twk0WfVhDnvAPX1dXV/UuXG26P7xkivpL/J+rq6urqJtxoow+qgyaI7gbp6urq6iZcLvrAja5DpojzNdLV1dXVTbg/aoT4U7ZIV1dXV7fdfQPt3xrRCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKMjIwCmVuZG9iagoyMCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDczICj95ySV1z9eyWFCvnE9u3QztnlcKa9/J32OJ3yOIKWFHqCHHpqJIoqNJIWNJoGOXCl5jitzjixyjixxji5tji5sji9pjTBojTFmjTRejTVdjDZajDdZjDhXjDpTizpSizxNij1MiT1KiT5JiT5IiD9HiD9Fh0FChkFBhkJAhUI+hUI9hEM8hEM7g0M6g0Q5gkU2gUU1gEU0f0YtfEcrekcqeUdcKHhHJnZHJXVII3RIInNIIHFIGmxIGWtHGGpHFmlHFGZHEWNHD2JGDmFGDF9GC15GCVxcRQhbRQZaRQVYRANXKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDU5IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2jVyxUAQRVGZmZmZmZm/af8bcjgn8Vc5dNU7mZK5ykbV6uoCsxjDKLqLa7xhEld4RZVuuummm27zrg97OMEaJopbfKALL+hAuummm266Nd1HzGMDu2gpbD3A1g1GkG666aabbk23gQOsw3uhp7jHN8Zxh0Gkm2666ab7h+4xtrCDqmj84hSXmEa66aabbro1XQfTds/gPJxZ9zDe0Qa/4ReQbrrppvtvus6fnTmvYhudxRM+sQTHJ71IN9100023puuQYhH7GMJA4eqHrz+HZ0wh3XTTTTfdmq6Lcf7M89BNLBfn8F7og3dHK9JNN910063puoRxhEOsoL3wzC/MwL2OfqSbbrrpptu8+wMnBj3gCmVuZHN0cmVhbQplbmRvYmoKNTkgMCBvYmoKMjc2CmVuZG9iagoyMSAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDUwICj95ySa2DyX2D6D00tnzFxcV8ZlUcRoS8JsPrxzXCmvfyGmhSClhR+ihh6aiR6XiiSFjSaBjlwoeo4qdo4tbo49S4k+SIg/R4hAQ4dBQYZEOYJGLXxHLHtHXCh4Ryd3SCJzSCFySCBxSB5wSB1vSBxuSBpsSBlrRxhqRxVnRxRmRxFjRw9iRg5hRgxfRgteRglcXEUIW0UGWkUFWEQDVyldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2MCAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7drHVttAAEBRQ0JJ6BB6rwESivn/j2Opy8LWmnPeW8qS7qxm5ow8OaIbOqQT2h/aoUfao3P6oElubm5u7nz3gV7o74yOhxbojbZp1itzc3Nzc0fcA3Jd2KJrWhvy9me6INeFV8rNzc3NHXHvyEn8ltyUs81foXfaJMfzj3Jzc3NzR9w/dEm7dEUbQ152aGd0Sk+Um5ubmzviTsnJ3UNq1wvOTxbJc5Vl8rpLUG5ubu63cZ00fb+bXe/hvGKJPLv4Re6f7yk3Nzc3d8T1B10ndO9hn/yT/tMqOeQv3wdzc3Nzc+e77tWnM3I8vGdC3r5Ovt4zkNzc3NzcEdeJ2823E73rAn/l+EE++pt81E+Oubm5ubnz3U8RfiyNCmVuZHN0cmVhbQplbmRvYmoKNjAgMCBvYmoKMjg0CmVuZG9iagoyMiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDY2ICj95yTh4xja4hin2zOd2TqS10GL1UZ80k930FJ00FRyz1VtzlhnzFxcYMlgXslhW8hiWcdkV8ZlT8NpTcJrScFtR8BuRL5wPrxzPbt0Obl2OLl2MrV6LLF9K7F9KrB+XCmvf1worn8lq4Elg40lgo4mgY4nfY5cKHqOJKqCI6mCI6iDIqeEIaeEIaaFIKWFIKSFH6OGH6KGH6GHHqCHHp+IHp6IHp2IHpyJHpqJHpmKHpeKH5aLH5WLH5SLH5KMIJGMIJCMIY2MIouNI4eNKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDYxIDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2rduwzAYhVGlx3F673Z6793pef+H8sgzmXOAe0YB0qdJP0GqWccMJrGDseIPd/jFKR7RpJtuuummO7g7jwVMoYtW8Y1zvOMJb0g33XTTTbfSnYMzYhjPaIp9fOAAzoJPpJtuuummW+muYhp8/1ubGC2O0MMXbnGDdNNNN910K90JLGMIbo4wFw7xg2O8wnmRbrrppptupeuCewWu1V1882pLcF9lBF53jyXddNNN9990PftbhO/QQbt4gM90u9r18wXSTTfddNOtdE/AM9sb8Ibxwn82fAe7jpRrpJtuuummW+m+wLmwjT3MFve4giPlDFtIN91000230r2E/9p5JujsYC/FW/3+r8EzwV2km2666aY7uNsHLdJiBgplbmRzdHJlYW0KZW5kb2JqCjYxIDAgb2JqCjI4NgplbmRvYmoKMjMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiA2NiAo/eckut4nqtsyi9VGhtRJftJOedFRdNBUcM5Wbc5Ya81ZYspfXslhW8hiWcdkV8ZlU8VnT8NpTcJrR8BuRL5wPrxzO7p1Obl2OLl2Nrh3Nbd4MrV6MLR6L7N7LLF9K7F9KrB+XCmvf1worn8nrYAmrIElq4EkqoIjqIMip4Qhp4QhpoUgpYUgpIUfo4YfooYfoYceoIcen4genogenYgem4kemokemYoemIoel4oflIsfk4sgkIwii40jiI0khY0lg40mgY5cKXiOMWSNKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyAxMTkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDExOSAvTGVuZ3RoIDYyIDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDExOSA+PgpzdHJlYW0KeJzt2bdOA1EQhtElZzA5YzDZ5Jzj+z8U5T2NfWuk/5Qra75ux5ptVtDCBNoYLb7hT77QwQOadNNNN910+3c3sIxhnGOqeMM+PrGHE6Sbbrrpplvp7mIVQ7jGQOH8C/i8C3dHuummm266la4v9E1M4gxjxStu8QJbjk833XTTTbfS3cI4BuH/9qb4wTN+0e0h3XTTTTfdSncbiziAL/ejwpP5IZy/hkekm2666f6brvPnMY1LjBRPuMIH2j2km2666aZb6e7AvTADu3PFMTyTvMPvgzdIN91000230r2Ht44FeFzmsSvFT4juCG/OS0g33XTTTbfSPYVd98IdZgvne1fxFu3aWUe66aabbrr9u3876mksCmVuZHN0cmVhbQplbmRvYmoKNjIgMCBvYmoKMjc2CmVuZG9iagoyNCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDU5ICj95yT45iHh4xjX4hnN4B3K4B7H4B+d2Tqa2DyV1z+Q1kOL1UaG1EmB00x+0k580k930FJyz1VwzlZtzlhrzVlnzFxcZMtdYspfYMlgXslhW8hiWcdkV8ZlVcZmU8VnT8NpTcJrS8JsScFtR8BuRb9vRL5wQr5xPrxzPbt0O7p1Nbd4M7Z5L7N7LrJ8LLF9K7F9XCmvf1worn8nrYAlq4EkqoIip4Qhp4QfooYfoYcen4gem4khjowpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNjMgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3atXIDMRiF0U0cRocdMAQcZob3f6+UOim8qjNzv146qlaaf7bZom1aogF1Sld0P6FzeqYmbty4ceO2u6d0SKt0ROOS++yR59mkDYobN27cuBXXe0F3lrDGcyXdO3ohj3xLcePGjRu34r7TPp2Qdwff/FfyLlihZZqmuHHjxo1bcddonabIR/lM6Ytu6Idc+kFx48aNG7fintEBHdMu9UpduqAd6tM1xY0bN+6/cZ/IBb6lXcwM2bHHJfnc9mx/5s9x48aNG7fdfSDvCK0hMfZwXO0Z3L87obhx48aNW3G/yf0fyeEy73Nd74J54pnfayxu3Lhx47a7nzQiLWcsbyXf6v4ivUCLxK/Tnbhx48aN2+7+AorrdVsKZW5kc3RyZWFtCmVuZG9iago2MyAwIG9iagoyODIKZW5kb2JqCjI1IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDQgKP3nJPjmIenkGSetgCaAjiZ/jiOpgiGnhCOHjSSGjVwoeo5cKXiOK3SOLHCOLW+OLW6OLm2OLmyOL2qNMGiNMWaNMWWNMWSNMmKNM2GNM2CNNF+NNF6NNV2MNlqMN1mMN1iMOVWLOVSLOlOLO1GKPUuJRjF+Ri98Ryx7R1woeEcWaUcUZkcSZUQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2NCAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7dk3DgIxFABRco5Lzjlz//NReigMuESaKQ36b6u15c3N0Bkd0AXdQk+UR1yvIq7ndHV1dXU/u13EZyijFRqGOKeBuD5Aurq6uroJ7hSd0BFxX3iE3uYgrleQrq6urm6C20FLVEJbtA5xTh1xvY10dXV1dRPcCeK9yh5d0T3EOQXE9SLS1dXV1U1we4jvf77o+Qz4O+fE7lV4baOrq6v7ly7PzxtUQzuUhTinibjeR7q6urq6CS5/GCN+H5yjVuiX+Tye6+rq6uomuLF9ged2nucj82P7QhbZR3R1dXV1v7i8V+G+wO+DCxS5V4ndn4yQrq6uru7v7guAePtYCmVuZHN0cmVhbQplbmRvYmoKNjQgMCBvYmoKMjU0CmVuZG9iagoyNiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDQ1ICj95yTc4hi63icztnkenogenIkemYomf44qdo4sco4zYY02W4w3WYw4V4w5VIs6Uos7UYo7UIo8TYo9TIk9Sok+SYlAQ4dBQoZCPoVCPYRDPIRFNH9HKnlHXCh4Ryd3SCN0SCJzSB5wSBlrRxJlRxFjRw9iRg5hRgxfRgteRglcXEUIW0UFWEQDV0QBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2NSAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7djJTgJREEDRFgREmRQUZFJABoX+/99z2XdTHSqsSO5dvqTr7PpVXlGgI3pFZ1Tm+kU8L3R1dXV1690OGqAP9I6COVvE8zXS1dXV1U24DbRDz+gPlbl+kK6urq5uwm2jMZqgTxSs8NH8b6Srq6urm3AfED/uoxvuhQPS1dXV1U24TTQNWqBgfvS+vUG6urq6d+k+Iu7PfH/m/nyp4pw94nm4P+vq6urq1rtPqIfmaISS//8l0tXV1dVNuC30hri3z1BwL/BphOdfSFdXV1c34XbRC+K9MESnKs6J7oUV0tXV1dW93v0H+ssBgwplbmRzdHJlYW0KZW5kb2JqCjY1IDAgb2JqCjIzNwplbmRvYmoKMjcgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAzOCAo/eck8+UeK3OOM2GNNluMOVSLO1GKPE6KPE2KPkiIP0eIP0WHQEOHQUKGQUGGQj6FQj2EQzyEQzuDQzqDRDmCRTaBRTWARTJ/RjF+RjB9Ri98Ri18Ryx7Ryt6Ryp5Ryd3RyZ2SCN0SCFyRgteRglcXEUFWEQBVCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgMTE5IC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMTkgL0xlbmd0aCA2NiAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMTkgPj4Kc3RyZWFtCnic7dq3DsJAEABRk3POJsf//0TKm2YNlqAAzZSLdI9urbOzDD3QCXF+T3F8QJzfEOeZrq6urm6x20Z9NEQDtE/xnDXifIp0dXV1dUu4FcQfzojzYC9E7hXp6urq6pZwayhHXbRExxTPmSHOJ0hXV1dXt4T7ob2wQZx/ex/p6urq/q1bRRfURLhL2WN18Jw8mHOl6Orq6v6k20C8LO4hPgRvUzwnut8I7591dXV1dYtdvgfku8Ix6qBViudwdXAe3Xvo6urq6r5wafE/8FuOEdqleE60F7hSdHV1dXVLuAtUR5y3UHDPHH3/PEe6urq6uu+7TxDPsqIKZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iagoyNDcKZW5kb2JqCjI4IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDgKL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgNDMgKP3nJNriGNLhGyd8ji1vji1ujjBnjTFljTZbjDdYjEFChkFBhkJAhUI+hUI9hEU1gEU0f0Uyf0YxfkYwfUYvfEYtfEcse0crekcqeUcnd0cmdkcldUgabEgZa0cWaUcVZ0cUZkcRY0cPYkYMX0YLXkYJXFxFCFtFBlpFBVhEA1dEAlVEAVQpXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDExOSAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTE5IC9MZW5ndGggNjcgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTE5ID4+CnN0cmVhbQp4nO3aN27DUBAAUSrnbCvnLOv+93O5IwgMKgXMlFvwsfoLfDI5oR3aoxlKoifiYzi/IM4TXV1dXd1sd4x6qIM4r0V/aIE4n6M70tXV1dXNcY9og7ZogkoRz3k+hvMzetkLurq6urrZ7i/qp9RFlYjPWSHOl4j7QldXV1c3xz2gNeKO4F4oR3z+x3tBV1dXVzfb5b1Kkb1QjR6I9yc8/3nfckO6urq6X+OOUNr9M9+hHhVxOee3Ql1dXV3dHHeAeP6nuc2I5zx/8eB3QF6f8B8PXV1dXd0cd4i4F9qIbiMqshf4Plekq6urq/uBS4t7ge/Tinj+TxHnPyh1L+jq6urqvrn/O/2LaAplbmRzdHJlYW0KZW5kb2JqCjY3IDAgb2JqCjI2MwplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNjggMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDQwOTE2Mzg0MCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjUuMSkgPj4KZW5kb2JqCnhyZWYKMCA2OQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyNDY5MyAwMDAwMCBuIAowMDAwMDEzODA4IDAwMDAwIG4gCjAwMDAwMTM4NDAgMDAwMDAgbiAKMDAwMDAxMzkzOSAwMDAwMCBuIAowMDAwMDEzOTYwIDAwMDAwIG4gCjAwMDAwMTM5ODEgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ4IDAwMDAwIG4gCjAwMDAwMDY4MTMgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA2NzkyIDAwMDAwIG4gCjAwMDAwMTQxODUgMDAwMDAgbiAKMDAwMDAxNDY4OCAwMDAwMCBuIAowMDAwMDE1MjI0IDAwMDAwIG4gCjAwMDAwMTU4MjMgMDAwMDAgbiAKMDAwMDAxNjMwNCAwMDAwMCBuIAowMDAwMDE3MDU5IDAwMDAwIG4gCjAwMDAwMTc4MTAgMDAwMDAgbiAKMDAwMDAxODM4OSAwMDAwMCBuIAowMDAwMDE5MTU3IDAwMDAwIG4gCjAwMDAwMTk4NjUgMDAwMDAgbiAKMDAwMDAyMDYyMiAwMDAwMCBuIAowMDAwMDIxMzY4IDAwMDAwIG4gCjAwMDAwMjIwOTkgMDAwMDAgbiAKMDAwMDAyMjc1NyAwMDAwMCBuIAowMDAwMDIzNDAwIDAwMDAwIG4gCjAwMDAwMjQwMzEgMDAwMDAgbiAKMDAwMDAxMjUwNSAwMDAwMCBuIAowMDAwMDEyMjk4IDAwMDAwIG4gCjAwMDAwMTE4NjYgMDAwMDAgbiAKMDAwMDAxMzU1OCAwMDAwMCBuIAowMDAwMDA2ODMzIDAwMDAwIG4gCjAwMDAwMDY5ODQgMDAwMDAgbiAKMDAwMDAwNzExNyAwMDAwMCBuIAowMDAwMDA3NDk3IDAwMDAwIG4gCjAwMDAwMDc2MzcgMDAwMDAgbiAKMDAwMDAwNzk0MSAwMDAwMCBuIAowMDAwMDA4MjYzIDAwMDAwIG4gCjAwMDAwMDg3MzEgMDAwMDAgbiAKMDAwMDAwOTA1MyAwMDAwMCBuIAowMDAwMDA5MjE5IDAwMDAwIG4gCjAwMDAwMDk2MTQgMDAwMDAgbiAKMDAwMDAwOTc2OSAwMDAwMCBuIAowMDAwMDEwMDAyIDAwMDAwIG4gCjAwMDAwMTAxNDQgMDAwMDAgbiAKMDAwMDAxMDUzNyAwMDAwMCBuIAowMDAwMDEwNjI3IDAwMDAwIG4gCjAwMDAwMTEwNDAgMDAwMDAgbiAKMDAwMDAxMTM2NCAwMDAwMCBuIAowMDAwMDExNTc4IDAwMDAwIG4gCjAwMDAwMTQ2NjggMDAwMDAgbiAKMDAwMDAxNTIwNCAwMDAwMCBuIAowMDAwMDE1ODAzIDAwMDAwIG4gCjAwMDAwMTYyODQgMDAwMDAgbiAKMDAwMDAxNzAzOSAwMDAwMCBuIAowMDAwMDE3NzkwIDAwMDAwIG4gCjAwMDAwMTgzNjkgMDAwMDAgbiAKMDAwMDAxOTEzNyAwMDAwMCBuIAowMDAwMDE5ODQ1IDAwMDAwIG4gCjAwMDAwMjA2MDIgMDAwMDAgbiAKMDAwMDAyMTM0OCAwMDAwMCBuIAowMDAwMDIyMDc5IDAwMDAwIG4gCjAwMDAwMjI3MzcgMDAwMDAgbiAKMDAwMDAyMzM4MCAwMDAwMCBuIAowMDAwMDI0MDExIDAwMDAwIG4gCjAwMDAwMjQ2NzMgMDAwMDAgbiAKMDAwMDAyNDc1MyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDY4IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA2OSA+PgpzdGFydHhyZWYKMjQ5MTAKJSVFT0YK\n", "image/svg+xml": ["<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"670.400919pt\" height=\"698.51625pt\" viewBox=\"0 0 670.400919 698.51625\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n", " <metadata>\n", "  <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n", "   <cc:Work>\n", "    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", "    <dc:date>2022-04-09T16:38:39.167315</dc:date>\n", "    <dc:format>image/svg+xml</dc:format>\n", "    <dc:creator>\n", "     <cc:Agent>\n", "      <dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>\n", "     </cc:Agent>\n", "    </dc:creator>\n", "   </cc:Work>\n", "  </rdf:RDF>\n", " </metadata>\n", " <defs>\n", "  <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n", " </defs>\n", " <g id=\"figure_1\">\n", "  <g id=\"patch_1\">\n", "   <path d=\"M 0 698.51625 \n", "L 670.400919 698.51625 \n", "L 670.400919 -0 \n", "L 0 -0 \n", "L 0 698.51625 \n", "z\n", "\" style=\"fill: none\"/>\n", "  </g>\n", "  <g id=\"axes_1\">\n", "   <g id=\"patch_2\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 139.166136 140.921761 \n", "L 139.166136 22.318125 \n", "L 20.5625 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pa35e22b4cb)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACSElEQVR4nO3dv0pbYQCGcU/UUlwU3MR2qAVFF7FasDgGMhbB2aVXIN6Drt6AnToLHTvpIJ3qn6EdXJri4NAsBjSowcTBroIvmGKePL/5NTnw8C0fh1iUi5V2X2Dyx2Ay7zuZb0b7TioNDUX7VqMR7ftHhrPPv7iM9sX022hfitbqKsYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWJHeLethW3++R/v1hY/R/rZWi/aeXDDjghkXzLhgxgUzLphxwYwLZlww44IZF6yn7pa3T/ej/afXSx16knvpe8635/Vo78kFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHB4rvl4t1M9AXtg1/Rvpv9/ToV7Ue3st/o6N87ivaeXDDjghkXzLhgxgUzLphxwYwLZlww44IZF2wg/YNeuitO1evZXfH1h5fR/tVu9oq5JxfMuGDGBTMumHHBjAtmXDDjghkXzLhg8fWjHva7/DnaV1ZnO/Mg/3hywYwLZlww44IZF8y4YMYFMy6YccGMC2ZcMO+Wn9BF6yraF4Mvon27eRPtPblgxgUzLphxwYwLZlww44IZF8y4YMYFMy7Y87tbLops3378TwlUNxajj57Y/Bnt576sRfs3pcNon/LkghkXzLhgxgUzLphxwYwLZlww44IZF8y4YPG/e+sl6XvFO9X9aL88/j7apzy5YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWE/dLX87O472lbHZjjzH/+LJBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwe4AyelEUjTADMcAAAAASUVORK5CYII=\" id=\"imagec18963005a\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_1\">\n", "    <g id=\"xtick_1\">\n", "     <g id=\"line2d_1\">\n", "      <defs>\n", "       <path id=\"med0716537d\" d=\"M 0 0 \n", "L 0 3.5 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"26.492682\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_1\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n", "Q 1547 4250 1301 3770 \n", "Q 1056 3291 1056 2328 \n", "Q 1056 1369 1301 889 \n", "Q 1547 409 2034 409 \n", "Q 2525 409 2770 889 \n", "Q 3016 1369 3016 2328 \n", "Q 3016 3291 2770 3770 \n", "Q 2525 4250 2034 4250 \n", "z\n", "M 2034 4750 \n", "Q 2819 4750 3233 4129 \n", "Q 3647 3509 3647 2328 \n", "Q 3647 1150 3233 529 \n", "Q 2819 -91 2034 -91 \n", "Q 1250 -91 836 529 \n", "Q 422 1150 422 2328 \n", "Q 422 3509 836 4129 \n", "Q 1250 4750 2034 4750 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_2\">\n", "     <g id=\"line2d_2\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"38.353045\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_2\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-31\" d=\"M 794 531 \n", "L 1825 531 \n", "L 1825 4091 \n", "L 703 3866 \n", "L 703 4441 \n", "L 1819 4666 \n", "L 2450 4666 \n", "L 2450 531 \n", "L 3481 531 \n", "L 3481 0 \n", "L 794 0 \n", "L 794 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_3\">\n", "     <g id=\"line2d_3\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"50.213409\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_3\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n", "L 3431 531 \n", "L 3431 0 \n", "L 469 0 \n", "L 469 531 \n", "Q 828 903 1448 1529 \n", "Q 2069 2156 2228 2338 \n", "Q 2531 2678 2651 2914 \n", "Q 2772 3150 2772 3378 \n", "Q 2772 3750 2511 3984 \n", "Q 2250 4219 1831 4219 \n", "Q 1534 4219 1204 4116 \n", "Q 875 4013 500 3803 \n", "L 500 4441 \n", "Q 881 4594 1212 4672 \n", "Q 1544 4750 1819 4750 \n", "Q 2544 4750 2975 4387 \n", "Q 3406 4025 3406 3419 \n", "Q 3406 3131 3298 2873 \n", "Q 3191 2616 2906 2266 \n", "Q 2828 2175 2409 1742 \n", "Q 1991 1309 1228 531 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_4\">\n", "     <g id=\"line2d_4\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"62.073773\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_4\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-33\" d=\"M 2597 2516 \n", "Q 3050 2419 3304 2112 \n", "Q 3559 1806 3559 1356 \n", "Q 3559 666 3084 287 \n", "Q 2609 -91 1734 -91 \n", "Q 1441 -91 1130 -33 \n", "Q 819 25 488 141 \n", "L 488 750 \n", "Q 750 597 1062 519 \n", "Q 1375 441 1716 441 \n", "Q 2309 441 2620 675 \n", "Q 2931 909 2931 1356 \n", "Q 2931 1769 2642 2001 \n", "Q 2353 2234 1838 2234 \n", "L 1294 2234 \n", "L 1294 2753 \n", "L 1863 2753 \n", "Q 2328 2753 2575 2939 \n", "Q 2822 3125 2822 3475 \n", "Q 2822 3834 2567 4026 \n", "Q 2313 4219 1838 4219 \n", "Q 1578 4219 1281 4162 \n", "Q 984 4106 628 3988 \n", "L 628 4550 \n", "Q 988 4650 1302 4700 \n", "Q 1616 4750 1894 4750 \n", "Q 2613 4750 3031 4423 \n", "Q 3450 4097 3450 3541 \n", "Q 3450 3153 3228 2886 \n", "Q 3006 2619 2597 2516 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_5\">\n", "     <g id=\"line2d_5\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"73.934136\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_5\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n", "L 825 1625 \n", "L 2419 1625 \n", "L 2419 4116 \n", "z\n", "M 2253 4666 \n", "L 3047 4666 \n", "L 3047 1625 \n", "L 3713 1625 \n", "L 3713 1100 \n", "L 3047 1100 \n", "L 3047 0 \n", "L 2419 0 \n", "L 2419 1100 \n", "L 313 1100 \n", "L 313 1709 \n", "L 2253 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_6\">\n", "     <g id=\"line2d_6\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"85.7945\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_6\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n", "L 3169 4666 \n", "L 3169 4134 \n", "L 1269 4134 \n", "L 1269 2991 \n", "Q 1406 3038 1543 3061 \n", "Q 1681 3084 1819 3084 \n", "Q 2600 3084 3056 2656 \n", "Q 3513 2228 3513 1497 \n", "Q 3513 744 3044 326 \n", "Q 2575 -91 1722 -91 \n", "Q 1428 -91 1123 -41 \n", "Q 819 9 494 109 \n", "L 494 744 \n", "Q 775 591 1075 516 \n", "Q 1375 441 1709 441 \n", "Q 2250 441 2565 725 \n", "Q 2881 1009 2881 1497 \n", "Q 2881 1984 2565 2268 \n", "Q 2250 2553 1709 2553 \n", "Q 1456 2553 1204 2497 \n", "Q 953 2441 691 2322 \n", "L 691 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_7\">\n", "     <g id=\"line2d_7\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"97.654864\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_7\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-36\" d=\"M 2113 2584 \n", "Q 1688 2584 1439 2293 \n", "Q 1191 2003 1191 1497 \n", "Q 1191 994 1439 701 \n", "Q 1688 409 2113 409 \n", "Q 2538 409 2786 701 \n", "Q 3034 994 3034 1497 \n", "Q 3034 2003 2786 2293 \n", "Q 2538 2584 2113 2584 \n", "z\n", "M 3366 4563 \n", "L 3366 3988 \n", "Q 3128 4100 2886 4159 \n", "Q 2644 4219 2406 4219 \n", "Q 1781 4219 1451 3797 \n", "Q 1122 3375 1075 2522 \n", "Q 1259 2794 1537 2939 \n", "Q 1816 3084 2150 3084 \n", "Q 2853 3084 3261 2657 \n", "Q 3669 2231 3669 1497 \n", "Q 3669 778 3244 343 \n", "Q 2819 -91 2113 -91 \n", "Q 1303 -91 875 529 \n", "Q 447 1150 447 2328 \n", "Q 447 3434 972 4092 \n", "Q 1497 4750 2381 4750 \n", "Q 2619 4750 2861 4703 \n", "Q 3103 4656 3366 4563 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_8\">\n", "     <g id=\"line2d_8\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"109.515227\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_8\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n", "L 3525 4666 \n", "L 3525 4397 \n", "L 1831 0 \n", "L 1172 0 \n", "L 2766 4134 \n", "L 525 4134 \n", "L 525 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_9\">\n", "     <g id=\"line2d_9\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"121.375591\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_9\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n", "Q 1584 2216 1326 1975 \n", "Q 1069 1734 1069 1313 \n", "Q 1069 891 1326 650 \n", "Q 1584 409 2034 409 \n", "Q 2484 409 2743 651 \n", "Q 3003 894 3003 1313 \n", "Q 3003 1734 2745 1975 \n", "Q 2488 2216 2034 2216 \n", "z\n", "M 1403 2484 \n", "Q 997 2584 770 2862 \n", "Q 544 3141 544 3541 \n", "Q 544 4100 942 4425 \n", "Q 1341 4750 2034 4750 \n", "Q 2731 4750 3128 4425 \n", "Q 3525 4100 3525 3541 \n", "Q 3525 3141 3298 2862 \n", "Q 3072 2584 2669 2484 \n", "Q 3125 2378 3379 2068 \n", "Q 3634 1759 3634 1313 \n", "Q 3634 634 3220 271 \n", "Q 2806 -91 2034 -91 \n", "Q 1263 -91 848 271 \n", "Q 434 634 434 1313 \n", "Q 434 1759 690 2068 \n", "Q 947 2378 1403 2484 \n", "z\n", "M 1172 3481 \n", "Q 1172 3119 1398 2916 \n", "Q 1625 2713 2034 2713 \n", "Q 2441 2713 2670 2916 \n", "Q 2900 3119 2900 3481 \n", "Q 2900 3844 2670 4047 \n", "Q 2441 4250 2034 4250 \n", "Q 1625 4250 1398 4047 \n", "Q 1172 3844 1172 3481 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_10\">\n", "     <g id=\"line2d_10\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"133.235955\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_10\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 155.520199)scale(0.1 -0.1)\">\n", "       <defs>\n", "        <path id=\"DejaVuSans-39\" d=\"M 703 97 \n", "L 703 672 \n", "Q 941 559 1184 500 \n", "Q 1428 441 1663 441 \n", "Q 2288 441 2617 861 \n", "Q 2947 1281 2994 2138 \n", "Q 2813 1869 2534 1725 \n", "Q 2256 1581 1919 1581 \n", "Q 1219 1581 811 2004 \n", "Q 403 2428 403 3163 \n", "Q 403 3881 828 4315 \n", "Q 1253 4750 1959 4750 \n", "Q 2769 4750 3195 4129 \n", "Q 3622 3509 3622 2328 \n", "Q 3622 1225 3098 567 \n", "Q 2575 -91 1691 -91 \n", "Q 1453 -91 1209 -44 \n", "Q 966 3 703 97 \n", "z\n", "M 1959 2075 \n", "Q 2384 2075 2632 2365 \n", "Q 2881 2656 2881 3163 \n", "Q 2881 3666 2632 3958 \n", "Q 2384 4250 1959 4250 \n", "Q 1534 4250 1286 3958 \n", "Q 1038 3666 1038 3163 \n", "Q 1038 2656 1286 2365 \n", "Q 1534 2075 1959 2075 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "       </defs>\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_2\">\n", "    <g id=\"ytick_1\">\n", "     <g id=\"line2d_11\">\n", "      <defs>\n", "       <path id=\"m79e6a1251b\" d=\"M 0 0 \n", "L -3.5 0 \n", "\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </defs>\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_11\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_2\">\n", "     <g id=\"line2d_12\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_12\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_3\">\n", "     <g id=\"line2d_13\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_13\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_4\">\n", "     <g id=\"line2d_14\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_14\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_5\">\n", "     <g id=\"line2d_15\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_15\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_6\">\n", "     <g id=\"line2d_16\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_16\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_7\">\n", "     <g id=\"line2d_17\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_17\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_8\">\n", "     <g id=\"line2d_18\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_18\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_9\">\n", "     <g id=\"line2d_19\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_19\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_10\">\n", "     <g id=\"line2d_20\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_20\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_3\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 20.5625 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_4\">\n", "    <path d=\"M 139.166136 140.921761 \n", "L 139.166136 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_5\">\n", "    <path d=\"M 20.5625 140.921761 \n", "L 139.166136 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_6\">\n", "    <path d=\"M 20.5625 22.318125 \n", "L 139.166136 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_21\">\n", "    <!-- Layer 1, Head 1 -->\n", "    <g transform=\"translate(32.182131 16.318125)scale(0.12 -0.12)\">\n", "     <defs>\n", "      <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 531 \n", "L 3531 531 \n", "L 3531 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n", "Q 1497 1759 1228 1600 \n", "Q 959 1441 959 1056 \n", "Q 959 750 1161 570 \n", "Q 1363 391 1709 391 \n", "Q 2188 391 2477 730 \n", "Q 2766 1069 2766 1631 \n", "L 2766 1759 \n", "L 2194 1759 \n", "z\n", "M 3341 1997 \n", "L 3341 0 \n", "L 2766 0 \n", "L 2766 531 \n", "Q 2569 213 2275 61 \n", "Q 1981 -91 1556 -91 \n", "Q 1019 -91 701 211 \n", "Q 384 513 384 1019 \n", "Q 384 1609 779 1909 \n", "Q 1175 2209 1959 2209 \n", "L 2766 2209 \n", "L 2766 2266 \n", "Q 2766 2663 2505 2880 \n", "Q 2244 3097 1772 3097 \n", "Q 1472 3097 1187 3025 \n", "Q 903 2953 641 2809 \n", "L 641 3341 \n", "Q 956 3463 1253 3523 \n", "Q 1550 3584 1831 3584 \n", "Q 2591 3584 2966 3190 \n", "Q 3341 2797 3341 1997 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-79\" d=\"M 2059 -325 \n", "Q 1816 -950 1584 -1140 \n", "Q 1353 -1331 966 -1331 \n", "L 506 -1331 \n", "L 506 -850 \n", "L 844 -850 \n", "Q 1081 -850 1212 -737 \n", "Q 1344 -625 1503 -206 \n", "L 1606 56 \n", "L 191 3500 \n", "L 800 3500 \n", "L 1894 763 \n", "L 2988 3500 \n", "L 3597 3500 \n", "L 2059 -325 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n", "L 3597 1613 \n", "L 953 1613 \n", "Q 991 1019 1311 708 \n", "Q 1631 397 2203 397 \n", "Q 2534 397 2845 478 \n", "Q 3156 559 3463 722 \n", "L 3463 178 \n", "Q 3153 47 2828 -22 \n", "Q 2503 -91 2169 -91 \n", "Q 1331 -91 842 396 \n", "Q 353 884 353 1716 \n", "Q 353 2575 817 3079 \n", "Q 1281 3584 2069 3584 \n", "Q 2775 3584 3186 3129 \n", "Q 3597 2675 3597 1894 \n", "z\n", "M 3022 2063 \n", "Q 3016 2534 2758 2815 \n", "Q 2500 3097 2075 3097 \n", "Q 1594 3097 1305 2825 \n", "Q 1016 2553 972 2059 \n", "L 3022 2063 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n", "Q 2534 3019 2420 3045 \n", "Q 2306 3072 2169 3072 \n", "Q 1681 3072 1420 2755 \n", "Q 1159 2438 1159 1844 \n", "L 1159 0 \n", "L 581 0 \n", "L 581 3500 \n", "L 1159 3500 \n", "L 1159 2956 \n", "Q 1341 3275 1631 3429 \n", "Q 1922 3584 2338 3584 \n", "Q 2397 3584 2469 3576 \n", "Q 2541 3569 2628 3553 \n", "L 2631 2963 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-2c\" d=\"M 750 794 \n", "L 1409 794 \n", "L 1409 256 \n", "L 897 -744 \n", "L 494 -744 \n", "L 750 256 \n", "L 750 794 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-48\" d=\"M 628 4666 \n", "L 1259 4666 \n", "L 1259 2753 \n", "L 3553 2753 \n", "L 3553 4666 \n", "L 4184 4666 \n", "L 4184 0 \n", "L 3553 0 \n", "L 3553 2222 \n", "L 1259 2222 \n", "L 1259 0 \n", "L 628 0 \n", "L 628 4666 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "      <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n", "L 2906 4863 \n", "L 3481 4863 \n", "L 3481 0 \n", "L 2906 0 \n", "L 2906 525 \n", "Q 2725 213 2448 61 \n", "Q 2172 -91 1784 -91 \n", "Q 1150 -91 751 415 \n", "Q 353 922 353 1747 \n", "Q 353 2572 751 3078 \n", "Q 1150 3584 1784 3584 \n", "Q 2172 3584 2448 3432 \n", "Q 2725 3281 2906 2969 \n", "z\n", "M 947 1747 \n", "Q 947 1113 1208 752 \n", "Q 1469 391 1925 391 \n", "Q 2381 391 2643 752 \n", "Q 2906 1113 2906 1747 \n", "Q 2906 2381 2643 2742 \n", "Q 2381 3103 1925 3103 \n", "Q 1469 3103 1208 2742 \n", "Q 947 2381 947 1747 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", "     </defs>\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_2\">\n", "   <g id=\"patch_7\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 313.844397 140.921761 \n", "L 313.844397 22.318125 \n", "L 195.240761 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pe4cc49be23)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACgUlEQVR4nO3cP2oUYQCG8flmRkS2iAhCCCIEQQMBTWOhaLdeQJIQKxubXCKdZ5CcIFiIN9Ai2CwqsoX/IJDCzkaLxRS7s2m8wFuMbp48v/rdnSUP03xMpgzrrXkVuDG6mMyro7sn0X6RNJeXov10fTXal3efon2q7vXb9V8ZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGBtNY+Olqvny2+i/U51P9r3qm6i+ezX72jffPga7btonfPOBTMumHHBjAtmXDDjghkXzLhgxgUzLphxwcqwbEaHy+mzvOn5bJ+a9VvRfvb5e7Tf+Jid048fDKJ9N5lEe+9cMOOCGRfMuGDGBTMumHHBjAtmXDDjghkXrE0/0E3+9PE7/ontV2+j/cHaSrQfP12L9t0ke8455Z0LZlww44IZF8y4YMYFMy6YccGMC2ZcMOOCxWfL317cjvY3n71PL9Gb9Kw4dfz4SrS/Pu7ph/zlnQtmXDDjghkXzLhgxgUzLphxwYwLZlyw8ujCTvS//i+PD6MLbF+7F+3PlVKyffj6ZO9cMOOCGRfMuGDGBTMumHHBjAtmXDDjghkXrJ1Pp9EHlupLPf2Ucyg8K05554IZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDxaxPujJ5E++XqS3qJM+vnbvaM9tX9UXaBbhbNvXPBjAtmXDDjghkXzLhgxgUzLphxwYwLZlywth4Mog+s7GXP2nbRerE8HJ9E+8ON8Kx4Hv516iabZ9+us8S4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBSvDspkdFvf8juBFUtrsse70/SKp1z+ys2vvXDDjghkXzLhgxgUzLphxwYwLZlww44IZF+wUixBTtb0IZmgAAAAASUVORK5CYII=\" id=\"image77e8c22a95\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_3\">\n", "    <g id=\"xtick_11\">\n", "     <g id=\"line2d_21\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"201.170943\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_22\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_12\">\n", "     <g id=\"line2d_22\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"213.031306\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_23\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_13\">\n", "     <g id=\"line2d_23\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"224.89167\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_24\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_14\">\n", "     <g id=\"line2d_24\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"236.752034\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_25\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_15\">\n", "     <g id=\"line2d_25\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"248.612397\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_26\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_16\">\n", "     <g id=\"line2d_26\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"260.472761\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_27\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_17\">\n", "     <g id=\"line2d_27\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"272.333125\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_28\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_18\">\n", "     <g id=\"line2d_28\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"284.193488\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_29\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_19\">\n", "     <g id=\"line2d_29\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"296.053852\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_30\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_20\">\n", "     <g id=\"line2d_30\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"307.914215\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_31\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_4\">\n", "    <g id=\"ytick_11\">\n", "     <g id=\"line2d_31\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_32\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_12\">\n", "     <g id=\"line2d_32\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_33\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_13\">\n", "     <g id=\"line2d_33\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_34\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_14\">\n", "     <g id=\"line2d_34\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_35\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_15\">\n", "     <g id=\"line2d_35\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_36\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_16\">\n", "     <g id=\"line2d_36\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_37\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_17\">\n", "     <g id=\"line2d_37\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_38\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_18\">\n", "     <g id=\"line2d_38\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_39\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_19\">\n", "     <g id=\"line2d_39\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_40\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_20\">\n", "     <g id=\"line2d_40\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_41\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_8\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 195.240761 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_9\">\n", "    <path d=\"M 313.844397 140.921761 \n", "L 313.844397 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_10\">\n", "    <path d=\"M 195.240761 140.921761 \n", "L 313.844397 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_11\">\n", "    <path d=\"M 195.240761 22.318125 \n", "L 313.844397 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_42\">\n", "    <!-- Layer 1, Head 2 -->\n", "    <g transform=\"translate(206.860392 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_3\">\n", "   <g id=\"patch_12\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 488.522658 140.921761 \n", "L 488.522658 22.318125 \n", "L 369.919022 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p27fff1c919)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC6UlEQVR4nO3du2oUcQBG8Znd0SRmQaNiIAYJIsFOQdTVPqitjfEFLMXK1lKQFBY+hQr2thZGS6sgGjTkggmYm4kk7MVXmE9YlMP51d/+N+zJNMMyW3bXLvSLwK2Jy8n8v1IODQ30/P7hYfiC6KOPNQZ6uv4p44IZF8y4YMYFMy6YccGMC2ZcMOOCGResunN7NnpB8/RG9g6dTjTvbu9E+8O352pvR+7/is7ubW1H+0arlZ2/tx/ti143mnvlghkXzLhgxgUzLphxwYwLZlww44IZF8y4YNXOxRPRC1qfFqL91MeRaP/tWvZd3qMz32tvszuzRVFWVbTv7e6G7zBYXrlgxgUzLphxwYwLZlww44IZF8y4YMYFMy5YNfxgNXvFqzKaL989Ge2b08PRvvx9UHvbWVmLzm6cyv727nr4nW6fiaG/ZVww44IZF8y4YMYFMy6YccGMC2ZcMOOCVc0n2f3Tor8UzXeuTkb7Y28+RPvFZzdqb88/Xo7O7o+Hn82P9Ww/YF65YMYFMy6YccGMC2ZcMOOCGRfMuGDGBStnjsxG36/sh4/YTX9irX9Q/6uqRVEURaNZe/p88V109KOpm9G+OTYW7Xv72SN508/GKxfMuGDGBTMumHHBjAtmXDDjghkXzLhgxgUr2/fmonvLrZfz4Ttkj1koyvD/rd8LttljCibns59vW25nPyc3aF65YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWBXfK06l94p76Y+y1Zc8YqEoiqJov4/mX+fa0X766edo3/25Ge29csGMC2ZcMOOCGRfMuGDGBTMumHHBjAtmXLDBPxOjqqJ9qjl+pva2t7kVnV2Ojmb74ez5HxOvs3vFS9f3or1XLphxwYwLZlww44IZF8y4YMYFMy6YccGMC1al94rTZ1wM+vzOymrtbfPE8ejs7sZGtH/4ZSHav7h0JdpXZyeivVcumHHBjAtmXDDjghkXzLhgxgUzLphxwYwL9gdyX4C1QWQ2HwAAAABJRU5ErkJggg==\" id=\"image841cf6df51\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_5\">\n", "    <g id=\"xtick_21\">\n", "     <g id=\"line2d_41\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"375.849204\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_43\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_22\">\n", "     <g id=\"line2d_42\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"387.709567\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_44\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_23\">\n", "     <g id=\"line2d_43\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"399.569931\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_45\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_24\">\n", "     <g id=\"line2d_44\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"411.430294\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_46\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_25\">\n", "     <g id=\"line2d_45\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"423.290658\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_47\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_26\">\n", "     <g id=\"line2d_46\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"435.151022\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_48\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_27\">\n", "     <g id=\"line2d_47\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"447.011385\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_49\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_28\">\n", "     <g id=\"line2d_48\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"458.871749\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_50\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_29\">\n", "     <g id=\"line2d_49\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"470.732113\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_51\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_30\">\n", "     <g id=\"line2d_50\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"482.592476\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_52\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_6\">\n", "    <g id=\"ytick_21\">\n", "     <g id=\"line2d_51\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_53\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_22\">\n", "     <g id=\"line2d_52\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_54\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_23\">\n", "     <g id=\"line2d_53\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_55\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_24\">\n", "     <g id=\"line2d_54\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_56\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_25\">\n", "     <g id=\"line2d_55\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_57\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_26\">\n", "     <g id=\"line2d_56\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_58\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_27\">\n", "     <g id=\"line2d_57\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_59\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_28\">\n", "     <g id=\"line2d_58\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_60\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_29\">\n", "     <g id=\"line2d_59\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_61\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_30\">\n", "     <g id=\"line2d_60\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_62\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_13\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 369.919022 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_14\">\n", "    <path d=\"M 488.522658 140.921761 \n", "L 488.522658 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_15\">\n", "    <path d=\"M 369.919022 140.921761 \n", "L 488.522658 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_16\">\n", "    <path d=\"M 369.919022 22.318125 \n", "L 488.522658 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_63\">\n", "    <!-- Layer 1, Head 3 -->\n", "    <g transform=\"translate(381.538652 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_4\">\n", "   <g id=\"patch_17\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 663.200919 140.921761 \n", "L 663.200919 22.318125 \n", "L 544.597283 22.318125 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p5bed43d6ac)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACEElEQVR4nO3czypEYQCG8XOY5WSr2BiLyYLyJ4mllGLrDuQKLFhYWnARs3MHVjaWM0mKspDU2GCj3ICZcQVq3jKMp+e3fk/z1dO3mU6n3Ch3ekVg97GdzItGvRbt9b2R2ZlsP6BzaAgYF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGCVp7OF6IFGfUAn+Q1lme170d/uxcvhWrSfPGlG++79Q7T35oIZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGBl+t7y5/pS9AOVy5to/5+Nt8ai/fvWaLTvfHxEe28umHHBjAtmXDDjghkXzLhgxgUzLphxwYwLFv+3rL9z8Xob7b25YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWOWvD0By2r6K9ge1lWi/vbwV7b25YMYFMy6YccGMC2ZcMOOCGRfMuGDGBYtfbU1fr9ycmI/2+jneXDDjghkXzLhgxgUzLphxwYwLZlww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHB4s8m1M73on29uE5/IvJ8vNr3duqoNcCTDB9vLphxwYwLZlww44IZF8y4YMYFMy6YccGMC+Y3McC8uWDGBTMumHHBjAtmXDDjghkXzLhgxgUzLlj83vL+22L4RDebl2U0H6lW+9525qazozTvov2w8eaCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhgX8GgNUu9Xz/qAAAAAElFTkSuQmCC\" id=\"image58e57de875\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-21.921761\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_7\">\n", "    <g id=\"xtick_31\">\n", "     <g id=\"line2d_61\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"550.527464\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_64\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_32\">\n", "     <g id=\"line2d_62\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"562.387828\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_65\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_33\">\n", "     <g id=\"line2d_63\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"574.248192\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_66\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_34\">\n", "     <g id=\"line2d_64\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"586.108555\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_67\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_35\">\n", "     <g id=\"line2d_65\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"597.968919\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_68\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_36\">\n", "     <g id=\"line2d_66\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"609.829283\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_69\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_37\">\n", "     <g id=\"line2d_67\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"621.689646\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_70\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_38\">\n", "     <g id=\"line2d_68\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"633.55001\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_71\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_39\">\n", "     <g id=\"line2d_69\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"645.410374\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_72\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_40\">\n", "     <g id=\"line2d_70\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"657.270737\" y=\"140.921761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_73\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 155.520199)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_8\">\n", "    <g id=\"ytick_31\">\n", "     <g id=\"line2d_71\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"134.99158\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_74\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 138.790798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_32\">\n", "     <g id=\"line2d_72\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"123.131216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_75\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 126.930435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_33\">\n", "     <g id=\"line2d_73\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"111.270852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_76\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 115.070071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_34\">\n", "     <g id=\"line2d_74\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"99.410489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_77\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 103.209707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_35\">\n", "     <g id=\"line2d_75\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"87.550125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_78\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 91.349344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_36\">\n", "     <g id=\"line2d_76\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"75.689761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_79\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 79.48898)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_37\">\n", "     <g id=\"line2d_77\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"63.829398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_80\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 67.628616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_38\">\n", "     <g id=\"line2d_78\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"51.969034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_81\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 55.768253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_39\">\n", "     <g id=\"line2d_79\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"40.10867\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_82\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 43.907889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_40\">\n", "     <g id=\"line2d_80\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"28.248307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_83\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 32.047526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_18\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 544.597283 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_19\">\n", "    <path d=\"M 663.200919 140.921761 \n", "L 663.200919 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_20\">\n", "    <path d=\"M 544.597283 140.921761 \n", "L 663.200919 140.921761 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_21\">\n", "    <path d=\"M 544.597283 22.318125 \n", "L 663.200919 22.318125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_84\">\n", "    <!-- Layer 1, Head 4 -->\n", "    <g transform=\"translate(556.216913 16.318125)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_5\">\n", "   <g id=\"patch_22\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 139.166136 318.827216 \n", "L 139.166136 200.22358 \n", "L 20.5625 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p27c7197082)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADNElEQVR4nO3dMU8TYQDG8bv2tS1XiiWFQoxIQkyMgclR4uBkdPUbuKmj38LNRRMTF/0IxonEycWBicR00KSRgCClUgq0luudX+Ge0Sf/3/z0Qvj3ljeXXvyg/TSPBPm1BWUelYYjaR+NxtJ8//Fa4e3i9rl07dAbSvusWZf2cacr7Ze3pHlU0ub4nxDXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY2FycaK9IFq91jan99uS/vakXa2nAtfz0mzIl07nF6R9uXfJ9I+L2v31tdP69KeO9cYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjRHXWCiPUukDeShL+/rOL2mfteakfbgo/tj16WqQrn3ZmJf21f6stv9yJO2vfs+kPXeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrEQX06lD0xb2vnpeKEm7esd7bx13GoW3ra+aefo9U5P2qvyknZvDda0PXeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrGQVbVneUPvTNonZxNpH2fSzz9H7e2/hbdHd6rStZOf2v5gU3vOefmDdo5e39f+N9y5xohrjLjGiGuMuMaIa4y4xohrjLjGiGsshIH2E7ip+GjrNNGON6u7l9L+8/t3hbeP1u9L147En8xtv+lI+zxoP/nb2NP+N9y5xohrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMZClmivQMuD9n24aGvnp5VDbb/x6lnh7cqNP9K1S8ORtA9BO0fPx9q5/t497X/DnWuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLJxfT6QPzP4YSPtaor0eLp2fkfZbz18W3j55/VC6djTXkObpwaG0j8Wz6Jtvd6U9d64x4hojrjHiGiOuMeIaI64x4hojrjHiGiOusZDOxNIH8or4E75j7XVycZpJ+82PLwpvV+9qf0u1pz23XDrRzt3zVHv93OjWkrTnzjVGXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1FiYN7Wy53Nde9zZeWpT26Yz2fascK3vtbFl+FV6iPQMeDYfSvNbtS3vuXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1Rlxj/wAOGotW/FJtBAAAAABJRU5ErkJggg==\" id=\"image0ad4fa7861\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_9\">\n", "    <g id=\"xtick_41\">\n", "     <g id=\"line2d_81\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"26.492682\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_85\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_42\">\n", "     <g id=\"line2d_82\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"38.353045\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_86\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_43\">\n", "     <g id=\"line2d_83\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"50.213409\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_87\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_44\">\n", "     <g id=\"line2d_84\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"62.073773\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_88\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_45\">\n", "     <g id=\"line2d_85\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"73.934136\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_89\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_46\">\n", "     <g id=\"line2d_86\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"85.7945\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_90\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_47\">\n", "     <g id=\"line2d_87\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"97.654864\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_91\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_48\">\n", "     <g id=\"line2d_88\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"109.515227\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_92\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_49\">\n", "     <g id=\"line2d_89\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"121.375591\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_93\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_50\">\n", "     <g id=\"line2d_90\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"133.235955\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_94\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_10\">\n", "    <g id=\"ytick_41\">\n", "     <g id=\"line2d_91\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_95\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_42\">\n", "     <g id=\"line2d_92\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_96\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_43\">\n", "     <g id=\"line2d_93\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_97\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_44\">\n", "     <g id=\"line2d_94\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_98\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_45\">\n", "     <g id=\"line2d_95\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_99\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_46\">\n", "     <g id=\"line2d_96\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_100\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_47\">\n", "     <g id=\"line2d_97\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_101\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_48\">\n", "     <g id=\"line2d_98\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_102\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_49\">\n", "     <g id=\"line2d_99\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_103\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_50\">\n", "     <g id=\"line2d_100\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_104\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_23\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 20.5625 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_24\">\n", "    <path d=\"M 139.166136 318.827216 \n", "L 139.166136 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_25\">\n", "    <path d=\"M 20.5625 318.827216 \n", "L 139.166136 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_26\">\n", "    <path d=\"M 20.5625 200.22358 \n", "L 139.166136 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_105\">\n", "    <!-- Layer 2, Head 1 -->\n", "    <g transform=\"translate(32.182131 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_6\">\n", "   <g id=\"patch_27\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 313.844397 318.827216 \n", "L 313.844397 200.22358 \n", "L 195.240761 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p6fda814bd1)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADVElEQVR4nO3dvWsTcQDG8bvk0jdTm2oEq0RrBpXiUsTFQQQdxJdFurmI6OCmgtZF0KkgIrp0dBBKRTdH6eBY0E5dilhfWmk1Jg1tTWtic+e/cM/Yh+9nfvIz9NtbjvManhu8nQSCuG+HMg+CTEab19elfetF+u1irSCdXX6wKe0XxjqlfelRLO2DLz+kufaTx7ZCXGPENUZcY8Q1RlxjxDVGXGPENUZcY8Q1Fqn3ipNcVtpnVjekfVzIS/vK2/7U27nRcens8/Flab+xrH33cLMq7YOseJ9eOx3bCXGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11gUd+WkDySR9vsQdmnP8ibic87FS+mf5T02fUU6e0+5W/suH7TvnvRoP5tMXrt3zZVrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMaIayyKqto7KLaKvdI+6dSec84u1aT91+lDqbd9w9pzwt3fmtK+9LAi7avXB6R9kIukOVeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrEozndJH8iu/5X2YfOftG/vL0r7nfPpt++vTkhnj2S055xnlkrS/mBTfF9IRbs3zpVrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMai5l7xv+K3tD9Rtn5AezXA7pkVaT9yZyr19uTjW9LZA1ntu/RPaj/L9i7t2tIeEubKtUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDUWddS1VwM0Sj3SvndRO7/dq92LfvPsbOrt/XuT0tkvJ4al/dLNPml/9Ln2aGuyrL2WgSvXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11g4dPdponygONuS/oFfJzqkfemd9orgI+NzqbcfnxyXzi7M1qV9uNaQ9kle+3NyQSyl4sp1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENRaePjMm3bAME+3+Zq6uvcI32NLeufHpWiH19sKpGe3sG4el/cJF7bnlwVc/pX2w9keac+UaI64x4hojrjHiGiOuMeIaI64x4hojrjHiGotWhrR3UDT2afeWS1OhtG8VImmf/57+97Pc/Vs6+/O89lzx4Gvt/R9BfVWat6s1ac+Va4y4xohrjLjGiGuMuMaIa4y4xohrjLjGiGvsPz9akLf5Es+JAAAAAElFTkSuQmCC\" id=\"image54e5723e1a\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_11\">\n", "    <g id=\"xtick_51\">\n", "     <g id=\"line2d_101\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"201.170943\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_106\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_52\">\n", "     <g id=\"line2d_102\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"213.031306\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_107\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_53\">\n", "     <g id=\"line2d_103\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"224.89167\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_108\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_54\">\n", "     <g id=\"line2d_104\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"236.752034\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_109\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_55\">\n", "     <g id=\"line2d_105\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"248.612397\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_110\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_56\">\n", "     <g id=\"line2d_106\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"260.472761\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_111\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_57\">\n", "     <g id=\"line2d_107\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"272.333125\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_112\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_58\">\n", "     <g id=\"line2d_108\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"284.193488\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_113\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_59\">\n", "     <g id=\"line2d_109\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"296.053852\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_114\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_60\">\n", "     <g id=\"line2d_110\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"307.914215\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_115\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_12\">\n", "    <g id=\"ytick_51\">\n", "     <g id=\"line2d_111\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_116\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_52\">\n", "     <g id=\"line2d_112\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_117\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_53\">\n", "     <g id=\"line2d_113\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_118\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_54\">\n", "     <g id=\"line2d_114\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_119\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_55\">\n", "     <g id=\"line2d_115\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_120\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_56\">\n", "     <g id=\"line2d_116\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_121\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_57\">\n", "     <g id=\"line2d_117\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_122\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_58\">\n", "     <g id=\"line2d_118\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_123\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_59\">\n", "     <g id=\"line2d_119\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_124\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_60\">\n", "     <g id=\"line2d_120\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_125\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_28\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 195.240761 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_29\">\n", "    <path d=\"M 313.844397 318.827216 \n", "L 313.844397 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_30\">\n", "    <path d=\"M 195.240761 318.827216 \n", "L 313.844397 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_31\">\n", "    <path d=\"M 195.240761 200.22358 \n", "L 313.844397 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_126\">\n", "    <!-- Layer 2, Head 2 -->\n", "    <g transform=\"translate(206.860392 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_7\">\n", "   <g id=\"patch_32\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 488.522658 318.827216 \n", "L 488.522658 200.22358 \n", "L 369.919022 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pa3a6017cf3)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAACnUlEQVR4nO3dP2pUUQBG8fcvGjEkKOoQSGNMIaQRBFMJFgHBQkSyC3cgaCO4DmsLG23dQGqxkgSCqMioGBtHJ+9auIF8g08yh/Orv0xmPN7mMrzU2/VOqfRPPN3fjfYP17eifXt1I9o30VpzxbhgxgUzLphxwYwLZlww44IZF8y4YMYF6+KfqOtsX07O1XXdZR+39Nl7f3V4LdpXdXa2JqvL0d6TC2ZcMOOCGRfMuGDGBTMumHHBjAtmXDDjgs1wtxz+fyhH8a8YSnpXnFo79TX7gbIazRd+/Ir2nlww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRcsv1su/QBv4z/ph73nvn32XbR/XmV3y+3H7O7akwtmXDDjghkXzLhgxgUzLphxwYwLZlww44LNcLd8cp5xEWvabB/eRa91S9nrh/+W/ffDaO/JBTMumHHBjAtmXDDjghkXzLhgxgUzLlh8/Tj0Y23jr58mV4rh13LTz3rrzb1of2bxU7T/dncz2ntywYwLZlww44IZF8y4YMYFMy6YccGMC2ZcsPhuuUynQ7yP2SV30eGfqks/6+vNF9H+zuR6tD//8m209+SCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhgXfoogfbcykBv5a/ycxLtm9HFY2+PDt5nr72yHO23Hj+I9qPRXrT/cP9KtPfkghkXzLhgxgUzLphxwYwLZlww44IZF8y4YPV2vTPHz9gNpY/kDZ+h8WRvN9o/Wr8R7duNy9HekwtmXDDjghkXzLhgxgUzLphxwYwLZlww44LF31vuLl2I9tPP42jfLJ6O9uX38Z9b0Qbfca6qqurHX6L9s/HNaN8sLUT7fv8ge/1orbliXDDjghkXzLhgxgUzLphxwYwLZlww44L9Ac13XWNlCLu3AAAAAElFTkSuQmCC\" id=\"image553f1097eb\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_13\">\n", "    <g id=\"xtick_61\">\n", "     <g id=\"line2d_121\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"375.849204\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_127\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_62\">\n", "     <g id=\"line2d_122\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"387.709567\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_128\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_63\">\n", "     <g id=\"line2d_123\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"399.569931\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_129\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_64\">\n", "     <g id=\"line2d_124\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"411.430294\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_130\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_65\">\n", "     <g id=\"line2d_125\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"423.290658\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_131\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_66\">\n", "     <g id=\"line2d_126\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"435.151022\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_132\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_67\">\n", "     <g id=\"line2d_127\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"447.011385\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_133\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_68\">\n", "     <g id=\"line2d_128\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"458.871749\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_134\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_69\">\n", "     <g id=\"line2d_129\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"470.732113\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_135\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_70\">\n", "     <g id=\"line2d_130\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"482.592476\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_136\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_14\">\n", "    <g id=\"ytick_61\">\n", "     <g id=\"line2d_131\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_137\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_62\">\n", "     <g id=\"line2d_132\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_138\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_63\">\n", "     <g id=\"line2d_133\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_139\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_64\">\n", "     <g id=\"line2d_134\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_140\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_65\">\n", "     <g id=\"line2d_135\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_141\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_66\">\n", "     <g id=\"line2d_136\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_142\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_67\">\n", "     <g id=\"line2d_137\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_143\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_68\">\n", "     <g id=\"line2d_138\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_144\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_69\">\n", "     <g id=\"line2d_139\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_145\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_70\">\n", "     <g id=\"line2d_140\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_146\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_33\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 369.919022 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_34\">\n", "    <path d=\"M 488.522658 318.827216 \n", "L 488.522658 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_35\">\n", "    <path d=\"M 369.919022 318.827216 \n", "L 488.522658 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_36\">\n", "    <path d=\"M 369.919022 200.22358 \n", "L 488.522658 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_147\">\n", "    <!-- Layer 2, Head 3 -->\n", "    <g transform=\"translate(381.538652 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_8\">\n", "   <g id=\"patch_37\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 663.200919 318.827216 \n", "L 663.200919 200.22358 \n", "L 544.597283 200.22358 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p7d91099391)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADSElEQVR4nO3dO2tTYQDG8fckb9KkqWKb3lLrBSPSQVRUEIrSRQcXwa3iIH6CUrEfpB0cBCd3KYg4FHQR3FzspnSotXdbG1tNesnxK5xn7MP/Nz/nkPafsxwOJ8m90uM0KK5ckuZpPpH2re4OaR8mNzJPOx81pFO3d7T97/Gb0r5nbkHaf3tWl/Y5aY1jhbjGiGuMuMaIa4y4xohrjLjGiGuMuMaIaywmMUoH5Da1+61psSDtY1n7PIfTfdnH/dpnCY1dab5250ja97w/lPa3x+alPVeuMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrGYO9ElHdC4Nijty2tNab96qyTtD7qyP3Zd/649op2UtGeoax/z0j4cafeiv766LO25co0R1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNxfbeX+mAyqL2LG+rr1Pa1z7/k/YrE/vZx5tb0rnTZkvaF3bb0j4UitL816jwtwauXGvENUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjMRnolQ5IE+39yeXFHWm/fbVH2p97vp15++PJiHTu0y++SPvi5Iq0Dw+1e9fDb8X3l0hrHCvENUZcY8Q1RlxjxDVGXGPENUZcY8Q1FtPlNe2IUxek+X6/9lqGriXtlty7T7OZt/cvjkrnDjntux8nKtr5B7RXBO9XtM/DlWuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrTHtWMoTQLmivnW0Xte9Pqj05G+ofnmbejpxcls59uL4p7dfHtMdyh94sSPtGXfvncOUaI64x4hojrjHiGiOuMeIaI64x4hojrjHiGotJRXvWdu9MWdp3bB1I+9jUfgJt6vpc5u3s9rB07nxfVdrXXs9L+1DtluZF7Q0UXLnOiGuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xmLabEoHVH5q+1xTu7fc6tXuXb+ceZB5Wxtcks59tLou7Renbkj78zPaveiOu9rPw3HlGiOuMeIaI64x4hojrjHiGiOuMeIaI64x4hqLydCAdMCfsyVp36x2Svu2+JaOA+Wx67z2Po8kah+mvJFK+9CvPRddHV+V9ly5xohrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMb+A73zgViTeH/3AAAAAElFTkSuQmCC\" id=\"imageb5ac6609b6\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-199.827216\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_15\">\n", "    <g id=\"xtick_71\">\n", "     <g id=\"line2d_141\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"550.527464\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_148\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_72\">\n", "     <g id=\"line2d_142\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"562.387828\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_149\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_73\">\n", "     <g id=\"line2d_143\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"574.248192\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_150\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_74\">\n", "     <g id=\"line2d_144\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"586.108555\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_151\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_75\">\n", "     <g id=\"line2d_145\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"597.968919\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_152\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_76\">\n", "     <g id=\"line2d_146\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"609.829283\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_153\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_77\">\n", "     <g id=\"line2d_147\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"621.689646\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_154\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_78\">\n", "     <g id=\"line2d_148\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"633.55001\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_155\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_79\">\n", "     <g id=\"line2d_149\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"645.410374\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_156\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_80\">\n", "     <g id=\"line2d_150\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"657.270737\" y=\"318.827216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_157\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 333.425653)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_16\">\n", "    <g id=\"ytick_71\">\n", "     <g id=\"line2d_151\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"312.897034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_158\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 316.696253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_72\">\n", "     <g id=\"line2d_152\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"301.03667\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_159\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 304.835889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_73\">\n", "     <g id=\"line2d_153\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"289.176307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_160\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 292.975526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_74\">\n", "     <g id=\"line2d_154\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"277.315943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_161\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 281.115162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_75\">\n", "     <g id=\"line2d_155\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"265.45558\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_162\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 269.254798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_76\">\n", "     <g id=\"line2d_156\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"253.595216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_163\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 257.394435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_77\">\n", "     <g id=\"line2d_157\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"241.734852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_164\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 245.534071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_78\">\n", "     <g id=\"line2d_158\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"229.874489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_165\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 233.673707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_79\">\n", "     <g id=\"line2d_159\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"218.014125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_166\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 221.813344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_80\">\n", "     <g id=\"line2d_160\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"206.153761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_167\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 209.95298)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_38\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 544.597283 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_39\">\n", "    <path d=\"M 663.200919 318.827216 \n", "L 663.200919 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_40\">\n", "    <path d=\"M 544.597283 318.827216 \n", "L 663.200919 318.827216 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_41\">\n", "    <path d=\"M 544.597283 200.22358 \n", "L 663.200919 200.22358 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_168\">\n", "    <!-- Layer 2, Head 4 -->\n", "    <g transform=\"translate(556.216913 194.22358)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_9\">\n", "   <g id=\"patch_42\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 139.166136 496.73267 \n", "L 139.166136 378.129034 \n", "L 20.5625 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p2b3f465fb6)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADO0lEQVR4nO3dP2sTcQDG8d9dzqRporXWStSaCobSCIKiiODiILazoIujHbSvQLu6Kbg7iNBBQUFwcHH1BegULI1oq8F/FP+ktWlMcr6Fe8Y8fD/zkyP021t+HJdobvx6GgRpZ0eZh5DLSfNI3Y/tybw9/3JVuvbrs+PSfvVhXdrP3Hwv7aPdZWkfS2sMFeIaI64x4hojrjHiGiOuMeIaI64x4hojrrFksLWtfSIdaPteT9vn89q+3c48Xdq/Il16vndG2g96kbbf7kj7eFei7aU1hgpxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddYEhdHpA+k4llx2u9L+yjRzk+V56IXW+e071LQnqGePrQh7eNSUdqHSDu75s41RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENZaEWDuvVEXqc8jq95nI/t6KX13p9R8h9LVnun+0tXdWVAc/pb167s6da4y4xohrjLjGiGuMuMaIa4y4xohrjLjGiGssGWxuaZ+ItP8H9f3M8UhBu/7a58zbC/s+Sdd+nh6R9rOT36T95o72t8mVRqU9d64x4hojrjHiGiOuMeIaI64x4hojrjHiGks6l05JHyg1tCO29StT0r76VDsibCxVMm9fzB+Qrh2XtaPZvwt7tevXJqR92vqqXV9aY6gQ1xhxjRHXGHGNEdcYcY0R1xhxjRHXGHGNJaU32lnu4PcfaV99LL7Ct6P9BNqxJ9lf+Ztb/iddu3txU9qv3KlJ+/qtd9I+TbXXPnDnGiOuMeIaI64x4hojrjHiGiOuMeIaI64x4hpLtk9ozxUXG1+kffNGVdrXHmhn3R8Wsp+3zl7Tfr5N/Sm84/e0Z7rTyqS0D+stac6da4y4xohrjLjGiGuMuMaIa4y4xohrjLjGiGssmqssSg/Dpm3tWd5otCjtVf3a4czbq49eSdd+dnJa2q/dPi3tj959K+3VvyV3rjHiGiOuMeIaI64x4hojrjHiGiOuMeIaI66xpFvXnlsuNLVnczsz2d+HHEII+e/aO467Y/nM2/vLl6VrT5e1d1YUNqR5iKYOSvt+86O05841RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENfYf1JqIBufEr+QAAAAASUVORK5CYII=\" id=\"imagec1bf0e54b3\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_17\">\n", "    <g id=\"xtick_81\">\n", "     <g id=\"line2d_161\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"26.492682\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_169\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_82\">\n", "     <g id=\"line2d_162\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"38.353045\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_170\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_83\">\n", "     <g id=\"line2d_163\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"50.213409\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_171\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_84\">\n", "     <g id=\"line2d_164\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"62.073773\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_172\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_85\">\n", "     <g id=\"line2d_165\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"73.934136\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_173\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_86\">\n", "     <g id=\"line2d_166\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"85.7945\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_174\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_87\">\n", "     <g id=\"line2d_167\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"97.654864\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_175\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_88\">\n", "     <g id=\"line2d_168\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"109.515227\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_176\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_89\">\n", "     <g id=\"line2d_169\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"121.375591\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_177\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_90\">\n", "     <g id=\"line2d_170\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"133.235955\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_178\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_18\">\n", "    <g id=\"ytick_81\">\n", "     <g id=\"line2d_171\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_179\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_82\">\n", "     <g id=\"line2d_172\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_180\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_83\">\n", "     <g id=\"line2d_173\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_181\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_84\">\n", "     <g id=\"line2d_174\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_182\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_85\">\n", "     <g id=\"line2d_175\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_183\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_86\">\n", "     <g id=\"line2d_176\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_184\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_87\">\n", "     <g id=\"line2d_177\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_185\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_88\">\n", "     <g id=\"line2d_178\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_186\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_89\">\n", "     <g id=\"line2d_179\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_187\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_90\">\n", "     <g id=\"line2d_180\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_188\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_43\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 20.5625 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_44\">\n", "    <path d=\"M 139.166136 496.73267 \n", "L 139.166136 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_45\">\n", "    <path d=\"M 20.5625 496.73267 \n", "L 139.166136 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_46\">\n", "    <path d=\"M 20.5625 378.129034 \n", "L 139.166136 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_189\">\n", "    <!-- Layer 3, Head 1 -->\n", "    <g transform=\"translate(32.182131 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_10\">\n", "   <g id=\"patch_47\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 313.844397 496.73267 \n", "L 313.844397 378.129034 \n", "L 195.240761 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p932ba5e265)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADO0lEQVR4nO3du2oUYQCG4fkzs5lsko05GBMjrK4BJUXURrBQC29AvANrb8BCwUqwtwmCIBIstPUGbMQiNuIBJBByQhKziRs2kz2vTS5gvjIf71N/Mwm8meZnmITKu+f9SHCrsqbMo7XDSWm/VxuV9guzO7m337fmpHt3G7G0v1T+K+3X/0xJ+5FSQ9oPSGucKsQ1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGNJt55IF2SdgrSvN1JpH4J01B1NpFnubbel/S0PpF1pX0za0j4paPcfKnSkPU+uMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrFkcLwpXVAeOZD2u1lJ2h9l2ln04uh27u2ncEW6d6+lvbe8vj8h7duZdk6/3xHPxqU1ThXiGiOuMeIaI64x4hojrjHiGiOuMeIaI66xJE21d203jrTz07FU+47Dv6GitN9o5v/mRr8XpHtHPW2uCon2A0KsvdPNk2uMuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLKlvjkkXNM7UpP2v1QvSPhrQzk9XJ6dzb6/Pb0r3/rF9Xto/W/wo7Z+sPJD2nUz7fglPrjHiGiOuMeIaI64x4hojrjHiGiOuMeIaC0+/3ZfO+74elKUfsHT5g7S/9/mRtP99923u7cIr7d7tUe3V07SqPSvZRe0Tu+kOx484QVxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENZZ82atIF8yP7Un7l9Xb0n56vC7t3xyey70N2lFu1Ctqr9k2ZsTPIBS1X6hV4d+94QRxjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddYMjN8KF3w82BW2r++uizt36/clPYPr+3m3r4Y1M6K1U/yFmras9IsaftQ571lnCCuMeIaI64x4hojrjHiGiOuMeIaI64x4hpLen2t79yI9knepeodaT88mUn7xzs3cm/bJe1sOZ5qSvtWSKV9JB519wvaYTdPrjHiGiOuMeIaI64x4hojrjHiGiOuMeIaI66xZKs+Ll2gfhOjELrSPo6189NyWs1/7+Mg3bvTiqV9nInvIZ89lvbto0Fpz5NrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMaIa+w/vDqTJA3QTFAAAAAASUVORK5CYII=\" id=\"image5c6c69be22\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_19\">\n", "    <g id=\"xtick_91\">\n", "     <g id=\"line2d_181\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"201.170943\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_190\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_92\">\n", "     <g id=\"line2d_182\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"213.031306\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_191\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_93\">\n", "     <g id=\"line2d_183\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"224.89167\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_192\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_94\">\n", "     <g id=\"line2d_184\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"236.752034\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_193\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_95\">\n", "     <g id=\"line2d_185\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"248.612397\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_194\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_96\">\n", "     <g id=\"line2d_186\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"260.472761\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_195\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_97\">\n", "     <g id=\"line2d_187\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"272.333125\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_196\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_98\">\n", "     <g id=\"line2d_188\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"284.193488\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_197\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_99\">\n", "     <g id=\"line2d_189\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"296.053852\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_198\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_100\">\n", "     <g id=\"line2d_190\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"307.914215\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_199\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_20\">\n", "    <g id=\"ytick_91\">\n", "     <g id=\"line2d_191\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_200\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_92\">\n", "     <g id=\"line2d_192\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_201\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_93\">\n", "     <g id=\"line2d_193\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_202\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_94\">\n", "     <g id=\"line2d_194\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_203\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_95\">\n", "     <g id=\"line2d_195\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_204\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_96\">\n", "     <g id=\"line2d_196\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_205\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_97\">\n", "     <g id=\"line2d_197\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_206\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_98\">\n", "     <g id=\"line2d_198\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_207\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_99\">\n", "     <g id=\"line2d_199\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_208\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_100\">\n", "     <g id=\"line2d_200\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_209\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_48\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 195.240761 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_49\">\n", "    <path d=\"M 313.844397 496.73267 \n", "L 313.844397 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_50\">\n", "    <path d=\"M 195.240761 496.73267 \n", "L 313.844397 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_51\">\n", "    <path d=\"M 195.240761 378.129034 \n", "L 313.844397 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_210\">\n", "    <!-- Layer 3, Head 2 -->\n", "    <g transform=\"translate(206.860392 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_11\">\n", "   <g id=\"patch_52\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 488.522658 496.73267 \n", "L 488.522658 378.129034 \n", "L 369.919022 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pe94f93f0b9)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADMElEQVR4nO3dO24TUQCF4bHnesbPMQqBICIe4SkeRQoKEB1IbIAl0LEA2AAbYAV0QMkaIAJRUCEEigAhIREcAsKO8WvGNluYU+bo/+qTUZTf01xdOZWNZ4+WkaDbGSnz6MrqT2n/6sMFaX/z8ufS29fbZ6VnJ82ZtJ/uNaR9dnxf2jdT7fepSmscKMQ1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGNhPqxpP9HR5oOZdt4aVbT5ME9Lb9OWdjY7GSbSvtKcS/skaPssmUp73lxjxDVGXGPENUZcY8Q1RlxjxDVGXGPENUZcYyE7OpR+YK2t7bNkLO0rYSHtm6H8efG80D7LjY52lpt/1Q7ex5l2rr+9e0za8+YaI64x4hojrjHiGiOuMeIaI64x4hojrjHiGguzPEg/UI9zaR9XpK/ckF1s90pv3/w9Lz27aGj3isVryFG1qp2jd1b+ac+X1jhQiGuMuMaIa4y4xohrjLjGiGuMuMaIa4y4xkJD/A7fyVy7a/vxu3bXtt3V7jk//XSt9PbEmV/Ss3f7bWlfnBTPiuvavegf31alPW+uMeIaI64x4hojrjHiGiOuMeIaI64x4hoLFfHq6aVM+/dt99a3pP2Dt3el/ZfbT0pvrz6+Lz17eqqQ9offxdK+d0uaR3FHu1bMm2uMuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLIyn2r80e7lzTtrnS+28Vf13bw97m6W3o3Xxew1S7arqn03tl2+3JtI+Fb+XgTfXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11iIY+38NA3aXd7T9d/SfpFrn7c72fvS2xeDG9Kz80PaPeFaX/tKidFKXdpH4lk0b64x4hojrjHiGiOuMeIaI64x4hojrjHiGiOusdASv5K3Fmt3Z9V7y9WgnXU/37teelu0tO//qDe1v808SrXnN7Tnj0fa83lzjRHXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY2FRDwrPtIYSvudWVfatzra3dy1dFB6m/S1z3LY0P42C+1YPFpqR91Rsa/di+bNNUZcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDX2H4C+iDwxyoKeAAAAAElFTkSuQmCC\" id=\"image69353424f2\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_21\">\n", "    <g id=\"xtick_101\">\n", "     <g id=\"line2d_201\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"375.849204\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_211\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_102\">\n", "     <g id=\"line2d_202\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"387.709567\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_212\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_103\">\n", "     <g id=\"line2d_203\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"399.569931\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_213\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_104\">\n", "     <g id=\"line2d_204\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"411.430294\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_214\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_105\">\n", "     <g id=\"line2d_205\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"423.290658\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_215\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_106\">\n", "     <g id=\"line2d_206\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"435.151022\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_216\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_107\">\n", "     <g id=\"line2d_207\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"447.011385\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_217\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_108\">\n", "     <g id=\"line2d_208\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"458.871749\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_218\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_109\">\n", "     <g id=\"line2d_209\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"470.732113\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_219\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_110\">\n", "     <g id=\"line2d_210\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"482.592476\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_220\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_22\">\n", "    <g id=\"ytick_101\">\n", "     <g id=\"line2d_211\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_221\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_102\">\n", "     <g id=\"line2d_212\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_222\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_103\">\n", "     <g id=\"line2d_213\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_223\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_104\">\n", "     <g id=\"line2d_214\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_224\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_105\">\n", "     <g id=\"line2d_215\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_225\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_106\">\n", "     <g id=\"line2d_216\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_226\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_107\">\n", "     <g id=\"line2d_217\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_227\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_108\">\n", "     <g id=\"line2d_218\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_228\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_109\">\n", "     <g id=\"line2d_219\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_229\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_110\">\n", "     <g id=\"line2d_220\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_230\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_53\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 369.919022 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_54\">\n", "    <path d=\"M 488.522658 496.73267 \n", "L 488.522658 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_55\">\n", "    <path d=\"M 369.919022 496.73267 \n", "L 488.522658 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_56\">\n", "    <path d=\"M 369.919022 378.129034 \n", "L 488.522658 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_231\">\n", "    <!-- Layer 3, Head 3 -->\n", "    <g transform=\"translate(381.538652 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_12\">\n", "   <g id=\"patch_57\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 663.200919 496.73267 \n", "L 663.200919 378.129034 \n", "L 544.597283 378.129034 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pdfb8586c43)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAADQElEQVR4nO3cP08TcQDGcQqHRaBQKVBqEQWJkyFEXUzURBcHJxyMg4MmDkbD4Ep00sQX4CtwMk6OJiSGxEETEx1QIpKIRmkI/8qVQksr1/oW7hl98v3Mzx2k3/6WS3OJ4y+eNVsEE6MryryluN8p7dMdVWn/rTAUe5vvD6V7D3aWpf3VzIK0/9tsk/ZXupakfau0xn+FuMaIa4y4xohrjLjGiGuMuMaIa4y4xohrLGjWtb6tiYa0L+5pz5ZVwwPbsbf5rpJ072JN+9/bxM/mfWlc2t9LF6Q9J9cYcY0R1xhxjRHXGHGNEdcYcY0R1xhxjRHXWJAa3JUuqBwckvans6vSvh5pv+WtNwJpr4ga2nd/oZKX9tnkjrSfWZuQ9pxcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGNBFGl9x1Jb0r4atUt71cnuzdjb+W3t2W8t0p5bL5Ry0n4yrb1fRH2HBifXGHGNEdcYcY0R1xhxjRHXGHGNEdcYcY0R11hw7EgoXbAr/m45rGvvlcgdFt9bUe+KvT3b91u694fNUWl/orso7Zcr/dL+V6lP2nNyjRHXGHGNEdcYcY0R1xhxjRHXGHGNEddYcD7zU7qg0ZKQ9o9G5qT9/ZVL0n46+zb2dmrugXTvgaz2KHT23aS0v3zhi7Rf3+iR9pxcY8Q1RlxjxDVGXGPENUZcY8Q1RlxjxDVGXGOJ0ZdPm8oFF8d+SH9gY79b2jea2rPr3Xoy9nYtTEn3zqbL0v7a0a/Svj0RSfsbPfPSnpNrjLjGiGuMuMaIa4y4xohrjLjGiGuMuMaIaywx/fmm9Gx5s6Y9K36Ym5X2M8vXpf2Tsdext7c/3ZHunWw/kPbVmvb64TN57ZW8i1uD0p6Ta4y4xohrjLjGiGuMuMaIa4y4xohrjLjGiGssWNrRnlf2JSvS/k15QtpnOvak/ePlKWmvODf0R9p/D7XPMtehvXMjPxxKe06uMeIaI64x4hojrjHiGiOuMeIaI64x4hojrrHgVM+6dIH6zoretqq0P2hq37fn469ib+8u3pLu/XF1RNqr5sO8tC9s90p7Tq4x4hojrjHiGiOuMeIaI64x4hojrjHiGiOusX90SJQshn2ZZQAAAABJRU5ErkJggg==\" id=\"imagef163353655\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-377.73267\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_23\">\n", "    <g id=\"xtick_111\">\n", "     <g id=\"line2d_221\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"550.527464\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_232\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_112\">\n", "     <g id=\"line2d_222\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"562.387828\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_233\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_113\">\n", "     <g id=\"line2d_223\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"574.248192\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_234\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_114\">\n", "     <g id=\"line2d_224\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"586.108555\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_235\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_115\">\n", "     <g id=\"line2d_225\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"597.968919\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_236\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_116\">\n", "     <g id=\"line2d_226\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"609.829283\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_237\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_117\">\n", "     <g id=\"line2d_227\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"621.689646\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_238\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_118\">\n", "     <g id=\"line2d_228\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"633.55001\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_239\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_119\">\n", "     <g id=\"line2d_229\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"645.410374\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_240\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_120\">\n", "     <g id=\"line2d_230\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"657.270737\" y=\"496.73267\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_241\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 511.331108)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_24\">\n", "    <g id=\"ytick_111\">\n", "     <g id=\"line2d_231\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"490.802489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_242\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 494.601707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_112\">\n", "     <g id=\"line2d_232\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"478.942125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_243\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 482.741344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_113\">\n", "     <g id=\"line2d_233\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"467.081761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_244\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 470.88098)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_114\">\n", "     <g id=\"line2d_234\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"455.221398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_245\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 459.020616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_115\">\n", "     <g id=\"line2d_235\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"443.361034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_246\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 447.160253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_116\">\n", "     <g id=\"line2d_236\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"431.50067\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_247\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 435.299889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_117\">\n", "     <g id=\"line2d_237\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"419.640307\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_248\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 423.439526)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_118\">\n", "     <g id=\"line2d_238\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"407.779943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_249\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 411.579162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_119\">\n", "     <g id=\"line2d_239\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"395.91958\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_250\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 399.718798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_120\">\n", "     <g id=\"line2d_240\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"384.059216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_251\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 387.858435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_58\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 544.597283 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_59\">\n", "    <path d=\"M 663.200919 496.73267 \n", "L 663.200919 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_60\">\n", "    <path d=\"M 544.597283 496.73267 \n", "L 663.200919 496.73267 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_61\">\n", "    <path d=\"M 544.597283 378.129034 \n", "L 663.200919 378.129034 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_252\">\n", "    <!-- Layer 3, Head 4 -->\n", "    <g transform=\"translate(556.216913 372.129034)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_13\">\n", "   <g id=\"patch_62\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 139.166136 674.638125 \n", "L 139.166136 556.034489 \n", "L 20.5625 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#pc6b595135f)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC8ElEQVR4nO3dv2pTYQCG8S/pSSlp0z+m6FJQcBSq4GQ7dHTxDpwEp2I3Ny+ggyBIBRGdnLwLKULrpoMOKggugoW2pH+IJm3iLeQdAvrw/ObXr8OTsxw+jrXljSfDEpjoRvNyulSL9rPfs/N7c6Off/HZTnT2r42VaH9pKzt///6taN9+tRvt69Fa/xXjghkXzLhgxgUzLphxwYwLZlww44IZF6wahnknT7J3v8eT2fmN7iDa92Ynsj8QOGuO7ehSSimDxnjP98kFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBqtp59g96M9k95PqfbN9vZr+386loHmmcjO/sUkqZ+D3e831ywYwLZlww44IZF8y4YMYFMy6YccGMC2ZcsGoYXvtN7y0fhe9+G6fZveX+9Ph+n/2ZsR1dSinlrJm9d0/55IIZF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGBVLXuVW+rn2bvl2jB7f1rLji/DifG9n02/F/Kvne+TC2ZcMOOCGRfMuGDGBTMumHHBjAtmXLCqOs3e97W+dqJ9bTCXnf95P9tvH4y8Db8QUbbXH0f7u5ur0b63dhTty1Y298kFMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBqn4ruxp6uDwf7TtXs9/PsN6O9oNqceRt68376OzV1w+j/ZWyG+0b72ajfconF8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBasmj7J7ywufsru2UwfT0b75I7zL+3Nv5Gl6b/nLvefR/vajG9G+eyv8/+SeZnOfXDDjghkXzLhgxgUzLphxwYwLZlww44IZF6zqhfeW969n37g4vpydPz+3EO37KxdG3rZfZveKr22tR/ulshPtW2+z9+4pn1ww44IZF8y4YMYFMy6YccGMC2ZcMOOCGRcsvrfc/nAY7ac62XcfZr5l33Mue+P73vLHB9kHju9s3oz2nbVutF98Ec19csmMC2ZcMOOCGRfMuGDGBTMumHHBjAtmXLC/2sZxwU0Yy2EAAAAASUVORK5CYII=\" id=\"image04439d2f24\" transform=\"scale(1 -1)translate(0 -119)\" x=\"20.5625\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_25\">\n", "    <g id=\"xtick_121\">\n", "     <g id=\"line2d_241\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"26.492682\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_253\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(23.311432 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_122\">\n", "     <g id=\"line2d_242\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"38.353045\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_254\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(35.171795 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_123\">\n", "     <g id=\"line2d_243\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"50.213409\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_255\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(47.032159 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_124\">\n", "     <g id=\"line2d_244\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"62.073773\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_256\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(58.892523 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_125\">\n", "     <g id=\"line2d_245\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"73.934136\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_257\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(70.752886 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_126\">\n", "     <g id=\"line2d_246\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"85.7945\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_258\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(82.61325 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_127\">\n", "     <g id=\"line2d_247\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"97.654864\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_259\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(94.473614 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_128\">\n", "     <g id=\"line2d_248\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"109.515227\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_260\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(106.333977 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_129\">\n", "     <g id=\"line2d_249\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"121.375591\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_261\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(118.194341 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_130\">\n", "     <g id=\"line2d_250\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"133.235955\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_262\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(130.054705 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_26\">\n", "    <g id=\"ytick_121\">\n", "     <g id=\"line2d_251\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_263\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(7.2 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_122\">\n", "     <g id=\"line2d_252\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_264\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(7.2 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_123\">\n", "     <g id=\"line2d_253\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_265\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(7.2 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_124\">\n", "     <g id=\"line2d_254\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_266\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(7.2 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_125\">\n", "     <g id=\"line2d_255\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_267\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(7.2 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_126\">\n", "     <g id=\"line2d_256\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_268\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(7.2 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_127\">\n", "     <g id=\"line2d_257\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_269\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(7.2 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_128\">\n", "     <g id=\"line2d_258\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_270\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(7.2 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_129\">\n", "     <g id=\"line2d_259\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_271\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(7.2 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_130\">\n", "     <g id=\"line2d_260\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"20.5625\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_272\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(7.2 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_63\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 20.5625 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_64\">\n", "    <path d=\"M 139.166136 674.638125 \n", "L 139.166136 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_65\">\n", "    <path d=\"M 20.5625 674.638125 \n", "L 139.166136 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_66\">\n", "    <path d=\"M 20.5625 556.034489 \n", "L 139.166136 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_273\">\n", "    <!-- Layer 4, Head 1 -->\n", "    <g transform=\"translate(32.182131 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-31\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_14\">\n", "   <g id=\"patch_67\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 313.844397 674.638125 \n", "L 313.844397 556.034489 \n", "L 195.240761 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p97c68f45fe)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC8UlEQVR4nO3dzUrUURyH8fN3xhkxhySxXFQSmdoLtGkXtIogWnQh7bqB9kHuu4LWES1q1bJVLawgs8IKShBMLR11XrqF+S4G8uH5rH9zZvSZszkc/lNdub/UL4Hx9V4yXlpr7Wh+72Qzmp94sTzwbG93N1q7fuZ0NN/5/iOary3MRfPdj6vR/Eg0rSPFuGDGBTMumHHBjAtmXDDjghkXzLhgxgWrb186jF4w+amK5nuN7PsztnGQrd/ej+YT/Z2doa1dSinVYWeo67tzwYwLZlww44IZF8y4YMYFMy6YccGMC2ZcsPrEymj0gsOJ7N5yczObb083ovljjcE/f6/djdauWq1ovvzeisb7zex/n3LnghkXzLhgxgUzLphxwYwLZlww44IZF8y4YPU/i9k94akP2b3lbrMWzTfTe8sH2b3rRH9re2hrl1JK1c7+1pQ7F8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBatPz2R3beu74V3eUG0vOyvu97K7yNHaB8M9+y2d4X32Uty5aMYFMy6YccGMC2ZcMOOCGRfMuGDGBatWv81EP/d27+qd6A22bl2M5ltP30bz/f3hPZJ32EbCxzL0wkcEu3PBjAtmXDDjghkXzLhgxgUzLphxwYwLZlyw6uzjh9HZ8uyzaLyU7Im8ZXQnu9pae/1u4Nl+J/t5tdrk8Wi+Gz6St35uNprvfF2L5t25YMYFMy6YccGMC2ZcMOOCGRfMuGDGBTMuWPXyy0J0WPzo2o3oDTbuLkbzJ568ieaP8r3lYZ9du3PBjAtmXDDjghkXzLhgxgUzLphxwYwLZlywav7BUnS2PPU+e4xsczO7K9xrZN+3sVfLg6/dbkdr12dORfOdX+vRfG3+fDTfXfkczbtzwYwLZlww44IZF8y4YMYFMy6YccGMC2ZcsKr7cy46W7594Xr0Bn9vXo7mx5+H95bD51z8T0bGxqL59GzcnQtmXDDjghkXzLhgxgUzLphxwYwLZlww44L9A6qAjwdspZo/AAAAAElFTkSuQmCC\" id=\"image484b04bc27\" transform=\"scale(1 -1)translate(0 -119)\" x=\"195.240761\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_27\">\n", "    <g id=\"xtick_131\">\n", "     <g id=\"line2d_261\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"201.170943\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_274\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(197.989693 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_132\">\n", "     <g id=\"line2d_262\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"213.031306\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_275\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(209.850056 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_133\">\n", "     <g id=\"line2d_263\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"224.89167\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_276\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(221.71042 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_134\">\n", "     <g id=\"line2d_264\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"236.752034\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_277\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(233.570784 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_135\">\n", "     <g id=\"line2d_265\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"248.612397\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_278\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(245.431147 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_136\">\n", "     <g id=\"line2d_266\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"260.472761\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_279\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(257.291511 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_137\">\n", "     <g id=\"line2d_267\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"272.333125\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_280\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(269.151875 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_138\">\n", "     <g id=\"line2d_268\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"284.193488\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_281\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(281.012238 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_139\">\n", "     <g id=\"line2d_269\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"296.053852\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_282\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(292.872602 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_140\">\n", "     <g id=\"line2d_270\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"307.914215\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_283\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(304.732965 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_28\">\n", "    <g id=\"ytick_131\">\n", "     <g id=\"line2d_271\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_284\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(181.878261 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_132\">\n", "     <g id=\"line2d_272\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_285\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(181.878261 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_133\">\n", "     <g id=\"line2d_273\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_286\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(181.878261 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_134\">\n", "     <g id=\"line2d_274\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_287\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(181.878261 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_135\">\n", "     <g id=\"line2d_275\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_288\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(181.878261 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_136\">\n", "     <g id=\"line2d_276\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_289\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(181.878261 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_137\">\n", "     <g id=\"line2d_277\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_290\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(181.878261 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_138\">\n", "     <g id=\"line2d_278\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_291\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(181.878261 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_139\">\n", "     <g id=\"line2d_279\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_292\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(181.878261 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_140\">\n", "     <g id=\"line2d_280\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"195.240761\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_293\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(181.878261 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_68\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 195.240761 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_69\">\n", "    <path d=\"M 313.844397 674.638125 \n", "L 313.844397 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_70\">\n", "    <path d=\"M 195.240761 674.638125 \n", "L 313.844397 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_71\">\n", "    <path d=\"M 195.240761 556.034489 \n", "L 313.844397 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_294\">\n", "    <!-- Layer 4, Head 2 -->\n", "    <g transform=\"translate(206.860392 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-32\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_15\">\n", "   <g id=\"patch_72\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 488.522658 674.638125 \n", "L 488.522658 556.034489 \n", "L 369.919022 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p985d037691)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC5ElEQVR4nO3dwUpUYQCG4f/MHCcbDUEXSUSGNIEtyjbSMoKIlt1Fi6AbaNPFFW0CbaGgJBGktMrUnMGZM9MdxHzBLHx5n/U3v9Lb2fwcxur51vtJCfzuLSTzsnTwJ9r3V69H++73s6m345296Oz2Ri/aN3sH0b48eZjtP32J5q3sdF0lxgUzLphxwYwLZlww44IZF8y4YMYFMy5Y3b+Z3eUuHF1G++GNTrTvnAyjfTUaR/vE5NrczM4upZRJO3u2qvB8n1ww44IZF8y4YMYFMy6YccGMC2ZcMOOCGResnjsfRR8YLtbRvnOS3UWPFrLz2+fZPlFdZv82sXH0ynjMJxfMuGDGBTMumHHBjAtmXDDjghkXzLhgxgWrByvZu7nd40G0H3Wzu9/0rrsaNlNv05vcSWd299allPxF5JBPLphxwYwLZlww44IZF8y4YMYFMy6YccGMC1afrrWjDyx9/hXtB5ur0X7+aPrvTy6llEk9w/+f49l930YppbQup78XLyW/G/fJBTMumHHBjAtmXDDjghkXzLhgxgUzLlh19uNOdKv16vZW9APq9bvRfnT4LdpX9fSvn05G2WuzrUcb0T79c3Ktbjc7/+IiOz9a60oxLphxwYwLZlww44IZF8y4YMYFMy6YccHqp+/eRh9YeZi92tpfXYz2neVs3zrtT71t9r9GZzfd7E/Vpd+C0Dy+n53/YTva++SCGRfMuGDGBTMumHHBjAtmXDDjghkXzLhgvrf8D63NB9F+vL2bne97y/pfxgUzLphxwYwLZlww44IZF8y4YMYFMy5Y/fL1m+wDz7KvkW3G4RfJri1H887P8+l/l9397HeZsWazF+2rjzvR3icXzLhgxgUzLphxwYwLZlww44IZF8y4YMYFq5rje9Hl74tbm9EPaPfWo31zcBjtZ/necnsju/tt9g6ifWt+PtqPB4Ps/GitK8W4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBfsLtomDdmevbR8AAAAASUVORK5CYII=\" id=\"imageb34549ee3d\" transform=\"scale(1 -1)translate(0 -119)\" x=\"369.919022\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_29\">\n", "    <g id=\"xtick_141\">\n", "     <g id=\"line2d_281\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"375.849204\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_295\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(372.667954 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_142\">\n", "     <g id=\"line2d_282\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"387.709567\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_296\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(384.528317 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_143\">\n", "     <g id=\"line2d_283\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"399.569931\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_297\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(396.388681 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_144\">\n", "     <g id=\"line2d_284\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"411.430294\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_298\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(408.249044 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_145\">\n", "     <g id=\"line2d_285\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"423.290658\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_299\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(420.109408 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_146\">\n", "     <g id=\"line2d_286\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"435.151022\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_300\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(431.969772 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_147\">\n", "     <g id=\"line2d_287\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"447.011385\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_301\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(443.830135 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_148\">\n", "     <g id=\"line2d_288\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"458.871749\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_302\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(455.690499 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_149\">\n", "     <g id=\"line2d_289\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"470.732113\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_303\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(467.550863 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_150\">\n", "     <g id=\"line2d_290\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"482.592476\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_304\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(479.411226 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_30\">\n", "    <g id=\"ytick_141\">\n", "     <g id=\"line2d_291\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_305\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(356.556522 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_142\">\n", "     <g id=\"line2d_292\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_306\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(356.556522 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_143\">\n", "     <g id=\"line2d_293\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_307\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(356.556522 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_144\">\n", "     <g id=\"line2d_294\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_308\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(356.556522 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_145\">\n", "     <g id=\"line2d_295\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_309\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(356.556522 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_146\">\n", "     <g id=\"line2d_296\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_310\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(356.556522 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_147\">\n", "     <g id=\"line2d_297\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_311\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(356.556522 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_148\">\n", "     <g id=\"line2d_298\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_312\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(356.556522 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_149\">\n", "     <g id=\"line2d_299\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_313\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(356.556522 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_150\">\n", "     <g id=\"line2d_300\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"369.919022\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_314\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(356.556522 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_73\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 369.919022 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_74\">\n", "    <path d=\"M 488.522658 674.638125 \n", "L 488.522658 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_75\">\n", "    <path d=\"M 369.919022 674.638125 \n", "L 488.522658 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_76\">\n", "    <path d=\"M 369.919022 556.034489 \n", "L 488.522658 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_315\">\n", "    <!-- Layer 4, Head 3 -->\n", "    <g transform=\"translate(381.538652 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-33\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", "  <g id=\"axes_16\">\n", "   <g id=\"patch_77\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 663.200919 674.638125 \n", "L 663.200919 556.034489 \n", "L 544.597283 556.034489 \n", "z\n", "\" style=\"fill: #ffffff\"/>\n", "   </g>\n", "   <g clip-path=\"url(#p6f89522f0d)\">\n", "    <image xlink:href=\"data:image/png;base64,\n", "iVBORw0KGgoAAAANSUhEUgAAAHcAAAB3CAYAAAA5Od+KAAAC8UlEQVR4nO3du2oUYRiH8e/bjDmQA+IpMYkIKghWFjaCrXoBYm1nYRnB1srOSsHG2kawEqystfEGRIOixhPaJERCsjtjkwuYfyG4D8+vfufdZZ9MM/myqZcv3O1KYLgwlYyXEm0vpY6yC7aX+7+fhWdvot2Ds6ej+fbtejRfz52J5sv652h8kG3XODEumHHBjAtmXDDjghkXzLhgxgUzLphxwZr0gjrMnv12Tc1eoMv2787339+14YPuto3Gu9Eomh8Ms/3tcJjtj6Y1VowLZlww44IZF8y4YMYFMy6YccGMC2ZcsKbU8Nlv+uMQPs5NHfjT/wXqxES2PPxs0v3dIPswa5P9KsA7F8y4YMYFMy6YccGMC2ZcMOOCGRfMuGDGBWtK+B0UJTtqW0r4ODe1OxecWw7PFadnqONzy+F8vD+a1lgxLphxwYwLZlww44IZF8y4YMYFMy6YccGaGj4/TZ+3pt+hUSays8Kj6fDc9f9klH7nRjbvnQtmXDDjghkXzLhgxgUzLphxwYwLZlywpn7ciC6YnJnJXiF8XNkuHormn6w96j279uBitLts/Mjm06OwX75l83u70bx3LphxwYwLZlww44IZF8y4YMYFMy6YccGMC9Z0q8ejC/YOTv+jt7IvPNp6/fHt3rMnyqvsvRw7nM1vbkbjdWUp2//+QzTunQtmXDDjghkXzLhgxgUzLphxwYwLZlww44I19dPX6ILJX9m55fRP/bvlI9H885sPe8/euncp2l1+/s7mQ93G9/CC7Fy0dy6YccGMC2ZcMOOCGRfMuGDGBTMumHHBjAvWdKdWowv25qei+S48h1zDfz937f6d3rOL9XW0uywdzea3tqLxenIlm3/nuWXtMy6YccGMC2ZcMOOCGRfMuGDGBTMumHHB6pW5G9HD3DoTfidG+u/kFrNzyy9ePu09e3X5fLR7MDsbzbfb29n+6eyzbHd2sv3RtMaKccGMC2ZcMOOCGRfMuGDGBTMumHHBjAv2Fx2EhRir6cU4AAAAAElFTkSuQmCC\" id=\"imagec744ea4da3\" transform=\"scale(1 -1)translate(0 -119)\" x=\"544.597283\" y=\"-555.638125\" width=\"119\" height=\"119\"/>\n", "   </g>\n", "   <g id=\"matplotlib.axis_31\">\n", "    <g id=\"xtick_151\">\n", "     <g id=\"line2d_301\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"550.527464\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_316\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(547.346214 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_152\">\n", "     <g id=\"line2d_302\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"562.387828\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_317\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(559.206578 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_153\">\n", "     <g id=\"line2d_303\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"574.248192\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_318\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(571.066942 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_154\">\n", "     <g id=\"line2d_304\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"586.108555\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_319\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(582.927305 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_155\">\n", "     <g id=\"line2d_305\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"597.968919\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_320\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(594.787669 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_156\">\n", "     <g id=\"line2d_306\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"609.829283\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_321\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(606.648033 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_157\">\n", "     <g id=\"line2d_307\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"621.689646\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_322\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(618.508396 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_158\">\n", "     <g id=\"line2d_308\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"633.55001\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_323\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(630.36876 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_159\">\n", "     <g id=\"line2d_309\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"645.410374\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_324\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(642.229124 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"xtick_160\">\n", "     <g id=\"line2d_310\">\n", "      <g>\n", "       <use xlink:href=\"#med0716537d\" x=\"657.270737\" y=\"674.638125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_325\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(654.089487 689.236562)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"matplotlib.axis_32\">\n", "    <g id=\"ytick_151\">\n", "     <g id=\"line2d_311\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"668.707943\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_326\">\n", "      <!-- 0 -->\n", "      <g transform=\"translate(531.234783 672.507162)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-30\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_152\">\n", "     <g id=\"line2d_312\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"656.84758\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_327\">\n", "      <!-- 1 -->\n", "      <g transform=\"translate(531.234783 660.646798)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-31\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_153\">\n", "     <g id=\"line2d_313\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"644.987216\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_328\">\n", "      <!-- 2 -->\n", "      <g transform=\"translate(531.234783 648.786435)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-32\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_154\">\n", "     <g id=\"line2d_314\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"633.126852\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_329\">\n", "      <!-- 3 -->\n", "      <g transform=\"translate(531.234783 636.926071)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-33\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_155\">\n", "     <g id=\"line2d_315\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"621.266489\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_330\">\n", "      <!-- 4 -->\n", "      <g transform=\"translate(531.234783 625.065707)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-34\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_156\">\n", "     <g id=\"line2d_316\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"609.406125\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_331\">\n", "      <!-- 5 -->\n", "      <g transform=\"translate(531.234783 613.205344)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-35\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_157\">\n", "     <g id=\"line2d_317\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"597.545761\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_332\">\n", "      <!-- 6 -->\n", "      <g transform=\"translate(531.234783 601.34498)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-36\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_158\">\n", "     <g id=\"line2d_318\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"585.685398\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_333\">\n", "      <!-- 7 -->\n", "      <g transform=\"translate(531.234783 589.484616)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-37\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_159\">\n", "     <g id=\"line2d_319\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"573.825034\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_334\">\n", "      <!-- 8 -->\n", "      <g transform=\"translate(531.234783 577.624253)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-38\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "    <g id=\"ytick_160\">\n", "     <g id=\"line2d_320\">\n", "      <g>\n", "       <use xlink:href=\"#m79e6a1251b\" x=\"544.597283\" y=\"561.96467\" style=\"stroke: #000000; stroke-width: 0.8\"/>\n", "      </g>\n", "     </g>\n", "     <g id=\"text_335\">\n", "      <!-- 9 -->\n", "      <g transform=\"translate(531.234783 565.763889)scale(0.1 -0.1)\">\n", "       <use xlink:href=\"#DejaVuSans-39\"/>\n", "      </g>\n", "     </g>\n", "    </g>\n", "   </g>\n", "   <g id=\"patch_78\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 544.597283 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_79\">\n", "    <path d=\"M 663.200919 674.638125 \n", "L 663.200919 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_80\">\n", "    <path d=\"M 544.597283 674.638125 \n", "L 663.200919 674.638125 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"patch_81\">\n", "    <path d=\"M 544.597283 556.034489 \n", "L 663.200919 556.034489 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square\"/>\n", "   </g>\n", "   <g id=\"text_336\">\n", "    <!-- Layer 4, Head 4 -->\n", "    <g transform=\"translate(556.216913 550.034489)scale(0.12 -0.12)\">\n", "     <use xlink:href=\"#DejaVuSans-4c\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"55.712891\"/>\n", "     <use xlink:href=\"#DejaVuSans-79\" x=\"116.992188\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"176.171875\"/>\n", "     <use xlink:href=\"#DejaVuSans-72\" x=\"237.695312\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"278.808594\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"310.595703\"/>\n", "     <use xlink:href=\"#DejaVuSans-2c\" x=\"374.21875\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"406.005859\"/>\n", "     <use xlink:href=\"#DejaVuSans-48\" x=\"437.792969\"/>\n", "     <use xlink:href=\"#DejaVuSans-65\" x=\"512.988281\"/>\n", "     <use xlink:href=\"#DejaVuSans-61\" x=\"574.511719\"/>\n", "     <use xlink:href=\"#DejaVuSans-64\" x=\"635.791016\"/>\n", "     <use xlink:href=\"#DejaVuSans-20\" x=\"699.267578\"/>\n", "     <use xlink:href=\"#DejaVuSans-34\" x=\"731.054688\"/>\n", "    </g>\n", "   </g>\n", "  </g>\n", " </g>\n", " <defs>\n", "  <clipPath id=\"pa35e22b4cb\">\n", "   <rect x=\"20.5625\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe4cc49be23\">\n", "   <rect x=\"195.240761\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p27fff1c919\">\n", "   <rect x=\"369.919022\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p5bed43d6ac\">\n", "   <rect x=\"544.597283\" y=\"22.318125\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p27c7197082\">\n", "   <rect x=\"20.5625\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p6fda814bd1\">\n", "   <rect x=\"195.240761\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pa3a6017cf3\">\n", "   <rect x=\"369.919022\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p7d91099391\">\n", "   <rect x=\"544.597283\" y=\"200.22358\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p2b3f465fb6\">\n", "   <rect x=\"20.5625\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p932ba5e265\">\n", "   <rect x=\"195.240761\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pe94f93f0b9\">\n", "   <rect x=\"369.919022\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pdfb8586c43\">\n", "   <rect x=\"544.597283\" y=\"378.129034\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"pc6b595135f\">\n", "   <rect x=\"20.5625\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p97c68f45fe\">\n", "   <rect x=\"195.240761\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p985d037691\">\n", "   <rect x=\"369.919022\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", "  <clipPath id=\"p6f89522f0d\">\n", "   <rect x=\"544.597283\" y=\"556.034489\" width=\"118.603636\" height=\"118.603636\"/>\n", "  </clipPath>\n", " </defs>\n", "</svg>\n"], "text/plain": ["<Figure size 864x864 with 16 Axes>"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Probabilities:\n", "Image 0: 0.07%\n", "Image 1: 0.11%\n", "Image 2: 0.07%\n", "Image 3: 0.11%\n", "Image 4: 0.17%\n", "Image 5: 23.27%\n", "Image 6: 0.16%\n", "Image 7: 48.91%\n", "Image 8: 0.10%\n", "Image 9: 27.03%\n"]}], "source": ["visualize_prediction(mistakes[-1])\n", "print(\"Probabilities:\")\n", "for i, p in enumerate(preds[mistakes[-1]].cpu().numpy()):\n", "    print(\"Image %i: %4.2f%%\" % (i, 100.0 * p))"]}, {"cell_type": "markdown", "id": "67bedc66", "metadata": {"papermill": {"duration": 0.044306, "end_time": "2022-04-09T14:38:40.755550", "exception": false, "start_time": "2022-04-09T14:38:40.711244", "status": "completed"}, "tags": []}, "source": ["In this example, the model confuses a palm tree with a building, giving a probability of ~90% to image 2, and 8% to the actual anomaly.\n", "However, the difficulty here is that the picture of the building has been taken at a similar angle as the palms.\n", "Meanwhile, image 2 shows a rather unusual palm with a different color palette, which is why the model fails here.\n", "Nevertheless, in general, the model performs quite well."]}, {"cell_type": "markdown", "id": "c1c016b9", "metadata": {"papermill": {"duration": 0.042832, "end_time": "2022-04-09T14:38:40.841468", "exception": false, "start_time": "2022-04-09T14:38:40.798636", "status": "completed"}, "tags": []}, "source": ["## Conclusion\n", "\n", "In this tutorial, we took a closer look at the Multi-Head Attention layer which uses a scaled dot product between\n", "queries and keys to find correlations and similarities between input elements.\n", "The Transformer architecture is based on the Multi-Head Attention layer and applies multiple of them in a ResNet-like block.\n", "The Transformer is a very important, recent architecture that can be applied to many tasks and datasets.\n", "Although it is best known for its success in NLP, there is so much more to it.\n", "We have seen its application on sequence-to-sequence tasks and set anomaly detection.\n", "Its property of being permutation-equivariant if we do not provide any positional encodings, allows it to generalize to many settings.\n", "Hence, it is important to know the architecture, but also its possible issues such as the gradient problem during\n", "the first iterations solved by learning rate warm-up.\n", "If you are interested in continuing with the study of the Transformer architecture,\n", "please have a look at the blog posts listed at the beginning of the tutorial notebook."]}, {"cell_type": "markdown", "id": "7d3ce98b", "metadata": {"papermill": {"duration": 0.04299, "end_time": "2022-04-09T14:38:40.927714", "exception": false, "start_time": "2022-04-09T14:38:40.884724", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/PyTorchLightning/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", "   :header: Tutorial 5: Transformers and Multi-Head Attention\n", "   :card_description: In this tutorial, we will discuss one of the most impactful architectures of the last 2 years: the Transformer model. Since the paper Attention Is All You Need by Vaswani et...\n", "   :tags: Text,GPU/TPU,UvA-DL-Course\n", "   :image: _static/images/course_UvA-DL/05-transformers-and-MH-attention.jpg"]}], "metadata": {"jupytext": {"cell_metadata_filter": "id,colab,colab_type,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12"}, "papermill": {"default_parameters": {}, "duration": 72.589227, "end_time": "2022-04-09T14:38:41.893966", "environment_variables": {}, "exception": null, "input_path": "course_UvA-DL/05-transformers-and-MH-attention/Transformers_MHAttention.ipynb", "output_path": ".notebooks/course_UvA-DL/05-transformers-and-MH-attention.ipynb", "parameters": {}, "start_time": "2022-04-09T14:37:29.304739", "version": "2.3.4"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"013ca8be942d4185887577e9cbd7d3f7": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "034ec759849f428f989598c0d1e7cb99": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d52a8887a7954436b2aae6ac82d621b8", "placeholder": "\u200b", "style": "IPY_MODEL_be761a4f5ab3492f9fc0a1df7f778956", "value": " 703/703 [00:04&lt;00:00, 155.17it/s]"}}, "0444c98147494c169bca106359f4bb3b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "051b44de902a48728180ab0adc01f07a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7aa6e89d1dfe496daa7dc470befc1723", "placeholder": "\u200b", "style": "IPY_MODEL_e4e8cc257dca441ebb999453dba9104e", "value": "100%"}}, "0625431459604399988364799dca2df9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3d68a82716c24417946c1e3ca49c0394", "IPY_MODEL_da9206a3f5de4880886e40850790739d", "IPY_MODEL_034ec759849f428f989598c0d1e7cb99"], "layout": "IPY_MODEL_1407ade5bb554a81bf326941608c2948"}}, "0828bc328fbe4cc59aaef295d7da0998": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b6a1567f0d5402ca04857663148998b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ef90cc70fcf4d889f41b529514b00f4": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10259a280f164d3d9263a1a594353a81": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_051b44de902a48728180ab0adc01f07a", "IPY_MODEL_86908706c1064151a47aeb2206f65e8f", "IPY_MODEL_96ef9d8053d24e0384936d7aa091b9d3"], "layout": "IPY_MODEL_6ddaa8519ec4410b8b7094cf8d93703f"}}, "13cf981b1faf4b93bb693d230e139881": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1407ade5bb554a81bf326941608c2948": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "15633d2d24444535ac2a12004aabd62d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6a160f006f9f4bb6acada763de6047fa", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0444c98147494c169bca106359f4bb3b", "value": 1.0}}, "18ac7197843848568128c07e133b8ea9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1db4e93b572c49c192cb45fa7bf4a292", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_386ce3cad9cf40e4a86fd95ade78cbd5", "value": 1.0}}, "193ce83655fa4e29bf45db53f6479208": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8a0c595c5d164fbdb8fb00d70fcc2f41", "IPY_MODEL_15633d2d24444535ac2a12004aabd62d", "IPY_MODEL_2ba290eb43f841eaaadc26bc00301c51"], "layout": "IPY_MODEL_cb170ba4d8584dc59f297884ad5658bd"}}, "19a4c24b35d141beaee60fd6943a314f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_43ea60a6bcc94211890b69aa0f01d995", "IPY_MODEL_4f9b4cf79039494c90dbb3335957bc1d", "IPY_MODEL_1bd1ab92beab4d92b22611f0b08d7288"], "layout": "IPY_MODEL_cd3c4435ee3c41e1b84aa31895984c8c"}}, "19d0896443db42f2ba3b872fb5c2caeb": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6163821759184bb8ab0c173977a62213", "IPY_MODEL_b91cd3eb77a948539aed34047359dba5", "IPY_MODEL_f797b7bb82ef4c7799e6f97a4988c943"], "layout": "IPY_MODEL_c71cd8cb930c4c22b11919b8d969ba7d"}}, "1bd1ab92beab4d92b22611f0b08d7288": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b0e66f6cf43444989fcaf1d3410820ea", "placeholder": "\u200b", "style": "IPY_MODEL_c5efd6ed916a40b6922511e3fd5379f6", "value": " 157/157 [00:01&lt;00:00, 130.86it/s]"}}, "1db4e93b572c49c192cb45fa7bf4a292": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f9f994155894bcea449e3a102478ed5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "21bc7e2e68f2482389556ac4365202b2": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24f6844983104084a1cc71ca67b1ff53": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "28feddd4c5d5403a800c5c55dd8f7b19": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ba290eb43f841eaaadc26bc00301c51": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6da824a747a84ef2a87f5609425a27e3", "placeholder": "\u200b", "style": "IPY_MODEL_13cf981b1faf4b93bb693d230e139881", "value": " 8/8 [00:00&lt;00:00, 97.49it/s]"}}, "386ce3cad9cf40e4a86fd95ade78cbd5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "38e72be3e679499fa298a9e7cc79f0f1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f4323dbc52c5458394b1687fbdf3ef64", "placeholder": "\u200b", "style": "IPY_MODEL_5bf0d589adef4e578ef9f644c9d7b7ff", "value": "100%"}}, "39e7c17fcd734f18bf6ca034bc4a4c3e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d68a82716c24417946c1e3ca49c0394": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2302e98353f4b09b91eba8e73319e94", "placeholder": "\u200b", "style": "IPY_MODEL_44a40e5927a14dcbbbba1621cd9e0801", "value": "Testing DataLoader 0: 100%"}}, "3dd865557292414db0c64a481ccc7c05": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_28feddd4c5d5403a800c5c55dd8f7b19", "placeholder": "\u200b", "style": "IPY_MODEL_788641f5351c4bd1b5d1bef7d93f34b5", "value": "Testing DataLoader 0: 100%"}}, "43ea60a6bcc94211890b69aa0f01d995": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0828bc328fbe4cc59aaef295d7da0998", "placeholder": "\u200b", "style": "IPY_MODEL_24f6844983104084a1cc71ca67b1ff53", "value": "Testing DataLoader 0: 100%"}}, "44a40e5927a14dcbbbba1621cd9e0801": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4dd08d4266f042b9aea78d19e469e902": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f9b4cf79039494c90dbb3335957bc1d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ecca5931a63460ebc9de23553458f48", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1f9f994155894bcea449e3a102478ed5", "value": 1.0}}, "55e67c5a677b4b39a06614969cc49e65": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0ef90cc70fcf4d889f41b529514b00f4", "placeholder": "\u200b", "style": "IPY_MODEL_91a1c0777dd64a6aa681522a29f4ad85", "value": "Testing DataLoader 0: 100%"}}, "5766338677564028bad517779976cf2f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57e1d139c5c34e2ba55221fc453466c2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "58689e7376a04bb0a9c24c9d89858c69": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5bf0d589adef4e578ef9f644c9d7b7ff": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5ecca5931a63460ebc9de23553458f48": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6163821759184bb8ab0c173977a62213": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dc8dd6db77414662b38b9078c93b63a5", "placeholder": "\u200b", "style": "IPY_MODEL_ee5d2548306849bfa59590d00ff85207", "value": "100%"}}, "61ecd572368b4a49b10d9e071090076a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64ed31270b7d464da33dbf65610936db": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6a160f006f9f4bb6acada763de6047fa": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b9791442b1548b2a3ba3f54849201aa": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b4e8b046fe3d467f88dc72be46ee86fc", "placeholder": "\u200b", "style": "IPY_MODEL_7ed2b916d93849f89da4a58bae4956fe", "value": " 79/79 [00:00&lt;00:00, 186.86it/s]"}}, "6da824a747a84ef2a87f5609425a27e3": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6da9445738864d44b41da41a5100df94": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6ddaa8519ec4410b8b7094cf8d93703f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "765cb12491a549dba9e5145f9eec3a16": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_55e67c5a677b4b39a06614969cc49e65", "IPY_MODEL_18ac7197843848568128c07e133b8ea9", "IPY_MODEL_6b9791442b1548b2a3ba3f54849201aa"], "layout": "IPY_MODEL_9628bc9a11da4c2e90ff1877f28fbb96"}}, "788641f5351c4bd1b5d1bef7d93f34b5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79d628eeccfc432699e1bb729b93d593": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7aa6e89d1dfe496daa7dc470befc1723": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e8f0aa64fa542dea8b58bafa713573b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7ed2b916d93849f89da4a58bae4956fe": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7ed505a3318642edafa469247093cefc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "81725d8b8bbc4088b5dfb36e76169a49": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83059a1fc01347c5bb0b82dc5dedb885": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c380b510f8704229af037185755bf9f5", "placeholder": "\u200b", "style": "IPY_MODEL_6da9445738864d44b41da41a5100df94", "value": " 391/391 [00:26&lt;00:00, 11.74it/s]"}}, "86908706c1064151a47aeb2206f65e8f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ac0a61b9779948bb90b19b73df1f0cea", "max": 87306240.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79d628eeccfc432699e1bb729b93d593", "value": 87306240.0}}, "8a0c595c5d164fbdb8fb00d70fcc2f41": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_61ecd572368b4a49b10d9e071090076a", "placeholder": "\u200b", "style": "IPY_MODEL_58689e7376a04bb0a9c24c9d89858c69", "value": "Testing DataLoader 0: 100%"}}, "8e9c7cfd6f554ff0afc421a3bec240c1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c39f255616bc47498336cd2caa6dc037", "IPY_MODEL_e8c5e4ff824b40458e9f52d706f62a55", "IPY_MODEL_ee2244894fb64955b8304cf6008756bb"], "layout": "IPY_MODEL_5766338677564028bad517779976cf2f"}}, "91a1c0777dd64a6aa681522a29f4ad85": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9456c97da26b4afb801b394dfb8bbf6e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9577883ad3a04a8eaf8d4128d02de024", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e480f3c97d9f4206a2a4ff0f6ac10b18", "value": 391.0}}, "9577883ad3a04a8eaf8d4128d02de024": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9628bc9a11da4c2e90ff1877f28fbb96": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "96ef9d8053d24e0384936d7aa091b9d3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b32cc574589b41d892fb84f7ca285613", "placeholder": "\u200b", "style": "IPY_MODEL_64ed31270b7d464da33dbf65610936db", "value": " 83.3M/83.3M [00:00&lt;00:00, 214MB/s]"}}, "a1317b148779455189da9abbb80c88d2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cd20061016bb4c28ba96d88815950b08", "placeholder": "\u200b", "style": "IPY_MODEL_a72cb79dc87045f9b2230fc86e107470", "value": " 79/79 [00:00&lt;00:00, 114.35it/s]"}}, "a72cb79dc87045f9b2230fc86e107470": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ac0a61b9779948bb90b19b73df1f0cea": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b04bc845211544c89614209753f99350": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3dd865557292414db0c64a481ccc7c05", "IPY_MODEL_e226d61205d14854b631ca7fd2a117a6", "IPY_MODEL_a1317b148779455189da9abbb80c88d2"], "layout": "IPY_MODEL_ec3bb700e4f64180bd3ea69e8402a124"}}, "b0e66f6cf43444989fcaf1d3410820ea": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b32cc574589b41d892fb84f7ca285613": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4e8b046fe3d467f88dc72be46ee86fc": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b77c696c26d64056b655e9a89f4bc60c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b91cd3eb77a948539aed34047359dba5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4dd08d4266f042b9aea78d19e469e902", "max": 79.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c005fd6d14a94f519d06630998028e46", "value": 79.0}}, "be761a4f5ab3492f9fc0a1df7f778956": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c005fd6d14a94f519d06630998028e46": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c2302e98353f4b09b91eba8e73319e94": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c380b510f8704229af037185755bf9f5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c39f255616bc47498336cd2caa6dc037": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_013ca8be942d4185887577e9cbd7d3f7", "placeholder": "\u200b", "style": "IPY_MODEL_cc2ab27b81a14371ab17fcf434e1434c", "value": ""}}, "c5efd6ed916a40b6922511e3fd5379f6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c71cd8cb930c4c22b11919b8d969ba7d": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb170ba4d8584dc59f297884ad5658bd": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "cc2ab27b81a14371ab17fcf434e1434c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "cd20061016bb4c28ba96d88815950b08": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd3c4435ee3c41e1b84aa31895984c8c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "d52a8887a7954436b2aae6ac82d621b8": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da9206a3f5de4880886e40850790739d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_21bc7e2e68f2482389556ac4365202b2", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e513ee4199b343d68efee8eaf80dccac", "value": 1.0}}, "dc8dd6db77414662b38b9078c93b63a5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd5ff40ef6ef4db2b57f1cfd6fcbcf95": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e226d61205d14854b631ca7fd2a117a6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e3098fa0fc39493b978dd5b77ebc7b41", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57e1d139c5c34e2ba55221fc453466c2", "value": 1.0}}, "e3098fa0fc39493b978dd5b77ebc7b41": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e480f3c97d9f4206a2a4ff0f6ac10b18": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e4e8cc257dca441ebb999453dba9104e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e513ee4199b343d68efee8eaf80dccac": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e8c5e4ff824b40458e9f52d706f62a55": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_81725d8b8bbc4088b5dfb36e76169a49", "max": 169001437.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b77c696c26d64056b655e9a89f4bc60c", "value": 169001437.0}}, "ec3bb700e4f64180bd3ea69e8402a124": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "ee2244894fb64955b8304cf6008756bb": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_39e7c17fcd734f18bf6ca034bc4a4c3e", "placeholder": "\u200b", "style": "IPY_MODEL_7ed505a3318642edafa469247093cefc", "value": " 169001984/? [00:01&lt;00:00, 101937537.15it/s]"}}, "ee5d2548306849bfa59590d00ff85207": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f06c41b025b242e0871cd4c0c4344903": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_38e72be3e679499fa298a9e7cc79f0f1", "IPY_MODEL_9456c97da26b4afb801b394dfb8bbf6e", "IPY_MODEL_83059a1fc01347c5bb0b82dc5dedb885"], "layout": "IPY_MODEL_0b6a1567f0d5402ca04857663148998b"}}, "f4323dbc52c5458394b1687fbdf3ef64": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f797b7bb82ef4c7799e6f97a4988c943": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dd5ff40ef6ef4db2b57f1cfd6fcbcf95", "placeholder": "\u200b", "style": "IPY_MODEL_7e8f0aa64fa542dea8b58bafa713573b", "value": " 79/79 [00:05&lt;00:00, 13.67it/s]"}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}