PrecisionPlugin¶
- class pytorch_lightning.plugins.precision.PrecisionPlugin[source]¶
Bases:
pytorch_lightning.core.hooks.CheckpointHooks
Base class for all plugins handling the precision-specific parts of the training.
The class attribute precision must be overwritten in child classes. The default value reflects fp32 training.
- backward(model, closure_loss, optimizer, *args, **kwargs)[source]¶
Performs the actual backpropagation.
- clip_gradients(optimizer, clip_val=0.0, gradient_clip_algorithm=GradClipAlgorithmType.NORM)[source]¶
Clips the gradients.
- Return type
- connect(model, optimizers, lr_schedulers)[source]¶
Connects this plugin to the accelerator and the training process.
- forward_context()[source]¶
A contextmanager for managing model forward/training_step/evaluation_step/predict_step.
- load_state_dict(state_dict)[source]¶
Called when loading a checkpoint, implement to reload precision plugin state given precision plugin state_dict.
- main_params(optimizer)[source]¶
The main params of the model.
Returns the plain model params here. Maybe different in other precision plugins.
- on_load_checkpoint(checkpoint)[source]¶
PrecisionPlugin.on_load_checkpoint
was deprecated in v1.6 and will be removed in v1.8.Use
load_state_dict
instead.- Return type
- on_save_checkpoint(checkpoint)[source]¶
PrecisionPlugin.on_save_checkpoint
was deprecated in v1.6 and will be removed in v1.8.Use
state_dict
instead.- Return type
- optimizer_step(model, optimizer, optimizer_idx, closure, **kwargs)[source]¶
Hook to run the optimizer step.
- Return type
- post_backward(model, closure_loss)[source]¶
Run after precision plugin executes backward.
- Parameters
model¶ (
LightningModule
) – the model to be optimizedclosure_loss¶ (
Tensor
) – the loss value obtained from the closure
- Return type
- pre_backward(model, closure_loss)[source]¶
Run before precision plugin executes backward.
- Parameters
model¶ (
LightningModule
) – the model to be optimizedclosure_loss¶ (
Tensor
) – the loss value obtained from the closure
- Return type
- state_dict()[source]¶
Called when saving a checkpoint, implement to generate precision plugin state_dict.
- teardown()[source]¶
This method is called to teardown the training process.
It is the right place to release memory and free other resources.
- Return type