Source code for pytorch_lightning.strategies.single_hpu
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional
import pytorch_lightning as pl
from pytorch_lightning.plugins.io.hpu_plugin import HPUCheckpointIO
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.single_device import SingleDeviceStrategy
from pytorch_lightning.utilities import _HPU_AVAILABLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import _DEVICE
if _HPU_AVAILABLE:
import habana_frameworks.torch.core.hccl # noqa: F401
from habana_frameworks.torch.utils.library_loader import load_habana_module
[docs]class SingleHPUStrategy(SingleDeviceStrategy):
"""Strategy for training on single HPU device."""
strategy_name = "hpu_single"
def __init__(
self,
device: _DEVICE = "hpu",
accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None,
checkpoint_io: Optional[HPUCheckpointIO] = None,
precision_plugin: Optional[PrecisionPlugin] = None,
):
if not _HPU_AVAILABLE:
raise MisconfigurationException("`SingleHPUStrategy` requires HPU devices to run")
# This function is used to load Habana libraries required for PyTorch
# to register HPU as one of the available devices.
load_habana_module()
super().__init__(
accelerator=accelerator,
device=device,
checkpoint_io=checkpoint_io or HPUCheckpointIO(),
precision_plugin=precision_plugin,
)
@property
def is_distributed(self) -> bool:
return False
[docs] def setup(self, trainer: "pl.Trainer") -> None:
self.model_to_device()
super().setup(trainer)
[docs] def setup_optimizers(self, trainer: "pl.Trainer") -> None:
super().setup_optimizers(trainer)
if len(self.optimizers) > 1:
raise MisconfigurationException("HPUs currently support only one optimizer.")
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
strategy_registry.register(
cls.strategy_name,
cls,
description=f"{cls.__class__.__name__}",
)