Shortcuts

Source code for pytorch_lightning.strategies.hpu_parallel

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Callable, Dict, List, Optional

import torch.distributed

import pytorch_lightning as pl
from pytorch_lightning.overrides import LightningDistributedModule
from pytorch_lightning.overrides.torch_distributed import broadcast_object_list
from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment
from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO
from pytorch_lightning.plugins.io.hpu_plugin import HPUCheckpointIO
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.utilities.distributed import group as _group
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _HPU_AVAILABLE, _TORCH_LESSER_EQUAL_1_10_2

if _HPU_AVAILABLE:
    import habana_frameworks.torch.core.hccl  # noqa: F401
    from habana_frameworks.torch.utils.library_loader import load_habana_module

log = logging.getLogger(__name__)


[docs]class HPUParallelStrategy(DDPStrategy): """Strategy for distributed training on multiple HPU devices.""" strategy_name = "hpu_parallel" def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[Callable] = None, ddp_comm_wrapper: Optional[Callable] = None, model_averaging_period: Optional[int] = None, process_group_backend: Optional[str] = "hccl", **kwargs: Any, ) -> None: if not _HPU_AVAILABLE: raise MisconfigurationException("`HPUParallelStrategy` requires HPU devices to run") super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io or HPUCheckpointIO(), precision_plugin=precision_plugin, ddp_comm_state=ddp_comm_state, ddp_comm_hook=ddp_comm_hook, ddp_comm_wrapper=ddp_comm_wrapper, model_averaging_period=model_averaging_period, process_group_backend=process_group_backend, **kwargs, )
[docs] def setup_environment(self) -> None: # This function is used to load Habana libraries required for PyTorch # to register HPU as one of the available devices. load_habana_module() os.environ["ID"] = str(self.local_rank) if self._process_group_backend == "hccl": # this env is used in overrides to check the backend initiated os.environ["HCCL_DISTRIBUTED_BACKEND"] = str(1) super().setup_environment()
def determine_ddp_device_ids(self) -> None: return None def _pre_configure_ddp(self) -> None: # if unset, default `find_unused_parameters` `True` # Many models require setting this parameter to True, as there are corner cases # when not all parameter backward hooks are fired by the autograd engine even if require_grad is set to True. # This flag does come with a performance hit, so it is suggested to disable in cases where it is possible. self._ddp_kwargs["find_unused_parameters"] = self._ddp_kwargs.get("find_unused_parameters", True) self._static_graph = False static_graph = self._ddp_kwargs.get("static_graph") if static_graph: # when _set_static_graph() is called find_unused_parameters does not have any significance. # Resetting the value of find_unused_parameters to False which is the default value to DDP self._ddp_kwargs["find_unused_parameters"] = False self._static_graph = True if static_graph is not None: # DDP does not accept static_graph as a parameter, hence removing it from the list del self._ddp_kwargs["static_graph"] def configure_ddp(self) -> None: # DDP does not accept static graph as param with torch < 1.11 if _TORCH_LESSER_EQUAL_1_10_2: log.detail(f"{self.__class__.__name__}: configuring DistributedDataParallel") self._pre_configure_ddp() self.model = self._setup_model(LightningDistributedModule(self.model)) # type: ignore if self.root_device.type == "hpu" and self._static_graph: self._model._set_static_graph() # type: ignore self._register_ddp_hooks() else: super().configure_ddp()
[docs] def broadcast(self, obj: object, src: int = 0) -> object: # type: ignore obj = [obj] if self.global_rank != src: obj = [None] broadcast_object_list(obj, src, group=_group.WORLD) return obj[0]
[docs] def teardown(self) -> None: log.detail(f"{self.__class__.__name__}: tearing down strategy.") super().teardown() log.detail(f"{self.__class__.__name__}: moving model to CPU") self.lightning_module.cpu() # type: ignore # Was set to local rank os.environ.pop("ID", None) os.environ.pop("HCCL_DISTRIBUTED_BACKEND", None)
@classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( cls.strategy_name, cls, description=f"{cls.__class__.__name__}", )

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.