Shortcuts

Source code for pytorch_lightning.plugins.precision.deepspeed

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, Union

from torch import Tensor
from torch.nn import Module
from torch.optim import LBFGS, Optimizer

import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities import GradClipAlgorithmType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.warnings import WarningCache

if _DEEPSPEED_AVAILABLE:
    from deepspeed import DeepSpeedEngine

warning_cache = WarningCache()


[docs]class DeepSpeedPrecisionPlugin(PrecisionPlugin): """Precision plugin for DeepSpeed integration.""" def __init__(self, precision: Union[str, int], amp_type: str, amp_level: Optional[str] = None) -> None: super().__init__() self.precision = precision self.amp_type = amp_type self.amp_level = amp_level
[docs] def backward(self, model: "pl.LightningModule", closure_loss: Tensor, *args: Any, **kwargs: Any) -> None: if is_overridden("backward", model): warning_cache.warn( "You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles" " the backward logic internally." ) assert model.trainer is not None deepspeed_engine: DeepSpeedEngine = model.trainer.model deepspeed_engine.backward(closure_loss, *args, **kwargs)
def _run_backward(self, tensor: Tensor, model: Optional["DeepSpeedEngine"], *args: Any, **kwargs: Any) -> None: if model is None: raise ValueError("Please provide the model as input to `backward`.") model.backward(tensor, *args, **kwargs)
[docs] def optimizer_step( self, model: Union["pl.LightningModule", Module], optimizer: Optimizer, optimizer_idx: int, closure: Callable[[], Any], **kwargs: Any, ) -> Any: if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})." ) closure_result = closure() self._after_closure(model, optimizer, optimizer_idx) skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if isinstance(model, pl.LightningModule) and model.automatic_optimization and skipped_backward: raise MisconfigurationException( "Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`" ) # DeepSpeed handles the optimizer step internally deepspeed_engine: DeepSpeedEngine if isinstance(model, pl.LightningModule): assert model.trainer is not None deepspeed_engine = model.trainer.model else: deepspeed_engine = model return deepspeed_engine.step(**kwargs)
[docs] def clip_gradients( self, optimizer: Optimizer, clip_val: Union[int, float] = 0.0, gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, ) -> None: """DeepSpeed handles gradient clipping internally."""
def _track_grad_norm(self, trainer: "pl.Trainer") -> None: if trainer.track_grad_norm == -1: return # the gradients are not available in the model due to gradient partitioning in zero stage >= 2 warning_cache.warn( f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed." " The setting will be ignored." )

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.