Source code for pytorch_lightning.callbacks.model_summary
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model Summary
=============
Generates a summary of all layers in a :class:`~pytorch_lightning.core.lightning.LightningModule`.
The string representation of this summary prints a table with columns containing
the name, type and number of parameters for each layer.
"""
import logging
from typing import List, Tuple
import pytorch_lightning as pl
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities.model_summary import _format_summary_table, summarize
log = logging.getLogger(__name__)
[docs]class ModelSummary(Callback):
r"""
Generates a summary of all layers in a :class:`~pytorch_lightning.core.lightning.LightningModule`.
Args:
max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the
layer summary off.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import ModelSummary
>>> trainer = Trainer(callbacks=[ModelSummary(max_depth=1)])
"""
def __init__(self, max_depth: int = 1) -> None:
self._max_depth: int = max_depth
[docs] def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
if not self._max_depth:
return None
model_summary = summarize(pl_module, max_depth=self._max_depth)
summary_data = model_summary._get_summary_data()
total_parameters = model_summary.total_parameters
trainable_parameters = model_summary.trainable_parameters
model_size = model_summary.model_size
if trainer.is_global_zero:
self.summarize(summary_data, total_parameters, trainable_parameters, model_size)
@staticmethod
def summarize(
summary_data: List[Tuple[str, List[str]]],
total_parameters: int,
trainable_parameters: int,
model_size: float,
) -> None:
summary_table = _format_summary_table(total_parameters, trainable_parameters, model_size, *summary_data)
log.info("\n" + summary_table)