Shortcuts

Source code for pytorch_lightning.accelerators.gpu

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import shutil
import subprocess
from typing import Any, Dict, List, Optional, Union

import torch

import pytorch_lightning as pl
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.utilities import device_parser
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import _DEVICE

_log = logging.getLogger(__name__)


[docs]class GPUAccelerator(Accelerator): """Accelerator for GPU devices."""
[docs] def setup_environment(self, root_device: torch.device) -> None: """ Raises: MisconfigurationException: If the selected device is not GPU. """ super().setup_environment(root_device) if root_device.type != "cuda": raise MisconfigurationException(f"Device should be GPU, got {root_device} instead") torch.cuda.set_device(root_device)
[docs] def setup(self, trainer: "pl.Trainer") -> None: # TODO refactor input from trainer to local_rank @four4fish self.set_nvidia_flags(trainer.local_rank) # clear cache before training torch.cuda.empty_cache()
@staticmethod def set_nvidia_flags(local_rank: int) -> None: # set the correct cuda visible devices (using pci order) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" all_gpu_ids = ",".join(str(x) for x in range(torch.cuda.device_count())) devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids) _log.info(f"LOCAL_RANK: {local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]")
[docs] def get_device_stats(self, device: _DEVICE) -> Dict[str, Any]: """Gets stats for the given GPU device. Args: device: GPU device for which to get stats Returns: A dictionary mapping the metrics to their values. Raises: FileNotFoundError: If nvidia-smi installation not found """ return torch.cuda.memory_stats(device)
[docs] @staticmethod def parse_devices(devices: Union[int, str, List[int]]) -> Optional[List[int]]: """Accelerator device parsing logic.""" return device_parser.parse_gpu_ids(devices)
[docs] @staticmethod def get_parallel_devices(devices: List[int]) -> List[torch.device]: """Gets parallel devices for the Accelerator.""" return [torch.device("cuda", i) for i in devices]
[docs] @staticmethod def auto_device_count() -> int: """Get the devices when set to auto.""" return torch.cuda.device_count()
[docs] @staticmethod def is_available() -> bool: return torch.cuda.device_count() > 0
@classmethod def register_accelerators(cls, accelerator_registry: Dict) -> None: accelerator_registry.register( "gpu", cls, description=f"{cls.__class__.__name__}", )
def get_nvidia_gpu_stats(device: _DEVICE) -> Dict[str, float]: # pragma: no-cover """Get GPU stats including memory, fan speed, and temperature from nvidia-smi. Args: device: GPU device for which to get stats Returns: A dictionary mapping the metrics to their values. Raises: FileNotFoundError: If nvidia-smi installation not found """ nvidia_smi_path = shutil.which("nvidia-smi") if nvidia_smi_path is None: raise FileNotFoundError("nvidia-smi: command not found") gpu_stat_metrics = [ ("utilization.gpu", "%"), ("memory.used", "MB"), ("memory.free", "MB"), ("utilization.memory", "%"), ("fan.speed", "%"), ("temperature.gpu", "°C"), ("temperature.memory", "°C"), ] gpu_stat_keys = [k for k, _ in gpu_stat_metrics] gpu_query = ",".join(gpu_stat_keys) index = torch._utils._get_device_index(device) gpu_id = _get_gpu_id(index) result = subprocess.run( [nvidia_smi_path, f"--query-gpu={gpu_query}", "--format=csv,nounits,noheader", f"--id={gpu_id}"], encoding="utf-8", capture_output=True, check=True, ) def _to_float(x: str) -> float: try: return float(x) except ValueError: return 0.0 s = result.stdout.strip() stats = [_to_float(x) for x in s.split(", ")] gpu_stats = {f"{x} ({unit})": stat for (x, unit), stat in zip(gpu_stat_metrics, stats)} return gpu_stats def _get_gpu_id(device_id: int) -> str: """Get the unmasked real GPU IDs.""" # All devices if `CUDA_VISIBLE_DEVICES` unset default = ",".join(str(i) for i in range(torch.cuda.device_count())) cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", default=default).split(",") return cuda_visible_devices[device_id].strip()

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.