{"cells": [{"cell_type": "markdown", "id": "afc54843", "metadata": {"papermill": {"duration": 0.031932, "end_time": "2021-12-04T16:48:02.533062", "exception": false, "start_time": "2021-12-04T16:48:02.501130", "status": "completed"}, "tags": []}, "source": ["\n", "# Introduction to Pytorch Lightning\n", "\n", "* **Author:** PL team\n", "* **License:** CC BY-SA\n", "* **Generated:** 2021-12-04T16:53:03.416116\n", "\n", "In this notebook, we'll go over the basics of lightning by preparing models to train on the [MNIST Handwritten Digits dataset](https://en.wikipedia.org/wiki/MNIST_database).\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/lightning_examples/mnist-hello-world.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)\n", "| Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)"]}, {"cell_type": "markdown", "id": "27a845da", "metadata": {"papermill": {"duration": 0.027971, "end_time": "2021-12-04T16:48:02.591409", "exception": false, "start_time": "2021-12-04T16:48:02.563438", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "012ca993", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2021-12-04T16:48:02.653518Z", "iopub.status.busy": "2021-12-04T16:48:02.653036Z", "iopub.status.idle": "2021-12-04T16:48:05.576378Z", "shell.execute_reply": "2021-12-04T16:48:05.576765Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 2.958093, "end_time": "2021-12-04T16:48:05.577047", "exception": false, "start_time": "2021-12-04T16:48:02.618954", "status": "completed"}, "tags": []}, "outputs": [], "source": ["! pip install --quiet \"torchvision\" \"torch>=1.6, <1.9\" \"pytorch-lightning>=1.3\" \"torchmetrics>=0.3\""]}, {"cell_type": "code", "execution_count": 2, "id": "bd97d928", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:48:05.639252Z", "iopub.status.busy": "2021-12-04T16:48:05.638766Z", "iopub.status.idle": "2021-12-04T16:48:09.447461Z", "shell.execute_reply": "2021-12-04T16:48:09.446985Z"}, "papermill": {"duration": 3.841766, "end_time": "2021-12-04T16:48:09.447591", "exception": false, "start_time": "2021-12-04T16:48:05.605825", "status": "completed"}, "tags": []}, "outputs": [], "source": ["import os\n", "\n", "import torch\n", "from pytorch_lightning import LightningModule, Trainer\n", "from torch import nn\n", "from torch.nn import functional as F\n", "from torch.utils.data import DataLoader, random_split\n", "from torchmetrics import Accuracy\n", "from torchvision import transforms\n", "from torchvision.datasets import MNIST\n", "\n", "PATH_DATASETS = os.environ.get(\"PATH_DATASETS\", \".\")\n", "AVAIL_GPUS = min(1, torch.cuda.device_count())\n", "BATCH_SIZE = 256 if AVAIL_GPUS else 64"]}, {"cell_type": "markdown", "id": "5239bd0b", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.027737, "end_time": "2021-12-04T16:48:09.504088", "exception": false, "start_time": "2021-12-04T16:48:09.476351", "status": "completed"}, "tags": []}, "source": ["## Simplest example\n", "\n", "Here's the simplest most minimal example with just a training loop (no validation, no testing).\n", "\n", "**Keep in Mind** - A `LightningModule` *is* a PyTorch `nn.Module` - it just has a few more helpful features."]}, {"cell_type": "code", "execution_count": 3, "id": "6bd8a190", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:48:09.567111Z", "iopub.status.busy": "2021-12-04T16:48:09.566628Z", "iopub.status.idle": "2021-12-04T16:48:09.568711Z", "shell.execute_reply": "2021-12-04T16:48:09.568201Z"}, "papermill": {"duration": 0.035325, "end_time": "2021-12-04T16:48:09.568811", "exception": false, "start_time": "2021-12-04T16:48:09.533486", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class MNISTModel(LightningModule):\n", " def __init__(self):\n", " super().__init__()\n", " self.l1 = torch.nn.Linear(28 * 28, 10)\n", "\n", " def forward(self, x):\n", " return torch.relu(self.l1(x.view(x.size(0), -1)))\n", "\n", " def training_step(self, batch, batch_nb):\n", " x, y = batch\n", " loss = F.cross_entropy(self(x), y)\n", " return loss\n", "\n", " def configure_optimizers(self):\n", " return torch.optim.Adam(self.parameters(), lr=0.02)"]}, {"cell_type": "markdown", "id": "341c1376", "metadata": {"papermill": {"duration": 0.028061, "end_time": "2021-12-04T16:48:09.624815", "exception": false, "start_time": "2021-12-04T16:48:09.596754", "status": "completed"}, "tags": []}, "source": ["By using the `Trainer` you automatically get:\n", "1. Tensorboard logging\n", "2. Model checkpointing\n", "3. Training and validation loop\n", "4. early-stopping"]}, {"cell_type": "code", "execution_count": 4, "id": "b86e988a", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:48:09.685915Z", "iopub.status.busy": "2021-12-04T16:48:09.685422Z", "iopub.status.idle": "2021-12-04T16:48:28.879121Z", "shell.execute_reply": "2021-12-04T16:48:28.879523Z"}, "papermill": {"duration": 19.226607, "end_time": "2021-12-04T16:48:28.879683", "exception": false, "start_time": "2021-12-04T16:48:09.653076", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:90: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=20)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.\n", " rank_zero_deprecation(\n", "GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", " | Name | Type | Params\n", "--------------------------------\n", "0 | l1 | Linear | 7.9 K \n", "--------------------------------\n", "7.9 K Trainable params\n", "0 Non-trainable params\n", "7.9 K Total params\n", "0.031 Total estimated model params size (MB)\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/data_loading.py:111: UserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "5f5b35087a20496caa3f259693946413", "version_major": 2, "version_minor": 0}, "text/plain": ["Training: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Init our model\n", "mnist_model = MNISTModel()\n", "\n", "# Init DataLoader from MNIST Dataset\n", "train_ds = MNIST(PATH_DATASETS, train=True, download=True, transform=transforms.ToTensor())\n", "train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE)\n", "\n", "# Initialize a trainer\n", "trainer = Trainer(\n", " gpus=AVAIL_GPUS,\n", " max_epochs=3,\n", " progress_bar_refresh_rate=20,\n", ")\n", "\n", "# Train the model \u26a1\n", "trainer.fit(mnist_model, train_loader)"]}, {"cell_type": "markdown", "id": "d3248fa1", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.033634, "end_time": "2021-12-04T16:48:28.948915", "exception": false, "start_time": "2021-12-04T16:48:28.915281", "status": "completed"}, "tags": []}, "source": ["## A more complete MNIST Lightning Module Example\n", "\n", "That wasn't so hard was it?\n", "\n", "Now that we've got our feet wet, let's dive in a bit deeper and write a more complete `LightningModule` for MNIST...\n", "\n", "This time, we'll bake in all the dataset specific pieces directly in the `LightningModule`.\n", "This way, we can avoid writing extra code at the beginning of our script every time we want to run it.\n", "\n", "---\n", "\n", "### Note what the following built-in functions are doing:\n", "\n", "1. [prepare_data()](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#prepare-data) \ud83d\udcbe\n", " - This is where we can download the dataset. We point to our desired dataset and ask torchvision's `MNIST` dataset class to download if the dataset isn't found there.\n", " - **Note we do not make any state assignments in this function** (i.e. `self.something = ...`)\n", "\n", "2. [setup(stage)](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#setup) \u2699\ufe0f\n", " - Loads in data from file and prepares PyTorch tensor datasets for each split (train, val, test).\n", " - Setup expects a 'stage' arg which is used to separate logic for 'fit' and 'test'.\n", " - If you don't mind loading all your datasets at once, you can set up a condition to allow for both 'fit' related setup and 'test' related setup to run whenever `None` is passed to `stage` (or ignore it altogether and exclude any conditionals).\n", " - **Note this runs across all GPUs and it *is* safe to make state assignments here**\n", "\n", "3. [x_dataloader()](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.core.hooks.html) \u267b\ufe0f\n", " - `train_dataloader()`, `val_dataloader()`, and `test_dataloader()` all return PyTorch `DataLoader` instances that are created by wrapping their respective datasets that we prepared in `setup()`"]}, {"cell_type": "code", "execution_count": 5, "id": "6a0ca038", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:48:29.028294Z", "iopub.status.busy": "2021-12-04T16:48:29.018412Z", "iopub.status.idle": "2021-12-04T16:48:29.030251Z", "shell.execute_reply": "2021-12-04T16:48:29.029861Z"}, "papermill": {"duration": 0.04784, "end_time": "2021-12-04T16:48:29.030353", "exception": false, "start_time": "2021-12-04T16:48:28.982513", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class LitMNIST(LightningModule):\n", " def __init__(self, data_dir=PATH_DATASETS, hidden_size=64, learning_rate=2e-4):\n", "\n", " super().__init__()\n", "\n", " # Set our init args as class attributes\n", " self.data_dir = data_dir\n", " self.hidden_size = hidden_size\n", " self.learning_rate = learning_rate\n", "\n", " # Hardcode some dataset specific attributes\n", " self.num_classes = 10\n", " self.dims = (1, 28, 28)\n", " channels, width, height = self.dims\n", " self.transform = transforms.Compose(\n", " [\n", " transforms.ToTensor(),\n", " transforms.Normalize((0.1307,), (0.3081,)),\n", " ]\n", " )\n", "\n", " # Define PyTorch model\n", " self.model = nn.Sequential(\n", " nn.Flatten(),\n", " nn.Linear(channels * width * height, hidden_size),\n", " nn.ReLU(),\n", " nn.Dropout(0.1),\n", " nn.Linear(hidden_size, hidden_size),\n", " nn.ReLU(),\n", " nn.Dropout(0.1),\n", " nn.Linear(hidden_size, self.num_classes),\n", " )\n", "\n", " self.accuracy = Accuracy()\n", "\n", " def forward(self, x):\n", " x = self.model(x)\n", " return F.log_softmax(x, dim=1)\n", "\n", " def training_step(self, batch, batch_idx):\n", " x, y = batch\n", " logits = self(x)\n", " loss = F.nll_loss(logits, y)\n", " return loss\n", "\n", " def validation_step(self, batch, batch_idx):\n", " x, y = batch\n", " logits = self(x)\n", " loss = F.nll_loss(logits, y)\n", " preds = torch.argmax(logits, dim=1)\n", " self.accuracy(preds, y)\n", "\n", " # Calling self.log will surface up scalars for you in TensorBoard\n", " self.log(\"val_loss\", loss, prog_bar=True)\n", " self.log(\"val_acc\", self.accuracy, prog_bar=True)\n", " return loss\n", "\n", " def test_step(self, batch, batch_idx):\n", " # Here we just reuse the validation_step for testing\n", " return self.validation_step(batch, batch_idx)\n", "\n", " def configure_optimizers(self):\n", " optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)\n", " return optimizer\n", "\n", " ####################\n", " # DATA RELATED HOOKS\n", " ####################\n", "\n", " def prepare_data(self):\n", " # download\n", " MNIST(self.data_dir, train=True, download=True)\n", " MNIST(self.data_dir, train=False, download=True)\n", "\n", " def setup(self, stage=None):\n", "\n", " # Assign train/val datasets for use in dataloaders\n", " if stage == \"fit\" or stage is None:\n", " mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)\n", " self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])\n", "\n", " # Assign test dataset for use in dataloader(s)\n", " if stage == \"test\" or stage is None:\n", " self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)\n", "\n", " def train_dataloader(self):\n", " return DataLoader(self.mnist_train, batch_size=BATCH_SIZE)\n", "\n", " def val_dataloader(self):\n", " return DataLoader(self.mnist_val, batch_size=BATCH_SIZE)\n", "\n", " def test_dataloader(self):\n", " return DataLoader(self.mnist_test, batch_size=BATCH_SIZE)"]}, {"cell_type": "code", "execution_count": 6, "id": "8b595285", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:48:29.104668Z", "iopub.status.busy": "2021-12-04T16:48:29.104193Z", "iopub.status.idle": "2021-12-04T16:49:00.348987Z", "shell.execute_reply": "2021-12-04T16:49:00.348528Z"}, "papermill": {"duration": 31.284667, "end_time": "2021-12-04T16:49:00.349114", "exception": false, "start_time": "2021-12-04T16:48:29.064447", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", " | Name | Type | Params\n", "----------------------------------------\n", "0 | model | Sequential | 55.1 K\n", "1 | accuracy | Accuracy | 0 \n", "----------------------------------------\n", "55.1 K Trainable params\n", "0 Non-trainable params\n", "55.1 K Total params\n", "0.220 Total estimated model params size (MB)\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "601373ace9d24621bdc3be090c0e9b8b", "version_major": 2, "version_minor": 0}, "text/plain": ["Validation sanity check: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/data_loading.py:111: UserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "11ce7ae5de484643b6cc8ad0b77411fe", "version_major": 2, "version_minor": 0}, "text/plain": ["Training: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "f7c86a8dd9c04460b3a3cf2b3056dad0", "version_major": 2, "version_minor": 0}, "text/plain": ["Validating: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "292a3bb25f83487db56ebc2b6e7d117b", "version_major": 2, "version_minor": 0}, "text/plain": ["Validating: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "6fefda9cb8654253bbd58b94764626e3", "version_major": 2, "version_minor": 0}, "text/plain": ["Validating: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["model = LitMNIST()\n", "trainer = Trainer(\n", " gpus=AVAIL_GPUS,\n", " max_epochs=3,\n", " progress_bar_refresh_rate=20,\n", ")\n", "trainer.fit(model)"]}, {"cell_type": "markdown", "id": "436f04a4", "metadata": {"papermill": {"duration": 0.043938, "end_time": "2021-12-04T16:49:00.437413", "exception": false, "start_time": "2021-12-04T16:49:00.393475", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "To test a model, call `trainer.test(model)`.\n", "\n", "Or, if you've just trained a model, you can just call `trainer.test()` and Lightning will automatically\n", "test using the best saved checkpoint (conditioned on val_loss)."]}, {"cell_type": "code", "execution_count": 7, "id": "caee2e97", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:49:00.530200Z", "iopub.status.busy": "2021-12-04T16:49:00.529111Z", "iopub.status.idle": "2021-12-04T16:49:02.326996Z", "shell.execute_reply": "2021-12-04T16:49:02.326564Z"}, "papermill": {"duration": 1.845813, "end_time": "2021-12-04T16:49:02.327125", "exception": false, "start_time": "2021-12-04T16:49:00.481312", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1393: UserWarning: `.test(ckpt_path=None)` was called without a model. The best model of the previous `fit` call will be used. You can pass `test(ckpt_path='best')` to use and best model checkpoint and avoid this warning or `ckpt_path=trainer.model_checkpoint.last_model_path` to use the last model.\n", " rank_zero_warn(\n", "Restoring states from the checkpoint path at /__w/1/s/lightning_logs/version_7/checkpoints/epoch=2-step=644.ckpt\n"]}, {"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Loaded model weights from checkpoint at /__w/1/s/lightning_logs/version_7/checkpoints/epoch=2-step=644.ckpt\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/trainer/data_loading.py:111: UserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " rank_zero_warn(\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "b2042d298d80448885957a83ec7d3c2b", "version_major": 2, "version_minor": 0}, "text/plain": ["Testing: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["--------------------------------------------------------------------------------\n", "DATALOADER:0 TEST RESULTS\n", "{'val_acc': 0.9211000204086304, 'val_loss': 0.25840938091278076}\n", "--------------------------------------------------------------------------------\n"]}, {"data": {"text/plain": ["[{'val_loss': 0.25840938091278076, 'val_acc': 0.9211000204086304}]"]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["trainer.test()"]}, {"cell_type": "markdown", "id": "5a843462", "metadata": {"papermill": {"duration": 0.049757, "end_time": "2021-12-04T16:49:02.427433", "exception": false, "start_time": "2021-12-04T16:49:02.377676", "status": "completed"}, "tags": []}, "source": ["### Bonus Tip\n", "\n", "You can keep calling `trainer.fit(model)` as many times as you'd like to continue training"]}, {"cell_type": "code", "execution_count": 8, "id": "249d097e", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:49:02.532137Z", "iopub.status.busy": "2021-12-04T16:49:02.531667Z", "iopub.status.idle": "2021-12-04T16:49:02.760734Z", "shell.execute_reply": "2021-12-04T16:49:02.760300Z"}, "papermill": {"duration": 0.283193, "end_time": "2021-12-04T16:49:02.760859", "exception": false, "start_time": "2021-12-04T16:49:02.477666", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\n", " | Name | Type | Params\n", "----------------------------------------\n", "0 | model | Sequential | 55.1 K\n", "1 | accuracy | Accuracy | 0 \n", "----------------------------------------\n", "55.1 K Trainable params\n", "0 Non-trainable params\n", "55.1 K Total params\n", "0.220 Total estimated model params size (MB)\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/home/AzDevOps_azpcontainer/.local/lib/python3.9/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:623: UserWarning: Checkpoint directory /__w/1/s/lightning_logs/version_7/checkpoints exists and is not empty.\n", " rank_zero_warn(f\"Checkpoint directory {dirpath} exists and is not empty.\")\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "a123bf1c0353409dbe32f4a4a590ab6e", "version_major": 2, "version_minor": 0}, "text/plain": ["Validation sanity check: 0it [00:00, ?it/s]"]}, "metadata": {}, "output_type": "display_data"}], "source": ["trainer.fit(model)"]}, {"cell_type": "markdown", "id": "c1c65385", "metadata": {"papermill": {"duration": 0.053219, "end_time": "2021-12-04T16:49:02.867679", "exception": false, "start_time": "2021-12-04T16:49:02.814460", "status": "completed"}, "tags": []}, "source": ["In Colab, you can use the TensorBoard magic function to view the logs that Lightning has created for you!"]}, {"cell_type": "code", "execution_count": 9, "id": "fdd68fee", "metadata": {"execution": {"iopub.execute_input": "2021-12-04T16:49:02.978094Z", "iopub.status.busy": "2021-12-04T16:49:02.977622Z", "iopub.status.idle": "2021-12-04T16:49:04.563924Z", "shell.execute_reply": "2021-12-04T16:49:04.564319Z"}, "papermill": {"duration": 1.643849, "end_time": "2021-12-04T16:49:04.564484", "exception": false, "start_time": "2021-12-04T16:49:02.920635", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/html": ["\n", " \n", " \n", " "], "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Start tensorboard.\n", "%load_ext tensorboard\n", "%tensorboard --logdir lightning_logs/"]}, {"cell_type": "markdown", "id": "fb7c0504", "metadata": {"papermill": {"duration": 0.054861, "end_time": "2021-12-04T16:49:04.675577", "exception": false, "start_time": "2021-12-04T16:49:04.620716", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/PyTorchLightning/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", " :header: Introduction to Pytorch Lightning\n", " :card_description: In this notebook, we'll go over the basics of lightning by preparing models to train on the [MNIST Handwritten Digits dataset](https://en.wikipedia.org/wiki/MNIST_database).\n", " :tags: Image,GPU/TPU,Lightning-Examples"]}], "metadata": {"jupytext": {"cell_metadata_filter": "id,colab,colab_type,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7"}, "papermill": {"default_parameters": {}, "duration": 64.932502, "end_time": "2021-12-04T16:49:06.142038", "environment_variables": {}, "exception": null, "input_path": "lightning_examples/mnist-hello-world/hello-world.ipynb", "output_path": ".notebooks/lightning_examples/mnist-hello-world.ipynb", "parameters": {}, "start_time": "2021-12-04T16:48:01.209536", "version": "2.3.3"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"09b7fc22ad90482a84100bbd3d5b1c53": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09ba6f68123f47288cacec730782831d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "11ce7ae5de484643b6cc8ad0b77411fe": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c4b7018fa4ef4a62ad60e470cfee1c9f", "IPY_MODEL_7566c4e4b4234020b638cf6c489feb47", "IPY_MODEL_b3ab34ed6d4042ae91e80bdd838ad63d"], "layout": "IPY_MODEL_7fafd99b34754f9fb3ff703cb1c762a1"}}, "14b9bf5c15264c889319160095808d4b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c3f0a5537464548ba3655d0151b913b", "max": 20.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4501abf9f43b45fdadccf542b6dc11bc", "value": 20.0}}, "19d6db216fc94fd7a8b903efbcaf8d7e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1c3f0a5537464548ba3655d0151b913b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e4f591b0f5c4310a2e2c3df78d41654": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2432b8e2d34a4213a0ac1bdc1e25ff98": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "273c67245899415eadf04785d18c24fe": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "27b765a1b4d54bc1b9cb84c86b4d53fa": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "28e0a4fd04d944bba0bdd698f9f39fbb": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "danger", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_29c0045e415c420cbdd41c7d5b2fe42a", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_478fad99664b4688be1597372d2a8cd3", "value": 0.0}}, "292a3bb25f83487db56ebc2b6e7d117b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bee7eb1c5f004aa09e8c8d480450ddff", "IPY_MODEL_14b9bf5c15264c889319160095808d4b", "IPY_MODEL_95d4c0d79a4440bdb504b719acbf0778"], "layout": "IPY_MODEL_273c67245899415eadf04785d18c24fe"}}, "29c0045e415c420cbdd41c7d5b2fe42a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33522fca1b8a4402b486f5bd2ec52f16": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "36c52a31cbd84d1da6e45c5a1123c8e0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_56a2270791254a2b8f2d90010ef093de", "placeholder": "\u200b", "style": "IPY_MODEL_fee96cc5fbdc402aa2943e79a4f2adad", "value": " 0/2 [00:00<?, ?it/s]"}}, "36f68744cfbd40919535814cfe014de3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "danger", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8a457394c16d4c5da14f73ede0aa58dc", "max": 2.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c48ac9d9272f48f0a4930157bbbc4544", "value": 0.0}}, "3945a41419174768bdd37f6346ac4800": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d9ac0fe691d49799e8bfd681c7a0da6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "41a1e336782045fa8b4c51d48bec6076": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c717831da0c7486782afa3bd59a5867a", "placeholder": "\u200b", "style": "IPY_MODEL_d70e90c6cb0646769c81d4754c39c29b", "value": " 0/2 [00:00<?, ?it/s]"}}, "440b8511219849d8a2035bacc3faae8b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4501abf9f43b45fdadccf542b6dc11bc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "46ed279af4134635be629e5f424c178b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "478fad99664b4688be1597372d2a8cd3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "56a2270791254a2b8f2d90010ef093de": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57326adc0f7447209791335361c9b25e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5785b759472d4738b820d3404fb97ea2": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b5fd440314f4e08b05560ea5411d6a7": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e503ce2e5d547369325b3b3c57c91d4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_440b8511219849d8a2035bacc3faae8b", "max": 20.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3d9ac0fe691d49799e8bfd681c7a0da6", "value": 20.0}}, "5f5b35087a20496caa3f259693946413": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_61750b7330d8424dba8b0236b1ea916f", "IPY_MODEL_dd0e944c91f0494e9de3e89daa1d4c3d", "IPY_MODEL_6968aa8766cd43f58e25354153ec2c89"], "layout": "IPY_MODEL_fbc62c1a049e480799d3bdb649afc778"}}, "601373ace9d24621bdc3be090c0e9b8b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7bb333f35c324e62b30a6cf6c18ff8c4", "IPY_MODEL_28e0a4fd04d944bba0bdd698f9f39fbb", "IPY_MODEL_36c52a31cbd84d1da6e45c5a1123c8e0"], "layout": "IPY_MODEL_f1ca115efd3241449f819b4377f98007"}}, "61750b7330d8424dba8b0236b1ea916f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_aa7559605123408da3bb35c2363314a2", "placeholder": "\u200b", "style": "IPY_MODEL_962f2ab6be8e40118d4609258536dde1", "value": "Epoch 2: 100%"}}, "6968aa8766cd43f58e25354153ec2c89": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b6d778d7d9b54c099015a006d3385bcb", "placeholder": "\u200b", "style": "IPY_MODEL_46ed279af4134635be629e5f424c178b", "value": " 235/235 [00:05<00:00, 45.01it/s, loss=0.213, v_num=6]"}}, "6fefda9cb8654253bbd58b94764626e3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_db908903174440b59181bb496ad0bd7d", "IPY_MODEL_5e503ce2e5d547369325b3b3c57c91d4", "IPY_MODEL_75c54f7791c849ae8fbe03af570c54a1"], "layout": "IPY_MODEL_33522fca1b8a4402b486f5bd2ec52f16"}}, "7566c4e4b4234020b638cf6c489feb47": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3945a41419174768bdd37f6346ac4800", "max": 235.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f68fa8b22e4e4c0a8ba07448efaac3d5", "value": 235.0}}, "75c54f7791c849ae8fbe03af570c54a1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e38e27d7dd8a435792803c03f6af9982", "placeholder": "\u200b", "style": "IPY_MODEL_57326adc0f7447209791335361c9b25e", "value": " 20/20 [00:00<00:00, 23.11it/s]"}}, "775676e5b53e4a3fa26c8ea381b4e483": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79eb4cc1040e4a9a8b971876af6fd9bf": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7bb333f35c324e62b30a6cf6c18ff8c4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c41d39eee0404e809f007049084d30cb", "placeholder": "\u200b", "style": "IPY_MODEL_09ba6f68123f47288cacec730782831d", "value": "Validation sanity check: 0%"}}, "7fafd99b34754f9fb3ff703cb1c762a1": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "80ef770fb6a34f94a5b0cb6d4629f1c9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1e4f591b0f5c4310a2e2c3df78d41654", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6926eb7fd14423e8f9b284b6b88564c", "value": 1.0}}, "8289d840a8174725a33705d0439b9f10": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5785b759472d4738b820d3404fb97ea2", "placeholder": "\u200b", "style": "IPY_MODEL_a18c5a748a154261b6e333e87968d4a8", "value": "Validation sanity check: 0%"}}, "8406484c64fe477c9d3486292a77d2da": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89f6945a57fa4bed9a22d6d3f329c59b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8a457394c16d4c5da14f73ede0aa58dc": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bcd7a8fc13e46a5945906814a70721d": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ceaaab585ca48ac83ad55bb94e639d2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d7ea8fa06e4549c58feb8fbf60d54f12", "placeholder": "\u200b", "style": "IPY_MODEL_8ef594a7ac2a49b4b4bb65a932f800a4", "value": "Validating: 100%"}}, "8ef594a7ac2a49b4b4bb65a932f800a4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9071e7327b5744a1b17e70e9608e9662": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90c9f1abf4e6487f9db8021657ad8057", "placeholder": "\u200b", "style": "IPY_MODEL_775676e5b53e4a3fa26c8ea381b4e483", "value": " 20/20 [00:00<00:00, 23.27it/s]"}}, "90c9f1abf4e6487f9db8021657ad8057": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94477649bcc24394b6766ae40ee7a37b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95d4c0d79a4440bdb504b719acbf0778": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8bcd7a8fc13e46a5945906814a70721d", "placeholder": "\u200b", "style": "IPY_MODEL_27b765a1b4d54bc1b9cb84c86b4d53fa", "value": " 20/20 [00:00<00:00, 23.17it/s]"}}, "962f2ab6be8e40118d4609258536dde1": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a123bf1c0353409dbe32f4a4a590ab6e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8289d840a8174725a33705d0439b9f10", "IPY_MODEL_36f68744cfbd40919535814cfe014de3", "IPY_MODEL_41a1e336782045fa8b4c51d48bec6076"], "layout": "IPY_MODEL_ff65026a9670453ebcecb7e57edd3cec"}}, "a18c5a748a154261b6e333e87968d4a8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a6926eb7fd14423e8f9b284b6b88564c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aa7559605123408da3bb35c2363314a2": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2042d298d80448885957a83ec7d3c2b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df7beb8dbb0446d9a206713382500de7", "IPY_MODEL_80ef770fb6a34f94a5b0cb6d4629f1c9", "IPY_MODEL_f42bc9c824594b859e33d07c4246c0b5"], "layout": "IPY_MODEL_b3c049feedaf4965a787b5c4d545f32e"}}, "b294ce2c629b4c8ca6e53502f288a603": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3ab34ed6d4042ae91e80bdd838ad63d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8406484c64fe477c9d3486292a77d2da", "placeholder": "\u200b", "style": "IPY_MODEL_c420cef9f94f454b8698511085cf538e", "value": " 235/235 [00:10<00:00, 22.72it/s, loss=0.31, v_num=7, val_loss=0.275, val_acc=0.921]"}}, "b3c049feedaf4965a787b5c4d545f32e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "b6d778d7d9b54c099015a006d3385bcb": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bee7eb1c5f004aa09e8c8d480450ddff": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_94477649bcc24394b6766ae40ee7a37b", "placeholder": "\u200b", "style": "IPY_MODEL_e6903d15de3d45f091f541aa054db6db", "value": "Validating: 100%"}}, "c41d39eee0404e809f007049084d30cb": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c420cef9f94f454b8698511085cf538e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c48ac9d9272f48f0a4930157bbbc4544": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c4b7018fa4ef4a62ad60e470cfee1c9f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_09b7fc22ad90482a84100bbd3d5b1c53", "placeholder": "\u200b", "style": "IPY_MODEL_e4c04bc4371d4ca4b06392616ee7ccd7", "value": "Epoch 2: 100%"}}, "c717831da0c7486782afa3bd59a5867a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d55566f7956945348c51ae8cec3095d2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d70e90c6cb0646769c81d4754c39c29b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d7ea8fa06e4549c58feb8fbf60d54f12": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db908903174440b59181bb496ad0bd7d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f79e96bcb58a4eb4bcbacb7174bc2ba2", "placeholder": "\u200b", "style": "IPY_MODEL_e91201e5eeb14339b07597e7a1d71aad", "value": "Validating: 100%"}}, "dd0e944c91f0494e9de3e89daa1d4c3d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f4700930b6674d4fba7ef5015f0bd1fc", "max": 235.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d55566f7956945348c51ae8cec3095d2", "value": 235.0}}, "de4a8179670a4f57b219144d967a13c5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df7beb8dbb0446d9a206713382500de7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_de4a8179670a4f57b219144d967a13c5", "placeholder": "\u200b", "style": "IPY_MODEL_79eb4cc1040e4a9a8b971876af6fd9bf", "value": "Testing: 100%"}}, "e38e27d7dd8a435792803c03f6af9982": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4c04bc4371d4ca4b06392616ee7ccd7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e6903d15de3d45f091f541aa054db6db": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e91201e5eeb14339b07597e7a1d71aad": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f1ca115efd3241449f819b4377f98007": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "f42bc9c824594b859e33d07c4246c0b5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b5fd440314f4e08b05560ea5411d6a7", "placeholder": "\u200b", "style": "IPY_MODEL_89f6945a57fa4bed9a22d6d3f329c59b", "value": " 40/40 [00:01<00:00, 23.36it/s]"}}, "f4700930b6674d4fba7ef5015f0bd1fc": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f68fa8b22e4e4c0a8ba07448efaac3d5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f79e96bcb58a4eb4bcbacb7174bc2ba2": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7c86a8dd9c04460b3a3cf2b3056dad0": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8ceaaab585ca48ac83ad55bb94e639d2", "IPY_MODEL_fc20401683aa4661a2ab78db340ccbd4", "IPY_MODEL_9071e7327b5744a1b17e70e9608e9662"], "layout": "IPY_MODEL_2432b8e2d34a4213a0ac1bdc1e25ff98"}}, "fbc62c1a049e480799d3bdb649afc778": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}, "fc20401683aa4661a2ab78db340ccbd4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b294ce2c629b4c8ca6e53502f288a603", "max": 20.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_19d6db216fc94fd7a8b903efbcaf8d7e", "value": 20.0}}, "fee96cc5fbdc402aa2943e79a4f2adad": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ff65026a9670453ebcecb7e57edd3cec": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%"}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}