TrainingEpochLoop¶
- class pytorch_lightning.loops.epoch.TrainingEpochLoop(min_steps=0, max_steps=- 1)[source]¶
Bases:
pytorch_lightning.loops.base.Loop
[List
[List
[Union
[Dict
[int
,Dict
[str
,Any
]],Dict
[str
,Any
]]]]]Runs over all batches in a dataloader (one epoch).
- Parameters
- advance(*args, **kwargs)[source]¶
Runs a single training batch.
- Parameters
dataloader_iter¶ – the iterator over the dataloader producing the new batch
- Raises
StopIteration – When the epoch is canceled by the user returning -1
- Return type
- connect(batch_loop=None, val_loop=None)[source]¶
Optionally connect a custom batch or validation loop to this training epoch loop.
- Return type
- on_advance_end()[source]¶
Runs validation and Checkpointing if necessary.
- Raises
StopIteration – if
done
evaluates toTrue
to finish this epoch
- on_load_checkpoint(state_dict)[source]¶
Called when loading a model checkpoint, use to reload loop state.
- Return type
- on_run_end()[source]¶
Calls the on_epoch_end hook.
- Return type
- Returns
The output of each training step for each optimizer
- Raises
MisconfigurationException –
train_epoch_end
does not returnNone
- on_run_start(data_fetcher, **kwargs)[source]¶
Hook to be called as the first thing after entering
run
(except the state reset).Accepts all arguments passed to
run
.- Return type
- on_save_checkpoint()[source]¶
Called when saving a model checkpoint, use to persist loop state.
- Return type
- Returns
The current loop state.
- update_lr_schedulers(interval, update_plateau_schedulers)[source]¶
updates the lr schedulers based on the given interval.
- Return type
- property done: bool¶
Returns whether the training should be stopped.
The criteria are that the number of steps reached the max steps, the last batch is reached or the trainer signals to stop (e.g. by early stopping).
- Return type