{"cells": [{"cell_type": "markdown", "id": "82d98719", "metadata": {"papermill": {"duration": 0.035642, "end_time": "2021-09-16T12:16:52.160477", "exception": false, "start_time": "2021-09-16T12:16:52.124835", "status": "completed"}, "tags": []}, "source": ["\n", "# Tutorial 12: Meta-Learning - Learning to Learn\n", "\n", "* **Author:** Phillip Lippe\n", "* **License:** CC BY-SA\n", "* **Generated:** 2021-09-16T14:05:22.989408\n", "\n", "In this tutorial, we will discuss algorithms that learn models which can quickly adapt to new classes and/or tasks with few samples.\n", "This area of machine learning is called _Meta-Learning_ aiming at \"learning to learn\".\n", "Learning from very few examples is a natural task for humans. In contrast to current deep learning models, we need to see only a few examples of a police car or firetruck to recognize them in daily traffic.\n", "This is crucial ability since in real-world application, it is rarely the case that the data stays static and does not change over time.\n", "For example, an object detection system for mobile phones trained on data from 2000 will have troubles detecting today's common mobile phones, and thus, needs to adapt to new data without excessive label effort.\n", "The optimization techniques we have discussed so far struggle with this because they only aim at obtaining a good performance on a test set that had similar data.\n", "However, what if the test set has classes that we do not have in the training set?\n", "Or what if we want to test the model on a completely different task?\n", "We will discuss and implement three common Meta-Learning algorithms for such situations.\n", "This notebook is part of a lecture series on Deep Learning at the University of Amsterdam.\n", "The full list of tutorials can be found at https://uvadlc-notebooks.rtfd.io.\n", "\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/course_UvA-DL/12-meta-learning.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", "| Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)\n", "| Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)"]}, {"cell_type": "markdown", "id": "e2d3a687", "metadata": {"papermill": {"duration": 0.0331, "end_time": "2021-09-16T12:16:52.228612", "exception": false, "start_time": "2021-09-16T12:16:52.195512", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "545bd2a7", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2021-09-16T12:16:52.298786Z", "iopub.status.busy": "2021-09-16T12:16:52.298307Z", "iopub.status.idle": "2021-09-16T12:16:52.300509Z", "shell.execute_reply": "2021-09-16T12:16:52.300893Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 0.039119, "end_time": "2021-09-16T12:16:52.301090", "exception": false, "start_time": "2021-09-16T12:16:52.261971", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# ! pip install --quiet \"pytorch-lightning>=1.3\" \"seaborn\" \"matplotlib\" \"torchmetrics>=0.3\" \"torchvision\" \"torch>=1.6, <1.9\""]}, {"cell_type": "markdown", "id": "cb2f6a4e", "metadata": {"papermill": {"duration": 0.033496, "end_time": "2021-09-16T12:16:52.368396", "exception": false, "start_time": "2021-09-16T12:16:52.334900", "status": "completed"}, "tags": []}, "source": ["Meta-Learning offers solutions to these situations, and we will discuss three popular algorithms: __Prototypical Networks__ ([Snell et al., 2017](https://arxiv.org/pdf/1703.05175.pdf)), __Model-Agnostic Meta-Learning / MAML__ ([Finn et al., 2017](http://proceedings.mlr.press/v70/finn17a.html)), and __Proto-MAML__ ([Triantafillou et al., 2020](https://openreview.net/pdf?id=rkgAGAVKPr)).\n", "We will focus on the task of few-shot classification where the training and test set have distinct sets of classes.\n", "For instance, we would train the model on the binary classifications of cats-birds and flowers-bikes, but during test time, the model would need to learn from 4 examples each the difference between dogs and otters, two classes we have not seen during training (Figure credit - [Lilian Weng](https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html)).\n", "\n", "
\n", "\n", "A different setup, which is very common in Reinforcement Learning and recently Natural Language Processing, is to aim at few-shot learning of a completely new task.\n", "For example, an robot agent that learned to run, jump and pick up boxes, should quickly adapt to collecting and stacking boxes.\n", "In NLP, we can think of a model which was trained sentiment classification, hatespeech detection and sarcasm classification, to adapt to classifying the emotion of a text.\n", "All methods we will discuss in this notebook can be easily applied to these settings since we only use a different definition of a 'task'.\n", "For few-shot classification, we consider a task to distinguish between $M$ novel classes.\n", "Here, we would not only have novel classes, but also a completely different dataset.\n", "\n", "First of all, let's start with importing our standard libraries. We will again be using PyTorch Lightning."]}, {"cell_type": "code", "execution_count": 2, "id": "0df60d32", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:52.444515Z", "iopub.status.busy": "2021-09-16T12:16:52.442499Z", "iopub.status.idle": "2021-09-16T12:16:54.162754Z", "shell.execute_reply": "2021-09-16T12:16:54.162330Z"}, "papermill": {"duration": 1.760704, "end_time": "2021-09-16T12:16:54.162869", "exception": false, "start_time": "2021-09-16T12:16:52.402165", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/tmp/ipykernel_3920/3072189054.py:29: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", " set_matplotlib_formats(\"svg\", \"pdf\") # For export\n", "Global seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Device: cuda:0\n"]}, {"data": {"text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["import json\n", "import os\n", "import random\n", "import urllib.request\n", "from collections import defaultdict\n", "from copy import deepcopy\n", "from statistics import mean, stdev\n", "from urllib.error import HTTPError\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pytorch_lightning as pl\n", "import seaborn as sns\n", "import torch\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torch.utils.data as data\n", "import torchvision\n", "from IPython.display import set_matplotlib_formats\n", "from PIL import Image\n", "from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint\n", "from torchvision import transforms\n", "from torchvision.datasets import CIFAR100, SVHN\n", "from tqdm.auto import tqdm\n", "\n", "plt.set_cmap(\"cividis\")\n", "# %matplotlib inline\n", "set_matplotlib_formats(\"svg\", \"pdf\") # For export\n", "matplotlib.rcParams[\"lines.linewidth\"] = 2.0\n", "sns.reset_orig()\n", "\n", "# Import tensorboard\n", "# %load_ext tensorboard\n", "\n", "# Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)\n", "DATASET_PATH = os.environ.get(\"PATH_DATASETS\", \"data/\")\n", "# Path to the folder where the pretrained models are saved\n", "CHECKPOINT_PATH = os.environ.get(\"PATH_CHECKPOINT\", \"saved_models/MetaLearning/\")\n", "\n", "# Setting the seed\n", "pl.seed_everything(42)\n", "\n", "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n", "torch.backends.cudnn.determinstic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n", "print(\"Device:\", device)"]}, {"cell_type": "markdown", "id": "d75da604", "metadata": {"papermill": {"duration": 0.03505, "end_time": "2021-09-16T12:16:54.233351", "exception": false, "start_time": "2021-09-16T12:16:54.198301", "status": "completed"}, "tags": []}, "source": ["Training the models in this notebook can take between 2 and 8 hours, and the evaluation time of some algorithms is in the span of couples of minutes.\n", "Hence, we download pre-trained models and results below."]}, {"cell_type": "code", "execution_count": 3, "id": "1ff5e574", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:54.309827Z", "iopub.status.busy": "2021-09-16T12:16:54.309348Z", "iopub.status.idle": "2021-09-16T12:16:55.155188Z", "shell.execute_reply": "2021-09-16T12:16:55.155577Z"}, "papermill": {"duration": 0.887716, "end_time": "2021-09-16T12:16:55.155716", "exception": false, "start_time": "2021-09-16T12:16:54.268000", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/ProtoNet.ckpt...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/ProtoMAML.ckpt...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/tensorboards/ProtoNet/events.out.tfevents.ProtoNet...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/tensorboards/ProtoMAML/events.out.tfevents.ProtoMAML...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/protomaml_fewshot.json...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/protomaml_svhn_fewshot.json...\n"]}], "source": ["# Github URL where saved models are stored for this tutorial\n", "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial16/\"\n", "# Files to download\n", "pretrained_files = [\n", " \"ProtoNet.ckpt\",\n", " \"ProtoMAML.ckpt\",\n", " \"tensorboards/ProtoNet/events.out.tfevents.ProtoNet\",\n", " \"tensorboards/ProtoMAML/events.out.tfevents.ProtoMAML\",\n", " \"protomaml_fewshot.json\",\n", " \"protomaml_svhn_fewshot.json\",\n", "]\n", "# Create checkpoint path if it doesn't exist yet\n", "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n", "\n", "# For each file, check whether it already exists. If not, try downloading it.\n", "for file_name in pretrained_files:\n", " file_path = os.path.join(CHECKPOINT_PATH, file_name)\n", " if \"/\" in file_name:\n", " os.makedirs(file_path.rsplit(\"/\", 1)[0], exist_ok=True)\n", " if not os.path.isfile(file_path):\n", " file_url = base_url + file_name\n", " print(\"Downloading %s...\" % file_url)\n", " try:\n", " urllib.request.urlretrieve(file_url, file_path)\n", " except HTTPError as e:\n", " print(\n", " \"Something went wrong. Please try to download the file from the GDrive folder, or contact the author with the full output including the following error:\\n\",\n", " e,\n", " )"]}, {"cell_type": "markdown", "id": "94e83308", "metadata": {"papermill": {"duration": 0.035176, "end_time": "2021-09-16T12:16:55.229204", "exception": false, "start_time": "2021-09-16T12:16:55.194028", "status": "completed"}, "tags": []}, "source": ["## Few-shot classification\n", "\n", "We start our implementation by discussing the dataset setup.\n", "In this notebook, we will use CIFAR100 which we have already seen in Tutorial 6.\n", "CIFAR100 has 100 classes each with 600 images of size $32\\times 32$ pixels.\n", "Instead of splitting the training, validation and test set over examples, we will split them over classes: we will use 80 classes for training, and 10 for validation and 10 for testing.\n", "Our overall goal is to obtain a model that can distinguish between the 10 test classes with seeing very little examples.\n", "First, let's load the dataset and visualize some examples."]}, {"cell_type": "code", "execution_count": 4, "id": "fb2232d3", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:55.305767Z", "iopub.status.busy": "2021-09-16T12:16:55.305294Z", "iopub.status.idle": "2021-09-16T12:16:56.915972Z", "shell.execute_reply": "2021-09-16T12:16:56.915529Z"}, "papermill": {"duration": 1.649455, "end_time": "2021-09-16T12:16:56.916090", "exception": false, "start_time": "2021-09-16T12:16:55.266635", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Files already downloaded and verified\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Files already downloaded and verified\n"]}], "source": ["# Loading CIFAR100 dataset\n", "cifar_train_set = CIFAR100(root=DATASET_PATH, train=True, download=True, transform=transforms.ToTensor())\n", "cifar_test_set = CIFAR100(root=DATASET_PATH, train=False, download=True, transform=transforms.ToTensor())"]}, {"cell_type": "code", "execution_count": 5, "id": "5df823a6", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:56.996394Z", "iopub.status.busy": "2021-09-16T12:16:56.993092Z", "iopub.status.idle": "2021-09-16T12:16:57.189374Z", "shell.execute_reply": "2021-09-16T12:16:57.189770Z"}, "papermill": {"duration": 0.236155, "end_time": "2021-09-16T12:16:57.189912", "exception": false, "start_time": "2021-09-16T12:16:56.953757", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ2MC44IDE4MS4yMTQzMjAzODgzIF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nFWPTW+DMAyG7/4V7xEOC3ESQjjSdUXs1gpph2kHRFO6qrRjoG0/f6H7rCXLH/Lj12YcKCkY3QiJQ/B3MEokS//23PpNuUA7kgz9noyVwoXs+J2xY6HYaBU68qraE51oQCbUxY2xwoBTFtblWkntnMarxwNOSAo1a3PQ5qAtUQbQmAyzJqfqd0nbI6kYyzPWtMbwA0p0/+G5poE4xJvAg6UVShrrshRsjXB/B7Q9LWokqzCkUO8uT9ZbokdEVd90Hj4OiMhVJp2eDdFH078c/YjzDtPe47ZaxchZsEm/JjRFxYalxLaZmtFPMZ6ovqe7msLN9Am011AbCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMjUwCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTEgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNSA+PgpzdHJlYW0KeJw1UUluADEIu+cV/kClsCfvmarqof3/tYZRLwMD2Ngk78FGJD7EkO4oV3zK6jTL8DtZ5MXPSuHkvYgKpCrCCmkHz3JWMwyeG5kClzPxWWY+mRY7FlBNxHF25DSDQYhpXEfL6TDTPOgJuT4YcWOnWa5iSOvdUr2+1/KfKspH1t0st07Z1ErdomfsSVx2Xk9taV8YdRQ3BZEOHzu8B/ki5iwuOpFu9psph5WkITgtgB+JoVTPDq8RJn5mJHjKnk7vozS89kHT9b17QUduJmQqt1BGKp6sNMaMofqNaCap7/+BnvW9vv4AQ01UuQplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzYgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuDK40ADUXGQUKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUxID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XBlcaAL+MDVYKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw9kEtyBCEMQ/ecQkcAf+E8nUrNouf+28jumWyQqsDyE3EcE2fziAikHPysYWZQE7yHhUPVYDug68BnQE7gGi50KXCj2oRzfJ3DmwqauIfHbLVIrJ3lTCHqMCZJbOhJyDbOaHLjnNyqVN5Ma73G4ptyd7vKa9qWwr2Hyvo441Q5qyprkTYRmUVrG8FGHuywz6OraMtZKtw3jE1dE5XDm8XuWd3J4orvr1zj1SzBzPfDt78cH1fd6CrH2MqE2VKT5tI59a+W0fpwtIuFeuFHeyZIcHWrIFWl1s7aU3r9U9wk+v0D9MFXHQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzEgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQxID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY0ID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDcgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTggPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODkgPj4Kc3RyZWFtCnicNU25EYAwDOs9hUfAj0i8D8dRhP1b7IQ0lk6fEcoHa+QBguGNLyH4oi8ZhLULDyr7SHTYRA1nFSQTw68s8KqcFW1zJRPZWUyjs0HL9K3tb4Meuj/djhwKCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSA2NSAvQSA2NyAvQyA3MCAvRiA3MyAvSSA4MiAvUiA5NyAvYSAxMDAgL2QgL2UgL2YKL2cgL2ggMTA4IC9sIC9tIDExMSAvbyAvcCAxMTUgL3MgL3QgMTIwIC94IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxNSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxNCAwIFIgPj4KZW5kb2JqCjE1IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0EgMTggMCBSIC9DIDE5IDAgUiAvRiAyMCAwIFIgL0kgMjEgMCBSIC9SIDIyIDAgUiAvYSAyMyAwIFIgL2QgMjQgMCBSCi9lIDI1IDAgUiAvZiAyNiAwIFIgL2cgMjcgMCBSIC9oIDI4IDAgUiAvbCAyOSAwIFIgL20gMzAgMCBSIC9vIDMxIDAgUgovb25lIDMyIDAgUiAvcCAzMyAwIFIgL3MgMzQgMCBSIC9zcGFjZSAzNSAwIFIgL3QgMzYgMCBSIC94IDM3IDAgUgovemVybyAzOCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE2IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTMgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyA0NDcgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDE1MiAvTGVuZ3RoIDM5IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDQ0NyA+PgpzdHJlYW0KeJzs/VmTLMuWHoatwd0jIoeqPZzhnntvz90gCFKAZJLpQeADafrB0pOe9Eo+yAgYQQACG2D3RXff4Qx7qKrMjAh3X4Me3CMra599GiAkGY1mN3adOjVEZUaEuy//1re+tRb+5je/gd8fvz9+f/z++P3xv/Cg/7Uv4PfH74/fH78//jd5/N56/v74/fH74/fHf8oRPvkeEdsX7u4OAIAAgP2fOwD4f+g1r68B2+nPf+fg/fW2c9svf+qlfvpX/skpf8+pAODuImL2E++FL17y/z/H3//qP778z57/fBozh8D/X17T/yYOczOzFz/yzzwwvJlW4H2m3TxGhNuv8OXf+4tZiC+evr/8I/z07Jfv+Hwefvq+7Q8RgZCvi0TV9cfT8nbtvXgDB7ftRvF6PS//+Mc/AWwnI+L1j9pp22NqX7g/3zA4/icsCELg55sDM90syWcW6NU2bN893+z1V0TXCwYzd781MD919L/2640DIj7PkPbrdrTfECFt7/SZx/cTxwvrOU5TTMndDXy55NOHMwJEphD47vWBmbNWNTMzNyckQhK1UtXdwJSIduPAxCESEambuq/Z1tVUoVSoUufl7OApRSJOcWQO7g7u10EEB7yaVyQAMMDrVAJ0AG9PEgEQABGYEBEIFdHbBxERMbii1/aqp9P5//5/+3/8+te/6++CeJ08CIh0fajP14LX016MCHxmLrzYL55/0+a6u5mJm7mpmz6/VnsHDgBIzIjkgH0Ku7kbuLm7uzkAECIiUULkNsb/9J/+n/+b/+a/6u/siM63FwnPC+ZTQ3FzP7cWAa6T7LqZvLQoDnBjwrydTQDP52+fvd0BALxwbvzl4uzPx29///ym7NfL/s33v/lXf/0vTa1NeRMFAIaASHEIHKhdHHPgkAAcwNT0fHkSFXN1N0ImpMgcmJlCiIk5DMOECKbqZmtZVEVVzDRwYI5qIpLNTaUiYIiJmPf7fYxpLblKVVVRISBG1mrnx2zmiI4E+/shjcwxcAwETMjubqpmmus6xPF/9yf/x1f7122o/tt//uGf/auH/tzAABRcSRYEAB4Q2TkAktSLllnWH+TytzHgfhdSDPf398ysqt0qAzohILmbq5qbiRHBGGOI/MXb19M4vn71ar/bhRBiZDUVqVXsMmup/nCiUuFxDlkwC4uxO3i3oc+DdvvtS/uKCPjNl+n/+n95vZ8YAFTK3/zlP3t8/92HvDuXwYEcqS83B1Uzs5wXU611VVVmJmIzVVOpeZ2fdiP90c9244B3kyLYX/7t8u6xhrTnOCG2vQACkwO6I4JHWBDURM3s4eJPix/345u73TgOr+6OIcZpt0eEyzyXWn/z2+8eHk+H/X632/3pH//yH/+X/2Ac03E/IZJve8k2p/tcNHPV53sON7eOMaVxHA1c3ddZ1kUIACIT0BCHkKIWchVXBXQEImQ01b7SlR2YYgxhSIGZqls1y9XEtIgvK+SiH54KuE07Coy7iUOIzwYC+vVuSx4B2QENwAH9aj3RELx9EAAiREYiYEIiQzREZ2LEgIDg0kZ6Wdb/7r/77//lv/w3fbG/tChE1Mxkvxb3DW6/AA6w7Vjw8rgazxdYoZ8s7qZSTKqZuEobl+s7Y4iIRDEiMji6I7hBs7Mu7q7N4DIBUggjUWwQ4s2b1//1f/1PN2uH6HS1/rhdFW5XhB2r9BM+ufLn69+OftrtRgD2AtQ0wwzUXn47p+1tZlfg4u2Evl34szuyfX8zRbF94wDQVlk/7+PTh3/1V/9SRADczaQIuEccCHnYp5hCW8UhpjTsEBxQay3vPn5faqlWHSxgCBRSCEOIMaZh2MWY9oc7BFSppnqeH0vNUotKTWmIcRQtazmbai0ZEdKwCyG8fvN2nKbzclnWRURKrQSUMJZVP3x3UVFkJ8Y3P9tNxxTHFFJkigGTm6mIaD0vp/14/POf/8PNevq//dX5//nf/uBgAO6gABWscnlEd0wHoAhhcOKyfKjrQzn9df7wL8YB396naRq+/vrrGKPUau6A6IDA7ERuaiKmKlWY8DAN45D++I9+cXd3LN988/r+1TimYUiiNZd1zfrxoSwr/OYHmjN++xAvmecSs7AZmeMtin8xe59BzXX643/+p/v/6v/0aj8BAKjqD7/969/97b/9zenVD8veka0tUyJ3aBd4OT+JlHU5i9QQInNQFVHJ6/n8+N39Ifwf/rNXdzv86r4S6P/rf3j899/mtHsdhztq8I0wBgJAc0awEZ7Iq5SqIr998O+f/MvXhz/8+vVhv//m6y+Gcbx//QYRPzw8zMvyr//Nv/vdtz+8ffPm9atXZvUf/MUvY4AYJiIwQ9+GpN3l9hDw89az3z2gipWqTw/Ld7/5SADTwLvdeHd/NzSkhsSMjkYdrDiiOlqzgA1fiZubKziAM3mK4GYFK9iSLw8OFoNTSsS7GLs5uroQ6ICA5AwIgOQAamAOamZtSwVBQCZoywsdEZAMnBG9WQxnBzVn9HiLHd3AbfsaAekGs1NbmQAAbg5ON3jK3aDbeAMHc3u2Tc3W9PfdDFmDzG7QDajB1RK9IDXau6mjgyCSATACN4ALuD2YbYZeLxbh2cb9+EDEF/bxP8Rp/EcfuH32H71qeztr8NLBNruH2/SjT65hW4SfgNGfemcDVEeRau5urgBAoA5eK5gLERGTKbkaEobA4CEENicXNANGIHB3qWY1y5ILMZ+WGbFNJK+lqqmIqmi1BctqpmLV3azNFQd3OK/zqqXUVbSImKi6YK7V1NPOACAkIkYKqlpsrbkCAgFQc7jNrGgZdPhkA0NEQAYwcHMz17Us36JL8DvigekN0o5YU4K7Vzvef3M8DL/85s04Dm/evkGAb7/9bp7nXIqIgAoQmahIaaNhjrkUM/3uh3dP53Ot+nD3dH9/9+rVfYw8jGMIHngq1TjKWny3pznD9w/+ePGl0lqDv9hE/bqIfjQ/EJyIw83pvq6Xy/nj9z+cf/ORnaJTiiEOw46QCLlthm6C6EyAYOCCoIyWAu13+93EKQ0hAoD47aRxDyFO40CEzGDuuRiYozt1o9cRI3OIaRjGcZh20zTd3d8h4lqyuyGCqiBCjJwCDZFTIGYkAiJ4AT+v1KNvziwA/Jj3BACtlhc5PSzf/uYjgR+mcDjuvv7FF8jkkYgIEICovTZ2h84c1N3VFR3F0BDbSiLyFMHUCIvbss4f3X2aYmBj0s16+oZ1sMEohuaOkQOIgpq7q5qq1eoVkRwYEbktSwVCMEBqgAeByMk8scfr/XV3WLfFygAASIQBiYgI3BVq957cARkR+oWZuTfGwroNBSAkRERkoraPEEKjGgiR+zs2LGsNzTq0s24ZNe823cHRiBCR6IVrC7dmF4mIieDvtZ7wI0T5/5PDn1mM7iVut/DssKNbs6G4nfwMW/xmN7ril+uOvv3qJ+7HgcSgVrUrc42gDO5VSZEDBw+E7GqIFDgieIzkQGaIjgxA2L1ZES+rA2Ab93EMzEQQ0bFWUdVqRaxccThA287BzE/LTNkdKoCKuipI8XzywLC/wxAwTkSMbqqqIlVd1MzcAIggNgsjabq9beiDDoCIZuZmmuvyLVgmvGAYMabAgYIhwT7tX03fvH599xd/9ofjOByOBxGZ50VVc85S+2WLiNSCiERkiDlbqVi/fxcCL0s+Hg4/+9nXBnB/d7i7PxDR3YFVbbe7lKrHg80rtOULmQqk9ri3cXRoaGC7+NtxAkDicP2hu63r+Xz++MN35e++rcADhHEYpuPxdeAwppEAAQTcqM9zdVMEZ3QKHHb73Y5jGjg4wtJWCQA2SBJD2O/3iEDkqiq6OACZ4baLtx0+MKdhTOM47Hbjbnf36h4RL/O52U1VIfQYKEVOkWOkwG3Qt2ntzQ/b5qi9IJU/xZ6E6O7N2S5zRgA2ZeZ1rSEJUUTEBr7BHcyZmZkRwJAcUR3AHA0YsDaip2hedV3LsswlL+1yXEVrXeaLqdyMQmNuAAFDw3AcAAiQiBCkutZS8iUvKaWwPxJQ4G66ml1CRESCxqx8YjsQkRgxONhmwBzdwNXN1BHcVStAh4qN3Acw68SldhS5Pcvm0OBGCvWIAW67o19Z6Q74idigMYfu10HYnNoO2ajtRojEZuCmgI5ujpv3/WxXP2MZnz3um5906vM/lgf/iaOTkHj73jewsTnsjgQqaiqISMhtCHEzlw4b1dzv2j+9qLb1wXbi820AkiMDBqdtrwG0Rt8YICMhubtJre5ILGriLgDiruraHsxGBbijOYC7oiEUZ6IhABGpazUtVXMRIuTQ5hQRgQYHcDUDMDMxEwRCJEIadsgEHA0J3F0VzMANDBwAqAUj+iI0FbdGU96OEfWQjm+OS6nVZXX8yCEADWDr/Z6OO35zf//N27vdbjjs94jw9PiY83q5nJdlqVLNDAEc0Z/Do7jNAjRzET2fL7WIA6w5v351X6WO4/j67h4RQ2RHDDiTVzB2JfRAyIDQN/U+/+0FArhdaA59J3g+DEBNs9ZstRoWUIkUQ0zshIim2UzyehEpgN4WMlF/T6lBLZpBu6FxGo93adq/Gqb7GANzM3Nm4I3I29ZcG4Ftl0Yws1wLZnp6OgHC+XyZ54tUcXdEZGZmCkxMLbxw9RWbIW2k0qf3Cp9az7bYzK1qWer8tICbrGzm59OKHMZGKAYOgdG9xcBSDIIoqoBYm8MuIARrrrmUksu6lrzkp8dTKaWRc1ZrdXh6+EDM3XMmIiIEBzNCj+SEGNJAxCGNxOy+qpb5cnn/8Hg43O2nkWMaIhOiqzk4NUecGXoo41PwRRSZk5nYdTmBgndGYAOVzQh2WqDFHMxUVTfk7s92AxEbhu3msy8K98YDqLk15xuRG7lqiNCwSBsfd2wAzL1N+4Y/sdF+ZOAG1GAa3ZCM168/c9ySmJ894T/1wB9TnBs6dgRANAQ3LSWvRNwiACmOAM+L+aXB/eTFrz/GT3+LDuzozgBurgXA3NEdTAkQIBAjg5mWdSV2VzcQt+xe1UXdGmggQAJyNCc186rijrkoIcHeUuRqtagsa71camBMAyFSoEQEzKYKatXMai5SZUxpmjhEToeIaEgVwEXd3VXdHIgACQNTiOTu6qZqZZVaq98E2YmAuG9yjoTGArQsRcolru+IDXTx8Xj35ps/+vnXf/CLN//wH/zM1NY1X87nv/3bX51O5/cf3l8us7eAdEMn/oJdaRZZxRT83fzRzL57924Y09s3bz58/Pmb16+HvxhSSsMQQ7BAK/sMQi6IPjIzEiFx3/XhFol9OpAOfos9AQBAAcRklvVcFYtSXfcuntLIzgiQ81mknB7f5TwjOqAF5hgphjRN+yGkWmNlNFZCuLu7qyHdvfpqf/cm53VdZjVVM0NzQgdwc0dTcHXf4iUOAGI6L0sVMXdw//D+/TzPOWc3J8QYOMYQYwixwTHs2Gibm74t/U9QyGc89+6Sg6EruPdwhKM7qDmamZoRoDVaxfqMRwJAM3SAXBXA5lVykZKlZFlzzUVqEREHhFKEzcWsG03CziWbuVUCD6iEyDEREaeBKGSRKiY1gxmouFZDhBCAiAkAnBiJmpFp+yTwS+vhbu7q/cFuo93+b83N1u1MQESgjXREQnpe1m3qN6KzyRw2UgS8Y8sNqPY36i6gA6KToW6DoY2jvHKz7u6mQNdY9mY9nidqA7MvJ/HnjhuZRr+J21912cBPBeN/4pU3h73tPNZjYuDdW0dD8CK51JWIgwemQEQAuD1vghvQ7DeX+aO7+ZEBfaa8+rUTIyM1FKmupSK6sxG1kYTuMrcguLuruTs5thg72MYWqSiBmbITIBizg7uJizm4EzkEJXKpjIy1iqlKUakaSU1NCWoFJGdS6LAM1dwbMkY0A9MWDGu0vZv6i7tr4BabeI+dAhI7Bocg6mia1xkc1/Wc1/3lEh8fJ6n16ek0z/PHjw/zPNdSza54sPtEz/wOopltg+5mbmZVxDNcLvOHj49u8P2r98MwxBTN/N2H0/m0XuYh12iEzARIDXs2y3xLLPmNE9QN9qdTFwmRiJhJDdDNVaQu4LYsTwhYy6wqqtVNO1AAIyBCIEIiaLgdEZAwppR0DGngkFiNQkUjrBbAgjs6TD6x8wxSwGa0hSwCiaqIVVEAKkXdvBSpRVQbNjJVK0XmOZsDIhP1m+BtYBCxufB2XeoA8HnrCY5u6MbQ6HlgQHB0IxE1dAAzQ3Qnc1E3aS8dHbAKOsBaVlG7LGvOtdZSS87rOp9mFamrAXitMzUfBTczBIiIqlXyAi7sGcCRAiJRiMichjHEoSqwAUqV+UKpOCsyD0MgIo5Np8REtEV4EOT5ptSy2Hrdom+wZEea7WvbbFuDxIhETBQCNOTy/Cd99SOid0FiWyBmLg5g1sL9hIjEAZtTgKhSCYqZqmZvOovNu1dVU2cGDNQCdNj81H6haHY1VeCgnxu7flXwbBx/bIn+PmL0ajp/9NtGZW7Up7uZVlnd1ax2qQ34cjmt84VDjCkFDuITArYHFkIiIvcmn7jiaN4u7yeRsjv0ndrVzU0QgeIuxMhioi55Lad1iRQHVgTEFQC0cnVUZI/spXgtjmAIZA66mRp3z3MGw33AaCFGjxEW9JoVHBZzZkqDMZOBEOE6i1QzNVMngJSgKngBJEwROm0EIOZmkBIhorqrWiMfRLxml+C3cRciYg7deiICOIUJeG9Uy3J2Na0fIz/+sNch5nV5dzl/tyzz9999V0o5nS6q2rgrZu7v797phu0em6SpDaiauYNufuHp6XTYH54e55RSGvfm+Ntvn85znfXrbPe8o7iPDbW/VJvgdfl8wkI0Hu96FhERhyHGaRjApdZqdV1OFYnX5QO0QBG4q4Bbi/oGohg5xZBSiIHJndwpIDNN++MhHcb9fRiORlGJsVZWimhHS1H9oAObnbxmsBQWHnKCsKzVnEKSwGimbna+5GVZSqmqWoosa314uPz2dx+GYdjtMweKQ2SmMUQmDjEQN0IRRc1/ynpemVLvgj1thsWxGxszB3UV7VHITb/qho1MElMzn5dcRdZci6iIVFFRV2sEXiMn0ADQepwIoA9tg+GdygAAU0RDRxRDDABsjmCoqqWsbhLJYggxTITMlDhg40EdgBzdUF+YDvfNFnVU9tKGXunLFyaDaGNAEJGwPQvoGL5F2s2AmqFzQ9hogGuoHdHdWly+41hiADfrNCXiFqPufOn2t5+zettmAz82N9cV8smPr/f3/KfP0xt/ymr9PfjUNyBvJmYqms3VTNx1zUuuawAFcnPxPrLUuBA07hREYyeQcWN/n6/oM2/nW8SuuaQbXkUwd7Me0VNUc8XGzqE5bdItQFMz6QyYA/ZwKjbfoN+NmbeZ3jkYBzc37FyiVGjRGFXfXLgePzQHaoQTejOBbZaZuVkLvhgSoEMnz19OsubCbOS9EzOFFNJOtUhOLQAFrsuST6cLgDLpmtfT6SIitVZ3aPQXXL2KHg/71Ho+z5/tjd2xiuci58sSisZC5nhedMlQKTglpIDE8Iy/XpjKjeZ6MXwdE91+vwUksHMKZupgap0HQAAAUwA3QiSkFn9HHqwHCTekAkhIyND1KA7uqEZFqFooFsyCQjDcaxjMXmOaGYATIAcKgSOHSBwctznQfD0zVV+LPp7zUKEYhxj2gMzsyoEhOnFAMVU37OGQfnxiPV0VVE1URKtYAUAGFlBxV3OrCmoiRuSMxEhmqE5mIBWq6uPTJZf67sPDsuYwDByCu5qpiSFFQieK4E5N646dMrsuYUcMROiGNoC79lg1uEMtoCoO6Ijr5VzWMwIw2pDiH/3RLw773X7/apqSe/eICakKLvWKMsDdAIyQAJEpEoZ2o+5moFdrtQ0VEQUOgTn0mE1f7dj06pu3aZ1ggbaCRVWqru6qWgC86aKIGJEDRwqJicIwqJKbWGNdN4GUuzdwIKLXrax5zG3+cYjMqcFYDuk6TduCb/tB89RulsqnVPeL45Nf+WfN1ydngLuqFdVa6ixSLvNDlbysl1qzqajJMAy7aW9mtSoipjgS8ThOzIFoIAzMkSmGEEIYsLk3n7myvlJVbF2raHUHdAyMhGguVWxdSqkCbs7maArmDiII6CG0+CS6Q118XbQLIqA5Zp2TjhEQQcmKqRdztCqCbNA5cFA1VcilAgCQInpKHCPzoH2eMSCgW4sYNuoGAUAF3FzNqrUYFJo9h66ut0kUQkg9YArBQgT0+y//rKynR8CyPml9El1/9/3549M8JjrsQmBIEZgwDYGpza6+hqjNDea4yVnMTESuOyszAwC1YC8FpKQQvv9YAMW8uvNq9wpjmH4Why/CcB9SbMvCr+Tf7WzwlxsBNE//+fvAGJtQBxrAcjWtol0A0Zmotja9KfMjUwy03x8dQqQRbLdt+tYCV7VUtVXL7OvZT7P99p1Vq8XdoVBwpLc2TBDeUvqHO/owxe+mIRz309dfcohjGlTq6fRDKbObSalVNKt997D+j7/6mGLaT5dxTD//2ethiClYIB4HDYEez6eny+n13fHnX3xx3TBeWE8z6Jt8JzMd2haNXaeAbW6ANRWcE7iTOpi6qNWq65rXXOd5Xdc8ICZEtx62vu59gN78ZOhm6Rb5AxKh912qgdP2p+5g2nMKFExEARxNTKPUqqaEEJja9RMBEeqNa7vRA4TQGCEmYr9KE7cg+LafAlKPqBLRBp2o7XtEjB3gXl0w881GbbjsalUBAN0QCKExoXhz+C0avLLTZvYipn79uhOtxC2yBJ87Xk7oq8j3mcr/+6JJ/xGmsz0us4b5xEyq5FrXdb2UsjqouyE5B1K1vBYkMjfmgAQtuZSoAUgyo43Q/Hvf1V3VTP2ZJQVQM3CrVUtRIiNyAzBXc1BHACd3tKaucRVXcSRAdsTmKHQRADZnxVyxQR1rSkAgIN/0HD0+6kRNAMUUYMNYPbjQULG5gXvHX21bNlM1c3REN/hxTubVy0Z0ByBCDimNRwDkuGepJot7yVVFay0olYZIh30MkWKCKwPfMyNeHreedTOgLcDPHJgDYACKBijV3EHdHFh5cNohTxR3FBIRtWfVXm3jTz87l3BzsG5+ggTAHEKKsYoNKYoaILpZo6za4jYHcLTufDX3Wju6xC3yfTMfrCX9iHgpnrOJuZEDqlNjGaLDgWhEVo7nkCgOaZg4hBgjImzWfDvMi9hllarojuq4VnMyc2MEBw+CT+fLh8eHFMItwAi315RzEfVcxAyAmXcDIPIUaQpKLqCgAAob9eZE0Gi+XOrj46nk8u79Qym1VDFzcgto1avU7ObejRkiALmBN9fK+wRtwYfuEjU3D60pS2gDV30Omze3CRxMUWmpEqtYoxdRuqdARLf2BSmmwzDed0lpk8SyEgdzJc19LQEAMiJSiEjMFIhDZ8M3r6S/rCuAO6iDSc0iq5mqFndTkzYmAMCNOO6ck4gpIgGRuzUhljv5Fgu5Tk2HzUEFgGv0Cp2IiSPzQByY06c25tPZ/DzQ+BNc538Ya744t382F5FVNFeZq+RSz7ks5/nDsl4c3ckpE53YzKto4HB394o5PC6ISIfx9RD207gfUpvE28tiG+nPvbG5ipp5CuwOealmnlXELGeRqiFiCBRDkNRey8BAzg7mTSOas9XqyEABOGCMTIARCRxV0M3ntfjmz6lZjICEyEyIxAzutYC7U0Akb3wchxbwNGJzgyqg6stczGwaUggUI3MgV5UiAJB7+I6qya0BIuImUG08sBMwB3z9y1oWKZc8788Pmmd1UDH16mKwViimKZg5xUC7MQQmCj1Vu0Vgu3/ZsW7bzhEAQ9zFOBBGomDNoTQQNcAA4Qvk3Xj4Q4p3cfclD0eigBSug79Nzo3ju93NelwMma8/AgecZTrJ3dsv78YDimoVdXc1aH6am4tWN6sqal7FRM1ERGoahv1+/+oYp0RDAAZEd2LmGCgFiqEWk3UWWSuXYYzjV1/FELSqqn33bnk/z4dMe+W7wxe0v7fDQY53TmS1NuPhZjcUGSTCu5GZgFEQOKNbi367yMcHK/Pf/OZvfv27v/vH//l/8We//AVwd5VeYE9VNQdVc0Ag4hgdgSJjoAY/oW8UbU9wNTMANS+lzvOSc75cLrUKACESuhM4uJpKC+N0AhGgS8a69bwKAA37et5+1K0J+hZudnBz3VykTluImWgzHdhFKS8ZnjaezCmEYeMqoSdiIqCBe4AeUkakgD3Ow0SBGu+zOe990ngPOkOPn4jWYq5qxbeQVNsvqRlLRAayVu9i04Qibi/bZyQAbgKmZwN6nZ9N/duYISZOSC+83WYHP0t9brjkhem8Ll+/1b7/6PDPfGdthzATtWpWVYtqrrLkMjtB3w7M3V3UY4ipDmxs6uAYcETnGFKKG/P1QjOPP35bb+CkiRMcVEzUllyqaCmialHZErsTUcs0N3D3Am5eiqpaFVMFQgBrswOgeRXWE1OkqKk7GCAgOzEQI8cG08jdAcjNKBCSBybuSjvoWR0I5qbmuYiqBWZCdN5Ev9bUHgaIyGD+AoA2Yge2heCEiJTGA3FI48GsUEjI7ArQc8PdvKE3GKuCu0YmBL6yiw11tglDPcO2nQ+AhEycCCNCRFe32n1JRKId8jGkVzzch3TgOPU15Q1Jd4L+Jc0J/YTuk76YS+5QNKwS0zik8Tkn27yLyt2sSjHTUkXUiqiI1VJyziGENMQxhcDI1KXvhEhMxI2raLljoqgppvB6CjHlXLSqPl1wKYMiZExmx5gkpiUlBShVrojz6ve03MXESNRNjbbVZOZqy+VcLo8//PD97373mz/6+S9ud76XMXcCJORIycL+ML354hUQDrtxmMZpSjFxE0YwIiJ2z63IvOacy7outQp3q4wA6K5Vai2llrI9Te95N9ri9B17IjV8fg1r3ES3t3/tVfsO19Gam1klW3ONqaxZSlVCIKAmnYeX2JPDEOK02SIHMDRCQ/IQQ7xOBiAGQObQiU66RofxBr65K7hprSKSXQXdBwoxDoTIYUtWQ0wUGSmGEIirSdVaVFcpala1OhAjObhp50RgI/wQoF9/Vz1dzT0hMiL/mLPsQqsbmLnZ574v9Fu8vtOtvfoPHw2dO4A5iFkWWdf1UmXNdS51zXXNsio2OVAfJFUvwn4CQpKq4MgwIPA4TIh9lLaX/0kHHgEIQMxzFncXsJaU18bKARxcqhGqR3N0gAqAFLglraEBj+Bo2NIDmWIzi62igDQpGQE4RyQGJwcyAFB1xGaqoG2pcSDmfuHMEMgdXNuuQECM+ymYeQxtfYCYA3iI7O4MBADIHAPfJq42PwnBoCmLpapKXk5SFy0PLk8Bcwxm6KbowOZQmyJb3UBCwKowBD7sYUgBQjP3hgaASEwYcBqjGecMZgg0Au4cAkAQXUqpVWzJjnHY7d+E4XXYfRnHY9+eb6OK2/DY9k0nwzbsA02Rx37l4tT8V79d/8W/uxBXak+wFfQhwi6Jb0+eEAOQU4QYIA427bUlsO9GJypbhRrs4eSrr0bMRMycmBLFIaQxTaBe3s16Wc3KslbNs5S1rHB+IgWoayk511q6UNSt6T1T4DGiAWSBajjLgBCW00VKOX//Pj+9e/f+4+k0r2u5nZmfquWh+SsJhykd7vbINO7HOKQ4hBCoxe6a9kbE1ExUlmUppZSaVYwZEdk7zWwiVUREBDa3tGmsQATMmjFsFETXdvXni7aFEa5c9dUF7dBuY8TNrGGQKirioVGCPxKTIwBx5DBAf/gKYIi6wbK4eSEIwIBIyEQMWxZIf41nQGvm2jKRVAqokHtE2oUxhDAO42a/YOCBiVMIgalIyVrmkm1xUVVVQyOgBqvcr6K8z2DBPk97qJo+TaZ6SR5egfcnhNEt93lrQBu8//Fbbsvkii36O7VQhGqpdSmSRYpoqVqqFgGVlg7bYtIGiGSzI2Apgo53u7dj2pkp4mfu87MmFFsarHsV8U5MNvTuQICO3hJp1d0cyNwVEIlC80TQAYPfpNYiN+6PwA2E0a3vjMxIsZdqMQdTa4k7RBgTELWSTggKrsDkRG7uoADuhEAMQ+JNZ9GlAoAQGJ+DRUTMfHvnnfdsE91MaxYpZX2Qulg9gy6EErjX5lJDBzR3Favo6hoIGEmip8iRiahPKN9ysIARUzAzkebXRYcBgN1ZLdcqRWzJTu4jHSC84uEujofbh799gfCSVW9TkjZj6dbYPIdNS6cG334ov/rdGoIG5gbZmTEEIsYUmajFlDAFZEZuuICQEAg9oA2pIq3Yyqdty7DNPwDoJAVhIIpEkUMad+R4SbEwmWmu2WpWKbn4MoOC16y1VNG6JckYIjBRYIyM4mju7rhqAA9PFynL+vTxtDx8fHq6LEup9VkCCZ9iT+xaUWaMKYbIsC1VJmRGAHK3tnWoNqay688bHlRTU6tVzJyFKFATfNZa13UVkcvlYqpaVjejVidpU+MiATW9GCITYw9VIzO3/O6mq2cmAEQi72wZllJzqmuuy1pS5BgoBAzE/sKA4rbLNb8GW/qJ3xSwaIayk5sUbpDb7XTpJsRUTKtJcS2RKPKwH3avdncxxN20I6J2IwHDNiGwaClSdzXHMKw1P/iTmmTrnAYhmn/GdsCzqGcz5AiAn57Tqoe0+MMWhcBt+m+c2nb6Rg7A7YvdGtBna4wd3PWfuwJUkSXnp1zmy/JYap7LWrQ8LevTZREXcWnkAkCvI5iLIrShY5FaJVctYpUtqAkit5j7FuD41Hk3s1KlVjGjPsfc1TYnFvo0VNCMBQkwNR9WEdDEwF1l41IQERxRiSDG9mhaGrwZujq5tstBUDMzcAQjIyRCD1CqkiI5oAMRRgZCionNQAq6QQsycECkLScbEJBaecL+kF+OcrOeDQnVss7n91Iu8+nXKnOdv1dZ0BZGA+q7iFqzja0SDYvBJUMRR5JcbJriNMYYaRwDXalkDEhAgQ2pKlerYMXd15wvixsMFu95eB13b+LunsO1CqLjy+l29QCvbA/CM7hwQncnfK7FRehf7usfvFoRawsnQKvS0PRVRmjoRoqQrzBl2+8JnND2o92lrIMPrRBMU/5qCyGjcHQnzVXUv//22yEOx/HAQMuHp3Kaq6LEqfpY5qiONa4O5nVVqaWsosXdAFBE1mVd5vlyOinwquTVL9+9M6DL48eal+V8rjkHjq+Or6Zxdzt2t9az6cSYmBk5DpFjQ4M9mWwLNXN/cG34oOUetURGMxNRy3kRUSyILQjudrlc3r9/v67r+/fvpda6zmbKYAjOgXqSJQERxciIGDgQUkqJmYdhCCHEGEMIgTnGSEQcIiIBRwfMpXKuy1rmtZhHgADYSr3gdSC32+tpZC2HHdwAua3ZjRhE2sAdXDfbK/S8Pilz06pSTLJpDmnaxeF+Onx593aI6bA/MnOMCZ9fxcCtqlStSy0pTZd1LqUUKbVUdyBA6yUzPwWFm4XrfvhGb+CzLe/Gs7mTN5Vpt9t22Io09hd9Np3XH13FY9c3hl40Ca5PBwDAFbyIrnl9WvPlfPlYpCymxfRhWT+el2pFrcYQhpgIEIHAQMUQcD/uIFLVWiRXzaKFLESTBjSgc9lXi/98ND5RWrKsu4D05Nmt2p8ruICYuBoFYo9EAMEIHJpsSNys80kNcjDDsAMiDAEAwcmcXA3NiQkYCcBMxQ29hkZnOYJlbYJDRgiRkImZUgoqMCsYOBOAe4hA3KaXA5IBgbmYbZqK29GBhgzMUM1KWS9P39f8OD/+lckMcgYXAGV0JDREQydEc1Qnd9SmeFmU0E3rHPHOEJCROFB8JsJxcCSMAxKXoiKiWkzLku1pBk7DcPw5jK/j7othd89hYKarcYSXm/VGgfr285s500LzBFfsyehfHfMfv160X2qrxgbqYAaiLX2RDbAaOaA49GTGFjkAuJv8iwlM8DimSGAtK0NNXdXQOAnQksu6rlDLQCzjfUJe3j/U0/KIu6e4yzYul0iiEVbCynZyLbkuIqUBz1plXdb5PJ+fnoxChiRQLxcUg3V+1LrK5eRljSFOd2/24/7Wb7i1nl6rFq0BjclLldrSGJRIVdVIu2S5uc0ll5xLzqWUUmoVqb3SJ1ivq2HmtYOJnPP5fM45l1Kk1pxXUwWt4MpM1EpJdP8dEZEAEZE5EOEwDMwhNNtJHEMg4hATMnMah2HcHe4cqVQR9VoV3M0BCWVLTm+HuZlpnw9NS2qq25wGQCLy/s7Wq3VsLGEXpm2yq5bf1d0HwEAhhsQcmuWlnoiOW/GcxjZca7hSwBA5DnEABK7Ls7YQNoj0bELcuzzKHVpwsgAxILrpc8gcga6q5E+j6jeI83amf3o8Q9M2c/0mC+9G9GKmUmtZ87LmZc1rrvlca1Y5X5bLvKpXtSrR3Fp4gsDd1Pq+RKQquazLMp/TaRB1o8DDOIQrAm1XcHsPbq4Cqs4E7iBiZibFtHvWCNYZNCZERG559y0ihUiE2tRDdB0LN4dakAkIGBEY3XmjhNRNmiaCkRADEWGIRAzMjTB1QmgpjIDkTgDA7AitXgV4S2NG2FTZoOqqCg6EYM9Trl1NQ9JF6iz1ovVkcnZb3DOCPgPAthFt4aBrcXAAdCQHqOqAsGQgNg7oEAHQwd2oaFTDy2IitpYi0oIiyWgYjvs43B/e/sEw3k3TPqUUAm9V1q8z49Z/b3D9OkdvKAh3c6ebTZ0Iv3oVl5+lxlI3u+nXz9q+xrawzF2b3s2ei5zsR/zmDY4Jh+gOUubTvFr1IE5Wq+di6yJErj7PuQKHIpH4Qm/Ljp7i4RT2sntd8J6s8CwEGrSgFatXWwaqkmvJJa/rChydAdECLAQYI3gIznegKRBHpv3+eDszbxRLAMtaitTAIRJf5rzmij3LlGpVRGpJCyKiqmvOa87zsl7ms4gsa3Z3cHRvVknWnHMtIYQQQ8Oetdacs6osl4tKKetiWltBvZYzcp1QrSpH2+JSSkztHzFSICYOIQ4c03S4m3aHNB2y2M9/Vo5HV62MMIhqWwTPd+duYlav/JKbNiPYxx7JOSIikG+xdWg5G97LLFkVQQBCAnDValoBnIliSNOwG2JiJu5pI616XlcOWw+YoRmg88DJg++nA9dwWS+m1mr+fMaobZLblufVtV/QNHHPlQY71wHPptM/Yx+vz+JzgfRbY7mZTr/5fTOqalLruuT5dH5c1vPp/LiW8n5ellLff3x8ulzM1EBSTHX0FCJOjA4qSkRIxIFLzWDAyKo6pP061WnchzASQXP2r/jsOk1VoWQzc4pg5mVRUc2rqnqLsXMry4gYAhNBaEBb28ZGSFihoRlrvHl7TSnIRKEJ09iZrKmOTN3METFQ5IBp1ytHIGJs6ZBkSC1OhA6kRgAQIzh7aYJpeNbdtfpAKlprBQcmUtHbETBX9VrrZV0+5vV9WX/QenJ9AitXuhscCczBERXIQVvspmdtAQYHXMVWNQHPoiGS4YSI5iQGl4WL+NPTnIuseSlSQ7oLaT8cvtq//pPd4dVXP//TGMfddGgsGUIffe8TYdPFQJuM6DcW9dZVYnfiZxeGGf/sl8MXtGtT1JuOfPu3VcuFLkJ0EHdtOVpbBeIY6dUhAMLTrEuRy8N3Hz/yWqFIXxVoFphRvTycWOjCB+J0ev0n6/GL8+7VMh0d2DGgnPCSSWWQlWCduGDPp/UsdV7n8+X8+PgUUxomReSJKiJPuxTCwPwzRGq87dvXX+JPYE8wAzVAcHJXNVEjRLPeJ8Ksba19czDrWU7tcDd32AQMDuDNo1dDVNwMPRCROxGREzMjeC/4u8kce4wItL8PAJgbtRRvN0dyVVJTAzbDOBDHXGoprfZjrz0mqlWw539sg6wqKuXZenq/mc1kdGGubZFrwFavAL0n8pmpgIMTgZuptHpS2EUrYO5igopVq7kzBTJqtKpoVdNaa61V3U0NHAJztJhC2gQAKk0E/imp+Tw73UUNUQsQXu3+9Xef/5sGhsxfBmS2mltwQ3C2p9+CAM+5o1dU6i1W1oa1DX4uNZeSc8mlrrnktRiYuxGoBhPQWgTATWpDnWqhSkWHNa9EAZxS3LHEWgsHIIxdz/DyFpAa0LNnafB2dQ1qE0OIFCLFRBwwJQCABs0bGk1IFBv6B+vBPqizg4FWAHXghl0RCDfs0+1HZ8p7HY+2MxJ0do/cUdXBAfRZCdPzPxEA0bRVBtmqu7XQ1s1YqOS8nMr6WJaPNT+azK7rixqa15HErtnbhCetAgo5YqvA0hIQRKkKVSEAVHMRmFep4lmgGmE8xEjD9HqYXg/7L/Z3X467Qxx2IcRWn6ztwE1pQo1PAwwIiH3O6CaogF65vIPHdsufgFai3uZoC80/M6h+1SFCzwTXJpg3vGLPwDhEcPAhqJnfD2uZsESs2vA4goEr6oKXh0mNIkQ2ZtPBStUqooJUCNEj0REAVY/grG7kADQQj0hh4xyFe2wrDtOeOYxjIqZuurxnEt0OyY31dDBFKWjkirpmzaswU4iuAdSAFVXBDVRAFaR6qVqK1JJFVVUAgDm1BWCmolJL2YCbEvX4jym7jiYcSE2ZbmRW7uYuZlbIzVqykMdIgbnrlkzVXFSsVApRIKjh+XJJ065UVYOWmqxu4hoIxm0ndPeyntf5wTcz0jdVJGg1ixHdKgA8c5VbjKmJ881NVb2bGTfNbhrdCQgczSCLnPIauYppIDYxJkZGAFjzXGpRNRFtDp2hj2kIzCp3VcplnYvWpeYsdZORblau85HmDlUWxGJWSYLIciVG3V1Nry7TS+e9w9ofqZQQr1+2O4JmMXzDHZ8sXnWvqqXIWrW0bx5P53ldHi7LWurjw9PTeW7crAkETEImpYI7WGXmw35Ccqt1Bco5ny/nu2Mmjuoa0xTjSPvEHH+8eYRA0y604m+ubY9zAncEDsCMaeBhCGng/S7FhIcDAfiymlqv6TxCBGBABwJXsAJlscelmPp6VkQcjsAJ40DIVFbIc0tRamUrGiHQoovkgOZGQODsxmqu1aDXRXNppbDbVoyACCJea8vMaqMIJrfV2X05f3j44Vd5/mE+/drqRZYf3AVMbuJ8thEA7mDmG3PhYFAcCWEPGIgTIqvG7GFe0+kczS3XWqu+f8pVwSgBDsfXfzjt3x5f/ez46mfDeNgdX3PgkFKj0h3AiRAgBogMY/Qxegw+JUdEJjeHXMys1SyHXLEoFMUibR626Mjt6CHA1sbhuhNRY+p60s1mTq+WFzfVsyP2ao+s+cBCX8t8b+YNgSEhFA2XMnx8Sv/89PO8hFCG5PwqPw2+PGg9VXkMh0t8RbwbpjuwRYlcz6X8FvSCQeI0YYyOWE2XfOHI0zjtdodvfvGHKQ3NLj08PM7Lsszruix5zbfL6Ec9NeE5c7Jv9YSArctH1+fbprds8LthTzMFQCJzBzUxU+ih5AZ6mwvsqtcK8i1hbqvs3tcwttybK4HngMzEgXuoo4WpnMBbCJ6QenmkZwEsdGbrZQXhrqy/AlyAFvnyZ/e4Fcjyrixr9F9HQ10ftZWmd7/CiVum0d3MWqsnUG1FswkATBsCMQRHb2sSnRDdI0dwZw7sdpUZ3XpD2BfR9oTcnLRVI7m5uRfY019o5h2uTth1Ot8E064j73jzNvBsYZuFvlaJVhVV1ZbSL1pF5flDmq5Kgokodw6s13xRFRFBAgcK3HwbURc1ERXia1UD+LEBbbfTRqGd0zARtVzt9kHP0BCgVbdoZQaRmwiNAMhdUQnQcRiDikuToDzr3r2hvFb+2t1NHBwIe/pnU8MBAoEbdpcE3Kl7pXBLNV+dX+h+/Gf8in5THWwiUgBzpNjL+7o7aPN1/eoFubprJwec3CogODICOpqhq1qp5uBqqMAUpsCIcY887I5fTPsvdoe30/5VGqZhnFoO/pWujOyEuEuQGMaEU4LIOMS+tKzl96GDAwFY2Or7uLujGuKP7/AmuNk+b/v2dQ/fim9fszoaXdGbFJgbEDqDJVYLzcsHRiACFqxmMQBQAAzRLZntqo9OigkcS7TkCUKyGNEJPJon0IDCDgOyIZIjmoN0GccG+xuSuE76Wnvvk5vjxnoiBMIUoNmkFDilwIGHIcUUHUHdihRVbUXeDAwQVHVeFlUVUURoxOh8Oa1rBsAUwn63OxyPbvb+/ftcc55n1apWzSugEbV5eatLRIRn8IOA47ibpgkRW917B3dHAyKO4/5+mHbjNMQUWrCvFcsjQAIm8Ns2kGZiUrdp3VQXPdDS7BYaXodYVcyNNlllt0BdZdZeQgG84RImjgwRIbqzOZmiu+TZEAMHRCKVCJaYMPTTDTyDCgVNUiiKGREvUgHK1Vz4C/aPEaCXE2l16l7E5ntQAq5/fB1V3IILt70Rn9MI+pm2Wexbm9q2sN7UyavIWso8L+fLcn66XM7zfFnzvJaca66yLmWdizuCgVckoxBpmgIiIIg7XdZFXYeQAoU0jnEMGKF6Zg/FFnQ0UiJuYs7buJEZ1GK5qja239XRw8CAGBNzwBAYAyn6nGvUVlIQuwyOARGGkWNCDsiBXFEFrfr9nUmxh4dVqkEEIK+qmsXcKXZZqYg+vTMEYCYk5ITEGAcOiYgVVd1UpSBiaAGljb6+snlITqG52Y38aDG/54fMaUy7eyIKFFWWmu9Ni8ijW7W6uonqal5bwzAT1VLM1KW4O0JxIDVBDMCjU8SUgFKt8HRhConTPg27P/zZH3DcT/ffhHQY9m/DcIgpxZiYkIkC+ZCECIaITLAbPDK8vaPjSDFgCmgGZliqny5axVfomaaIeDc6M6wF5gKr4GnlbYt4sTd7ryDRtyW98qatBNVGRvdIbe8P6I5GAKG1exJVsSpepJ+oBGxQ1LNYVWWXwewX+XRfy/2SR5QlTDmM36Yv0vjLU7r79vhLQ0cDUNYze40Abyk6xOwhFwjnIrCWh/O8iAv/JoQYmABgPl3ymi/n8+Uyny9f3N7aTU/NDjSxVcZnRu5JUUS87cNu2rP3oZemM2tBJNVNI+1ea6m1xJCIMQYeh5RiZCYUaq/QRU696S5u3rD3fXuzkU1W1uxNk3tumzkaEHOMKcYUsQssOoWCvSYRveyg652+vdqIrkW6flxNSfPU1cyAbKvZ+KLgAt7ama7Ox5Ytxx3EuKsaPuu5m9a0haGYuJW/dnQm5v4uN20kG+r+jGr+ejcvec7NFbj+9mr7+nkIV0DrzZW4ZaCgA23YPm9v7Y0TcDdVMRPVKlKr1CpSeu1BvUZa2mc3kKq1CiCrtrZPDmaiUgW5VdHua6b1fqyilbWqCRFf23A+7xwb1a6NgkIAasWSqBlEYmzdFFSNEEWJHUJ3EwERiJGZQsAQyRmZ0BgYqUaNCzZtoWOrb2UOgHRd0y7FwcEjNIsMgGbUCHPqjRd7dL8vol4FD7VP1ZY5CtdAzCeZHMwxxBGbzyIDIphlLG5aFdhNDAGMDLYaHNj47lbzzrEHq92dwQGBm4yfGDmEYdzF4XB3/zYOx92rn8XhEMY7ilPfXcAJPLKP0QPDOEAg3A0QAxwnOO6A0QOCKORqBFf6v7ecdEAiiOwWUB3UN9D44tjWypVJbzbzmWb6zOwGgGu2dvunDmpQKq6l57QyIRNk5SIkimxG7jvNe807nwcorHmQOBvdwU7dKL0yJG01zCpYxcCBCL31nHQStVxlzlnc4Yk5cGv9kee1lrLmtdas+tNq+ZZmiQiEkCJNUwSiRvqKFDWqUlR6sD+XdV3XeZkvl8vmvFvOWVXneRbR+8N9CmFIcb/fTechBs7F87KUmvPlZFpRC3jrhYY3ZJ+bWa21fQaAZVkBMcYYQ2iOkyN1HU/L3bLWx6alDyHz1u8D4So965SpSq8zCM82Grf0UEaCXq3hWiMZOl9DBLAJKXrN/+5ytKVDAAnDMY5MFJnBoUoFc+et32bP0OUm9LfNJygm2WQu61LWqhVubeKnc6rvLmaCiNdK+O1XTdB49XD7zMTtDx1umtE4tbrL26nemqGiIyJjJ/nNbb7MUuvT09Oa12GAlHxZn86Xh/Pl6TRfTpfL02VZc16riWjL2nBRESsoKxcVbhk4xMaEy5pFTaoHqswREYvUqhLCcJmXIe1EYUi7V3dvUxxvF5W5iVdD5UgOgNwsPgLgMIYYufu3qkXEkSfjrU42GphD59CJG4XgxODggq7kYQco1Ey2W2mFCMwcCTGgVYTVCHEcAgdKE1FEYHNSjhgTIiBhgI3vaRuxVTJDE3K11uOwWVY3UNfN/PUR2h3evv1q7y3zwqrIYlZrubhVyRfTmvNZZS3lImWueSnLSSTDcjKrVhd3da3QakqA7nfT/f2bb37+zZ//+Z+P0/H+zTccdjx8iTwQTYBBiQzrWmmV3uzlOPkffoVDhDEiETTViDmdVjyfzqenS87r+fJkHhwP5rHC0SAYMgBW1TF4DHA3EiJeCgW2l7RnSxfofF1jAfuu1jI1aaOIWjbR5ir134GRmZi/m/k0w7/+2/D9A2TlqjRM07Tbg6NVpMXeXuZh1YPOg1dAEAwMxAY/K09H+dXHfNjV04nS34T96i7lbJolZzAJMAwh1WxnLOfL+v0P3wN6c1ma45liZOLj/nDc7ZF+2npSc3oREIEZQ+QtrNLIHWuEV8uPFJUqtZVobdZTRM6Xs4iUUkzNdofm8qQYYmgFXF2kSq21FpVKVsB1Szp8RlPu3mxxYxlqraGExidsqdFd3t03tk0C4G7Qah1ej1snokuC7EZ9Yf1t8eoWdz/9OviNp2nmlZ4LbPcRd3zukcZIiUOznta0URsRi9gM8QaGWmDG3c21FWdXqVLVbsDyj49nNq0xsy+doxu67fmHzyyib377tndc0b67gyuYutFzcR5w91Jyzvnp9DTPl8MhuHPOay5rrjnXkmvNpeYqIqA9fbIVKXITk6qIIKJkwO7OWEUBEA2NrJSSS+5KqypSvaQ6jk8y6mF/F2N6idA6xGspAY0mb9LbECgG2ppPtXKa2NSzjRPHLvACb4xgj+a04Ls7OgXsZZsdW3OX1gIJ2sD3XGwITCFQTMQRBczAiYAZiDAwu7uIAQCwA6B3/WkbeaA+icABdKsRcx2jGKfdfmp9zMzUrJiJ1MVMmvWMy5PUHNannM8ULoAT1lU8mBYBdqvus2/rKMW03x9ev37zi1/8Yre/e/vFHxCPSncOQcXdoICKGyBUo1ZXdYz++oBDgjEAblLn0wJr9cdzeff+tCznp9N7pBSTAY0Qd05siIAYCQggBkgBoiDRp72nr9Gu2ymMLxAobsGW6zftJNzQvLvDXPEp07eP+Ov3uFTOgrvDsJcjOwS1aa2/LMtOarLKroDoyATIDgctBy3RyiMS0/jr6IBoWtWq18W1qLDbpOq1qtR8mT+aq3jxVuQQ8bDbD8MQA94dpttymvCp9WQExhA4cFhrGneDqFVRJCdRpC48sudCwCoiDSTO86yqy7KYdnGSqJRaVKu7lpLPT4+Xy6UsS6255tW0upVWzQS70rYbGHdXUXdv2PN0OuWcU0oxhlZsNI3j8e5VYH51d0xpdNeyLu++/x5E7w77w243DMM07YA90G0fHQNXR+pt31vr4M3U3kjjAVsR2U1osUUJEWFDEd2E9UCLAlb34raasKOYuHvW4gBqRBtzSFYRKhNHCgpgCIZQtKyas+Qs+RMR0o8Ph01G+HIF3kzW7rM/f/vMMlhnlQB8S1sEAFUVlbXmpawxhGnaqcjpdBKpy2UWkWVZROq6ZFO7rKen+eE8Xy7LclnX07LmXBy4cTDo0PIN3KzmYkruwoGGKbDRPBdmIS8EaI7mMJScZSUMzANTfHi6hDD89re/G8fdn//Rn3399qt2F0gYIgJTz4Hxtr+6uxM6okdGojAkmkYOTPsxEgF4dYMQCAnGgWMKgG2rajG/psvBGIKTS0U3jCEislSpVcDQ1dFh2CEhhQlDxDAghc48h9gj/pHbptryr8XBEIgJnQCpOfat3vuzJX+x6JqX1IszMEB0d/C9u6sVd5OSVUXqWiVLWUo+a83r+qRS6nI2rWU9m9Ym/fvyq59/+dU3r372Vbr/I06D4J0bl8ru0Cqr3k8YI6YzEsIY4TDiNACjS4XfnUgMqoqpPT09zPPl6cNvHj/8GnxFPzEPBG+Qd04r+IHCl467agTig0Ngj8GHBK3adDvE4G9+SL/+2xGpQc4O6LYGjtseg93lawzZ9tkQZAj4dkJTLDWo2JzLaVaBoBAMoOUyBvFUbVfWqdRowm4MgTsIbP/DPerP9TKBfOfjAPwBLSNIK31Yc1np8Cp99faeWYn2rRoJbPGYIQ0hhPu7u7vj8e5u/EnriQyMGCLFxCmHNCQodS0Z3IIqtnqhN0dDiO2LlsZecjGzFmNXVdHapKBS63y5rPNFchbJWqtqtW49N/naFmqHViVv6yjQqpDEGEPgBm72ZsfjXWDc76aURnCvtTw8fHRV0DcNO6WUCLeA8WZLALzVJ25CwCuufG5j0GEOUO9zeKWzgJBa8nureNjQbqtdbkjVvbpVM239pM2KiQOYM9mmF3IHs8DsoTVRIwNv6ZtFa9H6uXjlp+az2cQtEP8Z0wkb4/npHwHAJpBsC5gIEVDFqsla8ulyHlLiwCXnd+9/qKWUXL3na3nORbXOy+kyny7Lspa8lrysOZfKFMGpS3VaU2vzWkUNDCgE5sju7lkQARTQIcQYAlcNYhmREQM4mTwihh+G90PaffX6i6v1JAIOAIbck4QJ3MFbIUVHgEAYIiMyQmDCITKAixYHZ44cKCaOkbtO1bzlxCEwIYTAbq2NsIcQiBwNXNzcTRwRwoDEGAbkgByhueEEENiZodW8MAOmlrPs1xom3MpqbwOA3QX5lLJGRGbuzDM+l+hs9+bQKqD0aIHULHVRKXk9qdZ8OavUZX7S1jmE6NXXv3j11TeHL+7j/ktiUiQzWAs4wI6cCfYj7neoBlXgMOLbO2ACRsgC78+0Vii5qMjD+w+X0/v58Vfzw1+lUPbjSnHA+Ih+wLB3KAivAVGtb4REzuwxQMt8bYcZfvsQ/vr7Xjl/U9r0zOxr9Ox5KqMD2BbnFALdJ+c3QIgirIa52JwrNFmuOyAhQBAIYkMtg1QGY3BuxDh0yE8EI9oXtjL6K1gBwgmsYusHYCalFgicXt/vhwGOxzva+q3hNjpEPI7jOA77XboNRryojvx0elxyHsY0jMP5dDnPp1p1WSsiEQciVpVmLq/GLsa43+9bGwBVbXzl1kfFS8nzfHl6fLycTzVnKRXM0LyJPdBb3ipePfcWCWhzaisp7zdqFW/C6RTDNI27adxNY4hDFQfT+XJ21cNuurs7IEKMrZzIFc0hhkAhdpgJm7zlxu58xvXtVsc6tmg2FDtY3lwty4gMzsw79EDExOBGYO5OPdaN1N18AiZlNIBimrUTGdZ99ltj/9PHy5jKzXW+PKszs36ll/Dqi0K7K2hrHYjUvUjNJT88PrqZqnIIbw9HRnp8fMx5HYY4DFz0ArOp1ssyX5aliFbR6gAOUqupElFIbGDmAggiBohmSERmhAi1VBUdpzKM1dAoWIhhGqKpr3kW8Y8fT4zpf/+P/sn1RtIQXr85qEsIiNto5FxVW09WjIlTYiYMgZiwlf9QRXCnQEQ4jZQGFKWqrGK1WleNOoCDNqUdozVtPDCagpguCoieEALASF08joDArdAYOZEBGqIboQM6E7qz+9YLDNwUqigg4pZi/wnlcrvTPTPyrYJs2ysYQ2jMbNDEtUYznaYduMGrAq5S12vNqlf3r+7u7+4OY+SOBxFxHIEQ9iPG4PsJhwSvDUKAwBCZqvr3F8hFPz4+llLy5Vutl3z5FvLHkT+mO0NwRjCXy/mBQpnoW44rj19iGKqhGAA6cWvocFUdQRuoHx7K33633pSgbGClW8/bubztMw7YZJ4asNxP9na0yC7aEjTEVN2LoyxLoVMlH5/0zYAi+/0o5Qu/TF6PoAPY6Dq0CgcqZ5BvXR/JHnA+U1BEBKcQoY2hgxqqEvN4dzyGwMwIG6XYIj8xxBBijIfbhXebqekPTx/fP3yYpnHaDctcns4XEc/ZW145MzezeB1+IooxHg4HEQkhXNHoPM+1Vqk1l3y+nOPHcHp6yusiJYMq9ojdFum9gjvyq4/ceic8h4yhSykDcww8pnjYjYfddNjvmOPpvIjq6fS0zJc3r+/N3iBCjIHQEK6JmEAcOKQWNn12fH07XrCdG0HWg/NN6Ylu7q1dKfbmb2qqpqu4u3IIGcEJhxR7ZWizzpgjNNeliV+UUcxWq1lrrqXU0jSDL5QsnzsQt0rCn5x4E3O/maAIvdKHAyEGujJJ7RARa73pCBUsS72cz+++/yHF+OXbL3bj+NVXXw0pidRa8jCkwwGXEgGsSjldLud5yVWKqFV181qqqQ6Jh5hUpWrvYAPY4AmBESAsq5ZchrGksRgSJ8UAYSAVzXpelvrtrx+04tPp6Xpz45S++PJgICFsET3zeS4inYYfBhoGjpGnKRJB62ikEq5zddpRGrEKB/Fa0Q2gd59sQwQk2MbWDAmIPWgVmR0RXAESgBG0HG4ExADgDIxGCA5q2IL25A7s3urI9SC7itdiDgBdCt10oc+TbZvzm3fQpoFbe26AEAMGwsgciNSgSCdnmGBK2DV/2AuND5GGiDFAYgjBU/QQ4LDHyHCcMIZWDQFShPsDiGCpuFT89pGWVR4+fKjllD/+vzV/YHjHcJoGGvehiueMtdbLfA7hPA4T4TnRH3Lca0kG0RGIgMgJW1v1fqj5tx/yX/92xi2assWLen1P2ELxtw2/EQ3QA2qi+vYIv3gFY/Kq0vqjqamKOIDBWr0a30n8JSN+f/w6ef2l/LD39Wt5PNr6WjNLqapF8zvDf6v1TPIOhsJRYwImCgMGBBZ1VUVRJtq/fvXLlGKrANucM+x0IrrjEI8/YT3d339497e/+bthDGmIKlALghNCK9KxNGf8OiNrqaWWUkqr4GkvDzertdRSljnGwDmvuEmSDWDTKpmDEQViapmgG6on5ti5ui3Fs618JooxIkBeVwT64fvvmYMYASBPCMxMuJUd+eyxMYHXmdoBLjybJGw+01WO7r4VqjQQN0JFRNykzNqqOIpbkTLnRUIgdHQwyd5C7u3isXXZae2RgoGLupriVi++hedeUJafO7aoJP7Igt5sB6qooCraSmMwVZWlZjOrUhEwpYiI65qrSNOHX5bLZb6o6eF4GNPw6tX9OAxpSExUSpnnOQ2cElcpTdzeKsNsijIHbJaoAdke2m4isVZRQLvEBVRMqtUieS0c2AyrlGW9qDa4qjGFwMT8LEklwpCiA3brqWbmaXBmbqHClDi2gB0Tofdm3EzNb4CWlwEb7QbA5FtbLiD01nMIEVRAs8tidTbJZgJIwMZkzUFnJue+GUKKKYWByJncvHo9mRuTemuv66DiUqEWrAW3DC53N60/HttnLW6zL61ORwpIBLsBUoBAEFqRIe+EEiGMCZmAaTNM4NycI2j6LSwVoKFWghQghS2x0qBUmFd9OtfzXE6PTyXP9fLvtZ7Z3jGdIktgZiYHNMNaXQTcyI0QjEF3qcQxKwYrLbztiD2Z+3ngEL446C9f116Fsl0k9QLBW3XkDjw79sReYz+gDYz3e3h9hMjw4UTgEOM4DNrq1GHcAY2Ag2EExBJGB36MhwwBDJ88n/J8LEstVEQ/ov+AsADOVgVM0FzJMAIGQzCkteiHh4sD33//tNuNX3/1JoUQQ7gWPWnF3D9ph/NsPc3sr3/1P/+z//GfMTsFH9PxsP9iSPu745eBU85CRCLSwzutjYfaVvhDbw2oqrSqycsyi9R1nS+ncyA0Im7UT2uoAeqgkWNKof1ZKw3HHKZp12ZYU0Jd/fcQwjSMCPD08HjC8/c/fGCOx1dvh2FMIY7DEAIPKQamtht/ajkdtozv63R9dthpM3TtebQaoO6+leDrkXZr5RuajtEc3FXFtvzGFGLVCcFNK7gH35J4ANRNwBAZKbaOnWpKgEwcOFzTuD5rNG8WGnRj+2OgujmGbRQul/OyLGFMYUyP56fffv9tyfnpdEKA+1evAvPD49Oa1xgDB0Z0QDseDj/75uv9tPvm669TiIFIqszz+cOHH4hG5rQsc6kll3yZlyXXzp4S9EEVATcmMOrPW1UdsFYzN2q1PrPlVec5hwDIaXdA9VpldkBVQobDcSAYUnqemRzCOE2ONQRAaL14gDmaGZIheQi4dRFv6NoQgGNAwFbqvF1hLyeLGAK5kQsbAGJtHbqIXFbJJy0XXU9iYrUAMw0hMocBp8TMLMTWavjux8Nxfw8AiF5lVTD1QlTctayu4jlDnqEI5ILmvQkIoZVktyamFQu9xvQaO8BMzHCcIAV4ffAptWLMxgRbBhcQQQxGiJEb9ANArIIiuGR8mknEc1FNEO58INxFGBK2Ehu5wmmG9w/l17+7LMvDx/d/qfXRlv8Jbd4licGn3T4Nu1KtVK9V59nNwCQAMrtFkte7eX9/wstATONgISAgivTKSd24kP/5V4X/eGHGVsaFqTUUa0X+2z7RdgLbiNEmioDIOEUaIr4+giicFnDgcZqO9+yO5ij4psArw6PhpISaYiYtiZnq77AwyHR+GC9PdT7V4rPZOxJ1EFkAkCoBkvMElBAjc3w85Zy/f/dxnhd4++bV2zff7Hb7aRxD36GbWAVT2n2e9wSAUso8L8TO7KYh0ArGMgo4EjEhqnbPo1nbnrPZzcqz4dlU4UTUFJRATOM0BWYwFYkYRbUoFAMb0hBiMDVVaR5J4DBN+0YyqvT85mYKxyHFGJgDU8uvcuvwplVTtFLy5XJGhBA4Bt4NYeOSYBPMb5P25v8OrVngppxot7Rh3q1wUgd+1ArE9fqm2qoEdjjYbJcbgleVFoK9vlVLAmOCgIzems/xmAYmKlaRKNcsmxz3RdinP+Rbc/kiwiQqT6dLrTovs6qKqZldLpd1XdI4pP14vpzfv/tBRHLORDSMQwhhLetSsqFHgsiUOAwxHXa7aZxiiIGZAJhwmsbj8ZiG1h7BxUy3LtvY05S3JEREJORAotBGxG2zDNblTI1tbXo3raxVvKd49WalMQbGQDfY09RrVe+NS52ayaH2DxCtewtwTfJxBHB0BOBWw84dzFXBm/4S0ZEUeOsNY0TAZNjCOq0J0Vbc1J/nOAUKFLw5UYj0TOuoqaIYGoIZSnURt6Zsam59r1e3IeCbgwligEAYGbA3sEaOwNR8bYjctnEwdUIM3FcbAIgCAKg19x8AQRRFoVrLZAVmSBEaCbBWUIPzqrn6w6k8nMvj42U+P5T86PIe7RywIEtDr4DkjgCM6DGm3Q5bAmOK8Xjc73a74yHud7w6OkEKaEbmqIa3GwMiHnf05o4DI7UK63TFnq16SAchG0t2TVYGJhzJQ/DQXBkHcGQKIQR1BmewwTy6k1sBQGBxMAV1MDchr+ZegJRHSa+ziUpuYV5w91581cDUjU1NwAvYsqxPT+cYwmVeY4xjGtoc8S50+RSvvKgSsszr48MTMxBjGdBrKpON6S7EJKKIXbGEN1IeR28NAKg3zwIkjDEi4jCNQBA5hBAOh8NhtzPRumZzFV/cVbw6dJ1arbWWVpKrY08AzDnb1vS5ZTQROpExcwjJAIp2jhRc3Ypqfv/+O6nLbnc43t29vr/7kz/4RWu15K1dbet2CX41+Fdb5I7k6O31EHsAdGtCFVqxZURsjdQRxdDcc16kllbwMXJgJAYkMzW9rLOYiJqbN9eqJb9McRhCjIS7GBFpP4zqluZxqfnD0wdZBP4DByIy9tbK/bjM87/5d3/5+Pj0V3/zq8t8ETBzb336Dof93f2hlrxcziGEV3f3KQ0xMMd4yvOq1ZA9pN0wvpl2b1+9+eWX38QYYuBG9lDgP/6jP/jqyzeX9d2cHwxozSLVA4QAzl7BAZBbJ0hliUMcpiQqJmJtHXuLy5p6E1IImlop9aKZbRkhRBqnwBzSmAh5oBhojPG5513O8vH9bGDDwEQ4JGyhod4TwtENRLdkOHMVbXYNEWJsfaquAhRiSkPYm2IRAHDCDKhDEg2WgxYCd5eWi4jkiOpGpi0VY4y7NHFLiAbAWqqY5JJF63kxVagVTSHPoBVqBq0AjoECUGtBY47Sksq3eQe7AV7v4W6CNwduqiUijIMT4TQgIX48+ZJ9Fcvqr3Z0mBAAzbkqfDh5VRd12zqPNKnNEGE/2Jjg9REDIQUqhr/7CGL+/sNyvuQPH7/7+OG7mt/ny98xLAM9MFnaAWEkSoikFjQDUUgpTFN8+3ZkosCcUvz5N2+nafz6m9e73f7uHE4rLAstK+YCRaDqc5UGZviDr4aj7JmhUwrcGM8WjWmzGaB7TWAubtp/JoolIzqpiyJ4BMAYh3FIq+3MRq2HWnbqYP4B2SlU7E6tlvzkdfXqrgDpCxzfumReH0mzl/duxersLqAV0LWauyiZiOWS58vydDr9wS++nufXQ4rM3DpKN7SgW+m8H1nPHiJpybtWUUuWGKSRmN6Y9p9YzVeJDBKSUauDy8yhdTAhZI6BEMwtJQc1HxxUvXb46l5rLbG0vyPmlAZwCMzdenaiQAHUXYkohOgt6wRpSDEEBlMvOZ/PZzXNxUUGoheOsMNmOh06WNqQZlttV8TnrQ4upRBiiIFDCrGzM0gcEwCWljio1U0YvMUUejO6a1Kmt2niLbGCW3V7DolDq5zSw3q2FbT/XB2J51to6ZW36erbUaV+ePj44ePD9+9/uMyXlgNbSq1VnTwkclMiiIH3u90wDMMwUGAs5L2+MBLzENMQ45BSYN4yQIAMx3FEhOqnLAGJNiCG2PuX3mxHuPli/Wqh5zZ0x92eMxZ7U5kO9FQMmtS9v/6L2zPzWs1BG6ltV+uDPd3fbSvb1qxndx4br9Bcdgf0/ridAEL3RcBwU60xYpcl3sxsgE3vbWAK4ITON6avbYpMaEwRHMVbMw9t9GTT9js2qb46tAjTixFOAfYjTAMO8Tp5IAbETXmuBlWhCOT2UQEQzLEXnVPQXouvvR0iOlMXDzEhIJTqZn5etVZ9fDqfz5fT44fz6Z3LB6sPSIWoEDTTSUgM0NoOMocYY4pxmKYDM6cQUgr7/X6chjGFFGlMKOY5YxUQBXsRDwMEjJHGRK2GLzWpJ7VSS9BCSW1m9+RXRzPqYYme/rFVDXguioMAbBDMUa2lm1QEdxNEA1FHc8kmxTwYMlJC3qEzcgFAoATQ4nKAYOCy9QAwQwWzVWFZ18u8jNMo0lN3N/PwaTTihfUc4n43vVnndZ1Xz451ZovwlRMCh62BxvZcmuFrdrPV5fJNDRo0AMIIU4ixTZZxSHf7XQhhNw6IAN76gqq5z/NlXdfGnKaU9rudua/raqprzqbaQi4ppRBDraWUTIjNJIfDDpFQHFTL+w/53Q9V4cEgDFPaHeQ/+4t/+Bd/BiFstqcJpG6PHwVeGqdCeBh3Uxre3r9+dbwfQprSBO4uCoickgNc6lpFfvfut4+nR1Mx1UAckCJSZEYMKb5x8CZc5TaTQkgcUoy7YQJABVCzS8lFZc7LXNZ6k0XrV07hxYA5AJpr8zCvP306nf77f/HP371//+7hfZGCzEg07Y/jOA376XB3d3/YffPF27vj8U//+E9jiIvIWqv86q/k4QMPESIP43i/vzvuDmMcmJviwVvE7LDfDUM0WjDq4/kxcCRkMCeAXRrEfJmLibZWP13PhQ0hU2QARClFtHpoJeu14XqE1isrmtrpaUGmtTgRu6XEtSVKtMPUaqnuhkAh+JAQqLVyAxXX5lFo3xXNvFZ331o2OiD15tGEPd/dObqbajFQIEFUBnVwDs7cC291rTWgiSv6OqublB2Qk5EBAQbmEAfavdqPajKXs0h9ejrVKpe6FtORCYGQkQNVLUuZq9TzKjW/KI/1xR3+xc9RFUTcDKoCIFZHd1jFqsHTDGuBolAVLxnen5qJV8DeyWSIEBgOA4wRphGmARsbYAaXFYr4x8dSijw+fp/Xy+P7v15OP0j+vuZ3Kdk0aQgc04hIaqyGHBIhjdMupbTfH/b7w263v79/HWOYxqF1JGWilAZCHILDoO8f4IcnXgqo3SYEAwAgUhd2tjT9q0bwSkShA2DrxmbeCB4Aa/pHAQQGVIWqXsxKlVJoFVnN1ryuS/VWAJodsiEa24ImLRGNYqK0R5/AEgAC7QGiJQFb0WbUipYBDJ1B2x7r6lxsOJ357377/bzUX/z8m2maiDpm2QqrPlMvL/oaEccQEqK6VkOQoiqGm6ii85jXdax+E8B+iYU2WSwzt6xwDjyMQ4rxcNgTorvAFt5oAMTMLdowDHd3R1VBd9FWnKKleOK02w3jUEpe14AO6M4pjocjEdpavYjUWs4XzdWz0jDmaVl+9tVngzBXdhZu6cONv20IZQxxNwyHafdqf0wh7YbJzb026xkdgAsXLQ8pLYEFXDaF01a9CSIHRDRq1hMRoCHZGEIM0dxFxbznaFaVph+CG83nj1FY/yliq7N0PUTqh4/v3398d5pPokIhInOaJiQMMY7TeDgcvnj79v7+7mdff80cPl7OIa8xRWJuiIuZU4yBQ6/E2FYBNgUuhd4aJRKH3vwUkJFiJFJbIG/Vp7rppF7FAxpH3PRewB02bw++P2w1qyKghCyEDo7o4UUZWndTb7n8btQf8bXmZZs/6s3em4H2HgVOCKpAvfFDS/5sEqNmZ1tnY2veLoBhb/TR50i7m/YWTSog1bW6swM3WTcxhiFMLeG2YsihotVMZiRE3BgtjoQVSs0KatrLNl+PFGA/wJKhlA4zARp7B+fsVX3OWATEQAzMURQIgcmRIAZA7srNIcEQYUowpe4XqMFaPWd7OpU1l4eHx7w+XR6/z+fvQN+7fHBihIiQmmvUZOaIjMQxpmEYp2m33x/2+/3d3THGsJtGxLZ5A0CTWBihq/lavbb7+omop0Oj+VqQYZvh8GxNt4QS3CTWPaW6ZWRbb65uPVFcTdVNBdAAKqC7GqBBncEEMCAwRARiVOoQFhmQgWJjCwERUNG16de2yB22Isg517UUVbWmyOj9UD69txcV6mKK437XMu7AtKgoOAeOMQwptS5DiCgqpqZitWRRKbmqaim5yybdRepWe8laDNHNmJuzCtjTMk1qVdXL5fz09DSkYRjHFuqBrZB7ex2zrrgKgc1CTFFyWS5zrHF32LMzi3kV+v49fvstLhXXWkI6p+HyxVu3G7V8L/H4/C1s6wQaUY3ERK/2xzEOP3/7xf3uMI3TlEYAkJLRHQ0QEY0AcYohBrybJpP9eZnPKsVkris6PlxOTDQNIzMPHJmotSFVqauKZ7fzo6he8iKql7yK6VKymKo91zTZ9Ec/noUAZq2D8fWHIuV0/uHp6Yc1L+rGHJADHHYB9j97++af/KN/tN9Nb++O0zRxjA4wr+t5ns2MkdAcqgSkaTcx87Is7l7r6t6aPLmImOlluSzrrLUyUorxuN854Dgda5XT01/XvDI5pxAjh0jDmA7HvanX6uZWVBwMMRAjjwNECKH5mWzI4jpnAQABZg4ppHDj1EEr2t/WCTEyICkQalP7k2HYxGOGTffWoKa2amS9Ij0CgAcnNtW1BfRqKeYmkB0NGRx9Ppd1Fqm+JU/2mKe7r0uWKpGxzpGCY3Dcc7LRI0QgdwAdorGgJhIaQkW59ndpPXS9smbOM+YINwVe4DLDDx/gabH3ZzMDMXQAI3eAom7eqwcGxiFAYEwBU4TjBCnC66NHhjERbf5urXaabal0WWkt8vR0WZf5u9/9+7Kel6e/0fLE/h35UwoWd4GIciapYFZDgOPhGGLc7w8xpftX9/v97ng83h3vxnE4Ho5tExXVDx8epAr4BQHE7wz2lyWtkkSpt/C8OdRMRdsDNbyqxhwQWh3lNjJXBq/1g3Zw4Ei75uA7gGsrBaRWVd1WdkvoEMBRHQXBuAq6hnVB1ZrulActolZcTl4FWryoNxAjpAgQEWa0pQmzYkzjMCEnDnf7/fGbr968ur+fxhS4dUd1753OXtAuL/PcA3MMIaU0uNQiUh28lwbiVrOesBm/rfObipSSVTXn9RrQbhuEiJqZI1IrLHvj1rXp3mqL1FLzmsMm1+sIt4UAWlF67PWSmKj1hBYAqYUQ0Zwa6lfDywwPT7gUWqtyXDmW09k3CIM9JHy9d9xwZ689jIhMFDkchmk3Tq/3x9eHu5akpapVBXomLoIbIQUmchhjnFJaS0FEdVulupmLBSIHiMyUEJgdfGv+DVU1S6ki5/UiKnPO19a6z47N33M85w/c/kxLmWu9qGRzR49kgiYMftzvvvn66yHG/TTEmIhZVFubaDdvwwnmhJhiJMJaq5mu6+JuTTarKu5a1rXkrCIEyERDjMjh7u5YihCCisShPS1CwhB4GJKqI5qaVqstsx4RKTRVJgA1pEfmUMUcAEXNMXBHkbd3bGZI3j56jQ8Hgt7SHdqybcFxf+ZAoYsoupoHCIAMzEyqidW1mplAtl4rBGrRWsytx/eaSeoNNaq4WVkLmnEEDigslhzcKQEABmU0SBARSdk5MFyJWbcCBEqupIImL8jBXOGywNPsH89mrUsaQENEba0ndEaM3OLyniKMCY4TTAN8dQcpQgqIBGuFal6rr8XPq38447raw8O6zucf3n1blkc5/9rltBseU1ggphAGd5QKxg5kgM4hpjSOu/0wDMfj3f6wvzse7+6OKaXdNDWcYQ6laM7VpLoZ8OAYSyWxYPbp5N3YvI2p79bTDR0RrHlrfXfZ2E24toRCDATogOrUSMFeCghBGCCSAbuBGVYEY6tkynVBNeWd4QDaeuWANzzfQsFtXyZGZ0RDFEKLxEOI4xBCTGmcDvvd3WF33E8xBEaEXma9lYx8EXh/YT2XdXm6PBHwuE9uYbcfx900L0urHN6iQNjiIYgpMO/GkqkL43OfKOANVeCW76sqprWqiCKoCgGYSMt0RLDDbmLCaZp2u11oRhTCq/ujqh6Pe7ce4o9jijEQAzMmphGQQxhDoM2PDYwc0QVUPZOeGFfSn7BGuH20r93MmHifxjENP3vz5XHaH3eHEFKbLkjcIryRGIkoJUBspSzf7F/veDgOx/Nh/Xh5+vbjuyplzrkqiAkiJb7Qlry8lXjqzkeV2r7uWgX4DNL8qav/hJDY74b/8h/84uGrUWpxb0QrvX7z1fHuzTdvjve7AbFPwCpSVZaSl5wRMYUYODDzbhh3u31DMKp6uczutj9MRPTw8DDPl//5V//6b3/9V7v9eDhOh2n35Zu3SDzuDutaxhhTIEJHV9cqgqqt/nmnIpv7hQzE0LSJje0xhGouBtLoJFEyACyAWfUZnkVKh3iHbIc4MFN0RAUEBTQAcdAmxN9a3ZqquUItjf10QKDQc3IIyRVMQMVbleHq5N4b99TSAX0rEdMWi5shIjGFyLtD2O9iiNiap9W8LlU+5ha1UHMrRcTMewAFAIDQEHyi8PrwajcI0nB/vI/xWXT9tOhvHyCLVVNEbAu2aeRascBdxEiwG3A3YAw4puanIyHMK84rFAFzmAsUgSXTkrEKrtXny/z4/u+W+fHx4duSL5ILKDgOCkyCLGTmahIBE3EIabff73a7n339xX63u7u/2+2mcZymcWqz18xrkTWXZSl5zVLF3Dlm4qDC6EPb2F+EaR2fVnx/3mxkmwfeQn1o0Btteo//dLG9GjRxhmsdo3/1SlskMBB+cUxDGFJMMYY5+yl7ET9XA1PSjCbErT5bqIZeDVDQBaErDImcgyIIUgYTXdwMA4UUwhdvv/zDP/rT3e74xRc/H8bp7ZsvhmE47CKzd8hHiEgpPUtBXlpP91zzZTnvp/00DoTEwCnGvK5Sq6m0vEwiGochpRSYUgyEKFLRbWl7him0rpOITOAG1lCoiKkYgasYtpaWXXI1TeM4DimlYRi6jJb4yPsus7sGnMENvNH+HgJQQMRWSbMNTGDgABLcohe0mTTTyx5OLyzms9veCDUgHkM6DOPbu9evDnetK2ur1E8IzCEwDSEgEcQBEBuyvpuOhzAexrJKZaIP50dtISTTpRjcQNwNcreLvXl7vCLiH8vff/L45MzdmP78j766fJG0VjcXAXfcH95M06sv7/bHaRD1XHWrKyitmTQCxBAih8hhTMM0TW4qJbdaWe4+7UYiOJ1OHz68/8v/6S//5b/6Z3/653/8j//Jf0ED031AJI4DAQ2RYyDHVh1FRaqa+22b5QYAEaiJ24DaLmsAaiDWUhsNW4ZjqYhF9ZmXYApT2CH7FMb2x2DuWJ20xRe2wu3eI4PqJl6ymQExECG7U2jW09xQDVS9FFfzKuQAUAkQtZqp41boFm4gMDFyoGnP+2OIgZioFihrNi9qc0PA7l51q5a8Ne1tyYsDBZx2dTDk6e54jBy3WQ2XbO9Ozf47MwR2IkyRiDBGYMLDgGPEw4j7AYYI49AvSRSfZigC7fM5Q65QZeuYBrAu6+njt8vyeDq9K2U1FXcIcUCOQSyIuYuqIgVEZo7TNB32+7dvXt/dHQ6HwzSOzDGE2OQJblKKlFzzWte11ipmHq1wjGbD1sbiE+sJlxU+XpozTtYLEfe+7cXQHauSOYqAbr2SqkJVN60m9Tg5gAV2Mw9Er3dhl4a7fdqN8Wn197NfCuAFXJUrgVUI1VXPF/bSdmhptZqa0pHIY1BCA6rgkjMYIDPFEN68evWnf/In9/dv/vAP/rQ1P0fEGHs7VWr5C0QxvKAmXnQkzutyPj0FxCmmFkEy1YePH5n57niMIahUotZkUmOMMUZwC4TKGAK1TiTu3lpCNw+qiLey5GZihqaCAA32uxu6B0JEitybcROCO9DGN10JZgOn5twyISANLazL6I4puKfjq1dJiixZSgkxpWF8+9VXz2Eu7E1woMuSELDvlW7Q/numKLiXV4bWaAmBEJq2t1OwAJvUVk211rqWtZSiIqYKW/TphTb2mSO/MX34HLb6jzedPz5/iPzLL6Z1V1zVzR0iQBinN2m4++JuGggJQI0BsYhkqbnWUltJXZzSMKVxSgMTOYBziDHudjt3Q0R33+12qnJ3vDsejveH+1fHewCsorXKx8fzOl8IPDG1cpkhUIwBXV0cEaEFhxGuQfwubm9PoxfaZyJ2aF1OyFxb7tb17hgpcQJ0FEZE+P+w92dNlixJmhimi5m5+1liycy71tbLdDcwoJAUAG8gBUJQhL+XQr7zmXiCCAccoAcz07XdLbdYzuLuZqaqfFBzPyfyZtXUzPCxvbLiRsQ5cXwxMzXVT1W/rxCgYWBErb5EsswuV1Ec70FVT7yYCYiYp7FA0YRUqJYoFSuwAZKT2HJEIpyesZzVspXcUu4AxIECd7ub1Ke43fPgjEFARDEgGrKTvCqCeR/7UsLlzQNkzEZAiCmoWVf32x23OhBAgCHB3c7QlUEZ+0RMGBkIgRmJMAUKjKp2muCcjcYmC1oFzhNWgbGYCMy1KVwioqkz9szzdM7z6Ak076+fJtEijNRHjinuttR13d3t7Xa7fXV/v99tb2/2u92267rAAQA87iyllFJPp3POVRUQA8eegJAHwNiaEn42u0Xhd+/w3/wBtSXSmx6nKBiYGkHDV6AF7o1v19SUUSIWVCVUNFdthipVpBg4yAeMwABeps1ckWrCDFrTBIyTKKsSggJUNUQAY0RjRCCsCDqDmsF2f/fVmzdfffOLr776ervZDd5TxkSEITI5qzmi/y5Evr7DF77nOJ6enz52gXfDEIhi4GmcPrx9x0wMmlIKIRARqKh0pj0RomlgUqYUWBBMqxmkwMwMKqBawJZsZVUCqYQAUpoyMCKEEINbe1q9tJZNvS7XITBFr0NjZvQt0cUPuE/IFL78QrtU5yyl3m42r/c33/zyl1dFAogciBv7oNs0E1GpBuZdAF4VHziEELARhSGAa2yql6e3bnQAVHVdiSp1nqdxOk/zVGoWqbgirAvKi+u8eukM/2WR+mcOfOmnDh3/zdc7yYaiCEBhi5RCvKe4293tNgFnwaIgAHMpU56neZ7ybKoMuO36u93NdtgEDoaCEBBtv9+pq4+p7Xa7rouv71+9ur1/ff/qi/vXXvV5OB5/+uHt+XAgsC6wo3kpUIyMhlZBFQgRKlAGM68r1cUVdTgSOURWIQoASsyIUIuUWq5zYozcc2+mVBiAQAIYYhT3ZhQsn2FsxeqKBJzIvF1IzduiKAAxSiU0rDWWvFENVQfEEFJPFDD1iATjD5A/opyEaithJSRkTqm/fdVthnRzGzYdSkVV9rI51yszVEFTMHcLxMwAiYGY2DgYAiWMZtArbIchhLje3W6AL2+BGULAwLjpmBBcWdSTtIJkgKdZj7NmsVlAFHJVVcyZ9dJ3DEutGKhJKVOez+P5Oc8nNGXX7jUbx3qWmkLaDXET+9evt33f39/d7Tbbr758s9vtXr2632wG/6RcpOQ6z/PpfM45Hw+nKqbKQInDHiiZsSoahM+6AFXgH7/H//HfNL5qNRB3ibyNqW0vgmhMSmiBKpMG1EDaB70dKqrTzVkpkrOWWqsUs4AUmDASBkQyMDCmGrDs0oxWuvPEubG5uj62IYFECAzdFgEDFgRBNAW4vXvz69/83a9//Ve//tVvYowupckBiTAEXpSAmzhQSvH6Bl/k3Dddf7vf3+y2+23PGJZGM0BA7zTgJsvjtd0GqwLd0ueBa9kKtOppWnVIP322tsarHtQ2aHaBT5bahstvcUWel5jelelCIMIw3N9R30muUmSz29Wb27vXr/GqxIqIkV8Ms4EDCEsdNToubqLKrW5n7YxXMGtMS6EaQClVVaY51zwf8nzM01SLXpyOa6HVq1O+fATXP/0ZS3r9tovdfOHCWoBCUAAEDFELAqIV0Iqm60BUtbnmueTqROxmaJA4bro+uTfUpOjABVD9Hs2MiJhDDDGF2MXEzMisol2KfYrbvlepWbJYjTGEQFq8vaJ56q3i2dFP1HX0naPK1IhQDaVWADNFp/O8uj0DEjMxFgBqvcJqplYVxLBmkFlLlTkXIgzGAGayaA4ZaAEBRDRgNDEsSmYRgAASIhGQV2g5Z2urrsHW3AyNUISWilFAMFRadkYHBgwYvZsPlRDUDInJgQZUlzIGb9qkFxUFPtn9GaniVAwBJtd7AQXECqBAU9a5WFUr0uJfVZDFu/CwZp1Cok6tW1SLacHlBAgt9ZKLnMe639N2s9vtNl9+8cVmGLa7Xd8PiGwKamoK85ynMc85j+epVhVBVULuGNhCBxhrdZVbXIR2P5m5xlADZKSWZ/cuDEIlwsSIiJGNEEJQRotBA1kgi2RdsH0P2x73vaoaAophMc4QR02hxtnImCEYBTEVUK9PBu/GXnox1H/GxgmDS70drAs1xtD1fYzRbYVqU1pTBE+6EHk3SyUkIthsL5j1lSoc4uv7u998+83d7e397d081fMhoygjBqIuxc7BGMTIIQX2/ki3sGaqtZpoY8SDVhtLuCTKFwkqAsNWTGhL7sZaArYhV86MaObaxGuS+VKoitBANat+liFGpLu7m4FYq2k13t/EV682Nze8IliIXk+wDGt7tCoVzAJiQPIOyKoy15LAGPiaB7rUchpHBawYDEmAzOA8HnOexuk4zqfzPEpzmTxwv6Cun0yq/5gg3Vbg9M8cZJJ0VDlZlYYQYzHozYJJITAGJCKTcjgfx3meai6NKhC3Xf/65m7bD4SN8RMMiFhVp2kqtcQYiDjFOHT9tu/3wyam1A1DCvF2twWVN/d3Q5fO+ZQl80CcSIqYVeddQVSzaqaIgZAAqhtpMDOJUmZTYSIQHafRTCOHBpmvj4BUQ1ErEMUADNkU60wqKFmlUh4hTzrncjyPxNRvEjE6DgECYKAKdfadV9GUVRApsDLrloEZ0KoZPEqWmtVUmQ2WslBTNCETNonIkZKqKCiBEDrnSzJj0IQGhMFMUY2g9ZaBiap3jiIAGqMyXZe9mKFIczRLhTqbqJUCaiACalCBBFAExPFUj9n8M1wNdrEGnk40sCol51MuZ6mT6uxVjWTVtJpVtXoezbS+eXP/5s2Xr1/f//2/+Juu64Zh6xqQtVopRaqcTufD4ZxzOZ0nMwLsEEPobpGiYG/AuZRcpbrWWnN4ruY5Wkfjlo590hitC9AliGxdtMiw7ZEZhmRM0CcLDH3EFDAyRcbI2CdENGY9zwAIRWm0foKtls157JGYugBQwzBpNZtQDcUUVRtSKC6XBwauH01oTJSIEGoGNc8FdV2/2+27YSAiA8i5XnIVbctfRwsN9nf3m3UFX2tq4u3NzddffrXbbve77Rgy1DNYqzQKIcQYvNUqRnZkE1uTvztuBGimagbOIWO6KFwvrufSx7ggzLhYkp8Rpa87KizJo9XhX169KmpBAmbuB46RBFSAtxvuOrpWCVhc2maJTds23JBND5LQAGqtpVZeyfJ8RzLDhoS2P/dsxVzmaR7P8zjO41yyC+Zd38LVVHpxd9cO5NpW9Dkree1husP8OSfV6UsQzQknEQFRAMxADMS5TERFJOeSS3G2lwDIiDEE171aP7s5YWYhBPf116YGBAqepicK5BVuvNtumAlH40qQDJyVr3VDIYAhIRnFFEMK7gfVXKtUlSK1LilEY0IASpFTCvQiaIAQVUCRFZqkOKihCFRRrWqgHIAVOBi6bCu0rlmOhI0DcHmWZoSKKMQFSVUJgEzQ1KRMKsVMW1HAmosylZJrpjyPIbh4gLN5elFH9R4ZBCCsAKrUim68a9PEe7ddNosIXpT2FIExA7Nlt5UGalCquStqBtVZVgxUL+lOMjA0uloFbjqbEr15gY+AedeuvZx95sLGpYiIgWFKKcYkYqLispHOdT3NJedaqjd8BOIOKSBFwGBGalgVSwVRuPI7r9YlwE1vr/fSJ4vBUoQuQmToogXGTed2E5igi8AMXcTIGAgCQyBYo2RE8Bp+4kTQGcbq5KpmdSljWrNWS7Gjr1Fz49IsTQMG3U/zdFBrKGcnWfH1uGSrzfTlesMX7FjX1pOY/st/+Ievvnzj7u/h6fTu7YfHh8fD0wMz7Xb9Zth4zjSlFEL0sEUUDE2NQ4gAOM/VqecRUUVcqcCQzIWjMVBLToKA1+0tJJpLQUPzvqEF0dDkJy+jgy1mh2UukXGEEPHujjdbQDYkIyrEKb5gLzWpWrM/0aUev0itgShyDBw8yDyezyJCNzfMHEOMMYpoEaFaBFDUsoia1py11ufjx6fD43E8naajP31bSkxXPOrPuo6fGNK/+HgJhCBQ4GShA1IDVOgF0wQxC4eKQ7EsNRcZp+nx+WnM81SyiHScEsZt398O2xjDEsuQWZ3zbGY3t7dE+Pjw8XweyzyXOTPSbrN1AiRG7GLY9v2vf/GtqLx/en+cTqOOo07zlA3UDFRUTWNkZHr16q4bOsmj1nJ4ytP5nMEYSc1qLUiwG3pm2gxpM2z67jJ2Men+XquqQ0U1l1r1dKy5aJlNMsQOtltIFcIAtep0nkCRmYlxf9d3vZO9tzAJTMAmMAKdzfA8mwrM51KL5GmuuTBTCGymumgKqMnp+UMeA+F03vR96lKMzrqGyEgjAgFGBEgtSNbWpa0gRSQXROaQ0FMR5n2mbfifRvvucV0BLcfonF5Ma0UkNEO+jrpdXAinKFL1eI6w1U9l0WwtchevDkRUV4SZS5nG+vh8eng8b7e3MQ7E4ePjsdaqks3ERMx0mnQeFTkFvqWQumFvyNWCGObJarU23tmdPPjEZwgM/8UvZHeWFCEE5ACx6egRIwRGakxLQMtXIk81uiy1eYpJFJn7EFLX3SHdG4IA1Col51zqOGfQwiJsoiiotXUiqZpYa6MC9+FcLLwRIxBzBExd6vs+xuTcry2J5QVEKs0UL+1R5pwCy8p74Xtu+kH2N+JeStHddjPPc4yMSKaqWkNILXnPBAC2KhEBiGqtknMWUbPAhGsBg12v9AXOtMao2/aB9cHbxfwvv2nWc30RcN1yrcGrhgQcIEQgRtc/hZ/hrFfKCNb0RRTA0HO/2JJWqlqbvvIKYy7Vf4DtddVacqklZ5eVzLVWRERkWPCHy0z6nFm0z377s+NldujPQqNIBuw8ZWqsQBWoGFVDMRRVJ7EuJZfafE9CCoGZvIds8c3NFaGrgXbWgTvjJSNil1IMgYkBrNaqIgQQmLsuGcBYzoZac51L9rYIR2RQgZmQKQQOgUlZQVLkLvqWj94yT4gphhB46LtNn1bIZb05nygI5lIYSOI13kCAXuqLkIyIrBYFAGJgBo7IsaGKKM51ZqbilG+mIKZiVjRXFQUBEmAA9u4SBQNSQzSzIqq5jJiVUAAjGwUjQEKsiEQYYLV0V3l3VRGpRIyqCAQaTF+guqJQ5DLffRZ6SAd49ZFXw+/OU1sF5peHvlBWisUl0jK4/Gt/6xcoqjmX83kep7mUagY551yKSjZzIWeTimrEEIgTcUSKgGRC6hw/YqVaqSbNu8VPJigiDAn2A8TgCnoQGImc0AT9KxEAoPcdES39WU3aGRYL4rOgvaJqBlarlFJrqVIFVNgTMA38/BwIu8RDqg7/toXvZTZeXrLGza4LtEoQNUsH+MmHvqiWDxy6GFWDBg13YeiHfujevv1xmqa3b39kpq+++nq73RB1MbJ3CvmeVkr+8OHj+Ty+f/ehVvnyi/thM8QUQ2SXmhdSxfYPvLqDWlNdyy+sBf1LsGRmslz9mnpHXTqmkJphNjBBI1BFUQDznmVsXTRXpkck1zK3HxqIbkwcQuhSl0IKHNgpJarO0+zdzdp5ElVzyeN8yjU/Hp9zKc+n01zy0/F5nMYqdTFya6/viuP/R7mUf/HxYjWBARXoFauHKafaZw0n7CboO0t3xlMph8PxeRoPx+NYy1QKAHTb7mbYdSGCmKEJikid53kax8fHBxEZz2cifP/h3el03O12/8U//MPXX35FANM4v//wbhwnNOtiuL2/DzGkTTzPJ/zw/fgwuvvmXGuiqrmNB4L2iSmlm80X9M3XtUIpWGs9jyMFurnfpC6+eXWz22x322G9OxGdplKlAIgBeKCfBuRIpRcRIwJi6/ow4E7NbquqWa1iANwBsLlCGKo5L72KuGOpYJlF0WwjqJYMwBBRAJTQGruMGzrMgHC2PM50Eg7z2gEHAIBIHrvQSimxAC1gYGJo/nkIM1S4q/LfrHe3wC0NYvNmYs+uGHgYrsuUsnUfJ0Kzpn1s4CuigUqIlz1/LVF3CVdPPEAL3eDwfPzf/u3v5nn+q19/1XVpnIqoSmsM7ZgCc99v+xBS7DaAbBhEYZw1V3s6yZzt+VDOYy0WbVGQfmHlAULAFDHwQn3QHgmoGSkqGsAi3kh+t/5AfOcFWDjOtRYpMM7ns0VRUdNacp6nUuU85YASaUYqyK4zbwbaUqXu+wCAmoicT2dEg/mMJjF1Kaa+6zbDwMw5ZwBommxL6gWW2NH9K7fJ65L+RM/dGWcNDSkRM5/Pm81mMNPHx0czKyWLdD5C16tXVaZpGs/j4XAQkdubbUoxRAYMgGa0hjMXb86W/WS9zKv84bJdrnZ0GYwGSSypYVPARWO9bTbmu/FqYi4GZuHZ81eWsBqd8pqDc9L5GJrVKoS1UCVir9wptbqO+Xk65VJO4zGXkvPs7B643tKLA6++/mcfLwBV/OQVZ5txv7sAZaMMlIGKQlUrVeZ5yvNUSq61qlQkCsxdjIxOMKNmJCIl55JzyaVKdQ9oGsdpnFJMm/tXQz+YaM3lfBpznhEwcBi6PnZp1hkDpENyoNw1YZgZFZMGIOcVx0AUEbvUd7Gfs4xnyYVEKgXqu9T1abcZdtshhIvv2YLuiyuPhBASERuyiTRWdiYKISz+hU25mJqXnrgshCgAIUijhTAwVCNRUGMCMmAgr9Jt1g8RVwDMHUmsBlCdSG0BmwyMEMUYEZkYFv9pqSr2bxGBHYYqGg0unVTuNCwhGbj9vrzQzr8+ifWZYBP9stVqtY9b3K7FVF1s2hIHLvmHUsrz8/H5+Xg4HGvpipgCqLKZe8DMIXLoKCQKyTyIseZy5mJz1rlYLqbk8d9n5jkhMLYu2fWaPPu7JoO9RNHdcSUgA12bqC/VoAKGJll1akwhJWudrApoBRQmCaCrmvwyhMs50UmStNaCYCgVVFPCQMHLu3Gxm97k1gyFAYARNRThJd8lwCfWU0Tr0iHnvuput/37v/+75+fDv/7X//p8Pr99+/bjx4+/9DpKnxwEbKhSnx8fD4fj4elJVcvrOxmSN0MXNbJCOmMdAYJWBUTRqmqkS4fCxcFstlRVoXVG05X9XB6LGYCaQskCiGZca0O7r5y+P3f4svDy+D51234TY0wxBQ7VVEVc5GyqleYxlzzl+TSf3z38lGs5TifXO1NtUn/rlvBnz/v/P2+0eQ+Xc01V/vB4KuXYdT0SZ4gCNmMpOD4e31mdz+fzw4cPc611ntBgE2IgejUMb/b7PrGZSFEp8vDw8Nt/+idmenV3xzyYqEi1c6nH8etffPH1V6/yfPrDH/94Op/fv/9ATDd39yml25tXMUYg7Lr+3cPbjrBj7CMiIrMxx6++vOXIw7bnyIksEAz9pu/78Zyfn8+55E1nxHSz38QU9l3axBiuskZDl758dSNWGyWBOcACZuBuiE8IZweCthlbkWoG3DRMcAnN2uzyudZ2DVhC5AVn1wVmtMXLv2zgF7MEy7hfZ0wu3soKuyx/a2YgqruhC1ctK9pM8+o5uvYVLQLoL2fLcm5VvZSueV2yT2rX30EKnJii7wDuZyMogSoYgjGAIZRcn54PD4+b9x+etrvtdnfHHEMcAEMMPXNiDoaxKpdZVWGuUAUOJ8vFng4yznIeIWeiiBRptY0v5+ri17QkGiIssjKIHkyagRkBYAUQAxEojX5PmWyIUsXuuykpxFxPNXkFtmpT7clikey2qwR6zjJXYFxBvuWp+UgDihiaBUNC3gyb3XbHxNM4IeCSOG1o5NqeaWBeguaZuOube2E91VScT3M5uq778ssvu65LKY3jeDwezezVq1c3NzfEiy4zoalO03kaz9M0mppINVUEC4SERiBoFbSYmikDoqfmreUlm8W8tp6rY7jejC2p92WATNWqVAAkKtD4sto0bVP1T9iy5W1ArY41JEcZmIlIDUy11CqqKBUKTnk+Tqfj+fjTx/e55qnOBrYgVMvTetkzdO08vDztujn+RVa0xQ4vywMv/sRyVNWHKeecNxApoJEZQsUqmMf5oDmPp/Pj08fqrC1IiUMC3MS47bvIBCAqIlrPx+PbH38YhuHrN2+6lOZxAgMronPdDpsvv/jip5/K94+P5/P4fDj2ff9ltxmGYei3IYasGQhTjAExEIbWLQOp49d3+5hi7AIxRQZG2Gw2m2ETaTSpOSNaIaZtH2OMXQiJA1/dcgy82/Rq0hiyGsSGACAOX4ICmLcyL86aiQnAqiKO6/ism/HiFwIAOlO1itpaA2zW8gVtyl3cGFvxJLXF6pqKtLaLZZT909u8Bf80E9WhD2vID8trq6/UQm976QRcnKh1/7j8yYuN2VqATy0Fg8tfeS+ULWIkRoiqMo7zeZyPpxE5brZMlChskCKH3o2vIamhFKsKU7EqMGfIBcZZx0lzsSIYmJr8PHxmzbXxsJ8vEVRAUzBoqqtZoSjMBWYndzWNbLQxMBk4U9IiJRghMSKvZlkUAsNtbwb27tBaq92TXcqu1wft9WdtSXWpG4aBkGqtJed5nnFppXEklBgRXHwc6AWC2I6Xeu5Pz+/e/+Tc4yGElBIRpZT2+/3f/d3fHQ6H3//+98fj8fHxMed8c7O/vb1BbKwhKca+6+5ub8wsMJkKqwWFVCXlgmpTlRgi7/bAbCGa58KaW0AXI7S4nJ+OQbOeqCaOePouDdZAekR4gXS+NDCLhdaldN/J3ilSiLw0GKVERF7nMEu1qk6nO9U6i2SpVaqq4PUZXljBzxnrK7v34lf/eQ7oJ2cyRAlcKh1qQREgAAxTPuRqAUPAMJ2nx4+PIaT7V2+6lO7v7oZ+8+p2s9ukFAjZAgEB3d5ufv3rb5kIrOS5HJ4eSy6v7vZv7m+GLj0fDm/fvf/tH/5YRaUqhdQP+8122/U7DmEwxRC3/c2222kPZVOJuO+6vu+/evNF13X9pg8cYiRuMCQwpkCxlLIdBmLa7/chhO1mk7ouxW69uxj5ZjcYCK7KvYZLOsGLeZadclnABia+Lt3DWTIw7dUlMl/Go6GNTffyRc7SP+1FSV1rhFhMsHcWiNRmbhdfs/mll23fJyD0cZfii5YVaJ/X+gtsdXXXM7ZR/oz2wKL4ZUBoaKaKSKXUecplLlKLU2QtLZHNyDXPVq2Wmud6PFvoiNJt6LeIHQAbshiqOqkNlkpVYMxYxZ5PmosdR51mAwzIASi0W36ZVTGAIjhXV3MHNTYgMaxKalgExDBXp0gkUZiLZbFcLRdgtERl19vffGmM8OFE44xvn+00Swi40rj4wBPCOJmavX2y86zHUauakSfZycDlfiKYSa2IkFLqUvzmF99+9eVXX7x50/dd6/5C30fRk5a01tK2aBjsT1UsGdjheHj//v1ut9vtdr3X3zupewh//dd/dT6PDw8P5/P56enp8fFR9avNZmDmSEiEMXDXRYAdADCTqpBqEIuiqVbMOZ9OFlNUxBh1s4UQINCazr5yr5r5x+uNqo2FZ8LaLLz8idnKSdH2a/zMPmgrDOxl8QDBixaJA4fgK5uoVDHVUmqtFTmg6iw1i2SRKiKqPytOfXGVl4v99Fd/wl7+p4byL6YpYmUu7KKnQGQIdDqep2l2lurpPD8/Hrab3Tdff7HbpK9e326H3e1+2G6iN28RAgPt9sO3334pVeqcS87Hw2PJ5de//NXd7e1Ux+Px+P7h4Q8//MjMQ7/pNrvUb/rNPnVbZhYT4rDpdptuJ9nmPscQNpvNMAxv7t/0fbfb7WKMMTIxzfM0z3PkkkKqtU59z8z7/T6E2HVdDCmFS0dHDLzfdgbaKONsibCb0fSkil35ZeAupD/0dS5d73ZLNhtg8U/9vUsUv7bM4WUfXrzKq08DQmIKZia1SWYtodMSScHFtXRrH2kbwwuqnnU8l/m5Ws/VO75MFVvLt5cizsVyNWVDMC1V8pxLLiLVtELru1qjMUMAJlRRqZKznCbrMlHYh25v6gVeqqaiVsVKhblYFRxnKBVPZ5uLniedi8YUYuyAeN0wPrH7RWmWVh5RaijCWehcsAocM1TBMWNVnDKUCnPWUiVXyNUS6S7U+53d9xAZH0Y+z/ruSQ6jpSgpupBB4/JGtAOAiP30oOOs59nElgybjxgRcTRTq8UAYpf6vv/qq69/8+vfbLpNSomIHfwh9zqvdDRgebzr1/W4rliC6z+7DLgBAMSYhgG++eabYRjev3///Px8Op1+/PHHzWa4u72RWpjQy18upS0cmCMiO0eE1qoUABCBvAX4yuW8ml8NWdBlPl1PLBMVVW8yBBGrVRBcIKwx0V5W0Uv0ExfSeC+CZyJGZGoXLCJIVGsllxNcLktNVaHUkkuuUrzqfJnQF99k+e/Lc64h3GetI/7smz99/Ayt/hTYNTNnj13p7hCw1GmaxxhS4sTB0sChw2pzsQhcIYhREZipacwBonHUzT6N5/P7D+/G8/mnDz/WUt58dbvD/un08HB4/On923cfP+x2+7v718N2E/s+9l3sO2YuWKzg3as33+Rf73aHrt+FEDbDZrMZvv32lw7+EJHrLxB1IeRape9LKTXGMzNvt7vA7CUkSC8qlgxazOl3u1i1hk5d8MklhPU19cKFhMUu2moALwwyq41qn7h+u47QNWZ07ch6OtQLp+CTYYE1LPdCeU8IEeGng75Y2cXTgbYdEIB5wmW1qoit0I+Wdy7PRw1USx7LPJ4P7w4ffzef38/TATQHvjy89aOg9TyriM5TnWetSqIs1et51EyrQKlWKkxZS4XjWXPRh8e5VKsQiCNzoKVQer2N9SmI4g+P9G9/4qIkilWhCFTVXFHM5mqqUAVVoYqpgvOpq8sDkCiWeYafHoEQ3j/bmOHjmcYJQqHATZYbln5ZRDCjWZKipQ6MofpyNVNVIlnAFjFcdM6RkKNrNzUPji7OJizz4Xr1fTK8L3PuS4PNS9NpANj3fUrpb//2b6dp+lf/6l8dj8fnp6cP79+9fnXfJ655ZsIuhhg7IkqRmSmERByJmIBAq+TCFBFairsRyBDCgjERrZ2Z6uKX7i03n7nBRiJSzRoDrlQg8r2ClwTpGqG8jP0RvFLVc7ChMfkyY0CkKgKApWSmEENcaj/N6ebmksd5nMssVpd84PXG9AJa+c/PCf1lB16fycBEva/ZAMDp3eb5PI5HGIbYISUb9ilFKjZmIwsFU1WaBNGQCRnQCIF73A9dhfPbhz8+PT59/8N3Uusv//qre9q9e377h+++/933v//jjz988zX8/c1ue3vT7zbdduiGgYiFFUv44qtf9NvN8/Pz7YcPzDwMw3a7+c1vftN1yWfsOJ1LyV3n5H+qaqWU0+lEhJvNlohEMhgSvYht7SqcXXoVocH6gBePb2XDXgLz1k8GDWVvNvHibL54pI0Vpi3JyxuuTMPy7NtQo6EJCIIBA1zM+6VMEUFbMYTnwdRz0H8qEPEUdPMmSFf9MlhN5WLW3Va3vdIAVMREjs8fj0/vjo+/+/jj/6z1LPkDI4TNgERrBhvACQfc1TYRPY9lGGupoWqcc1FRr+wqFYpALjbNOGd9fCpTru8/nKvY/v6+6/sQuxDislSvEAsAABCFf/c2/E+/i3OBIs5G2IquwczL+7iVBbtaXkEQMEGrwGZo4wS/fYtq+PFIc8XzSLni6nHCug1Amw2BIyEMQ+iJjufpPE1gTlyBnjpTrYZQpGapgMwhxdR1XedTaB0Xu37e14vu5e9e6BoNfX9zc5NS8mj96lk0e5pSQoRXr17lnB8ePj58/DDP88PD4/k0Od9f11HgEFMMgSgwMEEIEAITJqaYOohBmauqVSAUBBeNEWwgxbJDaAVQl1Rb0FoDrz1uAAQAgOmSY3Wie/GCRyOklcjn6tYvqYMFrfXdwteYiiiAoDhpvbcqaDGpNZcy11qaR/Cp67A4PPBijq8nvfI/bQHNrv/wP/Zok+Z6ARJiSlE0ivd8IAHgZtsDWNd3/dCZmYgFDhTMsJ6nI5Ih2jT3C+sLNBp2xOfTc5ZRYOYOkHHW82F8Os+HMZ+QbX+72ez70DGwHM5P1fI4j0R0Oh9zmafpOOVxmqc5z8zBy5HP57MLSquqW09ojxLAbX0DogkQV8fy6jH5atNFRWuZk+CaM7jkD0yv0t8I3MKpJV3yEsy5mNn1y/JNQ1bRc1BeheinWN67xhUtblwCO11D/AU7ag5lm43OGP+iXsInb4OV3AVY4y0A3yysnXVZ3ouf7eXcUqqa5PFQ83h8+uH0/ON4+KFOD6azSTHC9bpw+dcMqH9jKlVKkVI0Z83FREzUVK1UyBXmbKdJc9Yxl1KNUyTDvu9SF1PkEMjlcwDQQJmusDaDnGWcahETafw70BBec30SMUMn8nB72miYRAVNkStURQWYClbxEjhysiImcq0LDkxETv+WYmSiJsGBD6XUYrVKRVRvNQMwUKsitdZxmo/nsY/J+mG9YFwKO5bZcD1PPsF1X7KE3L96lbp1J7k+mjO62QwAw7/4F//i22+//V/+9f/34eOH5+fD09NzrTqeizeMdinttpuYQux6jQG6hJtNJNxFRg7WbRRxLFXMSCqaOavjBTEAJ9ktZq6o49UlsHIgXYpCkJgCcxCpIpxLnufZdUQAgZg+DXcvEXlLqzFxIEYgVa0guRZWFTFEzLVW1bnMc83n+Xgan7yQAAAA6KXVW+O7n29WLw2kfWJ3/5PcVGdNA7xOrHHg/X4bk3nNmr/U96HWGw5MLs6OaAa1iML0/un7x2PYdJsQHLVeRDQNzGyaxlP5WCj3dwRGh/LBHuZ3h58epw+80V/+7Td3t3f9bbBYvnv3W/LmLoPj4TBPcwjEgU6n09PTExF1XXca+5hijFGqqNk0jaXmwI1JNTDbxY9r/37+FBXEoK52EwDAaI3ZrxxDawFyi+xdWwR9yV6MEl4qF5bAr6XzwVBb+IKN+NxXIhpY8/qsgTQOA6A3nQu0lK4BUEuGgu/h6u4kqOeyEMr1IvTl1jYA8+pCD9p9LdBiVJcJ5fAqqBq4vth0fqx5enr/78fDu+PzH06H77QcZH4gRKKAHEwSgIs96Eo8ZZ55JzOTPM3zOB/P1UjmLCLqqjo5w5zxPNWn41yqnueKyMNuH2O8u913XWrsENY690QhJl3ntZmdxvz4PCJ4W42gVQAlEABTqwamjewTwEBsbRhCBCaKXrsF4JkKSjEm5hhTCNH51GOMfb+JMW632xDidrMNgadcSq387//tPGbT81QKAIJUcOZXszzPpvbh4XHYvk8cb7a7ZSJcUiM+ya5EAgH/rO/ZPLJrUYRPVy4iAKSUzGy339/e3c3TfDwea5VxnplqzoWIzPUGyflu0QAVSZEI2Zwgas1c+y64XlxTWW/6lA2HNXN3Epu03WqtUNUQ1a2nN6VeXehn4SVYd+yLV7sUAq4z8yrCgYVCShfOi/WTlv98stqvn+8n4f3nXNa/8PgEjL7OsvmjY2JmwoXFz3/vLZK+naALKzW+aVGDIrOZUNtUfJmDmhbJGIwNEzIYKNYsE7DEDjEESpR6EpuziE1K6L0Qdh7POecoIQjnMokWABLBUnGcTqUGETXTOc+1lrroZAVm9+GYORTHoAsAytX+vcbAsJbfrHlvuMTIFz//8perj7h4b+tasAXheuHpLlXa127mCp9e45p48Z2XwAzs2jdpKIEto9woHAw+EW1awq1mzvyzlotof9I2CX+xTVMFVSl5EsnT6WOZT/Pp/Xx+X6ZHKUerE1g1IDNq0kKICC2N5k+0CZwhwKIWU+vaeWmlmIjOGeYZ5qJFQA0pRCJOXYoxhkAr9qaKRKhKgOaSIutmppJFZjQBUDQBEwD3MU1NALwWwBp+7FKx6CgyGRAiAwYiCikxUd/33hkYU0op9X0fQhqGTQhhs9k6zs7MFHKppUsdMxGAmZiKaV0KFLwws47j6Xg8zPO9l2m+KCO7jOKLZMYn/tEL61lrzTm7cfkziaeuSynFv/6bv7m9v//hhx/+l//1H8fy9MPbtx6ubDdDN3BIGCJs+pAnVoECcESIhNsQCTGZmzAGsBhiaCDkosAN2qRurhyGdTm0mN1ARMZxUpXT+VhqzjmLCDF7TigEdjKLy996kCRO51MJ0chcNRdXfT+kJmfrVl4yLN6BrnPvz1rBz7ugnzv+ItN5KfTzn7DVybzgDgBE5MDRwqJZagBmFqGpRxmApyAg9QwGZIYgomepS9quVW03AGu4YTBWiGCgMJ/r3N/gV/sbEfU2gYfzH9s1WDuBVjUzRmZg9Z5xo6JBZ377/kxEvvKdOcZzM0valJyy6zAmRFQ1wvDq9m9fPGMEQGJaOlbMxFlIvPzbAAEchwHAZRWYr83F3/S/dIyA1r16GS4EBG+8bh7fxcckADDUSxJgvaplbAwb6eISDjeCRh+/5W0GaEifDryuoCHCxXD6Rat6zZX5lxZpq0ot81zzeHz4ruTj84d/l+fH+fB9nZ+kTiBzq0MwU6kCIDWDsUcggNqUd02BlMgAVVSL6HkWC5qzVrFxrDnLeZLTKAYkyCHG+92OA282PTN1CQMpMzL5nGQRk4opXurUzazWxzr/tGShGmvU4gS0kpu1ZhGBAImQAzFx4BA5hL7fBI77/U2Mcbfbd1232Wy6vu9S6vshhJC6npBiSE6YhIhznkut3+++67s0nq3kkbVyQATwgkQtOefpp+9/P52PN3388v4+xtB1HcDVtS2b9bIEDQBeCGV/Yj1bENGyVBcekPWDLm4t4jAMt6rH02mz253HGRBVdZpHIstlrjUiGLdWDzQAMSBb+gxswbJWCJKQcHUoYJ3QbW0vptRs6aEyVG3Fyd65deWXrX7DZ2LAhpG6OJ+auiQnXQJA3/tX12bVSl2dgqsFd/2fJZS7JDdfHv9BY7k64P/Bd61e8svft3BxuaylqlLbkqdLdAvq/kxzZcCtp9eCgQIgBQIAAjIAx08oIiOLAlarVepYFkETaFwrAOBBHAggEBmRIoqhVZlRm0nQlbgQERWRkIgMAykaeOcYEAa5SEmvo7IOQStRsmVevNhfLn+2OqXQ2oFe7ESXN6+P4OUQrE48tVHFq7l5+QC87JhrWGSLTbjyd23xY34+xGbNM/WA6xN35zrla2BqILWU+VTm83z+WObDfH6f56cyP2s+mgmoXFh0lumOiM4AuPiwC4Ne2wHdHYFaLVeTqnPWOctctIihg4scY0peGc3snMG24O8IAIRgK762XrBWkezj5DwXiwPkQWnL+zWmSwyIXj4YOISQuhDCZtjGGLfbXUppv7/pUjdshq7rU0p933neB4m8tn/lkwTCNX+zpA+lJdYBwdk2REopjsgT0Uu48hJoLqUQV1NlOV5YzxYTrMwiPzuaK2hmZjGG/c3u1/GX+/vdjz/+lOv8/PT09sfv3n+U1Esut9vdcBv2qeNh6JrFIqBIYDbnsZbqPDKpCxxZVUqtYipS1bRoXRrqTGpV1ZJLqc49pZ5kBwB3WzabbYhx0SJqdt7JUV9OdUQil56pUiEbE6to4EDIYFhKJTIgBcCiIqZznuc85ZKXZ3K1av7E8SJtB/8xwXlbV9d/YAvYcPk8ALgq6rq8T1RqFbUCHrB79cWqKI7LrqLu4ygAuK/fIEAP7QEM2cxExJYLCoQGZCCGwqoYJBjEPqyVD7A4dAgI4oTosKbCAQyhrDenTVLxQkYuAN4mhoIAHgbGWvN6d6q1lLOhiCGs/dHtzv2JEQI5V+KSGzR1OQC85IKxlRr5pS4d2C2UFfMHq0s6saHbLSulUMCsuaTL07dWjb+WOZmbIw+jvFavraWFwkNQGAO+NPL+mv8fVZdJ1LyJVQYdAGrNOU/z+fHp3T+V6en0/n+t+VimjyozaPXniK6b11BsMLVai5mEEIHQOd5bc6uHekhGnWCaCskEz89zzvU4ljkLx467beq6zXYbAg9dYkIO0LoWTGv1jn1y1THTT/eXnGGa/H4IlnIGZETn3UAiDoQYYkfEXTekmPp+GDbbruu2u32Mab+7CTHutq0WOITgmA/TUpuJtBRfeOSKHne+evX6V7/6NZI9Pr5XA1VFCv2wYeIQIjO/efPV7uau64ZciiMqi22FFje0ncG3PwJAkcUXAYBPfc+XltWuUvgvBtvTOEyJCXkbhlRV71/fm8n3f8zzPI3j8dyHUmczQYQQWBSqOZxsBiZSay2+UTW8WaTWKiqu05ulLvGy1VJUZZ7nnIuK1qpESE1mJAEkaO7wJ5epP9sALu9QVQEAQwJVVDXFJg7sDwdVRc2rievqfl6ek9/Jz43oFfR2FVd/+q7PHp+toVk8lyXyXHycT9GBZshsGV0gQiBsfYueTIfG2bta5KXyxcBaxtunt/No+olssQ3qLO1oREaAHMiagip40+piPaGxdiOamaiYwVIke/X8zQN+WylcARoqqEJMqtc7Xys0EVjC6eUpILpmZQPEbXE3r4o3QG1hI8bm/TVlKgIyNGpdr+7J4ooH+oj4skc3nLhuV76oXoxBSzUvOSiEZf9CRx0NABWdivvzE8IaObtXLAGuccyCwoNLbtRc8jidH8v0MJ/eSzlpPZoWBHaeonbpC15rbjjQR4FgyalBC1Y8XmEDLhWAbcoyT3XKkot2kZJr/fR9YIrBqaZbeg9atNqcV4CLBstloBVUW7SKiE5a7T+T6wVxJKQYO+bQ90OXus1mu93d9H2/v7mNMd3sb0KIm80uhOCavsvecjWhLiEXABgiIVrXdZvtru+HEKOqqRGHEGMXQkgxcQh9N/SpJyQRQUIWwsuxro/VegIAfmJRPqn3RCLnd732/K+9nrbq/JINjCgGCHd3X/wf/vf/7cPHh1r0+fHxeB6Pp5+Yh9NpjjHGmNwdR8Tnw7NUeTo8l1KkVFP98PEjMzn7pKjkUtWs1No8ILNaqqiW4q3nqmKIyMwppbu7+2EY7u7fpB5zkZwrEjNzrWpmKckLM4MAS1ZXTFcldTFTJEIpaoiExIAoYAowixbXC1/C8hef9snxH+Nmfub4xM1clEKQAiIi8zKO7TQUN9fjUquWor56a63QYnBjZg6BiEOkFRoXLR64XxIYat6/5TbGURTPrDi/G1PwlxpnrZiq1bZF+YrRtdiogQBqoi7cZ4DoWKPzsF9RY5iBydpZbmDmCOkLz1pNFKorXHheu1kpIwRSZEISXKHG5hoBAJgirlWgK+7kvD/aqh4XZxyWjsIWTradRsxA4DKXaPFIAZZIfHFHmjaymSCgiX90O7OH5Eaf1mx84oeagxrNSVtQbABnDvOuw9D12/sQgpZfSzmX8aPWScukmsFkGXptu8vCHmTC5qJKgKImAoQExETReFus+/BwJobjmKtoGrY3+24YhmHoQ+AUiQkCG6J3sjUbqYrm8utOzmxWi1wtE4/MvS+GVgnVmFLguNlsYwjb7T7EOPTbEONms+27vuu6rutDiKnriLhL3VqQBHb9iC576OK/X+BAMysFRLBL+zevfzlstl98+Q0iSi0qcjo+Sq0mJU+nx6f3iLLb7e5u74k5hHDx/a/NtAEC6Uvz+TLnDqvhfTGi8LPDr919UCIchv0vfvlXu+3d73/3e6b43R9+ezoddtuPAHh3d3d/n5AwcHCh8FrrOE8l5zzNstQkVam1lCUpoaWqmdVabalbqlUWCikXKeO+70PsDLCKqkIVLbVGja0ITvz9P790aAVmDW0SAwARRNeAQiAGRCVSxLLUkiyP56WFxGWjvzpaLfdlRX0ChH7OHcZPXrJlVng/VIdEFCK2Wsg2OsjpGpoRMRVwPMOlmByoDwEAiAL7wgnEYAYuXmtr5Y152hPAPCrD1Q42TB8cE6EW/SuAuoN+1blqq9l3YNn/NZDT6zBc0dvMmuCez3htJN7LIkCT61lnZtrIjD0SlatJ6FrDBsDNQuFy3QAARldXtuCbHme7B+rYhl3GDci5cwmbtpJjw7pYcwQvBG0d57iOYnPy3RI3X2x5vI71L6P6Evh5MTlsfShuPi9IGS6uNSIRx9htESFtXkkZVAUwqRdEoS5utKzRjGcHPLtNAI2SEH1TY6QAlMTC8VSApqmqGg77btjuhz4NQ+favy5Mj15G6/uE73IKLi/r4KbXaF/u7sp6uukMIcbUp9TtdrcpdXd39yl1m80upbTdbvu+DyHGEImcDQSZXrROLrvuEvghukfoZ1VpRslhXFMKod9u7+7uX//1b/4eEA6Hx5wnKfNsZzOROo/jiZmQcLvbM1ijBml7lVsEW/DrT/HMlxxLqiIC4OzxIaWoqqWUnxtQM6vV9StxqqRiZQ5E29/8+h9e3X1DEB8fP0zz/Pvff//hw+N2+5aZAwdVnee5ipxPJ6m1lOJMfS6T4ZXwtYqbQjNTUYNFpGTZcwCQiGMIqvj4eJjm8oc/fP/x4UlEb+9udrvtZjO0BoJU4TMHYisqNDWrKgqgWJkDx4QUOHRI7PxfZqQKyvWSof3Lj6s49U+90CymLYAcRiCm0GMYOHQhbZEixx6JOESghuv4MojD/fUnqZOkGwA25BqWylBQ1KrFKhFh9E9pDIM+5cCcEcFxUGxFbq04BoBApaVqsOVQEJRBCRTRzDwytusbRABBJER3F1UBHCHzyF7NxJaZBGBeMqmyoH96vckjMXMyZGp42/o8F3vZvM413e7X444DIDSkdSWVRXDIfa1pMwBQ9KbIVTe5xdEGi5/gSXlABGp+YAP6DBZub79sbb6sLbcIsFwhmMGlcBXgsuiu54knuUzVo932OYhARCF2Ds2KlG5zJzXPpwcpUx4/1nySfJJ8UplqPZqpSXGbpmpzKaLYJQwBCI2CmQW1iNTPNQWKaETI292OQ9zttn2fUiAGJXDrCcukab1/0HbfFkKYthr7y8AhDtvd/va+6/oYUkzJCYmHzTbG5FDmZrMNHLu+a6VIMbqAq+9w14H0Mh1fzjVfxVUOp6NUKUXNrO83IQQk22y6XNIwREI9HB8RUaQg2N3tje43m41DuvvNdrcZNjF2iIQYFvRz8TzblLoIH63HS35PVRF1orYQOKXkHtzSK3lxjsysVJmmMhc8TghGaMy4/eUv/z7P4zTOKW1/+0//+PbtjzGGrotEFEJUVa8ryjmvqkctrDDP9ZsrYoi8AA1wXSPoAstBElQBpON5nBFD3/dgePd8vL3dO8vJ3d3dZlNf2H3fkt03QfQmDjFRBZVqxF3oMCRKW2zFU/5AqtQZL/RNS7zwlx72YqyXefWzVw0NkRm5o+6W+/vQbdPmnjjGtHFvA5pBBxMxlTjcXc7h3lHzkxvTj7MCIxAoqEGR6h2yTivoNNnr5uRZI1jwg4YQtIi8rY4L3OiTyRrtGV7c80uFhl+sxzy6xKQGoM7haIt+5/KRbYm3CqMX2zUiMSdApWY+21WuHuX1SRe/Dl/O9cbM6Ajm8l5axqBFAJ5c1Uvw9QLHcyiTXtYRN7d0zZC5GYE1JbY0JgKgUygAEryYlrpUw8ESxHvjpRm2zK+t94GIzCFw7FK/A7O6/0ZV5vEoNc/H92U+5PNDPj/UcoDpvUqWfAStUicAyaWKWGD2Wj4iMCCBHqnLNQqF4NZzv+/6YehCikxoaOq6KUTIuNyxGbwocmnmU+VFow0iDpvd/vZ+t933/dD3m2HYdF2/3e4iR5fwjDF5YN7kzi+wZvuE9evPsjLr07Zc8uPjY84lz9kM7u7u+n4gsmGT5py6LiLq8fjYChkRb272TLjb33R93292fb8NIYaQnJMJF3OzrtRLTuIlZv35PneH/Espqurh88UEr0+mTTgHrRRVAYADJohff/v1bt+rTinxOI3jeJZquWRVybmoSpmLO5xwMcrNpyFiIgjB82i0PD//CZmCq+ClmJjZqaVCTBzinOvxOIrY6TQfj9N4zkTBPlmGuD4CbAGfLWsOiUKi0BEFJG+AcU9IPwNeWDMuyw9wmeItQFvEk5FhSeEBemEpIwXwCLRlObxbn6jbUxyouw3DLYWO046IMXS+ZfgFI4AigTJSeDGSSBeitVrXuglECsz+mNW0iiCikwJQY9VtVshMfX/ybdcAAJQWx61ZSLOGOi6l22C45Ofc0l4cqNVp8PYZt1+qRgDq9ZrqLL/ITGCtudHcE7964gjABAYtZvR5skCtujz99b1w7Qm3rQlsZXpEEGtDbm1mLfzGPhhqClCWT2wzxkUHFJa48eoydH1Ci3u0SEy2bWAJM306oYK8NAQXLnAz7yvFhYrOUQ9cAp9lS1iSf4SARCn1ypFAu25Tuk3d3tZyytO91LnMB5VS8sG0ok4IIliyCoMxKIY9py/D5qt+8zp2++1+H2PXdTEFigyBjNAYDZtPrk0ixNEYD9TdS19hmmVRL1OS7u/efPP1L4dh03e9p59iiH3XMzcCTE+HLKbzOmPzIs3YDOgSm6zLzJcpIwx9ioH6FAFgu+m7rlNjsz4ydyECEXNCb+tEjExE6ChBSr2DqtdW+8q9cS/g8/7Sp9bTy00BYPU6SynQygsWBKc5cF6hKVWKGaISIfZd6Lr+7/7+b83qZpPuX93/4Q9/+N1vf5dzPo+jqtTSyo9MHaL3B4erl+7IslNtdl23KNO6dqg3p0RmjiG5TjIR9f3AIZzP8zxVhAMADMOw2+0Qg/zXulAprojhlQFF9OpGQERiij3HnighUJO9AXA/6VpefHms19+/NKDtO39KDEgu4krcEXdMiUNvplWymZkJIIbYI4ewfUX9jtOO+xuChvggk39drTORghqGF122SEQUnHVFtYhUUVdPI+DYAiuwuQIBxRDIRVg8sjUxc8EKCpxg4R6m1lzoVQdo4HFBE28EQxCE1qXdblxM1dRHyqcNABCymRGYmSmIiaI6HYRKrUTEbgcaF8in3ZqEGIgMjJoNsQUtsFaPu+xX5AU4zWFTe2nNFzTXGlTS8gHss8EWTERAKsjiaCNBICSCAIDOY19V1HMyuBTVN0diidjhwgLl39vi2IohQ7mePQ5bQaN+Qt/B4Eq7Aoma6M/VpuJYDyEDUuh3AASbWzATnVWzlKnMx1qn6fxY6zydP0qdy/gkdS7lsciZtTDVrns17P9F2n6xv/t16je397chhi4xESYGJg1kLv/oj3PZNZZQ0SeOgYp6O09dVHT9Ipn4F9/86nSUlJKH5ESMtEKZjAjL12vljkuo+cmaW4BgXVeduToZw347mLWOxK4fglctMen9ff32W0+cQKt0RG7lpX5cyN6WgGm9ksti/6wBfWE9U+w2w/Zq/zY1i7GDhSh0gecQEUKUlCT1EpJ4EEeIKQYiYDIAmX71y83Q3d3efvnmTSl1mmfvfTDTWmSNoq/2nGVCE4UYECnG2DT3FvNNzEyBqIlwMRMSOT2f0yb5+KbUDUP/5VdfLKMCXYr/8l/+wzD0DShogYdPU0LiELvN/ksOiTAgkmPsefwyT4daxjwdX7iXqx9zWQYvnNzF3wRPmwIFREaKSIkoMCczFalt+0bgkJAC93tKA4WB0oCw7icInitfHELHPb/94mY9Xwzdq9tflDIhoZmVzSQiiApoKcbUpeYmeF0RYqDgZpkQzRw5aaUHzGG1ntp6N0UXXN79C5/g1hrGQK9QSjNVUN+G2wSHJb9uZgBVRM1W1VIvVG7d7kvelihs+tvLHKXNlr9dQuo1YHfbaUqLG+IBysX3tCX0Xl6/4BHL9gbow7R4s61fYDGCzUJ51LCk10zJbxgRL6DFQi6xOLtLxHflZrZrCLhhTOuvvn7N//KvI1zm4rLvrn+2CFlczy9YkAQHcH2JAIBqNEOpWAuqdHlmkZKnXrXU+V5rNjmazoyVUGL/Zth9Hfu77asYIm/3yiwewAcyzzPy2pBlF+u5jqYD7Comak4G+sWdreSlzPTNt1+qWQyRAzc6iwXE8K3bv/00Tr6O2F8sMIMLhrTGFaDmTp75aokpOfxISNp68L2EuRWd+FmX/y1+IeAyRAsAdJXv9ffc7IfrgcDvvvtu/eG6Y+fTy/5k6JYgxZZivatztHdUqSq+QMTWibXGeD6pf7a7tMd3+bCfv/TiPZf3XW0Ofv8O3fqrqno6naV+EjRdfToiIl92Dr9Ha5U0n/E9/8IDry5q+dGv9OWV+AsEFwf/xd+9/M4AoIthFT1fPdnl5atCgeXD/Jlf1w1c50zg2nVu53oR/F6f+vLD557ln9inr/5ijXwvhuXltoQYQ8e03B20LoBPzvInTvGfcLx4sH/iHVez4j/v1AhImFbUdc6W65/7wOsB+5NvuRx2WZnNxL34uoJFzdZgACSisBgWgKs5+ydPeDnZZZr490TQxcX4mOVcqsjPlvOLifYnzvLZX//JB2U/s0L+H4PPTtPPrq8/c972AjFdM1u/sJ7/fPzz8c/HPx//fPyFx6fyQf98/PPxz8c/H/98/CXHyz73BV6xT/zX/6AH/9njE4cZX/znLzl+hnp89ix/7grWa1DV8TyKVEeRAjtmiitLAVxCCwQAh+VERBfYIYTQ98MCMOOnJ/rZJXv0VKUuWRW7vLdFUmtNa3vhOvHneCIstC54HU0ZAFiIfUp9+0vVWi51MFfww5+Liv7D8dlf/LZPXvsZIAMvbqEdfzb+dbwYAABKLXkelzm50koQrqzyS9YfP9FeXeAqexHP+gXiiokvUJoBXPHRrWjC1WUSXZCi64o6/5NPVk1LsWMDrYmapDggdl1P3AJA0aotXX2dStIFB24nWp9eA3+vgC9//IsqhAPHrVrtAvZeffL6rK4zM2ZWF0Hz5ROW21yQ60/gsvUDFhjSzIyJh35Y/hacm+Jz49su6uoqL1VK10jKJ495uZurfINdAL3PpZouf7cOrWirHb2qmbsgin9mXjJzjBeb+YJbXtPGQrde75qXRm/4Wt52BfBerv6aL9unokkxrQQQAIxQmVsf5BUCePU41o8DsIX7wQCXzo1Gi3gt0HI5PbRkJ6Be1d2hVCqjj+3xePx//t//H99//93tTdf38Re/vPn6691mM+xudiF0fb8jpuRpQUxq8PbHn54en3/68cf3794WqTnXX/3qN//9/+X/ttns+v6OiJeF2OaWmqNI5INkZiKl1PzDd787np6KnERml+qVucg4q861fsw5f/jxWHIFqAi2vd33m96lYuY5H4/nUuR8zGYQUyT05guoRUTkH/6r/+5/93/8H3wwzofjH/71/1ZyXqoh8Hp245J9+gRB87etMPmaE1zG+KJUAUvG8JLSwLYA0NFaAL82Jlx1qv0lWN6Ai+1Zx3kVnXgBBLvg3+Y1dlu/2N/99h//3//j/0tNOCBz2HU3MaS721cppikfS53G6ThOR0JmTqqa86xmYhUQQhiIuNQqWmsttWQ0YokpdLe7V4ToCY+xHqpm4SokAGgGBBQsmIJk5zlQRNzuNsllZ4inaZqmCRYsUYpCK7pCBESDnEstte/7zWbT9/3tza2IPD8dumH4b/5P//2rN1/6c/jw+OOHpx9Pp9Pz0wEROXCt9fB8KKU4J/80zaXWGAKH4MQaZqYiAMBMhJhCZKL97mZIQylSigzDZn9zy8xdTISNZhcJDezh8eF0OsUQQwh912+3WwAQwHme//Ddd+fz+Pann8Zpur273Ww2VauIzHk+nU4A0PQmiYmwH/oQw9APqUsqIiJV6jTPX3/5zf/w3/1ft5stAFSp//hvfvfh45MupdauH4GghJAYA+G2j4HQq6NSohgphdjHZACmWESO41RVszj/ISBCJAhkoApSnSLD89VMNPQdM3nCyNrRMixAZAZVoao+HKdcZC6NDAcARayKqlnxugpvvGsCFqvhg2++/fLv/v6v1n33pe9JAUJ34ddYrKe3mKybH7QFB21/WZbCBaM1T7iI2dIJRwQxABJQXDHdz1pPWK2ngSv14VpCDU1Z4EW2ZckFYnvDYmz9vEuyoZTyu9/99t//u3/7+tVmt00xvB76O9VdTHca+xBqgACxA2BEQYPx/PHp8cNPP/72j3/4fal1mnOMYJaZLaVAFBb4XQHAK/xp2RvcemJRUZzm0+H0mMtTlXNADAAy5XI4i5xL/XGe5u9/9zhPBSwj2u2b+81+GyLGROfz9Ph4yHN9fprBIHXJiQ8JIeciVb765sKAKaU+v/+YxwncuhGtX3DpcvNkI1xtfYvrgWu52LXddHO3vmN1NHDJbwG0rk4iQ2w6VUrIjITO4GTUrCe2qpTFQi8e+FW/3WJS22y9yrkfDk+//e0/itaQMHC627zuUl/nqe+H0/iY8/F4fjyeHoli5E5UxmlS02rZAFLaEYVcc5Wa81zmiZSDdH0avrj7moiLZLV6LA9ZphqLcPWqKTaOkEysTmpqqoIIt7d774phDufz+XQ6tUyMgGQBc3Uor7jCaZzzXLbb7f5mv91s59dvaq0fPnzcbPd5mpeZDuN8ejp8eHp6/vjxIyKGEEopHz9+zDk/Px1yzqfTOZecUpdSQkJiUtVaKiIEJiIcUhc4vLp5tRl2eS7zXHf7m1d5iiFuut47XxARGA303bufnp6fu5S61G2GjUg2wGpwPp9//8ffPz8f/vD7359OpzdffrG/2VepVcp5HJ8PTwAYFrVeJtrudinF3W7bdZ1XN+ZSztPoZrTdndrT0/HtuwdR08V6IhiCMkIfMDCVTYpMiZXRhoGlY0wpSg+AqlhrnY6nIjJVVTUmIIREFslABaSYitRKhJZiYE46UAjA5OFbKwxw80SsBlWtVD0/ncZcpyylej8CVtFSRMxmMTWXB0GnXmxpNgRE2O4u5BIvraer/TGooXlDNQFi4zG7liuBxVYCwNIdvZSnudnSaqL58DyfDmRGoNT3Yb/jmLohoHNHfy5ys8U2u4NKCuiUPQBLp8iFenO9FPd0ncGJjFSXYrkr7YoUw9/87dfDpr55dbPddl980d/epRBDKQogORczGIaemZq3ZatUkohTYtii6YqIS2lUiwoX3Rt3pgi4VTkbBQgJYs1osx2Oz+PxMB5Px48fOcj2Jtcih2Oep1pqMdOznNKzEBux5lzO57MKihACClTysSBAZOR0rTqJCDGRCS2Pz+PFBZtonseFjHahWHfTSKtbuW6YeMX6RZfayEbDuAZXjdKWABG8aNN5WpnQie5bEQEDwuIBNdzDwCvYlw+/SrsbACrTGu8RY5dYzULiEMIwxBQCmEiZUYUBA1BEZuLIQZk5hKr1kEW0znpCQTBkRFKDioQphW2fNtvtDQDMxzlLnWrJWjAgohcPQYxp223RwLamoqfzSUWy5pqFKxFRkaxcwBAVETAEAmutnO0rdV0XYscQpMJ8mg4mFggDv2BZmub5+XCsov2wgea40m53M8/5fMwVjDAy2Haz3+9vvKV5mqbj+ABmXRcDM6bIGE/HaTyVaczTlMepKFDXpbrfpxRvhhskOk/nWsp5Gud5CsyEmGLcbXfzPD9+eHh+fv7x+x+eD4fj8ZhzLnmupVMQABmG2PX3CMjMIvr89FyrEBoznc/n8/nsZoqYnePjGmQY+m6/3ZynPOeiamJCCIEAALKomp2nEhhrgMDIkTiAqTd+IEUKzIZdVZ1ydWZJU0VYanyRgRDZEJ0WxUSVRKDR3Dh1ARmRGtRqojrmUkW9ETxFL4kMRDzPeRznolpB0MwZqrxsbXGcARec4XPW0x0K5+1qTArgt4q4tnl8Jr9va4MuLt95aDGd58MTmqJqlC31kRbaPHip2WbrV2wG6RISGjjfDzXr6R+/do6A2aKVuHxQ0/K4ilMBgAN98dUdh+nN6/vtZthubbNxbBFEVGrlC1aEjQLFGfK8Dx8W93dFktqHU2unQ38UikAOBTmJFwMFYKwAWcfn88P7h+PT08O7n7oBkZKITVOdZ52yiMpscxgNSQCl1przjMgh9IRgoIRGpIQQI8cY8GpvcNcvhMWlJEJamNudOgsWy+V1o2tA7u9vlBmwPvil2BQQ18bGRcsQlyB/cUuZHUd0xg4nhEBqrDrNegKiN2IsPu4y5g0aWuxxmwhY+DJ4hBgCqXGMHENIkWNgMFFpfaKM5DoRgcj7XUkZ5GgAUmcwC5gYAhqAEjFH7mLsu65XM0WoJkWlqAQLAZxMF7z52mXqpMpcp1qtmkAVv1kzNXaFN1oqGdtzbsX/hBYZmYxUrM55AtfrYbq6WSilnseJiGJMDWYE7LoBgZkCAhMwYejTsN/d1FpzLiVLyeIgIxq5Tu00FSnTOM7TlA0p9X2tfeyiERgjMBUpU55yyaUWUyWkEELfdbXWeRpPp9PT4+PT8/M0Tt5hKLUCGZKFwM7fTsSllOenJ9HqztY4zjlnv52+74fNJoR4vfBSjH2XcpGM1TstDJsNEjFTm7FWQQBSwyqm4l0BQIiRkZmNg6gRoYhmUKnOS+JhKSN4Kxss+LCpGYqat1+06cVqVrRW0TnXKuq6L4GZ2IXTAwKWIibCorigMUBg2kj9FkTmhfF7GblfDluK2b2av3mXn3kfLLACAJiBVBMph2eZ5+nD++nhAzqNY544MXRZQ6IQkBL6akNcALAFA1stgl3a05a1vfwHYV1/uCx6ewn3mr2I8EPgX//6i9evue/6yJE4I5bFlYxEkShA42NYWUt05XYqpdZSay0i1UwARJvT7e3aqipuSlS15EMp5fnhYZrOb3/44+Hp4fj0bjo/nw/P+XjUPAWyyMgMSNRvB4xWz6RFsoQ8+p17sz8hkRoxU0rMBExKZKkbUuxCSFcPC5lRuMmGEy98YLTYskV3r/VhXj9pXOTz7Np6XtlHJ25z9xVb+wKuVg+AefVW4XJGXllyAJovfIV7mtllp11n2dUMeJGP0QpVoYKZij2dnwKFLkxMAVAQ9Jyn0zwyhSDVEJWwmopWM/We8UAYiSwmTGHodrfbu6Ef+k0nKuGIrBiBzYJLuTREV7Xk2fd5VUU2goXoA5p2GYIBIxKgGpJvoua7L67dvmAKKlrnPIGCzRZTf90MnnM5n0dbUF9EqFVOp7HkkmtVgO1uR0RvXr15/eq1D8Lz4RCAkfD29iYEdsL+53rIJSuqkZ6nww8/zd3Qj+XU9X2WKYSQx1GqkNnQ9Tf7/atXr2KIp9PpeDgeng/j+dz1/VakiORcSpVpmrs+djG5HpmqzXkuuUgVqXo+T7XqOE4llxBCiPFmP3zz1S++eP0lLwkxj3MYIaVggFQFiqBrkbi2CkKuxggIpEw5cWKduc5UYiBCMgRGQ7KOQRFJuSLMWaU1NhghBGIiiDEwITvrvSmIiokYGiqQiVquIqJZ1HkOcdnjaXEqAqEaelexaSOJMfKS9gWofHn8KevZ5vWaGLlebesXWKznxcqJWCn58FxOx+nD++nDOzRDMKtz2iQasnYDxkQJgRghGF1C+IX0Cxx0vz4nXp3WXljTNkj28v3rta03HGP41a+/VN3UDCo2z+c5n51ZgygwByerX1ayW87WrVqr1FpLrVKr1GoqDg/o8pBUZW1dKzkfD8/TNP70/Xfn8/Gn739/OjwfH95Np4PkWUtWyZEhMHAAAuy3PSachCrWcdRS3M/1fh5GIjM0IKIUIgW3nmnoUs98UTzH1mXbTF6zXIRE2FouiLg1a9GyhS7QC6Bv5EvHOC7O/OWp4+KMUtPzXGN5QG8iRd8NmxPJTMStuRax0dZcbHYr3G5782pA4TKGdJ1mVdAKxWkkUWrOhYASj0whpRCYznk6z5N3ogGiECpahWqgBEpogTESUyQW3G129/f3XZeGTVelhIisEJnBgk90R2fNrORpsfRGZEitwt15s1tciEseU/XajSZsfS9STbJVNa0KAjLqz6xnPp3PPtV8j6lVnp8PtUgu1RC3u/1mGN68+eLNq9ddSkPXPz0/oxAzffn1l8T08PBumsbT6VxNFAVIj9P5/HDq+34sp77vcz7HGFmBALvUb/r+Zn/z+tWrec6n4+lwODw/P4/T1HWdIR7HsYiUWsdpjjGkkBABFVTqPM2llFq1VjmfxmnK0zSXXPqu73vq4vCLr3/15tXr1XoCNBL/LkXiiLkoFJWqVWwhfCsKFQHARK3Pkpgi1hnRlIK3dSZgMAxgCqjECC5+LmpiFghiJGJKXeI230CKiEgWKwKGAqSiUESd+tKRPUeZ2MMjACIMTGrq6XGllqxpzWqLTuh/wPdcwFZFr36ApietTQNhYUG0i/+3RNx+WkWRfDpOz082TcHZU01hnubDU52nWoVCStsbDrHf33DqkIiAtHk59sI7tssH2xJRt/MbLDJIn5rNtTvvkyMwKELF1ilYqkmVkqXrsO+U2c9wEbk153xaNZNsza+2Bit3VA2sljnnSWoteZ6n8enx4zief/rxD+N4Ph8fyjyClkBKAdTQjVmMSKyGSAHYgBMFCFQEq8MfbKai1akLAVCNmvqSmYrVKnrV/uTg45oWajRqLRnUXABcrF57hFcGtJW8oF1QkxaUr++2JVQAXqjgVt+zRfS0AKOEC1P92tsHy16G6wZlthR3WBtFWx8xGsSXmyf6aAACgqkBiWVTgVKqklhFRiJAbh9BaIHI06AEkChFiszEiZiglDNACUFEhUhigM6YLLQaI2h346KCvomwuyKEiKDKXkK0gBjY3NVGjgrk/B3ACKiVU2CtoFkN1FheijfaOI4PDw8hhBgTe6xqRoykyInBMHUxpiZy2MWw3w7zONY5V8TxNHIgEXE6ArGCrKGDRGQYui70fRz6uBn6FFNHiZ0pCZmRVQwBU0qbzebVq/txmiroeZoenh6mAimFvk+77fbu5rbWMs+zLwQRrSJVJJoRQOCAiTbDZrfb393evXn15u7m9lIKZqCqokIYUmw54Foxm4Brpqyr20DNquhcakBIjAYU2IjRxewY0QhTpBCgiFUFkFpLXcBN7+EmCkQAKoKmII3d6kJi4jCf742AZqoipgboNQzWcj/WaJDN2W30ApLRn7Ge1w6l4y/uYS3h9TKZPCvTcM6LpUIzVJVazh8/HD+8i9PYi4BVM9FRTu+zIs7AFOL2/ovUD1/+8lfb/Q2EhCGa4crX8Mm/ywq+8jgRP28iP/tLf38IZqbTVKtoLnWaZZ7ydB43G90M26YFROhKA81yiq71mktOzFzgVD23r2Kg83g8HQ/TeDo8PZzPx3fvfhjPx++++22ep2BGZmw1BTNEIxbToCEOFpIqACdjwliCkc2ZSpGGQqinLp0cGlTJLLjbW11O+GUZHZERNzyz0Z7QajcXqLl9Xb13/w8ufj2uf/wzTUEgwlUPaDHQ7fBY3m0CNdO5AMGXoAA92HWuieumQU+L2iprLmaA3OlVI4cBmTMygaPeAFmEkHIjSjaKzi/jI1cBsONASIkSIweLbAETY2QDGOenXKhUBlSi3HUAxgkald6yy3iVJbDTYy0oL6Bn5bwwhi/TlBr+5BwmAIpGaITSowx1ruNhEhLLszvI63R9en7+7rvvbm/vXr9+w4whMpBxIEMjZgDsh27ou5Q4EGyG+Pr+djydp/MoqjFGjmxUAFRsLnYOkVKgINzVruv6m5u+74b7232XhptuHzjOU6lFmEItgkSbzSbESIGmeeaOD8fjj+9/PM04DOlmv3nz6u7rL748Hk/vPz7UaiJWquZSSq0pKTOklAj57vb+1f2rb7/+9q9/9Vd91wdeW2xBqtRSUx9DjDGEodN5no+SVcFZrhveZQAKc62AiqZkUisxRg4IITBhpIBAKQZAUkNDOk/zXCq0LC5yCBw4MBGCODU4NBjU0Hvwr/hLEBHAVAXU1O3WsukG1IVDCgy8asgLOO3aoQCAn1XLXzl+7ogsmYTmF2Cr27Jmza6XoWNZYiILYZ0tmGCtVeZZqtmpCDBX09gP/XZQrd32JvYboIA+F/3c9vJy2jpeq1vXkiR3ZK6gg0swaJcrvNxSe5uI5lznOZ/PMxHXWmplVTVrlDJLGbatrf+XfIepqpRSRbSUSWo9Pj8cnx+n8Xw6PM7zmOdTyWcps9YMjQUBiFANTckMRJXEhUBZtIqQM3uZOQuxuqvI7BF5DMyqVqsqVgQl4vBCWMxdQtSVz48AyZCM0Fk+bU0BNR8JcYHCl3FfnzdeHNPr0B3JVoQIl/pfWr2zJXt+5dy6oW4zxRrtWqNnWabm4oK6MkfjHDF7GbozUR9CxUZBzIYIyMh4uTjnJ0UmNDBxw4uM5gG8moooMFsgQMIQiEh5qTxWADMSgBV9X3x01+V2HMMuD8UInGddEBp/khkILMlVJ8XyR6UKknWe8vPzQYrM5xk4LHTIANCUHec5T9OkGjigaK1SVBWACalKzhlP5yOBIUIK6fnwnEsuVT4+PhAjBjGQ0/k8TXOMHJQXKVi3IY6KM3MIHCBRINtudvv9jT+0VLKBx0S4TH71GcVEIXBMqe96NUPiFfaOKXZdFzkyh+12s9vt+r5bExnXS87M2Vyk0doz9imqSmlTQXFZ3647UFWLIBGUKgbEVZUQWbnhId5sHiJXJiJqJnKhAcOlMoqIjQUISZEAzYl/UBZZl8VU2NU8BBexWtkrr1aHtT30hUH507jn4qB4SZ5e4uclrnPH9irMNjOdZ53noJLQFE3QqlWp0yT1mPOY8/unJzVI3TbG7nx+url79dWv/vrui28oDpziirAu2/nii7Yp/sJ0rpBZI+W3VZHJlsfxchyXB4RI0yzPz/PxcHp8eJxzub3ZI0IppcVhtoKeIqKA4ElVxxNFq6geD8/zPD89fhxPp8cPbx8/vq95mscjgACUXGYrJ5BK1DG1CkgDAIVa7TzliBqmqkDTBLlwzlgKqFQwBRREDQFCCEwhpR0h1mI1Z5HRrHIM/bbHS6sMEEKKQAvvmnPuEHo1TWtCIXLVwBa6XICQBpa2lGKrb2+TcLEY6z+4MsTNeq50cmuAcpEQ8V+0qmN/kzgqb5cUqcFiN9VdTwPiK+vZhfBqu6lS3OrHxjflE6UVtBIvGqJogKZq82RS7Ok550mgFhAYNmnYpDSEYZfYK66b+Ab2FPUS7ri5dC8aVs5Ug0a6X7LValJQFx47UZ3LBAB9F5ixSzEEAkUwmiY7P0+PD4+//afflVLznF+9OU3zvN5dyXU8z2AHM01dzHWjpuM0gllMHQIfz89nwOfnh4C022x/uPnh6fn0eDpO8/z4h0dRST0SwWl6nvPUdTF1gYliYKJQck2sBIEoBu5i6IYuEoYvv/7yi6++dHRozvPm8Pj0/PRPv/+t50VFKiFEohRDFxNuCCnE0/Hj8blIRUIyvNnf7Pf7LnYxxDev33z55otXd7emVZXtiibGABVQpKBJjJxi7CgMcVOrjCOqSC7FtEEeAjarkRiBiREhhIAVjBk1GhN1iRkphUDEZlpKNhPnYyxSASwQuYoMB05etkQMyEXUIIuooxxwAZTQnLfUAAAIjBFxgTtb7fiVF/bnKpYA4GdZ+XU5XKxQwz3xwikLrexTpRapWbWauXhwFa1Va4WaLZeaq2Q1w8ymej4dmPl8PHSbmzhgpARIQLzkJNrp1xu9uoL1W7v6unYXtOMTBTz/hWeKSpF5Lu4/SnVFT6mlOmfoYoAXNdlW6Q3uRY/nUQ2en56maXp6fBhPx+fnx+PhUWuRPCIasbaAX3X1jgFQDKpCqTblauy8bw1s9dAwBG7EjetoEQdmBJBaTTXnalaQMHWJr7hewHFPMkA0tMbF3PxEI3IfymDJGjco5iqCXyLTC3gKaNeQHiIukq0LGnAhdb/GKPHlj/AnDlv/4VIqu37ziQgKE3UxOEEyAkYvQ10CAlis5zJ1zVBFDWrRojLXOlWrYGKEiiiAMQ0IgQLx6gGsYnLLs19ddb9jA1jUBQxMTIrWYiU78o2qMpeCCAERAlsAMFQxFSnFSrY852maSynzNE/TfJ01Wkh1QUSkYi7ZzNQXeS6C1fNSZECAnrY8nsbzNE7zfB5HUVEMzGiGzBGRvcBbmlILAhCHGEOKsUvRCRiZQwghVKmroJSqlVLynGt2ucYF/73SsIwxpppiiIQUYoghppRSTESkqnPOh+Pz0G/6bgvL3HR9VnXZAAJgRINAiIw1sCKoiqKujp4tHqiYVVEDoiqiyIDKylwNvZ7SNb9QFT3OVlVBFFNP1CC6x4CAAISsSAi6hAp42fBxMROtRAcXD2SZvVe5l59N55e4p08fr6teDJib2+uKR16gM26f7WcXreV4eCzHw3k85nIe5+OcJ5OsMs+ajzoWFWAXmi6i9v7dD4+PD1PVx6fn/f2buzffxK4ftrdAjMiXe1jxzsWeIpi3CCxep3suoEaqF+sJZtcGxgxVcZ7r+Vyens4fPh6kVFMWwWnOiPDw8Ji6eHd3S8SukOxaV8zc9ZGJx/NYqz4+fT/P+fvv/3g+ncbTU5mn+XyYz8cUcIiE1JrtJKuICS1bHOA8wTTJ4TC/+3Dc7ql/nZg5cE8YNWFkvNkyE6pm0VlEcxaEECiI2HQaS6nn8aRa/mbov/7my/1+d22jmAwYzL0+AiBbapQu1ezQUkOr9VwdxDVwX3tlrltz16jcLebyt6vdxIvZQdDF1MKaV1o/HgCM287WuDTBzIBQzcDrdBXM3FNeji6G+91W1Hncloi9UTK7Ub9MfFUrpda5Ht6e5jGfPk55rL5NYgCMtr3ZvJ7v+r579eqWeGH9X3tK2jRDcw5/QzQCsEYIr2CKp+d8PtXxnM+nWcRKaeuXA736Yt/1MXIKTOfzeTxP00nPz/b8/Hw6H3POx9Mp9F2tF8WtzXb75s0XqiJaSi3HQ215DtVpfJQqHoOZmHpFuGHJ9XicRNRrLY23KcXd7lXfdapVrZacx/OIYKqBqLu9eX2zv3m1f9XFbhqnkouaTTmP4/np+Snn+XA8PD49/vTju/cf3j+8f3w+POfX1YARI3ESLefTSaW+vrvfbTaSS6l11++61G+2u77vcy1//OH7Dw8f3r374Ys3X/63//XdwIMv3FLrXKpUCSBayDKFGLqu44Bh06laCiSicymiYtQYtwuAiaEJoYwFiGAKEAg3g8QYQogcIqP1kauoCKjpnHMlRFNmiuwdrchq4AlMhsBeYGYEEGJAIjcfxaQ0IW83rECuZbCQvOoSPK0L5fPWExbfc91t2tK0xTFo1qwVm8CyLS8lj7XkOZepShYpWcpcs0k2LVlr1aqmSGuoZ6VkURvPx5j6kPphezSz1G2A1NjftSzCS6DZcjcX1tkFsjC7lA62RfmJw2po2lqySqnzXEEVAE1BqtYqORdffq3myxqbKjvXr8E0TjnXx4encZwePnw8n495PNY81TzW+YwpJIpkCGAi4t1JTsTuKz1XzdXmqnOWWFt+IsRomkoFROi6ECNXARGr1UE1RtdEsJbuVK3M3A9diC/6xGBJrK/ACrl4bLOe1rI6vp3C6li5P3cJ4d1FpWt69xXKvLa0l9gfr7boBQZsWEAzo5cYfhmJpZp3qY9SQwClRc8X7XqWEmEMTGItuMYFkF/OaestuVSGmCxep+YKVaxU19HSoiHQfJ7JoOTKgYgNG6bR2tRtAfXNFL1db8V9BFStFq2zlLlOYxGxkgU8aaaoAtaqraGK5JJLhSqmJgsG9XJeIgTmlFKtWWvFRgpj7unmuZRS3Hqqs/YLqFgtMs1Z1aRWtwJgGEPXdUOtuVYsUEvxVnhCCjF1qetT6mKI8zx7JrxKLaXM85zzPM9znrMnoB2PtyVwMgMVLaUYWORgQbuYaElx+3Kb53xyaYcyxdRdPOtFqQxBAIRBBYhcewSBiQitMgMCCeqigeH3706rISgYqRUAIyy1uj+MSgDmvqfv1KqKgKICHn1zA/EW5M8QLopUXo6ihGbQesVsHZBLAEJtLuAilPJnfc8liIOl92RxYpdPt2VvxvWyzDNrtRyf83h6fno7H5/P02Mpp6fzx/P5aLVqzUZgDMDUpQTIhAmcax15Ph+epObpeHp6u9ne3r/5JqVut70LIWDqmRlDXLig2yWZ6zP68zXPrrXs/yoUvnrKq/8qArXC8VgeH6fHx+nxcexiHLquVjo8z2WWEHlQUCOkCMRIPGyG2/s751k4n6b/z//0P6vaTz99zHM+n55qzUxCaAhCqFXqXMEMqpqIjllF9DSfzKBUEEFREIHzpLPShqjbxGEY9tsvEbuHhzxn6fsQI6sW1SJF6iwl6+nZ6xZbsGqIw7a/e3XTD93VTmiEYlDdgrjiRqtYotYBs1a5wyLSeMkjrTEqwsomcvnw9Q9fuqrLJDNs1amrh7p8pp8VX0hdOhzi0ppLpqjlN1F1wVteBO9m5pGceouJk9s3raArtxnQDOepfHj7XOZajhUL3KaOAowh51Jmk0lFJz38dDin8XwoHChtAwfabmOM1PcpxKhLNY2BLRQLbVUXAakwzzaPUGbUyiYGiiHG29vb1IWbV5vUc9iQRZihnOoZKMZt2sftr7pvS6mn4+n+1Zu+v3Q6IBEHCrEfqGs34nF0Lh/y8/mcsfXZMSKl2A3bIecCepRaZzVETLHrUrfd7na73TieziOUOj49n4n7EPp+2N7d39/ubwlIVE7n4/F4MFYjPY/j8XyY5+nh6XHO87e/+MXt7d3z8zFxQqPTYTydxvN5Pp3G4/GIiDEmU+1TH1kIUKu8e/tuyvnx8fHjw8e+725utue5/J/rhcpaRWopahVNhLEKRSfUcf0IgBCJDUWrcwIZWmjZWZAli6kApCZmVKqoVbUQBNHVz7iH1HA2sZJFSE2NiLSaqhEqsks/KqgxtMZFj/0BUFiltn0XWwKwIWDuqampencj0nVI9DPr6bbp08zSp+bVIUZcUlFmYCIlT3ke5+k0z6dcpyLzVMZxPmstVisxcYqIyMiuwANLTaDUnFVMi5RRS+5SJ92QKFhMFRE0MAJAAHK5uwsOcV0weJ3DbYWDP0sbqYEq5CzTVOe5zrMwBuhYBMsshFiL1NgEEP0fh9B1CVquoL776V0p8tOPH0rOKpOZdB2FgCEAMqi5Iqs6d0sRFbFciqrOBWoFAzbgLCaAhsSBYxe2uw1RP84IVLs+xkRgbMparQaZqUyHSqtzhwAAIYauf+l7ArjAOiz2ixDJw/DWiU3o7hWgI7kA6CI60KR0GqTp8+M6ubQ4tvDCkbyaIm0rfQkZtqYmXqznsnOr0GIfwcyauJx6Ut5wMVgvQWv3SHURXlXw1nmf8g7QGZmZGZUs42kuc7ViKNARB0ZTITCtUNRAII8Fs1YBCtxLCokCA0KwCBQJvMHjkoC3Bse6kLKaVJAKUr2NDsCIMfT9JvWx67vYEwYxVkEtWpk4Jkwc9mEntYZE+7vdNWbtT4uZQvSuAzYzqWqKqijFZZ7aNhRCHIYN4TzHuQLWUhExhtilrktd33elZCJWgznXUgWIiEJKKaZoWUQll3max25KaU5znktxJcpZRPa7XQxhO2zO3RmMShEvjK9Vaq5IGDigQSQn60BVO5/Ph9Ppw8ePb9+9G4ZurvMXXzxfo7q+Il04sk1fkiKVjRaddjIDIuQFiVk37yXCBQRwse2qCoggYmCBiQM7amyqtao1/j13T8HUVMwI0FWq1mqKZWNuLGALuESICkYr+n5V302X0ORPW09c/ln78YJtkScRFAwsADAAmTFYLjlP43Q+fvzxD3k8nQ8PeTofDk/zePr4+HA4PoIamjJzzBGZucxEHDkTMXP0wnHgIDLn+QzzGes5hHj6cBM4DsMucIzDlmMabu677Z5j4tggFfefltL4SxnM8r1dB0mOo+eix8P08HAcx6IGVTTPGY2mIIRd4BRDkmp5rlJMK5ZRp0PxzqOJ5+k41lqfHh5Udb/rU8fbfdf1kWiRLyLIU348nKpoqWZmuRRRrUqqRIzMAWOXhl3onZ0AKRAhFZExZ4qERkPXb/obMmKj02GcD9+DzpFZWEJkBKNATRVzOQg0cFEtbtUWoShZ2ttb59FiBX1sFwql1pHeNOKA1pbJpVB0ed+VWVxQnYtnv0rS+ybHQBGRgKLDAQAePJlKAasgFbSaCWhdo8S1thkAKsOlqAca8uSLyvspG+cIMBpqBa02nfPz02ke8+npBGIb7jhQVCUzf2wUuw46RCSmKnqas0zz8+EZEI63fd/Fr756jfccek59UlQhMWuGnJHMoJaKVR0UDsxdSKpasIaAGAyDGami1ZpNKjEO296JItg4GpvF7jbe3NyEtKw7g2kan58fu77b4CaEGGOHgEoYsL6+/WLb7b/+6uv9fl9LrbVuN9vbm7vz6fTTDz/UWkupMYa/+pu/2u33FBAQ3394j4TH41FEx3F6+9Pbmss//uM/3uz3+2EbiN9/fPf8/JhlmmX0rQhJd/tB1aQIM6naPOUv3gz3d6++ePPVN9/8suu6cTrFEG5vbqvU78uP8zxro84BJDZEMddlBnthXsAFyUsBFRQ3SdVoLkRYVRDRG5PUFBAIEMB4CXR8W27YOjEgiAE0GXPUwIhgBoSstNgmQwAQQ12EHFvbewtnXIh5cSiJEdFQkGxpYKa2W7oUkoqB/wU25/alQs9nquUXuBEA1li5IZz+WwYIYGhGJlByOR/m4/Pzx3dlOk/jqeZpHM/jeDqeD0/HZ+8DDsSpVmRiqcSkQZk4hQTMZmIhaMWCaOVs9cTEUxqYQ9/vOaRuexNSf4dGLlMch3WArr+xTxzRZkkv60/ERPQ85uNxnHM1ABEtpRBQDppSYGKmIGIAItVUoM5aRhGpqhVAz0cVqcfjE4Ld7t+kxJtNHLbDgvaZmupcjuNcq6qRGeRSRdUgGGJwyjiOIQ0heikFEiMCVpVca6caDULsNttdotBzinR4G9/XIK7YyoEBzLmTXrp/xiRI4mO25MS9AHRhPoILycdiPb09yGlonECOgBY0sX2OBwnUonuiK71rvBqFNQ3FCG40EyIDua7UopxugDSDVqACVkwLGJiq21CCywYoPxM9WGrnFhseCIkQGIHATKqWWQ4Ppzzl+TQxUNwNkZmqologhECBuefgm8FUyvN5nEt5Ph3VtEx936fdZrsdthxD4KCkQGjNbCMAmyHyUvWFyEgYUFQMlAOu+KkBVCliGQm6Pi2Lxp8v9JB2uw3Hy+3lks/nMyB0XcccA0enwWWU/fZ26La/+dVff/HFF87/sd1u72/vD8/PJFZrNbCU0j/8/d/f3t0ezodpnnKZx2kMMZpZzuXh8VFF//jddze73VdvvuhT93x4ej48AalR9QYnROyHZAa1eG5ca6kxpN325vbm7tWr1yJl+2GbYry/vy85v3v7PuciouoALZFTJaiBGl6zVTSfOoTWr2cmZqiWqxCBWkVEdtbFi+u2Ws4mFm7++L3oxcDVrEUMEVhaa7C3cRiY+5eezoBL2aKu9RQO1SsskqwODLQgDAla+tCdLwFxe4wI4t0cf956LpRBHr5ePYiGlBkaRLAAUMuU83g+PD6+/3E8HU4P7+bp/PzhpzyNHz++ncbzcToXAU6x6/pA5B0IIqqilkcELDwTIi9iyogYIvf9KplJzBvk2O/vY7+hbkjDFkOXlugdEQhJwV7sdy1v9OkeaAal1pyLSFYrwxBC2veBN13sEt/tU+qCWZ3G0+9++1hL+ad/94d3P338+OPj4eORA8ZEIdKwTWoSu4oEd292w9CnnoE0l1pq9ahynrI7xsU5tQwMyJAASNSsVKlaC+YZptEQ7BlnM3h+mg/HvNvedmk39Pvt9oYMSI05pj7FXL1Yylehmbmw87VlYciI2QeqZc6bAaRWNW9LA9ACAaA5mkpgZOrznsAaaSc4qIgAxLAouJpio/OkBpWuV4A+LsiABFqBBIwB1JAA42pDEVvHKTiWpIqohoILraKXVuMVwGQIwo6UrrEWGAGiohGCHc/T4eP59DQ+P5xMLWCIxOyW1fvsfSEyYWBARCIRZSAy1ApVbDpVzXB4GPtwVFDuWElKqAYmnh+DAIa1iogFTsMQC5ZZchYZx1O1ONTeYk1mZiRW1AQIKJCCqYlB6wwzgArzZV9H2Aybu/t7D7wJueScYrq7uWfi+/0NAvz617+5v78/n87jOE7T9O7du6enxx9++lFVY4rD0J/HsRs6U2Pmm9tbYj6dzv2wYaJpnMjguz/+8eMwHJ6eu5QOh4dxOh/H5+Gp64d+t9sxh64fTG2e6unk+gvQdWmzHfY3+/u7u2k69V0fQgjMGkKMMcQyjWOudRzP4zxP5/M0jilwAFy6ry7L0cyW+FpUFq7eRr3hiqy4GMGrMvVmOlvc4hkk8C5mNEIoolgqIjLRkuRw5NxFNHWhACEkLjkfj6OqiigibvZdiOz+5limcZxrlZwrUYhpUNXj8VRrPZ/PVcTzY14GePNmvLYsn4/clwewJF0WLDACEFoAYIOa53x4PH98+/H7f5rG8+Hh3TSe3/743TSeP3z4ME2jBYZAw5D6zZ6RmEhE8nlUkVwmMFsY4WCB3ShEHHpCNDIzQNEEFPrbL9KwHW5f7e5fh27bvA+/SPJufGnP2+CCOlyK69s4llLnnGstqmWz2cTUDyls+zD08dXtgGilzuOYf/e7Pz4/H//4Tz89vD+Mj3l6LsM2pds+dmG/75F0Y0YMr77cd31fnLilzqfT6AUQeRZ/YHkuooYUkQiIAUjFaq1SVQrNs02jgarlSVUeH6bzmL/5OvbdfrO53W1vrVaZJw4xdV3siqjUWpCAkFS01qpX/SoIypgR5mXzXuoXDckQjb3z6JMRdiJ0UAJw3wEREPUFwNkgt0uDkTMer0x3V35oM6BOQcpgBTAAqJMw2qqg5eARLXUSaGCKKGAK0FqtHH16YT2DS8cDrH5wy1saqB1O57dvH8bDdPh4jBxut7vEHBEDGBGCoTk3SuCFFoIqKyOhkRaoxaZaC8vzwykSQ8C0TcJSYjE0QQVEggRKtdr/j69/25IkObLE0C0iqmbm7nHJrKwqoAF09/RwSC7ynLX4Bef/H84DuYYvXGRPT18A1CVvEeHudlFVEeGDqHlEogfjSCQKWZHubmaqoiJbtuxtDTkPwyHNttS1mel1uQzIJ53chtHhLmbNoUSQJICqN3NT7+TfRtuuLwUCDqfjdx++i/iizcpaMqfv3j0epsPpcBzy8MOPP97d3V0u1+t1/rd/+7d/+vWfvn75+qc//xnw+4f7rZ6u8zwdD8RglneP7x7fvXt6fjkcjtp0nZe6Fa+ac/50/zDkrLa5N0mQhPv7+++//zAM4/39ozuu122+Ls0aMY3TeHd3eny4/+679/N8nqZJRCSl5J6HIddazy/zsszzvGzbPM/rMh/HIYHTG65bz2TcQ1RZ3Q0atYXByUAE866NErk57QyKwA87JBktdd83dozPNo13DuXDSPbC5nrbNtUmQ5KcmcHE1638/PmTNnN3SfLj9H5KowAMWur6Ml/WZbtc5mE43D9815p+/PRlXbfn56dSyjBOKSVJSVL+/jK/DSp/2TX6y4Jpj5scyYIp3Ou2bq2+fPn4/OWXp6ePXz7+vC7z58+fyraez+daiogcDsd8PKZxvD+d7k/3IpJTMrXjYVXVslwtfEpjrmcHKFlo59QYcbp/+C4N0+MPvz/cPb7/8OPheJ+H8SbySfsXi+8c1C5zggW2QW8Fnd291VprPd0dvneaDqdxPDBUoEx+uZxV23W+lK18/fx8vSzzeVnntbUGKHGWJGkYhvHOYHWuVu3rc8lLT+a3ZStrDfyuqSapgA2TqqKpmnlkSk2tqZuaNi+bL7Nqw2xn1fTyfF3W9vXrZRym3t5S9bZtyxYBdJqmprbqHCbJQUR9+5yASii9wN2rH+pgbBCQpD9hB4gDq4zcEtE3it+xT1/GwIiTO4VsKUJFqE/WdXF5x21sM5K00IgVUAYnuDsSkEOlDiC4Ag3YgAKv8A1u8AJ3oPbcEwx6PRvUbdOq2uIs7+P75ATYptZovq7zddViSYaUUh/uur3A/Bbk6ehAAKm3dhcTOChH1tyaO4D0CmVRHDbmMGRJaZxc3ao52+Z3aUrTachTilNyh4/24E8gx812fo/++9Wpllbc3Ny0Wlmqtna+vJjZ6XSUzKVu1xmX+XKZ5/N8Ps/neZubKwEh/rVuy7xcX2cOAW3t8eF+W7fr5aKqWy1mVsYVbuOUUhrMq6O5R6vTStnM0GpVbZI4j6nqdrm+fHn6/MuvP315+ryVlZhxRSn1Zb5c53ktW201p8TM96fjcrp7uLt7eLg/HY+vkI7Z+Xz+8uXL7rlkbiZCbmBGEo6cxoFxHFJKidkDY3KQxeR21NDWSoFZjH8loZhnly6HGOJhAsDU1Oz5+XldlnyY8jhISjmPX78+/cu//VHVcsopJ2M9HKbT3Wkcxufz/OXLy/Pzy+dPX4bx8PhuaU0/fvy8bdvzy3MtNefMkqbDYZwOf3u++F/LPfnb6Om3dio8xTnfimu9Pn1Zr5df/vyvP//5X16eP/3y878s8/zx06faWtB3Hx/fjeP0/sOPp/t34zhN05RSnqbR3a222urT0+daSyCVtZSmLYaomIEQijOkYfzN7//T6f7xd//wP92/+/74+H68u+/a0x1h8P336GvBHGxkoe8eUeHNnlnXdVvX7z+8+/GHfDrdHY7HZb5cX57m6/njrz+vy/rxl8/bVp6/zNtav356vl5mMRC5pHGYhvFwnE4/VG3XL+tWy9M8g1zYmRzWoNW9uVVmy6MmdyRvisuzq7E5O3grddtq2LEksZdnZSrz2Uvlr89lqzYOH9elPn99ef76zDCGCtEwjgfQ/f0jcdJzrbqGSonbWwhGGYtj7iV5f4yEm2YxXnNP7xli7w/tiSr3yMt73NybS7EE3PYmYhT9Rug4PyEGsC0AKiJiGIMTPAMbeARGIPfDjgp8c5/hM7ySbe4Gq3AHWq8kwOB6W4vN9VI3s9aPBWMiCIgd67nWpX398vL1y3ng4TieBpEsOXWNPiQW2r0Veps/WFFmexM2tmEiCIy9woq3sNlIBI7SkQQMZ1Y39XGcjvkhyZBkmNqYH5hHOn0YORMGc9I+hWcOQ5cs2M8bIqT8Gj4dKLVcl+u2bcuyttrqUk/H08P9/ePD+sNvPqQpXdfLeT4/n1/O18svX3/5+PXjsizNKwGlbVzo5fxMjNpqEIJVtZbtt7/9zcvLy+X8omrzYok5Jdax3T9+//BwPy+XZTkHTNtau15nd5SipZU0pel+XOrl09efxz+J+Xa5XM6XFwOe5vO2lV++fFqWZV1WVb27u5+mA7mT2ocP3/3Nb37z3fv3N4U6M/v148d//dd/HYYhpUjgUhIqGSI8jtnMzi9nM314fBzHccgpi3TKOpMkcrfWiqpeX87aWhJmomnIQxbaFY8IYOZhGInI4ar2b3/66enp6XB/mo6HPI7T4fjnP/30///f/w83v394HMfhy8vz4Xj43e9+9/Dw+NMvTz/99PNPP/38T//lv47j4bvvf1S1T5+/lFJeXl5qrSGb/u79+8fH93/7H/7hbdbyGj3ftIxeczbq7SdrrcK0zC9atqfPH6/nl8+ff/3y+dP18jRf561sRJQkpWNiltPpbpoO0zgNKTGRqgFtK7tkuwPExKGo4OZwZhZPbsyUJXYnDcN0vH88PbwbD6dhnFgSOie2Yu9gUecx9W1rBKU+tmVqhOav1xL1gYiwCNW66bleL+eXpy/rvMyXZV3LtraymSuTC0MEidhiJGGrFWt5Ol/VTF1ACeREBqhDmQqnymxJLGc/3LMDa+VasC1aSmtNVFFLraVa0I+b16pMvG2lVi6l1Obn84UZbVvXZRa2zJ5EDsOhBUa/j4C9eVC3Z+fkFV6wl9MdcqfX6BmRJ5hsIL4NEL2W+XtlHndrh+upR9VIwWi/mXtw7b/7jV4fMXrPcxG1WAIyaKBgahDHfAXQHAWwyDrJW+fyutz8CtAf9t5OivblTrNotYVokFkEK1OQqjLcTW5zUTe+le9H6euf9zMiGukBxLlWYyYmQZ/RYvEUGTvDhDi8FdsweLbDcKAMzoDAELq91mek9xTEX/OSG7MLe4jR1pq7s7CYmBiAbd3mNH/58mUrJexdz5fL5Xq9nM+lFdUWmybllIccXUT3sJExVa21lm2rpWhrZsYERZdxWJZFRMwt5zHn7nAnktyRQOoes1z9NtRtXZfa6g7kucGC5BSwe875eDhsx+N2d3c6HsdxyEN+m7KcX14+f/6cY0Io52HIwhgyRGSaspm/PD9HeXY4TCkEOgOMF0qJzbSUVbVdz1dVHZII8zTkIado03ZkgHkYRxEZxxHAsm7zuppQdR+aVvXL9XqdZzMHp61UFpmuS0rTurQvX16en+fzy3K5rFtxkmc1u1yupZZlWWurgZ6mPIBkWZY3Zcx/N/cE4G5aNqu1XL7Wbf3yyx+Xy8tPf/7j05fPX758+vz511pL2a4sMk3HnPPDu8chD/d3D+MwkAtBtlqv6xrtNhGexhGAOpxFQrovW3IX5vDCS1kITJSn6fDbv/0f7h4ej48f8ngES6vBblEiIhEiTnkkYgnJGyYYba7V2lbLtq6ZKQ99rRLRMIymkwiD/OPHP3/58uXl6eXLpy+uQCNrPl/UFGIHIkyp2cBOzUk39/X5jPNsX86Sh7vHRxmGMa3MzXV1X7KsKa13J/nuu3S6lx//MBDLuh3mq5/Pv14uy3Kt65JKa7VVh4M0ZZ9nJ+LzRWuhZdHS7E9/XP78JxL2xJ4zHyYe8nB/vJOUp+EYiypsGHoD/fWlbBfY+ZZvEtNr2LiliIBHrIxGot/Q0VuRe6tkqVfJIO7z7nu1vgdVoj359BB34p54gkAZ0B5tKRHfgybQCBBTg7vjAhT4CpwBA0XN3kKGgCDAK+Oa4NJJUX1REsAuMFrm7eVpXufmyg2+tFKZSWtOPOUDiCHMIOOeWcMoYHIDiBmduQgK8iARAK26XbeBxoknySJjJpBvbuaNNkBjvptYOOeJp2MelcrKL4rabLNQUjCwR5M1VGbQ55+d+O0mc5RS5+uch3x3OlmzIpWJn56fzufz8/OziETFPy/LusZ/r02VxFOW+3f3x+NxOo55SOtmrRVTU9Xlevn08df5ep3nCwA+HOF+Xa7LxlspOecff/vDb37z/eEwjodjDDs5UNXTtvHAKmakhrqV+XJ5bmqcEhGM2Wu5bvNlvmZOSdLD3d2P339/HMf74/F0d3z37uHudLzp1zRt//zP//yf//N/FpEIbYfDgdmzuIgcDqO7Pz89q+qPv/nxdDrto9cOt5Q4D6LaLpdza21bNzM/jmNO6TDmccimTVsz1VILM0/TYRiHP/zhD+M4fn56/vr1WeaZc8rDME6HX3759dcvX1Xt+bIKy7/98Vcm/uGHz3enu+t1mef18+cvHz9eia+fvr64eylFzUop1pVg/DKv+fPXz5+//NXKHbdMA3uL3d1abXVbrpe6zuenL/Pl+eX568vL0zxfaq1mSiyS8jhNOQ/jeMg5p5SZBYpO69Oq7s3NnVtiAObq7mZhcu1v92RnvjCBo1/ppRYDoTIxm7WYThMRljQ6mPcZBYMbatlKqWXbtmXFkDBMuJ2b7mZWtk21PT89ff3y5fJyPT+f4cyWTFE2dQMZYBQKgc5wkKo124zYTDMqySHlNAyaROFK0GGwIfv9vb37zo739PjewJxnIoaIOpqZqHI4JBHFZ3RFLTM14xAUqzXmN42gObMpb6lqQ07ZjszMGnBnz6C+OeWgDa32BygEI0hU0OgSHH3Tvu0dvYbKHdkLlZHbnwaFoyt37hkqEKnUHlX3VbNLMhBHeQE0QAHdA1/8mBEaUOHVvcAL3Mh69OxZGwRvqCFE3dL4RtKiPRnVarWoNgsIr7nCvYmzQc04Wvf+5obRm/u2v9/rNB8IIFNvzaSZNSOQJMDdWrSC/DZiCuoVVMrShc2CqH3La9HpXr531uJi+Nv0091NjYmHYVS0xsqBTQcDjrzUErbAtVRtbR8FcY8nQ2jaaiuqMYvlTORurRRtzf31YQZraN220mprjUh2Hanw8YaaNlWF2y4oHHcuPAIMMafqGpUdWIMjAaSUpmkchiGsYN6eDVspy7LE0VxKqbUye2KXxKWMZn45n81sOhxa9AQsVouL8DAm1Xa5vDTVslV3b6XmlGrJY04RPVVbqYWYp1LHYXx8vNTW5mVdt8KmVCVVrc3nee1aByhM7EpENOSXWnRdy7bVdS2tKQgWeudaLXQNd0+z1qqbvxUo+MvoSf/ul7Z2fX5Zr+ef//kf58vzn/75/768fH0+P83LlVOaTlOAssMw3N/fR2ufCLW1WgqVjWpTiW3rDlOn0OZqVb0boMdUhzNzZXaQMRNxSuNalp9+/pfD05HyCE7RKq2llK0IS8rDMI4fvv8x5RzIVNk2bW2e53Vba6lbKe8e3t0f/uONjrtcl+fnl//yj//3p08fn59eLi/nVr1uDheyBCNSQtggu18u123bPCVnbr5tfqXk6c4TDcf7+XhM37/zafTTqU6j3t373V06nvzhsaahjvdLU/n80SGQvLpvZqKNiZASs4DE8+BErZNEAWaIwCGIaWpHa3adq1n5ZXsm8HE8JJH7h3Q4ZG3q6m/PQG/aXi5Yzz0oBE9HpG8QATMFW9adEYS4HcEk3qNnn0zqTgWgcFK9WRdwzy/ZnSgENLr8+psfJhYKzxUfYCuMgAq/gJSgAMG+QL+QfoR+JtvcrnCDNbjDWh8QQQJvN50eAU2c3go1xGGh1bdLnb8u6+ytWlhRDcLMWZGWmtVdY8DfA4Jk3ov3uD3M5OxOruRBxzJIrYbLVmurraScDqcDgepaXd2KQKVudeNN3RoUrMzGcDJj8kHYQZSYHCFu9e3Mm7sj0ze+ad5ci4330/fvvp+v83YuTHIcT+M4/f53vxuG8Z/+6b98evokWY6HIzOb6upbadUJW9mI8Ouvv+ScAnweh2k6TiJcyqaqQ07EPI4DM9darVm4gLx//641DX+0pp2ac57nZSvXZSmtrbUMZWORu/t7dzTFWsr15amsq9VmrS1aCfRyfhmGIad0f38vWXbO9evVlm1b5rm22pqKMLPc2HPS6e5OoMs855RL2bSFSiQierpbqVtowLtjHIYkMibJqc8SqVktNSr3POR528ZhfHp+WtcVTM7ELMRyuVzK1lStbHMfLXZarkVYQvW5lGLq0XYCghvgcLsRqFxVY87sr0XPHkD9dUIP4TbfWinbtq7LfJ2v521dat2GJHnIKQ/jeByGYTwceW+rqVVvilJQNk/kmYNF60bmBkeos2GXnAXBnOBsILVe/RHTulzd1HkJ5ToQla1syyY92T1M05RyTpJAVLaltTZfr8u6tNZabWWabplGjP1s2/by8vLly5f5PC/XxZRN2c2sGRnYwgXTyV3b5lZd4ZTcG7wwWU42DHqY5uMx3d3hcMDDvR0Ofv+A+wdMB7+7V84uk9aacm4pE5H1eSjv/e9wu+yKHrHWbnBwn1fcp8TMW9VlKQEJ5iTH4xGe9uTjzWMzt6351qtdijkcMRKOO+dMHrPy4H2UvGdE0cPGLgMcodCDPhK+2F1sfq/dbw4/TO782p0HI9o5ELDBHExuC1GCL3uCR/AZfoXN0AW+QTe4QRvc3RoQ43XfDHUwUWJW33EDwAGLBKlaK2oNZm5mTZXgTYVJmxoTkZKgi97xPgB6I1vSDT3eU28nMoc2Azuv8GaZBaC6VVcnG8k51F8NZqQMC/AjBFy7mkC8nTGHrc1ejsZ/vh0TAwByYuKccuIcMEqSPOThdLybxkkkuTkTd+l0jinJjm8SEc/XJDLklIRzCreriNhON9+zqCPdWmutNVW121Sze9NWW1u3bd222moza01rawBSTpHntMg5tc/LqjY4aq211pxSHrIkZvkLQAm37xlftXMgyOKcJQrfLXZARGrZWmjsMpLwUJO7N63ubgoAppZEWuIs0Y3vOuXM3Mxzay/nyzCUeVnLtjmHxiKDaF3WMOeIbmEIelqzyCTCWJf6RtyNx/fCrMvI/YVp5b+PntSdPCKGOrkl5rv7h3Ec2P/Tcj0vywtnyctxK+t0PI3HO6YwE+FoeHmrbqbborWuz1/LfInUhrPIOBAzSwKRQKLlE2j9/mIDmBkgMvNaL08/r5KM2ImaubnX0ra1MHOSnPN4ef6U0nA4HCWJsBH5+XK5zkvOQx5G4TesF9WPv376+OtPrephPDwe3yUelrmcX9Z12Z6+nlttbV1hOnAT8sQtTyaj8CB5bMNBp5O//y2Od/qH/3A9nuS772QaKY8tJRsmHUZLg6VBSUDMoMHdYMwkQinnNA7JuVmvyWJQS+J3bTTP21ZaOEMk4STMoXCbfBgHcow558RjnoY0wNFKM7UbH7cVe/616bU67bgHEYkSc5BNicFpL8axI5x7DNlbSvEQujI6EbFESOxC930gVWKvc39PQoc6haOSZQld8gTOSBfiiXQDj6CRQF5/dn3xdvZ2dWuu1c2tKtxdtTvsIWmu2JU0RNI0HNTa7cRw8+1SdXNdXWezRm6oqnPdkhLQhpSGLIOmA7IIszsDYVVngILCzpjiD0XyMKY80jB5GgymrcFdvTq161yIguxOSZgZpRTwomiN6iA8ShIm8dGQw7CR4j8e+HKXXIiXwYeU34aYLONhuEs0ts21mDVLOZ2mw+l4erx7OEyHx7uH+XRx6e2nplpqW9cC39Z1E+ZpzEnk7nQYx+HudDodT8uyHE5HXmXbqjtqaUSkzc2Rg9LFZK0SxnEYHcYs2NZt2+br9fzycj6fuem2LH/z49+Q8JCGMR/4TPZLs1piGbXatGkppbaWh+Hdd98NQz4cxg9vXOE8FOpKaU0t1JCidhAg5o6IlJiIzJ2Z4bajGm5ACJN3dIh9J4rGUBP2PiKTJGLmJCB+OV8CItDWOroTkE5VchIS6rap9lpeq2uX6E6GoIS641addaxHSJjlMI3/nei5/75zPJgpj4Mw+bvv8jAcTvfj9ewEyWk8nMbj6cZtCenB8OEwrdrKts3LfIkcJQ0ZrsLsuY8/EzG8p2E7G9sDgoll4mpluTRmJXKghtJybaU0IkqUJA+mlvNQT/cpp2mkJFTWS1lmotMwZnrTtzXz6/V6Pl9MLad8d7g/He5eZNH6Ygr4i5u2urqpSAXbOFpKyCOnUQ4nu3vw4z1+/A2Od/7bH+rhqO/ep3EkksainFSSUjJiJWZQQs/8I7awMIuQMYG8n39O7tznXQ212hYCTW7IuWsjkRCBWQhhk8nCSVjg0N2kpd96xXqxdjHv7KOIg07sLHv0lDcddqHbBr7JwPfgKR55ARi7UXtET0gfLQULWJmYOKHrJ1JEUpIEF5AwpfjXDbwSp5jddMDbZ9eLt8Xq4mYhnGQ1NPga3DVoiPoN7ikpkeKWcBsc3kxhAZ8a4KTmxdSctgZ3L00BSiLukFB+cCf2ro5nt/wiuBiJUyIRZ3F3U2KYFzfyQN1jXpUGdSTV1lpVqsrVPGIyMZLD9A0yEHd2V2HoXhkKl28Jn8ySJBPYws3cnBxZ0pDymIYxD0PKOWeFNqi7q0VnSAOnIsI05JTYtbXDGPBway3nrE1pV2wCusdM8G8IiCyMWRwkYsyirdUwCdnWNWVy1FYBiMg4DsOaAg4Nh5TdcNbMjEWmaRrH4XQ6HqbD69X1wR+7FVbY+fARY2hvBjazXde9A8XU1Q9juA4B8O3SDHFid9mRsHwQFmIutQLfTOKFRJ5ZRGcKpwDmnYgHMIN3gyV1oIX2FwEQfq0TRFJiyTm9zUD/onLvkdP9FkmJRcysmVd3GafxeKdwJ5Y0MHEHt92aFlcty1Vrvb481W19fnqaL+cBNIA4iVzm/UAi54GIOScSliwcrvRZQAwRIhJOTGxp7RuayQhGBPPEJiyDOIuJF2rWVrYq1KACq5UQooyvGTgAVf35l09//ONP7+6nKTy2EtzW5fq1beuQloH1fiJhvjuknP3hgacJxyMfjjROdry3YbL7d3WY/N19yQOmDAm3YHfyYGcmx0CWWI5sGTaZUt183dq8LMtSjIqimrFaYmLTTMTMWQSupBVNq5mWWpMwi+Qtu5M2IUALstDdCZL9el3P52XbXrvSW6M/P/P2IoFaRp4Y/eRwBibGfuoSASJv0H3ayUbRzo/RxkTMkBSsZmOCCFggGWkgFkrOxJDwMOeAZcAMNTdxFrAD3JjI2YienYQ4A+T16rZ5bSES4uHlXN3MtcAVdXFzTx/2Qh07U2aHD2l/oK2FYzuSCEuqrrqYw1dTE5nXotmE2FISGMMtJHIJ4VISVi5vcX5Vr605LCNaMt2e1h1N42RTlqqYpZU0UTqQJBIxUHd36IoWfOun9dylt+Pg7J5Y3mT+qKUuyyIpTdMaUU+Y5+Vq1v71j/8sKf3LH//ll19/qeEG0tpWt20r1tTNwuIvpZRzmqbxeDyejqe7u7tavbUXNRMRh6ck7qi1tqaJwYT5cv3y6VPZVrPm8NrqVsvlctnWNSc5TtOYhyRpXddPnz9P47Qe13lZkkhOyR03DdCQcS6lXq+zqibhcii3EoGYDven+w+P0ZOLDCD8sR1uqkQQlq7fypySiLBwQNKcEyEshtxrM3fPkoR5HNKQJDpYQBzzMo4Th7y2e+iaxwMwD8zUm+LWJBVW6vZTVJu2FvM61MzWVs0RhrXCN/swCrbqD7//m7eOON9ET38Tb14DKDOYGrw5JA15PORWzSFys+UyN9VWTGtZr62U6+VlW5eXy/l6nSfQIeg1AnfX1hzknEEs48BJUk6SJWVJQ2IRTomZBxmIyFiYmJOAGYldOJy/EtMgYHbxRuatLPFAjGF2Exh7A3ABqvr16/PHT5/vDr8d7085iTDcyraeW90Sb5Ls7kA58eMDjSM+fJDTie/vcHfCOPl0NEltnJpkOxxVkpM0cJj0gHyAMSDug2Ngu2dP8MHNa0MttpVt3aCI6JlMx3FIZqNwYkpMcCNtXpuqdtxHhKU2gOGZACdrQlvJQ+F1Lcuy1foKYBfF5wvPZwYJiHKCMBK5EOIWdidaUFCWctojA72JngAREoOZciYmyhnMPiSSyGEZeSB3khwN2x57sXeRPWaL1D2ZAySANHJ3uoLZLQHkurpWV+2hU3H7pQXWUK4wc3oly/cSre/JHcY3M7UGNw60RxJXVnNzK+qefCsVjjEpgWKkogs+sIBCXLQzS3biJ6lZa8ocmQcxxeQGu3sHCsnYtflKjQ85DZKZmdmwDwsDXYk/+EmdG9C1+LoemPA37jhN27aVYdhKKaaaRJhpK6tqbdYA/PLx518/f6ymzTSeV7A4PXoFoCScUxqHYRqjGXBIaVFVd9v1qATeIUg2ENO2LC9Pz601MMytaq2tLetSak3M0zDklJJIqfX55XkbN20dXpRwpn1r4eBora3rSoQyDq21274jovE4nR7umEmERSQ05UKrQVsDkJMw05CSCOch5ZwkKizhnALYg7uX0tw9pyTMhyGPQ3JTNwOBEotIz3nde5Axi6cauW8omOzHJKIODES4Vq1NAw2oanNr5t7MAYgk7mbElHKWlB4/fHgLf/63XOEIIKqt1GXetvX56UvZ1ufPv5Ztub58bdvSNRq1Va2qtdZVta3bYtrqupgqRNJ0ePf99PAdsmEwBwFCZlq2zcybs8e0anRvATXyCjSjUomoUKOIBIgfgwt7FxriLFKGQTgNQyMWyiMRl82J0QzqgMh0uvuW1AM1U1W3BUZmV1US/nJ3fBHSMemQ8XhHOfPdvQ4D7h5snOww0jhAREUaszo1B9zJHOQMdwOZkXsmGkAJGIiH1sat8DrrumrZ6lbqVrBVGFQplMeFkETSkPLw7r41ej4vZsBqpXrKnLOISB6CR2UIRU5Bc69qz+f548enP/zders0c1oszZrMBKCsYEYmCIP7SU6coqcOApXeiHYA4U5xQ/RViRnmxBTu83D3JM5mRK4gI2YldSJyZiNySUSMbMJKnJmTR5DqPm2RmhqFzj7Mu91FaNmoW7M6V22+XU2rry+mRlI836JnCKdGtCNQaBtE0RfOdwISTsKJmUCZkZjdTbXV1kA0CDMLWJzEic1JnaJKJhZxMjWlVgsRjBKlzJ2vGVnnTlUybTAbc06DTId0/zDlkVOKEC/uzsTwnmTtPRm4hQtY79PJt7nnkPPxOA1DDv3/POQscjodJQmI1NQFLlH3+pCHwzTB/d39fQwGE+hwnFKSGEUHrLWaEh4eD63lwzEDYGJzZ7FaawjlppRabdu6Xs4XhzVTNSNHYrk7nkxVODMLObZt06a1tKZtnpdlXVNK0zQJJ3fc39+fTqecs5ldLpeXlydtpk0xIqL2b//w+//49BTkGhFOSQIoATwCXIwP5STClLJI4iScRJiRJJTBEBQUhw8phcnVkFMQqyKwyD5r1GHm3aU91GO7HreRA7tWnfW5uh49Tc2bWTWfVc29qrl3PkqkYZISJ5nu798+u/9G7hmt1Vrr8/Pz+eXpj//1/9mW6+Xrr60WRiM4YEJorbYahITn2uq8LmYBi2Acp2GY3p3ejYcTVeWqYECgrS3Xq6quxcy8aqjoNbemaq11fWG4Uzhru8MRrAFjciZJklLKSU7TIClNU2URziMxOxl6xU5pHN6RvY2e7gjygOsMa9pKQ01yfrx/Ooz0w7thGvnDexoGOtxRypYmk4TQETCvZgVsjuYgR7KY+7cuyeU2EEaz5DY4RudxK5gv63It61a2UtYNy0bOBnEGJaSInuM43B8e3eTzl2tTNDSFjVOeDjlnmcZcq55tdnMBiKHuRfXp+QLh/9SRkD16arq23Jq4IzcwIxEJQxg5gZmy8q1rxEpEcDPAk5AImDkl7oxHoqZgpuZgRl9zUECTsTqzoIWMvRsR8sAxsZBy5GzwrhUSYk/sQekptiuRYO/xG8ytaLnWVmx+9lZ9eXI1Pm7+dllaEJkAAMzkO7Qf9grMYKHebSNkYSEyswaU1hxIPIGTsxixg9RRHepkIGExJzdrtRYys8ZjGiSZ9/571ZhiYg9vPvjIkkc63OXH9wdi5xSaA+lGhAh0LgDHjne6dwqo8K5qsUfPMZ9Ox5wT4CwklIec7x/uRGSpqzaDuLM7O9SHIT8+3GdJ05ABr7Wiu/SQSO/c1rZJwrv3R3drzRB3z3wYqNYqJuTUqobZhro5uboSUcppkHQ4DkR08zNc19Ud7hc1K6XWWlNKh8PheBRmfvfu3cPDg4iY2cv55dePv5ih7fo1IvKH//B3a3C6yZkpRU1Ogl1RKQkx7fotQiwkYRkdElnBo9tlAyJFHZLkFJTmOP/DZTpRqOw6oQuy2M1FwRzNYNGYdPfouIIAqs2qWlUtTZv7bKbupfWhhyBaukdTlI+PD6C/Ej0tAkxrrbXry/Pz54+Xl6fr06dtnZfLs9aQd9MuseABRduQR5FMKQNILMw8DYeU0vH0OE2nOi/lMoPhAlMF2MyTuhm0m043mLqbq964Oq4G91BCDa8mp9CyiMMGbm5NWy3iKU+TpGiO+LKVWrd1uZ5fnqfp8QbBMPmU/Tj6aSzH0YZccqoT19PghwHv79uQ6e7gKdOQlRNk3+QRO6oTjFETGdmciaktZoTaoEausHAO1ErElGtTnF/qfG2tEbwbh99SjxT5hxvID4cM5NNxWre6FWkVh4HvDnkc893pUEsVbaYeLlfjmFNKrdV5nkspb+ILmUvE2JghcqA6NQU7qkN2sWECQJDX8SGPvqQIRykebadd0MiZwSBTEBOTBNFfmEwBeOgiWgGLo7lmpCOSQsxJnCQEx8K7G21prl1IicSJYU29mhbXzkVXtKDMa2gk78+OEovuwUlYyCmxpI5KoCuYMqXEOaXvHu4SU4pxdtWmMRMLMJhZ3Yp6U1VTc2PhhD6k2lG5vTMWhbtGlU/khJwSM053h/vH4/E4ijCxESGUP2+C+BE9zbzPDcB9Z7OAid8AZyAkSeM4gmCqzJwk4L/Ewqi7P5xZEhlyvjseHo7HHX/0JGzepxlu1QOIJMlAg5sxq3tXHhqnMaXE3qNnK00S55wdbhAiykMO8wZ3D1fenPI4jqpWm8IsqE7UhTmYmbdtu1zOYdE5L/N1XdbyBvckGg/Hw/2DI+axaWfZyE4vpizEhBTSVxLzX93COwWZuGvMg4iichchlpBjcKKQjelKSxLjzBZeBYZ9ecMhDHI4mbsbMcy7Gqt00gkFHdrMzQVmhj5zC4Ojf/FvaUuv0dPh2lot23K9rNfrl48///G//uNyef74p//ayrYtV9V6ma+11QD7pniN493pASzIIpLu7+9TyofhkFI6nR7G8fj114+ff/nFqYNip7vmgCKF8ZMD5Ephn6baWXlw02buWopbXDcFiaDbudV1nV9MzX1OOT+8fxyngbOAad2W+Xp2eG0t5dNNSoMJj0d8f+8fHubv7zGN2zDUJC0nymKnoTLTwEwEEoBgIqHzopDq2Bq5izoD7HN2p6V6NSyLluJlQ9maabNWJOl4TE6o2K5LqxvDhzjlmI2TZxnHlHMms0o0PD4eU5o+fHggolbPVv3dKX33/nB3Onz/3WPZyqfsqu6UQBRrbSvr9nVelnlnl8FBzbN6Bnc/VnVUg1qH9YQxSI8yBIq2b7SOEnkjT4ndmUKrHUEd8VKUyFtiYU6JJRGKEzkzsoBAZESOAc6EOllOlO+R75BPDndOlJTd0ObNmpXLqjU4xyYjc471SFa1rdGXbKhum5sR3vTchWTKY2PWpgCSJCcfcrZkiSU6XczIiYaBH+6O//APf8giVrZW6y8//zJfZ5A2rwc5Jk616VyrqhVtbh7aYyGglzNLkpxJBkgGD27N2lrDiYeYD3fTOOXvf/Puuw+PabA8mkdTKZoXndkZFnHh7rD3+9F/N9jbTi6Bxmm8v7/btvU6X4ech3Ec8jDkHHItZlZrK6W8e7h/uL97d3//m/fvw1Ii5BfUtNSqpoHKUFfRHkYazK3Waua1NHcf8uCOAMNbaS24otxpjkwUQbysm6o2g8EPh+nx8XHdyuU6t9a2bdNd7zJK2vP55XK55GEYxvEyX7+en8/z1XauLhGfHt8/Nne38Ka8GbIGMYSB6GJ1vW9BwBeRdQZJhDw6PExEUbkz9cHsOP/7NEcI/gdZrzPEurOcxYhIBE51N0d479p+rImTGYuwOavCYWpsCADAm5patBR2GPTf556OWopqvZ5fri/PL09fzk+fl8vz9eWp1dLqFqizuUuKAYbpeDhN03R3dw9mE2aWYTiICJG4szZTrsFqcIK2SCfVASNyUCTWsegCaXeiUPIKpjUncXeS/Z6ANJ4brEkCnJilw9Axz+Tu1p2otq3VektgiOkw0ulAx9EPow2DDklFLCVP3PmOpkQgUwJRq6RE1ai5lerrCjUPsw2FudNcvKnPi5bqdUMJoTXjPOiDEgthTKbElJl3WV4xFgvoXCTo1BjGlFIexzQMacwyZj4MchrTcUyHQRLSw2lqag3iuBkVgUhFXh8kESWmJN2wI/YmG1r3jiYmF74RnPbm9U5bcqcAc7lnYd5BSYeHfnHIi9DO6+8S4k4QUFRDqKuZuDEU3pTUiROlhd1c52rNlpdZS9tKrU0pEyVKSYYhEyAOVzKj3sx5M52DjiSR9O9AQmxkZHDb6a3M0XcehzxN+e50yFlQU2v1cpkcysQgU2tb20qzpqpqTdsrx5WFmIcx5yEdj+nuJDnxNEipmkszc07CzIfTOE15HFPKxPJGgzRGH17vr2NPe3xveN0Yit/qk7uqllabqveCqlLFdb4QsK1zK1tmOk7D6Xi4vzvdHQ+HaSQigB2ehtxHmc3Cmj249KEMRU5IMHNyMnONWi/uW292I+jticHMeUgEYnc1DbyCmZtqU62t1aa1zyftnFZQsxYU1Ka6bmtTNdfXOQ4CUqI0ENRvHJhXevGbX6H1G9IAu+5vD7X+ZphDGDEv9o38S3yb6MUxEcGc9glw6hVB+BKBPAxEiLyz4HubL17muxhElyTrf5dcYkyE/0r0dPfz05d1Xb788tPnX//89PHnn//l/1nn69Onn80UkkhkOJ5SHu4fHw7Hw7vHd48P7w+H4/39O4WvtXon1XlZVm3rdl0ZmM+XbV4atHhzN1ZzoJE4SIm8z6ZAmETYKe59CNQ4JRB4mLKkJJKFk5VqaylrZlR3J6GUJOfMwk2rmnqtpFXX5dp0my/Yn2Ri/PhBcku//b5+91AJlVH2AWcqTcgYNbtxbcmM5uab+WWrl1LX1S8XrRXXmVSxlaaGtWgz73NrFVqDpS739/J3/2GYjvLw/eRqOfNhqttmbk65UWo5DdOQhtEkac50/3Ach+Pj46G1us0j6/DDu+m3H47TODwcxSd5P6Vmfi3eHJupuYsYs58O4223CuFuZDnImIVjohkOgnfOXGweDxQP3eUKIpSEfUdRSJGkt+oihqnBnRILkwSBKZDtHrHI0yAwr5fq1bbLBm08GmenAXJwInAyqPlcrbbz07ms9cvny3zdmpm6nx6Ojz88Hu8PP/zhnbCQsbtXVLvZgwAAGJQhDIsaK5EYyJtrGOyBxzwcTgceSQd7/+7hb3733TTmnMhUhwPOL+enp5frdV7a5by+KLh5Cl9fAh/GgwidDmPOw+nhNB2md+/G9+8PQHNbt9IwkhmGaUxJvvvu/nAYxmmQHEB6xMFdB//WzDLb2fEeYWsPsDB4kje0f8dluX58+iTMIlys6LzB7PPHP8OdyQHcT+n4m++///777777bhrG0zSFXjoRSc4gigGgeZ63si3LuqyrkKQwXRuCMGBmuixLq20tWy0tURo4pYQxc058d8jCJJJAtNqkjmLUDE7yfLmu63a5Xrd1O19nba3V6uYiiUAtGi4ACEbe2FRfe+4AIY80HQHfh+mNyHfZgoA54ATqiqzWc08hCsFY9xBDDDuYPqUUR3tPE3b8skfkGFMM11XDPmBnnYPjwjB3SbsRr4PD4shdzN08VTUHBYXCGUCramoU6Fi+9TK/jZ5vTst46hopp7bqwDANkvPhcMrjcDyepuM0jtMwDJIymGE9Sw6CQGtVazM4w5pWCyNCr3B3UwcpLMxE4tI9wj2JkzdE88fgEICI1BQWUkrWzy5mZgn1GhCpGam21sKNaG/oKN56VxCmUQ4HSQKQe+h9O4WzsRvByAu5Uqlkxpdqm+JlxXn1dfXLFaXienVt2IqpoUYwaqQq2lxbr5qGSVSzaYI7wZiE2ZjB3J2n+1FJYHZmDEMaxpxzyjkN+6+cU0oS1KWcE5tvblA3dvXe5xF+m3vuSRT1WUH37psUx7O6txZQD9zD54iSEDPt/uGIZb0bF9Ort2r0f16zJ+65aixK81pNS/O1eitUjZJTdlqjIa5Qo7VY1fPzUtZy/jpfryVmH2ol46E0jPdHScxGrj4vzUH1TeWO3U6UENAOOfaBeEfMiTJBhMchjWMaRhnGNCRy49Pd5K6lFnPdSnNqcAmTN227HDRDkuQsOX4f8jhld5iJk49TdiCPKaWUR04DEwcty/w1ywJeZzJfN1GUj95dJXz/r+PNX2zatm1LSTJlcmtNYeqlMHCcRhEhYYWPw5hTTpKYJWAEZs4pE5Eym1nXhEbIzxgs6H0MQJjdxJoKsakTKFNOlHKmaeAkvXUT2nAhEZeIialaqNh02k/8c1MN8wsCaW2qHaJ2gSe8Bazj0WnM7IBBhq6Z4jeyugbxfQce0ZsccdIEME8d3ySynSUfOyiIZXHPff84QrBrX2/x/q+CjxvtpP0X9ZS488O9DzJ1wjztnxRss9tk+b+PnkR0vLs/nO6GnB7vT39O9PzrvzGhbMswTP/wP/8vx7v76XQvOTsUbm7e1NbL5fPzuanO2+LubAZ47rPRxvCmFamat6YbRfR0tAaLYwhQcgLYiJVCJsfNVRVAikmQJBAWycJZnJKTtQoKSdbWqtWnZyLWtro1r9vYvSEov5F7YeH3H06JH5ouX190udg2e2m0VDalWtmVdIWp1Wpqfi2+NX+62svstWIrVBuW1c28NQXReJKU+Xg6DsfBdwM/gKbTw+H023EiltlQJc0pqUgVUafqXs3QGplDEsZJHt+djoeHh8fTVupyvTMrh7v74XAi+FoqEwtlJxCMGAOxM7IgCYb0Gj3NUQ1VQexsIQWC40DTwEOiMZM5VScz1BZENgJuFvOu6jnxkIkZqSuiEYA08A1QUVBpES7BUbu7mhZt7enjc1m25fm5LgsnkMDJnMy1tbKS2agNZuuyqdplaVu1olbN5bmlT9swDXf/eiZmJ3GgKWQY7/9/6w9vtiDUoA71nkioa9G6NW0OJ2tWa5GMx3fH+/tpGJAGk0QE/OZ3Hz60d9//9v26lst1OV8WNa6atrV8/fxsagISwjTJYUo5MxFYwBlExEKD5XwaHMSJicDcFM1acE8Y1gWPQXjr9B2DLsGx6gvD9ljLZN/aAlyX66enz8MwHKbJVHUtDBw4Hcfx7//wDw93d18v53lbU861WADyBAsQiyQRoZSiTZdlXtdtXZayLiKskvKQxiEFmYmZ1e7c3aq5IpDDceDjIW3r/OXzT7WpOzmwGSmQxmPOgzVrzZgssTd2ZlfSpkH/VFfroY6ZiV3hDVraLfV0+FzqeS0cBfeuT+XeDayYkBMz0QCIEMEAS0LZucumwV0bAYF3ZhHmEKgxBoSJ3QVhJhym27ZPDu9As7uaOdAMZihNg7gSMIcTmrqqN7PatKmvpbl7UweIORFoNw8FiDb/xun1m9wz9Iq8ndja8XgahlFrzcM4Hg73j+/vHh6G44lTrmXRVmsprbVS27zVpm0ti5uLG1EfcWK4kpupk7rH7x7eyt7xoOhQRHOUnMhuJ13TGMxikLlCycSULRMTkruBiZw8xqNrdZC34toEKjc4+c05QUTDmMYpL2eqq1+uPp99q74UUqWykSu11V2pNldDRM/nC56vUEVppIp1gzmaOpFTDqvQaRgPu9N4FAUj8UBE7msIsO9G6r2H5677jG+0iSXn+JVSTpJyjJebq5oxHJI678Wcchel3CkB34SXZmBFDLZFdS1MWWhMpGByNt/lkAQAtuo3/wtJfIOXI0OOdwhAeB+iRfTuYsLSzWqtrdTLvG7zOp/nsiwBrXfHB611XdhtciWzUpqaLdWLoqhXc7RGbU2rzo2I2brIFqXR1/J2mcZy2aeNgqzU10r/Z9Umg+SccmaSPUsgDFPOnkhomEZK4kxNubYkIpfzrE1JjfokFYFuEGWfbSWhMficYRjje8oZLh29BYIbDHc7ePYkFLcu7e1P/uIV6nMgiIg1rdsmxDmRZYzDdDyc5lqj1Fe1IPb1Po9wqpWIWm1NtdWudxmG90TqFpO+POQkIh6bfSBEzmI0ZJ4OYlbNAzaFO6lFTefdiBW92ShMItin1d20aTMCkxM7wNhRcn9N+xzqXs3kJsFN3tWjsQPqDCYWNxhHLkhdtzJEJ93NIgUMa1c4O4w8xkWD0oBY8e4hRhtPAXvnKH5BrUdSdQ/gKCQFm7maNbWqqupNNYhNANhAxD16MiFcj//b0ZMoT1MeRxFOQ344P//wu79bl+t0uueUXPJc7dPHL021lcVaIVhoJVUzwIhMko+hJ1kXMyumZhqkzQqrO1cUBCESUDBWY2rFd0kv0Zhd4Rgi4KClU3AXSSTlNLgJlNUUVdS8xe0BESGBM3lwRtJbfgEBKanIv/7UPv6yfv3cnr+qUTYmNzJlGFCjI2IGbI2a4jKneY52IDtDJifTVldiOr07nu7Gv//733/48P46L/M811KWZaXkT89nSTYsX5qWZb02q6qrhnUHtaDj1MpqqbW6bjNzApHkbEjF5OVai77A1bUAFGLv5kaMh4fjOOa2btVa3V4ZS1XxacblijG7ELIgEXKyxCTCI1Ez35oBCHxpSL031JhSRg/lxL3B0fVbdrCJHPBh4Jy41LpudVnXp5ensq1PXz7XrZw/v9StlGXRWjuDJNAQN9Im5Ad2QnQwfbNQ90QFxWAQqmMzB7VdJzlN62XZXuOL6+arosVkYnNvrvO2zcs6L+W6tEZrQ5s4Dw8HUG3eyL1Uux0txuCRj3LIx8FNTNPlvKzXrZSqZQXcUJuirQ5q04GOdyllGzv6qsCtdgxNKSawEfbZn7h7/Sdi0Ki32AJ7NjJzMY1MNFP+C8etGC5ctrVtbbksAtbsZcO//PHnL1/PNSinbg6jmRgc0+MgSqEvHk661lmlKefwAR6GHKLu3JWZnICUszCXrZWtXZbl09frus1fzle4D8MU56XQPs5HkhMPCcJ2GCQnr7UdxlxKPb8sZau1tNZeR9mdSNsr5OK9KO7HXY+e7qaKuC8EhwuZu0VSyQRVN7F93rqzwBxKRh5WkrBQARNCr/pBSsTomiPcw/feczc3RPREs568RBbjDjVEDGlqzbwFVN0rBQVC5DOcPLnaX4meBEjKaRhN1V3H493x4VFyDtK9sZja+TqvW9GyuBZhT2IWuBMjCTqUBq+lWPBGg0jBUHJjpfDSc8huPeYAEROTkzvshjPElFFmooiegaowJBFngRPUSSmUcFAbet8tVJX5bRZwu77w5X06288f68df7esXp+Scg1oC8t2ITAygamhGa6FShYUlGDpiZORKEOQpTcfx3XcP3//4XX55IfF1pWaF4Mu6Eeums1qpdTNTs2pWHBq2de6sKm5srq3WlquHGgJYjdaiVRXe3Ko7oAS4iIvQ3WmEJ21qrViH5wmAOs2VLpWauzAdHMZo2leMdbawd2LdTdxKmbuBB8KUODbhrRm16yk7CJw4DVxNDba1+ny+LPP88eOXsm7z86WVqrWaaiReoeTO8AwXgidwiCQ7FUAdDVQB22dItJiFR4ejAKmhtNfc0+ENTb0ZHGBAm1ltrdRoBBvXxsmyEsEIZoh6Z59kpQCDKUvOY4aLa4ZhHAY4qpc+MubNlN1RaqtVwZ53TL6DljdGpTNhz/BfO7+RlPUW/k3b3y2YXR6ZLbkzCb5ZmZFgaa2otW1bZXDSBOOn50utyiNxIvfmCOu4UIpToKtm5JyDdRDiRiLSxyI7H+U2n0AESomTpFbN4VstT+eXUrZlKyCiBBFKRMFmE95b3S6akzARHWpr1jSLlFXdoM3RccJeJttf4p6xvbx3giN69rDhHNwhIijEibtzoe8ehNYFp+EaDlGAMPa5W3hn1HeY3kBO3VM94M0QY4r/CcsU7Wh0/KHffu9Z6q4Ibb04tmAJmTtIwhf5vx093X2dL2tZnj7/+vTl15fPH1+uZ61FvZn5+vzJ4OtWVK23QSIchZGsQdzJfZura5tfXtrWKTwkAgmdCersgOgvAUowIpeQNI+36joL1UFAjTM87l/KkER14LzFD/s+fUwMIZcsLBBjQLHTZt8+R1NtTS+zP5/56SpfZ0pDykgMEiMG0p5qOaBw9V3nmkNQ1apWM1VUIpbEeQif0qTN1mU7n69fPj9po7o9p+zvP2zEuqx1K1Zr1aYU3IKulwkHtNnzy/O26fPz0/Pztm7F7EZrZ0La24juVoNcwY7MgpQTf7MJjUlBxVzcx67LyWA2cHXeFEt1IlIkJtoqAVQamu1plTuM9m3p4CAAZu6cMJTSQNvT89PHz5/Ol8svv/xSynZ9OVtruhXv6olRN4VzRrcVFkTjIOK4N1D4GTWHAs3h6BrlLSi9iL7Q66WpW21NLZJJclAtui7LOs+tqQHTYXr34XR8yI/vDuNxirQv7ltEzzedA8SXMK2uyvC704GZDtOYRLZNauFBhsRDYpPeRyFgV6Xi3pWIJNNox4h7twO9LdgP79cqnqJ1A7B7+lZjSbWWurIJi1TV5sruxRorK6uLpTGlIaho3s1FvPOY4+MlRJ76ZD3gCNZ9KCKrqltM2RuAhYWZtq2VTddtqa0ZMB4ORJyHiZn7fKQwEVy1VS2lzvMKgFmEIg2RLKNnIU8pNYuhUbNa2zd7rpOndtmJnfka42i9GxhHdLTWO2C5t5T6TEfcSdsb69S10268BdoDS8zUgGiP52+4YvuK4j1b2nPbDjhEuNx/uO9Q3xtKYQkBxl/LPQFs69JcP3/6+ac//ct6PV+X2a3BVU0v63xrrsmQkki/PlN4Dbqgq5brrLVePn8u65KA1A+7DBGk3BXTAEcDXJmUSIkMEHOxLrrn1LHZm/IniCAZKSEVtKGfUTu+0k/gRGwJqn00oC/g15eZadNlw3mm85JeVhlcpiQCDA4mcIp+o8UEW+eVhG44ubpW3cxN0ZhEEqccqgeiZttW5uvy/HzeVnt5tiGDkqSMdbVaw37dOFR7boQLp+4/tdn5fLlet1Kq7aw4ZhISApgF7qZhyQBydACd5XZpQew34mqmAY6ECLOIEVXjYlhrzFkLgWDwPoO4W3YERUm9BKkVSkQnl5R4SMxMpW61rb98fPq3P//5crn88ssv2prVCnh6a4cVeGPECwcICsBA1EOk9q5PD52tpyXRnO3Izl90NkMEWQOLcoK3VrSsZdvWpgrCMI0Pj/eHh3x/P6Yh9+G+b9/kZjPn7p0DYkrw42HMWabD1Je0I0kWSkIuse/R72ZMK/UmkUd2tGN8vqemOw56YyKip60RzeHuzG8BeahqbYWdGamZhW1A1SbCRu7iMvBw6C3xXq16ZzEaXle5v/lnYRaKxqCqqmlQS/bpS/fWvDUvdauqRBjGiJsDc4zthmejh2NdKXVdNhGZppEJBCG3LBlJiERSM1O1RrW1b6PnDmvc2Aavd6ojk5ElvAq4R5cdff4g+kz9VvJbxsq+2EIQKHrj/V/2CLhHzgCkO4jS36B7diMIKPvBuhONA3PlfVn2N0If7/nruefy8rzOl+XL53Z50WXWbTWtWmbV1uoSUAtAVVlDFyjyM2sIIRozXTdrah3b7HcHJMQ5DYeujgxH3RwmkiLwKUhUpXU1fMRxtV+ixZZiIRNSIkS2reamtZqbugHeQAKSoHQIUcwvv7k8cuOwYIA4kRGaa63NnNhYiN2TEbmSw1vxptqqt2YwgpKabZUc0TCSdfY5tU+/vmihzx8vL0/lcm7LFWXDNruP1CoRUavaqlsjUyImcgmGTWcCNtu2oo2XeZ2v2zav27yOgwxjSkAWDjqNm20NMFhzbSYcI23fRgcXc64VcGOvi5C5rNWGzOMoVWmpRMAWAwT+WgcIO6MrOABwFVVdNwPQsAnXnIgZ58vTZX75/OXTL5++lm0ttQXzEyD1XcERe7+pT/oBIN4/TKNd4YhJc4U3R/UdGoOHaIDd2Hmvl0YWOkzmcK9bqVsjMyGaxpyIDodxmsZpzOM0Sk4pwN09pNyaNQHsqKEREvM4ZDgeH+6HMU3jKCLkjUnHMWeRLBglgXrXvFfb3ClfN6LM/g8BPfb9uJeoe8jqE1+9Qc9Ebx8dEXPQFNRcX3lYux8SL+u2VffOXhSGRBHS86a3l+nR6QulwT2/Q//EXqFalLyJKQE+pMHR4YDSVlCXc91ImPl6Xa/X9bpsX5+vInKYJjN7eb7UqstSW/OUhYUdGvzL0F3+ZlXu+Ry9zhbsGftrvO/hNFpxtF8egfz1b2H/adrFJ3uA6Cz4vZ67ReU4xPcUl749ZfDau77lm7dIsf/1OINfA/S/e72dNfLr58/Pv/50OX+p569tW3W5tla2+UWtFV1Dg5qIWkACtsv7aSMHB3hQu6EgUdrzaAGY0zCMJxLhnN1NQWaahtElhrJImgqqa7BtwWElCAAIfT4xIRZqROrQZqWotm2dVVupq7mOkhLTeLwfDidAiFm/dQhlVzZjMCHF2HrzilKTMbfsnAzEzIGStKJVUc2amTWoQzWcL1jyQM7zxdnrT/716dN8uazXy3a9tvmMsmG+whS1MBHVgrJ5q7BGHDp7Fqe6N/XadFlWIb+e58vLOp+v63XNd1MaOJNMKRGYXYy0BjRTVZNS5pTTt0Nj5BAzWYqr6roaw5eSnuc0DjKO7mBDAsCdRSdA538kdhGbRHIWEHnzpjhvZmqyNSJkUWb75eOvn798en758unLr+TKUAZlFoSe7F4IRHWL3XzO3PuIE1HETbtloKC2N+puYyg7ZvJt8HSYkjVA4c3qudStQS0xyyH7mE53h8NxOpzydDqwMGehjqDtOQgBu7Z8Mwd0YDmOAzN/+O7xcBjzkJmFsAqV4zRkSaPwlBLIzZvDjdUDN4GH2GjPqm7JS6REtzgW6N5eB0Y8pT5I+S0eT8yczMyqatBnyCEWVQaYrteltk1bVW1CSYJO1UtLv11jfItg8nIIa3eEsefAESvUzNwO0+kwnsacT4dRtW1bM9PSmrsbqcMDlnt6vjw9XS7X9dPXF2Y5TpO7r/Pamq1rVfWHx/vj6UDkYGdGziLpG/094A2bLwLjLe+8RVPqI0JxFRZZXq/ab+doZ4H0d+pF/I5M78Hx9ij2LJLefs7tR+KGBdr0hlfMwF779aKDvMPbe3Mf37y+xT3PLy+fPj6/fH45f661rNuqrWzbxV0bqsNFpMNw3q8G/dylXo+QuZkRgy0JEhOlTHmQcZLDoZufmXFr5CbTgVKqzhrRU5qbqTYQIafb16q1mamEoHH8UatNY3SBbscEdw6xMAlYnBN9C8+7u+HmpqaAuTXVSibaiARqDZAOJMcon1m13rZTg6uDKI6HWsqWfJnZWlmXUktptQRfhFwRRvMOOLvDoOrO8BRTcr2IMzVb1o3Jt6K1oRQrm66yJVYRKUUIDE3mtmwrYIdRyJskokStvHalhek4pm1KraVGII92GhV1K1a9uZP29l5MuDsTu5MIx6wAN6MC0z0BMmvWtrq5GXx1b88vXy/zeStrxLpYlOreN4LvR77fzn9iuAJO1HruueeVkWDuGyt0xG6B1b/ZWT2+pJQcYA7H9sZO0zD4Ae4DPKcs5uqeonQzM9oH9+B+WwE3ty4CksjpeGDmcRzykFIWIspZhjGJUPytEP/WwBasc6gRCjUG6xo8bmr7vt7HA2PSwF4p13FHetKh3/QewhNP1VoL3RIHu8HMrNSybWlbS62ltdJqZRbm+ibt2lf2LQD0fn8QH96Qh/YadaffDFmaEGlNqhpi7OFNGiQZa+6q87VcLuvlus7XTZIwJwBFTTu/J9ZLdMZDuR5vz/Q4St6knL0no7113LntHXYEsftrWtrHNfsbxBpz0D4bsT/IXnNHIvt6/29R1fvdJxCRBzMUe7+PQUZ9hrQT6d/iDDf8oJt94S9T0G+i59eff/7z//V/fXn59PX5k7o1VzNtuoKcshNTSpm7OD7COADE4EFYhmGgwGvN67a56jjkMSceRh5HGgaaDkEKglmk+9PpPg1DdVaHqElr3mMvUw7KpLn7uq6taZ4GGXIIGbV1MXUjdp7NiYTJkUQyS5ac02AymozEb1FdVzT1pq5mBq9A8RpjZ0xqJm0YxKKlZ9BSWtXivlh4T2moUlKIICuty8WUy3pNiVtTa7atqrWYOsEEIkEtcHHn5lYAgQKNkKLsamallqfnF3i+zlgXul51PtdSlmVp0fl0Y6vJ3RUbs4tt9SCNrbBv5/NeqSAn/uFxTG1yt6202oqaVodWWGl6NfOw26NEwsTTkIXlOCGnlBKSo6quxQKwb82atdq25+fPpSzX61Op87pc12121zBPieq7n9y3Ez9i3V4mcQCe3uGs5l2wyqP0ItgtYsbsA4Celn4TP5PINB6QLTtrafXL5tCHu7vjpJAJNIhY02IBVAJNK/WKOL4Q7d9rB46dxjz88GGQJPcPU4ROAIdj6gW2KUySJ0PQJ7V5M1jwsM085MvCIc2aEdHOF+2fGKnU7f+gjyG5OizpW2BCm9fVatWyll44u5u1ZnS9XlV1u17DlHErW/cM2G91v6y9+u09gsD5erR8m8a7A91YwyXLQOqbsWpbt01NFdUBAjtomVsp9unT+dePT8u6PZ+veRgMiYiCorS2ZqrVoiOtbspMkkNR+psAeoN0zF0NBtfgukfm6G6gGMfiW8OQyHs+CgTNwuGA9Dh4A5X7dQaxJGLpTpPYYYvdyItu3bwQzCInid6fB29UEZ2pMLeMtRIcUnoFW77FJb7pGmmttWxlXdZl7nwB7ERKZjARC4n0byJCLKDuykQcVAcHOYkCxGmQlDkNnAZwcmJ3b9pglmLy121HMEGqpHYbddth5VAGJCIiFpYEUwNYEksSVREheJKJ4IfxOKScp1MaDo1SxTcvvxVxbuQ2JLo7ZBpAauKcFSnheFKRrksvo5XqWFE3NO/zZwRjpsOB8kB3J4yjZ2ksFI40Q/YhcVMvBxonuTuRJLDgDWsXe3yReLZm3lqFuapoePs5NUNRA5hgbtDa+4Ei3qo1IRVVMtdXTg/BCcqkwt5ZK05CJAQ1JYP13jpl6UpuwuQwtUoGUlLX6koOOKm2prVpq7XUWra6lm2rrQbF2Lu6Au2tbN+P9z3r7FSeflTvDBK6jcS5u/dztu8ue1t2/fsXEbMAYCfrLpGcc2KJ0TPuo317nRdf0ffy2rvn585UccQWSYlZeCeABOlAwRaW3qp124qTVq8Gq6ge10BdPXIfTe4t9Y5yvpKXeiFPvfDrmStuYe12ce4ctI5QwEzcWzeEVkshqqW2EiRu2rOs/Y163PS9sPWeYu1Grm9vanxsEClrbeu6mSiqmetWN8CRHPvb12rrWmuN0p9TGkRSMA+YiciyZCNmRFqu5hWJ2eRbDRTcMB2/QY3xv332Nx5VH8R6BTr3/k/8xR1Vp4Bse7WJby4v/v6+FuNT4g/39P/tPe8f9YoN3L7nmze/1VFvT6tvXt9kZ62u23K5XF+eXr4iMeWUcj4cjywsYyLhPAy7pFEXRYl4KsxdGlfd3dkJZsN4mIaRcqKcG1FRlNYu8+zahrIluDB7bkttpamYJ7Uo7VkkhbGmWsh4qltmkpyhzE0gNg4HYyY9kdvhOKacHt79OE13aqbm87KerzO9qdrg0GatKrSRtR8ep998Pw65TONGcHYlQho2ZkypMflWpDX+pz/xv/xE84yygchZ7HCQv//bfHfi3/yoh8mp95DJncxYdTAnNUmJHh6kNf/lU3s5t7COHJwdAh/ITmTqulmzVc9mvNWxqjSgUVa1rRCc3ZIZtcoEzyyZvS5ezSvXzE2r3h6uu7b2onrOAiJKaQyikTCFQ5+a1lqFeRpHZkkpEzCva61VjQqhlrJtBbE8XVU31Tqv51KWeb5s29K1c27FzJuj2G84+Osyc3iIe/Z4CurgZpcq2xuiryF13wk3R6rbi5lzzq6E5hRl/IA0DQ4qjZqi42kScgswVwRDqA9LkZMTSF3VFM5h2cwpgXyrCzTKclR1Db+4hlYxn18gbkNzchN9k2NHOhM9eJCRxQUTpZ5b7J3mHgkI7uFz59bHFG+vTD6RiihnS0M6HMe9uvP5+rJcqW2qzVhSzLDtB5V9G53g3vushJ7YYz/Z+temXs2DcH5Zri+rEBKImSRBstw/3omwaTLDy8v6/HxdtgrkcRzG6Z6Yc84goswALBd3E1GrpenadJGUHFnb+vZ06A83IA63OAKMAHftOkdO1AdZw1Ur6CIAupmdGxMSc8ykUwBi9HpltEfY3gZ9s+q6wAB9cxde/06fV9znG90dCOWHznZTf/vD2DG3/2b0jBzGQYBEJ5BZOA0DiwRvJaUc9L9bidDVvYh3m5tAFdgDVsDNZMjD6N001nAzwLQ5S5fz2GVpYkZaTQGEHkHTFv183aEWt1tRxLGdJOU0TDIevDVrCtrM9C+YuzGZBQe5DYnHKY+jHw8aM7NETmLMfnfwLF4KWqNfnzBkFAlXBSdGSri/44d7+fDeT8fOajBnc24qtYZHdWLBNHopSKkfgT3P8r72e47kcGjwdM3J0BkY3kct2I3UiYAU91DRB+rwTQKjpuu2LOtcKltX93CJfh0ZJ7BGE4LGIZjj5u6trVvZYqeWrWzrtsdHh1fTqlrVWgCh/fM60t1hvrdLEb2H0jct9SQr+FG9Bf2ae+7h0oEQHMF/J/fs//aGmzkILAzibk7fuwg934orCFVHQ8/IepbsuKnJxYebNaD3uXdoE+QwdWsKA8TA7qQeQbifHvz2jahv229A9p1XiD3dct/LkLfXlRMfp1QVOXnKaZryXumHZR52D6GoqfdP6TPOrx9ItE/l4Ba4bz/x9quRu6tZM2NHA5gpOyV4UwNxEJy2qltprYawTKAgFLxRFgaIJcGN2RkKApiEkei13N6f2u0p7y/0PqHt3/v1p18ZX7hhHXjbmXvznnEyEMFvK49uVxsIzTfJKb39Gm+Olds3jB/yb358fy/akdO/hnsCSIdhfDzep/d6IgMZUx7Gh/v3Iemzt4Z62Iy6m3Z4Yv/iBBBYiKi2OrcWaKExNWZ1Za0wJS0O85qNbErDcRzJjFTVfbPm3ratmvm8zH2mAlSs5O1am1c10iZlc2vWGpF7bcnJNx3YQjBunpf5/Lyt1zd3iVyzt4GUxP00yN1pOB5xd2ci0aOy1kpO9ne/z6eDa2NVKsW/fnVr/Jmy99wz/ae/P/zmB/lf/sf27kEN7K5rnbY6nc/4+Jmmo/zwNyORbuvL+dym/9xAzT1ya1c3oJBezEEEIUhIX6lahVpraOZmDkYSPoSUJ4WDGkwbNWIbCJzeFhKXef7P//iPXz59DlLENByT5OM0jsNwHNPdJCI0ZYjgcDR3fbk8r6X8+Zefn8+X4LGExW3f8ISY5DRd3dXJOd2oOjusGUzy6BS6w9FaOK1YZAHY89Qb8/KtmI3tC+aWb77ZQrcP6S8z3eoS90arFqvmNkr330A0KUNT3HuOA6DoTdmsr3s3eHPRJM7mVmtxMvLNOcTgyNwsZlaMTF2rslNihoRW2Q64UTjRcTeLBjOIXSjCMHxXlYioyhR0vpApd5P82swh4Hc/Pv5v//Pvm2nbVQ7NsBVT9Xn21nClWoqZQ8NVSl7v29t7eIPmHJGx3UJpDwFdNx4AsDOjwqILrJ6qUt5Y2rp4q/716+Xl5arqGoon0XIkEZa7w52IDMLCPI2UBxNJkg6RSn04Tm+b7tbHIm0HrzyGzQnuMfYmibmHZGZh4k6fv4W1SKqZukkshR+1B+n7VlrHEOP+0dwPrp0k6oACcFc3Mw8bzZgiv0E5LNy/5R5T3+QIIeb8l+HzbfQkCFPiNA6jHwxowDCMeZpYJJbXawMRILOYrexHnt8eXZwIZNYJ5wa4sEmM91tULw43a6ac0pAkijx20zhqwyq6lLWp9g1QxICqXpuzadIafh4ENDUjy828t4VCra7GOC32debGZl3nXwg5cQgLJaFhYLgVtJzwcKKHe1gjM9wfdcyeBU4cgz6S6P6O3z3Ij9/pd+85vHGuiyxrNvWvzz6O8u59IsJ8gZknuVHWAmIzgjlaXxEc5PUodQ1wsO2pGYEEcIR7qoXaY0BGr72CeDXVp/P5y8tzTizMtdYk2f1gNiYaNI/cDSE8OEKlzVvZrsvL+XoO4oaZu8VAN4goizCBw0M9FmL/b08P6IbEx1PvpcYOO+5r4RWNisTQI3RSz8D6MXxbgDv6+U3whLupqpnCXF2DFXzzkadeUVGnvOzL0d361XhEeerYszPHrtbmZAilGWcP4cIOJtItRcJehe8skyBlUXR+KSxnI8GNaIGQi7bbg+3v1QGON+RYAITjIX/37hQCILGZVX0Wa81bbXBnMuqNfmcO9uitJXSLoU78hu+wB4V9M/qNfOP77XklEbiHiVqpyurrarXYVlqt6n47kJRA5GbsNpgQkxAT5cRjpmHgYUxwADzlN5SlXnT6/ia3ysMjCFInMNHr4qL9wI1vvQdRvC41UJQUO559izodqfS/yBtvq2hfF7h9pa6HEo+up/zwN49nv4Ov6/2vRk+f1+Xpcm6kkrMQJxHhFNqqcfa+jZN9L8N39aY3tRwM7G0fG43jA8YGd61wa6bkfp4X4jI1DM1cNWyYS6sOmLCZlW1T1ZSSMJeyQGszbwZyS6ZAl4+ttVBr5eljupwFYLhpyeOYcsZ+tQ5a27CUcWm8Ka5bpevcWrNWhXmQ7GbbouNg+tuBJ2KvMB3IBrYkmSUTG7EyW+ZrZmTZMqsQGfDxQj/94v/0z9v//n8sH35MRsfTkR7u2zR4EhYKoiEDplGJWTVL43A8neTDd4mAbatMZlxy0X5Ea7FycRioJPYPdzYlfJdwIIzu7BYSsLeV4aat1eu6mluSM5OcxumQc04y5uRuaspMOSUHSq1qdp3XElpZtXV3YPTlGzE9xbSe6Zswso9w7xV+jwFA8HCiF9RrrwA74tgPFyfs2mSARWIoEqFvX+wBQr5FqmDm2qqpUtC/wgpOCJnFzDi2XXSPejyxXvbtRsEKEEHdFSnWI9wETsQhWt+rbAGcWThzEqLMJAhX2l7z74jnnoGG8BQ8PBPcQ/nMdqGhW0rhiMajmzvl8W1r5e7d9OPf3ruZqsFhSqo+z9hWvZw/t207v8yXeWMRlpQSRX8hwuPbfW5mHb3ArWuyRw0CHNqRiuDMo5OySBD3xuh8KQCWudaqDh8P4zAMwzBu23q9XlStbM3gc1mTJSPKoIdpuns33N/Jw70AToYffjyx3DYdqtrWNOSie4iUznFgBhG5dGCHAh2NLHJP7/vMJkHduq8ZCNSHgK1Dmk5AECwC6DT7Bjnf2Ra+h/IYOQ1TRN+HiwjMnQ7bMWp0siztJdctvf/30dOB2tpSNsrMOYGFYuGY+f7xHbwB/DYL+vrYYnsxdtzFYQrd+2w7+6znzu5m1SqgkGIkpmq1qmltFQRKYmbamqpK9GfRYgZbrb8XwcOcwlQB1fkqvGWRIOxJzpzesCccTaVoasbNUJquWyWokAlByc18m80G90KsTDBABZZiEJ93nWEyoS2RC63CSpQIUkp9fqJffl7+yz8+X+f8H/9Hs3f8eJ+yQKiDsxTDA+6wMNajlGgY+N07YcLpuG1LLd4g6g43alWLbRE9h+QPD+kw0D1hBGhzqv7tKdgl4ZZtaaaEjYhrWdc8MIiJwv0G6CbQcZSCmEC11VpLN1bv519vbGbhG7oW56LsgpboO9hu/6pLhztsH9y8ZQ29PO95REgzRAeAcHND7nvLQ8fw7SvikblxSDJHo4G7X4cg6JmvacH+ca9rdf+6Pe+Niq9rmdAtQ9xpnsyCRMIC6Q2M17SnR2nseeXtekKWR5u9NTvfq8A963G4dxz/dnXjId2/n7rsT3A/GyXBIo3pqzbb1jJfl2Ec0wAQh0X7DiBGWgmE1ajfJm7QJ5zwiuC5K2DaiRPscSG9kCF3tKJmtqxba8okOafDYTqejnKlUlZHM7iZFm0Gl8Rg4kzjMR/v88P7THAyv7sb3k6iBsAa8hoxPMwxS0/E3L+tBSk6QgY8DkHfEaJ9kNiDLNyPhx0s9F6HxHXeUFLfb8Xt6vc/j6/FoR/q/maxxa7YH93bAwiA75Htr+SeBDo9vPvuN78rrVStN/URdQXc0Q/V/VDvLZteAmDv0ETmIsREbvqaIwc+BjdTuFlr2CUx27xIaXUr27pGxGShYRyJ0Fp19xjSgblTWIP3Kd8dHyPhYNAquYtIyklEJKU0Hm5bykBbk6Xm4qlSqs7FkcGUEkL4iFhSkuxG1Jy6lTSByYKCz7SfCl2hUA0aVP/zbJ++6Pkize7XjT5/Ilf+8f1gIT7CKgwO5UFnWHIVV4H6kO0Pf0eHA0keXp5lmXUr5ibwNF/al8/VTNXoMPH/9D8cT5P4Gb75yy96/dpAdnuU5rbVUmr1LhbBAIHZiZupqaq2UgsBYUX5cDykJCB2wLVpqxaCYWHP4K/ZG1GQxqMh481spyLRrcbpZ0PgbYTgvfcR8b1F6dGouvXcEQEXsLBF5NtC11d9sP7icEwEoAx3bdE6dCFQZpH+kTHKQVF8oOuVWOzbHvIjd06JksfsIPX2aud6+66vT8IkiRIAUnegtWY9Tu35LICAIMLlNrJOtdvus5vzWGfI9v+k6MXcro4hiYxcqyGGhCzetV4v88vL5fyyXC5lUhoMgzFxiuuChwULeukbQbDDWbd0hhF2hEKnuyFnbl7V27a2da1myu5EzJTNfN02bbqui6re3R3HKY0TjSM1pTyyg1kiEVIjGMOEaSAZWUbiAQQSJxm+6UoTM3FMoJgQhxGqSHJYc4VZsQZ47o1qMLNadwn9i4rE4ETsTpTC2wi4LUXaGQUx0e/duynq8p787WvV91ymm1z3+xRkS2dm7VZy/fn2fr6Cne2NXQW+1ffE4f7h8cOP1/lyna+ttVZbwJRwM6vubxr76Ph5BPTQ5rkt+WFIzBRDKftJfDsWdD8c+oDB1laisszLMs/xRiJyd2rMvOclJkKkTsQUGYP7DlaAiDj3aE3uzJSypDymYUrj9IqfOYrK1qR6Uko1HHeIINJVSYgkJUkeQ6d7ORnnZTdaoZ5Cq3u3/miw5nxZ7MuzXmY2P5biT19NwHUdiIihIhA2YSMAxm4JOkHhZlnst7+jd+94OuT5KtvV6wbyDM9PX7c//eulqddGpyP/f//Xw/0xPf3U1rPWy3Z92pvgcXHupdWi1UExYUVETmwUnhy1tVrrRiBwpoQpp3EYokDetnUlYpAxMYtIBtwCXYQ5EL2RUK+4SaTj23OYdqgyVmjPfF7hy4iVfe1Yj71wh8ZwhPdmfrQxtK+X2w7sMd2Vwm41qlwnUArnyRgJli6QAOY+E9+RtshryZmIBSIkwXBy9PEzuJOi93/CWpwlUXyom5lVssAI900b/2RmZupuFhnlDeK8tUoQcsOvl9O0vj0cWChl6o1/c2JWcndVbfO8XM7z9bLNl9JHuUk492MhUt399vb8UbVZmAb3ic1MBEmWEo1TPhxydWpOzaqtBS6mYCRwUrVlLq3VdV3d2939NIw8jDyMVBsPA5sRc+xZs0DNBJTR7VFT98jk9C04GEJfoZDJ0XYSFjEnbc3ctDV3AwuYFR6WruoeoAjtiygaTWwAk+z6FYGBIkInMwU61Jeo74/qm6RTSPa/c6uKqDc1APIbM/6WfkYci1zXvznV/8KZ4/Tw7v1vfj9cz8N8abWt2wpTtNXdTLcYX7QbqBOhxDy4QRE93cIzdgfH3gC6gepbBxviHXhPYSnnNE1jvA8zT+PAXZ2OeBfgCulOIUaow7pHOTCMA4ukaeCUpuk4jJOkQdIwHU63B0lEQ86Hafzw3TtTFyFOYCrzurKDNSoEdvWvVyBhzElEltqqNjOQNaJGrnCYj9pLSDWjMIxQwzCN3//wcHenKa1ErDrAQbQlIaYYrHcObwsyokhiDFiJeMyEiQ5i3jw4DIdsYtIaSs3TxO/udZr8mmthBTRwpFvH0UPpYe+TxDZWJ/XkxJyzUNUoS4icsNaqvenqW63q0VelG+AY1RGzMNGQsjCXVmurJHSLDbd11FdczMXGQ4mBrVB4JyZOBCJSCrGoLpvRo6qwjNMUHuHmrtcL0a1avgVfCgnYXiOrhdpLr/YDRFCEbGVojkBBHhLcPTdjYglXxsgCTUE7MbJ7Ppo7GbmDjcxg0a81821b1YwkirtXRcug0rm73abzd6zKb8r35K+rsAuiv8Erq+ui1sxqkCHdqltzU1f1jjkH3tNMG5nGm0ZzNWKoe+coUqtNW6VQCQEBRYRPd0kkf/f+4fHdicTBPp+X62WBsWva1vb167KuWrZ1KzXYsmampgYDB4YnKWukfClREj5MwzTld/fv3r9793CXHu+FiRPJ3ek7ekOK3McFohIiEBlc1ZrrVqu5uintTxiAuQXlc4cUYgopnr2bGYHM2Nh4h5DcYGQa+kFRL3UnrsCk6Zu77e7eBWcic7deIIf4nMdZvhdXvWR5Xevf9pPeRk9++PAjDcP1epkv51K2eZ5NS9submptM1NtIVuvUVtYDNlojdGymFJ3t7h5gRhxhzpYWHyXLQhGR9BrAhWM+l7VWmtEEHllB8QXjuo5ieSUzazVGu9GRMe7U8p5ur/P4zgMY84jkbAMp/vHt9HzMA53x+Pf/M0Pp9Op1Fpa3eaXl5e5Ez2Zck6N/dcXndXvD8OQ+bJuW/OmTl7IG3GDi9qozgpWWENtbs3QDIfj8fd/+9thqEN+ZvZWMuBMS5Im7Axj19B8BQe9urqD0IjpOE0DyySe2IWqUFse8d1dao23DTn7Dx+aMJ6HbRF1ROr1+hQd3tzUjIWxp11NQ+YxJ8kkq/V4XRS4lk0qhVt01abfWojsgCWiXzcNU5ZE2+ymQSAw99ba7RuEvgBR91+AR3usdWiKWNIAYtJQdFtdK26AlINZjqdTqPma2VrKvnNe1yYTO5jMoB5ONOFeTZ2o1KfHA2VCkAsMhPC3770wIU4syVi60pAihi8Biojb09C4A10TIFNSs3WZq1bKQkJ+AzY7Jhtmwp1aB6Lua+R7mtEvodfT7VvCp22mF9UehN0d2tCqt+bWfK/oWJvX0phpGNzR42ZTNfNtqaphmMa11FYrd4kzN/NhSIfjfZLht7/9/je//XCchmFI27Juy+YKVXz+/PJ//p//3Mq2zMuybmlMkri5tR49nRPlMampCNwxJs5Z7o/H02n8/sP3f/Pjj6djuj8loZRkeHz8rcg3jhUGCmSmOyM6TLVqnbfN3YKGdJsK8+iZv4GwQ2U3uDLmDnM1ZQOIpI+kRsrfKMRv0B084hHQK+wb9a75ri2rflNH7tHTHczcESuP2rojPj1N+TZ8fsP3ZBZOKQ/DeDiE47jr0BK5q7bB3V6jp/XoGfsklADDhzMwH8CJBEERFeE+bLeDnQEqBBsvyDRR06lVbYHcv4mcPUOJICwiPeF1d3dmPhyPKafxdJeGIecxpUwkzGnIw20TEpDZJ7H7Q2Kblo3WQnXmZWkw4WBfZs3Ff/lUz1e7nmga6Pniy+ZmNCQm4rA42Aovq6zruK1eHc2aK7NTFj5OkpIx9wavm5urQ90agh8ThX9IHd+Sc4M1sspgSwxmE7Y8yPEkqjwMg4inGLVwCsMLM/Jvj8FbSth5Gp2qQUQsnN2VOXtoW8CrqhJaB+kI6CdcPI8oqW/vqWaEMAMHEYiZbs3IW0emg0o3PGefbiciIuaE8K5xY2LbhWZugdrMiWLG9BUEeHttpjC1sO7RFvvaAwsBQtyUnTsNqne0bQ+FN5QnoOfO0FK1ajBnRxwrt6y172AmZ2FmianY8MWxkPq/of/7pnPb50QAd77V8G8uIh420beEAprG08PdBzXvZAPn1pxZmZdxnFJamLZ4sqpmatYlzqDutahZyIsEVhiJan+g6CcEMRJTZhokfnnKDEriAndaJj2MhzU3YJcNdUR9ThDhLCHdzCKc3CEsEiqgLmM6HsfH0zScDoOQJMnTcP8W0ukksR2422/JLucOSCd9MZijjOV4fl1drp9m0cyMIqIjkQQO3LkbH+2EMoDhvZV4+yaE18+9JZuxQjoeGaPD/UyMxfzm8dG3D7O/vo2eIpKGw4GGYVRtrRa3pnUx0yi4ol5oqrbXFeEKFGQAuLVaIoaaeweBRUSEQLvUbC9D+qL2mMzsVFRzq605doDdAncjIhJO3PUR9ntFXbR2PBxE0jAeJGVmYY6GDx9P929yT79LzYaW30/lfnq5Ltdlu359+vxxc0+gEXDjRqw/f56T2PtHHA/480/69Wzmcn9MAIhSYnm6JMnp6euQiA1no9VWEudhSOmUQeYMIi/NzKxZUVtNi9cWmtmKsPBjwkBgV3ilMnNd+ZiRkrNUSRunPI4Ht2RtAlywtNrQmle3Bmu0p/jfBk/VvVfZr1wk53wgItdNQa0s7qre+ookIgiImXNKufdfTN0L3FUDBCiVuLbazIQ47Z7Ft+UUFQBzKBsJM6srFCAPEnJKQxhZsZtqI7Od/Nc3WLQHWUJkh2Is7vXaDNaslbbNW922uqxuTs3EeodejGDi3kmM1gcj7dYr6F1vYSSHmrXStK1lNlfjqAndvQtw3aKnQEQEo5tb89rQmqrvxejt7OvxN6In22v47k0mull7xDY0ftN1Irx/+M34+//PTgMlBzX1y7V9fTo/Pv7b16eNeYFDVb1YJa6iEQua2nxd1dQb3MFCHH4WLsIp82Bm7ht7SjwlPiQ6JjqJZoZMGJH707GS3z8+axOmbFbUHGaqMCWmPOaDNxqkmmBIEwyDjJlTspw0PYwffnj82/u748P9kZkTy3i4412dJ3qArUcpqDmHwjpD3aNlwykJM0ly5ha6AeThXxPcKndjAoVyKDPRLgNqbuRm1lqQSZgQoOHtCaKrOO5JSjRwzNHMgldr7uG1Zw7tKjZktnd03gjcdZj72+TzL/3cbyGWiJjZIb5rGDuMYtlTM4t5jbfRsyukmhkRmxux7NGTezaN/Qi2Hm/hLkkkpuaZzA2c9p9C+A/ElFhEWHQmbZSKnQCRh1FYUhpY0j4QwG97FnEDGSpoCTAgk2WyxJ6EzDhEKzQE/9SZLSfV1ualbVWZmLsgDBt43bBs1PRgliFOlImUyZgkLOfVUJsvm6paU/NIF/GKdbvbPjZKcHZnU7JKpmwGUPhA0c6fSW7eNqqF6oZWYO0vCoi3/++Wrbt7c6vatsaiupmFk2CUk47wPejceyIWkZH7NaixkPdOFwVlBF0hKbBv3xMJIjAzE49DTimFV4lpajUGnBJzSsNEkBhFuoqXmkrZSq2R4rhbrc2sTzOZ2Y0w+Prqenb2+tnmXZ3RuwXO3kw0C3BZ36CTcLgrqVmQRrl3OmFqu2bw7nUTGyEQajff2uYeLP0YbPK38saOwOR2xJjfoGze21U7EtJbFG/gZQBIeRqnB7MgspH9v+19S5MkyXGePyLyUVX9mJ4FF1gRIowmmkhddeWNZtJ/p64ymW460KBdzO7MdHe9MjP8wYNHZFX1YpckQEGUacLGunvqkZWZFeHh/vnnnzuyuqrMI9zd3d/dH7tuj3gOHFVFyyJxkChbdvML66q2AGkUuZATRVKxssjr8yGnPKScmWvwgoiEz8+H4/F8nuaaUA5HSN1C+lzRxGVRk6CFYSJOnPquG/qeicHQFUwxqrTcbr47ryDJTTTRLAx5MG6D+xH/HBhAzakJhsSXksgxnNHoT+tBbKpeLbabHUYl4jJqcXekeleeXBVVqBvltU/p0FhMl6xlq+ZovvPNrLyxniKyLEvcNjettTqhc0xcy5rMgYxqkGNoBirgbiZuBpDIjZM5eHjjuAaEFI2yCFqgpKJuFs2rIuQjgNQjElJK15BlI/MhAIQqZUopjrk+xZwJOQxgLIBbzqwlPWc5Lovwon0RV3nM8vVDJ54Xz0X006uKlqmomZ1PE3N5eZWXfdmMeH+PblwkTULffoSz8km+Ub7v+pm55P4z589EA6Kp6uGsiDKLqOjhUKQomiVXhsr5VHMtJMIiCbQHJTnTfMLzkIiIGIjRNbl0hF3GrYm/fJimkz1/568fVU5G5rehe5U+bA1JDBykHLSc5srrrLi7m9R9FMHd4u4RYE6bcXzfd+N2+8ionR/Ayzy9qi6nZS4ibqEDWSVMon9MJGO6bsgp//L94/1mM/a575K7OsjQp6eHAYBKATNUIzN8fi2ns3738cP3n38oWoqKSDkc9nWmAgB4n8abnLsDGYC6iZioRTFBKbIsoOAWtZJkbmrF0Aqqgxe7OAoWejPZwD0DM3XmukBR18XEIXKQdUuBZuQIyMVfpj0AQAdAYOxOHiBSs4gBtoKDISJxuyuwPg+xnGsrIkDN17YEh827PnWqUmSJgiIz6HrL3fk//vV/2t1/9fl5fnk9L2Uuc9FFlvNc00/gagrgHJ6FO6JSYiRGREJjhpw7RDweztO0/Le//+99lzMzE4Xrr9F4o5SXw2leyjyfAcQFzVBmXViWoy6Dnfbl5YeTqaFxYt704zB0X79/ur/bdUjn/dHFpFhi7rpkzu+uZmb0SeeoqUOMpsMK4EScEmBNfgROZGvqDpQRMqG7F60SXcmRcyJmrWIjSBCK07haaQmhOgcAiBvhELwKkJg3ADXIgHUdXKAiD4yokndrcGStBiTe+JPWM0CE+gW242OVQgnhD6sdk4Na7ASg6OAeiUokMnfy4PbVDilQe5LUHbGRTt3d0NBqHU7lb9diligTqnnZFiVBM6BEzDkFZAp1mgJh7XMMdbe72fDQAd1WH49NE2jPsB1YnJLTUqzPhECujI5uqDUQdGzcwKg1Pi/ezy7WGYxEXcrGaUY6ApCqiuiymIOJSdSOR9l/MM+pFhaDO4iCCJSCpVBZoCy+zJASECMxgZFLdBhhLVYmKmfUBV2JELrkb1ogvIEKESHc1/gvxU7jUOWQYYXtrqwFIhGn1GfykQC9MJpqcWTiEvdUpJTqoWDkMxEwcepy3o2bh9127PPYJwc1kHFI799twHGezQyKkCqUJblrlzMRBXDp7mbR/QgAICW+iduhFkvDSh0OFq6bqkbipyFZocLpSuIA6hfrGTI6YiyaiMAw5ABNwRS0ijTfzDKsrizYogUAqBa6IyAYObS+4Q1c9SqfRrU121Wmt6rkNLvsQLf7HiVMvQORVWCbCJgtJ727u398XHa77WYz4GTucmG3B52OAQAidovlVSfPZeEQBo4hetwfJ6bETGE9HUSklCKq01JEo3ivQodukQ/WMosWQ0Mm7nKXc9ptN0Pf7bbb3XaTUoqMnYohgBnd1KE2q0a3ixEQaz1R88HDZwwicKveqiKdkWJT95ZEr29YU3LXyWXzC0qCzSe1xtRYPdx6LjUr1Nw0X2PDtutBE5lfH/4Z39Or4bl4rogY3Wa8Hgoda8v58GXQDEjBDJDBjSh5+KHN96wIpdeGpBzCCsTgkNDcjJrmHTM7gMXTeaWN1R+VoFVZbEhMK6pFTAiIlAjYUaueZYSCV4NcyYV1JpUerWO3B0q4FafF8iLpzx6gFDvPompLEVHddvM2IzGQTSq2zIsIPj+bu+8nPGq/Gx+3d2O3Ix6n01FeXz5P8/K8n0RlWSY3Rxs34zZ50VFEVFSnxWxSd/z0XDjbP/xD2r/Y/jssZzi8Wu6RSJktypwS+SYrKJw/d2WmHsEHSV/50w4eH4ZrbLCVTsayYQQaEw1MfeahS1XSAsERze0wTaJ2Kibqrq6mpZzn6TPCMgwpdf1u89BxGvpfE+FcTqLLNL0u8/Fw3L+8Ps/L/HLYq1tRJcTH3f39Zvsfvvn1r94/DQMMnRcrs0zjkJ/ebQlIhUX9dx/n8ySvhwPNc4h0xh6KiJnZAcQMEPuuH/sx8aVOTIvO+3NZJhNFwM124+6zSZmOrSADXMDA1AUIsA/3G9a1pgHKgBWXjpImEZeJF3WboRi4NfGkSLYCeOjnmtpCxd1EDQxy6oiJKbgNYWHNWicibBvKtZxEzWQhtUQoeO/XLWPUQBVEYZG6T5i5qjrgr//8m8d3D68vL1893X//w4ePHz96IHNQPa5KkXDzRqwOqk90hI350JjzYYJU3dZdVV3FxECJNaFtxghpEADR3OZyeH7VcxmG/puv/2yzGb7++quh757e3Q9993C37bs8jmPXdbnjjjExdymloEa3aalmohp4uK++HsIqvBDqKfWaEIk5oXP0byIwMKgoNgCAqBICqoIpMCYCAmRmdzcXbySxyIkYeIk0oXvFwRGIGREZE7gHDmNrrtC9+f5eER+i4H17aHyrvfFRbhXqfP0Rv7H9jHlQE1HYFAcQqsqOA6KZQ2wnzfMjqrR+wkocbsLRgUuSR1oBAx5dexkhIXGN3K/OlhqSE5W5CBhsBmgmlQE4OMVh3Zvzul5OEMeMXAgAyDcd6C6p02xUxNH6IjbNSdTO07IUMVEXNcfAfxDMHaVIKbKIFwHHnniHPAAlsXI6T9NcjicRkdNJwOFuk3JK1KERL6VgQTElcnecJjue8PVV0WE6ok6oajwhsTF5Iu8JEgH3Dgq6kBdmyn0i2kDfwdBf7MtKKq4hJzIhdYmHRJs+78aOsAZKQBTTqIgY6IxuoFr5Gwt4Bp8ROKfcd8Pd7i6ltMhRdZm7tMw5IWiZEeBAp9AMAsAu5aHr7zbbh91u6H3obZY5FR+GvBl6QgbLRfzzi80IDviWDN8C0fibiZgZr5agmekiKjXe4pQ8mp5qjZRc3AQcVF2RkQyrZVuP4Obu4hKLcXFSV8XoluRNGxFXiwgA7o5O5m5k5iaujo7ICRGqCqBHZ93m05hDlXq6Zg00fNGQWz+j23buERWq1dgwOuSFVup2u+HEv/jF0zxP7sW0BNobMRq2tFQIEaiqWW1Iqq4SWRmoKb6ad3KPsD6+AHZjQzJCYnck7hzcDMExMydiMJNS0jjc77Z3d7tf/uKrYezfv7vvurwZusQpmIUp+uE0gv5lyXnjMFz/H+tcJawRUAuDvB3DKze0TQxssGPoMGN08CUPjz7wgOZo+iVP6DXX4M0FrrGs1xgCkRCtWYmKTDd6QDN8tZ1HMPFvUik/sp7N2Wsu7E2LhArNet1Or96FjtFONhIjrcwD/c0aQEQ3BCTgGmassL567XgfDYGann7jvFSv83Zitgv0dcIiIjISJiIA4nTTJYAgpPKUQAMy2XSQCSPKU8V3XVKFom7u85KKyPGUj6dRFBehuejLaVZ3Q+0GPX7/7bd+suPx5e7+h//9Ydof95/2H777YZ51f1zUXBUIeZsBkAgSIiVCT1xUibmIffhez5P9z/9h93e89V2G3HeWkyemnNApMTMwzJMQABkQ4/1dBztHYAS6f+zXG0FIfR433XbIiYk2uc+cHsf+rused/37uzExD31GQk5k7odpLqrPp2Va9HA6n6clpmrfdbs7Hzp9d7/0Hd7tdjnhvCRROHM/pSI2TmVrCPl0BNEMSMTHWYGWDy97SvzuPj9SOpzn5/2RmZ6fpy7nx7t7Nfj2h8+fXk//67e/++H59XA+HOfJTKPNU43UAABAzEJI/XrmzGUWWcTNwZXMwSWyboQek4UBotMoAWR3CC60V9V5ro6fgi4YSIEvZAbepKsiI1GXdmO/EDnwJju4REqWsT0ZHhSAIyZCr7k1asFWc2GbrwVoFKpLYLelADHfjTHoEk5gBgFUM3rH+Js//9XTw+4v//2vjoejqgbTuZbVq7p5KN5a2wWCC2Sh6H9Z0+uKiWRh2OEQ2q2B7up+A2DizMQ55ZzzZhwfHu6GoX94vM8p9V3PTDklIgy1X47UcOKcc875OmORcs59H+oKUCUE4xmoXT/NwC02g2jXkcKpRE8I5tAxWStaF3MQZTdy0OpOojNEVtkdicibVkuk9amihSFRCliB0ZghHp2xDSD4IitUHUR65hRiUhD7jcH13vAj6wmIrQ50zTTFXce3xnmtIwWo2diW4fQKW1x/TnvUIyICDC59oJZRx1VbjF0MYZuGrZMSEVbE6BbzrT+bKkCAod681CvoEwPBdMIoBPYeoedWoG24TWxeO5ctBdXotOFpskVgWnAuuhtQTM9lIvZl//IKJQMvx+XwvC/Tcj6d9i/7ZdHjOeCXlBhdo9yFEICJzYEIgUBNDwdRtW+/1cOevt7utplA3Ng9IyYkJkuohJKUEDsGIuwzE2Gktscxr1eHiJm7LvWbrsvE98PYp/y0He+G4av78evHbZfTZshMmDs299NSitrn43Sey+f98fV0FhMx6TJvN95l24zSZd4MnhIgsQioJrXU9V3Xd7kU5mQOZIbEsxgusj9P4+nY9+NmxPMi++OMgAdahr7r82gOr4fj55f9h88fP3z6HHw3XPe/+A4QGuB2A55FfwGJ6tFKRnBFC4p/g2wBEIEJCZwNINCjimQEdy5A/SrTgqAYXaobMLV6RHUdBO8tFg8wqIHLmoly9NoBDRFohc/qHr8aK28BUKuDibdeFlZ8Zg3A6mEI3aLJDwITvn/38HC3XZYnKaHospiZFHGzaJ2hrbg+5nH7+6YiG2pJWP3sG9pEVTMKoYC6NyTORNUadl3ebIeUUt8PjQ6IwcPhppVewbeUmG9dFuaU0iWBbiucCEwUjGgAwKrY6NFiN9j+hA6AlzAEK0oC1WpUyb5q/EMlpQbpGq8Ud4bA9SAuHmFlyrnXYvHoshUFTlX6Lh6PkudViZCoKbK0cWM9sbKUWuh9UTO6Dufrx4HDWvbrIS/YvrLg+mPDhbQKLYVZBojopGbEsZGo6t5Q/XszICRgbBF729EBAJtS+HUB3IrvNMN9i1DEMox+t21iIaIyGAAguJPlDA4hPwZRxbFhmBKI0iJUlB53aObFMxBuN5zZcTouqlROI+uuw4dtOidUKV5FuBGtaPEQaF9Mi9q0+FLM3NXYgX73/bLfOz6UbU+brB1bTt6xZ+YxLYl57HJiCEM2DpwSZQRKcK1QB0hImbgnHpkTpS2lLDjM3r2Wjk48ZF6Mu0z3nAi9y8jJNmJMxES7cVSVokVdiy1ayuHwOaVM6DnlpaiovRxeXw+Hl9fDx8/P52me5iWqdsHhNJ+KyrcfP53mqcid2E5UOCczX1R1mT88f1Tzl/PLsZxmnYtHQi6WTV0Y0L6VRYVDWnL92tCFTYJDga5kQeu+yik6emOIE0RaBlNVTkKvSx24TuRIE1V2J7QeudD8soZghUtpZA5VHZmi7WODv9ombnhJjFgNC9sCrUerdgrdQeXasQYmBkgttrToU8GIzokAVVVyryoioiKqoqVEFsi9Vdz5apmhKZMArGmBthGFbkOovwTIZ+GktiAvrCdT6B2kqJ0Jg8g5EVHilqqNJGSY3dXFIWLmxOkaL6v5DJOQA2gltgQAgfLVHnu1YrYFIQ5IwIwIThGbRnHYhTvi5F7AgSkTh3EExBBT99ZqOMLKwDO4StF5/T7AC7h6FLx4S+2EEa76R3GTqo5MyyFfG5RbtvwlSq421M1uKkpgTdjCakChprGaGxidJxu5MYQAqrFatdpWbHRd/ggXux5TzQCoqkpTkwm7Cd4RKucL2jNxIPdKW7gxoA5VhO3KeoJxC/7W9ZM6DDjL3Eb2iSFaFalD8eQAhr0DKLCBy3yczxOWZUy+6fBukxhhmcQMOYy5LVpEiql6UV3M5gVmATNSS2L24XsfOstS7gbcZu2TZ7KOLREOGXOi7ZBzQjPoMqbUETMQcUK6sp4IiNQhdZxG4oxpi6lX7GbIWFhPPHZswKPRtk/I0GVytKLGTGPXu6GoiJTjdP5+v6iWo56YqWPJORV1UX/dv3x6PXx+OX7/6VVE56XULw/1NE+0lO8+4evxhKhA0He0GZKpLssM6svLWVT30+upTIsucnEgABr4Uhm+CIsqieiVmI2H9QxLhK4crSAgsk7Q8CEiD+8qygiCpoVWg6kVG66LylzqFVAcLZ5uFxW1qxahGFzWO6ydZtZF2NLC1RHAtjDWuRxxl7X0vFzp6UCI1CODu6e6Vt08Abl7rsXNWmV4asWKtnKpKIxup4zNdbdKZWgryf3qhKpj5atxaHQDxDCOKSUiopRqC8jI5TZ6BgJys5jrh64GlIgS87ruanaIKdqHq6qpViGrKiLvboZudU1rRSnBazCOAAwOEGLBfoFSATBU9oA9B8pXz6ReV923Qo1G0auCCGmTzwYXAEEQB2mLKCJXJ6CWj3OvRVdeNfZvxo31HIcREKvprupKNVteJ4tdAnRoxU8xR5psh0LV4GuzUGtgHvc46o6AEl7sLgB4xOfNRLbUWAsKouy/ITgX3PM6hG+023ByHQC6rl+9fkrD7lf/ubv7d+O8qEgcisCqInadXQRBL6rJAC/FZXFzMmcHEAcIhkzoPwOqsztOi05Fj6f5L19OpdjhKO7BoEImRqSocxR3MVsUzgXN0YyIbDMsmeHdbhxy6tkSOaMnMiZMjEzYZ2aCcUBmGIeUEnV9yon7p79a78TT+6f/8l//7nA4DLln4iEPiVJOiYkzU5eoYxo77hLeDcwMROboT0spZrV1qpmqzFJ+PZ3MDUgRcbsZE7Oom8P+eDqc5/N53h+naD5+ZQAYkTZ936X89LB5vNvkRF0mNSulADiRq9k3r8dpKR+fj8dpuUzDNxAPggPmnP/iN79ZH3t4/OVf/fXftqDNjdpiayFx2/gwMpFeSX4OEPyXmgN3cECr0ZODhn97lecJD7VG5tBUtiI/udqeqHQJjL+KotiV89ocz9gM/PLHOleH/m4z3K9X50CGCYgwEboDu7tDdnenKgoRoVqrdAidnfrnpa/qZUlEfHqDcTXzXk/4AqT5RVgSWgzOiBiF2lGOErerXl+zlRe/v916BMDoDtlUQhLS37y7v+9y6GKhGYYWcAv9AdxVoLVLSCGXQJDRiTBzdOF1AxBzd48STApcDDERJcY+RyE4xr1y9wpoILYYHRAgnA0MdoW7AwiChT/VtEzcK/ctKh6x8tAJkExdzX7z9HQNfeJvf/vb61sPb8ePH/k948oO/oHjFk+4PPxHHfTikQKAh9zAm0tc3d2f+iz/6afWd64z9dql+v2vvDpoO8N2Gvj2Y/Dq1+3f1dfC1jzb3UXEW1bx5mVXn/LmOFe73+XMru/P9Zfib67xR+PKhK0P3Ly2hrFv5srvv7vVA2pvtDdq4X/S8ePT+yNPBJHwhlTw9rj/5Pz5+ZP4V7lPNxPlX/IOuJk32jycP/DDf98teXtOtwvnj7dFP/PuN6SCt7jnj17/z7p9P4Ez/psaiJTgX36a/9YvCwAAEDHn/H/7LP5PDURipn/6df/Pjzdb3E89/bMv+tln/vSDEf8o6/CHve9PdQf+f5iUX8aX8WV8Gf/644v1/DK+jC/jy/hDxj8CY3oj2AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjg4MjI4CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0MCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwOTE2MTQxNjU3KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNC4zLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNC4zKSA+PgplbmRvYmoKeHJlZgowIDQxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDk2NjI2IDAwMDAwIG4gCjAwMDAwMDc5NDIgMDAwMDAgbiAKMDAwMDAwNzk3NCAwMDAwMCBuIAowMDAwMDA4MDczIDAwMDAwIG4gCjAwMDAwMDgwOTQgMDAwMDAgbiAKMDAwMDAwODExNSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDEgMDAwMDAgbiAKMDAwMDAwMDc0NiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA3MjYgMDAwMDAgbiAKMDAwMDAwODE0NyAwMDAwMCBuIAowMDAwMDA2NjQ4IDAwMDAwIG4gCjAwMDAwMDY0NDggMDAwMDAgbiAKMDAwMDAwNjAzOSAwMDAwMCBuIAowMDAwMDA3NzAxIDAwMDAwIG4gCjAwMDAwMDA3NjYgMDAwMDAgbiAKMDAwMDAwMDkyOSAwMDAwMCBuIAowMDAwMDAxMjM3IDAwMDAwIG4gCjAwMDAwMDEzODUgMDAwMDAgbiAKMDAwMDAwMTUwOCAwMDAwMCBuIAowMDAwMDAxODEzIDAwMDAwIG4gCjAwMDAwMDIxOTMgMDAwMDAgbiAKMDAwMDAwMjQ5NyAwMDAwMCBuIAowMDAwMDAyODE5IDAwMDAwIG4gCjAwMDAwMDMwMjggMDAwMDAgbiAKMDAwMDAwMzQ0MiAwMDAwMCBuIAowMDAwMDAzNjc5IDAwMDAwIG4gCjAwMDAwMDM3OTggMDAwMDAgbiAKMDAwMDAwNDEyOSAwMDAwMCBuIAowMDAwMDA0NDIwIDAwMDAwIG4gCjAwMDAwMDQ1NzUgMDAwMDAgbiAKMDAwMDAwNDg4NyAwMDAwMCBuIAowMDAwMDA1Mjk0IDAwMDAwIG4gCjAwMDAwMDUzODQgMDAwMDAgbiAKMDAwMDAwNTU5MCAwMDAwMCBuIAowMDAwMDA1NzUxIDAwMDAwIG4gCjAwMDAwOTY2MDQgMDAwMDAgbiAKMDAwMDA5NjY4NiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQwIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0MSA+PgpzdGFydHhyZWYKOTY4NDMKJSVFT0YK\n", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-09-16T14:16:57.058913\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["# Visualize some examples\n", "NUM_IMAGES = 12\n", "cifar_images = [cifar_train_set[np.random.randint(len(cifar_train_set))][0] for idx in range(NUM_IMAGES)]\n", "cifar_images = torch.stack(cifar_images, dim=0)\n", "img_grid = torchvision.utils.make_grid(cifar_images, nrow=6, normalize=True, pad_value=0.9)\n", "img_grid = img_grid.permute(1, 2, 0)\n", "\n", "plt.figure(figsize=(8, 8))\n", "plt.title(\"Image examples of the CIFAR100 dataset\")\n", "plt.imshow(img_grid)\n", "plt.axis(\"off\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "d2753a72", "metadata": {"papermill": {"duration": 0.045855, "end_time": "2021-09-16T12:16:57.277837", "exception": false, "start_time": "2021-09-16T12:16:57.231982", "status": "completed"}, "tags": []}, "source": ["### Data preprocessing\n", "\n", "Next, we need to prepare the dataset in the training, validation and test split as mentioned before.\n", "The torchvision package gives us the training and test set as two separate dataset objects.\n", "The next code cells will merge the original training and test set, and then create the new train-val-test split."]}, {"cell_type": "code", "execution_count": 6, "id": "c6003b74", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:57.364070Z", "iopub.status.busy": "2021-09-16T12:16:57.363592Z", "iopub.status.idle": "2021-09-16T12:16:57.440072Z", "shell.execute_reply": "2021-09-16T12:16:57.440447Z"}, "papermill": {"duration": 0.120966, "end_time": "2021-09-16T12:16:57.440598", "exception": false, "start_time": "2021-09-16T12:16:57.319632", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Merging original training and test set\n", "cifar_all_images = np.concatenate([cifar_train_set.data, cifar_test_set.data], axis=0)\n", "cifar_all_targets = torch.LongTensor(cifar_train_set.targets + cifar_test_set.targets)"]}, {"cell_type": "markdown", "id": "7ba136f2", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.042617, "end_time": "2021-09-16T12:16:57.525339", "exception": false, "start_time": "2021-09-16T12:16:57.482722", "status": "completed"}, "tags": []}, "source": ["To have an easier time handling the dataset, we define our own, simple dataset class below.\n", "It takes a set of images, labels/targets, and image transformations, and\n", "returns the corresponding images and labels element-wise."]}, {"cell_type": "code", "execution_count": 7, "id": "87d13a5c", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:57.612626Z", "iopub.status.busy": "2021-09-16T12:16:57.612098Z", "iopub.status.idle": "2021-09-16T12:16:57.613747Z", "shell.execute_reply": "2021-09-16T12:16:57.614134Z"}, "papermill": {"duration": 0.048028, "end_time": "2021-09-16T12:16:57.614251", "exception": false, "start_time": "2021-09-16T12:16:57.566223", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ImageDataset(data.Dataset):\n", " def __init__(self, imgs, targets, img_transform=None):\n", " \"\"\"\n", " Inputs:\n", " imgs - Numpy array of shape [N,32,32,3] containing all images.\n", " targets - PyTorch array of shape [N] containing all labels.\n", " img_transform - A torchvision transformation that should be applied\n", " to the images before returning. If none, no transformation\n", " is applied.\n", " \"\"\"\n", " super().__init__()\n", " self.img_transform = img_transform\n", " self.imgs = imgs\n", " self.targets = targets\n", "\n", " def __getitem__(self, idx):\n", " img, target = self.imgs[idx], self.targets[idx]\n", " img = Image.fromarray(img)\n", "\n", " if self.img_transform is not None:\n", " img = self.img_transform(img)\n", "\n", " return img, target\n", "\n", " def __len__(self):\n", " return self.imgs.shape[0]"]}, {"cell_type": "markdown", "id": "70a2bde0", "metadata": {"papermill": {"duration": 0.042741, "end_time": "2021-09-16T12:16:57.698003", "exception": false, "start_time": "2021-09-16T12:16:57.655262", "status": "completed"}, "tags": []}, "source": ["Now, we can create the class splits.\n", "We will assign the classes randomly to training, validation and test, and use a 80%-10%-10% split."]}, {"cell_type": "code", "execution_count": 8, "id": "6c427a32", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:57.783244Z", "iopub.status.busy": "2021-09-16T12:16:57.782764Z", "iopub.status.idle": "2021-09-16T12:16:57.786435Z", "shell.execute_reply": "2021-09-16T12:16:57.785965Z"}, "papermill": {"duration": 0.0482, "end_time": "2021-09-16T12:16:57.786535", "exception": false, "start_time": "2021-09-16T12:16:57.738335", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Global seed set to 0\n"]}], "source": ["pl.seed_everything(0) # Set seed for reproducibility\n", "classes = torch.randperm(100) # Returns random permutation of numbers 0 to 99\n", "train_classes, val_classes, test_classes = classes[:80], classes[80:90], classes[90:]"]}, {"cell_type": "markdown", "id": "b04354dc", "metadata": {"papermill": {"duration": 0.040797, "end_time": "2021-09-16T12:16:57.868158", "exception": false, "start_time": "2021-09-16T12:16:57.827361", "status": "completed"}, "tags": []}, "source": ["To get an intuition of the validation and test classes, we print the class names below:"]}, {"cell_type": "code", "execution_count": 9, "id": "382f56ef", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:57.956230Z", "iopub.status.busy": "2021-09-16T12:16:57.955759Z", "iopub.status.idle": "2021-09-16T12:16:57.958957Z", "shell.execute_reply": "2021-09-16T12:16:57.958490Z"}, "papermill": {"duration": 0.049254, "end_time": "2021-09-16T12:16:57.959059", "exception": false, "start_time": "2021-09-16T12:16:57.909805", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Validation classes: ['caterpillar', 'castle', 'skunk', 'ray', 'bus', 'motorcycle', 'keyboard', 'chimpanzee', 'possum', 'tiger']\n", "Test classes: ['kangaroo', 'crocodile', 'butterfly', 'shark', 'forest', 'pickup_truck', 'telephone', 'lion', 'worm', 'mushroom']\n"]}], "source": ["# Printing validation and test classes\n", "idx_to_class = {val: key for key, val in cifar_train_set.class_to_idx.items()}\n", "print(\"Validation classes:\", [idx_to_class[c.item()] for c in val_classes])\n", "print(\"Test classes:\", [idx_to_class[c.item()] for c in test_classes])"]}, {"cell_type": "markdown", "id": "b3201c8c", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.043076, "end_time": "2021-09-16T12:16:58.043389", "exception": false, "start_time": "2021-09-16T12:16:58.000313", "status": "completed"}, "tags": []}, "source": ["As we can see, the classes have quite some variety and some classes might be easier to distinguish than others.\n", "For instance, in the test classes, 'pickup_truck' is the only vehicle while the classes 'mushroom', 'worm' and 'forest' might be harder to keep apart.\n", "Remember that we want to learn the classification of those ten classes from 80 other classes in our training set, and few examples from the actual test classes.\n", "We will experiment with the number of examples per class.\n", "\n", "Finally, we can create the training, validation and test dataset according to our split above.\n", "For this, we create dataset objects of our previously defined class `ImageDataset`."]}, {"cell_type": "code", "execution_count": 10, "id": "90fac17b", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:58.130688Z", "iopub.status.busy": "2021-09-16T12:16:58.130215Z", "iopub.status.idle": "2021-09-16T12:16:58.132283Z", "shell.execute_reply": "2021-09-16T12:16:58.131883Z"}, "papermill": {"duration": 0.047528, "end_time": "2021-09-16T12:16:58.132384", "exception": false, "start_time": "2021-09-16T12:16:58.084856", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def dataset_from_labels(imgs, targets, class_set, **kwargs):\n", " class_mask = (targets[:, None] == class_set[None, :]).any(dim=-1)\n", " return ImageDataset(imgs=imgs[class_mask], targets=targets[class_mask], **kwargs)"]}, {"cell_type": "markdown", "id": "538f34d4", "metadata": {"papermill": {"duration": 0.041952, "end_time": "2021-09-16T12:16:58.219072", "exception": false, "start_time": "2021-09-16T12:16:58.177120", "status": "completed"}, "tags": []}, "source": ["As in our experiments before on CIFAR in Tutorial 5, 6 and 9, we normalize the dataset.\n", "Additionally, we use small augmentations during training to prevent overfitting."]}, {"cell_type": "code", "execution_count": 11, "id": "1150cc59", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:16:58.310188Z", "iopub.status.busy": "2021-09-16T12:16:58.309710Z", "iopub.status.idle": "2021-09-16T12:17:00.575563Z", "shell.execute_reply": "2021-09-16T12:17:00.575102Z"}, "papermill": {"duration": 2.315272, "end_time": "2021-09-16T12:17:00.575679", "exception": false, "start_time": "2021-09-16T12:16:58.260407", "status": "completed"}, "tags": []}, "outputs": [], "source": ["DATA_MEANS = (cifar_train_set.data / 255.0).mean(axis=(0, 1, 2))\n", "DATA_STD = (cifar_train_set.data / 255.0).std(axis=(0, 1, 2))\n", "\n", "test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(DATA_MEANS, DATA_STD)])\n", "# For training, we add some augmentation.\n", "train_transform = transforms.Compose(\n", " [\n", " transforms.RandomHorizontalFlip(),\n", " transforms.RandomResizedCrop((32, 32), scale=(0.8, 1.0), ratio=(0.9, 1.1)),\n", " transforms.ToTensor(),\n", " transforms.Normalize(DATA_MEANS, DATA_STD),\n", " ]\n", ")\n", "\n", "train_set = dataset_from_labels(cifar_all_images, cifar_all_targets, train_classes, img_transform=train_transform)\n", "val_set = dataset_from_labels(cifar_all_images, cifar_all_targets, val_classes, img_transform=test_transform)\n", "test_set = dataset_from_labels(cifar_all_images, cifar_all_targets, test_classes, img_transform=test_transform)"]}, {"cell_type": "markdown", "id": "a96f08ba", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.041553, "end_time": "2021-09-16T12:17:00.662005", "exception": false, "start_time": "2021-09-16T12:17:00.620452", "status": "completed"}, "tags": []}, "source": ["### Data sampling\n", "\n", "The strategy of how to use the available training data for learning few-shot adaptation is crucial in meta-learning.\n", "All three algorithms that we discuss here have a similar idea: simulate few-shot learning during training.\n", "Specifically, at each training step, we randomly select a small number of classes, and sample a small number of examples for each class.\n", "This represents our few-shot training batch, which we also refer to as **support set**.\n", "Additionally, we sample a second set of examples from the same classes, and refer to this batch as **query set**.\n", "Our training objective is to classify the query set correctly from seeing the support set and its corresponding labels.\n", "The main difference between our three methods (ProtoNet, MAML, and Proto-MAML) is in how they use the support set to adapt to the training classes.\n", "\n", "This subsection summarizes the code that is needed to create such training batches.\n", "In PyTorch, we can specify the data sampling procedure by so-called `Sampler` ([documentation](https://pytorch.org/docs/stable/data.html#data-loading-order-and-sampler)).\n", "Samplers are iteratable objects that return indices in the order in which the data elements should be sampled.\n", "In our previous notebooks, we usually used the option `shuffle=True` in the `data.DataLoader` objects which creates a sampler returning the data indices in a random order.\n", "Here, we focus on samplers that return batches of indices that correspond to support and query set batches.\n", "Below, we implement such a sampler."]}, {"cell_type": "code", "execution_count": 12, "id": "854b16a5", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:00.759300Z", "iopub.status.busy": "2021-09-16T12:17:00.755250Z", "iopub.status.idle": "2021-09-16T12:17:00.761236Z", "shell.execute_reply": "2021-09-16T12:17:00.760749Z"}, "papermill": {"duration": 0.055575, "end_time": "2021-09-16T12:17:00.761340", "exception": false, "start_time": "2021-09-16T12:17:00.705765", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class FewShotBatchSampler:\n", " def __init__(self, dataset_targets, N_way, K_shot, include_query=False, shuffle=True, shuffle_once=False):\n", " \"\"\"\n", " Inputs:\n", " dataset_targets - PyTorch tensor of the labels of the data elements.\n", " N_way - Number of classes to sample per batch.\n", " K_shot - Number of examples to sample per class in the batch.\n", " include_query - If True, returns batch of size N_way*K_shot*2, which\n", " can be split into support and query set. Simplifies\n", " the implementation of sampling the same classes but\n", " distinct examples for support and query set.\n", " shuffle - If True, examples and classes are newly shuffled in each\n", " iteration (for training)\n", " shuffle_once - If True, examples and classes are shuffled once in\n", " the beginning, but kept constant across iterations\n", " (for validation)\n", " \"\"\"\n", " super().__init__()\n", " self.dataset_targets = dataset_targets\n", " self.N_way = N_way\n", " self.K_shot = K_shot\n", " self.shuffle = shuffle\n", " self.include_query = include_query\n", " if self.include_query:\n", " self.K_shot *= 2\n", " self.batch_size = self.N_way * self.K_shot # Number of overall images per batch\n", "\n", " # Organize examples by class\n", " self.classes = torch.unique(self.dataset_targets).tolist()\n", " self.num_classes = len(self.classes)\n", " self.indices_per_class = {}\n", " self.batches_per_class = {} # Number of K-shot batches that each class can provide\n", " for c in self.classes:\n", " self.indices_per_class[c] = torch.where(self.dataset_targets == c)[0]\n", " self.batches_per_class[c] = self.indices_per_class[c].shape[0] // self.K_shot\n", "\n", " # Create a list of classes from which we select the N classes per batch\n", " self.iterations = sum(self.batches_per_class.values()) // self.N_way\n", " self.class_list = [c for c in self.classes for _ in range(self.batches_per_class[c])]\n", " if shuffle_once or self.shuffle:\n", " self.shuffle_data()\n", " else:\n", " # For testing, we iterate over classes instead of shuffling them\n", " sort_idxs = [\n", " i + p * self.num_classes for i, c in enumerate(self.classes) for p in range(self.batches_per_class[c])\n", " ]\n", " self.class_list = np.array(self.class_list)[np.argsort(sort_idxs)].tolist()\n", "\n", " def shuffle_data(self):\n", " # Shuffle the examples per class\n", " for c in self.classes:\n", " perm = torch.randperm(self.indices_per_class[c].shape[0])\n", " self.indices_per_class[c] = self.indices_per_class[c][perm]\n", " # Shuffle the class list from which we sample. Note that this way of shuffling\n", " # does not prevent to choose the same class twice in a batch. However, for\n", " # training and validation, this is not a problem.\n", " random.shuffle(self.class_list)\n", "\n", " def __iter__(self):\n", " # Shuffle data\n", " if self.shuffle:\n", " self.shuffle_data()\n", "\n", " # Sample few-shot batches\n", " start_index = defaultdict(int)\n", " for it in range(self.iterations):\n", " class_batch = self.class_list[it * self.N_way : (it + 1) * self.N_way] # Select N classes for the batch\n", " index_batch = []\n", " for c in class_batch: # For each class, select the next K examples and add them to the batch\n", " index_batch.extend(self.indices_per_class[c][start_index[c] : start_index[c] + self.K_shot])\n", " start_index[c] += self.K_shot\n", " if self.include_query: # If we return support+query set, sort them so that they are easy to split\n", " index_batch = index_batch[::2] + index_batch[1::2]\n", " yield index_batch\n", "\n", " def __len__(self):\n", " return self.iterations"]}, {"cell_type": "markdown", "id": "06629cb0", "metadata": {"papermill": {"duration": 0.041795, "end_time": "2021-09-16T12:17:00.844077", "exception": false, "start_time": "2021-09-16T12:17:00.802282", "status": "completed"}, "tags": []}, "source": ["Now, we can create our intended data loaders by passing an object of `FewShotBatchSampler` as `batch_sampler=...` input to the PyTorch data loader object.\n", "For our experiments, we will use a 5-class 4-shot training setting.\n", "This means that each support set contains 5 classes with 4 examples each, i.e., 20 images overall.\n", "Usually, it is good to keep the number of shots equal to the number that you aim to test on.\n", "However, we will experiment later with different number of shots, and hence, we pick 4 as a compromise for now.\n", "To get the best performing model, it is recommended to consider the\n", "number of training shots as hyperparameter in a grid search."]}, {"cell_type": "code", "execution_count": 13, "id": "2391b323", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:00.930337Z", "iopub.status.busy": "2021-09-16T12:17:00.929871Z", "iopub.status.idle": "2021-09-16T12:17:00.959337Z", "shell.execute_reply": "2021-09-16T12:17:00.958858Z"}, "papermill": {"duration": 0.074158, "end_time": "2021-09-16T12:17:00.959445", "exception": false, "start_time": "2021-09-16T12:17:00.885287", "status": "completed"}, "tags": []}, "outputs": [], "source": ["N_WAY = 5\n", "K_SHOT = 4\n", "train_data_loader = data.DataLoader(\n", " train_set,\n", " batch_sampler=FewShotBatchSampler(train_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, shuffle=True),\n", " num_workers=4,\n", ")\n", "val_data_loader = data.DataLoader(\n", " val_set,\n", " batch_sampler=FewShotBatchSampler(\n", " val_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, shuffle=False, shuffle_once=True\n", " ),\n", " num_workers=4,\n", ")"]}, {"cell_type": "markdown", "id": "b916416f", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.042019, "end_time": "2021-09-16T12:17:01.042924", "exception": false, "start_time": "2021-09-16T12:17:01.000905", "status": "completed"}, "tags": []}, "source": ["For simplicity, we implemented the sampling of a support and query set as sampling a support set with twice the number of examples.\n", "After sampling a batch from the data loader, we need to split it into a support and query set.\n", "We can summarize this step in the following function:"]}, {"cell_type": "code", "execution_count": 14, "id": "f2af4f57", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:01.130833Z", "iopub.status.busy": "2021-09-16T12:17:01.130367Z", "iopub.status.idle": "2021-09-16T12:17:01.132446Z", "shell.execute_reply": "2021-09-16T12:17:01.132049Z"}, "papermill": {"duration": 0.04868, "end_time": "2021-09-16T12:17:01.132545", "exception": false, "start_time": "2021-09-16T12:17:01.083865", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def split_batch(imgs, targets):\n", " support_imgs, query_imgs = imgs.chunk(2, dim=0)\n", " support_targets, query_targets = targets.chunk(2, dim=0)\n", " return support_imgs, query_imgs, support_targets, query_targets"]}, {"cell_type": "markdown", "id": "da7f82f6", "metadata": {"papermill": {"duration": 0.041597, "end_time": "2021-09-16T12:17:01.215440", "exception": false, "start_time": "2021-09-16T12:17:01.173843", "status": "completed"}, "tags": []}, "source": ["Finally, to ensure that our implementation of the data sampling process is correct, we can sample a batch and visualize its support and query set.\n", "What we would like to see is that the support and query set have the same classes, but distinct examples."]}, {"cell_type": "code", "execution_count": 15, "id": "9b1b5af8", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:01.306238Z", "iopub.status.busy": "2021-09-16T12:17:01.305760Z", "iopub.status.idle": "2021-09-16T12:17:01.582287Z", "shell.execute_reply": "2021-09-16T12:17:01.581851Z"}, "papermill": {"duration": 0.323266, "end_time": "2021-09-16T12:17:01.582404", "exception": false, "start_time": "2021-09-16T12:17:01.259138", "status": "completed"}, "tags": []}, "outputs": [], "source": ["imgs, targets = next(iter(val_data_loader)) # We use the validation set since it does not apply augmentations\n", "support_imgs, query_imgs, _, _ = split_batch(imgs, targets)\n", "support_grid = torchvision.utils.make_grid(support_imgs, nrow=K_SHOT, normalize=True, pad_value=0.9)\n", "support_grid = support_grid.permute(1, 2, 0)\n", "query_grid = torchvision.utils.make_grid(query_imgs, nrow=K_SHOT, normalize=True, pad_value=0.9)\n", "query_grid = query_grid.permute(1, 2, 0)\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(8, 5))\n", "ax[0].imshow(support_grid)\n", "ax[0].set_title(\"Support set\")\n", "ax[0].axis(\"off\")\n", "ax[1].imshow(query_grid)\n", "ax[1].set_title(\"Query set\")\n", "ax[1].axis(\"off\")\n", "fig.suptitle(\"Few Shot Batch\", weight=\"bold\")\n", "fig.show()\n", "plt.close(fig)"]}, {"cell_type": "markdown", "id": "63d0e470", "metadata": {"papermill": {"duration": 0.047618, "end_time": "2021-09-16T12:17:01.680502", "exception": false, "start_time": "2021-09-16T12:17:01.632884", "status": "completed"}, "tags": []}, "source": ["As we can see, the support and query set have the same five classes, but different examples.\n", "The models will be tasked to classify the examples in the query set by learning from the support set and its labels.\n", "With the data sampling in place, we can now start to implement our first meta-learning model: Prototypical Networks."]}, {"cell_type": "markdown", "id": "06af8576", "metadata": {"papermill": {"duration": 0.049184, "end_time": "2021-09-16T12:17:01.778920", "exception": false, "start_time": "2021-09-16T12:17:01.729736", "status": "completed"}, "tags": []}, "source": ["## Prototypical Networks"]}, {"cell_type": "markdown", "id": "118429e4", "metadata": {"papermill": {"duration": 0.051246, "end_time": "2021-09-16T12:17:01.882315", "exception": false, "start_time": "2021-09-16T12:17:01.831069", "status": "completed"}, "tags": []}, "source": ["The Prototypical Network, or ProtoNet for short, is a metric-based meta-learning algorithm which operates similar to a nearest neighbor classification.\n", "Metric-based meta-learning methods classify a new example $\\mathbf{x}$ based on some distance function $d_{\\varphi}$ between $x$ and all elements in the support set.\n", "ProtoNets implements this idea with the concept of prototypes in a learned feature space.\n", "First, ProtoNet uses an embedding function $f_{\\theta}$ to encode each input in the support set into a $L$-dimensional feature vector.\n", "Next, for each class $c$, we collect the feature vectors of all examples with label $c$, and average their feature vectors.\n", "Formally, we can define this as:\n", "\n", "$$\\mathbf{v}_c=\\frac{1}{|S_c|}\\sum_{(\\mathbf{x}_i,y_i)\\in S_c}f_{\\theta}(\\mathbf{x}_i)$$\n", "\n", "where $S_c$ is the part of the support set $S$ for which $y_i=c$, and $\\mathbf{v}_c$ represents the _prototype_ of class $c$.\n", "The prototype calculation is visualized below for a 2-dimensional feature space and 3 classes (Figure credit - [Snell et al.](https://arxiv.org/pdf/1703.05175.pdf)).\n", "The colored dots represent encoded support elements with color-corresponding class label, and the black dots next to the class label are the averaged prototypes.\n", "\n", "
\n", "\n", "Based on these prototypes, we want to classify a new example.\n", "Remember that since we want to learn the encoding function $f_{\\theta}$, this classification must be differentiable and hence, we need to define a probability distribution across classes.\n", "For this, we will make use of the distance function $d_{\\varphi}$: the closer a new example $\\mathbf{x}$ is to a prototype $\\mathbf{v}_c$, the higher the probability for $\\mathbf{x}$ belonging to class $c$.\n", "Formally, we can simply use a softmax over the distances of $\\mathbf{x}$ to all class prototypes:\n", "\n", "$$p(y=c\\vert\\mathbf{x})=\\text{softmax}(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_c))=\\frac{\\exp\\left(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_c)\\right)}{\\sum_{c'\\in \\mathcal{C}}\\exp\\left(-d_{\\varphi}(f_{\\theta}(\\mathbf{x}), \\mathbf{v}_{c'})\\right)}$$\n", "\n", "Note that the negative sign is necessary since we want to increase the probability for close-by vectors and have a low probability for distant vectors.\n", "We train the network $f_{\\theta}$ based on the cross entropy error of the training query set examples.\n", "Thereby, the gradient flows through both the prototypes $\\mathbf{v}_c$ and the query set encodings $f_{\\theta}(\\mathbf{x})$.\n", "For the distance function $d_{\\varphi}$, we can choose any function as long as it is differentiable with respect to both of its inputs.\n", "The most common function, which we also use here, is the squared\n", "euclidean distance, but there has been several works on different\n", "distance functions as well."]}, {"cell_type": "markdown", "id": "00b71a3a", "metadata": {"papermill": {"duration": 0.04147, "end_time": "2021-09-16T12:17:01.974706", "exception": false, "start_time": "2021-09-16T12:17:01.933236", "status": "completed"}, "tags": []}, "source": ["### ProtoNet implementation"]}, {"cell_type": "markdown", "id": "04b1893c", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.041485, "end_time": "2021-09-16T12:17:02.058073", "exception": false, "start_time": "2021-09-16T12:17:02.016588", "status": "completed"}, "tags": []}, "source": ["Now that we know how a ProtoNet works in principle, let's look at how we can apply to our specific problem of few-shot image classification, and implement it below.\n", "First, we need to define the encoder function $f_{\\theta}$.\n", "Since we work with CIFAR images, we can take a look back at Tutorial 5 where we compared common Computer Vision architectures, and choose one of the best performing ones.\n", "Here, we go with a DenseNet since it is in general more parameter efficient than ResNet.\n", "Luckily, we do not need to implement DenseNet ourselves again and can rely on torchvision's model package instead.\n", "We use common hyperparameters of 64 initial feature channels, add 32 per block, and use a bottleneck size of 64 (i.e. 2 times the growth rate).\n", "We use 4 stages of 6 layers each, which results in overall about 1 million parameters.\n", "Note that the torchvision package assumes that the last layer is used for classification and hence calls its output size `num_classes`.\n", "However, we can instead just use it as the feature space of ProtoNet, and choose an arbitrary dimensionality.\n", "We will use the same network for other algorithms in this notebook to ensure a fair comparison."]}, {"cell_type": "code", "execution_count": 16, "id": "4541e273", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:02.146559Z", "iopub.status.busy": "2021-09-16T12:17:02.146086Z", "iopub.status.idle": "2021-09-16T12:17:02.148149Z", "shell.execute_reply": "2021-09-16T12:17:02.147753Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.047774, "end_time": "2021-09-16T12:17:02.148248", "exception": false, "start_time": "2021-09-16T12:17:02.100474", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def get_convnet(output_size):\n", " convnet = torchvision.models.DenseNet(\n", " growth_rate=32,\n", " block_config=(6, 6, 6, 6),\n", " bn_size=2,\n", " num_init_features=64,\n", " num_classes=output_size, # Output dimensionality\n", " )\n", " return convnet"]}, {"cell_type": "markdown", "id": "083ac82c", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.041445, "end_time": "2021-09-16T12:17:02.231461", "exception": false, "start_time": "2021-09-16T12:17:02.190016", "status": "completed"}, "tags": []}, "source": ["Next, we can look at implementing ProtoNet.\n", "We will define it as PyTorch Lightning module to use all functionalities of PyTorch Lightning.\n", "The first step during training is to encode all images in a batch with our network.\n", "Next, we calculate the class prototypes from the support set (function `calculate_prototypes`), and classify the query set examples according to the prototypes (function `classify_feats`).\n", "Keep in mind that we use the data sampling described before, such that the support and query set are stacked together in the batch.\n", "Thus, we use our previously defined function `split_batch` to split them apart.\n", "The full code can be found below."]}, {"cell_type": "code", "execution_count": 17, "id": "f386a814", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:02.325211Z", "iopub.status.busy": "2021-09-16T12:17:02.317106Z", "iopub.status.idle": "2021-09-16T12:17:02.327317Z", "shell.execute_reply": "2021-09-16T12:17:02.326845Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.053982, "end_time": "2021-09-16T12:17:02.327415", "exception": false, "start_time": "2021-09-16T12:17:02.273433", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ProtoNet(pl.LightningModule):\n", " def __init__(self, proto_dim, lr):\n", " \"\"\"Inputs.\n", "\n", " proto_dim - Dimensionality of prototype feature space\n", " lr - Learning rate of Adam optimizer\n", " \"\"\"\n", " super().__init__()\n", " self.save_hyperparameters()\n", " self.model = get_convnet(output_size=self.hparams.proto_dim)\n", "\n", " def configure_optimizers(self):\n", " optimizer = optim.AdamW(self.parameters(), lr=self.hparams.lr)\n", " scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[140, 180], gamma=0.1)\n", " return [optimizer], [scheduler]\n", "\n", " @staticmethod\n", " def calculate_prototypes(features, targets):\n", " # Given a stack of features vectors and labels, return class prototypes\n", " # features - shape [N, proto_dim], targets - shape [N]\n", " classes, _ = torch.unique(targets).sort() # Determine which classes we have\n", " prototypes = []\n", " for c in classes:\n", " p = features[torch.where(targets == c)[0]].mean(dim=0) # Average class feature vectors\n", " prototypes.append(p)\n", " prototypes = torch.stack(prototypes, dim=0)\n", " # Return the 'classes' tensor to know which prototype belongs to which class\n", " return prototypes, classes\n", "\n", " def classify_feats(self, prototypes, classes, feats, targets):\n", " # Classify new examples with prototypes and return classification error\n", " dist = torch.pow(prototypes[None, :] - feats[:, None], 2).sum(dim=2) # Squared euclidean distance\n", " preds = F.log_softmax(-dist, dim=1)\n", " labels = (classes[None, :] == targets[:, None]).long().argmax(dim=-1)\n", " acc = (preds.argmax(dim=1) == labels).float().mean()\n", " return preds, labels, acc\n", "\n", " def calculate_loss(self, batch, mode):\n", " # Determine training loss for a given support and query set\n", " imgs, targets = batch\n", " features = self.model(imgs) # Encode all images of support and query set\n", " support_feats, query_feats, support_targets, query_targets = split_batch(features, targets)\n", " prototypes, classes = ProtoNet.calculate_prototypes(support_feats, support_targets)\n", " preds, labels, acc = self.classify_feats(prototypes, classes, query_feats, query_targets)\n", " loss = F.cross_entropy(preds, labels)\n", "\n", " self.log(\"%s_loss\" % mode, loss)\n", " self.log(\"%s_acc\" % mode, acc)\n", " return loss\n", "\n", " def training_step(self, batch, batch_idx):\n", " return self.calculate_loss(batch, mode=\"train\")\n", "\n", " def validation_step(self, batch, batch_idx):\n", " self.calculate_loss(batch, mode=\"val\")"]}, {"cell_type": "markdown", "id": "38f882ab", "metadata": {"papermill": {"duration": 0.041639, "end_time": "2021-09-16T12:17:02.410483", "exception": false, "start_time": "2021-09-16T12:17:02.368844", "status": "completed"}, "tags": []}, "source": ["For validation, we use the same principle as training and sample support and query sets from the hold-out 10 classes.\n", "However, this gives us noisy scores depending on which query sets are chosen to which support sets.\n", "This is why we will use a different strategy during testing.\n", "For validation, our training strategy is sufficient since it is much\n", "faster than testing, and gives a good estimate of the training\n", "generalization as long as we keep the support-query sets constant across\n", "validation iterations."]}, {"cell_type": "markdown", "id": "412dbc53", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.041462, "end_time": "2021-09-16T12:17:02.493712", "exception": false, "start_time": "2021-09-16T12:17:02.452250", "status": "completed"}, "tags": []}, "source": ["### Training\n", "\n", "After implementing the model, we can already start training it.\n", "We use our common PyTorch Lightning training function, and train the model for 200 epochs.\n", "The training function takes `model_class` as input argument, i.e. the\n", "PyTorch Lightning module class that should be trained, since we will\n", "reuse this function for other algorithms as well."]}, {"cell_type": "code", "execution_count": 18, "id": "c8a72bca", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:02.582441Z", "iopub.status.busy": "2021-09-16T12:17:02.581969Z", "iopub.status.idle": "2021-09-16T12:17:02.584137Z", "shell.execute_reply": "2021-09-16T12:17:02.583618Z"}, "papermill": {"duration": 0.049001, "end_time": "2021-09-16T12:17:02.584238", "exception": false, "start_time": "2021-09-16T12:17:02.535237", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_model(model_class, train_loader, val_loader, **kwargs):\n", " trainer = pl.Trainer(\n", " default_root_dir=os.path.join(CHECKPOINT_PATH, model_class.__name__),\n", " gpus=1 if str(device) == \"cuda:0\" else 0,\n", " max_epochs=200,\n", " callbacks=[\n", " ModelCheckpoint(save_weights_only=True, mode=\"max\", monitor=\"val_acc\"),\n", " LearningRateMonitor(\"epoch\"),\n", " ],\n", " progress_bar_refresh_rate=0,\n", " )\n", " trainer.logger._default_hp_metric = None\n", "\n", " # Check whether pretrained model exists. If yes, load it and skip training\n", " pretrained_filename = os.path.join(CHECKPOINT_PATH, model_class.__name__ + \".ckpt\")\n", " if os.path.isfile(pretrained_filename):\n", " print(\"Found pretrained model at %s, loading...\" % pretrained_filename)\n", " # Automatically loads the model with the saved hyperparameters\n", " model = model_class.load_from_checkpoint(pretrained_filename)\n", " else:\n", " pl.seed_everything(42) # To be reproducable\n", " model = model_class(**kwargs)\n", " trainer.fit(model, train_loader, val_loader)\n", " model = model_class.load_from_checkpoint(\n", " trainer.checkpoint_callback.best_model_path\n", " ) # Load best checkpoint after training\n", "\n", " return model"]}, {"cell_type": "markdown", "id": "dbd42a3c", "metadata": {"papermill": {"duration": 0.041582, "end_time": "2021-09-16T12:17:02.668351", "exception": false, "start_time": "2021-09-16T12:17:02.626769", "status": "completed"}, "tags": []}, "source": ["Below is the training call for our ProtoNet.\n", "We use a 64-dimensional feature space.\n", "Larger feature spaces showed to give noisier results since the squared euclidean distance becomes proportionally larger in expectation, and smaller feature spaces might not allow for enough flexibility.\n", "We recommend to load the pre-trained model here at first, but feel free\n", "to play around with the hyperparameters yourself."]}, {"cell_type": "code", "execution_count": 19, "id": "f590bdb9", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:02.757357Z", "iopub.status.busy": "2021-09-16T12:17:02.756875Z", "iopub.status.idle": "2021-09-16T12:17:02.818883Z", "shell.execute_reply": "2021-09-16T12:17:02.818418Z"}, "papermill": {"duration": 0.109115, "end_time": "2021-09-16T12:17:02.818985", "exception": false, "start_time": "2021-09-16T12:17:02.709870", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model at saved_models/MetaLearning/ProtoNet.ckpt, loading...\n"]}], "source": ["protonet_model = train_model(\n", " ProtoNet, proto_dim=64, lr=2e-4, train_loader=train_data_loader, val_loader=val_data_loader\n", ")"]}, {"cell_type": "markdown", "id": "a522c092", "metadata": {"papermill": {"duration": 0.043075, "end_time": "2021-09-16T12:17:02.905128", "exception": false, "start_time": "2021-09-16T12:17:02.862053", "status": "completed"}, "tags": []}, "source": ["We can also take a closer look at the TensorBoard below."]}, {"cell_type": "code", "execution_count": 20, "id": "09a6d207", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:02.994383Z", "iopub.status.busy": "2021-09-16T12:17:02.993922Z", "iopub.status.idle": "2021-09-16T12:17:02.996018Z", "shell.execute_reply": "2021-09-16T12:17:02.995566Z"}, "papermill": {"duration": 0.047523, "end_time": "2021-09-16T12:17:02.996115", "exception": false, "start_time": "2021-09-16T12:17:02.948592", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Opens tensorboard in notebook. Adjust the path to your CHECKPOINT_PATH if needed\n", "# # %tensorboard --logdir ../saved_models/tutorial16/tensorboards/ProtoNet/"]}, {"cell_type": "markdown", "id": "2450edf4", "metadata": {"papermill": {"duration": 0.042925, "end_time": "2021-09-16T12:17:03.081932", "exception": false, "start_time": "2021-09-16T12:17:03.039007", "status": "completed"}, "tags": []}, "source": ["
\n", "\n", "In contrast to standard supervised learning, we see that ProtoNet does not overfit as much as we would expect.\n", "The validation accuracy is of course lower than the average training, but the training loss does not stick close to zero.\n", "This is because no training batch is as the other, and we also mix new examples in the support set and query set.\n", "This gives us slightly different prototypes in every iteration, and makes it harder for the network to fully overfit."]}, {"cell_type": "markdown", "id": "061f9ce7", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.042575, "end_time": "2021-09-16T12:17:03.167627", "exception": false, "start_time": "2021-09-16T12:17:03.125052", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "Our goal of meta-learning is to obtain a model that can quickly adapt to a new task, or in this case, new classes to distinguish between.\n", "To test this, we will use our trained ProtoNet and adapt it to the 10 test classes.\n", "Thereby, we pick $k$ examples per class from which we determine the prototypes, and test the classification accuracy on all other examples.\n", "This can be seen as using the $k$ examples per class as support set, and the rest of the dataset as a query set.\n", "We iterate through the dataset such that each example has been once included in a support set.\n", "The average performance over all support sets tells us how well we can expect ProtoNet to perform when seeing only $k$ examples per class.\n", "During training, we used $k=4$.\n", "In testing, we will experiment with $k=\\{2,4,8,16,32\\}$ to get a better sense of how $k$ influences the results.\n", "We would expect that we achieve higher accuracies the more examples we have in the support set, but we don't know how it scales.\n", "Hence, let's first implement a function that executes the testing procedure for a given $k$:"]}, {"cell_type": "code", "execution_count": 21, "id": "35fd8d5e", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:03.264299Z", "iopub.status.busy": "2021-09-16T12:17:03.263816Z", "iopub.status.idle": "2021-09-16T12:17:03.265879Z", "shell.execute_reply": "2021-09-16T12:17:03.265483Z"}, "papermill": {"duration": 0.055389, "end_time": "2021-09-16T12:17:03.265979", "exception": false, "start_time": "2021-09-16T12:17:03.210590", "status": "completed"}, "tags": []}, "outputs": [], "source": ["@torch.no_grad()\n", "def test_proto_net(model, dataset, data_feats=None, k_shot=4):\n", " \"\"\"Inputs.\n", "\n", " model - Pretrained ProtoNet model\n", " dataset - The dataset on which the test should be performed.\n", " Should be instance of ImageDataset\n", " data_feats - The encoded features of all images in the dataset.\n", " If None, they will be newly calculated, and returned\n", " for later usage.\n", " k_shot - Number of examples per class in the support set.\n", " \"\"\"\n", " model = model.to(device)\n", " model.eval()\n", " num_classes = dataset.targets.unique().shape[0]\n", " exmps_per_class = dataset.targets.shape[0] // num_classes # We assume uniform example distribution here\n", "\n", " # The encoder network remains unchanged across k-shot settings. Hence, we only need\n", " # to extract the features for all images once.\n", " if data_feats is None:\n", " # Dataset preparation\n", " dataloader = data.DataLoader(dataset, batch_size=128, num_workers=4, shuffle=False, drop_last=False)\n", "\n", " img_features = []\n", " img_targets = []\n", " for imgs, targets in tqdm(dataloader, \"Extracting image features\", leave=False):\n", " imgs = imgs.to(device)\n", " feats = model.model(imgs)\n", " img_features.append(feats.detach().cpu())\n", " img_targets.append(targets)\n", " img_features = torch.cat(img_features, dim=0)\n", " img_targets = torch.cat(img_targets, dim=0)\n", " # Sort by classes, so that we obtain tensors of shape [num_classes, exmps_per_class, ...]\n", " # Makes it easier to process later\n", " img_targets, sort_idx = img_targets.sort()\n", " img_targets = img_targets.reshape(num_classes, exmps_per_class).transpose(0, 1)\n", " img_features = img_features[sort_idx].reshape(num_classes, exmps_per_class, -1).transpose(0, 1)\n", " else:\n", " img_features, img_targets = data_feats\n", "\n", " # We iterate through the full dataset in two manners. First, to select the k-shot batch.\n", " # Second, the evaluate the model on all other examples\n", " accuracies = []\n", " for k_idx in tqdm(range(0, img_features.shape[0], k_shot), \"Evaluating prototype classification\", leave=False):\n", " # Select support set and calculate prototypes\n", " k_img_feats = img_features[k_idx : k_idx + k_shot].flatten(0, 1)\n", " k_targets = img_targets[k_idx : k_idx + k_shot].flatten(0, 1)\n", " prototypes, proto_classes = model.calculate_prototypes(k_img_feats, k_targets)\n", " # Evaluate accuracy on the rest of the dataset\n", " batch_acc = 0\n", " for e_idx in range(0, img_features.shape[0], k_shot):\n", " if k_idx == e_idx: # Do not evaluate on the support set examples\n", " continue\n", " e_img_feats = img_features[e_idx : e_idx + k_shot].flatten(0, 1)\n", " e_targets = img_targets[e_idx : e_idx + k_shot].flatten(0, 1)\n", " _, _, acc = model.classify_feats(prototypes, proto_classes, e_img_feats, e_targets)\n", " batch_acc += acc.item()\n", " batch_acc /= img_features.shape[0] // k_shot - 1\n", " accuracies.append(batch_acc)\n", "\n", " return (mean(accuracies), stdev(accuracies)), (img_features, img_targets)"]}, {"cell_type": "markdown", "id": "05290272", "metadata": {"papermill": {"duration": 0.042707, "end_time": "2021-09-16T12:17:03.352459", "exception": false, "start_time": "2021-09-16T12:17:03.309752", "status": "completed"}, "tags": []}, "source": ["Testing ProtoNet is relatively quick if we have processed all images once. Hence, we can do in this notebook:"]}, {"cell_type": "code", "execution_count": 22, "id": "796136e5", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:03.444650Z", "iopub.status.busy": "2021-09-16T12:17:03.444177Z", "iopub.status.idle": "2021-09-16T12:17:47.451057Z", "shell.execute_reply": "2021-09-16T12:17:47.450586Z"}, "papermill": {"duration": 44.055627, "end_time": "2021-09-16T12:17:47.451168", "exception": false, "start_time": "2021-09-16T12:17:03.395541", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "4ee1a875c45c4bcabbc0a211132f80e9", "version_major": 2, "version_minor": 0}, "text/plain": ["Extracting image features: 0%| | 0/47 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-09-16T14:17:47.843240\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "4618c0ad", "metadata": {"papermill": {"duration": 0.047539, "end_time": "2021-09-16T12:17:48.127526", "exception": false, "start_time": "2021-09-16T12:17:48.079987", "status": "completed"}, "tags": []}, "source": ["As we initially expected, the performance of ProtoNet indeed increases the more samples we have.\n", "However, even with just two samples per class, we classify almost half of the images correctly, which is well above random accuracy (10%).\n", "The curve shows an exponentially dampend trend, meaning that adding 2 extra examples to $k=2$ has a much higher impact than adding 2 extra samples if we already have $k=16$.\n", "Nonetheless, we can say that ProtoNet adapts fairly well to new classes."]}, {"cell_type": "markdown", "id": "4e1f3b11", "metadata": {"papermill": {"duration": 0.048108, "end_time": "2021-09-16T12:17:48.224066", "exception": false, "start_time": "2021-09-16T12:17:48.175958", "status": "completed"}, "tags": []}, "source": ["## MAML and ProtoMAML"]}, {"cell_type": "markdown", "id": "f33d10c6", "metadata": {"papermill": {"duration": 0.048018, "end_time": "2021-09-16T12:17:48.319782", "exception": false, "start_time": "2021-09-16T12:17:48.271764", "status": "completed"}, "tags": []}, "source": ["The second meta-learning algorithm we will look at is MAML, short for Model-Agnostic Meta-Learning.\n", "MAML is an optimization-based meta-learning algorithm, which means that it tries to adjust the standard optimization procedure to a few-shot setting.\n", "The idea of MAML is relatively simple: given a model, support and query set during training, we optimize the model for $m$ steps on the support set, and evaluate the gradients of the query loss with respect to the original model's parameters.\n", "For the same model, we do it for a few different support-query sets and accumulate the gradients.\n", "This results in learning a model that provides a good initialization for being quickly adapted to the training tasks.\n", "If we denote the model parameters with $\\theta$, we can visualize the procedure as follows (Figure credit - [Finn et al. ](http://proceedings.mlr.press/v70/finn17a.html)).\n", "\n", "
"]}, {"cell_type": "markdown", "id": "e5530458", "metadata": {"papermill": {"duration": 0.047818, "end_time": "2021-09-16T12:17:48.415998", "exception": false, "start_time": "2021-09-16T12:17:48.368180", "status": "completed"}, "tags": []}, "source": ["The full algorithm of MAML is therefore as follows.\n", "At each training step, we sample a batch of tasks, i.e., a batch of support-query set pairs.\n", "For each task $\\mathcal{T}_i$, we optimize a model $f_{\\theta}$ on the support set via SGD, and denote this model as $f_{\\theta_i'}$.\n", "We refer to this optimization as _inner loop_.\n", "Using this new model, we calculate the gradients of the original parameters, $\\theta$, with respect to the query loss on $f_{\\theta_i'}$.\n", "These gradients are accumulated over all tasks, and used to update $\\theta$.\n", "This is called _outer loop_ since we iterate over tasks.\n", "The full MAML algorithm is summarized below (Figure credit - [Finn et al. ](http://proceedings.mlr.press/v70/finn17a.html)).\n", "\n", "
"]}, {"cell_type": "markdown", "id": "e41d953b", "metadata": {"papermill": {"duration": 0.047596, "end_time": "2021-09-16T12:17:48.511380", "exception": false, "start_time": "2021-09-16T12:17:48.463784", "status": "completed"}, "tags": []}, "source": ["To obtain gradients for the initial parameters $\\theta$ from the optimized model $f_{\\theta_i'}$, we actually need second-order gradients, i.e. gradients of gradients, as the support set gradients depend on $\\theta$ as well.\n", "This makes MAML computationally expensive, especially when using mulitple inner loop steps.\n", "A simpler, yet almost equally well performing alternative is First-Order MAML (FOMAML) which only uses first-order gradients.\n", "This means that the second-order gradients are ignored, and we can calculate the outer loop gradients (line 10 in algorithm 2) simply by calculating the gradients with respect to $\\theta_i'$, and use those as update to $\\theta$.\n", "Hence, the new update rule becomes:\n", "$$\\theta\\leftarrow\\theta-\\beta\\sum_{\\mathcal{T}_i\\sim p(\\mathcal{T})}\\nabla_{\\theta_i'}\\mathcal{L}_{\\mathcal{T}_i}(f_{\\theta_i'})$$\n", "Note the change of $\\theta$ to $\\theta_i'$ for $\\nabla$."]}, {"cell_type": "markdown", "id": "0ae15319", "metadata": {"papermill": {"duration": 0.047717, "end_time": "2021-09-16T12:17:48.607150", "exception": false, "start_time": "2021-09-16T12:17:48.559433", "status": "completed"}, "tags": []}, "source": ["### ProtoMAML\n", "\n", "A problem of MAML is how to design the output classification layer.\n", "In case all tasks have different number of classes, we need to initialize the output layer with zeros or randomly in every iteration.\n", "Even if we always have the same number of classes, we just start from random predictions.\n", "This requires several inner loop steps to reach a reasonable classification result.\n", "To overcome this problem, Triantafillou et al.\n", "(2020) propose to combine the merits of Prototypical Networks and MAML.\n", "Specifically, we can use prototypes to initialize our output layer to have a strong initialization.\n", "Thereby, it can be shown that the softmax over euclidean distances can be reformulated as a linear layer with softmax.\n", "To see this, let's first write out the negative euclidean distance between a feature vector $f_{\\theta}(\\mathbf{x}^{*})$ of a new data point $\\mathbf{x}^{*}$ to a prototype $\\mathbf{v}_c$ of class $c$:\n", "$$\n", "-||f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c||^2=-f_{\\theta}(\\mathbf{x}^{*})^Tf_{\\theta}(\\mathbf{x}^{*})+2\\mathbf{v}_c^{T}f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c^T\\mathbf{v}_c\n", "$$\n", "\n", "We perform the classification across all classes $c\\in\\mathcal{C}$ and take a softmax on the distance.\n", "Hence, any term that is same for all classes can be removed without changing the output probabilities.\n", "In the equation above, this is true for $-f_{\\theta}(\\mathbf{x}^{*})^Tf_{\\theta}(\\mathbf{x}^{*})$ since it is independent of any class prototype.\n", "Thus, we can write:\n", "\n", "$$\n", "-||f_{\\theta}(\\mathbf{x}^{*})-\\mathbf{v}_c||^2=2\\mathbf{v}_c^{T}f_{\\theta}(\\mathbf{x}^{*})-||\\mathbf{v}_c||^2+\\text{constant}\n", "$$\n", "\n", "Taking a second look at the equation above, it looks a lot like a linear layer.\n", "For this, we use $\\mathbf{W}_{c,\\cdot}=2\\mathbf{v}_c$ and $b_c=-||\\mathbf{v}_c||^2$ which gives us the linear layer $\\mathbf{W}f_{\\theta}(\\mathbf{x}^{*})+\\mathbf{b}$.\n", "Hence, if we initialize the output weight with twice the prototypes, and the biases by the negative squared L2 norm of the prototypes, we start with a Prototypical Network.\n", "MAML allows us to adapt this layer and the rest of the network further.\n", "\n", "In the following, we will implement First-Order ProtoMAML for few-shot classification.\n", "The implementation of MAML would be the same except the output layer initialization."]}, {"cell_type": "markdown", "id": "25fd69c5", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.048101, "end_time": "2021-09-16T12:17:48.703021", "exception": false, "start_time": "2021-09-16T12:17:48.654920", "status": "completed"}, "tags": []}, "source": ["### ProtoMAML implementation\n", "\n", "For implementing ProtoMAML, we can follow Algorithm 2 with minor modifications.\n", "At each training step, we first sample a batch of tasks, and a support and query set for each task.\n", "In our case of few-shot classification, this means that we simply sample multiple support-query set pairs from our sampler.\n", "For each task, we finetune our current model on the support set.\n", "However, since we need to remember the original parameters for the other tasks, the outer loop gradient update and future training steps, we need to create a copy of our model, and finetune only the copy.\n", "We can copy a model by using standard Python functions like `deepcopy`.\n", "The inner loop is implemented in the function `adapt_few_shot` in the PyTorch Lightning module below.\n", "\n", "After finetuning the model, we apply it on the query set and calculate the first-order gradients with respect to the original parameters $\\theta$.\n", "In contrast to simple MAML, we also have to consider the gradients with respect to the output layer initialization, i.e. the prototypes, since they directly rely on $\\theta$.\n", "To realize this efficiently, we take two steps.\n", "First, we calculate the prototypes by applying the original model, i.e. not the copied model, on the support elements.\n", "When initializing the output layer, we detach the prototypes to stop the gradients.\n", "This is because in the inner loop itself, we do not want to consider gradients through the prototypes back to the original model.\n", "However, after the inner loop is finished, we re-attach the computation graph of the prototypes by writing `output_weight = (output_weight - init_weight).detach() + init_weight`.\n", "While this line does not change the value of the variable `output_weight`, it adds its dependency on the prototype initialization `init_weight`.\n", "Thus, if we call `.backward` on `output_weight`, we will automatically calculate the first-order gradients with respect to the prototype initialization in the original model.\n", "\n", "After calculating all gradients and summing them together in the original model, we can take a standard optimizer step.\n", "PyTorch Lightning's method is however designed to return a loss-tensor on which we call `.backward` first.\n", "Since this is not possible here, we need to perform the optimization step ourselves.\n", "All details can be found in the code below.\n", "\n", "For implementing (Proto-)MAML with second-order gradients, it is recommended to use libraries such as [$\\nabla$higher](https://github.com/facebookresearch/higher) from Facebook AI Research.\n", "For simplicity, we stick with first-order methods here."]}, {"cell_type": "code", "execution_count": 25, "id": "a98b7a2a", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:48.814495Z", "iopub.status.busy": "2021-09-16T12:17:48.811822Z", "iopub.status.idle": "2021-09-16T12:17:48.816545Z", "shell.execute_reply": "2021-09-16T12:17:48.816133Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.065575, "end_time": "2021-09-16T12:17:48.816648", "exception": false, "start_time": "2021-09-16T12:17:48.751073", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class ProtoMAML(pl.LightningModule):\n", " def __init__(self, proto_dim, lr, lr_inner, lr_output, num_inner_steps):\n", " \"\"\"Inputs.\n", "\n", " proto_dim - Dimensionality of prototype feature space\n", " lr - Learning rate of the outer loop Adam optimizer\n", " lr_inner - Learning rate of the inner loop SGD optimizer\n", " lr_output - Learning rate for the output layer in the inner loop\n", " num_inner_steps - Number of inner loop updates to perform\n", " \"\"\"\n", " super().__init__()\n", " self.save_hyperparameters()\n", " self.model = get_convnet(output_size=self.hparams.proto_dim)\n", "\n", " def configure_optimizers(self):\n", " optimizer = optim.AdamW(self.parameters(), lr=self.hparams.lr)\n", " scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[140, 180], gamma=0.1)\n", " return [optimizer], [scheduler]\n", "\n", " def run_model(self, local_model, output_weight, output_bias, imgs, labels):\n", " # Execute a model with given output layer weights and inputs\n", " feats = local_model(imgs)\n", " preds = F.linear(feats, output_weight, output_bias)\n", " loss = F.cross_entropy(preds, labels)\n", " acc = (preds.argmax(dim=1) == labels).float()\n", " return loss, preds, acc\n", "\n", " def adapt_few_shot(self, support_imgs, support_targets):\n", " # Determine prototype initialization\n", " support_feats = self.model(support_imgs)\n", " prototypes, classes = ProtoNet.calculate_prototypes(support_feats, support_targets)\n", " support_labels = (classes[None, :] == support_targets[:, None]).long().argmax(dim=-1)\n", " # Create inner-loop model and optimizer\n", " local_model = deepcopy(self.model)\n", " local_model.train()\n", " local_optim = optim.SGD(local_model.parameters(), lr=self.hparams.lr_inner)\n", " local_optim.zero_grad()\n", " # Create output layer weights with prototype-based initialization\n", " init_weight = 2 * prototypes\n", " init_bias = -torch.norm(prototypes, dim=1) ** 2\n", " output_weight = init_weight.detach().requires_grad_()\n", " output_bias = init_bias.detach().requires_grad_()\n", "\n", " # Optimize inner loop model on support set\n", " for _ in range(self.hparams.num_inner_steps):\n", " # Determine loss on the support set\n", " loss, _, _ = self.run_model(local_model, output_weight, output_bias, support_imgs, support_labels)\n", " # Calculate gradients and perform inner loop update\n", " loss.backward()\n", " local_optim.step()\n", " # Update output layer via SGD\n", " output_weight.data -= self.hparams.lr_output * output_weight.grad\n", " output_bias.data -= self.hparams.lr_output * output_bias.grad\n", " # Reset gradients\n", " local_optim.zero_grad()\n", " output_weight.grad.fill_(0)\n", " output_bias.grad.fill_(0)\n", "\n", " # Re-attach computation graph of prototypes\n", " output_weight = (output_weight - init_weight).detach() + init_weight\n", " output_bias = (output_bias - init_bias).detach() + init_bias\n", "\n", " return local_model, output_weight, output_bias, classes\n", "\n", " def outer_loop(self, batch, mode=\"train\"):\n", " accuracies = []\n", " losses = []\n", " self.model.zero_grad()\n", "\n", " # Determine gradients for batch of tasks\n", " for task_batch in batch:\n", " imgs, targets = task_batch\n", " support_imgs, query_imgs, support_targets, query_targets = split_batch(imgs, targets)\n", " # Perform inner loop adaptation\n", " local_model, output_weight, output_bias, classes = self.adapt_few_shot(support_imgs, support_targets)\n", " # Determine loss of query set\n", " query_labels = (classes[None, :] == query_targets[:, None]).long().argmax(dim=-1)\n", " loss, preds, acc = self.run_model(local_model, output_weight, output_bias, query_imgs, query_labels)\n", " # Calculate gradients for query set loss\n", " if mode == \"train\":\n", " loss.backward()\n", "\n", " for p_global, p_local in zip(self.model.parameters(), local_model.parameters()):\n", " p_global.grad += p_local.grad # First-order approx. -> add gradients of finetuned and base model\n", "\n", " accuracies.append(acc.mean().detach())\n", " losses.append(loss.detach())\n", "\n", " # Perform update of base model\n", " if mode == \"train\":\n", " opt = self.optimizers()\n", " opt.step()\n", " opt.zero_grad()\n", "\n", " self.log(\"%s_loss\" % mode, sum(losses) / len(losses))\n", " self.log(\"%s_acc\" % mode, sum(accuracies) / len(accuracies))\n", "\n", " def training_step(self, batch, batch_idx):\n", " self.outer_loop(batch, mode=\"train\")\n", " return None # Returning None means we skip the default training optimizer steps by PyTorch Lightning\n", "\n", " def validation_step(self, batch, batch_idx):\n", " # Validation requires to finetune a model, hence we need to enable gradients\n", " torch.set_grad_enabled(True)\n", " self.outer_loop(batch, mode=\"val\")\n", " torch.set_grad_enabled(False)"]}, {"cell_type": "markdown", "id": "f54dbd9c", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.0484, "end_time": "2021-09-16T12:17:48.913179", "exception": false, "start_time": "2021-09-16T12:17:48.864779", "status": "completed"}, "tags": []}, "source": ["### Training\n", "\n", "To train ProtoMAML, we need to change our sampling slightly.\n", "Instead of a single support-query set batch, we need to sample multiple.\n", "To implement this, we yet use another Sampler which combines multiple batches from a `FewShotBatchSampler`, and returns it afterwards.\n", "Additionally, we define a `collate_fn` for our data loader which takes the stack of support-query set images, and returns the tasks as a list.\n", "This makes it easier to process in our PyTorch Lightning module before.\n", "The implementation of the sampler can be found below."]}, {"cell_type": "code", "execution_count": 26, "id": "e72ad2ea", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:49.021644Z", "iopub.status.busy": "2021-09-16T12:17:49.021158Z", "iopub.status.idle": "2021-09-16T12:17:49.023186Z", "shell.execute_reply": "2021-09-16T12:17:49.022724Z"}, "papermill": {"duration": 0.056968, "end_time": "2021-09-16T12:17:49.023285", "exception": false, "start_time": "2021-09-16T12:17:48.966317", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class TaskBatchSampler:\n", " def __init__(self, dataset_targets, batch_size, N_way, K_shot, include_query=False, shuffle=True):\n", " \"\"\"\n", " Inputs:\n", " dataset_targets - PyTorch tensor of the labels of the data elements.\n", " batch_size - Number of tasks to aggregate in a batch\n", " N_way - Number of classes to sample per batch.\n", " K_shot - Number of examples to sample per class in the batch.\n", " include_query - If True, returns batch of size N_way*K_shot*2, which\n", " can be split into support and query set. Simplifies\n", " the implementation of sampling the same classes but\n", " distinct examples for support and query set.\n", " shuffle - If True, examples and classes are newly shuffled in each\n", " iteration (for training)\n", " \"\"\"\n", " super().__init__()\n", " self.batch_sampler = FewShotBatchSampler(dataset_targets, N_way, K_shot, include_query, shuffle)\n", " self.task_batch_size = batch_size\n", " self.local_batch_size = self.batch_sampler.batch_size\n", "\n", " def __iter__(self):\n", " # Aggregate multiple batches before returning the indices\n", " batch_list = []\n", " for batch_idx, batch in enumerate(self.batch_sampler):\n", " batch_list.extend(batch)\n", " if (batch_idx + 1) % self.task_batch_size == 0:\n", " yield batch_list\n", " batch_list = []\n", "\n", " def __len__(self):\n", " return len(self.batch_sampler) // self.task_batch_size\n", "\n", " def get_collate_fn(self):\n", " # Returns a collate function that converts one big tensor into a list of task-specific tensors\n", " def collate_fn(item_list):\n", " imgs = torch.stack([img for img, target in item_list], dim=0)\n", " targets = torch.stack([target for img, target in item_list], dim=0)\n", " imgs = imgs.chunk(self.task_batch_size, dim=0)\n", " targets = targets.chunk(self.task_batch_size, dim=0)\n", " return list(zip(imgs, targets))\n", "\n", " return collate_fn"]}, {"cell_type": "markdown", "id": "243b5162", "metadata": {"papermill": {"duration": 0.052467, "end_time": "2021-09-16T12:17:49.127410", "exception": false, "start_time": "2021-09-16T12:17:49.074943", "status": "completed"}, "tags": []}, "source": ["The creation of the data loaders is with this sampler straight-forward.\n", "Note that since many images need to loaded for a training batch, it is recommended to use less workers than usual."]}, {"cell_type": "code", "execution_count": 27, "id": "ba7e5519", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:49.236316Z", "iopub.status.busy": "2021-09-16T12:17:49.235838Z", "iopub.status.idle": "2021-09-16T12:17:49.257937Z", "shell.execute_reply": "2021-09-16T12:17:49.258321Z"}, "papermill": {"duration": 0.078001, "end_time": "2021-09-16T12:17:49.258440", "exception": false, "start_time": "2021-09-16T12:17:49.180439", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Training constant (same as for ProtoNet)\n", "N_WAY = 5\n", "K_SHOT = 4\n", "\n", "# Training set\n", "train_protomaml_sampler = TaskBatchSampler(\n", " train_set.targets, include_query=True, N_way=N_WAY, K_shot=K_SHOT, batch_size=16\n", ")\n", "train_protomaml_loader = data.DataLoader(\n", " train_set, batch_sampler=train_protomaml_sampler, collate_fn=train_protomaml_sampler.get_collate_fn(), num_workers=2\n", ")\n", "\n", "# Validation set\n", "val_protomaml_sampler = TaskBatchSampler(\n", " val_set.targets,\n", " include_query=True,\n", " N_way=N_WAY,\n", " K_shot=K_SHOT,\n", " batch_size=1, # We do not update the parameters, hence the batch size is irrelevant here\n", " shuffle=False,\n", ")\n", "val_protomaml_loader = data.DataLoader(\n", " val_set, batch_sampler=val_protomaml_sampler, collate_fn=val_protomaml_sampler.get_collate_fn(), num_workers=2\n", ")"]}, {"cell_type": "markdown", "id": "91da1a26", "metadata": {"papermill": {"duration": 0.050178, "end_time": "2021-09-16T12:17:49.358560", "exception": false, "start_time": "2021-09-16T12:17:49.308382", "status": "completed"}, "tags": []}, "source": ["Now, we are ready to train our ProtoMAML.\n", "We use the same feature space size as for ProtoNet, but can use a higher learning rate since the outer loop gradients are accumulated over 16 batches.\n", "The inner loop learning rate is set to 0.1, which is much higher than the outer loop lr because we use SGD in the inner loop instead of Adam.\n", "Commonly, the learning rate for the output layer is higher than the base model is the base model is very deep or pre-trained.\n", "However, for our setup, we observed no noticable impact of using a different learning rate than the base model.\n", "The number of inner loop updates is another crucial hyperparmaeter, and depends on the similarity of our training tasks.\n", "Since all tasks are on images from the same dataset, we notice that a single inner loop update achieves similar performance as 3 or 5 while training considerably faster.\n", "However, especially in RL and NLP, larger number of inner loop steps are often needed."]}, {"cell_type": "code", "execution_count": 28, "id": "be7ce675", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:49.464456Z", "iopub.status.busy": "2021-09-16T12:17:49.461887Z", "iopub.status.idle": "2021-09-16T12:17:49.533681Z", "shell.execute_reply": "2021-09-16T12:17:49.533246Z"}, "papermill": {"duration": 0.124824, "end_time": "2021-09-16T12:17:49.533850", "exception": false, "start_time": "2021-09-16T12:17:49.409026", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True, used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["IPU available: False, using: 0 IPUs\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Found pretrained model at saved_models/MetaLearning/ProtoMAML.ckpt, loading...\n"]}], "source": ["protomaml_model = train_model(\n", " ProtoMAML,\n", " proto_dim=64,\n", " lr=1e-3,\n", " lr_inner=0.1,\n", " lr_output=0.1,\n", " num_inner_steps=1, # Often values between 1 and 10\n", " train_loader=train_protomaml_loader,\n", " val_loader=val_protomaml_loader,\n", ")"]}, {"cell_type": "markdown", "id": "9bbb768a", "metadata": {"papermill": {"duration": 0.050647, "end_time": "2021-09-16T12:17:49.634238", "exception": false, "start_time": "2021-09-16T12:17:49.583591", "status": "completed"}, "tags": []}, "source": ["Let's have a look at the training TensorBoard."]}, {"cell_type": "code", "execution_count": 29, "id": "5fad9e43", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:49.740571Z", "iopub.status.busy": "2021-09-16T12:17:49.739973Z", "iopub.status.idle": "2021-09-16T12:17:49.747874Z", "shell.execute_reply": "2021-09-16T12:17:49.742382Z"}, "papermill": {"duration": 0.064603, "end_time": "2021-09-16T12:17:49.747986", "exception": false, "start_time": "2021-09-16T12:17:49.683383", "status": "completed"}, "tags": []}, "outputs": [], "source": ["# Opens tensorboard in notebook. Adjust the path to your CHECKPOINT_PATH if needed\n", "# # %tensorboard --logdir ../saved_models/tutorial16/tensorboards/ProtoMAML/"]}, {"cell_type": "markdown", "id": "75043944", "metadata": {"papermill": {"duration": 0.050469, "end_time": "2021-09-16T12:17:49.848822", "exception": false, "start_time": "2021-09-16T12:17:49.798353", "status": "completed"}, "tags": []}, "source": ["
\n", "\n", "One obvious difference to ProtoNet is that the loss curves look much less noisy.\n", "This is because we average the outer loop gradients over multiple tasks, and thus have a smoother training curve.\n", "Additionally, we only have 15k training iterations after 200 epochs.\n", "This is again because of the task batches, which cause 16 times less iterations.\n", "However, each iteration has seen 16 times more data in this experiment.\n", "Thus, we still have a fair comparison between ProtoMAML and ProtoNet.\n", "At first sight on the validation accuracy, one would assume that\n", "ProtoNet performs superior to ProtoMAML, but we have to verify that with\n", "proper testing below."]}, {"cell_type": "markdown", "id": "e6774823", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.049786, "end_time": "2021-09-16T12:17:49.948970", "exception": false, "start_time": "2021-09-16T12:17:49.899184", "status": "completed"}, "tags": []}, "source": ["### Testing\n", "\n", "We test ProtoMAML in the same manner as ProtoNet, namely by picking random examples in the test set as support sets and use the rest of the dataset as query set.\n", "Instead of just calculating the prototypes for all examples, we need to finetune a separate model for each support set.\n", "This is why this process is more expensive than ProtoNet, and in our case, testing $k=\\{2,4,8,16,32\\}$ can take almost an hour.\n", "Hence, we provide evaluation files besides the pretrained models."]}, {"cell_type": "code", "execution_count": 30, "id": "70805f49", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:50.057891Z", "iopub.status.busy": "2021-09-16T12:17:50.057417Z", "iopub.status.idle": "2021-09-16T12:17:50.059460Z", "shell.execute_reply": "2021-09-16T12:17:50.059005Z"}, "papermill": {"duration": 0.060091, "end_time": "2021-09-16T12:17:50.059559", "exception": false, "start_time": "2021-09-16T12:17:49.999468", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def test_protomaml(model, dataset, k_shot=4):\n", " pl.seed_everything(42)\n", " model = model.to(device)\n", " num_classes = dataset.targets.unique().shape[0]\n", "\n", " # Data loader for full test set as query set\n", " full_dataloader = data.DataLoader(dataset, batch_size=128, num_workers=4, shuffle=False, drop_last=False)\n", " # Data loader for sampling support sets\n", " sampler = FewShotBatchSampler(\n", " dataset.targets, include_query=False, N_way=num_classes, K_shot=k_shot, shuffle=False, shuffle_once=False\n", " )\n", " sample_dataloader = data.DataLoader(dataset, batch_sampler=sampler, num_workers=2)\n", "\n", " # We iterate through the full dataset in two manners. First, to select the k-shot batch.\n", " # Second, the evaluate the model on all other examples\n", " accuracies = []\n", " for (support_imgs, support_targets), support_indices in tqdm(\n", " zip(sample_dataloader, sampler), \"Performing few-shot finetuning\"\n", " ):\n", " support_imgs = support_imgs.to(device)\n", " support_targets = support_targets.to(device)\n", " # Finetune new model on support set\n", " local_model, output_weight, output_bias, classes = model.adapt_few_shot(support_imgs, support_targets)\n", " with torch.no_grad(): # No gradients for query set needed\n", " local_model.eval()\n", " batch_acc = torch.zeros((0,), dtype=torch.float32, device=device)\n", " # Evaluate all examples in test dataset\n", " for query_imgs, query_targets in full_dataloader:\n", " query_imgs = query_imgs.to(device)\n", " query_targets = query_targets.to(device)\n", " query_labels = (classes[None, :] == query_targets[:, None]).long().argmax(dim=-1)\n", " _, _, acc = model.run_model(local_model, output_weight, output_bias, query_imgs, query_labels)\n", " batch_acc = torch.cat([batch_acc, acc.detach()], dim=0)\n", " # Exclude support set elements\n", " for s_idx in support_indices:\n", " batch_acc[s_idx] = 0\n", " batch_acc = batch_acc.sum().item() / (batch_acc.shape[0] - len(support_indices))\n", " accuracies.append(batch_acc)\n", " return mean(accuracies), stdev(accuracies)"]}, {"cell_type": "markdown", "id": "5e4fdb2d", "metadata": {"papermill": {"duration": 0.049509, "end_time": "2021-09-16T12:17:50.159472", "exception": false, "start_time": "2021-09-16T12:17:50.109963", "status": "completed"}, "tags": []}, "source": ["In contrast to training, it is recommended to use many more inner loop updates during testing.\n", "During training, we are not interested in getting the best model from the inner loop, but the model which can provide the best gradients.\n", "Hence, one update might be already sufficient in training, but for testing, it was often observed that larger number of updates can give a considerable performance boost.\n", "Thus, we change the inner loop updates to 200 before testing."]}, {"cell_type": "code", "execution_count": 31, "id": "7df13d08", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:50.262818Z", "iopub.status.busy": "2021-09-16T12:17:50.262355Z", "iopub.status.idle": "2021-09-16T12:17:50.263982Z", "shell.execute_reply": "2021-09-16T12:17:50.264354Z"}, "papermill": {"duration": 0.055331, "end_time": "2021-09-16T12:17:50.264476", "exception": false, "start_time": "2021-09-16T12:17:50.209145", "status": "completed"}, "tags": []}, "outputs": [], "source": ["protomaml_model.hparams.num_inner_steps = 200"]}, {"cell_type": "markdown", "id": "14175a2c", "metadata": {"papermill": {"duration": 0.049558, "end_time": "2021-09-16T12:17:50.364461", "exception": false, "start_time": "2021-09-16T12:17:50.314903", "status": "completed"}, "tags": []}, "source": ["Now, we can test our model.\n", "For the pre-trained models, we provide a json file with the results to reduce evaluation time."]}, {"cell_type": "code", "execution_count": 32, "id": "841d497e", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:50.469545Z", "iopub.status.busy": "2021-09-16T12:17:50.469076Z", "iopub.status.idle": "2021-09-16T12:17:50.472459Z", "shell.execute_reply": "2021-09-16T12:17:50.472030Z"}, "papermill": {"duration": 0.058264, "end_time": "2021-09-16T12:17:50.472558", "exception": false, "start_time": "2021-09-16T12:17:50.414294", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Accuracy for k=2: 42.89% (+-3.82%)\n", "Accuracy for k=4: 52.27% (+-2.72%)\n", "Accuracy for k=8: 59.23% (+-1.50%)\n", "Accuracy for k=16: 63.94% (+-1.24%)\n", "Accuracy for k=32: 67.57% (+-0.90%)\n"]}], "source": ["protomaml_result_file = os.path.join(CHECKPOINT_PATH, \"protomaml_fewshot.json\")\n", "\n", "if os.path.isfile(protomaml_result_file):\n", " # Load pre-computed results\n", " with open(protomaml_result_file) as f:\n", " protomaml_accuracies = json.load(f)\n", " protomaml_accuracies = {int(k): v for k, v in protomaml_accuracies.items()}\n", "else:\n", " # Perform same experiments as for ProtoNet\n", " protomaml_accuracies = dict()\n", " for k in [2, 4, 8, 16, 32]:\n", " protomaml_accuracies[k] = test_protomaml(protomaml_model, test_set, k_shot=k)\n", " # Export results\n", " with open(protomaml_result_file, \"w\") as f:\n", " json.dump(protomaml_accuracies, f, indent=4)\n", "\n", "for k in protomaml_accuracies:\n", " print(\n", " \"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)\"\n", " % (k, 100.0 * protomaml_accuracies[k][0], 100.0 * protomaml_accuracies[k][1])\n", " )"]}, {"cell_type": "markdown", "id": "67e90086", "metadata": {"papermill": {"duration": 0.056999, "end_time": "2021-09-16T12:17:50.579700", "exception": false, "start_time": "2021-09-16T12:17:50.522701", "status": "completed"}, "tags": []}, "source": ["Again, let's plot the results in our plot from before."]}, {"cell_type": "code", "execution_count": 33, "id": "57d7eeaa", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:50.700324Z", "iopub.status.busy": "2021-09-16T12:17:50.690796Z", "iopub.status.idle": "2021-09-16T12:17:50.986058Z", "shell.execute_reply": "2021-09-16T12:17:50.985654Z"}, "papermill": {"duration": 0.357085, "end_time": "2021-09-16T12:17:50.986161", "exception": false, "start_time": "2021-09-16T12:17:50.629076", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM2OC42NjU2MjUgMjI4LjM3MDYyNSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJy9WEtvGzcQvu+v4NE+mCaH76ONNAaCJogTAz0UPbiK3NSQ40ZOGvTf9yN3l4/VSlZiKzIUiBNyON+8h5Lddqdnkv31wPAPE+wW32/4fRHXncDqrlPWc2uNJYPlql4Sea6ciD9X2NwsP3bdTSd4kM5qJ4z3bLrQQchghfNsHa++2NiQF91kd9cZyz2u0cRDLwrEVGZCW2UaCcuFHojD2YaWpP3MNtiSC0xaxQWuXbLf2Cd2eka9ul7he4tvr67TF8t//14s312cs8VDZw03WrlWwExsbu7ed5fs88hWcGlgiJFzWl4M1O5zJ6GnE4H/sgQOiZfhMml8cdedX7HTl5JJya5uku2uPnS/syM6Zn+wq1fdL1fdZbrrOVB2QOnBwMuJGTLxGVC6wHXP63GU+lAopXTcJwY1zEJ9BpxSaq56Zo8D9QcD6h23YgNopj4HUC9GZo8DlfZQSBW54fYmgWTqMyBVJEZmjyNVTYjW+hLwMp1OB+4yB2KSWg5vvt79uVyz+xv28PH+ywP7B4vF6vrh4VAqHPgYw4VSUlf5N5N+VHVEPR+BAFPakDB6l/IE1+LAKOG1pL0iW8EstCfidPA1663yEe1unObAOKUwXFtlpKqAVsQnIpVCcvIKP60h2gnVHNqkUiETOe9qoCPpqTDJch3QrpA2QLYT5sEtimj0Ab7VAC3Ep0I1kjupZQgExDuh2oNb1Esk2iBcnYwq4lOhIk4DQWtWaLSnO6GaNp1HLieRn7ScVOxnguZCmLoobKb0s8Xi6/p68d8PqU31CL0dPg4LU/fTiqRB1iG0kOtaCVtOsObEu4tuz52xV899b0BlEFZZVTfDBjND1GvMLrl3lEJzrYVPOae0WlKhQhujMQSsqsYkgocqnEwtf67i0mukaByklhygKgqa3HZyxdspyARAppUE1UkJo2RoxAY3ZQE9yjcDO80Z599tRZU/LDqX96QMJO1i5XNeK6hFtVbccoI1J5IV99rZWNF77p0lS40Vwcl5HG2tqDghAp1rdadhXOO0kBMrBriRtl5NrBjJwtGEHDCFKvLBbydXvCGTUBT8RBID3ii9xjVixzpA2jmqrVhgf68V2xTGzSTOul1xNpkrizjIRjYEq309cklpeBDK64m+FXdKqBAm+gYiGbSaRk3UoDNj7ysg+N7BPmbSlEj3grgec22aaqfonCehkCPZ6WvBXtznjcCW9qnASaD8kFFBzuxTGkaLVoGZrDHgJvXMNnheP0oLD/WhFSM/dyluix4GrXls9Ghnql0/XNMGhyiB2O0K2a0OAQxQqBKudYhYtKR20+yFcEBkuolHOMOdU37qEbFaOcRx7RB75o3GIfaCOO8QGZ2yqc+A1uWcQ2jHwVGiFsCDZ/YNDqHiTCa00NpaNbNtcAjEjZHBWLRydu7S3iE8rnTBGS1EzeuybjYoWpuTmX0tmnnMmnujgu4337ju5t+4sHfPJ7Kys2KwnWtv/T1nYPRevn+lkjRy2d7wvDxmGk5itfG9Yx0tv528xzjL3i7XN/fru+tPiyV7u77/cv9m+YVdf/rQL16fvf61bpJOz3RfN/d/e7yN6WryArnxeNm+QKKRw2huozdpjwEpPyJ4np7EMi2GEvwkyJg8C1mpmAexMXAUrWB8pqCWDu+ri26k+XzZqtAUR8gYTay6AD2P6DeOkhTKoha6kFcgg6MXhCRVyASmdtibb6qJmRX4FnKRflWTC8zqsqKNWW0u+kL7aAXd2alOhgVSGSCynYzOeddhIJ0Sf1Lt69Cg5qspywOi16RRyEciaZREjAwy7dNGGeRBNCkcZRwpiqFNFdJKH40BakyVzkaqwURrsdPnazRXGl2VbIgD7Hi6JqIvx/jEapaxNKM9ai5H1o3pPB0vcsaqK2ObV+PxI56C25e70bEbJFtb7VMc8xa8r+GHBEYGn/ZqQvZALta1kDSHhuZw05yGCsuiynJ5rfQiZ2Wfgoc2cdN4d3LzIatun0OtHkPExXcUt+tR7O1xLIlIuf2fYUfrY2RhzCywWPpjR30erTNnCrGNfmTnCDEpZVV4YbBDC+enAVbIP6mbqEPMmEqm4pSFXLkvRMasHk1feXoslS7ZvokzE9uPZPwqfICURDJ+SxyuakINg4gLSZaKq40PREmWSgKLoirTrybYQLY+napwgZhxZR0UYhNw9d7syjXX7PWtBDlAamlpDhfN64Dm9JW51prNErRWyNLWFsu4atvO+MH3Bx/OyqHuPTX8pp3LZfc/fq4YigplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjE2OTYKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MSA+PgpzdHJlYW0KeJw9jEEOwCAIBO/7Cp6gCCL/aRoP9P/XKjU9ABMyGTOhQrrGupOx01WhTai2Rg9YSlKg+hYDmptNUw6I+6EdSGOU755KYIKHEfexinIo0BapbuL/N3G//PYcYwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicM7MwVjBQsDQCEqaWlgrmRpYKKYZcQD6IlcsFE8sBs0wtzIEsIwsDJJaJqSFIFoVlbGAJlUWwDIA02JocmOk5XBlcaQA1whjrCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MiA+PgpzdHJlYW0KeJwzMzZXMFCwNAISZoYGCuZGlgophlxAPoiVy2VkARHLAbMMTYyALJA6BMsASIO158B05XBlcKUBAOFDEO4KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nD2OsQ3AMAgEe6ZgBMwbE/aJohTO/m2MY6fhj0MIIoyFQ7MI2DX4LDT6pIeAMqlTDWcgqbW63N74SEa62p8GDDJzLjVdxbFIXdY0Kc18oO+7nW66Xu4yHcgKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc2ID4+CnN0cmVhbQp4nD2NwRGAQAgD/1SREhBEvH4cxwfX/9dDBj/JBgZyqoMxZInvBpeBa6OVkyYpFwXZ4ZCfatYXRZw7LRdnGDelfxXRn4Meul/I8Rf/CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicPY45EkMhDEN7TuEjgDfgPD+TSUHu30byT9JYD+RF00y6bEVJ1KlbHqN96d28e9FpvrMocsrsS3JMSfDVWFOj5ulSfQ86pOHVZxE1Y3hfjX06TbhVA4o71Kvp6kWnqEMr3PllOu1VTmxDPpIt/tryL7nef+5LbE/xXEgR2O0LZLwKjXVrJSWFwkFHYI4zkUkHr8BubuVN3qFe/xRM9PwAAxc+pAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQzID4+CnN0cmVhbQp4nDVSO24lMQzr5xS8QADrZ9nnecFii+z92yU1SCVCtkiKdvvCQju+LLCz0en4tqfuRa+Nf4OqHD9PFVEvFGfqBPI46jo+T2ZiL0Ouw7oRnVM/T/gd5HdDTM6TOs0TJ2d1wSlYtd8aSydCtti5yJvwndRKnfRBdiBWIdmNpIuSTjpRLrlcRE6VbQh5v4XYurPpJcJnTT/1VhevkGkHslBItrLYL29swpp4onoqtzIbJGdfB24HMm5tODBSMiFajcMmq92mMfWNSdu+sOIwCSxtoticIs/VtNPknUqhflFSUDcyNDOR05RxLrmayS+rL7ENUhxFRvInQ/KKCYmdXROLd3Mhxv8+Bp8yGNzP44sh2R3uYCTjp7XIoby5/oqYW2+kVAV4dJVnjrl9JGZHlxxaTp9KZD3W47wovdBcNTe/XWimKN7MvGi3GervL/w8f58//wE6b3+eCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTYgPj4Kc3RyZWFtCnicPZJLjuQwDEP3OYUu0ID1s+PzVKMxi5r7b+fRmepFQEHWhxQzV9uwSvvytN7Teg779itjW9S0v1fsOFHMssgnG7HsdUXcFt5823yvB1fqRVE7ddM8kx43D9dLkxn0rQWG5ciDrytzPhn2OGTyVq/2FPU+3SoGe8ZBTeZFEXzev3zf159LMtID7ooGOdV98HaV81DLctHPKuhtUXC3L/Ssec4RWQdfl8NWkadbmsZrO5eat27n9AlgDicaOczUnEbRRmNrRrMoyQYae8BwHXxUKHr4Sf//aDOW/mJ83gvdmp9MLu6ScKnCk7sPclsUnQzaq7jVLWd1W6/7dLuD6GBwbikmaCrel0O55RLTm+rAl+7jJdlu3F37/BziLYQ33isqnGr2dfINudyrrGacH0qLPo68cOfnH3kQdIAKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFUTluBDEM6/0KfWAA67T9ngkWKTb/b0NqJ0hFwpIoUl5aMmWHXOpSS2XVlC8dvlIUTz8j1JpFTFErCTRohtwjNthWiTPF7MHlrIC5pbDDK3rGj7ECldAjVA134R7iPdzX52We7rB9nhmr0yqWp1WJnz3NsJkddMKZjzeq0C1V6f4vzz2+eypqIZtt5Dqnd6YZuoGYwHxtyYTHaZJwT9/Ee+RczbJQgd+auMk6qFRAF/54Rs9qtMUEZLq3sEORjTNVFIMIXFHzem58tUvuJaOPK9vYeWKZS/tefYjeTDLlPfCPD/Ab3/3+z5j5jfyvX19UXbwKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNyA+PgpzdHJlYW0KeJw1UUtuBTEI2+cUvsCT+Cdznlc9ddHef1tDVGkkPGCMIfk4BOF4qSOtkCX40jXQBb+D/Gz8rBRDiCP2QWgiMhDmeK/w1lBWmfUkXya+l3eWyDgnTGBFtcdYMT/wCpiRbzfabrVBpmiGHp0ezalQRZtPVVWdOR3pQPagcDLGG3uvt2NQ8pPeNO6Smg8rg4qLxXNQXEt4BUQYXtWNGvwXDqm5jlOyI22wvZG2dH+F6pV2u7G+ph7vcPch8HJsue7IjhPMd3s6N6dcn70HdOTVzn2ItpC5x1Nmj2iTGczQcobg/53e63t9/gDQ9VVVCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzggPj4Kc3RyZWFtCnicNY9LbgMxDEP3cwpdIID1s+zzTFB00d5/G1LOAJmIkCXyqXTKkEh5qct0k5pD3npFTolZ8t+Kzb/reT6KlW9PrU2BhyiJkWIuXlO23Jej9UpxjY4xtFnvy8ZqpYkPPx0yJ/r4U93E0rVYrAxtCEcSXsOyp6Poz/V0GMMuAcgAViQjkooEmdZE6UUvIKaBlsSbWefg+/oFr8LdcbzXahUDRMZc1AzuB9TS3jP71vKmnOLg44TP6B3fzQ+XwF10DfAyhxWcw1tZZU9Y5nfHPNvF7LiynpxWSOYESbhz2OhCWrqS/rmHt/18AFl9XL0KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1MSA+PgpzdHJlYW0KeJw9UTluBDEM6/0KfmAB67T9ngmCFLP/b0Npkq1ISDJF0bk2JtzwEkPaROTEl4yiugLvh2ngHqryYQHZDvUJCYNmQsxwDT0CEYUpK5O4tPEaPncz9+os+KaGbHZCDaKHq4ns5nRIVqcYZe8RSZmFoIPky0m7JWkbrwM7q+1bZCNdxFMRTtKM0G6WhzXbnFenQZe1Doz9VUHUtHNF1YXhhPHM0M7FaK6wXjyVmLMnghO+9c+yM7KKzVLwH+Q1foYHa7zn/TCG5gzQjsF5mLd1n2ScsVVdnu/ReA0Taab05uWKll1KWV2okvycTdVDtN5zfTbe3P79C2+bWyoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0ESAyEIBO+8gicAgrjv2VRqD+b/14yaNXtxuhylGi/BwnrgcHfOKvxSuvEzqXpwp+J5k9mkIoEUtgNZlE+yBkJrTblKzgzcjQaECZ28yIMcr/ts/yRIlbpzNXDcsP6P7kEtflThrMOxNdaonJow0HZwwtpgPHYruvLc23a66P0FjiMz0gplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTkxID4+CnN0cmVhbQp4nEWQQXLDMAwD73oFnkCRICW/x51OD+n/rwGVJj3YiyFkGtCaDsOmXhXEKsPXHC0jAr9HGR6DuT9M/gn/qDAHc+kjiolIxy0nEMtAXogdotZex4kFmia+QUXgLD27HdMG73N23Fh1eI+I6zWZcibhOhG75Hhp/8kjzuuwZ3KkOvbmG93wceb/irVa7QSv3uBIdwRF5dSfl5Qa0RJZ3Wce3iOVtlW7SVE70rphTTWsOLdKW3hf6T1+xvcTZ7tGYwplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTYgPj4Kc3RyZWFtCnicMzE0VTBQMDVRMDI0VzA2M1QwNrVUSDHkAoqAWLlcMLEcMAukKocLqjwHpiqHK4MrDQAKSA5VCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MCA+PgpzdHJlYW0KeJwzNjFWMFCwMAESRqaWCuZmBgophlxAPoiVywUTywGzQDRYaQ5MRQ5XBlcaALhjDSUKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI4MSA+PgpzdHJlYW0KeJxFUkmSAzEIu/sVPMFm5z09NZXDzP+vEXanc0hLBUYIyJrKNCkFn3Ih80k/a1gtUnP6H76EtCa5FNkycgeK0DW8wGxRyCmLmBuvkcKbZSKiEIaGTUam1EnRplvpjI2y1ZpN+huR8SCnPawoMolLb0zUNBPoHjwvZD0Z+I9kkkRNYJ7tIKxIF94qIpwUyzdiHrxt5hZ4oXtiQW9keEGtyBeQ50bGHpABa7cq9uBx3UzUoFjbQfc8DnQeB4Ktdj9xvR2I3JGp2wGn3w7Ycztg/NpB43HQrDunfMA0QDr+Zeqb4R5aAX0jg0pv3sS7sy/cErvC3ftyynbfUv3cUgsRwz1ZUdNzmKEaLi0wJfb9+c9c4zV+37l9cTwKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE5MCA+PgpzdHJlYW0KeJxFkEuSAzEIQ/c+hY6AQfhznk6lZjG5/zYy+S3sp0JuNTC7w7CoawSRw3Dr7ciIwKOU4b8x15fJt/DMtwpzMKc+opiIdFxyAjEN5EasEBW7y4kJmiq+QLXAPnTWcUwJft5ZuTFH8WoR+1XpcjrhehFryPGh/OpH7Lt4anKkTtuLHySnxKn/FEepleA+CY50R1BUn/rzlNJEtKwNkb14tbTXzo6bFJWRdiYcXROOqK3SJj4rvdpfuz8BaQxGaAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEzID4+CnN0cmVhbQp4nDVQuQ0DMQzrPYUWCGDqs2+eC4I02b+NKCfFgTybokjnXjLFTR4wSXeJnPLEsKJuIZ9hM5rpKlSIRohdJvfQOrWsGy3Ug7r6pv+mUIE9ewahvCkXqAtdAQj3EO9hW5t5fVS44TfjgXbx1HZt7D1k3EwFk3DmZKML09KV6f997vHubqz5GW67WZQ6jKel2l6qxCr9eRLLg2cnGXadlALQnknGjA4u9ORjcguxOsdshpUUQO0M5NUG9fj0K/iVsrPx6gBUn0gcZ0jaMfS/Biu9viKGVGAKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0MSA+PgpzdHJlYW0KeJxFkDtuBDEMQ3ufghdYwPraPs8EixTZ+7cRNROkIgFJ5LOXJCa246VzIZcgcuJLhsbBOvi06eHP+FtrF07D6b/zbLcNfg5s1kwVZqW2cA3LjQiFT+0e99l6jahYusiamCFnwqv/GumVq9FsFtmqSzkpJ3uDGyKnbzIZViFiYOarlC3Ua7CXjhyvaDBWEFQNzb3wvPwa38NWwIvmM6z46bjq1aW73ndIoVkuvc+sOKm62NZOi7Y2ZEvfSPhTKJpgqpCneuQmFG1HZm54/cl943t2ip/Zqa3dQ8dmbpCENzcbU0jL1KZ/3sO3vX8Bbn5e9QplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU4ID4+CnN0cmVhbQp4nEVQQRIDIQi7+wqegJLo+p7tdHrY/v/awLbTgyaETECxw9wO6MJ243R79JY09mHvhgWD08Bt6DJBdYedDSOVVRX6ln8Xni34VXTgsLFpsaY6Y3ULLBtKC5+FgyM7Ym5Xq00KKN9V+p+BxY6uZaMSmHNCGMzJk0aq6/dTgF6obZVRCkMOJYknqjPnrazE4/4G5ra/X7jaqz0/b204LAplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQ2ID4+CnN0cmVhbQp4nDWSSW5EMQhE9z4FF2jJTB7O86NWFp37b/MgygpscFFVOG/KlDR5qUvGkVxTvnSkqqRP+enM75bPiO0SahK+JSwkJmc3eYavIxFT3JMY4jM6PsP27Mxi0XvFwAzXqig95mKTis6Ofr0qlW16mVXIxixf/capJG/yiEPWLjN7jhssYQBLsNzgw2Qnz6lip3oSrvWyZJrujtq4naEmbUleieNI4L40gbtX22NXO8Ij8+8GlBczFLavpKA84DinHFmliTuiwvkzbohikAKtZozeotomMVoRbaFESAJXEVnqnbmf7vBcvFlVYRlqKX5AwtiOiKNS2Y6mrYeOxdw21tmzYUfZY3MjqCS0sYuKJiQVq8rwYmlhctnDuiWj+rO+Sm25wqlrkogtWyVYhta30WKhScbSa4n1pwz1FWtVqzPH6czN0oHLUlsfIwELBiZO/n/CZ3yP9y/Wq34aCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxOCA+PgpzdHJlYW0KeJwzNrFQMIDDFEOuNAAeGQNVCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIgPj4Kc3RyZWFtCnicRY9BDkMhCET3nIIjCGLR89g0Xdj7bzvI/9+EOM+MTgbzzoWl4rDW2IvyW0g98bepmfOisA+ZKijcQzLKTS9j7cjFex2R33lSLSAdXDW0cW2pk8yS1qadMi5ViX6uyMJUxkwSXFxYdmBJxQcYoCyElR7I2uEdivXWs+iiL33+WSAyTAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjA0ID4+CnN0cmVhbQp4nE1RQW4EIQy78wp/YCUSAiHv2WrVQ/v/a21mRurJJibGCWmOjtx42cDyjRmJL2usOCu/Iir9NJ/xj0X5w5bD50D4PDh2x7sdNu5Kv9DLbsXpo143KQtW6ygblgtOR5Pr4pm3qOSEBSs7YENO7PGkMnqSGYZ3mG2+uQ5SST8surHHmU+uyhZ0sk1FSehyMOUmds34rOJinSjtwSwRtSZGFZxDrkLp2VF4TSiXVupMIeQM/VqyMlzpQ6NVYLs+wNh4b/3dvtvnD3mOTJ4KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkzID4+CnN0cmVhbQp4nD2MyxGAMAgF71RBCeEXQj+O4yH2fxWi8QIL780GKzYUyzFGoKnjQZB30Q3cXprA4UjekuTrTTDZaedKNclpp+PvuZY/+6Zra2cU7+VKY33IY+1feMH5ABDeHhkKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOSA+PgpzdHJlYW0KeJw9jrsNAzEMQ3tPwQUM6OvPPAmCFJf921B3lzT2AyWRHGkQqKGbJoYHMiae2igVfZquedLRnFOdgxS5b+13QU0CPbX2lqCrKjydkAG3grnwaLYrSwzG3TPU5IZHU5ELjwvrIWb+ccWFJtQ2j3Wjr1HGzgy2s+DPfqe/l6vlqMg6t7vsu72+6XYuzwplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1Cb2xkIC9DaGFyUHJvY3MgMTggMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDUgL2h5cGhlbiA2NSAvQSA3MCAvRiA3NiAvTCAvTSAvTiA4MCAvUCA4MyAvUyA5NyAvYSAvYiAvYyAvZAovZSAvZiAxMDQgL2ggMTA4IC9sIC9tIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAxMTkgL3cgMTIxIC95IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTA3MCAtNDE2IDE5NzYgMTE3NSBdIC9Gb250RGVzY3JpcHRvciAxNiAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1Cb2xkCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE1IDAgUiA+PgplbmRvYmoKMTYgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDcwIC00MTYgMTk3NiAxMTc1IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLUJvbGQKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDE0NDAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE1IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzNDggNDU2IDUyMSA4MzggNjk2CjEwMDIgODcyIDMwNiA0NTcgNDU3IDUyMyA4MzggMzgwIDQxNSAzODAgMzY1IDY5NiA2OTYgNjk2IDY5NiA2OTYgNjk2IDY5Ngo2OTYgNjk2IDY5NiA0MDAgNDAwIDgzOCA4MzggODM4IDU4MCAxMDAwIDc3NCA3NjIgNzM0IDgzMCA2ODMgNjgzIDgyMSA4MzcKMzcyIDM3MiA3NzUgNjM3IDk5NSA4MzcgODUwIDczMyA4NTAgNzcwIDcyMCA2ODIgODEyIDc3NCAxMTAzIDc3MSA3MjQgNzI1CjQ1NyAzNjUgNDU3IDgzOCA1MDAgNTAwIDY3NSA3MTYgNTkzIDcxNiA2NzggNDM1IDcxNiA3MTIgMzQzIDM0MyA2NjUgMzQzCjEwNDIgNzEyIDY4NyA3MTYgNzE2IDQ5MyA1OTUgNDc4IDcxMiA2NTIgOTI0IDY0NSA2NTIgNTgyIDcxMiAzNjUgNzEyIDgzOAo2MDAgNjk2IDYwMCAzODAgNDM1IDY1NyAxMDAwIDUwMCA1MDAgNTAwIDE0NDAgNzIwIDQxMiAxMTY3IDYwMCA3MjUgNjAwIDYwMAozODAgMzgwIDY1NyA2NTcgNjM5IDUwMCAxMDAwIDUwMCAxMDAwIDU5NSA0MTIgMTA5NCA2MDAgNTgyIDcyNCAzNDggNDU2IDY5Ngo2OTYgNjM2IDY5NiAzNjUgNTAwIDUwMCAxMDAwIDU2NCA2NDYgODM4IDQxNSAxMDAwIDUwMCA1MDAgODM4IDQzOCA0MzggNTAwCjczNiA2MzYgMzgwIDUwMCA0MzggNTY0IDY0NiAxMDM1IDEwMzUgMTAzNSA1ODAgNzc0IDc3NCA3NzQgNzc0IDc3NCA3NzQgMTA4NQo3MzQgNjgzIDY4MyA2ODMgNjgzIDM3MiAzNzIgMzcyIDM3MiA4MzggODM3IDg1MCA4NTAgODUwIDg1MCA4NTAgODM4IDg1MCA4MTIKODEyIDgxMiA4MTIgNzI0IDczOCA3MTkgNjc1IDY3NSA2NzUgNjc1IDY3NSA2NzUgMTA0OCA1OTMgNjc4IDY3OCA2NzggNjc4CjM0MyAzNDMgMzQzIDM0MyA2ODcgNzEyIDY4NyA2ODcgNjg3IDY4NyA2ODcgODM4IDY4NyA3MTIgNzEyIDcxMiA3MTIgNjUyIDcxNgo2NTIgXQplbmRvYmoKMTggMCBvYmoKPDwgL0EgMTkgMCBSIC9GIDIwIDAgUiAvTCAyMSAwIFIgL00gMjIgMCBSIC9OIDIzIDAgUiAvUCAyNCAwIFIgL1MgMjUgMCBSCi9hIDI2IDAgUiAvYiAyNyAwIFIgL2MgMjggMCBSIC9kIDI5IDAgUiAvZSAzMCAwIFIgL2YgMzEgMCBSIC9oIDMyIDAgUgovaHlwaGVuIDMzIDAgUiAvbCAzNCAwIFIgL20gMzUgMCBSIC9uIDM2IDAgUiAvbyAzNyAwIFIgL3AgMzggMCBSIC9yIDM5IDAgUgovcyA0MCAwIFIgL3NwYWNlIDQxIDAgUiAvdCA0MiAwIFIgL3UgNDMgMCBSIC93IDQ0IDAgUiAveSA0NSAwIFIgPj4KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTEgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDYxID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJw9jssNwDAIQ+9MwQjhUwL7VFUPyf7Xhnx6wQ9byLgJFgwfo9qFlQNvgrEndWBdXgMVQhYZZOTbOxeLSmYWv5omqRPSJHHeRKE7TUqdD7TT2+CF5wP16R3sCmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NyA+PgpzdHJlYW0KeJw1jcENwDAIA/9MwQg4hVD2qao+0v2/LUR87DMI7HqycKRME/YRfIH+nPTSOFC0yEwZaNqzvtgkuYOXI5QnmtKrYvXnRQ/dH8meGAwKZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkcA/4DztNPpgtx/W8uZdIMUY8svRFd07JWHx8aUjfdoY0+ELVzldBpOUxmPi7tmXaDLYTLTb7yaucBUYZHV7KL6GLyh86xmh69VMzGEN5kSGmAqd3IP9fWnOO3bkpBsV2HQnRqkszDMkfw9EFNz0HOIkfwjX3JrYdCZ5hcXLasZrWVM0exhqmwtDOqNQXfK9dR6rvMwEe/zA99BPmQKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKNTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKNTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjU4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iago1OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxOCA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iago2MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjYxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTEgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjYyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago2NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MCA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjY2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjUxID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjY3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDQ5IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYgL2VpZ2h0IDY1IC9BIDc2Ci9MIC9NIC9OIDgwIC9QIDEwMSAvZSAxMTEgL28gMTE0IC9yIDExNiAvdCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgNDcgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgNDYgMCBSID4+CmVuZG9iago0NyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjQ2IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9BIDUwIDAgUiAvTCA1MSAwIFIgL00gNTIgMCBSIC9OIDUzIDAgUiAvUCA1NCAwIFIgL2UgNTUgMCBSCi9laWdodCA1NiAwIFIgL2ZpdmUgNTcgMCBSIC9mb3VyIDU4IDAgUiAvbyA1OSAwIFIgL29uZSA2MCAwIFIKL3BlcmlvZCA2MSAwIFIgL3IgNjIgMCBSIC9zaXggNjMgMCBSIC90IDY0IDAgUiAvdGhyZWUgNjUgMCBSIC90d28gNjYgMCBSCi96ZXJvIDY3IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgNDggMCBSIC9GMiAxNyAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAwLjIgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC4yID4+Ci9BNCA8PCAvQ0EgMC44IC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvTTAgMTMgMCBSIC9NMSAxNCAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTggLTggOCA4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0JCb3ggWyAtOCAtOCA4IDggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago2OCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwOTE2MTQxNzUwKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNC4zLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNC4zKSA+PgplbmRvYmoKeHJlZgowIDY5CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE4MDgzIDAwMDAwIG4gCjAwMDAwMTcyNjIgMDAwMDAgbiAKMDAwMDAxNzMwNSAwMDAwMCBuIAowMDAwMDE3NDkwIDAwMDAwIG4gCjAwMDAwMTc1MTEgMDAwMDAgbiAKMDAwMDAxNzUzMiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDIgMDAwMDAgbiAKMDAwMDAwMjE5NCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIxNzMgMDAwMDAgbiAKMDAwMDAxNzU3NSAwMDAwMCBuIAowMDAwMDE3ODI5IDAwMDAwIG4gCjAwMDAwMDk0NTQgMDAwMDAgbiAKMDAwMDAwOTI0OSAwMDAwMCBuIAowMDAwMDA4ODEyIDAwMDAwIG4gCjAwMDAwMTA1MTUgMDAwMDAgbiAKMDAwMDAwMjIxNCAwMDAwMCBuIAowMDAwMDAyMzc3IDAwMDAwIG4gCjAwMDAwMDI1MjMgMDAwMDAgbiAKMDAwMDAwMjY1NyAwMDAwMCBuIAowMDAwMDAyODE5IDAwMDAwIG4gCjAwMDAwMDI5NjcgMDAwMDAgbiAKMDAwMDAwMzIwNSAwMDAwMCBuIAowMDAwMDAzNjIxIDAwMDAwIG4gCjAwMDAwMDQwMTAgMDAwMDAgbiAKMDAwMDAwNDMyOCAwMDAwMCBuIAowMDAwMDA0NjM4IDAwMDAwIG4gCjAwMDAwMDQ5NDkgMDAwMDAgbiAKMDAwMDAwNTI3MyAwMDAwMCBuIAowMDAwMDA1NDgyIDAwMDAwIG4gCjAwMDAwMDU3NDYgMDAwMDAgbiAKMDAwMDAwNTg3NCAwMDAwMCBuIAowMDAwMDA1OTk2IDAwMDAwIG4gCjAwMDAwMDYzNTAgMDAwMDAgbiAKMDAwMDAwNjYxMyAwMDAwMCBuIAowMDAwMDA2ODk5IDAwMDAwIG4gCjAwMDAwMDcyMTMgMDAwMDAgbiAKMDAwMDAwNzQ0NCAwMDAwMCBuIAowMDAwMDA3ODYzIDAwMDAwIG4gCjAwMDAwMDc5NTMgMDAwMDAgbiAKMDAwMDAwODE1OCAwMDAwMCBuIAowMDAwMDA4NDM1IDAwMDAwIG4gCjAwMDAwMDg2MDAgMDAwMDAgbiAKMDAwMDAxNTk3OSAwMDAwMCBuIAowMDAwMDE1Nzc5IDAwMDAwIG4gCjAwMDAwMTUzNzAgMDAwMDAgbiAKMDAwMDAxNzAzMiAwMDAwMCBuIAowMDAwMDEwODE2IDAwMDAwIG4gCjAwMDAwMTA5NzkgMDAwMDAgbiAKMDAwMDAxMTExMiAwMDAwMCBuIAowMDAwMDExMjc0IDAwMDAwIG4gCjAwMDAwMTE0MjMgMDAwMDAgbiAKMDAwMDAxMTY2NiAwMDAwMCBuIAowMDAwMDExOTg4IDAwMDAwIG4gCjAwMDAwMTI0NTYgMDAwMDAgbiAKMDAwMDAxMjc3OCAwMDAwMCBuIAowMDAwMDEyOTQ0IDAwMDAwIG4gCjAwMDAwMTMyMzUgMDAwMDAgbiAKMDAwMDAxMzM5MCAwMDAwMCBuIAowMDAwMDEzNTEzIDAwMDAwIG4gCjAwMDAwMTM3NDYgMDAwMDAgbiAKMDAwMDAxNDEzOSAwMDAwMCBuIAowMDAwMDE0MzQ1IDAwMDAwIG4gCjAwMDAwMTQ3NTggMDAwMDAgbiAKMDAwMDAxNTA4MiAwMDAwMCBuIAowMDAwMDE4MTQzIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNjggMCBSIC9Sb290IDEgMCBSIC9TaXplIDY5ID4+CnN0YXJ0eHJlZgoxODMwMAolJUVPRgo=\n", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-09-16T14:17:50.791541\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plot_few_shot(protomaml_accuracies, name=\"ProtoMAML\", color=\"C2\", ax=ax)\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "bf5ba8cb", "metadata": {"papermill": {"duration": 0.05835, "end_time": "2021-09-16T12:17:51.096701", "exception": false, "start_time": "2021-09-16T12:17:51.038351", "status": "completed"}, "tags": []}, "source": ["We can observe that ProtoMAML is indeed able to outperform ProtoNet for $k>4$.\n", "This is because with more samples, it becomes more relevant to also adapt the base model's parameters.\n", "Meanwhile, for $k=2$, ProtoMAML achieves lower performance than ProtoNet.\n", "This is likely also related to choosing 200 inner loop updates since with more updates, there exists the risk of overfitting.\n", "Nonetheless, the high standard deviation for $k=2$ makes it hard to take any statistically valid conclusion.\n", "\n", "Overall, we can conclude that ProtoMAML slightly outperforms ProtoNet for larger shot counts.\n", "However, one disadvantage of ProtoMAML is its much longer training and testing time.\n", "ProtoNet provides a simple, efficient, yet strong baseline for\n", "ProtoMAML, and might be the better solution in situations where limited\n", "resources are available."]}, {"cell_type": "markdown", "id": "7600f8f6", "metadata": {"papermill": {"duration": 0.052136, "end_time": "2021-09-16T12:17:51.200925", "exception": false, "start_time": "2021-09-16T12:17:51.148789", "status": "completed"}, "tags": []}, "source": ["## Domain adaptation\n", "\n", "So far, we have evaluated our meta-learning algorithms on the same dataset on which we have trained them.\n", "However, meta-learning algorithms are especially interesting when we want to move from one to another dataset.\n", "So, what happens if we apply them on a quite different dataset than CIFAR?\n", "This is what we try out below, and evaluate ProtoNet and ProtoMAML on the SVHN dataset."]}, {"cell_type": "markdown", "id": "8300cd0f", "metadata": {"papermill": {"duration": 0.051688, "end_time": "2021-09-16T12:17:51.307325", "exception": false, "start_time": "2021-09-16T12:17:51.255637", "status": "completed"}, "tags": []}, "source": ["### SVHN dataset\n", "\n", "The Street View House Numbers (SVHN) dataset is a real-world image dataset for house number detection.\n", "It is similar to MNIST by having the classes 0 to 9, but is more difficult due to its real-world setting and possible distracting numbers left and right.\n", "Let's first load the dataset, and visualize some images to get an impression of the dataset."]}, {"cell_type": "code", "execution_count": 34, "id": "a449fda7", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:51.416497Z", "iopub.status.busy": "2021-09-16T12:17:51.416023Z", "iopub.status.idle": "2021-09-16T12:17:58.190424Z", "shell.execute_reply": "2021-09-16T12:17:58.189968Z"}, "papermill": {"duration": 6.831204, "end_time": "2021-09-16T12:17:58.190541", "exception": false, "start_time": "2021-09-16T12:17:51.359337", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading http://ufldl.stanford.edu/housenumbers/test_32x32.mat to /__w/2/s/.datasets/test_32x32.mat\n"]}, {"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "4568ea12ba0e44e2b6ead582e14239db", "version_major": 2, "version_minor": 0}, "text/plain": [" 0%| | 0/64275384 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-09-16T14:17:58.384435\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["# Visualize some examples\n", "NUM_IMAGES = 12\n", "SVHN_images = [SVHN_test_dataset[np.random.randint(len(SVHN_test_dataset))][0] for idx in range(NUM_IMAGES)]\n", "SVHN_images = torch.stack(SVHN_images, dim=0)\n", "img_grid = torchvision.utils.make_grid(SVHN_images, nrow=6, normalize=True, pad_value=0.9)\n", "img_grid = img_grid.permute(1, 2, 0)\n", "\n", "plt.figure(figsize=(8, 8))\n", "plt.title(\"Image examples of the SVHN dataset\")\n", "plt.imshow(img_grid)\n", "plt.axis(\"off\")\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "c5d1538f", "metadata": {"papermill": {"duration": 0.057994, "end_time": "2021-09-16T12:17:58.652340", "exception": false, "start_time": "2021-09-16T12:17:58.594346", "status": "completed"}, "tags": []}, "source": ["Each image is labeled with one class between 0 and 9 representing the main digit in the image.\n", "Can our ProtoNet and ProtoMAML learn to classify the digits from only a few examples?\n", "This is what we will test out below.\n", "The images have the same size as CIFAR, so that we can use the images without changes.\n", "We first prepare the dataset, for which we take the first 500 images per class.\n", "For this dataset, we use our test functions as before to get an estimated performance for different number of shots."]}, {"cell_type": "code", "execution_count": 36, "id": "cc373377", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:58.773831Z", "iopub.status.busy": "2021-09-16T12:17:58.773263Z", "iopub.status.idle": "2021-09-16T12:17:58.784466Z", "shell.execute_reply": "2021-09-16T12:17:58.784851Z"}, "papermill": {"duration": 0.076287, "end_time": "2021-09-16T12:17:58.785011", "exception": false, "start_time": "2021-09-16T12:17:58.708724", "status": "completed"}, "tags": []}, "outputs": [{"data": {"text/plain": ["(5000, 32, 32, 3)"]}, "execution_count": 36, "metadata": {}, "output_type": "execute_result"}], "source": ["imgs = np.transpose(SVHN_test_dataset.data, (0, 2, 3, 1))\n", "targets = SVHN_test_dataset.labels\n", "# Limit number of examples to 500 to reduce test time\n", "min_label_count = min(500, np.bincount(SVHN_test_dataset.labels).min())\n", "\n", "idxs = np.concatenate([np.where(targets == c)[0][:min_label_count] for c in range(1 + targets.max())], axis=0)\n", "imgs = imgs[idxs]\n", "targets = torch.from_numpy(targets[idxs]).long()\n", "\n", "svhn_fewshot_dataset = ImageDataset(imgs, targets, img_transform=test_transform)\n", "svhn_fewshot_dataset.imgs.shape"]}, {"cell_type": "markdown", "id": "b731ec05", "metadata": {"papermill": {"duration": 0.056801, "end_time": "2021-09-16T12:17:58.898898", "exception": false, "start_time": "2021-09-16T12:17:58.842097", "status": "completed"}, "tags": []}, "source": ["### Experiments\n", "\n", "First, we can apply ProtoNet to the SVHN dataset:"]}, {"cell_type": "code", "execution_count": 37, "id": "7ee1c500", "metadata": {"execution": {"iopub.execute_input": "2021-09-16T12:17:59.016284Z", "iopub.status.busy": "2021-09-16T12:17:59.015812Z", "iopub.status.idle": "2021-09-16T12:18:14.040455Z", "shell.execute_reply": "2021-09-16T12:18:14.040055Z"}, "papermill": {"duration": 15.085142, "end_time": "2021-09-16T12:18:14.040564", "exception": false, "start_time": "2021-09-16T12:17:58.955422", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/vnd.jupyter.widget-view+json": {"model_id": "183a8ac9a6374f0da9e5f7300552fd81", "version_major": 2, "version_minor": 0}, "text/plain": ["Extracting image features: 0%| | 0/40 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-09-16T14:18:14.667382\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = plot_few_shot(protonet_svhn_accuracies, name=\"ProtoNet\", color=\"C1\")\n", "plot_few_shot(protomaml_svhn_accuracies, name=\"ProtoMAML\", color=\"C2\", ax=ax)\n", "plt.show()\n", "plt.close()"]}, {"cell_type": "markdown", "id": "88e88fdc", "metadata": {"papermill": {"duration": 0.061651, "end_time": "2021-09-16T12:18:34.994398", "exception": false, "start_time": "2021-09-16T12:18:34.932747", "status": "completed"}, "tags": []}, "source": ["## Conclusion\n", "\n", "In this notebook, we have discussed meta-learning algorithms that learn to adapt to new classes and/or tasks with just a few samples.\n", "We have discussed three popular algorithms, namely ProtoNet, MAML and ProtoMAML.\n", "On the few-shot image classification task of CIFAR100, ProtoNet and ProtoMAML showed to perform similarly well, with slight benefits of ProtoMAML for larger shot sizes.\n", "However, for out-of-distribution data (SVHN), the ability to optimize the base model showed to be crucial and gave ProtoMAML considerable performance gains over ProtoNet.\n", "Nonetheless, ProtoNet offers other advantages compared to ProtoMAML, namely a very cheap training and test cost as well as a simpler implementation.\n", "Hence, it is recommended to consider whether the additionally complexity\n", "of ProtoMAML is worth the extra training computation cost, or whether\n", "ProtoNet is already sufficient for the task at hand."]}, {"cell_type": "markdown", "id": "d74ea185", "metadata": {"papermill": {"duration": 0.062054, "end_time": "2021-09-16T12:18:35.118631", "exception": false, "start_time": "2021-09-16T12:18:35.056577", "status": "completed"}, "tags": []}, "source": ["### References\n", "\n", "[1] Snell, Jake, Kevin Swersky, and Richard S. Zemel.\n", "\"Prototypical networks for few-shot learning.\"\n", "NeurIPS 2017.\n", "([link](https://arxiv.org/pdf/1703.05175.pdf))\n", "\n", "[2] Chelsea Finn, Pieter Abbeel, Sergey Levine.\n", "\"Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.\"\n", "ICML 2017.\n", "([link](http://proceedings.mlr.press/v70/finn17a.html))\n", "\n", "[3] Triantafillou, Eleni, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin et al.\n", "\"Meta-dataset: A dataset of datasets for learning to learn from few examples.\"\n", "ICLR 2020.\n", "([link](https://openreview.net/pdf?id=rkgAGAVKPr))"]}, {"cell_type": "markdown", "id": "cbbe0fbc", "metadata": {"papermill": {"duration": 0.062659, "end_time": "2021-09-16T12:18:35.242538", "exception": false, "start_time": "2021-09-16T12:18:35.179879", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-pw5v393p-qRaDgEk24~EjiZNBpSQFgQ)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/PyTorchLightning/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "![Pytorch Lightning](){height=\"60px\" width=\"240px\"}"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", " :header: Tutorial 12: Meta-Learning - Learning to Learn\n", " :card_description: In this tutorial, we will discuss algorithms that learn models which can quickly adapt to new classes and/or tasks with few samples. This area of machine learning is called...\n", " :tags: Few-shot-learning,MAML,ProtoNet,GPU/TPU,UvA-DL-Course\n", " :image: _static/images/course_UvA-DL/12-meta-learning.jpg"]}], "metadata": {"jupytext": {"cell_metadata_filter": "colab_type,colab,id,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7"}, "papermill": {"default_parameters": {}, "duration": 105.160655, "end_time": "2021-09-16T12:18:36.013399", "environment_variables": {}, "exception": null, "input_path": "course_UvA-DL/12-meta-learning/Meta_Learning.ipynb", "output_path": ".notebooks/course_UvA-DL/12-meta-learning.ipynb", "parameters": {}, "start_time": "2021-09-16T12:16:50.852744", "version": "2.3.3"}, "widgets": {"application/vnd.jupyter.widget-state+json": {"state": {"00bc76c784ce4cb9aeb7e4c0ddddb93e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_78b32653dcd149b6a1b1d332bfa9034c", "placeholder": "\u200b", "style": "IPY_MODEL_fd4df0e082c04577a4dac4cb4151e289", "value": "Evaluating prototype classification: 53%"}}, "02b91c3d2e6b40aabf5ce68af9dc089a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_938071cd41bb4d599c8c9a05d8d8fe9a", "max": 64275384.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2782deb985774a24aca07b772634c05c", "value": 64275384.0}}, "02e5eb706a5b40fead58fb45f83f0f62": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_85cec9f281014ef3b23277b53c7852a3", "placeholder": "\u200b", "style": "IPY_MODEL_70b92c75be2346948722edb9c2c225fd", "value": " 73/75 [00:21<00:00, 30.52it/s]"}}, "072196d194fb4f53923c4c6b81e0059a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0828e938e1a749b7b7c2319e8908b69b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0a469b90a2e846e1bfcee9fedb22bc5e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c2aa54111424ee0a715503680bd0c5c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9cfabc16c5784d5281580358d04b892f", "placeholder": "\u200b", "style": "IPY_MODEL_faa7db942a2f4fd6884b06edc018ef9f", "value": " 32/38 [00:00<00:00, 76.94it/s]"}}, "0d1cefa42a534e9c80af0ab19805fc0a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_00bc76c784ce4cb9aeb7e4c0ddddb93e", "IPY_MODEL_4534d76f4a0741b79ef1556e78edd67e", "IPY_MODEL_bff67f98f5674a9bad5a6e796cb26327"], "layout": "IPY_MODEL_d3547c409750442589d012c89c14bc6b"}}, "0d6fe94d588343bdb9dffb6ffe07d3ab": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e1828c7b1d04265a8e7284e690a83a9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1156767b9eb44cd881fcb4aa46aefee5", "placeholder": "\u200b", "style": "IPY_MODEL_12bb94fb43dc4e61bf78bbb0a4de6496", "value": " 147/150 [00:04<00:00, 35.66it/s]"}}, "0e6eaa92f784402ca49b7c0351d3062a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1156767b9eb44cd881fcb4aa46aefee5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12bb94fb43dc4e61bf78bbb0a4de6496": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "13c6efe0679c470fb103629141d17696": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "183a8ac9a6374f0da9e5f7300552fd81": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_94430fa13a36419d8dc3dfc50aa32c5a", "IPY_MODEL_82f357fe1e17454a9f0cc404f36b07e9", "IPY_MODEL_eadd8eaf01de4ba2b0ea2f744f18dd92"], "layout": "IPY_MODEL_d4acd4194dc54058ab3aa9f3ef6eba5b"}}, "1a77e205a34b4e00bb14544c9d8e08fe": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1a7f4be807064acfa8782fb812546743": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cfd51a2875c4bdf8c1186f987a83add": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1da7a5686c8d4c0e9be4e3db4e8dac38": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f37cd4831fb41fc9f8f20c7a268e583": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1f8501e5c38f450eb1f2cae3cd89e7b6": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "202c7b1eff7848849bf7c743e1df881b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6d60bc7803144fe0b19b9dab4ee11f0f", "placeholder": "\u200b", "style": "IPY_MODEL_dd1d13a9c2df4b61a4a42734a3215c65", "value": " 41/47 [00:00<00:00, 81.89it/s]"}}, "21f9b301896a4342bf292aa429010ab3": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2782deb985774a24aca07b772634c05c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2a9cd98eec7a4b5592bae678eace2808": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2cb4e722134744ad9a6ef27edc660980": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2db922c651a2488081d1e53cc3bd6d1d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3037059185ea46069e58c5d204ad5a23": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5c719ca159c54315a7355fcb6e7cf304", "placeholder": "\u200b", "style": "IPY_MODEL_1a77e205a34b4e00bb14544c9d8e08fe", "value": " 64275456/? [00:05<00:00, 20712790.37it/s]"}}, "308117d38e284ba48ab43a5caa264b99": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3123c0e6a2e44f4cb6787bc4b573e9a9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8d698652e98e4b139be087e74d456f0e", "placeholder": "\u200b", "style": "IPY_MODEL_4f2a06eaedb446dc844a1a3d0b880dc7", "value": "Evaluating prototype classification: 97%"}}, "3259dab1158246248effb77067958cea": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3539c6389fb948a98f3791ac7f27a1c4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5be1b84ddb294dbb8064e729603a623c", "IPY_MODEL_b1c1242755d742fd9b9e32031dbea4f6", "IPY_MODEL_ed7de517b5f241c3bce9fbe522b9e036"], "layout": "IPY_MODEL_806931188d9f42a4abeb77b2c16794f6"}}, "376ce2af81be460c841cb9a881150fa9": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39cbf1c1ea794bc28484f2651ad0f515": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_859708bab1f04c71a7cc676f2c578846", "placeholder": "\u200b", "style": "IPY_MODEL_0828e938e1a749b7b7c2319e8908b69b", "value": "Evaluating prototype classification: 97%"}}, "39ecd6d606e745448fabee14fd2b1ef8": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_60149edbf1d440ee8284a65e723a0384", "IPY_MODEL_c8c1a91d49404d7980279da393472b9e", "IPY_MODEL_b4b09cc0084343f09d7c1d8dff76358d"], "layout": "IPY_MODEL_0a469b90a2e846e1bfcee9fedb22bc5e"}}, "3b367998a4084282a769cac79ec774f3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec6c07c51280408d8dc8bea1e6cce6b3", "placeholder": "\u200b", "style": "IPY_MODEL_5069761f4c45499caf1c4b72740490c4", "value": ""}}, "3b42ad0f5fab46d7a3bbace1b94209bc": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d5574374d694957888246ee8a58f422": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5d7fada4e6cb4768b5780acca17746a3", "IPY_MODEL_a56b28775ba94eb48c3731eb5df92d29", "IPY_MODEL_d69b5d82ed6a45fd9a7c7dd7e1613b70"], "layout": "IPY_MODEL_67f4572946e94b98a4d86ecda253d663"}}, "3f2f3125720d41b7a3960db84db66cef": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "416ecd39787d45829de55f49b0785973": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f41a724b90654262a1248335882584a7", "max": 63.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bf1a5a0d3771426f964727d203dd04aa", "value": 63.0}}, "4195db4b7458491eb130188bc8fb4162": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "430af0eebec14a73bedf8a0346b1698f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44c35df3ef0b486daeead251df9bc337": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4534d76f4a0741b79ef1556e78edd67e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a7f4be807064acfa8782fb812546743", "max": 19.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f3f539667ee84a08987223d37ca7982d", "value": 19.0}}, "4568ea12ba0e44e2b6ead582e14239db": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3b367998a4084282a769cac79ec774f3", "IPY_MODEL_02b91c3d2e6b40aabf5ce68af9dc089a", "IPY_MODEL_3037059185ea46069e58c5d204ad5a23"], "layout": "IPY_MODEL_1f8501e5c38f450eb1f2cae3cd89e7b6"}}, "45fb518c7eb24d7e86682181d68fd71e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "475686a14a06472e97e8d91c0e6f7064": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "477eebc96b2f4b079e5a965f7a12441e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_681a02b4cdbd4268be0d6bdabca2c80d", "IPY_MODEL_d4f422c4962b4861943af77ab582e4cd", "IPY_MODEL_0c2aa54111424ee0a715503680bd0c5c"], "layout": "IPY_MODEL_cbacd7641cb241a08000283f31f99b35"}}, "4bf4fa9b185843da9f1c1122c158da2b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4daa4f481a0c4e9384a722ee3d8f6504": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_59a47e229a9842b1b0562ec79bb50c10", "placeholder": "\u200b", "style": "IPY_MODEL_b98f3d0723274f4cb78b8053f9547e40", "value": " 29/32 [00:00<00:00, 94.73it/s]"}}, "4e983d0f908e4ef5ba3c317f5f9aac0c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ee1a875c45c4bcabbc0a211132f80e9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7c48130f274e4ee6b6f7847f217ea2fc", "IPY_MODEL_d7c4799ac0d04f7b8c046f686b572cff", "IPY_MODEL_202c7b1eff7848849bf7c743e1df881b"], "layout": "IPY_MODEL_f9a467f55d974316b009c15202b0fc6d"}}, "4f2a06eaedb446dc844a1a3d0b880dc7": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5069761f4c45499caf1c4b72740490c4": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "524374c7184b401ebf04e260986061aa": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5779ca02a56d495aa0985b4b6c2339a9": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58715dc209574a5dad413c37ae3007f7": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59a47e229a9842b1b0562ec79bb50c10": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5be1b84ddb294dbb8064e729603a623c": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6a169a568ee4c679cc7b6e45be90722", "placeholder": "\u200b", "style": "IPY_MODEL_61adefdc0a64444fa11eebb9dc06ac00", "value": "Evaluating prototype classification: 100%"}}, "5c719ca159c54315a7355fcb6e7cf304": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d7fada4e6cb4768b5780acca17746a3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9a0f2c2ecd69438e9c881a5ebc72a2ae", "placeholder": "\u200b", "style": "IPY_MODEL_e5431133575649a691df3f5a8e304200", "value": "Evaluating prototype classification: 98%"}}, "60149edbf1d440ee8284a65e723a0384": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4e983d0f908e4ef5ba3c317f5f9aac0c", "placeholder": "\u200b", "style": "IPY_MODEL_45fb518c7eb24d7e86682181d68fd71e", "value": "Evaluating prototype classification: 75%"}}, "61adefdc0a64444fa11eebb9dc06ac00": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "63189b4d662044eb887114f77221b543": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "67f4572946e94b98a4d86ecda253d663": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "681a02b4cdbd4268be0d6bdabca2c80d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_308117d38e284ba48ab43a5caa264b99", "placeholder": "\u200b", "style": "IPY_MODEL_f9ac7821790d4e9489aee3df7f99e1b3", "value": "Evaluating prototype classification: 84%"}}, "6d60bc7803144fe0b19b9dab4ee11f0f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70b92c75be2346948722edb9c2c225fd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "71942a6d2a774e89920bb4bec1d8d322": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73ccf1b6f0e044e1a371ebaccbb4d487": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1da7a5686c8d4c0e9be4e3db4e8dac38", "max": 32.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cce50ce7b329487eb8e2dde538633125", "value": 32.0}}, "772205868c9c45d4ad3214c4adbbd987": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5779ca02a56d495aa0985b4b6c2339a9", "placeholder": "\u200b", "style": "IPY_MODEL_13c6efe0679c470fb103629141d17696", "value": " 299/300 [00:14<00:00, 21.54it/s]"}}, "78b32653dcd149b6a1b1d332bfa9034c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c48130f274e4ee6b6f7847f217ea2fc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_924b26934cf94b8a9535888f4906eb1c", "placeholder": "\u200b", "style": "IPY_MODEL_91ecb773c1c543c586fd1115af787371", "value": "Extracting image features: 87%"}}, "7e679515c98846daa6d00fdf5f0d3311": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "806931188d9f42a4abeb77b2c16794f6": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82f357fe1e17454a9f0cc404f36b07e9": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_71942a6d2a774e89920bb4bec1d8d322", "max": 40.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_be691daa5b694609b1b513a228fb90fc", "value": 40.0}}, "85969d7fe0d84757ab4dd16513b1a5df": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff068b188619416e9b239c37354d50a5", "placeholder": "\u200b", "style": "IPY_MODEL_b2f11e2783424e3ba1d55dbb5892950e", "value": "Evaluating prototype classification: 100%"}}, "859708bab1f04c71a7cc676f2c578846": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85cec9f281014ef3b23277b53c7852a3": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89077d9b6eb8473ca188cec9b67301fd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b2e758ccb1424900aa05a457afb05f72", "placeholder": "\u200b", "style": "IPY_MODEL_3f2f3125720d41b7a3960db84db66cef", "value": " 61/63 [00:01<00:00, 60.03it/s]"}}, "8d0ae6d8aa2345b2880e395b44deb8be": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d698652e98e4b139be087e74d456f0e": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f6a863365e246c0abaf74a2b8d8aef5": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "91ecb773c1c543c586fd1115af787371": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "924b26934cf94b8a9535888f4906eb1c": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "938071cd41bb4d599c8c9a05d8d8fe9a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93aa4bcdd7364eac85d986a8a0337357": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94430fa13a36419d8dc3dfc50aa32c5a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ae1c147122044a9998b719238b066c40", "placeholder": "\u200b", "style": "IPY_MODEL_b56e4e9d7a0f48438ec63fa260c2eab2", "value": "Extracting image features: 78%"}}, "948d6213a28f497a899c41e3f49d51e5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "960cbf76a9794019b2b826c10d357a61": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9979420e14004ac989148bbeffeb4abe": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ff793077dbbc478c9708d27d2288613a", "IPY_MODEL_73ccf1b6f0e044e1a371ebaccbb4d487", "IPY_MODEL_4daa4f481a0c4e9384a722ee3d8f6504"], "layout": "IPY_MODEL_8d0ae6d8aa2345b2880e395b44deb8be"}}, "9a0f2c2ecd69438e9c881a5ebc72a2ae": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9cfabc16c5784d5281580358d04b892f": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e82aa99c94a455ca38beef27d80b631": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a56b28775ba94eb48c3731eb5df92d29": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4bf4fa9b185843da9f1c1122c158da2b", "max": 125.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_960cbf76a9794019b2b826c10d357a61", "value": 125.0}}, "abd1ac72d85141b8b0ef391d3855b484": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3123c0e6a2e44f4cb6787bc4b573e9a9", "IPY_MODEL_ec0fe31483d14e2cbedb3a9b6b0b8753", "IPY_MODEL_02e5eb706a5b40fead58fb45f83f0f62"], "layout": "IPY_MODEL_aec0a30060e24072ab43acaf20932c58"}}, "ae1c147122044a9998b719238b066c40": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae69641e8d31424e956a1ff82dc89003": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_39cbf1c1ea794bc28484f2651ad0f515", "IPY_MODEL_416ecd39787d45829de55f49b0785973", "IPY_MODEL_89077d9b6eb8473ca188cec9b67301fd"], "layout": "IPY_MODEL_072196d194fb4f53923c4c6b81e0059a"}}, "aec0a30060e24072ab43acaf20932c58": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aecbb5c04b45444898787d2624a12195": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2e7cbd0d8f04a278bb879dd329d2b99", "IPY_MODEL_c36247aea7e84ca2aab82b1376aeae8b", "IPY_MODEL_0e1828c7b1d04265a8e7284e690a83a9"], "layout": "IPY_MODEL_2cb4e722134744ad9a6ef27edc660980"}}, "b1c1242755d742fd9b9e32031dbea4f6": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_376ce2af81be460c841cb9a881150fa9", "max": 250.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2a9cd98eec7a4b5592bae678eace2808", "value": 250.0}}, "b2e758ccb1424900aa05a457afb05f72": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2e7cbd0d8f04a278bb879dd329d2b99": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c34db810637447f6804a893b111d001b", "placeholder": "\u200b", "style": "IPY_MODEL_8f6a863365e246c0abaf74a2b8d8aef5", "value": "Evaluating prototype classification: 98%"}}, "b2f11e2783424e3ba1d55dbb5892950e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b3577ac01567447e948e6e6775c67bde": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c6ab500f0a1d49608a6e3b789d72f631", "max": 300.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_63189b4d662044eb887114f77221b543", "value": 300.0}}, "b4b09cc0084343f09d7c1d8dff76358d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_430af0eebec14a73bedf8a0346b1698f", "placeholder": "\u200b", "style": "IPY_MODEL_b50797af71974f3f8653adf1ef90448b", "value": " 12/16 [00:00<00:00, 114.02it/s]"}}, "b50797af71974f3f8653adf1ef90448b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b56e4e9d7a0f48438ec63fa260c2eab2": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b98f3d0723274f4cb78b8053f9547e40": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ba82c76f0ce64acab28c3a9d397e470b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_85969d7fe0d84757ab4dd16513b1a5df", "IPY_MODEL_b3577ac01567447e948e6e6775c67bde", "IPY_MODEL_772205868c9c45d4ad3214c4adbbd987"], "layout": "IPY_MODEL_3259dab1158246248effb77067958cea"}}, "be691daa5b694609b1b513a228fb90fc": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bf1a5a0d3771426f964727d203dd04aa": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bff67f98f5674a9bad5a6e796cb26327": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58715dc209574a5dad413c37ae3007f7", "placeholder": "\u200b", "style": "IPY_MODEL_44c35df3ef0b486daeead251df9bc337", "value": " 10/19 [00:00<00:00, 96.33it/s]"}}, "c3203b46c2704e1b89ec8f939f4ac58a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c34db810637447f6804a893b111d001b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c36247aea7e84ca2aab82b1376aeae8b": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_21f9b301896a4342bf292aa429010ab3", "max": 150.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_524374c7184b401ebf04e260986061aa", "value": 150.0}}, "c6ab500f0a1d49608a6e3b789d72f631": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8c1a91d49404d7980279da393472b9e": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_948d6213a28f497a899c41e3f49d51e5", "max": 16.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1f37cd4831fb41fc9f8f20c7a268e583", "value": 16.0}}, "cbacd7641cb241a08000283f31f99b35": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cce50ce7b329487eb8e2dde538633125": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d3547c409750442589d012c89c14bc6b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4acd4194dc54058ab3aa9f3ef6eba5b": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4f422c4962b4861943af77ab582e4cd": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0d6fe94d588343bdb9dffb6ffe07d3ab", "max": 38.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2db922c651a2488081d1e53cc3bd6d1d", "value": 38.0}}, "d56ce25a9a7d48d58c97b5aecf34eb7a": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d69b5d82ed6a45fd9a7c7dd7e1613b70": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d56ce25a9a7d48d58c97b5aecf34eb7a", "placeholder": "\u200b", "style": "IPY_MODEL_7e679515c98846daa6d00fdf5f0d3311", "value": " 123/125 [00:02<00:00, 42.63it/s]"}}, "d7c4799ac0d04f7b8c046f686b572cff": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_93aa4bcdd7364eac85d986a8a0337357", "max": 47.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dffa50507e2046c0b4dafb07b1bc9a30", "value": 47.0}}, "dd1d13a9c2df4b61a4a42734a3215c65": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "dffa50507e2046c0b4dafb07b1bc9a30": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e5431133575649a691df3f5a8e304200": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eadd8eaf01de4ba2b0ea2f744f18dd92": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3637b2b7f544bd39f9788181bf073ae", "placeholder": "\u200b", "style": "IPY_MODEL_475686a14a06472e97e8d91c0e6f7064", "value": " 31/40 [00:00<00:00, 74.47it/s]"}}, "ec0fe31483d14e2cbedb3a9b6b0b8753": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1cfd51a2875c4bdf8c1186f987a83add", "max": 75.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c3203b46c2704e1b89ec8f939f4ac58a", "value": 75.0}}, "ec6c07c51280408d8dc8bea1e6cce6b3": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed7de517b5f241c3bce9fbe522b9e036": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4195db4b7458491eb130188bc8fb4162", "placeholder": "\u200b", "style": "IPY_MODEL_0e6eaa92f784402ca49b7c0351d3062a", "value": " 249/250 [00:09<00:00, 25.53it/s]"}}, "f3637b2b7f544bd39f9788181bf073ae": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3f539667ee84a08987223d37ca7982d": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f41a724b90654262a1248335882584a7": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6a169a568ee4c679cc7b6e45be90722": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9a467f55d974316b009c15202b0fc6d": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9ac7821790d4e9489aee3df7f99e1b3": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "faa7db942a2f4fd6884b06edc018ef9f": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fd4df0e082c04577a4dac4cb4151e289": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ff068b188619416e9b239c37354d50a5": {"model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff793077dbbc478c9708d27d2288613a": {"model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3b42ad0f5fab46d7a3bbace1b94209bc", "placeholder": "\u200b", "style": "IPY_MODEL_9e82aa99c94a455ca38beef27d80b631", "value": "Evaluating prototype classification: 91%"}}}, "version_major": 2, "version_minor": 0}}}, "nbformat": 4, "nbformat_minor": 5}