CSVLogger¶
- class pytorch_lightning.loggers.CSVLogger(save_dir, name='default', version=None, prefix='')[source]¶
Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in yaml and CSV format.
Logs are saved to
os.path.join(save_dir, name, version)
.Example
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger)
- Parameters
name¶ (
Optional
[str
]) – Experiment name. Defaults to'default'
.version¶ (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.prefix¶ (
str
) – A string to put at the beginning of metric keys.
- log_metrics(metrics, step=None)[source]¶
Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the
agg_and_log_metrics()
method.
- property experiment: pytorch_lightning.loggers.csv_logs.ExperimentWriter¶
Actual ExperimentWriter object. To use ExperimentWriter features in your
LightningModule
do the following.Example:
self.logger.experiment.some_experiment_writer_function()
- property log_dir: str¶
The log directory for this run. By default, it is named
'version_${self.version}'
but it can be overridden by passing a string value for the constructor’s version parameter instead ofNone
or an int.
- property name: str¶
Return the experiment name.
- property root_dir: str¶
Parent directory for all checkpoint subdirectories. If the experiment name parameter is
None
or the empty string, no experiment subdirectory is used and the checkpoint will be saved in “save_dir/version_dir”
- property save_dir: Optional[str]¶
Return the root directory where experiment logs get saved, or None if the logger does not save data locally.
- property version: int¶
Return the experiment version.