Shortcuts

Source code for pytorch_lightning.utilities.seed

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions to help with reproducibility of models. """

import logging
import os
import random
from typing import Optional

import numpy as np
import torch

from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_7, rank_zero_warn
from pytorch_lightning.utilities.distributed import rank_zero_only

log = logging.getLogger(__name__)


[docs]def seed_everything(seed: Optional[int] = None, workers: bool = False) -> int: """ Function that sets seed for pseudo-random number generators in: pytorch, numpy, python.random In addition, sets the following environment variables: - `PL_GLOBAL_SEED`: will be passed to spawned subprocesses (e.g. ddp_spawn backend). - `PL_SEED_WORKERS`: (optional) is set to 1 if ``workers=True``. Args: seed: the integer value seed for global random state in Lightning. If `None`, will read seed from `PL_GLOBAL_SEED` env variable or select it randomly. workers: if set to ``True``, will properly configure all dataloaders passed to the Trainer with a ``worker_init_fn``. If the user already provides such a function for their dataloaders, setting this argument will have no influence. See also: :func:`~pytorch_lightning.utilities.seed.pl_worker_init_function`. """ max_seed_value = np.iinfo(np.uint32).max min_seed_value = np.iinfo(np.uint32).min try: if seed is None: seed = os.environ.get("PL_GLOBAL_SEED") seed = int(seed) except (TypeError, ValueError): seed = _select_seed_randomly(min_seed_value, max_seed_value) rank_zero_warn(f"No correct seed found, seed set to {seed}") if not (min_seed_value <= seed <= max_seed_value): rank_zero_warn(f"{seed} is not in bounds, numpy accepts from {min_seed_value} to {max_seed_value}") seed = _select_seed_randomly(min_seed_value, max_seed_value) # using `log.info` instead of `rank_zero_info`, # so users can verify the seed is properly set in distributed training. log.info(f"Global seed set to {seed}") os.environ["PL_GLOBAL_SEED"] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) os.environ["PL_SEED_WORKERS"] = f"{int(workers)}" return seed
def _select_seed_randomly(min_seed_value: int = 0, max_seed_value: int = 255) -> int: return random.randint(min_seed_value, max_seed_value)
[docs]def reset_seed() -> None: """ Reset the seed to the value that :func:`pytorch_lightning.utilities.seed.seed_everything` previously set. If :func:`pytorch_lightning.utilities.seed.seed_everything` is unused, this function will do nothing. """ seed = os.environ.get("PL_GLOBAL_SEED", None) workers = os.environ.get("PL_SEED_WORKERS", False) if seed is not None: seed_everything(int(seed), workers=bool(workers))
[docs]def pl_worker_init_function(worker_id: int, rank: Optional = None) -> None: # pragma: no cover """ The worker_init_fn that Lightning automatically adds to your dataloader if you previously set set the seed with ``seed_everything(seed, workers=True)``. See also the PyTorch documentation on `randomness in DataLoaders <https://pytorch.org/docs/stable/notes/randomness.html#dataloader>`_. """ # implementation notes: https://github.com/pytorch/pytorch/issues/5059#issuecomment-817392562 global_rank = rank if rank is not None else rank_zero_only.rank process_seed = torch.initial_seed() # back out the base seed so we can use all the bits base_seed = process_seed - worker_id log.debug( f"Initializing random number generators of process {global_rank} worker {worker_id} with base seed {base_seed}" ) ss = np.random.SeedSequence([base_seed, worker_id, global_rank]) # use 128 bits (4 x 32-bit words) np.random.seed(ss.generate_state(4)) # Spawn distinct SeedSequences for the PyTorch PRNG and the stdlib random module torch_ss, stdlib_ss = ss.spawn(2) # PyTorch 1.7 and above takes a 64-bit seed dtype = np.uint64 if _TORCH_GREATER_EQUAL_1_7 else np.uint32 torch.manual_seed(torch_ss.generate_state(1, dtype=dtype)[0]) # use 128 bits expressed as an integer stdlib_seed = (stdlib_ss.generate_state(2, dtype=np.uint64).astype(object) * [1 << 64, 1]).sum() random.seed(stdlib_seed)

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.