Shortcuts

Source code for pytorch_lightning.plugins.precision.sharded_native_amp

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union

from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE

if _NATIVE_AMP_AVAILABLE and _FAIRSCALE_AVAILABLE:
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler


[docs]class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin): """Mixed Precision for Sharded Training""" def __init__(self) -> None: super().__init__() self.scaler = ShardedGradScaler()
[docs] def clip_grad_by_norm( self, optimizer: "OSS", clip_val: Union[int, float], norm_type: float = 2.0, eps: float = 1e-6 ) -> None: optimizer.clip_grad_norm(clip_val, norm_type=norm_type)

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.