Source code for pytorch_lightning.plugins.precision.native_amp
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Any, Callable, Dict, Generator
import torch
from torch.optim import LBFGS, Optimizer
import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
[docs]class NativeMixedPrecisionPlugin(MixedPrecisionPlugin):
"""Plugin for native mixed precision training with :mod:`torch.cuda.amp`."""
def __init__(self) -> None:
super().__init__()
if not _NATIVE_AMP_AVAILABLE:
raise MisconfigurationException(
"You have asked for native AMP but your PyTorch version does not support it."
" Consider upgrading with `pip install torch>=1.6`."
)
self.backend = AMPType.NATIVE
self.scaler = torch.cuda.amp.GradScaler()
[docs] def pre_backward(self, model: "pl.LightningModule", closure_loss: torch.Tensor) -> torch.Tensor:
closure_loss = self.scaler.scale(closure_loss)
return super().pre_backward(model, closure_loss)
[docs] def pre_optimizer_step(
self,
model: "pl.LightningModule",
optimizer: Optimizer,
optimizer_idx: int,
lambda_closure: Callable,
**kwargs: Any,
) -> bool:
if isinstance(optimizer, LBFGS):
raise MisconfigurationException(
f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})."
" To request, please file a Github issue in PyTorch and tag @mcarilli"
)
result = True
if model.automatic_optimization:
result = lambda_closure()
self.scaler.unscale_(optimizer)
super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs)
# lambda_closure returning None indicates that backward has been skipped
if result is not None:
self.scaler.step(optimizer)
self.scaler.update()
return False
[docs] @contextmanager
def train_step_context(self) -> Generator[None, None, None]:
"""Enable autocast context"""
with torch.cuda.amp.autocast():
yield
[docs] @contextmanager
def val_step_context(self) -> Generator[None, None, None]:
"""Enable autocast context"""
with torch.cuda.amp.autocast():
yield
[docs] @contextmanager
def test_step_context(self) -> Generator[None, None, None]:
"""Enable autocast context"""
with torch.cuda.amp.autocast():
yield
[docs] @contextmanager
def predict_step_context(self) -> Generator[None, None, None]:
"""Enable autocast context"""
with torch.cuda.amp.autocast():
yield
[docs] def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
if "native_amp_scaling_state" in checkpoint:
self.scaler.load_state_dict(checkpoint["native_amp_scaling_state"])
[docs] def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
checkpoint["native_amp_scaling_state"] = self.scaler.state_dict()