Shortcuts

Source code for pytorch_lightning.plugins.environments.kubeflow_environment

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os

from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment

log = logging.getLogger(__name__)


[docs]class KubeflowEnvironment(ClusterEnvironment): """ Environment for distributed training using the `PyTorchJob <https://www.kubeflow.org/docs/components/training/pytorch/>`_ operator from `Kubeflow <https://www.kubeflow.org>`_ """
[docs] @staticmethod def is_using_kubeflow() -> bool: """Returns ``True`` if the current process was launched using Kubeflow PyTorchJob.""" required_env_vars = ("KUBERNETES_PORT", "MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK") # torchelastic sets these. Make sure we're not in torchelastic excluded_env_vars = ("GROUP_RANK", "LOCAL_RANK", "LOCAL_WORLD_SIZE") return all(v in os.environ for v in required_env_vars) and not any(v in os.environ for v in excluded_env_vars)
[docs] def creates_children(self) -> bool: return True
[docs] def master_address(self) -> str: return os.environ["MASTER_ADDR"]
[docs] def master_port(self) -> int: return int(os.environ["MASTER_PORT"])
[docs] def world_size(self) -> int: return int(os.environ["WORLD_SIZE"])
def set_world_size(self, size: int) -> None: log.debug("KubeflowEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.")
[docs] def global_rank(self) -> int: return int(os.environ["RANK"])
def set_global_rank(self, rank: int) -> None: log.debug("KubeflowEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored.")
[docs] def local_rank(self) -> int: return 0
[docs] def node_rank(self) -> int: return self.global_rank()

© Copyright Copyright (c) 2018-2023, William Falcon et al...

Built with Sphinx using a theme provided by Read the Docs.