Source code for lightning.fabric.strategies.ddp

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import AbstractContextManager, nullcontext
from datetime import timedelta
from typing import Any, Literal, Optional, Union

import torch
import torch.distributed
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only
from torch import Tensor
from torch.nn import Module
from torch.nn.parallel.distributed import DistributedDataParallel
from typing_extensions import override

from lightning.fabric.accelerators.accelerator import Accelerator
from lightning.fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.plugins.io.checkpoint_io import CheckpointIO
from lightning.fabric.plugins.precision import Precision
from lightning.fabric.strategies.launchers.multiprocessing import _MultiProcessingLauncher
from lightning.fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
from lightning.fabric.strategies.parallel import ParallelStrategy
from lightning.fabric.strategies.registry import _StrategyRegistry
from lightning.fabric.strategies.strategy import TBroadcast, _BackwardSyncControl
from lightning.fabric.utilities.distributed import (
    ReduceOp,
    _distributed_is_initialized,
    _get_default_process_group_backend_for_device,
    _init_dist_connection,
    _sync_ddp_if_available,
)
from lightning.fabric.utilities.distributed import group as _group
from lightning.fabric.utilities.rank_zero import rank_zero_only

_DDP_FORK_ALIASES = (
    "ddp_fork",
    "ddp_notebook",
)


[docs]class DDPStrategy(ParallelStrategy): """Strategy for multi-process single-device training on one or multiple nodes.""" def __init__( self, accelerator: Optional[Accelerator] = None, parallel_devices: Optional[list[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision: Optional[Precision] = None, process_group_backend: Optional[str] = None, timeout: Optional[timedelta] = default_pg_timeout, start_method: Literal["popen", "spawn", "fork", "forkserver"] = "popen", **kwargs: Any, ) -> None: super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, precision=precision, ) self._num_nodes = 1 self._process_group_backend: Optional[str] = process_group_backend self._timeout: Optional[timedelta] = timeout self._start_method = start_method self._backward_sync_control = _DDPBackwardSyncControl() self._ddp_kwargs = kwargs @property @override def root_device(self) -> torch.device: assert self.parallel_devices is not None return self.parallel_devices[self.local_rank] @property def num_nodes(self) -> int: return self._num_nodes @num_nodes.setter def num_nodes(self, num_nodes: int) -> None: # note that world ranks is related to num_nodes, when resetting it, need to reset world ranks self._num_nodes = num_nodes @property def num_processes(self) -> int: return len(self.parallel_devices) if self.parallel_devices is not None else 0 @property @override def distributed_sampler_kwargs(self) -> dict[str, Any]: return {"num_replicas": (self.num_nodes * self.num_processes), "rank": self.global_rank} @property def process_group_backend(self) -> Optional[str]: return self._process_group_backend
[docs] @override def _configure_launcher(self) -> None: assert self.cluster_environment is not None if self._start_method == "popen": self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes) else: self._launcher = _MultiProcessingLauncher(self, start_method=self._start_method)
[docs] @override def setup_environment(self) -> None: super().setup_environment() self._setup_distributed()
[docs] @override def setup_module(self, module: Module) -> DistributedDataParallel: """Wraps the model into a :class:`~torch.nn.parallel.distributed.DistributedDataParallel` module.""" device_ids = self._determine_ddp_device_ids() # https://pytorch.org/docs/stable/notes/cuda.html#id5 ctx = torch.cuda.stream(torch.cuda.Stream()) if device_ids is not None else nullcontext() with ctx: return DistributedDataParallel(module=module, device_ids=device_ids, **self._ddp_kwargs)
[docs] @override def module_to_device(self, module: Module) -> None: module.to(self.root_device)
[docs] @override def all_reduce( self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean" ) -> Tensor: """Reduces a tensor from several distributed processes to one aggregated tensor. Args: tensor: the tensor to sync and reduce group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to 'mean'/'avg'. Can also be a string 'sum' to calculate the sum during reduction. Return: reduced value, except when the input was not a tensor the output remains is unchanged """ if isinstance(tensor, Tensor): return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op) return tensor
[docs] @override def barrier(self, *args: Any, **kwargs: Any) -> None: if not _distributed_is_initialized(): return if torch.distributed.get_backend() == "nccl": torch.distributed.barrier(device_ids=self._determine_ddp_device_ids()) else: torch.distributed.barrier()
[docs] @override def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast: if not _distributed_is_initialized(): return obj obj = [obj] torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD) return obj[0]
[docs] @override def get_module_state_dict(self, module: Module) -> dict[str, Union[Any, Tensor]]: if isinstance(module, DistributedDataParallel): module = module.module return super().get_module_state_dict(module)
[docs] @override def load_module_state_dict( self, module: Module, state_dict: dict[str, Union[Any, Tensor]], strict: bool = True ) -> None: if isinstance(module, DistributedDataParallel): module = module.module super().load_module_state_dict(module=module, state_dict=state_dict, strict=strict)
@classmethod @override def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None: entries = ( ("ddp", "popen"), ("ddp_spawn", "spawn"), ("ddp_fork", "fork"), ("ddp_notebook", "fork"), ) for name, start_method in entries: strategy_registry.register( name, cls, description=f"DDP strategy with `start_method={start_method!r}`", start_method=start_method, ) strategy_registry.register( "ddp_find_unused_parameters_true", cls, description="Alias for `find_unused_parameters_true` and `start_method='popen'`", find_unused_parameters=True, start_method="popen", ) def _setup_distributed(self) -> None: self._set_world_ranks() self._process_group_backend = self._get_process_group_backend() assert self.cluster_environment is not None _init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout) def _get_process_group_backend(self) -> str: return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device) def _set_world_ranks(self) -> None: if self.cluster_environment is not None: self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) # `LightningEnvironment.set_global_rank` will do this too, but we cannot rely on that implementation detail # additionally, for some implementations, the setter is a no-op, so it's safer to access the getter rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank def _determine_ddp_device_ids(self) -> Optional[list[int]]: return None if self.root_device.type == "cpu" else [self.root_device.index]
class _DDPBackwardSyncControl(_BackwardSyncControl): @override def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager: """Blocks gradient synchronization inside the :class:`~torch.nn.parallel.distributed.DistributedDataParallel` wrapper.""" if not enabled: return nullcontext() if not isinstance(module, DistributedDataParallel): raise TypeError( "Blocking backward sync is only possible if the module passed to" f" `{self.__class__.__name__}.no_backward_sync` is wrapped in `DistributedDataParallel`." f" Got: {module.__class__.__name__}." ) return module.no_sync()