Source code for lightning.fabric.accelerators.xla

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Any, List, Union

import torch
from lightning_utilities.core.imports import RequirementCache
from typing_extensions import override

from lightning.fabric.accelerators.accelerator import Accelerator
from lightning.fabric.accelerators.registry import _AcceleratorRegistry
from lightning.fabric.utilities.device_parser import _check_data_type


[docs]class XLAAccelerator(Accelerator): """Accelerator for XLA devices, normally TPUs. .. warning:: Use of this accelerator beyond import and instantiation is experimental. """ def __init__(self, *args: Any, **kwargs: Any) -> None: if not _XLA_AVAILABLE: raise ModuleNotFoundError(str(_XLA_AVAILABLE)) if not _using_pjrt(): raise RuntimeError("The XLA XRT runtime is not supported anymore.") super().__init__(*args, **kwargs)
[docs] @override def setup_device(self, device: torch.device) -> None: pass
[docs] @override def teardown(self) -> None: pass
[docs] @staticmethod @override def parse_devices(devices: Union[int, str, List[int]]) -> Union[int, List[int]]: """Accelerator device parsing logic.""" return _parse_tpu_devices(devices)
[docs] @staticmethod @override def get_parallel_devices(devices: Union[int, List[int]]) -> List[torch.device]: """Gets parallel devices for the Accelerator.""" devices = _parse_tpu_devices(devices) if isinstance(devices, int): return [torch.device("xla", i) for i in range(devices)] # list of devices is not supported, just a specific index, fine to access [0] return [torch.device("xla", devices[0])]
# we cannot create `xla_device` here because processes have not been spawned yet (this is called in the # accelerator connector init). However, there doesn't seem to be a problem with instantiating `torch.device`. # it will be replaced with `xla_device` (also a torch.device`, but with extra logic) in the strategy
[docs] @staticmethod @override # XLA's multiprocessing will pop the TPU_NUM_DEVICES key, so we need to cache it # https://github.com/pytorch/xla/blob/v2.0.0/torch_xla/distributed/xla_multiprocessing.py#L280 @functools.lru_cache(maxsize=1) def auto_device_count() -> int: """Get the devices when set to auto.""" if not _XLA_AVAILABLE: return 0 if _XLA_GREATER_EQUAL_2_1: from torch_xla._internal import tpu return tpu.num_available_devices() from torch_xla.experimental import tpu device_count_on_version = {2: 8, 3: 8, 4: 4} return device_count_on_version.get(tpu.version(), 8)
[docs] @staticmethod @override @functools.lru_cache(maxsize=1) def is_available() -> bool: try: return XLAAccelerator.auto_device_count() > 0 except (ValueError, AssertionError, OSError): # XLA may raise these exceptions if it's not properly configured. This needs to be avoided for the cases # when `torch_xla` is imported but not used return False
@classmethod @override def register_accelerators(cls, accelerator_registry: _AcceleratorRegistry) -> None: accelerator_registry.register("tpu", cls, description=cls.__name__)
# PJRT support requires this minimum version _XLA_AVAILABLE = RequirementCache("torch_xla>=1.13", "torch_xla") _XLA_GREATER_EQUAL_2_1 = RequirementCache("torch_xla>=2.1") def _using_pjrt() -> bool: # delete me when torch_xla 2.2 is the min supported version, where XRT support has been dropped. if _XLA_GREATER_EQUAL_2_1: from torch_xla import runtime as xr return xr.using_pjrt() from torch_xla.experimental import pjrt return pjrt.using_pjrt() def _parse_tpu_devices(devices: Union[int, str, List[int]]) -> Union[int, List[int]]: """Parses the TPU devices given in the format as accepted by the :class:`~lightning.pytorch.trainer.trainer.Trainer` and :class:`~lightning.fabric.Fabric`. Args: devices: An int of 1 or string '1' indicates that 1 core with multi-processing should be used An int 8 or string '8' indicates that all 8 cores with multi-processing should be used A single element list of int or string can be used to indicate the specific TPU core to use. Returns: A list of tpu cores to be used. """ _check_data_type(devices) if isinstance(devices, str): devices = _parse_tpu_devices_str(devices) _check_tpu_devices_valid(devices) return devices def _check_tpu_devices_valid(devices: object) -> None: device_count = XLAAccelerator.auto_device_count() if ( # support number of devices isinstance(devices, int) and devices in {1, device_count} # support picking a specific device or isinstance(devices, (list, tuple)) and len(devices) == 1 and 0 <= devices[0] <= device_count - 1 ): return raise ValueError( f"`devices` can only be 'auto', 1, {device_count} or [<0-{device_count - 1}>] for TPUs. Got {devices!r}" ) def _parse_tpu_devices_str(devices: str) -> Union[int, List[int]]: devices = devices.strip() try: return int(devices) except ValueError: try: return [int(x.strip()) for x in devices.split(",") if len(x) > 0] except ValueError: raise ValueError(f"Could not parse the selected TPU devices: {devices!r}")